
Software Agents : Process Models and User Profiles in Distributed Software
Development

Norbert Glaser
INRIA Sophia-Antipolis, Projet ACACIA
BP 93, 06902 Sophia-Antipolis, France

Norbert.Glaser@inria.fr

Jean-Claude Derniame
CRIN - Bat. LORIA

BP 239, 54506 Vandœuvre CEDEX
Jean-Claude.Derniame@loria.fr

Abstract

The development of software products has become a
highly cooperative and distributed activity involving work-
ing groups at geographically distinct places. These groups
show an increasing mobility and a very flexible organiza-
tional structure. Process methodology and technology have
to take such evolutions into account. A possible direction
for the emergence of new process technology and method-
ology is to take benefit from recent advances within multi-
agent systems engineering : innovative methodologies for
adaptable and autonomous architectures; they exhibit in-
teresting features to support distributed software processes.

Keywords : software agents, process model , profiles.

1 Introduction

Software processes are complex activities involving sev-
eral actors who need to cooperate on various levels for
achieving coherent results. In the last three years several
proposals advocated methodological support for coopera-
tive and distributed development. This is an important issue
since software processes becomes more an more spatially
distributed (see [2] for an example). Within such an en-
vironment, process methodologies need to support hetero-
geneity, flexibility and a high mobility of working groups.
Some process methodologies try to solve this issue through
the integration of CSCW and process technology [6], oth-
ers consider decentralized process modeling [16]. Our ap-
proach for supporting distributed process development is
based on competence profiles and statistical process mod-
els. Both provide the necessary information for software
agents to cover with the flexibility of working groups and

A software agent can be defined as a small program performing a task
in using information gleaned from its environment; it should be able to
adapt itself based on changes occurring in its environment.

to maintain the quality of the resulting software product.
We advocate the use of competence profiles to facili-

tate the organization of and communication between flexi-
ble and mobile working groups. Competence profiles could
be seen as identity cards representing the group members’
competences which are required by the development pro-
cess, and describing the individual roles within the work-
ing group. In other words, roles allow us to describe the
organization of a working group and to formalize the mi-
gration between such groups [12]. Combining competence
profiles with software agents will allow us to cover with the
high mobility of people involved in the development pro-
cess : flexible agent architectures would take in charge the
exchange and management of information.

A second important question is how to cope with pro-
cess assessment in a geographically distributed environ-
ment. The quality of a software product is already influ-
enced by continuously changing requirements motivated by
the speed of innovation and customer satisfaction. Now,
the quality of the product faces moreover inconsistencies of
decisions and actions and possible derivations from the pre-
specified norm. Process technology has to provide means to
adapt quickly design and quality requirements without fac-
ing the redesign of the whole development process. Our
proposal is inspired by the method for statistical process
control which is a common approach within manufactur-
ing for controlling the quality of a product. We claim that
a statistical process model could be built for a development
process and used by software agents to maintain the quality
of the resulting software product.

Having user profiles and process models, we still need
support for identifying and building the software agents
which should manage the communication within work-
ing groups. The emergence of methodologies for multi-
agent systems engineering (MAS) could have stimulative
impulses on distributed program development as they in-
clude, among others, features like object-oriented design,
generic model libraries, conceptual specification languages.
We argue for the use of the CoMoMAS methodology [9], a

1

knowledge engineering approach for MAS development. It
provides tools for a functional analysis and identifies soft-
ware agents and the related competence profiles.

2 Modeling Distributed Software Processes

Distributed software development associates the design,
development, testing, validation and integration phases to
geographically dispersed working groups. The discussion
at IWRDPT’97 highlighted several important issues within
distributed software development : how to limit possible
derivations from a prespecified norm, how to increase visi-
bility and transparency of decisions and actions, how to as-
sess a distributed process, how to share information towards
process evolution. This section details our methodology and
models for distributed software development; a comparison
to workflow management systems and traditional software
engineering approaches is given in section 5.

