Coordinating Distributed Software Development Projects with
Integrated Process Modelling and Enactment Environments

John GrundyT, John Hoski ngJFJr and Rick MugridgeTJr

TDepartment of Computer Science
University of Waikato
Private Bag 3105, Hamilton, New Zealand
jgrundy @cs.waikato.ac.nz

Abstract

Coordinating distributed software devel opment projects
becomes more difficult, as software becomes more
complex, team sizes and organisational overheads increase,
and softwar e components are sourced from disparate
places. We describe the devel opment of a range of software
toolsto support coordination of such projects. Techniques
we use include asynchronous and semi-synchronous
editing, software process modelling and enactment,
devel oper-specified coordination agents, and component-
based tool integration.

Keywords : work coordination, distributed software
development tools, process modelling, process-centred
environments, computer-supported cooperative work

1. Introduction

Coordinating multiple devel opers working on a
distributed software development project is very difficult,
and gives rise to the following management problems:

¢ Developers need specific tasks assigned, which
must be coordinated to ensure aworking system
results.

e Developers need to, at times, communicate and
collaborate closely, while at other times can
independently work on parts of a project.

e Software artefacts (code, designs, documentation
etc.) need to beshared and kept consistent.

¢ Multiple tools must be used to modify artefacts,
with some tools supporting close collaborative
editing (e.g. via synchronous editing), while
others supporting looser collaboration (e.g. via
alternate version editing and subseguent merging).

e Progress towards specified goals needs to be
tracked, developers need to remainaware of others
work, and complex software systems need to be
configured from the constituent, distributively
developed parts.

TTDepartment of Computer Science
University of Auckland
Private Bag 92019, Auckland, New Zealand
{john, rick} @cs.auckland.ac.nz

* Developers need to flexibly configure their
environments' support for artefact management,
communication, and work coordination.

Many systems have been developed which attempt to
address these issues. Computer Supported Collaborative
Work (CSCW) systems have been used to aid distributed
software devel opment. These include ConversationBuilder
[16], wOrlds [6], Orbit [17], TeamRooms [24], Lotus
Notes [19], and BSCW [5]. Programming environments,
such as Mjglner [20], Mercury [15], and FIELD [23], may
also provide basic collaborative software development
facilities. However, while such systems may support
shared editing and artefact management, they generally
lack adequate coordination support.

Process-centred Environments (PCES), such as Oz [3],
SPADE [1], ProcessWEAVER [7], and ADELE-TEMPO
[2], more tightly integrate software development and
software process support. Most such systems, however,
provide complex mechanisms for specifying processes,
have alimited range of work coordination strategies, and
can be difficult to integrate with third-party tools. CSCW
and process-centred environments can be usefully
integrated. Examples include Oz [4], and SPADE-
ImagineDesk [1], and some programming environments
and process-centred environments, such as Multiview-
Merlin [21]. Workflow systems, such as TeamFL OW
[26], Regatta [25], and Action Workflow [22], provide
more accessible facilities for modelling work processes
but lack flexibility for specifying work coordination
mechanisms and tool integration.

In the following sections we describe our recent work
addressing these problems of distributed software
development coordination. Our solutions include
annotating changes made to software artefacts and
distributed to multiple users, tightly integrated software
development and process modelling and enactment tools,
and component-based software development, process
modelling, and collaborative editing tools.

2. C-SPE

Our first attempt at supporting distributed software
development was C-SPE [8]. SPE (Snart Programming
Environment) is an integrated development environment
for object-oriented software development using Snart, an
Object-oriented Prolog [9]. SPE providesintegrated OOA,
OOD and Snart code views, along with debugging and
documentation views. All are kept consistent under change
by propagating representations of changes ("change
descriptions") between views[9, 10].

