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Chapter 1

Introduction

Glass tubes are drawn from a source of molten glass by means of various pro-
cesses. The most popular of which are the Danner process, the Vello process
and the Down draw process (see Fig. 1.1). In each of these processes, with
some variations in mechanism, the molten glass flows through a feeder chan-
nel on the surface of a cylindrical device (mandrel/needle) which is hollow
such that air can be blown through it. Shaping of the tube takes place at and
just below the end of the cylindrical device and is drawn off by the drawing
machine. The shape of the drawn tube is characterized by the parameters:
the wall thickness and the diameter or by the cross-sectional area of the tube.
These parameters are influenced by variables such as the drawing speed, the
air pressure in the cylindrical device, the composition of the raw materials
and the room temperature. We remark that the drawing speed, as com-
pared to the other variables, significantly affects the shaping parameters and
hence can be utilized as a control variable to control the geometry of the tube.

In glass industry people are in particular interested in controlling the ge-
ometry of the tube which may be circular, square or rectangular in shape.
Different techniques have been discussed in the literature to control the ge-
ometry of the tube during the drawing process. For example in [18], the
manufacturing of non-axisymmetric capillary tubing via Vello process is con-
sidered with the aim of solving the inverse problem to determine the die shape
required to achieve a given final shape (square or rectangular). The problem
was solved analytically by considering the steady tube drawing. In [49], the
control of a complex glass forming process (tube drawing) has been studied.
The process modeled by four coupled and nonlinear partial differential equa-
tions is solved numerically by Finite Element Method (FEM). To control the
process, a control methodology like Nonlinear Model Predictive Control (an
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2 CHAPTER 1. INTRODUCTION

advanced method of process control used in the processing industries) was
implemented. The Two-Degree-Of-Freedom Internal Model Control scheme
was used in [15] for controlling the average external diameter and the aver-

Figure 1.1: Tube Drawing Processes. Courtesy: SCHOTT-Rohrglas GmbH

age wall thickness of the tubes used for the production of the gas-discharge
lamps. However, none of these has used the adjoint variable approach which
is very robust and commonly used in solving the optimal control problems,
see [7, 23, 24, 29, 30, 32, 34, 35, 36, 37, 38, 45] and the references therein.

This study is aimed at using the adjoint variable approach to control the
circular cross-sectional area of a glass tube in the glass tube manufacturing
process. This leads us to the formulation of an optimal control problem which
requires a mathematical model for the physical process to be controlled, a
specification of the performance index, and a specification of all boundary
conditions on states.

Various types of mathematical models of the drawing processes, with varying
level of description and needs, are available in the literature. We cite here
some of them. The drawing of hollow optical fibers both for the isothermal
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and the non-isothermal cases has been studied in [3] and [4] respectively.
Therein the axisymmetric fiber is considered and the large aspect ratio of
the fiber is exploited to obtain one-dimensional models. The main concern
was the evolution in the size of the hole. A mathematical model of the draw-
ing process of glass capillary tubes based on real, acceptable and critically
analyzed assumptions is developed in [46]. In [28], for the considered non-
axisymmetric fiber drawing with slow variations in the axial direction, the
shape of the cross-section was found to satisfy a two dimensional time de-
pendent Stokes flow problem when expressed in suitable scaled Lagrangian
coordinates. Production of non-isothermal tubing has also been discussed
in [10, 47, 50].

In Chapter 2, we derive a mathematical model for non-isothermal tube draw-
ing processes. We begin the chapter with a presentation of the physical pro-
cess involved and then write the Stokes equations along with the convection-
diffusion equation which govern the axisymmetric slow flow of incompressible
Newtonian fluid (molten glass). By considering the glass flow as thin layer
flow, we exploit the large aspect ratio of the flow to obtain simplified model
equations from the general Stokes and the convection-diffusion equations. A
similar strategy is used in [3, 4, 10, 42] to derive the simplified model equa-
tions. We conclude the chapter by presenting he isothermal tube drawing
model and proving the existence and uniqueness of the solutions to the sta-
tionary model equations.

In Chapter 3, we state the optimal control problem by defining the track-
ing type cost functional and the weak formulation of the state system. By
assuming sufficient regularity and uniqueness of the solutions of the state
equations, we define the reduced cost functional. Under some assumptions,
the existence of minimizer of the optimal control problem is also proved.
We derive the first-order optimality conditions by introducing the Lagrange
functional. The existence and uniqueness of the solutions of the stationary
adjoint equations are also proved. For more analysis, we also derive the
second-order conditions to compute the Hessian of the reduced cost func-
tional. The analytical information gathered in this chapter is then used in
the Chapter 4 to solve the control problem numerically.

Solution algorithms and numerical implementation details are discussed in
Chapter 4. We define the first and the second order optimization algorithms
to respectively solve the first order and the second order optimality con-
ditions derived in Chapter 3. These optimization algorithms are based on
steepest descent (SD) [9, 22], nonlinear conjugate gradient (NCG) [9, 22],



4 CHAPTER 1. INTRODUCTION

BFGS [22, 33] and Newton-CG [22, 37] approaches. SD, NCG and BFGS
based approaches use the first derivative information of the reduced cost func-
tional whereas Newton-CG algorithm uses the second derivative information.
In the Newton-CG method, the CG iterations are embedded in the Newton’s
method [33, 37] to solve the linear equations. The Newton-CG method un-
like the Newton method does not require explicit knowledge of the Hessian,
rather it requires only the matrix-vector products, e.g. see matrix-vector
products form given in (3.33). To stop the embedded CG iterations, we use
the stopping criterion as given in [33, 37]. With this criterion we get the lin-
ear, the superlinear and the quadratic convergence of the method for different
values of the parameter used therein. In the second half of the chapter, we
use the finite difference methods to discretize the first and the second order
optimality conditions. The Newton’s iterations are implemented to solve the
nonlinear discretized equations. The consistency of the implemented schemes
is also proved. Furthermore, we also illustrate the symmetry of the reduced
Hessian by showing that the discretization of the linearized state and the
adjoint equations yield transpose of each other.

In Chapter 5, the numerical results of the optimal control problems both
for the isothermal and the non-isothermal models are presented and dis-
cussed. We discuss here the control of the cross-sectional area in the entire
time domain and also at the final time tf . We also compare the convergence
results of the optimization algorithms defined in Chapter 4.

We summarize the results in Chapter 6 and give some concluding remarks.

Appendix A is devoted to definition of the optimal control problem for
isothermal tube drawing model. We also define the weak formulation and
derive the first and the second order optimality conditions for solving the
control problem. Some basic definitions, lemmas and theorems related to
this work are given in Appendix B.



Chapter 2

Modelling Tube Drawing

Processes

This chapter is devoted to the derivation of mathematical models of the tube
drawing process. We first briefly describe the industrial manufacturing pro-
cess of the tube drawing and then derive the corresponding model equations.

The typical glass tube manufacturing processes are the Danner process and
the Vello process. In these processes, the molten glass flows through a feeder
channel into a bowl where the temperature is decreased so far that tubes can
be drawn. In the bowl an inclined(Danner)/vertical(Vello) mandrel/needle
is mounted which is hollow from inside such that air can be blown through it.
Shaping of the tube takes place at, and just below the end of the mandrel.
At this stage the shaped tube is like a thick-walled cylinder. This thick-
walled cylinder is then fed with a low feeding speed v0 into a hot-forming
zone of length L, and is pulled by a drawing machine with a drawing speed
vL (vL > v0). The change of temperature in the hot-forming zone determines
whether to develop an isothermal or a non-isothermal model. We consider
both the isothermal and the non-isothermal tube drawing processes and de-
rive the corresponding model equations. (See the schematic diagram of the
tube in figure 2.1).

2.1 Non-isothermal Tube Drawing

To model the tube drawing process, we consider a slow flow of incompressible
Newtonian fluid (molten glass) and suppose that the temperature is not
constant in the hot-forming zone. The flow is considered between two free

5



6 CHAPTER 2. MODELLING TUBE DRAWING PROCESSES

Figure 2.1: Schematic diagram of tube.

surfaces r = R1 (x, t) and r = R2 (x, t), where R1 (x, t) and R2 (x, t) are
respectively the inner and the outer radii of the tube. Since the inertial force
as well as the surface tension force acting upon the molten glass in the draw-
down zone are insignificant, they can be neglected. The governing equations

Parameters Symbols Approx. Values Units

specific heat cp 770 Jkg−1K−1

density ρ 2500 kg m−3

thermal conductivity k 1.1 Wm−1K−1

emissivity ǫ 0.9 —
Stefan-Boltzmann const. σ 5.67 × 10−8 Wm2K−4

Table 2.1: Typical parameter values taken from [16, 18, 39, 48, 46]
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for such type of flow are given as:

1

r
(rw)r + vx = 0, (2.1a)

pr = µ
(

wrr +
wr
r
−
w

r2

)

+ (µwx)x + µxvr + 2µrwr, (2.1b)

px =
1

r
(µrvr)r + (2µvx)x +

1

r
(µrwx)r + ρg, (2.1c)

ρcp (Tt + vTx + wTr) = (kTx)x +
1

r
(krTr)r + σǫ

(
T 4
amb − T

4
)
, (2.1d)

Equations (2.1a)-(2.1c) are the standard equations for axisymmetric Stokes
flow (see [4] for Navier-Stokes equations) where the first equation is the con-
tinuity equation given by the incompressibility condition, and the second
and third equations are respectively the momentum equations in r and x
directions. Equation (2.1d) is the energy conservation equation. Derivatives
are denoted by subscripts x, r and t where x measures the distance along
the axis of the tube, r denotes distance normal to it and t denotes the time.
The velocity v of the molten glass is denoted by v = (v, w), where v is the
component of velocity along x direction and w along r direction. The accel-
eration due to gravity and the pressure are respectively denoted by g and p.
The parameters ρ, k, cp, ǫ and σ are respectively the density, thermal con-
ductivity, specific heat, emissivity and Stefan-Boltzmann constant. T is the
glass temperature and Tamb denotes the ambient temperature in the furnace.
The temperature dependent viscosity µ is given by the relation

µ (T ) = µ0e
β

“

1− T
T0

”

, (2.1e)

where µ0 is the viscosity at initial temperature T0. The dimensionless param-
eter β reflects the extreme sensitivity of µ to variations in T . The physical
applicability of relation (2.1e) is considered in [39] and is used in mathemat-
ical models of tube drawing, for example see [46].

To close the problem, it is now necessary to specify the kinematic conditions,
the stress conditions and the temperature conditions at the free surfaces.
The kinematic conditions are

w = R1t +R1xv on r = R1, (2.1f)

w = R2t +R2xv on r = R2. (2.1g)

The stress conditions on the inner and the outer surfaces are respectively
given as

τn̂in = −psn̂in on r = R1,

τ n̂out = 0 on r = R2.
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where ps is the pressure imposed on the inner surface of the tube, n̂in and n̂out
are the unit normals on the inner and the outer surfaces defined respectively
as:

n̂in =
1

√

1 + (R1x)2
(1,−R1x), and n̂out =

−1
√

1 + (R2x)2
(1,−R2x)

The stress tensor τ is given as:

τ =

(
−p+ 2µwr µ (vr + wx)
µ (vr + wx) −p + 2µvx

)

The stress conditions can be written as

(−p + 2µwr)− µ (wx + vr)R1x = −ps on r = R1, (2.1h)

µ (vr + wx)− (−p+ 2µvx)R1x = psR1x on r = R1, (2.1i)

−p + 2µwr = µ (wx + vr)R2x on r = R2, (2.1j)

µ (vr + wx) = (−p + 2µvx)R2x on r = R2. (2.1k)

Since the thermal conductivity of air is much lower than the thermal conduc-
tivity of glass, we assume that the glass is essentially insulated on its inner
surface r = R1(x, t). At the outer surface r = R2(x, t), we also assume that
the glass loses heat to the surrounding air in the furnace via the Newton-type
cooling law. So boundary conditions for temperature are

Tr = 0 on r = R1, (2.1l)

kTr = α (Tamb − T ) on r = R2, (2.1m)

where α is heat transfer coefficient and taken as a constant.

2.1.1 Nondimensionalisation and Scaling

It is now appropriate to non-dimensionalise (2.1) to take advantage of the
small parameters that are present in the problem. The appropriate scalings
for the dimensional quantities as defined in [4, 42] are

x = Lx̄, r = εLr̄

R1 = εLR̄1, R2 = εLR̄2

v = Uv̄, w = εUw̄

p =
µ0U

L
p̄, ps =

µ0U

L
p̄s

T = θT̄ , Tamb = θT̄amb

µ = µ0µ̄, t =
L

U
t̄
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Here L is the typical length of the hot-forming zone, U denotes a typical draw
speed, θ is the reference temperature of tube and µ0 denotes the typical glass

viscosity. ε =
W

L
≪ 1 is the small parameter present in the problem where

W is the width of the tube.

The dimensionless system of governing equations, after dropping the bar
for notational convenience, is then given as follows.

The continuity equation (2.1a) is

1

r
(rw)r + vx = 0, (2.2a)

The momentum equation (2.1b) in the r direction becomes

pr = µ
(

wrr +
wr
r
−
w

r2

)

+ ε2 (µwx)x + µxvr + 2µrwr, (2.2b)

and in x direction we have

ε2px =
1

r
(µrvr)r + ε2 (2µvx)x + ε21

r
(µrwx)r + ε2St, (2.2c)

The energy equation (2.1d) is given as

ε2 (Tt + vTx + wTr) =
1

PrRe

(

ε2 (Tx)x +
1

r
(rTr)r

)

+ε2Γ
(
T 4
amb − T

4
)

(2.2d)

The kinematic conditions (2.1f), (2.1g) and the temperature conditions (2.1l), (2.1m)
become

w = R1t +R1xv on r = R1, (2.2e)

w = R2t +R2xv on r = R2, (2.2f)

Tr = 0 on r = R1, (2.2g)

Tr = ᾱε2 (Tamb − T ) on r = R2, (2.2h)

and the stress conditions (2.1h)-(2.1k) yield

(−p + 2µwr)− µ
(
ε2wx + vr

)
R1x = −ps on r = R1, (2.2i)

µ
(
vr + ε2wx

)
− ε2 (−p + 2µvx)R1x = ε2psR1x on r = R1, (2.2j)

−p + 2µwr = µ
(
ε2wx + vr

)
R2x on r = R2, (2.2k)

µ
(
vr + ε2wx

)
= ε2 (−p + 2µvx)R2x on r = R1 (2.2l)
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where

ᾱ =
Lα

kε
, Γ =

Lθ3σǫ

Ucpρ

and the other dimensionless numbers are given as

St =
ρgL2

µ0U
, Pr =

cpµ0

k
, Re =

LUρ

µ0

,

which are respectively the Stokes number, the Prandtl number and the
Reynolds number.

2.1.2 Asymptotic Expansions

In this section, we exploit the small parameter ε present in the system of gov-
erning equations (2.2) to simplify them. Since the small parameter appears
there in even powers of ε only, the obvious choice to expand the dependent
variables, as given in [4, 42], is:

v = v0 + ε2v1 +O(ε4)

w = w0 + ε2w1 +O(ε4)

p = p0 + ε2p1 +O(ε4)

T = T0 + ε2T1 +O(ε4)

We substitute these expansions into equations (2.2) and collect the coeffi-
cients of like powers of ε.

