
Technische Universität
Kaiserslautern

Fachbereich Mathematik

Numerical Upscaling for
Multiscale Flow Problems

Jörg Willems

Vom Fachbereich Mathematik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften
(Doctor rerum naturalium, Dr. rer. nat.)

genehmigte Dissertation

1. Gutachter: Prof. Dr. Oleg Iliev

2. Gutachter: Prof. Dr. Raytcho Lazarov

Vollzug der Promotion: 23. Juli 2009

D 386





Acknowledgements

Firstly, I would like to thank my advisor Professor Iliev for the opportunity to
work on this exciting topic and for his continuous support during the entire time
of writing this thesis. Furthermore, I would like to thank Professor Lazarov for his
support and the many discussions that we had during the final year of my PhD.

Additionally, I am very grateful for the fruitful working environments provided
by the Department of Flow and Material Simulation at the Fraunhofer ITWM, the
Department of Mathematics at the University of Kaiserslautern, and the Department
of Mathematics at Texas A&M University. In this respect I would like to thank
Professor Efendiev for many interesting discussions and Professor Bangerth and
Professor Kanschat for introducing me to the finite element software library Deal.II.
Also, I would like in particular to thank Professor Neunzert for his guidance and
support during my studies.

The financial support by the Fraunhofer ITWM, the Studienstiftung des deutschen
Volkes, and the DAAD is gratefully acknowledged.

Last but certainly not least I would like to thank in particular my wife Sonja
and my parents for their support, patience, and encouragements.

iii





Contents

Acknowledgements iii

Preface vii

Chapter 1. A Simplified Method for Upscaling High-Contrast Composite
Materials 1

1.1. Introduction 1
1.2. Notation and Motivation 5
1.3. Analysis of the upscaling method for high-contrast materials 7
1.4. A δ-independent algorithm for upscaling composite materials of high

contrast 15
1.5. Numerical Results and Conclusions 18

Chapter 2. Fast Numerical Upscaling of the Heat Equation for Fibrous
Materials 23

2.1. Introduction 23
2.2. Notation and Definitions 26
2.3. Discretization of the Problem and Error Estimates 29
2.4. Numerical Results and Conclusions 34

Chapter 3. A Domain Decomposition Approach for Calculating the Graph
Corresponding to a Fibrous Geometry 43

3.1. Introduction 43
3.2. Preliminaries 43
3.3. A divide and conquer algorithm 44
3.4. Numerical Results and Conclusions 47

Chapter 4. A Numerical Subgrid Method for Solving Brinkman’s Equations in
Highly Heterogeneous Media 55

4.1. Introduction 55
4.2. Problem Formulation and Notation 57
4.3. Numerical Subgrid Approach for Solving Darcy’s Problem 61
4.4. Extending the Numerical Subgrid Approach for Darcy’s Problem by

Alternating Schwarz Iterations 66
4.5. Discontinuous Galerkin Discretization of Brinkman’s Equations 69
4.6. Numerical Subgrid Approach for Solving Brinkman’s Problem 77
4.7. Extending the Numerical Subgrid Approach for Brinkman’s Problem

by Alternating Schwarz Iterations 81
4.8. Numerical Results and Conclusions 82

Summary 123

v



vi CONTENTS

Bibliography 125



Preface

The thesis at hand deals with the numerical solution of multiscale problems

arising in the modeling of processes in fluid and thermo dynamics. Many of these

processes, governed by partial differential equations (PDEs), are relevant in engi-

neering, geoscience, and environmental studies, and often display one or several of

the following characteristics (cf. e.g. [34, 41, 48, 55]):

(1) The size of the computational domain is several orders of magnitude larger

than the finest spatial scale of the relevant processes.

(2) The involved processes happen on several (a) separated or (b) unseparated

spatial scales.

(3) The process of interest happens at a spatial scale comparable to the size of

the domain but is influenced by processes on much finer spatial scales.

(4) The governing equations are different on different spatial scales.

(5) The physical properties relevant for the investigated processes vary signifi-

cantly throughout the domain.

When computing a sufficiently accurate approximation to the solution of the

PDE under investigation, these characteristics lead to several challenging numerical

problems. If (1) holds true, a full discretization of the PDE resolving the finest scale

throughout the domain can easily exceed the capacities of state of the art computing

architectures.

If one is only interested in a sufficiently accurate description of the solution of

the PDE on a coarse scale comparable to the size of the domain, and if the involved

scales are clearly separated, i.e., (3) and (2a) hold, the theory of homogenization can

be very useful (cf. e.g. [29, 47, 49]). In this situation one may compute effective

material properties by solving local problems on a fine scale, which is very often still

computationally feasible. These effective material properties can then be used for a

discretization on the coarse scale, which can be handled much more easily than a full

fine-scale discretization (cf. e.g. [72]). The theory of homogenization also addresses

the case when the processes on the coarse scale are governed by different PDEs than

the processes on the fine scale, i.e., (4) holds. A very well-known example related to

flows in porous media is the case when the viscous flow at pore scale is modeled by

Stokes’ equations and by Darcy’s law on the field scale (cf. e.g. [3, 4]).
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viii PREFACE

The situation becomes more difficult, when the involved scales are not clearly

separated, i.e., (2b) holds. Since in this case there is no coarse and fine scale,

into which the problem may be decomposed, one is usually left with computing an

approximate solution of the full fine discretization. There are several approaches

to tackle this problem efficiently, e.g. geometric multi-grid (cf. e.g. [18, 39, 69])

with or without problem dependent inter-grid transfer operators, algebraic multi-

grid (cf. e.g. [19, 60]), various domain decomposition methods (cf. e.g. [50, 63]),

and multiscale finite element methods (cf. e.g. [5, 33, 42]). All of these approaches

are also applied in the case of separable scales, when a certain resolution of fine

features is desired.

Another issue, which can greatly increase the difficulty of solving the arising

discrete problems, results from significantly varying physical properties (e.g. con-

ductivity or permeability) of the underlying media, i.e., (5) holds. This frequently

leads to very ill-conditioned discrete systems, which necessitates the application of

efficient preconditioners (cf. e.g. [2]).

Besides (1)-(5) additional sources of difficulties can arise from non-linearities (cf.

e.g. [32]) and stochastic uncertainties in the modeled processes. Further challenges

are due to time-dependence (cf. e.g. [1, 46]) and the mutual interaction of several

involved processes, which is often referred to as “multi physics” (cf. [34]).

In the thesis at hand we are concerned with the efficient numerical computation

of effective macroscopic thermal conductivity tensors of high-contrast composite ma-

terials. The macroscopic thermal conductivity tensor for a given medium is assumed

to exist. The term “high-contrast” refers to large variations in the conductivities of

the constituents of the composite, i.e., (5) holds.

Additionally, this thesis deals with the numerical solution of Brinkman’s equa-

tions (cf. [23]). This system of equations adequately models viscous flows in (highly)

permeable media. It was introduced by Brinkman in [23] to reduce the deviations

between the measurements for flows in such media and the predictions according to

Darcy’s model ([41]).

We now outline the main goals and structure of the thesis:

Goals:
• Derive, analyze, and numerically test a method for computing the effective

thermal conductivity tensors of high-contrast composite materials. The

numerical complexity of the algorithm is targeted to be independent of the

size of the contrast. Furthermore, with increasing contrasts the computed

effective tensors should converge to the reference ones obtained by classical

methods.
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• Derive, analyze, and numerically test a method for computing the effective

thermal conductivity tensors of high-contrast composite materials, where

the highly conductive inclusions are assumed to be fibers forming network-

like structures. Here the main objective is to take advantage of the slender

shape of the fibers in order to substantially reduce the numerical cost.

• Derive and study a domain decomposition approach for calculating effi-

ciently the graph corresponding to a fibrous structure.

• Derive, analyze, and numerically test an optimal order mixed finite element

discretization of Brinkman’s equations which satisfies additional conditions

that allow to derive a stable two-scale method.

• Derive and numerically study two-scale overlapping domain decomposition

methods for Darcy’s and Brinkman’s equations. The objective is to obtain

algorithms which combine the benefits of subgrid and alternating Schwarz

methods, and thus guarantee convergence to the solutions obtained by sin-

gle fine-grid discretizations.

Structure:

Chapter 1 addresses the important issue for the engineering practice of developing

fast, reliable, and accurate methods for computing macroscopic (upscaled) thermal

conductivities of a large class of industrial composite materials. These materials,

such as metal foams, fibrous glass materials, mineral wools, and the like, are widely

used in insulation and advanced heat exchangers. They are characterized by a sub-

stantial difference between the thermal properties of the highly conductive materials

(glass or metal) and the insulator (air) as well as low volume fractions and complex

network-like structures of the highly conductive components. We assume that the

materials have constant macroscopic thermal conductivity tensors, which can be ob-

tained by upscaling techniques based on the post-processing of a number of linearly

independent solutions of the steady-state heat equation on representative elementary

volumes (REVs).

We propose, theoretically justify, and computationally study a numerical method

for computing the effective conductivities of materials for which the ratio δ of low and

high conductivities satisfies δ � 1. We show that in this case one needs to solve the

heat equation in the region occupied by the highly conductive media only. Further,

we prove that under certain conditions on the microscale geometry the proposed

method gives an approximation that is O(δ)-close to the upscaled conductivity.

Finally, we illustrate the accuracy and the limitations of the method on a number

of numerical examples.
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The results of this chapter have been/will be published in [35, 45].

Chapter 2 also discusses numerical methods for computing the effective heat con-

ductivity of composite fibrous materials, such as glass or mineral wool. Again, these

materials are characterized by low solid volume fractions and high contrasts, i.e.,

high ratio between the thermal conductivities of the fibers and the surrounding air.

We consider cell problems entirely posed on the highly conductive constituents to

extract the desired effective thermal conductivity tensors. The additional assump-

tion of treating only fibrous materials allows for a further simplification by taking

advantage of the slender shape of the fibers and assuming that they form a network.

The assumption that the diameters of the fibers are much smaller than their lengths,

combined with the technique developed in Chapter 1, allows to neglect the solution

gradient in radial direction and to simplify the problem to the solution of the heat

equation posed only on the connected graph corresponding to the fibers (considered

as one-dimensional objects).

The respective discretization on the graph is presented and error estimates are

provided. The resulting algorithm is discussed and the accuracy and the performance

of the method are illusrated on a number of numerical experiments.

The results of this chapter have been presented in [43].

Chapter 3 can be regarded as an extension of the considerations in Chapter 2. As

mentioned above the numerical calculations for computing the upscaled conductivity

tensor of a fibrous structure are performed using a discretization on the graph cor-

responding to the network of fibers. Chapter 3 discusses the essential preprocessing

step of setting up this graph.

More precisely, a domain decomposition approach is applied to reduce the nu-

merical cost of constructing the graph. The complexity of the approach is analyzed

on a particular model geometry. The derived estimate is, furthermore, verified nu-

merically for a series of practically relevant structures.

The results of this chapter have been accepted for publication in [20].

Chapter 4 discusses the numerical solution of Brinkman’s equations. This set of

equations models viscous flows in (highly) porous media and materials, appearing

in many industrial and environmental applications, such as industrial filters, open

foams, or natural vuggy reservoirs.

The main focus of interest is the case when the features of the flows governed

by Brinkman’s equations live on multiple scales. For such problems the global fine-

grid discretizations resolving the finest scales of the flows lead to very large linear
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systems. Since solving the latter can very well exceed the capacities of modern

computing architectures, the development of upscaling techniques is an important

task.

Targeting this class of problems, Chapter 4 introduces a two-scale FEM for

Brinkman’s equations. We first derive and analyze a mixed finite element discretiza-

tion of Brinkman’s equations. In addition to optimal approximation properties, the

choice of the finite element spaces is limited by several restrictions necessary for

the subsequent derivation of the two-scale discretization. This issue is addressed by

extending a discontinuous Galerkin mixed finite element method presented in [67]

to the Brinkman case and by employing Brezzi-Douglas-Marini mixed finite element

spaces of order 1.

Using this discretization together with the concept of subgrid approximation

developed by Arbogast for Darcy’s equations (cf. [9, 10]) we obtain a two-scale

FEM for Brinkman’s problem. This method is tested on a sequence of examples

corresponding to relevant practical applications, such as flows in vuggy porous me-

dia, important in oil recovery, and flows in fibrous materials used for filtration. A

detailed analysis of the numerical results and a discussion regarding the desirable

aspects as well as deficiencies of the method is provided.

In order to overcome the deficiencies and in particular to ensure convergence to

the global fine solution, the subgrid algorithm is put in the framework of alternating

Schwarz iterations using subdomains around the coarse-grid boundaries. This yields

a two-scale domain decomposition method. As a byproduct a corresponding two-

scale domain decomposition method is obtained for Darcy’s problem. Both methods

are tested on the same set of numerical examples as the subgrid algorithms and

conclusions are drawn.

The developed algorithms are implemented using the deal.II finite element soft-

ware library (cf. [12]).

The preliminary results of this chapter have been published/accepted for publi-

cation in [44, 71].

The thesis is concluded by a Summary of the obtained results.





CHAPTER 1

A Simplified Method for Upscaling High-Contrast

Composite Materials

1.1. Introduction

Upscaled properties of composite materials are in strong demand in engineer-

ing, geoscience, and environmental studies. The aim of this chapter is to develop,

mathematically justify, and numerically test a simplified but fast and practically

useful numerical algorithm for computing the effective heat conductivities of a class

of industrial materials. Examples for such composite materials are some industrial

metal and glass foams, fibrous metal and glass materials, mineral wool, and the

like, which are widely used in insulation or in advanced heat exchangers (see, e.g.,

[24, 64]). Detailed distributions of composite materials in given volumes can be ob-

tained using voxel representations of three-dimensional scans or by the application

of statistical generators. Examples of such materials are shown in Figures 1.1 and

1.2. The media shown in Figures 1.1(a) and 1.2(a) were generated by the GeoDict

software1. The geometries shown in Figures 1.1(b) and 1.2(b) were obtained using

voxel representations of three-dimensional scans, a courtesy of the Department of

Flow and Material Simulation, Fraunhofer ITWM. Another closely related class of

problems are flows in fractured porous media, where the connected fractures usu-

ally occupy small parts of the domains (see, e.g., [8, 11, 40, 68]) and the effective

properties sought are the upscaled permeabilities.

It is well-known that the temperature distribution u in a domain Ω ⊂ Rn, n =

2, 3, is the solution of the boundary value problem

(1.1)

 ∇ · (K (x)∇u (x)) = 0 x ∈ Ω,

u (x) = g (x) x ∈ ∂Ω,

where g is the prescribed temperature on the boundary ∂Ω and K(x) is a given

coefficient matrix.

We assume that Ω and K(x) satisfy the following characteristics:

1www.geodict.com

1



2 1. UPSCALING HIGH-CONTRAST COMPOSITE MATERIALS

(a) Isotropic fiber structure. (b) Micro CT-scan of a fiber ma-
terial.

Figure 1.1. Examples of fibrous materials

(a) Periodic foam structure. (b) Micro CT-scan of a foam.

Figure 1.2. Examples of foam materials

• Ω is occupied by two material constituents ΩM and ΩA having substantially

different thermal conductivities KM and KA, respectively (the subscripts M

and A refer to “metal” and “air”, respectively). Without loss of generality,

we shall assume that

(1.2) K (x) =

{
KM = 1 x ∈ ΩM ,

KA = δ x ∈ ΩA,

where δ � 1. We refer to this large difference in the conductivities as high

contrast.

• The volume of the poorly conductive constituent is (much) larger than that

of the highly conductive constituent, i.e., |ΩM | � |ΩA|, where | · | denotes

the Lebesgue measure.
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• The constituents of Ω have a heterogeneous structure, for which the length-

scale of the heterogeneity is small compared to the macroscopic size of Ω.

Furthermore, the highly conductive constituent is typically assumed to have

a network-like structure.

We note that the analysis and the algorithm of this chapter could be easily

extended to the case when KM = KM(x) is a symmetric-matrix-valued function,

which is uniformly (with respect to δ and x) positive definite and bounded. However,

we prefer to illustrate the motivation and the performance of the proposed method

on the simple model problem (1.1), (1.2).

It is well-known that for a heterogeneous medium whose heterogeneity length-

scale is small compared to some macroscopic length-scale, it is often possible to

extract some effective property describing the medium at that macroscopic length-

scale. The mathematical framework of such extraction is the theory of homogeniza-

tion. The cases when the small-scale heterogeneities are either periodic or statis-

tically homogeneous have been studied in great detail; see, e.g. [14, 47, 62, 72]

and the references therein. In both cases the effective properties can be deduced

by solving suitable sets of “cell problems” on representative elementary volumes

(REVs). For a periodic or statistically homogeneous structure, the periodicity cell

or a sufficiently large (compared with the length-scale of the heterogeneity) sample,

constitute an REV, respectively. For a discussion of the definition of an REV and for

the derivation and justification of various homogenization and upscaling procedures,

we refer the reader to [41, 47] and to the references therein.

The effective material property that we are interested in is the effective thermal

conductivity tensor, which we denote by K̃. For simplicity we assume that Ω is

brick shaped with its faces parallel to the coordinate planes. It is well-known that

if Ω is an REV, its effective thermal conductivity tensor K̃ can be obtained by

the following procedure (see, e.g., [47, 72, 62, 41]): Find n linearly independent

functions ui, i = 1, . . . , n by solving the problems

(1.3)

{
∇ · (K∇ui) = 0 in Ω,

ui = xi on ∂Ω,

where xi is the i-th component of x = (x1, . . . , xn), and then compute

(1.4) K̃ei = 〈K∇ui〉Ω :=
1

|Ω|

∫
Ω

K∇uidx,

with ei denoting the i-th Euclidean unit vector.

Remark 1.1. For given real-life media (1.4) can also be used to determine

whether a sample is large enough to be considered an REV. One can think of the

following procedure: For an arbitrary point in a composite media one may consider
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a sequence of volumes increasing in size and centered at this point (see Figure 1.3).

Solving the cell problem (1.3) in each of the volumes and calculating the respective

functional given by (1.4), one can find out when the effective conductivity stabilizes,

and therefore the corresponding volumes can be considered representative.

Figure 1.3. Increasingly larger sample volumes around the same cen-
ter point.

Note that the Dirichlet boundary conditions in (1.3) are one of several possible

choices for such cell problems. For a discussion of the advantages and disadvantages

of using various boundary conditions, e.g. periodic or combinations of Dirichlet and

Neumann, see [72].

There is a vast literature on analytic and numerical methods for calculating ef-

fective heat conductivities of composite materials by solving (1.3); cf. [14, 47, 62,

70, 72]. A major issue in numerical computations is that high contrasts lead to

ill-conditioned matrices arising in the discretization of the differential problem (1.3).

In general, the condition number depends linearly on 1/δ. Moreover, the complex

topology of the highly conductive material makes the design of good preconditioners

a difficult task (see, e.g., [2, 25]). Furthermore, for random high-contrast media

the sizes of the REVs tend to be large, which results in very large discrete systems.

For a particular class of composite materials of high contrast we propose and jus-

tify a method that addresses both issues. The sizes of the algebraic systems are
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substantially reduced by restricting the computations to ΩM . This is possible, since

unlike in other practical situations, we do not need the solution of (1.3), but only

the functional defined by (1.4), which averages the scaled temperature gradient over

Ω. For some industrial problems this simplification can reduce the initial number

of unknowns in the discrete approximation by up to 99%. Moreover, the condition

number of the corresponding system is independent of δ.

The remainder of this chapter is organized as follows: The motivation to replace

the solution of (1.3) in the entire REV by solving a relevant problem in ΩM to

approximate K̃ is presented in section 1.2. In section 1.3 we give the theoretical

justification of our approach. In particular we prove that an O(δ) approximation

of K̃ can be computed in this way. The resulting algorithm, whose numerical com-

plexity is independent of the contrast, is described in section 1.4. The final section

1.5 contains the results of selected numerical experiments confirming the theoretical

findings, as well as some conclusions.

1.2. Notation and Motivation

In this, as well as in the following chapters, we shall use the standard notation for

Sobolev spaces of functions defined on Ω and its boundary ∂Ω, respectively: L2(Ω),

H1(Ω), H1
0 (Ω), etc., and the space H

1
2 (∂Ω) of traces of functions in H1(Ω). Further,

∇v is the gradient of the scalar function v ∈ H1(Ω).

By assumption the conductivity in ΩM is much larger than the one in ΩA, i.e.,

δ � 1. The proposed method relies on the following intuitive observations:

(1) The effective conductivity K̃ can be rewritten as

(1.5) K̃ei = δ
|ΩA|
|Ω|

〈∇ui〉ΩA
+
|ΩM |
|Ω|

〈∇ui〉ΩM

so that in case ∇ui|ΩA
, i.e., the restriction of ∇ui to ΩA is bounded in-

dependently of δ, the first term is of order O(δ) and can be neglected for

high-contrast materials.

(2) The heat flux normal to the interface between ΩA and ΩM is continuous,

and therefore the temperature gradient in ΩM in the normal direction to

the interface with ΩA should tend to zero as δ → 0. Thus, it seems natural

to approximate ui|ΩM
by solving (1.3) in ΩM using homogeneous Neumann

boundary conditions on the interface Σ := ∂ΩM ∩ ∂ΩA. Hence, we need

to find ui only in the smaller domain ΩM . More importantly, ui|ΩM
is the

solution of an elliptic problem with constant coefficients, which leads to a

much better conditioned discrete problem.

These two observations are the basis of the method we propose and study. In

the resulting algorithm described in section 1.4 we also take into consideration the
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contribution of the lowly conductive material on the overall effective thermal con-

ductivity. This is done in a simple way that does not affect the computational

complexity of the method. In particular, no additional discrete problem is solved in

ΩA.

The idea of solving a problem only in the highly conductive parts of the media

was proposed in [13, pp. 105–106]. This early work on double porosity models of

flows in fractured porous media does not have mathematical justifications for the

approximation of the permeability tensor (cf. [13, eq. III.90]), and, moreover, it

contains an undetermined geometric factor. Further, the double porosity model was

extensively studied by many authors; see, e.g., [6, 11, 16, 41]. The main emphasis

in these works is on accounting for the different time scales in the fractures and the

porous matrix, and on proving convergence of the microscopic solution to the solu-

tion of the upscaled problem. The upscaled permeability is computed from a special

cell problem posed in the network of highly conductive fractures (see, e.g., [11]).

Then the porous matrix of low conductivity is either neglected or it is assumed

that the ratio of the low and high permeability is a small parameter characteriz-

ing a microscopic length-scale. A scaling of the porous matrix permeability by the

square of this small parameter is considered in [16], while more complicated scalings

are discussed in [6]. In the present work no such scaling is considered so that the

ratio of the lower and higher conductivity can vary independently of the geome-

try parameters. Another difference is that the cited works do not study how the

upscaled permeability depends on the ratio of the lower and higher conductivities.

We, however, assume that the domain Ω is an REV and that (1.4) gives a justified

approximation of the effective thermal conductivity tensor K̃.

Computing effective permeability tensors for fractured porous media is also dis-

cussed in [15]. The domain is decomposed into a highly permeable network (of

fractures) and lowly permeable surrounding media. The cell problems are solved

separately in the network and in the background material, so that the contribution

of the lowly permeable part is accounted for. This, however, happens at the expense

of solving additional discrete problems. In section 1.4 we show how we account for

the lowly conductive part of the domain without solving additional problems. Fur-

thermore, a mathematical justification of restricting the computations to the highly

conductive part of the domain (when calculating the effective conductivity tensor)

is not discussed in [15].

A rigorous justification of a numerical method that involves problems posed in

the highly conductive part of the domain with zero Neumann boundary conditions

on the interface is carried out by Nielsen and Tveito in [52] (see also [25, 51]).

The statement of Lemma 1.2 below is similar to [52, Proposition 4.1], and our

Proposition 1.4 resembles [52, Theorem 2.2]. However,[52] is not concerned with
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the calculation of effective material properties, and, more importantly, the analysis in

[52] is done differently under some additional assumptions on the domain. Namely,

it is assumed in [52] that dist(ΩA, ∂Ω) > 0. This restriction is not needed in our

analysis. In fact, the geometries that we target violate this condition.

For the sake of completeness we would also like to mention that in [2] the idea of

using zero Neumann boundary conditions on the interface between highly and lowly

conductive regions is used for the design of preconditioners for problems arising from

discretizing equations like (1.3).

1.3. Analysis of the upscaling method for high-contrast materials

This section contains the theoretical justification of the approach outlined above.

First, Lemma 1.2 states an auxiliary result essentially saying that the solution of

(1.3) is bounded in H1-seminorm, independently of the contrast δ. For a clearer

presentation of the main idea in Subsection 1.3.2 we first analyze the special case

that all highly conductive components are connected to ∂Ω. We then return to the

general case and prove Proposition 1.6, which allows us to neglect the highly conduc-

tive components that are not connected to the boundary of the domain. Proposition

1.8 provides a way to approximate the average of the heat flux inside the remain-

ing highly conductive components, i.e., those components that are connected to

the boundary. Next, we show the main result, Theorem 1.9, stating that an O(δ)

approximation of K̃ can be obtained by post-processing the solutions of constant

coefficient elliptic equations posed in the subdomain of the highly conductive mate-

rial, subject to the linear drop Dirichlet boundary conditions on the outer boundary

and zero Neumann boundary conditions on the interface between air and metal.

1.3.1. H1-boundedness of the solution independently of δ. Now, we

prove the following auxiliary lemma, which is a basis for the theoretical justification

of our method.

Lemma 1.2. Let Ω be a Lipschitz domain with Ω =
(
ΩM ∪ ΩA

)
\∂Ω, where ΩM

and ΩA are open sets with Lipschitz boundaries. Furthermore, let u be the solution

of (1.1), (1.2) and g ∈ H
1
2 (∂Ω). Then, for all δ > 0,

(1.6) ‖∇u‖L2(Ω) ≤ C,

where C is a constant which may depend on the domains ΩM and ΩA, the properties

of their boundaries, etc., but is independent of δ.
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Proof. First, we find functions vM and vA that solve the following problems,

respectively:

(1.7)


∆vM (x) = 0 x ∈ ΩM ,

vM (x) = g (x) x ∈ ∂Ω ∩ ∂ΩM ,

∂vM (x)
∂nM

= 0 x ∈ Σ := ΩM ∩ ΩA,

and

(1.8)


∆vA (x) = 0 x ∈ ΩA,

vA (x) = g (x) x ∈ ∂Ω ∩ ∂ΩA,

vA (x) = vM (x) x ∈ Σ.

Here nE denotes the outer unit normal vector to the boundary of ΩE and E ∈
{M, A}. Thus, vM and vA are harmonic functions in ΩM and ΩA, respectively, and

therefore independent of K.

Remark 1.3. Note that vM and vA are not necessarily uniquely defined by

(1.7) and (1.8). For each path connected component of ΩM whose boundary does

not have an intersection with ∂Ω of non-zero measure vM is determined up to an

additive constant. This non-uniqueness, however, does not have any effect on our

method. If one wants to think of some unique choice for vM (and thus vA), one may

fix each of the arbitrary constants in some desirable way.

Now we introduce the function

(1.9) v(x) =

 vM(x) for x ∈ ΩM ,

vA(x) for x ∈ ΩA.

