
Coordinating Distributed Software Development Projects with
Integrated Process Modelling and Enactment Environments

John Grundy†, John Hosking†† and Rick Mugridge††

†Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton, New Zealand
jgrundy@cs.waikato.ac.nz

††Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand
{john, rick}@cs.auckland.ac.nz

Abstract

Coordinating distributed software development projects
becomes more difficult, as software becomes more
complex, team sizes and organisational overheads increase,
and software components are sourced from disparate
places. We describe the development of a range of software
tools to support coordination of such projects. Techniques
we use include asynchronous and semi-synchronous
editing, software process modelling and enactment,
developer-specified coordination agents, and component-
based tool integration.

Keywords : work coordination, distributed software
development tools, process modelling, process-centred
environments, computer-supported cooperative work

1. Introduction

Coordinating multiple developers working on a
distributed software development project is very difficult,
and gives rise to the following management problems:

• Developers need specific tasks assigned, which
must be coordinated  to ensure a working system
results.

• Developers need to, at times, communicate  and
collaborate  closely, while at other times can
independently work on parts of a project.

• Software artefacts (code, designs, documentation
etc.) need to be shared and kept consistent.

• Multiple tools must be used to modify artefacts,
with some tools supporting close collaborative
editing  (e.g. via synchronous editing), while
others supporting looser collaboration (e.g. via
alternate version editing and subsequent merging).

• Progress towards specified goals needs to be
tracked, developers need to remain aware of others'
work, and complex software systems need to be
configured from the constituent, distributively
developed parts.

• Developers need to flexibly configure  their
environments' support for artefact management,
communication, and work coordination.

Many systems have been developed which attempt to
address these issues. Computer Supported Collaborative
Work (CSCW) systems have been used to aid distributed
software development. These include ConversationBuilder
[16], wOrlds [6], Orbit [17], TeamRooms [24], Lotus
Notes [19], and BSCW [5]. Programming environments,
such as Mjølner [20], Mercury [15], and FIELD [23], may
also provide basic collaborative software development
facilities. However, while such systems may support
shared editing and artefact management, they generally
lack adequate coordination support.

Process-centred Environments (PCEs), such as Oz [3],
SPADE [1], ProcessWEAVER [7], and ADELE-TEMPO
[2], more tightly integrate software development and
software process support. Most such systems, however,
provide complex mechanisms for specifying processes,
have a limited range of work coordination strategies, and
can be difficult to integrate with third-party tools. CSCW
and process-centred environments can be usefully
integrated. Examples include Oz [4], and SPADE-
ImagineDesk [1], and some programming environments
and process-centred environments, such as Multiview-
Merlin [21]. Workflow systems, such as TeamFLOW
[26], Regatta [25], and Action Workflow [22], provide
more accessible facilities for modelling work processes
but lack flexibility for specifying work coordination
mechanisms and tool integration.

In the following sections we describe our recent work
addressing these problems of distributed software
development coordination. Our solutions include
annotating changes made to software artefacts and
distributed to multiple users, tightly integrated software
development and process modelling and enactment tools,
and component-based software development, process
modelling, and collaborative editing tools.



2. C-SPE

Our first attempt at supporting distributed software
development was C-SPE [8]. SPE (Snart Programming
Environment) is an integrated development environment
for object-oriented software development using Snart, an
Object-oriented Prolog [9]. SPE provides integrated OOA,
OOD and Snart code views, along with debugging and
documentation views. All are kept consistent under change
by propagating representations of changes ("change
descriptions") between views [9, 10].

C-SPE (Collaborative SPE) adds semi-synchronous
and asynchronous editing to SPE. Distributed developers
can simultaneously edit SPE views and be informed of
changes other developers are making semi-synchronously.
Developers distributed over time and space can edit
different versions of software views asynchronously, and
later merge the changes together. These modes of
collaborative development are complementary; developers
can move freely between them. A client-server architecture
supports broadcast of editing changes to support semi-
synchronous editing and provides a repository for storing
versions to support asynchronous editing.

Change descriptions inserted
into view text, dialog, and/or
icons highlighted (but only

collaborator name is shown)

Figure 1. Semi-synchronous editing in C-SPE.

Figure 1 shows an example of C-SPE being used by
two developers, John and Rick, to semi-synchronously
edit two views of a simple drawing editor program. The
screen dump, from John's perspective, shows an OOD
diagram and a Snart code view. The changes shown in the
dialogue box have been made by Rick to his version of
the OOD diagram. John is informed of these as they are
made. Likewise, the change annotations at the top of the
text view appear as Rick makes modifications that affect
the view (changing the text and reparsing it or modifying

shared information in the OOD view). The changes are
annotated with Rick's name and the version number of the
view(s) he is modifying (in this case alternate 1.1b of the
OOD view). Asynchronous editing is also supported.
Users may make changes to a view, then share the
resulting list of changes with another developer for
merging into their version of the view.

