A Tool to Support Multiple Visual Languagesfor Distributed Software
Development on the Web

Roberto Flores-Méndez, Rob Kremer
Software Engineering Research Network, University of Calgary, Canada
{robertof, kremer } @cpsc.ucalgary.ca

Abstract

Concept mapping isa smple and intuitive visual form of knowledge representation. Concept maps can be categorized as
informal or formal, where the latter is characterized by implementing a semantics model constraining their components.
Software engineering is a domain that has successfully adopted formal concept maps to visualize and specify complex
systems. Automated tools have been implemented to support these models although their semantic constraints are hard-
coded within the systems and hidden from users.

This paper presents the Constraint Graphs and jKSImapper systems. Constraint Graphs is a flexible and p owerful
graphical system i nterface for specifying concept mapping notations. In addition, jKSImapper is a multi-user concept
mapping editor for the Internet and the World Wide Web. Together, these systems aim to support user-definable formal

concept mapping notations and distributed collaboration on the Internet and the World Wide Web.

1. Introduction

This paper is about formal concept m apping and
distributed concept mapping collaboration. Concept maps
are a common form of visual | anguage used pervasively
in a wide variety of applications. Concept map editors
may implement concept m apping formalisms, which
constrain construction of the concept maps to conform to
a specific language.

Software e ngineering is a domain where formal
concept maps have been successfully applied. Examples
of their application can be found in the area of visua
object-oriented modeling notations, where diagrams are
used to represent objects relationships, inheritance and
collaboration, for example. Graphical systems have been
implemented that help to construct and manipulate these
diagrams. However, these systems do not adapt well to
notation modifications, since itis common for themto
define diagram constrains as part of the implementation
code. Congtraint Graphs, in the other hand, is a versatile
system that allows users to visually specify the notations
applied to the construction of formal concept maps. In
addition to this application, jKSImapper is presented as a
system that supports multi-user distributed elicitation of
informal concept maps on the Internet. Together, these
two systems alow multi-user distributed, concept
mapping collaboration in the Internet and the W orld
Wide Web.

A multi-user distributed concept mapping too would
allow software engineers to collaborate at a distance using
familiar, visual notations in a shared, real-time,
interactive graphical workspace. Furthermore, familiar
notations could be easily extended to encompass new
concepts as new requirements arise.

2. Concept Maps

One of the mechanisms for organizing and
communicating k nowledge among individuals are
concept m aps [1]. Concept m aps encompass a wide
variety of diagrammatic knowledge representations. They
can be defined as diagrams composed of links and nodes
of differentt ypes. Concept m aps can graphically
represent and organize arguments and thoughts,
providing an alternative to natural | anguages as a means
to communicate knowledge.

Concept maps have been applied on diverse areas such
as education [2], management [3], artificial i ntelligence
[4], knowledge acquisition [5] and software engineering
(6] [7] [8].

Concept m aps can be c ategorized as informal or
formal, according to the level of syntactic constraints
implemented for interpreting and organizing information.
Concept m aps are not forma unless they have an
associated computational semantics. Therefore, a formal
concept m ap's nodes and links types and their

Multiple
Inher i tance

-l | o 1::]Fter* foces T

Single
Inher i tance

Method

| " Overloading o
ot loading F— —"

[

al lows

does
niot
al low

Memary
h-:md le=s

Operataor

! Dygramic
over | oading

MmEmoy
managemsnt

.-

D

- al | ow 1{@ usseg}q— implements

implements
uses

Jawag
Language
features — e MUl tithreaded “T

al lows

¢ Distributed >

N

handles

Feal-Tim=
behawiar

TCF/IFP
protocaol=s

¢ Fartable 3

al lows

Execution
on

di fferent

platforms

Common GU |
agbstract
classes

ﬁTnterpreted :} Comman
preventing code o primitive
data types
Memaory *
avertiding composed ewecuted Dialo
af by such :Iusf [Unis] [Macintash]
as
caused l l -
b Taoa Jaua 32-bit |EEE
* butecodes runtime || 734 floating
Wild d system | [point number
pointers

Figure 1: An informal concept map about the Java language.

interconnections must be c onstrained to allow for
computer support [9]. However, the absence of semantic
constraints does not mean that informal concept maps are
not useful just because they may not be computational
from a computer's point of view (see Figure 1). For
humans, even informal concept m aps appear to have
greater “computational efficiency” than other forms of
knowledge representation, such as text and logic
notations [10].