Because of the choice of boundary conditions (1.7) and (1.8) this function belongs

to H1 (Ω). Then for any function w ∈ H1
0 (Ω) we have (see, e.g., [37, Corollary 2.6]):∫

Ω

K∇v · ∇wdx =
∑

E∈{A,M}

∫
ΩE

KE∇vE · ∇wdx

=
∑

E∈{A,M}

∫
∂ΩE

KE
∂vE

∂nE

wdS(x) (since v is harmonic in ΩE)(1.10)

= δ

∫
∂ΩA

∂vA

∂nA

wdS(x) (since ∇vM (x) · nM |Σ = 0).

Since u is the solution of (1.1), we have

(1.11)

∫
Ω

K∇u · ∇wdx = 0 for all w ∈ H1
0 (Ω) .
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Subtracting (1.11) from (1.10) yields

(1.12)

∫
Ω

K∇ (v − u) · ∇wdx =

∫
∂ΩA

δ∇vA · nAwdS (x)

≤ δ‖∇vA · nA‖H− 1
2 (∂ΩA)

‖w‖
H

1
2 (∂ΩA)

≤ Cδ‖w‖
H

1
2 (∂ΩA)

,

where we have used the Cauchy-Schwarz inequality and the fact that ‖∇vA·nA‖H− 1
2 (∂ΩA)

is independent of δ. Choosing w = v − u ∈ H1
0 (Ω) and noting that K(x) ≥ δ in Ω

we obtain ∫
Ω

δ∇ (v − u) · ∇ (v − u) dx ≤ Cδ‖v − u‖
H

1
2 (∂ΩA)

.

Using the trace theorem and Poincaré’s inequality we deduce

(1.13)

∫
Ω

∇ (v − u) · ∇ (v − u) dx ≤ C‖∇ (v − u) ‖L2(ΩA) ≤ C‖∇ (v − u) ‖L2(Ω).

Thus,

(1.14) ‖∇ (v − u) ‖L2(Ω) ≤ C,

which implies (1.6), since v is independent of δ. �

Lemma 1.2 plays a key role in our theoretical study. We shall first consider the

special case when each path-connected component of the highly conductive material,

i.e., ΩM , has a boundary intersection with ∂Ω of non-zero measure. This special case

is treated in Subsection 1.3.2. We illustrate the difference between the special and

the general case in Figure 1.4.

1.3.2. A special case. The next proposition provides a means to approximate

〈−K∇u〉Ω by using the auxiliary function v defined by (1.9). A crucial simplification

comes from the fact that v can be found by solving two separate problems with

constant coefficients.

Proposition 1.4. Let the assumptions of Lemma 1.2 be satisfied. Additionally,

assume that the boundary of each path-connected component of ΩM has an intersec-

tion with ∂Ω of non-zero measure and is a finite union of domains each of which is

star-shaped with respect to a ball. Finally, we let v be defined by (1.7)-(1.9).

Then

(1.15) |〈K∇u〉Ω − 〈K∇v〉Ω| = O (δ) , as δ → 0.

Here and below | · | applied to elements from Rn denotes some norm.

Proof. Note that under the assumptions for ΩM in the special case, v is uniquely

defined by (1.7)-(1.9); cf. Remark 1.3. Now, by choosing w = v − u ∈ H1
0 (Ω) in
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(1.12) we obtain by the trace theorem

(1.16)

∫
Ω

K∇ (v − u) · ∇ (v − u) dx ≤ δC ‖v − u‖
H

1
2 (∂ΩA)

= δC ‖v − u‖
H

1
2 (∂ΩM )

≤ δC ‖v − u‖H1(ΩM ) .

Now, due to the properties of ΩM we may apply Poincaré’s inequality (cf. [21, section

5.3]) to get

(1.17)

∫
ΩM

∇ (v − u) · ∇ (v − u) dx ≤ δC ‖∇ (v − u)‖L2(ΩM ) .

Thus,

(1.18) ‖∇ (v − u) ‖L2(ΩM ) = O(δ),

and another application of Poincaré’s inequality yields

(1.19) ‖v − u‖H1(ΩM ) = O (δ) .

By the trace theorem we deduce that

(1.20) ‖v − u‖
H

1
2 (∂ΩM )

= O (δ) .

Since v − u is harmonic in ΩA and has zero trace on ∂Ω ∩ ∂ΩA and since ∂ΩA =

(∂Ω ∩ ∂ΩA) ∪ Σ, we have by [37, section 1.3] and (1.20)

(1.21) ‖v − u‖H1(ΩA) ≤ C‖v − u‖
H

1
2 (∂ΩM )

= O (δ) .

Then (1.19) and (1.21) give (1.15). �

Now, we are ready to state our main result for this special case.

Theorem 1.5 (Main result - special case). Let the assumptions of Proposition

1.4 be satisfied and let v be defined by (1.7)-(1.9). Then

(1.22)

∣∣∣∣〈K∇u〉Ω −
|ΩM |
|Ω|

〈K∇v〉ΩM

∣∣∣∣ = O (δ) , as δ → 0.

Proof. Obviously∣∣∣∣〈K∇u〉Ω −
|ΩM |
|Ω|

〈K∇vM〉ΩM

∣∣∣∣ ≤ |〈K∇u〉Ω − 〈K∇v〉Ω|︸ ︷︷ ︸
=O(δ) by Prop. 1.4

+

∣∣∣∣〈K∇v〉Ω −
|ΩM |
|Ω|

〈∇v〉ΩM

∣∣∣∣ ,
so it suffices to show

(1.23) 〈K∇v〉Ω −
|ΩM |
|Ω|

〈∇v〉ΩM
= O (δ) .
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Observe that

(1.24)

〈K∇v〉Ω =
1

|Ω|

(∫
ΩM

∇vdx+ δ

∫
ΩA

∇vdx

)
=

1

|Ω|

∫
ΩM

∇vdx+O (δ) (since v is independent of δ)

=
|ΩM |
|Ω|

〈∇v〉ΩM
+O (δ) .

Thus, (1.23) is verified and the proof is complete. �

1.3.3. The general case. Now we return to the general case, where ΩM may

have path-connected components which are strictly inside Ω. Proposition 1.6 essen-

tially states that these path-connected components of the highly conductive material

may be neglected when approximating the effective thermal conductivity tensor K̃.

Proposition 1.6. Let the assumptions of Lemma 1.2 be satisfied and let Ω̃M be

the union of path-connected components of ΩM that do not touch the boundary ∂Ω,

i.e., |∂Ω̃M ∩ ∂Ω| = 0. Then

(1.25)

∣∣∣∣〈K∇u〉Ω −
|Ω∗|
|Ω|

〈K∇u〉Ω∗
∣∣∣∣ = O (δ) , as δ → 0,

where Ω∗ is the interior of Ω\Ω̃M ; see Figure 1.4 for a presentation of various

components of Ω.

Proof. It is easy to see that

(1.26)

∣∣∣∣〈K∇u〉Ω −
|Ω∗|
|Ω|

〈K∇u〉Ω∗
∣∣∣∣ =

1

|Ω|

∣∣∣∣∫eΩM

K∇udx

∣∣∣∣ .
Define ṽM := u|eΩM

, where u solves (1.1). Clearly, by its definition ṽM satisfies the

Neumann problem

(1.27)

 ∆ṽM = 0 in Ω̃M ,
∂ṽM

∂nM

= δ
∂uA

∂nM

on ∂Ω̃M ,

where uA = u|ΩA
. Then∣∣∣∣∫eΩM

K∇udx

∣∣∣∣ ≤ ‖K∇u‖L1(eΩM) ≤ C‖K∇u‖L2(eΩM) = C‖∇ṽM‖L2(eΩM).

By [37, section 1.4] we have

‖∇ṽM‖L2(eΩM) ≤ Cδ

∥∥∥∥ ∂uA

∂nM

∥∥∥∥
H− 1

2 (∂ eΩM)
,

from which we deduce, by [37, Theorem 1.6], that

‖∇ṽM‖L2(eΩM) ≤ Cδ‖u‖H1(Ω).
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Thus,

(1.28) ‖∇ṽM‖L2(eΩM) ≤ Cδ
(
‖u‖L2(Ω) + ‖∇u‖L2(Ω)

)
,

and it suffices to show that ‖u‖L2(Ω) and ‖∇u‖L2(Ω) are bounded independently of δ.

Lemma 1.2 yields that ‖∇u‖L2(Ω) is bounded independently of δ. To make an

estimate for ‖u‖L2(Ω) we use the following construction. Let vg be the harmonic

extension of g from (1.1). By [37, section 1.3] we have that

(1.29) ‖vg‖H1(Ω) ≤ C‖g‖
H

1
2 (∂Ω)

,

where, as usual, C is a constant independent of δ.

By Poincaré’s inequality we have for u− vg ∈ H1
0 (Ω)

(1.30) ‖u− vg‖L2(Ω) ≤ ‖∇u‖L2(Ω) + ‖∇vg‖L2(Ω) ≤ C,

where we have used Lemma 1.2 and the fact that vg is independent of δ. Inequality

(1.29) combined with (1.30) yields the uniform (with respect to δ) boundedness of

‖u‖L2(Ω) and this completes the proof. �

Remark 1.7. Observe that in the proof of Proposition 1.6 we show that the

solution u of (1.1) is bounded independently of δ in H1-norm.

The next proposition provides a means to approximate 〈K∇u〉Ω∗ , which in turn

according to the previous statement is sufficient to approximate the effective thermal

conductivity tensor of the entire domain. We do this by constructing a function sim-

ilar to the one from Lemma 1.2. Again, the crucial point here is that the restrictions

of this function to ΩM and ΩA, respectively, are harmonic functions.

(a) Setting in the special case, where all
path-connected components of ΩM touch
the boundary of Ω.

Ω̃M

Ω∗
M

ΩA

ΩM

Ω∗

Ω

(b) Setting in the general case, where path-
connected components of ΩM may not touch the
boundary of Ω.

Figure 1.4. Components of Ω.
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Proposition 1.8. Let the assumptions of Lemma 1.2 be satisfied and let Ω∗ be

defined as in Proposition 1.6. Take

(1.31) v∗ =


v∗M in Ω∗

M ,

u in Ω̃M ,

v∗A in ΩA,

where v∗M and v∗A are defined by

(1.32)


∆v∗M = 0 in Ω∗

M ,

v∗M = g on ∂Ω ∩ ∂Ω∗
M ,

∂v∗M
∂nM

= 0 on Σ∗,

and

(1.33)



∆v∗A = 0 in ΩA,

v∗A = g on ∂Ω ∩ ∂ΩA,

v∗A = v∗M on Σ∗,

v∗A = u on Σ\Σ∗ = ∂Ω̃M ,

where Σ∗ := ∂Ω∗
M ∩ Σ and Ω∗

M is the interior of Ω∗\ΩA. Further, assume that

each path-connected component of Ω∗
M is a finite union of domains each of which is

star-shaped with respect to a ball.

Then

(1.34) |〈K∇u〉Ω∗ − 〈K∇v∗〉Ω∗| = O (δ) , as δ → 0.

Proof. Let w ∈ H1
0 (Ω∗). Then similarly to (1.10) in Lemma 1.2 we obtain

(1.35)

∫
Ω∗

K∇v∗ · ∇wdx =

∫
∂ΩA

δ
∂v∗A
∂nA

wdS (x) .

Since

(1.36)

∫
Ω∗

K∇u · ∇wdx = 0,

subtracting (1.36) from (1.35) yields

(1.37)∫
Ω∗

K∇ (v∗ − u) · ∇wdx = δ

∫
∂ΩA

∂v∗A
∂nA

wdS (x) ≤ δ

∥∥∥∥ ∂v∗A
∂nA

∥∥∥∥
H− 1

2 (∂ΩA)

‖w‖
H

1
2 (∂ΩA)

.

By Remark 1.7 ‖u‖H1(Ω) ≤ C, where C does not depend on δ. Therefore,

(1.38) ‖v∗A‖H
1
2 (∂ eΩM)

= ‖u‖
H

1
2 (∂ eΩM)

≤ C
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by the trace theorem. Thus,

(1.39)

‖v∗A‖H1(ΩA) ≤ C ‖v∗A‖H
1
2 (∂ΩA)

≤ C

(
‖v∗A‖H

1
2 (∂ eΩM)

+ ‖v∗A‖H
1
2 (Σ∗)

+ ‖v∗A‖H
1
2 (∂ΩA∩∂Ω)

)
= C

(
‖v∗A‖H

1
2 (∂ eΩM)

+ ‖v∗M‖H
1
2 (Σ∗)

+ ‖g‖
H

1
2 (∂ΩA∩∂Ω)

)
≤ C,

where we have used [37, section 1.3], (1.38), and the fact that v∗M |Ω∗M does not

depend on δ by (1.32).

Therefore, by [37, Theorem 1.6] we obtain∥∥∥∥ ∂v∗A
∂nA

∥∥∥∥
H− 1

2 (∂ΩA)

≤ C.

Combining this with (1.37) we get

(1.40)

∫
Ω∗

K∇ (v∗ − u) · ∇wdx ≤ δC ‖w‖
H

1
2 (∂ΩA)

.

Choosing w = v∗ − u ∈ H1
0 (Ω∗) we obtain

(1.41)

∫
Ω∗

K∇ (v∗ − u) ·∇ (v∗ − u) dx ≤ δC ‖v∗ − u‖
H

1
2 (∂ΩA)

≤ δC ‖v∗ − u‖H1(Ω∗M)

by the trace theorem. Now, the properties of Ω∗
M allow us to apply Poincaré’s

inequality (cf. [21, section 5.3]) and to get

(1.42)

∫
Ω∗M

∇ (v∗ − u) · ∇ (v∗ − u) dx ≤ δC ‖∇ (v∗ − u)‖L2(Ω∗M) .

Thus, another application of Poincaré’s inequality yields

(1.43) ‖v∗ − u‖H1(Ω∗M) = O (δ) .

By the trace theorem we deduce that

(1.44) ‖v∗ − u‖
H

1
2 (∂Ω∗M)

= O (δ) .

Since v∗ − u is harmonic in ΩA and has zero trace on (∂Ω ∩ ∂ΩA) ∪ (Σ\Σ∗), and

since ∂ΩA = (∂Ω ∩ ∂ΩA) ∪ (Σ\Σ∗) ∪ Σ∗ we have by [37, section 1.3] and (1.44)

(1.45) ‖v∗ − u‖H1(ΩA) ≤ C‖v∗ − u‖
H

1
2 (∂Ω∗M)

= O (δ) .

From (1.43) and (1.45) it is straightforward to obtain (1.34) and this completes the

proof. �

We now state the main result of this chapter:
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Theorem 1.9 (Main result - general case). Let the assumptions of Lemma 1.2

be satisfied. Furthermore, let Ω∗, Σ∗, and Ω∗
M be defined as in Propositions 1.6

and 1.8, respectively. Assume that each path-connected component of Ω∗
M is a finite

union of domains each of which is star-shaped with respect to a ball. Then, if v∗M is

the solution of (1.32), we have that

(1.46)

∣∣∣∣〈K∇u〉Ω −
|Ω∗

M |
|Ω|

〈K∇v∗M〉Ω∗M

∣∣∣∣ = O (δ) , as δ → 0.

Proof. Let v∗ be defined by (1.31)-(1.33). We obviously have∣∣∣∣〈K∇u〉Ω −
|Ω∗

M |
|Ω|

〈K∇v∗〉Ω∗M

∣∣∣∣ ≤
∣∣∣∣〈K∇u〉Ω −

|Ω∗|
|Ω|

〈K∇u〉Ω∗
∣∣∣∣︸ ︷︷ ︸

=O(δ) by Prop. 1.6

+
|Ω∗|
|Ω|

∣∣∣ 〈K∇u〉Ω∗ − 〈K∇v∗〉Ω∗
∣∣∣︸ ︷︷ ︸

=O(δ) by Prop. 1.8

+

∣∣∣∣ |Ω∗|
|Ω|

〈K∇v∗〉Ω∗ −
|Ω∗

M |
|Ω|

〈K∇v∗〉Ω∗M

∣∣∣∣ .
Therefore, it suffices to show

(1.47)
|Ω∗|
|Ω|

〈K∇v∗〉Ω∗ −
|Ω∗

M |
|Ω|

〈K∇v∗〉Ω∗M = O (δ) .

Observe that

(1.48)

|Ω∗|
|Ω|

〈K∇v∗〉Ω∗ =
1

|Ω|

(∫
Ω∗M

∇v∗dx+

∫
ΩA

δ∇v∗dx

)
=

1

|Ω|

∫
Ω∗M

∇v∗dx+O (δ) , by (1.39)

=
|Ω∗

M |
|Ω|

〈K∇v∗〉Ω∗M +O (δ) ,

which yields (1.47). �

Remark 1.10. Note that (1.46) combined with (1.4) provides a way to com-

pute an approximation of the effective thermal conductivity tensor for high-contrast

media.

1.4. A δ-independent algorithm for upscaling composite materials of

high contrast

Theorem 1.9 and Remark 1.10 provide the theoretical justification of an algo-

rithm, which can be used to compute an approximation of the effective thermal

conductivity tensor of an REV Ω consisting of a highly conductive part, ΩM , and a

lowly conductive part, ΩA. The computational cost of this algorithm is independent
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of δ. As stated above, we are typically interested in those materials for which |ΩM |
is significantly smaller than |ΩA|.

Remark 1.11. In the numerical experiments we do not report specific numbers

showing gains in CPU-time. However, we have observed a significant reduction of

the CPU-time compared to standard algorithms solving a discretization of (1.3)

in the whole domain. We found it difficult to say which stopping criterion in the

iterative method one should take for a fair comparison. Prescribing the same relative

residual reduction in both cases seems inappropriate, since the condition number of

the discretization of (1.3) is (much) larger than that appearing in Algorithms 1.1

and 1.2 – especially for small δ.

We have also observed a significant reduction of the memory required by Al-

gorithms 1.1 and 1.2 compared to methods that solve (1.3) in the whole domain.

Nevertheless, our implementation in this respect is certainly not optimal, since ex-

tracting the highly conductive components could be made more efficient. Since,

however, this is not the computational bottleneck, we did not focus on this issue.

Now, we formulate Algorithm 1.1 for computing an approximation K̃CO of K̃

for high-contrast materials (here the superscript CO stands for “conductive only”).

Note that due to (1.48) the flux in ΩA is O (δ) and may, therefore, be asymp-

totically neglected as δ → 0. By Proposition 1.6 we know that the same is true

for the flux in Ω̃M . These observations led to Algorithm 1.1. Nevertheless, we are

interested in REVs for which |ΩM | � |ΩA|. In extreme cases when |Ω∗
M |/|Ω| is of

order δ, we may, however, expect 〈K∇u〉ΩA∪eΩM
and 〈K∇u〉Ω∗M to be of the same

order. In fact, in the most extreme case, |ΩM | = 0, the effective conductivity is

given by K̃ei = 〈δ∇ui〉Ω = δei, since the solution of (1.3) is ui(x) = xi.

Next, we present Algorithm 1.2, where instead of disregarding ΩA and Ω̃M com-

pletely we add a correction. This correction involves a constant temperature gradient

in ΩA and similarly for Ω̃M , scaled by δ. Note that for δ → 0 the resulting fluxes

tend to zero, which means that taking them into account does not interfere with our

asymptotic analysis above. Nonetheless, for a specific choice of δ we may still expect

to obtain (and do in many numerically tested cases) more accurate approximations

of the effective thermal conductivity tensors, especially if |Ω∗
M |/|Ω| is of the same

order as δ.

Note that, as mentioned in section 1.2, the objective to capture the influence

of ΩA was previously discussed in [15]. Unlike in [15], however, we do not solve

additional problems in ΩA, which makes our method, which takes into account

contributions of ΩA, significantly cheaper.
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Algorithm 1.1 Compute an approximation K̃CO of K̃ by neglecting lowly conduc-
tive components and those highly conductive path-connected components which do
not touch ∂Ω.

1: Let Ω be as described in section 1.1 (i.e., brick shaped and with its faces parallel
to the coordinate planes), and let ΩM and ΩA be such that Ω = ΩM ∪ΩA. (Note
that unlike above we do not distinguish between open and closed sets, since
numerically they are treated identically.).

2: Let KM and KA be the conductivities in ΩM and ΩA, respectively, where KM �
KA.

3: Generate a grid that resolves ΩM and ΩA.
4: Determine all connected components ΩM,j, j ∈ JM , of ΩM that have a non-empty

intersection with ∂Ω, i.e., ΩM,j ∩∂Ω 6= ∅. (Here, ∂Ω denotes the outermost layer
of voxels in Ω, and JM denotes a suitable index set.) (For a better understanding
of the introduced components we refer the reader to Figure 1.5.)

5: for i=1,. . . ,n do
6: for j ∈ JM do
7: Solve a finite volume discretization of

(1.49)


∆vi = 0 in ΩM,j

∂vi

∂n
= 0 on ∂ΩM,j\∂Ω

vi = xi on ∂ΩM,j ∩ ∂Ω (6= ∅ by construction) .

8: end for
9: Set

(1.50) K̃COei =
1

|Ω|

(
KM

∑
j∈JM

∫
ΩM,j

∇vidx

)
.

10: end for
11: return K̃CO

Algorithm 1.2 Compute an approximation K̃CO+A of K̃ for high-contrast materials
by taking into account those components neglected in Algorithm 1.1.

1: 1: – 4: of Algorithm 1.1.

2: Set Ω̃M = ΩM\
(⋃

j∈JM
ΩM,j

)
.

3: for i=1,. . . ,n do
4: 6: – 8: of Algorithm 1.1.
5: Set

(1.51) K̃CO+Aei =
1

|Ω|

(
KM

∑
j∈JM

∫
ΩM,j

∇vidx+ KA

(
|ΩA|+ |Ω̃M |

)
ei

)
.

6: end for
7: return K̃CO+A

Remark 1.12. Formulae (1.50) and (1.51) provide an efficient way for upscaling

materials of high contrast. In case of fibrous materials with fibers that have high
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⋃
j∈JM

ΩM,j

x1

x2

vi = xi

∂vi

∂n
= 0

Ω

ΩM

Figure 1.5. Voxelized approximation of Ω and its components.

(a) Structure with 30% fiber
content.

(b) Structure with 5% fiber
content.

(c) Foam structure with a solid
volume fraction of 8.75%.

Figure 1.6. Three geometries with different types of inclusions and densities.

aspect ratios between their lengths and diameters there is a possibility to further

simplify the model and to substantially reduce the arithmetic work. In this case we

can model the fibers as one-dimensional trust-like structures. The algorithm based

on such a model is described and analyzed in Chapter 2. The provided numerical

experiments show a reduction of computational resources, i.e., memory and CPU-

time, of several orders of magnitude.

1.5. Numerical Results and Conclusions

We now test Algorithms 1.1 and 1.2 on two fiber geometries and one foam ge-

ometry with a sequence of increasing contrasts, i.e., decreasing δ. The geometries

shown in Figure 1.6 were generated and plotted using GeoDict.

The two fiber structures have a solid volume fraction of 30%, shown in Figure

1.6(a), i.e., |ΩM |/|Ω| = 30%, and 5%, shown in Figure 1.6(b), i.e., |ΩM |/|Ω| = 5%,

respectively. 80% of the fiber volume is occupied by thin fibers (colored light gray),
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whereas the remaining 20% are taken up by thick fibers (colored dark gray). Both

geometries are discretized by 2003 voxels. The foam geometry, shown in Figure

1.6(c), has a solid volume fraction of 8.75% and is discretized by 1003 voxels.

We point out that we do not discuss the question of whether the structures

shown in Figure 1.6 constitute REVs. In particular, we do not claim that (physically

meaningful) effective thermal conductivity tensors exist for all three structures and

all considered contrasts. Certainly, the main application of Algorithms 1.1 and

1.2 is to compute effective thermal conductivity tensors. When they exist, their

approximation via Algorithm 1.1 or 1.2 is very much preferable over computations

on the whole domain due to savings in memory and a contrast-independent condition

number of the resulting linear system.

For each geometry and each δ we consider three cell problems with boundary

conditions as in (1.3). Each boundary value problem is then solved by a standard

finite volume discretization on the full domain, yielding K̃i := K̃ei, i = 1, 2, 3. We

then compare these reference results to the outputs given by Algorithms 1.1, yielding

K̃CO = (K̃CO
i,j )i,j=1,2,3, and Algorithm 1.2, yielding K̃CO+A = (K̃CO+A

i,j )i,j=1,2,3.

To verify the performance of Algorithm 1.1 and Algorithm 1.2 (and our main

result (1.46)) we report

(1.52) max
i,j=1,2,3

|K̃i,j − K̃CO
i,j | and max

i,j=1,2,3
|K̃i,j − K̃CO+A

i,j |.

In Tables 1.1-1.3 we report the computed tensors for some representative con-

trasts. Figures 1.7-1.9 display the results for the different geometries, respectively.

As we can see, the quantities stated in (1.52) decay essentially linearly with δ, which

is in agreement with the developed theory. It should be noted that for our examples

the constant implicitly involved in estimate (1.46) appears to be rather small. From

a practical point of view this is certainly crucial. Of course, the constant is very

much geometry dependent, but we can see that for the generated structures, which

are at least somewhat representative for a class of industrial problems, we obtain

satisfactory results even if the contrast is only 1 : 10 (i.e., δ = 0.1).

The performance of Algorithms 1.1 and 1.2, applied to the fiber geometry with

a 30% solid volume fraction (Figure 1.6(a)), is shown in Figure 1.7 and Table 1.1.

We see that both methods work reasonably well. As discussed above, this is to be

expected, since the solid volume fraction of 30% is rather large, and the correction

term introduced to account for the conductivity of the lowly conductive component

is not significant.

The situation is different when we consider the fiber geometry with a solid volume

fraction of 5% (Figure 1.6(b)). For this geometry and δ = 0.01 the correction term

is actually crucial for a reasonable good approximation of the effective conductivity

(see Table 1.2(a)). For a more pronounced contrast of δ = 0.001 we again see that



20 1. UPSCALING HIGH-CONTRAST COMPOSITE MATERIALS

K̃ K̃CO K̃CO+A

1.33e-01 2.18e-03 1.95e-03 1.19e-01 2.31e-03 2.08e-03 1.26e-01 2.31e-03 2.08e-03
2.18e-03 1.31e-01 8.52e-04 2.31e-03 1.16e-01 8.98e-04 2.31e-03 1.23e-01 8.98e-04
1.95e-03 8.52e-04 1.30e-01 2.07e-03 9.02e-04 1.16e-01 2.07e-03 9.02e-04 1.23e-01

Table 1.1. Effective thermal conductivity tensors for the fiber ge-
ometry of Figure 1.6(a) for δ = 0.01.

K̃CO approximates K̃ quite well (see Table 1.2(b)). Similar observations can be

made for the periodic foam geometry shown in Figure 1.6(c), which has a rather low

solid volume fraction of 8.75%. Overall, the O(δ) correction term in (1.51) improves

the approximation of K̃ in all considered cases.

In addition to the absolute error given by (1.52) we also report two corresponding

quantities assessing the relative errors of the methods. We consider the terms

(1.53) max
i,j=1,2,3

∣∣∣K̃i,j − K̃CO
i,j

∣∣∣ /K̃i,i and max
i,j=1,2,3

∣∣∣K̃i,j − K̃CO+A
i,j

∣∣∣ /K̃i,i,

which include a scaling by the diagonal entries of K̃.