The leading-order contributions from equations (2.2a)-(2.2d) are respectively
given as

1

r
(rw0)r + v0x = 0, (2.3a)

p0r = µ
(

w0rr +
w0r

r
−
w0

r2

)

+ µxv0r + 2µrw0r, (2.3b)

(µrv0r)r = 0, (2.3c)

(rT0r)r = 0, (2.3d)

The kinematic and the temperature conditions (2.2e)-(2.2h) and the stress
conditions (2.2i)-(2.2l) respectively give the following leading-order contribu-
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tions.

w0 = R1t +R1xv0 on r = R1, (2.3e)

w0 = R2t +R2xv0 on r = R2, (2.3f)

T0r = 0 on r = R1 and r = R2, (2.3g)

−p0 + 2µw0r = −ps0 on r = R1, (2.3h)

v0r = 0 on r = R1, (2.3i)

−p0 + 2µw0r = 0, on r = R2, (2.3j)

v0r = 0, on r = R2. (2.3k)

From equation (2.3d) and the boundary condition (2.3g), we find that

T0 = T0 (x, t)

which means that leading order temperature T0 is independent of r and hence
the viscosity µ is also independent of r.

Similarly, the leading-order momentum equation (2.3c) and the leading-order
conditions (2.3i), (2.3k) yield

v0 = v0 (x, t)

Thus the leading-order axial velocity v0 is also independent of r.

From the continuity equation (2.3a), we obtain

w0 = −
r

2
v0x +

C (x, t)

r
, (2.4)

where the function C (x, t) is to be determined.

The equation (2.4) along with the normal stress boundary conditions (2.3h)
and (2.3j) give

−p0 −
2µ

R2
1

C (x, t)− µv0x + ps0 = 0, (2.5a)

−p0 −
2µ

R2
2

C (x, t)− µv0x = 0. (2.5b)

We solve the equations (2.5) for p0 and C (x, t) by considering that these
equations are linear in the variables p0 and C. That is

p0 = −
ps0R

2
1

R2
2 − R

2
1

− µv0x, (2.6)

C (x, t) =
ps0R

2
1R

2
2

2µ (R2
2 − R

2
1)
. (2.7)
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Equation (2.4) at boundary r = R1 is written as

−
R1

2
v0x +

C (x, t)

R1

= R1t +R1xv0, (2.8)

where we have also used the kinematic boundary condition (2.3e). Now
using (2.7), we obtain

(
R2

1

)

t
+
(
v0R

2
1

)

x
=

ps0R
2
1R

2
2

µ (R2
2 −R

2
1)
, (2.9a)

Similarly at boundary r = R2, equation (2.4) gives us

(
R2

2

)

t
+
(
v0R

2
2

)

x
=

ps0R
2
1R

2
2

µ (R2
2 −R

2
1)
. (2.9b)

Equations (2.9) give the inner radius R1 and the outer radius R2 of the tube.
To get the equation for mean radius R, we do some simple manipulations
with the equations (2.9) and arrive at the below equation in dimensional
from

(
R2
)

t
+
(
vR2

)

x
=

ps
16πµ(T )A

(
16π2R4 − A2

)
(2.10)

where A = 2πRW is the cross-sectional area of the tube, R and W are
respectively the mean radius and the width of the tube which in terms of R1

and R2 are given by the relations

R =
R1 +R2

2
, W = R2 − R1.

Equations (2.9) also lead us to the equation of continuity:

(
R2

2 −R
2
1

)

t
+
(
v0

(
R2

2 −R
2
1

))

x
= 0

or in dimensional form

(A)t + (vA)x = 0, (2.11)

Since µ and v0 are independent of r, the leading-order r-momentum equa-
tion (2.3b) yields

p0r = 0, ⇒ p0 = p0 (x, t) .

which means that leading-order pressure is also independent of r.
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To get the closed system of equations for the tube drawing process, we con-
sider the x-momentum equation and the energy equation of O (ε2)

p0x =
µ

r
(rv1r)r + (2µv0x)x +

µ

r
(rw0x)r + St, (2.12a)

T0t + v0T0x =
1

PrRe

(

(T0x)x +
1

r
(rT1r)r

)

+ Γ
(
T 4
amb − T

4
0

)
. (2.12b)

We multiply the equations (2.12) by r and then integrate them from r = R1

to r = R2 to yield

R2
2 − R

2
1

2
(p0x − (2µv0x)x + µv0xx − St)

= µ ((rv1r) |r=R2
− (rv1r) |r=R1

) , (2.13a)

R2
2 − R

2
1

2

(

T0t + v0T0x −
1

PrRe
(T0x)x − Γ

(
T 4
amb − T

4
0

)
)

=
1

PrRe
((rT1r) |R2

− (rT1r) |R1
) . (2.13b)

The normal stress boundary conditions of order ε2 are

µ (v1r + w0x)− (−p0 + 2µv0x)R1x = ps0R1x on r = R1, (2.14a)

µ (v1r + w0x) = (−p0 + 2µv0x)R2x on r = R2, (2.14b)

Taking x-derivative of equation (2.4) and then substituting w0x in the stress
conditions (2.14), we have

µv1r|r=R1
=
µR1

2
v0xx −

µCx
R1

+ (−p0 + 2µv0x)R1x + ps0R1x,

µv1r|r=R2
=
µR2

2
v0xx −

µCx
R2

+ (−p0 + 2µv0x)R2x.

Using these conditions and the x-derivative of p0, the momentum equa-
tion (2.13a), after certain simplifications, reduces to

[
3µ
(
R2

2 − R
2
1

)
v0x

]

x
+
(
R2

2 − R
2
1

)
St = 0

and in dimensional form we get

(3µAvx)x + ρgA = 0 (2.15)

To O(ε2), the temperature boundary conditions are

T1r = 0 on r = R1, (2.16a)

T1r = ᾱ (Tamb − T0) on r = R2. (2.16b)
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Using the boundary conditions (2.16) in equation (2.13b), we get the energy
equation in dimensionless form as

R2
2 − R

2
1

2

(

T0t + v0T0x −
1

PrRe
(T0x)x − Γ

(
T 4
amb − T

4
0

)
)

=
R2ᾱ

P rRe
(Tamb − T0) .

and in dimensional form as

ρcp (Tt + vTx) = kTxx + σε
(
T 4
amb − T

4
)

+ α

(
2πR

A
+

1

2R

)

(Tamb − T ) .

(2.17)

For the sake of clarity, we have dropped the zero-subscript referring to
the leading-order quantities in the derived equations (2.10), (2.11), (2.15)
and (2.17). Furthermore, we need to supplement these derived equations
with boundary and initial conditions. The boundary conditions are:

A (x = 0, t) = A0, R (x = 0, t) = R0, (2.18a)

v (x = 0, t) = v0, v (x = L, t) = vL, (2.18b)

T (x = 0, t) = T0, T (x = L, t) = TL, (2.18c)

and the initial conditions read as:

A (x, t = 0) = A0, R (x, t = 0) = R0, T (x, t = 0) = T0, for x ∈ [0, L]
(2.19)

The derived model equations (2.10), (2.11), (2.15) (2.17) along with the
boundary conditions (2.18) and the initial conditions (2.19) are strongly cou-
pled, nonlinear and describe the non-isothermal tube drawing process.

Before moving to the next chapter where we, on the basis of this model,
will define the optimal control problem and derive the first order and the
second order conditions, it is necessary to transform the simplified model
into dimensionless form. For that we do the rescaling and use the simple
scales

x̃ =
x

L
, Ã =

A

A0
, R̃ =

R

R0
, ṽ =

v

v0
, t̃ =

v0t

L
,

µ̃ =
µ

µ0
, T̃ =

T

T0
, T̃a =

Tamb
T0

, p̃ =
Lps
µ0v0
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Dropping the tilde notation, we get the following dimensionless system of
equations (also given by [49]):

(A)t + (vA)x = 0, (2.20a)

(3µ(T )Avx)x + (St)A = 0, (2.20b)

(
R2
)

t
+
(
vR2

)

x
=

πc1p

µ(T )A

(

R4 −
A2

(4πc1)
2

)

, (2.20c)

Tt + vTx = aTxx + c2
(
T 4
a − T

4
)

+

(
b1R

A
+

b2
2R

)

(Ta − T ) . (2.20d)

where

St =
ρgL2

v0µ0

,

is the Stokes number and the other parameters are

a =
k

ρcpv0L
, c1 =

R2
0

A0
, c2 =

σεLT 3
0

ρv0cp
, b1 =

2παR0L

ρcpv0A0
, b2 =

αL

ρcpv0R0
,

The initial and the boundary conditions are respectively given as:

A (x, t = 0) = 1, R (x, t = 0) = 1, T (x, t = 0) = 1, for x ∈ [0, 1] (2.20e)

and

A (x = 0, t) = 1, R (x = 0, t) = 1, T (x = 0, t) = 1, (2.20f)

v (x = 0, t) = 1, v (x = 1, t) = vd, (2.20g)

where vd =
vL
v0

> 1 is the draw ratio.

The viscosity-temperature relationship, which couples the energy equation (2.20d)
with the other equations, in dimensionless form is:

µ (T ) = eβ(1−T ). (2.20h)

Remark 2.1 For the sake of simplicity when performing the numerical sim-
ulations, we will neglect the diffusion term Txx in (2.20d) as the coefficient
‘a‘ is of order 10−4 for typical process parameters (see tables 2.1 and 5.1).

2.2 Isothermal Tube Drawing

Now we assume that the temperature remains constant throughout the hot-
forming zone of the tube drawing process. Then the model (2.20) can be
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simplified to get the mathematical model for the isothermal tube drawing
process (also given by [10, 42]) which reads as

(A)t + (vA)x = 0, (2.21a)

(3µAvx)x + ρgA = 0, (2.21b)
(
R2
)

t
+
(
vR2

)

x
=

p

16πµA

(
16π2R4 − A2

)
. (2.21c)

with the boundary conditions

A (x = 0, t) = A0, R (x = 0, t) = R0, (2.21d)

v (x = 0, t) = v0, v (x = L, t) = vL. (2.21e)

and the initial conditions

A (x, t = 0) = A0, R (x, t = 0) = R0, for x ∈ [0, L] (2.21f)

Equations (2.21) give us the circular cross-sectional area A, velocity v and
the mean radius R of the tube. The width W of the tube is obtained from
the relation A = 2πRW .

2.2.1 Existence and Uniqueness

In this section, we give the existence and uniqueness results for the stationary
isothermal tube drawing model

d

dx
(vA) = 0, (2.22a)

d

dx

(

A
dv

dx

)

+ A = 0, (2.22b)

d

dx

(
vR2

)
−

1

A

(
R4 −A2

)
= 0. (2.22c)

A (x = 0) = A0, R (x = 0) = R0, (2.22d)

v (x = 0) = v0, v (x = 1) = vd. (2.22e)

where for the sake of simplicity we have ignored the constant coefficients.

Equation (2.22a) implies that

A(x) =
1

v(x)
, v(x) > 0, x ∈ Ω (2.23)
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Now equation (2.22b) can be written as

d2

dx2
ln(v) = −v−1, v(0) = v0, v(1) = vd.

Using the transformation w = ln(v), we have

−
d2w

dx2
− e−w = 0, on Ω,

w(0) = ln(v0),

w(1) = ln(vd).

To transform the boundary conditions to homogeneous boundary conditions,
we define a function

g(x) = ln(v0) + (ln(vd)− ln(v0))x, for x ∈ Ω

and then introduce the variable ψ(x) = w(x)− g(x) to get

−
d2ψ

dx2
−m(x)e−ψ = 0, on Ω, (2.24a)

ψ = 0 on ∂Ω. (2.24b)

where m(x) = e−g(x) > 0.

Definition 2.1 The nonlinear variational problem corresponding to the equa-
tion (2.24) is defined as:

Find ψ ∈ H1
0 (Ω) such that

(Aψ, ϕ) = 0, for all ϕ ∈ H1
0 (Ω). (2.25)

where the operator A : H1
0 (Ω)→ H1

0 (Ω) is defined as

(Aψ, ϕ) =

∫

Ω

(
dψ

dx

dϕ

dx
−m(x)e−ψϕ

)

dx, ϕ ∈ H1
0 (Ω). (2.26)

Lemma 2.2 The operator A : H1
0 (Ω)→ H1

0 (Ω) defined by (2.26) is strongly
monotone, i.e., there exists a Θ > 0 s.t.

(Aψ1 −Aψ2, ψ1 − ψ2) ≥ Θ‖ψ1 − ψ2‖
2,

for all ψ1, ψ2 ∈ H1
0 .



18 CHAPTER 2. MODELLING TUBE DRAWING PROCESSES

Proof: For ψ1, ψ2 ∈ H1
0 (Ω)

(Aψ1 −Aψ2, ψ1 − ψ2) =

∫

Ω

[
d

dx
(ψ1 − ψ2)

d

dx
(ψ1 − ψ2)

−m(x) (e−ψ1 − e−ψ2)(ψ1 − ψ2)
︸ ︷︷ ︸

≤0

]

dx

≥

∫

Ω

d

dx
(ψ1 − ψ2)

d

dx
(ψ1 − ψ2)dx

=

∫

Ω

|
d

dx
(ψ1 − ψ2)|

2dx

= ‖
d

dx
(ψ1 − ψ2)‖

2

≥ Θ‖ψ1 − ψ2‖
2, where Θ =

1

c(Ω)
> 0.

Hence the operator A is strongly monotone. �

Lemma 2.3 Function ψ(x) ∈ H1
0 (Ω) defined in equation (2.24) is positive

for x ∈ Ω.

Proof: ψ(x) 6= 0 for x ∈ Ω otherwise it does not satisfy the equation (2.24a).
Let ψ(x) < 0 for x ∈ Ω. The weak formulation of the equation (2.24) is
written as

∫

Ω

dψ

dx

dψ

dx
dx−

∫

Ω

m(x)e−ψψdx = 0, for ψ ∈ H1
0 (Ω) with ψ < 0 in Ω,

or

∫

Ω

|
dψ

dx
|2

︸ ︷︷ ︸

>0

dx−

∫

Ω

m(x)e−ψ
︸ ︷︷ ︸

>0

ψ
︸︷︷︸

<0

dx = 0,

Both the terms on the left hand side are positive and thus give a non-zero
number which is a contradiction. Therefore, ψ(x) > 0 for x ∈ Ω. �

Remark 2.4 For 0 < ψ1, ψ2 ∈ H1
0 the relation

|e−ψ1 − e−ψ2 | ≤ n|ψ1 − ψ2|, for n > 0.

holds. We will use it in proving the Lemma 2.5 below.

Lemma 2.5 The operator A : H1
0 (Ω)→ H1

0 (Ω) defined by (2.26) is Lipschitz
continuous, i.e., there exists L > 0 s.t.

‖Aψ1 −Aψ2‖ ≤ L‖ψ1 − ψ2‖,

for all ψ1, ψ2 ∈ H1
0 (Ω).
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Proof: For ϕ ∈ H1
0 (Ω),

| (Aψ1, ϕ)− (Aψ2, ϕ) | = |

∫

Ω

[
d

dx
(ψ1 − ψ2)

dϕ

dx

+m(x)(e−ψ2 − e−ψ1)ϕ

]

dx|

≤ |

∫

Ω

(
d

dx
(ψ1 − ψ2)

dϕ

dx

)

dx|

+ |

∫

Ω

m(x)(e−ψ2 − e−ψ1)ϕdx|

≤ ‖
d

dx
(ψ1 − ψ2)‖L2

‖
dϕ

dx
‖L2

+ n‖ψ1 − ψ2‖L2
‖ϕ‖L2

‖m‖L∞,

≤ ‖
d

dx
(ψ1 − ψ2)‖L2

‖
dϕ

dx
‖L2

+ cnK‖
d

dx
(ψ1 − ψ2)‖L2

‖
dϕ

dx
‖L2

= L‖ψ1 − ψ2‖H1
0
‖ϕ‖H1

0
, L = (1 + nKc(Ω)) > 0.