3. Concept Mapping Languages in Software
Engineering

Software e ngineering is an area where ¢ oncept
mapping languages can be (and have been) applied.
Concept m apping models are found in the domain of
visual object-oriented modeling systems, where concept

maps are used to capture essential parts of systems and
then applied to the analysis and d esign of software
applications. Examples of these notations are the Object
Model Technique (OMT) [6], the Booch model [7], the
Coad model [8] and the Unified Method Language
(UML) [11]. Figure 2 illustrates the OMT notation for a
small group of classes and Figure 3 exemplifies a UML
state transition diagram for a hypothetical University
Registration System.

Although these examples can both be identified as
concept m aps, they implement very different semantic
congtraints and distinct graphical decorators. While itis
possible to find systems that manipulate these notations

(eg., Rational Rose [13]), these applications are hard
coded to manipulate those specific semantics constraints.
The following section will describe a system that defines
a minimum set of constraints required by concept
mapping languages while allowing designers to visually
define the semantics and syntax to which users are
restricted during the elicitation of diagrams.

4. Constraint Graphs

Constraint Graphs [14] is a concept mapping system
that allows the specification of graphical formalismsin a
manner similar to typical drawing p rograms. As
illustrated in Figure 4, the basic premise in Constraint
Graphs is that all graphs contain only two basic object
types: nodes and arcs, which are collectively referred to
as components. Each of these basic types may be further
elaborated into a lattice of subtypes, where each n ew
subtype can introduce new attributes on top of those of its

parent type.
The type lattice of a
congtraint graph is fully

integrated with the graph
itself. Thati s, there is a | . | | A |
special subtype of arc, called

theis-a arc that can be drawn *
into the graph just as any
ordinary arc type (like owns,
has-color, or bigger-than)
would be. Any component
that lies at the tail of an isa
arc is considered a subtype of the component at the head
of theis-a arc. Of coursg, is-a adds several constraints on
top of a basic arc because the is-a projection of the graph
must be a lattice (because no type may be a direct or
indirect parent of itself). These constrains include the fact
that is-a arcs cannot form cycles and is-a arcs are always
directed binary arcs.

A common concern is constraining the component
types on which arcs can terminate. This is accomplished
by smply attaching the terminals of the defining arc to
the appropriate type objects. For example, if one wants to
describe the empl oyee-of relationship as an arc, one could
define it as follows (where legal-individual is a person or
corporation): [legal-individual] «employee-of—
[person], which would constrain any subtype of employee
to source at a component of at |east type person, and sink
at acomponent of at least type legal-individual .

In addition to node, arc, and is-a, there is a subtype of
node, called context, which is a labeled box that can
contain other components.

[Cortext | =

For convenience, a constraint graph is divided into
levels. Level 1 consists of the primitive graph types
themselves — node, arc, is-a and context— and itis
immutable as far as the user is concerned. The
designation of the rest of the levelsis l€ft to the discretion
of the formalism implementor. Generaly, levels 2 and 3
should be at the system | evel where the basic types are
defined according to the target formalism. These types
should normally be considered immutable by any end
users, since to disrupt them may impede interpretation of
the graph. Two system levels are often used (where level
2 is hidden from the end user and used for hidden type
hierarchies, while level 3 is public and used to populate
the space of type identifiers for the end user). Leve 4 is
generally considered to be the user level, where the end
user builds some specific knowledge structure. More
levels are possible: for example, level 4 might be used to
construct types in some specific domain, and a fifth level
might be added to hold objects of that domain within
some hypothetical world.

4.1. A gIBIS Example

gIBIS[15] isasimple visual language used in business
decison making. gIBIS (which is an acronym for
“Graphical Issue-Based Information System”) is a
notation consisting of typed nodes and typed arcs only
(contexts are not im plemented). This notation defines
three types of nodes.

* Issues: which usually represent decisions to be made;

* Positions: which are statements of a possble
resolution of a particular Issue; and

» Arguments. which describe statements supporting or
objecting to a particular Position.

This notation also defines seven arc types.

* Questions and is-suggested-by: which link an Issue to
any other type of node;

» Yecializes and Generalizes: which link an Issue to
another Issue;

* Responds-to: which links a Position to an Issue; and

» Qupports and Objects-to: which link Argument nodes
to a Position.

Figure 5 shows a simple gIBIS concept map, which
could have been created as part of making a decision
about which type of computer an organization is going to
buy. In this diagram, Issue nodes are shown as dlipses,
Position nodes are shown as rounded rectangles and
Argument nodes are shown as rectangles.

