
Natural Neighbor Interpolation

-
Critical Assessment and New Contributions

Straight out of My Ass

Dem Fachbereich Informatik

der Technischen Universität Kaiserslautern

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

(Dr. rer. nat.)

vorgelegte

Dissertation

von

Tom Bobach

Kaiserslautern, im April 2008





Zusammenfassung

In den Ingenieur- und Naturwissenschaften treten zahlreiche Probleme auf, die eine
inhärent geometrische Struktur aufweisen. Um diese rechnergestützt behandeln zu können,
werden entsprechende Datenstrukturen und Zugriffsalgorithmen für die digitale Model-
lierung benötigt. Eine der am weitesten verbreiteten räumlichen Datenstrukturen ist die
Delaunaytriangulierung, welche im kanonischen Sinne dual zum Voronoidiagramm ist.
Während das Voronoidiagramm eine elegante Möglichkeit bietet, räumliche Abhängigkei-
ten zu modellieren, welches sich im Kernkonzept der “natürlichen Nachbarn” zusam-
menfassen lässt, erlaubt die Delaunaytriangulierung den robusten und effizienten Zugriff
darauf. Diese nützliche Kombination führt dazu, daß Methoden basierend auf diesen Da-
tenstrukturen in allen Bereichen der Ingenieur- und Naturwissenschaften große Bedeutung
haben.

Diese Arbeit beschäftigt sich mit Teilproblemen aus einer Vielzahl von Anwendungen,
deren Gemeinsamkeit ihre Verbindung zu Voronoidiagrammen und natürlichen Nachbarn
ist. Zuerst wird eine Idee untersucht, welche die Verallgemeinerung von B-Splineflächen
auf allgemeine, nichtreguläre Knotenstrukturen verspricht. Danach werden explizite Schrit-
te vorgestellt, welche die Implementierung eines kürzlich eingeführten neuen Verfahrens
zur C2-stetigen interpolation über natürlichen Nachbarn erlauben. Die glatte Interpola-
tion mit natürlichen Nachbarn setzt das Vorhandensein von Ableitungsinformationen an
den Datenpunkten voraus. Zwei neue Verfahren zur Ableitungsschätzung in unstrukturier-
ten Daten werden vorgestellt, welche auf dem Konzept der natürlichen Nachbarn basieren.
In einem verwandten Kontext beschäftigt sich die Arbeit mit der Berechnung diskret har-
monischer Funktionen in Punktwolken. Eine wichtige Beobachtung, die hierbei gemacht
wurde, zeigt den Zusammenhang zwischen der Approximation des Laplace-Operators
mittels lokaler Koordinaten basierend auf natürlichen Nachbarn und der kontinuierlichen
Abhängigkeit diskret harmonischer Funktionen von den Koordinaten der Punktwolke.
Im Kontext der Datenextrapolation wird eine allgemeine Konstruktion vorgestellt, die
mit Hilfe des Konzeptes der natürlichen Nachbarn eine algorithmisch transparente und
glatte Erweiterung von Interpolanten über die konvexe Hülle des Datensatzes hinaus
ermöglicht. Letztendlich werden in einer ausführlichen Behandlung der Eigenschaften
einer vor kurzem einge-führten Netzgenerierungsmethode aus dem Bereich der Finiten
Elemente Beweise für eine Reihe vorher angenommener Eigenschaften geliefert.





Abstract

In engineering and science, a multitude of problems exhibit an inherently geometric na-
ture. The computational assessment of such problems requires an adequate representation
by means of data structures and processing algorithms. One of the most widely adopted
and recognized spatial data structures is the Delaunay triangulation which has its canon-
ical dual in the Voronoi diagram. While the Voronoi diagram provides a simple and
elegant framework to model spatial proximity, the core of which is the concept of natu-
ral neighbors, the Delaunay triangulation provides robust and efficient access to it. This
combination explains the immense popularity of Voronoi- and Delaunay-based methods
in all areas of science and engineering.

This thesis addresses aspects from a variety of applications that share their affinity to the
Voronoi diagram and the natural neighbor concept. First, an idea for the generalization of
B-spline surfaces to unstructured knot sets over Voronoi diagrams is investigated. Then,
a previously proposed method for C2 smooth natural neighbor interpolation is backed
with concrete guidelines for its implementation. Smooth natural neighbor interpolation is
also one of many applications requiring derivatives of the input data. The generation of
derivative information in scattered data with the help of natural neighbors is described
in detail. In a different setting, the computation of a discrete harmonic function in a
point cloud is considered, and an observation is presented that relates natural neighbor
coordinates to a continuous dependency between discrete harmonic functions and the
coordinates of the point cloud. Attention is then turned to integrating the flexibility and
meritable properties of natural neighbor interpolation into a framework that allows the
algorithmically transparent and smooth extrapolation of any known natural neighbor
interpolant. Finally, essential properties are proved for a recently introduced novel finite
element tessellation technique in which a Delaunay triangulation is transformed into a
unique polygonal tessellation.





Acknowledgements

This thesis emerged under formidable supervision by Prof. Georg Umlauf and Prof. Ger-
ald Farin, with further valuable guidance from Prof. Dianne Hansford. Their constant
dependability, both professionally and personally, deserves my deepest gratitude and re-
spect.

I also need to specifically thank Prof. Hans Hagen, whose dedication in creating new
and interesting interdisciplinary research opportunities enabled a very intense experience
during my time in the international research and training group. The open-minded and
welcoming atmosphere of the whole Kaiserslautern work group enables productive and
pleasant work.

Further thanks go to my collaborators Prof. Martin Hering-Bertram, Alexandru Constan-
tiniu, and Prof. Paul Steinmann, with whom I am happy to have shared such interesting
and challenging research interests.

The invaluable offer of friendship and experienced advice from Prof. Xavier Tricoche and
Dr. Christoph Garth was a big help in all phases of this thesis. Their fruitful discussions
and feedback constantly enriched my work.

In my research I also benefited from the cooperative and helpful correspondence with a
number of people, whom I would like to thank here. Prof. Hisamoto Hiyoshi was so keen
to provide me with preprints of unpublished research results of his. From Prof. Peter
Alfeld I received a very insightful technical report that greatly supported my work on
extrapolation. While investigating possibilities to generalize natural neighbor coordinates,
Dr. Julia Flötotto kindly gave me source code on higher order Voronoi diagrams. The
discussion with Prof. Oleg Davidov about scattered data interpolation provided many
insights, and discussion with Prof. N. Sukumar offered interesting information about
practical applications of natural neighbor interpolation in finite elements.

When having needed to reflect on current issues, I greatly enjoyed the company and ex-
change with Dr. Ariane Middel, who always succeeds in brightening the most worrisome
situation (thank you, Ariane), Dr. Burkhard Lehner, Dr. Kerstin Müller, Dr. Christoph
Fünfzig, and many more I fail to mention. I thank all my colleagues in the computer
graphics and geometry group in Kaiserslautern and in the PRISM lab in Phoenix, espe-
cially Mady, Inga, Pushpak, Mahesh, and Roger.

Last but not least, the support of my family and friends was essential to every part of my
work. They deserve my thanks especially for putting up with me during all those times
when work life got the better of me. I love my wife Sophia. Your incredible patience, your
love, and your faith in me kept me going. I deeply thank my parents, who supported me
all the years and paved the way to where and what I am now.





Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Foundations 5
2.1 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Affine Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Generalized Barycentric Coordinates . . . . . . . . . . . . . . . . . 7
2.1.3 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Linear Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Vector Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Multi-Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Multivariate Taylor Series . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Spatial Tessellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Planar Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Polyhedral Complexes . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Tessellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 The Delaunay Triangulation . . . . . . . . . . . . . . . . . . . . . . 13
2.3.5 The Voronoi Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.6 The Power Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Bézier and B-Spline Functions . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Bernstein Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Bézier Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.3 Multivariate Bernstein Polynomials . . . . . . . . . . . . . . . . . . 20
2.5.4 Bézier Simplices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.5 De Casteljau’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.6 B-Spline Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.7 De Boor’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Related Work 25
3.1 Scattered Data Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Inverse Distance Methods . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Partition of Unity Method . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Radial Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.4 Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.5 Generalized Polygonal Barycentric Coordinates . . . . . . . . . . . 29

3.2 Natural Neighbor Interpolation . . . . . . . . . . . . . . . . . . . . . . . . 31

i



Contents ii

3.2.1 Natural Neighbor Concepts . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Properties of Natural Neighbor Interpolation . . . . . . . . . . . . 32
3.2.3 Steps of Natural Neighbor Interpolation . . . . . . . . . . . . . . . 33
3.2.4 Smoothness of Natural Neighbor Interpolation . . . . . . . . . . . 34
3.2.5 Natural Neighbor Coordinates in Point Clouds . . . . . . . . . . . 34
3.2.6 Transfinite Natural Neighbor Coordinates . . . . . . . . . . . . . . 43
3.2.7 Smooth Natural Neighbor Interpolation . . . . . . . . . . . . . . . 46
3.2.8 Manifold Natural Neighbor Interpolation . . . . . . . . . . . . . . 52
3.2.9 Implementation of Natural Neighbor Interpolation . . . . . . . . . 53
3.2.10 Taxonomy of Natural Neighbor Interpolants . . . . . . . . . . . . . 55

4 Splines over Iterated Voronoi Diagrams 59
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Farin’s Splines over Iterated Voronoi Diagrams . . . . . . . . . . . . . . . 60

4.2.1 Iterated Sibson’s Interpolation . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Representation as Local Coordinates . . . . . . . . . . . . . . . . . 61

4.3 Equivalence with B-splines in the Univariate Case . . . . . . . . . . . . . 62
4.3.1 Evaluating Quadratic B-Splines Using de Boor . . . . . . . . . . . 63
4.3.2 Evaluating Quadratic B-Splines Using Repeated Knot Insertion . . 63
4.3.3 Evaluating Quadratic B-Splines Using Iterated Sibson’s Interpolation 64
4.3.4 Difference for Degree Greater Two . . . . . . . . . . . . . . . . . . 64

4.4 Failure in the Bivariate Case . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Gonzáles’ Voronoi Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.2 Discussion of Gonzáles’ Method and Future Research . . . . . . . . 68

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Practical Implementation of Higher Order Natural Neighbor Coordinates 71
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Algebraic Volume Computation . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Triangulation of the Convex Hull . . . . . . . . . . . . . . . . . . . 72
5.2.2 Lasserre’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3 Voronoi (Sub-)Tiles in H-Representation . . . . . . . . . . . . . . . 75
5.2.4 Weight Dependent Power Voronoi Tile . . . . . . . . . . . . . . . . 76

5.3 Laplace and Sibson Natural Neighbor Coordinates with Lasserre’s method 77
5.3.1 Laplace Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 Sibson Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Parametric Recursive Volume Representation . . . . . . . . . . . . . . . . 78
5.4.1 Recursion with Variable Right Side . . . . . . . . . . . . . . . . . . 78
5.4.2 Descending the Recursion . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.3 Ascending the Recursion . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Implementation of Hiyoshi Coordinates in 2D . . . . . . . . . . . . . . . . 81
5.5.1 Geometric Computation . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.2 Computation with Lasserre’s Method . . . . . . . . . . . . . . . . 82
5.5.3 Integral Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C



iii Contents

6 Derivative Generation for Natural Neighbors 89
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Direct Approach for Derivative Generation . . . . . . . . . . . . . . . . . 91

6.2.1 Fitting Arbitrary Derivatives . . . . . . . . . . . . . . . . . . . . . 91
6.2.2 Choosing the Neighborhood . . . . . . . . . . . . . . . . . . . . . . 92
6.2.3 Polynomial Precision for Natural Neighbor Interpolants . . . . . . 93

6.3 Iterative Derivative Generation . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.1 A Univariate Example . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2 Stages One and Two . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.3 An Explicit Construction for the General Setting . . . . . . . . . . 96
6.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Results: Generated Derivatives Applied in Smooth Natural Neighbor In-
terpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4.1 Visual Examples for Franke’s Function . . . . . . . . . . . . . . . . 99
6.4.2 Numerical Assessment for Franke’s Function . . . . . . . . . . . . 108

6.5 Complexity Issues for Quintic Bézier Simplices in Hiyoshi’s Method . . . . 112
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Discrete Harmonic Functions from Local Coordinates 115
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.1.2 Harmonic Functions and Their Discretization . . . . . . . . . . . . 117

7.2 Discrete Harmonic Functions from Local Coordinates . . . . . . . . . . . . 118
7.2.1 Discrete Harmonic Functions over Triangulations . . . . . . . . . . 118
7.2.2 Laplacian Discretizations Based on Local Coordinates . . . . . . . 120
7.2.3 Experimental Comparison . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.4 Dynamic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Natural Neighbor Extrapolation 127
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2.1 Scattered Data Interpolation . . . . . . . . . . . . . . . . . . . . . 128
8.2.2 Scattered Data Extrapolation . . . . . . . . . . . . . . . . . . . . . 131

8.3 Taxonomy of Scattered Data Extrapolation . . . . . . . . . . . . . . . . . 134
8.4 Weighted Triangular Exterior Coordinates . . . . . . . . . . . . . . . . . . 136

8.4.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.4.2 Alfeld’s Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.4.3 Increasing the Continuity Away from the Convex Hull . . . . . . . 138
8.4.4 Restrictions and Shortcomings . . . . . . . . . . . . . . . . . . . . 138
8.4.5 Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.5 Extrapolating Watson’s Construction . . . . . . . . . . . . . . . . . . . . . 141
8.6 Projective Exterior Domain Coordinates . . . . . . . . . . . . . . . . . . . 142

8.6.1 Extrapolation with Brown Coordinates . . . . . . . . . . . . . . . 142
8.6.2 Extension of Circumcircles to Points at Infinity . . . . . . . . . . . 143
8.6.3 Extrapolation Using Brown’s Approach on Unbounded Circumcircles145

8.7 Ghost Points for Natural Neighbor Interpolation . . . . . . . . . . . . . . 147

C



Contents iv

8.7.1 Ghost Point Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.7.2 Assigned vs. Dismissed Ghost Points . . . . . . . . . . . . . . . . . 149
8.7.3 Static Ghost Point Placement . . . . . . . . . . . . . . . . . . . . . 150
8.7.4 Dynamic Ghost Point Placement . . . . . . . . . . . . . . . . . . . 152

8.8 Visual Comparison of Extrapolation Methods . . . . . . . . . . . . . . . . 157
8.8.1 Tame Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.8.2 Oscillation Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.8.3 Flip Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.8.4 Sliver Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.8.5 Artifacts and Asymptotic Behavior . . . . . . . . . . . . . . . . . . 166

8.9 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 172

9 Adaptive Delaunay Tessellation 173
9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.2.1 Linear Elasticity and Nodal Integration in the Finite Element Method174
9.2.2 Voronoi Tile Coverage in the ADT . . . . . . . . . . . . . . . . . . 175

9.3 The Adaptive Delaunay Tessellation . . . . . . . . . . . . . . . . . . . . . 175
9.4 Geometric Properties of the Adt . . . . . . . . . . . . . . . . . . . . . . . 177

9.4.1 Uniqueness of the Adt . . . . . . . . . . . . . . . . . . . . . . . . 177
9.4.2 Connectedness of the Adt . . . . . . . . . . . . . . . . . . . . . . . 178
9.4.3 An Alternative Characterization for the Adt . . . . . . . . . . . . 180
9.4.4 Coverage of Voronoi Tiles . . . . . . . . . . . . . . . . . . . . . . . 183
9.4.5 Further Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

10 Conclusion 189

Bibliography 193

Curriculum Vitae 203

C



1 Introduction

There’s beauty in simplicity.

∼common saying

1.1 Overview

A great many scientists and engineers are concerned with the analysis and solution of
problems that possess an inherently geometric nature. The use of computer-aided methods
in the assessment of such problems has become a standard tool in their research and work,
providing insights that would otherwise be impossible. One fundamental prerequisite
for such tools are data structures and algorithms that allow to model these problems
on computers, and some of the most challenging types of input are data defined over
unorganized, inhomogeneous point clouds, called scattered data.

An extremely successful geometric structure in the handling of scattered data is the
classical Voronoi diagram. Indeed, it is conceptually simple and elegant, and naturally
captures spatial relations. Most of its success in computational geometry is due to its
underlying dual data structure, the Delaunay triangulation, for which there exist robust,
proven, and widely available algorithms. Sometimes, even abstract problems without any
obvious geometric interpretation are transformed into a geometric setting to permit their
manipulation in this data structure.

Among the many necessary operations on scattered data is the evaluation of a smooth
function that fits the given data, called scattered data interpolation, or that approximates
it sufficiently well, in which case it is called scattered data approximation. This vast field
has produced many powerful techniques, with solutions readily available for most prob-
lems. However, only few of the available methods can be considered conceptually simple
and applicable to data distributions with an arbitrarily inhomogeneous distribution. Prob-
ably the most interesting methods standing out by these attributes are natural neighbor
interpolants, which are defined with respect to the geometry of the Voronoi diagram.

These interpolants are elegant because they naturally generalize to higher dimensions,
allow for an easy computation based on the Delaunay triangulation, and – most impor-
tantly – implicitly capture the spatial constellation of the data. This latter property is due
to the Voronoi diagram which has applications far beyond scattered data interpolation.

In this general context, this thesis considers some open problems of natural neighbor
concepts, with its main focus on scattered data interpolation, as well as on closely related
aspects such as spatial tessellations and the application of natural neighbor coordinates
to discrete function modelling.

1



Introduction

1.2 Contributions

In this thesis we provide a comprehensive survey on the field of natural neighbor interpo-
lation, which includes generalizations to data sites of arbitrary shape, to manifolds, and
a presentation of available methods for the computation of natural neighbor interpolants
in Chapter 3. As part of this survey, we offer insightful visual comparison between the
basic natural neighbor based interpolants for data in point clouds.

In an unpublished work by Farin, an equivalence between the evaluation of B-spline
functions and repeated application of Sibson’s interpolant in iterated Voronoi diagrams
has been shown, and conjectured to yield smooth functional surfaces in the bivariate
case over unstructured knot sets. We have implementated his idea, and we were able to
disprove this conjecture, which we further explain in Chapter 4.

Smooth natural neighbor interpolation depends on the computation of smooth natural
neighbor coordinates in point clouds. A recently poposed generalization of Sibson’s C1

interpolant by Hiyoshi builds upon Ck continuous natural neighbor coordinates whose
definition lacks guidelines for a practical implementation. We provide these guildelines
for arbitrary dimensions, and discuss the pros and cons of this approach when it is im-
plemented for dimension greater than three in Chapter 5. Then, we describe a concrete
implementation for two dimensions. Our guidelines also include simplified instructions
for the implementation of Laplace and Sibson coordinates based on the half-space repre-
sentation of Voronoi polytopes.

Another important aspect in smooth natural neighbor interpolation is the generation
of derivatives that best represent the nature of the data set. Derivative generation in
general is an active research area, and we propose in Chapter 6 two appoaches based on
the well-known fitting of Taylor polynomials to scattered values. The contribution of the
first method lies in the choice of neigborhood, while the second method reduces the size
of the necessary neighborhood for higher order derivatives by an iterative approach.

We rectify some issues that have been left unattended in the past. We raise alertness about
the complexity implications of Hiyoshi’s C2 natural neighbor interpolant in structured
data sets in Section 6.5, and we correct an assumption made by Brown in his proof of
the continuity of his construction in Section 3.2.5.6.

The Laplacian as a fundamental differential operator gives raise to harmonic functions
on continuous domains and to discrete harmonic functions on graphs. We show that a
Laplacian approximation in a scattered point set that is derived from natural neighbor
coordinates leads to discrete harmonic functions that are continuous with respect to the
coordinates of the point cloud in Chapter 7.

In many applications, the typical restriction of scattered data interpolation to the convex
hull of the data set is an artificial limitation that often even causes unwanted artifacts. The
extension of an interpolant past the convex hull of the data sites is called extrapolation,
and to this day there is no consensus as to how to rate or classify extrapolation. In
Section 8.3, we introduce new criteria by which extrapolation schemes can be assessed
and compared, and specifically advocate to deviate from standard interpolation near the
convex hull to circumvent the artificially induced artifacts mentioned before.

2



1.2 Contributions

While global scattered data interpolation naturally provides extrapolation to some extent,
local methods such as natural neighbor interpolation do not. All the local extrapolation
approaches introduced in the past depend on particular triangulations of the data set,
which makes them sensitive to pertubations affecting the triangulation. This particular
problem is naturally overcome in natural neighbor interpolation, for which we develop
in Section 8.7 the framework of dynamic ghost points which allows the transparent and
smooth extension of any natural neighbor interpolant past the convex hull of the data
set.

In the Finite Element Method, the introduction of nodal integration schemes as a step
towards meshless methods has brought with it new requirements on the backgound tessel-
lation to efficiently support the numerical algorithms. In the case of Voronoi based nodal
integration, the Adaptive Delaunay Tessellation has been introduced as the unique tes-
sellation that satisfies a canonical set of desirable properties, but no rigorous proofs were
given so far. We deliver the missing proofs in Chapter 9 and thereby lay the theoretical
foundation for further advances in this method.

3



Introduction

4



2 Foundations

In the following we introduce basic notation and review essential results to lay the foun-
dation for the work presented in this thesis. For the reader’s convenience each chapter
specifically mentions which of the following sections are relevant to the presentation.

2.1 Linear Algebra

We denote a member of the n-dimensional vector space over R by

x := (x1, . . . , xn)T ∈ Rn,

where xi indicates the i-th component of x. For two vectors x1,x2 ∈ Rn, we use xT1 x2 ∈ R
to denote the inner product, and x1xT2 ∈ Rn×n to denote the outer product.

We use different norms, namely

|x| absolute value of x ∈ R,

|Ω| =
∫

Ω
dA area or volume of Ω ⊂ Rn,

‖x‖2 or ‖x‖ = (xTx)
1
2 Euclidean norm of x ∈ Rn,

‖x‖1 = |x1|+ · · ·+ |xn| Manhattan norm of x ∈ Rn,

‖x‖∞ = max
i=1,...,n

|xi| maximum norm of x ∈ Rn.

We always assume the canonical Cartesian basis e1, . . . , en, ej = (ei)j = δij for a vector
space Rn. Then, a linear map from Rm to Rn has a unique representation with respect
to the Cartesian system Ax = y, where x ∈ Rm, y ∈ Rn, and

A =

 a11 . . . a1m
...

. . .
an1 anm

 ∈ Rn×m.

Consequently, Ax ≤ y corresponds to the set of n inequalities∑
j=1,...,m

aijxj ≤ yi, i = 1, . . . , n.

5



Foundations

2.1.1 Affine Geometry

Many of the concepts that apply to polyhedral tessellations and local coordinates are
closely related to affine spaces and subspaces of Rn.

Corresponding to [PBP02], a finite-dimensional affine space A over R can be represented
by a point space and an underlying vector space V where elements of bothA and V can be
regarded as elements of Rn. Because we will only consider such coordinate representations,
we identify A and V with Rn.

This representation of points and vectors depends on a coordinate system, for which we
can choose any point p ∈ A and any set of vectors v1, . . . ,vm forming a basis of V.
Then, any point q of A has a unique representation q = p + x1v1 + · · · + xmvm, i.e.,
the coordinate column x = (x1, . . . , xn)T ∈ Rn represents q with respect to the affine
system p; v1, . . . ,vm. The point p is referred to as the origin of the coordinate system
and corresponds to the coordinate column 0 = (0, . . . , 0)T ∈ Rn.

The dimension of an affine space A is defined as the dimension of its underlying vector
space V. An affine subspace of A is an affine space A′ ⊂ A whose underlying vector space
V′ is a subspace of V.

Any set of points {p0, . . . ,pm} of an affine space A is called affinely independent if the
vectors p1 − p0, . . . ,pm − p0 are linearly independent.

Let m be the dimension of A. Then, any independent sequence p0, . . . ,pm forms a frame
of A, and every point q ∈ A can be uniquely written as

q = p0 + x1(p1 − p0) + · · ·+ xm(pm − p0)
= x0p0 + x1p1 + · · ·+ xmpm,

where x0 + · · · + xm = 1. The coefficients xi are called the barycentric coordinates of q
with respect to the frame p0, . . . ,pm.

Let a1, . . . ,al be the affine or barycentric coordinate columns of l points in A. Then, the
weighted sum

a =
∑

i=1,...,m

αiai represents a

{
point
vector

if
∑

i=1,...,m

αi =

{
1
0

.

If the weights αi sum to one, then a = α1a1 + · · ·+αmam is called an affine combination.
If, in addition, the weights are non-negative, then a is called a convex combination, and
lies in the convex hull of a1, . . . ,am, which is defined by

C (a1, . . . ,am) = {a : a is a convex combination of a1, . . . ,am } .

If the dimension of A is m, then the convex hull of any m+ 1 affinely independent points
a0, . . . ,am ∈ A is called a simplex in A.

If a set of points p1, . . . ,pm ∈ Rn contains n+ 1 affinely independent points, we say they

6



2.1 Linear Algebra

are in general position.

If A has dimension m, then the isometric mapping of any compact subset Ω ⊂ A to Rm

has a volume which we denote by
Vol(m,Ω).

2.1.2 Generalized Barycentric Coordinates

Let x1, . . . ,xm ∈ Rn be a sequence of points in general position. Then, any set of coeffi-
cients λ1, . . . , λm ∈ R in an affine combination of the form

x =
∑

i=1,...,m

λixi (2.1)

is called generalized barycentric coordinates of x ∈ Rn with respect to x1, . . . ,xm, and
will be abbreviated by λ = (λ1, . . . , λm) ∈ Rm.

Property (2.1) is called local coordinate property, LCP, and λ is said to be convex if
0 ≤ λi, i = 1, . . . ,m.

The equivalence relation λa ∼ λb ⇐⇒ ∃α > 0 : λa = αλb gives rise to homogeneous
generalized barycentric coordinates, which satisfy

0 =
∑

i=1,...,m

λ̂i(xi − x),

and we use the hat symbol “ˆ” to indicate that λ̂ ∼ λ.

Remark 2.1 By definition, only points inside the convex hull of x1, . . . ,xm can be rep-
resented by a convex combination of x1, . . . ,xm.

2.1.3 Singular Value Decomposition

For each matrix A ∈ Rm×n with rank r, its singular value decomposition (SVD) is the
decomposition into a set of three matrices

A = U ΣV T ,

with U ∈ Rm×m and V ∈ Rn×n orthonormal, and Σ ∈ Rm×n (see Figure 2.1). The only
non-zero entries of Σ are its first r diagonal elements σ1, . . . , σr, called singular values of
A. Each σi is the squareroot of an eigenvalue of ATA.

The range of a linear map A ∈ Rm×n is the linear subspace ranA = {Ax : x ∈ Rn },
and is spanned by the first r column vectors of U . The kernel of A refers to the linear
subspace kerA = {x ∈ Rn : Ax = 0 }, and is spanned by the last n− r column vectors
of V .

7



Foundations

Σr 0

0 0

A = U Σ V T

0

Figure 2.1: The SVD of a matrix A. If r is the rank of A, Σr ∈ Rr×r. The dark grey areas
are uniquely determined, while the column vectors of U and the row vectors of V T

corresponding to the light grey areas are arbitrary orthogonal complements.

2.1.4 Linear Least Squares

The general least squares problem for vector-valued functions f : Rm → Rn arises when
the equation f(x) = b is over-constrained. A minimizer x∗ of the corresponding residual
‖f(x)− b‖2 is called least squares solution of f(x) = b.

If f is a linear function given by A ∈ Rm×n, the minimization of

‖Ax− b‖2

is called a linear least squares (LLS) problem.

It is a special property of the SVD that it can be used to obtain the minimizer of the
squared residual, as can be verified in [GL89]. If b /∈ ranA, the unique minimizer x∗ can
be computed using the SVD, A = UΣV T ,

x∗ = V Σ−1UTb,

where Σ−1 ∈ Rn×n has diagonal entries σ−1
1 , . . . , σ−1

r corresponding to the singular values
of A.

In case b ∈ ranA, there is an affine solution space A of dimension lower or equal to m,
and the inversion of the SVD provides a unique solution x∗ ∈ A with minimal norm.

If A has full column rank, the minimizer x∗ is without loss of generality given by

x∗ = A+b,

where A+ := (ATA)−1AT is the Moore-Penrose inverse of A. If the matrix ATA is known
to be well-conditioned, the application of A+ is preferable due to the computational cost
involved in computing the SVD.

2.2 Vector Analysis

This thesis is mainly concerned with real-valued functions defined over the Cartesian
vector space Rn, and their smoothness properties.

8



2.2 Vector Analysis

2.2.1 Derivatives

We denote the n-th derivative with respect to x ∈ R using Leibniz notation

dn

dxn
,

and the partial derivative of a multivariate function f : Rn → R with respect to the i-th
component xi of x ∈ Rn as

∂

∂xi
.

The directional derivative of a function with respect to a direction v at a point p is given
by the univariate derivative of the composition with a linear function d(t) = p + tv, and
will be denoted by

d
dv
f |p :=

d
dt
f(d(t))|t=0 .

If Πd
n denotes the space of n-variate polynomials of total degree d, and f : Rn → R

is a function interpolating x1, . . . ,xl ∈ Rn and data z1, . . . , zl ∈ R, then we say f has
polynomial precision of degree d if for p ∈ Πd

n with zi = p(xi) for i = 1, . . . , l,

f ≡ p.

2.2.2 Multi-Indices

A very useful tool in dealing with multivariate functions is the multi-index, which we
denote by bold, lowercase letters. An n-dimensional multi-index of degree d ∈ N0 is an
integer-valued vector i = (i1, . . . , in) ∈ Nn

0 , with |i| = i1 + · · · + in = d. Most operations
on integers can be transferred to i by applying them to each component ij of i:

αi = αi11 · . . . · αinn i-th power of α ∈ Rn,

i! = i1! · . . . · in! factorial,(
j

i

)
=
j!
i!

the binomial coefficient
with an integer j,

ej =(0, . . . , 0, 1︸ ︷︷ ︸
j

, 0, . . . , 0︸ ︷︷ ︸
n− j

) the j-th canonical unit index

dj =d · ej the j-th ..., where d is determined by context

d|i|

dxi
=

d|i|

dxi11 . . . dx
in
n

the i-th mixed partial derivative,

i ≤ j ⇐⇒ ik ≤ jk, k = 1, . . . , n partial ordering
i− j = (max{i1 − j1, 0}, . . . ,max{in − jn, 0}) capped difference
∆iji = i− ei + ej shift along direction ej − ei

9



Foundations

Using multi-index notation, the multinomial expansion of α = (α1, . . . , αn) becomes

(α1 + · · ·+ αn)d =
∑
|i|=d

(
d

i

)
αi.

Multi-index notation allows to hide considerable combinatorial complexity behind an
innocent face, making the following result on the size of multi-index sets interesting.
After [Mik77, Cam94], the number of m-dimensional multi-indices j with |j| = d is

|{ j ∈ Nm : |j| = d }| =
(
d+m− 1

d

)
. (2.2)

2.2.3 Multivariate Taylor Series

Taylor’s theorem states that every function f that is n-times differentiable at a point a
can be written as

f(a + x) =
∑
|i|≤n

1
i!

di

dxi
f |a xi + R(x),

where R(x) is the remainder term which, for a large group of functions, converges to zero
as x→ 0.

For an n-variate, real-valued function f that is infinitely differentiable in the neighborhood
of a point a ∈ Rn, its Taylor series is a representation as an infinite sum of polynomials
whose coefficients are computed from the derivatives of that function at a, denoted by

f(a + x) =
∑
|i|≥0

1
i!

di

dxi
f |a xi.

The function f is called analytic on a neighborhood Ω 3 p if the series converges for
every x ∈ Ω, i.e., f is identical to its Taylor series on Ω. In this representation, the shape
of the function has a good local approximation by the polynomials in the first terms of
the Taylor series.

A common notation for the first two terms of the Taylor series expansion uses the gradient
∇f(a) and the Hessian H f(a) to encode derivatives up to order two in a concise way as

f(a + x) = f(a) + (∇f(a))Tx +
1
2
xTH f(a) x +R(x).

2.3 Spatial Tessellations

The following definitions have been loosely adopted from [Zie94], and further treatment
of spatial tessellations in general can be found in [OBSC00].

Because of their importance in two dimensions, we first introduce planar polygons based

10



2.3 Spatial Tessellations

x1

x2

x6

x3

x5

x4

(a) simple, convex

P

K

x6

x5

x2

x3

x4

x7

x1

(b) simple, star-
shaped with kernel
K

P
x6

x2

x3

x4

x7

x1

x5

(c) simple, not
star-shaped

x1

x2

x3

x5

x6

x4

(d) non-simple

x5

x6

x2

x4

x3

x1

(e) non-simple

x2

x4

x5

x3

x6

x1

(f) non-simple

Figure 2.2: (a)-(c) Simple polygons (d)-(f) Non-simple polygons. (b) The kernel of a polygon
is the set of internal points which can be connected to all vertices by straight lines
without intersecting the polygon.

on their vertex representation, and move to their generalization to polyhedra in Rn af-
terward. The Delaunay triangulation and the Voronoi diagram are then introduced as
concrete tessellations.

2.3.1 Planar Polygons

Any sequence of points p1, . . . ,pm in the plane, called vertices, defines a polygon consisting
of a sequence of line segments (p1p2), . . . , (pm−1pm), called edges of the polygon. If
pm = p1, the polygon is called closed, and its interior is defined as the set of points for
which there is a ray starting from them that intersects an odd number of edges. A polygon
is called simple if the intersection of any two edges is either their common vertex or empty.
A stronger notion of interior of a simple polygon is given by its kernel, which is the set of
points visible from all polygon vertices at the same time, i.e., the set of points for which
all straight lines connecting them to polygon vertices are completely inside the polygon.
If a polygon has a non-empty kernel, it is called star shaped. Some examples of simple
polygons are given in Figure 2.2(a)-(c), of non-simple polygons in Figure 2.2(d)-(f).

2.3.2 Polyhedral Complexes

In higher dimensions, the proper equivalent of a polygon in the plane is a polyhedral
complex. We will deal with convex polyhedra as the building blocks of spatial tessellations,
and with non-convex polygons in the plane.

There is some confusion about the exact meaning of the term polyhedron, as Grünbaum
points out in [Grü03]. Often it is understood as a piecewise linear surface embedded in

11



Foundations

three-space, sometimes referring to the surface bounding a solid and sometimes to the
solid itself. We will restrict the definitions to convex polyhedra representing volumes in
affine spaces over Rn, and restate some definitions and results as found in textbooks like
[ADKS05].

The proper generalization of a convex, closed polygon to Rn is a convex polytope Pt,
which has two equivalent representations. In the V-representation, Pt is the convex hull

Pt = C (p1, . . . ,pk),

of a minimal, finite set of points p1, . . . ,pk, called vertices of the polytope. In the H-
representation, Pt = ∩iH≤i is the intersection of a minimal, finite set of half-spaces
H≤1 , . . . ,H≤l , where H≤i = {x ∈ Rn : aix ≤ bi }, and we write

Pt = Pt(A,b) = {x ∈ Rn : Ax ≤ b } ,

where A = [a1 . . . al]T ∈ Rl×n and b = (b1, . . . , bl)T .

It is clear from the V-representation that a convex polytope is always bounded. The
unbounded generalization is called convex polyhedron Ph, which has two equivalent rep-
resentations as well. For two sets A and B, the operation A⊕B = { a+ b : a ∈ A, b ∈ B }
represents the Minkowski sum. If cone(v1, . . . ,vm) = {∑i αivi : αi ∈ R, αi ≥ 0 } is the
cone spanned by a set of vectors, and ⊕ is the Minkowski sum, then the V-representation
of a convex polyhedron is

Ph = C (p1, . . . ,pk) ⊕ cone(v1, . . . ,vm),

where the sets {p1, . . . ,pk} and {v1, . . . ,vm} are minimal. The H-representation of Ph
is equivalent to that of a convex polytope.

A polyhedral complex C is defined in [Zie94] as a finite collection of polyhedra in Rn such
that

1. the empty polyhedron P = ∅ is in C,
2. if P ∈ C, then all the faces of P are also in C,
3. the intersection P ∩Q of two polyhedra P,Q ∈ C is a face both of P and of Q, or

empty.

Consequently, a simplicial complex is a polyhedral complex containing only simplices.

The generalization of the above to non-convex polyhedra will not be given here, but it
should be noted that they can be defined as the result of a finite set of set operations and
topological operations on convex polyhedra.

2.3.3 Tessellations

Most of this thesis will deal with tessellations or tilings in one way or another. We briefly
introduce tessellations, and then turn to two fundamental, mutually dual tessellations:
the Delaunay triangulation and the Voronoi diagram.

12



2.3 Spatial Tessellations

(a) X ⊂ R2 (b) Delaunay triangulation of X

(c) Circumcircles of the triangles (d) Voronoi diagram of X

Figure 2.3: Examples of the Delaunay triangulation and the Voronoi diagram in 2D. (a) Set
of points. (b) Delaunay triangulation. (c) Corresponding empty circumcircles. (d)
Voronoi diagram of X.

A general tessellation is composed of tiles of arbitrary shape, but here we restrict our
considerations to polyhedral tessellations. If Ω ⊆ Rn, then the decomposition

Ω =
⋃
i

Ti

into n-dimensional polytopes Ti, with Ti ∈ C for some polyhedral complex C, is a polyhedral
tessellation of Ω. If X ⊂ C is the set of vertices and E ⊂ C is the set of edges of C, then
the set {T1, . . . , Tm} ⊂ C is a tessellation of X with vertices X and edges E.

A simplicial tessellation, or triangulation of Ω is consequently a decomposition into sim-
plices that are elements of some simplicial complex. For any set of points in general
position, one can find a simplicial tessellation. If T is a simplicial tessellation, in R2, then
we use Ti instead of Ti to refer to the simplexes of which T is composed.

2.3.4 The Delaunay Triangulation

If Ti is an n-simplex, then the unique circumscribing sphere containing its vertices is called
circumsphere of Ti, and the sphere center is called its circumcenter, denoted by cc(Ti). If
T = {T1, . . . , Tm} is a simplicial tessellation of a point set X ⊂ Rn, and no circumsphere
contains a point from X in its interior, T is called a Delaunay triangulation1. For any

1Although for n > 2, it does not consist of triangles but higher dimensional simplices, the term triangu-
lation is common.

13



Foundations

(a) (b) (c)

Figure 2.4: (a) Voronoi Diagram of points in R2. (b) Points in the shaded region have the bold
site as one natural neighbor. (c) Points in the shaded region have the same four bold
sites as natural neighbors.

point set in general position, a Delaunay triangulation exists, see Figure 2.3(a)-(c) for an
example in 2D.

The most important result about Delaunay triangulations states that the set of empty
circumspheres is unique. Since every set of n + 2 or more points on the same empty
circumsphere allows multiple triangulations into simplices without violating the empty
circumsphere condition, the Delaunay triangulation of a point set is unique modulo these
equivalent triangulations.

A planar Delaunay triangulation can be shown to maximize the minimum angle of all
angles of the triangles.

The empty circumsphere condition allows an iterative construction of the Delaunay trian-
gulation. We say that a simplex of a Delaunay triangulation is in conflict with a point if
that point is contained in the interior of its circumsphere. If {T1, . . . , Tm} are all simplices
of a Delaunay triangulation of X that are in conflict with a point x, then the Delaunay
triangulation of X∪{x} can be constructed by removing T1, . . . , Tm, and retriangulating
the generated hole by simplices sharing x as common vertex.

More on computation and application of the Delaunay triangulation can be found in
[HD06].

2.3.5 The Voronoi Diagram

Next we introduce the spatial structure upon which most of this thesis is based. For an
overview on Voronoi diagrams the reader may refer to [Aur91, OBSC00].

For any finite set of points X = {x1, . . . ,xm} ⊂ Rn, the Voronoi diagram of X is the
unique polyhedral tessellation T = {Tx1 , . . . , Txm} of Rn such that

Txi = {x ∈ Rn : ‖x− xi‖ ≤ ‖x− xj‖, xj ∈ X } ,

as shown for 2D in Figure 2.3(d). The members of X are called Voronoi sites and the
vertices Voronoi vertices. A polyhedron Tx is called Voronoi tile of x, where we use

14



2.3 Spatial Tessellations

the abbreviation Ti := Txi to refer to tiles of indexed points. For any two tiles Ti, Tj
intersecting in an n− 1-dimensional polyhedron, we call Fij = Ti ∩ Tj the Voronoi facet
separating the tiles, and say that xi and xj are natural neighbors in X. In the context
of Voronoi diagrams, we use N(x) ⊆ X to denote the set of natural neighbors of a point
x ∈ X, and Ni = { j : xj ∈ N(xi) } to denote the set of indices of the natural neighbors
of xi.

The neighborhood relation in Voronoi diagrams induces several related geometric struc-
tures. The set of points which have a certain site as natural neighbor is called the support
of that site, shown in Figure 2.4(b). A set of points sharing the same set of natural
neighbors is part of the arrangement of Delaunay circumspheres, as illustrated for 2D in
Figure 2.4(c).

Remark 2.2 This definition of natural neighbors excludes Voronoi sites sharing a com-
mon empty circumsphere, whereas the slightly different definition

xi,xj are natural neighbors ⇐⇒ Ti ∩ Tj 6= ∅

includes sites on a common empty circumsphere. For the first definition, the natural
neighbors of a point in the Voronoi diagram of X are a subset of the vertex neighbors of
that point in the Delaunay triangulation of X, while for the second definition, the subset
relation is reversed.

For our purposes, the association of natural neighbors of a point x ∈ Rn with the vertex
neighbors of that point in a Delaunay triangulation is sufficient, since the Voronoi tiles
of ambiguous neighbors intersect in facets of dimension n− 2 or less and can be ignored
in all our considerations.

If T = {Tx, Tx1 , . . . , Txm} is the Voronoi diagram of X = {x,x1, . . . ,xm}, and T (x) =
{T (x)

1 , . . . , T (x)
m } is the Voronoi diagram of X \ {x}, then we call T (x) the parent Voronoi

diagram of x in X, and refer to Tx as the virtual tile of x in X \ {x}.
The fundamental geometric duality between the Voronoi diagram and the Delaunay tri-
angulation is captured in the following result.

Corollary 2.3 (Duality of Voronoi Diagram and Delaunay Triangulation)
Let X be a finite point set in Rn, and TD(X) = {T1, . . . , Tk} its Delaunay triangulation,
and T V (X) = {T1, . . . , Tl} its Voronoi diagram. Then, TD(X) is dual to T V (X) in the
sense that

1. each vertex in TD(X) corresponds to a Voronoi tile in T V (X),
2. for each vertex xi ∈

]
C (X)

[
, Ti = C ({ cc(Tj) : xi ∈ Tj }), i.e., it is the convex hull

of circumcenters of all Delaunay simplices adjacent to the Voronoi site,
3. each simplex edge in TD is dual to a Voronoi tile facet in T V ,
4. for each non-boundary edge, the dual tile facet is the convex hull of the circumcenters

of all Delaunay simplices adjacent to the Delaunay edge, and is degenerate if the
edge in TD(X) is ambiguous,

5. the set of vertex neighbors in the Delaunay triangulation contains the set of natural
neighbors.

15



Foundations

(a) (b)

Figure 2.5: Example of the power diagram in 2D, where the circles around each vertex xi have ra-
dius

√
wi. (a) Bisectors bounding the Voronoi tiles are displaced by the power weights.

(b) Power diagram with uniform power weights: it is identical to the classical Voronoi
diagram.

Because of this duality, algorithmic access to the entities of the Voronoi diagram is possible
through the Delaunay triangulation, for which efficient and well-studied data structures
and algorithms exist. In particular, one of the most often required operations in subse-
quent algorithms is the identification of natural neighbors of a point in a point set. The
vertices of all Delaunay simplices in conflict with a point are its natural neighbors.

Being based on the Euclidean distance, this is also referred to as the classical Voronoi
diagram. But for a point set in Rn, every metric Rn × Rn → R defines a generalized
Voronoi diagram, which is a general tessellation of Rn. A generalized Voronoi diagram
usually lacks most of the properties of the classical Voronoi diagram, i.e., its tiles Ti need
not be convex, nor connected. However, the generalization introduced in the following
produces a polyhedral tessellation like the classical Voronoi diagram.

2.3.6 The Power Diagram

The fact that the classical Voronoi diagram is composed of convex polyhedra and is
furthermore dual to the Delaunay triangulation makes it very useful in practice. One
generalized Voronoi diagram that mostly preserves these beneficial properties is the power
diagram, also called Laguerre Voronoi diagram, which is defined as follows.

A weighted point is a pair (x, w) ∈ Rn×R, and w is its power weight. The power distance
or Laguerre distance of two weighted points (x1, w1), (x2, w2) is defined by

dpow(x1,x2) = d(x1,x2)2 − w1 − w2,

and of a weighted point (x1, w1) and a point x as dpow(x1,x) = d(x1,x)2 − w1. Every
weighted point (x, w) defines a sphere with center x and a possibly imaginary radius

√
w.

A weighted point (x1, w1) is orthogonal to another weighted point (x2, w2) if their power
distance is zero.

16



2.4 Graphs

For the weighted point set Xpow = {(x1, w1), . . . , (xm, wm)} ⊂ Rn × R, the polyhedral
tessellation with

Ti = {x ∈ Rn : dpow(xi,x) ≤ dpow(xj ,x),xj ∈ Xpow }

is the power diagram of Xpow, which is illustrated in Figure 2.5. In the power diagram, the
power Voronoi tiles Ti can be empty if the corresponding power weight is too small with
respect to the power weights of the neighbors. Like the Voronoi diagram, the power dia-
gram is dual to a triangulation – the regular triangulation whose definition from [Flo03a]
we briefly repeat in the following.

The sphere associated with a weighted point that is orthogonal to n+ 1 weighted points
is called the orthosphere of these n+ 1 points. We call a weighted point in conflict with
an orthosphere if has a negative power distance to the weighted point associated with the
orthosphere, and vice versa.

Every triangle in a regular triangulation of Xpow has an associated orthosphere that is
not in conflict with any weighted point from Xpow, and whose associated point lies in the
corresponding power Voronoi tile. This condition is equivalent to the empty circumsphere
condition of the Delaunay triangulation.

2.4 Graphs

More on graphs can be found in text books such as [Die05, Bol98, GR01].

We denote by G = (V,E), the graph over the set of vertices V , with E ⊂ V × V being
the set of of edges, denoted by eij = (vi, vj) ∈ E. A sequence of vertices ρ = (v1, . . . , vn),
(vi, vi+1) ∈ E, is a path of length |ρ| = n if none of its edges appears more than once, i.e.,
edges are mutually distinct. A path is called closed if (vn, v1) ∈ E. We assume a path to
be free of loops of length one, i.e., E contains no edges (vi, vi). Furthermore, by assuming
E to be a set, we implicitly disallow parallel edges, i.e., distinct edges with common start
and end points.

If eij ∈ E ⇐⇒ eji ∈ E for all eij ∈ E, and two oppositely directed edges are considered
equivalent, then G is called undirected, otherwise directed.

With weights W : E → R defined over the edges, G = (V,E,W ) is a weighted graph with
edge weights wij := W (eij).

If the graph vertices are elements of R2, vi 7→ xi ∈ R2, then G is called a planar graph if
it is possible to route the edges without intersections. A planar graph is equivalent to a
general tessellation of the plane, and regions enclosed by minimal loops of edges are also
referred to as the faces of the planar graph. One well-known result for planar graphs G
as first shown by Tutte [Tut63] is the existence of an embedding in the plane such that
all edges are straight lines, also called planar straight line graph (PSLG).

For a planar, connected, undirected graph G = (V,E) with an embedding such that F is
the set of faces, its dual graph G = (V ,E) is a graph that has a vertex vi ∈ V for each
face fi ∈ F , and an edge ekl ∈ E for each edge e ∈ E joining two faces fk and fl.

17



Foundations

0

0.5

1

0 0.2 0.4 0.6 0.8 1

B3
0(x)

B3
1(x)

B3
2(x)

B3
3(x)

(a) Bernstein polynomials

0

0.5

1

0 0.2 0.4 0.6 0.8 1

b3(x)

(b) Bézier function

Figure 2.6: (a) Bernstein polynomials B3
0 , . . . , B

3
3 . (b) Corresponding functional Bézier curve b3.

2.5 Bézier and B-Spline Functions

In this section we introduce the Bernstein-Bézier form of univariate and multivariate
polynomials, and B-spline functions, adapted from [HL03, PBP02]. From the functional
descriptions, corresponding space curves and surface can directly be obtained by com-
posing multiple real-valued functions into a vector-valued function.

We point out some advantages of Bézier and B-spline representations and present the de
Casteljau and de Boor algorithms for their evaluation. More on these concepts can be
found in [dB87, HL03, PBP02, Far02].

2.5.1 Bernstein Polynomials

Born from the binomial expansion of

1 = [α+ (1− α) ]d =
d∑
i=0

(
d

i

)
αi(1− α)d−i,

with α ∈ R and d ∈ N, we define the terms showing up in the sum on the right side as
Bernstein polynomials of degree d,

Bd
i (α) =

(
d

i

)
αi(1− α)d−i.

The Bernstein polynomials of degree 3 are depicted in Figure 2.6(a). By construction,
Bernstein polynomials satisfy a set of desirable properties, namely

18



2.5 Bézier and B-Spline Functions

partition of unity:
d∑
i=0

Bd
i (α) = 1 (2.3a)

positivity: Bd
i (α) ≥ 0, α ∈ [0, 1] (2.3b)

symmetry: Bd
i (α) = Bd

d−i(1− α) (2.3c)

roots at α = 0, 1 Bd
i (0) = Bd

i (1) = 0, 0 < i < d (2.3d)

endpoint interpolation Bd
0(0) = Bd

d(1) = 1, Bd
0(1) = Bd

d(0) = 0 (2.3e)

extrema max
α∈[0,1]

Bd
i (α) = Bd

i (i/d) (2.3f)

It is well-known that Bernstein polynomials Bd
0 , . . . , B

d
d form a basis for all polynomials

of degree d. Because the evaluation of Bernstein polynomials in [0, 1] requires exclusively
convex combinations, this process is numerically stable, see Section 2.5.5.