Therefore the operator A is Lipschitz continuous. �

Lemma 2.6 [6] Let V be a Hilbert space with scalar product (., .) and let
B : V → V be a monotone and Lipschitz continuous operator. Then the
operator equation

Bu = 0.

has a unique solution u ∈ V . This solution is a fixed point of the auxiliary
operator Tr : V → V defined by

Trv := v − rBv, v ∈ V,

which is contractive when the parameter r lies in
(
0, 2Θ

L2

)
where Θ > 0 is a

monotonicity constant and L > 0 is a Lipschitz constant. �

Lemma 2.7 If the operator A : H1
0 → H1

0 defined in (2.26) is monotone
and Lipschitz continuous, then the operator equation defined in (2.25) has a
unique solution ψ ∈ H1

0 .
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Proof: By Lemmata 2.2 and 2.5, the operator A is strongly monotone and
Lipschitz continuous. Therefore by Lemma 2.6, there exists a unique solution
to the equation (2.25). �

Incorporating equation (2.23), equation (2.22c) can be written as

d

dx
(vR2) = A

(
(vR2)2 − 1

)
. (2.27)

Let z(x) = v(x)R2(x), then the equation (2.27) is transformed to

dz

dx
= f(x, z, A), for x ∈ Ω and with z(x0) = z0. (2.28)

where f(x, z, A) = A(z2 − 1) and x0 = 0, z0 = v0R
2
0.

Lemma 2.8 Let A and z be continuous functions of x. Then if the functions

f and
∂f

∂z
are continuous in some rectangle α < x < β, γ < z < δ containing

the point (x0, z0), then there exists a unique solution z(x) to the initial value
problem (2.28) in some neighbourhood of (x0, z0).

Proof: Since both A and z are continuous functions of x, therefore

f = A(z2 − 1) and
∂f

∂z
= 2zA, (2.29)

are also continuous functions of x. Therefore by Theorem B.8, there exists a
unique solution to the equation (2.28) in some neighbourhood of (x0, z0). �

Remark 2.9 Existence and uniqueness of the solution of the differential
equation (2.22a) follows from the Lemma 2.7 and the equation (2.23).



Chapter 3

Optimal Control Problem

In this chapter, we study an optimal control problem of the non-isothermal
tube drawing process (for isothermal see Appendix A) with the aim to control
the cross-sectional area A of the tube to the desired state Ad. The cross-
sectional area is related to the mean radius R and the width W by the
relation A = 2πRW . Since the cross-sectional area is mainly influenced by
the pulling speed vd of the drawing machine, we choose it as the control
variable for our control problem and define the cost functional of tracking-
type

J (A, vd) =
w1

2

∫ tf

0

∫

Ω

(A(x, t)− Ad)
2dxdt+

w2

2

∫

Ω

(A(x, tf )−Ad)
2dx

+
λ

2

∫ tf

0

(vd)
2dt (3.1)

where the first and second terms in the cost functional measure the distance
between area A and the desired state Ad, and the third term measures the
size of the control. The parameter λ > 0 is the cost of the control and the
weighting coefficients w1, w2 ≥ 0 allow to adjust the cost functional to differ-
ent scenarios.

We have to minimize the cost functional (3.1) with respect to the constraints
given by system (2.20) (w.r.t. (A.1) in case of isothermal tube drawing), i.e.

minimize J (A, vd) with respect to (A, vd) subject to system (2.20). (3.2)

The problem defined in (3.2) belongs to the class of constrained optimization
problems where the constraints are partial differential equations. We address
this problem by the adjoint variable approach which has been studied by [14,
24, 31, 35, 38, 45].

21
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3.1 Weak Formulation

In this section we state the weak formulation of the state system (2.20).
Later on we shall use this formulation to derive the adjoint equations, the
gradient equation, and also to collect the second derivative information for
the implementation of the Newton’s algorithm.

The integration domain used in the weak formulation is defined as

Q := Ω× (0, tf), Σ0 := 0× (0, tf), Σ1 := 1× (0, tf)

where Ω = (0, 1) is the space domain and the model equations (2.20) are
solved in the time interval (0, tf). The appropriately chosen spaces are the
Hilbert space U and the Banach spaces Y and Z. The Hilbert space U is the
space of controls u = (vd), Y is the space of states y = (A, v, R, T ) and Z is
the space of test functions.

Weak formulation of the state system (2.20) is defined as follows.

Definition 3.1 The weak formulation of the state system (2.20) is given by

e(y, u) = 0 (3.3a)

where the operator

e := (e1, e2, e3, e4, e5, e6, e7) : Y × U → Z∗, Z∗ is the dual space of Z,

is defined as

〈e1(y, u), ξA〉 :=

∫ tf

0

〈At, ξA〉dt−

∫

Q

vA(ξA)xdxdt−

∫

Σ0

ξAdt

+

∫

Σ1

vd(t)AξAdt = 0, (3.3b)

〈e2(y, u), ξv〉 :=

∫

Q

(St)Aξvdxdt+

∫

Q

(3µA(ξv)x)xvdxdt

+

∫

Σ0

3(ξv)xdt−

∫

Σ1

3µAvd(t)(ξv)xdt

−

∫

Σ0

3vxξvdt+

∫

Σ1

3µAvxξvdt = 0, (3.3c)
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〈e3(y, u), ξR〉 :=

∫ tf

0

〈(R2)t, ξR〉dt−

∫

Q

vR2(ξR)xdxdt

−

∫

Q

πc1p

µA

(

R4 −
A2

(4πc1)2

)

ξRdxdt

−

∫

Σ0

ξRdt+

∫

Σ1

vd(t)R
2ξRdt = 0, (3.3d)

〈e4(y, u), ξT〉 :=

∫ tf

0

〈Tt, ξT 〉dt−

∫

Q

(vξT )xTdxdt

−

∫

Q

[

c2(T
4
a − T

4) +

(
b1R

A
+
b2
R

)

(Ta − T )

]

ξTdxdt

+

∫

Σ1

vdTξTdt−

∫

Σ0

ξTdt = 0 (3.3e)

with

e5 = A(0)− 1, e6 = R(0)− 1, e7 = T (0)− 1 (3.3f)

for all test functions (ξA, ξv, ξR, ξT ) ∈ Z.

Now the minimization problem (3.2) can be re-written as

min
(y,u)∈Y ×U

J(y, u) subject to e(y, u) = 0, y ∈ Y, u ∈ Uad. (3.4)

where Y is space of states and Uad ⊂ U is the set consisting of admissible
controls.

Remark 3.1 The minimization problem for isothermal tube drawing is de-
fined in appendix A.

3.2 Derivatives

In this section we give the Fréchet derivatives of the operator e defined in
section 3.1 and of the cost functional (3.1).

Lemma 3.2 Let the mapping e : Y ×U → Z∗ be twice continuously Fréchet
differentiable. Then the action of the first two derivatives of e = (e1, e2, e3, e4)
at z = (y, u) ∈ Y ×U in directions z̃ = (ỹ, ũ) = (Ã, ṽ, R̃, T̃ , ṽd) ∈ Y ×U and
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(z̃, ẑ) ∈ (Y × U)2 are respectively given by

〈e1z(z)z̃, ξA〉 =

∫ tf

0

〈(Ã)t, ξA〉dt−

∫

Q

(vÃ+ ṽA)(ξA)xdxdt+

∫

Σ1

vdÃξAdt

+

∫

Σ1

ṽdAξAdt,

〈e2z(z)z̃, ξv〉 =

∫

Σ1

3µ
(

Ãvx + Aṽx − βT̃Avx
)

ξvdt+

∫

Q

StÃξvdxdt

−

∫

Σ1

3µ
(

Ãvd + Aṽd − βT̃Avd
)

(ξv)xdt−

∫

Σ0

3ṽxξvdt

+

∫

Q

(

3µÃ(ξv)x

)

x
vdxdt+

∫

Q

(3µA(ξv)x)x ṽdxdt

−

∫

Q

(

3βµT̃A(ξv)x

)

x
vdxdt,

〈e3z(z)z̃, ξR〉 =

∫ tf

0

〈(2RR̃)t, ξR〉dt−

∫

Q

2vRR̃(ξR)xdxdt

−

∫

Q

4πc1pR
3R̃ξR

µA
dxdt+

∫

Q

πc1pÃ

µ

(
R4

A2
+

1

(4πc1)2

)

ξRdxdt

−

∫

Q

ṽR2(ξR)xdxdt−

∫

Q

πc1pβT̃

µA

(

R4 −
A2

(4πc1)2

)

ξRdxdt

+

∫

Σ1

2vdRR̃ξRdt+

∫

Σ1

ṽdR
2ξRdt,

〈e4z(z)z̃, ξT 〉 =

∫ tf

0

〈T̃t, ξT 〉dt−

∫

Q

(vξT )xT̃ dxdt+

∫

Q

[

4c2T
3 +

b1R

A

+
b2
R

]

T̃ ξTdxdt−

∫

Q

(ṽξT )xTdxdt−

∫

Q

R̃(Ta − T )

×

(
b1
A
−
b2
R2

)

ξTdxdt+

∫

Q

b1R(Ta − T )Ã

A2
ξTdxdt

+

∫

Σ1

(vdT̃ + ṽdT )ξTdt,
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and

〈e1zz(z)(z̃, ẑ), ξA〉 =−

∫

Q

(ṽÂ+ v̂Ã)(ξA)xdxdt+

∫

Σ1

(ũÂ + ûÃ)ξAdt,

〈e2zz(z)(z̃, ẑ), ξv〉 =

∫

Σ1

3µ

[

Âṽx − βT̃ Âvx + Ãv̂x − βT̃Av̂x − βT̂ Ãvx

− βT̂Aṽx + β2T̃ T̂Avx

]

ξvdt−

∫

Σ1

3µ

[

Âṽd − βT̃ Âvd

+ Ãv̂d − βT̃Av̂d − βT̂ Ãvd − βT̂Aṽd + β2T̃ T̂Avd

]

× (ξv)xdt−

∫

Q

[(

3βµT̃Â(ξv)x

)

x
+
(

3βµT̂ Ã(ξv)x

)

x

−
(

3β2µT̃ T̂A(ξv)x

)

x

]

vdxdt+

∫

Q

[ (

3µÂ(ξv)x

)

x

−
(

3βµT̂A(ξv)x

)

x

]

ṽdxdt+

∫

Q

(

3µÃ(ξv)x

)

x
v̂dxdt

−

∫

Q

(

3βµT̃A(ξv)x

)

x
v̂dxdt,

〈e3zz(z)(z̃, ẑ), ξR〉 =

∫ tf

0

〈(2R̂R̃)t, ξR〉dt−

∫

Q

2ṽRR̂(ξR)xdxdt

+

∫

Q

4πc1pR
3ÃR̂

µA2
ξRdxdt−

∫

Q

12πc1pR
2R̂R̃

µA
ξRdxdt

−

∫

Q

4πc1pβR
3R̂T̃

µA
ξRdxdt−

∫

Q

4πc1pβR
3R̃T̂

µA
ξRdxdt

−

∫

Q

2vR̂R̃(ξR)xdxdt−

∫

Q

πc1pβ
2

µA

(

R4 −
A2

(4πc1)2

)

× T̃ T̂ ξRdxdt+

∫

Q

πc1pβT̂ Ã

µ

(
R4

A2
+

1

(4πc1)2

)

ξRdxdt

+

∫

Q

4πc1pR
3R̃Â

µA2
ξRdxdt−

∫

Q

2πc1pR
4ÃÂ

µA3
ξRdxdt

+

∫

Q

πc1pβT̃ Â

µ

(
R4

A2
+

1

(4πc1)2

)

ξRdxdt
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−

∫

Q

2RR̃v̂(ξR)xdxdt+

∫

Σ1

2vdR̂R̃ξRdt

+

∫

Σ1

2R
(

ṽdR̂+ v̂dR̃
)

ξRdt,

〈e4zz(z)(z̃, ẑ), ξT 〉 =

∫

Q

b1(Ta − T )ÂR̃

A2
ξTdxdt−

∫

Q

2b1R(Ta − T )ÃÂ

A3

× ξTdxdt−

∫

Q

b1RT̃ Â

A2
ξTdxdt−

∫

Q

(v̂ξT )xT̃ dxdt

+

∫

Q

b1(Ta − T )ÃR̂

A2
ξTdxdt−

∫

Q

2b2(Ta − T )R̃R̂

R3
ξT

× dxdt+

∫

Q

(
b1
A
−
b2
R2

)

T̃ R̂ξTdxdt−

∫

Q

b1RÃT̂

A2
ξT

× dxdt−

∫

Q

(ṽξT )xT̂ dxdt+

∫

Q

(
b1
A
−

b2
R2

)

R̃T̂ ξT

× dxdt+

∫

Q

12c2T
2T̃ T̂ ξTdxdt+

∫

Σ1

(

v̂dT̃ + ṽdT̂
)

ξTdt.

�

Lemma 3.3 The cost functional (3.1) has the first and the second deriva-
tives respectively given by

JA(y, u)Ã = w1

∫

Q

(A− Ad)Ãdxdt+ w2

∫

Ω

(A− Ad)Ãdx

Ju(y, u)ũ = λ

∫

Σ1

vdṽddt

and

JAA(y, u)[Ã, Â] = w1

∫

Q

ÂÃdxdt+ w2

∫

Ω

Â(x, tf )Ã(x, tf)dx

Juu(y, u)[ũ, û] =

∫

Σ1

v̂dṽddt

�
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3.3 Existence of Optimal Control

To prove the existence of minimizer of the optimal control problem (3.4), we
follow the idea given in [37] and make the following assumption.

Assumption 3.1

(i) Y and U are reflexive.

(ii) Uad ⊂ U is convex, bounded and closed such that the control
problem (3.4) has a feasible point.

(iii) The state equation e(y, u) = 0 has a unique bounded solution oper-
ator u ∈ Uad 7→ y(u) ∈ Y .

(iv) (y, u) ∈ Y × U 7→ e(y, u) ∈ Z∗ is continuous under weak convergen-
ce, i.e., if (yk, uk) ⇀ (y, u) in Y × U then e(yk, uk) ⇀ e(y, u) in Z∗.

(v) J is sequentially weakly lower semicontinuous.

Definition 3.2 [37] A state-control pair (ȳ, ū) ∈ Y × Uad is called optimal
for the control problem (3.4), if it is feasible i.e., e(ȳ, ū) = 0 and

J(ȳ, ū) ≤ J(y, u) ∀(y, u) ∈ Y × Uad, e(y, u) = 0.

Theorem 3.4 Let assumption 3.1 holds. Then the control problem (3.4) has
an optimal solution (ȳ, ū).

Proof: Let the feasible set be

Fad := {(y, u) ∈ Y × U : u ∈ Uad, e(y, u) = 0} .