As stated above, the developed theory concerns the reduction of the absolute

errors in (1.52) and justifies our algorithm in an asymptotic sense, i.e., it is valid

for sufficiently small δ. Nevertheless, even for contrasts of 1 : 10, i.e., δ = 0.1, the

second relative error quantity in (1.53) is about 10% for all examples considered in

this chapter. For many applications this is already quite a satisfactory result. As for

the absolute error we can observe that the O(δ) correction term in (1.51) improves

the results. This improvement is most distinct for materials with low solid volume

fractions and δ still relatively large. As δ decreases, both relative errors diminish.

Figure 1.7. Performance of Algorithm 1.1 for the dense fiber geom-
etry shown in Figure 1.6(a). Errors for different contrasts.
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Figure 1.8. Performance of Algorithm 1.1 for the sparse fiber geom-
etry shown in Figure 1.6(b). Errors for different contrasts.

(a) δ = 0.01.

K̃ K̃CO K̃CO+A

2.40e-02 4.13e-04 2.96e-05 1.34e-02 4.15e-04 3.10e-05 2.29e-02 4.15e-04 3.10e-05
4.13e-04 2.64e-02 3.67e-04 4.23e-04 1.58e-02 3.84e-04 4.23e-04 2.53e-02 3.84e-04
2.96e-05 3.67e-04 2.55e-02 2.89e-05 3.80e-04 1.49e-02 2.89e-05 3.80e-04 2.44e-02

(b) δ = 0.001.

K̃ K̃CO K̃CO+A

1.44e-02 4.18e-04 2.98e-05 1.34e-02 4.15e-04 3.10e-05 1.43e-02 4.15e-04 3.10e-05
4.18e-04 1.68e-02 3.79e-04 4.23e-04 1.58e-02 3.84e-04 4.23e-04 1.67e-02 3.84e-04
2.98e-05 3.79e-04 1.59e-02 2.89e-05 3.80e-04 1.49e-02 2.89e-05 3.80e-04 1.59e-02

Table 1.2. Effective thermal conductivity tensors for the fiber ge-
ometry of Figure 1.6(b) for different contrasts.

K̃ K̃CO K̃CO+A

5.27e-02 7.90e-05 -1.95e-04 4.22e-02 9.01e-05 -2.18e-04 5.14e-02 9.01e-05 -2.18e-04
7.90e-05 5.27e-02 1.67e-04 8.23e-05 4.22e-02 1.96e-04 8.23e-05 5.14e-02 1.96e-04
-1.95e-04 1.67e-04 5.40e-02 -2.14e-04 1.80e-04 4.35e-02 -2.14e-04 1.80e-04 5.27e-02

Table 1.3. Effective thermal conductivity tensors for the foam ge-
ometry of Figure 1.6(c) for δ = 0.01.
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Figure 1.9. Performance of Algorithm 1.1 for the foam geometry
shown in Figure 1.6(c). Errors for different contrasts.



CHAPTER 2

Fast Numerical Upscaling of the Heat Equation for Fibrous

Materials

2.1. Introduction

A wide class of insulation materials, such as glass and mineral wool, fiber rein-

forced composites, etc., are composed of, or include, a large number of fibers. These

materials are characterized by very low volume fractions and much higher conduc-

tivities of the fibrous materials compared with the surrounding air in the insulation

materials, or compared with the bulk material in composite materials. In Chapter 1,

it was shown that the effective heat conductivities of composite materials containing

networks of highly conductive materials can be computed approximately by solving

sets of auxiliary boundary value problems on the highly conductive path-connected

components only. Using this result, we propose a fast method for computing the

effective thermal conductivities of fibrous materials by integrating over those parts

occupied by the fibers only. The computational domain is the graph induced by the

interconnected fibers with the intersection points of the fibers being the nodes of

the graphs. Thus, the problem of upscaling the conductivities of fibrous materials

reduces to solving Laplace’s equation on a graph.

As discussed in Chapter 1 the effective properties of heterogeneous materials

can be calculated by solving suitable sets of “cell problems” on a representative

elementary volume (REV). Again, the equation under consideration in this chapter

is the stationary heat equation (1.3) in an REV, ΩH ⊂ R3, a cube with side-length

H and faces parallel to the coordinate planes. We rescale the REV by 1/H and

denoted the rescaled domain, which is the unit cube (0, 1)3, by Ω. As in Chapter

1 ΩM and ΩA are assumed to be two open sets with ΩM ∪ ΩA = Ω and satisfying

some mild regularity assumptions.

As discussed in Chapter 1 the effective thermal conductivity tensor can be ap-

proximated by

(2.1) K̃ei =
1

|Ω|

∫
ΩM

K∇vi +O(δ), i = 1, 2, 3,

23
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where K is given by (1.2) and vi is the solution of the following constant coefficient

problem

(2.2)


∆vi = 0 in ΩM ,

∇vi · n = 0 on ∂ΩM\∂Ω,

vi = xi on ∂Ω ∩ ∂ΩM ,

with n being the outer unit normal vector to the boundary of ∂ΩM . Note that vi is

a harmonic function in the subdomain ΩM occupied by the fibers. Here we assume,

that all path-connected components of ΩM intersect ∂Ω. According to sections 1.3.2

and 1.3.3 this assumption is quite reasonable, since we may disregard those path-

connected components of ΩM that do not touch the boundary.

We also remark that in addition to the fibers ΩM consists of some binder material.

This binder material, which is deposited on the fibers (see Figure 2.1), is frequently

added in the production process and is usually applied to provide better mechanical

properties of the insulation fibrous material.

Methods, for computing the effective properties of high-contrast fibrous media

have been used previously by engineers and physicists. For instance, in [65, 66], the

objective is to compute the effective conductivity of fibrous porous media in the cases

of perfect, weak, and imperfect contacts between the fibers. In the case of perfect

contact, the discretization used in [65, 66] is essentially the same as the one in this

chapter. In this respect the ideas of this chapter are well established. We, however,

derive the discretization in a rigorous mathematical way, study its properties such

as stability and symmetry, and discuss and study experimentally the behavior with

respect to small parameters, i.e., the fiber diameters and the fiber lengths.

Furthermore, the properties of fibrous materials have been subject to intensive

studies in homogenization theory (see, e.g. [26, 30, 54]). In [30], elliptic equations

on various lattice structures with homogeneous Neumann boundary conditions on

the interfaces were used in deriving effective material properties. This setting is

very similar to problem (2.2). The objectives in [26, 30, 54], however, are to get

analytical results for periodic trust-like structures as the period and the diameter of

the rods tend to zero.

We focus on fast numerical computations for random fibrous structures. More pre-

cisely, the aim of this chapter is to derive and analyze an algorithm for the ap-

proximation of effective thermal conductivities of large sparse high-contrast fibrous

materials (cf. Figures 2.1 and 2.2). In particular, we study the properties of this

algorithm with respect to two characteristic parameters related to the fiber diame-

ters and the distances between fiber intersections (see Assumption 2.1). Due to the

rescaling by 1/H, the characteristic parameters, specified in Assumption 2.1 and
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Figure 2.1. three-dimensional fiber structure with binder material.

used in the convergence analysis, tend to zero as the size of the volume grows, i.e.,

when the media become statistically homogeneous and effective conductivities exist

(see Remark 1.1).

Figure 2.2. Taking a sample of a fibrous structure.

As discussed in Chapter 1 the influence of the lowly conductive material is often

not taken into account in computing the effective properties of the media (see,

e.g. [13], [65], [66]). Accounting for it can, however, be essential for the accurate

calculation of effective thermal conductivities. This is especially pronounced for

materials with very low solid volume fractions (see section 1.5), a representative case

for many industrial insulation materials. We adopt the inexpensive way described

in section 1.4 of taking into account these contributions.
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x−S
xS

x+
S

ΩM

ΩA

Ω

ω

S

∂ω

ω

Figure 2.3. Domain with nodes and cross-sections.

The remainder of the chapter is organized as follows: In section 2.2 we intro-

duce the necessary notation and definitions as well as some related assumptions.

In section 2.3 we discuss a finite volume discretization over the three-dimensional

graph formed by the fibers (done in the style of the monographs [36, 57]). In par-

ticular, we show that the derived discretization yields a system of equations for the

unknown temperatures at the mesh points with a symmetric and positive definite

matrix. Additionally, a detailed analysis of the dependence of the discretization

error on the fiber diameters and lengths is presented. Section 2.4 provides conclu-

sions and results from numerical simulations for a number of applied engineering

problems demonstrating the accuracy and efficiency of our algorithm by comparing

its performance with numerical results produced by other methods.

2.2. Notation and Definitions

By a fiber ϕ we mean a cylindrical object of finite length. We assume that the

axis of this cylinder is a straight line. The collection of all fibers in Ω is denoted by

Φ. A generalization to curvilinear fibers is straightforward (cf. [30]). Furthermore,

the length of a fiber is assumed to be much larger than its diameter (see Assumption

2.1). To generate a fibrous geometry these objects are randomly “thrown into” Ω and

cut-off at the boundary ∂Ω. The set of all intersections of the cylinder axes with

∂Ω is denoted by ∂ω. The actual numerical generation of our fibrous geometries

is done by GeoDict. With this random construction different fibers may and, in

general, will intersect. Now, let ω be the set of points, where two or more fibers

cross. To avoid unnecessary technicalities, we assume, that whenever two fibers, i.e.,

the cylindrical objects, have a nonempty intersection the same holds true for their

axes. For more general models of interaction through the surfaces of intersecting

fibers we refer to [65, 66]. We also define ω := ω ∪ ∂ω, and we assume that all

nodes in ω are numbered in some way.
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The (circular) cross-section of a fiber perpendicular to its axis and in the middle

of two nodes from ω being adjacent on that fiber is denoted by S. For each cross-

section S we denote the center of mass by xS :=

∫
S

ξdS(ξ)/|S|. The set of all points

xS on cross-sections between two nodes is denoted by S . For xS ∈ S we denote

by x+
S ∈ ω and x−S ∈ ω the higher and lower numbered node adjacent (on the fiber)

to xS, respectively. For an illustration of the above definitions we refer the reader

to Figure 2.3.

Furthermore, we need a notion of the characteristic distance h between two

adjacent nodes, i.e., adjacent on a fiber, and the characteristic diameter d of all

fibers in Ω. More precisely, we make the following

Assumption 2.1. (a) There exist two parameters, h, d ∈ R and two constants,

ch,d, Ch,d ∈ R, all independent of H, such that for all cross-sections S with xS ∈ S

(2.3) ch,dh ≤ ‖x+
S − x

−
S ‖2 ≤ Ch,dh and ch,dd ≤ diam(S) ≤ Ch,dd.

with ‖ · ‖2 denoting the standard Euclidean norm in R3.

(b) d � h � 1.

We refer to h and d as characteristic distance between nodes and characteristic

fiber diameter, respectively. Assumption 2.1 is necessary in order to have a mean-

ingful notion of a graph induced by the fibers (the edges of the graph) and their

intersections (the nodes of the graph). For a sufficiently large sample size the scal-

ing by 1/H gives the quantities h and d a meaning of small parameters. Thus, h

is the “microscopic” characteristic length of the physics, i.e., the length upon which

microscopic temperature gradients occur.

For each node x ∈ ω we define Vx to be the volume, consisting of all fiber-

segments surrounding x and bounded by the cross-sections S adjacent to x. The

numbering of ω induces a corresponding numbering on the volumes Vx. With this

we define n∓S to be the unit normal vector to S pointing from the lower to the higher

numbered volume (see Figure 2.4(a)). Furthermore, for x ∈ ω we set Sx to be those

points in S which lie on the boundary of Vx, i.e., Sx := ∂Vx∩S . For each xS ∈ S

we define VS to be the cylindrical volume between two adjacent nodes from ω, such

that S is contained in the enclosed volume (see Figure 2.4(a)). Note, that near

x ∈ ω the volumes VS for different xS ∈ S actually overlap. These overlapping

regions, however, only have a volume that is O(d3). The same estimate holds true

for the volumes close to x ∈ ∂ω, which belong to the fiber but not VS and vice versa

(see Figure 2.4(b)).
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x1

x2

Vx1

n∓S

xSVS

(a) Volumes and normal vectors.

O(d3)

Binder
material

(b) Volumes VS with binder and bound-
ary sections of size O(d3).

Figure 2.4. Sketches of fibrous structures to depict the introduced quantities.

Figure 2.5. Interior and boundary nodes for a regular fiber structure.

For a very regular fiber arrangement depicted in Figure 2.5 we see, that

(2.4) #ω = O
(

1

h3

)
.

As indicated in section 2.1, some binder material is applied in the production process

of glass and mineral wool. For simplicity the thermal conductivity of this binder

material is assumed to be equal to that of the fibers. Figures 2.1 and 2.4(b) show

how this binder can be deposited at the fibers. Combining the last two observations

we make the following

Assumption 2.2. Estimate (2.4) holds for our general fibrous geometries. Fur-

thermore, the volume of each binder segment is O(d3), and as for the fiber crossings

we have O( 1
h3 ) of these segments.
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Due to the binder segments the boundary of ΩM has no re-entrant corners, and

thus the solution of (2.2) is regular enough to carry out the analysis below.

Now, we introduce the following sets of grid functions, defined on ω and S ,

respectively.

Definition 2.3.

U := {y : ω → R} , F :=
{
χ : S → R3

}
.

Additionally, we define some difference operators and scalar products on the

unstructured grids ω and S . More precisely, we introduce the difference opera-

tors G, the discrete gradient, and D, the discrete divergence, corresponding to the

differential operators ∇ and ∇·, respectively.

Definition 2.4.

(2.5a) G : U → F , with Gy(xS) =
y(x+

S )− y(x−S )

‖x+
S − x

−
S ‖2

n∓S ∀xS ∈ S

and

(2.5b) D : F → U , with Dχ(x) =
1

|Vx|
∑

xS∈Sx

χ(xS) · nS|S| ∀x ∈ ω,

where nS is the unit normal vector to S pointing outside of Vx.

Finally, we define the following scalar products on U and F .

Definition 2.5.

(2.6a) (y, ỹ)U =
∑
x∈ω

|Vx|y(x)ỹ(x)

and

(2.6b) (χ, χ̃)F =
∑

xS∈S

|VS|(χ(xS) · n∓S )(χ̃(xS) · n∓S ).

As usual, we denote the norms induced by these scalar products by ‖ ·‖U and ‖ ·‖F ,

respectively.

2.3. Discretization of the Problem and Error Estimates

We first state an important property of the difference operators G and D, which

is a discrete analog of the equality ∇ = −∇·∗ for suitable function spaces (here ∗

denotes the adjoint with respect to the L2-inner-product).

Lemma 2.6. For all y ∈ U and χ ∈ F

(2.7) (y,Dχ)U = − (Gy,χ)F .
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Proof. Observe, that

(2.8)

(y,Dχ)U =
∑
x∈ω

|Vx|y(x)
1

|Vx|
∑

xS∈Sx

χ(xS) · nS|S|

=
∑
x∈ω

∑
xS∈Sx

y(x)χ(xS) · nS|S|

=
∑

xS∈S

χ(xS) · n∓S
(
y(x−S )− y(x+

S )
)
|S|,

where the last equality follows from the fact, that each xS ∈ S is summed over

exactly twice (once for each node on either side of S). On the other hand we have

(2.9)

− (Gy,χ)F = −
∑

xS∈S

|VS|
(
χ(xS) · n∓S

)(y(x+
S )− y(x−S )

‖x−S − x
+
S ‖2

n∓S · n
∓
S

)
= −

∑
xS∈S

|S|
(
χ(xS) · n∓S

) (
y(x+

S )− y(x−S )
)

=
∑

xS∈S

χ(xS) · n∓S
(
y(x−S )− y(x+

S )
)
|S|,

where to obtain the second equality we have used that |VS| = |S| ‖x−S −x
+
S ‖2, which

holds by construction.

Combining (2.8) and (2.9) we obtain our claim. �

Definition 2.7. For y ∈ U define

(2.10) |y|2G := (Gy,Gy)F .

It is easy to see, that | · |G defines a semi-norm on U . In fact, the semi-norm | · |G
is a norm on the set {y ∈ U

∣∣ y|∂ω ≡ 0}. Indeed, we can easily verify that |y|G = 0

implies y ≡ 0. By the definition of | · |G we have

0 = |y|2G =
∑

xS∈S

|S| 1

2‖x+
S − x

−
S ‖2

(y(x+
S )− y(x−S ))2.

Thus, y(x+
S ) = y(x−S ) for all xS ∈ S , which implies that y is constant on each subset

of ω corresponding to a path-connected component of ΩM . Since y|∂ω ≡ 0 we get

that y ≡ 0 in ω (each path-connected component of ΩM touches ∂Ω by assumption).

Now we formulate the finite difference approximation of (2.2): Find yi ∈ U ,

i = 1, 2, 3 such that

(2.11) D (KGyi) = 0 in ω, yi = xi on ∂ω.

Proposition 2.8. For i = 1, 2, 3 let vi ∈ H1(ΩM) be the solutions of (2.2) and

let yi be the solutions of (2.11). Then

(2.12) |yi − vi|G ≤ ‖ηi‖F
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where the local truncation error ηi = ηi(xS), xS ∈ S has the following expression

(2.13) ηi(xS) =
vi(x

+
S )− vi(x

−
S )

‖x−S − x
+
S ‖2

n∓S −
1

|S|

∫
S

∇vidS.

Proof. For any x ∈ ω integrating the first equation of (2.2) over Vx and then

dividing by |Vx| we get

0 =
1

|Vx|

∫
Vx

∆vidx =
1

|Vx|

( ∑
xS∈Sx

∫
S

∇vidS · nS +

∫
∂Vx∩∂Ω

∇vidS · nΩ

)
= Dη̃i(x) + η∗i (x),

with η̃i(xS) =
1

|S|

∫
S

∇vidS and η∗(x) =
1

|Vx|

∫
∂Vx∩∂Ω

∇vidS · nΩ, where nΩ is the

outer unit normal vector to ∂Ω. Note, that η∗(x) = 0 for x ∈ ω. Since vi − yi = 0

on ∂ω we thus obtain

(G(vi − yi),G(vi − yi))F = −(D(Gvi), vi − yi)U

= −(D(Gvi − η̃i)− η∗i , vi − yi)U

= −(D(Gvi − η̃i), vi − yi)U = (ηi,G(vi − yi))F .

Here we have used Lemma 2.6, the definition of ηi by (2.13), and the definition of

Gvi by (2.5a). Now applying Schwarz inequality for the right hand side we get the

desired result (2.12). �

Now we can give an approximation K̃G to the upscaled thermal conductivity

tensor K̃ (here G refers to “graph”). Let yi, i = 1, 2, 3 be the solutions of the

discrete problems (2.11). Then

(2.14) K̃Gei :=
1

|Ω|
∑

xS∈S

Gyi(xS)|VS|.

We are now ready to state the final result regarding the error analysis.

Proposition 2.9. Let yi, i = 1, 2, 3 be solutions of (2.11) and let the approxi-

mate upscaled conductivity tensor K̃G be defined by (2.14). Then

(2.15) ‖K̃ − K̃G‖ ≤ C(δ + ‖η‖F + ‖Ψ‖),

where ‖ · ‖ is some matrix norm, η := [ηi]
3
i=1 with ‖η‖F := maxi ‖ηi‖F , and the

approximation error Ψ is a 3× 3 matrix with the i-th column given by

(2.16) ψi =
1

|Ω|

(∫
ΩM

∇vidx−
∑

xS∈S

Gvi(xS)|VS|

)
.
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Proof. Note, that by (2.1) and using the definition of ψi we have

K̃ei − K̃Gei =
1

|Ω|

∫
ΩM

∇vidx−
1

|Ω|
∑

xS∈S

Gyi(xS)|VS|+O(δ)

= ψi +
1

|Ω|
∑

xS∈S

G(vi − yi)(xS)|VS|+O(δ).

Thus, taking the Euclidean vector norm and using the Cauchy-Schwarz inequality

we have∥∥∥(K̃ − K̃G)ei

∥∥∥
2
≤ ‖ψi‖2 +

1

|Ω|
∑

xS∈S

‖G(vi − yi)(xS)‖2|VS|+O(δ)

≤ ‖ψi‖2 +
1

|Ω|

(∑
xS∈S

|VS|

) 1
2
(∑

xS∈S

‖G(vi − yi)(xS)‖2
2|VS|

) 1
2

+O(δ).

Then (2.12) yields

‖ηi‖2
F ≥

∑
xS∈S

|VS| (G(yi − vi)(xS) · nS)2 =
∑

xS∈S

|VS| ‖G(yi − vi)(xS)‖2
2 .

Combining the last two results we arrive at∥∥∥(K̃ − K̃G)ei

∥∥∥
2
≤ ‖ψi‖2 + C‖ηi‖F +O(δ)

from where we easily deduce (2.15) using the equivalence of norms. �

To make the estimate (2.15) practically useful we need to bound the terms of

the local truncation error η and the approximation error Ψ. Given the complexity

of the fiber structures that we would like to treat it would be very difficult to derive

any mathematically rigorous bounds. However, we can make several important

observations (cf., e.g. [58]).

By (2.13) we have that for a fixed xS ∈ S

(2.17) ηi(xS) · n∓S =
vi(x

+
S )− vi(x

−
S )

‖x−S − x
+
S ‖2

− 1

|S|

∫
S

∇vidS · n∓S .

Without loss of generality we may assume that

(2.18) xS = 0, n∓S = e1, ‖x+
S − x

−
S ‖2 = h, and diam(S) = d,

so that S = {(0, x2, x3) : x2
2 + x2

3 ≤ d2/4}. Thus, (2.17) simplyfies to

ηi(xS) · n∓S =
1

h

∫ h/2

−h/2

∂vi

∂x1

(x1, 0, 0)dx1 −
1

|S|

∫
S

∂vi

∂x1

dS.

Now, with x̃ = (x̃1, x̃2, x̃3) := (x1

h
, x2

d
, x3

d
) and ṽi(x̃) := vi(x) we obtain the scaled

equation



2.3. DISCRETIZATION OF THE PROBLEM AND ERROR ESTIMATES 33

(2.19) ηi(xS) · n∓S =
1

h

(∫ 1/2

−1/2

∂ṽi

∂x̃1

(x̃1, 0, 0)dx̃1 −
1

|S̃|

∫
eS

∂ṽi

∂x̃1

dS̃

)
,

where S̃ is the scaled cross-section corresponding to S (scaled by 1/d in x2 and

x3). It is straightforward to verify that the right hand side of (2.19) defines a linear

functional for ∂evi

∂ex1
which vanishes for all polynomials with degree at most 1. Hence,

applying the Bramble-Hilbert lemma we obtain

(2.20) |ηi(xS) · n∓S | ≤
C

h

∣∣∣∣ ∂ṽi

∂x̃1

∣∣∣∣
H2(eVS)

,

where ṼS is the scaled volume corresponding to VS (scaled by 1/h in x1 and by 1/d

in x2 and x3) and C is a constant independent of h and d. Since∣∣∣∣ ∂ṽi

∂x̃1

∣∣∣∣2
H2(eVS)

=
∑
|γ|=2

∫
eVS

(
∂3ṽi

∂x̃1∂x̃γ

)2

dx̃,

where γ = (γ1, γ2, γ3) is a multi-index, and noting that ∂3evi

∂ex1∂ exγ = hγ1+1dγ2+γ3 ∂3vi

∂x1∂xγ

we obtain

|ηi(xS) · n∓S | ≤
C

h

 1

|VS|
∑
|γ|=2

h2(γ1+1)d2(γ2+γ3)

∫
VS

(
∂3vi

∂x1∂xγ

)2

dx

 1
2

after a coordinate transform from x̃ to x. With this in mind we have

‖ηi‖2
F =

∑
xS∈S

|VS|(ηi(xS) · nS)2 ≤ C
∑
|γ|=2

h2γ1d2(γ2+γ3)

∫
VS

(
∂3vi

∂x1∂xγ

)2

dx

Under the condition that the third derivatives of vi are bounded independently of d

and h we thus have

(2.21) ‖ηi‖F = O(h2 + dh + d2)

Similar arguments can be made in estimating the other term Ψ. Again assuming

(2.18) we have that

(2.22)

∫
VS

∇vidx− Gvi(xS)|VS| =

∫
VS

∇vidx− Gvi(xS)|VS|

−|VS|
2

[(
∂vi

∂x2

(0,
d

2
, 0) +

∂vi

∂x2

(0,−d

2
, 0)

)
e2

+

(
∂vi

∂x3

(0, 0,
d

2
) +

∂vi

∂x3

(0, 0,−d

2
)

)
e3

]
,

where the last term vanishes due to the boundary conditions in (2.2). It is straight-

forward to verify that the right hand side of (2.22) defines a linear functional, which

vanishes for all polynomials vi with degree at most 2. Thus, by a scaling argument
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completely analogous to the one above and by the Bramble-Hilbert lemma we can

bound the left hand side of (2.22) by the H3(VS) semi-norm of vi and powers of h

and d, where all involved terms are of higher order than in estimate (2.21).

Now, note that by Assumption 2.2 we have∫
ΩM

∇vidx =
∑

xS∈S

∫
VS

∇vidx+O
(

d3

h3

)
.

Summation over xS ∈ S and noting that 2hd ≤ h2 + d2 thus yields the estimate

(2.23) ‖K̃ − K̃G‖ = O
(

h2 + d2 +
d3

h3
+ δ

)
.

To make this formal error estimate mathematically rigorous, we, however, need

to prove bounds for the third derivatives of the solution vi independently of h and

d. Theoretically, this could be done by asymptotic expansion of the solution with

respect to the small parameter d/h and proving certain bounds for the terms of the

expansion. However, in the generality of our setting with a complex structure of

the fiber material, multiple diameter sizes, and the presence of binder material that

rounds the corners of the fiber interfaces, this is a very difficult task, which is beyond

the scope of this work.

Our aim is to experimentally study and test the accuracy of the proposed method.

In accordance with the derivations above we take estimate (2.23) as a working hy-

pothesis for our numerical study.

2.4. Numerical Results and Conclusions

We specify the components of the algorithm we use in the computations:

First we determine all crossings of fibers and construct an undirected graph. If

this is done straightforwardly by checking each fiber for intersection with any other,

the numerical complexity of this procedure is quadratic in the total number of fibers,

i.e., O(n2
Φ), where nΦ is the total number of fibers. In Chapter 3 it is discussed how

this can be reduced to a complexity which is O(n
3/2
Φ ) by a domain decomposition

approach. Having obtained the graph we set up the discrete system defined by

(2.11), which is then solved by the ILU preconditioned Conjugate Gradient method

implemented in the LASPack package1. The solution is post-processed according to

(2.14) to compute the effective thermal conductivity.

So far, the flux in ΩA has not been considered in this chapter. Asymptotically,

as δ → 0 this contribution can be neglected. However, as discussed in sections 1.4

and 1.5 for a specific choice for δ we may expect to obtain better approximations of

1www.mgnet.org/mgnet/Codes/laspack/html/laspack.html
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Figure 2.6. Error vs. characteristic fiber diameter.

the effective thermal conductivities by taking into account some approximation of

the flux in ΩA. This is in particular true for materials with (very) low solid volume

fractions for which |ΩM |/|Ω| and δ are of the same order. In the numerical examples

presented below we approximate the flux in the lowly conductive regions in exactly

the same way as in sections 1.4 and 1.5, i.e., the temperature in ΩA is approximated

by linearly interpolating the (Dirichlet) boundary conditions, leading to a constant

temperature gradient. The actual quantity produced by our algorithm is thus given

by

K̃G+A := K̃G +
|ΩA|
|Ω|

δI,

where I is the identity matrix in R3 and A stands for “air”. We call the resulting

solver “COGraph”.