C-SPE (Collaborative SPE) adds semi-synchronous
and asynchronous editing to SPE. Distributed developers
can simultaneously edit SPE views and be informed of
changes other developers are making semi-synchronously.
Developers distributed over time and space can edit
different versions of software views asynchronously, and
later merge the changes together. These modes of
collaborative devel opment are complementary; devel opers
can move freely between them. A client-server architecture
supports broadcast of editing changes to support semi-
synchronous editing and provides arepository for storing
versions to support asynchronous editing.

window-root class
\ Change descriptions inserted
o L3 into view text, dialog, and/or
nd icons highlighted (but only
L= collaborator name is shown)
/ |
- drawing_windowAlass DEfinition

fiqures #tupdates_start(11]

update(s). & [1.1b (rick)] Jleve feature Ride
update(#). % [1.1b (rick)ffadd feature visible : boolean
— updatei10). ¥ [1.1b (viff)] =d4d feature display_win
updates_end. */

Syncronous Updates

1.1b [rick) - 8. delete feature hide ©
1.1b [rick) - 9. add feature visible : boolean
1.1b [rick) - 18. add feature_display_win

[

o

|[View]l[Apply] [Ignore] [l:ancel]

ispw6.3:Monitor Progress-coord

isput .2 project tem
Tesign, Code & Test | °

used-in (AU]

SPE 00A/D (design doc)

==

()

—_—
— - flotify Testing Surmerize Changes
Hotify Ohanges Started i
Gy i

<] i

-
shanges list (CU)
role .

role

ispwé .3 projeat munager Lounar (¥] T E
shonses ey

reimplemented MViews, using, to produce the JViews
framework. JViews is more platform-independent,
provides tools with better performance, and allows third-
party tools to be more easily integrated with our systems
through Java Beans component technology [12]. We have
also developed the JComposer tool for visually specifying
and generating JViews-based environments [12].
JComposer generates Java Beans-based components which
implement software development tools, and provides
reusable components with C-SPE style collaborative
editing, tool repository management, multiple view
consistency mechanisms, and user interface components.

JComposer includes aform of the Serendipity filter
and action language to specify event handling models for
JViewstools. These filters and actions can be specified at
run-time for these tools. This enables any JViews-based
tool to support the degree of flexible, devel oper-controlled
work coordination and user configuration Serendipity's
filter and action language affords.

Figure 4 shows a simple example of a JComposer-
generated tool, a collaborative ER modeller. The right-
hand view shows a JViews component which is being
visualised (the "customer" entity), and afilter and action
which have been added by the developer. Whenever the
customer entity is renamed, the devel oper will be notified.
The action component can be configured via a dialogue to

[} ISPW6 Process - Level 1 18 [=1 E3 |

File “iew Changes Collaborstion

EAERD Specification
File ‘“iew Changes Compilstion JetsllEldele]

notify the developer via an email message, broadcast
message, highlighted icon in aview or via a dialogue box.
Other work coordination schemes can be added at run-time
by developers, for example constraining which artefacts
and views can/can't be changed, automatically changing
artefacts based on other events, or initiating a dialogue via
chat with a devel oper when a process stage is enacted, tool
used or artefact changed. [12].

Add Collshorator |

L L] u
o desigrer
Design Change

u u

dofie design

EnlieHama:Siring

design errars

» Tldren
BaseEnti
VBase ey

3
Send Changes steve (async qreen]

} Send Component

EE=iE

)
v

Repository
i1 1 ig &l aver

|D.n

4.

L L L]
ddileader
Aopmire Chamge,
| | = n

BaseRel

MvBazeComp

Rejected

Approved RalHame:Siring

Shape:

BaseRole

=i Updates on: ERD View Spec #1 M= E

14. Macra change: Add Component

14, SetStringvalue nameText BaseRale
16. SetStringValue parentText MYVBaszeCo
[mark] 17 Wacro change: Add Component
[mark] 18 SetStringValue nameText Relle
[mark] 19 SetStringValue parentText MW
[mark] 20 Setintvalue y 232 330

[mark] 21 Setintvalue x 305 372

[mark] 22 Setintvalue v 283 324

[mark] 23 Setintvalue x 27 22
Setintvalue vy 154 187

etintyalue x 94 126
Undo | Redo | Export | Close |

T Sy

-

] n [| | I
IResize 'l r Debug Prop

Shape: IMove 'l r Debug Propagation Display Shapes | |

JComposer has been used to specify and generate a
new, component-based version of Serendipity,
Serendipity-I1. This can be used with JComposer-generated
tools to coordinate their use as with SPE-Serendipity. It
can aso use Java Beans components, interfaced viafilters
and actions, to be informed of third party tool events and
to send instructions to such tools. This provides a very
open architecture for coordinating the use of JViews-based
and third-party distributed software development tools.