By the assumption that (3.4) has a feasible point, Fad is nonempty. Since
J ≥ 0, the infimum

J∗ := inf
(y,u)∈Fad

J(y, u)

exists and we can find a minimizing sequence (yk, uk)k∈N ⊂ Fad with

lim
k→∞

J(yk, uk) = J∗.
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Due to the assumption 3.1(ii), the sequence (uk)k∈N is bounded. Since u ∈
Uad 7→ y(u) ∈ Y is continuous and bounded by assumption 3.1(iii), we
have (yk)k∈N = (y(uk)) ⊂ Y is bounded. Therefore by Theorem B.5, there
exists a weakly convergent subsequence (ykn

, ukn
)n∈N ⊂ (yk, uk) and some

(ȳ, ū) ∈ Y × U with (ykn
, ukn

) ⇀ (ȳ, ū) as n → ∞. By assumption 3.1(ii),
(ȳ, ū) ∈ Y × Uad and by assumption 3.1(iv),

e(ykn
, ukn

) ⇀ e(ȳ, ū)

and thus e(ȳ, ū) = 0. Therefore, (ȳ, ū) ∈ Fad.

Next assumption 3.1(v) implies that

J∗ = lim
k→∞

J(yk, uk) = lim
n→∞

(ykn
, ukn

) ≥ J(ȳ, ū) ≥ J∗.

⇒ J(ȳ, ū) = J∗.

Therefor, (ȳ, ū) is the optimal solution of the control problem (3.4). �

3.4 First Order Optimality Conditions

To derive the first order optimality system, we define the Lagrange functional
L : Y × U × Z → R associated with the minimization problem (3.4) as

L (y, u, ξ) = J (y, u) + 〈e(y, u), ξ〉Z∗,Z (3.5)

where ξ = (ξA, ξv, ξR, ξT , ξA0
, ξR0

, ξT0
) ∈ Z are the adjoint variables and

〈., .〉Z∗,Z denotes the duality pairing between Z∗ and Z.

The first order optimality conditions are then computed by setting the direc-
tional derivatives of L with respect to (y, ξ, u) equal to zero in the admissible
directions (ỹ, ξ̃, ũ), i.e.

▽(y,ξ,u)L(y, u, ξ)[ỹ, ξ̃, ũ] = 0.

or in more expressive way

Jy(y, u)ỹ + 〈ey(y, u)ỹ, ξ〉Z∗,Z =0, ∀ ỹ ∈ Y (3.6)

〈e(y, u), ξ̃〉Z∗,Z =0, ∀ ξ̃ ∈ Z (3.7)

Ju(y, u)ũ+ 〈eu(y, u)ũ, ξ〉Z∗,Z =0, ∀ ũ ∈ U (3.8)

The linearized equations (3.6)-(3.8) will respectively lead us to the adjoint
equations, the state equations (2.20) and the optimality condition. We derive
the adjoint equations and the gradient equation respectively in the subsec-
tions 3.4.1 and 3.4.2.



3.4. FIRST ORDER OPTIMALITY CONDITIONS 29

3.4.1 Adjoint Equations

We write the linearized equation (3.6) in a more concise way as

〈
∂e(y, u)

∂A
Ã, ξ〉 = −

∂J(y, u)

∂A
Ã, ∀ Ã ∈ Y (3.9)

〈
∂e(y, u)

∂v
ṽ, ξ〉 = −

∂J(y, u)

∂v
ṽ, ∀ ṽ ∈ Y (3.10)

〈
∂e(y, u)

∂R
R̃, ξ〉 = −

∂J(y, u)

∂R
R̃, ∀ R̃ ∈ Y (3.11)

〈
∂e(y, u)

∂T
T̃ , ξ〉 = −

∂J(y, u)

∂T
T̃ , ∀ T̃ ∈ Y. (3.12)

where each equation will yield us an adjoint equation which we derive for-
mally in strong form in the sequel.

After taking derivatives of e and J with respect to v in the direction ṽ,
the linearization (3.10) is written as

∫

Q

[
∂

∂x

(

3µA
∂ξv
∂x

)

− A
∂ξA
∂x
−R2∂ξR

∂x
+ ξT

∂T

∂x

]

ṽdxdt

+

∫

Σ1

3µAξv
∂ṽ

∂x
dt+

∫

Σ1

[

− ξTT − 3µA
∂ξv
∂x

]

ṽdt

−

∫

Σ0

3ξv
∂ṽ

∂x
dt+

∫

Σ0

[

ξT + 3
∂ξv
∂x

]

ṽdt = 0,

From this expression we get the strong form of the adjoint equation for ξv as

(3µA(ξv)x)x = A(ξA)x +R2(ξR)x − ξTTx,

with boundary conditions

ξv(x = 1, t) = 0, ξv(x = 0, t) = 0, t ∈ (0, tf)

Equation (3.9), after taking derivatives and rearranging the terms, is written
as
∫ tf

0

〈−
∂ξA
∂t

, Ã〉dt+

∫

Q

[

− v
∂ξA
∂x
− 3µ

∂v

∂x

∂ξv
∂x

+ Stξv +
b1RξT
A2

(Ta − T )

+
pπc1ξR
µ

(
R4

A2
+

1

(4πc1)2

)]

Ãdxdt+

∫

Σ1

[vdξA + 3µvxξv] Ãdt

−

∫ 1

0

ξA(x, 0)Ã(x, 0)dx+

∫ 1

0

ξA(x, tf )Ã(x, tf )dx

=− w1

∫

Q

(A−Ad)Ãdxdt− w2

∫ 1

0

(A(x, tf )− Ad) Ã(x, tf )dx.



30 CHAPTER 3. OPTIMAL CONTROL PROBLEM

This leads us to the following strong form

−(ξA)t − v(ξA)x =3µvx(ξv)x −
πc1pξR
µ

(
R4

A2
+

1

(4πc1)2

)

− St(ξv)−
b1RξT
A2

(Ta − T )− w1(A− Ad).

with the boundary and terminal conditions

ξA(x = 1, t) = 0, t ∈ (0, tf )

ξA(x, tf ) = −w2 (A(x, tf )− Ad) , x ∈ (0, 1).

Linearization (3.11) reduces to

∫ tf

0

〈−2R
∂ξR
∂t

, R̃〉dt+

∫

Q

[

− 2vR
∂ξR
∂x
−

4πc1pR
3

µA
ξR −

(
b1
A
−
b2
R2

)

× (Ta − T )ξT

]

R̃dxdt+

∫ 1

0

2R(x, tf)ξR(x, tf)R̃(x, tf )dx

+

∫

Σ1

2vdRξRR̃(1, t)dt−

∫ 1

0

2ξR(x, 0)R̃(x, 0)dx = 0.

which gives us the adjoint equation

−(ξR)t − v(ξR)x −
2πc1pR

2

µA
ξR =

ξT
2R

(
b1
A
−
b2
R2

)

(Ta − T ),

with the following terminal and boundary conditions

ξR(x, t = tf) = 0, x ∈ (0, 1)

ξR(x = 1, t) = 0, t ∈ (0, tf)

Similarly from (3.12), we have

∫ tf

0

〈−
∂ξT
∂t

, T̃ 〉dt+

∫

Q

[

−
∂

∂x
(vξT ) +

(

4c2T
3 +

b1R

A
+
b2
R

)

ξT

+ 3βµA
∂v

∂x

∂ξv
∂x
−
βπc1pξR
µA

(

R4 −
A2

(4πc1)2

)]

T̃ dxdt−

∫ 1

0

ξT (x, 0)

× T̃ (x, 0)dx+

∫ 1

0

ξT (x, tf)T̃ (x, tf )dx+

∫

Σ1

vdξT T̃ dt = 0.
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That leads us to the following strong form of the adjoint equation along with
the terminal condition and the boundary condition

−(ξT )t − (vξT )x+

(

4c2T
3 +

b1R

A
+
b2
R

)

ξT

= −3βµAvx(ξv)x +
βπc1pξR
µA

(

R4 −
A2

(4πc1)2

)

,

ξT (x, t = tf ) = 0, x ∈ (0, 1)

ξT (x = 1, t) = 0, t ∈ (0, tf)

Putting together all the adjoint equations along with the terminal and the
boundary conditions, we have

−(ξA)t − v(ξA)x =3µvx(ξv)x −
πc1pξR
µ

(
R4

A2
+

1

(4πc1)2

)

− St(ξv)−
b1RξT
A2

(Ta − T )− w1(A− Ad),

(3.13a)

(3µA(ξv)x)x =A(ξA)x +R2(ξR)x − ξTTx, (3.13b)

−(ξR)t − v(ξR)x −
2πc1pR

2

µA
ξR =

ξT
2R

(
b1
A
−

b2
R2

)

(Ta − T ), (3.13c)

−(ξT )t − (vξT )x +

(

4c2T
3 +

b1R

A
+
b2
R

)

ξT

= −3βµAvx(ξv)x +
βπc1pξR
µA

(

R4 −
A2

(4πc1)2

)

. (3.13d)

ξA(x = 1, t) = 0, ξR(x = 1, t) = 0, ξT (x = 1, t) = 0, (3.13e)

ξv(x = 1, t) = 0, ξv(x = 0, t) = 0, t ∈ (0, tf) (3.13f)

ξA(x, tf ) = −w2 (A(x, tf )− Ad) , ξR(x, tf) = 0, ξT (x, tf ) = 0, x ∈ (0, 1)
(3.13g)

Adjoint equations (3.13) are linear in the adjoint variables (ξA, ξv, ξR, ξT ).
Information travels backwards in time in case of adjoint equations.
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3.4.1.1 Existence and Uniqueness

In this section we consider the stationary adjoint equations

−v
dξA
dx
− 3

dv

dx

dξv
dx

+ Stξv + πpc1ξR

(
R4

A2
+

1

(4πc1)2

)

= fA(x), (3.14a)

−
d2ξv
dx2
−

1

A

dA

dx

dξv
dx

+
1

3

dξA
dx

+
R2

3A

dξR
dx

= fv(x), (3.14b)

−
dξR
dx
−

2πc1pR
2

vA
ξR = fR(x). (3.14c)

with

ξA(1) = 0, ξR(1) = 0, ξv(1) = 0, ξv(0) = 0 (3.14d)

for isothermal tube drawing and prove the existence and uniqueness of the
solutions. The functions fA, fv, fR are supposed to be continuous functions
of x.

By letting

x̄ = 1− x, (3.15)

the equation (3.14c) is transformed into an Initial Value Problem (IVP)

dξR
dx

+ b(x)ξR = fR, with ξR(x0) = 0, (3.16)

where b(x) = −
2πc1pR

2(x)

v(x)A(x)
, x0 = 0 and the bar has been omitted for the

sake of simplicity.

Lemma 3.5 If b(x), fR(x) are continuous functions in some interval I con-
taining x0, then there exists a unique solution ξR(x) for x ∈ I to the initial
value problem (3.16)

Proof : We have already proved in subsection 2.2.1 that the stationary equa-
tions (2.22) has a unique solution (A, v, R) where A, v, R are continuous
functions of x. Therefore, we can find an interval I containing the point x0

where b(x) is also continuous. fR is continuous by its construction. Therefore
by Theorem B.7, there exists a unique solution to the IVP (3.16) and hence
to the equation (3.14c) with boundary condition ξR(1) = 0. �
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Incorporating equations (3.14a) and (3.14c) in equation (3.14b) and then
rearranging the terms, we write the equation for ξv as

−
d2ξv
dx2
−

(
d

dx
ln|vA|

)
dξv
dx

+
St

3v
ξv −

πpc1
3v

(
R4

A2
−

1

(4πc1)2

)

ξR

= fv +
1

3v
fA +

R2

3A
fR. (3.17)

Equation (2.22a) implies that the flow rate is constant i.e., vA = constant,
therefore

d

dx
ln |vA| = 0

Then the equation (3.17) can be written as

−
d2ξv
dx2

+ c(x)ξv =g(x), in Ω (3.18a)

ξv =0, on ∂Ω (3.18b)

where

c(x) =
St

3v
, g(x) = fv +

1

3v
fA +

R2

3A
fR +

πpc1
3v

(
R4

A2
−

1

(4πc1)2

)

ξR.

Definition 3.3 The Variational Boundary Value Problem (VBVP) corre-
sponding to equation (3.18) is defined as:

Find ξv ∈ H1
0 (Ω) such that

a(ξv, ϕ) = G(ϕ), ϕ ∈ H1
0 (Ω). (3.19)

where

a(ξv, ϕ) :=

∫

Ω

[
dξv
dx

dϕ

dx
+ c(x)ξvϕ

]

dx (3.20)

G(ϕ) :=

∫

Ω

gϕdx (3.21)

and c(x) is continuous on Ω.

Definition 3.4 [5] Let U1, V1 be linear spaces. An operator b : U1×V1 → R
is a bilinear form if

b(α0u1 + β0w1, v1) =α0b(u1, v1) + β0b(w1, v1), u1, w1 ∈ U1, v1 ∈ V1,

b(u1, α0v1 + β0w1) =α0b(u1, v1) + β0b(u1, w1), u1 ∈ U1, v1, w1 ∈ V1,

where α0, β0 ∈ R.
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Lemma 3.6 The operator a : H1
0 × H1

0 → R defined by (3.20) defines a
bilinear form.

Proof : For α0, β0 ∈ R, and (ξv)1, (ξv)2, ϕ1 ϕ2 ∈ H1
0 , we have

a(α0(ξv)1 + β0(ξv)2, ϕ1) =

∫

Ω

[
d

dx
(α0(ξv)1 + β0(ξv)2)

dϕ1

dx
+ c(x)(α0(ξv)1

+ β0(ξv)2)ϕ1

]

dx

= α0

∫

Ω

[
d(ξv)1

dx

dϕ1

dx
+ c(x)(ξv)1ϕ1

]

dx

+ β0

∫

Ω

[
d(ξv)2

dx

dϕ1

dx
+ c(x)(ξv)2ϕ1

]

dx

= α0a((ξv)1, ϕ1) + β0a((ξv)2, ϕ1).

Similarly we can show that

a((ξv)1, α0ϕ1 + β0ϕ2) = α0a((ξv)1, ϕ1) + β0a((ξv)1, ϕ2).

�

Definition 3.5 [5](continuous bilinear form)
A bilinear form b : U1 × V1 → R where U1 and V1 are normed linear spaces,
is called a continuous bilinear form if there exists a positive number K such
that

|b(u1, v1)| ≤ K‖u1‖‖v1‖ for all u1 ∈ U1, v ∈ V1.

Definition 3.6 [5] (V1-elliptic bilinear form)
A bilinear form b : V1× V1 → R where V1 is an inner product space, is called
V1-elliptic if there exists a constant α0 > 0 such that

b(v1, v1) ≥ α0‖v1‖
2
V1

for all v1 ∈ V1.

Lemma 3.7 Bilinear form a : H1
0 ×H

1
0 → R defined by (3.20) is both con-

tinuous and H1
0 -elliptic.

Proof :Continuity of a(., .):

|a(ξv, ϕ)| = |

∫

Ω

[
dξv
dx

dϕ

dx
+ c(x)ξvϕ

]

dx|



3.4. FIRST ORDER OPTIMALITY CONDITIONS 35

Let c(x) be bounded positive function, i.e. 0 < c1 ≤ c(x) ≤ c2, then

|a(ξv, ϕ)| ≤ |

∫

Ω

[
dξv
dx

dϕ

dx
+ c2ξvϕ

]

dx|

≤ |

∫

Ω

dξv
dx

dϕ

dx
dx|+ c2|

∫

Ω

ξvϕdx|

≤ ‖
dξv
dx
‖L2(Ω)‖

dϕ

dx
‖L2(Ω) + c2‖ξv‖L2(Ω)‖ϕ‖L2(Ω)

≤ ‖ξv‖H1(Ω)‖ϕ‖H1(Ω) + c2‖ξv‖H1(Ω)‖ϕ‖H1(Ω)

= C‖ξv‖H1(Ω)‖ϕ‖H1(Ω), where C = 1 + c2.