2.1 The Software Process and its SPC Model

The quality of a software product is a central issue dur-
ing software engineering and a critical one within a dis-
tributed working environment. Despite of validating and
testing the software product at a final stage, we advocate to
control quality continuously during the development pro-
cess. An appropriate technique is statistical process control
which was introduced by [13] as part of IBM’s Total Qual-
ity Management. The principles of this technique, origi-
nally used for controlling a manufacturing process [11], are
indeed very close to software process control.

control

Control
Actions

Symptoms Parameters

Software Process

Causes

Program

Characteristics

induce describe

influence

describe
show

variations
induceeliminate

Specification
Control Charts controlscontrolsexhibit follows

Figure 1. SPC Model of a Software Process

Figure 1 illustrates a simplified statistical process control
model for software engineering; a more elaborated form is
presented in [11]. The basic idea is to maintain the pro-
cess within prespecified control limits and to guarantee in
this way a certain quality of the software product. Thereby,
information about the product is given by a set of charac-
teristics which are associated with specification limits de-
scribing a prespecified norm for the product. Controlling

International Workshop on Research Directions within Process Tech-
nology, Nancy, France

the process means now to identify a set of parameters of
the process and to maintain them within given control lim-
its. Exceeds a parameter a given control limit or a pattern
of values repeats over time, then the process is said to show
some abnormal behavior and a symptom is detected. Some
action needs to be taken in order to eliminate the cause of
variation in the process behavior and to put it back under
control. [13] gives categories of symptoms.

IM for Characteristic Cm

parameter 1 0.4
parameter 2 0
...
parameter n 0.7

IM for Characteristic C1
Cause Action/DecisionSymptom

S(pi,pj,...,pk) Explication Description

Workstation
Breakdown
(Group A)

Decrease of
Productivity

Group A has a
work-overload

Group A has
an expert who is
non-connected

Duration of
KB_validation
exceeds d(t)

A1: Secure results twice

A2: Double workstation

A1: Reasign task

A3: Inform PJ_manager
A2: Wakeup expert

Figure 2. Example of an Influence Matrix

Monitoring all parameters is very expensive; only those
parameters need to be controlled which have a considerable
influence on the quality of the product. Statistical methods
contribute to the analysis of the process and the identifica-
tion of the parameters which need to be controlled. Figure
2 illustrates the SPC process model which is used for pro-
cess control. If we want to guarantee a certain quality of a
given characteristic, we use the the influence matrix (IM) to
decide on the parameters to control. Each matrix qualifies
the influence of parameters on a given characteristic.

What kind of parameters and characteristics are the most
suitable for modeling a software process and product ? Pa-
rameters need to be measurable while characteristics are
given in an engineering specification of a product. A possi-
ble set of characteristics can be non-functional design re-
quirements [22], i.e. reliability, adaptability, modularity,
maintainability, robustness, to cite only some of them. The
identification of parameters depends on our understanding
of a software process. We see a software development pro-
cess as a set of tasks which are obtained through functional
analysis of the process and can be refined in using day-to-
day activity reports of software developers [20]. A task cor-
responds to a clearly identified goal within the software pro-
cess and resumes the human actions for accomplishing it.
A task uses input from other tasks, produces some output,
requires resources, and has a certain duration and priority.
We should be able to measure these tasks : a set of plau-
sible parameters are the availability of resources (machines
and humans), the coherence of the results of the working
groups’ activities, the degree of overhead for communica-
tion and coordination within working groups, the efficiency
of human actors (training time/development time).

The SPC process model is instantiated for every software
process but all software agents use the same instantiated

2

model and maintain it current. The model allows software
agents to support working groups who wish to reduce or to
limit derivations from a prespecified norm and to visualize
the influence of their actions on the quality of the program.
Having detected a derivation, a software agent informs the
group that it represents, or it asks another one of the same
software process for support.

2.2 Modeling Working Groups

The software development team is assumed to be repre-
sented by a set of software agents. These agents support the
collaboration between the members of a working group and
between working groups. We illustrate such an environment
in section 3. A software agent needs a profile of the user it
wants to represent. A typical profile specifies the compe-
tences of the user, his interests, his role within the work-
ing group, his working status, and other useful information.
We structure the competences into reactive (BHV), cogni-
tive (PSM), cooperative (CPM) and social (SCM) ones [12].
The social competences of a team member are expressed by
the role that he plays within the working group. It is of
course possible to extend this definition of a user profile if
we consider other aspects like the social behavior of work-
ing groups and their dynamic reorganization.

cooperate

Working Group

SPC Model of Software Process

updates

AGENT AGENT

AGENT

cooperate

BHV : Keep-working-level

PSM : C++-Prog., Testing (M)
 Priority-first strategy (S)

Role : Programmer

Profile

CPM : Master-Client.hasT1 T2

T3

T4 T5

T2

Software Process

consults

consults

updates

Figure 3. User Profiles and Working Groups

An example of a software agent is illustrated in Fig-
ure 3. It supports a user having the role of a programmer
and whose competences include knowledge about C++ pro-
gramming and testing, the ability to solve tasks which it
selects priority-based; it receives tasks from other agents
through a master-client protocol and is not capable to nego-
tiate any task assignment. Finally, it tries to keep always a
minimum level of activity.