2.5.2 Bézier Functions

A polynomial

bd(u) =
d∑
i=0

ciB
d
i (u)

represented by coefficients ci ∈ R in the Bernstein basis is called Bézier function of degree
d with coefficients c0, . . . , cd. Because of property (2.3f) of Bernstein polynomials, each
coefficient has quasi-local influence on the shape of the function. The control polygon
associated with bd has vertices (0/d, c0), . . . , (d/d, cd) and mimics the overall shape of the
curve. A cubic Bézier function along with its control polygon is depicted in Figure 2.6(b).

The simple form of derivatives of Bernstein polynomials as discussed in, e.g., [dB87], leads
to very simple formulas for the derivatives of bd(u) at u = 0 and u = 1, which is a scaled
difference of coefficients,

d
du
bd(0) = d(c1 − c0),

d
du
bd(1) = d(cd − cd−1),

and generalizes to higher derivatives by

d2

du2
bd(0) = d(d− 1)(c2 − 2c1 + c0),

dm

dum
bd(0) =

d!
(d−m)!

∑
i=0,...,m

(−1)i
(
m

i

)
ci.

19



Foundations

A Bézier function can also be defined over an arbitrary interval [a, b] ⊂ R by letting
u(t) = (t − a)/(b − a), in which case the function is given by bd(u(t)), and by the chain
rule,

dm

dtm
bd(0) =

1
(b− a)m

d!
(d−m)!

∑
i=0,...,m

(−1)i
(
m

i

)
ci.

2.5.3 Multivariate Bernstein Polynomials

While the above is well applicable for univariate Bernstein polynomials, notation for
the multivariate case, where the domain of definition is no longer an interval but an
n-dimensional simplex, suggests the use of multi-indices from Section 2.2.2.

With this notation at hand, the definition of multivariate Bernstein polynomials can be
derived from α ∈ Rn, α1 + · · ·+ αm = 1, and the multinomial expansion of

1 = (α1 + · · ·+ αn)d =
∑
|i|=d

(
d

i

)
αi.

Following [dB87, PBP02], the i-th multivariate Bernstein polynomial of degree d is defined
as

Bd
i (α) =

(
d

i

)
αi.

Multivariate Bernstein polynomials inherit all properties (2.3a) - (2.3f) from the univariate
case, now reading

partition of unity:
∑
|i|=d

Bd
i (α) = 1 (2.4a)

positivity: Bd
i (α) ≥ 0, α ∈ [0, 1]n (2.4b)

symmetry: Bd
i (α) = Bd

π(i)(π(α)) for any permutation π

(2.4c)

roots Bd
i (ej) = 0, for j = 1, . . . , n, i 6= dej (2.4d)

endpoint interpolation Bd
dej

(ek) = δjk, for j = 1, . . . , n (2.4e)

extrema max
α≥0, |α|1=1

Bd
i (α) = Bd

i (i/d) (2.4f)

2.5.4 Bézier Simplices

Corresponding to Bézier functions, Bézier simplices are defined using multivariate Bern-
stein polynomials, where the parameter α ∈ Rn+1 corresponds to barycentric coordinates
in an n-dimensional simplex, and the multivariate definition does in fact reduce to the
classical Bézier functions in the univariate case.

If x0, . . . ,xn are the vertices of an n-simplex, α ∈ Rn+1 are barycentric coordinates in it,

20



2.5 Bézier and B-Spline Functions

and coefficients {ci}|i|=d ⊂ R, with d ∈ N0, then

bd(α) =
∑
|i|=d

Bd
i (α)ci

is called n-variate Bézier simplex of degree d. To simplify the exposition, we introduce an
alternative notation to address Bézier coefficients ci, |i| = d, by

ci := cdei
, (vertex i)

cij := c∆ijei , (neighbor of ci towards cj)

cijk := c∆ij∆ikei , (neighbor of cij towards ck)

Note that cijk = cikj due to the symmetry of multi-indices.

One important operation on Bézier simplices is the derivation along a direction v ∈ Rn+1

in barycentric coordinates, v0+· · ·+vn = 0. For α(t) = p+tv, with p ∈ Rn+1 barycentric
coordinates of a point, and t ∈ R,

d
dv
f |p :=

d
dt
f(α(t))|t=0

is the directional derivative of a function f with respect to v at p. The general form of
the directional derivative for Bézier simplices is explicitly given in [Far86, PBP02] as

d
dv
bd(p) =

d
dt
bd(α(t))

= v0
∂

∂α0
bd(p) + . . . + vn

∂

∂αn
bd(p)

= d ·
∑
|j|=d−1

gjB
d−1
j (p),

where gj = v0cj+e1 + · · · + vncj+en+1 . A direct consequence of the above relation is the
formula for edge-aligned derivatives Dij := d/d(xj−xi) at the simplex vertices x0, . . . ,xn.
It is given by

Dijb
d(ei) := Dej−eib

d(ei) = d(cij − ci),

which has a direct extension to mixed higher order derivatives by

DijDikb
d(ei) = d(d− 1)(cijk − cij − cik + ci). (2.5)

2.5.5 De Casteljau’s Algorithm

The evaluation of a Bézier simplex by computing and combining the basis functions is
not efficient, and the standard method to evaluate Bézier functions is the de Casteljau
algorithm.

If {cdi }|i|=d are the coefficients of an n-variate degree d Bézier simplex bd, then the eval-

21



Foundations

α

bd(α) c020

c200

c101
c011

c002

x1
x2

x3

c110

(a)

c0

c1

c2 c3

c4

u0 = u1 u2 u3 u4 = u5

s2(u)

u

ξ0 ξ1 ξ2 ξ4ξ3

(b)

Figure 2.7: (a) De Casteljau’s algorithm for a Bézier triangle of degree two. (b) The graph of a
quadratic B-spline function b2(u).

uation of bd(α) after de Casteljau is the repeated computation of coefficients

cd−1
i (α) =

n∑
k=0

αkc
d
i+ek

,

until c0
0(α) = bd(α) is the desired value. A common geometrical interpretation for the 2-

simplex is to imagine the control net of the Bézier simplex as the space triangles over the
points ci = (

∑
k=0,...,n ikxk)/d, as shown in Figure 2.7(a). In every step of the algorithm,

a space triangle is replaced by a point which is the affine combination of its vertices with
the affine coefficients α.

2.5.6 B-Spline Functions

Spline functions are piecewise polynomial functions with prescribed smoothness between
pieces. One way of constructing Ck−1-continuous spline functions is to piece together
many degree-k Bézier functions and set up continuity conditions at the joints, which is
reasonable considering the relation between the derivatives and the control polygon. For
example, in order to obtain a C1 continuous piecewise polynomial function, it must be
ensured that the last and the first segments of the control polygon of two joining quadratic
Bézier functions are collinear.

A more elegant representation of Ck-continuous, piecewise polynomial curves is given by
the B-spline representation. The loci of the joints of the individual polynomial pieces
are implicitly determined by the ordered sequence u0 ≤ · · · ≤ um, called knot vector of
the curve. A B-spline curve implicitly ensures the above mentioned continuity conditions
under the assumption of a strictly ordered knot vector.

22



2.5 Bézier and B-Spline Functions

B-spline functions are affine combinations of of B-splines, just as Bézier functions are
affine combinations of Bernstein polynomials. If U = (u0, . . . , um) is a knot vector and
d ∈ N, then a B-spline of degree d with knot vector U is recursively defined as

N0
i (u) =

{
1 if u ∈ [ui, ui+1),
0 else.

and
Nd
i (u) = αd−1

i Nd−1
i (u) + (1− αd−1

i+1 )Nd−1
i+1 (u), (2.6)

where αd−1
i = (u − ui)/(ui+d − ui). In case of multiple knots ui = ui+r, we declare

N r−1
i = N r−1

i /(ui+r − ui) = 0.

This recursive definition of Nd
i is also called Cox-de Boor recursion. B-splines exhibit

similar properties as Bernstein polynomials, which means that for the set of B-splines
Nd

0 , . . . , N
d
m−d−1 over a knot vector u0 ≤ · · · ≤ um, we have

Nd
i (u)

{
> 0 for u ∈ [ui, ui+d),
= 0 else,

(positivity, locality)

m−d−1∑
i=0

Nd
i (u) = 1 (partition of unity)

max
u
{Nd

i (u)} =
1
d

d−1∑
j=0

ui+j =: ξi, where ξi is called Greville abscissa.

A B-Spline function sd(u) of degree d is now defined as a linear combination of m− d− 1
basis Splines Nd

i (u) and coefficients ci, i = 0, . . . ,m− d− 1,

sd(u) =
m−d−1∑
i=0

ciN
d
i (u).

Similar to the control polygon of Bézier functions, B-spline functions have an associated
control polygon with vertices (ξi, ci), where each vertex corresponds to the maximum of
its associated basis function. An example is shown in Figure 2.7(b).

2.5.7 De Boor’s Algorithm

The generalization of de Casteljau’s algorithm for the evaluation of B-spline functions is
the de Boor algorithm, which uses a similar recurrence relation based on repeated linear
interpolation. Assume we want to evaluate the B-spline function of degree d defined over
the knot vector (u0, . . . , um) and coefficients c0

0, . . . , c
0
m−d−1 at parameter u ∈ [ui, ui+1).

Then, for r = 1, . . . , d the de Boor algorithm defines control points cri+r, . . . , c
r
i+d as fol-

lows,

crj(u) = (1− α)cr−1
j−1(u) + αcr−1

j (u) with α = αd−rj =
u− uj

uj+d+1−r − uj . (2.7)

23



Foundations

c0
i

c0
i+1 c1

i+1

c0
i+2 c1

i+2 c2
i+2

...
. . .

c0
i+d c1

i+d c2
i+d · · · cdi+d

with
1− α

α

∗

∗ ∗
,

Figure 2.8: Scheme used in the de Boor algorithm to evaluate the B-spline function at a parameter
value of u according to (2.7).

This can be visualized schematically by the diagram in Figure 2.8.

where α depends on the position where the mask is applied. It evaluates the recursion
bottom-up, starting from the control points at the lowest level r = 0. At each level,
it locally generates a new control polygon for level r by evaluating the piecewise linear
control polygon of level r − 1 at a new set of abscissae, which corresponds to repeated
insertion of knot u.

If the control points c0, . . . , cm−d are scalars, the control polygon of s has the vertices
(ξi, ci).

24



3 Related Work

This thesis presents results on natural neighbor interpolation, which is embedded in the
larger context of scattered data interpolation. We give a high-level overview on scattered
data interpolation in the first part of this chapter, then describe in more detail the concept
of natural neighbors and the closely linked field of natural neighbor interpolation.

3.1 Scattered Data Interpolation

Scattered data interpolation is the problem of finding an interpolating functional de-
scription which is as close as possible to an unknown function for which values are
known only at discrete, scattered locations. More formally, given sample data sites X =
{x1, . . . ,xm} ⊂ Rn and data values Z = {z1, . . . , zm} ⊂ R, find a function f : Rn → R
that satisfies the interpolation constraint f(xi) = zi.

If not stated otherwise, we will denote by x0 the query position at which we want to
evaluate an interpolant f . The region in which f(x0) is influenced by a data site is called
that data site’s support and leads to the distinction between schemes with local and global
support. While schemes with global support usually have higher smoothness than local
ones, their cost of computation makes them inapplicable for large scale data sets.

The aspects that are addressed by a multitude of scattered data interpolation schemes
cover, among others:

Support: How is the support determined? If the size of the data set exceeds that of the
available RAM, global schemes fail. Local schemes have a small memory footprint
and can be computed much more efficiently, but are less smooth in general.

Smoothness: How often is f continuously differentiable?

Derivative Interpolation: Can f interpolate higher order derivatives at the data sites?

Polynomial Precision: Up to what order does f reproduce polynomials?

Transfinite Interpolation: Instead of points can one interpolate to curves or higher-
dimensional manifolds? Transfinite interpolation leads to a continuous represen-
tation of the input data and usually requires considerably more effort in implemen-
tation.

Interpolation on Manifolds: Can the interpolation scheme still be applied if the embed-
ding space itself is a manifold, and measurements are subject to other metrics?

Preprocessing and Evaluation: For a given set of interpolation objectives, what prepro-
cessing is necessary to allow an efficient evaluation of f? What steps and data are

25



Related Work

then required to evaluate f? Is all data required to be known in advance or is a
subset sufficient for both preprocessing and evaluation?

Derivatives and Integrals: Are there exact formulas for the derivatives or integrals of f ,
or are numerical methods necessary?

Extrapolation: Local schemes typically define only f
∣∣
C (X) . Does f have a meaningful

definition outside C (X)?

Approximation Order: If data is sampled from a known function, how close does f get to
that function with increasing sampling density? To know the approximation order
of a method is to know how well it is suited to model phenomena with a certain
class of governing functions.

Non-scalar Values: Can function values Z 6⊂ R, e.g., Z ⊂ Rd, or Z ⊂ C, be interpolated
in a meaningful way? For scalar data at the input sites, the space of possible func-
tions can in general be described using linear combinations of neighborhood data.
An application of this to the components of vector-valued data is not always in
consent with the nature of the data.

Ease of Implementation: Methods which are simple to implement are more likely to be
put to use.

Texts on scattered data interpolation in general can be found in [LF99, Wen04], and a
dated but good survey in [FN91].

3.1.1 Inverse Distance Methods

In inverse distance methods, the contribution of a data point to the value of the interpolant
is scaled by a power of the inverse distance between query position and the data point.
After the introduction of this method by Shepard in [She68], many variations have evolved
over time, derived from the basic form

f(x) =
∑
xi∈X

ziwi(x), wi(x) = d(xi,x)−µ/
∑
xi∈X

d(xi,x)−µ (3.1)

where d(xi,x) = ‖xi − x‖, and the power µ > 0 is commonly chosen to be two. The
interpolation property becomes clear if we consider x → xk for some xk ∈ X, where
all coefficients converge to a constant except ‖xk − x‖−µ, which goes to infinity in both
nominator and denominator, leaving zi in the limit. To avoid numerical problems arising
with the poles at the data sites in (3.1), the alternative evaluation via

wi(x) =
∏
j 6=i

d−µ(xi − x)/
(∑
k

∏
j 6=k

d−µ(xj − x)
)

can be used.

In its basic form, the method has significant drawbacks. Because of its global support,
evaluation in a set of m points has a complexity in O(m). Furthermore, it produces flat
spots at the data sites. These limitations have been overcome with the introduction of
blended Taylor polynomials at the data sites to remove the flat spots and the modification

26



3.1 Scattered Data Interpolation

ϕ(r) description

gl
ob

al
r C0 linear
e−αr

2
, α > 0 C∞ Gaussian, width parameterized via α

(c2 + r2)β, β > 0 C∞ Multiquadrics, shape controlled by c and β
(c2 + r2)β, β < 0 inverse Multiquadrics, shape controlled by c and β
rβ, β > 0, β /∈ 2N powers
r2 log r, thin-plate splines

co
m

-
pa

ct

(1− r)+ C0 locally supported polynomial
(1− r)3

+(3r − 1) C2 locally supported polynomial
(1− r)4

+(4r − 1) C2 locally supported polynomial
Table 3.1: A selection of radial basis functions found in [Wen04], p. 129 and p. 188, where (·)n

+ is
the truncated power function (max(0, ·))n, and d·e is the smallest integer larger than ·.

of the weight functions to have local support by Franke and Nielson in [FN80], and by
Renka in [Ren88]. Unfortunately, even with these enhancements, the rational nature of
IDW schemes causes the resulting interpolant to have far more oscillations than the input
data suggests. Despite this, IDW methods are still used for their easy implementation.

3.1.2 Partition of Unity Method

A meta method that allows the decomposition of complicated interpolation problems into
a set of local, less complex sub-problems was introduced by Franke and Nielson in [FN80].
Also known as the partition of unity method, it is also discussed in [Wen04], Section 15.4.
In this method, a set of sufficiently overlapping regions Ωi ⊂ Rn is distributed to cover the
data points X ⊂ Rn. With each region Ωi, a blending function ψi : Rn → R is associated
that is positive inside and goes to zero smoothly at its boundary. Now, any scattered data
interpolation approach can be used to construct an interpolant fΩi to the data at X∩Ωi

in each region.

The global interpolant is then constructed by blending the local results,

f(x) =
1∑

Ωi3x ψi(x)

∑
Ωi3x

ψi(x)fΩi(x).

The difficulty lies in the determination of the regions and the definition of the blend-
ing functions. Common choices for the shape of regions include discs and axis-aligned
rectangles, with blending functions being radially symmetric in the first case and some
tensor-product spline construction in the latter.

3.1.3 Radial Basis Functions

The method of radial basis functions is similar to that of inverse distance methods, yet
with a more elegant mathematical foundation, as Wendland develops in [Wen04]. Its first
application is due to Hardy, who proposed the multiquadric method in [Har71]. In the
radial basis function framework, a set of radially symmetric basis functions ϕ : R+ → R,

27



Related Work

are centered at the data points, and the interpolant is defined as a weighted sum over all
basis functions, evaluated at the query position,

f(x) =
∑
xi∈X

ciϕ(‖xi − x‖) + p(x),

where the ci are the coefficients of the basis functions, and p ∈ Πd is a polynomial of
total degree d. With p, the interpolant is able to reproduce degree d polynomials, and
improves the numerical condition of the subsequent fitting process.

The interpolation condition leads to the linear system,

f(xi) = zi, xi ∈ X,

the solution of which delivers the unique set of coefficients ci and the global polynomial
p. Obviously, the system is symmetric and, for proper choices of ϕ, can be shown to
be regular and often even positive definite. These properties make iterative methods
applicable for the solution of the linear system and allows for the treatment of large data
sets. Some common basis functions are listed in Table 3.1. For each function ϕ and an
associated center xi, the associated support is defined as {x : ϕ(‖xi − x‖) 6= 0 }. Local
support refers to functions that are nonzero only in a finite, bounded domain around the
center, quasi-local support to functions that converge to zero away from their center, and
global support to functions that don’t fit into one of the former categories.

For inhomogeneously distributed data, basis functions with a local or quasi-local support
can be augmented by a radial scaling factor si, such that basis functions with individual
support ϕi(r) := ϕ(r/si) are associated with the data sites, and the interpolant becomes

f(x) =
∑
xi∈X

ciϕi(‖xi − x‖) + p(x). (3.2)

The values of the scaling factors are usually explicitly determined such that the support
of each basis function covers a certain amount of neighboring data sites.

One final aspect we mention here is the possibility to use radial basis functions for
scattered data approximation. For densely sampled, noisy data, the number of basis
functions can be considerably smaller than that of the data sites, as long as the com-
bined support of the basis functions adequately covers the data set. Then, the inter-
polation condition (3.2) becomes an error term whose minimization delivers an ap-
proximating function. If y1, . . . ,yk are the centers for basis functions ϕ1, . . . , ϕk, and
X× Z = {(x1, z1), . . . , (xm, zm)}, then∑

i=1,...,m

∑
j=1,...,k

(cjϕj(‖yj − xi‖) + p(xi) − zi)2

is the linear least squares objective function whose minimum gives a set of coefficients for
the best-fitting radial basis function approximation.

28



3.1 Scattered Data Interpolation

x

xi+1

βi

γi−1 xi

γi

xi−1

βi−1

αi−1

αi

Figure 3.1: Angle notation used in the definition of barycentric
coordinates.

3.1.4 Finite Element Methods

These interpolation methods borrow their name from the Finite Element Method for
the numerical solution of partial differential equations, where the underlying domain is
typically a tessellation composed of finite elements. Starting with a tessellation of the
convex hull of the data sites,

⋃
l Ωl = C (X), a piecewise interpolant is composed of

analytic functions ϕl(x)|Ωl
over the tiles Ωl, where global smoothness is achieved by

matching derivatives along the joints.

Most widely adopted due to their simplicity are triangulation schemes, where Ωl are sim-
plices, and ϕl(x) are polynomials or rational functions in the barycentric coordinates over
the simplex that interpolate function values and derivatives at the data sites and some-
times at the simplex facets. If the function derivatives are known at the vertices, several
methods are available to construct smooth interpolants over a triangulation. Well-known
C1 piecewise polynomial interpolants are the nine-parameter interpolant by Žeńı̌sek [Ž73],
the cubic split by Clough and Tocher [CT65], or the split introduced by Powell and Sabin
[PS77].

If derivatives are not available, they need to be generated in a preprocessing step. This
might be done in a global preprocessing step, such as in the minimum norm network
approach of Nielson [Nie83], or the global energy minimization approach by Alfeld [Alf85].
A survey of interpolation with triangulations and quadrangulations can be found in the
chapter by Zeilfelder and Seidel in [ZS02].

3.1.5 Generalized Polygonal Barycentric Coordinates

The introduction of generalized barycentric coordinates in Section 2.1.2 stated their com-
mon properties, yet left open the concrete choice of coordinates. The most common form
are polygonal barycentric coordinates, which are defined with respect to the vertices of
planar polygons and find application in surface mesh parameterization [HLS07], image
warping [HF06, WSHD07], or finite element analysis [MP07, TS08].

Next, we review Wachspress coordinates, cotangent coordinates and mean value coor-
dinates, which can be generalized to convex polytopes in Rn without loss of generality.
Note furthermore that inside convex polygons, all polygonal barycentric coordinates can
be related to the unifying construction found by Ju et al. [JLW07].

29



Related Work

3.1.5.1 Wachspress Coordinates

Probably the first appearance of generalized barycentric coordinates is due to Wachspress
[Wac75], who proposed to use

λwac
i = λ̂wac

i /
∑
j

λ̂wac
j , λ̂wac

i =
cotβi + cot γi−1

‖x− xi‖2

in the context of finite element discretizations, where βi and γi−1 are as shown in Fig-
ure 3.1. In non-convex polygons, the coordinates for x have undesired poles. A general-
ization of Wachspress coordinates to higher dimensions has been presented by Warren et
al. in [WSHD07].

3.1.5.2 Cotangent Coordinates

The standard piecewise linear approximation of the Laplace equation in finite elements
has produced local coordinates which are referred to as discrete harmonic coordinates, or
cotangent coordinates because of their definition as

λcot
i = λ̂cot

i /
∑
j

λ̂cot
j , λ̂cot

i = cotβi−1 + cot γi,

where βi−1 and γi are as shown in Figure 3.1. In Section 3.2.5.2 another set of coordinates,
Laplace coordinates λlap, is introduced which have an interesting relation to Cotangent
coordinates: If computed for a vertex of a Delaunay Triangulation with respect to the
one-ring neighborhood, Cotangent coordinates coincide with Laplace coordinates.

3.1.5.3 Mean Value Coordinates

The discretization of the mean value theorem led to the set of barycentric coordinates by
Floater [Flo03a], which are consequently called mean value coordinates and defined as

λmvc
i = λ̂mvc

i /
∑
j

λ̂mvc
j , λ̂mvc

i =
tan(αi−1/2) + tan(αi/2)

‖x− xi‖ ,

where αi and αi−1 are as shown in Figure 3.1. Generalizations to 3D as well as geometric
constructions have been given in [FKR05, JSWD05]. Mean value coordinates form the
most stable set of polygonal coordinates: they are well-defined inside and outside general
polygons and even allow a generalization to sets of polygons.

However, they are guaranteed to be non-negative only in the kernel of star-shaped poly-
gons.

30



3.2 Natural Neighbor Interpolation

(a) (b) (c)

Figure 3.2: (a) Soap Bubbles in Frame. Fig. 52 from Soap Bubbles, Their Colors and Forces which
Mold Them. C.V. Boys. (b) Part of a dragonfly’s wing. Fig. 162. From On Growth
and Form. D’Arcy Thompson. (c) Gravitational influence of stars. Descartes. 1644.
Images taken from [Unk08].

3.1.5.4 A General Geometric Construction of Coordinates in Convex Simplicial
Polytopes

Ju et al. showed in [JLW07] that all barycentric coordinates inside convex polygons can be
generated by a unifying construction based on Stokes’ theorem and a closed curve around
a point inside the polygon. The shape of the curve characterizes the type of barycentric
coordinate. They presented the corresponding constructions for mean value coordinates,
Wachspress coordinates, and cotangent coordinates. An important result of their work
with respect to natural neighbor coordinates is the proof that cotangent coordinates as
they are used in the Finite Element Method and Laplace natural neighbor coordinates
are identical on Delaunay triangulations.

3.2 Natural Neighbor Interpolation

Natural neighbor interpolation refers to local scattered data interpolation in a spatial
neighborhood defined by the Voronoi diagram of the data sites. Before presenting former
results on natural neighbor interpolation, we start by describing the general concept of
natural neighbors and point out important aspects. We then discuss previous work on
natural neighbor interpolation, which has in large parts been published in [BU06].

3.2.1 Natural Neighbor Concepts

At the core of the concept of natural neighbors is the notion of directional proximity
that is linked to the spatial constellation of geometric objects: two geometric objects are
natural neighbors if they are close to each other, and no other object is in their way.

The simplest and most widely adopted implementation of this concept is the classical
Voronoi diagram of a set of points. Every point claims from its surrounding space what is
closer to itself than to any other point. If the claimed spaces of two points meet, they are
neighbors – natural neighbors. The more unstructured the set of points, the less regular

31



Related Work

(a) (b)

Figure 3.3: (a) A slight perturbation in a triangulation can lead to topological changes. (b) The
Voronoi diagram of a point set continuously depends on the coordinates of the points.

the areas they claim, but the neighborhood structure always stays intact. This basic
principle has many correspondences in nature, as Figure 3.2 suggests.

Although the classical Voronoi diagram is named after Voronoi’s work in [Vor08], it is
also known under different names. Thiessen used the same spatial structure in [Thi11]
for weather forecast modelling, giving it the name Thiessen polygons. From Dirichlet’s
findings in [Dir50], the term Dirichlet tessellation was derived. But already Descartes
came up with a generalized Voronoi diagram in [Des44], shown in Figure 3.2(c). Very
likely others knew it even earlier, making it hard to do real justice in attributing that
spatial structure to any specific name. The variety of fields in which the Voronoi diagram
is used to model and describe spatial situations and processes is documented in an im-
pressive survey by Aurenhammer in [Aur91]. Aspects of the Voronoi diagrams specifically
interesting for computer aided geometric design are looked at by Sugihara in [Sug02].

Many geometric concepts, such as the medial axis, have a close connection to the Voronoi
diagram. This has been used by Amenta et al. to develop a surface reconstruction method
with provable properties [ACK01]. Alliez et al. used the directionally sensitive proxim-
ity notion of the Voronoi diagram to robustly estimate normals from unorganized point
clouds in [ACSTD07]. Schussmann et al. exploited the spatial proximity expressed in
natural neighbors for multi-resolution representation of scattered data in [SBHJ00]. A
generalization of the Finite Element Method (FEM) that drops the requirement of an
explicit tessellation of the simulation domain in the spirit of meshfree methods is the
Natural Element Method (NEM) [BS95, Tra94, SMB98]. Cueto et al. presented an im-
portant generalization of the NEM to non-convex domains in [CDG00, CCD02], while
Yvonnet et al. investigated certain modifications of the Voronoi diagram to model dis-
continuous cracks in the NEM in [YRLC04].

3.2.2 Properties of Natural Neighbor Interpolation

There is a close relation between the concept of natural neighbors in scattered data
interpolation and local coordinates in point clouds, where terms such as natural neighbor
coordinates, natural neighbor interpolation have been used to refer to Sibson’s original
work as well as to the whole class of algorithms based on the idea of natural neighbors. In
this thesis, we adopt the latter and refer to the class of algorithms if not stated otherwise.

32



3.2 Natural Neighbor Interpolation

The most intriguing property of natural neighbor interpolation that sets it apart from
other tessellation techniques for point sets is the continuous dependence of the interpolant
on the coordinates of the input data, which results from the corresponding property of
the Voronoi diagram, as illustrated in Figure 3.3. Further, major advantages of natural
neighbor interpolation are

(+1) The definition of neighborhood is local, completely automatic, and copes extremely
well with inhomogeneous point distributions.

(+2) Most interpolants based on Ck-continuous natural neighbor coordinates depend
Ck-continuously on the coordinates of the point cloud.

(+3) The Voronoi diagram needs not be constructed at any time since all operations can
be carried out on the Delaunay triangulation of the data sites, which is very well
understood and supported by efficient data structures.

(+4) By definition, the interpolants generalize to any dimension.

However, natural neighbor interpolation has disadvantages as well, namely

(-1) Interpolation is defined only inside the convex hull of the data sites, with undesirable
artifacts near the boundary of the convex hull.

(-2) Globally smooth interpolants can be relatively expensive to evaluate.

(-3) Evaluating natural neighbor interpolants in higher dimensions is computationally
expensive.

A solution to (-1) this is presented in Section 8.7.

3.2.3 Steps of Natural Neighbor Interpolation

We consider the task of interpolating data (xi, zi), i = 1, . . . ,m, with xi ∈ X ⊂ Rn, and
zi ∈ Z ⊂ R at a point x0 ∈ C (X), where we deliberately chose the index to indicate that
x0 ∈ X to facilitate the exposition. Natural neighbor interpolation at x0 is composed of
two basic steps:

1. Compute local coordinates λ(x0) with respect to the natural neighbors N(x0).

2. Combine the values zi associated with xi ∈ N(x) using some blending function
ϕ(λ, Z).

The straightforward choice for ϕ in the second step is ϕ(λ, Z) =
∑

i∈N0
λizi, leading to

the scattered data interpolant
f(x0) =

∑
i∈N0

λizi. (3.3)

In Section 3.2.5 we concentrate on the computation of local coordinates, yet examples
given there utilize the above choice for ϕ. Other choices for ϕ are then discussed in
Section 3.2.7.

33



Related Work

3.2.4 Smoothness of Natural Neighbor Interpolation

Natural neighbor interpolants come with varying smoothness, which has basically two
different reasons. For most natural neighbor methods the regions of constant support,
i.e., where N(x0) does not change, are the cells in the arrangement of Delaunay circum-
spheres, as depicted in Figure 3.4. These regions are considerably more complex than
those appearing in, e.g., the finite element method, where they are polygonal domains.
Natural neighbor interpolation can be interpreted as sophisticated finite element inter-
polation over the arrangement of circumcircles, where x is translated into λ such that
compatibility conditions are automatically met at the joints. However, these complex re-
gions need not be considered explicitly as they naturally arise from the structure of the
Delaunay triangulation.

Figure 3.4: Points in the shaded region have the
same set of natural neighbors.

Where N(x0) is unique, i.e., inside the region shown in Figure 3.4, f(x0) is a C∞-
continuous function. Continuity issues arise whenever N(x0) changes, i.e.,

1. x0 crosses a Delaunay circle, or
2. x0 passes a data site xi.

The first problem is solved by construction of λ(x0), while the second is solved by con-
struction of some local blending function ϕ(λ, Z). The next section discusses previous
work addressing the first issue.

3.2.5 Natural Neighbor Coordinates in Point Clouds

Natural neighbor coordinates for a point x0 of a point cloud X ⊂ Rn are generalized
barycentric coordinates with respect to the natural neighborhood N(x0) in X. In the
following, we will refer to the spatial dimension by n. Recall the equivalence relation
introduced in Section 2.1.2 by which a set of coefficients carrying the hat symbol “ˆ” is
equivalent to the set of normalized coefficients without it.

Natural neighbor coordinates for x0 ∈ Rn are based on sizes of geometric entities in its
Voronoi tile T0. The rate at which these entities change with x0 basically determines the
smoothness of the coordinates. Whenever the query position coincides with a data site,
x0 = xi, these entities are not defined, but generally the coordinates can be continuously
extended for x0 → xi, yielding C0 continuity at the data sites.

The defining property of natural neighbor coordinates is their region of influence which,

34



3.2 Natural Neighbor Interpolation

(a) (b)
Figure 3.5: Interpolation of 1493 scattered points sampled from the crater lake data set. The

original data set is due to US geological survey with 344 · 463 points. (a) The nearest
neighbor interpolant is piecewise constant and discontinuous along the edges of the
Voronoi diagram. (b) The Laplace interpolant is continuous with derivative disconti-
nuities along the Delaunay circles.

for the coordinate associated with xi is the interior of the union of all Delaunay circum-
spheres passing through xi, depicted in Figure 2.4(b). The following definition captures
this result.

Definition 3.1 (Natural Neighbor Coordinates) Let X ⊂ Rn be a set of points, and
N(x) the set of natural neighbors of x. Any set of convex coordinates λ of x with respect
to N(x) that satisfies

1. λi > 0 ⇐⇒ xi ∈ N(x),
2. λ is continuous with respect to x,

is called a set of natural neighbor coordinates of x in X, or just natural neighbor coordi-
nates of x.

In the following we present a comprehensive selection of local coordinate definitions that
fit into the framework of natural neighbor coordinates.

3.2.5.1 Nearest Neighbors

Although not local coordinates by definition, the nearest neighbors of a point x0 lead to
a set of coefficients

λnear
i :=

{
1, x0 ∈ Ti,
0, otherwise.

The resulting scattered data interpolant fnear was first used by Thiessen in [Thi11] and
is the most basic application of natural neighbor concepts. It is discontinuous across the
boundaries of the Voronoi tiles, as can clearly be seen in Figure 3.5(a), which limits
its importance in many applications. However, this approach is still useful in case of
discrete data that does not lend to the computation of intermediate values and thus is
discontinuous by nature.

35



Related Work

(a) data set (b) Region of Influence

(c) f lap (d) fmöb

(e) f sib0 (f) fhiy0

Figure 3.6: (a) Point set X, the center point receiving a value of one, the remaining a value
of zero. (b) Top view with Delaunay circumcircles and the region of influence of the
middle point in grey. (c)-(f) Left show basis functions of flap, fmöb, f sib0, fhiy0, as a
height-field from above with specular lighting, which is sensitive to second derivatives
in the function. The right images show reflection lines which are particularly suited
to expose C2 discontinuities.

3.2.5.2 Laplace Coordinates

A set of Cn−2-smooth local coordinates has been proposed by different authors as Laplace-
or Non-Sibsonian coordinates in [CFL82, BIK+97, Sug99].

From the volumes of the facets F1, . . . ,Fm of T0, and the distance ri = ‖x0−xi‖, i ∈ N0,
they are defined as

λlap
i = λ̂lap

i /
∑
j

λ̂lap
j , λ̂lap

i :=
Vol(n− 1,Fi)

ri
,

which is shown for 2D in Figure 3.7(a). These coordinates and the resulting interpolant
flap are continuous in C (X) and have derivative discontinuities at the data sites. For

36



3.2 Natural Neighbor Interpolation

x0

xi

T0

F0ir0i

(a)

x0

xi

T0 ∩ T (x0)
i

T0

(b)

Figure 3.7: Geometric entities involved in the computation of (a) Laplace coordinates, (b) Sibson
coordinates.

X ⊂ Rn, we find that λlap
i is Cn−2 on the Delaunay circumspheres. The basis function

for flap is illustrated in Figure 3.6(c), and its application to a real-world data set is
shown in Figure 3.5(b). The derivative discontinuities are clearly visible in Figure 3.6(c)
as jumps in the reflection lines. Different proofs for λlap

i satisfying the local coordinate
property (2.1) have been given in [HS00b, BIK+97].

Laplace coordinates λlap coincide with cotangent coordinates λcot if computed in the
one-ring neighborhood of the Delaunay triangulation. We discovered this correspondence
just about when an alternative proof has been given in [JLW07]. However, our proof takes
a different perspective and is presented next.

Theorem 3.2 Cotangent coordinates λ̂
cot

and Laplace coordinates λ̂
lap

differ by a fac-
tor of two.

Proof 3.3 Consider the setting in Figure 3.8(a), showing two Delaunay triangles sharing
the edge (x,xi). We start by noting that the Laplace coordinate of x with respect to xi is
given by λ̂lap

i = (h−i + h+
i )/ri. In the following we only consider h+

i /ri, corresponding to
the right triangle, the rest then follows by symmetry.

Figure 3.8(b) shows how the circumcenter of the triangle partitions it into three pairs of
symmetric triangles, with γi = δ′ + δ′′. Substituting this into 2δ + 2δ′ + 2δ′′ = π and
rearranging terms gives δ = π/2− γi.
Now, as indicated in Figure 3.8(c), with h+

i = ri/2 · tan δ = ri/2 · cot γi we see that

h+
i

ri
=
ri cot γi

2ri
=

cot γi
2

, and
h−i
ri

=
cotβi−1

2
,

by symmetry. Consequently,

λ̂lap
i =

h−i + h+
i

ri
=

1
2

(cot γi + cotβi−1) =
1
2
λ̂cot
i

For obtuse triangles, the cotangent becomes negative and the signed sum h+
i + h−i still

gives the correct distance between the circumcenters.

�

37



Related Work

x

xi

ri

h+
ih−i

γi

βi−1

(a)

δ′

δ′′

δ

(b)

γi

ri

x

xi

δ

h+
i

(c)

Figure 3.8: Notation used in the proof that λ̂
cot

= 2λ̂
lap

.

3.2.5.3 Sibson’s Coordinates

The first appearance of natural neighbor coordinates is due to Sibson [Sib80], who dis-
covered a vector identity that involved the Voronoi diagram and leads to a set of natural
neighbor coordinates, Sibson coordinates. It is most illustrative to describe Sibson co-
ordinates for a point x0 as the ratio of volumes that are “stolen” by the Voronoi tile of
x0 from the Voronoi tiles of its natural neighbors before x0 was added to the Voronoi
diagram.

With T (x0) denoting the parent Voronoi tile from Section 2.3.5, illustrated for 2D in
Figure 3.7(b), this identity is formally given by

Vol(n, T0)x =
∑
i∈N0

Vol(n, T0 ∩ T (x0)
i )xi,

where Sibson’s homogeneous coordinates follow directly as

λsib
i = λ̂sib

i /
∑
j

λ̂sib
j , λ̂sib

i := Vol(n, T0 ∩ T (x0)
i ).

It can be argued that every intersection volume changes proportional to the n-th power
of the distance of x0 to a specific natural neighbor. The fact that the volumes have
dimension n results in λsib being Cn−1 continuous in C (X) \X.

Figure 3.6(f) shows the basis function of f sib0, at the same time giving a height-field
visualization of the coordinate associated with the center point, and showing where the
C1 discontinuities arise.

Properties of Sibson coordinates received close attention by Farin [Far90] and Piper
[Pip92]. With mi denoting the centroid of facet Fi of T0, the explicit formula for the
gradient of λi is

∇λsib
i = Vol(n− 1,Fi) · (mi − x0)/ri. (3.4)

Different proofs for λsib
i satisfying the local coordinate property (2.1) have been given by

[Sib80, Pip92, HS00b].

Piper showed in [Pip92] that Sibson coordinates smoothly depend on the point coordinates
of the point set.

38



3.2 Natural Neighbor Interpolation

x3

x1

x2

x

4(x1,x2,x3)
O(x; x1,x2,x3)

(a)

(b)

x0

(c)

x1

x2

x3
x4

x5

−

(d)

+

x1

x2

x3
x4

x5

(e)

x1

x2

x3
x4

x5

−

(f)

Figure 3.9: Illustration of the signed decomposition of the subtile T0 ∩ T (x0)
1 . (a) dual triangle

O(x; x1,x2,x3) of 4(x1,x2,x3) (b) area of constant neighborhood: every x in the
shaded region has the same set N(x). (c) Voronoi tile of x0 (d) area of the triangle
4(c123, c130, c102), (e) area of the triangle 4(c134, c140, c103), (f) area of the trian-
gle 4(c145, c150, c104), where cijk denotes the circumcenter of 4(xi,xj ,xk). While
iterating in counterclockwise order along vertices xi adjacent to x1, the scheme is
4(c1i(i+1), c1(i+1)0, c10i).

3.2.5.4 Watson’s Construction for Sibson’s Coordinates

Watson proposed to compute the areas involved in the definition of Sibson coordinates by
a signed triangle decomposition in [Wat92], p. 81. Besides its straightforward application
in higher dimensions, this method gives an explicit construction of the rational function
describing Sibson coordinates inside the regions of constant neighborhood.

The algorithm computes intersected Voronoi tile areas that define Sibson coordinates by
accumulating the signed areas of dual triangles. The dual triangle of 4(xa,xb,xc) with
respect to a point xi is thereby defined as O(xi; xa,xb,xc) := 4(ciab, cibc, cica), where
cabc is the circumcenter of 4(xa,xb,xc).

To compute the area covered by the Voronoi subtile associated with a certain neighbor,
say T0 ∩ T (x0)

1 associated with x1 in Figure 3.9, the construction traverses the coun-
terclockwise ordered set of vertices adjacent to x1 and accumulates the signed areas of
O(x1; xi,xi+1,x0).

This method has serious numerical issues if the query position x0 happens to lie on or
close to a Delaunay edge: the circumcenters are computed from degenerate triangles, and
signed areas become infinite. A workaround has been proposed by Hiyoshi in his work on
stable computation of natural neighbor coordinates in [Hiy05].

39



Related Work

          

xi

x0

T0(w 0<0)

T0(w 0=0)

Figure 3.10: The power diagram of the weighted point
set Xpow, the black dots showing X, for
uniform power weights wi = 0, i ≥ 1, and
the power tile T0(w0) for different values of
w0 ≤ 0.

3.2.5.5 Hiyoshi’s Coordinates

Hiyoshi and Sugihara [HS00b] proposed a generalization of Laplace and Sibson coordi-
nates based on an integral expression of λlap

i in the power diagram. As illustrated in
Figure 3.10, the area covered by T0(w0) in the power diagram shrinks with decreasing w0

until it vanishes for w0 = sup {w0 : T0(w0) = ∅ }, see Figure 3.10. Hiyoshi observed that
for any T0(w0) 6= ∅, the construction for Laplace coordinates applied to T0(w0) renders
valid local coordinates in the power diagram, and that the areas swept by the line seg-
ments are those of the sub-tiles used in the computation of Sibson coordinates. Following
this observation, he defines a family of local coordinates, coined order k standard coor-
dinates, which reflects the fact that in 2D, the coordinates are Ck everywhere except at
the Voronoi sites.

If λ̂lap
i (w) := λ̂lap

i |w0=w are the Laplace coordinates of x0 for a power weight w0 = w,
then homogeneous order k standard coordinates are defined as

λ̂ki = λ̂ki (0), λ̂ki (w) =
∫ w

w0

λ̂k−1
i (t) dt, λ̂0

i (w) = λ̂lap
i (w). (3.5)

We refer to standard coordinates of order two explicitly as Hiyoshi coordinates

λhiy
i = λ̂hiy

i /
∑
j

λ̂hiy
j , λhiy

i := λ2
i .

In [Hiy05] Hiyoshi restated the above as

λ̂ki :=
1

(k − 1)!

∫
x∈T (x0)

i ∩T0

(
(x0 − xi) · (x−mi)

)k−1|dx|,

where mi is the centroid of the corresponding Voronoi facet, and |dx| denotes the area
integral. For k = 0, 1, Hiyoshi coordinates coincide with Laplace and Sibson’s coordinates.
For k > 1, these coordinates are Ck+n−2 in C (X) \X. As Hiyoshi pointed out in [Hiy05],
the limit k →∞ does not lead to C∞ coordinates but to the piecewise linear interpolant
on the Delaunay tessellation.

The basis function of fhiy0 can be seen in Figure 3.6(f), where the subtle fact that the
reflection lines do not show any cusps is due to the C2 continuity of λhiy0 in C (X) \X.

40



3.2 Natural Neighbor Interpolation

(a) (b)

Figure 3.11: (a) Data set. (b) Basis function for Brown coordinates λbro. Notice the dents indi-
cating negative values.

3.2.5.6 Brown Coordinates in the Delaunay Triangulation

In [Bro97], Brown introduces a general framework to construct continuous coordinates
in arbitrary point clouds in the plane based on barycentric coordinates with respect
to Delaunay triangles, which are combined using the partition of unity approach with
blending functions over the Delaunay circumcircles. This approach extends to higher
dimensions without restrictions.

Given a Delaunay triangulation T = {T1, . . . , Tm} of X, a point x has possibly non-
convex barycentric coordinates λ1(x), . . . ,λm(x) with respect to the vertices of the in-
dividual triangles. To facilitate notation, we assume without loss of generality that λi =
(λi1, . . . , λim) ∈ Rm, where λij = 0 if xj /∈ Ti. This allows to compute a new set of gener-
alized barycentric coordinates as an affine combination of a set of triangular barycentric
coordinates.

Assume that T1, . . . , Tk are the triangles containing x in their circumspheres. In Brown’s
method, λ1, . . . ,λk are mixed using blending functions ψ1, . . . , ψk : R2 → R, over the
circumcircles with radius ri, centered at the circumcenters ci. If every ψi is Ck-continuous
and strictly positive exactly when inside the circumcircle, then

λbro(x) =
1∑k

i=1 ψi(x)

k∑
i=1

ψi(x)λi(x)

yields non-convex natural neighbor coordinates for x in X that are Ck continuous in
C (X) \X.

An example for such a weight function was given by Brown as

ψi(x) =

{
(‖x− ci‖2 − r2

i )
4 if ‖x− ci‖ < ri,

0 else.
(3.6)

Remark 3.4 In his paper [Bro97], Brown claimed in Lemma 2.5 that inside the union of
the interior of all circumcircles, limx→xi λj(x) = δij. Figure Figure 3.12 indicates that in
case of co-circular vertices, this Lemma does not hold. The proof of this lemma considered
a simple setting with four points, x1, . . . ,x4, and two triangles T1, T2, where x1 and x4

are not connected by a Delaunay edge. It started with the assumption that there exists a

41



Related Work

(a) (b)

Figure 3.12: (a) Degenerate setting with four collinear points in the middle. (b) Interpolant based
on Brown coordinates; the discontinuities are clearly visible as steps in the heightfield.

neighborhood of x1 in which ψ ≡ 0. This assumption is true only if the x1, . . . ,x4 are not
co-circular. Otherwise, ψ1 ≡ ψ2 and the proof fails, supporting our observation.

These artifacts can already be observed for nearly-identical circumcircles, which is a draw-
back that Brown failed to mention in his paper.

Brown also showed that, dropping the constraint of strict positivity inside the circumcir-
cles, his method produces Sibson coordinates if the blending functions ψi are computed
based on Watson’s construction. If xi1,xi2,xi3 are the counterclockwise oriented vertices
of Ti, then O(x;Ti) denotes the dual triangle of 4(xi1,xi2,xi3) with respect to x as
defined in Section 3.2.5.4. Now, the choice

ψsib
i (x) := signed area of O(x; xa,xb,xc) (3.7)

yields Sibson coordinates λbro = λsib. As Brown pointed out, the signed area of the dual
triangle is infinite if x lies on any edge of Ti. Although the coordinates can be shown to
be continuous, this brings up numerical issues, especially in the vicinity of the vertices.

Because of equivalence of Watson’s construction (cf. Section 3.2.5.4) with Sibson coordi-
nates for ψsib, Brown’s method is able to produce convex natural neighbor coordinates,
which suggests that other constructions for convex local coordinates are possible if the
constraint of strict positivity inside the circumcircles is dropped.

Brown’s method provides local coordinates with respect to the set of natural neighbors
inside the convex hull, and reproduces Sibson coordinates for a certain choice of blending
functions. It can be seen as a generalized construction for possibly non-convex natural
neighbor coordinates. However, the coordinates do in general not change continuously
with the coordinates of the points in X, which becomes apparent if a flip operation in
the Delaunay triangulation is considered.

A big advantage of Brown’s approach is the straightforward extension past the convex
hull of the data set, which is discussed further in Section 8.6.1.

42



3.2 Natural Neighbor Interpolation

x3

x4

θ2

θ4

θ3

θ1

θ5x5

x1

x2

x0

(a) (b)

Figure 3.13: Delaunay circumcircles passing through x0 and its natural neighbors. The angles at
the lunes are indicated.

3.2.5.7 Möbius Invariant Natural Neighbor Coefficients in 2D

A Möbius transformation is a one of the form z 7→ (az+ b)/(cz+ d), with a, b, c, d, z ∈ C,
with the major property that it maps circles to circles, and preserves angles. In [BE03],
Bern and Eppstein proposed a construction of coefficients λ that do not comprise barycen-
tric coordinates but are invariant under Möbius transformations. They replace area-
derived coefficients by ones proportional to angles. Since angles are invariant under
Möbius transformations, so are the derived coefficients.

Let θi denote the exterior angle formed at the lune of the two Delaunay circumcircles
passing through x0 and xi, see Figure 3.13(a). The Möbius invariant natural neighbor
coefficients are defined as

λmöb
i = λ̂möb

i /
∑
j

λ̂möb
j , λ̂möb

i = tan(
θi
2

).

Considering the complex plane C as the domain for scattered data interpolation yields
the visualization in Figure 3.13(b). There is a strong visual similarity of fmöb and flap.

3.2.6 Transfinite Natural Neighbor Coordinates

In this section we discuss methods to interpolate line segments, polygons and circular arcs
instead of points, commonly known as transfinite interpolation. The problem of transfinite
interpolation based on natural neighbor coordinates has been addressed by Anton et
al. for Sibson coordinates with respect to points and line segments in [AMG98], by Gross
et al. with respect to circles and polygons [GF99], and by Hiyoshi et al. for Laplace
coordinates with respect to points, line segments, and circles [HS00a]. An interesting
opportunity in transfinite interpolation is to deliberately impose discontinuities along the
manifold data sites by using different values for each side.

First, we explain the main differences between ordinary Voronoi diagrams and such with
lines and curves as data sites, before taking a closer look at how the identities expressed
by local coordinates in Section 3.2.5 extend to the transfinite case.