In the numerical experiments we first test the validity of the main estimate

of this chapter, i.e., (2.23). Note, that in (2.23) we have four error terms, i.e.,

O(d2), O(h2), O((d/h)3), and O(δ). Apparently, it is rather hard to analyze all

of these error terms independently of each other, in particular since three of them

simultaneously depend on the quantities d and h. On the other hand the O(δ)-term

can be taken out completely, if in (2.23) we replace K̃ei by (

∫
ΩM

∇vidx+|ΩA|δei)/|Ω|

(see (2.1) and (1.51)). Thus, we can isolate the error depending on the geometric

quantities d and h from the error related to the contrast δ. In the computations below

we compare K̃G+A with the quantity produced by Algorithm 1.2 and denoted by

K̃CO+A. Note, that up to the O(δ) error term and some (discretization) error, which

is certainly introduced by replacing (

∫
ΩM

K∇vidx+|ΩA|δei)/|Ω| with K̃CO+Aei, this

is equivalent to (2.23).

Now, we consider a series of randomly generated geometries. The parameters d,

h, and d/h are chosen in such way that they decrease simultaneously. (Here we have
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Figure 2.7. Error vs. characteristic edge length.

Figure 2.8. Error vs. ratio of characteristic diameter and edge length.

taken h to be the arithmetic mean of all edges in the graph.) For all geometries we

choose δ = 0.02, which corresponds to a contrast typical of industrial materials like

glass or mineral wool. In Figures 2.6-2.8 we show the results of the computations.

Since the relative error is often more interesting than the absolute one, we also report

max
i,j

∣∣∣(K̃CO+A
i,j − K̃G+A

i,j )/K̃CO+A
j,j

∣∣∣. For the sake of completeness we also provide the

computed effective thermal conductivity along with some additional information

about the geometries in Table 2.1. We only report the diagonal entries of the thermal

conductivity tensors, since they are by orders of magnitude larger than the off-

diagonal entries.

Examining the graphs shown in Figures 2.6-2.8 and the data in Table 2.1 we

see that at first, as d decreases, the error decreases linearly in d2. This is in accor-

dance with the developed theory. However, for the last geometry, when d becomes

very small, we see that the difference between K̃G+A and K̃CO+A increases. This

behavior could be caused by an increase in the norm of the third derivatives of vi

affecting estimate (2.23). However, it may also be attributed to the fact that for
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the last geometry the voxelized discretization used to compute K̃CO+A introduces a

discretization error which over-compensates the error reduction due to the decrease

in d, h, and d/h. More specifically, for all geometries treated in Figures 2.6-2.8

and Table 2.1 we have used a 4003-mesh for the discretization to compute K̃CO+A.

Due to the rescaling to the unit cube this means that d = 0.04 corresponds to 16

voxels but d = 0.015 to only 6 voxels. It is quite obvious that the approximation

of a cylinder by voxels whose side lengths are only 1/6 the size of the cylinder’s

diameter cannot be very accurate. Certainly, with such a poor approximation of the

geometry we cannot expect to get a very accurate approximation of the solution of

(2.2). Unfortunately, we are not able to consider finer meshes to validate this expla-

nation, since this would result in too high a number of unknowns in the calculation

of K̃CO+A.

Also, we note that the relative error has essentially the same behavior (on a differ-

ent scale) as the absolute one. Overall, we consider the quality of the approximation

provided by K̃G+A quite satisfactory.

Now we consider two different geometries, for which we compare the performance

of the proposed method with a commercially available software. The fiber structures

have a solid volume fraction of 5%, i.e., |ΩM |/|Ω| = 0.05, (see Figure 2.9(a)) and

15%, i.e., |ΩM |/|Ω| = 0.15, (see Figure 2.9(b)), respectively. In both cases 80%

of the fiber volume is occupied by long thin fibers (colored white), whereas the

remaining 20% are taken up by short thick fibers (colored red). Both fiber materials

are isotropic. The geometries are generated by GeoDict using a 5003 voxel mesh for

discretization.

Now, we compare the effective thermal conductivity tensors of these two struc-

tures computed by GeoDict, which in turn uses the solver EJ-HEAT (cf. [70]), with

K̃G+A. Note, that GeoDict uses periodic boundary conditions in the formulation

of the cell problems, whereas we use linear boundary conditions. It is well known

(cf. e.g. [17]), that for REVs these different types of boundary conditions produce

(asymptotically with respect to the length scale of the microscopic variations) the

same effective conductivity tensors. Again we set δ = 0.02. Considering the anal-

ysis of [45] it is reasonable to assume, that for this contrast both fiber geometries

constitute REVs. Tables 2.2(a) and 2.2(b) show the numerical results produced by

GeoDict and our method, respectively. As stopping criterion we use a relative ac-

curacy of 1e − 6 in all cases. For comparing the efficiency, we also report the total

runtime of each algorithm and the used memory. Again we report only the diagonal

elements of the effective thermal conductivity tensors. For an objective comparison

all computations were performed on the same computer platform.
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K̃G+A K̃CO+A

d =4.00e-02 4.00e-02 - - 4.15e-02 - -
h =1.41e-01 - 3.52e-02 - - 3.71e-02 -
d
h

=2.84e-01 - - 3.28e-02 - - 3.52e-02
SVP: 5%
d =3.50e-02 3.94e-02 - - 4.03e-02 - -
h =1.27e-01 - 3.25e-02 - - 3.45e-02 -
d
h

=2.76e-01 - - 3.58e-02 - - 3.71e-02
SVP: 5%
d =3.00e-02 3.50e-02 - - 3.60e-02 - -
h =1.16e-01 - 3.40e-02 - - 3.53e-02 -
d
h

=2.59e-01 - - 3.41e-02 - - 3.52e-02
SVP: 4.5%
d =2.50e-02 3.40e-02 - - 3.45e-02 - -
h =1.05e-01 - 3.10e-02 - - 3.19e-02 -
d
h

=2.38e-01 - - 3.33e-02 - - 3.38e-02
SVP: 4%
d =2.00e-02 3.13e-02 - - 3.15e-02 - -
h =9.52e-02 - 3.17e-02 - - 3.19e-02 -
d
h

=2.10e-01 - - 3.02e-02 - - 3.05e-02
SVP: 3.5%
d =1.50e-02 2.89e-02 - - 2.87e-02 - -
h =7.21e-02 - 3.06e-02 - - 3.02e-02 -
d
h

=2.08e-01 - - 2.89e-02 - - 2.88e-02
SVP: 3%

Table 2.1. Main diagonals of effective thermal conductivity tensors
for a series of geometries with decreasing d, h, and d/h. The solid
volume percentage (SVP), i.e., the volumetric fiber content, is also
reported for each geometry.

(a) Fiber structure with 5% fibers. (b) Fiber structure with 15% fibers.

Figure 2.9. Two fiber structures with different densities of fibers.
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Figure 2.10. Large, sparse fibrous geometry with a solid volume
fraction of 1% resolved by a 20003 voxelized mesh and with equal
parts of short and long fibers.

Table 2.2 shows that the conductivity tensors produced by COGraph and GeoD-

ict are comparable. Comparing the required runtime and the used memory, however,

we see, that COGraph uses significantly fewer resources. For the geometry contain-

ing only 5% fiber material it requires less than 0.02% of the time and about 0.4% of

the memory that is required by the EJ-HEAT solver. For the denser fiber geometry

these differences aren’t quite as large, however, they remain substantial.

It is obvious, that increasing the number of fibers, while keeping the size and

resolution of the voxelized gird constant, affects the performance of COGraph more

than that of GeoDict. The reason is, that more fibers usually have more intersections

entailing a higher number of unknowns for COGraph, while the number of unknowns

for EJ-HEAT stays exactly the same. Nonetheless, the number of unknowns for

COGraph remains several orders of magnitude smaller than that of EJ-HEAT.

These observations also concern a related issue. For a geometry where only a

(very) small fraction of the total volume is occupied by fibers we typically need a

(very) large sample size to obtain an REV (cf. [45]). For some glass- and mineral-

wool materials the solid volume fraction is less than 1%. In order to resolve the
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fibers of such a structure in a large enough sample, one needs to consider voxel dis-

cretizations with 10003, 20003, or even more unknowns depending on the remaining

material parameters, such as fiber thickness, conductivity of the fiber material, etc.

To solve a cell problem on such a fine grid with a standard software can easily be-

come prohibitively expensive. COGraph, on the other hand, is only sensitive to the

number of fiber intersections, which is related to the total number of fibers and thus

to the total amount of fiber material in a sample. Due to this property COGraph is

particularly well suited for calculating the effective thermal conductivity tensors of

large sparse fiber geometries. As an example for such a large sparse fiber geometry

we refer to Figure 2.10. This structure consisting of 35830 fibers has a solid volume

fraction of 1% and is discretized by 20003 voxels. 50% of the highly conductive ma-

terial is occupied by short fibers, which are 100 voxels long, and the rest is occupied

by long fibers ranging from one side of the sample to another one. For this geometry

our algorithm needs 95 seconds to compute K̃G+A. By the domain decomposition

approach discussed in Chapter 3 for constructing the graph this time can be further

reduced to 2 seconds. This again exemplifies the efficiency and competitiveness of

our method.

Nevertheless, even without the further optimization discussed in the following

chapter the algorithm to compute K̃G+A can be regarded as a specialized tool for

computing the effective thermal conductivity tensors of high contrast fibrous materi-

als. For fiber structures with a (very) low solid-volume-fraction it allows to consider

(very) large sample sizes, which are often too large to be treated by classical meth-

ods.
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(a) Effective thermal conductivity tensor of the fiber structure shown in 9(a).

K̃GeoDict K̃G+A

3.31e-2 - - 3.34e-2 - -
- 3.27e-2 - - 3.29e-2 -
- - 3.23e-2 - - 3.25e-2

# unknowns 1.25e8 3859
runtime > 5500sec. < 1sec.
memory 3169MB 13MB

(b) Effective thermal conductivity tensor of the fiber structure shown in 9(b).

K̃GeoDict K̃G+A

6.49e-2 - - 6.32e-2 - -
- 6.38e-2 - - 6.19e-2 -
- - 6.55e-2 - - 6.41e-2

# unknowns 1.25e8 26549
runtime > 6000sec. < 5sec.
memory 4876MB 84MB

Table 2.2. Comparison of the effective thermal conductivity tensors
for the fiber structures shown in Figure 2.9 computed by GeoDict and
COGraph. δ = 0.02.





CHAPTER 3

A Domain Decomposition Approach for Calculating the

Graph Corresponding to a Fibrous Geometry

3.1. Introduction

In the previous chapter we presented an efficient algorithm for computing an

approximation of the effective thermal conductivity tensor for high contrast fibrous

geometries. The essential idea of the approach is to take into consideration the

network-like structure of a given fibrous geometry and to perform all calculations

on the induced unstructured grid. More precisely, the intersections of fibers are

considered nodes and the connecting fibers between nodes are considered edges of

an undirected graph. The weight of each edge depends on the diameter and the

conductivity of the respective fiber and the distance of the connected nodes. A

comparison between the results produced by our algorithm and classical methods

yields evidence of its efficiency and reliability for a large class of problems from

engineering and science.

In the present chapter the primary focus is on increasing the computational

efficiency of the essential preprocessing step, i.e., of setting up the graph. In the

previous chapter the actual computation of fiber intersections was not the main

objective. If it is carried out straightforwardly, i.e., each fiber is tested against

any other fiber for intersection, this preprocessing stage has a complexity which is

quadratic in the number of fibers and can therefore, for samples with very many

fibers, become prohibitively expensive.

The remainder of the chapter at hand is organized as follows: In section 3.2 we

describe the setting for presenting our argument and the principle idea of our ap-

proach. After that the algorithm that we use to construct the graphs corresponding

to fibrous geometries is discussed. In a subsection we also provide a short analysis of

the computational cost of this algorithm. The final section of this chapter is devoted

to numerical results and conclusions.

3.2. Preliminaries

For the arguments to follow we use the same notation and definitions and make

the same assumptions as in Chapter 2. Also, as in the previous chapter and in

order to make the presentation somewhat simpler we restrict our exposition to three

43
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spatial dimensions, which is anyway the most interesting case from a practical point

of view.

In the preceding chapter we assumed for simplicity that whenever two fibers (i.e.,

the cylindrical objects) have a nonempty intersection the same holds true for their

center lines. For a randomly generated fibrous geometry this assumption will in gen-

eral not be satisfied. In practice, however, this doesn’t pose any serious difficulties.

In order to determine whether two fibers cross, we calculate the distance between

their center lines. If this distance is smaller than the sum of the fiber radii, we say

that the fibers cross and for each of the involved center lines we store the point at

which they are closest, i.e., the distance of these points is equal to the distance of

the center lines of the involved fibers. The crossing node is then set to be in the

middle of these two points.

The idea to reduce the complexity of the straightforward strategy mentioned

above is to partition the domain into a grid of coarse cells. Then by going along

each fiber, we determine the coarse grid cells through which this fiber passes. Once

this has been completed we go through each coarse cell and check for intersections

only among those fibers passing through one and the same cell. This is done in such

a way that two fibers are compared only once, no matter if they mutually lie in

several coarse cells. The resulting graph is - except for the ordering of the nodes -

identical to the one computed by the standard approach. The computational cost,

however, is significantly reduced.

3.3. A divide and conquer algorithm

The computational bottleneck of the algorithm discussed in Chapter 2 is the

preprocessing step of setting up the graph, i.e., the computation of the set of in-

tersections ω. If this is done in a straightforward way, meaning by comparing each

fiber with every other, the computational cost is O(n2
Φ), where as above nΦ is the

number of fibers in Ω. For large geometries with very many fibers this will of course

soon become prohibitively expensive.

The idea to cure this problem is to divide our domain Ω into subdomains Ωj , j ∈
{1, . . . nΩ,x1} × {1, . . . , nΩ,x2} × {1, . . . , nΩ,x3} =: J , where nΩ,x1 , nΩ,x2 , and nΩ,x3

are the number of subdomains in each spatial direction, j is a multi-index, and

∪j∈J Ωj = Ω (cf. Figure 3.1). For simplicity, we again suppose that Ωj is brick

shaped. Then for each fiber we check through which subdomains it passes and

construct the sets Φj , where Φj denotes the set of fibers passing through Ωj . Then

for each j ∈ J we check for intersections among all ϕ ∈ Φj . In Algorithm 3.1 we

make these considerations more formal.
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Fiber ϕi

Subdomain Ωj

Figure 3.1. Subdomains Ωj and fibers ϕi.

Remark 3.1. The condition λ2

(
Ωj ∩ Ωĵ

)
6= 0 in step 8 of Algorithm 3.1 means

that we only check adjacent subdomains which have a common face with the previous

subdomain. We don’t need to take into consideration those adjacent subdomains

which only have a common edge or point. This is because fibers are volumetric

objects. In particular they have a strictly positive diameter.

Remark 3.2. It should be noted that the standard straightforward approach of

testing each fiber with any other for intersection is a special case of Algorithm 3.1 –

consider the case #J = 1.

3.3.1. Numerical complexity of Algorithm 3.1. Now, we would like to

obtain an estimate of the numerical cost of Algorithm 3.1 in order to be able to

compare it with the complexity of the straightforward approach of checking each

fiber with respect to any other for intersection. It is easy to see that the latter

approach requires O(n2
Φ) operations.

Since for general randomly generated fiber geometries the computation of the

numerical complexity of Algorithm 3.1 would go into too much detail concerning

the generation of such geometries, we perform our analysis only for one particular

structure with regularly arranged fibers, which is depicted in Figure 2.5. More pre-

cisely, we assume that our domain is the unit cube, i.e., Ω = [0, 1]3. The fibers

are defined by connecting the following pairs of points {(0, h/2 + i2h, h/2 + i3h) ,

(1, h/2 + i2h, h/2 + i3h)} , {(h/2 + i1h, 0, h/2 + i3h) , (h/2 + i1h, 1, h/2 + i3h)} ,

and {(h/2 + i1h, h/2 + i2h, 0) , (h/2 + i1h, h/2 + i2h, 1)} , where i1, i2, i3 =

0, 1, . . . , 1/h− 1. Here we tacitly assume that 1/h ∈ N. Additionally, we require the

diameters of all fibers to be smaller than the side lengths of the subdomains, each of

which is assumed to be of equal cubic size and shape. It is evident that the example

geometry just described is quite particular. In fact, it can be easily seen that the

number of intersections is rather large compared to a random geometry with an

equal number of fibers. Despite being artificial we will however see below that this

geometry is quite representative in terms of the computational costs of Algorithm
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Algorithm 3.1 Compute a graph corresponding to a fibrous geometry.

1: Φj = ∅ ∀j ∈ J
2: for i = 1, . . . , nΦ do
3: Compute an end point xi of ϕi and determine j ∈ J such that xi ∈ Ωj .
4: Set Φj = Φj ∪ {ϕi}, i.e., add ϕi to the set of fibers passing through Ωj .

5: Set J̃ = {j}. The subdomains corresponding to J̃ are those intersected by
ϕi and having at least one neighbor which hasn’t been checked for intersection
with ϕi, yet.

6: while #J̃ 6= 0 do

7: for j ∈ J̃ do

8: Let Ĵ be the set of all ĵ such that λ2

(
Ωj ∩ Ωĵ

)
6= 0 and ϕi /∈ Φĵ ,

where λ2 is the two-dimensional Lebesgue measure. The subdomains
corresponding to Ĵ are those neighbors of Ωj for which intersection
with ϕi hasn’t been verified yet.

9: for ĵ ∈ Ĵ do
10: if ϕi crosses Ωĵ then

11: Set Φĵ = Φĵ ∪ {ϕi}, i.e., ϕi is added to the set of fibers passing
through Ωĵ .

12: Set J̃ = J̃ ∪ {ĵ}. Since Ωĵ is intersected by ϕi we now in turn
need to check the neighbors of Ωĵ for intersection with ϕi, too.

13: end if
14: end for
15: Set J̃ = J̃ \{j}. Since all neighbors of Ωj have been checked for inter-

section with ϕi, j is removed from J̃ .
16: end for
17: end while
18: end for
19: for j ∈ J do
20: for ϕi ∈ Φj do
21: for ϕk ∈ Φj and k > i do
22: if ϕk and ϕi haven’t been tested for intersecting yet then
23: Test ϕk and ϕi for intersection and add a corresponding node to the

graph if the fibers cross.
24: end if
25: end for
26: end for
27: end for

3.1. Table 3.1 gives an overview of the computational costs of the different steps of

Algorithm 3.1 when applied to this example geometry.

Based on the information in Table 3.1 we can see that the total numerical com-

plexity of Algorithm 3.1 (i.e., steps 1-27) is given by

(3.1) O(nΦnΩ,x1) +O
(

n2
Φ

nΩ,x1

)
.
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Steps Order of complexity
10-13 O(1)

9-15 O(1) Since #Ĵ ≤ 6.

6-17 O(nΩ,x1)

Since the number of subdomains that each fiber passes
through is O(nΩ,x1) and each subdomain is checked at most
once. Note that nΩ,x1 = nΩ,x2 = nΩ,x3 and that we require
the fiber diameters to be smaller than the side lengths of
the subdomains.

2-18 O(nΦnΩ,x1)

20-26

O
(
(#Φj)

2)
=

O

(
n2

Φ

n4
Ω,x1

) Since in each subdomain of our regular fiber structure (see

Figure 2.5) there are
3

(hnΩ,x1)
2

fibers and in the entire do-

main Ω there are
3

h2
fibers, i.e., nΦ =

3

h2
.

19-27

O

(
#J

n2
Φ

n4
Ω,x1

)
= O

(
n2

Φ

nΩ,x1

) Since #J = n3
Ω,x1

for our cubic domain.

Table 3.1. Computational cost of Algorithm 3.1

Thus, we easily deduce that choosing

(3.2) nΩ,x1 = O(
√

nΦ)

leads to a total numerical complexity of

(3.3) O(n
3
2
Φ)

when applied to our regular example geometry sketched in Figure 2.5. This is of

course a major improvement compared to the complexity O(n2
Φ) of the standard

approach.

Remark 3.3. It should be noted here that the reasoning above is somewhat

specific for our example geometry. For general randomly generated fibrous geome-

tries with multiple fiber lengths and diameters we cannot obtain such a nice and

compact formula as in (3.3). Nevertheless, our considerations above are surprisingly

representative for more general cases as a collection of examples in section 3.4 shows.

3.4. Numerical Results and Conclusions

Now, let us take a look at the actual numerical performance of Algorithm 3.1

when applied to large randomly generated fibrous geometries. In order to do this, we

first specify the parameters used in the generation of our structures. All geometries

are generated by GeoDict using a grid of 20003 voxels on Ω, which is chosen to be

a cube with side-length 5.6e-3m. Thus, the side-length of a voxel is 2.8e-6m. We



48 3. DD GRAPH CALCULATION

consider structures having a solid volume fraction (svf) of 1%, 3%, and 5%, i.e.,

1%, 3%, and 5% of Ω are occupied by fibers, respectively. For each of these svf

we consider a geometry with equal parts of infinitely long and short fibers (“short”

meaning 100 voxels long), one with infinitely long fibers only, and one with short

fibers only. Here, “infinitely long” means that the fibers range from one side of the

domain to another one. We then consider a series of choices for nΩ,x1 = nΩ,x2 = nΩ,x3

and compare the cpu-times needed for setting up the graphs. To get an impression

how these fibrous geometries look we refer to Figure 2.10, which shows a plot of the

structure with 1% svf and with equal parts of short and long fibers.

Table 3.2 shows the data specific of the problems under consideration (number

of fibers, number of nodes, etc.) and the computational costs for the cases nΩ,x1 =

nΩ,x2 = nΩ,x3 = 1 and nΩ,x1 = nΩ,x2 = nΩ,x3 = nopt
Ω,x1

, where nopt
Ω,x1

is the optimal

choice in terms of the time needed for setting up the graph corresponding to the

fibrous geometry. In order to determine nopt
Ω,x1

we consider a series of nΩ,x1 (see Figure

3.2).

As we can see, the reduction of cpu-time when choosing nΩ,x1 = nopt
Ω,x1

instead of

nΩ,x1 = 1 is substantial. For the geometries involving only long fibers the time needed

for setting up the graph is roughly cut in half (see Table 3.2(a)). For the fibrous

structure with a solid volume fraction (svf) of 5% and only short fibers the cpu-time

for constructing the graph is reduced to less than 0.3% when choosing nΩ,x1 = nopt
Ω,x1

(see Table 3.2(c)). Looking at Table 3.2(b) we see that also for geometries consisting

of short and long fibers the cpu-time for setting up the graph is reduced by more

than one order of magnitude when choosing the optimal nΩ,x1 .

For the instances that we consider we see that by choosing nΩ,x1 = nopt
Ω,x1

the

computational cost of constructing the graph corresponding to our geometry can be

reduced to the same order of magnitude as the cost needed for solving the arising

linear system. (Here we would like to recall that for solving the linear system we

employ the ILU preconditioned Conjugate Gradient (CG) solver implemented in

the LASPack package mentioned in Chapter 2 using a relative residual reduction

of 1e − 6 as stopping criterion.) Before, i.e., when choosing nΩ,x1 = 1, almost the

entire computational cost for determining an approximation to the effective thermal

conductivity tensor was devoted to setting up the computational graph. Therefore,

it was not feasible to spend much effort on speeding up the solution of the arising

linear system. Now, with this new approach of dividing Ω into subdomains, we see

that in some cases the cpu-time for solving the arising linear system can actually

exceed the cpu-time for constructing the graph (see Table 3.2). With this observation

it seems reasonable to also optimize the process of solving the arising linear system,

e.g. by employing algebraic multi-grid methods and the like, which is a topic of our

further research.



3.4. NUMERICAL RESULTS AND CONCLUSIONS 49

As an interesting side note we would like to remark that in all investigated cases

(see Table 3.2) the cpu-time for solving the linear system also reduces (by around

30%) when choosing the optimal nΩ,x1 . This observation seems surprising, since

the graph constructed by Algorithm 3.1 and the number of CG-iterations required

to satisfy the convergence criterion are independent of the choice for nΩ,x1 . The

only plausible explanation that we have for this certainly desirable side effect is

that for nΩ,x1 = nopt
Ω,x1

the nodes of the graph are not in the same order as when

choosing nΩ,x1 = 1. Apparently, this re-odering of the unknowns speeds up the

matrix-vector multiplication of the system matrix, which could be due to a better

cache-optimization. Providing a detailed analysis of this issue is, however, beyond

the scope of this work.

Looking at the graphs in Figure 3.2, where the cpu-time for constructing the

graph is plotted vs. the choice for nΩ,x1 , we see that there is in fact an optimal

choice nopt
Ω,x1

. This observation can be explained via (3.1). When choosing nΩ,x1

larger (smaller) than nopt
Ω,x1

the first (second) term of (3.1) dominates.

Now, we would like to investigate the question, whether relation (3.2), which

we derived for the very regular fiber structure shown in Figure 2.5, also holds (at

least approximately) for our randomly generated geometries. For this we plot nopt
Ω,x1

against
√

nΦ for different fibrous geometries (see Figures 3.3). Of course, we can

only hope for (3.2) to hold for structures with different solid volume fractions but

with the same kind of fibers. Therefore, we only try to verify (3.2) for these cases.

Looking at the least squares linear fit (blue line) in Figure 3.3, where the fitted

line is forced through the origin and thus the only free parameter is its slope, we

can see that (3.2) is indeed quite well satisfied. Nevertheless, the constant involved

in (3.2) is different for different choices of fibers. For the sequence of geometries

with svf 1%, 3%, and 5% and only long fibers it is approximated to 2.54e-1, while

for the cases of only short fibers it is approximately 9.89e-2. The constant for the

geometries involving equal parts of long and short fibers is estimated to 1.11e-1 and

thus in-between the two former ones, as one would expect.

In addition to nopt
Ω,x1

Figure 3.3 also shows margins which correspond to those

choices of nΩ,x1 for which the cpu-time for setting up the graph is at most 5% higher

than for nopt
Ω,x1

. For practical problems it of course doesn’t make sense to apply

Algorithm 3.1 for several choices of nΩ,x1 to determine the optimal one. Instead one is

interested in approximating nopt
Ω,x1

beforehand, and then use this approximation in the

calculations. It is quite obvious that (3.2) can be used to predict an approximation

to nopt
Ω,x1

. Furthermore, it should be noted that the margins shown in Figure 3.3

indicate that (especially for large and thus costly geometries) one doesn’t really have

to approximate nopt
Ω,x1

very accurately in order to obtain almost optimal performance.

Thus, it seems promising that an automatic way of approximating nopt
Ω,x1

, which could
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then be used in Algorithm 3.1, can be implemented. This is also an objective of our

further research.

On the whole we conclude this chapter by stating that Algorithm 3.1 constitutes

a very powerful enhancement of the approach presented in Chapter 2. The com-

putational costs are significantly reduced, which makes our approach applicable to

even larger geometries containing even more fibers.
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(a) Geometries with only long fibers.