To model the gIBIS notation, it makes sense to capture
the notion of a general gIBISnode (the union of Issue,
Position, and Argument), and to capture the notion of a
general gIBISarc, specifying that it must connect a gIBIS
node to another glBIS node. Both terminals of the gIBIS
arc terminating on the glBISnode serve to restrict t he
terminals of any gIBISarc subtype to terminate on
components that are subtypes of glBIS node.

Finally, the actual gIBIS nodes and arcs can be
defined. The three gIBIS nodes, Issue, Position, and
Argument, are first defined as top-level Constraint Graph
nodes, then an is-a arc is drawn from each to the general
gIBIS node. Immediately after the is-a arcs are drawn, the
visual attributes (colors, shape) of the nodes change to
match those of the general gIBIS node. But Position and
Argument are meant t 0 have different shapes, so the
attributes of these two nodes are changed to represent the

appropriate shape attribute. These operations yield the
nodesin Figure 6.

The arcs are created in a similar way, but to actually
show the is-a arcs in the figure would clutter up the
diagram unreasonably, so a dightly different technique is
used. Instead of creating the arcs as generic Constraint
Graph arcs, they are created directly as subtypes of the
general gIBIS arc. This has the effect of creating the
appropriate is-a arc in the Constraint Graph, but not
drawing the is-a arc in the interface.

All of the gIBIS components, except for giBISnode
and gIBISarc (which are level 2) should be placed in
level 3, since level 3 components will be made visible to
the end user. The level 2 components will be hidden.

5. Distributed Concept Mapping

Constraint Graphs has been described as a powerful
and flexible graphical system i nterface for specifying
concept m apping notations. Although this description
may imply a tightly coupled system, Constraint Graphs
was developed with a great deal of attention on the
software engineering aspects. In particular, it has a very
modular design: t he c onstraint engine and the user
interface are actually quite independent and communicate
only though a very narrow interface. This characteristic
allows the graphical interface to be substituted with other
interface models while minimizing the impact of such
changes on the constraint engine. The objective of the
present section is to describe a distributed architecture
suitable to replace the currently on-site one-user graphical
interface. This architecture allows multiple remote users
to concurrently manipulate a shared concept map located
in acentralized server on the Internet.

5.1. JKSImapper

jKSmapper [16] is a multi-user client/server
application that supports distributed elicitation of
informal concept m aps on the Internet. This s ystem
allows users to concurrently manipulate a remotely-
located shared concept m ap by means of a client
standalone program or a web browser applet. To provide
this service, jKSImapper features three programs: t wo
client programs (named jKSmapper and jKSmapplet)
and one server program (called jKSmapper Server).
These programs were entirely implemented u sing the
Java programming language [17]. This alows
jKSmapper to provide a great deal of portability and
integration with prevailing commercial web browsers.

jKSmapper and jKSmapplet are client programs that
implement a drawing surface where concept m aps are

displayed and directly manipulated. Concept m apping
components are handled using a pointing device and they
are ¢ reated and modified u sing menu options
(jKSmapplet uses HTML-embedded JavaScript controls
instead).

jKSmapper, which is illustrated in Figure 7, is a
standalone program that can edit concept mapping data
found locally in the client computer, accessible viaa URL
or provided by a jKSmapperServer process. Under local
and URL access modes, data is non-shareable and itis
manipulated locally without the assistance of any external
process. In the other hand, data provided by a

jKSmapper Server requires collaboration between clients
and server, since clients are required to join a server
session where concept maps are manipulated and shared
(sessions are further detailed on the jKSmapperServer
section below).

jKSmapplet is a Java applet that i s embedded inside
HTML pages and automatically executed when iti s
downloaded as part of normal web navigation. In contrast
to the standalone version, jKSimapplet does not allow
concept mapping data to be stored or read from the client
computer. This makes jKSmapplet completely dependent
of the server process (which must reside on the same
server computer from where the applet was downloaded).

jKSmapperServer is a server program supporting
multi-user manipulation of concept mapping data files.
jKSmapperServer allows client concept m apping
elicitation programs to retrieve server concept mapping
data files, while coordinating clients actions in order to
maintain a consistent state in the concept m aps being
concurrently shared by several clients. When a client
requests a file, the server process creates a session (if one
does not exist) to which the client i s connected as a new
member. A sesson can bed escribed as a dynamic
shareable centralized state representation of a concept
mapping d ata file, and it represents a common
coordination location to a group of clients accessing a
shared datafile.