43



Related Work

(a) (b)

Figure 3.14: (a) Voronoi diagram of a set of points, line segments and general curves (drawn bold).
The virtual tile of a new point is shaded. Picture courtesy of [Hof99]. (b) Transfi-
nite interpolation of a directed line segments and several points. Picture courtesy of
[AMG04].

3.2.6.1 Generalized Voronoi Diagrams in 2D

Non-point data sites lead to generalized Voronoi diagrams, and the geometric primitives
that constitute the local coordinates from Section 3.2.5 are no longer convex polygons.
The main consequence of this generalization is an increased complexity in both data
handling and the computation of the interpolant, which also seems to be the reason that
research in this direction has been restricted to two dimensions so far.

Consider a non-intersecting curve C ⊂ R2 as an additional data site besides the point-
shaped data sites xi ∈ X ⊂ R2. The definition of generalized Voronoi diagrams in Sec-
tion 2.3.5 still holds with a modified distance function,

d(x, C) = min
y∈C
‖y − x‖.

Tiles induced by points are still convex, while for curves this is in general not true. As
in the ordinary Voronoi diagram, the query point x0 has a convex tile T0. An example
of a generalized Voronoi diagram and the virtual tile can be seen in Figure 3.14(a). The
shape of the bisectors between the various elements of the Voronoi diagram is at least
as complicated as that of the elements itself. Thus, an exact computation of areas and
lengths seems feasible only for simple shapes of the data sites. For arbitrary shapes, the
Voronoi diagram can be approximated using graphics hardware, see Section 3.2.9.3.

3.2.6.2 Interpolating Data on Line Segments

If the data sites are line segments, there are bisectors between lines, between points, and
between points and lines, where endpoints of line segments also count as points. The
bisectors are parabolic arcs between the interior of a line segment and a point, while all
other bisectors remain linear. In practice, the endpoints of a line segment are treated as
separate data sites, which leads to a partition of its Voronoi tile into tiles for its directed

44



3.2 Natural Neighbor Interpolation

half edges and its end points, as shown in Figure 3.14(a).

Local coordinates in the transfinite setting can be derived from the discrete setting by
considering natural neighbor coordinates for a set of point data sites, say N(x0), and
a line segment data site C(t), t ∈ [0, 1], approximated at a sequence of m + 1 knots
tj = j/m, j = 0, . . . ,m by points c0 = C(t0), . . . , cm = C(tm). If λi is the natural
neighbor coordinate of x0 with respect to xi and µi is the natural neighbor coordinate of
x0 with respect to ci, then

x0 =
∑
i∈N0

λixi +
∑

j=1,...,m

µici. (3.8)

When the sequence is refined such that m → ∞, it follows that µi → µ(ti) for any
ti ∈ [0, 1], and

x0 =
∑
i∈N0

λixi +
∫
t∈[0,1]

µ(t)C(t) dt, (3.9)

If z(t) describes the Data distributed over C(t) for t ∈ [0, 1], an interpolant is given by

f(x0) =
∑
i∈N0

λizi +
∫
t∈[0,1]

µ(t)z(t) dt. (3.10)

In [GF99], interpolation of arbitrary functions over polygons is solved. If ci(t) is a line
segment of the polygon, parameterized by t ∈ [0, 1], each subtile T0 ∩ T (x0)

i can be in-
terpreted to have a certain thickness above ci, which is nonzero only where the subtile
projects to ci. The λi(x0; t) are taken to be this thickness, normalized by the overall area,
and define a meaningful density for the accumulation of data values. The application of
this interpolant to the data distributed along the non-convex polygon in Figure 3.15(a)
is shown in Figure 3.15(b).

In [AMG98, AMG04], the same approach has been implemented for arbitrary arrange-
ments of non-intersecting line segments and points. By allowing different values on both
sides of the line segments, they are able to faithfully model discontinuities as they arise
in, e.g., geology. See Figure 3.14(b) for an example. Although they restrict their approach
to linear data distributions along the lines, the approach of [GF99] can also be applied
to interpolate to arbitrary scalar functions over the sites. While the last two approaches
focus on a generalization of Sibson’s coordinates, [HS00a] generalizes Laplace interpola-
tion to arrangements of multiple classes of curves. The main difference lies in defining
the coordinates of x0 by a density function over the bisector bounding T0. The result of
this interpolant applied to an arrangement of points, line segments, and circles is shown
in Figure 3.15(c).

3.2.6.3 Interpolating Data on Circles, Lines and Points

In case the input consists of data distributed over a circle, T0 is an ellipse. As a result,
Sibson’s transfinite interpolant takes on a simple form. Let c be the unit circle centered
at 0, z1(Θ) the data, parameterized over Θ ∈ [0, 2π), and x0 = (ρ, θ) be expressed in

45



Related Work

(a) (b) (c)

Figure 3.15: Transfinite interpolation of curves. (a) The Voronoi diagram of a polygon, the con-
tribution of the lower subtile depicted by the thin lines. (b) Transfinite interpolation
of the boundary values. (c) Transfinite interpolation of a collection of points, line seg-
ments and circular arcs. Pictures (a), (b) courtesy of [GF99], (c) courtesy of [HS00a].

polar coordinates. Then in [GF99] a Sibson’s transfinite interpolant on circles is defined
as

f(x0) =
(1− ρ2)3/2

2π

∫ 2π

0

z1(Θ)
(ρ cos(θ −Θ)− 1)2

dΘ

{
0 ≤ ρ < 1
0 ≤ θ ≤ 2π.

Based on a similar idea, [HS00a] formulated an identity and the resulting interpolant for
Laplace coordinates.

3.2.7 Smooth Natural Neighbor Interpolation

The previous section considered interpolants building on a linear combination of data
values by local coordinates as in (3.3), resulting in derivative discontinuities at xi which
are inherited from the local coordinates.

The interpolation of smooth functions requires additional efforts, and there are two dis-
tinct approaches to this: One is to construct some polynomial in the local coordinates that
interpolates derivatives at the data sites [Sib81, Far90, HS04]. The other constructs non-
convex coordinates from a larger natural neighborhood as explained in [Cla96, Flö03b],
although our observations indicate that this approach still is only C0 at the data sites.

To apply the first approach, the derivatives at the data sites need to be known. This is
the subject of Chapter 6, where we show how derivatives can be estimated if they are not
provided.

3.2.7.1 Sibson’s C1 Interpolant

In [Sib81] Sibson described the construction of a C1 interpolant. He estimates a gradient
∇i for each Voronoi site xi from the weighted least squares plane through the neighboring
data {(xi, zi)}i∈N0 , which are then interpolated by blending first order functions with the
help of coordinates λsib

i .

46



3.2 Natural Neighbor Interpolation

(a) (b) (c)

Figure 3.16: (a) Relation between a four-variate, cubic Bézier simplex in R3 and the projection of
its domain to R2. (b) The red arrows indicate how the derivatives are used to define
the control points. (c) Planar projection of the control net of a cubic Bézier simplex
in R3.

With ri := d(x0,xi), γi := λsib
i /ri, define

ζi := zi + (x0 − xi)T∇i and ζ :=
(∑

i∈N0

γiζi

)
/
(∑

i∈N0

γi

)
,

α :=
(∑

i∈N0

λsib
i ri

)
/
(∑

i∈N0

γi

)
and β :=

∑
i∈N0

λsib
i r2

i .

Blending ζ and Sibson’s C0 interpolant f sib0(x0) yields Sibson’s C1 interpolant

f sib1(x0) =
αf sib0(x0) + βζ

α+ β
.

The interpolant f sib1 exactly reproduces functions of the form x 7→ µ(x− a)T (x− a) for
µ ∈ R and a ∈ Rn, i.e., spherical quadratics. There is no obvious generalization of this
approach to higher orders of continuity.

3.2.7.2 Farin’s C1 Interpolant

A much more general approach which is not restricted to natural neighbor coordinates
but can be applied to all convex, local coordinates was proposed by Farin in [Far90]. Any
set of generalized barycentric coordinates λ ∈ Rl can be seen as barycentric coordinates in
an l-variate Bézier simplex. We can without loss of generality assume that the domain of
this simplex projects to Rn as the convex hull of N(x0), where l = |N0|. This is illustrated
for n = 2 in Figure 3.16. In Bézier simplices it is easy to model directional derivatives at
the vertices xi by appropriately choosing the Bézier control net according to the relation
between control points and derivatives given in (2.5). Prescribed derivatives at xi fix
a certain number of control points, which is illustrated in Figure 3.16(b) for the cubic
case. The remaining control points can be chosen arbitrarily without interfering with the
interpolation property, and the concept of degree elevation allows to achieve polynomial
precision.

47



Related Work

Farin presented the implementation of the above idea for cubic Bézier simplices over
λsib to interpolate gradients ∇i, yielding a globally C1-continuous interpolant, which we
revisit again below.

Without loss of generality we assume N(x0) = {x1, . . . ,xm}. Following the notation
introduced in Section 2.5.4, we denote by Dij the directional derivative along dij :=
xj − xi, by i ∈ Nm, i1 + · · · + im = d the n-dimensional multi-index that enumerates
the d-th degree Bézier control points (ξi, ci), by ej the j-th canonical unit-index, and
by dei the index of vertex xi of the Bézier simplex. Since we consider functional Bézier
simplices, the control point abscissae ξi = (i1x1 + · · ·+ imxm)/m are defined by the data
site constellation, and focus is on control point ordinates ci. See Figure 3.16(c) for an
example.

Control points at the vertices are fixed by the interpolation constraint ci = zi. The
directional derivative at xi towards xj , given by

Dij = 3(cij − ci) = ∇Ti dij , j ∈ N0 \ {i},

constrains all inner control points cij to be coplanar,

cij = zi +
1
3
∇Ti dij for i 6= j.

This fixes all control points except one on each simplex face.

By degree elevation for Bézier simplices, these are chosen to ensures quadratic precision
of the resulting interpolant, see [Far90, Flö03b]. In particular, the construction of under-
determined control points is found by examining Bézier simplices of degree two, one for
each vertex xi. All inner control points of such a simplex are determined solely by the
value and edge derivatives at xi. If the values and derivatives come from a quadratic
function, all these quadratic simplices agree. The degree-elevation formula expresses the
cubic control points as linear combinations of the quadratic control points, where by re-
arranging equations every under-determined cubic control point is expressed as a linear
combination of fixed cubic control points. By averaging all these equations we get a sym-
metric construction of the under-determined control point that furthermore guarantees
quadratic precision. Let k = ei + ej + ek for i < j < k, then ck is an inner control point.
To set it such that b3(λ) has quadratic precision, set

uk =
1
3

(ci + cj + ck) and vk =
1
6

(cij + cik + cji + cjk + cki + ckj),

i.e., the average of the remaining fixed control points, then ck = 3
2vk− 1

2uk yields quadratic
precision for the interpolant. The resulting interpolant inherits C1 continuity on C \X
from λsib and is given by

ffar(x0) := b3(λsib(x0)).

Figure 3.17(c) shows the interpolant in a setting exposing the polynomial part.

48



3.2 Natural Neighbor Interpolation

3.2.7.3 Hiyoshi’s C2 Interpolant

Applying the above approach to quintic Bézier simplices over λhiy2, [HS04] present a
construction of control points that matches derivatives up to order two given by the
gradient ∇i and the Hessian Hi at data site xi. The notation used in the following was
introduced in Section 2.5.4.

Let i, j, k, l,m be mutually distinct, dij = xj − xi, zij := ∇T
i dij , and zijk := d T

ij Hidik,
then the control points as explicitly described by Hiyoshi are

ci =zi, (3.11)

cij =zi +
1
5
zij ,

cijk =zi +
1
5

(zij + zik) +
1
20
zijk,

cijjk =
1
2

(zi + zj) +
3
20

(zij + zji) +
1
10

(zik + zjk) +
1
30

(zijk + zjik) +
1

120
(zijj + zjii),

cijkl =
7
10

(zi + zj + zk + zl) +
11
90

(zij + zik + zil) +
1
45

(zijk + zijl + zikl)+

1
45

(zji + zjk + zjl + zki + zkj + zkl + zli + zlj + zlk)+

1
180

(zjik + zjil + zjkl + zkij + zkil + zkjl + zlij + zlik + zljk),

cijklm =
1
5

(zi + zj + zk + zl + zm)+

1
30

(zij + zik + zil + zim + zji + zjk + zjl + zjm + zki + zkj+

zkl + zkm + zli + zlj + zlk + zlm + zmi + zmj + zmk + zml)+
1

180
(zijk + zijl + zijm + zikl + zikm + zilm+

zjil + zjik + ziim + zjkl + zjkm + zjlm+
zkij + zkil + zkim + zkjl + zkjm + zklm+
zlij + zlik + zlim + zljk + zljm + zlkm+
zmij + zmik + zmil + zmjk + zmjl + zmkl).

A visualization of fhiy2 in a setting exposing the polynomial part is given in Figure 3.17(d).

Remark 3.5 As mentioned in the original paper, only ci, cij, and cijk are fixed by gra-
dients and Hessians. The remaining points are obviously chosen based on the degree el-
evation approach to achieve cubic precision. However, the choice of coefficients is not
unique. Motivated by the opaqueness of the explicitly stated formulas we tried to repro-
duce Hiyoshi’s results in a structured manner. Although we were able to construct cubic
precision control points leading to smooth surfaces, none of our constructions produced as
fair surfaces as Hiyoshi’s choice of control points.

49



Related Work

c

(a) setting, ∇c = (−0.5, 0)T (b) fhiy2, Hc = ((5, 0)T , (0, 5)T )

(c) f far, ∇c = (−0.5, 0)T (d) fhiy2, ∇c = (−0.5, 0)T , Hc = 0

Figure 3.17: A setting for a Hermite-type basis function: the sites are chosen as in Figure 3.6, but
the values are all zero. (a) Setting for (c) and (d). (b) Hiyoshi’s interpolant for zero
data except a parabolic function assigned to the center site. (c) Farin’s interpolant
ffar. (d) Hiyoshi’s interpolant fhiy2. Cusps in the reflection lines indicate where
Farin’s interpolant inherits the C2 discontinuities from the Sibson coordinates λsib.
The smooth shape of reflection lines for fhiy2 verifies the C2 smoothness of λhiy.

3.2.7.4 Clarkson’s Interpolation

One special kind of local coordinates that are not convex is based on an idea of Clarkson
[Cla96] and has been investigated and implemented in [Flö03b]. In the two-ring neigh-
borhood of the query position, local coordinates are constructed specifically to reproduce
spherical quadratics, i.e., functions of the form x 7→ a‖x−b‖2, a ∈ R,x,b ∈ Rn. It is the
only approach so far that aims at an implicit C1 construction and does not depend on
prescribed derivative information. Clarkson’s local coordinates differ significantly from
those of Section 3.2.5, in that they

• depend on
⋃
i∈N0

Ni, i.e., the two-ring neighborhood of x0,

• are not convex,

• are conjectured in [Flö03b] to be C1 at xi.

The following briefly repeats the definition of Clarkson coordinates from [Flö03b] without
the derivation.

Let X+(i) := X ∪ {x0} \ {xi}. Let I1(x0) denote the indices of natural neighbors of x0

in X, Ji(x0) the indices of natural neighbors of xi in X+(i) other than x0, and I2(x0) :=
∪i∈I1(x0)J1(xi) the two-ring natural neighborhood of x0 in X. Let π+

x (xi) and π+
j (xi) be

as shown in Figure 3.18, and π+(xi) the volume of the virtual Voronoi tile of xi in the

50



3.2 Natural Neighbor Interpolation

x0

xi

xj
π+

x (xi)

π+
j (xi)

Figure 3.18: Notation used in the definition of Clarkson
coordinates. The areas π+

j (xi) and π+
x (xi)

are derived from the virtual tile of xi in
X ∪ {x0} \ {xi}.

Voronoi diagram of X+(i). Now,

λ+
x (xi) := π+

x (xi)/π+(xi) and λ+
j (xi) := π+

j (xi)/π+(xi)

are the natural neighbor coordinate of xi with respect to x0 in X+(i), and the natural
neighbor coordinate of xi with respect to xj in the same set of points. The intermediate
variables

ex =
∑

i∈I1(x0)

λi(x0)x2
i − x0

2,

ei = x0
2 − 1

λ+
x (xi)

(
x2
i −

∑
j∈J1(xi)

λ+
j (xi)x2

j

)
are then used to define local, non-convex coordinates of x0 with respect to the one-ring
neighborhood of each of its natural neighbors xi ∈ N(x0),

γii(x0) =
ei

ei + ex
λi(x0) +

ex
ei + ex

1
λ+
x (xi)

,

γij(x0) =
ei

ei + ex
λj(x0) − ex

ei + ex

λ+
j (xi)

λ+
x (xi)

, i 6= j.

Finally, this leads to Clarkson coordinates for x0 with respect to its two-ring neighbors
xj , j ∈ I2(x0),

λcla
j =

∑
i∈I1(x0)

λi(x0)γij(x0).

In addition to the local coordinate property, Clarkson coordinates satisfy∑
i∈I1(x0)j∈I2(x0)

λcla
j xTj xj = xT0 x0,

which corresponds to the reproduction of spherical quadratics if they are used for scattered
data interpolation.

51



Related Work

(a) (b)

Figure 3.19: Basis function of the scattered data interpolant derived from Clarkson coordinates,
the data chosen as in Figure 3.6(a) with additional zero data sites outside (not
displayed) to provide big enough neighborhoods. (a) Perspective view. (b) The point
setting is chosen such that an adequate region inside the convex hull has a full two-
ring neighborhood, which is required to compute Clarkson coordinates.

We show the basis function for the interpolant derived from Clarkson’s coordinates in
Figure 3.19.

3.2.8 Manifold Natural Neighbor Interpolation

The Voronoi diagram is defined by a set of points and a distance measure. For points on a
manifold, this definition still holds, at the expense of potentially non-convex tiles due to
a non-Euclidean metric, see [LL00]. The manifold setting results in bisectors of arbitrary
complexity and computing areas (volumes) becomes tedious for non-trivial geometries. To
our knowledge, there has been no work carried out on natural neighbor based interpolation
on continuous manifolds.

In [BC00], however, it is shown that if the manifold has a sufficiently dense sampling, a
less complicated approach is possible. The data sites on the manifold induce a Voronoi
diagram in the embedding space Rn of the manifold. The intersection of that Voronoi
diagram and the manifold gives a partition of the manifold that locally converges to the
Euclidean Voronoi diagram when the sampling density goes to infinity. Furthermore, the
main result in [BC00] states that Sibson’s identity holds for an infinitely dense sampling
of the surface.

Based on this work, natural neighbor based interpolation on point clouds issued from
manifolds is developed in [Flö03b, BF04]. As a main result, a point on a manifold can
be expressed in local coordinates in the tangent plane at that point, given the manifold
is sampled densely enough. The intersection of the three-dimensional Voronoi diagram of
the data sites with the tangent plane defined by the normal vector at the query position
produces a power diagram in the tangent plane. [Flö03b] proves Sibson’s identity for
power diagrams and develops natural neighbor coordinates for point clouds.

52



3.2 Natural Neighbor Interpolation

3.2.9 Implementation of Natural Neighbor Interpolation

Natural neighbor based interpolants are based on an underlying identity that provides
generalized barycentric coordinates in the natural neighbors. The definition of those local
coordinates is motivated geometrically on the Voronoi diagram of the input data sites.
The computation, however, can often be carried out more elegantly and also more stably.
These approaches can be classified as geometric, algebraic and approximate. For simple
settings, the geometric approach is still feasible. For higher dimensions, higher orders
of continuity and more complex input data sites, algebraic and approximate approaches
yield more efficient and more stable solutions.

In the rest of this section we describe the computation of natural neighbor coordinates,
since they are the main building block for all interpolants in this survey. The implementa-
tion of the C1 and C2 constructions at the data sites from Section 3.2.7 for point-shaped
data sites is straightforward.

3.2.9.1 Geometric Computation

The dual of the Voronoi diagram is the Delaunay tessellation, as introduced in Sec-
tion 2.3.5. Therefore, evaluation and traversal of the Voronoi diagram of a set of points
can be carried out on its Delaunay tessellation with corresponding adjacency information.

Laplace and Sibson coordinates relate to areas and volumes of intersections of Voronoi
tiles which are easily computed in two dimensions, and implementations are known for
three dimensions as well [Owe93, CGA08]. In case of line segment shaped data sites,
the constrained Delaunay tessellation can be used. Input data sites of arbitrary shape are
difficult to handle in classical geometric data structures and usually require more intricate
representations of the Voronoi diagram. The common solution to this is a piecewise linear
approximation of the input curves, which then act as constrained edges in the constrained
Delaunay tessellation.

In three or more dimensions, the data structures required for storing the Delaunay tes-
sellation and its adjacency graph become very complex, and traversing the topological
neighborhood becomes error prone and cumbersome.

3.2.9.2 Algebraic Computation

For algebraic computation the explicit construction of the Voronoi diagram is avoided,
and computation is carried out on simpler geometric structures.

To compute Laplace coordinates in the two-dimensional setting, the calculation presented
by Sugihara only assumes the natural neighbors of the query position to be given in
counterclockwise order [Sug99]. The resulting identity also holds in the more general case
of star-shaped neighborhoods, making this approach robust against topological incon-
sistencies as they appear from numerical noise. Considering the equivalence of Laplace
coordinates and cotangent coordinates in Delaunay triangulations, it appears that this is
closely related to the computation of cotangent coordinates.

53



Related Work

(a) (b)

Figure 3.20: (a) Polygonal approximation of a distance function. (b) Generalized Voronoi diagram
computed on graphics hardware. Pictures courtesy of [HCK+99].

Watson’s construction for the computation of Sibson’s coordinates as introduced in Sec-
tion 3.2.5.4 is solely based on the computation of circumcenters and signed triangle areas.
Since this method operates solely on simplices, it has a straightforward generalization to
higher dimensions and is successfully implemented in 3D in the Cgal library [CGA08].
For positions located on the facets of Delaunay simplices, the dual triangle becomes de-
generate, but by a limit argument the construction can be shown to be valid. However, in
a straightforward implementations, the numerical instabilities near the facets of Delaunay
simplices become apparent.

Building on Watson’s signed triangle decomposition of Voronoi tiles, Hiyoshi proposed in
[Hiy05] a way to stably compute his coordinates of order k in R2 by first encoding the
construction of Voronoi entities into algebraic expressions in Delaunay triangles, which
are then rearranged to circumvent numerical instabilities based on zero denominators as
they might appear in the equations in Section 3.2.5.

A straightforward computation of Laplace and Sibson coordinates in any dimension exists
once the one-ring Delaunay neighborhood is known. The content of the corresponding
tile facets and tile intersections can be expressed as an intersection of half-spaces that
are defined entirely by the query position and its Delaunay neighbors, as Braun and
Sambridge mentioned in [BS95]. Thus, the computation of Laplace and Sibson coordinates
reduces to the determination of Delaunay neighbors, described by Watson in [Wat81], and
volume computation in n dimensions, which has been thoroughly analyzed by Bueler et
al. in [BEF00]. We applied this approach to derive a construction of Hiyoshi coordinates in
R2, which is described in detail in Chapter 5. Note that the average number of Delaunay
neighbors grows exponentially with dimension, and so does the complexity of volume
computations.

3.2.9.3 Approximate Computation

By allowing a small error for the local coordinates, an approximate formulation of natural
neighbor coordinates can be given based on a discretization of the Voronoi diagram. The

54



3.2 Natural Neighbor Interpolation

(a) (b) (c) (d) (e)

Figure 3.21: (a) Discrete computation of Sibson’s interpolant for the setting in. (b)-(d) Each
point in the domain gives rise to a disc colored with the value of the nearest data site
and the distance to that data site as its radius, depicted. The translucent overlay of
all discs is the discrete Sibson’s interpolant. Pictures courtesy of [PLK+06].

computation of such a discretization for generalized Voronoi diagrams with the help of
graphics hardware is discussed in [HCK+99]. Basically, the graph of the distance function
from each of the data sites in the plane is represented by a geometric object. E.g., the
Euclidean distance from a point is represented by a cone perpendicular to the plane and
with apex at that point, the quadratic distance by a paraboloid. For curve-shaped data
sites, this is a more tedious task, illustrated in Figure 3.20(a). Rendering these primitives
leaves the minimum distances in the z-buffer and the associated data site in the color
buffer, shown in Figure 3.20(b).

The computation of Sibson coordinates based on approximate areas can now be per-
formed by counting pixels in the approximate Voronoi diagram with added query position
[FEK+05]. However, this does not allow for an efficient or stable evaluation of Laplace or
Hiyoshi’s Ck coordinates, and faces severe difficulties when applied to higher dimensions.

If, instead of evaluating single point queries, the interpolant f sib0 is to be evaluated over
a region, the influence of the data values at the data sites can directly be distributed
to the domain in a more efficient manner. The way described in [FEK+05] requires the
Delaunay triangulation to be known, while [PLK+06] do without tessellation at all solely
using a kd-tree to locate nearby points. This is illustrated in Figure 3.21.

3.2.10 Taxonomy of Natural Neighbor Interpolants

The properties of all interpolation schemes discussed so far are summarized in Table 3.2.
A discussion of the four blocks is given below.

Point Based Interpolation Schemes: Schemes with global smoothness have only been
proposed for the setting of point-shaped data sites. Both Farin’s and Sibson’s C1 con-
structions operate on Sibson coordinates and yield fairly straightforward implementa-
tions. Farin’s construction has quadratic precision and adapts to a wider range of input
constellations.

Hiyoshi’s C2 scheme provides a high quality interpolant but is computationally expensive
and tedious to implement even though explicit guidelines for its implementation in R2

exist. At the data sites, it requires the construction of quintic Bézier control nets and bears
considerable combinatorial complexity, as we examine in more detail in Section 6.5. In our
experiments, we found increases in computation time for extreme situations with more

55



Related Work

Sh
ap

e
of

x
i

(6
)

Sm
oo

th
ne

ss
of
λ

in
C

(X
)
\X

D
er

iv
.

at
x
i

Sm
oo

th
ne

ss
at

x
i

G
en

er
.

to
R
d

G
en

er
.

to
C
k

P
re

ci
si

on

C
om

pu
t.

C
om

pl
.(4

)

Su
pp

or
t(5

)

C
on

t.
de

p.
on

X

R
ef

er
en

ce
s

Point based
flap

`
po

in
ts

a Cd−2 − C0 + −

lin
ea

r ++ 1 + [CFL82, Sug99, BIK+97]
f sib0 Cd−1 − C0 + − ++ 1 + [Sib81]
fhiy0 Ck − C0 (+)(1) + − 1 + [HS00b]
f sib1 Cd−1 ∇ C1 + − s.q.(3) + 1 + [Sib81, Far90, Pip92]
ffar C1 ∇ C1 + + (2) quad. + 1 + [Far90]
fhiy2 C2 ∇,H C2 (+)(1) + (2) cub. −− 1 + [HS04, Hiy05]
fcla C1 − C0 + − s.q.(3) − 2 + [Cla96, Flö03b]

Transfinite
Gross pol, ci C1 − C0 − −

lin
ea

r − 1 + [GF99]
Anton pt, li C1 − C0 − − − 1 + [AMG98, AMG04]
Hiyoshi pt, li, ca C1 − C0 − − − 1 + [HS00a]

Manifold
Flötotto points C1 − C0 + − n.a. − 1 n.a. [BC00, Flö03b]

Other
meth.
fnear points C−1 − C∞ + − − ++ 0 + [Thi11, OBSC00]
FEM points Ck − C0 + − polyn. ++ 0 − [ZS02]
RBF points C∞ − C∞ + + polyn. − g − [Har71, Wen04]

(1) ongoing research. (2) based on the Bézier simplex approach. (3) spherical quadratics. (4) ++ low, - - high.
(5) {012}-ring, g(lobal). (6) pt=points, li=lines, pol=polygons, ci=circles, ca=circular arcs.

Table 3.2: Overview of considered interpolation schemes.

than 20 natural neighbors, which is very likely to become an issue in higher dimensions.
Besides these drawbacks, the C2 interpolant provided the best results when applied to
data representing a smooth function, which has been verified in [BBU06a].

In contrast to the schemes above, Clarkson’s construction does not interpolate prescribed
derivatives but achieves a smooth-looking interpolant based on an implicit construction.
Since the final interpolant is a linear combination of data from the two ring neighborhood
it is similar to the other C0 schemes over natural neighbor coordinates, but requires a
larger support and results in non-convex coordinates.

Transfinite Interpolation: Research on transfinite natural neighbor interpolation has
so far only concentrated on expressing the identity of Laplace and Sibson coordinates with
respect to line- and circle-shaped data sites in two dimensions. Consequently, the resulting
interpolants remain C0 across the data sites. In simple cases like line segments and circular
arcs, closed form integration is possible, but more general shapes require approximations.
In spite of these restrictions the improved flexibility provided by transfinite interpolation
is useful for, e.g., fault modeling in geosciences.

Interpolation on Manifolds: Sibson’s identity holds on smooth manifolds for an in-
finitely dense sampling, but in general not for arbitrary samples. The Voronoi diagram

56



3.2 Natural Neighbor Interpolation

in that non-Euclidean metric does not have the same, simple geometric structure. How-
ever, local restriction of the Euclidean Voronoi diagram to the tangent plane reveals the
lower-dimensional power diagram, for which the Laplace and Sibson’s identity hold. As
a result, all natural neighbor interpolants that can be computed on power diagrams can
be adapted to manifolds with sufficiently dense sampling.

Other Scattered Data Schemes: Many other scattered data interpolation schemes
exist besides those based on natural neighbors, among them finite element schemes, radial
basis functions with global or local support, subdivision, and bivariate splines, all of which
have advantages in certain applications. Yet, natural neighbor based interpolation offers
a unique combination of the properties

• locality,
• support determined by truly automatic neighborhood,
• continuous dependency on positions of input sites.

Radial basis functions offer very good mathematical properties in terms of approxima-
tion order and smoothness and do, like natural neighbor based schemes, not depend on
a particular tessellation. But even the construction of a compactly supported interpolant
requires the solution of a global linear system. Finite element interpolants can be con-
structed with high orders of continuity but are defined over one fixed choice of elements,
i.e., the tessellation of the domain, and thus do not continuously depend on the posi-
tions of the data sites. Similar arguments apply to bivariate splines and subdivision. In
the more relaxed setting of scattered data approximation, approaches like hierarchical
B-splines, thin plate splines, or moving least squares exist. Of these, only the latter has
properties similar to natural neighbor based schemes and can even be integrated with
natural neighbor coordinates as a replacement for inverse distance weights.

57



Related Work

58



4 Splines over Iterated Voronoi Diagrams

This chapter presents some insights we gained after investigating an idea of Farin in
his unpublished “Quadratic splines over iterated Voronoi diagrams” paper [Far03], who
aimed at generalizing B-spline functions to arbitrary control meshes in the multivariate
case, thus overcoming the limitations of tensor-product spline definitions. We will, after
reviewing the idea, present our findings in the univariate and bivariate setting.

Specifically, we will first show an alternative argument why splines over iterated Voronoi
diagrams in 1D are equivalent to B-splines up to degree two. Then, we will demonstrate
that for two or more variables, the construction fails to inherit the desirable properties
from the univariate case and explain the reasons for that. Finally, we point out recent
findings from the finite element community who adapted the initial idea and achieved a
B-spline-like construction.

For this chapter, we recommend reading Section 2.5.6 on B-spline functions.

4.1 Background

A B-spline function of degree d, often interchangeably used with the term B-spline, is a
piecewise polynomial function that implicitly guarantees Cd−1-smoothness over a knot
vector with non-repeating knots. Recall their definition in Section 2.5.6. B-spline functions
are defined using a knot vector U = (u0, . . . , um), a set of control points c0, . . . , cm−d−1,
and the Cox-de Boor recursion formula (2.6)

The control points allow the user to locally control the shape of the function, while the
knot vector allows to control the region of influence of each control point. This versatility
and the ease of implementation made B-splines an indispensable tool in many scientific
disciplines. However, limitations arise when B-spline functions are to be generalized to
the multivariate case.

The standard approach here is the definition of multivariate B-splines as the tensor prod-
uct of univariate B-splines, which results in a regular grid of control points and a knot
vector for every variable. Such a tensor product B-spline is parameterized over a rectan-
gular domain – a limitation that severely reduces its applicability in situations that do
not exhibit such regular structure.

Another possibility is to turn to simplex splines, defined over a regular simplicial tessel-
lation of the domain, but the regularity constraints are again a limiting factor.

True multivariate B-splines with arbitrary control point structures are defined as B-
polynomials and B-patches, for which a concise treatment can be found in [PBP02]. These

59



Splines over Iterated Voronoi Diagrams

 

z0
0 z0

1 z0
2 z0

3

z1
1 z1

2 z1
3

z2
2 z2

3

z3
3

U0

U1

U2

V2

V1

V0

M0

M1

M2

M3

u0 u1 u2 u3 u4 u5

u1
0 u1

1 u1
2 u1

3 u1
4

v0 v1 v2 v4 v5 v6v3

Figure 4.1: Illustration of the iterated Voronoi diagram scheme. Levels U0 through U2 generate
the control grid. The shaded points in levels V0 through V2 depend on the query
position v3.

multivariate splines exhibit a rather unintelligible connection between the function and
the knots, which can be chosen with a great deal of freedom but lead to structures of
rather theoretical interest. In [Nea01], the choice of so-called knot chains is discussed in
an effort to find a suitable generalization of univariate splines to higher dimensions.

All the above methods, however, either lack flexibility or the elegance of the univariate
B-splines. Realizing that the central operation in de Boor’s algorithm is repeated linear
blending of two control points with ratios that differ from level to level, the transition
into the terminology of natural neighbor coordinates promises increased flexibility while
keeping the framework relatively elegant.

4.2 Farin’s Splines over Iterated Voronoi Diagrams

Next we revisit the idea described in Farin’s technical report entitled Quadratic splines
over iterated Voronoi diagrams [Far03], and describe how it fits into the computation of
local coordinates.

4.2.1 Iterated Sibson’s Interpolation

We will closely follow the notation used in the original paper and refer to the method
as Iterated Sibson’s Interpolation. The individual steps are illustrated for the univariate
case in Figure 4.1.

Let U0 ⊂ R2 be a set of points ui = u0
i . We construct the Voronoi diagram of U0 and

define from its Voronoi vertices a set U1 with points u1
i , and repeat this until we have a

set Uk−1. The integer k is called the depth of the scheme, and Uk−1 is called the control
grid. With each point uk−1

i in the control grid we associate a value z0
i , which gives us a

control mesh M0 = (Uk−1, Z0) that shall influence the shape of the resulting surface just
like the control polygon influences the shape of a B-spline curve.

60



4.2 Farin’s Splines over Iterated Voronoi Diagrams

 

u3
0 u3

1 u3
2 u3

3

v2
1 v2

2 v2
3

v1
2 v1

3

v0 = 1

U2

V2

V1

V0

λ0
32 λ0

33

λ1
21 λ1

22 λ1
32 λ1

33

λ2
10 λ2

11 λ2
21 λ2

22 λ2
32 λ2

33

v0 v1 v2 v4 v5 v6v3

Figure 4.2: Scheme to compute the local coordinates by partitioning the value of one level by
level.

The evaluation of that surface at a query point v is described next. We insert v into
the set of knots which gives us V0 = U0 ∪ {v}. Like above we construct the Voronoi
diagram of V0, whose vertices form the set V1, and repeat this until we get Vk−1. In the
following, running indices address those vertices in Vk−1 depending on v. The vertices
of Vk−1 may be expressed in terms of those of Uk−1 using Sibson’s identity, which was
defined in Section 3.2.5.3 and, without loss of generality, we can write

vk−1
i =

∑
j

λk−1
ij uk−1

j .

With these coefficients, we evaluate Sibson’s interpolant f sib0 for M0 at every point
vi ∈ Vk−1,

z1
i (v) =

∑
j

λk−1
ij z0

j ,

and obtain a mesh M1 = (Vk−1, Z1). The same way we expressed Vk−1 in terms of Uk−1,
we can express Vk−2 in terms of Vk−1, generating the control mesh M2 = (Vk−2, Z2).
After continuing for meshes Mk−r = (Vr, Zk−r) with

zr+1
i =

∑
j

λrijz
r
j , (4.1)

we eventually obtain mesh Mk = (V0, Zk). Only one point in Mk depends on v, namely
(v, zk(v)); this is the desired point on the surface.

4.2.2 Representation as Local Coordinates

The algorithm describes the evaluation process by iteratively applying Sibson’s inter-
polant to a hierarchy of grids. In the spirit of this thesis, however, we wish to express v
in local coordinates with respect to the control grid in Uk−1. The above starts from the

61



Splines over Iterated Voronoi Diagrams

control mesh M0 at the bottom level, and for k = 2, we get

v =
∑
i

λ0
i (v)v0

i ,

=
∑
i

λ0
i (v)

∑
j

λ1
ijv

1
j ,

=
∑
i

λ0
i (v)

∑
j

λ1
ij

∑
l

λ2
jlu

1
l . (4.2)

Expanding the above and pulling v2
l to the front gives us

v =
∑
l

(∑
i,j

λ0
i (v)λ1

ijλ
2
jl

)
u1
l =:

∑
l

λits2
l u1

l ,

where its stands for iterated Sibson. This lets us fit the proposed scheme into the general
framework of this thesis, giving the resulting interpolant by

f itsk(v) =
∑
i

λitskz0
i .

The following properties are obvious from the above exposition.

1. The support of f itsk(v) is local but depends on k.
2. Because the scheme arising from (4.2) employs only affine combinations of barycen-

tric coordinates, the interpolant has linear precision.

The scheme in (4.2) is illustrated in Figure 4.2 and consists of the steps described next.
First, compute the hierarchy U0 . . .Uk−1, the figure displays only the resulting Uk−1.
Create V0 and associate a value of v0 = 1 with v. Create V1 and compute λ1

i (v). Split v0

proportional to λ1
i (v) and add the fractions to values v1

i . Create V2 and compute for every
v1
i with vi 6= 0 its local coordinates λ2

ij . Split v1
i proportional to λ2

ij , and add the fractions
to values v2

j . Repeat this until Vk−1 is to be expressed in terms of Uk−1. Computing λkij ,
splitting vk−1

i accordingly and adding the fractions to ukj gives the local coordinates of v
with respect to the control points uj by λitsk

j = ukj ,

v =
∑
j

λitsk
j uj .

4.3 Equivalence with B-splines in the Univariate Case

Here, we retrace the reasoning given in [Far03] that the proposed iterated Sibson’s in-
terpolation produces quadratic B-splines for k = 2 in the univariate, functional case.
The original reasoning referenced de Boor’s algorithm, yet we find it more suitable to
relate the construction to repeated knot insertion, which is another well-known method
to evaluate a B-spline curve.

62



4.3 Equivalence with B-splines in the Univariate Case

4.3.1 Evaluating Quadratic B-Splines Using de Boor

We start by applying the de Boor algorithm step by step to evaluate a univariate B-spline
of degree two, which allows us to associate the corresponding constructions in the iterated
Sibson’s interpolation.

We assume a knot vector (u0, . . . , um) with control points (z0, . . . , zm−1) assigned to
the Greville abscissae (ξ0, . . . , ξm−1), ξi = (ui + ui+1)/2. The evaluation is performed for
v ∈ [uj , uj+1). The first step of the de Boor algorithm according to Section 2.5.7 computes
z1
j and z1

j+1,

z1
j =

uj+2 − v
uj+2 − uj zj−1 +

v − uj
uj+2 − uj zj ,

z1
j+1 =

uj+3 − v
uj+3 − uj+1

zj +
v − uj+1

uj+3 − uj+1
zj+1.

The second step computes z2
j+1, which is the value of the B-spline curve at v, as

z2
j+1 =

uj+2 − v
uj+2 − uj+1

z1
j +

v − uj+1

uj+2 − uj+1
z1
j+1.

4.3.2 Evaluating Quadratic B-Splines Using Repeated Knot Insertion

We start out as in the previous section, but this time performing two knot insertions at
v ∈ [uj , uj+1),

(ξ1
0 , . . . , ξ

1
m)← Greville abscissae of (u0, . . . , uj , v, uj+1 . . . um),

(ξ2
0 , . . . , ξ

2
m+1)← Greville abscissae of (u0, . . . , uj , v, v, uj+1 . . . um+1),

which lead to the new Greville abscissae ξ1
j and ξ1

j+1 in the first insertion and ξ2
j = v in

the second. The corresponding control points (z1
0 , . . . , z

1
m) of the refined control polygon

are found by evaluating the piecewise linear interpolant over (ξi, zi), i = 0, . . . ,m, at the
new Greville abscissae ξ1

k, k = 0, . . . ,m, specifically

z1
j =

ξj − ξ1
j

ξj − ξj−1
zj−1 +

ξ1
j − ξj−1

ξj − ξj−1
zj , (4.3)

z1
j+1 =

ξj+1 − ξ1
j+1

ξj+1 − ξj zj +
ξ1
j+1 − ξj
ξj+1 − ξj zj+1.

Now, (z2
0 , . . . , z

2
m+1) are found by evaluating the piecewise linear interpolant over (ξ1

i , z
1
i ),

i = 0, . . . ,m, at the new Greville abscissae ξ2
k, k = 0, . . . ,m+ 1, specifically

z2
j+1 =

ξ1
j+1 − ξ2

j+1

ξ1
j+1 − ξ1

j

z1
j +

ξ2
j+1 − ξ1

j

ξ1
j+1 − ξ1

j

z1
j+1. (4.4)

Finally, z2
j+1 is the quadratic B-spline function b evaluated at v.

63



Splines over Iterated Voronoi Diagrams

4.3.3 Evaluating Quadratic B-Splines Using Iterated Sibson’s Interpolation

Now we switch to the notion of the univariate Voronoi diagram, which means (u0, . . . , um)
are Voronoi sites and (u1

0, . . . , u
1
m−1) the corresponding Voronoi vertices, to which we as-

sign control points zi. In one dimension, linear interpolation between two Greville abscis-
sae is identical to Sibson’s interpolation in the set of Voronoi sites.

According to Farin, we evaluate the function by inserting the evaluation abscissa v ∈
[uj , uj+1) into the set of Voronoi sites,

(v0
0, . . . , v

0
m+1) := (u0, . . . , uj , v, uj . . . um),

and get the corresponding Voronoi vertices

(v1
0, . . . , v

1
m).

The only new Voronoi vertices that do not coincide with an old one are v1
j and v1

j+1.
We then compute intermediate control points for the corresponding Voronoi vertices by
evaluating Sibson’s interpolant over (u1

i , zi), i = 0, . . . ,m− 1, and find

z1
j =

u1
j − v1

j

u1
j − u1

j−1

zj−1 +
v1
j − u1

j−1

u1
j − u1

j−1

zj ,

z1
j+1 =

u1
j+1 − v1

j+1

u1
j+1 − u1

j

zj +
v1
j+1 − u1

j

u1
j+1 − u1

j

zj+1,

just like in (4.3). Now, v is to be expressed in terms of v1
0, . . . , v

1
m and z2

j to be interpolated
accordingly. The piecewise interpolant over (v1

i , z
1
i ), i = 0, . . . ,m at v yields

z2
j =

v1
j+1 − v

v1
j+1 − v1

j

z1
j +

v − v1
j

v1
j+1 − v1

j

z1
j+1,

which together with v = ξ2
j+1 in (4.4) shows that for k = 2, iterated Sibson’s interpolation

is equivalent to de Boor’s algorithm resp. knot multiplication and produces B-Spline
functions of degree two.

4.3.4 Difference for Degree Greater Two

We showed in Section 4.3.2 and Section 4.3.3 the equivalence of the two algorithms based
on their identical set of operations on the Greville abscissae ξi and the one-time iterated
Voronoi vertices u1

i .

The general formula for Greville abscissae ξd−1
i of a B-spline curve of degree d is

ξd−1
i =

1
d

d−1∑
j=0

ui+j .

64



4.4 Failure in the Bivariate Case

(a) (b)

(c) (d) (e) (f)

Figure 4.3: (a) Data set with central control point set to one. (b) The function generated by
iterated Sibson’s interpolation. (c) The function from above. (d)-(f) The control net
configurations U0, U1, U2.

Now we look at the way the control mesh ordinates Uk−1 are computed, and find

uk−1
i =

1
2

(uk−2
i + uk−2

i+1 )

=
1
2

(1
2

(uk−3
i + uk−3

i+1 ) +
1
2

(uk−3
i+1 + uk−3

i+2 )
)

= . . .

=
1

2k−1

k−1∑
j=0

(
k − 1
i

)
u0
i+j .

Obviously, uk−1
i and ξd−1

i agree for k = d = 1, 2. For k, d > 2, the control polygons for
both methods are different in general and lead to different results, which can easily be
verified.

4.4 Failure in the Bivariate Case

We have implemented iterated Sibson’s interpolation in 2D for k = 2. The resulting
function for a control mesh M0 with all values set to zero except the one in the middle
can be seen in Figure 4.3(a) and (b).

65



Splines over Iterated Voronoi Diagrams

In Section 4.3 we have shown the equivalence of iterated Sibson’s interpolation in 1D and
quadratic B-splines for the case k = 2. Although this cannot be the case in general for
multivariate settings due to difference in the knot structures, we would expect the main
properties of B-splines like smoothness to carry over to iterated Sibson’s interpolation.
Figure 4.3(b) shows that this is not the case, and we discuss the reasons next.

In repeated knot insertion, control points at different levels receive values from other
control points by means of convex combinations that reflect the monotone sequence of
Greville abscissae they are associated with. This is also true for iterated Sibson’s inter-
polation in the univariate case, and for tensor-product B-splines, where the argument
applies in every parameter direction. Common triangular functional subdivision algo-
rithms, which can to some extent be regarded as a generalization of uniform B-splines to
triangular domains, also build their refined control nets by computing convex combina-
tions.

Applied to the steps of iterated Sibson’s interpolation, this means that the abscissa of a
new control point should be contained in the convex hull of the points from which it is
computed. However, since the abscissae Ur and Vr are the vertices in Voronoi diagrams,
they are the circumcenters of Delaunay triangles, and fall within the convex hull of their
generating points only if the corresponding triangle is non-obtuse. A sequence of con-
trol points with their associated Voronoi diagrams is shown in Figure 4.3(c) - (f). As a
consequence, the intermediate abscissae that receive values by means of Sibson’s inter-
polation have no meaningful spatial correlation with their generators, which explains the
unexpected shape of the basis function shown in Figure 4.3(b).

4.5 Gonzáles’ Voronoi Splines

Based on Farin’s idea, a meaningful result has been published by Gonzáles et al. in
[GCD07]. Their method takes yet another perspective at the evaluation of B-spline curves
and adapts it to the setting of Voronoi diagrams.

4.5.1 Method Description

Their key observation is related to the way ratios in the de Boor recursion are computed
to mix control points. Looking at the de Boor algorithm in (2.7), the mixing ratio for two
control points at level n for parameter u is defined from the linear interpolant between
zero and one over the interval [ui, ui+d−n),

αni =
u− ui

ui+d−n − ui ,

where the denominator is the length of an interval formed by removing ui−1, . . . , ui+d−n−1

from the knot sequence. These removed knots are always contained in a certain neigh-
borhood of u.

66



4.5 Gonzáles’ Voronoi Splines

(a)

x0

x1

x2

x4x5

x6

x7
x3

x0 x(1)
3

x(1)
4x(1)

5

x(1)
6

x(1)
2x(1)

7

(b)

Figure 4.4: (a) Function over a data set with all values set to zero except for the middle one. This
is not exactly a “basis” function since the equivalent to data points in this method
are the values associated with the midpoints of the Delaunay edges. (b) Top: virtual
tile used in computation of local coordinates for x0 in X. Bottom: virtual tile used in
computation of local coordinates for x0 in X(x1).

Adapted to the setting of Voronoi diagrams1, this corresponds to removing knots xi ∈
N(x0) from the neighborhood of the query position x0, and computing its local coordi-
nates with respect to the remaining knots X\xi. For B-spline curves, each set of removed
knots corresponds to two neighboring control points at a certain level that are averaged.
In the method of Gonzáles et al., who give details of their method only for the quadratic
case, every pair of natural neighbors in the knot set is associated with a control point,
which is naturally visualized at the mid-point of their connecting Delaunay edge.

We now describe their method for the quadratic case. Let X = {x1, . . . ,xm} ⊂ Rn,
and we seek to express x0 as a convex combination of points in X. We denote by N

(j)
0

the natural neighbors of x0 in X \ {xj}, and by λ
(j)
i , i ∈ N

(j)
0 corresponding natural

neighbor coordinates of x0, see Figure 4.4(b). By λi, i ∈ N0 we denote some natural
neighbor coordinates of x0 in X, i.e., any of λlap, λsib, λhiy. Gonzáles coordinates in the
quadratic setting are now defined as

λgon
j =

∑
i∈N0

λiλ
(i)
j . (4.5)

An example of a surface computed using their method can be seen in Figure 4.4(a).

1Note that for reasons of consistency with the remaining chapters, we use X instead of U as in previous
sections.

67



Splines over Iterated Voronoi Diagrams

4.5.2 Discussion of Gonzáles’ Method and Future Research

The method indeed creates functional surfaces very much the same way as B-splines,
locally influencing the shape of the function with a control point.

However, the straightforward and elegant correspondence between the maxima of the basis
functions and the control points is not very obvious. Therefore, the usefulness of this kind
of B-spline-like functions for direct surface modeling based on the control points seems
limited. It should, however, be possible to transfer the direct manipulation paradigm
[HHK92] from B-spline curves and tensor-product B-spline surfaces to the Voronoi spline
construction of Gonzáles et al.