⇒ a(., .) is continuous.

H1
0 -ellipticity of a(., .):

a(ξv, ξv) =

∫

Ω

[
dξv
dx

dξv
dx

+ c(x)(ξv)
2

]

dx

≥

∫

Ω

[

(
dξv
dx

)2 + c1(ξv)
2

]

dx

≥ γ

∫

Ω

[

(
dξv
dx

)2 + (ξv)
2

]

dx, where γ = min(1, c1)

= γ‖ξv‖
2
H1 ≥ γ‖ξv‖

2
H1

0

(3.22)

⇒ a(., .) is H1
0 -elliptic. �

Lemma 3.8 The linear functional G : H1
0 → R defined by (3.21) is contin-

uous.

Proof : We prove boundedness of G by using the Schwarz inequality.

|G(ϕ)| = |

∫

Ω

gϕdx| ≤ ‖g‖L2(Ω)‖ϕ‖L2(Ω) ≤ ‖g‖L2(Ω)‖ϕ‖H1(Ω),

Let ‖g‖L2(Ω) = K, then
|G(ϕ)| ≤ K‖ϕ‖H1(Ω)

⇒ G is bounded and hence continuous. �

Theorem 3.9 The VBVP defined in Definition 3.3 has a unique solution.
Moreover, the solution depends continuously on the data, i.e.,

‖ξv‖H1 ≤
1

γ
‖G‖(H1)∗ .

where (H1)∗ is the dual space of H1.
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Proof : Due to Lemmata 3.6 - 3.8, we have the bilinearity, continuity and
coercivity of the operator a : H1

0 (Ω)×H1
0 (Ω)→ R and the continuity of the

linear functionalG : H1
0 (Ω)→ R. Therefore by the Lax-Milgram Lemma B.9,

we have the existence and uniqueness of the solution of the variational prob-
lem defined in 3.3.

Now set ϕ = ξv in (3.19) and using coercivity relation (3.22) and the bound-
edness of G, we have

γ‖ξv‖
2
H1 ≤ a(ξv, ξv) = G(ξv) ≤ ‖G‖(H1)∗‖ξv‖H1

⇒ ‖ξv‖
2
H1 ≤

1

γ
‖G‖(H1)∗ .

which proves the continuous dependence of the solution on data. �

Again using the transformation (3.15), the equation (3.14a) is transformed
to IVP

dξA
dx

= F(x), with ξA(x0) = ξA0
, (3.23a)

where x0 = 0, ξA0
= 0 and

F(x) =
1

v

(

fA(x) + 3
dv

dx

dξv
dx
− Stξv − πpc1

(
R4

A2
+

1

(4πc1)2

)

ξR

)

, (3.23b)

Lemma 3.10 If F(x) is continuous function of x ∈ Ω, then there exists a
unique solution ξA(x) ∈ C1(Ω) to the initial value problem (3.23).

Proof: F(x) is continuous by its definition as A(x), v(x), R(x), ξv(x), ξR(x),
fA(x) are all continuous functions of x ∈ Ω. So by the fundamental theorem
of calculus, there exists a unique solution

ξA(x) = ξA0
+

∫ x

x0

F(t)dt.

to the problem (3.23). �

3.4.2 Gradient Equation

By Assumption 3.1(iii), the system e(y, u) = 0 is uniquely solvable. Thus
we reformulate the minimization problem (3.4) as

min
u∈Uad

Ĵ(u) := J(y(u), u) subject to e(y(u), u) = 0 (3.24)
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where Ĵ is the reduced cost functional and y(u) ∈ Y .

We assume that ey(y(u), u) ∈ L(Y, Z∗) is continuously invertible, then by
Lemma 3.2 and by the implicit function Theorem B.3 the derivative of y(u)
in a direction ũ is given as

y′(u)ũ = −ey(y(u), u)
−1eu(y(u), u)ũ. (3.25)

And using the chain rule we get

〈Ĵ ′(u), ũ〉 = 〈Ju(y(u), u)− eu(y(u), u)
∗ey(y(u), u)

−∗Jy(y(u), u), ũ〉.

Now defining the adjoint variable

ξ = −ey(y(u), u)
−∗Jy(y(u), u) ∈ Z

and assuming sufficient regularity of the solution we get the Riesz represen-
tative of the derivative

Ĵ ′(u) = Ju(y(u), u) + eu(y(u), u)
∗ξ (3.26)

Linearization (3.8) will lead us to

∫

Σ1

λu(t)ũdt+

∫

Σ1

[

AξA − 3µA(ξv)x +R2ξR + TξT

]

ũdt = 0.

Since ξA = 0, ξR = 0, ξT = 0 on Σ1, we obtain the following optimality
condition

λu− 3µA(ξv)x = 0, on Σ1 (3.27)

From (3.26) and (3.27), the gradient of the reduced cost functional Ĵ ′(u) is
written as

Ĵ ′(u) = λu− 3µA(ξv)x, on Σ1 (3.28)

Gradient of Ĵ given in (3.28) gives the optimal direction to the control vari-
able u to move in order to reduce the cost functional (3.1). For the evaluation
of this gradient, we first need to solve the non-linear state system (2.20) and
then the linear coupled adjoint system (3.13).

After having derived the first order optimality conditions, we are now in
a position to solve the minimization problem (3.24). The optimization algo-
rithms for solving these conditions will be dealt with in the next chapter.
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3.5 Second Order Conditions

The minimization problem (3.4) can be solved more efficiently by collecting
the second derivative information of the reduced cost functional Ĵ . In the
next subsection we derive the second derivative of Ĵ and describe there the
procedure to compute it.

3.5.1 Second Derivatives

We write the Lagrange functional (3.5), for arbitrary ξ ∈ Z, as

L (y(u), u, ξ) = J (y(u), u) + 〈e (y(u), u) , ξ〉Z∗,Z = J (y(u), u) = Ĵ(u).
(3.29)

Then differentiating (3.29) in the direction δu1 ∈ U , we obtain

〈Ĵ ′(u), δu1〉U∗,U = 〈Ly (y(u), u, ξ) , y′(u)δu1〉Y ∗,Y + 〈Lu (y(u), u, ξ) , δu1〉U∗,U .

where the linearization y′(u)δu1 of e(y(u), u) = 0 in the direction δu1 ∈ U is
given by (3.25).

Differentiating again in the direction δu2 ∈ U , we have

〈Ĵ ′′(u)δu2, δu1〉U∗,U =〈Ly(y(u), u, ξ), y
′′(u)(δu1, δu2)〉Y ∗,Y

+ 〈Lyy(y(u), u, ξ)y
′(u)δu2, y

′(u)δu1〉Y ∗,Y

+ 〈Lyu(y(u), u, ξ)δu2, y
′(u)δu1〉Y ∗,Y

+ 〈Luy(y(u), u, ξ)y
′(u)δu2, δu1〉U∗,U

+ 〈Luu(y(u), u, ξ)δu2, δu1〉U∗,U .

Choosing ξ = ξ(u), i.e., Ly (y(u), u, ξ(u)) = 0, we reach at

〈Ĵ ′′(u)δu2, δu1〉U∗,U =〈y′(u)∗Lyy(y(u), u, ξ(u))y
′(u)δu2, δu1〉U∗,U

+ 〈y′(u)∗Lyu(y(u), u, ξ(u))δu2, δu1〉U∗,U

+ 〈Luy(y(u), u, ξ(u))y
′(u)δu2, δu1〉U∗,U

+ 〈Luu(y(u), u, ξ(u))δu2, δu1〉U∗,U .

This gives us

Ĵ ′′(u)δu =y′(u)∗Lyy (y(u), u, ξ(u))y′(u)δu+ y′(u)∗Lyu (y(u), u, ξ(u)) δu

+ Luy (y(u), u, ξ(u))y′(u)δu+ Luu (y(u), u, ξ(u))δu. (3.30a)
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The reduced Hessian Ĵ ′′(u) ∈ L(U) can also be written as

Ĵ ′′(u) := T ∗(u)LwwT (u) (3.30b)

where

Lww =

(
Lyy Lyu
Luy Luu

)

, (3.31)

T (u) :=

(
y′(u)
Id

)

∈ L(U, Y × U),

and w = (y, u), y = (A,R, T, v) and u = (vd).

In the sequel we describe the step by step procedure to compute Ĵ ′′(u)δu
given by (3.30)

1. compute the solution

V = y′(u)δu = −ey(y(u), u)
−1eu(y(u), u)δu

where V := (VA, Vv, VR, VT ) are the linearized state variables. (Derivations of
the linearized state equations in strong form are given in subsection 3.5.1.1).
2. compute

(
d1

d2

)

=

(
(Jyy + 〈eyy, ξ〉) (V, .) + (Jyu + 〈eyu, ξ〉) (δu, .)
(Juy + 〈euy, ξ〉) (V, .) + (Juu + 〈euu, ξ〉) (δu, .)

)

where d2 after some computations and simplifications is given as

d2 = 3µ(ξv)x (βAVT − VA) + λδu, on Σ1

3. compute the solution

W = ey(y(u), u)
−∗d1 (3.32)

where W := (WA,Wv,WR,WT ). (Equations for W in the strong form are
derived in subsection 3.5.1.2)
4. then compute

s3 = −eu(y(u), u)
∗W,

= 3µA(Wv)x, on Σ1

5. set
Ĵ ′′(u)δu = d2 + d3

such that

Ĵ ′′(u)δu = 3µ {A(Wv)x + (ξv)x (βVTA− VA)}+ λδu, on Σ1 (3.33)

The operator-vector product computed in this procedure will later be used
in implementations of the Newton-CG algorithm.
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3.5.1.1 Linearized State Equations

We do linearization of the state equations e (y(u), u) = 0 to get the solution

V = y′(u)δu = −ey(y(u), u)
−1eu(y(u), u)δu (3.34)

where V := (VA, Vv, VR, VT ) are the linearized state variables.

For VA, we write (3.34) as

〈ey(y(u), u)V, ξA〉 = −〈eu(y(u), u)δu, ξA〉

Using derivatives of e with respect to y and u and after some simplifications
we get

∫ tf

0

〈(VA)t, ξA〉dt+

∫

Q

[

(vVA)x + (AVv)x

]

ξAdxdt−

∫

Σ1

VvAξAdt

+

∫

Σ0

[

VA + Vv

]

ξAdt = −

∫

Σ1

AξAδudt.

Hence we write down the linearized state equation for VA as

(VA)t + (vVA)x + (AVv)x = 0,

with

VA(x, 0) = 0, VA(0, t) = −Vv(0, t) (3.35)

For the linearized state variable Vv, equation (3.34) is written as

〈ey(y(u), u)V, ξv〉 = −〈eu(y(u), u)δu, ξv〉

and in classical form, after some simplifications, we have
∫

Q

[

(3µVAvx)x + (3µA(Vv)x)x − (3βµVTAvx)x + StVA

]

ξvdxdt

+

∫

Σ1

3µA(ξv)xVvdt−

∫

Σ0

3Vv(ξv)xdt−

∫

Σ0

3VA(ξv)xdt

+

∫

Σ0

3βVT (ξv)xdt =

∫

Σ1

3µAδu(ξv)xdt.

which yields

(3µA(Vv)x)x = (3βµVTAvx)x − (3µVAvx)x − StVA
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with

Vv(0, t) = βVT (0, t)− VA(0, t), Vv(1, t) = δu (3.36)

Next we consider

〈ey(y(u), u)V, ξR〉 = −〈eu(y(u), u)δu, ξR〉

which lead us to
∫ tf

0

〈(2RVR)t, ξR〉dt+

∫

Q

[

(2vRVR)x −
4πc1pR

3VR
µA

+ (R2Vv)x

+
πc1pVA
µ

(
R4

A2
+

1

(4πc1)2

)

−
βπc1pVT
µA

(

R4 −
A2

(4πc1)2

)]

ξRdxdt

+

∫

Σ0

[

2VR + Vv

]

ξRdt−

∫

Σ1

R2VvξRdt = −

∫

Σ1

R2ξRδudt.

(RVR)t + (vRVR)x −
2πc1pR

3

µA
VR =

βπc1pVT
2µA

(

R4 −
A2

(4πc1)2

)

−
1

2
(R2Vv)x −

πc1pVA
2µ

(
R4

A2
+

1

(4πc1)2

)

.

with

VR(x, 0) = 0, VR(0, t) = −Vv(0, t). (3.37)

Finally, from (3.34) we write the equation

〈ey(y(u), u)V, ξT〉 = −〈eu(y(u), u)δu, ξT〉

which yield us
∫ tf

0

〈(VT )t, ξT 〉dt+

∫

Q

[

v(VT )x + VvTx +
b1RVA(Ta − T )

A2
− (Ta − T )

×

(
b1VR
A
−
b2VR
R2

)

+

(

4c2T
3 +

b1R

A
+
b2
R

)

VT

]

ξTdxdt

−

∫

Σ1

TVvξTdt+

∫

Σ0

[

Vv + VT

]

ξTdt = −

∫

Σ1

TδuξTdt.

This will lead us to the following linearized state equation for VT

(VT )t + v(VT )x+(4c2T
3 +

b1R

A
+
b2
R

)VT

=(Ta − T )

(
b1VR
A
−
b1RVA
A2

−
b2VR
R2

)

− VvTx.
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with initial and boundary conditions

VT (x, 0) = 0, VT (0, t) = −Vv(0, t) (3.38)

After some manipulations, the boundary conditions (3.35)-(3.38) can be writ-
ten as

VA(0, t) = 0, Vv(0, t) = 0, Vv(1, t) = δu, VR(0, t) = 0, VT (0, t) = 0.

Putting together the derived equations we have the following system of lin-
earized state equations

(VA)t + (vVA)x + (AVv)x = 0, (3.39a)

(3µA(Vv)x)x + (3µVAvx)x − (3βµVTAvx)x + StVA = 0, (3.39b)

(RVR)t + (vRVR)x−
2πc1pR

3

µA
VR =

βπc1pVT
2µA

(

R4 −
A2

(4πc1)2

)

−
1

2
(R2Vv)x −

πc1pVA
2µ

(
R4

A2
+

1

(4πc1)2

)

, (3.39c)

(VT )t + v(VT )x+(4c2T
3 +

b1R

A
+
b2
R

)VT

=(Ta − T )

(
b1VR
A
−
b1RVA
A2

−
b2VR
R2

)

− VvTx. (3.39d)

with initial conditions

VA(x, 0) = 0, VR(x, 0) = 0, VT (x, 0) = 0 Vv(x, 0) = 0. (3.39e)

and the boundary conditions

VA(0, t) = 0, VR(0, t) = 0, VT (0, t) = 0, Vv(0, t) = 0, Vv(1, t) = δu. (3.39f)

3.5.1.2 Linearized Adjoint Equations

Equation (3.32) will lead us to the linearized state equations for the variables
(WA,Wv,WR,WT ) which will be solved backward in time. For Wv we have

ev(y(u), u)
∗W = s1 (3.40)
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where

s1 =(JvA + 〈evA, ξ〉) (VA, .) + (Jvv + 〈evv, ξ〉) (Vv, .) + (JvR + 〈evR, ξ〉) (VR, .)

+ (JvT + 〈evT , ξ〉) (VT , .) + (Jvu + 〈evu, ξ〉) (δu, .).