The identification of the user profiles requires knowl-
edge about the software process and the competences to
solve the tasks into which it is decomposable through func-
tional analysis. The next section presents the CoMoMAS, a
multi-agent engineering approach, which offers an analysis
method to obtain these profiles. User profiles need to be up-
dated to keep current with the evolution of working groups.
[15] presents a mechanism for agents to learn the behavior
of users with whom they interact and to update user profiles.

2.3 Methodological Support

CoMoMAS [10] proposes a methodology and a frame-
work for the development of multi-agent systems. CoMo-
MAS offers interesting elements for software engineering :
the set of conceptual models which describe different view
points on a software process; the reusable generic schemata
representing results from functional, competence, cooper-
ative and organizational analysis. CoMoMAS allows the
transformation of conceptual models into executable pro-
grams, but this is within this paper of less importance; we
are much more interested into the results from conceptual
analysis of a software process; these results are used to de-
fine the software agents, the user profiles and the related
competences.

Cooperation ModelExpertise Model
cooperation skillsreactive, expertise skills

Task Model

determines
(by social role)

provides provides

Organisation Model

Agent Model

(by taxonomy of tasks)
determines

(by taxonomy of tasks)
determines

determines
(by social role) determines

(by social role)

T4 T5

T2

T1 T2

T3

contains

contains

R1

R2

R3

R4

contains

Cognitive skills (PSM)
Reactive skills (BHV)

Cooperation skills(CPM)

Role/Position (SCM)

Profile
contains

Organisation structures
Role-dependency graphs

Methods for cooperation

contains

Behaviors B

Methods for problem-solving M

T

M1
M2

B4

S

Strategies S

Figure 4. Conceptual Models for DSD

Figure 4 illustrates the five conceptual models for dis-
tributed software development (DSD). The models are in-
spired by the CommonKADS approach [21] for KBS de-
velopment. The knowledge of the expertise, cooperation
and organization models guide our definition of the compe-
tence profiles for the human actors solving the tasks of the
software process which are represented in the task model.
The conceptual agent models resulting from CoMoMAS for
a working group are realized through one software agent.
The task model represents the tasks and subtasks into which
the development process can be decomposed through func-
tional analysis; data and time dependencies between tasks
are included. Solving a task requires various competences,
problem-solving methods and communication skills, from
the people being involved into the development process.
Competence and cooperation analysis provide us this infor-
mation : for example, programming skills, planning skills,
coordination and negotiation methods. Not all members of a
working group need to have the same competences; a work-
ing group is composed of members playing different roles.
Roles describe the organization of a working group; the
organization model represents this information and relates
competences to roles.

3

3 Intelligent Agent Technology

Intelligent agent technology has found one of its first ap-
plications for systems and network management to enhance
their performance. Recent applications areas are, among
others, information access and management on the Inter-
net, adaptive user interface to accommodate the increase
its complexity, and workflow and business process manage-
ment. Software agents [8] provide various types of support
: they may make collaboration more efficient by sharing
resources and by enhancing team work; they may enhance
synergy and consistence of software processes by providing
assistance during development, and they may reduce costs
of human agents within process management by ascertain-
ing and automating workflows and business processes.

Within software engineering software agents could be
used as support for the automated exchange of informa-
tion, the maintenance of process models, and in particular
for the specification of joint-working plans and for solving
conflicting goals during development. The idea is to dele-
gate some organizational tasks to the agents which they are
able to handle having acquired the competence profiles of
the involved people.

SOFTAGENT

SOFTAGENT

Reviewer

Designer

ACTOR

ACTOR
Internal Controller

Message buffer

controls

Task Stack

Send/Recv message

controls/creates

U
S
E
R

I
N
T
E
R
F
A
C
E

JOINT TASK
INDIV. TASK

INTRANET

Competence
Profiles

SPC
Process Model

uses/updates

Programmer

ACTOR

Knowledge base

receives
displays

Figure 5. A Software Agent Architecture

Figure 5 illustrates a possible architecture for coopera-
tive process development comprising two software agents.
The agents support the collaboration of three users, i.e. the
programmer, designer and reviewer, on a common software
process. Each agent has a knowledge base composed of a
SPC process model and a set of competence files modeling
the human actors. This is the original part of our proposi-
tion rather than technical details for internal control, com-
munication and cooperation between software agents. At
the moment, we consider the exchange of information to be
the principle interaction between software agent and human
actors. An agent visualizes the composition and workload
of the working group, the progress of the project and the
list of tasks to be done by the human actor, and it asks for
confirmation and the result if a tasks was completed.