One crucial difference between tensor-product B-splines and the Voronoi spline construc-
tion is the lack of smoothness at the data sites. Because of the multiplicative combination
of natural neighbor coordinates in (4.5), the coordinates λgon inherit the C0 limitation
at the data sites. To overcome this, the evaluation of the interpolant fgon could be split
into the evaluation of Sibson’s interpolant at x0 with every neighbor removed one after
the other, and then interpolating the acquired function values, which are now associated
with the natural neighbors, using ffar. The gradient required in this approach can be
estimated like described in Chapter 6.

Voronoi splines are only C0 at the data sites. The control points can be chosen such that
the interpolant has polynomial precision, yet the description of the scheme for Voronoi
splines corresponding to degrees higher than two is not as straightforward as claimed in
[GCD07]. The removal of knots in the neighborhood of the query position in the univariate
can obviously be translated into the removal of natural neighbors in the Voronoi setting
if only one “ring” of neighbors is to be removed. But if multiple stages of neighbors are
involved, it is not clear whether to remove the whole one-ring and compute the natural
neighbor coordinates with each of the then-natural neighbors one by one removed, or
whether to apply this to any combination of one- and two-ring neighbors removed. This
ambiguity needs to be clarified by further investigation.

One could extend the method to knots that are not point-shaped, as has been done
in the interpolation methods presented in Section 3.2.6 on transfinite natural neighbor
interpolation. This generalization would allow more flexible control over the shape of the
function and could greatly widen the range of potential applications.

4.6 Conclusion

We have reviewed and implemented an idea by Farin that is based on an observed cor-
respondence between structures and steps used in the evaluation of B-spline curves and
natural neighbor interpolation in the Voronoi diagram.

An equivalence of the two methods is easy to show in the univariate case for B-spline
curves of degrees one and two based on the interpretation of the process of repeated
knot insertion, also known as the de Boor algorithm. However, this equivalence is lost
in generalizations to higher degrees because of the difference in the generation of the
Greville abscissae and their counterparts in the iterated Sibson’s interpolation.

68



4.6 Conclusion

Our implementation of the method for two dimensions revealed that the hoped-for sim-
ilarity in the behavior of the functional surface with respect to the control points is not
present. We traced the reasons back to the difference in the construction of Greville ab-
scissae in the case of B-splines and their corresponding Voronoi vertices at a certain level
of Farin’s construction. In B-splines, the Greville abscissae at different levels of the de
Boor algorithm are always formed by convex combinations of Greville abscissae of the last
level. In the iterated Sibson’s construction, new Voronoi vertices are by definition placed
at the circumcenters of Voronoi vertices of the last level – a non-convex construction in
general.

Finally we focused on findings by Gonzáles et al., whose method fulfills most of the
properties that the original idea by Farin set out to achieve, and sketched potential
improvements and possibilities for further research.

69



Splines over Iterated Voronoi Diagrams

70



5 Practical Implementation of Higher Order
Natural Neighbor Coordinates

This chapter builds on the concepts introduced in Section 2.1 on linear algebra, and
Section 2.3.2 on polyhedra and polyhedral complexes for the understanding of algebraic
volume computation. The implementation of natural neighbor coordinates draws from
Section 3.2.5 on the definition of natural neighbor coordinates and the Voronoi and power
diagram from Section 2.3.

The main contribution of this chapter consists of guidelines for an efficient and robust
implementation of Hiyoshi Ck coordinates in 2D with a possible extension to 3D or higher
dimensions. The results given in this section have been published in [BBU06b, BBU06c].

5.1 Background

The computation of local coordinates in point clouds is a crucial building block of many
algorithms that operate on local subsets of larger data sets. In such settings, natural
neighbor coordinates have proved useful tools, and both Laplace and Sibson coordinates
have been successfully applied. While all natural neighbor coordinate schemes presented
in Section 3.2.5 are C0 continuous in X, they differ in their continuity in C (X) \ X,
specifically in their continuity across the Delaunay circumspheres. With the introduction
of natural neighbor coordinates that are Ck-continuous in C (X)\X by Hiyoshi in [HS00b],
natural neighbor coordinates became interesting for problem settings such as higher order
meshfree finite element methods. However, no compelling instructions for their implemen-
tation were given, and in contrast to Laplace and Sibson coordinates, their geometrical
definition on the Voronoi diagram is complex and involved, which limited their adoption
in practice.

For the computation of Sibson coordinates in Delaunay triangulations, Watson has al-
ready proposed an alternative approach in [Wat92], which unfortunately suffers from
numerical instabilities if the coordinates are to be computed for positions on or near
facets of Delaunay simplices, as discussed in Section 3.2.5.4. Another alternative was
given by Braun and Sambridge in [BS95], who proposed to treat Voronoi tiles in the
H-representation of convex polytopes instead of their V-representation, as introduced in
Section 2.3.2 This way, they can use the recursive volume computation formula of Lasserre
[Las83], which in addition provides the volumes of all sub-polyhedra of the polyhedral
complex in the course of computation – which is required in, e.g., the computation of
Laplace coordinates. A good overview on volume computation methods for convex poly-
hedra in H- and V-representation can be found in the work by Bueler et al. in [BEF00].

71



Practical Implementation of Higher Order Natural Neighbor Coordinates

Inspired by this, we developed a scheme that allows to compute Hiyoshi coordinates for
a point based on the H-representation of its Voronoi tile.

We like to also point to Hiyoshi who presented directions for the implementation of his
Ck coordinates based on a modification of Watson’s approach in [Hiy05], where he put
special emphasis on the robustness of the computation. His approach differs from the one
we present here and might be considered another option.

5.2 Algebraic Volume Computation

The main motivation for the investigation of algebraic volume computation methods lies
in the nature of natural neighbor coordinates: they are defined by geometric entities of
the Voronoi diagram, which are convex polytopes. As we will show at the end of this
section, the geometric entities required in the computation of Laplace-, Sibson-, and
Hiyoshi-coordinates can be given in H-representation in order to evaluate them using
Lasserre’s method. This representation has the same low complexity in any dimension,
and is considerably less complex than the V-representation already for dimensions greater
than two.

We first point out why the volume computation based on a polytope’s V-representation
is not practical, then describe Lasserre’s method in detail.

5.2.1 Triangulation of the Convex Hull

Consider the V-representation of a convex, n-dimensional polytope with vertices v1, . . . ,vm.
There exists a triangulation of v1, . . . ,vm into simplices S1, . . . , Sk, from which the poly-
tope volume can be determined by summing up the volumes of S1, . . . , Sk, where the
volume of an n-simplex S ∈ Rn with vertices x0, . . . ,xn can be computed by

Vol(n, S) =
1
n!

det
[

x1 − x0 . . . xn − x0

]
.

A thorough investigation of volume computation codes has been conducted in [BEF00].
Although the above definition based on the V-representation is viable in theory, practical
considerations suggest other alternatives: Each polyhedron facet has an individual number
of vertices, which makes them hard to handle in data structures, and with increasing
dimension, the handling of the topological entities requires rather abstract combinatorial
treatment.

In H-representation, however, each facet of the polyhedron is represented by a vector and
a scalar, which is considerably more efficient to store and process.

5.2.2 Lasserre’s Method

The following revisits Lasserre’s recursive algebraic volume computation, introduced in
[Las83]. Another approach to compute the volume of a convex polytope has been sug-

72



5.2 Algebraic Volume Computation

          

 

P (A,b) P (A,b)

P (Ã(ij), b̃(ij))

Fi Fi Fi

ej

ai aiaix = bi

Figure 5.1: (Left) The polytope, Fi drawn bold. (Middle) The restriction of the polytope to
aix = bi. (Right) The projection of the restriction along ej .

gested by Lasserre et al. in [LZ01], yet it lacks the easy, recursive structure of the scheme
we consider here and does not fit in our context. Lasserre states a relation between the
n-dimensional volume of a polyhedron in Rn and the n − 1-dimensional volumes of its
facets, allowing to break the computation of the polyhedral volume recursively down into
the computation of interval lengths in R.

We will use the following notation for an n-dimensional convex polyhedron with m facets
in half-space representation as defined in Section 2.3.2:

P (A,b) := {x : Ax ≤ b } ,

where A = (a1, . . . ,am)T ∈ Rm×n is the matrix of face normals ai ∈ Rn, and b ∈ Rm.

We denote by Vol(n,A,b) = Vol(n, P (A,b)) the volume of P (A,b), and by

Voli(n− 1, A,b) = Vol(n− 1, P (A,b) ∩ {x : aix = bi })

the volume of the i-th face, where Vol(n − 1, ·) denotes the volume in the appropriate
n− 1-dimensional affine subspace {x ∈ Rn : aix = bi }.
Lasserre states the relation

Vol(n,A,b) =
1
n

∑
i=1,...,m

bi
‖ai‖Voli(n− 1, A,b), (5.1)

which tells us how to compute the n-dimensional volume of P from the n−1-dimensional
volumes of its faces. To apply the approach recursively to face i of P , which is an n− 1-
dimensional polytope in Rn, we need to find a proper H-representation for it in Rn−1.

To this end, Lasserre proposes to project the facet to a suitable Cartesian subspace
{x : xTej = 0 }, where ej is the j-th orthonormal basis vector, thus reducing the
problem to a truly n− 1-dimensional one, by the following process. From the constraint
aix = bi defining facet Fi, we substitute

xj = (bi −
∑
k 6=j

aikxk)/aij (5.2)

into A, which allows us to eliminate column j from A and the constraint in row i from A

73



Practical Implementation of Higher Order Natural Neighbor Coordinates

akx = αbi

ak = αai

akx ≤ bk

bk > αbi

bk < αbi(a)

(b)

akx ≤ bk

inside outside

ak

ai

xk

T0

x0

xi

(c)

Figure 5.2: The half-space defined by akx ≤ bk either (a) is in conflict with constraint aix = bi, or
(b) is redundant since it does not limit facet i in any way. (c) Three collinear Voronoi
sites x0, xi, xk and the resulting tile T0 with two parallel facets (edges in this 2D
illustration).

and b, and we denote the projection of Fi along ej by

P̃ (ij) =
{

x̃ ∈ Rn−1 : Ã(ij)x̃ ≤ b̃(ij)
}
, Ã(ij) ∈ Rm−1×n−1, b̃(ij) ∈ Rn−1.

The projection changes the volume of P̃ (ij) by the factor aij , which now allows to replace
the face volume in (5.1) by one that can be computed by the directly applicable recursion

Vol(n,A,b) =
1
n

∑
i=1,...,m

bi
|aij |Vol(n− 1, Ã(ij), b̃(ij)). (5.3)

A good choice for ej is such that |aij | = max(|ai1|, . . . , |ain|), as this is the direction in
which face i is least distorted during projection, and exhibits the least round-off errors in
the transformation from A to Ã(ij).

To substitute (5.2) into A in the computation of Ã(ij), we assume without loss of generality
i = m, and j = n, i.e., we eliminate the last constraint and project along the last
orthonormal basis vector. For 1 ≤ k < m and 1 ≤ l < n, we compute

ãkl = akl − akn
amn

aml, b̃k = bk − akn
amn

bm. (5.4)

The occurrence of a zero row ãk = 0 in Ã(ij) results from collinearity of ai and ak and
shows that facets i and k are parallel. We have found that checking for ‖ãk‖1 < ε|b̃k|
provides a good estimate for collinearity, where ε is chosen to accommodate for a suitable
multiple of the floating point precision fp, say ε = 100fp. As [BEF00] pointed out, in
every level of the recursion it is required that the set of defining half-spaces is minimal,
since if a single facet is represented by two or more constraints it would be counted
more than once in the evaluation. More generally, if an empty row k is detected during
substitution of (5.2) into Ax ≤ b, the constraint

ãkx = 0x ≤ b̃k, (5.5)

indicates identical, redundant or incompatible constraints, as shown in Figure 5.2. Con-
straint k is identical to constraint i if b̃k = 0. In that case, no contribution of the facet

74



5.2 Algebraic Volume Computation

x2 x3 x4

x1

x8

x7 x6 x5

x0

Tx0

(a)

x1

x8

x7 x6 x5

x4x3x2

x0

a5

a1

(b)

Figure 5.3: Voronoi tile T0 in half-plane representation. (a) Voronoi tile T0 with natural neighbors
x1, . . . ,x8. (b) H≤1 and H≤5 indicated by dashed lines and their normals a1 and a5.

associated with constraint k must be computed. If b̃k < 0, constraint k is incompatible
with constraint i. In that case, the plane aix = αbi is not contained in the half-space de-
fined by constraint k and the volume of facet i is zero. Otherwise, b̃k > 0 and constraint
k is redundant. It defines a half-space that completely contains plane aix = αbi. The
volume computation for facet k can then be skipped since constraint i will be in conflict
with it and the volume of facet k be evaluated to zero. Identifying identical constraints
is essential, while special treatment of redundant and incompatible constraints speeds
up the computation by early pruning / termination of the recursion. An example for a
polytope with parallel constraints is illustrated in Figure 5.2(c), which shows a Voronoi
tile in 2D. Actually, this is the only point in the algorithm where numerical issues require
attention.

At the bottom of the recursion, P (A,b) ⊂ R is an interval, A ∈ Rm,1, b ∈ Rm, bounded
by a set of upper and / or lower bounds ai1x1 ≤ bi, i = 1, . . . ,m. If there is no upper or
lower bound, P (A,b) is unbounded and the polytope has infinite volume. Otherwise, the
interval length is fed back into (5.3).

Remark 5.1 As a practical sidenote, Bueler et al. showed in [BEF00] Lasserre’s method
has complexity of O(n!) in n dimensions for constant-sized input. They also proposed
a revised implementation of Lasserre’s method that prunes repeated recursion based on
bookkeeping, and exhibits a lower, yet still exponential complexity. Our goal being the
application of Lasserre’s method to natural neighbor-induced polytopes, and the average
number of natural neighbors growing exponentially as well, this fact needs to be given
serious consideration.

5.2.3 Voronoi (Sub-)Tiles in H-Representation

Given a point set X ⊂ Rn, the Voronoi tile T0 of a point x0 ∈ X has an H-representation
which only incorporates its natural neighbors N(x0) = {x1, . . . ,xm} ⊂ X, as illustrated
in Figure 5.3(a). The half-spaces containing T0 are bounded by the bisector hyperplanes
between x0 and x1, . . . ,xm, and are given by

H≤i = {x : aix ≤ bi } , i = 1, . . . ,m,

75



Practical Implementation of Higher Order Natural Neighbor Coordinates

x1

x8

x7 x6 x5

x4x3x2

x0

Tx0 ∩ T
(x0)
x3

(a)

x1

x8

x7 x6 x5

x4x3x2

a5

a1

T (x0)
x3

(b)

x1

x8

x7 x6 x5

x4x3x2

x0

H≤x3

(c)

Figure 5.4: (a) Subtile T0 ∩ T (x0)
3 in context of the other natural neighbors. (b) Constraints

resulting from the natural neighbors N(x0) \ {x3}. (c) Constraint corresponding to
x0.

with ai = xi − x0 and bi = aTi (x0 + xi)/2, an example is shown in Figure 5.3(b). The
Voronoi tile T0 is consequently given by

T0 = H≤1 ∩ · · · ∩ H≤m = {x : Ax ≤ b } .

The Voronoi sub-tile T sxi
= T0 ∩ T (x0)

xi that is used in the computation of Sibson coordi-
nates can be defined similarly. In Figure 5.4(a), a subtile for a point with eight natural
neighbors is shown. The Voronoi tile of xi in X \ {x0}, denoted by T (x0)

xi , is given by the
intersection of half-spaces retrieved from the natural neighbors of xi in X \ {x0}, as illus-
trated in Figure 5.4(b). We assume the H-representation T (x0)

xi = {x : Ax ≤ b }. Now,
the intersection of T (x0)

xi with T0 is given by adding to A and b the constraint representing
the bisector between x0 and xi, shown in Figure 5.4(c):

T sxi
=
{

x :
[
A
aT0i

]
x ≤

[
b
b0i

]}
. (5.6)

5.2.4 Weight Dependent Power Voronoi Tile

We now derive the half-space representation of the power Voronoi tile as a function of
the power weight,

T0(w) := T0|wi=δi0w,

i.e., all power weights are zero except for w0 = w. The tile T0(0) has m neighbors N(x0) =
{x1, . . . ,xm} ⊂ X as defined in the classical Voronoi diagram. The bisector hyperplane
corresponding to facet Fi between x0 and xi is the n− 1-dimensional affine space

Hi(w) = {x : dpow(x0,x) = dpow(xi,x) }
=
{

x : d(x0,x)2 − w = d(xi,x)2 − 0
}

=
{

x : x0
Tx0 − 2x0

Tx− w = xTi xi − 2xTi x
}

=
{

x : (xi − x0)Tx =
1
2

(xTi xi − x0
Tx0) +

1
2
w

}
.

76



5.3 Laplace and Sibson Natural Neighbor Coordinates with Lasserre’s method

We set ai := xi − x0, ci := 1/2, di := (xTi xi − x0
Tx0)/2, and can write the half-space

containing T0(w) as
{

x : aTi x ≤ ciw + di)
}

, such that with A = (a1, . . . ,am)T , and
b(w) = cw + d,

T0(w) =
⋂

Fi∈T0(w)

Hi(w) = P (A,b(w)). (5.7)

As w decreases, T (w) shrinks and the set of neighbors becomes smaller, such that
N0|w0<0 ⊆ N0|w0=0. This does not invalidate the H-representation of T0(w) as the half-
spaces associated with the lost neighbors are redundant and can be detected during the
recursive volume evaluation.

5.3 Laplace and Sibson Natural Neighbor Coordinates with
Lasserre’s method

Lasserre’s method allows the computation of Laplace coordinates and Sibson coordinates
in a straightforward manner. Here, we give guidelines for the implementation but re-
mind the reader of the considerable computational complexity of that scheme for higher
dimensions.

5.3.1 Laplace Coordinates

x0

xi

T0

F0ir0i Figure 5.5: Two-dimensional facet F0i with the corresponding tile T0
and the line segment r0i = ‖xi − x0‖.

For reasons of simplicity we will present the method for R3, although the generalization
to Rn is straightforward.

We assume a point cloud X ⊂ R3. Without loss of generality we seek to compute Laplace
coordinates for x0 ∈ X with N(x0) = {x1, . . . ,xm}. As introduced in Section 3.2.5.2 and
illustrated in Figure 5.5, homogeneous Laplace coordinates of x0 with respect to N(x0)
are defined by the ratios of areas of Voronoi tile facets F0i = Tx0 ∩ Txi over the distance
of x0 to the respective neighbor, r0i = ‖xi − x0‖, by

λlap
i (x0) =

λ̂lap
i (x0)∑
j λ̂

lap
j (x0)

, λ̂lap
i (x0) =

|F0i|
r0i

, i = 1, . . . ,m.

Given the H-representation T0 = P (A,b), the topmost level in recursion (5.3) directly
gives the areas of the Voronoi tile facets F01, . . . ,F0m as

|F0i| = ‖ai‖|aij |Vol(2, Ã(ij), b̃(ij)),

77



Practical Implementation of Higher Order Natural Neighbor Coordinates

which can be easily computed by extracting the values from the appropriate level of the
recursion. With r0i = ‖ai‖, homogeneous Laplace coordinates λ̂lap

1 , . . . , λ̂lap
m for x0 are

given by

λ̂lap
i =

1
|aij |Vol(2, Ã(ij), b̃(ij)).

For the general case of Laplace coordinates in Rn, we simply need to replace the term
area by n− 1-dimensional volume and 2 by n− 1 above.

5.3.2 Sibson Coordinates

x0

xi

T0 ∩ T (x0)
i

T0

Figure 5.6: Two-dimensional subtile T0 ∩ T (x0)
i in context.

Sibson coordinates for a point x0 ∈ X ⊂ Rn are defined by the ratios of subtiles T sxi
=

T0 ∩ T (x0)
xi , resulting from intersections with the tiles of the natural neighbors x1, . . . ,xm

of x0 in X \ {x0}, shown in Figure 5.6.

With the H-representation T sxi
= P (Ai,bi) from (5.6), Sibson homogeneous coordinates

λ̂i are given by

λsib
i =

λ̂sib
i∑
j λ̂

sib
j

, λ̂sib
i = Vol(n,Ai,bi).

5.4 Parametric Recursive Volume Representation

We now describe the above process of evaluating Lasserre’s recursion for a parametric
right-hand side b(w) = cw + d, w ∈ R, where the polytope P is the power Voronoi tile
T0(w). The result will express the volume of the tile as a function of w.

5.4.1 Recursion with Variable Right Side

After replacing the right sides of the polytope descriptions by linear functions, the recur-
sion (5.3) for m facets now reads

Vol(n,A,b(w)) =
1
n

∑
i=1,...,m

bi(w)
|aij | Vol(n− 1, Ã(ij), b̃(ij)(w))

and can be carried out similar to the process described in Section 5.2.2. Again, we assume
i = m and j = n. We know that A is independent from w, and for 1 ≤ k < m and

78



5.4 Parametric Recursive Volume Representation

1 ≤ l < n, (5.4) becomes

ãkl = akl − akn
amn

aml, b̃k(w) = bk(w)− akn
amn

bm(w).

5.4.2 Descending the Recursion

As we step down the recursion, eventually ãk = 0, indicating parallel constraints i, k of
the form

0 ≤ b̃k(w) = c̃kw + d̃k.

These cases are handled depending on whether the right hand side is below, equal to, or
above zero for any values of w, mainly adopting the actions following (5.5). We only need
to consider b̃k(w) for w ≤ 0.

c̃k > 0: There is a lower bound wi,k < w such that P (Ã(ij), b̃(ij)(w)) 6= ∅, given by

wi,k = − d̃k
c̃k
.

Obviously, wi,k ≥ 0 implies that Vol(n, Ã(ij), b̃(ij)(w)) = 0 for w ≤ 0. Otherwise, no
definite answer can be given at this point, and constraint k must be traced further
down the recursion.

c̃k = 0: The right hand side is always equal to d̃k, so
d̃k < 0: Vol(n− 1, Ã(ij), b̃(ij)(w)) = 0,
d̃k = 0: constraint k is equal to constraint i and must not be evaluated.
d̃k > 0: constraint k is redundant and is discarded from further recursion.

c̃k < 0: Eventually, b̃k(w) > 0 for w < wi,k, with

wi,k = − d̃k
c̃k
.

If wi,k < min(wi,q, 0) for some q ∈ {1, . . . ,m − 1}, the right side never becomes
positive and constraint k is discarded from evaluation. Otherwise, no definite an-
swer can be given at this point and constraint k must be traced further down the
recursion.

As we follow the recursion further down, we remember the lowest occurring bound wi,k,
which we use as a starting bound wi,0 for the next level to decide on possible pruning of
the recursion. If no such bound is present, we set wi,0 := −∞, thus effectively disabling
bounds for w.

5.4.3 Ascending the Recursion

At the bottom of the recursion, we find for the one-dimensional facet P (Ã(ij), b̃(ij)(w))
and a possible lower bound w for w a set of constraints ãk1x ≤ b̃k(w), which we can

79



Practical Implementation of Higher Order Natural Neighbor Coordinates

wminw0 0

(a)

wminw0 0

(b)

b+k (w0)− b−l (w0)

w0 wmin = w0 0

li(w0)

(c)

Figure 5.7: Some examples for graphs of li(w), which represents the length of one of the projected
edges bounding a two-dimensional Voronoi tile. We see that the convex, piecewise
linear function is not necessarily monotonous, may be non-zero away from w = 0, and
even have discontinuities in the presence of some lower bound w.

classify into upper (superscript +) and lower (superscript −) bounds

x1 ≤ c+
k w + d+

k =: b+k (w) and x1 ≥ c−l w + d−l =: b−l (w).

This yields for the length li(w) := Vol(1, Ã(ij), b̃(ij)(w)) of the interval,

li(w) =

{
max

{
0,mink{b+k (w)} −maxl{b−l (w)

}
, w ≤ w ≤ 0,

0, else .
(5.8)

As illustrated in Figure 5.7, each li(w) is a piecewise linear function over intervals
[ui,g, ui,g+1), where the number of intervals differs from facet to facet.

The piecewise linear lengths l1(w), . . . , lm(w) of the edges e1, . . . , em are substituted into
(5.3) to compute

Vol(2, A,b(w)) =
1
2

∑
i=1,...,m

hi, hi =
1
|aij |bi(w)Vol(1, Ã(ij), b̃(ij)(w)).

The corresponding knot values denoting the interval boundaries of the piecewise functions
form the monotonously growing sequence U . Obviously,

hi =
1
|aij |bi(w)li(w)

=
1
|aij |

(
cic̃iw

2 + (cid̃i + c̃idi)w + did̃i

)
,

and Vol(2, A,b(w)) is the sum of piecewise quadratic functions, defined over the intervals
defined by U . Since Vol(n,A,b(w)) ≥ 0 must hold at any time, we check for roots of the
polynomials to determine the correct intervals in which the volume is positive.

As we see, already for volumes of two-dimensional power tiles we need to compute the
roots of quadratic polynomials, with n-th degree polynomials for volumes in Rn. This
might be feasible for volumes up to dimension three, but quickly the numerical burden
of root-finding and the combinatorial complexity induced by the recursive scheme makes
an application questionable.

80



5.5 Implementation of Hiyoshi Coordinates in 2D

(a) (b)

Figure 5.8: Hiyoshi’s interpolant fhiy0, which is C2 in C (X) and C0 in X. (a) Data set with
all values set to zero except for the center point. (b) Shaded heightfield viewed from
above, the right picture with reflection lines.

5.5 Implementation of Hiyoshi Coordinates in 2D

We implemented Hiyoshi coordinates in the plane based on the above described modifica-
tion of Lasserre’s method and another, straight forward, geometric approach. A heightfield
representation of Hiyoshi’s interpolant fhiy0 for the setting in Figure 5.8(a) is shown in
Figure 5.8(b).

The computation of Hiyoshi coordinates can be split into two steps. The first step is
the computation of homogeneous Laplace coordinates λ̂lap

i (w) := λ̂lap
i |w0=w in the power

diagram, which is a piecewise polynomial function of w. In 2D, this is piecewise linear and
the output of the first step is a sequence (uj , λ̂lap

i (uj))j=0,...,m, u0 < · · · < um, giving the
control points of a piecewise linear function. We describe the computation of this sequence
using a geometric approach in Section 5.5.1 and Lasserre’s method in Section 5.5.2. The
second step, described in Section 5.5.3 is the evaluation of the integral expression (3.5),
which requires special consideration because of the piecewise structure of λ̂lap

i (w).

5.5.1 Geometric Computation

For a fix value of w, the tile T0(w) is bounded by a number of line segments connecting a
number of Voronoi vertices, say v1, . . . ,vm. In the Cgal library [CGA08], the retrieval
of T0(w) is easy to accomplish, which facilitates a quadrature of the integral in Hiyoshi’s
definition over the value of w.

But we can aim for exact computation of the integral based on following observation.
Figure 5.9(a) shows how the power tile shrinks with w, and reveals that the length of a
tile edge is linear in w as long as its endpoints are located on the same Voronoi edges of
the parent Voronoi diagram. As a consequence, the length of each tile edge vi,vi+1 is a
piecewise linear function of w, with different slopes over intervals in an ascending knot
sequence u1 = w, . . . , uk = 0.

Upon close inspection of Figure 5.9(a) and (b) we see that the slope of some of the linear
functions changes when a pair of vertices vi,vi+1 merges, which happens if they meet
at a vertex of the parent Voronoi diagram. This event is characterized by the bisector

81



Practical Implementation of Higher Order Natural Neighbor Coordinates

T0(w0 � 0)
T0(w0 < 0)
T0(w0 = 0)

(a)

xi

vi

vi+1

x0

v(x0)

(b)

ba

vi+1 = vi = v(x0)

(c)

Figure 5.9: (a) Development of T0(w) as w decreases. (b) Line segment vivi+1, the bisector
between x0 and xi. (c) Event at which vi and vi+1 merge based on the location of
the bisector, where according to the power distance, a2 − w = b2.

Figure 5.10: In red, T0(w) is depicted for decreasing values of w = 0, . . . , w. In this setting, x0 is
located on a Delaunay edge, which results in two parallel Voronoi facets. The value
of w at which the parallel facets are identical denotes a lower bound w.

between x0 and xi passing the vertex v(x0) of the parent Voronoi diagram, i.e., when the
segment lengths a and b in Figure 5.9(c) are

a = (xi − x0)T (v(x0) − x0)/‖xi − x0‖, and b = ‖xi − x0‖ − a.

The bisector has equal power distance to both x0 and xi, and we get a2 − w = b2 − 0,
providing a knot value a2 − b2. By collecting and sorting all knot values, one for each
natural neighbor, we arrive at the desired sequence u1, . . . , uk.

In Figure 5.10, the evolution of T0(w) is shown for w = 0, . . . , w. The computation of
λ̂lap
i (w) is numerically unstable. Almost always, the virtual tile vanishes in a point for
w = w and we can assume that there, the edge lengths are zero. Problems arise if x0

is located on or very close to a Delaunay edge, in which case there are (almost) parallel
power tile edges, and the virtual tile does not vanish in a point but in a line. To cover
such cases, the slope of the first linear piece of λ̂lap

i (w) is not computed from the Laplace
coordinates at u1 = w and u2, but at (u1 + u2)/2 and u2. This way, the geometric
computation becomes very robust.

5.5.2 Computation with Lasserre’s Method

Based on Lasserre’s method, the approach described in Section 5.4 provides a parametric
description of a Voronoi tile with respect to the tile’s power weight. The lengths li(w) of
the line segments that are the facets of the tile are known already after ascending one step
of the recursion. This fact allows us to skip the full computation of the two-dimensional
Voronoi tile. In the following we give step-by-step instructions on the implementation.

82



5.5 Implementation of Hiyoshi Coordinates in 2D

Without loss of generality, let the natural neighbors of x0 be {x1, . . . ,xm}, and denote
the edges of T0(w) by e1(w), . . . , em(w).

As shown in (5.7), we can now express the geometry of T0(w) as an algebraic set param-
eterized by w,

T0(w) = P (A,b(w)), A ∈ Rm×2, b(w) ∈ Rm, (5.9)

with

ai = xi − x0, bi(w) = ciw + di,

ci = 1/2,

di = (xTi xi − x0
Tx0)/2.

To improve numerical stability, we translate all points such that x0 = 0, and x0
Tx0 = 0

can be discarded from the above expression.

Now, ei(w) is represented by aix = bi(w), which can be used to eliminate xj , j ∈ {1, 2},
from (5.9), yielding

ẽij(w) : = P (Ã(ij), b̃(ij)(w))

=
{
x : ãk1x ≤ c̃kw + d̃k, k = 1, . . . ,m

}
. (5.10)

We choose j such that |aij | = max{|ai1|, |ai2|}, which avoids division by zero and admits
the least round-off errors in sums. The elimination of xj is equal to a projection along
the j-th Cartesian basis vector ej , as pictured in Figure 5.1. The edge ei(w) is shortened
by a factor of |aij |, thus we get

li(w) := |ei(w)| = |ẽij(w)|/|aij |. (5.11)

In case there is a line segment ek, k 6= i, parallel to ei, this shows up as a constraint

0 ≤ c̃iw + d̃i, (5.12)

which becomes a conflicting constraint for w < d̃i/c̃i =: w, and we store w as a lower
bound for w to indicate ẽij(w) = ∅ for w < w. We can safely assume c̃i < 0 as this
is equivalent to parallel facets for a 2D tile having opposite normals, which is true by
construction. Furthermore, construction guarantees that no more than one line of A
indicates a constraint parallel to the i-th constraint, and w < 0 because the set of half-
planes defining T0(w) is minimal, i.e., no conflicting or multiple constraints have been
set up. A situation in which parallel constraints like in (5.12) impose a lower bound w is
illustrated in Figure 5.10. If no situation as in (5.12) occurs during elimination of xj , we
set w := −∞ to indicate the absence of a lower bound.

We classify the inequalities (5.10) as upper (superscript +) and lower (superscript −)
bounds,

x ≤ c+
k w + d+

k =: b+k (w) and x ≥ c−l w + d−l =: b−l (w).

83



Practical Implementation of Higher Order Natural Neighbor Coordinates

          

xi

x0

T0(v>0)

T0(v=0)

(a) (b) (c)

Figure 5.11: (a) shows part of the power diagram of Xpow, the black dots showing X, for uniform
power weights wi = 0, i ≥ 1, and the power tile T0(w) for different values of w =
w0 ≤ 0. (b) Two examples for li(w) and its bounding constraints aijx ≤ bi,j(w).

As illustrated in Figure 5.11(b), this yields for the length of ẽij(w), according to (5.8),

|ẽij(w)| =
{

max
{

0,mink{b+k (w)} −maxl{b−l (w)}} , 0 ≤ w ≤ w,
0, else.

To determine the individual linear functions representing li(w) we solve a linear program-
ming problem whose explicit solution is given in Algorithms 1-3 on page 87.

The corresponding homogeneous Laplace coordinates λ̂lap
i (w) = li(w)/ri, can be written

as piecewise linear functions

λ̂lap
i (w) =

{
αijw + βij w ∈ [uj , uj+1),
0 else,

with coefficients αij , βij ∈ R, and interval boundaries w = u1 < · · · < um−1 = 0 ∈ R.
There are at most m − 1 interval boundaries because for m neighbors, there are m − 2
Voronoi vertices, each of which leads to one interval boundary, and an additional interval
boundary for w = 0.

5.5.3 Integral Evaluation

Both the geometric and the algebraic approach result in a piecewise linear description of
λ̂0
i (w) over intervals [uj , uj+1), where αij and βij denote the coefficients of linear functions

to describe the edge lengths li(w)

λ̂lap
i (w) =

{
αijw + βij w ∈ [uj , uj+1),
0 else.

With this, we can evaluate Hiyoshi’s recursion (3.5), which reads

λ̂ki = λ̂ki (0), λ̂ki (w) =
∫ w

w
λ̂k−1
i (t) dt, λ̂0

i (w) = λ̂lap
i (w), (5.13)

where w := sup {w0 : T0(w0) = ∅ }.

84



5.6 Conclusion

Remark 5.2 Hiyoshi’s original exposition in [HS00b] presented the integration in (5.13)
over the displacement w′ = w/(2ri) of an arbitrarily chosen bisector ei(w) of T0(w) in
the power diagram, which in fact is arc-length integration of the Voronoi tile edge length
li(w) along the normal of ei(w). Since w′ is the integration variable for the coordinates of
all neighbors, this amounts to integration of the Laplace coordinate via the power weight,
introducing a constant factor for every coordinate that cancels out in the normalization
step.

In the following, we fix i and discuss the evaluation for k = 2.

Equation (5.13) for C2 continuity reads

λ̂2
i =

∫ 0

w

∫ u

w
λ̂0
i (v) dvdu. (5.14)

Denote by Sij(u) =
∫ u
w λ̂

0
i (w) dw the inner integral of (5.14) for u ∈ [uj , uj+1), with

Si,−1 : = 0,

Sij = Sij−1(uj) +
(
(u2 − u2

j )αij/2 + (u− uj)βij
)
.

After simple algebraic operations this gives for λ̂2
i the expression

λ̂2
i =

∑
j

( αij
6

(u3
j+1 − u3

j )+

βij
2

(u2
j+1 − u2

j )+(
Sij−1(uj)−

u2
jαij − 2ujβij

2
)
(uj+1 − uj)

)
.

Remark 5.3 In [HS00b], recursive integral reduction was applied to li(w). In a practical
implementation like above, however, this is not applicable due to the piecewise nature of
li(w).

5.6 Conclusion

In this chapter we provided detailed guidelines for the implementation of Hiyoshi coor-
dinates. They are derived from Laplace coordinates in the power diagram of a weighted
point set, which was the main focus of this chapter. We first reviewed Lasserre’s re-
cursive volume computation method for polyhedra in half-space representation and how
it can be applied to compute Laplace coordinates in the power diagram of a weighted
point set. In contrast to the geometrical computation of Laplace and Sibson coordinates,
which is straight-forward and feasible in 2D but gets increasingly complicated in higher
dimensions, Lasserre’s method is readily applicable unmodified in any dimension.

We then proposed a modification of Lasserre’s method that allows to compute Laplace
coordinates as a function of the power weight upon which Hiyoshi coordinates are defined.

85



Practical Implementation of Higher Order Natural Neighbor Coordinates

One big advantage of this approach is that it only requires the Cartesian coordinates of
the natural neighbors of a point. As an alternative, we devised a geometric approach
to the computation of Laplace coordinates as a function of the power weight, which is
considerably less involved than that based on Lasserre’s method but requires functionality
for the computation of Laplace coordinates in the power diagram. Based on an empiric
comparison of both implementations we found that the modified Lasserre’s method yields
faster run times by a factor of three.

In general, the computation of natural neighbor coordinates in higher dimensions suffers
from an explosion in combinatorial complexity, no matter what algorithm is actually used.
This drawback also applies to the proposed computation based on Lasserre’s algorithm.
Furthermore, to actually compute Hiyoshi coordinates in Rn using the modified Lasserre
method, the roots of polynomials up to degree n − 1 have to be found in the course of
the method, which severely limits the applicability of this generalization for n > 3.

Finally, an argument for the application of Lasserre’s approach to the computation of
Sibson and Laplace coordinates in higher dimensions lies in numerical stability. The only
feasible alternative that easily extends to higher dimensions is Watson’s signed triangle
decomposition, yet it suffers numerical instabilities arising from the ratios of infinite
volumes in certain situations.

86



5.6 Conclusion

Algorithm 1 comp(A, b) : li(w)
for i = 1 to m do

move i-th constraint of A and b to top in A′ and b′

w, Ã, b̃ ← comp(A′, b′)
li(w)← comp(Ã,b̃, w)

end for

Algorithm 2 comp(A, b) : w, Ã, b̃
choose i, j ∈ {1, 2}, i 6= j such that |a1i| ≥ |a1j |.
w ← −∞.
for k = 2 to rows(A) do
γ ← aki/a1i // factor used to eliminate xi
ãk1 ← akj − γa1j

b̃k(w)← bk(w)− γb1(w)
if |ãk1| ≤ ε · (|ck|+ |dk|+ |γc1|+ |γd1|) then
w ← max{w, d̃k/c̃k}
remove constraint akx ≤ bk from A and b
k ← k − 1 // do not skip the constraint following the removed one

end if
end for

Algorithm 3 comp(Ã, b̃, w) : l(w)
split constraints into linear functions bounding from above (B+) and below (B−)
B− = {b−j (w)}j =

{
c̃i/ãi1w + d̃i/ãi1 : ãi1 > 0, 1 ≤ i ≤ m

}
B+ = {b+j (w)}j =

{
c̃i/ãi1w + d̃i/ãi1 : ãi1 ≤ 0, 1 ≤ i ≤ m

}
reindex B− and B+ as an ascending resp. descending sequence with respect to the
following order, where ◦ ∈ {+,−}:

b◦y(w) < b◦z(w) ⇐⇒
{
d◦y < d◦z, |c◦y − c◦z| < ε(|c◦y|+ |c◦z|), (collinearity)
c◦y < c◦z, else.

// The ordering allows to sequentially retrieve the strictest bounds.
i← 1, j ← 1, u← w
increment i and/or j such that b+j (u)− b−i (u) > 0 is minimal
while b−i ∈ B− and b+j ∈ B+ and u < 0 do

find the smallest u′ > u at which b−i and/or b+j are replaced by stricter bounds
u′ ← max(0, u′)
append (b+j (v)− b−i (v))

∣∣
v∈[u,u′) to l(w)

increment i and/or j such that b+j (u)− b−i (u) > 0 is minimal
u← u′

end while
multiply l(w) by 1/|aij | to account for (5.11).

87



Practical Implementation of Higher Order Natural Neighbor Coordinates

88



6 Derivative Generation for Natural
Neighbors

This chapter presents two local, natural neighbor based methods for the generation of
derivatives from scattered data. The first is an ad-hoc approach applied to data collected
from an iterated natural neighborhood, thereby automatically providing a spatial data
site distribution to stably determine higher order derivatives. The second, which is the
main contribution of this chapter, applies a combination of Sibson’s original gradient fit
and Akima’s iterative scheme to generate higher order derivatives in natural neighbors.
Derivatives generated using this method continuously depend on the coordinates of the
data sites, thus being robust against perturbations in the input.

The methods have been applied to generate derivatives for synthetic data sets, and results
are shown for C1 and C2 natural neighbor interpolants.

Finally, we present an observation about complexity issues in the computation of globally
smooth interpolants based on Farin’s projected Bézier simplex construction.

This chapter employs concepts and notation introduced in Section 2.2.1 on multivariate
derivatives and Section 2.1.4 on least squares methods.

6.1 Background

Following the argument by Alfeld in [Alf89], we speak of derivative generation rather than
estimation in the following if our only knowledge of the underlying function is the implicit
assumption of smoothness, and we do not look for derivatives of a known function but
rather for derivatives best fitting our assumption.

In most local scattered data interpolation methods, globally smooth interpolation is
achieved by locally interpolating values and higher order derivatives at the joints of piece-
wise defined functions. Examples of this are the Clough-Tocher interpolant over triangles
[CT65], and the globally smooth natural neighbor interpolants of Sibson (f sib), Farin
(ffar), and Hiyoshi (fhiy2). To use such a smooth interpolant with a data set composed
only of positions and values, the derivatives need to be generated. Derivative generation
can be separated into global and local methods; the most prominent of each class we
mention next. Further references can be found in [Alf89].

Global derivative generation is basically done by constructing an interpolating or ap-
proximating function that globally optimizes certain objectives, and then computing the
derivative of that explicit function at the data sites. The objectives allow to incorpo-
rate knowledge about the modeled physical problem, like the minimization of bending

89



Derivative Generation for Natural Neighbors

energy for fair surface design problems. For spline surfaces it is easy to derive a quadratic
approximation of the thin plate energy, which in turn allows an efficient global fitting
procedure given a mostly regular data distribution. In the finite element approximation,
over some tessellation of the data set, even more sophisticated problems can be modeled,
drawing from vast knowledge present in the finite element community. Alfeld used such
an approach in [Alf85] to generate derivatives based on the minimization of higher order
derivatives, producing especially visually pleasing functional surfaces. The radial basis
function approach based on infinitely smooth basis functions provides a smooth field over
the whole data set and allows to generate derivatives of arbitrary order by differentiating
and evaluating the basis functions. In general, the advantage of global methods lies in
their implicitly consistent generation of derivatives over the whole data set in the sense
that they mutually depend on each other to optimize some objective function.

This advantage loses importance as the size of the data set grows, since data in a suffi-
ciently large neighborhood already describes the local behavior well enough in the vast
majority of cases. Here, local derivative generation techniques allow for more efficient
data processing, often giving comparable results to what global schemes can achieve.
Every local scheme depends on a neighborhood from which to generate the derivatives,
with some weighting function favoring closer data. As argued earlier for interpolants, a
desirable property of generated derivatives is to adequately reflect small perturbations
in the input data, i.e., the result should continuously depend on the input. With this in
mind, it is in the determination of neighborhood and weighting function that problems
arise.

A common local ad-hoc approach collects data sites in the neighborhood of a data site,
and reads derivatives off a Taylor approximation of a function that minimizes the weighted
squared differences to the neighboring data. If the data is inhomogeneously distributed,
the neighborhood and the weighting function should vary with the data site density. In
[Sib81], Sibson, generates first order derivatives for a point x0 from the least squares plane
through the values at its natural neighbors xi ∈ N(x0). By weighting each neighboring
data site xi ∈ N(x0) by the product of the corresponding natural neighbor coordinate λi
and the inverse of its distance, 1/‖xi − x0‖, he ensures that the neighborhood is always
adequately adapted to the data site density, thus eliminating the need for an a priori
or user-defined radius to collect neighbors from. Instead of fitting a local polynomial
approximation, other methods compute a smooth interpolant to the neighborhood of a
point, and evaluate the derivatives of that interpolant.

Another approach goes back to Akima in [Aki84], and is closely related to the approach
we present in the following. In a given triangulation, the gradients of the piecewise linear
functions over the simplices adjacent to a vertex are combined to generate the derivative
at the vertex. In subsequent steps, this can be repeated to combine the Hessians of the
piecewise quadratic functions in the adjacent simplices and so on. The only drawback of
this method lies in the dependence on a triangulation, which may introduce discontinuous
changes in the result for small perturbations in the data point configuration.

Sibson’s approach for the generation of gradients is only defined for first order derivatives.
We will address the problem of fitting a polynomial approximation of higher degree to
the data gathered from iterated natural neighborhoods in Section 6.2. We then present

90



6.2 Direct Approach for Derivative Generation

an iterative scheme combining Sibson’s and Akima’s approaches in Section 6.3, which
requires only a very small neighborhood at a time. Results of the estimation techniques
applied to synthetic data are shown in Section 6.4. We conclude this chapter with an
observation concerning the run-time complexity of evaluation in multidimensional quintic
Bézier simplices in Hiyoshi’s C2 scheme in Section 6.5.

6.2 Direct Approach for Derivative Generation

We will first review an ad-hoc approach which operates on a sufficiently large neighbor-
hood of data sites to generate the coefficients of the first n terms of the Taylor series
expansion of the interpolant as defined in Section 2.2.3 at a data site.

6.2.1 Fitting Arbitrary Derivatives

We assume a set of data sites (x1, z1), . . . , (xm, zm) from the neighborhood of a data
site x0, at which we want to determine the coefficients of a best-approximating Taylor
polynomial of total degree d ≥ 0. For a function f , we denote by f̃(x0 + x) its truncated
Taylor series expansion at xi that has terms up to total degree d. We can without loss of
generality assume x0 = 0, and write

f̃(0 + x) = z0 +
∑

1≤|j|≤d

1
j!

djf(0)
dxj

xj (6.1)

where we will denote by

cj :=
djf(0)

dxj
(6.2)

the partial derivatives of total degree |j|. If βi = 1/‖xi‖ is the inverse distance weight
that ensures stronger influence of nearby data, these partial derivatives are determined
in a least squares sense as the minimizers of∑

i=1,...,m

(βi|f̃(xi)− zi| )2.

Collecting the coefficients of the partial derivatives in (6.1) into

A = (ãi,j) with ãi,j = βi
1
j!

xj
i, i = 1, . . . ,m, 0 ≤ |j| ≤ d,

z = (β1z1, . . . , βmzm),

The partial derivatives c = (c0, . . . ) are the minimizers of

‖Ac− z‖2.

For stability reasons, it is in general advisable to have an over-constrained system of
equations; otherwise the coefficients c of the Taylor terms become the minimum-norm

91



Derivative Generation for Natural Neighbors

solution to the system, which lacks a meaningful connection to the problem. This means
that Ã should have full column rank and its number of rows should exceed its number
of columns. It is obvious that Ã can only have full column rank if the number of partial
derivatives does not exceed the cardinality m of the considered neighborhood. Using the
formula for the number of multi-indices with a certain degree from (2.2), we see that the
number of distinct terms in the truncated Taylor expansion of order d is

|{ j ∈ Nm : |j| ≤ d }| =
d∑

n=0

(
n+m− 1

n

)
,

and we need at least as many neighbor vertices to avoid an under-constrained fitting
problem.

6.2.2 Choosing the Neighborhood

As Haber et al. pointed out in [HZDS01], A can have rank deficiency if the neighboring
points are aligned along certain algebraic curves whose degree is correlated with the
number of derivatives we want to generate. It is not feasible to determine this condition
a priori, but after computing the SVD of A the occurrence of almost-zero singular values
hints at such cases.

For the generation of derivatives up to degree d, we suggest as neighborhood all data sites
with a topological distance smaller or equal to d in the Delaunay triangulation, which is
identical to the d-times iterated natural neighborhood of x0, recursively defined as

Nd
0 =

⋃
i∈Nd−1

0

Ni \ {0}, with N1
0 = N0.

It is not obvious why this neighborhood definition should provide a sufficiently well-
distributed set of neighbors to avoid small singular values for A. Let us consider as an
example the setting of X ⊂ R2 with the goal to fit the Taylor series terms of derivatives
up to order two. For an interior vertex of the 2D Delaunay triangulation, the average
valence is six, with a minimum valence of three. Fitting the gradient requires at least two
neighbors xa and xb such that xa − x0 and xb − x0 are linearly independent. Since x0

is contained in the convex hull of its neighbors, N1
0 has at least three such points, which

makes the fit of gradients stable. Now we move on to second order derivatives. We need to
generate an additional three partial derivatives, ∂2/∂x2

1, ∂2/(∂x1∂x2), and ∂2/∂x2
2. The

argument for the first set of neighbor sites also applies to their neighbors: at least two
new data sites are added to the set for each xi ∈ N(x0). It is impossible for all natural
neighbors of a point to lie on the same algebraic curve of degree two with the point itself.
This would imply that the point is not contained within the convex hull of its natural
neighbors and contradict the properties of the Voronoi diagram.

92



6.3 Iterative Derivative Generation

6.2.3 Polynomial Precision for Natural Neighbor Interpolants

Because of its construction, the interpolant ffar reproduces a quadratic polynomial if
zi and ∇i agree with them. Consequently, by fitting quadratic polynomials, i.e., Taylor
series expansion terms up to order two, and assigning ∇i to each site xi, ffar reproduces
quadratic polynomials.

The same is applicable for fhiy, with which we can reproduce cubic polynomials if zi, ∇i
and Hi are extracted from a cubic polynomial fit as described in Section 6.2.2.

6.3 Iterative Derivative Generation

In the direct approach described above, we employed a least squares approximation in
a neighborhood which we heuristically argued to be large enough to provide sufficient
information for robust generation of derivatives.

Now we describe an iterative derivative generation scheme that generates the terms of
the Taylor series expansions of degree d by minimizing the difference of the derivatives
up to degree d + 1 in a single natural neighborhood at a time. This guarantees in every
stage that the neighborhood is of a structure that circumvents ill-conditioned fitting
matrices. Furthermore, the inverse distance weighting that was applied above can now
be augmented by natural neighbor coordinates, which gives two advantages: The spatial
setting is better reflected by the weights and the resulting derivatives do continuously
depend on the coordinates of the point set.