C-SPE suffers from a number of problems when
deployed on distributed software projects. There is no
"reason" why changes are made associated with change
descriptions, nor any way to group changes to different
artefacts according to what tasks different developers are
performing. There is also no way to easily discuss
changes in the context they occurred, and no ability of
developers to configure work coordination support e.g. to
request notification when artefacts of interest are modified.

3. SPE-Serendipity

To address these problems, we developed Serendipity, a
process modelling and enactment environment [13].
Serendipity provides an expressive, visual language for
describing software processes and allows these processes
to be enacted. We integrated C-SPE and Serendipity using
their underlying message-passing architectures, resulting
in an environment for distributed software development
supporting integrated software development tools and
process modelling and work coordination capabilities.

Figure 2 shows a screen dump from SPE-Serendipity
in use during development of a software project. The top,
left window is an enacted Serendipity process model view
showing an enacted software process (based on the ISPW6
software process example for system maintenance [18]).

The rounded rectangles are "stages" in the software
process, which have a unique ID, role (performer of the
work), and name. Stages are connected by labelled
"enactment event" flows. When a stage is completed,
enactment events flow to the connected stage(s), enacting
them. Serendipity supports the modelling of process
stages hierarchically, and the specification of artefacts,
tools and people used to perform these stages.

Serendipity supports the coordination of work in SPE
various ways. Developers share Serendipity views, so can
collaboratively plan and coordinate work on a project, and
the refinement of software process models, at a high level
of abstraction. They are also kept aware of the enacted
stages of other developers by use of colouring and shading
annotations of stage icons and enactment flows.

Developers can also review changes made during stage
enactment, and annotated histories of view and artefact
changes in SPE. For example, the left hand dialogue in
Figure 2 shows a history of modifications made while the
“aff2.1:Design Changes" stage was the "current enacted
stage" for a developer. This serves as a basic work history
record, partitioned by stage. Developers can share this
history and thus see what work others have performed on
the project.



Figure 2. Example of the SPE-Serendipity integrated environment in use.

The right hand dialogue in Fig. 2 shows the
modification history of an SPE artefact (a class). The
annotated change descriptions show the stage in which the
changes were made. The same annotated change
descriptions, which can include process stage, developer,
and time information, are shown in the centre, textual
SPE code view of the class.

Figure 3. Simple work coordination specification.

Serendipity also incorporates a complementary visual
language which allows developers to configure the way
they are informed of changes to artefacts of interest, the
way work coordination is supported, and to specify
automatic actions triggered by interesting events (artefact

changes, or tool or process enactment events). Figure 3
shows an example of this "filters and actions" language
used for coordinating a software development project. In
this example, the project leader is informed when code
modifications or testing begins (via an email message,
broadcast message, dialogue or whatever is appropriate). In
addition, all changes made to OOA/D artefacts in SPE are
summarised and stored for the project leader to review at a
later date. We have applied our filter and action models to
many work coordination tasks for software development
[13]. The visual nature of the language allows developers
to build, reuse and modify these event-driven work
coordination schemes more readily than the approaches
used in most workflow and process modelling systems.

It is, however difficult to integrate third-party tools
into Serendipity, and environment performance is poor, as
it is implemented in Snart and only runs on Macintosh
computers. Due to these performance problems, we have
subsequently rearchitected our environment, as well as
making some capabilities, such as the filters and actions
language, useable in all of our development tools.

4. JComposer and Serendipity-II

Our earlier environments such as Serendipity and SPE
were built using the Snart-based MViews framework,
which supports the development of integrated software
development environments [11]. We have subsequently



reimplemented MViews, using, to produce the JViews
framework. JViews is more platform-independent,
provides tools with better performance, and allows third-
party tools to be more easily integrated with our systems
through Java Beans component technology [12]. We have
also developed the JComposer tool for visually specifying
and generating JViews-based environments [12].
JComposer generates Java Beans-based components which
implement software development tools, and provides
reusable components with C-SPE style collaborative
editing, tool repository management, multiple view
consistency mechanisms, and user interface components.

JComposer includes a form of the Serendipity filter
and action language to specify event handling models for
JViews tools. These filters and actions can be specified at
run-time for these tools. This enables any JViews-based
tool to support the degree of flexible, developer-controlled
work coordination and user configuration Serendipity's
filter and action language affords.