(b) Geometries with equal parts of short and long fibers.

(c) Geometries with only short fibers.

Figure 3.2. CPU-times needed for setting up the graph for different
choices of nΩ,x1 = nΩ,x2 = nΩ,x3 with the optimal CPU-time at x.
The geometries have different fiber configurations and solid volume
fractions of 1%, 3%, and 5% (from left to right), respectively.
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(a) Geometries with only long fibers. (b) Geometries with equal parts of short
and long fibers.

(c) Geometries with only short fibers.

Figure 3.3. Optimal choices of nΩ,x1 , i.e. nopt
Ω,x1

(x), vs.
√

nΦ with 5%
deviation margins and a linear leasts-squares fit. The considered ge-
ometries have different fiber configurations and solid volume fractions
of 1%, 3%, and 5%, respectively.



3.4. NUMERICAL RESULTS AND CONCLUSIONS 53

(a) Geometries with only long fibers.

svf short fibers 0% 0% 0%
svf long fiber 1% 3% 5%
# fibers 4851 14686 24366
# interior nodes 15462 132121 351366

effective conductiv-
ity tensor

2.64e-2 - -
- 2.65e-2 -
- - 2.64e-2

3.13e-2 - -
- 3.14e-2 -
- - 3.15e-2

3.66e-2 - -
- 3.64e-2 -
- - 3.64e-2

nΩ,x1 = nΩ,x2 =
nΩ,x3

1 153 1 323 1 403

total CPU-time
(sec.)

2.3e0 1.4e0 2.9e1 1.7e1 1.1e2 6.3e1

CPU-time for con-
structing the graph

1.9e0 1.1e0 1.8e1 9.4e0 5.7e1 2.7e1

CPU-time for solv-
ing the system

< 1 < 1 1.1e1 7.6e0 5.4e1 3.5e1

(b) Geometries with with equal parts of short and long fibers.

svf short fibers 0.5% 1.5% 2.5%
svf long fiber 0.5% 1.5% 2.5%
# fibers 35830 108668 182974
# interior nodes 14383 136086 366286

effective conductiv-
ity tensor

2.52e-2 - -
- 2.52e-2 -
- - 2.52e-2

2.80e-2 - -
- 2.79e-2 -
- - 2.79e-2

3.14e-2 - -
- 3.14e-2 -
- - 3.15e-2

nΩ,x1 = nΩ,x2 =
nΩ,x3

1 183 1 383 1 483

total CPU-time
(sec.)

9.5e1 2.0e0 1.0e3 2.1e1 2.9e3 7.1e1

CPU-time for con-
structing the graph

9.4e1 1.3e0 9.9e2 1.0e1 2.8e3 2.8e1

CPU-time for solv-
ing the system

< 1 < 1 1.4e1 1.0e1 6.4e1 4.1e1

(c) Geometries with only short fibers.

svf short fibers 1% 3% 5%
svf long fiber 0% 0% 0%
# fibers 66953 202845 341543
# interior nodes 2127 113936 378634

effective conductiv-
ity tensor

2.40e-2 - -
- 2.40e-2 -
- - 2.40e-2

2.40e-2 - -
- 2.40e-2 -
- - 2.40e-2

2.57e-2 - -
- 2.57e-2 -
- - 2.57e-2

nΩ,x1 = nΩ,x2 =
nΩ,x3

1 303 1 473 1 543

total CPU-time
(sec.)

3.6e2 2.2e0 3.5e3 5.9e1 9.9e3 1.1e2

CPU-time con-
structing the graph

3.6e2 1.6e0 3.4e3 1.0e1 9.8e3 2.8e1

CPU-time solving
the system

< 1 < 1 6.5e1 4.7e1 1.1e2 7.7e1

Table 3.2. Computational results and costs for geometries with dif-
ferent fiber configurations and solid volume fractions of 1%, 3%, and
5%, respectively.





CHAPTER 4

A Numerical Subgrid Method for Solving Brinkman’s

Equations in Highly Heterogeneous Media

4.1. Introduction

In this chapter we consider Brinkman’s equations (4.1) which adequately describe

flows in highly porous media. They are used for modeling viscous flows in many

industrial materials and naturally occurring media such as industrial filters, glass or

mineral wool, open foams, or natural vuggy reservoirs, see Figures 4.1–4.3.

The system of equations (4.1) was introduced by Brinkman in [23] in order to re-

duce the deviations between the measurements for flows in highly porous media and

the Darcy-based predictions. This was done without a direct link to the underlying

microscopic behavior of the flow process, but as a constitutive relation involving a

dissipative term scaled by the viscosity. Nevertheless, advances in homogenization

theory made it possible to rigorously derive Brinkman’s equations from Stokes’ equa-

tions in the case of slow viscous fluid flow in the presence of periodically arranged

solid obstacles, see e.g., [3, 41, 53]. Also, system (4.1) has been considered from the

point of view of fictitious domain or penalty formulations for flows of incompressible

liquids around solid or porous obstacles. In this case the permeability κ (see (4.1)) is

piecewise constant, with κ “small” in the solid obstacles and “infinity” in the fluid,

(see, e.g. [7]).

Figure 4.1. Microstructures of industrial foams

55
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Figure 4.2. Microstructure and macrostructure of mineral wool

Figure 4.3. Logarithm of the horizontal and vertical permeability
field of the SPE10 benchmark geometry (cf. [27]) representing a nat-
ural porous reservoir.

In this chapter we derive and study numerical methods for solving Brinkman’s

equations (4.1) assuming that the coefficient κ may have large jumps. Moreover,

the structure of the variations of κ may correspond to quite a complicated geometry

involving different length-scales, see, e.g. Figures 4.1–4.3. For such problems we

shall construct and numerically test two-scale finite element approximations using

the idea of subgrid methods in [9].

For developing this method it is first necessary to derive and analyze a mixed

finite element discretization of Brinkman’s equations. It is important to note that in

addition to optimal approximation properties the choice of the used finite element

spaces is limited by several restrictions necessary for the subsequent derivation of

the two-scale discretization. By extending a discontinuous Galerkin mixed finite

element method presented in [67] to the Brinkman case and by employing the Brezzi-

Douglas-Marini mixed finite element spaces of order 1, we can meet all necessary

requirements.

In the case of problems with scale separation the derived two-scale finite element

method captures the coarse scale behavior of the solution rather well and enhances
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it with fine scale features. Also, we extend these approximations to numerically

treat problems without scale separations. More precisely, by enhancing the method

by overlapping subdomains we devise an iterative alternating Schwarz method for

computing the fine grid approximate solution.

All methods are implemented using the Deal.II finite element software library

(cf. [12]). As a byproduct of our developments we also obtain the numerical subgrid

algorithm for Darcy’s problem, which was proposed and justified by Arbogast [9],

and the discontinuous Galerkin method for Stokes’ equations, proposed and studied

by Wang and Ye [67]. In our derivations the former is also extended by alternating

Schwarz iterations.

The remainder of this chapter is organized as follows: In the next section we

provide a detailed description of the problem under consideration as well as the

necessary notation. In section 4.3 we derive the numerical subgrid algorithm for

Darcy’s problem as done by Arbogast in [9]. After that we discuss an extension

of this algorithm by alternating Schwarz iterations. Section 4.5 is devoted to the

derivation of a discontinuous Galerkin discretization of Brinkman’s problem, which

essentially follows the reasoning in [67]. After that we employ the same ideas as for

the Darcy case to obtain a numerical subgrid algorithm for Brinkman’s equations.

In section 4.7 this algorithm is also extended by alternating Schwarz iterations. The

final section of this chapter contains numerical experiments corresponding to the

presented algorithms as well as conclusions.

4.2. Problem Formulation and Notation

As in the previous chapters we use the standard notation for spaces of scalar

and vector-valued functions defined on Ω. L2
0(Ω) ⊂ L2(Ω) is the space of square

integrable functions with mean value zero. H1(Ω)n, H1
0 (Ω)n, and L2(Ω)n denote the

spaces of vector-valued functions with components in H1(Ω), H1
0 (Ω), and L2(Ω),

respectively. Furthermore,

H(div : Ω) := {v ∈ L2(Ω)n : ∇ · v ∈ L2(Ω)},

H0(div : Ω) := {v ∈ H(div : Ω) : v · n = 0 on ∂Ω},

equipped with the norm

‖v‖H(div;Ω) =

(∫
Ω

(|∇ · v|2 + |v|2)dx
) 1

2

,

and where the values at the boundary are assumed in the usual trace sense. We

also use the standard notation ∇u : ∇v :=
n∑

i,k=1

∂ui

∂xk

∂vi

∂xk

. Further, we denote by Pk

the space of polynomials of degree k ∈ N0 and, consistently with our notation, P n
k
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denotes the set of vector-valued functions having n components in Pk. For simplicity,

we restrict to the case of two spatial dimensions, i.e., n = 2, in the following.

As mentioned in the introduction, our work is dedicated to the numerical solution

of Brinkman’s problem:

(4.1) (Brinkman)


−µ∆u+∇p + µκ−1u = fm in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω.

This system of equations can be thought of as a generalization of Darcy’s and Stokes’

equations:

(4.2a) (Darcy)


∇p + µκ−1u = fm in Ω,

∇ · u = 0 in Ω,

u · n = g on ∂Ω,

(4.2b) (Stokes)


−µ∆u+∇p = fm in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω.

Here the viscosity µ is assumed to be a positive constant, Ω is a bounded simply

connected domain in Rn with Lipschitz polyhedral boundary having the outward

unit normal vector n. κ ∈ L∞(Ω) with ∞ > κmax ≥ κ ≥ κmin > 0 denotes the

permeability, fm ∈ L2(Ω)n is some forcing term (m stands for “momentum”), and the

boundary data g ∈ H
1
2 (∂Ω)n and g ∈ H

1
2 (∂Ω) satisfy the compatibility condition∫

∂Ω

g · nds = 0 and

∫
∂Ω

gds = 0, respectively.

With these assumptions problems (4.1) and (4.2b) have unique weak solutions

(u, p) ∈ (H1(Ω)n, L2
0(Ω)) and problem (4.2a) has a unique weak solution (u, p) ∈

(H(div, Ω), L2
0(Ω)). The smoothness of the velocity solutions of these problems

could be studied by the methods developed in [31, 38]. We shall assume that

u ∈ (Hs(Ω))n with some s > 3
2
, where Hs(Ω), for s noninteger is the standard

interpolation space (see e.g. [61]). To make the exposition more compact we define

(V , W ) := (H0(div; Ω), L2
0(Ω)).

The finite element method we shall propose uses various (mixed) finite element

spaces, which are defined below.

Let TH and Th be quasi-uniform quadrilateral triangulations of Ω with mesh-

parameter H and h (see, e.g. [28]), respectively, such that each TH ∈ TH is an

agglomeration of elements in Th. In the following we will refer to TH and Th as

coarse and fine triangulation, respectively. Furthermore, for each TH ∈ TH we
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denote by Th(TH) the restriction of Th to the coarse element TH . Th(TH) is referred

to as local fine triangulation. Let EH denote the set of all edges of TH . Also, we

define E̊H to be the set of internal edges of TH , i.e., E̊H := {eH ∈ EH | eH * ∂Ω}, and

denote nE̊H
:= #E̊H . Without loss of generality, we assume that the edges in E̊H are

numbered, i.e., E̊H = {ei
H}i=1...nE̊H

. Also, we denote the set of all boundary edges

by E∂
H , i.e., E∂

H := EH\E̊H . Analogously we define Eh, E̊h, and E∂
h for Th and Eh(TH),

E̊h(TH), and E∂
h (TH) for Th(TH). For each eH ∈ E̊H we also define EH(eH) to be the

union of Th ∈ Th with dist(Th, eH) < CeH and denote by Th(eH) the restriction of

Th to EH(eH). Here Ce < 1 is a suitably chosen constant, which is independent of

H and h. For an easier understanding of this notation we refer the reader to Figure

4.4.

E̊H

E∂
H

EH

TH

(a)

Th(TH)

TH Th

H

h

eH

TH

eh

EH(eH)

(b)

Figure 4.4. Components of the coarse and fine grids.

Now, let (VH , WH) ⊂ (V , W ) and (Vh, Wh) ⊂ (V , W ) be mixed finite element

spaces corresponding to TH and Th, respectively. Additionally, we introduce the

finite element space V ∂
H ⊂ H(div; Ω) corresponding to TH , which differs from VH in

that it also includes boundary degrees of freedom and thus functions whose normal

traces do not vanish on ∂Ω. In particular we have that VH ⊂ V ∂
H . For each TH ∈ TH

and eH ∈ E̊H let

(4.3a) (δVh(TH), δWh(TH)) ⊂
(
H0(div; TH), L2

0(TH)
)

and

(4.3b) (V τ
h (eH), W τ

h (eH)) ⊂
(
H0(div; EH(eH)), L2

0(EH(eH))
)
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be mixed finite element spaces corresponding to Th(TH) and Th(eH), respectively.

We also consider the (direct) sums of these local finite element spaces and set

(δVh, δWh) :=
⊕

TH∈TH

(δVh(TH), δWh(TH))

and

(V τ
h , W τ

h ) :=
∑

eH∈E̊H

(V τ
h (eH), W τ

h (eH)),

where functions in (δVh(TH), δWh(TH)) and (V τ
h (eH), W τ

h (eH)) are extended by zero

to Ω\TH and Ω\EH(eH), respectively. We, furthermore, assume that the finite

element spaces satisfy the following properties:

(4.4a) ∇ · δVh = δWh and ∇ · VH = WH ,

(4.4b) δWh ⊥ WH in the L2-inner-product,

and

(4.4c) VH ∩ δVh = {0}.

We note that if we choose (VH , WH) and (δVh(TH), δWh(TH)), with TH ∈ TH ,

to be the lowest order Raviart-Thomas (RT0) or Brezzi-Douglas-Marini (BDM1)

mixed finite element spaces (cf. e.g. [22]), then (4.4) is indeed satisfied. Through-

out this work we tacitly assume that all finite element spaces are of the same

type, i.e., e.g. RT0 or BDM1. This assumption is somewhat stronger than actu-

ally needed, however, it simplifies the exposition. For the sake of completeness,

we remark that for both spaces, i.e., RT0 and BDM1, the pressure is given by

piecewise constants (constant on each cell). For RT0 the velocity space is given by

span{(1, 0), (0, 1), (x1, 0), (0, x2)} on each cell, with the restriction that the normal

component is continuous across cell boundaries. For BDM1 the velocity space is

given by

P 2
1 + span{curl(x2

1x2), curl(x1x
2
2} = P 2

1 + span{(x2
1,−2x1x2), (2x1x2,−x2

2)}

on each cell, again with the restriction that the normal component is continuous

across cell boundaries. We refer to Figure 4.5 for an illustration of the degrees of

freedom of the RT0 and BDM1 elements.

Due to (4.4b) and (4.4c) the following direct sum is well-defined.

(4.5) (VH,h, WH,h) := (VH , WH)⊕ (δVh, δWh) .
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normal velocity

pressure

Figure 4.5. Degrees of freedom of the RT0 (left) and BDM1 (right)
finite element spaces.

(a) Degrees of freedom of (Vh,Wh). (b) Degrees of freedom of (VH,h,WH,h)
with two coarse cells.

Figure 4.6. Degrees of freedom of different mixed finite element
spaces corresponding to BDM1 elements.

Remark 4.1. The mixed finite element space (VH,h, WH,h) differs from (Vh, Wh)

in the following sense: The latter is a standard mixed finite element space corre-

sponding to one (global) fine triangulation, i.e., Th. The degrees of freedom of this

space are sketched in Figure 4.6(a). The mixed finite element space (VH,h, WH,h),

on the other hand, corresponds to one coarse triangulation, i.e., TH , and several

local fine triangulations, i.e., Th(TH), with TH ∈ TH . We refer to Figure 4.6(b) for a

sketch of the degrees of freedom of (VH,h, WH,h). It is easy to see that the difference

between (Vh, Wh) and (VH,h, WH,h) is that the latter doesn’t have any fine degrees of

freedom across ∂TH , TH ∈ TH , but only the coarse ones corresponding to (VH , WH).

4.3. Numerical Subgrid Approach for Solving Darcy’s Problem

With the definitions and notation given in the previous section we are now able to

outline the numerical subgrid approach for problem (4.2a) as discussed by Arbogast

in [9, 10].

It is well known that the mixed variational formulation of (4.2a) reads as follows:

Find (u, p) ∈ (V + ug, W ) such that for all (v, q) ∈ (V , W ) we have

(4.6)

 aD (u,v) + b (v, p) =

∫
Ω

fm · vdx,

b (u, q) = 0.
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Here ug is an H(div)-extension of g, i.e., ug ∈ H(div; Ω) such that ug · n = g on

∂Ω. Furthermore,

(4.7a) b (v, q) := −
∫

Ω

∇ · vqdx

and

(4.7b) aD (u,v) :=

∫
Ω

µκ−1u · vdx.

We additionally assume that

(4.8) ug ∈ V ∂
H ,

i.e., the boundary function is assumed to have only coarse features. Without loss of

generality we may assume the case of homogeneous boundary conditions. Otherwise,

we decompose u in (4.6) into a part satisfying homogeneous boundary conditions

and ug and move aD (ug,v) and b (ug, q) to the right hand side. Once the part

satisfying homogeneous boundary conditions is computed adding ug yields u. Thus,

instead of (4.6) we consider the following problem for our subsequent considerations:

Find (u, p) ∈ (V , W ) such that for all (v, q) ∈ (V , W ) we have

(4.9)

{
aD (u,v) + b (v, p) = FD

m (v),

b (u, q) = FD
s (q),

where

(4.10) FD
m (v) :=

∫
Ω

fm · vdx− aD (ug,v) and FD
s (q) := −b (ug, q) .

Now, we can consider the finite dimensional approximation of (4.9) with respect

to (VH,h, WH,h). Note, that (VH,h, WH,h) is a conforming mixed finite element space

in the sense that (VH,h, WH,h) ⊂ (V , W ). More precisely, we consider the following

discrete problem: Find (uH,h, pH,h) ∈ (VH,h, WH,h) such that for all (vH,h, qH,h) ∈
(VH,h, WH,h) we have

(4.11)

{
aD (uH,h,vH,h) + b (vH,h, pH,h) = FD

m (vH,h),

b (uH,h, qH,h) = FD
s (qH,h).

For comparison we also consider the full fine-grid discretization: Find (uh, ph) ∈
(Vh, Wh) such that for all (vh, qh) ∈ (Vh, Wh) we have

(4.12)

{
aD (uh,vh) + b (vh, ph) = FD

m (vh),

b (uh, qh) = FD
s (qh).

The subsequent derivation, which follows the reasoning in [9], is the core of the

numerical subgrid approach and essentially yields a splitting of (4.11) into one coarse

global and several fine local problems. Due to (4.5) we know that each element in
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(VH,h, WH,h) may be uniquely decomposed into its components from (VH , WH) and

(δVh, δWh). Thus, (4.11) may be rewritten as

(4.13)

{
aD (uH + δuh,vH + δvh) + b (vH + δvh, pH + δph) = FD

m (vH + δvh),

b (uH + δuh, qH + δqh) = FD
s (qH + δqh).

By linearity we may decompose (4.13) into

(4.14a)

{
aD (uH + δuh,vH) + b (vH , pH + δph) = FD

m (vH),

b (uH + δuh, qH) = FD
s (qH)

and

(4.14b)

{
aD (uH + δuh, δvh) + b (δvh, pH + δph) = FD

m (δvh),

b (uH + δuh, δqh) = FD
s (δqh).

Due to (4.4a), (4.8), and (4.4b) we may simplify (4.14) to obtain

(4.15a)

{
aD (uH + δuh,vH) + b (vH , pH) = FD

m (vH),

b (uH , qH) = FD
s (qH)

and

(4.15b)

{
aD (uH + δuh, δvh) + b (δvh, δph) = FD

m (δvh),

b (δuh, δqh) = 0.

Remark 4.2. This last step is actually crucial to ensure the solvability of (4.15b).

In fact, the equivalence of (4.14b) and (4.15b) is a major reason for the careful

description of the properties of our finite element spaces in (4.4). Unfortunately, the

requirements imposed in (4.4) also significantly limit the possible choices of finite

elements that may be used for our derivations.

Now, by further decomposing (δuh, δph) = (δuh + δ̃uh, δph + δ̃ph) and using

superposition, (4.15b) may be replaced by the following systems of equations satisfied

by (δ̃uh, δ̃ph) and (δuh, δph), respectively:

(4.16a)

 aD
(
uH + δ̃uh, δvh

)
+ b
(
δvh, δ̃ph

)
= 0,

b
(
δ̃uh, δqh

)
= 0

and

(4.16b)

{
aD
(
δuh, δvh

)
+ b
(
δvh, δph

)
= FD

m (δvh),

b
(
δuh, δqh

)
= 0.

We easily see by (4.16a) that (δ̃uh, δ̃ph) = (δ̃uh(uH), δ̃ph(uH)) is a linear operator

in uH . Note, that (δuh, δph), and for uH given, (δ̃uh(uH), δ̃ph(uH)) can be com-

puted locally due to the implicit homogeneous boundary condition in (4.3a), i.e.,

the restrictions of (δuh, δph) and (δ̃uh(uH), δ̃ph(uh)) to elements from TH can be
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computed independently of each other. In the following we refer to (δuh, δph) and

(δ̃uh(uH), δ̃ph(uH)) as the responses to the right hand side and uH , respectively.

Plugging δuh + δ̃uh(uH) into (4.15a) we arrive at the upscaled equation, which

is entirely posed in terms of the coarse-grid unknowns, i.e.,

(4.17)

{
aD
(
uH + δ̃uh(uH),vH

)
+ b (vH , pH) = FD

m (vH)− aD
(
δuh,vH

)
,

b (uH , qH) = FD
s (qH).

Now, due to the first equation in (4.16a) we see by choosing δvh = δ̃uh(vH) that

aD
(
uH + δ̃uh(uH), δ̃uh(vH)

)
+ b
(
δ̃uh(vH), δ̃ph(uH)

)
= 0.

The second equation in (4.16a) in turn yields

b
(
δ̃uh(vH), δ̃ph(uH)

)
= 0.

Combining these two results with (4.17) we obtain the symmetric upscaled system

(4.18){
aD
(
uH + δ̃uh(uH),vH + δ̃uh(vH)

)
+ b (vH , pH) = FD

m (vH)− aD
(
δuh,vH

)
,

b (uH , qH) = FD
s (qH).

Now we define the symmetric bilinear form

ãD (uH ,vH) := aD
(
uH + δ̃uh(uH),vH + δ̃uh(vH)

)
so that the upscaled system can be rewritten in the form

(4.19)

{
ãD (uH ,vH) + b (vH , pH) = FD

m (vH)− aD
(
δuh,vH

)
,

b (uH , qH) = FD
s (qH).

Once (uH , pH) is obtained we get the solution of (4.11) by piecing together the

coarse and fine components, i.e.,

(4.20) (uH,h, pH,h) = (uH , pH) +
(
δ̃uh(uH), δ̃ph(uH)

)
+ (δuh, δph).

The discussion above results in the following Algorithm 4.1 for computing

(uH,h, pH,h).

Remark 4.3. We emphasize that by Algorithm 4.1 we actually compute

(uH,h, pH,h). Thus, the entire subgrid procedure can be regarded as a special way to

compute the solution of (4.11).

For general coefficients κ ∈ L∞(Ω) we have the following error estimates accord-

ing to [9, Theorem 6.6]:

(4.21)
‖u− uH,h‖L2(Ω) ≤ CH2 ‖u− ug‖H2(Ω) and

‖p− pH,h‖L2(Ω) ≤ C(H2 ‖u− ug‖H2(Ω) + h ‖p‖H1(Ω)),
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Algorithm 4.1 Numerical subgrid for Darcy’s equations.

1: Let {ϕi
H}i∈JH

be a finite element basis of VH(Ω).
2: for i ∈ JH do

3: Compute
(
δ̃uh(ϕ

i
H), δ̃ph(ϕ

i
H)
)

by solving (4.16a) with uH replaced by ϕi
h.

Note that
(
δ̃uh(ϕ

i
H), δ̃ph(ϕ

i
H)
)

can be computed locally on each TH ∈ TH .

4: end for
5: Compute

(
δuh, δph

)
by solving (4.16b). This can again be done locally on each

TH ∈ TH .

6: Compute (uH , pH) by solving (4.19). For this we use
(
δ̃uh(ϕ

i
H), δ̃ph(ϕ

i
H)
)

for

all i ∈ JH and
(
δuh, δph

)
in order to set up the linear system corresponding to

(4.19).
7: Piece together the solution of (4.11) according to (4.20).

where C may depend on κ and Ω but is independent of h and H. For periodic κ

with period ε Arbogast and Boyed prove the following estimate (see [10, Theorem

6.1(b) and Theorem 7.1])

(4.22)
‖u− uH,h‖H(div;Ω) ≤ C

(
ε +

√
ε

H
+ H2

)
and

‖p− pH,h‖L2(Ω) ≤ C
(
ε +

ε

H
+ H3

)
,

where C may depend on κ, Ω, and the homogenized solution and its derivatives.

The homogenized solution is the function that (u, p) converges to weakly as ε → 0

(for more details see [47]). However, unlike above the estimate does not depend on

(u, p) and its derivatives. For these last estimates it is assumed that the fine scales

fully resolve the solution, which is why there is no error term involving h.

Considering these results, the numerical subgrid approach yields quite satisfac-

tory estimates if κ is periodic and if its period ε satisfies ε � H. This case of

separated scales is certainly interesting and important by itself, however, in many

situations such a clear scale-separation does not exist and assuming it may consti-

tute an unjustified approximation. For the inseparable case, in which the variations

of κ may be quite general, the error estimates for the numerical subgrid approach

are much worse. The essential point is that in this situation one cannot avoid having

a power of H in the enumerator of the error estimate multiplied by derivatives of

the solution. If the solution has fine features, however, this quantity is in general

not small. The underlying reason for this behavior is that features of the velocity

solution across coarse cell boundaries can only be resolved by functions in VH . The

following section aims at resolving this issue by putting the numerical subgrid ap-

proach in the framework of alternating Schwarz methods and thus mitigating the

poor approximation across coarse cell boundaries.
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4.4. Extending the Numerical Subgrid Approach for Darcy’s Problem

by Alternating Schwarz Iterations

As noted in the previous section (see Remark 4.3) Algorithm 4.1 is just some

special way of computing the solution of (4.11), i.e., the finite element solution

corresponding to the space (VH,h, WH,h). As mentioned in Remark 4.1 the difference

between the spaces (VH,h, WH,h) and (Vh, Wh) is that the former has no fine degrees

of freedom across coarse cell boundaries. Thus, any fine-scale features of the solution

(u, p) across those coarse cell boundaries can only be captured poorly by functions

in (VH,h, WH,h). Algorithm 4.2 addresses this problem by performing alternating

Schwarz iterations between the spaces (VH,h, WH,h) and (V τ
h (eH), W τ

h (eH)), with

eH ∈ E̊H .

Algorithm 4.2 Alternating Schwarz extension to the numerical subgrid approach
for Darcy’s problem – first formulation.

1: Set (u0
h, p

0
h) ≡ (0, 0).