6.3.1 A Univariate Example

We illustrate the steps for the univariate case before giving explicit formulas for the
multivariate case.

Denote by f̃di (x) = f̃d(xi + x) the degree d Taylor polynomial centered at and associated
with xi. Similar to (6.2), denote the derivatives of f at xi by

cdi,n :=
dn

dxn
f(xi + x).

Then,

f̃d(xi + x) = f̃di (x) = cdi,0 + cdi,1(x− xi) +
1
2
cdi,1(x− xi)2 + · · ·+ 1

d!
cdi,d(x− xi)d,

=
∑

j=0,...,d

1
i!
cdi,j(x− xi)j .

Assume that f̃d−1
i is known and we seek coefficients of f̃di . We introduce a sequence

of weights α0, . . . , αd−1 to balance the influence of derivatives of degree lower than d,
where α0 > · · · > αd−1 > 0 seems a good choice to limit the influence of higher order
derivatives. These coefficients have the intuitive function of putting a stronger emphasis

93



Derivative Generation for Natural Neighbors

on the lower-order derivatives similar to low-pass filtering in signal processing. Now, we
define the residual between the prescribed derivative of order n from the last stage, cd−1

j,n ,
and the n-th derivative of f̃d(xi + xj) as

Rnj (f̃di ) : = αn

( dn

dxn
f̃d(xj) − cd−1

j,n

)
= αn

( d∑
k=n

dn

dxn
1
k!
cdi,k(xj − xi)k − cd−1

j,n

)
= αn

( d∑
k=n

k!
(k − n)!

1
k!
cdi,k(xj − xi)(k−n) − cd−1

j,n

)
= αn

( d∑
k=n

1
(k − n)!

cdi,k(xj − xi)(k−n) − cd−1
j,n

)
set l := k − n

= αn

( d−n∑
l=0

1
l!
cdi,n+l(xj − xi)l − cd−1

j,n

)
. (6.3)

Without loss of generality, we assume xi = 0 and rewrite (6.3) as a vector product

Rnj (f̃di ) = αn

( ( n︷ ︸︸ ︷
0, . . . , 0, (xj)0/0!, . . . , (xj)d−n/(d− n)!

) · (cdi,0, . . . , cdi,d)T − cd−1
j,n

)
=: αn ·

(
rj,n · (cdi )T − cd−1

j,n

)
.

For reasons of consistency with the multivariate case, we denote the set of neighbors of
xi by N(xi) in spite of the fact that |N(xi)| = 2. Now the weighted set of residuals over
all derivatives up to order d− 1 for neighbor xj reads

Rj(f̃di ) = (R0
j (f̃

d
i ), . . . , Rd−1

j (f̃di ))T

=

 α0 rTj,0
...

αd−1rTj,d−1


 cdi,0

...
cdi,d

−
 α0 cd−1

j,0
...

αd−1c
d−1
j,d−1

 .
With βij := 1/|xj − xi|, we define the inverse distance weight by which nearby neighbors
receive stronger consideration.

94



6.3 Iterative Derivative Generation

Assuming N(xi) numbered as x1, . . . , xm, the concatenation of the weighted contributions
of all neighbors, finally expresses the residual as a linear function of the Taylor series
coefficients,

R =
(
βi1R1(f̃di ) . . . βimRm(f̃di )

)

=



βi1 · α0 · rT1,0
...

βi1 · αd−1 · rT1,d−1
...

βim · α0 · rTm,0
...

βim · αd−1 · rTm,d−1



 cdi,0
...
cdi,d

−



βi1 · α0 · cd−1
1,0

...
βi1 · αd−1 · cd−1

1,d−1
...

βim · α0 · cd−1
m,0

...
βim · αd−1 · cd−1

m,d−1


=: Acdi − c,

with A ∈ Rmd×(d+1). The minimizer cdi of∑
j∈Ni

‖βijRj(f̃di )‖2 = ‖Acdi − c‖2

is given by
cdi = (ATA)−1AT c.

The solution is unique because A has full column rank. In order to see why, note that
the upper left d × d block of A, is an upper triangle matrix with nonzero entries on the
diagonal. Now consider row d+ 1, whose entries are monomials over a different non-zero
value than any of the rows before, which proves full rank for A.

6.3.2 Stages One and Two

As an introduction to the multivariate case, we start by describing how to fit first and
second order derivatives in two stages, from which a generalization follows. Without loss
of generality, we assume x0 = 0 ∈ Rn and N0 = {x1, . . . ,xm}. This way, vectors to
neighbors, xi − x0, are simply written as xi. We seek to generate for f(x0) the gradient
g0 = ∇f(x0) and Hessian H0 = H f(x0) of the second degree Taylor polynomials

f(x) = z0 + gT0 x +
1
2
xTH0x. (6.4)

The procedure for higher order derivatives then follows by analogy.

The first stage is identical to the one described by Sibson in [Sib81]. We determine the
coefficients g1

0 in the first-order function f̃1(x) = (z0 + g1T
0 x) as the minimizers to∑

i∈N0

βi|f̃1(xi)− zi|2,

95



Derivative Generation for Natural Neighbors

where βi = λsib0
i /r2

i . This leads to the linear least-squares system with the explicit solution

c = A−1b, A =
∑
j∈N0

βjxjxTj , bi =
∑
j∈N0

βj(zj − z0)xji.

The above is constructed specifically such that if the function values lie on a spherical
quadratic, the gradient is recovered exactly. Note that application of the Moore-Penrose
inverse is viable because A is non-singular thanks to the linear independence of at least
n of the vectors from x0 to its natural neighbors.

If x0 is a boundary point, we find that x0 /∈ C (N(x0)), and we do not necessarily have
a full neighborhood with n+ 1 or more points. However, a boundary point is the vertex
of at least one Delaunay simplex and as such connected to at least n natural neighbors
via Delaunay edges. Being a superset of the vertices of a simplex with x0 = 0, the set
N(x0) contains n linearly independent vectors xi − 0, so even in the worst case we get a
well-defined gradient estimate.

Now we turn our attention to fitting the second degree Taylor polynomial from (6.4). We
assume values zi and gradients g1

i have been fitted in the first stage. Again, we consider
a point x0 = 0, and seek the coefficients g2

0 and H2
0 in f̃2(x) = (z0 + g2

0x + xTH2
0x)

minimizing∑
i∈N0

βi

(
α|f̃1(xi)− zi|2 + (1− α)|∇f̃1(xi)− g1

i |2
)

=
∑
i∈N0

βi
(
α|xTi H2

0xi + g2
0xi + z0 − zi|2 + (1− α)|2H2

0xi + g2
0 − g1

i |2
)
,

where α ∈ [0, 1] allows to choose a preference between matching the absolute values
or rather agreeing with the derivatives in the neighborhood. We see that already in
the quadratic setting, it is beneficial to switch to multi-index notation to describe the
algorithm.

6.3.3 An Explicit Construction for the General Setting

We now give explicit formulas for the iterative fitting of Taylor terms up to order d in
data sets {(xi, zi)}i ⊂ Rn × R, following closely the presentation for the univariate case.

Following the convention from Section 6.2.1, we denote the derivatives in the terms of
the Taylor series expansion by

ci,j := d|j|f(xi)/dxj.

Assume we have already generated the truncated Taylor series expansion f̃d−1
j at every

point in X and now want to fit the Taylor terms up to degree d in point xi,

f̃d(xi + x) =
∑
|j|≤d

xj

j!
cdi,j.

96



6.3 Iterative Derivative Generation

We seek to determine cdi as the minimizer of∑
j∈Ni,|k|≤d−1

∣∣∣ βjRk
j (f̃di )

∣∣∣2 ,
where Rk

j (f̃di ) is the difference between the k-th derivative of f̃di and prescribed value
cd−1
j,k at neighbor j (cf. Section 2.2.1). We introduce the convention that d may denote

the largest multi-index with norm |d| = d such that

i ≤ j ≤ d

enumerates all multi-indices j : |j + i| ≤ d. In particular, with |k| = n, we get

Rk
j (f̃di ) = αn

( dn

dxk
f̃di (xj)− cd−1

i,k

)
= αn

( ∑
k≤j≤d

1
(j− k)!

(xj − xi)j−kcdi,j − cd−1
j,k

)
.

In the above sum, nonzero terms occur for j ≥ k. If we assume xi = 0, which can be met
by simple translation of X, we can conveniently encode the above sum as the product

Rk
j (f̃di ) = αn

(( j < k︷ ︸︸ ︷
0, . . . , 0,

j ≥ k, |j| ≤ d︷ ︸︸ ︷
xj
j/(j− k)!, . . .

)( |j| ≤ d︷ ︸︸ ︷
cdi,0, . . . , c

d
i,j, . . .

)T − cd−1
j,k

)
=: αn(rj,k · cdi − cd−1

j,k ).

The residual can consequently be expressed as

R =



βi1 · α0 · rT1,0
... |j|≤d−1

βi1 · αd−1 · rT1,d−1
...

βim · α0 · rTm,0
... |j|≤d−1

βim · αd−1 · rTm,d−1



 cdi,0
...
cdi,d

−



βi1 · α0 · cd−1
1,0

...
βi1 · αd−1 · cd−1

1,d−1
...

βim · α0 · cd−1
m,0

...
βim · αd−1 · cd−1

m,d−1


=: Acdi − c.

Now, we find cdi minimizing
‖Acdi − c‖2

as the solution (ATA)−1AT c of an over-constrained least squares system. We omit the
proof that A is non-singular and note that similar arguments apply as in the univariate
case.

97



Derivative Generation for Natural Neighbors

6.3.4 Discussion

It must be noted that the iterative fitting procedure is unable to infer exact derivatives
from data sampled from any superlinear polynomials. This is due to the fact that after
stage one, the inferred gradients are exact only for linear functions but inexact for general
polynomials. Fitting higher order terms in subsequent stages is therefore based on inexact
information.

An advantage lies, however, in the iterative nature that allows for a multi-pass processing
of data sets where every pass requires the same, simple neighborhood structure. Further-
more, the localization of weights by natural neighbor coordinates guarantees a continuous
change of the gradients when the coordinates of the point cloud change.

The supporting subset of data sites from which Taylor terms up to order d are generated
are actually identical for the direct approach with the proposed neighborhood selection
and the d-times iterated derivative generation. This becomes obvious after comparing the
recursive definition of d-times iterated natural neighborhood with the set of data sites
that contributes to the derivative in every stage of the iterative scheme.

98



6.4 Results: Generated Derivatives Applied in Smooth Natural Neighbor Interpolation

6.4 Results: Generated Derivatives Applied in Smooth Natural
Neighbor Interpolation

We applied Farin’s C1 smooth and Hiyoshi’s C2 smooth interpolant to derivative in-
formation generated with the discussed methods, with data sets of increasing sampling
density. The resulting interpolants are visually presented in Section 6.4.1 and compared
numerically in Section 6.4.2.

As reference serves Franke’s function, an analytic function given by

f(x, y) =
3
4

exp(−(9x− 2)2 + (9y − 2)2

4
) +

3
4

exp(−(9x+ 1)2

49
− 9y + 1

10
)

+
1
2

exp(−(9x− 7)2 + (9y − 3)2

4
)− 1

5
exp(−(9x− 4)2 − (9y − 7)2),

where exp(x) = ex. It was introduced by Franke in [FN80] and has since been used widely
as a benchmark, although comparison to other methods using this benchmark is difficult
since the distribution of data sites varies across individual assessments.

We refer to the interpolation input data as Z ∈ R × R2 × R2×2, i.e., tuples of values,
gradients and Hessians for data sites in R2. Gradients and Hessians directly sampled
from this function serve as reference data to provide an optimal basis for the interpolation
schemes and are denoted by Zref . We use the following abbreviations to refer to certain
direct derivative generation methods:

ZGN1 derivatives up to order one generated using Sibson’s gradient fit from [Sib81].

ZHN1 derivatives up to order two stemming from fitting a quadratic Taylor polynomial
to the one-ring neighborhood of each data site.

ZHN2 derivatives up to order two stemming from fitting a quadratic Taylor polynomial
to the two-ring neighborhood of each data site.

ZHN3 derivatives up to order two stemming from fitting a cubic Taylor polynomial to the
three-ring neighborhood of each data site.

The iterated derivative generation has been implemented as the described two-step pro-
cedure for quadratic Taylor polynomials. The user parameter that controls the influ-
ence lower order derivatives in subsequent fitting steps has been assigned the values
α ∈ {0.1, 0.01, 0.001, 0.0001}; the corresponding input data is referred to by ZHIα.

Only gradients are considered when interpolating with Farin’s C1 approach, and Hessians
as well when using Hiyoshi’s C2 approach.

6.4.1 Visual Examples for Franke’s Function

Figure 6.1 shows three different samplings of Franke’s function which have been generated
by gradually adding new sample sites. To illustrate the good approximation property of
natural neighbor interpolation in general, Figure 6.2 shows Farin’s and Hiyoshi’s inter-
polants under increasing sampling density with exact derivative data.

99



Derivative Generation for Natural Neighbors

The derivatives produced by the iterated scheme result in interpolants as shown in Fig-
ure 6.3. Obviously, decreasing the influence α of lower order derivatives has the effect of
smoothing the result, which corresponds to stabilizing the often underdetermined second
order fit in the one-ring neighborhood of a data site. However, close inspection revealed
that locally, the results may worsen again if α is decreased further, making it difficult to
provide some reasonable default.

In Figures 6.4 and 6.5 the effect of fitting Taylor approximations of varying degree is
shown. It is apparent in Figures 6.4(b) and 6.5(b) that fitting in an underdetermined or
badly conditioned neighborhood produces bad results.

Interestingly, the results are worse if gradients are taken out of a second degree Taylor
fit than for gradients directly determined by a first degree Taylor fit, as can be seen in
Figures 6.4(a) and 6.4(c) for C1-smooth interpolation and in Figures 6.5(a) and 6.5(c) for
C2-smooth interpolation. However, when fitting third degree Taylor approximations to
the three-ring neighborhood of each data site to determine gradients and Hessians, a con-
siderable improvement can be observed both for C1 and C2 interpolation in Figures 6.4(d)
and 6.5(d).

It can be observed that the shape of the interpolant has more oscillations for C2 interpo-
lation with Hessians that do not agree with the reference data than for C1 interpolation
merely operating on gradients. This is indicated by the increased wriggles in the reflection
lines in the right columns of Figure 6.7 and Figure 6.7.

100



6.4 Results: Generated Derivatives Applied in Smooth Natural Neighbor Interpolation

(a) 356 sites, mean edge length 0.0601

(b) 1536 sites, mean edge length 0.0284

(c) 6642 sites, mean edge length 0.0134

Figure 6.1: Franke’s function subsampled at different resolutions.

101



Derivative Generation for Natural Neighbors

(a) Farin’s C1 on Zref , 111 sites (b) Hiyoshi’s C2 on Zref , 111 sites

(c) Farin’s C1 on Zref , 356 sites (d) Hiyoshi’s C2 on Zref , 356 sites

(e) Farin’s C1 on Zref , 1536 sites (f) Hiyoshi’s C2 on Zref , 1536 sites

Figure 6.2: Farin’s and Hiyoshi’s interpolants applied to analytic derivatives sampled from
Franke’s function. With raising sampling density, the wriggles in the reflection lines
vanish, indicating good approximation property of smooth natural neighbor interpo-
lation.

102



6.4 Results: Generated Derivatives Applied in Smooth Natural Neighbor Interpolation

(a) ZHI0.1, 356 sites (b) ZHI0.1, 1536 sites

(c) ZHI0.01, 356 sites (d) ZHI0.01, 1536 sites

(e) ZHI0.001, 356 sites (f) ZHI0.001, 1536 sites

Figure 6.3: The influence of α on the iterated derivative generation by means of Hiyoshi’s C2

interpolant. Left to right: increase of data set density. Top to bottom: decreasing α.

103



Derivative Generation for Natural Neighbors

(a) Farin’s C1 on ZGN1, 356 sites (b) Farin’s C1 on ZHN1, 356 sites

(c) Farin’s C1 on ZHN2, 356 sites (d) Farin’s C1 on ZHN3, 356 sites

Figure 6.4: The images show Farin’s interpolant applied to data with gradients. (a) Using Sibson’s
method. (b) Using the first order part of a second order Taylor polynomial fitted
to the one-ring neighborhood of each site. (c) Like (b), but fitted to the two-ring
neighborhood. (d) Using the first order part of a third order Taylor polynomial fitted
to the three-ring neighborhood of each site.

104



6.4 Results: Generated Derivatives Applied in Smooth Natural Neighbor Interpolation

(a) Hiyoshi’s C2 on ZGN1, 356 sites (b) Hiyoshi’s C2 on ZHN1, 356 sites

(c) Hiyoshi’s C2 on ZHN2, 356 sites (d) Hiyoshi’s C2 on ZHN3, 356 sites

Figure 6.5: The images show Hiyoshi’s interpolant applied to data with gradients and Hessians.
(a) Using Sibson’s method, where the second order part is set to zero. (b) Second
order Taylor polynomial fitted to the one-ring neighborhood of each site. (c) Like (b),
but fitted to the two-ring neighborhood. (d) Using the first and second order part of
a third order Taylor polynomial fitted to the three-ring neighborhood of each site.

105



Derivative Generation for Natural Neighbors

(a) Farin’s C1 on Zref , 1536 sites (b) Hiyoshi’s C2 on Zref , 1536 sites

(c) Farin’s C1 on ZGN1, 1536 sites (d) Hiyoshi’s C2 on ZGN1, 1536 sites

(e) Farin’s C1 on ZHN3, 1536 sites (f) Hiyoshi’s C2 on ZHN3, 1536 sites

Figure 6.6: (Left) Farin’s C1 interpolant. (Right) Hiyoshi’s C2 interpolant. Interpolants computed
from (top) reference data, (middle) first-order functions fitted to the one-ring neigh-
borhood of each data site, (bottom) gradients and Hessians agreeing with third-order
functions fitted to the three-ring neighborhood of each data site.

106



6.4 Results: Generated Derivatives Applied in Smooth Natural Neighbor Interpolation

(a) Farin’s C1 on ZHI0.01, 1536 sites (b) Hiyoshi’s C2 on ZHI0.01, 1536 sites

(c) Farin’s C1 on ZHI0.001, 1536 sites (d) Hiyoshi’s C2 on ZHI0.001, 1536 sites

(e) Farin’s C1 on ZHI0.0001, 1536 sites (f) Hiyoshi’s C2 on ZHI0.0001, 1536 sites

Figure 6.7: (Left) Farin’s C1 interpolant. (Right) Hiyoshi’s C2 interpolant. Interpolants computed
from iterated fits to the one-ring neighborhood, using weighting parameters of (top)
α = 0.01, (middle) α = 0.001, (bottom) α = 0.0001.

107



Derivative Generation for Natural Neighbors

6.4.2 Numerical Assessment for Franke’s Function

In this section we present a numerical assessment of the different derivative generation
methods, based on the root mean square error (RMSE) between interpolants and the
ground truth given by Franke’s function. To empirically analyze the convergence of the
resulting interpolants under refinement, a series of data sets with increasing density was
generated. The mean edge lengths of subsequent data sets have a ratio of 0.9, starting at
0.116 and going down to 0.009. The numerical assessment has been done by densely sam-
pling the domain over a grid of 800 by 800 points, in which the difference to the reference
data set in values, gradients and Hessians has been computed. Thus, the discretization
from which the numerical assessment was computed still provides an oversampling of
roughly ten for the finest data set. All assessments have been done using Farin’s C1 and
Hiyoshi’s C2 smooth interpolant.

The first thing to notice about all graphs is that the derivative data Zrefsampled from
Franke’s function leads to interpolants that are in every aspect significantly closer to the
reference than any of the proposed derivative generation schemes.

The RMSE of values converges to zero for every derivative generation scheme, with no
significant difference between Farin’s C1 interpolant and Hiyoshi’s C2 interpolant despite
the fact that the latter also interpolates Hessians. In contrast, the reference data set leads
to significantly faster convergence with Hiyoshi’s C2 interpolant. Figure 6.8 indicates that
the methods that directly fit derivatives to a neighborhood of adequate size converge faster
than the iterated derivative generation.

A similar result is obtained for the RMSE of gradients in Figure 6.9. The reference data
set leads to faster convergence with Hiyoshi’s C2 method, while for generated derivatives
the choice of interpolation scheme is unimportant. Derivatives generated by direct fits to
large neighborhoods lead to faster convergence.

The main difference of the results on the RMSE of Hessians from those on values and
gradients is the almost unnoticeable convergence for iterated derivative generation, as
depicted in Figure 6.10.

108



6.4 Results: Generated Derivatives Applied in Smooth Natural Neighbor Interpolation

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1
0
.1

1
5
9

0
.0

9
8
6

0
.0

8
1
9

0
.0

6
7
4

0
.0

6
0
0

0
.0

5
0
1

0
.0

4
1
7

0
.0

3
4
2

0
.0

2
8
3

0
.0

2
3
4

0
.0

1
9
4

0
.0

1
6
1

0
.0

1
3
3

0
.0

1
1
1

0
.0

0
9
2 mean edge length

R
M

S
E

(v
a
lu

es
)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1
0
.1

1
5
9

0
.0

9
8
6

0
.0

8
1
9

0
.0

6
7
4

0
.0

6
0
0

0
.0

5
0
1

0
.0

4
1
7

0
.0

3
4
2

0
.0

2
8
3

0
.0

2
3
4

0
.0

1
9
4

0
.0

1
6
1

0
.0

1
3
3

0
.0

1
1
1

0
.0

0
9
2 mean edge length

R
M

S
E

(v
a
lu

es
) Zref

ZHI0.1

ZHI0.01

ZHI0.001

ZHI0.0001

ZGN1

ZHN2

ZHN3

Zref

ZHI0.1

ZHI0.01

ZHI0.001

ZHI0.0001

ZGN1

ZHN2

ZHN3

(a)

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0
.1

1
5
9

0
.0

9
8
6

0
.0

8
1
9

0
.0

6
7
4

0
.0

6
0
0

0
.0

5
0
1

0
.0

4
1
7

0
.0

3
4
2

0
.0

2
8
3

0
.0

2
3
4

0
.0

1
9
4

0
.0

1
6
1

0
.0

1
3
3

0
.0

1
1
1

0
.0

0
9
2 mean edge length

R
M

S
E

(v
a
lu

es
)

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0
.1

1
5
9

0
.0

9
8
6

0
.0

8
1
9

0
.0

6
7
4

0
.0

6
0
0

0
.0

5
0
1

0
.0

4
1
7

0
.0

3
4
2

0
.0

2
8
3

0
.0

2
3
4

0
.0

1
9
4

0
.0

1
6
1

0
.0

1
3
3

0
.0

1
1
1

0
.0

0
9
2 mean edge length

R
M

S
E

(v
a
lu

es
) Zref

ZHI0.1

ZHI0.01

ZHI0.001

ZHI0.0001

ZGN1

ZHN2

ZHN3

Zref

ZHI0.1

ZHI0.01

ZHI0.001

ZHI0.0001

ZGN1

ZHN2

ZHN3

(b)

Figure 6.8: Root Mean Square Error (RSME) between the values of the interpolants and the
reference function. (a) Farin’s C1 interpolant based on gradients at the data sites. (b)
Hiyoshi’s C2 interpolant based on gradients and Hessians at the data sites.

109



Derivative Generation for Natural Neighbors

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1
0
.1

1
5
9

0
.0

9
8
6

0
.0

8
1
9

0
.0

6
7
4

0
.0

6
0
0

0
.0

5
0
1

0
.0

4
1
7

0
.0

3
4
2

0
.0

2
8
3

0
.0

2
3
4

0
.0

1
9
4

0
.0

1
6
1

0
.0

1
3
3

0
.0

1
1
1

0
.0

0
9
2 mean edge length

R
M

S
E

(∇
)

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1
0
.1

1
5
9

0
.0

9
8
6

0
.0

8
1
9

0
.0

6
7
4

0
.0

6
0
0

0
.0

5
0
1

0
.0

4
1
7

0
.0

3
4
2

0
.0

2
8
3

0
.0

2
3
4

0
.0

1
9
4

0
.0

1
6
1

0
.0

1
3
3

0
.0

1
1
1

0
.0

0
9
2 mean edge length

R
M

S
E

(∇
)

Zref

ZHI0.1

ZHI0.01

ZHI0.001

ZHI0.0001

ZGN1

ZHN2

ZHN3

Zref

ZHI0.1

ZHI0.01

ZHI0.001

ZHI0.0001

ZGN1

ZHN2

ZHN3

(a)

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0
.1

1
5
9

0
.0

9
8
6

0
.0

8
1
9

0
.0

6
7
4

0
.0

6
0
0

0
.0

5
0
1

0
.0

4
1
7

0
.0

3
4
2

0
.0

2
8
3

0
.0

2
3
4

0
.0

1
9
4

0
.0

1
6
1

0
.0

1
3
3

0
.0

1
1
1

0
.0

0
9
2 mean edge length

R
M

S
E

(∇
)

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0
.1

1
5
9

0
.0

9
8
6

0
.0

8
1
9

0
.0

6
7
4

0
.0

6
0
0

0
.0

5
0
1

0
.0

4
1
7

0
.0

3
4
2

0
.0

2
8
3

0
.0

2
3
4

0
.0

1
9
4

0
.0

1
6
1

0
.0

1
3
3

0
.0

1
1
1

0
.0

0
9
2 mean edge length

R
M

S
E

(∇
)

Zref

ZHI0.1

ZHI0.01

ZHI0.001

ZHI0.0001

ZGN1

ZHN2

ZHN3

Zref

ZHI0.1

ZHI0.01

ZHI0.001

ZHI0.0001

ZGN1

ZHN2

ZHN3

(b)

Figure 6.9: Root Mean Square Error (RSME) between the gradients of the interpolants and the
reference function. (a) Farin’s C1 interpolant based on gradients at the data sites. (b)
Hiyoshi’s C2 interpolant based on gradients and Hessians at the data sites.

110



6.4 Results: Generated Derivatives Applied in Smooth Natural Neighbor Interpolation

0.01

0.1

1

10

100

1000

10000
0
.1

1
5
9

0
.0

9
8
6

0
.0

8
1
9

0
.0

6
7
4

0
.0

6
0
0

0
.0

5
0
1

0
.0

4
1
7

0
.0

3
4
2

0
.0

2
8
3

0
.0

2
3
4

0
.0

1
9
4

0
.0

1
6
1

0
.0

1
3
3

0
.0

1
1
1

0
.0

0
9
2 mean edge length

R
M

S
E

(H
)

0.01

0.1

1

10

100

1000

10000
0
.1

1
5
9

0
.0

9
8
6

0
.0

8
1
9

0
.0

6
7
4

0
.0

6
0
0

0
.0

5
0
1

0
.0

4
1
7

0
.0

3
4
2

0
.0

2
8
3

0
.0

2
3
4

0
.0

1
9
4

0
.0

1
6
1

0
.0

1
3
3

0
.0

1
1
1

0
.0

0
9
2 mean edge length

R
M

S
E

(H
)

Zref

ZHI0.1

ZHI0.01

ZHI0.001

ZHI0.0001

ZGN1

ZHN2

ZHN3

Zref

ZHI0.1

ZHI0.01

ZHI0.001

ZHI0.0001

ZGN1

ZHN2

ZHN3

(a)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0
.1

1
5
9

0
.0

9
8
6

0
.0

8
1
9

0
.0

6
7
4

0
.0

6
0
0

0
.0

5
0
1

0
.0

4
1
7

0
.0

3
4
2

0
.0

2
8
3

0
.0

2
3
4

0
.0

1
9
4

0
.0

1
6
1

0
.0

1
3
3

0
.0

1
1
1

0
.0

0
9
2 mean edge length

R
M

S
E

(H
)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0
.1

1
5
9

0
.0

9
8
6

0
.0

8
1
9

0
.0

6
7
4

0
.0

6
0
0

0
.0

5
0
1

0
.0

4
1
7

0
.0

3
4
2

0
.0

2
8
3

0
.0

2
3
4

0
.0

1
9
4

0
.0

1
6
1

0
.0

1
3
3

0
.0

1
1
1

0
.0

0
9
2 mean edge length

R
M

S
E

(H
)

Zref

ZHI0.1

ZHI0.01

ZHI0.001

ZHI0.0001

ZGN1

ZHN2

ZHN3

Zref

ZHI0.1

ZHI0.01

ZHI0.001

ZHI0.0001

ZGN1

ZHN2

ZHN3

(b)

Figure 6.10: Root Mean Square Error (RSME) between the Hessians of the interpolants and the
reference function. (a) Farin’s C1 interpolant based on gradients at the data sites.
(b) Hiyoshi’s C2 interpolant based on gradients and Hessians at the data sites.

111



Derivative Generation for Natural Neighbors

6.5 Complexity Issues for Quintic Bézier Simplices in Hiyoshi’s
Method

The following presents observations about the runtime complexity of C2 natural neighbor
interpolation, which is based on Hiyoshi’s extension of Farin’s Bézier simplex construction
as introduced in Section 3.2.7.

During experiments with the C2 interpolant fhiy2 over scattered data we noticed an
explosion in run-time for partially structured input like the crater lake data set shown
in Figure 6.11(a). Close examination unveiled that in very inhomogeneous data sets, the
number of natural neighbors can grow arbitrarily large. We now take a closer look at
the combinatorial impact of the number of neighbors. Consider again the construction of
fhiy2 for a point x0 with neighbors N(x0) = {x1, . . . ,xm}. After computation of the local
coordinates λhiy ∈ Rm, they are used to evaluate the quintic m-variate Bézier simplex
b5(λhiy) with control points cj as given in (3.11).

From the formula for the number of multi-indices of fixed norm in (2.2), we get the
number of control points in degree five Bézier simplices as

(m+ 4)!
(m− 1)!5!

∈ O(m5),

which is a significant impediment, especially when considering the computational cost
associated with the construction of each control point. Counting the individual operations
required to compute the directional derivatives in n-dimensional data points we find the
following table.

#lookup #+ #∗
zi 1
zij = ∇ T

i (xj − xi) 3n 2n n
zijk = (xj − xi)THi(xk − xi) n2 + 3n n2 + 2n− 1 n2 + n

We count the occurrences of these in the definition of control points cj:

#zi #zij #zijk
ci 1
cij 1 1
cijk 1 2 1
cijjl 2 4 4
cijkl 4 12 12
cijklm 5 20 30

This number of operations that leads to a large constant factor in the computation com-
plexity. The most numerous control point type is cijk. If lookup, addition and multiplica-
tion are equally expensive, the cost C of evaluating the interpolant at a a single position
with m neighboring data sites is

C > 48 ∗m5operations,

resulting in more than 153.6 million operations for 20 neighbors.

112



6.5 Complexity Issues for Quintic Bézier Simplices in Hiyoshi’s Method

(a)

(b)

(c)

(d)

Figure 6.11: (a) Top view of the “Crater Lake” data set, the black dots representing the data
sites, and green lines show the Voronoi diagram. Regular sub-structures are clearly
visible. (b) Closeup of a virtual Voronoi tile for the fat dot, with its natural neighbors
encircled. (c) Projected Bézier simplex b3 with its control points. (d) Projected Bézier
simplex b5 with its control points.

113



Derivative Generation for Natural Neighbors

If the interpolant is to be evaluated over a regular grid, as it is done for visualization,
an obvious idea for improvement is to precompute the coefficients and store them for
every set of natural neighbors. While possible in general, the computational complexity
of a space-efficient indexing scheme for arbitrary neighborhoods renders a preprocessing
approach infeasible.

6.6 Conclusion

Two fundamental problems in local derivative generation and estimation are the choice of
neighborhood and the choice of a weighing function that smoothly decouples the neigh-
borhood from the whole data set.

We have solved the first problem for the ad-hoc derivative generation based on fitting the
Taylor approximation of a function. By choosing a d-times iterated natural neighborhood
to fit Taylor terms up to order d, the fitting becomes an over-constrained least squares
problem and therefore numerically stable.

Then, we presented a method that solves both problems by iteratively fitting derivatives
up to order d to a the natural neighborhood at which derivatives are present up to
order d − 1. This is can be done iteratively, starting from values at the data sites. The
neighborhood structure, together with the matrices used in the fitting of higher order
derivatives, guarantees the derivative fit to be an over-constrained least squares problems.
However, this method is not capable of polynomial reproduction.

The methods have been applied to a synthetic data set, for which it was shown that
the choice of neighborhood plays an important role in derivative generation, and a larger
neighborhood generally provides better results. In the experimental verification, the first
method stood up to the conjecture that the choice of iterated natural neighborhoods
provides a solid basis for least squares fitting of higher order Taylor terms. In the numerical
assessment, it was experimentally verified that both values and gradients converge to a
smooth reference data set if Farin’s C1 or Hiyoshi’s C2 interpolant is applied to derivative
data generated by any of the presented methods.

Finally, we discovered a severe complexity issue in Hiyoshi’s C2-smooth natural neighbor
scattered data interpolation scheme. This limiting result applies to all methods that
eventually employ high-dimensional, high-order Bézier simplices.

114



7 Discrete Harmonic Functions from Local
Coordinates

In this chapter we present observations about the computation of discrete harmonic func-
tions based on local coordinates in triangulations of arbitrary dimension, but restrict our
presentation to the planar case. This work has been published in [BHFU07].

First we compare different local coordinate schemes by computing discrete harmonic
functions as the solution to the discrete Laplace equation subject to boundary conditions
sampled from a known harmonic function, and assess the resulting numerical approxima-
tion quality.

We then present our main observation: for discretizations given by continuously deforming
point sets, natural neighbor coordinates are the only ones yielding a continuous depen-
dency between the deformation and the harmonic function.

This chapter is based on terms and concepts introduced in Section 2.1 about linear
algebra, in Section 2.4 about graphs, in Section 2.3.4 about the Delaunay triangulation,
and on barycentric and natural neighbor coordinates introduced in Sections 2.1.2 and
3.2.5.

7.1 Background

Each triangulation of a point cloud is also a discretization of the continuous domain
given by the convex hull. To compute an approximate solution to the Laplace equation
– a discrete harmonic function – the Laplace operator is commonly approximated by a
weighted sum of differences in neighborhoods of a triangulation. Given a concrete point
cloud, two choices determine the nature of the approximation: the triangulation and the
weights.

A cautious note: although we approximate the Laplace operator, these approximations
are no valid Laplacian approximations in general, since most of them do not possess a
meaningful norm. In the computation of discrete harmonic functions, however, this norm
is irrelevant.

The remainder of this chapter investigates several choices for weights in the special setting
where the triangulation is a Delaunay triangulation. Before we give the definition of
discrete harmonic functions and some well-known results, we discuss some related work
on the importance of harmonic functions.

115



Discrete Harmonic Functions from Local Coordinates

7.1.1 Related Work

Harmonic functions are defined as solutions of the most basic second order partial differ-
ential equation (PDE), the Laplace equation. The associated scientific field of potential
theory, concerned with solutions to Laplace’s equation, has applications in electromag-
netism, astronomy, fluid dynamics, and thermodynamics, where harmonic functions are
used to describe the behavior of electric, gravitational, fluid, and heat flow potentials.
Any computational assessment of such problems requires discrete approximations, usually
resulting in finite element approximations that compute discrete harmonic functions.

In the seemingly disconnected field of graph theory, concerned with discrete structures
made from vertices and edges [Die05, Bol98, GR01], an equivalent notion of Laplacian and
discrete harmonic function exists. For example, in electrical engineering, the equilibria in
the flow of currents in electrical networks correspond to discrete harmonic functions on
the graph representation of the electrical network. Here, the problem is discrete by nature
and has no spatial interpretation. An extensive investigation of the relation between the
continuous and the discrete Laplacian operator, and as part of it, of continuous and
discrete harmonic functions, can be found in Fleischer’s Ph.D. thesis [Fle07]. Further
recent results on the discretization of the Laplacian has been part of Hirani’s Ph.D.
thesis in [Hir03].

In robotics, discrete harmonic functions are used to compute potential fields between
obstacles in path planning, as Connolly and Grupen surveyed in [CG92].

The extension of the Laplace operator to manifolds is called the Laplace-Beltrami oper-
ator, which incorporates the local parameterization of the manifold under concrete em-
beddings. Approximations of the Laplace-Beltrami operator have been used extensively
for mesh processing in computer graphics and geometric modeling, which is surveyed in
Sorkine [Sor06]. Interestingly, the proper choice of edge weights in the linear approxi-
mation of the Laplace-Beltrami operator has been of central interest in Laplacian based
mesh processing over a long time. Wardetzky et al. [WMKG07] showed that there is no
approximation of the Laplace operator on an arbitrary, piecewise linear manifold that
satisfies all the properties the mesh processing community has been looking for. However,
Fisher et al. discovered in [FSBS06] the connection between the Delaunay triangulation
in the Euclidean plane and an equivalent structure, the intrinsic Delaunay triangulation
on a piecewise linear manifold, which allows for a meaningful and adequate definition of
the Laplace operator. Some fundamental results on the nature of discretization of the
Laplace-Beltrami operator can be found in the work of Polthier in [Pol05] and Bobenko
in [BS07].

Examples for applications of the Laplacian in mesh processing are the work on signal
mesh processing by Taubin [Tau95], mesh optimization by Sorkine et al. [NISA06], or
mesh editing by Alexa [Ale06], to name a few. We specifically point out the work of
Dong et al. in [DKG05], where discrete harmonic functions were used for quadrilateral
remeshing of piecewise linear surfaces.

In mechanical engineering, the Laplace discretization plays a crucial role for many funda-
mental problems. Recent advances in mesh-free methods have, among others, built upon
natural neighbor interpolation, like Sukumar and Moran in [SM99]. In this context, it is

116



7.1 Background

interesting to investigate the connection between Laplacian approximations derived from
meshes and those based on natural neighbor coordinates.

7.1.2 Harmonic Functions and Their Discretization

A harmonic function on a domain Ω is the solution to the Laplace equation

∆f |Ω = 0,

where ∆ = ∇2 is the Laplace operator and ∆f(x) is called Laplacian of f at x.

The remainder of this chapter will focus on planar domains Ω ⊂ R2, mainly because this
facilitates the display of the function graphs as height-field triangulations, and makes
available a variety of planar polygonal barycentric coordinates to compare to. This is
no limitation since the considered concepts are independent of the dimension of the
underlying space. For a function (u, v) ∈ Ω 7→ f(u, v) ∈ R, the Laplacian ∆f has the
explicit representation

∆f = ∇2f =
∂2

∂u2
f +

∂2

∂v2
f.

For illustrative purposes, consider the following interpretation of the relation between the
discrete and continuous Laplacian based on divided differences, similar to Example 2.5.11
in [Fle07]. In the univariate case with discrete function values at an equally spaced set of
ordinates, fi = f(u0 + h · i), i ∈ Z the second derivative is approximated by the second
divided difference

∂2

∂u2
fi ≈ ∆fi =

fi−1 − 2fi + fi+1

h2
.

In the gridded, two-dimensional case with fi,j = f(u0 + h · i, v0 + h · j), the Laplacian is
approximated by

∆fi,j =
fi−1,j + fi+1,j − 4fi,j + fi,j−1 + fi,j+1

h2
.

The terms above contain the function value and its four neighbors in each canonical grid
direction, Ni,j = {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)}, and allow us to write

∆fi,j =
1
h2

∑
(k,l)∈Ni,j

(fk,l − fi,j).

This is an intuitive explanation for the linear Laplacian approximation in general grids
fi = f(xi), xi ∈ X ⊂ R2 that is given as

∆fi =
∑
i∈Ni

λij(fi − fj),

where Ni are the neighbors of i in a not further specified grid, and λij are weights that
generalize the discretization step-size to non-uniform distances to neighboring vertices.

Next we introduce some basic results and definitions as found in [GR01].

117



Discrete Harmonic Functions from Local Coordinates

Definition 7.1 (Discrete Laplacian) Let G = (V,E,Λ) be a weighted, connected, undi-
rected graph with positive weights 0 ≤ λij ∈ Λ, and f : V → R a function on V with
fi := f(vi). Then,

∆fi =
∑
eij∈E

λij(fj − fi)

is called the graph Laplacian of f on G at vertex vi.

A definition of discrete harmonic functions can now be given in correspondence to the
continuous setting.

Definition 7.2 (Discrete Harmonic Function) Let G = (V,E,Λ) be a weighted, con-
nected, undirected graph with positive edge weights, and f : V → R a function on V with
fi := f(vi). Let

H = { vi ∈ V : ∆fi = 0 } , and P = V \H.

The function f is said to be a discrete harmonic functionwith poles P . Furthermore, f is
said to be harmonic at v ∈ H.

Several results are known for this abstract definition, the one important for the remainder
of this chapter is given below.

Theorem 7.3 Let G = (V,E,Λ) a weighted, undirected graph with λij ≥ 0. For every
set P = V \H, and every function f |P : P → R, there is a unique function f |H : H → R
such that f |V : V → R is a discrete harmonic function with poles P on G.

The proof for this theorem is based on the positive definiteness arising from the positive
edge weights and can be found in [Lov00].

7.2 Discrete Harmonic Functions from Local Coordinates

Assuming an arbitrary triangulation, there are several polygonal barycentric coordinate
schemes that provide edge weights which reflect the spatial setting in the sense that they
represent a Laplacian approximation for which the coordinate functions of the vertices
are the solution to the Laplace equation – which matches the corresponding property in
the continuous case.

If the triangulation is a Delaunay triangulation, the weights can as well be computed
using natural neighbor coordinates.

7.2.1 Discrete Harmonic Functions over Triangulations

Now we transfer the general definition of discrete harmonic functions onto the spatial
setting in which V ≡ X = {x1, . . . ,xn} ⊂ R2, and present the steps involved in the
computation of the solution for the discrete Laplace equation. With the later application

118



7.2 Discrete Harmonic Functions from Local Coordinates

∈ H
∈ P

C (X)

Figure 7.1: Illustration of H and P in a point set with respect to C (X).

of natural neighbor coordinates in mind, we restrict our considerations to the Delaunay
triangulation of X, whose edges EDel become edges in the corresponding planar straight
line graph

G := (X, EDel).

The later application of generalized barycentric coordinates motivates the association of
H with interior points, i.e., those contained within the convex hull of their neighbors, and
P with boundary points,

H := {x ∈ X : x ∈ C (N(x)) } , P := X \H. (7.1)

Note that there can be points on the convex hull that are not in P as indicated in
Figure 7.1.

For now assume that there are some weights λij ≥ 0 assigned to every directed edge in
G, and λi1 + · · · + λin = 1. Recall that continuous harmonic functions on a domain Ω
are the unique solution to the Laplace equation subject to Dirichlet boundary conditions
b : ∂Ω→ R,

∆f = 0, subject to f |∂Ω = b.

Analogously, f |H is the unique discrete harmonic extension of f |P to f on G, i.e., f |H
is the solution of the Laplace equation with boundary conditions f |P ,

∆fi = 0, for xi ∈ H
fi = b(xi), for xi ∈ P

We may without loss of generality assume X enumerated such that

fX :=(f1, . . . , fm︸ ︷︷ ︸
=: fH

, fm+1, . . . , fn︸ ︷︷ ︸
=: fP

)T ∈ Rn, x1, . . . ,xm ∈ H, xm+1, . . . ,xn ∈ P,

represents the column vector of discrete function values, and is partitioned into the un-
known harmonic values fH and the boundary values fP . The Laplace operator acting on
the whole function can now be written as

∆fH = fH − SfX = [(I − SH)SP ]
[
fH
fP

]
= (I − SH)fH + SP fP ,

where S ∈ Rm×n with sij = λij if xi ∈ H and xj ∈ X, and sij = 0 otherwise, and
S = [SHSP ] is the partition into SH ∈ Rm×m and SP ∈ Rm×(n−m). Setting ∆fH = 0
and solving for fH yields

fH = (I − SH)−1SP︸ ︷︷ ︸
=: M

fP .

119



Discrete Harmonic Functions from Local Coordinates

Obviously, M is only defined if (I − SH) is invertible, which can be shown as follows.

Corollary 7.4 The matrix M is regular.

Proof 7.5 Because 0 ≤ λij and
∑

j λij = 1, row sums in SH are equal to one if xi ∈ H
and between zero and one if xi ∈ P . Therefore, I − SH is weakly diagonally dominant.
Because the non-zero structure of SH is equivalent to the graph connection matrix of
the interior vertices of the triangulation, which is connected by definition, this matrix is
also irreducible. With a result on the regularity of irreducible, weakly diagonally dominant
matrices from [Var62], the claim follows.

�

Remark 7.6 In general, a Laplacian discretization does not satisfy our assumption∑
j λij = 1. However, the unit matrix in the thread above can be replaced by the diagonal

matrix D with entries dii =
∑

j λij, which does not invalidate the arguments.

Remark 7.7 Obviously, the most expensive part in the computation of a discrete har-
monic function is the solution of a sparse linear system. Although the nature of the matrix
M calls for iterative solvers which take advantage of fast matrix-vector multiplications that
are possible in case of sparse matrices, we found that direct solvers on sparse matrices
like SuperLU [Li05] or TAUCS [TCR03] often perform better, and in general at least as
good as the iterative approaches.

7.2.2 Laplacian Discretizations Based on Local Coordinates

We have fixed the triangulation to be the Delaunay triangulation, and showed how to
compute the solution to the Laplace equation subject to Dirichlet boundary conditions
under the assumption that 0 ≤ λij . We now turn our attention to several choices of λij .

To motivate our choice of generalized barycentric coordinates as approximations for the
discrete Laplace operator, we consider the Laplacian of the coordinate functions, c[k](x) :=
xk. Because they are linear in x, the Laplace equation ∆c[k] = 0 holds. In the discrete
case, this property corresponds for xi ∈ H to

0 = ∆c[k](xi)

=
∑
j∈Ni

λij(c[k](xj)− c[k](xi)) k = 1, . . . , n

⇐⇒ 0 =
∑
j∈Ni

λij(xj − xi),

which is the definition of homogeneous barycentric coordinates as given in Section 2.1.2,
justifying our choice of convex, generalized barycentric coordinates in the following.

In a planar triangulation, the neighborhood Ni of an inner vertex always comprises a star-
shaped polygon with xi contained in its kernel, see Section 2.3.1. We therefore consider

120



7.2 Discrete Harmonic Functions from Local Coordinates

xi

xj

xi

xj

cotangent coordinates λcot Laplace coordinates λlap

Wachspress coordinates λwac Sibson coordinates λsib

mean value coordinates λmvc Hiyoshi coordinates λhiy

Table 7.1: Coordinates used in the assessment.

the polygonal generalized barycentric coordinate methods listed in the left column of
Table 7.1 that were introduced in Section 3.1.5. Inside a single, convex polygon, all the
above local coordinates are convex, and rational functions of the position of the polygon
vertices. For λcot and λmvc, this stays true inside the kernel of non-convex polygons as
well.

In addition to polygonal barycentric coordinates, the deliberate choice of the Delaunay
triangulation makes natural neighbor coordinates from Section 3.2.5 applicable, listed in
the right column of Table 7.1. In contrast to polygonal barycentric coordinates, natural
neighbor coordinates are defined independent from any explicit adjacency on X, based on
the implicit adjacency defined by the Voronoi diagram. The duality between Delaunay
triangulation and Voronoi diagram mentioned in Corollary 2.3 guarantees that the natural
neighbors of any point xi ∈ X are contained in the one-ring neighborhood N(xi) of xi in
the Delaunay triangulation. Furthermore, as a consequence of Definition 3.1, those points
in N(xi) that are not natural neighbors will have a zero coordinate associated.

Note also that the delicate definition of interior and boundary points in (7.1) honors the
fact that natural neighbor coordinates can be extended to the boundary of the convex
hull by a limit argument, where they reduce to the piecewise linear interpolant.

7.2.3 Experimental Comparison

Next we discuss experimental results on the approximation quality of discrete harmonic
functions based on one of the Laplacian discretizations presented in the previous section.

As basis for comparison we consider the discrete approximation of

g(x, y) =
1
3
x3 − xy2

over the domain Ω = [0.3, 1.3]× [0.1, 1.1], whose graph is shown in Figure 7.2(a).

121



Discrete Harmonic Functions from Local Coordinates

(a) (b) (c)

Figure 7.2: (a) Graph of the function g(x, y) = 1
3x

3 − xy2. (b) Point distribution. (c) Delaunay
triangulation and values at the boundary. Homogeneous distribution shown in upper
row, inhomogeneous distribution in lower row.

In the following we denote the approximate solutions to g by f̃•, where • = cot, wac,
mvc, lap, sib or hiy according to the barycentric coordinates upon which the Laplacian
approximation is based. To illustrate the effect of a Laplacian discretization that does not
arise from barycentric coordinates but still tries to capture the spatial relation between
the points, our comparison includes inverse distance coefficients,

λ̂inv
ij = ‖xi − xj‖−1.

We choose two distributions of |X| = 480 points for the discretization, one homogeneously
distributed shown in Figure 7.2(b) top row, one with a denser distribution in the lower left
shown in Figure 7.2(b) bottom row. This distinction helps examine how the approximation
quality is influenced by the homogeneity of the sample distribution.

The Dirichlet boundary conditions are sampled from g at the points on the boundary,
where the slight curving visible in Figure 7.2(b,c) is intentional to stabilize the classifica-
tion of boundary vertices of the triangulation.

Table 7.2 shows the analysis of the per-point errors and indicates that Laplace- resp.
cotangent coordinates yield the lowest error, while the others are worse by orders of
magnitude. Furthermore, it seems that in the inhomogeneous setting, this discrepancy is
less prominent for natural neighbor coordinates.