Taking derivatives and then rearranging the terms we have

s1 =

∫

Q

[

− (ξA)xVA + (3µVA(ξv)x)x − 2RVR(ξR)x − (3βµVTA(ξv)x)x

+ ξT (VT )x

]

ṽdxdt+

∫

Σ1

3µVAξvṽxdt−

∫

Σ1

3βµVTAξvṽxdt. (3.41)

The left hand side of (3.40) is expressed as

ev(y(u), u)
∗W = 〈evṽ,W 〉

=

∫

Q

[

− A(WA)x + (3µA(Wv)x)x − R
2(WR)x +WTTx

]

× ṽdxdt+

∫

Σ1

WTT ṽdt−

∫

Σ0

3Wvṽxdt+

∫

Σ0

WT ṽdt

+

∫

Σ1

3µAWvṽxdt. (3.42)

Therefore (3.40) will lead us to the following adjoint equation

(3µA(Wv)x)x =A(WA)x +R2(WR)x −WTTx − VA(ξA)x + (VT )xξT

− 2RVR(ξR)x + (3µVA(ξv)x)x − (3βµVTA(ξv)x)x,

with terminal and boundary conditions

Wv(x, tf) = 0, Wv(1, t) = 0. (3.43)

Again from (3.32) we have

eA(y(u), u)∗W = s1 (3.44)

where

s1 = (JAA + 〈eAA, ξ〉) (VA, .) + (JAv + 〈eAv, ξ〉) (Vv, .) + (JAR + 〈eAR, ξ〉) (VR, .)

+ (JAT + 〈eAT , ξ〉) (VT , .) + (JAu + 〈eAu, ξ〉) (δu, .).
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After taking derivatives of J and e and then rearranging the terms, we have

s1 =

∫

Q

[

w1VA −
2πc1pR

4VAξR
µA3

−
2b1RVAξT

A3
(Ta − T )− Vv(ξA)x − 3µ(ξv)x(Vv)x

+
4πc1pR

3VRξR
µA2

+
b1VRξT
A2

(Ta − T ) + 3βµVTvx(ξv)x −
b1RVT ξT

A2

+
βπc1pVT ξR

µ

(
R4

A2
+

1

(4πc1)2

)]

Ãdxdt−

∫

Σ1

3βµVTvxξvÃdt

+

∫

Σ1

ξAδuÃdt+

∫

Σ1

3ξv(Vv)xµÃdt+ w2

∫ 1

0

VA(x, tf )Ã(x, tf )dx.

(3.45)

Left hand side of (3.44) can be written as

eA(y(u), u)∗W = 〈eAÃ,W 〉

=

∫ tf

0

〈−(WA)t, Ã〉dt+

∫

Q

[

− v(WA)x − 3µ(Wv)xvx + StWv

+
πc1pWR

µ

(
R4

A2
+

1

(4πc1)2

)

+
b1RWT

A2
(Ta − T )

]

Ãdxdt

+

∫ 1

0

WA(x, tf)Ã(x, tf )dx+

∫

Σ1

[

vdWA + 3µvxWv

]

Ãdt

−

∫

Σ0

3(Wv)xÃdt. (3.46)

From (3.45) and (3.46), we get the following equation for WA

−(WA)t − v(WA)x =3µ {(Wv)xvx − (ξv)x(Vv)x + βVTvx(ξv)x} − Vv(ξA)x

− (St)Wv −
b1(Ta− T )

A2

{

RWT + ξT

(
2RVA
A
− VR

)}

+
πc1p

µ

[

(βVT ξR −WR)

(
R4

A2
+

1

(4πc1)2

)

+
2R3ξR
A3

× (2AVR − RVA)

]

+ w1VA −
b1RVT ξT
A2

with terminal and boundary conditions

WA(x, tf ) = w2VA(x, tf ), WA(1, t) = 0.

Following the same procedure, we can derive the other adjoint equations.
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Therefore, the whole system is written as

−(WA)t − v(WA)x = 3µ {(Wv)xvx − (ξv)x(Vv)x + βVTvx(ξv)x} − Vv(ξA)x

+
πc1p

µ

{

(βVT ξR −WR)

(
R4

A2
+

1

(4πc1)2

)

+
2R3ξR
A3

(2AVR −RVA)

}

+w1VA − (St)Wv −
b1RVT ξT

A2
−
b1(Ta− T )

A2

{

RWT + ξT

(
2RVA
A
− VR

)}

(3.47a)

(3µA(Wv)x)x = A(WA)x +R2(WR)x −WTTx − VA(ξA)x + (VT )xξT

−2RVR(ξR)x + (3µVA(ξv)x)x − (3βµVTA(ξv)x)x, (3.47b)

−R(WR)t − vR(WR)x −
2πc1pR

3

µA
WR =

2πc1pR
2ξR

µA

(
RVA
A
− 2VR − βRVT

)

+
1

2

(
b1
A
−
b2
R2

){

(Ta − T )WT + VT ξT +
(Ta − T )VRξT

R

}

+
(Ta − T )ξT

2

(
b1VA
A2
−

2b2VR
R3

)

− RVv(ξR)x,

(3.47c)

−(WT )t − (vWT )x +

(

4c2T
3 +

b1R

A
+
b2
R

)

WT = −(VvξT )x + 3βµ

×{(VA(ξv)x − A(Wv)x − βAVT (ξv)x) vx + A(ξv)x(Vv)x}+
βπc1p

µA

×

{

(WR − βVT ξR)

(

R4 −
A2

(4πc1)2

)

+ AVAξR

(
R4

A2
+

1

(4πc1)2

)}

−
4βπc1pR

3VRξR
µA

+

{

12c2T
2VT +

(
b1
A
−
b2
R2

)

VR −
b1RVA
A2

}

ξT . (3.47d)

with the boundary conditions

WA(x = 1, t) = 0, WR(x = 1, t) = 0, WT (x = 1, t) = 0, (3.47e)

Wv(x = 1, t) = 0, Wv(x = 0, t) = 0 (3.47f)

and the terminal conditions

WA(x, tf) = w2VA(x, tf), WR(x, tf ) = 0, WT (x, tf ) = 0 (3.47g)
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Chapter 4

Numerical Implementations

In the previous chapter, we presented the optimal control problem analyt-
ically by defining the cost functional and deriving the first order and the
second order optimality conditions. Since the optimality conditions are to be
solved numerically so we, in this chapter, explain the numerical implementa-
tion details first by defining some solution algorithms and then by describing
the discretization strategies.

4.1 Optimization Algorithms

To solve the first and the second order optimality conditions, we need to
describe some optimization algorithms. Optimization algorithms are iterative
and start their iterations with an initial guess of the optimal values of the
variables and generate a sequence of improved estimates until a solution is
reached. These algorithms can be distinguished on the basis of the strategy
which they use to move from one iterate to the next. Most strategies make
use of the values of the objective function, the constraints, and the first and
the second derivatives of these functions. In this section, we explain the
gradient-type first order optimization algorithms as well as the second order
optimization algorithm that will help us to solve the optimality conditions.
Later on, in the next chapter we will compare the performance of these
algorithms on the basis of the obtained numerical results.

4.1.1 First Order Algorithms

Steepest Descent

47
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We first present the steepest descent (SD) algorithm to solve the control
problem. This algorithm is globally convergent but quite slow in practice.
(For global convergence see the theorem due to Zoutendijk given in [22])

Algorithm 4.1 [22, 45] (Steepest Descent)

1. set k = 0 and choose an initial control u0 ∈ Uad.

2. given uk, solve the state (2.20) and the adjoint equations (3.13)

3. compute the gradient Ĵ
′

(uk) from (3.28)

4. set pk = −Ĵ
′

(uk)

5. find step length αk > 0 (see remark 4.2), and set uk+1 = uk + αkpk to
update the control

6. if
‖ Ĵ

′

(uk) ‖

‖ Ĵ ′(u0) ‖
≤ tol then

STOP
else

k → k + 1 and goto 2

Remark 4.1 Throughout the section 4.1 tol = 10−4 and the norm is L2

except otherwise stated.

Remark 4.2 The step length αk is very crucial for the convergence of the
optimization algorithms. It is line search parameter that determines how far
to go in the given direction. To find an optimal step length in the direction
of gradient we use strong Wolfe conditions which ensure the convergence of
the optimization algorithm. The strong Wolfe conditions [22] require αk to
satisfy

Ĵ(uk + αkpk)− Ĵ(uk) ≤ s1αkĴ
′(uk)

Tpk, (4.1a)

|Ĵ ′(uk + αkpk)
Tpk| ≤ s2|Ĵ

′(uk)
Tpk|, (4.1b)

with 0 < s1 < s2 < 1. The first condition is the sufficient decrease condition
also called as Armijo condition and the second condition is called as curvature
condition. Implementation details of strong Wolfe conditions can be seen
in [22]. There are many other approaches as well for finding a step length
αk. Among them are the Armijo line search [26] and the Goldstein line
search [1]. A couple of techniques to find the approximations to the optimal
step length αk has also been given and discussed in [33].
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Nonlinear Conjugate Gradient

Next we present the nonlinear conjugate gradient (NCG) algorithm which
is very well-known and efficient technique for solving nonlinear optimization
problems [2, 19, 22, 52]. The key feature of this algorithm is that it re-
quires no matrix storage and can be viewed as an acceleration of the steepest
descent method.

Algorithm 4.2 [22] (nonlinear conjugate gradient)

1. given u0 ∈ Uad.

2. solve the state system (2.20) to evaluate Ĵ0 = Ĵ(u0)

3. solve the adjoint system (3.13) to evaluate Ĵ
′

0 = Ĵ
′

(u0)

4. set p0 = −Ĵ
′

0, k ← 0, tol > 0

5. while
‖ Ĵ

′

k ‖

‖ Ĵ
′

0 ‖
> tol then

◦ compute step length αk (see remark 4.2), and set uk+1 = uk+αkpk

◦ solve the state system (2.20) and the adjoint system (3.13)

◦ evaluate Ĵ
′

k+1 using the gradient equation (3.28)

◦ then compute βPRk+1 =
Ĵ ′
k+1

(

Ĵ ′
k+1 − Ĵ

′
k

)

‖ Ĵ ′
k ‖

2

◦ pk+1 = −Ĵ
′

k+1 + βPRk+1pk

◦ k ← k + 1
end

where the parameter βPRk is defined by Polak and Ribiére [12]. There are
some other variants of the Algorithm 4.2 as well, that differ from each other
in the choice of the parameter βk, for details see [11, 40, 43]. None of these
choices of βk proved to be significantly more efficient than the PR choice [22],
e.g. we experienced more optimization iterations (66) when Fletcher-Reeves
(FR) formula [43]

βFRk+1 =
‖ Ĵ ′

k+1 ‖
2

‖ Ĵ ′
k ‖

2
(4.2)
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was used as compared to the iterations (36) under the PR method. However
the algorithm 4.2 with FR formula (4.2) gives the following convergence
result.

Theorem 4.3 [9] Assume that the set

N =
{

u|Ĵ(u) ≤ Ĵ(u0)
}

is bounded and that Ĵ is Lipschitz continuously differentiable in a neighbour-
hood of N . Let the algorithm 4.2 be implemented with Fletcher-Reeves for-
mula (4.2) and a line search that satisfies the strong Wolfe conditions (4.1).
Then

lim
k→∞

inf‖∇Ĵk‖ = 0.

�

In [19], this result has been generalized to allow for any choice of βk such
that |βk| ≤ βFRk . A similar result for the Polak-Ribière method with more
complex conditions on the line search has been proved in [27].

4.1.2 Second Order Algorithms

In the previous subsection we presented the steepest descent and the nonlin-
ear conjugate gradient algorithms to solve the optimization problem (3.4).
The drawback of these first order methods is their slow convergence which
results in large number of functional and gradient evaluations.

In this subsection we describe the Newton method and the BFGS method
to solve the optimization problem. These methods respectively give the
quadratic and the superlinear convergence.

Newton-CG Method

The Newton method uses the second derivative information of the reduced
cost functional Ĵ computed in the subsection 3.5.1 to solve the optimization
problem (3.4) numerically. The method reads

Algorithm 4.3 [33] (Newton Algorithm)

1. choose an initial control u0 ∈ Uad.
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2. for k = 0, 1, 2, ...

(a) solve Ĵ ′′(uk)δuk = −Ĵ ′(uk),

(b) set uk+1 = uk + δuk to update the control.

The convergence of the algorithm is given by the following theorems.

Theorem 4.4 [22](Second-Order Sufficient Conditions) Suppose that Ĵ ′′(uk)
is continuous in an open neighbourhood of u∗ and that Ĵ ′(u∗) = 0 and Ĵ ′′(u∗)
is positive definite. Then u∗ is a strict local minimizer of Ĵ . �

Theorem 4.5 [22] Suppose that Ĵ is twice differentiable and that the Hes-
sian Ĵ ′′(uk) is Lipschitz continuous in a neighbourhood of a solution u∗ at
which the sufficient conditions (Theorem 4.4) are satisfied. Consider the
Algorithm 4.3, where δuk is computed as Ĵ ′′(uk)δuk = −Ĵ ′(uk). Then

1. if the starting point u0 is sufficiently close to u∗, the sequence of iterates
converges to u∗;

2. the rate of convergence of {uk} is quadratic; and

3. the sequence of gradient norms
{

‖Ĵ ′(uk)‖
}

converges quadratically to

zero. �

The computation of the reduced Hessian Ĵ ′′(uk) as a matrix in the Newton
equation (2a) looks infeasible because of its size and the numerical effort
involved. In this case, (2a) must be solved iteratively, e.g. by a conjugate
gradient method. The sequence of iterates (of CG method) for the linear
equation is referred to as the inner iteration and the sequence of Newton steps
as the outer iteration. The algorithm thus formed is called the Newton-CG
(see [8, 21] for naming convention) method and it does not require explicit
knowledge of the reduced Hessian. Rather it only requires that we can supply
matrix-vector product of the form Ĵ ′′(uk)δuk for any given vector δuk. Fur-
thermore, by making the termination tolerance of this inner CG algorithm
dependent on the convergence of the outer algorithm, the number of CG it-
erations can be reduced (see the stopping criterion of the inner CG loop as
defined in [33, 37, 44]).

The CG method is designed to solve positive definite systems but the Hessian
Ĵ ′′(uk) may not always be positive definite. This problem is resolved by the
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algorithm defined below where the CG iterations are terminated as soon as
a direction of negative curvature is encountered. This adaption will ensure
that the direction δuk is a descent direction.

Algorithm 4.4 [22, 33](Newton-CG)

1. choose an initial control u0 ∈ Uad.

2. for k = 0, 1, 2, ...

(a) solve the state system (2.20) and the adjoint system (3.13)

(b) using (3.28) evaluate Ĵ ′(uk) and set δujk = 0

(c) set remainder rjk = Ĵ ′(uk) and pjk = −rjk

(d) for j = 0, 1, 2, ...terminate when

‖rjk‖

‖Ĵ ′(u0)‖
< min

{(

‖Ĵ ′(uk)‖

‖Ĵ ′(u0)‖

)p1

, q1
‖Ĵ ′(uk)‖

‖Ĵ ′(u0)‖

}

(i) evaluate qjk = Ĵ ′′(uk)p
j
k using procedure given in

section (3.5.1)

(ii) if sp(pjk, q
j
k) ≤ 0 and if it is first CG iteration then

• compute γjk =
sp(rjk, r

j
k)

sp(pjk, q
j
k)

• set δuj+1
k = δujk + γjkp

j
k

• break inner CG-loop, return δuj+1
k as δuk

(iii) if sp(pjk, q
j
k) ≤ 0 and if not the first CG iteration then

• break inner CG-loop, return δuj+1
k as δuk

(iv) if sp(pjk, q
j
k) > 0

• compute γjk =
sp(rjk, r

j
k)

sp(pjk, q
j
k)

• set δuj+1
k = δujk + γjkp

j
k
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• set rj+1
k = rjk + γjkq

j
k

• compute βj+1
k =

sp(rj+1
k , rj+1

k )

sp(rjk, r
j
k)

• set pj+1
k = −rj+1

k + βj+1
k pjk

(e) end of inner CG-loop, return δuj+1
k as δuk

(f) set uk+1 = uk + αkδuk to update the control.

