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Abstract. In this article we prove existence and uniqueness results for solutions to
the outer oblique boundary problem for the Poisson equation under very weak as-
sumptions on boundary, coefficients and inhomogeneities. Main tools are the Kelvin
transformation and the solution operator for the regular inner problem, provided in
[1]. Moreover we prove regularisation results for the weak solutions of both, the inner
and the outer problem. We investigate the non-admissible direction for the oblique
vector field, state results with stochastic inhomogeneities and provide a Ritz-Galerkin
approximation. The results are applicable to problems from Geomathematics, see e.g.
[2] and [3].
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1. Introduction

The main subject of the present article are existence results for solutions to the outer
oblique boundary problem for the Poisson equation. It is based on the article [1], in
which a theory for deterministic as well as stochastic inhomogeneities and solutions to
the regular inner problem is provided. The problem is called outer problem because it
is defined on an outer domain Σ ⊂ Rn. This is a domain Σ, having the representation
Σ = Rn\D where 0 ∈ D is a bounded domain. Consequently, ∂Σ divides the euclidean
space Rn into a bounded domain D, called inner domain, and an unbounded domain Σ,
called outer domain. The problem defined on D and ∂D is called inner problem. The
Poisson equation on Σ is given by

∆u = f,

and the oblique boundary condition by

〈a · ∇u〉+ bu = g,

on ∂Σ. This condition is called regular if the equation

|〈a · ν〉| > C > 0,

holds on ∂Σ for a constant 0 < C < ∞. A classical solution corresponding to continuous
a, b, g and f of the outer oblique boundary problem for the Poisson equation is a
function u ∈ C2(Σ) ∩ C1(Σ) fulfilling the first two equations and having the property
that u ∈ O( 1

|x|) for |x| tending to infinity. In order to allow very weak assumptions on
boundary, coefficients and inhomogeneities, we are interested in weak solutions to this
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problem. In [1] an existence and uniqueness result for the weak solution to the inner
oblique boundary problem is presented. To be more precisely, if ∂Σ is a C1,1-boundary of
a bounded domain Σ, |〈a · ν〉| > C > 0 on ∂Σ, a

〈a·ν〉 − ν ∈ H1,∞(∂Σ; Rn), b
〈a·ν〉 ∈ L∞(∂Σ)

and ess inf∂Σ

(
b

〈a·ν〉 −
1
2div∂Σ( a

〈a·ν〉 − ν)
)

> 0, then for every g
〈a·ν〉 ∈ H− 1

2
,2(∂Σ) and

f ∈
(
H1,2(Σ)

)′
there exists one and only one u ∈ H1,2(Σ) fulfilling the weak formulation.

Additionally the solution depends continuously on the data. Beside from some results
for Sobolev spaces defined on sub manifolds, the crucial point in the proof is to show
coercivity of the bilinear form related to the weak formulation. Therefore we use a
Poincaré inequality, namely∫

Σ
〈∇u · ∇u〉 dλn +

∫
∂Σ

u2dHn−1 ≥ C

(∫
Σ

u2 dλn +
∫

Σ
〈∇u · ∇u〉 dλn

)
,

for all u ∈ H1,2(Σ). For details see the reference given above. Important is, that this
Poincaré inequality is only available for bounded domains, so we can not apply the same
techniques to the outer setting. Before we go to the outer problem we prove a regu-
larisation result for the inner problem. This well be used later on in order to prove
the main results of this article. If ∂Σ is a C2,1-boundary of a bounded domain Σ,

a
〈a·ν〉 − ν ∈ H2,∞(∂Σ; Rn), b

〈a·ν〉 ∈ H1,∞(∂Σ), g
〈a·ν〉 ∈ H

1
2
,2(∂Σ) and f ∈ L2(Σ), we are

able to show that the weak solution is even a strong solution, i.e. u ∈ H2,2(Σ). In the
proof we show that the weak solution fulfills the requirements of a regularisation result
for the weak Neumann problem.

Then we tackle the outer problem. Our approach in order to provide a weak solution
is transforming this problem to a corresponding inner problem, using the Kelvin trans-
formation. This transformation defines for each outer domain Σ an inner domain ΣK

via

ΣK :=
{

x

|x|2
∣∣∣x ∈ Σ

}
∪ {0}.