The competence profiles specify an agent’s possible
roles, methods, strategies and cooperation protocols for
solving tasks in joint action with other agents. An exam-

ple is given in Figure 3 for a programmer. The profiles are
at the basis of collaborative software development and can
be used to specify, first, the required competences for a spe-
cific project, and second, the list of available human actors
for a given software process. Profile databases could be an
important contribution to the mobility which is found within
distributed software development.

The presented architecture is being implemented and
analyzed in the COMOMAS environment [9] which con-
tains an extended version of the multi-agent simulation tool
MICE [18]. The environment allows us to study profile-
based software agents and the reorganization of working
groups. The results will have an impact on the software
agent architecture which we should support the construction
of a knowledge server. Main characteristics of this project
are : participation of geographically distributed working
groups, flexible organization of working groups and a per-
manent evolution of the knowledge bases to be realized.

4 Application

The realization of a knowledge server on the intranet
with corporate knowledge [5] for the analysis and recon-
stitution of traffic accidents involves working groups from
three geographical locations. Working group A comprises a
project manager, human factor specialists and software en-
gineers who are specialized either in knowledge-base (KB)
development or in software architectures. Working group C
is composed of investigators and experts. Investigators are
those people who collect the information about the traffic
accident; experts are considered to have background knowl-
edge about traffic accidents. We distinguish between in-
frastructure, vehicle and driver experts. Finally, group B
is a mixed one of KB specialists and an infrastructure ex-
pert. The groups contribute partially to every phase of the
software process as illustrated in Figure 6. The software
product includes several knowledge bases, a user interface,
and modules for updating, maintaining and exploiting the
knowledge bases.

Requirements analysis

System Specification

Development

On-site test

Documentation

Integration

time

Group A Group A, B and CGroup A and C

Figure 6. An Example for DSD

A process phase is decomposed into tasks which are dis-
tributed over the working groups. The tasks are obtained
through stepwise functional analysis of the system to be
built and its environment. Let us focus in the following on

4

the development, on-site test and integration phases which
involve two working groups. Figure 7 illustrates the control
dependencies between some of the tasks obtained through
functional analysis.

Module_integration System_test

GUI_development GUI_test GUI_integration

KB_development KB_validation KB_integration

Figure 7. Task Model: Control Flow

Competence analysis of the tasks delivers us the cate-
gories of competences which are necessary to solve them.
KB_development requires, for example, experiences about
languages for knowledge representation (KR) and interview
techniques (PSM), about progress monitoring (BHV) and
about project management (CPM) in order to coordinate the
development of the several knowledge bases if they are re-
alized in cooperation. The assignment of these tasks to the
members of working groups depends on their competences.
A task may be assigned to several members depending on
the competence profiles but attributed finally only to one of
them because of, for example, the a temporary work over-
load of the others.

Analyzing the organization of the two working groups
delivers us a typology of roles associated with different
types of competences. Typical competence profiles for the
members of the two working groups are given in the table
below.

Role(s) Competences
Project Project monitoring, Task assignment
Manager External reporting, Performance evaluation
Architecture Java programming, OMT methodology
engineer Intranet skills, DB management skills
KB engineer Interview techniques, KR languages

DB organization, KB validation
Human factor GUI development, HCI design, GUI
specialist test procedures
Investigator GUI on-site testing
Expert KB content validation (KB_infra, KB_vehicle,

KB_driver)

Annotations : DB=Database, HCI=Human-Computer Interface.

The functional analysis of the software process and the
analysis of the competences and the organization of the
working groups allow us to decide on the kind of software
agents that we need to implement for supporting distributed
development. Figure 8 shows a possible information ex-
change between two software agents.