3. end of outer Newton-loop

where αk is the step length and is chosen to satisfy the strong Wolfe con-
ditions defined in remark 4.2. sp is the function that computes the scalar
product of vectors and p1, q1 are the parameters used to tune the termina-
tion criterion in the inner CG-loop. The value of parameter p1 decides the
order of convergence of the outer iteration and it is chosen from the interval
(1, 2). The value of parameter q1 is important for controlling termination of
the first iteration of the Newton-CG method as the norm quotients in the
first iteration are all 1. In our implementations of the algorithm, we have
chosen p1 = 1.5 and q1 = 0.1. We will also discuss the convergence of the
Newton-CG algorithm in Chapter 5 by choosing p1 = 1 and p1 = 2 as done
in [35].

BFGS Method

To avoid tedious work of computing the second derivative of the objective
function, one can use the quasi-Newton methods which like steepest descent
require only the gradient of the objective function. Since second derivatives
are not required, quasi-Newton methods are sometimes more efficient than
the Newton’s method. We consider here the BFGS method which is one of
the quasi-Newton method.

Algorithm 4.5 [22](BFGS)

1. given u0 ∈ Uad,

2. solve the state system (2.20)

3. solve the adjoint system (3.13)
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4. evaluate Ĵ ′
0

5. set B0 = I, k ← 0

6. while
‖Ĵ ′

k‖

‖Ĵ ′
0‖

> tol

(a) solve Bkpk = −Ĵ ′
k for search direction pk

(b) compute αk by strong Wolfe conditions (see remark 4.2)

(c) set uk+1 = uk + αkpk

(d) solve the state system (2.20)

(e) solve the adjoint system (3.13)

(f) using (3.28) evaluate Ĵ ′
k+1

(g) define sk = uk+1 − uk, yk = Ĵ ′
k+1 − Ĵ

′
k

(h) update Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk

(i) k ← k + 1

7. end

For the first iteration B0 is initialized with the identity matrix I, which
means that the search direction is the steepest descent but further iterations
are more and more refined by updating Bk. There are some other strategies
as well to initialize the matrix B0 (see [22]).

The BFGS method is robust and its rate of convergence is superlinear, e.g.,
see the following convergence result by [22].

Assumption 4.1 The Hessian matrix ∇2Ĵ is Lipschitz continuous at u∗ ∈
Uad, that is,

‖∇2Ĵ(u)−∇2Ĵ(u∗)‖ ≤ K‖u− u∗‖,

for all u ∈ Uad near u∗, where K is a positive constant.
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Theorem 4.6 [22] Suppose that Ĵ is twice continuously differentiable and
that the iterates generated by the BFGS algorithm converge to a minimizer
u∗ at which Assumption 4.1 holds. Suppose also that

∑∞

k=1 ‖uk − u
∗‖ < ∞

holds. Then uk converges to u∗ at a superlinear rate. �

4.2 Discretization

For numerical simulations, we discretize the continuous equations in the x−t
plane by choosing a uniform mesh width h, k > 0 where h = 1

N
, k = 1

M
. We

define the discrete mesh points as (xi, tj) = (ih, jk), i = 0, ..., N, j = 0, ...,M
and use the notation uji to denote the value of the function u(x, t) at these
mesh points.

We use standard finite differences for space discretization. Hyperbolic type
equations are discretized by the upwind scheme and the elliptic type equa-
tions by the central differences. The time derivative is treated in a semi-
implicit way. Same numerical strategy is used for the state, the adjoint and
the linearized state equations. However to solve the discretized nonlinear
state equations, Newton’s iterations are used.

4.2.1 State Equations

In the following we discretize the state equations (2.20). Discretization of
the equation (2.20a) is give as

Aj+1
i −Aji
k

+
vjiA

j+1
i − vji−1A

j+1
i−1

h
= 0, (4.3)

for i = 1, ..., N and j = 0, ...,M − 1, with

Aj0 = 1, A0
i = 1, j = 0, ...,M, i = 0, ..., N.

State equation (2.20c) is nonlinear hyperbolic type equation. We discretize
it by the upwind scheme

(R2)j+1
i − (R2)ji
k

+
vji (R

2)j+1
i − vji−1(R

2)j+1
i−1

h

−
πc1p

µ(T ji )A
j
i

(

(R4)j+1
i −

(A2)ji
(4πc1)2

)

= 0. (4.4)
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for i = 1, ..., N and j = 0, ...,M − 1, with

Rj
0 = 1, j = 0, ...,M, R0

i = 1, i = 0, ..., N.

Then we write the discretized equation in the form

f(R) = 0,

where

f = (f1, f2, ..., fn)
T

R = (R1, R2, ..., Rn)
T .

and implement the following Newton’s iterations to solve it.

1. set an initial guess R0,

2. for m = 0, 1, ... until convergence do

◦ solve Newton equation J (Rm) dm = −f(Rm) for dm,

◦ set Rm+1 = Rm + dm to update R

where dm is the correction vector and J(Rm) is the Jacobian matrix which
is defined as

[J(Rm)]ij =







2

(

1 +
k

h
vi

)

Ri −
4kπpc1
µ(Ti)Ai

(R3)i, for j = i

−
2k

h
vi−1Ri−1, for j = i− 1

0, otherwise

where Rj+1
i = Ri, Aji = Ai, vji = vi, T ji = Ti.

The nonlinear state equation (2.20d) is discretized as

T j+1
i − T ji

k
+ vji

T j+1
i − T j+1

i−1

h
−

(

b1R
j
i

Aji
+
b2

Rj
i

)

(
Ta − T

j+1
i

)

− c2
(
T 4
a − (T 4)j+1

i

)
= 0. (4.5)
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To solve it we again apply the Newton’s iterations where the Jacobian matrix
for the Newton’s iterations is defined as

[J(Tm)]ij =







1 +
k

h
vi + k

(
b1Ri

Ai
+
b2
Ri

)

+ 4kc2(T
3)i, for j = i

−
k

h
vi, for j = i− 1

0, otherwise

where T j+1
i = Ti, Aji = Ai, vji = vi, Rj

i = Ri.

Remark 4.7 The Jacobian matrices [J(Rm)]ij and [J(Tm)]ij are nonsingu-
lar and hence invertible.

For the discretization of the elliptic type equation (2.20b), we use the central
difference for spatial derivatives

3

h2

[

µ

(

T ji+1 + T ji
2

)

Aji+1 + Aji
2

(
vji+1 − v

j
i

)

− µ

(

T ji + T ji−1

2

)

Aji + Aji−1

2

(
vji − v

j
i−1

)
]

+ StAji = 0, (4.6)

for i = 1, ..., N − 1 and with boundary conditions

vj0 = 1, vjN = (vd)
j, for j = 0, ...,M.

4.2.2 Adjoint Equations

Using the upwind scheme, the linear adjoint equation (3.13a) is discretized
as

−
(ξA)j+1

i − (ξA)ji
k

−vji
(ξA)ji+1 − (ξA)ji

h

=
3µ(T ji )

h2
(vji+1 − v

j
i )
(
(ξv)

j+1
i+1 − (ξv)

j+1
i

)
− w1(A

j
i − Ad)

−
πc1p

µ(T ji )

(

(R4)ji
(A2)ji

+
1

(4πc1)2

)

(ξR)j+1
i − St(ξv)

j+1
i

−
b1R

j
i

(A2)ji
(Ta − T

j
i )(ξT )j+1

i .
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for i = N − 1, ..., 0 and j = M − 1, ..., 0, with conditions

(ξA)jN = 0, (ξA)Mi = −w2(A
M
i − Ad), j = M, ..., 0, i = N, ..., 0.

and the discretization of the adjoint equation (3.13b) is given as

3

h2

[

µ

(

T ji+1 + T ji
2

)

Aji+1 + Aji
2

(
(ξv)

j
i+1 − (ξv)

j
i

)

− µ

(

T ji + T ji−1

2

)

Aji + Aji−1

2

(
(ξv)

j
i − (ξv)

j
i−1

)
]

=
1

2h

×

[

Aji ((ξA)ji+1 − (ξA)ji−1) + (R2)ji ((ξR)ji+1 − (ξR)ji−1)− (ξT )ji (T
j
i+1 − T

j
i−1)

]

.

for i = 1, ..., N − 1 and with boundary conditions

(ξv)
j
0 = 0, (ξv)

j
N = 0, for j = M, ..., 0.

Similarly we can discretize the other adjoint equations for the adjoint vari-
ables ξR and ξT .

4.2.3 Linearized State Equations

While discretizing the linearized state equations (3.39), the derivatives are
discretized in a similar way as for the state equations. Semi-implicit dis-
cretization of (3.39a) is given as

(VA)j+1
i − (VA)ji
k

+
(vVA)j+1

i − (vVA)j+1
i−1

h
+
Aj+1
i (Vv)

j
i −A

j+1
i−1 (Vv)

j
i−1

h
= 0.

(4.7)

for i = 1, ..., N and j = 0, ...,M − 1, and with

(VA)j0 = 0, (VA)0
i = 0, j = 0, ...,M, i = 0, ..., N.

Equations (3.39c) and (3.39d) are respectively discretized as

(RVR)j+1
i − (RVR)ji
k

+
(vRVR)j+1

i − (vRVR)j+1
i−1

h
−

2πc1p(R
3)j+1
i

(µA)ji
(VR)j+1

i

=
πc1p

2µ(T ji )

[
β(VT )ji
Aji

(

(R4)ji −
(A2)ji

(4πc1)2

)

− (VA)ji

×

(

(R4)ji
(A2)ji

+
1

(4πc1)2

)]

−
1

2h

(
(R2Vv)

j
i − (R2Vv)

j
i−1

)
,

(4.8)
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for i = 1, ..., N and j = 0, ...,M − 1, and with

(VR)j0 = 0, j = 0, ...,M, (VR)0
i = 0, i = 0, ..., N.

(VT )j+1
i − (VT )ji
k

+ vj+1
i

(VT )j+1
i − (VT )j+1

i−1

h
+

(

4c2(T
3)ji +

b1R
j
i

Aji
+
b2

Rj
i

)

× (VT )j+1
i =

[
b1(VR)j+1

i

Aji
−
b1R

j
i (VA)j+1

i

(A2)ji
−
b2(VR)j+1

i

(R2)ji

]

× (Ta − T
j
i )− (Vv)

j
i

T ji − T
j
i−1

h
, (4.9)

for i = 1, ..., N and j = 0, ...,M − 1, and

(VT )j0 = 0, j = 0, ...,M, (VT )0
i = 0, i = 0, ..., N.

The discretization of equation (3.39b) is

3

h2

[

µ

(

T ji+1 + T ji
2

)

Aji+1 + Aji
2

(
(Vv)

j
i+1 − (Vv)

j
i

)

− µ

(

T ji + T ji−1

2

)

Aji + Aji−1

2

(
(Vv)

j
i − (Vv)

j
i−1

)
]

=
3β

h2

[

µ

(

T ji+1 + T ji
2

)(

(VT )ji+1 + (VT )ji
2

)(

Aji+1 + Aji
2

)

(
vji+1 − v

j
i

)

− µ

(

T ji + T ji−1

2

)(

(VT )ji + (VT )ji−1

2

)(

Aji + Aji−1

2

)

(
vji − v

j
i−1

)
]

−
3

h2

[

µ

(

T ji+1 + T ji
2

)

(VA)ji+1 + (VA)ji
2

(
vji+1 − v

j
i

)

− µ

(

T ji + T ji−1

2

)

(VA)ji + (VA)ji−1

2

(
vji − v

j
i−1

)
]

− StAji (4.10)

for i = 1, ..., N − 1 and with boundary conditions

(Vv)
j
0 = 0, (Vv)

j
N = (δu)j, for j = 0, ...,M.
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4.2.4 Linearized Adjoint Equations

Discretization of the equations (3.47) are given as

−
(WA)j+1

i − (WA)ji
k

− vji
(WA)ji+1 − (WA)ji

h
= −(Vv)

j
i

(ξA)ji+1 − (ξA)ji
h

+
3µji
h2

[
(
(Wv)

j+1
i+1 − (Wv)

j+1
i

)
(vji+1 − v

j
i ) + β(VT )ji

(
(ξv)

j
i+1 − (ξv)

j
i

)

× (vji+1 − v
j
i )−

(
(ξv)

j
i+1 − (ξv)

j
i

) (
(Vv)

j
i+1 − (Vv)

j
i

)
]

−
b1(RVT ξT )ji

(A2)ji

+
πc1p

µji

[
(
β(VT ξR)ji − (WR)j+1

i

)

(

(R4)ji
(A2)ji

+
1

(4πc1)2

)

+
2(R3ξR)ji

(A3)ji

×
(
2(AVR)ji − (RVA)ji

)
]

−
b1(Ta − T

j
i )

(A2)ji

[

(ξT )ji

(

2(RVA)ji
Aji

− (VR)ji

)

+ (R)ji (WT )j+1
i

]

− St(Wv)
j+1
i + w1(VA)ji (4.11)

for i = N − 1, ..., 0 and j = M − 1, ..., 0, and with conditions

(WA)jN = 0, (WA)Mi = w2(VA)Mi , j = M, ..., 0, i = N, ..., 0.

−Rj
i

(WR)j+1
i − (WR)ji
k

− vjiR
j
i

(WR)ji+1 − (WR)ji
h

−
2πc1p(R

3)ji
(µA)ji

(WR)ji

=
2πc1p(R

2)ji (ξR)ji
(µA)ji

(

(RVA)ji
Aji

− 2(VR)ji − β(RVT )ji

)

+
1

2

[

(VT ξT )ji

+ (Ta − T
j
i )(WT )ji +

(VRξT )ji
Rj
i

(Ta − T
j
i )

](
b1

Aji
−

b2

(R2)ji

)

+
1

2
(ξT )ji

× (Ta − T
j
i )

(

b1(VA)ji
(A2)ji

−
2b2(VR)ji

(R3)ji

)

− (RVv)
j
i

(ξR)ji+1 − (ξR)ji
h

, (4.12)

for i = N − 1, ..., 0 and j = M − 1, ..., 0, with

(WR)jN = 0, (WR)Mi = 0, j = M, ..., 0, i = N, ..., 0.
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−
(WT )j+1

i − (WT )ji
k

−
(vWT )ji+1 − (vWT )ji

h
+

(

4c2(T
3)ji +

b1R
j
i

Aji
+
b2

Rj
i

)

× (WT )ji =
3βµji
h2

[
{
(VA)ji

(
(ξv)

j
i+1 − (ξv)

j
i

)
− Aji

(
(Wv)

j
i+1 − (Wv)

j
i

)}

×
(
vji+1 − v

j
i

)
− β(VTA)ji

(
vji+1 − v

j
i

) (
(ξv)

j
i+1 − (ξv)

j
i

)
+ Aji

×
(
(ξv)

j
i+1 − (ξv)

j
i

) (
(Vv)

j
i+1 − (Vv)

j
i

)
]

+
βπc1p

(µA)ji

[

− 4(VRξR)ji

× (R3)ji +
(
(WR)ji − β(VT ξR)ji

)

(

(R4)ji −
(A2)ji

(4πc1)2

)

+ (AVA)ji

× (ξR)ji

(

(R4)ji
(A2)ji

+
1

(4πc1)2

)]

+

[

12c2(T
2)ji (VT )ji −

b1(RVA)ji
(A2)ji

+ (VR)ji

(
b1

Aji
−

b2

(R2)ji

)]

(ξT )ji −
1

h

(
(VvξT )ji+1 − (VvξT )ji

)
,

(4.13)

for i = N − 1, ..., 0 and j = M − 1, ..., 0, with

(WT )jN = 0, (WT )Mi = 0, j = M, ..., 0, i = N, ..., 0.