2: for j = 0, . . . until convergence do
3: if j = 0 then

4: Set
(
u

1/3
h , p

1/3
h

)
= (u0

h, p
0
h).

5: else
6: for i = 1 . . . nE̊H

do

7: Find (eτ
h, e

τ
h) ∈ (V τ

h (ei
H), W τ

h (ei
H)) such that for all (vτ

h, q
τ
h) ∈

(V τ
h (ei

H), W τ
h (ei

H)) we have

(4.23)

{
aD (eτ

h,v
τ
h) + b (vτ

h, e
τ
h) = FD

m (vτ
h)− aD

(
uj

h,v
τ
h

)
− b
(
vτ

h, p
j
h

)
,

b (eτ
h, q

τ
h) = FD

s (qτ
h)− b

(
uj

h, q
τ
h

)
.

8: Set

(4.24)

(
u

j+i/(3nE̊H
)

h , p
j+i/(3nE̊H

)

h

)
=

(
u

j+(i−1)/(3nE̊H
)

h , p
j+(i−1)/(3nE̊H

)

h

)
+ (eτ

h, e
τ
h) ,

where (eτ
h, e

τ
h) is extended by zero to Ω\EH(ei

H).
9: end for

10: end if
11: Find (eH,h, eH,h) ∈ (VH,h, WH,h) such that for all (vH,h, qH,h) ∈ (VH,h, WH,h) we

have
(4.25) aD (eH,h,vH,h) + b (vH,h, eH,h) = FD

m (vH,h)− aD
(
u

j+1/3
h ,vH,h

)
− b
(
vH,h, p

j+1/3
h

)
,

b (eH,h, qH,h) = FD
s (qH,h)− b

(
u

j+1/3
h , qH,h

)
.

12: Set

(4.26)
(
uj+1

h , pj+1
h

)
=
(
u

j+1/3
h , p

j+1/3
h

)
+ (eH,h, eH,h).

13: end for
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Remark 4.4. It is straightforward to see that (u1
h, p

1
h) ≡ (uH,h, pH,h) solving

(4.11).

Now, problem (4.25) is of exactly the same form as (4.11). Thus, by the same

reasoning as in the previous section we may replace (4.25) by the following two

problems:

Find (δeh, δeh) ∈ (δVh, δWh) such that for all (δvh, δqh) ∈ (δVh, δWh) we have

(4.27a) aD (δeh, δvh) + b (δvh, δeh) = FD
m (δvh)− aD

(
u

j+1/3
h , δvh

)
− b
(
δvh, p

j+1/3
h

)
,

b (δeh, δqh) = −b
(
u

j+1/3
h , δqh

)
.

Find (eH , eH) ∈ (VH , WH) such that for all (vH , qH) ∈ (VH , WH) we have

(4.27b) ãD (eH ,vH) + b (vH , eH) = FD
m (vH)− aD

(
u

j+1/3
h + δeh,vH

)
− b
(
vH , p

j+1/3
h

)
,

b (eH , qH) = FD
s (qH)− b

(
u

j+1/3
h , qH

)
.

Here, (4.27a) and (4.27b) correspond to (4.16b) and (4.19), respectively, and analo-

gous to (4.20) (eH,h, eH,h) from (4.25) is obtained by

(4.28) (eH,h, eH,h) = (eH , eH) +
(
δ̃uh(eH), δ̃ph(eH)

)
+ (δeh, δeh) .

Now, let us define(
u

j+2/3
h , p

j+2/3
h

)
:=
(
u

j+1/3
h , p

j+1/3
h

)
+ (δeh, δeh) .

Combining this with (4.26) and (4.28) we obtain

(4.29)
(
uj+1

h , pj+1
h

)
=
(
u

j+2/3
h , p

j+2/3
h

)
+ (eH , eH) +

(
δ̃uh(eH), δ̃ph(eH)

)
.

We furthermore observe that due to (4.4a) and (4.4b) we may simplify (4.27b) to

obtain

(4.30) ãD (eH ,vH) + b (vH , eH) = FD
m (vH)− aD

(
u

j+2/3
h ,vH

)
− b
(
vH , p

j+2/3
h

)
,

b (eH , qH) = FD
s (qH)− b

(
u

j+2/3
h , qH

)
.

Thus, we may rewrite Algorithm 4.2 in form of Algorithm 4.3 and we summarize

our derivations in the following

Proposition 4.5. The iterates (uj
h, p

j
h) of Algorithms 4.2 and 4.3 coincide.

For a better understanding of Algorithms 4.2 and 4.3 we refer to Figure 4.7

depicting the degrees of freedom of (V τ
h (eH), W τ

h (eH)) with eH ∈ EH .

Remark 4.6. Algorithm 4.3 also has a different interpretation than just be-

ing some equivalent formulation of Algorithm 4.2. It is straightforward to see that
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eH ∈ EH

EH(eH)

Figure 4.7. Degrees of freedom (colored red and black) of
(V τ

h (eH), W τ
h (eH)) for eH ∈ EH . The fine velocity degrees of free-

dom across the coarse cell boundaries (colored red) are those which
are not included in VH,h.

Algorithm 4.3 Alternating Schwarz extension to the numerical subgrid approach
for Darcy’s problem – second formulation.

1: Steps 1:–4: of Algorithm 4.1
2: Set (u0

h, p
0
h) ≡ (0, 0).

3: for j = 0, . . . until convergence do
4: Steps 3:–10: of Algorithm 4.2
5: Solve (4.27a) for (δeh, δeh).

6: Set (u
j+2/3
h , p

j+2/3
h ) = (u

j+1/3
h , p

j+1/3
h ) + (δeh, δeh).

7: Solve (4.30) for (eH , eH).

8: Set
(
uj+1

h , pj+1
h

)
=
(
u

j+2/3
h , p

j+2/3
h

)
+ (eH , eH) +

(
δ̃uh(eH), δ̃ph(eH)

)
.

9: end for

(u
2/3
h , p

2/3
h ) = (δuh, δph), i.e., (u

2/3
h , p

2/3
h ) is the solution of (4.16b). For j ≥ 1

(u
j+2/3
h , p

j+2/3
h ) is the solution of (4.16b) with the homogeneous boundary condi-

tions being replaced by (in general) inhomogeneous ones defined by (u
j+1/3
h , p

j+1/3
h ).

Besides, (4.30) is of the same form as (4.19). Thus, Algorithm 4.3 can be viewed as

a subgrid algorithm that iteratively improves the local boundary conditions of the

response to the right hand side.

Remark 4.7 (Solvability of (4.27a)). Looking at (4.27a) it is not immediately

evident that the boundary conditions given by u
j+1/3
h are compatible, i.e., that

(4.31)

∫
∂TH

u
j+1/3
h · nds = 0

is satisfied for all TH ∈ TH . If u
j+1/3
h ≡ uh solving (4.12) this condition certainly

holds. For an arbitrary iterate u
j+1/3
h we, however, need to project the normal

component of u
j+1/3
h at ∂TH in order to guarantee that (4.31) is satisfied. This is

done in such a way that mass conservation is maintained in the entire domain. By

a similar procedure we also ensure the solvability of (4.23).
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Note that this procedure also allows to drop restriction (4.8), i.e., it is possible

to treat boundary conditions with fine features in this iterative framework.

Remark 4.8. As stated above Algorithm 4.2 (and equivalently Algorithm

4.3) is an alternating Schwarz iteration using the spaces (VH,h, WH,h) and

(V τ
h (eH), W τ

h (eH)), with eH ∈ E̊H . More precisely, in the terminology of [50, 59] it

is a hybrid Schwarz iteration, with (VH,h, WH,h) taking the role of the coarse space in

[50, 59]. By the reasoning in [50, Section 10.4.2] the analysis of alternating Schwarz

methods for saddle point problems, like the one we consider, may be reduced to the

standard case of elliptic problems. Thus, the standard convergence results (cf. [50,

Section 2.5] and [59, Section 5.2]) are applicable. According to these results the

rate of convergence of alternating Schwarz methods is independent of h and H, pro-

vided the overlap of the subdomains is sufficiently large and the coarse space has an

O(H) approximation property, which in particular means that the coarse space has

to resolve the essential features of the solution. For problems with highly varying

coefficients this may mean that the coarse space needs to be chosen relatively fine

yielding a large and thus expensive to solve linear system. Employing the two-scale

space (VH,h, WH,h) on the other hand we may expect to resolve the essential features

of the solution even if H is large. This is in particular true in the case of separated

scales for which estimate (4.22) holds. In this situation we can expect the first it-

erate of Algorithm 4.2 to be already rather close to (uh, ph). Decreasing H to a

size comparable to the microscopic length-scale yields the validity of estimate (4.21)

instead of (4.22). Thus, we can expect the choice of H to affect the convergence

of Algorithm 4.2 very much. Nevertheless, this dependence is actually the major

reason for the specific design of our algorithm. In fact, Algorithm 4.2 is designed

to take advantage of separated scales whenever present and at the same time to

guarantee convergence to the global fine-scale solution.

We conclude this section by commenting on the numerical complexity of Algo-

rithm 4.3. For a full comparison of this algorithm with the straightforward approach

of solving the global single grid discretization arising from (4.12) one needs to com-

pare the number of involved floating point operations. This, however, is beyond the

scope of this thesis, and we refer to Remark 4.23 concerning the issue of efficiency.

4.5. Discontinuous Galerkin Discretization of Brinkman’s Equations

In this section we present a Discontinuous Galerkin discretization of Brinkman’s

equations, which is very similar to the one introduced and studied for Stokes’ equa-

tions by Wang and Ye [67]. The reason for us to adopt this discretization is that

we are ultimately interested in adopting the ideas of sections 4.3 and 4.4 to the

Brinkman case. The discontinuous Galerkin method that we are about to discuss
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with finite elements in H(div; Ω) instead of H1(Ω) has some attractive properties,

which are essential for generalizing the approach described above.

4.5.1. Discontinuous Galerkin FEM using H(div) Elements. Let us now

consider a discretization of (4.1) using the mixed finite element space (Vh, Wh).

Note, that (Vh, Wh) * (H1
0 (Ω), L2

0(Ω)) is a non-conforming finite element space. In

the derivation of our discretization of (4.1) we follow the work by Wang and Ye (cf.

[67]). Assuming sufficient regularity of the velocity part of the solution u of (4.1) we

obtain (4.32) after multiplying the first equation of (4.1) with vh ∈ Vh, integrating

over Ω, and then using integration by parts.

(4.32)

µ
∑

Th∈Th

(∫
Th

(∇u : ∇vh + κ−1u · vh)dx−
∫

∂Th

∂u

∂n
· vhds

)
−
∫

Ω

p∇·vhdx =

∫
Ω

f ·vhdx,

where as usual n denotes the outer unit normal vector. Now we observe that

(4.33)∑
Th∈Th

∫
∂Th

∂u

∂n
· vhds =

∑
Th∈Th

∫
∂Th

∂u

∂n
· ((vh · n)n+ (vh · τ )τ ) ds

=
∑

Th∈Th

∫
∂Th

∂u · n
∂n

(vh · n) +
∂u · τ

∂n
(vh · τ )ds

=
∑

Th∈Th

∫
∂Th

∂u · τ
∂n

(vh · τ )ds since vh ∈ H0(div, Ω)

=
∑

eh∈Eh

∫
eh

{{ε(u)}} JvhK ds,

where τ is the unit tangential vector forming a right-hand coordinate system with

n and {{ε(·)}} and J·K are defined by

(4.34a) {{ε(u)}} :=

{
1
2

(
n+ · ∇(u|T+

h
· τ+) + n− · ∇(u|T−h · τ−)

)
on eh ∈ E̊h,

n+ · ∇(u|T+
h
· τ+) on eh ∈ E∂

h

and

(4.34b) JvK :=

{
v|T+

h
· τ+ + v|T−h · τ− on eh ∈ E̊h,

v|T+
h
· τ+ on eh ∈ E∂

h .

Here, the superscripts + and − refer to the elements on either side of edge eh (see

Figure 4.8). Plugging (4.33) into (4.32) we obtain:

(4.35)

µ
∑

Th∈Th

∫
Th

∇u : ∇vh+κ−1u·vhdx−µ
∑

eh∈Eh

∫
eh

{{ε(u)}} JvhK ds−
∫

Ω

p∇·vhdx =

∫
Ω

f ·vhdx.



4.5. DG DISCRETIZATION OF BRINKMAN’S EQUATIONS 71

τ+

n−
T−

h

n+

ehT+
h
τ−

Figure 4.8. Local coordinate systems for two adjacent cells.

Now we observe that for arbitrary α ∈ R+ we have

(4.36a)
∑

eh∈E̊h

∫
eh

{{ε(vh)}} JuK ds = 0,
∑

eh∈E∂
h

∫
eh

{{ε(vh)}} Ju− gK ds = 0,

and

(4.36b)
∑

eh∈E̊h

∫
eh

α

h
JuK JvhK ds = 0,

∑
eh∈E∂

h

∫
eh

α

h
Ju− gK JvhK ds = 0.

Combining (4.35) with (4.36) we thus know that for all (vh, qh) ∈ (Vh, Wh) the

solution (u, p) of (4.1) satisfies

(4.37)
aB (u,vh) + b (vh, p) =

∫
Ω

f · vhdx+ µ
∑

eh∈E∂
h

∫
eh

(
α

h
JgK JvhK− {{ε(vh)}} JgK)ds,

b (u, qh) = 0,

where

(4.38)

aB (u,vh) := µ
∑

Th∈Th

∫
Th

(∇u : ∇vh + κ−1u · vh)dx

+µ
∑

eh∈Eh

∫
eh

(
α

h
JuK JvhK− {{ε(u)}} JvhK− {{ε(vh)}} JuK)ds

and b (·, ·) as in (4.7a).

Let ug ∈ H1(Ω) be an extension of g. Analogously to (4.8) we assume that

(4.39) ug ∈ V ∂
H .

As discussed in section 4.3 we may assume the case of homogeneous boundary condi-

tions by moving aB (ug,vh) and b (ug, qh) to the right hand side. Thus, the discrete

problem that we consider from now on reads as follows: Find (uh, ph) ∈ (Vh, Wh)

such that for all (vh, qh) ∈ (Vh, Wh) we have

(4.40)

{
aB (uh,vh) + b (vh, ph) = FB

m (vh),

b (uh, qh) = FB
s (qh),

where

(4.41) FB
m (vh) :=

∫
Ω

f ·vhdx+µ
∑

eh∈E∂
h

∫
eh

(
α

h
JgK JvhK−{{ε(vh)}} JgK)ds−aB (ug,vh)
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and

(4.42) FB
s (qh) := −b (ug, qh) .

Likewise, by replacing u by u+ ug in (4.37) the continuous solution (u, p) satisfies

(4.43)

{
aB (u,vh) + b (vh, p) = FB

m (vh),

b (u, qh) = FB
s (qh),

for all (vh, qh) ∈ (Vh, Wh).

4.5.2. Analysis of Discontinuous Galerkin Discretization for

Brinkman’s Equations. We are now interested in analyzing the properties

of the discretization given by (4.40). For this we essentially adopt the reasoning in

[67] and introduce the following norms for all v ∈ Vh + (H2(Ω) ∩H1
0 (Ω))

2
:

(4.44a) 9v92
1 := ‖v‖2

L2
κ(Ω) + |v|21,h +

∑
eh∈Eh

h−1 ‖JvK‖2
L2(eh) ,

and

(4.44b) 9v92 := 9v 92
1 +

∑
eh∈Eh

h ‖{{ε(v)}}‖2
L2(eh) ,

where |v|21,h :=
∑

Th∈Th

∫
Th

∇v : ∇vdx is the usual broken H1-semi-norm and

‖v‖2
L2

κ(Ω) :=

∫
Ω

κ−1v · vdx. With these two norms we have the following lemma

stating the ellipticity of the bilinear form aB (·, ·).

Lemma 4.9. There exists a constant γ1 > 0 independent of h such that for any

vh ∈ Vh we have

(4.45) aB (vh,vh) ≥ γ1 9 vh 92 .

Proof. First we observe that by a simple scaling argument and using the trace

inequality we have for Th ∈ Th and any function v ∈ H1(Th)

(4.46) ‖v‖2
L2(eh) ≤ C

(
h−1 ‖v‖2

L2(Th) + h ‖∇v‖2
L2(Th)

)
,

where eh is an edge of Th and C is a generic constant independent of h. Thus, for

any vh ∈ Vh we have

(4.47) h ‖{{ε(vh)}}‖2
L2(eh) ≤ C

∑
Th∈{T+

h ,T−h }

(
‖∇vh‖2

L2(Th) + h2
∥∥∇2vh

∥∥2

L2(Th)

)
,

where eh is the edge which is shared by the elements T+
h and T−

h . By a standard

inverse inequality, which holds for elements from Vh, applied to the last term we
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obtain

(4.48) h ‖{{ε(vh)}}‖2
L2(eh) ≤ C

∑
Th∈{T+

h ,T−h }

‖∇vh‖2
L2(Th) .

Due to (4.48) we have in particular that

(4.49)
∑

eh∈Eh

h ‖{{ε(vh)}}‖2
L2(eh) ≤ C |vh|21,h ,

and thus

(4.50) 9vh9 ≤ C 9 vh91,

i.e., equivalence of the norms 9 · 91 and 9 · 9 on the space Vh.

With these preparations we have that

(4.51)

µ−1aB (vh,vh) =
∑

Th∈Th

∫
Th

(∇vh : ∇vh + κ−1vh · vh)dx

+
∑

eh∈Eh

∫
eh

(αh−1 JvhK
2 − 2{{ε(vh)}} JvhK)ds

= |vh|21,h + ‖vh‖2
L2

κ(Ω) +
∑

eh∈Eh

αh−1 ‖JvhK‖2
L2(eh)

−2
∑

eh∈Eh

∫
eh

{{ε(vh)}} JvhK ds.

Now,

(4.52)

∑
eh∈Eh

∫
eh

{{ε(vh)}} JvhK ds

≤

(∑
eh∈Eh

h ‖{{ε(vh)}}‖2
L2(eh)

) 1
2
(∑

eh∈Eh

h−1 ‖JvhK‖2
L2(eh)

) 1
2

≤ C |vh|1,h

(∑
eh∈Eh

h−1 ‖JvhK‖2
L2(eh)

) 1
2

≤ 1
4
|vh|21,h + C

∑
eh∈Eh

h−1 ‖JvhK‖2
L2(eh) ,

where we have used the Cauchy-Schwarz inequality, relation (4.49), and Cauchy’s

inequality. Combining (4.51) with (4.52) we are thus left with

µ−1aB (vh,vh) ≥
1

2
|vh|21,h + ‖vh‖2

L2
κ(Ω) + (α− C)

∑
eh∈Eh

h−1 ‖JvhK‖2
L2(eh) .

Therefore,

(4.53) aB (vh,vh) ≥ γ0 9 vh92
1 ≥ γ1 9 vh92,
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where γ0 and γ1 may be taken greater than 0, if α is chosen sufficiently large. Note

that γ0 and γ1 are independent of h but may depend on µ. �

Next we would like to prove the boundedness of the aB (·, ·) bilinear form. We

do this in the next

Lemma 4.10. There exists a constant γ2 > 0 independent of h such that for all

v1, v2 ∈ Vh + H2(Ω) ∩H1
0 (Ω) we have

(4.54)
∣∣aB (v1,v2)

∣∣ ≤ γ2 9 v1 9 9v2 9 .

Proof. From the definition of aB (·, ·) it is easy to see that

µ−1|aB (v1,v2) |

≤ |v1|1,h |v2|1,h + ‖v1‖L2
κ(Ω) ‖v2‖L2

κ(Ω) + α
∑

eh∈Eh

h−
1
2 ‖Jv1K‖L2(eh) h−

1
2 ‖Jv2K‖L2(eh)

+
∑

eh∈Eh

h
1
2 ‖{{ε(v1)}}‖L2(eh) h−

1
2 ‖Jv2K‖L2(eh) +

∑
eh∈Eh

h
1
2 ‖{{ε(v2)}}‖L2(eh) h−

1
2 ‖Jv1K‖L2(eh)

≤ |v1|1,h |v2|1,h + ‖v1‖L2
κ(Ω) ‖v2‖L2

κ(Ω) + α(
∑

eh∈Eh

h−1 ‖Jv1K‖2
L2(eh))

1
2 (
∑

eh∈Eh

h−1 ‖Jv2K‖2
L2(eh))

1
2

+(
∑

eh∈Eh

h ‖{{ε(v1)}}‖2
L2(eh))

1
2 (
∑

eh∈Eh

h−1 ‖Jv2K‖2
L2(eh))

1
2

+(
∑

eh∈Eh

h ‖{{ε(v2)}}‖2
L2(eh))

1
2 (
∑

eh∈Eh

h−1 ‖Jv1K‖2
L2(eh))

1
2 ,

where we have used the Cauchy-Schwarz inequality. From this it follows immediately

that

aB (v1,v2) | ≤ γ2 9 v1 9 9v29,

where γ2 is independent of h but may depend on µ and α. �

We now provide an error estimate for uh and ph in the 9·9- and L2-norm, respec-

tively. For this we cite the following well-known facts about BDM1 mixed finite ele-

ments (cf. e.g. [22, Proposition 3.7]): There exists an operator Πh : (H1
0 (Ω))2 → Vh

such that for all v ∈ (H1
0 (Ω))2 we have

(4.55) b (v − Πhv, qh) = 0 ∀qh ∈ Wh.

By [22, 67] it is furthermore clear that the inf-sup condition holds, i.e.,

(4.56) sup
vh∈Vh

b (vh, qh)

9vh9
≥ β ‖qh‖L2(Ω) ∀qh ∈ Wh,

where β > 0 is a constant independent of h. Additionally, we denote by Qh :

L2
0(Ω) → Wh the orthogonal L2-projection.

With this we are now ready to give the following
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Proposition 4.11. There exists a constant C independent of h such that

(4.57) 9u− uh 9 + ‖p− ph‖L2(Ω) ≤ C(9u− Πhu 9 + ‖p−Qhp‖L2(Ω)).

Proof. Subtracting (4.40) from (4.43) we see that for all (vh, qh) ∈ (Vh, Wh)

(4.58)

{
aB (u− uh,vh) + b (vh, p− ph) = 0,

b (u− uh, qh) = 0.

Thus,{
aB (uh − Πhu,vh) + b (vh, ph −Qhph) = aB (u− Πhu,vh) + b (vh, p−Qhph) ,

b (uh − Πhu, qh) = b (u− Πhu, qh) (= 0 by (4.55)) .

Choosing vh = uh − Πhu we obtain

aB (uh − Πhu,uh − Πhu) = aB (u− Πhu,uh − Πhu) + b (uh − Πhu, p−Qhph)

By Lemma 4.9 and Lemma 4.10 we thus derive

9uh − Πhu92 ≤ C
(
9u− Πhu 9 9uh − Πhu 9 + ‖p−Qhp‖L2(Ω) 9 uh − Πhu9

)
,

which yields

9uh − Πhu9 ≤ C
(
9u− Πhu 9 + ‖p−Qhp‖L2(Ω)

)
,

from where an easy application of the triangle inequality yields the desired estimate

for the velocity.

For the estimate for the pressure we start from the inf-sup condition (4.56), which

implies

‖ph −Qhp‖L2(Ω) ≤ β−1 sup
vh∈Vh

b (vh, ph −Qhp)

9vh9

= β−1 sup
vh∈Vh

b (vh, ph − p) + b (vh, p−Qhp)

9vh9

= β−1 sup
vh∈Vh

aB (u− uh,vh) + b (vh, p−Qhp)

9vh9

≤ C sup
vh∈Vh

1

9vh9

(
9vh 9 9u− uh 9 + 9 vh 9 ‖p−Qhp‖L2(Ω)

)
= C

(
9u− uh 9 + ‖p−Qhp‖L2(Ω)

)
.

Thus by our estimate for the velocity we have

‖ph −Qhp‖L2(Ω) ≤ C
(
9u− Πhu 9 + ‖p−Qhp‖L2(Ω)

)
,

from where we easily obtain the statement of the proposition after another applica-

tion of the triangle inequality. �
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We now perform a classical duality argument to derive an L2-error estimate for

the velocity. Let (ũ, p̃) be a solution of
−µ∆ũ+∇p̃ + µκ−1ũ = u− uh in Ω,

∇ · ũ = 0 in Ω,

ũ = 0 on ∂Ω.

Assuming that (H2(Ω), H1(Ω))-regularity holds, i.e., (ũ, p̃) ∈ (H2(Ω), H1(Ω)) and

(4.59) ‖ũ‖H2(Ω) + ‖p̃‖H1(Ω) ≤ C ‖u− uh‖L2(Ω) ,

we in particular see that for any (v, q) ∈ (Vh + (H2(Ω) ∩H1
0 (Ω))2, L2

0(Ω)) we have

(4.60)

 aB (ũ,v) + b (v, p̃) =

∫
Ω

(u− uh) · vdx,

b (ũ, q) = 0.

According to [22, Proposition 3.6] we have that for all v ∈ (H2(Ω))2

(4.61) 9v − Πhv9 ≤ Ch ‖v‖H2(Ω) .

Also, it is well known that for all q ∈ H1(Ω) we have

(4.62) ‖q −Qhq‖L2(Ω) ≤ Ch ‖q‖H1(Ω) .

Thus, we readily see that

(4.63) 9ũ− Πhũ 9 + ‖p̃−Qhp̃‖L2(Ω) ≤ Ch ‖u− uh‖L2(Ω) .

Proposition 4.12. Let (uh, ph) and (u, p) be the solution of (4.40) and (4.43),

respectively. Assuming that (H2(Ω), H1(Ω))-regularity holds as discussed above, then

there exists a constant C independent of h such that

(4.64) ‖u− uh‖L2(Ω) ≤ Ch
(
9u− Πhu 9 ‖p−Qhp‖L2(Ω)

)
.

Proof. Setting v = u− uh in (4.60) we obtain

‖u− uh‖2
L2(Ω) = aB (ũ,u− uh) + b (u− uh, p̃) .

By (4.58)

b (u− uh, p̃) = b (u− uh, p̃−Qhp̃)

and

aB (ũ,u− uh) = aB (ũ− Πhũ,u− uh) + aB (u− uh, Πhũ)

= aB (ũ− Πhũ,u− uh)− b (Πhũ, p− ph)

= aB (ũ− Πhũ,u− uh)− b (Πhũ− ũ, p− ph) (by (4.60)).
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Thus,

‖u− uh‖2
L2(Ω)

= aB (ũ− Πhũ,u− uh)− b (Πhũ− ũ, p− ph) + b (u− uh, p̃−Qhp̃)

≤ C
(

9 ũ− Πhũ 9 9u− uh 9 + 9 Πhũ− ũ 9 ‖p− ph‖L2(Ω)

+ 9 u− uh 9 ‖p̃−Qhp̃‖L2(Ω)

)
≤ C

(
9ũ− Πhũ 9 + ‖p̃−Qhp̃‖L2(Ω)

)(
9u− uh 9 + ‖p− ph‖L2(Ω)

)
≤ Ch ‖u− uh‖L2(Ω)

(
9u− uh 9 + ‖p− ph‖L2(Ω)

)
(by (4.63)).