Agent SA1 represents the working group A which com-
prises a KB_engineer and a project manager; agent SA2
represents the working group C, that is, a Vehicle_Expert

MICESIM - Software Agent SA2

T0 : Init = KB_Engineer, PJ_Manager
T0: Create project KB_server
T1 : Announce (Project KB_server)
T4 : Receive (Confirmation KB_server SA2)
T5 : Assign (Task KB_development KB_Engineer)
 Info="Exp result KB_vehicle, KB_infra, KB_driver."
T6 : Announce (Task KB_development)
T7 : Monitor (Reliability Task KB_test SA2): OK
T8 : Obtain (Result KB_vehicle KB_Engineer)
T9 : Announce (Result KB_vehicle)
T10: Obtain (Result KB_infra KB_Engineer)
T11: Announce (Result KB_infra)
T12: Monitor (Reliability Task KB_test SA2):DELAY-WAIT
T20: Receive (Result KB_OK KB_infra SA2)
T21: Monitor (Reliability Task KB_test SA2):DELAY-ACT
 Info="Inform PJ_Manager about validation delay."

MICESIM - Software Agent SA2

T0 : Init = Vehicle_Expert, Infra_Expert(notconnected)
T1 : Listening
T2 : Receive (Project KB_server SA1)
T3 : Announce (Confirmation KB_server SA2)
T7 : Receive (Task KB_development SA1)
T10: Receive (Result KB_vehicle SA1)
T11: Lookup (Competence KB_vehicle) = Vehicle_Expert
T13: Assign (Task KB_test KB_vehicle Vehicle_Expert)
T14: Announce (Task KB_test)
T15: Receive (Result KB_infra)
T16: Lookup (Competence KB_infra) results in <NONE>
T17: Lookup (Competence KB_infra) results in <NONE>
T18: Obtain (Result KB_OK KB_infra Vehicle_Expert)
T19: Announce (Result KB_OK KB_infra)
T20: Lookup (Competence KB_infra) results in <NONE>

Figure 8. Monitoring of Software Agents

and an infrastructure expert. The infrastructure expert is on
stand-by mode. The agents are collaborating on the devel-
opment and validation of a knowledge base. The announce-
ment of the first results of the KB_development task at time
t=T9 from agent SA1 motivates agent SA2 to look for group
members who are able to validate these results. The match-
ing mechanism between required and available profiles is
based on keywords. A more elaborated version is discussed
in [12]. Agent SA1 starts monitoring the reliability of the
evaluation procedure and recognizes at t=T12 that a delay
has occurred which it tries to resolve at t=T21. The knowl-
edge how to monitor a task and how to resolve the variation
in the validation procedure is provided by the SPC process
model (see Figure 1).

5 Discussion

Multi-agent technology provides useful means to support
distributed software development. In fact, the use of agents
allows us to cover with the many possible ways for achiev-
ing objectives within a single application and to reach a bal-
ance between the long-term and short-time objectives. The
desire for an efficient use of the multi-agent technology, i.e.
software agents [17], has also made research on methodolo-
gies very popular. The functional analysis within a method-
ology, like CoMoMAS, demonstrate the closeness of multi-
agent and software engineering [14]. Functional models are
an interesting starting point for development since they al-
low us to identify clearly control and data dependencies;
this is valuable information which can be used to decide the
distribution of tasks between agents and human developers.
The advocated functional analysis of a software process can
be compared to workflow management systems [1] : pro-
cess analysis delivers in a bottom-up way a set of activities

5

which are linked by control and data connectors. Never-
theless, reusability and generic libraries are not much ad-
dressed within workflow management.

An integration could be realized between our proposal
and workflow-like approaches. [4] proposes a component
approach to support distributed team-based software devel-
opment. It relies on a process model called LCPS (Life Cy-
cle Process Support) [3] and aims at supporting the defini-
tion of the process that is to be employed for a particular
development step, the subsequent enactment of that process
(instantiation of its components), its performance (execu-
tion by the different agents) [7] and the distribution of pro-
cess components on a network. A process model compo-
nent is a set of entities (agents, roles, activities, products,
directions), linked together inside a schema around a cen-
tral activity. In this model, activities are represented by tra-
ditional tools and the knowledge dimension is not present;
the autonomy of agents is not explicit. Reusability is ad-
dressed in LCPS by meta-model entities which are compa-
rable to abstract classes in the object-oriented sense.

The SPC process model of this paper gives a more flexi-
ble approach to support team cooperation relying on compe-
tences. Enriched by a support to negotiation between part-
ners, such an architecture would be able to cover not only
the functional aspects of the distributed software develop-
ment but also the implementation.