Figure 7.3 shows the visual comparison of f̃cot and f̃ inv. The results obtained using
any of the local coordinates in the Laplacian discretization are visually indistinguishable
from the exact solution sampled from g (Figure 7.3(a) and (c)). As Figure 7.3(b) and (d)

122



7.2 Discrete Harmonic Functions from Local Coordinates

(a) homogeneous,
cotangent

(b) homogeneous,
inverse distance

(c) inhomogeneous,
cotangent

(d) inhomogeneous,
inverse distance

Figure 7.3: Delaunay triangulation of X in 2.5D, the z-axis representing the values of fi for
the solution of the Laplace equation based on (a),(c) cotangent coordinates (visually
indistinguishable from the other barycentric coordinate methods), and (b),(d) based
on inverse distance weights. The triangles are flat shaded to enhance the noisy, bad
result rendered by the application of inverse distance weights.

Coordinates used Homogeneous Inhomogeneous
for approximation point distribution point distribution

RMS MAX RMS MAX
Laplace coordinates f̃lap 7.08e-8 1.08e-3 3.22e-7 3.88e-3
Sibson coordinates f̃ sib 2.53e-6 3.65e-3 1.92e-6 4.20e-3
Hiyoshi coordinates f̃hiy 5.78e-6 5.44e-3 3.57e-6 4.66e-3
Cotangent coordinates f̃cot 7.08e-8 1.08e-3 3.22e-7 3.88e-3
Mean value coordinates f̃mvc 5.60e-6 4.85e-3 7.37e-6 7.04e-3
Wachspress coordinates f̃wac 2.53e-5 1.10e-2 2.09e-5 1.18e-2
Inverse distance weights f̃ inv 5.43e-4 9.32e-2 8.76e-4 8.09e-2

Table 7.2: Comparison of root mean square (RMS) error and maximum absolute deviation (MAX)
for the per-point error |f̃(xi)− g(xi)|.

show, there are considerable distortions for Laplacian approximations under which the
coordinate functions are not harmonic, such as for λinv.

7.2.4 Dynamic Aspects

We are now interested in how discrete harmonic functions based on the different Laplacian
discretizations behave if the coordinates of the positions of the point set vary continu-
ously. The motivation for this is the difference between a tessellation of a point set and
its Voronoi diagram, as illustrated in Figure 7.5. Figure 7.6(a) shows the Delaunay trian-
gulation of X for a simple setting with |H | = 4, |P | = 10, which we deliberately choose
to contain three sets of co-circular points. We assume the origin in the center of the data
set and shear the points in the direction indicated by the arrows, thus causing the am-
biguous diagonals to flip between two possible positions as indicated by the dashed lines.
Note that such flips occur in any triangulation if the deformation of the point set is big
enough. Because the alternating boundary values shown in Figure 7.6(d) are horizontally
symmetric, the discrete harmonic function should be symmetric as well.

123



Discrete Harmonic Functions from Local Coordinates

Figure 7.4: Swirling deformation applied to the point cloud.

(a) (b)

Figure 7.5: (a) Delaunay triangulation. (b) Voronoi diagram. In the same set of points, the
middle point moves a differential amount between left and right setting. Note how the
significant topological changes in (a) are not present in (b).

Figure 7.6 shows the results of computing the discrete harmonic function on the point
set under a shearing deformation, just before and after the diagonal flip. The results
for f̃cot, f̃lap, f̃ sib, and f̃hiy are visually indistinguishable, which is why we only show
one representative picture in Figure 7.6(c). First, notice how both f̃wac in Figure 7.6(d)
and f̃mvc in Figure 7.6(e) result in an asymmetric harmonic function in spite of the
symmetry in the point set and the values. As long as the triangulation stays the same,
the harmonic function for all approaches continuously follows the deformation. As a result
of the diagonal flip, however, the polygonal coordinates show a discontinuous change in
the harmonic function, which is not the case for natural neighbor coordinates.

7.3 Conclusion

We have compared different discretizations of the Laplacian, applied to the computa-
tion of discrete harmonic functions from prescribed boundary values. To this end, we
used the Delaunay triangulation to provide the connectivity, and generalized barycentric
coordinates in the one-ring neighborhood to provide the edge weights. The generalized
barycentric coordinates can be separated into polygonal barycentric coordinates and nat-
ural neighbor coordinates.

First, we assessed the approximation quality by comparing values sampled from a known
harmonic function to those computed using either of the considered Laplacian approx-
imations from boundary values that were sampled from the known function. Although

124



7.3 Conclusion

(a) Setting, top view (b) Setting, front view (c) Laplace coordinates

(d) Wachspress coordinates (e) mean value coordinates

Figure 7.6: (a) Shear around the center of the data set is indicated by the arrows, the dashed lines
depicting the two possible diagonal Delaunay triangulations. (b) Boundary condition
values are shown as thick dots, the interior four vertices are to be computed. (c)-(e)
The thick dots indicate the computed discrete harmonic function values at the vertices
of the triangulation. The left and right pictures show the values for the two different
diagonal directions. Note the jumps in (d), (e) which does not occur in (c).

all approaches based on generalized barycentric coordinates provide acceptable results,
the lowest approximation error by several orders of magnitude resulted from approxima-
tions based on Laplace/cotangent coordinates, which are identical in case of Delaunay
triangulations.

Second, we used a point set with fix boundary values but continuously changing positions
to analyze the effect of triangulation changes on the discrete harmonic function. We have
shown that Laplacian approximations based on polygons yield discontinuous changes in
the harmonic function under modifications in the triangulation.

Because cotangent coordinates, when computed in the Delaunay triangulation, are iden-
tical to Laplace coordinates, they technically belong to the class of natural neighbor
coordinates. The natural neighbor coordinates λlap, λsib, and λhiy always admit har-
monic functions that continuously change with the positions of the point set, making
them especially suited for application on variable point sets. Based on the nature of the
problem setting, we conjecture that the Laplacian approximation inherits the C1 conti-
nuity of Sibson coordinates and the C2 continuity of Hiyoshi coordinates. It would be
interesting to investigate possible applications in the context of mechanical engineering,
where mesh-free methods heavily rely on the absence of any explicit mesh structure.

We are confident that within an appropriate framework these results also apply to the
manifold case. One promising method is that of [Flö03b] which provides a setting for
manifolds that is similar to the one we used here. Another option lies in the generalization
of natural neighbor coordinates based on the intrinsic Delaunay triangulation.

125



Discrete Harmonic Functions from Local Coordinates

126



8 Natural Neighbor Extrapolation

Among locally supported scattered data schemes, natural neighbor interpolation has some
unique features that makes it interesting for a range of applications. However, its restric-
tion to the convex hull of the data sites is a limitation that has not yet been satisfyingly
overcome. Evaluating an interpolant outside the convex hull is called extrapolation and
usually amounts to educated guessing. While global scattered data interpolation and ap-
proximation such as radial basis functions or tensor product spline fitting naturally allow
extrapolation to some extent, local methods do not. In this setting, we discuss some
aspects of scattered data extrapolation in general, and compare existing methods.

The key contribution of this chapter is a framework for smooth local extrapolation of data
defined over point sets that seamlessly blends with classical natural neighbor interpolation
schemes. Each application dictates its own notion of acceptable behavior outside the
convex hull, which might be constant, or asymptotic towards a polynomial or exponential
falloff. Our framework offers such control over the extrapolant away from the convex hull.
Parts of this chapter have been published in [BFHU08].

8.1 Introduction

It is often implicitly assumed that interpolation is restricted to the “intuitive interior” of
the data sites, which is usually their convex hull. Extrapolation in this context means to
find a function that also extends to the “intuitive exterior” of the data sites, i.e., to inter-
polate over a domain that extends past the convex hull. Extrapolation can be achieved in
multiple ways. An interpolant might be globally defined, like radial basis function (RBF)
or inverse distance weighted (IDW) interpolants, in which case its evaluation outside the
convex hull amounts to extrapolation. Interpolation schemes with limited domain can be
extended by constructing a function that smoothly joins the interpolant at the boundary
of its domain.

While extrapolation in itself is an ill-posed problem, two different objectives can be iden-
tified when dealing with it: The first is to construct pleasant-looking functions (surfaces)
that leave the transition between the intuitive interior and exterior unnoticed. Applica-
tions for this are the visualization of unstructured data over a rectangular domain, like
weather forecast data or digital elevation models in geoinformation systems and architec-
ture. The second objective is to construct a function that agrees with application specific
expectations that encode knowledge about the application domain. This is typically given
in the context of open boundary simulations, oil exploration [MS99, Zor04], or biosciences
[MTS+04], where properties of the underlying physical model play a role in the interpo-
lation method. Another possible application emerges in the modeling of binder surfaces

127



Natural Neighbor Extrapolation

for stamping, which must be extended beyond the surface to be stamped. To facilitate
the classification of extrapolation methods, we propose to adapt a set of criteria that has
previously been introduced by Alfeld in a technical report on triangular extrapolation
methods [Alf84].

We investigated several new ways to extend natural neighbor interpolation past the con-
vex hull of the data sites, which we present here. The final result is a framework that
alleviates some of the issues present in current extrapolation methods. Based on dynami-
cally inserted new data sites, the ghost points, we are able to extend any natural neighbor
interpolant over an arbitrary data set to all of space, while preserving desirable properties
like smoothness or the continuous dependence on the coordinates of the data sites.

We start with a brief summary of relevant scattered data interpolation methods and
presents previously proposed approaches for the extrapolation of local scattered data
interpolants in Section 8.2. A taxonomy of scattered data extrapolation approaches is
developed and applied to the presented methods in Section 8.3, including the methods
developed later in this chapter. Following that, we will describe the different ideas we
have pursued and comment on their extrapolation performance in Sections 8.4-8.6. We
present the key contribution of this chapter, natural neighbor extrapolation with dynamic
ghost points, in Section 8.7. A thorough visual comparison of some selected extrapolation
methods in challenging situations is given in Section 8.8. This chapter is concluded in
Section 8.9.

8.2 Related Work

Extrapolation is strongly linked to interpolation in that, either, interpolation methods
with restricted definition domains are extended or, interpolation methods naturally cover
a domain that is larger than the convex hull of the data sites. We therefore briefly sum-
marize relevant scattered data interpolation methods in Section 8.2.1 and extrapolation
methods in Section 8.2.2.

For the rest of this chapter, we drop explicit summation bounds for ease of notation and
assume that indices address the feasible, finite range.

8.2.1 Scattered Data Interpolation

The vast field of scattered data interpolation has been around since the mid-seventies.
Surveys on scattered data interpolation in general by Franke and Nielson can be found in
[Fra79, Fra82, FN91], on tessellation-based interpolation by Zeilfelder and Seidel in [ZS02],
and a textbook on RBF approaches by Wendland in [Wen04]. We consider the scattered
data interpolation problem for a set of data sites X = {xi}i,xi ∈ Rn, and data Z = {zi}i,
where in this context zi(x) is a Taylor polynomial of given degree k ∈ {0, 1, 2} carrying the
partial derivative information for data site xi, such that zi(x−xi) locally approximates an
unknown function represented by the data. Given this input, an interpolation method I
provides an n-variate, real-valued function f = I(X, Z) ∈ Cd, d ∈ N∪ {∞}, that satisfies

128



8.2 Related Work

the interpolation property for derivatives up to order k,

∂|j|f

∂xj

∣∣∣∣∣
x=xi

=
∂|j|zi
∂xj

∣∣∣∣∣
x=0

, |j| ≤ k,

where j = (j1, . . . , jn) ∈ Nn
0 with |j| = j1 + · · · + jn. If f is defined over the domain

Ω ⊂ Rn, then we call D(I) := Ω the definition domain of I. We denote the convex hull of
X by C (X), and the data sites on the boundary of C (X) by XC . In the sequel, we focus
on bivariate interpolants.

Most scattered data interpolation schemes require some sort of preprocessing that is
performed once before being able to evaluate the interpolant I at arbitrary positions in
D(I). The complexity of an interpolation scheme is consequently split into the complexity
of preprocessing and the complexity of evaluating the interpolant.
A common preprocessing step is the generation of derivative information for k > 0,
which is often not part of the input to scattered data interpolation. Although many
schemes explicitly define their own estimation procedure, it is in general decoupled from
the interpolation. Appropriate methods for derivative generation can be found in [Sib81,
Nie83, Aki84, Ste84, Alf85], or in Chapter 6.
The essential step common to all interpolation methods is the computation of a value
for a query position, which is characterized by the number of data sites involved in the
computation. Global schemes are more expensive in that they process all input data in
each evaluation, but generally allow for a higher smoothness, while local schemes have
lower computational complexity at the expense of only a limited degree of continuity.

Global Schemes

The most prominent global interpolation scheme is the radial basis function (RBF) ap-
proach, which produces smooth interpolants of high quality and has been discussed in
Section 3.1.3. In our implementation, we applied to each basis function ϕi a scaling fac-
tor that is a multiple of the distance of xi to its furthest direct neighbor in the Voronoi
diagram of X. We will consider the RBF method with following basis functions:

• IrbfT, φ(r) = r2 log r (thin plate splines), global,

• IrbfG, φ(r) = exp(−αr2) , α ∈ R+ (Gaussian), quasi-local,

• IrbfW, φ(r) = (1−r)4
+(4r−1), where (x)4

+ is the truncated fourth degree monomial
(Wendland’s compact polynomial), local.

Another approach to global interpolation is given by inverse distance weighted (IDW)
schemes, which we discussed in Section 3.1.1. We will consider Shepard’s method modified
in two ways. First, blending quadratic Taylor polynomials at the data sites with global
support. Second, blending quadratic Taylor polynomials and using a modified weighting
function to localize the support. However, by dropping the global support of the weight
functions, the interpolant is no longer defined in all Rn. The considered IDW methods
are:

• I idwQ: quadratic Shepard, blending quadratic Taylor polynomials, global,

129



Natural Neighbor Extrapolation

(a) (b)

Figure 8.1: (a) A slight perturbation in a triangulation can lead to topological changes. (b) The
Voronoi diagram of a point set continuously depends on the coordinates of the points.

• I idwMQ: modified quadratic Shepard, as proposed in [FN80], local.

Local Schemes

Interpolation methods that operate on tessellations of the data set domain are also known
as finite element schemes; they were discussed in Section 3.1.4. All tessellation-based ap-
proaches share one shortcoming: the interpolants do not depend continuously on the
coordinates of the data sites. For any particular tessellation method, there always exists
an ambiguous configuration of points that indicates a change in the topology of the tes-
sellation, and for which the constructed interpolant changes discontinuously. An example
of such a configuration for the Delaunay triangulation and its counterpart in the Voronoi
diagram is given in Figure 8.1.

Natural Neighbor Interpolation

In contrast to finite element schemes, natural neighbor interpolation is tied to the Voronoi
diagram of the data sites and as such also shows a continuous dependency on the coor-
dinates of the data sites. Of the natural neighbor interpolants introduced in Section 3.2,
the methods developed in this chapter use the C0 interpolant based on Sibson coordi-
nates (cf. Section 3.2.5.3), its C1 generalization of Farin (cf. Section 3.2.7.2), and the C2

interpolant of Hiyoshi (cf. Section 3.2.7.3).

Furthermore, we consider the partition of unity method on Delaunay circumcircles pro-
posed by Brown (cf. Section 3.2.5.6). This method yields Sibson coordinates for a special
choice of rational, non-positive blending functions. We have adopted Brown’s idea for
extrapolation in Section 8.6.

We will consider the following natural neighbor interpolants in the later discussion of
extrapolation.

• InnS: Sibson’s C0 interpolant as proposed in [Sib80],

• InnF: Farin’s C1 interpolant as proposed in [Far90],

• InnH: Hiyoshi’s C2 interpolant as proposed in [HS04].

• Ibro: Brown’s C0 interpolant as proposed in [Bro97].

130



8.2 Related Work

(a)

Θ1

Θ2

x0

(b)

Figure 8.2: (a) Partition of the complement of the convex hull into cones and half-open prisms
(wedges and half-open rectangles in 2D), as used in Eaki and Efra. (b) To evaluate
at x0 using EalfB, the functions from the light gray triangles adjacent to the convex
hull are extrapolated and mixed based on the angles Θ1 and Θ2.

8.2.2 Scattered Data Extrapolation

Though the meaning of extrapolation varies from application to application, it essentially
refers to the extension of a given interpolant from the “intuitive interior,” to the “intuitive
exterior”. Thus, for a given interpolation method I, defined over the domain D(I), we
denote by E(I) the result of applying an extrapolation method E to extend the interpolant
to the extended domain D(E; I). For practical reasons, we ignore subtle differences in
the definition of D(I) for different interpolation schemes I and assume interpolation in
general to refer to C (X), which allows us to include RBF and IDW methods in a later
comparison. Consequently, globally defined interpolants I are interpreted as the result of
applying a dummy extrapolation method Eid(I) = Id(I) that extends I from C (X) to
its original domain D(I).

The common approaches for scattered data extrapolation, namely ghost point meth-
ods, convex hull extension methods, external blending methods, and global interpolation
methods are discussed in the following sections.

Ghost Point Methods

Ghost Point Methods generate new data sites XG ⊂ Rn, called ghost points, such that
C (XG) covers an extended domain, over which available interpolants can be applied.

A method to improve piecewise linear interpolation over Delaunay triangulations has
been proposed by Lasser and Stüttgen in [LS96] who essentially place ghost points along
a rectangle enclosing the data set. Similar methods addressing the extension of Delaunay
triangulations past their convex hull have been discussed in [OBSC00], Section 6.3, where
it was concluded that the quality of the resulting triangulation depends on the placement
and number of “imaginary points”.

A similar conclusion about the number of ghost points was drawn by Alfeld in [Alf84]. He

131



Natural Neighbor Extrapolation

proposed to construct an interpolant over an extended domain by introducing ghost points
leading to a new triangulation of the data sites and ghost points. A smooth triangular
interpolant is then constructed over the extended domain as the solution of a global energy
minimization, e.g., the minimization of the thin-plate energy, based on the method from
[Alf85]. We will refer to this extrapolation approach as EalfT.

In Section 8.7, we introduce a novel ghost point framework for natural neighbor extrapo-
lation. In [Owe93], Owen applied a technique similar to our proposed approach to provide
limited extrapolation for Sibson’s C0 interpolant. By placing the data set in an appropri-
ately sized bounding window and clipping all Voronoi tiles against it, he computes affine
weights that allow for interpolation. This method has also been implemented in [Ei08].

Convex Hull Extension Methods

Convex Hull Extension Methods partition the complement of the convex hull into un-
bounded regions consisting of cones extending from convex hull vertices and half-open
prisms extending from convex hull facets, as shown in Figure 8.2(a). In each region, a
function is defined that smoothly joins its neighbors.

One such method was proposed by Akima in [Aki78], which operates solely on the corre-
sponding interpolant proposed in the same publication. In each wedge region, the corre-
sponding Taylor polynomial at the wedge vertex is extrapolated. In the local coordinate
system of each rectangular region, a polynomial is constructed based on the special struc-
ture of Akima’s triangular interpolation scheme. The result is a C1 function over R2, and
we refer to Akima’s method as Eaki.

Franke’s transfinite extension, introduced in [Fra79], is another approach operating on
the extension of the convex hull. It can be applied to any interpolant for which Taylor
polynomials at the convex hull vertices and normal derivatives along the convex hull edges
exist. Franke treats wedge regions like Akima. To evaluate the function at a point x0 in
a rectangular region, x0 is projected to the convex hull edge and the univariate Taylor
polynomial determined by the normal derivatives is extrapolated to compute a function
value at x0. We refer to this method as Efra.

We finally mention the C−1-continuous nearest neighbor interpolant which also covers all
of Rn and which is constant over each Voronoi tile.

External Blending Methods

External Blending Methods extend particular functions of a piecewise interpolant to
overlapping regions in the complement of the convex hull and blend them in a Lagrangian
interpolation manner. The relation between convex hull extension and external blending
methods is analogous to the relation between FEM interpolants which are constructed to
smoothly join local functions along the piecewise domain boundaries, and PoU methods
which combine overlapping, local interpolants using smooth blending functions.

Alfeld proposed in [Alf84] a method to extrapolate tessellation-based interpolation schemes
past the convex hull. From a point x0 outside the convex hull of the data sites, a set of

132



8.2 Related Work

convex hull edges, and consequently the adjacent elements Ωi of the tessellation, are vis-
ible. As shown in Figure 8.2(b), the lines pointing from x0 to the vertices of a visible
convex hull edge form an angle Θi at x0. The local function ϕi over each element Ωi can
usually be evaluated at x0, thus extrapolating the local function. After the functions of
all visible elements have been extrapolated, the function values are mixed using ratios
proportional to some power of Θi. This way, Alfeld is able to smoothly extrapolate any
tessellation-based interpolant past the convex hull of the data sites. We will refer to this
method as EalfB.

Brown proposed a local coordinate system defined over Delaunay triangulations in [Bro97],
for which he gave a construction past the convex hull of the data sites. We introduced the
interpolation method in Section 3.2.5.6. For a point contained in the circumcircles of a
set of Delaunay triangles {Ωi}i, the barycentric coordinates with respect to each triangle
Ωi are computed, and blended in a PoU fashion using smooth, positive blending functions
over the corresponding circumcircles. This method naturally extends the coordinates to
the interior of circumcircles that reach outside the convex hull. For points even further
outside, he proposed to blend the barycentric coordinates with respect to all boundary-
adjacent triangles in a Lagrangian interpolation manner based on the distance to the
corresponding circumcircles. The resulting generalized barycentric coordinates are then
used to build a simple C0 scattered data interpolant with linear precision. This method
will be referred to as Ebro.

In this chapter, several new external blending methods are presented. Section 8.4 intro-
duces a slightly modified version of Alfeld’s external blending method EalfB, which we
will refer to as extrapolation based on weighted triangular exterior coordinates, Ewte.
Section 8.5 discusses an idea to use Watson’s construction for interpolation. Due to prob-
lems of this method, we do not consider it for comparison. The method presented in
Section 8.6 utilizes notions from projective geometry to enhance Brown’s method. It will
be referred to as extrapolation based on projective exterior coordinates, Epex.

The summary of local extrapolation methods considered in the sequel is

• Eaki: Akima’s discrete extension [Aki78], a convex hull extension method,

• Efra: Franke’s transfinite extension [Fra79], a convex hull extension method,

• EalfB: Alfeld’s blending of visible edges [Alf84], an external blending method,

• EalfT: Alfeld’s global triangular thinplate minimization [Alf85], which can be in-
terpreted as a ghost point method in with the ghost points globally influence the
interpolant.

• Ebro: Extension of Brown’s coordinates in an unstructured point set [Bro97].

• Ewte: Weighted triangular exterior coordinates, Section 8.4.

• Epex: Projective exterior coordinates, Section 8.6.

Global Methods

Most global interpolation methods naturally extend to all Rn. In particular, this entails
the RBF and IDW methods introduced in Section 8.2.1. Extrapolation of these inter-

133



Natural Neighbor Extrapolation

polants requires no modification, and for sake of consistency we denote by Eid(I) = Id(I)
the extrapolation method applied to one of these schemes. Away from C (X), RBFs with
local and quasi-local support asymptotically approach the supporting polynomial, while
global ones generally diverge dramatically. It must be noted that for IDW interpolants I
with compactly supported weight functions, D(Eid, I) is finite.

8.3 Taxonomy of Scattered Data Extrapolation

To allow an individual comparison of existing extrapolation methods, we adopt and ex-
tend the classification of extrapolation approaches introduced by Alfeld in [Alf84], and
propose the following criteria, where the first six correspond to Alfeld’s. The results of
this classification applied to a number of approaches introduced so far is then given in
Table 8.3.

Smoothness How smooth is E(I)|D(I), and how smooth is E(I)|D(E;I)?

Structure Is the E(I) of the same structure everywhere, i.e., piecewise polynomial of a
certain degree, or are interior and exterior different? A similar structure simplifies
the analysis of the method.

Reproduction Power Is the class of functions reproduced exactly by I the same as that
reproduced by E(I)? All interpolants and extrapolation approaches we considered
here possess some sort of polynomial precision, and we use P d in the table to indicate
reproduction of polynomials of degree d.

Finiteness Is the extended domain D(E; I) finite or does it cover all Rn?

Blending Extrapolation Is E(I)|D(I) identical to I|D(I)? If an extrapolation method sim-
ply continues the interpolant where it ceases to be defined, it is not considered
blending. Otherwise, it augments the interpolant in a way to improve the joint
between E(I)|D(I) and E(I)|D(E;I)\D(I).

Generality How large is the class of interpolants I to which an extrapolation approach
E can be applied? An approach is considered general if it can be applied to more
than a single, specific interpolation scheme.

Similar Results from Similar Input (sim/sim) Do small perturbations of the input lead
to small changes of the output? This property is already important for interpolation
alone, and is an indicator for robustness of a particular method.

Size of Support How many data sites need to be processed to evaluate the interpolant?
Local support (marked L in the table) corresponds to a small, bounded number of
data sites in the vicinity of the evaluation position. Convex hull support (marked C
in the table) refers to the data sites on the boundary of the convex hull and possibly
interior data sites nearby. Global support (marked G in the table) refers to all data
sites.

Alfeld also proposed to take the quality of a scheme into account, but because of its
subjective flavor we omit this criterion. We note that Brown’s method is no competitor
for smooth scattered data interpolation, for it was introduced as a local coordinate system
in the Delaunay triangulation, and interpolation was added as an afterthought.

134



8.3 Taxonomy of Scattered Data Extrapolation

Method sm
oo

th
ne

ss
(i

n/
ou

t)

st
ru

ct
ur

e
(i

n/
ou

t)

sa
m

e
re

p.
(i

n/
ou

t)
(a

)

do
m

ai
n

(b
)

bl
en

di
ng

ge
ne

ra
l

si
m

.s
im

.
(i

n/
ou

t)

si
ze

of
su

pp
or

t

Ideal Technique C∞ same y Rn / y y small

T
ri

an
gu

la
r

Akima (Eaki) [Aki78] C1 diff n Rn n n n/y L
Franke (Efra) [Fra79] as I/C0 diff n Rn n y (c) n L
Alfeld (EalfB) [Alf84] as I diff y Rn n y (d) n C
Brown (Ebro) [Bro97] C0 diff y (P 1) Rn n n n C
Author (Ewte) Section 8.4 as I/C−1 diff n Rn n y n C
Author (Epex) Section 8.6 as I/C−1 diff n Rn n n y C

G
ho

st
P

oi
nt

s - stat. assigned as I same n (P d/P d−1) C (XG) y y (e) y L
- dyn. assigned as I diff n (P d/P d−1) Rn y y (e) y C
- stat. dismissed C0 at XC diff n (P d/P 0) C (XG) y y (f) y L
- dyn. dismissed C0 at XC diff n (P d/P 0) Rn y y (f) y C

G
lo

ba
l

In
te

rp
.

Duchon (IrbfT) [Duc77] C∞ same y (P d) Rn / / y G
Wendland (IrbfW) [Wen04] Cd diff y (P d) Rn / / y L
Shepard (I idwQ) [She68] C∞ same y (P 0) Rn / y (g) y G
Nielson (I idwMQ) [FN80] Cd same y (P 0) finite / y (g) y L
Alfeld (IalfT) [Alf85] as I same y finite y y(h) n as I

Single entries in columns one and three apply to both interior and exterior, different
values are separated by a slash. A sole slash indicates that the criterion does not apply.

(a) We assume that required derivatives are exact.
(b) We assume Rn if extension to higher dimensions is straightforward.
(c) Cross-boundary derivatives must be available.
(d) Local functions over C -elements must be defined over all Rn.
(e) Applies to any method that can deal with point-based data.
(f) Applies to any method utilizing affine weights that are entirely determined by the

position of the data sites.
(g) The quadratic approximations at the data sites can be replaced by arbitrary lo-

cal/global approximations.
(h) The interpolation scheme must be applicable to incomplete input data.

Table 8.1: Classification of extrapolation methods.

The comparison in Table 8.3 includes the methods Ewte from Section 8.4 and Epex from
Section 8.6 as well as the ghost point methods introduced in Section 8.7 for completeness
and reference. The reader might want to proceed there before closer inspection of the
table.

The “similar results from similar input” criterion implicitly assumes that the perturba-
tion of data sites leaves the set of vertices on the convex hull, XC , unchanged. Otherwise,
constructions based on convex hull vertices show discontinuous changes under the pertur-
bations. Among the ghost point methods, the DDC approach is not affected by changes
in XC because the construction of ghost points is independent of the concrete structure
of XC . Furthermore, RBF and IDW schemes are naturally unaffected by changes in XC .

135



Natural Neighbor Extrapolation

x3

T 1 T 3

T 4

T 5

T 6

x0

x6

x1 x4

x5

x2

T 2

(a)

T 5

T 6

T 2 T 3

T 4x0

x3x2

x4
x1

x5x6

T 1

(b)

x3x2

x4
x1

x5x6

T2T1 T3
T4

T5
T6

(c)

Figure 8.3: The construction used in weighted triangular exterior coordinates. (a) Triangles
T 1, . . . , T 6, formed by the query position with the convex hull edges. Only T 1, T 2,
and T 3 have positive areas. (b) All triangles T 1, . . . , T 6 have negative areas. (c) The
triangles adjacent to the convex hull.

8.4 Weighted Triangular Exterior Coordinates

We describe a convex hull extension method based on weighted triangular exterior coordi-
nates, Ewte, that continuously extends the piecewise barycentric coordinates in boundary
triangles of some triangulation. The extended local coordinates are combined using affine
weights derived from areas of triangles in a support construction, resulting in generalized,
non-convex barycentric coordinates λwte which are defined over all R2.

The local coordinates from the interior are continuously extrapolated as local coordinates
λwte if the data set has no collinear simplicial facets on its convex hull, and is discontin-
uous otherwise. This method is a variation of the “Blending by Visible Edges” method
proposed by Alfeld for planar scattered data in [Alf84]. His construction does not explic-
itly provide coordinates outside, but is identical to ours up to the usage of angles instead
of areas.

The following presentation assumes a planar setting, but a generalization to higher di-
mensions is straightforward by considering simplices instead of triangles.

8.4.1 Method Description

We assume piecewise linear interpolation over a triangulation T of the data sites X ⊂
R2, composed of triangles {Ti}i with Ti = 4(xa,xb,xc) for some xa,xb,xc ∈ X. We
use 4(xa,xb,xc) to denote the counterclockwise oriented triangle formed by an ordered
sequence of points.

Inside the convex hull, the triangle vertex data defines a unique linear function in each
triangle. Outside the convex hull, no triangles are defined that could give raise to an
interpolating function. In the following, we describe how to evaluate an interpolating
function at a point x0 at an arbitrary position, with some restrictions on the geometry
of the convex hull.

If Ti is a triangle having an edge on the convex hull, and g the unique linear function

136



8.4 Weighted Triangular Exterior Coordinates

interpolating the vertex data of Ti, then g extrapolates the interpolant in the vicinity
of Ti outside the convex hull. By blending several nearby functions gi using an affine
combination with coefficients that are smooth with respect to the query position x0, we
can define a smooth function outside the convex hull.

Let without loss of generality x1, . . . ,xm ∈ X be the clockwise oriented convex hull
vertices, i.e., the counterclockwise boundary of R2 \C (X), where the index arithmetic is
modulo m, and summation over i always addresses all elements i = 1, . . . ,m. We form
triangles T i := 4(x0,xi,xi+1) as depicted in Figure 8.3(a) and (b), and assume Ti to
share edge (xi,xi+1) with T i as depicted in Figure 8.3(c). By Ai we denote the signed
area of T i, where Ai is positive for vertices with counterclockwise orientation, and by
A+
i := max(0, Ai) the restriction of Ai to positive values. If x0 ∈ C (X), all A+

i are zero.
The resulting coefficients are

αi := A+
i /

∑
j
A+
j , (8.1)

where we define αi := 0 if both numerator and denominator are zero. With these affine
weights, the interpolating function outside the convex hull is given by∑

i

αigi(x0). (8.2)

Instead of evaluating an interpolant, we can compute generalized barycentric coordinates
of x0 with respect to the vertices of the triangles Ti. If the barycentric coordinates λij(x0)
with respect to Ti are defined by

x =
∑

xj∈Ti

λij(x)xj ,

the local coordinates are derived by rearranging,

x0 =
∑
i

αix0

=
∑
i

αi
∑

xj∈Ti

λij(x0)xj

=
∑

xj∈Ti

(∑
i

αiλ
i
j(x0)

)
xj

=:
∑

xj∈Ti

λwte
j xj .

Because λwte comprises continuous, local coordinates, we can conclude that the interpo-
lating function ∑

j

λwte
j (x0)zj

has linear precision for zj ∈ R. Further, derivatives at the data sites can be interpolated
by Sibson’s, Farin’s or Hiyoshi’s method without any modification.

137



Natural Neighbor Extrapolation

8.4.2 Alfeld’s Extrapolation

The method introduced by Alfeld in [Alf84] is structurally identical to ours when based on
piecewise linear interpolation over some triangulation of the data set. It differs from ours
in that weights are derived from the angles at the query position, where Θi(x0) denotes
the signed angle at vertex x0 of the triangle Ti with its sign equal to that of the area
Ai, and Θ+

i (x0) := max(0,Θi(x0)) as above (cf. Figure 8.2(b)). Then, the extrapolated
function defined by Alfeld’s method Ealf is∑

i

Θ+
i (x0)gi(x0)/

∑
i

Θ+
i (x0),

where gi(x0) is again the linear function interpolating the data of the corresponding
convex hull triangle.

8.4.3 Increasing the Continuity Away from the Convex Hull

In the definition of αi in (8.1) the denominator is piecewise linear with a derivative
discontinuity at zero. By adding an exponent β such that

αi,β :=
(A+

i )β∑
j(A

+
j )β

,

the affine coefficients can be made Cβ−1-continuous away from the convex hull - reasoning
that applies to Alfeld’s construction as well. Extrapolation using both Ewte and EalfB

is illustrated in Figure 8.4 for β = 1, 2, 3.

8.4.4 Restrictions and Shortcomings

Obviously, Ai is a linear function of x0, and αi is piecewise rational. Whenever x0 lies on
a line supporting a convex hull edge, the corresponding exterior triangle has zero area.
Problems arise when all areas, and thus the denominator in (8.1), converge toward zero,
leading to poles and possibly discontinuities of αi.

We now examine the case when all non-zero areas converge toward zero, which can lead
to the artifact visible in Figure 8.5(c). Let without loss of generality A+

1 , . . . , A
+
m denote

all non-zero areas, with A+
i → 0, i = 1, . . . ,m, as x0 → q for some q on the convex hull.

Then,

lim
x0→q

αi = lim
x0→q

A+
i∑
j A

+
j

= lim
x0→q

d
dni
|qA+

i∑
j

d
dni
|qA+

j

by the linearity of the derivative. Since dA+
i /dni|q , where ni is the outward normal vector

at q, is well defined and negative, we get, by l’Hôpital’s rule for one-sided limits, that
every coefficient converges to a value αi ≥ 0.

If two or more line segments, say (x1,x2) and (x2,x3) on the convex hull are collinear, the

138



8.4 Weighted Triangular Exterior Coordinates

(a) Setting (b) Ewte(Isib), β = 1

(c) Ewte(Isib), β = 2 (d) Ewte(Isib), β = 3

(e) EalfB(Ipl), β = 2 (f) EalfB(Ipl), β = 3

Figure 8.4: (a) A very well-behaved data set with homogeneously sized triangles along the convex
hull. (b)-(d) Ewte(Isib) with exponents of β = 1, β = 2, and β = 3, resp. (e)-(f)
EalfB(Ipl) with exponents of β = 2 and β = 3, resp.

139



Natural Neighbor Extrapolation

(a) Setting

(b) Isib (c) Ewte(Isib) (d) EalfB(Ipl)

Figure 8.5: (a) Deliberately chosen degenerate setting: the four data sites in the top-right of
the images are collinear with conflicting data values. (b) Sibson interpolation inside
the convex hull. (c) Ewte(Isib) with an exponent of β = 1. (d) EalfB(Ipl) with an
exponent of β = 1.

corresponding areas A+
1 and A+

2 both converge to zero as x0 approaches any point q on
these line segments. Because A+

1 and A+
2 are linear functions of the same perpendicular

distance to the line segments, the limit of α1 and α2 is constant and positive along these
segments. In the limit from outside, Ewte therefore gives a single linear function over both
edges, which conflicts with the two different linear functions on these boundary edges in
the interior. This discontinuous behavior can be a severe drawback in case of structured
or partially structured data sets.

We note that the alternative approach by Alfeld in [Alf84] uses the angles of the triangles
at the query position, and does not have this problem: as the query position approaches
an edge, the corresponding angle approaches π, while the remaining weights approach
zero. This can be verified in Figure 8.5(d).

The application of Ewte results in general in a function that is only C0 across the convex
hull of the data set if interpolation other than piecewise linear is applied inside the convex
hull. E.g., the gradient of natural neighbor interpolation is in general different from that
of the piecewise linear interpolant, to which Ewte interpolates on the convex hull.

Another undesired effects is related to the “similar output from similar input” criterion
stated in Section 8.3, which can be verified for Alfeld’s construction in Section 8.8.3.

8.4.5 Implementation Notes

The triangles involved in the computation of λwte can be found by traversing the convex
hull and checking for positive volumes of the triangles T i. Given a half-edge data structure,
this is easily accomplished.

In higher dimensions, the problem with collinear facets is equivalent to the two-dimensional
case.

140



8.5 Extrapolating Watson’s Construction

(a) (b)

Figure 8.6: (a) Isocontour visualization for Sibson’s interpolant. (b) The same data set extrapo-
lated by evaluating Watson’s construction based on arbitrarily chosen sets of interior
neighbors.

8.5 Extrapolating Watson’s Construction

As described in Section 3.2.5.4, Watson proposed to compute the areas involved in the
definition of Sibson coordinates by a signed triangle decomposition (cf. [Wat92], p. 81).
Besides its straightforward application in higher dimensions, this method gives an explicit
construction of the rational function that Sibson coordinates take inside the regions of
constant neighborhood, which enables us to argue for a construction of external barycen-
tric coordinates.

Despite the numerical issues pointed out previously, Watson’s observation suggests an
interesting line of thought. Everywhere inside the region of constant neighborhood, as
shown in Figure 3.9(b), the sequence of neighbors and the traversal order remains the
same. By keeping this computation sequence fixed, but changing x0, we are efficiently
evaluating the rational function λsib(x0) outside the region of constant neighborhood.

As long as the query position is inside the convex hull, the neighborhood is well-defined,
and the areas of constant neighborhood join continuously along their bounding circular
arcs. If we find a way to keep the set of neighbors fixed as the query position leaves the
convex hull, such that a vertex only leaves or enters the set of neighbor if it is zero, we
continue the smooth, rational function from inside to the outside.

Unfortunately, we did not find a way to define a neighborhood that depends on a po-
sition outside the convex hull, agrees with the natural neighborhood on the convex hull
and changes in a compatible manner as the position traverses around the data set. The
shortcomings observed in our experiments are depicted in Figure 8.6.

141



Natural Neighbor Extrapolation

8.6 Projective Exterior Domain Coordinates

The next approach utilizes ideas from projective geometry in an effort to form a unifying
basis in which natural neighbor based algorithms can be applied inside as well as outside
the convex hull.

The main feature of projective geometry is the possibility to have points at infinity.
We add points at infinity to extend the data set past its convex hull and define some
meaningful notion of circumcircle for them. Then, we apply Brown’s construction of non-
convex coordinates in point clouds, which combines triangular barycentric coordinates
from natural neighbors using blending functions over the circumcircles. The coordinates
we thereby get are no longer barycentric coordinates with respect to points, but in an
affine basis involving the perpendicular of a convex hull edge, which prevents direct further
use for interpolation. We can, however, transform them into affine coefficients for vertices
to construct a smooth interpolant.

This approach has the same limitation as the one presented in Section 8.4, i.e., there
must not be collinear points on the convex hull of X.

8.6.1 Extrapolation with Brown Coordinates

Brown already devised a construction that allows the computation of barycentric coor-
dinates outside the convex hull, which are continuous everywhere but at some isolated
points (cf. Section 3.2.5.6).

If xi is contained in the circumcircle of some triangles, his construction produces general-
ized barycentric coordinates even outside the convex hull of the data sites. This already
extends the domain of definition for the coordinates to the union of circumcircles,

Ωext =
⋃
Ti∈T

C (©(Ti)),

where C (©(Ti)) is the interior of the circumcircle of Ti. The boundary of the circumcircles
of these triangles form the boundary of the extended domain of definition.

Outside Ωext, Brown proposes to interpolate the barycentric coordinates with respect to
the circumcircles of triangles adjacent to the convex hull of X, which we assume without
loss of generality to be T1, . . . , Tk. With the blending functions now defined as

ψi(x) =
∏

j∈{1,...,k}\{i}

(‖x− ci‖2 − r2
i ), (8.3)

which is Lagrangian interpolation where the polynomials are taken over the distances to
the circumcircles.

Brown already observed discontinuities of the coordinate functions at the boundary of Ωext

if two circumcircles intersect in a point that is not a vertex. Such a situation is displayed
in Figure 8.9(c). In case his construction is applied for interpolation, he proposes to add
another data site at the position of the discontinuity and assign it the mean value of the

142



8.6 Projective Exterior Domain Coordinates

a b

p

v

(a)

 

a

vw

p1 p2

(b)

Figure 8.7: Illustration of the reasoning behind our definition of the circumcircle of an infinite
triangle. The points p, p1, and p2 help describe the limit process for circumcircles
as they converge to the points at infinity corresponding to v and w. (a) As p moves
toward the infinite point represented by v, the circumcircle becomes the upper half-
plane. (b) As p1 and p2 move equally towards the infinite points represented by v and
w, the circumcircle becomes the half-plane orthogonal to the angle bisector between
v and w.

two disagreeing linear functions there.

Away from the Ωext, the function has a very smooth shape thanks to the boundary-global
polynomial interpolation.

Remark 8.1 It seems that Brown accidentally omitted in the definition of weights for
the exterior blending in (8.3) to add a power similar to that in (8.4), so that we changed
it in our implementation to

ψi(x) =
∏

j∈{1,...,k}\{i}

(‖x− ci‖2 − r2
i ).

8.6.2 Extension of Circumcircles to Points at Infinity

In the following, we borrow concepts from projective geometry, but skip a rigorous ap-
plication of projective geometry for the sake of presentation’s clarity.

We will consider points at infinity, which correspond to vectors, denoted by vi, and regular
points, denoted by xi, and use them to define unbounded triangles in the following.

8.6.2.1 Unbounded Triangles and Circumcircles

In Section 2.3.2, we introduced the cone spanned by a set of vectors as cone(v1, . . . ,vm) =
{∑i αivi : αi ∈ R, αi ≥ 0 }.
Two points and a vector: Consider two points a,b ∈ R2 and a vector v ∈ R2

orthogonal to the segment ab as in Figure 8.7(a). These form a degenerate triangle

t(a,b,v) := ab⊕ cone(v),

143



Natural Neighbor Extrapolation

x1

x2
x3

v1
v1

v2
v2

⊔(x2,x1,v1)

∨(x2,v1,v2)

⊔(x3,x2,v2)

(a)

x1

x2
x3

x0

(b)

(v1)(v2)

x0

v
1

v1 + v2

v2

(c)

Figure 8.8: (a) A convex polygon and the infinite triangles formed by the vertices and the edge
normals, the ones adjacent to x2 explicitly labeled. (b) Natural neighbors of x0. (c)
Triangles in conflict with x0, whose vertices are a superset of the natural neighbors of
x0.

corresponding to the open, rectangular polygon bounded by the rays a +αv and b +αv,
α ≥ 0, and the segment ab. We define the unbounded circumcircle ©t(a,b,v) as the
half-space

{
x : (x− a)Tv ≥ 0

}
.

A point and two vectors: Now, consider a point a ∈ R2 and two unit vectors v,w ∈ R2,
as in Figure 8.7(b). The corresponding degenerate triangle is

∨(a,v,w) := a⊕ cone(v,w).

bounded by the rays a + αv and a + αw, α ≥ 0. We define the unbounded circumcircle
©∨(a,v,w) as the half-space

{
x : (x− a)T (v + w) ≥ 0

}
.

8.6.2.2 Unbounded Natural Neighbors

We partition the complement of the convex hull, R2 \ C (X), into a set of unbounded
triangles. If x1, . . . ,xk is the clockwise sequence of boundary vertices, where we assume
a circular index k + 1 = 1, and v1, . . . ,vk are the corresponding sequence of outward-
pointing normals of the edges x1x2, . . . ,xkx1, then

T∞ =
⋃

i=1,...,k

{t(xi,xi+1,vi)} ∪ {∨(xi,vi+1,vi)}

is a partition of R2 \ C (X) into convex, open polyhedra.

In Section 2.3.4 it was mentioned that a triangle of a Delaunay triangulation of a point set
X is in conflict with a point x /∈ X if its circumcircle contains that point. Furthermore,
the vertices of all triangles in conflict with x ∈ C (X) form the set its natural neighbors.

We extend this to points outside the convex hull by calling an unbounded triangle in con-
flict with a point x if it is in the corresponding unbounded circumcircle. From Figure 8.8
is easy to verify that the vertices of all unbounded triangles in conflict is composed of the

144



8.6 Projective Exterior Domain Coordinates

natural neighbors of x plus the set of edge normals from which the unbounded triangles
are built.

8.6.2.3 Local Coordinates in Unbounded Triangles

In an unbounded triangle made of two points a, b, and the vector v, an affine basis of
R2 is given by a; b− a,v. Every point has the unique representation

x = a + λ1(b− a) + λ2v = (1− λ1)a + λ1b + λ2v

where 1− λ1, λ1 are affine coefficients, but λ2 is not.

In an unbounded triangle made of one point a, and two linearly independent vectors v,
w, an affine basis of R2 is given by a; v,w, where every point trivially has the unique
representation

x = a + λ1v + λ2w.

8.6.3 Extrapolation Using Brown’s Approach on Unbounded Circumcircles

With unbounded triangles and circumcircles we can use Brown’s construction to build an
interpolant that agrees with Sibson’s interpolant inside the convex hull and continuously
extends outside almost always, shown in Figure 8.9(d). The interpolant shows artifacts
in general if there are sliver triangles on the convex hull because it honors the interpolant
inside the convex hull, and will be discontinuous for collinear data sites on the convex
hull.

The interpolant is evaluated for a point x ∈ R2 using affine weights λ that agree with
Sibson coordinates inside the convex hull but are no barycentric coordinates outside. If
x ∈ C (X), then we define λ(x) := λsib(x), which can be computed using weight functions
(3.7). We now focus on the construction of the affine weights λ(x) for x /∈ C (X).

Let T be the set of Delaunay triangles and T∞ the set of unbounded triangles of a
Delaunay triangulation of X. We define X∞ := X ∪ {v1, . . . ,vk} ⊂ Rn as the union of
data sites and points at infinity. Outside the convex hull, we determine the set of triangles
in conflict with x, say T1, . . . , Tk ∈ T ∪T∞, where we omit all unbounded triangles formed
by a point and two vectors. For x ∈ Ωext, i.e., the union of circumcircles, there are triangles
Ti ∈ T in conflict, and we define ψi like in (3.7), thus extending the natural neighbor
coordinates to Ωext \ C (X). Note that ψsib is negative outside the convex hull.

In every remaining triangle t(a,b,v) ∈ T∞, we compute local coordinates λa, λb, λv for
x as proposed in Section 8.6.2.3. For interpolation purposes, we need to assign values to
the points at infinity. Considering that v has been constructed from a and b by

v =
[
b2 − a2

a1 − b1

]
= (b− a)⊥,

we assume an even contribution of a and b to the point at infinity represented by v.
We can move the contribution of v into the affine weights for the vertices, given by

145



Natural Neighbor Extrapolation

(a) Setting (b) Isib

(c) Ebro(Ibro) (d) Epex(Isib)

Figure 8.9: Comparison of Brown’s method and extrapolation based on projective exterior coordi-
nates. The circle marks the region where a discontinuity arises in Brown’s approach is
not present with projective exterior coordinates. (a) Data set. (b) Sibson’s interpolant.
(c) Brown’s extrapolation method. (d) Extrapolation based on projective exterior co-
ordinates.

αa := (λa + λv/2)/(λa + λb + λv) and αb := (λb + λv/2)/(λa + λb + λv).

Since we assume unit vectors, λv is the distance of x to the circumcircle, which is the line
segment supporting ab. Then, the blending function for a user control power β associated
with the affine weights αa and αb is

ψi(x) = (λv)β,

where we choose β = 3 to yield C2 continuous coordinates outside the convex hull.

146



8.7 Ghost Points for Natural Neighbor Interpolation

(a) (b)

Figure 8.10: (a) Sites X with their convex hull and the Voronoi diagram drawn as solid lines,
showing unbounded Voronoi tiles for vertices on the convex hull. (b) The same setting
with some ad-hoc choice of ghost points XG added, both extending the convex hull
and bounding the previously unbounded Voronoi tiles.

8.7 Ghost Points for Natural Neighbor Interpolation

In this section we present our ghost point-based modification of natural neighbor inter-
polants. We first discuss the general idea in Section 8.7.1, then introduce the concepts
of dismissed and assigned ghost points in Section 8.7.2, and present concrete placement
strategies in Section 8.7.3 and Section 8.7.4.

Our method concentrates on discrete data, i.e., given at points. While it is possible to
extend it to transfinite data, we refrain from discussion of such methods in this paper.

8.7.1 Ghost Point Idea

The ghost point concept entails the modification / enrichment of the data set such that
an interpolation method that is initially defined only in a limited domain can now be
applied on a larger domain. An example of ghost points along with their influence on the
Voronoi diagram of a set of sites is shown in Figure 8.10. Interpolation by the ghost point
method is comprised of the following steps.

1. Construct ghost points XG ⊂ R2 from X, where XG ∩X = ∅.
2. Compute any natural neighbor coordinates λG for x0 with respect to X ∪XG.