Hence,

‖u− uh‖L2(Ω) ≤ Ch
(
9u− Πhu 9 + ‖p−Qhp‖L2(Ω)

)
by Proposition 4.11. �

We are now ready to state the main convergence

Theorem 4.13. Let (uh, ph) and (u, p) be the solution of (4.40) and (4.43),

respectively. Assuming that (H2(Ω), H1(Ω))-regularity holds there exists a constant

C independent of h such that

(4.65) 9u− uh 9 + ‖p− ph‖L2(Ω) ≤ Ch
(
‖u‖H2(Ω) + ‖p‖H1(Ω)

)
and

(4.66) ‖u− uh‖L2(Ω) ≤ Ch2
(
‖u‖H2(Ω) + ‖p‖H1(Ω)

)
.

Proof. The statement follows by combining Propositions 4.11 and 4.12 with

(4.61) and (4.62). �

Theorem 4.13 in particular states that in L2–norm our discretization is 1st–order

accurate for the pressure and 2nd–order accurate for the velocity.

Remark 4.14. Here, it is worth noting that according to [67] and [22], respec-

tively, analogous L2–error estimates can be obtained when BDM1 finite elements

are used for the discretization of Stokes’ and Darcy’s problem.

4.6. Numerical Subgrid Approach for Solving Brinkman’s Problem

Now, instead of seaking a discrete solution in the space (Vh, Wh) (see (4.40)) we

can also consider the following problem: Find (uH,h, pH,h) ∈ (VH,h, WH,h) such that

for all (vH,h, qH,h) ∈ (VH,h, WH,h) we have

(4.67)

{
aB (uH,h,vH,h) + b (vH,h, pH,h) = FB

m (vH,h),

b (uH,h, qH,h) = FB
s (qH,h),
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This corresponds to equations (4.11) and analogous to section 4.3, i.e., after replacing

aD (·, ·), FD
m (·), and FD

s (·) by aB (·, ·), FB
m (·), and FB

s (·), respectively, we derive

(4.68) (uH,h, pH,h) = (uH , pH) +
(
δ̃uh(uH), δ̃ph(uH)

)
+ (δuh, δph),

where (uH , pH),
(
δ̃uh(uH), δ̃ph(uH)

)
, and (δuh, δph) solve

(4.69a)

 aB
(
uH + δ̃uh(uH), δvh

)
+ b
(
δvh, δ̃ph(uH)

)
= 0, ∀δvh ∈ δVh,

b
(
δ̃uh(uH), δqh

)
= 0, ∀δqh ∈ δWh,

(4.69b)

{
aB
(
δuh, δvh

)
+ b
(
δvh, δph

)
= FB

m (δvh), ∀δvh ∈ δVh,

b
(
δuh, δqh

)
= 0, ∀δqh ∈ δWh,

and

(4.69c)

{
ãB (uH ,vH) + b (vH , pH) = FB

m (vH)− aB
(
δuh,vH

)
, ∀vH ∈ VH ,

b (uH , qH) = FB
s (qH), ∀qH ∈ WH ,

respectively. Here ãB (·, ·) is defined by

ãB (uH ,vH) := aB
(
uH + δ̃uh(uH),vH + δ̃uh(vH)

)
.

In spite of the derivations being completely analogous to the one in sections

4.3 and 4.4, there is a subtle but important difference. Due to (4.3a) the solutions

to the systems of equations (4.16a) and (4.16b) could be computed locally (see

section 4.3). This is not true for the corresponding systems (4.69a) and (4.69b).

The reason is that (4.3a) only determines the normal component at ∂TH for TH ∈
TH . For Darcy’s equations this yields well-posed (local) boundary-value problems.

For Brinkman’s problem, however, we also need the tangential velocity component

at the boundary in order to have a well-posed problem. In fact, if written like

(4.69a) and (4.69b) we don’t have a decoupling into mutually independent local

problems posed on TH ∈ TH , but we are left with global fine problems due to the

jump in the tangential velocity component across eH ∈ EH . This is evidently not

satisfactory, since the whole purpose of the numerical subgrid approach is to avoid

having to solve a fine global problem. In order to have only local fine problems

we make the following approximation: Instead of solving (4.69a) and (4.69b) we

compute (
˚̃
δuh(uH),

˚̃
δph(uH)), (̊δuh, δ̊ph) ∈ (δVh, δWh) such that for all TH ∈ TH

and (δvh, δph) ∈ (δVh, δWh) we have

(4.70a)


aB

TH

(
uH +

˚̃
δuh, δvh

)
+ b

(
δvh,

˚̃
δph

)
= Ψ(uH , δvh)

b

(̊
δ̃uh, δqh

)
= 0,
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and

(4.70b)

 aB
TH

(̊
δuh, δvh

)
+ b
(
δvh, δ̊ph

)
= FB

m,TH
(δvh),

b
(̊
δuh, δqh

)
= 0,

where

(4.71) Ψ(uH , δvh) := µ
∑

eh∈E∂
h (TH)

∫
eh

(
α

h
JuHKTH

JδvhKTH
− {{ε(δvh)}}TH

JuHKTH
)ds,

(4.72)

aB
TH

(uh,vh) := µ
∑

Th∈Th(TH)

∫
Th

∇uh|TH
: ∇vh|TH

+ κ−1uh|TH
· vh|TH

dx

+µ
∑

eh∈Eh(TH)

∫
eh

(
α

h
JuhKTH

JvhKTH
− {{ε(uh)}}TH

JvhKTH

−{{ε(vh)}}TH
JuhKTH

)ds,

and

(4.73)
FB

m,TH
(vh) :=

∫
TH

f · vhdx+ µ
∑

eh∈E∂
h (TH)

∫
eh

(
α

h
JugKTH

JvhKTH

−{{ε(vh)}}TH
JugKTH

)ds− aB
TH

(ug,vh) ,

with

(4.74a)

{{ε(u)}}TH
:=

{
1
2

(
n+ · ∇(u|T+

h
· τ+) + n− · ∇(u|T−h · τ−)

)
on eh ∈ E̊h(TH),

n+ · ∇(u|T+
h
· τ+) on eh ∈ E∂

h (TH)

and

(4.74b) JvKTH
:=

{
v|T+

h
· τ+ + v|T−h · τ− on eh ∈ E̊h(TH),

v|T+
h
· τ+ on eh ∈ E∂

h (TH).

This unfortunately looks very cumbersome. However, the only thing that we have

done is a decoupling of the tangential components of the velocity responses along

eH ∈ E̊H . More precisely, by penalization we require the tangential components

of
˚̃
δuh and δ̊uh to be zero at eH ∈ E̊H , whereas for δ̃uh and δuh we require by

penalization the jump in the tangential component across eH ∈ E̊H to be zero. This

approximation allows us to solve for (
˚̃
δuh(uH),

˚̃
δph(uH)) and (̊δuh, δ̊ph) locally on

each TH ∈ TH .

Evidently, our approximation also affects the calculation of (uH , pH) satisfying

(4.69c). Specifically, (4.69c) is replaced by the following problem: Find (ůH , p̊H) ∈
(VH , WH) such that for all (vH , qH) ∈ (VH , WH) we have

(4.75)

{
˚̃a

B
(ůH ,vH) + b (vH , p̊H) = FB

m (vH)− aB
(̊
δuh,vH

)
,

b (ůH , qH) = FB
s (qH),
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where ˚̃a
B

(·, ·) is defined by

˚̃a
B

(uH ,vH) := aB

(
uH +

˚̃
δuh(uH),vH +

˚̃
δuh(vH)

)
.

With this we are now ready to formulate Algorithm 4.4, which is the numeri-

cal subgrid algorithm for Brinkman’s problem corresponding to Algorithm 4.1 for

Darcy’s equations.

Algorithm 4.4 Numerical subgrid for Brinkman’s equations.

1: Let {ϕi
H}i∈JH

be a finite element basis of VH(Ω).
2: for i ∈ JH do

3: Compute

(̊
δ̃uh(ϕ

i
H),

˚̃
δph(ϕ

i
H)

)
by solving (4.70a) with uH replaced by ϕi

h.

Note that

(̊
δ̃uh(ϕ

i
H),

˚̃
δph(ϕ

i
H)

)
can be computed locally on each TH ∈ TH .

4: end for
5: Compute

(̊
δuh, δ̊ph

)
by solving (4.70b). This can again be done locally on each

TH ∈ TH .
6: Compute (ůH , p̊H) by solving (4.75). For this it is necessary to have(̊

δ̃uh(ϕ
i
H),

˚̃
δph(ϕ

i
H)

)
for all i ∈ JH and

(̊
δuh, δ̊ph

)
in order to set up the

linear system corresponding to (4.75).
7: Piece together the coarse and fine components, i.e., set

(4.76) (ůH,h, p̊H,h) = (ůH , p̊H) +

(̊
δ̃uh(ůH),

˚̃
δph(ůH)

)
+ (̊δuh, δ̊ph).

The idea is, of course, that taking (ůH , p̊H),

(̊
δ̃uh(ůH),

˚̃
δph(ůH)

)
, and (̊δuh, δ̊ph)

instead of (uH , pH),
(
δ̃uh(uH), δ̃ph(uH)

)
, and (δuh, δph), respectively, does not

introduce too big an error, i.e., that

(uH,h, pH,h)− (ůH,h, p̊H,h)

is small in some suitable norm. The rigorous analysis of this quantity along with

the error

(u, p)− (uH,h, pH,h),

which is at least equally important, is the subject of our further research and beyond

the scope of this work. Nevertheless, we do include a numerical analysis of Algorithm

4.4 by means of several representative examples in section 4.8.
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4.7. Extending the Numerical Subgrid Approach for Brinkman’s

Problem by Alternating Schwarz Iterations

As done in section 4.4 for Darcy’s problem we are now interested in extending

Algorithm 4.4 by alternating Schwarz iterations. As in Darcy’s case the goal is

to obtain a method whose iterates converge to the fine solution (uh, ph) satisfying

(4.40) for all (vh, qh) ∈ (Vh, Wh). Proceeding analogously to Algorithm 4.3 we obtain

Algorithm 4.5.

Remark 4.15. It is easy to see that (ůH,h, p̊H,h) from Algorithm 4.4 and (u1
h, p

1
h)

coincide.

Remark 4.16. The reason for approximating aB (·, ·) by aB
TH

(·, ·) in the left-

hand side of (4.80), is again to avoid having to solve a global fine problem due to

the coupling through the tangential components across eH ∈ EH .

The rigorous analysis of Algorithm 4.5 including convergence estimates is be-

yond the scope of this work. Nevertheless, we prove a necessary condition for the

convergence of (uj
h, p

j
h) to (uh, ph) as j →∞, which is stated in the following

Proposition 4.17. (uh, ph) solving (4.40) for all (vh, qh) ∈ (Vh, Wh) is a fixed

point of Algorithm 4.5.

Proof. Setting (uj
h, p

j
h) = (uh, ph) in (4.78) we see that (eτ

h, e
τ
h) ≡ (0, 0) is a

solution. Thus, (u
j+1/3
h , p

j+1/3
h ) = (uh, ph). Since FB

s (δqh) = 0 for all δqh ∈ δWh, due

to (4.39), (4.42), and (4.4), we obtain by the same argument that (δeh, δeh) ≡ (0, 0)

in (4.80) and thus (u
j+2/3
h , p

j+2/3
h ) = (uh, ph). Likewise, we obtain that (eH , eH) ≡

(0, 0) in (4.81), which yields our claim. �

Remark 4.18 (Scaling of the penalty parameter α). Before presenting several

numerical results of the algorithms discussed in this and the previous sections we

comment on the scaling of the penalty parameter α in Algorithms 4.4 and 4.5.

As written above the penalty parameter is always scaled by 1/h, no matter if the

solutions and test functions live on the coarse or on a fine mesh. As some numerical

results in section 4.8 show, it turns out that replacing α/h by α/H in (4.75) and

(4.81) for j = 0 yields a better approximation to the global fine solution (uh, ph).

Our explanation for this behavior is that the scaling by 1/h results in an over-

penalization on the coarse mesh. Nevertheless, in order to actually observe the

convergence of Algorithm 4.5 we may not replace α/h by α/H in (4.81) for all j,

since this would entail (uh, ph) no longer being a fixed point of Algorithm 4.5.

In view of the numerical results presented below, we therefore in Algorithm 4.5 apply

a scaling of the penalty parameter by 1/H for j = 0 and by 1/h for j ≥ 1.
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Algorithm 4.5 Alternating Schwarz extension to the numerical subgrid approach
for Brinkman’s problem.

1: Steps 1:–4: of Algorithm 4.4
2: Set (u0

h, p
0
h) ≡ (0, 0).

3: for j = 0, . . . until convergence do
4: if j = 0 then

5: Set
(
u

1/3
h , p

1/3
h

)
= (u0

h, p
0
h).

6: Find (δeh, δeh) ∈ (δVh, δWh) such that for all (δvh, δqh) ∈ (δVh, δWh) and
TH ∈ TH we have

(4.77)

{
aB

TH
(δeh, δvh) + b (δvh, δeh) = FB

m,TH
(δvh),

b (δeh, δqh) = 0.

7: else
8: for i = 1 . . . nE̊H

do

9: Find (eτ
h, e

τ
h) ∈ (V τ

h (ei
H), W τ

h (ei
H)) such that for all (vτ

h, q
τ
h) ∈

(V τ
h (ei

H), W τ
h (ei

H)) we have

(4.78)

{
aB (eτ

h,v
τ
h) + b (vτ

h, e
τ
h) = FB

m (vτ
h)− aB

(
uj

h,v
τ
h

)
− b
(
vτ

h, p
j
h

)
,

b (eτ
h, q

τ
h) = FB

s (qτ
h)− b

(
uj

h, q
τ
h

)
.

10: Set

(4.79)

(
u

j+i/(3nE̊H
)

h , p
j+i/(3nE̊H

)

h

)
=

(
u

j+(i−1)/(3nE̊H
)

h , p
j+(i−1)/(3nE̊H

)

h

)
+ (eτ

h, e
τ
h) ,

where (eτ
h, e

τ
h) is extended by zero to Ω\EH(ei

H).
11: end for
12: Find (δeh, δeh) ∈ (δVh, δWh) such that for all (δvh, δqh) ∈ (δVh, δWh) and

TH ∈ TH we have
(4.80) aB

TH
(δeh, δvh) + b (δvh, δeh) = FB

m (δvh)− aB
(
u

j+1/3
h , δvh

)
− b
(
δvh, p

j+1/3
h

)
,

b (δeh, δqh) = −b
(
u

j+1/3
h , δqh

)
.

13: end if
14: Set (u

j+2/3
h , p

j+2/3
h ) = (u

j+1/3
h , p

j+1/3
h ) + (δeh, δeh).

15: Find (eH , eH) ∈ (VH , WH) such that for all (vH , qH) ∈ (VH , WH)
(4.81) ˚̃a

B
(eH ,vH) + b (vH , eH) = FB

m (vH)− aB
(
u

j+2/3
h ,vH

)
− b
(
vH , p

j+2/3
h

)
,

b (eH , qH) = FB
s (qH)− b

(
u

j+2/3
h , qH

)
is satisfied.

16: Set
(
uj+1

h , pj+1
h

)
=
(
u

j+2/3
h , p

j+2/3
h

)
+ (eH , eH) +

(̊
δ̃uh(eH),

˚̃
δph(eH)

)
.

17: end for

4.8. Numerical Results and Conclusions

In this section we investigate the performance of the methods developed above

by means of a series of numerical examples.
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4.8.1. Objectives and Numerical Examples. Below, we shall pursue the

following

Objective 4.19. (a) Verify the convergence rates for the discontinuous

Galerkin discretization derived in section 4.5 in the case of a global fine

grid, i.e., when the solution is sought in (Vh, Wh). More precisely, check

that ‖p− ph‖L2(Ω) = O(h) and ‖u− uh‖L2(Ω) = O(h2), which holds ac-

cording to (4.65) and (4.66).

(b) Investigate the sensitivity of Algorithm 4.4 with respect to the scaling of

the penalty parameter in the upscaled equation (see Remark 4.18).

(c) Investigate the performance of Algorithms 4.1 and 4.4, i.e., the pure subgrid

algorithms without Schwarz iterations. In particular, we are interested in

checking the dependence of the performance with respect to the choice of

H and the discontinuities in κ.

(d) Investigate the performance of Algorithms 4.3 and 4.5. This includes in

particular a verification that the iterates of these algorithms converge to

the solution computed on a respective global fine gird. We are furthermore

interested in checking the dependence of this convergence on the choice of

the mesh parameter H and the discontinuities in κ.

For the achievement of these objectives we employ several examples. The first

one, for which we consider problems where the analytical solution is known, verifies

the derived rates of convergence, i.e., Objective 4.19(a). We specify the problem

parameters in the following

Example 4.1. The exact solution is given by u =

[
sin(2πx1) cos(2πx2)

− cos(2πx1) sin(2πx2)

]
and p = (x1x2)

2 − 1
9
. We then consider the following variants of the Brinkman

problem (4.1):

(a) µ ≡ 0.1, κ−1 = 1e4(sin(2πx1) + 1.1)

and

(b) µ ≡ 1, κ−1 = 10(sin(2πx1) + 1.1).

For the sake of completeness, we also test the discretization derived in [67] for the

Stokes problem (4.2b) with

(c) µ ≡ 1

and the classical discretization of Darcy’s problem (4.2a) using BDM1 elements (cf.

e.g. [22]) with

(d) µ ≡ 1, κ−1 = 1e3(sin(2πx1) + 1.1).
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(a) u1 (b) u2 (c) p

Figure 4.9. Analytical solution of Example 4.1.

For all variants, i.e., (a)-(d), we choose Ω = (0, 1)2, and for the discretization of

Brinkman’s and Stokes’ problem we set the penalty parameter α = 20. As grids

we use the uniformly refined unit cell Ω. The right-hand sides and boundary

conditions are chosen such that the prescribed solution solves the respective systems

of equations.

Figure 4.9 shows the components u1, u2, and p of the analytical solution in

Example 4.1.

For addressing Objectives 4.19(b-d) we first introduce several geometries, which

are relevant for practical problems. These geometries correspond to

• Vuggy porous media, i.e., media having rather large highly permeable mutu-

ally connected vugs surrounded by a lowly permeable background material

(see Figure 4.10(a)). These are relevant to oil reservoirs (cf. [55]).

• Open foam geometries (see Figure 4.10(b)), often used in liquid metal fil-

tering and other applications.

• Fibrous materials (see Figure 4.10(c)), often used in filtration and insulation

materials.

• Natural reservoirs (see Figure 4.11). These geometries are slices of the

SPE10 benchmark geometry (cf. [27]).

We also take into consideration the very artificial periodic geometry shown in Figure

4.10(d). This geometry hardly has any meaningful physical interpretation, but it

is frequently considered as an example by numerical analysts and mathematicians

working in homogenization theory (cf. [41, 47]).

Remark 4.20 (Comments on geometries in Figure 4.10). The black and white

areas in the geometries of Figure 4.10 denote the regions of low and high perme-

abilities, respectively. From an upscaling point of view the periodic geometry can

be considered the simplest of the four, since the length-scale of the lowly permeable

inclusions is clearly separated from the length-scale defined by the size of the entire
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(a) Vuggy medium. (b) Open foam.

(c) Fibrous structure. (d) Periodic geometry.

Figure 4.10. Different kinds of geometries with lowly (black) and
highly (white) permeable regions.

geometry. For the other three geometries such a clear separation of scales does not

exist. Looking at the fibrous structure we see that most lowly permeable inclusions

are relatively small. However, the stretched inclusion penetrating more than half of

the domain from the upper left in direction of the lower right corner cannot at all be

considered “small” with respect to the size of the entire structure. As discussed in

[72] non-local fine features like this usually entail large boundary layers, which are

generally hard to capture by upscaling procedures. Also, for the vuggy medium we

see that there is a number of non-local fine features, i.e., the connections between the

vugs. As opposed to the fibrous geometry these fine non-local features denote highly

permeably regions. The open foam geometry is similar to the fibrous structure in

that its fine non-local inclusions correspond to lowly permeably regions. The most

striking difference between these two geometries is that the inclusions for the open

foam geometry have more complex shapes compared to the ellipses of the fibrous

structure.
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Remark 4.21 (Comments on geometries in Figure 4.11). The SPE10 geometry

(see Figure 4.3) is a benchmark geometry from the Tenth SPE Comparative Solution

Project (cf. [27]). One of the targets of this project is to compare the performances

of upscaling techniques for two-phase flow in the three-dimensional porous medium

shown in Figure 4.3. Our implementations of the algorithms discussed above can,

however, only be applied to two-dimensional problem settings. Nevertheless, we still

consider testing Algorithms 4.4 and 4.5 on several two-dimensional (rescaled) slices

of the original SPE10 benchmark geometry an interesting task.

The geometries shown in Figures 4.11(a–c) differ in particular with respect to the

amount of non-local features. It is easy to see that slice 44 contains two rather

thin highly permeable regions, which stretch from the right side of the geometry

to the upper and lower left corners. As stated above, these non-local features very

often produce boundary layers, which are typically hard to capture by upscaling

procedures. Slice 74 has one rather wide distinct highly permeable feature connecting

the right and left sides of the domain. As opposed to these two slices, slice 54 does

not display any clear non-local characteristics, which is why one can expect upscaling

procedures to cope rather well with this geometry. From this point of view slices 44

and 74 can be regarded as more difficult than slice 54.

Furthermore, it should be noted that according to Figure 4.11 the values of κ differ

by more than five orders of magnitude for all slices.

Corresponding to the geometries in Figures 4.10 and 4.11 we consider the fol-

lowing three examples:

Example 4.2 (Brinkman – geometries from Figure 4.10). Corresponding to the

geometries shown in Figure 4.10, i.e.,

(a) vuggy medium, (b) open foam,

(c) fibrous structure, and (d) periodic geometry,

we choose the following problem parameters for (4.1):

µ ≡ 1e− 2, fm ≡ 0, g ≡

[
1

0

]
, α = 20, κ ≡ 1e− 5 in black regions, and

(1) κ ≡ 1e− 2 in white region, (2) κ ≡ 1e− 4 in white region.

Th is chosen to be a grid of 1282 and

(i) TH a grid of 82 (ii) TH a grid of 42

uniform cells.
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(a) Slice 44. (b) Slice 54.

(c) Slice 74.

Figure 4.11. Different slices of the SPE10 geometry shown in Figure 4.3.

Example 4.3 (Brinkman – SPE10). Corresponding to the slices of the SPE10

geometry (cf. [27]) shown in Figure 4.11, i.e.,

(a) slice 44, (b) slice 54, and (c) slice 74,

we choose the following problem parameters for (4.1):

µ ≡ 1e− 4, fm ≡ 0, g ≡

[
1

0

]
, α = 20 and

κ

µ
according to Figures 4.11(a)–4.11(c), respectively.

Th and TH are chosen to be grids of 1282 and 82 uniform cells, respectively.

Example 4.4 (Darcy – geometries from Figure 4.10). Corresponding to the

geometries shown in Figure 4.10, i.e.,

(a) vuggy medium, (b) open foam,

(c) fibrous structure, and (d) periodic geometry,
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h 0.52 0.53 0.54 0.55 0.56 0.57 0.58

E
x
a
m

p
le

4
.1

(a
)

‖p− ph‖L2(Ω) 4.35e-01 1.46e-01 4.93e-02 1.34e-02 4.26e-03 1.75e-03 8.18e-04

convergence order 1.58 1.57 1.88 1.65 1.28 1.10
‖u− uh‖L2(Ω) 7.22e-02 1.51e-02 3.69e-03 9.16e-04 2.28e-04 5.73e-05 1.44e-05

convergence order 2.23 2.03 2.01 2.01 1.99 1.99

E
x
a
m

p
le

4
.1

(b
)

‖p− ph‖L2(Ω) 2.52e-01 7.12e-02 2.52e-02 8.78e-03 3.56e-03 1.65e-03 8.04e-04

convergence order 1.82 1.50 1.52 1.30 1.11 1.04
‖u− uh‖L2(Ω) 1.29e-01 2.87e-02 7.19e-03 1.84e-03 4.66e-04 1.17e-04 2.95e-05

convergence order 2.17 2.00 1.97 1.98 1.99 1.99

E
x
a
m

p
le

4
.1

(c
)

‖p− ph‖L2(Ω) 3.09e-01 5.54e-02 2.16e-02 8.04e-03 3.44e-03 1.63e-03 8.02e-04

convergence order 2.48 1.36 1.43 1.22 1.08 1.02
‖u− uh‖L2(Ω) 1.32e-01 2.98e-02 7.51e-03 1.92e-03 4.87e-04 1.23e-04 3.08e-05

convergence order 2.15 1.99 1.97 1.98 1.99 2.00

E
x
a
m

p
le

4
.1

(d
)

‖p− ph‖L2(Ω) 2.85e-01 2.56e-02 1.27e-02 6.38e-03 3.19e-03 1.59e-03 7.97e-04

convergence order 3.48 1.01 0.99 1.00 1.00 1.00
‖u− uh‖L2(Ω) 7.00e-02 1.42e-02 3.44e-03 8.56e-04 2.14e-04 5.34e-05 1.34e-05

convergence order 2.30 2.05 2.01 2.00 2.00 1.99

Table 4.1. Convergence behaviors of discretizations using BDM1
mixed finite elements for Example 4.1. We report the errors in L2-
norm for the pressure and the velocity, as well as the observed conver-
gence rates.

we choose the following problem parameters for (4.2a):

µ ≡ 1e− 2, fm ≡ 0, g ≡

[
1

0

]
· n, κ ≡ 1e− 5 in black regions, and

(1) κ ≡ 1e− 3 in white region, (2) κ ≡ 1e− 4 in white region.

Th is chosen to be a grid of 1282 and

(i) TH a grid of 82 (ii) TH a grid of 42

uniform cells.

For Examples 4.2–4.4 we choose Ω = (0, 1)2 and whenever Algorithm 4.3 or 4.5

is applied we set Ce determining the size of the overlapping region to be 1
4
.

Remark 4.22. The enumeration above is to be understood as follows: “Example

4.2(b.1.ii)” refers to a problem setting as described in Example 4.2 with the open

foam geometry (shown in Figure 4.10(b)), with κ ≡ 1e − 2 in the white parts of

the geometry (case (1) above), and TH consisting of 42 uniform grid cells (case (ii)

above).

Having defined Examples 4.1–4.4 we can now investigate Objective 4.19(a–d).

4.8.2. Convergence of the discontinuous Galerkin discretization from

section 4.5 – Objective 4.19(a). For addressing Objective 4.19(a) we first turn

our attention to Example 4.1. Table 4.1 shows the convergence behavior for the dif-

ferent variants of Example 4.1. As we can see, our numerical results agree rather well
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Example Scaling of α by
‖ph − pH,h‖L2(Ω)

‖ph‖L2(Ω)

‖uh − uH,h‖L2(Ω)

‖uh‖L2(Ω)

4.2(a.1.i) 1/h 2.00e–01 3.66e–01
1/H 1.17e–01 2.55e–01

4.2(b.1.i) 1/h 1.35e+00 4.54e–01
1/H 6.62e–01 3.28e–01

4.2(c.1.i) 1/h 1.18e+00 4.29e–01
1/H 6.67e–01 3.06e–01

4.2(d.1.i) 1/h 1.18e–01 1.33e–01
1/H 1.17e–01 1.30e–01

4.3(a) 1/h 4.50e–01 4.17e–01
1/H 2.19e–01 2.63e–01

4.3(b) 1/h 4.84e–01 3.84e–01
1/H 2.51e–01 2.49e–01

4.3(c) 1/h 6.51e–01 4.37e–01
1/H 2.77e–01 2.69e–01

Table 4.2. Relative errors of Algorithm 4.4 with scaling of the
penalty α by 1/h and 1/H, respectively (see Remark 4.18).

with the theoretical estimates, i.e., we have 1st-order convergence for the pressure

and 2nd-order convergence for the velocity.

