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Abstract

Coordinating distributed software devel opment projects
becomes more difficult, as software becomes more
complex, team sizes and organisational overheads increase,
and softwar e components are sourced from disparate
places. We describe the devel opment of a range of software
toolsto support coordination of such projects. Techniques
we use include asynchronous and semi-synchronous
editing, software process modelling and enactment,
devel oper-specified coordination agents, and component-
based tool integration.
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1. Introduction

Coordinating multiple devel opers working on a
distributed software development project is very difficult,
and gives rise to the following management problems:

¢ Developers need specific tasks assigned, which
must be coordinated to ensure aworking system
results.

e Developers need to, at times, communicate and
collaborate closely, while at other times can
independently work on parts of a project.

e Software artefacts (code, designs, documentation
etc.) need to beshared and kept consistent.

¢ Multiple tools must be used to modify artefacts,
with some tools supporting close collaborative
editing (e.g. via synchronous editing), while
others supporting looser collaboration (e.g. via
alternate version editing and subseguent merging).

e Progress towards specified goals needs to be
tracked, developers need to remainaware of others
work, and complex software systems need to be
configured from the constituent, distributively
developed parts.
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* Developers need to flexibly  configure their
environments' support for artefact management,
communication, and work coordination.

Many systems have been developed which attempt to
address these issues. Computer Supported Collaborative
Work (CSCW) systems have been used to aid distributed
software devel opment. These include ConversationBuilder
[16], wOrlds [6], Orbit [17], TeamRooms [24], Lotus
Notes [19], and BSCW [5]. Programming environments,
such as Mjglner [20], Mercury [15], and FIELD [23], may
also provide basic collaborative software development
facilities. However, while such systems may support
shared editing and artefact management, they generally
lack adequate coordination support.

Process-centred Environments (PCES), such as Oz [3],
SPADE [1], ProcessWEAVER [7], and ADELE-TEMPO
[2], more tightly integrate software development and
software process support. Most such systems, however,
provide complex mechanisms for specifying processes,
have alimited range of work coordination strategies, and
can be difficult to integrate with third-party tools. CSCW
and process-centred environments can be usefully
integrated. Examples include Oz [4], and SPADE-
ImagineDesk [1], and some programming environments
and process-centred environments, such as Multiview-
Merlin [21]. Workflow systems, such as TeamFL OW
[26], Regatta [25], and Action Workflow [22], provide
more accessible facilities for modelling work processes
but lack flexibility for specifying work coordination
mechanisms and tool integration.

In the following sections we describe our recent work
addressing these problems of distributed software
development coordination. Our solutions include
annotating changes made to software artefacts and
distributed to multiple users, tightly integrated software
development and process modelling and enactment tools,
and component-based software development, process
modelling, and collaborative editing tools.



2. C-SPE

Our first attempt at supporting distributed software
development was C-SPE [8]. SPE (Snart Programming
Environment) is an integrated development environment
for object-oriented software development using Snart, an
Object-oriented Prolog [9]. SPE providesintegrated OOA,
OOD and Snart code views, along with debugging and
documentation views. All are kept consistent under change
by propagating representations of changes ("change
descriptions") between views[9, 10].

C-SPE (Collaborative SPE) adds semi-synchronous
and asynchronous editing to SPE. Distributed developers
can simultaneously edit SPE views and be informed of
changes other developers are making semi-synchronously.
Developers distributed over time and space can edit
different versions of software views asynchronously, and
later merge the changes together. These modes of
collaborative devel opment are complementary; devel opers
can move freely between them. A client-server architecture
supports broadcast of editing changes to support semi-
synchronous editing and provides arepository for storing
versions to support asynchronous editing.
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reimplemented MViews, using, to produce the JViews
framework. JViews is more platform-independent,
provides tools with better performance, and allows third-
party tools to be more easily integrated with our systems
through Java Beans component technology [12]. We have
also developed the JComposer tool for visually specifying
and generating JViews-based environments [12].
JComposer generates Java Beans-based components which
implement software development tools, and provides
reusable components with C-SPE style collaborative
editing, tool repository management, multiple view
consistency mechanisms, and user interface components.

JComposer includes aform of the Serendipity filter
and action language to specify event handling models for
JViewstools. These filters and actions can be specified at
run-time for these tools. This enables any JViews-based
tool to support the degree of flexible, devel oper-controlled
work coordination and user configuration Serendipity's
filter and action language affords.

Figure 4 shows a simple example of a JComposer-
generated tool, a collaborative ER modeller. The right-
hand view shows a JViews component which is being
visualised (the "customer" entity), and afilter and action
which have been added by the developer. Whenever the
customer entity is renamed, the devel oper will be notified.
The action component can be configured via a dialogue to
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notify the developer via an email message, broadcast
message, highlighted icon in aview or via a dialogue box.
Other work coordination schemes can be added at run-time
by developers, for example constraining which artefacts
and views can/can't be changed, automatically changing
artefacts based on other events, or initiating a dialogue via
chat with a devel oper when a process stage is enacted, tool
used or artefact changed. [12].
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JComposer has been used to specify and generate a
new, component-based version of Serendipity,
Serendipity-I1. This can be used with JComposer-generated
tools to coordinate their use as with SPE-Serendipity. It
can aso use Java Beans components, interfaced viafilters
and actions, to be informed of third party tool events and
to send instructions to such tools. This provides a very
open architecture for coordinating the use of JViews-based
and third-party distributed software development tools.

Figure 5 shows JComposer in use, specifying the ER
modeller repository from Figure 4. This development is
being carried out collaboratively, with Serendipity-11 being
used to coordinate work with JComposer. The
Serendipity-11 model describes the process of developing
this ER modeller specification, and uses it to coordinate
the distributed software development work asin our
origina Serendipity environment.

JViews-based environments like JComposer and
Serendipity-I1 also support a decentralised form of user-
configurable collaborative editing, asillustrated in Figure
5. Here user "John" is configuring the "level" of
collaborative editing with user "Rick" using a
"collaboration menu”. Thisis a component which has
been plugged into the environment to provide a range of
asynchronous to fully synchronous editing capabilities for
JViews-based environments [14].

Serendipity-11 utilises collaborative editing
components to support cooperative process model
specification and evolution. It also adopts a similar
approach to decentralised software process enactment,
using broadcasting of enactment events between users
environments. A history of enactment and work artefact-
related events can be stored by each environment, or can
be managed by a central server, as desired. JComposer
filters and actions are used in Serendipity-11 to specify
various work coordination schemes and to handle the
automatic processing of events. Component-based tools
which have been integrated with Serendipity-11, including
al other JViews-based tools, can be interfaced to using
appropriate filters and actions. Other tools can be
interfaced to using file translation-supporting actions, or
by building custom filters and actions specific to the data
and control regquirements of these tools.

5. Summary

Distributed software development requires facilities to
support collaboration, communication and coordination
among software devel opers. We have developed a variety
of solutionsto these needs, including collaborative artefact
editing mechanisms, and software process modelling tools
to support coordination of this distributed work. Our
approaches use component-based architectures, allowing
our toolsto have such facilities added to them rather than
having to be built-in, and to be more readily observed and
controlled by our process modelling environment.

We are currently enhancing the process modelling
languages and software architecture of Serendipity-Il to

improve its performance for coordinating distributed
software development. This includes the provision of
integrated communication tools, such as annotation and
messaging, the management of enactment and artefact
change events via an object-oriented database, and the
development of new filters and actions to integrate with
diverse third-party tools.
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