6 Conclusion

The paper presented a methodology for distributed soft-
ware development and multi-agent technology to support it.
Our main contribution are a statistical process control (SPC)
model and competence profiles. A SPC process model,
originally used for the control of a manufacturing process,
allow us to specify monitoring knowledge about a software
process and to use it within a distributed environment as a
common source of information for maintaining the quality
of the software product. Competence profiles characterize
the expertise and organization of working groups who par-
ticipate in the software process. An architecture of software
agents is presented which exploits SPC models and compe-
tence profiles for supporting the coordination and informa-
tion exchange within a distributed working environment.

Considering our aim to model the organization of work-
ing groups and their interaction, we may find an interesting
extension of our work in [19]. The cited paper proposes
a language for the interaction between software teams. It
includes roles to model the organization of these teams.

7 Acknowledgments

The authors would like to thank the members of the
IWRDPT’97 workshop for the enthusiastic discussions

about multi-agent systems within software engineering.

References

[1] G. Alonso and C. Mohan. Advanced Transaction Models
and Architectures, chapter Workflow Management: the Next
Generation of Distributed Processing Tools. Kluwer Aca-
demic Publishers, 1997.

[2] V. Delotti and S. Bly. Walking away from the desktop com-
puter: Distributed collaboration and mobility in a product
design team. In ACM CSCW, pages 209–218, 1996.

[3] J.-C. Derniame and al. Life cycle process support in pcis. In
PCTE, 1994.

[4] J.-C. Derniame, A. Kaba, and P. Tiako. A process model with
distributed and composable components. In ICSP5 (submit-
ted), 1998.

[5] R. Dieng, A. Giboin, O. Corby, and al. Building of a corpo-
rate memory for traffic accidents. AI Magazine, 1998.

[6] E. DiNitto and A. Fuggetta. Integrating process technology
and cscw. In EWSPT, pages 154–161. LNCS 913, 1995.

[7] M. Dowson and C. Fernstrom. Towards requirements for
enactment mechanisms in software process technology. In
EWSPT, LNCS 772, pages 90–106, 1994.

[8] M. R. Genesereth and S. P. Ketchpel. Software agents. Com-
munications of the ACM, 7(37):48–53, 1994.

[9] N. Glaser. The CoMoMAS methodology for multi-agent sys-
tem development. In D. Lukose and C. Zhang, editors, Sec-
ond Australian Workshop on DAI. LNAI Series, 1996.

[10] N. Glaser. Contribution to Knowledge Acquisition and Mod-
elling in a Multi-Agent Framework - The CoMoMAS Ap-
proach. PhD thesis, U. Henri Nancy I, 1996.

[11] N. Glaser and M.-C. Haton. Experiences in modelling statis-
tical process control knowledge. In Proc. 12 ECAI, 1996.

[12] N. Glaser and P. Morignot. The reorganization of societies
of autonomous agents. In MAAMAW. LNAI 1237, 1997.

[13] E. Kane. IBM’s quality focus on the business process. Qual-
ity Progress, pages 24–33, 1980.

[14] D. Kinny and M. Georgeff. Modelling and design of multi-
agent system. In ECAI-96 workshop on ATAL, pages 1–20.
LNAI 1193, 1996.

[15] Y. Lashkari, M. Metral, and P. Maes. Collaborative interface
agents. In Proc. AAAI-94, Seattle, WA, 1994.

[16] U. Leonhardt, J. Kramer, B. Nuseibeh, and A. Finkelstein.
Decentralised process modelling in a multi-perspective de-
velopment environment. In ICSE, 1995.

[17] P. Maes. Agents that reduce work and information overload.
Communications of the ACM, 37, July 1994.

[18] T. Montgomery and E. Durfee. Using MICE to study intel-
ligent dynamic coordination. In Proc. 2 IEEE Conf. on
Tools for AI, pages 438–444, 1990.

[19] D. E. Perry. Using process modeling for process understand-
ing. In Software Process Improvement, Barcelona, 1997.

[20] D. E. Perry, N. Staudenmayer, and L. G. Votta. People, orga-
nizations, and process improvement. IEEE Transactions on
Software Engineering, July 1994.

[21] G. Schreiber, B. Wielinga, R. de Hoog, H. Akkermans, and
W. V. de Velde. Commonkads: A comprehensive methodol-
ogy for KBS development. IEEE Expert, 9(6):28–37, 1994.

[22] J. Vanwelkenhuysen. Embedding non-functional require-
ments analyses in conceptual knowledge system design. In
Proc. of 9 KAW, Banff (CAN), 1995.

6