Figure 4 shows a simple example of a JComposer-
generated tool, a collaborative ER modeller. The right-
hand view shows a JViews component which is being
visualised (the "customer" entity), and a filter and action
which have been added by the developer. Whenever the
customer entity is renamed, the developer will be notified.
The action component can be configured via a dialogue to

notify the developer via an email message, broadcast
message, highlighted icon in a view or via a dialogue box.
Other work coordination schemes can be added at run-time
by developers, for example constraining which artefacts
and views can/can't be changed, automatically changing
artefacts based on other events, or initiating a dialogue via
chat with a developer when a process stage is enacted, tool
used or artefact changed. [12].

Figure 4. End-user specification of work coordination

Figure 5. Coordinating collaborative software development in JComposer with Serendipity-II.



JComposer has been used to specify and generate a
new, component-based version of Serendipity,
Serendipity-II. This can be used with JComposer-generated
tools to coordinate their use as with SPE-Serendipity. It
can also use Java Beans components, interfaced via filters
and actions, to be informed of third party tool events and
to send instructions to such tools. This provides a very
open architecture for coordinating the use of JViews-based
and third-party distributed software development tools.

Figure 5 shows JComposer in use, specifying the ER
modeller repository from Figure 4. This development is
being carried out collaboratively, with Serendipity-II being
used to coordinate work with JComposer. The
Serendipity-II model describes the process of developing
this ER modeller specification, and uses it to coordinate
the distributed software development work as in our
original Serendipity environment.

JViews-based environments like JComposer and
Serendipity-II also support a decentralised form of user-
configurable collaborative editing, as illustrated in Figure
5. Here user "John" is configuring the "level" of
collaborative editing with user "Rick" using a
"collaboration menu". This is a component which has
been plugged into the environment to provide a range of
asynchronous to fully synchronous editing capabilities for
JViews-based environments [14].

Serendipity-II utilises collaborative editing
components to support cooperative process model
specification and evolution. It also adopts a similar
approach to decentralised software process enactment,
using broadcasting of enactment events between users'
environments. A history of enactment and work artefact-
related events can be stored by each environment, or can
be managed by a central server, as desired. JComposer
filters and actions are used in Serendipity-II to specify
various work coordination schemes and to handle the
automatic processing of events. Component-based tools
which have been integrated with Serendipity-II, including
all other JViews-based tools, can be interfaced to using
appropriate filters and actions. Other tools can be
interfaced to using file translation-supporting actions, or
by building custom filters and actions specific to the data
and control requirements of these tools.

5. Summary

Distributed software development requires facilities to
support collaboration, communication and coordination
among software developers. We have developed a variety
of solutions to these needs, including collaborative artefact
editing mechanisms, and software process modelling tools
to support coordination of this distributed work. Our
approaches use component-based architectures, allowing
our tools to have such facilities added to them rather than
having to be built-in, and to be more readily observed and
controlled by our process modelling environment.

We are currently enhancing the process modelling
languages and software architecture of Serendipity-II to

improve its performance for coordinating distributed
software development. This includes the provision of
integrated communication tools, such as annotation and
messaging, the management of enactment and artefact
change events via an object-oriented database, and the
development of new filters and actions to integrate with
diverse third-party tools.

References

[1] Bandinelli, S., DiNitto, E., and Fuggetta, A.,
“Supporting cooperation in the SPADE-1
environment,” IEEE Transactions on Software
Engineering , vol. 22, no. 12.

[2] Belkhatir, N., Estublier, J., and Melo, W.L., The
Adele/Tempo Experience , Software Process
Modelling & Technology.  Research Studies Press,
1994.

[3] Ben-Shaul, I.Z., Heineman, G.T., Popovich, S.S.,
Skopp, P.D. amd Tong, A.Z., and Valetto, G.,
“Integrating Groupware and Process Technologies
in the Oz Environment,”  in 9th International
Software Process Workshop,  Ghezzi, C., IEEE CS
Press, Airlie, VA, October 1994, pp. 114-116.

[4] Ben-Shaul, I.Z. and Kaiser, G.E., “Integrating
Groupware Activities into Workflow Management
Systems,”  in 7th Israeli Conference on Computer
Based Systems and Software Engineering,  Tel Aviv,
Israel, June 1996, pp. 140-149.

[5] Bentley, R.,  Horstmann, T., Sikkel, K., , and
Trevor, J., “Supporting collaborative information
sharing with the World-Wide Web: The BSCW
Shared Workspace system,”  in In Proceedings of
the 4th International WWW Conference,  Boston,
MA, December 1995.