3a. Dismissed Ghostpoints (Option 1)

1. Dismiss the coefficients from λG corresponding to ghost points and renormal-
ize, yielding affine coefficients α.

2. Combine values from Z using α, or blend the extrapolated Taylor polynomials
of the corresponding points.

147



Natural Neighbor Extrapolation

3b. Assigned Ghostpoints (Option 2)

1. Assign values and derivatives to the points in XG.
2. Proceed with an arbitrary natural neighbor interpolation scheme.

Crucial are the placement of the ghost points in Step 1, and the assignment of values to
the ghost points in Step 3b.

We now describe the main issues of extending natural neighbor interpolants using ghost
points and relate them to the rationale behind our ghost point framework.

(a) (b)

Figure 8.11: (a) Data sites (solid) are used to place ghost points (hollow) in a structured setting.
(b) Arbitrary ghost point choice in an unstructured setting.

Rigid Invariance The placement of ghost points should be invariant under rigid trans-
formations. In a structured setting as shown in Figure 8.11(a), where data is distributed
over a grid, ghost points can trivially be generated by extending the grid. Since such an
extension is not available in scattered data as shown in Figure 8.11(b), we anchor the
ghost point construction at the vertices and edges of the convex hull, which makes the
construction invariant under rigid transformations.

Finiteness Any concrete choice of ghost points leads to an extended domain that is again
finite. To allow evaluation of the interpolant at an arbitrary position outside the convex
hull, the ghost point construction must either recursively continue until the position is
covered, or the placement of ghost points must be dynamic in that it takes the actual
evaluation position into account. In this paper, we only focus on the second approach of
dynamic ghost points.

One major property of natural neighbor interpolation is its continuous dependence on the
coordinates of the data sites. By making the ghost point coordinates depend smoothly
on the position of the evaluation position, we maintain the continuity of the interpolant
even in its extended domain.

Artifact Removal Tessellation-based interpolants suffer severe artifacts in case of slightly
concave data site distributions at the boundary because of long, skinny triangles or poly-
gons, as shown in Figure 8.27(a) and (b). Natural neighbor interpolants have similar
problems due to the linear precision on the convex hull, shown in Figure 8.27(c), where
the following observation is useful. The “perfect” data site distribution for natural neigh-
bor interpolation is completely homogeneous, which roughly means the same density of
neighbors in every direction. The corresponding “degenerate” case occurs on the con-
vex hull, where the outside completely lacks neighbors. The seamless transition between

148



8.7 Ghost Points for Natural Neighbor Interpolation

these two extrema is a core advantage of natural neighbor interpolation that makes it
cope so well with very inhomogeneous site distributions. The distance from the convex
hull at which ghost points are placed plays a crucial role in overcoming artifacts. We
place ghost points such that the original natural neighbor interpolant is augmented near
the boundary of the convex hull, where the local data site density should be considered
in the computation of an offset distance, and try to provide ghost points that mimic the
perfect setting.

The boundary artifacts have in part been overcome by Cueto et al. in [CDG00, CCD02],
who applied density-scaled α-shapes that allow the restriction of the domain to a concave
shape in which undesired triangles are omitted.

Reproduction Power While ghost point positions determine the domain over which an
extended interpolant is defined, the interpolant itself also depends on the values at the
ghost points. In how far the reproduction power of the interpolant is preserved by the
ghost point framework depends on the generated values. To this end, we propose two
solutions which we coin “dismissed” and “assigned” ghost points.

8.7.2 Assigned vs. Dismissed Ghost Points

Figure 8.12: Illustration of sub-tiles used in the dismissed ghost
point method. The areas of the shaded polygons are
used to determine the affine weights by which to mix
the values at the corresponding data sites (drawn
solid).

By default, ghost points do not carry any data besides their coordinates. Two options
exists to deal with this issue when evaluating a natural neighbor interpolant that builds
on these data.

The first option, called “dismissed ghost points,” proceeds as follows. If λ = (λ1, . . . , λm) ∈
Rm are natural neighbor coordinates of x in

x =
m∑
i=1

λi(x)xi, x1, . . .xk ∈ X, xk+1, . . . ,xm ∈ XG,

and k > 0, then γ = (λ1, . . . , λk)/(λ1 + · · · + λk) ∈ Rk is a set of affine coefficients that
result from ignoring the ghost point contributions. This situation is shown in Figure 8.12.
Because they fulfill the Lagrange property γi(xj) = δij , these affine coefficients can be
used for interpolation in ψ(γ(x)). Due to the loss of the local coordinate property, which is
crucial in the smooth constructions of Sibson, Farin, and Hiyoshi, the resulting interpolant
is only C0 at the vertices being natural neighbors of ghost points. Along a ray pointing

149



Natural Neighbor Extrapolation

away from the data sites, the interpolant asymptotically converges towards a constant
function. However, there might be situations where this behavior is sufficient.

Because no values are required at the data points, we have considerable freedom in their
placement, our only restriction being invariance under rigid transformations. We have
not yet exploited this particular possibility and provide results for the same placement
strategies used in assigned ghost points.

The second option, called “assigned ghost points,” lies in generating feasible data at ghost
points by extrapolating the Taylor polynomials from the data sites that were used in the
construction of the ghost point. This required link between data sites and ghost points
imposes some constraints on the construction. The concrete implementation of assigned
ghost points depends on the placement strategy; we use two straight-forward ways to
propagate the data including derivatives from convex hull vertices to the ghost points.

In particular, if a ghost point xGi is constructed from the convex hull vertex xC
i with

the associated Taylor polynomial zi, and a = xGi − xC
i is the relative position of xGi with

respect to xC
i , then we assign the Taylor expansion zi(a+x) to xGi . If a ghost point xGmi is

constructed from the convex hull edge xC
i xC

i+1 we proceed as follows. For a1 = xGmi −xC
i

and a2 = xGmi − xC
i+1, the Taylor polynomial at xGmi is taken to be the average of the

Taylor expansions zi(a1+x) and zi+1(a2+x). For example, if zi(x) = zi+∇ix+xTHix/2,
with zi, ∇i, and Hi denoting value, gradient, and Hessian, then the Taylor polynomial
at the ghost point xGi is given by

zGi (x) = zi(a + x) = zi(a)︸ ︷︷ ︸
=: zGi

+ (∇i + Hia)︸ ︷︷ ︸
=: ∇Gi

·x + xT ·Hi︸︷︷︸
=: H G

i

·x/2.

8.7.3 Static Ghost Point Placement

A static method places ghost points at fixed positions and allows a limited expansion of the
domain. If the required amount of extrapolation is small, this method delivers satisfying
results and is computationally less expensive than a dynamic approach. There are fewer
restrictions on the placement of ghost points in the static case, and the dynamic ghost
point methods discussed in Section 8.7.4 become static if the distance of the evaluation
position to the convex hull is always assumed zero.

8.7.3.1 Isosceles Triangles Above Convex Hull Edges

The first static approach is an ad-hoc approach that performs moderately well and allows
for a small extension of the convex hull. For every convex hull edge, we offset its midpoint
along its normal by a distance equal to the edge length, as illustrated in Figure 8.13.

150



8.7 Ghost Points for Natural Neighbor Interpolation

(a) (b)

Figure 8.13: (a) Ghost point construction by offsetting the midpoint of each convex hull edge
along its normal, the old and the new convex hull are drawn. (b) Blending regions
in which the ghost points “pick up” the natural neighbor interpolant and provide a
transition to the outside.

Values can be assigned to the ghost points according to the approach presented in Sec-
tion 8.7.2 by taking the average of the extrapolated Taylor polynomials at the vertices of
the edge supporting the ghost point.

8.7.3.2 Densely Sampled Enclosing Circle

(a) (b) (c)

Figure 8.14: (a) Data set and the enclosing ghost points for a circle with diameter two times
that of the smallest enclosing circle. (b) Circumcircles induced by the ghost points,
notice that for dense point samples, there is almost no transition area. (c) Bounded
Voronoi tiles of the original sites, some query positions and their associated virtual
tiles. The darker color depict the area of the virtual tile covering the Voronoi tile of
a ghost point. This will be ignored when the dismissed ghost point approach is used.

The second construction determines the smallest enclosing circle of the data set, and
places ghost points on a circle with the same center and radius scaled by a factor β. A
possible extension of this idea is to use the smallest enclosing ellipse.

151



Natural Neighbor Extrapolation

(a) (b)

Figure 8.15: (a) Circumcircles induced by ghost points placed on a circle with radius a hundred
times that of the smallest enclosing circle. (b) Close-up of the original data. Notice
how the circumcircles align with the convex hull edges.

0

0 =convex hull

d

r

g
h
o
st

p
o
in

t
o
ff

se
t

ϕ(r; d)

Figure 8.16: The graph of ϕ(r; d).

An example for β = 2.0 is shown in Figure 8.14. It is apparent that for small scale
structures on the convex hull, the blending overlap of the circumcircles is less prominent.
This becomes even clearer when looking at Figure 8.15, where ghost points are placed
on a circle with β = 100.0. As β → ∞, we arrive at a setting similar to the unbounded
circumcircles in Section 8.6.3, and the transitions provided by the circumcircles vanish,
resulting in a C0 transition.

Furthermore, it must be noted that there is no obvious way to assign values to the ghost
points other than the mean value of the data set. Considering the complexity concerns
worded in Section 6.5, it is not feasible to use this construction for extrapolation with
Hiyoshi’s interpolant as the number of neighbors is naturally extraordinarily high.

But if used with the dismissed ghost point strategy, this construction delivers reasonable
results as we see in the comparisons in Section 8.8.

8.7.4 Dynamic Ghost Point Placement

A dynamic ghost point method constructs an adequately expanded convex hull for every
evaluation point p ∈ Rn, with the ghost points’ coordinates continuously depending on
that of p. Let d := d(p,C (X)) = minx∈C (X) ‖x − p‖ be the distance of p to the convex
hull of the data sites. We propose to place the ghost points at a distance twice as far

152



8.7 Ghost Points for Natural Neighbor Interpolation

from the convex hull as p such that it is always in the middle of some enclosing points.
It is important that ghost points are distinct, since otherwise the family of interpolants
parameterized by d is no longer continuous with respect to the evaluation position. We
model the link between d and the coordinates of the ghost points using a monotone,
smooth function ϕ(d) such that ϕ(d) ≥ 2d. In our examples, we choose the piecewise
quartic C2 function ϕ that blends between an initial, constant distance r and 2d over the
interval [0, r] as shown in Figure 8.16. The function is given by

ϕ(r; d) =

{
r + 2d3/r2 − d4/r3 if d < r

2d else.

An extension of ϕ to higher smoothness is straightforward, and any monotone, smooth
function whose slope converges to roughly two is appropriate. The parameter r depends
on the individual setting and will be discussed along with the proposed ghost point
approaches.

Dynamic Convex Hull Offset (CHO) We generate ghost points xGi by displacing the
convex hull vertices xC

i such that the new convex hull edges are parallel to the old convex
hull edges at a distance of ϕ(r; d), as shown in Figure 8.17(a), and call this the convex
hull offset (CHO) strategy. To make the ghost point distribution more homogeneous, we
insert additional ghost points xGmi on the new convex hull such that they project onto the
mid-points (xC

i + xC
i+1)/2 of the old convex hull edges, where index arithmetic is modulo

the number of convex hull vertices. To ensure that the evaluation position p is contained
within the convex hull of the ghost points, ϕ(r; d) ≥ d must hold. Since ϕ(r; d) ≥ 2d, it
is furthermore guaranteed that p lies well away from the boundary of the convex hull.
The advantage of this particular construction is the association between ghost points and
data sites, which allows a meaningful assignment of values and derivatives to the ghost
points according to Section 8.7.2. The effect of this assignment is shown in Figure 8.18 for
the extrapolation of linear Taylor polynomials. When applying this approach to higher
dimensions, we suggest to use a ghost point for every 1, 2, . . . , n−1-simplex on the convex
hull, i.e., for vertices, edges, and triangles in 3D.

The two major smooth natural neighbor interpolants available, Farin’s C1 and Hiyoshi’s
C2 interpolant, have their reproduction power degraded by one as soon as their evalu-
ation involves ghost points, as we explain in the following. Both interpolants internally
use Bézier simplices to model the interpolation constraints given by the derivative data.
Thanks to the concept of degree elevation by which they determine underconstrained
control points, Farin’s interpolant has second order precision for first degree Taylor poly-
nomials at the data points, and Hiyoshi’s interpolant has third order precision for second
degree Taylor polynomials. As described in the paragraph on “Reproduction Power” on
page 149, the data at ghost points are extrapolated from the Taylor polynomials at the
convex hull data points used in their construction. Consequently, the data at the ghost
points does in general not agree with the function reproduced by the interpolant in the
interior and the reproduction power of the extrapolated interpolant is degraded by one
wherever a ghost point is involved in the evaluation.

A drawback of the CHO strategy results from offsetting all edges by the same amount.

153



Natural Neighbor Extrapolation

(a) (b) (c)

Figure 8.17: Ghost points (hollow) in the dynamic convex hull offset approach. (a) The initial
setting for d = 0. (b) The corresponding circumcircles, providing the blending re-
gions. (c) Convex hull displayed as solid lines with interior below. Only circumcircles
involving ghost points are displayed. The shaded blending regions indicate where
the original natural neighbor interpolant is augmented to alleviate the convex hull
artifacts, the region being much less pronounced at the short edge in the middle.

(a) (b)

Figure 8.18: (a) The virtual tile evolution for evaluation positions (drawn as thick rings) moving
away from the data sites, with ghost points (small rings) moving away as well. (b)
Perspective 2.5D view of the setting from (a), the gradients shown as tilted rectangles
placed at the data sites.

Dense data requires a small, sparse data a large offset, as shown in Figure 8.17(c). The
more the density of data sites varies along the convex hull, the bigger a compromise the
choice of the global offset becomes.

Because ghost points change their position based on the evaluation position, the Delaunay
triangulation to facilitate access to the Voronoi diagram suffers frequent updates as well.
An evaluation of the interpolant over a grid would benefit from a dynamic update strategy
that minimizes the amount of updates, which will be subject of further research. For
random access to the interpolant we suggest to construct for every evaluation a small,
local Delaunay triangulation from which the classical natural neighbor interpolant can
be evaluated. First, all vertices of old simplices in conflict with the evaluation position
must be determined. Then, all ghost points depending on any of these vertices must be
inserted into the local Delaunay triangulation, which usually accesses convex hull vertices
additional to the ones already involved.

154



8.7 Ghost Points for Natural Neighbor Interpolation

Dynamic Dense Circle Placement (DDC) In this strategy, we opt to determine the
smallest enclosing circle of the data set, double its radius and place evenly distributed
ghost points on it, as shown in Figure 8.19(b). The resulting static ghost point method
is similar to the “windowing” approach of Owen in [Owe93], where the ghost points play
the role of the window boundary. In the dynamic ghost point setting, we choose r as
the radius of the smallest enclosing circle such that the ghost points are smoothly offset
starting with a circle of radius 2r.

Because there is no useful association between ghost points and data sites, we can either
use the dismissed ghost point approach or assign the mean value of the data at the data
sites. Neither of these choices is optimal. The first extrapolates a constant values repre-
senting a weighted average of the data at visible convex hull data sites along rays away
from the convex hull, but is only C0. The second provides a globally smooth interpolant,
but provides only a uniform, constant asymptotic behavior outside.

155



Natural Neighbor Extrapolation

(a)

(b)

Figure 8.19: (a) Development of the Voronoi diagram of X (solid dots) and XG (thin, hollow
dots) for a sequence of query positions (thick, hollow dots) ranging from inside to
outside the convex hull of X. (b) Same visualization for the dense circle approach.

156



8.8 Visual Comparison of Extrapolation Methods

8.8 Visual Comparison of Extrapolation Methods

In this section we display some selected, representative height field visualizations of several
approaches discussed so far. The selection of data sets is such that the main issues are
shown.

8.8.1 Tame Data Set

(a) (b) Ipl (c) Ifar

Figure 8.20: (a) A very well behaved data set without any challenging spatial constellations. (b)
Piecewise linear interpolation. (c) Farin’s C1 interpolant.

The tame data set, shown in Figure 8.20, contains no challenging configurations and is well
handled by all considered extrapolation methods. It allows to get an idea of the function
shape produced by the individual extrapolation schemes apart from critical geometric
constellations, shown in Figure 8.21.

157



Natural Neighbor Extrapolation

(a) EalfB(Ipl) (b) Ebro(Ibro)

(c) Eid(IrbfW) (d) Eid(I idwMQ)

(e) Echo(InnF) (f) Echo(InnH)

Figure 8.21: The displayed extrapolation schemes all cope well with the tame data set. Gradients
have been provided at the boundary vertices.

158



8.8 Visual Comparison of Extrapolation Methods

8.8.2 Oscillation Data Set

(a) (b) Ipl (c) Ifar

Figure 8.22: (a) A data set in which the data sites next to the boundary take alternating values
along the boundary. (b) Piecewise linear interpolation. (c) Farin’s C1 interpolant.

In this data set, shown in Figure 8.22, the values at the data sites next to the boundary
alternate along the boundary, which also results in alternating gradients of the interpolant
along the boundary for local interpolation schemes. This data set illustrates changes
between locally different function shapes.

Alfeld’s extrapolation picks up the gradient of the piecewise linear interpolant inside and
blends them outside, resulting in expected behavior in Figure 8.23(a). Brown’s extrapo-
lation also produces a pleasant-looking transition between outside and inside, yet suffers
moderate overshoots from Brown’s interpolation scheme inside in Figure 8.23(b).

The radial basis function approach produces significant overshoots, while providing a very
pleasant transition to the outside in Figure 8.23(c). With inverse distance weighting, the
interpolant locally adapts well to the data, while showing some slight wriggles outside in
Figure 8.23(d). Although the interpolant has only finite extent, this is not visible in the
image due to the limited evaluation domain for the height field.

Since in this data set, both values and gradients at the convex hull vertices are zero, the
corresponding ghost point extrapolation simply produces local transitions to the constant
zero function outside, unaffected by the oscillations inside in Figure 8.23(e) and (f).

159



Natural Neighbor Extrapolation

(a) EalfB(Ipl) (b) Ebro(Ibro)

(c) Eid(IrbfW) (d) Eid(I idwMQ)

(e) Echo(InnF) (f) Echo(InnH)

Figure 8.23: Extrapolation schemes applied to the oscillating data set. The values and derivative
data for convex hull vertices are zero. (a), (b) Local extrapolation based on tessel-
lations. (c), (d) Global interpolants. (e), (f) Natural neighbor extrapolation using
ghost points.

160



8.8 Visual Comparison of Extrapolation Methods

8.8.3 Flip Data Set

(a)

(b)

(c)

Figure 8.24: (a) Two almost identical data sets, with different tessellations. (b) Linear interpo-
lation in the underlying triangulation, the discontinuous change of the interpolant
due to the edge flip is clearly visible. (c) Farin’s C1 interpolant does not have this
problem.

The flip data set, shown in Figure 8.24(a), illustrates the “similar results from similar
input” aspect, which is apparently problematic for tessellation-based approaches. Fig-
ure 8.24(b) and (c) show interpolants with restriction to the convex hull of the data. The
nearly identical data sets were deliberately chosen such that a Delaunay edge flip occurs
among them. On the following pages we show representative extrapolation methods ap-
plied to the different data sets next to each other in each line. The choice of the Delaunay
triangulation is no real restriction since for every tessellation, there are situations at which
topological changes occur. We show the extrapolation of tessellation-based interpolants
in Figure 8.25(a) and (b), where the difference between left and right images are clearly
visible. The global interpolants shown in in Figure 8.25(c) and Figure 8.26(a) as well
as the natural neighbor interpolants with assigned ghost points using the CHO strategy
shown in Figure 8.26(b) and (c) are not affected by the change in the triangulation.

161



Natural Neighbor Extrapolation

(a) EalfB(Ipl)

(b) Ebro(Ibro)

(c) Eid(IrbfW)

Figure 8.25: (a), (b) The discontinuous change of the interpolant in D is propagated to DE . (c)
Wendland’s RBF interpolant is independent of any triangulation.

162



8.8 Visual Comparison of Extrapolation Methods

(a) Eid(I idwMQ)

(b) Echo(InnF)

(c) Echo(InnH)

Figure 8.26: (a) Like the RBF interpolant in Figure 8.25(c), Nielson’s modified quadratic Shep-
ard interpolant is independent of any triangulation. The weight functions extend far
enough to cover the displayed domain. (b), (c) Natural neighbor interpolants extrap-
olated using the CHO ghost point strategy have no issues either.

163



Natural Neighbor Extrapolation

8.8.4 Sliver Data Set

(a) Setting (b) Ipl (c) Ifar

Figure 8.27: Benchmark data set for convex hull artifacts. (a) 2D data set with values indicated
by vertical lines. The data distribution is slightly concave near the boundary of the
convex hull. (b) Linear interpolation in the underlying triangulation. The observable
artifacts are apparent in a similar fashion in any tessellation-based interpolant. (c)
Farin’s C1 interpolant. Although natural neighbor based interpolation is generally
independent of a particular triangulation, it suffers similar artifacts on the boundary
of the convex hull, where the interpolant is solely determined by the data at adjacent
convex hull sites.

The sliver data, shown in Figure 8.27, provides a setting in which the convex hull arti-
facts of tessellation-based and natural neighbor interpolants become apparent. The images
show how the tessellation based extrapolation methods simply continue the degenerate lo-
cal shape, while ghost point methods as well as global interpolants succeed in overcoming
the artifacts.

Figure 8.28 shows a range of extrapolation methods applied to the sliver data set. The
important difference to notice between convex hull extension schemes in Figure 8.28(a)
and (b) and the remaining ones in (c) through (d) is the influence that data near the con-
vex hull has on the shape of the interpolant outside the convex hull. The upper row shows
an inadequate dependency, while the lower two rows show intuitively feasible behavior.

164



8.8 Visual Comparison of Extrapolation Methods

(a) EalfB(Ipl) (b) Ebro(Ibro)

(c) Echo(InnF), assigned ghost points (d) Echo(InnS), dismissed ghost points

(e) Eid(I idwMQ) (f) Eid(IrbfW)

Figure 8.28: (a), (b) The local extrapolation schemes smoothly continue the interpolants where
their original domain ends. (c), (d) Ghost point methods remove the artifacts. (e),
(f) Global methods, being independent of the tessellation, show no artifacts either.

165



Natural Neighbor Extrapolation

8.8.5 Artifacts and Asymptotic Behavior

Figure 8.29: The data set including second degree Taylor polynomials of cos ‖x‖ have been sam-
pled at the indicated positions.

The following illustrations are based on second degree Taylor polynomials sampled from
cos ‖x‖ over a small region as shown in Figure 8.29. The images display the extrapo-
lated height field above the error field, the latter showing the difference between the
interpolant and the cosine function, where a plane region indicates low error. Because of
the interpolation property, the absence of wriggles proves high absolute accuracy of the
interpolant.

The first aspect addressed by this example is the artifact removal performed by the
ghost point extension near the convex hull, which is shown in Figure 8.30 and 8.31.
Given the non-polynomial nature of the cosine function, all considered interpolants must
diverge from the function in the exterior, and we are interested in how gracefully they
start to deviate. We note that Figure 8.30(a) and (b) display artifacts near the convex
hull, while interpolating nicely inside. Figure 8.30(c) and (d) display the dynamic CHO
strategy applied to do C1 respective C2 extrapolation. The important detail here is how
the interpolant starts to deviate from the function at the boundary of the flat region.
Another interesting detail not directly related to extrapolation is how much better the
interpolation with InnF looks compared to InnH. We further show results of the DDC
strategy in Figure 8.31(a), as well as the result of applying Wendland’s RBF interpolant in
Figure 8.31(b). RBF generally possess good approximation quality for smooth functions,
so it comes at no surprise that these give the visually most pleasing results. The results
of inverse distance weighted methods in Figure 8.31(c) and (d) show that extrapolation
in case of I idwQ delivers a smooth function outside, yet the interpolated function in the
interior is of very low quality.

166



8.8 Visual Comparison of Extrapolation Methods

(a) InnF (b) InnH

(c) Echo(InnF) (d) Echo(InnH)

Figure 8.30: (a), (b) Farin’s and Hiyoshi’s interpolants applied to the data set. The artifacts in
the front and on the right side are clearly visible. (c), (d) Both interpolants aug-
mented by the CHO ghost point strategy. An interesting result is the apparently
worse performance of the C2 interpolant in terms of wriggles.

167



Natural Neighbor Extrapolation

(a) Eddc(InnF), dismissed ghost points (b) Eid(IrbfW)

(c) Eid(I idwMQ) (d) Eid(I idwQ)

Figure 8.31: (a) The DDC ghost point approach exhibits a rather abrupt change between inside
and outside. (b) RBFs perform better than ghost point-augmented natural neigh-
bor interpolants in (a) and Figure 8.30 both in terms of transition between inside
and outside, and approximation quality. (c) Nielson’s modified quadratic Shepard’s
interpolant is neither suited for interpolation nor extrapolation. (d) Away from the
convex hull, Shepard’s interpolant provides a smooth function, yet the approximation
quality in the interior is not satisfactory.

168



8.8 Visual Comparison of Extrapolation Methods

The second considered aspect, shown in Figures 8.32 and 8.33, sets ghost point-augmented
natural neighbor interpolants apart from RBFs in that they follow the last observed trend
at the convex hull rather than the global characteristic of the data set. This particular
property gains importance as one usually observes heterogeneous characteristics over large
data sets, and extrapolation should honor the local characteristic where it is performed.
In particular, compactly supported and quasi-local radial basis functions converge to the
globally fitted polynomial. Unbounded RBFs show even worse behavior in that they di-
verge in an uncontrolled way. Natural neighbor interpolation based on dynamic, assigned
ghost points, on the other hand, converge towards a mixture of Taylor polynomials at con-
vex hull vertices that are visible from the evaluation position, and can vary for different
parts of the convex hull.

Except for Figure 8.30(d), we omit results for Hiyoshi’s C2 interpolant due to infeasible
computation times. In each evaluation with n natural neighbors, Hiyoshi’s interpolant
requires the construction of an n-variate, quintic Bézier simplex from the second degree
Taylor polynomials at the natural neighbors, which has complexity O(n5) with a large
constant factor. Outside C (X), the natural neighborhood of the evaluation point easily
becomes as large as 30 or more points, and the sampling of the height-field for visualization
becomes infeasible.

169



Natural Neighbor Extrapolation

(a) Eddc(InnS), assigned mean values (b) Echo(InnF), linear Taylor extrapolation

(c) Echo(InnF), quadratic Taylor extrapolation

Figure 8.32: Ghost points are assigned (a) the mean value of all boundary data sites, (b) extrap-
olated linear Taylor polynomials, (c) extrapolated quadratic Taylor polynomials.

170



8.8 Visual Comparison of Extrapolation Methods

(a) Eid(IrbfG), constant precision (b) Eid(IrbfG), linear precision

(c) Eid(IrbfG), quadratic precision

Figure 8.33: The asymptotic behavior of quasi-local radial basis functions based on underlying
polynomials of (a) degree zero, (b) degree one, and (c) degree 2.

171



Natural Neighbor Extrapolation

8.9 Conclusion and Future Work

The main objective of this paper was the presentation of natural neighbor extrapolation
based on dynamic ghost points. To provide an adequate context, we first reviewed avail-
able extrapolation approaches, which we subjected to a comparative assessment based on
a characterization that applies to scattered data extrapolation in general.

Natural neighbor interpolation is by default limited to the convex hull of the data sites,
and exhibits undesirable artifacts near the boundary of the convex hull. We presented
a framework for the extrapolation of natural neighbor interpolants that extends their
domain to all of space, while maintaining all desirable properties of the interpolant. By
augmenting the original data set with dynamically constructed ghost points, we overcome
the boundary artifacts inherent to natural neighbor interpolation. Furthermore, we are
able to extrapolate local trends defined by the derivative data at the data sites in a local
fashion, which is considered an advantage over RBF interpolants.

It is apparent that extrapolation without any further constraints is an ill-posed problem.
For a set of feasible assumptions, RBFs and the proposed ghost point construction can
clearly be identified as the approaches providing results of highest quality. RBF inter-
polants are global in nature, but possess the better approximation quality in general,
while natural neighbor interpolants based on ghost points provide local scattered data
interpolation that better adapts to local characteristics of the data set.

One essential requirement for scattered data interpolation that this paper pointed out
was the continuous dependency of an interpolant with respect to the input data, which
adds to the reliability of the interpolation scheme. Natural neighbor interpolants fulfill
this requirement as long as the data sites are disjoint and the set of convex hull vertices
does not change. This latter constraint poses a limitation that should be overcome, and
which will be investigated in future work.

172



9 Adaptive Delaunay Tessellation

In this chapter we give a rigorous definition and prove fundamental properties of a recently
introduced mesh generation technique, called Adaptive Delaunay Tessellation.

This chapter builds upon the structures introduced in Section 2.3.4 on the Delaunay
triangulation, Section 2.3.5 on the Voronoi diagram, and Section 2.3.1 on non-convex
polygons in 2D. It furthermore uses notions introduced Section 2.4 on graphs.

9.1 Background

In [CSB+08], a novel tessellation technique, called Adaptive Delaunay Tessellation (Adt),
was introduced in the context of computational mechanics as a tool to support nodal inte-
gration schemes in the Finite Element Method. While focusing on potential applications,
the former presentation lacked rigorous proofs of the claimed geometric properties of the
Adt. This chapter gives pending proofs for the three main claims, uniqueness, connect-
edness, and coverage of the Voronoi tiles by adjacent Adt tiles.

We first introduce some terms and notions used throughout the rest of this chapter in
Section 9.3. Uniqueness and connectedness of the Adt are stated and proved in Sec-
tion 9.4.1 and Section 9.4.2. Section 9.4.3 introduces an alternative characterization of
the Adt as an interesting result that also simplifies the proof of the last treated property
in Section 9.4.4 on the coverage of the Voronoi tile of a vertex by Adt elements adjacent
to it.

9.2 Introduction

One building block in finite element analysis is the background tessellation of a spatial
domain, where requirements vary with the applications at hand. The corresponding field
of mesh generation traditionally focuses on the generation of both vertex positions and
connectivity, starting from a description of the domain boundary. Vertices are placed
heuristically to adaptively sample local features and maintain a good shape of the re-
sulting elements, although the discussion about the optimal shape is not settled even
for triangles [She02]. The tessellation can be done in ad-hoc constructions [Loh96], iter-
atively [TAD07], or based on guidance fields [BH96, ADA07] to name a few. In the rare
occasion of a predetermined set of vertices, the choice of methods is generally limited to
the constrained Delaunay triangulation or other, data-dependent, triangulations [HD06].

In [CSB+08], a novel tessellation technique, called Adaptive Delaunay Tessellation (Adt),
was introduced in the context of computational mechanics as a tool to support Voronoi-

173



Adaptive Delaunay Tessellation

based nodal integration schemes in the Finite Element Method. Its main contribution is a
simplified access to the element structure that supports nodal integration schemes based
on a robust and unique transformation of the Delaunay triangulation. While focusing on
the applications in linear elasticity, the presentation in [CSB+08] lacks rigorous proofs
for the geometric properties of the Adt which are uniqueness of the Adt, connectedness
of the Adt, and coverage of the Voronoi tiles by adjacent Adt tiles. These properties
are essential for the computation of the nodal integration scheme. The pending proofs for
these main claims are given in this chapter.

We start with a motivation for the Adt and introduce some notation used in the rest
of this chapter in Section 9.3. Uniqueness and connectedness of the Adt are stated and
proved in Sections 9.4.1 and 9.4.2. Section 9.4.3 introduces an alternative characterization
of the Adt to simplify the proof of the last important property in Section 9.4.4 on the
coverage of the Voronoi tile of a vertex by Adt elements adjacent to it. We discuss the
Adt in Section 9.5 and conclude in Section 9.6.

9.2.1 Linear Elasticity and Nodal Integration in the Finite Element Method

The Finite Element Method encompasses a wide range of applications to model complex
continuous phenomena based on a description composed of many small parts, called finite
elements, which allow a structurally simpler definition of the phenomenon. In the field
of computational mechanics, which is the main target of the Adt, one of the most basic
and well-studied problems is that of linear elasticity, for which we sketch the key aspects
in a simplified form.

The Finite Element Method typically requires the evaluation of the integral∫
Ω
∇ψ · f

for the so-called test function ψ, and some function f . In general, ψ is an interpolant that
is defined piecewise over the elements Ωi of the domain. This allows the decomposition
of the global integral into a sum of local integrals,∑

i

∫
Ωi

∇ψ · f.

This is the heart of the Finite Element Method and allows the numerical assessment of the
problem by concentrating on its local reformulation for each Ωi and the associated local
interpolant ψi = ψ|Ωi . Disadvantages of the element-based approach are the requirement
of derivatives of the test function ψ, and numerical problems if the elements Ωi are badly
shaped, as discussed in [She02].

One remedy for these problems is to turn to meshless methods, for which the discretization
focuses on vertices rather than elements. A meshless approach based on natural neighbor
coordinates has been proposed in [SMSB01]. Another meshless technique is nodal integra-
tion, as introduced by Chen et al. in [CWYY01]. Here, an alternative tessellation of the
domain is considered, where the vertices vj are enclosed by polygons Tj , with Ω =

⋃
j Tj

174



9.3 The Adaptive Delaunay Tessellation

and the above integral becomes ∑
j

∫
Tj

∇ψ · f,

assigning a part of the integral to each vertex vj rather than to an element Ωi. The
canonical choice for this tessellation is the Voronoi diagram of the vertices vj of the
background tessellation, restricted to Ω. The application of Stokes’ theorem allows to
write ∫

Tj

∇ψ · f =
∫
∂Tj

n · ψ · f,

where n is the outward pointing unit vector. By turning the area integral into a path
integral, no derivatives of ψ are required, but now the local integration domains Ti do
no longer correspond to the elements Ωj of the background tessellation. Therefore, the
computation of the path integral for each vertex can no longer be carried out on a per-
element basis, but requires the evaluation of the test function ψ at arbitrary positions
along ∂Tj .

9.2.2 Voronoi Tile Coverage in the ADT

By covering the Voronoi tile of a vertex with a minimal set of adjacent polygons, the
computational assessment of Voronoi-based nodal integration is greatly simplified. Fig-
ure 9.1 shows a set of scattered points covering a rectangular domain. The boundary of
the Voronoi tile shown in Figure 9.1(b) is a convex polygon that intersects certain trian-
gles in the Delaunay triangulation of the point set, which are not necessarily adjacent to
the Voronoi site. The Adt, on the other hand, consists of polygons that are big enough
to cover the whole Voronoi tile. Thus, by traversing the polygons adjacent to a vertex,
one has access to an area that completely covers the Voronoi tile of that vertex.

9.3 The Adaptive Delaunay Tessellation

Before presenting the main findings, we introduce the necessary notation and repeat some
important results.

We consider the canonical open ball topology on R2 and denote by
[
Ω
]

the topological
closure of a set Ω, by

]
Ω
[

its topological interior, and by ∂Ω :=
[
Ω
] \ ]Ω[ its topological

boundary. For a set X ⊂ R2 of points, we denote by C (X) =
]
C (X)

[ ∪ ∂C (X) the convex
hull of X.

We denote by (F,E) a partition of C (X) into polygonal faces f ∈ F that join along edges
e ∈ E. By Del(X) := (FDel, EDel) we refer to a Delaunay triangulation of X, composed
of triangular faces f ∈ FDel ⊂ X3 and edges e ∈ EDel ⊂ X2. We will use f and e to
both denote the set of vertices from X and their geometric realizations. Two faces f1

and f2 with f1 ∩ f2 = e ∈ EDel are called neighbors with common edge e. We consider
angles greater or equal π/2 as obtuse and a triangle with an obtuse interior angle is called
obtuse. The longest edge of an obtuse triangle f is opposite to its obtuse angle and will
be denoted by e>f = arg maxe∈f |e|. Whenever the term e>f is used, f implicitly represents

175



Adaptive Delaunay Tessellation

(a) (b)

(c) (d)

Figure 9.1: Example of an Adt tessellation. (a) The point cloud with its Voronoi diagram in
green and the Delaunay triangulation in black. (b) The closeup of a vertex with shaded
triangles depicting the necessary cover for its Voronoi tile. (c) The corresponding Adt
with polygons shaded according to valence. (d) In the closeup, it is apparent that the
adjacent Adt polygons cover the Voronoi tile.

an obtuse triangle. For a triangle f ∈ FDel we denote by cc(f) its circumcenter. Note
that a triangle f is obtuse if it does not contain cc(f) in its interior and that cc(f) lies
on the opposite side of e> as the obtuse angle.

We denote by G = (X, E), a graph over X, where X represents the set of graph vertices
and E ⊂ X×X the set of of edges. A sequence of vertices ρ = (x1, . . . ,xn), (xi,xi+1) ∈ E,
is a path of length |ρ| = n if none of its edges appears more than once, i.e., edges are
mutually distinct. A path is called closed if (xn,x1) ∈ E. We assume a path to be free
of loops of length one, i.e., edges (xi,xi). The Delaunay triangulation itself represents an
undirected, connected graph GDel = (X, EDel).

The Voronoi diagram of X is the partition of R2 into convex polygons Tx, called Voronoi
tiles of x, such that every point in Tx is not farther from x than from any other vertex
in X. For each vertex x ∈ X \ ∂C (X), its Voronoi tile is equal to Tx = C ({cc(f) | f ∈
FDel, x ∈ f}), and we also call x a Voronoi site.

176



9.4 Geometric Properties of the Adt

With these definitions the Adaptive Delaunay Tessellation is defined as in [CSB+08]:

Definition 9.1 (Adaptive Delaunay Tessellation) Let X ⊂ R2, Del(X) = (FDel, EDel)
and

E> = {e>f | f ∈ FDel ∧ e>f 6⊂ ∂C (X)}.
The tessellation of C (X) represented by (FAdt, EDel \E>), where FAdt is the set of faces
generated by merging triangles with common edges in E>, is called the Adaptive Delaunay
Tessellation Adt(X).

Thus, the Adt of a point set is the result of removing from a Delaunay triangulation of
X of each obtuse triangle the longest edge, if this is not a boundary edge. Since no new
edges are generated in Adt(X), each triangle f ∈ FDel is part of some polygon g ∈ FAdt,
which we denote by A (f) = g ⊃ f ∈ FDel.

9.4 Geometric Properties of the Adt

In this section we will discuss some of the geometric properties of Adt(X), i.e., unique-
ness, connectedness, and the inclusion of Voronoi tiles. The last property states that the
Voronoi tile of each x ∈ X is contained in the union of x’s adjacent faces from Adt(X).

9.4.1 Uniqueness of the Adt

Proposition 9.2 (Uniqueness) For any non-collinear set of points X ⊂ R2, Adt(X)
exists and is unique.

Proof 9.3 We will show that E> contains all edges of EDel that are non-unique.

For any non-collinear point set X, Del(X) exists, and is non-unique, if there are at
least n ≥ 4 points x1, . . . ,xn with a common empty circumcircle C with circumcenter
c, i.e., X∩ ]C[= ∅. The convex hull of these points can be triangulated arbitrarily by
edges e1, . . . , en−3 without violating the Delaunay condition, see Figure 9.2(a). Every ei
connects two points not neighboring on the circumcircle and belongs to two triangles of
the triangulation of C ({x1, . . . ,xn}). Because there is at most one non-obtuse triangle
containing the circumcenter c, every edge ei belong to at least one obtuse triangle. Fur-
thermore, every edge ei is the longest edge of the obtuse triangle that lies on the opposite
side of ei with respect to c. Thus, ei ∈ E>.

In case c lies on an edge ej, then ej ∈ E>, because at least one of its triangles is rectan-
gular, see Figure 9.2(b). So, all ei are in E>, and EDel \ E> is unique.

�

Remark 9.4 If in the above setting the common edge e of two triangles is passing through
the common circumcenter, both triangles are rectangular, i.e., obtuse, and e is removed.

177



Adaptive Delaunay Tessellation

c

ei

p2

p3

p4

p5

p6

p1

(a)

p2

p3

p4

ei

c

p5

p6

p1

(b)

Figure 9.2: Points x1, . . . ,xn on a common circumcircle C with center c inside a triangle (a) or
on an edge ej (b).

9.4.2 Connectedness of the Adt

Before stating the second geometric property, we introduce some results used in its proof.
For every obtuse triangle f with longest edge e>f and neighbor f ′, i.e., f ∩f ′ = e>f , we use
N(f) := f ′ to denote neighbor f ′ of f opposite to the obtuse angle. This relation imposes
a sub-graph of the dual Delaunay triangulation on the faces of Del(X). For non-obtuse
triangles or if e>f ⊂ ∂C (X), we set N(f) = ∅, and N(∅) = ∅. This induces the directed
graph

−→
GDel := (FDel,

−→
EDel), (9.1)

−→
EDel := { (f,N(f)) | f ∈ FDel ∧ N(f) 6= ∅}.

Each −→e ∈ −→EDel is associated with one Delaunay edge e ∈ E>.

In the proof we use the following lemma, which implies that the lengths of the longest
edges of obtuse triangles grow along a path in

−→
GDel.

Lemma 9.5 For f ∈ FDel with N(f) 6= ∅,

e>f 6= e>N(f) ⇒ |e>f | < |e>N(f)|. (9.2)

Proof 9.6 We first show that there cannot be obtuse angles facing the same edge unless
they are both right angles. Consider Figure 9.3(a) and assume 4ABC and 4CDA with
common edge AC are triangles in a Delaunay triangulation. Let D′ be a point on the
circumcircle C of 4ABC right of AC. Since �ABCD′ is a circular, simple quadrilateral,
∠ABC+∠CD′A = π. By the Delaunay criterion, D must either be on or outside C, and
comparison to the inscribed angle yields ∠CDA ≤ ∠CD′A = π−∠ABC. The only obtuse
angles that yield equality are ∠CDA = ∠ABC = π/2, in which case e>f = e>N(f).

In all other cases, i.e., e>f 6= e>N(f), we find e>f adjacent to the obtuse angle in N(f) and

178



9.4 Geometric Properties of the Adt

B

C

A

∠CDA
D

∠CD′A D′

∠ABC

(a)

f
e>f

n(f)

e>n(f)

(b)

Figure 9.3: (a) Two Delaunay triangles with the circumcircle of 4ABC. (b) |e>
f | < |e>

N(f)|.

therefore shorter than e>N(f), see Figure 9.3(b). This yields (9.2).

�

Now we can state the result which guarantees that the transformation from Delaunay to
adaptive Delaunay does not lead to unconnected elements such as orphaned vertices or
even disconnected sub-graphs.

Proposition 9.7 (Connectedness) For Adt(X) = (FAdt, EAdt) the graph
GAdt = (X, EAdt) is connected.

Proof 9.8 GAdt is a sub-graph of GDel, and GDel is connected. An edge of GDel is not
in GAdt if and only if its dual edge is in

−→
GDel. The smallest subset of GAdt which can be

disconnected consists of a single vertex. Boundary vertices cannot be disconnected, since
the duals of boundary edges are by definition not in

−→
GDel. An inner vertex in a Delaunay

triangulation has a minimum valence of three, which means it cannot be disconnected in
GAdt unless there is a closed path of length greater or equal to three in

−→
GDel.

We show that a path ρ can only be closed if it has length |ρ| = 2. Let without loss of
generality ρ = (f1, . . . , fn) be a path in

−→
GDel, i.e., fi+1 = N(fi). First assume e>fi

6= e>fi+1
,

1 ≤ i < n. With (9.2) we get

|e>f1 | < |e>f2 | < · · · < |e>fn
|.

If ρ were closed, N(fn) = f1 and e>fn
= f1 ∩ fn is an edge of f1 but larger than e>f1. Since

e>f1 is the largest edge in f1, ρ cannot be closed.

Now assume there is an i such that e>fi
= e>fi+1

. Since elements in ρ are mutually distinct
and N(fi+1) = fi, fi+1 is the last element in ρ and n = i + 1. For ρ to be closed,
N(fn) = f1 must hold. Thus

N(fn) = N(fi+1) = fi = f1,

179



Adaptive Delaunay Tessellation

which leaves i = 1 and n = 2, and ρ can only be closed if it has length 2. Since the longest
closed path in

−→
GDel has length |ρ| = 2, GAdt is connected.

�

Remark 9.9 (Implementation) From the above reasoning it appears that numerical
instabilities might flip the inequalities and result in ambiguous or even inconsistent results.
However, the only setting where the inequalities in (9.2) are “only just” fulfilled arises
with co-circular points, where the uniqueness of the Adt should be forced by allowing an
epsilon threshold.

9.4.3 An Alternative Characterization for the Adt

In the following, we make use of an alternative characterization of the Adt, involving the
following construction, see Figures 9.4(a) and 9.4(b).

Definition 9.10 (Polygonal Extension) For each triangular face f , define

PE(f) =
]
C (f ∪ {cc(f)})[ ∪ {cc(f)}

as the Polygonal Extension of f , where cc(f) denotes the circumcenter of f .

Note that PE(f) does not contain its boundary except for the circumcenter itself, which
is necessary to cover the case of rectangular triangles, as we will see later. We know that
if f is non-obtuse, we get

cc(f) ∈ ]f[, and
]
f
[

= PE(f). (9.3)

If f is obtuse, then PE(f) extends over e>f , and

cc(f) /∈ ]f[, and e>f ∩ PE(f) 6= ∅. (9.4)

The following lemma is required in the proof of Proposition 9.13.

Lemma 9.11 Let f be an obtuse triangle and f ′ = N(f) 6= ∅. Then,

PE(f) \ f ⊂ PE(f ′). (9.5)

Proof 9.12 Consider triangles f = 4ABC, f ′ = 4ACD and their circumcenters cc(f),
cc(f ′) in Figure 9.4(c). It is sufficient to show that the excess area PE(f) \ f given by]
C (A,C, cc(f))

[
is already contained in a subset of PE(f ′) given by

]
C (A,C, cc(f ′))

[
, as

illustrated in Figure 9.4(d).

By definition, f shares the e>f = AC with its neighbor f ′ = N(f). The circumcenters
cc(f) and cc(f ′) lie on the perpendicular bisector of e>f on the same side of e>f as D. By
the Delaunay empty circumcircle criterion, D is outside the circumcircle of f , and on the

180



9.4 Geometric Properties of the Adt

B

C

A

f

e>f1

c(f1)

(a) Triangle f and its circumcenter
cc(f).

B

C

A

PE(f1) c(f1)

(b) Polygonal extension PE(f).

B

C

A

D

f2

f1

c(f1) c(f2)

(c) Triangles f and f ′.

B

C

A

D

PE(f2)

PE(f1) \ f1

(d) PE(f) \ f in light gray and PE(f ′).

Figure 9.4: Geometric interpretation of the polygonal extension PE(f).

side of e>f opposite to B, thus the distance of cc(f ′) to e>f is greater or equal to that of
cc(f). Consequently,

C ({A,C, cc(f)} ⊂ C ({A,C, cc(f ′)}) ⊂ C ({A,C, cc(f ′), D}).

This relation also applies to the interior of these sets, which means

PE(f) \ f =
]
C ({A,C, cc(f)})[

⊂ ]
C ({A,C, cc(f ′), D})[ ∪ {cc(f ′)} = PE(f ′),

see Figure 9.4(d). Note that in case of a rectangular triangle, the circumcenter lies on its
obtuse edge, and

]
C ({A,C, cc(f)})[ = ∅ ⊂ PE(f ′) for arbitrary f ′.

�

Lemma 9.11 implies an equivalent characterization for the set of edges E> that are
removed when transforming a Delaunay triangulation into an Adt.

181



Adaptive Delaunay Tessellation

Proposition 9.13 Let Del(X) = (FDel, EDel) and E> as in Definition 9.1. Then

e ∈ E> ⇔ ∃f ∈ FDel : e ∩ PE(f) ∩ ]C (X)
[ 6= ∅.

So, an adaptive Delaunay tessellation can also be created by merging all triangles, whose
polygonal extensions intersect, into polygons.

Proof 9.14 ”⇒”: If e ∈ E>, then e = e>f for some obtuse f ∈ FDel, and
e ∩ ]C (X)

[ 6= ∅. Then, (9.4) yields also e ∩ PE(f) ∩ ]C (X)
[ 6= ∅.

”⇐”: Let e∩PE(f)∩ ]C (X)
[ 6= ∅ for an f ∈ FDel. If e is an edge of f then e = e>f and

e ∈ E>. Otherwise, e 6= e>f , and e∩PE(f) \ f 6= ∅. By Lemma 9.11 there exists an
obtuse triangle f ′ such that e ∩ PE(f ′) 6= ∅. This argument applies iteratively until
e is an edge of f ′. Since |FDel| is finite and the subset relation in Lemma 9.11 is
strict, this iteration terminates with a f ′ ∈ FDel such that e is an edge of f ′. The
final f ′ exists, otherwise e would intersect the interior of a triangle and Del(X)
was no triangulation.

�

The relation of triangles, polygonal extensions and Adt faces is captured in the following
result.

Proposition 9.15 For every f ∈ FDel,

f ⊆ [
PE(f)

] ∩ C (X) ⊆ A (f). (9.6)

Proof 9.16 The left inclusion is true by construction of PE(f) and f ⊆ C (X).

The right inclusion is more difficult to show. If a triangle f is non-obtuse, or rectangular,
cc(f) ∈ f and

[
PE(f)

]
= f ⊆ A (f). In all other cases, f is obtuse and cc(f) /∈ f . If e>f

is on the boundary of C (X), then
[
PE(f)

] ∩ C (X) = f ⊆ A (f). Otherwise, f is obtuse
and there is a triangle f ′ = N(f) such that

PE(f) \ f ⊆ PE(f ′) by (9.5),
⇒ PE(f) ⊆ f ∪ PE(f ′),
⇒ [

PE(f)
] ⊆ f ∪ [PE(f ′)

]
,

⇒ [
PE(f)

] ∩ C (X) ⊆ f ∪ [PE(f ′)
] ∩ C (X).