In turn, we get for each function u defined on ΣK a function v by

v(x) :=
1

|x|n−2
u(

x

|x|2
),

for all x ∈ Σ. The first transformation leaves the regularity of ∂Σ invariant, while the
second has the important property

∆v(x) =
1

|x|n+2
(∆u) (

x

|x|2
), x ∈ Σ,

for all u ∈ C2(ΣK). Our idea is to use this transformations in order to provide a weak
solution. We transform the outer problem into a corresponding inner problem, then solve
this problem and finally transform the weak solution of the inner problem to a function
defined in the outer domain. The transformations T1(f) and T2(g) of the inhomogeneities
as well as T3(a) and T4(b) of the coefficients can be identified by standard calculus. The
problem is to find the right function spaces and then to extend the transformations to
these spaces. In order to identify them we have to take care of two main aspects. First,
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the image spaces under the transformations have to fulfill the requirements of the exis-
tence and uniqueness result for the regular inner problem. Otherwise we cannot apply
the solution operator for the inner problem. Second, the transformations should be con-
tinuous. Otherwise the weak solution of the outer problem will not depend continuously
on the inhomogeneities. We are able to show that the spaces H− 1

2
,2(∂Σ) for the bound-

ary inhomogeneity,
(
H1,2

|x|2,|x|3(Σ)
)′

for the domain inhomogeneity and H1,2
1

|x|2
, 1
|x|

(Σ) for the

weak solution, are a suitable choice. Here we have Sobolev spaces equipped with weighted
Lebesgue measures. Under this conditions we are able to prove that if Σ is an outer C1,1-
domain, a ∈ H1,∞(∂Σ; Rn) and b ∈ L∞(∂Σ), fulfilling

∣∣〈(T3(a)) (y) · νK(y)〉
∣∣ > C > 0

and ess inf∂ΣK

{
T4(b)

〈T3(a)·νK〉 −
1
2div∂ΣK

(
T3(a)

〈T3(a)·νK〉 − νK
)}

> 0, for each g ∈ H− 1
2
,2(∂Σ)

and f ∈
(
H1,2

|x|2,|x|3(Σ)
)′

, there exists

u := K(Sin
T3(a,T4(b)(T1(f), T2(g))) with u ∈ H1,2

1
|x|2

, 1
|x|

(Σ) fulfilling the continuity estimate

‖u‖
H1,2

1
|x|2

, 1
|x|

(Σ)
≤ C

(
‖f‖�

H1,2

|x|2,|x|3
(Σ)

�′ + ‖g‖
H− 1

2 ,2(∂Σ)

)
.

Furthermore we can show that if Σ is an outer C2,1-domain and a ∈ H2,∞(∂Σ; Rn)
and b ∈ H1,∞(∂Σ), f ∈ L2

|x|2(Σ) and g ∈ H
1
2
,2(∂Σ) we have u ∈ H2,2

1
|x|2

, 1
|x| ,1

(Σ) for the

weak solution to the outer problem. Additionally, it fulfills the classical formulation
almost everywhere and a corresponding continuity estimate holds. Because of the Kelvin
transformation we get a transformed non admissible direction for the oblique vector field
a. For R2 we can explicitly calculate this direction. It only depends on the geometry of
the surface ∂Σ.

This article is organized as follows. In Section 2 we define the function spaces we will
use. This are mainly the spaces of smooth functions and spaces of weakly differentiable
functions. We introduce Sobolev spaces on sub manifolds and Sobolev spaces equipped
with weighted Lebesgue measures. Closing the section, we present some important results
about these spaces. In Section 3 we present the weak theory for the regular inner problem
including an existence and uniqueness result for a broad class of inhomogeneities. This
are mainly the results contained in [1], except of the regularisation result at the end
of the section. In Section 4 we start with the investigation of the outer problem. We
introduce transformations which will be used in order to transform the outer problem to
a corresponding inner problem. Also some important properties of those transformations
are proved. They will be important in Section 5. Here we state the outer problem and in
the following we will be able to prove the existence of a weak solution for a very general
class of inhomogeneities. The modified condition which occurs because of the Kelvin
transformation is investigated in a separate subsection at the end of Section 5. Finally,
we state a remark about stochastic inhomogeneities and a Ritz-Galerkin approximation
method. Both can be implemented, using the techniques from [1].

Our analysis of the outer problem is motivated by problems from Geomathematics. Here
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oblique boundary problems arise frequently, because in general the normal of the Earth’s
surface does not coincide with the direction of the gravity vector. Therefore, the oblique
boundary condition is more suitable then a Neumann boundary condition. For details
see [3] or [4].

The main progress achieved in this article can be summarized by the following core
results:

• A regularisation result for a strong solution to the inner problem, i.e. u ∈
H2,2(Σ), is proved, see Theorem 3.6.

• The transformation of the outer oblique boundary problem for the Poisson equa-
tion to a corresponding inner problem is provided. Important properties of this
transformation are proved, see Lemmata 4.7, 4.11, 4.13 and 4.14.

• The existence of a weak solution to the outer problem under weak assumptions on
coefficients and surface for a large class of inhomogeneities is proved, see Theorem
5.2.

• An existence result for a strong solution under additional regularity assumptions
is proved and the connection to the classical problem is established, see Theorem
5.4.

• The transformed condition on the oblique vector field is investigated, see Subsec-
tion 5.2.

• Stochastic inhomogeneities as well as an existence result for the stochastic weak
solution can be implemented, see Remark 5.5 (i). Additionally a Ritz-Galerkin
approximation method for numerical computations is available, see Remark 5.5
(ii). For details about these results we refer to [1]. The results are applicable to
problems from Geomathematics, see e.g. [2] and [3].
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