Figure 5 shows JComposer in use, specifying the ER
modeller repository from Figure 4. This development is
being carried out collaboratively, with Serendipity-11 being
used to coordinate work with JComposer. The
Serendipity-11 model describes the process of developing
this ER modeller specification, and uses it to coordinate
the distributed software development work asin our
origina Serendipity environment.

JViews-based environments like JComposer and
Serendipity-I1 also support a decentralised form of user-
configurable collaborative editing, asillustrated in Figure
5. Here user "John" is configuring the "level" of
collaborative editing with user "Rick" using a
"collaboration menu”. Thisis a component which has
been plugged into the environment to provide a range of
asynchronous to fully synchronous editing capabilities for
JViews-based environments [14].

Serendipity-11 utilises collaborative editing
components to support cooperative process model
specification and evolution. It also adopts a similar
approach to decentralised software process enactment,
using broadcasting of enactment events between users
environments. A history of enactment and work artefact-
related events can be stored by each environment, or can
be managed by a central server, as desired. JComposer
filters and actions are used in Serendipity-11 to specify
various work coordination schemes and to handle the
automatic processing of events. Component-based tools
which have been integrated with Serendipity-11, including
al other JViews-based tools, can be interfaced to using
appropriate filters and actions. Other tools can be
interfaced to using file translation-supporting actions, or
by building custom filters and actions specific to the data
and control regquirements of these tools.

5. Summary

Distributed software development requires facilities to
support collaboration, communication and coordination
among software devel opers. We have developed a variety
of solutionsto these needs, including collaborative artefact
editing mechanisms, and software process modelling tools
to support coordination of this distributed work. Our
approaches use component-based architectures, allowing
our toolsto have such facilities added to them rather than
having to be built-in, and to be more readily observed and
controlled by our process modelling environment.

We are currently enhancing the process modelling
languages and software architecture of Serendipity-Il to

improve its performance for coordinating distributed
software development. This includes the provision of
integrated communication tools, such as annotation and
messaging, the management of enactment and artefact
change events via an object-oriented database, and the
development of new filters and actions to integrate with
diverse third-party tools.

References

[1] Bandinelli, S., DiNitto, E., and Fuggetta, A.,
“Supporting cooperation in the SPADE-1
environment,” |EEE Transactions on Software
Engineering , vol. 22, no. 12.

[2] Belkhatir, N., Estublier, J., and Melo, W.L., The
Adele/Tempo Experience , Software Process
Modelling & Technology. Research Studies Press,
1994.

[3] Ben-Shaul, 1.Z., Heineman, G.T., Popovich, S.S.,
Skopp, P.D. amd Tong, A.Z., and Valetto, G.,
“Integrating Groupware and Process Technologies
in the Oz Environment,” in 9th International
Software Process Workshop, Ghezzi, C., IEEE CS
Press, Airlie, VA, October 1994, pp. 114-116.

[4] Ben-Shaul, |.Z. and Kaiser, G.E., “Integrating
Groupware Activities into Workflow Management
Systems,” in 7th Israeli Conference on Computer
Based Systems and Software Engineering, Tel Aviv,
Israel, June 1996, pp. 140-149.

[5] Bentley, R., Horstmann, T., Sikkel, K., , and
Trevor, J., “ Supporting collaborative information
sharing with the World-Wide Web: The BSCW
Shared Workspace system,” in In Proceedings of
the 4th International WWW Conference, Boston,
MA, December 1995.

(6] Bogia, D.P. and Kaplan, S.M., “Flexibility and
Control for Dynamic Workflows in the wOrlds
Environment,” in Proceedings of the Conference on
Organisational Computing Systems, ACM Press,
Milpitas, CA, November 1995.

[7] Fernstrom, C., “ProcessWEAVER: Adding process
support to UNIX,” in 2nd International Conference
on the Software Process, |EEE CS Press, Berlin,
Germany, February 1993, pp. 12-26.