4.8.3. Scaling of penalty parameter – Objective 4.19(b). Having verified

the reliability of the single grid discretizations, we may now use them as a basis

for comparisons for the considerations below. In the following we therefore refer to

solutions of respective global fine grid discretizations as “reference solutions”.

We investigate the sensitivity of Algorithm 4.4 with respect to the scaling of

the penalty parameter in the upscaled equation (see Remark 4.18), i.e., Objective

4.19(b). Table 4.2 provides the respective (relative) errors of Algorithm 4.4 applied

to some variants of Examples 4.2 and 4.3, i.e., the (relative) errors resulting from a

scaling of α by 1/h and 1/H in the upscaled equation, respectively.

As we can see from the data in Table 4.2 the errors of Algorithm 4.4 are always,

i.e., for all considered examples, smaller when a scaling of α by 1/H instead of 1/h

is used in the upscaled equation. As indicated in Remark 4.18 we attribute this to

an over-penalization in the upscaled equation when a scaling by 1/h is employed.

Thus, for the remaining numerical experiments we employ the scaling of the penalty

parameter α as discussed in Remark 4.18.

4.8.4. Performance of Algorithms 4.1 and 4.4 – Objective 4.19(c). For

clarity we again note that by Remarks 4.15 and 4.4 the first iterates, i.e., (u1
h, p

1
h),

of Algorithms 4.5 and 4.3 are equal to the results of the subgrid Algorithms 4.4 and

4.1, respectively.
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Example
‖ph − pH,h‖L2(Ω)

‖ph‖L2(Ω)

‖uh − uH,h‖L2(Ω)

‖uh‖L2(Ω)

4.2(a.1.i) 1.17e-01 2.55e-01
4.2(b.1.i) 6.62e-01 3.28e-01
4.2(c.1.i) 6.67e-01 3.06e-01
4.2(d.1.i) 1.17e-01 1.30e-01
4.2(a.1.ii) 1.11e-01 2.91e-01
4.2(b.1.ii) 6.94e-01 3.69e-01
4.2(c.1.ii) 6.81e-01 3.71e-01
4.2(d.1.ii) 5.38e-02 9.80e-02
4.2(a.2.i) 4.17e-02 1.65e-01
4.2(b.2.i) 6.98e-02 1.59e-01
4.2(c.2.i) 6.46e-02 1.36e-01
4.2(d.2.i) 1.34e-02 6.43e-02
4.2(a.2.ii) 4.56e-02 1.65e-01
4.2(b.2.ii) 8.59e-02 1.86e-01
4.2(c.2.ii) 5.65e-02 1.28e-01
4.2(d.2.ii) 7.42e-03 4.53e-02

Table 4.3. Relative errors of Algorithm 4.4 applied to Example 4.2.

Example
‖ph − pH,h‖L2(Ω)

‖ph‖L2(Ω)

‖uh − uH,h‖L2(Ω)

‖uh‖L2(Ω)

4.4(a.1.i) 8.72e-01 5.06e-01
4.4(b.1.i) 2.94e-01 4.20e-01
4.4(c.1.i) 1.66e-01 3.00e-01
4.4(d.1.i) 6.87e-04 2.12e-02
4.4(a.1.ii) 5.91e-01 4.36e-01
4.4(b.1.ii) 4.37e-01 4.84e-01
4.4(c.1.ii) 1.89e-01 2.74e-01
4.4(d.1.ii) 3.91e-04 1.39e-02
4.4(a.2.i) 6.34e-02 2.29e-01
4.4(b.2.i) 3.88e-02 1.54e-01
4.4(c.2.i) 3.41e-02 1.27e-01
4.4(d.2.i) 4.90e-04 1.70e-02
4.4(a.2.ii) 5.19e-02 1.96e-01
4.4(b.2.ii) 6.81e-02 1.84e-01
4.4(c.2.ii) 3.24e-02 1.14e-01
4.4(d.2.ii) 2.88e-04 1.11e-02

Table 4.4. Relative errors of Algorithm 4.1 applied to Example 4.4.

We now test the performance of Algorithms 4.4 and 4.1 on Examples 4.2 and 4.4,

respectively. Tables 4.3 and 4.4, respectively, summarize the results by reporting
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the relative errors for the pressure and the velocity with respect to the reference

solutions.

Analyzing this data we can make the following observations:

Dependence on κ. Comparing Examples 4.2(a–b.1.i–ii) with Examples 4.2(a–

b.2.i–ii) and Examples 4.4(a–b.1.i–ii) with Examples 4.4(a–b.2.i–ii), respectively, we

see that larger jumps in κ lead to larger errors (for all considered instances). This is

not very surprising, since increasing jumps in κ generally leads to more pronounced

features in the solution, which are increasingly harder to resolve by functions in

(VH,h, WH,h) compared to (Vh, Wh).

Dependence on H. Considering different choices of H, i.e., comparing Examples

4.2(a–b.1–2.i) with Examples 4.2(a–b.1–2.ii) and Examples 4.4(a–b.1–2.i) with Ex-

amples 4.4(a–b.1–2.ii), respectively, we cannot draw such a clear conclusion. For the

examples corresponding to the vuggy medium, the fibrous structure, and the foam

geometry, the changes in the errors are rather small and non-uniform, i.e., some of

the errors decrease/increase with increasing H.

For the periodic geometry, i.e., Examples 4.2(d.1–2.i–ii) and 4.4(d.1–2.i–ii), re-

spectively, the situation is different in the sense that increasing H by a factor of 2

yields pronounced decreases in the errors. The errors in the pressure are approxi-

mately cut in half and also the decreases in the velocity errors are noticeable .

For the Darcy case, i.e., Algorithm 4.1, this behavior could be explained by

estimates (4.21) and (4.22). For the periodic medium, for which the scales are clearly

separated, we have a decrease in the error as H increases, which is in coherence

with (4.22) if the error terms involving ε
H

are dominating. For the remaining three

tested geometries, on the other hand, it is not so clear if estimate (4.21) or (4.22) is

applicable.

The presented set of examples is certainly too small to draw any final conclusions.

Nevertheless, due to the similar behavior of the Darcy and the Brinkman case, we

may speculate that for the subgrid method for Brinkman’s problem estimates similar

to (4.21) and (4.22) may be obtained. This question and the sensitivity of Algorithm

4.4 with respect to the choice of H is part of our future research.

Quality of the approximation. Considering the magnitudes of the relative errors

reported in Tables 4.3 and 4.4, we can say that depending on the geometry and

the targeted application they may still be acceptable. In particular for Examples

4.2(a-b.2.i–ii) and 4.4(a-b.2.i–ii), i.e., those cases where the jump in κ is rather small,

the relative errors are overall close to 10%. In many practical situations the relevant

problem parameters, such as the shape of the geometry, the values of κ, etc., are

only given up to a certain accuracy. It is not unusual that these uncertainties entail

an uncertainty in the solution, which can easily exceed 10%. In these situations it

would therefore be a waste of resources to compute very accurate solutions based
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(a) Example 4.2(a–d.1.i). (b) Example 4.2(a–d.1.ii).

(c) Example 4.2(a–d.2.i). (d) Example 4.2(a–d.2.ii).

Figure 4.12. Relative velocity errors of Algorithm 4.5 tested on Ex-
ample 4.2 (first 200 iterations after the pure subgrid solve, i.e., j =
1, . . . , 201).

on inaccurate data. For these instances the numerical subgrid method may be a

valuable tool for computing approximate solutions of (4.1) and (4.2a).

In Figures 4.16–4.33 we also provide some plots of components of several reference

solutions (uh, ph) and some selected solutions of Algorithms 4.1 and 4.4 correspond-

ing to the examples above. For an easier assessment we again provide the plots of

the respective geometries. Comparing these plots we see that in many cases the

subgrid solutions actually look rather similar to the reference ones. One striking

difference, however, are the jumps in the subgrid solutions that are aligned with the

coarse cell boundaries. These jumps are, of course, due to the lack of fine degrees of

freedom across coarse edges.

4.8.5. Performance of Algorithms 4.3 and 4.5 – Objective 4.19(d). We

now turn our attention to the performance of Algorithms 4.5 and 4.3. Figures 4.12

and 4.13 show the relative velocity and pressure errors for the first 200 iterations of

Algorithm 4.5 after the initial subgrid solve for the different variants of Example 4.2.



4.8. NUMERICAL RESULTS AND CONCLUSIONS 93

(a) Example 4.2(a–d.1.i). (b) Example 4.2(a–d.1.ii).

(c) Example 4.2(a–d.2.i). (d) Example 4.2(a–d.2.ii).

Figure 4.13. Relative pressure errors of Algorithm 4.5 tested on
Example 4.2 (first 200 iterations after the pure subgrid solve, i.e.,
j = 1, . . . , 201).

The analogous quantities are shown for Algorithm 4.3 and Example 4.4 in Figures

4.14 and 4.15.

Analyzing this data we can make the following observations:

Convergence to reference solution. The plots in Figures 4.12–4.15 suggest that

the iterates of Algorithms 4.5 and 4.3 actually converge to the respective reference

solutions.

For practical purposes it is, furthermore, important to note that the observed

convergence is rather rapid at the beginning of the iterative process. In fact, in

the discussed examples the error drops very quickly during the first iterations and

then decreases linearly until the method has converged. The steep initial drop is

particularly interesting for applications requiring only a moderate degree of accuracy,

since in these cases a few iterations are enough to be sufficiently close to the reference

solution.

As mentioned above, the first iterates, i.e., the pure subgrid solutions, display

a crude representation of fine velocity features across coarse cell boundaries (see
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(a) Example 4.4(a–d.1.i). (b) Example 4.4(a–d.1.ii).

(c) Example 4.4(a–d.2.i). (d) Example 4.4(a–d.2.ii).

Figure 4.14. Relative velocity errors of Algorithm 4.3 tested on Ex-
ample 4.4 (first 200 iterations after the pure subgrid solve, i.e., j =
1, . . . , 201).

Figures 4.16–4.33). However, even after only one iteration this deficiency is signif-

icantly mitigated and the iterates hardly display any artificial jumps across coarse

cell boundaries. In fact, for most of the cases shown in Figures 4.16–4.33 the ap-

proximate solutions look essentially the same as the reference ones after only a few

iterations. In addition to the reduction of the errors depicted in Figures 4.12–4.15

this is another very clear demonstration of the usefulness of our iterations and once

again clarifies the interpretation of Algorithms 4.3 and 4.5 as given in Remark 4.6.

Dependence on κ. The rate of convergence appears to be rather robust with

respect to the size of the jump in κ. Comparing Figures 4.12(a) and 4.12(c) and

Figures 4.12(b) and 4.12(d) for the Brinkman case we can see that the conver-

gence is somewhat slower for Examples 4.2(a–d.1.i–ii) compared to that of Exam-

ples 4.2(a–d.2.i–ii). The same observation holds true when comparing the analogous

plots for Algorithm 4.3, i.e., Figures 4.14(a) and 4.14(c) and Figures 4.14(b) and

4.14(d) corresponding to Example 4.4.
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(a) Example 4.4(a–d.1.i). (b) Example 4.4(a–d.1.ii).

(c) Example 4.4(a–d.2.i). (d) Example 4.4(a–d.2.ii).

Figure 4.15. Relative pressure errors of Algorithm 4.3 tested on
Example 4.4 (first 200 iterations after the pure subgrid solve, i.e.,
j = 1, . . . , 201).

Nevertheless, considering that the jump in κ is 100−times bigger for Examples

4.2(a–d.1.i–ii) compared with Examples 4.2(a–d.2.i–ii) and 10−times bigger for Ex-

amples 4.4(a–d.1.i–ii) compared with Examples 4.4(a–d.2.i–ii) the decrease in the

speed of convergence seems rather moderated. This is an important property of

Algorithms 4.3 and 4.5, since an increase in the jump of κ generally entails a larger

condition number of the arising discrete system, which for many numerical methods

results in a substantial increase in the number of iterations necessary to achieve a

prescribed accuracy (cf. e.g. [50, 56, 63]).

It is furthermore interesting to note that the speed of convergence is least affected

by an increase in the jump in κ for those examples corresponding to the periodic

geometry shown in Figure 4.10(d). This may indicate that the robustness of Algo-

rithms 4.3 and 4.5 with respect to the jumps in κ is related to the question whether

the scales defined by H and the variations in κ are separated. The investigation of

this connection is however beyond the scope of this thesis and is considered a topic

for further research.
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Dependence on H. Comparing Figures 4.12(a,c) and 4.13(a,c) with Figures

4.12(b,d) and 4.13(b,d), respectively, for the Brinkman case we see that the rates of

convergence of Algorithm 4.5 increase substantially for all considered examples as

H is increased. Likewise, by comparing Figures 4.14(a,c) and 4.15(a,c) with Figures

4.14(b,d) and 4.15(b,d), respectively, we see that the same is true for Algorithm 4.3

in the Darcy case.

This may seem surprising, since for the pure subgrid algorithms an increase in

H only has a noticeable positive effect for those examples corresponding to the

periodic geometry shown in Figure 4.10(d). In fact, for several examples increasing

H results in an increase in the errors (see section 4.8.4). For these cases the reason

for the improved convergence properties of Algorithms 4.3 and 4.5 resulting from an

increase in H is not immediately evident.

One possible explanation is that, unlike the reference solution, the errors that

need to be computed with respect to the degrees of freedom of the space (VH,h, WH,h)

in the alternating Schwarz iterations may not have pronounced fine features across

coarse cell boundaries. This seems plausible, since after updating the iterates by

the errors corresponding to the spaces (V τ
h (eH), W τ

h (eH)) for all eH ∈ EH (see (4.79)

and (4.24), respectively), the iterates, i.e., (u
j+ 1

3
h , p

j+ 1
3

h ), can be expected to approx-

imately satisfy equations (4.40) and (4.12), respectively, for all (vh, qh) ∈ (V τ
h , W τ

h ).

Thus, the remaining error can be expected to be smooth across coarse edges.

In such a situation, i.e., when seeking a solution with no pronounced fine features

across coarse cell boundaries, Examples 4.4(d.1–2.i–ii) suggest (see Table 4.4, Figures

4.32–4.33, and the discussion in section 4.8.4) that we may expect to obtain better

approximation properties when increasing H. This in turn can be attributed to a

reduction of the influence of appearing boundary layers (cf. e.g. [72]).

On the other hand, the increase in the convergence rates could also be influenced

by changes in the ratio H
h
, which in general may affect the convergence behavior of

alternating Schwarz methods (cf. [50, 63]).

The clarification of this issue is a target of our further research.

4.8.6. Remaining examples and concluding remarks. After the analysis

of the numerical results corresponding to the geometries shown in Figure 4.10 we

briefly discuss the performance of Algorithms 4.4 and 4.5 for the different variants

of Example 4.3. For this we refer to Figures 4.34–4.39. As we can see, even the

pure subgrid algorithm without any iterations manages to qualitatively capture the

essential features of the reference solutions. Nevertheless, we again see the artificial

jumps in the subgrid solutions across coarse cell boundaries. As for the examples

corresponding to the geometries shown in Figure 4.10 these jumps are essentially
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# iterations j = 1 j = 2 j = 6 j = 11

E
x
a
m

p
le

4
.3

(a
)

‚‚ph − pj
h

‚‚
L2(Ω)

‖ph‖L2(Ω)

2.19e-01 7.24e-02 1.11e-02 3.47e-03‚‚uh − uj
h

‚‚
L2(Ω)

‖uh‖L2(Ω)

2.63e-01 1.62e-01 7.61e-02 3.97e-02

E
x
a
m

p
le

4
.3

(b
)

‚‚ph − pj
h

‚‚
L2(Ω)

‖ph‖L2(Ω)

2.51e-01 7.54e-02 1.33e-02 7.40e-03‚‚uh − uj
h

‚‚
L2(Ω)

‖uh‖L2(Ω)

2.49e-01 1.65e-01 8.06e-02 4.28e-02

E
x
a
m

p
le

4
.3

(c
)

‚‚ph − pj
h

‚‚
L2(Ω)

‖ph‖L2(Ω)

2.77e-01 1.05e-01 2.40e-02 1.06e-02‚‚uh − uj
h

‚‚
L2(Ω)

‖uh‖L2(Ω)

2.69e-01 1.77e-01 8.51e-02 4.26e-02

Table 4.5. Relative errors of Algorithm 4.5 for Example 4.3 corre-
sponding to Figures 4.34–4.39. The case j = 1 also corresponds to the
errors of Algorithm 4.4.

removed by the first iteration after the subgrid solve. Overall, we can say that the

reference solutions are matched rather well by our Algorithms.

For a quantitative assessment we take a look at Table 4.5 reporting the (relative)

errors corresponding to the examples shown in Figures 4.34–4.39. As we can see from

this data the results of Algorithm 4.4 have relative errors between 21% and 28%.

This is certainly not small and thus for quantitative estimates the results produced

by the pure subgrid algorithm can only be considered to give some rough estimates

when applied in situations described in Example 4.3. Nevertheless, by performing

only a few iterations after the initial subgrid solve Algorithm 4.5 yields a substantial

reduction of the errors.

We now make a general remark concerning the computational efficiency of our

derived Algorithms.

Remark 4.23 (Comments on efficiency). Since the implementations of the dis-

cussed algorithms are still at an “experimental” stage we do not provide any specific

data concerning CPU/run-time and memory consumption. These aspects anyway

strongly depend on the solution procedure that is applied for solving the arising

saddle-point problems. Nevertheless, for Examples 4.2–4.4 we can observe a speed-

up (compared with the computation of the reference solution) in our computations,

which of course depends on the size of the problems and the number of iterations.

Summing up, we conclude that we have developed a numerical subgrid algorithm

for Brinkman’s problem, Algorithm 4.4, using a discontinuous Galerkin discretiza-

tion. As discussed in section 4.8.4 this algorithm may serve as a very useful nu-

merical upscaling procedure. In particular, it is applicable to practical situations

where only a moderate degree of accuracy is required and/or feasible to attain (due
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to uncertainties in the input data). We have furthermore introduced two-scale it-

erative domain decomposition algorithms, i.e., Algorithms 4.3 and 4.5, for solving

Darcy’s and Brinkman’s problem. These algorithms are extensions of the subgrid

Algorithms 4.1 and 4.4, respectively, and ensure convergence to the solution of the

global fine discretization. Their rates of convergence, while being rather robust with

respect to variations in the permeability κ, depend on the choice of the coarse mesh

parameter H. The developed algorithms only require the solution of coarse global

and mutually independent fine local problems, which makes them very suitable for

parallelization.
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.16. First velocity component of the reference solution and
some selected iterates of Algorithm 4.5 for Example 4.2(a.1.i). (j = 1
corresponds to Algorithm 4.4.)



100 4. SUBGRID METHOD FOR BRINKMAN’S EQUATIONS

(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.17. Second velocity component of the reference solution
and some selected iterates of Algorithm 4.5 for Example 4.2(a.1.i).
(j = 1 corresponds to Algorithm 4.4.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.18. Pressure component of the reference solution and some
selected iterates of Algorithm 4.5 for Example 4.2(a.1.i). (j = 1 cor-
responds to Algorithm 4.4.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.19. First velocity component of the reference solution and
some selected iterates of Algorithm 4.5 for Example 4.2(b.1.i). (j = 1
corresponds to Algorithm 4.4.)



4.8. NUMERICAL RESULTS AND CONCLUSIONS 103

(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.20. Pressure component of the reference solution and some
selected iterates of Algorithm 4.5 for Example 4.2(b.1.i). (j = 1 cor-
responds to Algorithm 4.4.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.21. First velocity component of the reference solution and
some selected iterates of Algorithm 4.5 for Example 4.2(c.1.i). (j = 1
corresponds to Algorithm 4.4.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.22. Pressure component of the reference solution and some
selected iterates of Algorithm 4.5 for Example 4.2(c.1.i). (j = 1 cor-
responds to Algorithm 4.4.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.23. First velocity component of the reference solution and
some selected iterates of Algorithm 4.5 for Example 4.2(d.1.i). (j = 1
corresponds to Algorithm 4.4.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.24. Pressure component of the reference solution and some
selected iterates of Algorithm 4.5 for Example 4.2(d.1.i). (j = 1 cor-
responds to Algorithm 4.4.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.25. First velocity component of the reference solution and
some selected iterates of Algorithm 4.3 for Example 4.4(a.1.i). (j = 1
corresponds to Algorithm 4.1.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.26. Second velocity component of the reference solution
and some selected iterates of Algorithm 4.3 for Example 4.4(a.1.i).
(j = 1 corresponds to Algorithm 4.1.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.27. Pressure component of the reference solution and some
selected iterates of Algorithm 4.3 for Example 4.4(a.1.i). (j = 1 cor-
responds to Algorithm 4.1.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.28. First velocity component of the reference solution and
some selected iterates of Algorithm 4.3 for Example 4.4(b.1.i). (j = 1
corresponds to Algorithm 4.1.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.29. Pressure component of the reference solution and some
selected iterates of Algorithm 4.3 for Example 4.4(b.1.i). (j = 1 cor-
responds to Algorithm 4.1.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.30. First velocity component of the reference solution and
some selected iterates of Algorithm 4.3 for Example 4.4(c.1.i). (j = 1
corresponds to Algorithm 4.1.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.31. Pressure component of the reference solution and some
selected iterates of Algorithm 4.3 for Example 4.4(c.1.i). (j = 1 cor-
responds to Algorithm 4.1.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.32. First velocity component of the reference solution and
some selected iterates of Algorithm 4.3 for Example 4.4(d.1.i). (j = 1
corresponds to Algorithm 4.1.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.33. Pressure component of the reference solution and some
selected iterates of Algorithm 4.3 for Example 4.4(d.1.i). (j = 1 cor-
responds to Algorithm 4.1.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.34. First velocity component of the reference solution and
some selected iterates of Algorithm 4.5 for Example 4.3(a). (j = 1
corresponds to Algorithm 4.4.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.35. Pressure component of the reference solution and some
selected iterates of Algorithm 4.5 for Example 4.3(a). (j = 1 corre-
sponds to Algorithm 4.4.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.36. First velocity component of the reference solution and
some selected iterates of Algorithm 4.5 for Example 4.3(b). (j = 1
corresponds to Algorithm 4.4.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.37. Pressure component of the reference solution and some
selected iterates of Algorithm 4.5 for Example 4.3(b). (j = 1 corre-
sponds to Algorithm 4.4.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.38. First velocity component of the reference solution and
some selected iterates of Algorithm 4.5 for Example 4.3(c). (j = 1
corresponds to Algorithm 4.4.)
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(a) Geometry (b) Reference solution.

(c) Pure subgrid, i.e., j = 1. (d) 1 iteration after subgrid solve, i.e.,
j = 2.

(e) 5 iterations after subgrid solve, i.e.,
j = 6.

(f) 10 iterations after subgrid solve, i.e.,
j = 11.

Figure 4.39. Pressure component of the reference solution and some
selected iterates of Algorithm 4.5 for Example 4.3(c). (j = 1 corre-
sponds to Algorithm 4.4.)



Summary

In Chapters 1–3 of the thesis at hand efficient methods for computing upscaled

macroscopic thermal conductivity tensors of high-contrast composite materials have

been developed and investigated. For simplicity the constituents of the composites

were assumed to have only two different conductivities. Under rather general as-

sumptions on the shapes of the domain and the highly conductive inclusions it was

proven that the upscaled tensor can be approximated by post-processing the solu-

tions of problems posed only on the highly conductive parts of the domain. Thus,

independently of the contrast, one only needs to solve constant-coefficient problems.

The error of this approximation was proven to be proportional to the ratio of the

low and high conductivities. In the numerical examples it was furthermore shown

that this approximation of the upscaled thermal conductivity tensor can be further

improved by accounting for the conductivity of the lowly conductive background

material. This correction does not interfere with the previously proven asymptotic

estimate and is obtained without solving any additional problem.

Departing from this framework an algorithm specifically designed to approximate

the upscaled conductivity tensors of high-contrast fibrous materials was designed.

This algorithm takes advantage of the slender shape of the fibers, and reduces the

problem to solving the heat equation on the graph corresponding to the fibrous

structure. This led to a substantial reduction of the size of the problem resulting

in runtime and memory savings of several orders of magnitude compared with a

commercially available software using classical upscaling techniques. Due to this re-

duction of numerical complexity our method is applicable to very large geometries,

which cannot be treated by standard approaches. In fact, the developed implemen-

tation of the algorithm was used in a project with one of the industry partners of the

Fraunhofer ITWM. The error estimates for this method, which could be obtained

under rather strong regularity assumptions, were investigated by several numerical

examples.

The essential preprocessing step of this method, i.e., computing the graph corre-

sponding to a fibrous structure, was furthermore substantially improved by a domain

decomposition approach. This became necessary, since the setting-up of the graph,

if done by checking each fiber against any other for intersection, turned out to be

more costly than the solution of the actual problem posed on the graph. In this
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situation the complexity of constructing the graph is quadratic in the number of

fibers. By our domain decomposition approach this complexity of O(n2
Φ) could be

reduced to O(n
3
2
Φ), with nΦ denoting the total number of fibers.

In Chapter 4 an upscaling approach based on a two-scale finite element dis-

cretization for the solution of Brinkman’s problem was derived. For this it was first

necessary to derive and analyze an optimal order mixed finite element discretiza-

tion of Brinkman’s equations. This task turned out to be rather difficult, since the

choice of finite element spaces is limited by several restrictions necessary for the

subsequent derivation of the two-scale discretization. By extending a discontinuous

Galerkin mixed finite element method presented in [67] to the Brinkman case and

by employing the Brezzi-Douglas-Marini mixed finite element space of order 1, all

restrictions could be satisfied.

Depending on the desired accuracy, the solutions produced by the derived two-

scale finite element method were found to be reasonably close to the reference so-

lutions in many cases. In particular for periodic geometries with clearly separated

scales the errors were quite small. Nevertheless, for problems where the reference

solutions had distinct fine features across cell boundaries corresponding to the coarse

space, the subgrid solution displayed a lack of approximation of these features. Fine

features within coarse cells, on the other hand, were represented quite well by the

two-scale solution. These observations hold true for the two-scale finite element

discretization of both, Darcy’s and Brinkman’s problem.

Furthermore, the numerical subgrid methods for Darcy’s and Brinkman’s prob-

lem were extended by alternating Schwarz methods yielding two-scale domain de-

composition methods. The convergence of these methods to the reference solutions

was numerically verified for a series of examples. The rates of convergence were

found to be particularly rapid during the first iterations. After that the errors with

respect to reference solutions decreased linearly until the methods were converged.

Furthermore, the insufficient representation of fine features across coarse cell bound-

aries was essentially removed by merely one iteration.

All methods were numerically investigated for their sensitivity with respect to

the size of the coarse mesh corresponding to the coarse space and the variations in

the permeability. This was done for a series of geometries.
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