The three programs implement a session-oriented
command broadcasting mechanismt o coordinate a
community of clients engaged in a sesson. This

technique requires clients to transform user events into
commands that are transmitted to the server and routed to
the session on which the issuer has membership. Once
their session is located, these commands are broadcast to
all members (including the issuer) for execution.

Under this architecture, Constraints Graph registers
with the server process as a listener service provider to
which client programs submit user entries for notation
checking. In a typical scenario, a user interacts with a
concept m apping g raphical i nterface, transforms user
events into requests and sends these requests to the server
(and to the constraints processing engine) for validation.
In the event of a valid request, Constraints Graphs issues
the proper r esulting commands to jKSmapperServer,
which then submit them to the issuer and all the other
clients connected to the same sesson. In addition to
commands broadcast to all clients, Constraint Graphs can
also issue commands directed to a single client. Such is
the case of commands resulting from i nvalid requests
(where an error message command is send to the issuer
for user feedback), and commands containing context-
specific information (such as data to be displayed in
components pop-up menus).

6. Conclusion

This paper has described concept maps as a type visual
language that can be (and is) used in software
engineering and k nowledge representation. Constraint
graphsis a flexible concept mapping editor that can adapt
to a wide variety of languages, including those used in
software engineering. This is useful i n itself, but by
combining it with jKSImapper, software e ngineering
groups can manipulate concept maps over the Internet in
a shared, real-time, graphical environment. This should
allow distributed workgroups to collaborate using familiar
visual languages in new and natural ways.

References

[1] Gaines, B. R. and Shaw, M. L. G., Collaboration through
Concept Maps. Computer Supported Cooperative Learning.
Bloomington, October, 1995.

[2] Novak, J. D. and Gowin, D. B., Learning How To Learn.
Cambridge University Press, New York, 1984.

[3] Axelrod, R., Structure of Decision. Princeton, Princeton
University Press, New Jersey, 1976.

[4] Quillian, M. R. Semantic memory. Semantic Information
Processing. MIT Press, Cambridge, Massachusetts. p. 216-270,
1968.

[5] McNeese, M. D., Zaff, B. S, Peio, K. J., Snyder, D. E,,
Duncan, J. C. and McFarren, M. R., An Advanced Knowledge
and Design Acquisition Methodology for the Pilot's Associate.
Harry G Armstrong Aerospace Medical Research Laboratory,

Wright-Patterson Air Force Base, Ohio, 1990.

[6] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorensen, W. Object-Oriented Modeling and Design. Prentice
Hall, New Jersey, 1991.

[7] Booch, G., Object-Oriented Analysis and Design with
Applications. Second Edition, Benjamin/Cummings, Redwood
City, CA, 1994.

[8] Coad, P., North, D. and Mayfield, M., Object Models:
Strategies, Patterns and Applications. Prentice Hall, New
Jersey, 1995.

[9] Kremer, R., Concept Mapping: Informal t o Formal.
Proceedings of the International Conference on Conceptual
Structures, University of Maryland, 1994.

[10] Lambiotte, J. G., Dansereau, D. F., Cross, D. R. and
Reynolds, S. B., Multirelational Semantic Maps. Educational
Psychology Review, 1(4), pp. 331-367,1984.

[11] Booch, G., Rumbaugh, J. and Jacobson, I., Unified
Modeling Language User Guide. Addison-Wesley, Reading,
Massachusetts, 1998.

[12] Rational Software Corporation., Object-Oriented Analysis
and Design with UML, Rational Software Co., 1997. Available
at: http://www.rational.com/products/rose/ooadwithuml4.0.zip
[13] Quatrani, T., Visua Modeling with Rationa Rose and
UML, Addison-Wesley, Reading, Massachusetts, 1998.

[14] Kremer, R., Constraint Graphs: A Concept Map Meta
Language, Computer Science Department, University of
Calgary, Canada., PhD dissertation, 1997.

[15] Conklin, J. and Begeman, M., gIBIS: A Hypertext Tool for
Team Design Deliberation, Hypertext '87, pp. 247-251, 1987.
[16] ForessMéndez, R. A., Programming Distributed
Collaboration Interaction through the WWW, Computer Science
Department, University of Calgary, Canada, MSc. Thesis, 1997.
[17] Arnold, K. and Gosling, J., The Java Programming
Language Specification, Second Edition, Addison-Wesley,
Reading, Massachusetts, 1998.