[8] Grundy, J.C., Hosking, J.G., Fenwick, S., and
Mugridge, W.B., Integrating the pieces, Chapter 11
in Visual Object-Oriented Programming
Manning/Prentice-Hall, 1995.

[9] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Supporting flexible consistency management via
discrete change description propagation,” Software
- Practice & Experience , vol. 26, no. 9, 1053-1083,
September 1996.

[10] Grundy, J.C., Venable, J.R., Hosking, J.G., and
Mugridge, W.B., “Coordinating collaborative work
in an integrated Information Systems engineering
environment,” in Proceedings of the 7th Workshop
on the Next Generation of CASE tools, Crete, 20-21
May 1996.

[17] Grundy, J.C. and Hosking, J.G., “Constructing
Integrated Software Development Environments
with MViews,” International Journal of Applied
Software Technology, vol. 2, no. 3-4, 1996.

(12]

(13]

(14]

(19]

(16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

(29]

Grundy, J.C., Mugridge, W.B., and Hosking, J.G.,
“A Java-based toolkit for the construction of multi-
view editing systems,” in Proceedings of the
Second Component Users Conference, Munich,
Germany, July 14-18 1997.

Grundy, J.C. and Hosking, J.G., “ Serendipity:
integrated environment support for process
modelling, enactment and work coordination,”
Automated Software Engineering , vol. 5, no. 1.
Grundy, J.C., “Engineering component-based, user-
configurable collaborative editing systems,”
Working Paper, Dept. of Computer Science,
University of Waikato, 1998.

Kaiser, G.E., Kaplan, S.M., and Micallef, J.,
“Multiuser, Distributed Language-Based
Environments,” |EEE Software, vol. 4, no. 11, 58-
67, November 1987.

Kaplan, S.M., Tolone, W.J., Carroll, A.M., Bogia,
D.P., and Bignoli, C., “Supporting Collaborative
Software Development with ConversationBuilder,”
in Proceedings of the 1992 ACM Symposium on
Software Development Environments, ACM Press,
1992, pp. 11-20.

Kaplan, S.M., Fitzpatrick, G., Mansfield, T., and
Tolone, W.J., “Shooting into Orbit,” in
Proceedings of Oz-CSCW'96, University of
Queensland, Brishane, Australia, August 1996.
Kellner, M.1., Feiler, P.H., Finkelstein, A.,
Katayama, T., Osterweil, L.J., Penedo, M.H., and
Rombach, H.D., “Software Process Modelling
Example Problem,” in Proceedings of the 6th
International Software Process Workshop, (Ed),
T.K., IEEE CS Press, Hokkaido, Japan, 28-31
October 1990.

LotusInc., System Administration Manual , Lotus
Notes release 3, 1993.

Magnusson, B., Asklund, U., and Minér, S., “Fine-
grained Revision Control for Collaborative
Software Development ,” in Proceedings of
the1993 ACM SIGSOFT Conference on Foundations
of Software Engineering, Los Angeles CA,
December 1993, pp. 7-10.

Marlin, C., Peuschel, B., McCarthy, M., and
Harvey, J., “MultiView-Merlin: An Experiment in
Tool Integration,” in Proceedings of the 6th
Conference on Software Engineering Environments,
|EEE CS Press, 1993.

Medina-Mora, R., Winograd, T., Flores, R., and
Flores, F., “The Action Workflow Approach to
Workflow Management Technology,” in
Proceedings of CSCW'92, ACM Press, 1992, pp.
281-288.

Reiss, S.P., “Connecting Tools Using Message
Passing in the Field Environment,” |EEE Software,
vol. 7, no. 7, 57-66, July 1990.

Roseman, M. and Greenberg, S., “A Tour of
Teamrooms,” in Video Proceedings of ACM
SGCHI'97, ACM Press, Atlanta, Georgia, March
22-27 1997.

Swenson, K.D., Maxwell, R.J., Matsumoto, T.,
Saghari, B., and Irwin, K., “A Business Process
Environment Supporting Collaborative Planning,”
Journal of Collaborative Computing , vol. 1, no. 1.

(26]

TeamWARE Inc, TeamWARE Flow
http://www.teamware.us.com/products/flow/, 1996.