Since A (f) = A (f ′), the claim holds if we can prove
[
PE(f ′)

] ∩ C (X) ⊆ A (f ′). The
argument applies repeatedly until f ′ is non-obtuse, rectangular, or has its obtuse edge on
the boundary of C (X) following a path ρ in

−→
GDel. In the proof for Proposition 9.7 we

showed that every path ρ ends in a triangle f that is either non-obtuse, has e>f on the
convex hull, or in a loop consisting of two rectangular triangles. Therefore, the repeated
application of the argument terminates and the claim is proved.

�

182



9.4 Geometric Properties of the Adt

g1

g3

g2

p

Tp

(a) Tx ⊂ g1 ∪ g2 ∪ g3

f2

f1

cf1

cf2

p

(b)

PE(f2)

me

cf1

cf2

PE(f1)

A1
e

A2
e

p

(c)

PE(f2)

f1

cf2

cf1

Ae

p

(d)

Figure 9.5: Voronoi coverage of adjacent Adt tiles.

An important observation following immediately from the above Proposition is given in
the following corollary:

Corollary 9.17 For every f ∈ FDel with cc(f) ∈ C (X) : cc(f) ∈ A (f).

9.4.4 Coverage of Voronoi Tiles

The last property we are going to prove is the coverage of a vertex’ Voronoi tile by its
adjacent Adt tiles, as illustrated in Figure 9.5(a). With this property, the adjacency
information contained in the Adt is sufficient to access the whole area covered by the
Voronoi cell of a vertex.

Proposition 9.18 (Inclusion of Voronoi Tile) If Tx denotes the Voronoi tile of x ∈
X, then

Tx ∩ C (X) ⊂
⋃

g∈FAdt
g3x

g.

Proof 9.19 First assume that x /∈ ∂C (X), i.e., Tx is finite as in Figure 9.5(a). x has a
set of adjacent triangles {f}f3x, which in turn are adjacent via the edges {e}e3x. For each
edge e 3 x and triangles f1 ∩ f2 = e, we get a new triangle Ae = C ({x, cc(f1), cc(f2)}),
see Figure 9.5(b). This partitions Tx,

Tx =
⋃
e3x

Ae.

183



Adaptive Delaunay Tessellation

Tp ∩ C (P )

f2

cf2

cf1

e2f1

pe1

(a)

f1

p

cf1

e1

Ae1

(b)

f2

e2

cf2

me2

p Ae2

(c)

Figure 9.6: Coverage of Adt tiles on the boundary of C (X). (a) For x ∈ ∂C (X), e1 and e2 have
only one adjacent triangle each. (b) Contribution of Ae1 to Tx. (c) Contribution of
Ae2 to Tx.

So we will show that each Ae ∩ C (X) is covered by A (f1) ∪A (f2) for two cases:

• cc(f1) and cc(f2) are on opposite sides of e, see Figure 9.5(c): So cc(f1) and cc(f2)
are located on the perpendicular bisector of e that intersects e in me. We can split
Ae into A1

e = C ({x, cc(f1),me}) and A2
e = C ({x, cc(f2),me}) with Ae = A1

e ∪ A2
e.

Since me,x, cc(f1) ∈ [PE(f1)
]
, (9.6) guarantees that A1

e ∩ C (X) ⊂ A (f1) and
analogously for A2

e.

• cc(f1) and cc(f2) are on the same side of or on e, see Figure 9.5(d): Without
loss of generality, let f1 be obtuse. We know cc(f1) ∈ PE(f1) \ f1 and by (9.5),
cc(f1) ∈ PE(f2). Since cc(f2) ∈ PE(f2) as well, cc(f1), cc(f2),x ∈ [PE(f2)

]
, and

from the convexity of
[
PE(f2)

]
it follows that Ae∩C (X) ⊂ PE(f2)∩C (X) ⊂ A (f2).

Now consider the case that x ∈ ∂C (X), and Tx becomes infinite. The argument goes
as above except for the two edges e1, e2 ⊂ ∂C (X) adjacent to x which have only one
adjacent triangle each, say f1 respective f2, as illustrated in Figure 9.6(a). Corresponding
to the above two cases, let without loss of generality cc(f1) /∈ C (X) like in Figure 9.6(b).
Because Ae1 is outside the convex hull, it does not contribute to Tx∩C (X) and needs not
be considered. Now, let without loss of generality cc(f2) ∈ C (X) like in Figure 9.6(c).
The contribution of Ae2 to Tx ∩ C (X) is given by C (x,me2 , cc(f2)) ⊂ f2 ⊂ A (f2).

Consequently, all parts Ae ∩ C (X) are covered by Adt polygons, which are the covers of
adjacent Delaunay triangles and thus also adjacent to x.

�

184



9.4 Geometric Properties of the Adt

This concludes our treatment of some essential and important properties of the Adt. A
discussion of aspects of the Adt that bear practical relevance is given next.

9.4.5 Further Remarks

As a guide to the proofs we include an informal description of the reasoning.

9.4.5.1 Definition of the ADT

From every point set we can compute its Delaunay triangulation. In this triangulation
we merge every triangle with an interior angle of π/2 or more to its neighbor opposite to
the obtuse angle, thus effectively forming polygons. If the opposite of an obtuse angle is
outside the convex hull, we don’t merge. The result of this process is called the Adaptive
Delaunay Tessellation Adt.

9.4.5.2 The ADT is Unique

In the definition of the Adt, sets of triangles are merged into polygons based on their
largest interior angle. As long as the set of triangles is unique, the Adt is unique as well.
But as soon as four or more points have a common empty circumcircle, the triangulation
among those is non-unique. In the Adt, all triangles with the same empty circumcircle
will be merged into a single polygonal element, thus removing all ambiguity.

9.4.5.3 The ADT is Connected

By merging triangles, edges are removed from the Delaunay triangulation. If this is over-
done, the elements of the triangulation might become disconnected, e.g., all edges could
be removed from a vertex, leaving it hanging in the void. The elements of the initial De-
launay triangulation can only become disconnected if all edges are removed along some
closed path around a part of the triangulation. In the definition of the Adt, we merge a
triangle to its neighbor if the triangle is obtuse, meaning we remove its longest edge. If
the neighbor itself is obtuse, it will again be merged to its neighbor, removing its longest
edge. Now, as this process goes on, the removed edges can only become longer. In order
to do remove all edges around a part of the triangulation, this path needs to be closed.

As the longest edges become longer and longer, and since every triangle can only have
one obtuse angle, we can never merge a triangle to another triangle that was merged into
the same polygon before.

An exception are rectangular triangles with right angles opposite to their common edge.
Those are merged to each other and do not contradict the above.

185



Adaptive Delaunay Tessellation

9.4.5.4 Alternative Characterization

By merging each obtuse triangle to its neighbor, we effectively merge a set of triangles
into one polygon. Instead of defining this set by adjacency over obtuse edges, we can also
define it via the intersection of the convex hull of the triangle vertices and the triangle’s
circumcenter, called polygonal extension. Thus, the set of triangles that are merged into
a single polygon can also be defined as the set of all triangles whose polygonal extensions
intersect.

As soon as a triangle is obtuse, its circumcenter is outside and the polygonal extension
intersects at least its neighbor triangle. It can be shown that the excess area produced by
the outside circumcenter is a subset of the polygonal extension of the neighbor triangle;
this property is important as a termination criterion in the final proof.

9.4.5.5 Coverage of Voronoi Tiles

The Voronoi tile of a vertex is always a convex polygon that contains the corresponding
vertex but no more. We claim that this polygon is a subset of the union of all Adt
polygons that are adjacent to the site. Special care must be taken if the Voronoi tile
extends past the convex hull of the data set, but the essential reasoning is not affected
by that.

A finite Voronoi tile of a vertex is identical to the convex hull of the circumcenters of
the Delaunay triangles adjacent to that vertex. A trivial triangulation of the Voronoi
tile is therefore given by connecting the circumcenters to the vertex, where each of the
new triangles corresponds to an edge of the Delaunay triangulation. With the alternative
characterization of the Adt from before, it is easy to show that each of these trian-
gles is contained within the polygonal extensions of the two Delaunay triangles whose
circumcenters define it.

9.5 Discussion

The Adt is optimal only under specific conditions, i.e., if the vertex positions cannot be
changed, and the Voronoi tile of each vertex needs to be covered by adjacent polygons. A
very homogeneous point set with all non-obtuse triangles is shown in Figure 9.7(a). In this
setting, the Delaunay triangulation and the Adt are identical. Figure 9.7(b) shows a point
set in which ill-shaped triangles are merged into Adt polygons, thus improving the overall
tile shape. Figure 9.7(c) demonstrates a situation where the Adt produces non-convex
polygons, and the extreme case of a “hanging edge” is illustrated in Figure 9.7(d). Apart
from these artifacts inside the convex hull, which are rarely faced in practice, badly shaped
polygons frequently occur near the convex hull as a result of many degenerate triangles, as
illustrated in Figure 9.7(e). Arguably, the boundary polygons are of better shape than the
triangles they are composed of. In [CSB+08], a novel polygon condition number has been
introduced as a quality measure of polygonal tessellations. Extensive statistical analysis
of the Adt has shown that it considerably improves the mean condition number of most

186



9.6 Conclusion

unstructured triangulations over interior elements, and results in moderate improvement
for boundary elements. The issues inside the convex hull can be handled by allowing
vertices to move, and a regularization step could lead to more well-shaped triangles and
thus better Adt-polygons. Furthermore, the boundary issues can be solved by insertion
of an adequate amount of vertices along the convex hull.

9.6 Conclusion

Certain nodal integration schemes, which are meshless extension of the Finite Element
Method, lead to new requirements on the background tessellation of the domain which
are no longer met by the popular Delaunay triangulation. Particularly nodal integration
schemes based on the Voronoi diagram of the domain vertices entail the integration of
an interpolant along the boundary of Voronoi tiles. This leads to a desirable property of
the background tessellation referred to as the coverage of Voronoi tiles. To this end, the
Adaptive Delaunay Tessellation for planar domains has been introduced before, but no
rigorous proofs have been given.

In this chapter we have introduced a simple, constructive definition of the Adaptive
Delaunay Tessellation based on the Delaunay triangulation of a point set, and showed that
it is unique, connected, and has the coverage of Voronoi tiles property. We furthermore
provided a critical assessment of some shortcomings of the Adt that need to be considered
in applications. This provides a profound theoretical background for the application of
this new tessellation for nodal integration schemes in the Finite Element Method.

187



Adaptive Delaunay Tessellation

(a) (b)

(c) (d)

(e)

Figure 9.7: Several levels of badness in the point cloud. (a) Very regular setting. (b) Some obtuse
triangles. (c) Setting leading to non-convex Adt tiles. (d) Setting leading to flapping
edge, (e) Setting leading to bad boundary elements.

188



10 Conclusion

This thesis provides a spectrum of topics that underlines the versatility of the concept of
natural neighbors.

B-splines from Voronoi diagrams

Our investigation of an idea by Farin to generalize B-spline surfaces to a similar structure
defined over the Voronoi diagram of a set of scattered points showed that the positive
result for the univariate setting does not carry over to two dimensions. However, the initial
idea was successfully modified by Gonzáles et al., who considered Sibson’s interpolant
under another interpretation of the de Boor algorithm. Their method indeed exhibits
B-spline like behavior of the resulting surface, while the surface still is only C0 at the
data points.

Implementing Hiyoshi’s interpolant

Hiyoshi introduced a high quality globally C2 natural neighbor interpolant. However, the
implementation of the underlying C2 natural neighbor coordinates is not straightforward.
We provided guidelines for the implementation of Hiyoshi’s coordinates in arbitrary di-
mensions based on an alternative representation of the Voronoi tile in a power diagram,
and the recursive volume computation formula of Lasserre. We presented a concrete im-
plementation of the proposed approach for two dimensions. As a result of our discussion of
this approach, we discourage its application for dimensions greater than three due to both
the additional efforts on the implementation side and the increased runtime complexity.
By considering Voronoi tiles in their half-space representation, we also provide guide-
lines for the computation of Laplace and Sibson coordinates that generalize to arbitrary
dimension without any change in the complexity of implementation.

We furthermore discovered a severe complexity issue in Hiyoshi’s interpolant for data
sets exhibiting large numbers of natural neighbors. The computation of the control point
structure of the quintic Bézier simplex used in the interpolation of Hessians and gradients
has a complexity of O(m5) in the number m of natural neighbors.

Generating Derivatives

Related to the implementation of Hiyoshi’s C2 interpolant is the generation of derivatives,
which are required by the interpolant, but are only seldom provided with the data set.
E.g., Hiyoshi’s interpolant requires derivatives up to second order. To generate higher
order derivatives by the standard method of fitting Taylor polynomials of a certain degree,
a neighborhood is required that is large enough to prevent an under-constrained fitting
problem. We proposed as one solution to use the d-times iterated natural neighborhood
in the Voronoi diagram. The other solution took an iterative approach, fitting Taylor
polynomials of degree d to known Taylor polynomials of degree d − 1 to the natural

189



Conclusion

neighborhood. In our experiments, both approaches performed robustly.

Discrete Harmonic Functions

Discrete harmonic functions are well approximated by generalized barycentric coordi-
nates, and if modeled on point clouds, natural neighbor coordinates provide a Laplacian
approximation that continuously (smoothly) depends on the coordinates of the data sites.

Potential applications for this result lie in computational mechanics. Furthermore, there
may be a generalization to piecewise linear manifolds when considering the implicit De-
launay tessellation of [FSBS06], or when considering natural neighbor interpolation on
smooth manifolds like in [Flo03a].

Natural Neighbor Extrapolation

Extrapolation is the evaluation of an interpolating function outside the convex hull of the
constituting data. For local scattered data interpolation schemes, this aspect has not seen
a satisfactory solution to this day. All the local schemes proposed in the past are exact
schemes, meaning they pick up the value of some interpolant in the convex hull and extend
it continuously towards the outside. One problem showing up with any triangulation of
the convex hull of some points is the unavoidable existence of sliver triangles near the
boundary of the convex hull.

We have introduced a couple of new criteria by which to assess and judge extrapolation
methods. We claim that by dropping the requirement of exactness, the degenerate cases
near the convex hull can be overcome. To this end we have proposed a general framework
for natural neighbor interpolation that builds on the concept of dynamic ghost points.
The ghost points are placed depending on the query position such that their coordinates
smoothly depend on that of the query position and the extended convex hull always covers
the query position. In this framework, any natural neighbor interpolant can be evaluated
transparently inside and outside the convex hull.

Adaptive Delaunay Tessellation

The Adaptive Delaunay Tessellation is a new technique to support Voronoi-based nodal
integration schemes in that it provides a background tessellation in which the Voronoi
cell of a vertex is covered by the ADT tiles adjacent to that vertex. The basic properties
uniqueness, connectedness, and coverage of Voronoi tile have been shown, and further
research on that technique can build upon a solid theoretical background.

Future Work

In the course of this thesis, some questions were left unsanswered and some ideas formed
that could not be followed. Some that seem especially interesting for future work are
described here.

Sibson coordinates have originally been introduced based on a vector identity defined
by ratios of volumes of overlap in the Voronoi diagram with and without a query posi-
tion. Similar geometric considerations can be applied to higher order Voronoi diagrams,
in which it might be possible to find an equivalent formulation that extends to larger

190



neighborhoods of data sites and implicitly increases the resulting smoothness.

The definition of bivariate splines by Nematu in [Nea04] via Delaunay configurations
suggests a close relation to ordinary and higher order Voronoi diagrams. It would be
insightful if a connection to natural neighbor interpolation could be established.

The method proposed by Gonzáles et al. in [GCD07] shows potential for the definition
of globally smooth spline-like surfaces over Voronoi diagrams. The C0 limitation at the
data sites results from the use of Sibson coordinates in the definition of the convex
combination that produces the surface. As an alternative, Farin’s interpolant could be
applied to overcome these smoothness issues.

There is strong visual evidence that Clarkson’s interpolant is actually only C0 at the data
sites contrary to a conjecture by Flötotto in [Flö03b]. This evidence needs to be supported
by a sound mathematical counterexample. Despite the possible lack of smoothness at the
data sites, the idea underlying Clarkson’s interpolant is worthwhile extending, and maybe
it is even possible overcome the C0 artifacts.

Based on Gonzáles coordinates, it should be possible to generate derivative information
in scattered by directly fit higher order Taylor polynomials to a weighted set of neighbors.
Because Gonzáles coordinates should be extendable to the n-ring neighborhood of a data
site, this approach would maintain the “similar output from similar input” property
of natural neighbor interpolation for the generated derivatives. The advantage over the
iterated derivative generation introduced in Section 6.3 would be the option to achieve
polynomial precision for the generated derivatives.

Natural neighbor interpolants can be used to fit coarse approximations to densely sampled
data sets, thus effectively implementing scattered data approximation. Assuming a good
placement strategy for the interpolation sites can be found, the values and derivatives
can easily be determined in a least squares sense. Flötotto proved in [Flö03b] that Sibson
coordinates still comprise valid local coordinates if computed in a power diagram with
arbitrary power weights. These power weights provide an additional degree of freedom
for scattered data approximation which it would be interesting to investigate.

191



Conclusion

192



Bibliography

[ACK01] N. Amenta, S. Choi, and R. K. Kolluri. The power crust. In Proceedings of
the sixth ACM symposium on Solid modeling and applications, pages 249–
266. ACM Press, 2001. 32

[ACSTD07] P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun. Voronoi-based varia-
tional reconstruction of unoriented point sets. In Proc. Symp. on Geometry
Processing, pages 39–48, 2007. 32

[ADA07] L. Antani, C. Delage, and P. Alliez. Mesh sizing with additively weighted
voronoi diagrams. In Proc. 16th Int. Meshing Roundtable, 2007. 173

[ADKS05] A. D. Alexandrov, N. S. Dairbekov, S. S. Kutateladze, and A. B. Sossinsky.
Convex Polyhedra. Springer Monographs in Mathematics. Springer, 2005. 12

[Aki78] H. Akima. A method of bivariate interpolation and smooth surface fitting
for irregularly distributed data points. ACM Transactions on Mathematical
Software, 4(2):148–159, June 1978. 132, 133, 135

[Aki84] H. Akima. On estimating partial derivatives for bivariate interpolation of
scattered data. Rocky Mountain Journal of Mathematics, 14:41–52, 1984.
90, 129

[Ale06] M. Alexa. Mesh editing based on discrete Laplace and Poisson models. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, pages 51–59, New York,
NY, USA, 2006. ACM. 116

[Alf84] P. Alfeld. Triangular extrapolation. Technical report, University of Utah,
Salt Lake City, 1984. 128, 131, 132, 133, 134, 135, 136, 138, 140

[Alf85] P. Alfeld. Derivative generation from multivariate scattered data by func-
tional minimization. Computer Aided Geometric Design, 2:281–296, 1985.
29, 90, 129, 132, 133, 135

[Alf89] P. Alfeld. Scattered data interpolation in three or more variables. Math-
ematical Methods in Computer Aided Geometric Design, pages 1–33, 1989.
89

[AMG98] F. Anton, D. Mioc, and C. Gold. Local coordinates and interpolation in a
Voronoi diagram for a set of points and line segments. In Proceedings of
the 2nd Voronoi Conference on Analytic Number Theory and Space Tillings,
pages 9–12, 1998. 43, 45, 56

[AMG04] F. Anton, D. Mioc, and C. Gold. Line Voronoi diagram based interpolation
and application to digital terrain modelling. In ISPRS - XXth Congress,
Vol.2. International Society for Photogrammetry and Remote Sensing, 2004.
44, 45, 56

193



Bibliography

[Aur91] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric
data structure. ACM Computing surveys, 23(3):345–405, 1991. 14, 32

[BBU06a] T. Bobach, M. Bertram, and G. Umlauf. Comparison of Voronoi based
scattered data interpolation schemes. In Proc. Visualization, Imaging and
Image Processing, pages 342–348, 2006. 56

[BBU06b] T. Bobach, M. Bertram, and G. Umlauf. Issues and implementation of C1

and C2 natural neighbor interpolation. In Proceedings of the 2nd Interna-
tional Symposium on Visual Computing, Nov. 2006. 71

[BBU06c] T. Bobach, M. Bertram, and G. Umlauf. Issues and implementation of C1

and C2 natural neighbor interpolation. Advances in Visual Computing, 2,
2006. 71

[BC00] J. Boissonnat and F. Cazals. Natural neighbour coordinates of points on a
surface. Technical Report 4015, INRIA-Sophia., 2000. 52, 56

[BE03] M. Bern and D. Eppstein. Möbius-invariant natural neighbor interpolation.
In SODA ’03: Proc. fourteenth annual ACM-SIAM Symposium on Discrete
Algorithms, pages 128–129, Philadelphia, PA, USA, 2003. Society for Indus-
trial and Applied Mathematics. 43

[BEF00] B. Bueler, A. Enge, and K. Fukuda. Exact volume computation for poly-
topes: a practical study. DMV Seminar, 29:131–151, 2000. 54, 71, 72, 74,
75

[BF04] J.-D. Boissonat and J. Flötotto. A coordinate system associated with points
scattered on a surface. Computer-Aided Design, 36(2):161–174, 2004. 52

[BFHU08] T. Bobach, G. Farin, D. Hansford, and G. Umlauf. Natural neighbor ex-
trapolation using ghost points. Computer-Aided Design, In Press, Corrected
Proof:–, 2008. 127

[BH96] F. Bossen and P. Heckbert. A pliant method for anisotropic mesh generation.
In Proc. 5th Int. Meshing Roundtable, pages 63–74, 1996. 173

[BHFU07] T. Bobach, D. Hansford, G. Farin, and G. Umlauf. Discrete harmonic func-
tions from local coordinates. In Mathematics of Surfaces XII, 2007. 115

[BIK+97] V. V. Belikov, V. D. Ivanov, V. K. Kontorovich, S. A. Korytnik, and A. Yu.
Semenov. The non-Sibsonian interpolation: A new method of interpolation
of the values of a function on an arbitrary set of points. Computational
Mathematics and Mathematical Physics, 37(1):9–15, 1997. 36, 37, 56

[Bol98] B. Bollobás. Modern Graph Theory. Springer, 1998. 17, 116

[Bro97] J. L. Brown. Systems of coordinates associated with points scattered in the
plane. Computer Aided Geometric Design, 14:547–559, 1997. 41, 130, 133,
135

[BS95] J. Braun and M. Sambridge. A numerical method for solving partial differ-
ential equations on highly irregular grids. Nature, 376:655–660, 1995. 32, 54,
71

[BS07] A. Bobenko and B. Springborn. A discrete Laplace-Beltrami operator for
simplicial surfaces. Discrete and Computational Geometry, 38(4):740–756,
2007. 116

194



Bibliography

[BU06] T. Bobach and G. Umlauf. Natural Neighbor Interpolation and Order of
Continuity, pages 69–86. Lecture Notes in Informatics. Springer, 2006. 31

[Cam94] P. J. Cameron. Combinatorics: Topics, Techniques, Algorithms. Cambridge
University Press, 1994. 10

[CCD02] E. Cueto, , B. Calvo, and M. Doblaré. Modelling three-dimensional piece-
wise homogeneous domains using the α-shape-based natural element method.
International Journal of Numerical Methods in Engineering, 54:871–897,
2002. 32, 149

[CDG00] E. Cueto, M. Doblaré, and L. Gracia. Imposing essential boundary conditions
in the natural element method by means of density-scaled α-shapes. Inter-
national Journal of Numerical Methods in Engineering, 49:519–546, 2000.
32, 149

[CFL82] N. H. Christ, R. Friedberg, and T. D. Lee. Weights of links and plaquettes
in a random lattice. Nuclear Physics B, 210(3):337–346, 1982. 36, 56

[CG92] C. Connolly and R. Grupen. Applications of harmonic functions to robotics.
Journal of Robotic Systems, 10(7):931–946, 1992. 116

[CGA08] CGAL. CGAL - Computational Geometry Algorithms Library. available
online, 2008. http://www.cgal.org. 53, 54, 81

[Cla96] K. Clarkson. Convex hulls: Some algorithms and applications. Presentation
at Fifth MSI-Stony Brook Workshop on Computational Geometry, 1996. 46,
50, 56

[CSB+08] A. Constantiniu, P. Steinmann, T. Bobach, G. Farin, and G. Umlauf. The
adaptive Delaunay tessellation: A neighborhood covering meshing technique.
Computational Mechanics, to appear:n/a, 2008. 173, 174, 177, 186

[CT65] R. W. Clough and J. L. Tocher. Finite element stiffness matrices for analysis
of plates in bending. In Proc. Conf. Matrix Methods in Struct. Mech., Air
Force Inst. of Tech., Wright-Patterson AFB, Ohio, pages 515–545, 1965. 29,
89

[CWYY01] J. Chen, C. Wu, S. Yoon, and Y. You. A stabilized conforming nodal in-
tegration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng.,
50:435––466, 2001. 174

[dB87] C. de Boor. B-form basics. Geometric Modelling - Algorithms and New
Trends, pages 131–148, 1987. 18, 19, 20

[Des44] R. Descartes. La disposition de la matiere dans le systeme solaire et ses
environs, 1644. 32

[Die05] R. Diestel. Graph Theory. Springer, 2005. 17, 116

[Dir50] G. Dirichlet. Über die Reduktion der positiven quadratischen Formen mit
drei unbestimmten ganzen Zahlen. Journal für die Reine und Angewandte
Mathematik, 40:209–227, 1850. 32

[DKG05] S. Dong, S. Kircher, and M. Garland. Harmonic functions for quadrilateral
remeshing of arbitrary manifolds. Computer Aided Geometric Design: Special
Issue on Geometry Processing, 22(5):392–423, 2005. 116

195



Bibliography

[Duc77] J. Duchon. Splines minimizing rotation-invariant semi-norms in sobolev
spaces. Constructive Theory of Functions of Several Variables, pages 85–
100, 1977. 135

[Ei08] EMS-i. Watershed modeling system (wms) v8.0. http://www.ems-i.
com/wmshelp/Scattered_Data/Interpolation/Natural_Neighbor_
Interpolation.htm, 2008. 1204 W. South Jordan Parkway, Suite B South
Jordan, UT 84095-4612. 132

[Far86] G. Farin. Triangular Bernstein–Bézier patches. Computer Aided Geometric
Design, 3(2):83–127, 1986. 21

[Far90] G. Farin. Surfaces over Dirichlet tessellations. Computer Aided Geometric
Design, 7:281–292, Jun 1990. 38, 46, 47, 48, 56, 130

[Far02] G. Farin. Curves and surfaces for CAGD : a Practical Guide. The Morgan
Kaufmann series in computer graphics and geometric modeling. M. Kauf-
mann, 5 edition, 2002. 18

[Far03] G. Farin. Quadratic splines over iterated Voronoi diagrams. Technical report,
Arizona State University, Sep 2003. 59, 60, 62

[FEK+05] Q. Fan, A. Efrat, V. Koltun, S. Krishnan, and S. Venkatasubramanian.
Hardware-assisted natural neighbor interpolation. In Proc. 7th Workshop
on Algorithm Engineering and Experiments (ALENEX), 2005. 55

[FKR05] M. S. Floater, G. Kós, and M. Reimers. Mean value coordinates in 3D.
Computer Aided Geometric Design, 22:623–631, 2005. 30

[Fle07] D. Fleischer. Theory and Applications of the Laplacian. PhD thesis, Univer-
sität Konstanz, Sep 2007. 116, 117

[Flo03a] M. S. Floater. Mean value coordinates. Comput. Aided Geom. Des.,
20(1):19–27, 2003. 17, 30, 190

[Flö03b] J. Flötotto. A coordinate system associated to a point cloud issued from a
manifold: definition, properties and applications. PhD thesis, Université de
Nice-Sophia Antipolis, Sep 2003. http://www.inria.fr/rrrt/tu-0805.html. 46,
48, 50, 52, 56, 125, 191

[FN80] R. Franke and G. Nielson. Smooth interpolation of large sets of scat-
tered data. International Journal of Numerical Methods in Engineering,
15(11):1691–1704, 1980. 27, 99, 130, 135

[FN91] R. Franke and G. Nielson. Scattered Data Interpolation and Applications: A
Tutorial and Survey, chapter 9, pages 131–160. Springer, 1991. 26, 128

[Fra79] R. Franke. A critical comparison of some methods for interpolation of scat-
tered data. Technical report, Naval Postgraduate School, 1979. Available
from NTIS, #AD-A081 688/4. 128, 132, 133, 135

[Fra82] R. Franke. Scattered data interpolation: Tests of some methods. Mathemat-
ics of Computation, 38(157):181–200, Jan 1982. 128

[FSBS06] M. Fisher, B. Springborn, A. Bobenko, and P. Schröder. An algorithm for
the construction of intrinsic Delaunay triangulations with applications to

196

http://www.ems-i.com/wmshelp/Scattered_Data/Interpolation/ Natural_Neighbor_Interpolation.htm
http://www.ems-i.com/wmshelp/Scattered_Data/Interpolation/ Natural_Neighbor_Interpolation.htm
http://www.ems-i.com/wmshelp/Scattered_Data/Interpolation/ Natural_Neighbor_Interpolation.htm


Bibliography

digital geometry processing. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Courses, pages 69–74, New York, NY, USA, 2006. ACM Press. 116, 190

[GCD07] D. Gonzáles, E. Cueto, and M. Doblaré. Higher-order natural element meth-
ods: Towards an isogeometric mehsless method. International Journal of
Numerical Methods in Engineering, 2007. 66, 68, 191

[GF99] L. Gross and G. Farin. A transfinite form of Sibson’s interpolant. Discrete
Applied Mathematics, 93:33–50, 1999. 43, 45, 46, 56

[GL89] G. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, second edition, 1989. 8

[GR01] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001. 17, 116,
117

[Grü03] B. Grünbaum. Are your polyhedra the same as my polyhedra? Discrete and
Computational Geometry: The Goodman-Pollack Festschrift, pages 461–448,
2003. 11

[Har71] R. L. Hardy. Multiquadric equation of topography and other irregular sur-
faces. J. Geophysical Res., 76:1905–1915, 1971. 27, 56

[HCK+99] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast computation
of generalized Voronoi diagrams using graphics hardware. In Proceedings of
ACM SIGGRAPH 1999, 1999. 54, 55

[HD06] Ø. Hjelle and M. Dæhlen. Triangulations and Applications. Mathematics
and Visualization. Springer, Secaucus, NJ, USA, 2006. 14, 173

[HF06] K. Horman and M. Floater. Mean value coordinates for arbitrary planar
polygons. ACM Transactions on Graphics, 25(4):1424–1441, Oct. 2006. 29

[HHK92] W. Hsu, J. Hughes, and H. Kaufman. Direct manipulation of free-form
deformations. Computer Graphics, 26(2):177–184, 1992. 68

[Hir03] A. Hirani. Discrete Exterior Calculus. PhD thesis, Caltech, 2003. 116

[Hiy05] H. Hiyoshi. Stable computation of natural neighbor interpolation. In Pro-
ceedings of the 2nd International Symposium on Voronoi Diagrams in Science
and Engineering, pages 325–333, Oct. 2005. 39, 40, 54, 56, 72

[HL03] J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric
Design. A K Peters, Ltd., 2003. translation by L. Schumaker. 18

[HLS07] K. Hormann, B. Lévy, and A. Sheffer. Mesh parameterization: Theory and
practice. In SIGGRAPH 2007 Course Notes, volume 2, pages 1–122, San
Diego, CA, August 2007. ACM Press. 29

[Hof99] K. Hoff. Fast computation of generalized Voronoi diagrams
using graphics hardware. Siggraph’99 Presentation, 1999.
http://www.cs.unc.edu/ geom/voronoi/. 44

[HS00a] H. Hiyoshi and K. Sugihara. An interpolant based on line segment Voronoi
diagrams. In Japan Conference on Discrete and Computational Geometry,
pages 119–128, 2000. 43, 45, 46, 56

197



Bibliography

[HS00b] H. Hiyoshi and K. Sugihara. Voronoi-based interpolation with higher conti-
nuity. In Symposium on Computational Geometry, pages 242–250, 2000. 37,
38, 40, 56, 71, 85

[HS04] H. Hiyoshi and K. Sugihara. Improving the global continuity of the natu-
ral neighbor interpolation. In International Conference on Computational
Science and its Applications (3), pages 71–80, 2004. 46, 49, 56, 130

[HZDS01] J. Haber, F. Zeilfelder, O. Davydov, and H.-P. Seidel. Smooth approximation
and rendering of large scattered data sets. In Proc of IEEE Visualization
2001, pages 341–347, 2001. 92

[JLW07] T. Ju, P. Liepa, and J. Warren. A general geometric construction of coor-
dinates in a convex simplicial polytope. Computer Aided Geometric Design,
24:161–178, April 2007. 29, 31, 37

[JSWD05] T. Ju, S. Schaefer, J. Warren, and M. Desbrun. Geometric construction of
coordinates for convex polyhedra using polar duals. In Proc. of the Third
Eurographics Sym. on Geometry Processing, 2005. 30

[Las83] J. B. Lasserre. An analytical expression and an algorithm for the volume of
a convex polytope in IRn. Journal of Optimization Theory and Applications,
39(3):363–377, 1983. 71, 72

[LF99] S. K. Lodha and R. Franke. Scattered data techniques for surfaces. In Proc.
of Dagstuhl Conf. on Sci. Vis., pages 182–222. IEEE Comp. Soc. Press, 1999.
26

[Li05] X. Li. An overview of superlu: Algorithms, implementation, and user in-
terface. ACM Transactions on Mathematical Software, 31(3):302–325, Sep
2005. 120

[LL00] G. Leibon and D. Letscher. Delaunay triangulations and Voronoi diagrams
for Riemannian manifolds. In Proceedings of the sixteenth annual symposium
on Computational geometry, pages 341–349, 2000. 52

[Loh96] R. Lohner. Progress in grid generation via the advancing front technique.
Eng. with Computers, 12:186–210, 1996. 173

[Lov00] L. Lovász. Discrete analytic functions: a survey. Technical report, Microsoft
Research, 2000. 118

[LS96] D. Lasser and T. Stüttgen. Boundary improvement of piecewise linear inter-
polation defined over Delaunay triangulations. Computers and Mathematics
with Applications, 32(10):43–58, 1996. 131

[LZ01] J. B. Lasserre and E. S. Zeron. A Laplace transform algorithm for the volume
of a convex polytope. Journal of the ACM, 48(6):1126–1140, November 2001.
73

[Mik77] S. G. Mikhlin. On the smallest number of original functions in the
variational-difference method. J. of Math. Sciences, 7(1):78–80, 1977. 10

[MP07] P. Milbradt and T. Pick. Polytope finite elements. International Journal of
Numerical Methods in Engineering, 73(12):1811–1835, July 2007. 29

198



Bibliography

[MS99] W. McCain and J. Spivey. Extrapolation of laboratory measured black oil
and solution gas fluid properties for variable bubblepoint simulation. In SPE
annual technical conference and exhibition : Houston TX, 3-6 October 1999.
Volume Sigma: Reservoir engineering, 1999. 127

[MTS+04] J. Miller, M. Turner, E. Stanley, E. Smithwick, and L. Dent. Spatial extrapo-
lation: the science of predicting ecological patterns and processes. Bioscience,
54:310–320, 2004. 127

[Nea01] M. Neamtu. What is the natural generalization of univariate splines to higher
dimensions? Mathematical Methods for Curves and Surfaces, pages 355–392,
2001. 60

[Nea04] M. Neamtu. Delaunay configurations and multivariate splines: A general-
ization of a result of B. N. Delaunay. This paper describes how Delaunay
configurations, which are closely related to order-k Voronoi diagrams, can
be used to define knot sets for simplex splines to define a partition of unity
over the convex hull of the domain., Feb 2004. 191

[Nie83] G. Nielson. A method for interpolation of scattered data based upon a
minimum norm network. Mathematics of Computation, 40:253–271, 1983.
29, 129

[NISA06] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Laplacian mesh optimiza-
tion. In Proceedings of ACM GRAPHITE, pages 381–389, 2006. 116

[OBSC00] A. Okabe, B. Boots, K. Sugihara, and S. Chiu. Spatial Tessellations: Con-
cepts and applications of Voronoi diagrams. Wiley series in probability and
statistics. John Wiley & Sons Ltd, 2000. 10, 14, 56, 131

[Owe93] S. Owen. Subsurface characterization with three-dimensional natural neigh-
bor interpolation. Master’s Thesis, Brigham Young University, 1993. 53,
132, 155

[PBP02] H. Prautsch, W. Boehm, and M. Paluszny. Bézier and B-Spline Techniques.
Springer, 2002. 6, 18, 20, 21, 59

[Pip92] B. Piper. Properties of local coordinates based on Dirichlet tesselations. In
Geometric Modelling, pages 227–239, 1992. 38, 56

[PLK+06] S. Park, L. Linsen, O. Kreylos, J. Owens, and B. Hamann. Discrete Sib-
son interpolation. In IEEE Transactions on Visualization and Computer
Graphics 12, volume 2, pages 243–253, 2006. 55

[Pol05] K. Polthier. Computational aspects of discrete minimal surfaces. In D. Hoff-
mann, editor, Global Theory of Minimal Surfaces, Proc. of the Clay Mathe-
matics Institute Summer School, 2005. 116

[PS77] M. Powell and M. Sabin. Piecewise quadratic approximations on triangles.
ACM Transactions on Mathematical Software (TOMS), 3(4):316–325, Dec
1977. 29

[Ren88] R. Renka. Algorithm 660: QSHEP2D: Quadratic shepard method for bivari-
ate interpolation of scattered data. ACM TOMS, 14:149–150, 1988. 27

199



Bibliography

[SBHJ00] S. Schussman, M. Bertram, B. Hamann, and K. Joy. Hierarchical data repre-
sentations based on planar voronoi diagrams. In Proceedings of VisSym’00,
Joint Eurographics and IEEE TCVG Conference on Visualization, pages 63–
72. Springer, 2000. 32

[She68] D. Shepard. A two dimensional interpolation function for irregularly spaced
data. In Proceedings of the 23rd ACM national conference, pages 517–524,
1968. 26, 135

[She02] J. Shewchuk. What is a good linear element? Interpolation, conditioning,
and quality measures. In Proc. Eleventh Int. Meshing Roundtable (Ithaca,
New York), pages 115–126. Sandia National Laboratories, 2002. 173, 174

[Sib80] R. Sibson. A vector identity for the Dirichlet tessellation. Mathematical
Proceedings of Cambridge Philosophical Society, 87:151–155, 1980. 38, 130

[Sib81] R. Sibson. A brief description of natural neighbor interpolation. Interpreting
Multivariate Data, pages 21–36, 1981. 46, 56, 90, 95, 99, 129

[SM99] N. Sukumar and B. Moran. c1 natural neighbor interpolant for partial dif-
ferential equations. Numerical Methods for Partial Differential Equations,
15(4):417–447, July 1999. 116

[SMB98] N. Sukumar, B. Moran, and T. Belytschko. The natural element method in
solid mechanics. International Journal for Numerical Methods in Engineer-
ing, 43(5):839–887, 1998. 32

[SMSB01] N. Sukumar, B. Moran, A. Semenov, and V. Belikov. Natural neighbour
Galerkin methods. International Journal for Numerical Methods in Engi-
neering, 50:1–27, 2001. 174

[Sor06] O. Sorkine. Differential representations for mesh processing. Computer
Graphics Forum, 25(4):789–807, 2006. 116

[Ste84] S. Stead. Estimation of gradients from scattered data. Rocky Mountain
Journal of Mathematics, 14:265–279, 1984. 129

[Sug99] K. Sugihara. Surface interpolation based on new local coordinates. Computer
Aided Design, 13(1):51–58, 1999. 36, 53, 56

[Sug02] K. Sugihara. Handbook of Compupter Aided Geometric Design, chapter 18,
pages 429–450. Elsevier, 2002. 32

[TAD07] J. Tournois, P. Alliez, and O. Devillers. Interleaving Delaunay refinement
and optimization for 2D triangle mesh generation. In Proc. 16th Int. Meshing
Roundtable, 2007. 173

[Tau95] G. Taubin. A signal processing approach to fair surface design. In Proc.
ACM SIGGRAPH, pages 351–358, 1995. 116

[TCR03] S. Toledo, D. Chen, and V. Rotkin. Taucs - a library of sparse linear solvers,
2003. http://www.tau.ac.il/ stoledo/taucs/. 120

[Thi11] A. H. Thiessen. Precipitation averages for large areas. Monthly Weather
Review, 39:1082–1084, 1911. 32, 35, 56

200



Bibliography

[Tra94] L. Traversoni. Natural neighbor finite elements. In Int. Conf. on Hydraulic
Engineering Software, Hydrosoft Proc., volume 2, pages 291–297. Computa-
tional Mechanics Publications, 1994. 32

[TS08] A. Tabarraei and N. Sukumar. Extended finite element method on polygonal
and quadtree meshes. Comp. Meth. in Applied Mechanics and Engineering,
197(5):425–438, Jan. 2008. 29

[Tut63] W. T. Tutte. How to draw a graph. Proc. London Math. Soc., 13(3):743–768,
1963. 17

[Unk08] Unknown. Snibbe. http://www.snibbe.com/scott/bf/index.htm, 2008.
31

[Var62] R. S. Varga. Matrix Iterative Analysis. PrenticeHall, Englewood Cliffs, NJ,
USA, 1962. 120

[Vor08] Georgy Voronoi. Nouvelles applications des paramétres continus á la théorie
des formes quadratiques. Journal für die Reine und Angewandte Mathe-
matik, 133:97–178, 1908. 32

[Ž73] A. Ženı̌sek. Hermite interpolation on simplexes in the finite element method.
In Proceedings of Equadiff III, 3rd Czechoslovak Conference on Differential
Equations and Their Applications., pages 271–277, 1973. 29

[Wac75] E. Wachspress. A rational finite element basis, 1975. Academic Press. 30

[Wat81] D. F. Watson. Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes. The Computer Journal, 24(2):167–172,
1981. 54

[Wat92] D. F. Watson. Contouring - A guide to the analysis and display of spatial
data. Pergamon, 1st edition, 1992. 39, 71, 141

[Wen04] H. Wendland. Scattered Data Approximation, volume 17 of Cambridge Mono-
graphs on Appl. and Comp. Math. Cambridge University Press, 2004. 26,
27, 56, 128, 135

[WMKG07] M. Wardetzky, S. Mathur, F. Kälberer, and E. Grinspun. Discrete Laplace
operators: No free lunch. In Proc. of Sym. Geometry Processing, pages 33–37,
2007. 116

[WSHD07] J. Warren, S. Schaefer, A. Hirani, and M. Desbrun. Barycentric coordinates
for convex sets. Advances in Computational Mathematics, 27(3):319–338,
Oct. 2007. 29, 30

[YRLC04] J. Yvonnet, D. Ryckelynck, P. Lorong, and F. Chinesta. A new extension of
the natural element method for non-convex and discontinuous problems: the
constrained natural element method (c-nem). Int. J. Numer. Meth. Engng.,
60:1451–1474, 2004. 32

[Zie94] G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics.
Springer, New York, 1994. 10, 12

[Zor04] S. Zoraster. Extrapolation in oil exploration, 2004. private communication.
127

201



Bibliography

[ZS02] F. Zeilfelder and H. Seidel. Handbook of Computer Aided Geometric Design,
chapter 28, pages 701–722. Elsevier, 2002. 29, 56, 128

202



Curriculum Vitae

Persönliche Daten

Name: Bobach
Vorname: Tom Axel
Geburtsdatum: 25. Oktober 1976
Geburtsort: Wernigerode
Nationalität: Deutsch
Familienstand: verheiratet

Bildungsweg

1983 - 1985 Maxim Gorki Schule in Wernigerode
1985 - 1987 Botschaftsschule der ehem. DDR in Paris
1987 - 1991 Maxim Gorki Schule in Wernigerode
1991 - 1995 Gerhart Hauptmann Gymnasium in Wernigerode

1997 - 2003 Studium Diplom Informatik mit Nebenfach Elektrotechnik
an der Technischen Universität Kaiserlautern

2003 - 2005 Doktorand bei der DaimlerChrysler AG in Ulm

seit April 2005 Stipendiat im Graduiertenkolleg DFG GK 1131
“Visualization of Large and Unstructured Data Sets -
Applications in Geospatial Planning and Engineering”

an der Technischen Universität Kaiserslautern

Abschlüsse

Mai 1995 Abitur am Gerhart Hauptmann Gymnasium, Wernigerode

Dezember 2003 Diplom Informatik mit Nebenfach Elektrotechnik
an der Technischen Universität Kaiserslautern

203


	Introduction
	Overview
	Contributions

	Foundations
	Linear Algebra
	Affine Geometry
	Generalized Barycentric Coordinates
	Singular Value Decomposition
	Linear Least Squares

	Vector Analysis
	Derivatives
	Multi-Indices
	Multivariate Taylor Series

	Spatial Tessellations
	Planar Polygons
	Polyhedral Complexes
	Tessellations
	The Delaunay Triangulation
	The Voronoi Diagram
	The Power Diagram

	Graphs
	Bézier and B-Spline Functions
	Bernstein Polynomials
	Bézier Functions
	Multivariate Bernstein Polynomials
	Bézier Simplices
	De Casteljau's Algorithm
	B-Spline Functions
	De Boor's Algorithm


	Related Work
	Scattered Data Interpolation
	Inverse Distance Methods
	Partition of Unity Method
	Radial Basis Functions
	Finite Element Methods
	Generalized Polygonal Barycentric Coordinates

	Natural Neighbor Interpolation
	Natural Neighbor Concepts
	Properties of Natural Neighbor Interpolation
	Steps of Natural Neighbor Interpolation
	Smoothness of Natural Neighbor Interpolation
	Natural Neighbor Coordinates in Point Clouds
	Transfinite Natural Neighbor Coordinates
	Smooth Natural Neighbor Interpolation
	Manifold Natural Neighbor Interpolation
	Implementation of Natural Neighbor Interpolation
	Taxonomy of Natural Neighbor Interpolants


	Splines over Iterated Voronoi Diagrams
	Background
	Farin's Splines over Iterated Voronoi Diagrams
	Iterated Sibson's Interpolation
	Representation as Local Coordinates

	Equivalence with B-splines in the Univariate Case
	Evaluating Quadratic B-Splines Using de Boor
	Evaluating Quadratic B-Splines Using Repeated Knot Insertion
	Evaluating Quadratic B-Splines Using Iterated Sibson's Interpolation
	Difference for Degree Greater Two

	Failure in the Bivariate Case
	Gonzáles ' Voronoi Splines
	Method Description
	Discussion of Gonzáles ' Method and Future Research

	Conclusion

	Practical Implementation of Higher Order Natural Neighbor Coordinates
	Background
	Algebraic Volume Computation
	Triangulation of the Convex Hull
	Lasserre's Method
	Voronoi (Sub-)Tiles in H-Representation
	Weight Dependent Power Voronoi Tile

	Laplace and Sibson Natural Neighbor Coordinates with Lasserre's method
	Laplace Coordinates
	Sibson Coordinates

	Parametric Recursive Volume Representation
	Recursion with Variable Right Side
	Descending the Recursion
	Ascending the Recursion

	Implementation of Hiyoshi Coordinates in 2D
	Geometric Computation
	Computation with Lasserre's Method
	Integral Evaluation

	Conclusion

	Derivative Generation for Natural Neighbors
	Background
	Direct Approach for Derivative Generation
	Fitting Arbitrary Derivatives
	Choosing the Neighborhood
	Polynomial Precision for Natural Neighbor Interpolants

	Iterative Derivative Generation
	A Univariate Example
	Stages One and Two
	An Explicit Construction for the General Setting
	Discussion

	Results: Generated Derivatives Applied in Smooth Natural Neighbor Interpolation
	Visual Examples for Franke's Function
	Numerical Assessment for Franke's Function

	Complexity Issues for Quintic Bézier Simplices in Hiyoshi's Method
	Conclusion

	Discrete Harmonic Functions from Local Coordinates
	Background
	Related Work
	Harmonic Functions and Their Discretization

	Discrete Harmonic Functions from Local Coordinates
	Discrete Harmonic Functions over Triangulations
	Laplacian Discretizations Based on Local Coordinates
	Experimental Comparison
	Dynamic Aspects

	Conclusion

	Natural Neighbor Extrapolation
	Introduction
	Related Work
	Scattered Data Interpolation
	Scattered Data Extrapolation

	Taxonomy of Scattered Data Extrapolation
	Weighted Triangular Exterior Coordinates
	Method Description
	Alfeld's Extrapolation
	Increasing the Continuity Away from the Convex Hull
	Restrictions and Shortcomings
	Implementation Notes

	Extrapolating Watson's Construction
	Projective Exterior Domain Coordinates
	Extrapolation with Brown Coordinates
	Extension of Circumcircles to Points at Infinity
	Extrapolation Using Brown's Approach on Unbounded Circumcircles

	Ghost Points for Natural Neighbor Interpolation
	Ghost Point Idea
	Assigned vs. Dismissed Ghost Points
	Static Ghost Point Placement
	Dynamic Ghost Point Placement

	Visual Comparison of Extrapolation Methods
	Tame Data Set
	Oscillation Data Set
	Flip Data Set
	Sliver Data Set
	Artifacts and Asymptotic Behavior

	Conclusion and Future Work

	Adaptive Delaunay Tessellation
	Background
	Introduction
	Linear Elasticity and Nodal Integration in the Finite Element Method
	Voronoi Tile Coverage in the ADT

	The Adaptive Delaunay Tessellation
	Geometric Properties of the Adt
	Uniqueness of the Adt
	Connectedness of the Adt
	An Alternative Characterization for the Adt
	Coverage of Voronoi Tiles
	Further Remarks

	Discussion
	Conclusion

	Conclusion
	Bibliography
	Curriculum Vitae