[6] Bogia, D.P. and Kaplan, S.M., “Flexibility and
Control for Dynamic Workflows in the wOrlds
Environment,”  in Proceedings of the Conference on
Organisational Computing Systems,  ACM Press,
Milpitas, CA, November 1995.

[7]
support to UNIX,”  in 2nd International Conference
on the Software Process,  IEEE CS Press, Berlin,
Germany, February 1993, pp. 12-26.

[8] Grundy, J.C., Hosking, J.G., Fenwick, S., and
Mugridge, W.B., Integrating the pieces, Chapter 11
in Visual  Object -Oriented Programming .
Manning/Prentice-Hall, 1995.

[9] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Supporting flexible consistency management via
discrete change description propagation,” Software
- Practice & Experience , vol. 26, no. 9, 1053-1083,
September 1996.

[10] Grundy, J.C., Venable, J.R., Hosking, J.G., and
Mugridge, W.B., “Coordinating collaborative work
in an integrated Information Systems engineering
environment,”  in Proceedings of the 7th Workshop
on the Next Generation of CASE tools,  Crete, 20-21
May 1996.

[11] Grundy, J.C. and Hosking, J.G., “Constructing
Integrated Software Development Environments
with MViews,”  International Journal of Applied
Software Technology , vol. 2, no. 3-4, 1996.



[12] Grundy, J.C., Mugridge, W.B., and Hosking, J.G.,
“A Java-based toolkit for the construction of multi-
view editing systems,”  in Proceedings of the
Second Component Users Conference,  Munich,
Germany, July 14-18 1997.

[13] Grundy, J.C. and Hosking, J.G., “Serendipity:
integrated environment support for process
modelling, enactment and work coordination,”
Automated Software Engineering , vol. 5, no. 1.

[14] Grundy, J.C., “Engineering component-based, user-
configurable collaborative editing systems,”
Working Paper, Dept. of Computer Science,
University of Waikato, 1998.

[15] Kaiser, G.E., Kaplan, S.M., and  Micallef, J.,
“Mul t iuser ,  Dis t r ibu ted  Language-Based
Environments,”  IEEE Software , vol. 4, no. 11, 58-
67, November 1987.

[16] Kaplan, S.M., Tolone, W.J., Carroll, A.M., Bogia,
D.P., and Bignoli, C., “Supporting Collaborative
Software Development with ConversationBuilder,”
in Proceedings of the 1992 ACM Symposium on
Software Development Environments,  ACM Press,
1992, pp. 11-20.

[17] Kaplan, S.M., Fitzpatrick, G., Mansfield, T., and
Tolone, W.J., “Shooting into Orbit,”  in
Proceedings of Oz-CSCW'96,  University of
Queensland, Brisbane, Australia, August 1996.

[18] Kellner, M.I., Feiler, P.H., Finkelstein, A.,
Katayama, T., Osterweil, L.J., Penedo, M.H., and
Rombach, H.D., “Software Process Modelling
Example Problem,”  in Proceedings of the 6th
International Software Process Workshop,  (Ed),
T.K., IEEE CS Press, Hokkaido, Japan, 28-31
October 1990.

[19] Lotus Inc., System Administration Manual , Lotus
Notes release 3, 1993.

[20]
grained Revision Control for Collaborative
Software Development ,”  in Proceedings of
the1993 ACM SIGSOFT Conference on Foundations
of Software Engineering,  Los Angeles CA,
December 1993, pp. 7-10.

[21] Marlin, C., Peuschel, B.,  McCarthy, M., and
Harvey, J., “MultiView-Merlin: An Experiment in
Tool Integration,”  in Proceedings of the 6th
Conference on Software Engineering Environments,
IEEE CS Press, 1993.

[22] Medina-Mora, R., Winograd, T., Flores, R., and
Flores, F., “The Action Workflow Approach to
Workflow Management Technology,”  in
Proceedings of CSCW'92,  ACM Press, 1992, pp.
281-288.

[23] Reiss, S.P., “Connecting Tools Using Message
Passing in the Field Environment,” IEEE Software ,
vol. 7, no. 7, 57-66, July 1990.

[24] Roseman, M. and Greenberg, S., “A Tour of
Teamrooms,”  in Video Proceedings of ACM
SIGCHI'97,  ACM Press, Atlanta, Georgia, March
22-27 1997.

[25] Swenson, K.D., Maxwell, R.J., Matsumoto, T.,
Saghari, B., and Irwin, K., “A Business Process
Environment Supporting Collaborative Planning,”
Journal of Collaborative Computing , vol. 1, no. 1.

[26] TeamWARE Inc ,  T e a m W A R E  F l o w ,
http://www.teamware.us.com/products/flow/, 1996.