Adjoint equation (3.47b) can be discretized exactly the same way as the
equation (3.13b) was discretized.

Discretized state equations are solved forward in time and the discretized
adjoint equations are solved backward in time.

Remark 4.8 Discretized equations given in subsections 4.2.3 and 4.2.4 re-
spectively yield transpose of each other. For example, if we write the dis-
cretized equations (4.7) and (4.11) in matrix form respectively as
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1 0 . . . 0

−k
h
vj+1
1 1 + k

h
vj+1
2 0

...
. . .

. . .
...
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where

(fA)i = (VA)ji −
k

h

(
Aj+1
i (Vv)

j
i − A

j+1
i−1 (Vv)

j
i−1

)
, i = 1, ..., N, j = 0, ...,M − 1.

and
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h
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(gA)2
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(gA)N−1














(4.15)

where

(gA)i = (WA)j+1
i +

k

h
vji (WA)ji+1 + k times terms on RHS of equation (4.11)

i = N − 1, ..., 0, j = M − 1, ..., 0.

then we observe that the coefficient matrices in (4.14) and (4.15) yield trans-
pose of each other. Similar results can be shown for the others discretized
equations. On the basis of this we conclude that the reduced Hessian ma-
trix (3.30b) is symmetric provided that the matrix Lww given by (3.31) is
symmetric.

4.2.5 Consistency of Schemes

We check the consistency and the order of accuracy of the discretized equa-
tions given in sections 4.2.1 and 4.2.3 with the help of truncation error.

Definition 4.1 [20] A finite difference scheme Ph,kRh,k(u) = f is consistent
with the partial differential equation Pu = f if for any smooth function φ(x, t)

Pφ− Ph,kφ→ 0 as h, k → 0,

the convergence being pointwise convergence at each point (x, t).

Definition 4.2 [20] A scheme Ph,kRh,k(u) = Rh,kf that is consistent with
the differential equation Pu = f is accurate of order p in space and order q
in time if for any smooth function φ(x, t)

Ph,kφ− Rh,k(Pφ) = O(hp) +O(kq).

We say that such a scheme is accurate of order (p, q).
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Remark 4.9 The quantity Ph,kφ−Rh,k(Pφ) is called the truncation error of
the scheme. Rh,k is the restriction operator that transforms the continuous
functions to the grid functions.

A simple way to compute the local truncation error is to replace the approx-
imate solution, say, U j

i in the difference equation by the true solution, say,
u(xi, tj) := u(ih, jk) and then to use the Taylor series expansions about the
point (xi, tj).

Theorem 4.10 (grid consistency of state equations) Let A, v, R, T are suf-
ficiently smooth functions of independent variables x and t. Then the finite
difference methods (4.3)-(4.6) are consistent with the partial differential equa-
tions (2.20a)-(2.20d) respectively. Furthermore, the schemes (4.3)-(4.5) are
accurate of order 1 both in time and space and the scheme (4.6) is accurate
of order 2 in space.

Proof : To prove consistency, we need to determine the truncation error of
each of the finite difference schemes (4.3)-(4.5). First, we consider the finite
difference equation (4.3) and replace the approximate solutions with the true
solutions, e.g. Aji with A(xi, tj), to get

TEA
h,k =

A(xi, tj+1)− A(xi, tj)

k
+
v(xi, tj)A(xi, tj+1)− v(xi−1, tj)A(xi−1, tj+1)

h

Now using the Taylor series expansions

A(xi, tj+1) = A+ kAt +
k2

2!
Att + ... (4.16a)

A(xi−1, tj+1) = A+ (kAt − hAx) +
1

2!

(
k2Att − 2khAxt + h2Axx

)
+ ...

(4.16b)

v(xi−1, tj) = v − hvx +
h2

2!
vxx + ... (4.16c)

where A := A(xi, tj) and v := v(xi, tj).

and simplifying we get

TEA
h,k = At + (vA)x + k

[

vxAt + vAxt +
1

2
Att

]

−
h

2

[

vAxx + 2Axvx + Avxx

]

+O(h2) +O(k2)
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Now since At + (vA)x = 0, we have

TEA
h,k = O(h) +O(k) → 0 as h, k → 0

Next we consider the finite difference equation (4.4) and replace the approx-
imate solutions with the true solutions to get

TER
h,k =

1

k

[

R2(xi, tj+1)− R
2(xi, tj)

]

+
1

h

[

v(xi, tj)R
2(xi, tj+1)− v(xi−1, tj)

× R2(xi−1, tj+1)

]

−
πc1p

µ(T (xi, tj))A(xi, tj)

[

R4(xi, tj+1)−
A2(xi, tj)

(4πc1)2

]

.

Again using Taylor series expansions about (xi, tj) and simplifying we get

TER
h,k =(R2)t +

(
vR2

)

x
−

πc1p

µ(T )A

(

R4 −
A2

(4πc1)2

)

+ k

[

vx(R
2)t + v(R2)xt

+
1

2
(R2)tt +

πc1p

µ(T )A
(R4)t

]

−
h

2

[

v(R2)xx + 2(R2)xvx + (R2)vxx

]

+O(h2) +O(k2)

Using the continuous equations (2.20c) we arrive at

TER
h,k = O(h) +O(k) → 0 as h, k → 0 (4.17)

Applying the same procedure to the finite difference equations (4.5) and (4.6)
we respectively get the following truncation errors

TET
h,k =k

[

c2(T
4)t +

(
b1R

A
+
b2
R

)

Tt + vTxt +
1

2
Ttt

]

+ h
(

−
v

2
Txx

)

+O(h2) +O(k2)

and

TEv
h = h2

[
1

8
Aµxxxvx +

3

8
Axµxxvx +

3

8
Axxµxvx +

1

8
Axxxµvx

+
3

8
Aµxxvxx +

3

4
Axµxvxx +

3

8
Axxµvxx +

1

2
Aµxvxxx

+
1

2
Axµvxxx +

1

4
Aµvxxxx

]

+O(h4).

Hence

TET
h,k → 0, TEv

h → 0 as h, k → 0.

�

In order to prove the grid consistency of the linearized state equations (3.39a)-
(3.39d), we give the following theorem.
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Theorem 4.11 (grid consistency of linearized state equations) Let VA, Vv,
VR, VT are sufficiently smooth functions of independent variables x and t.
Then the finite difference methods (4.7)-(4.9) are respectively consistent with
the differential equations (3.39a)-(3.39d). Furthermore, the schemes (4.7)-
(4.9) are accurate of order 1 both in time and space and the scheme (4.10)
is accurate of order 2 in space.

Proof : Consider the finite difference equation (4.7) and replace the ap-
proximate solutions (VA)ji , (Vv)

j
i , A

j
i , v

j
i respectively by VA(xi, tj), Vv(xi, tj),

A(xi, tj), v(xi, tj) to get the truncation error

TEVA

h,k =
1

k

[

VA(xi, tj+1)− VA(xi, tj)

]

+
1

h

[

v(xi, tj+1VA(xi, tj+1)− v(xi−1, tj+1)

× VA(xi−1, tj+1))

]

+
1

h

[

A(xi, tj+1)Vv(xi, tj)− A(xi−1, tj+1)Vv(xi−1, tj)

]

.

Using the Taylor series expansions

VA(xi, tj+1) =VA + k(VA)t +
k2

2!
(VA)tt + ...

VA(xi−1, tj+1) =VA + (k(VA)t − h(VA)x) +
1

2!

[

k2(VA)tt

− 2kh(VA)xt + h2(VA)xx

]

+ ...

Vv(xi, tj+1) =Vv + k(Vv)t +
k2

2!
(Vv)tt + ...

Vv(xi−1, tj+1) =Vv + (k(Vv)t − h(Vv)x) +
1

2!

[

k2(Vv)tt

− 2kh(Vv)xt + h2(Vv)xx

]

+ ...

and the expansions (4.16), and then cancelling out and rearranging the terms,
we get

TEVA

h,k =k

[

(VvAt)x + (v(VA)x)t + (VAvx)t +
1

2
(VA)tt

]

+ h

[

−
1

2
(v(VA)xx + VAvxx + A(Vv)xx+ VvAxx)

+ vx(VA)x + Ax(Vv)x

]

+O(h2) +O(k2).
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or

TEVA

h,k = O(h) +O(k)→ 0 as h, k → 0

Following the similar procedure for the other discretized equations (4.8)-
(4.10), we reach at the following truncation errors

TEVR

h,k = k

[
1

2
R(VR)tt +Rt(VR)t +

1

2
VRRtt + vR(VR)xt + (vR)t(VR)x + (vR)x

× (VR)t + VR(vRxt + vtRx + vxRt +Rvxt)−
2πc1p

µA
(R3VR)t

]

−h

[
1

2
vR(VR)xx + (vR)x(VR)x + VR(vRxx + 2vxRx +Rvxx) +

1

4
Vv

× (R2)xx +
1

2
(Vv)x(R

2)x +
1

4
R2(Vv)xx

]

+O(h2) +O(k2)

TEVT

h,k = k

[
1

2
(VT )tt + v(VT )xt + vt(VT )x +

(

4c2T
3 +

b1R

A
+
b2
R

)

(VT )t

+ (Ta − T )

(
b1(VR)t
A

−
b1R(VA)t

A2
−
b2(VR)t
R2

)]

+ h

[

−
1

2
v(VT )xx −

1

2
VvTxx

]

+O(k2) +O(h2).

TEVv

h = h2

[
1

4
{Aµ(Vv)xxxx + vxxxx (µVA − βµAVT )}+

1

8
(Vv)x(µA)xxx

+
3

8
{(Vv)xx(µA)xx + vxx ((µVA)xx − β(µAVT )xx)}

+
1

2
{(Vv)xxx(µA)x + vxxx ((µVA)x − β(µAVT )x)}

+
1

8
vx ((µVA)xxx − β(µAVT )xxx)

]

+O(h4).

Hence

TEVv

h → 0, TEVR

h,k → 0, TEVT

h,k → 0 as h, k → 0.

�



Chapter 5

Numerical Results

In this chapter we present the numerical results for the control problems
defined in Chapter 3 and in Appendix A. To obtain these results, we use
the solution algorithms and the discretization defined in Chapter 4. The
parameters appearing in the equations (state equations, adjoint equations,
linearized state equations, linearized adjoint equations) use values given in
the tables 2.1 and 5.1. Specific heat, density and thermal conductivity are
assumed to be constant.

In the following sections, numerical results both for the isothermal and the
non-isothermal tube drawing models are presented, discussed and compared.
Performance comparison of the solution algorithms and the analysis of the
Newton-CG algorithm is discussed in subsection 5.1.2.

Parameters Symbols Values

length of hot-forming zone L 1 m
final time tf 1
input temperature T0 1300 K
input viscosity µ0 5× 105 Pa sec.
temperature-viscosity parameter. β 13
inside pressure p 420 Pa
feeding speed v0 1 mm/sec.
drawing speed vL 12 mm/sec.

Table 5.1: Parameter values involved in simulations [18, 49]

67



68 CHAPTER 5. NUMERICAL RESULTS

Opt. s2

Algorithms Isothermal Non-isothermal

SD 0.9 0.9
NCG 0.87 0.87
BFGS 0.56 0.6
Newton-CG 0.9 0.65

Table 5.2: Value of parameter used in strong Wolfe conditions

5.1 Control of Area for the entire Time Do-

main

We consider the control problems (3.4) and (A.3) with w1 = 1, w2 = 0
with the aim to find the time dependent optimal drawing speed vd(t) of the
drawing machine such that the glass tubes of the desired cross-sectional area
Ad are obtained. Here Ad is defined as constant both in space and time. The
parameters s1 and s2 used in the strong Wolfe conditions (4.1) are defined
as s1 = 10−4 and for s2 see the table 5.2.

5.1.1 Comparison of Isothermal and Non-isothermal

Processes

We started the optimization process with the constant drawing speed vd = 12
and reached the optimal speed that varies over the time and minimizes the
cost functional (3.1) with w1 = 1 and w2 = 0. The profile of the drawing
speed before and after optimization is shown in the figure 5.1. From this fig-
ure we conclude that the process starts with a high drawing speed and then
after t = 0.1 the drawing speed becomes almost constant over time except
very near to the final time t = tf where it is approaching zero. The profiles
of drawing speed both for the isothermal and the non-isothermal processes
are quite similar except at the start where the isothermal process starts with
a little bit higher speed than that of the non-isothermal process.

In figures 5.2-5.4, we have plotted the cross-sectional area A(x, t) before and
after optimization at different times both for the isothermal and the non-
isothermal processes. We notice here how the optimal drawing speed vd is
forcing the cross-sectional area A to converge to the desired state Ad in the
very start of the processes. For the non-isothermal process, cross-sectional
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Figure 5.1: Drawing speed (control) before and after optimization. Isother-
mal: λ = 1.4× 10−4, Non-isothermal: λ = 1.8× 10−4 (SD algorithm).

area has almost reached the desired state at time t = 0.35 and we don’t ob-
serve any change afterwards in the area. However in the isothermal process,
it takes more time to match the desired state.

Mean radius R(x, t) of the tube, the temperature T (x, t) and the viscos-
ity µ(T ) of the fluid (glass) before and after optimization at time t = tf are
shown in figure 5.5. Figure 5.6 shows the tube geometry before and after
optimization at t = tf where one can observe that the optimized tube is
matching to the desired one.
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Figure 5.2: Cross-sectional area A before and after optimization at different
times for h = 0.01, k = 0.004, Isothermal: before opt.- green, after opt.- blue
and λ = 1.4 × 10−4. Non-isothermal: before opt.- cyan, after opt.- red and
λ = 1.8× 10−4. (SD algorithm).
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Figure 5.3: Cross-sectional area A before and after optimization at different
times for h = 0.01, k = 0.004, Isothermal: before opt.- green, after opt.- blue
and λ = 1.4 × 10−4. Non-isothermal: before opt.- cyan, after opt.- red and
λ = 1.8× 10−4. (SD algorithm).
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Figure 5.4: Cross-sectional area A before and after optimization at different
times for h = 0.02, k = 0.01, Isothermal: before opt.- blue, after opt.- green
and λ = 1.4 × 10−4. Non-isothermal: before opt.- magenta, after opt.- red
and λ = 1.8× 10−4. (SD algorithm).
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Figure 5.5: Mean radius R (top), temperature T (middle) and viscosity µ(T )
(bottom) before and after optimization at time t = tf for h = 0.01, k = 0.004
and λ = 1.8× 10−4 (SD algorithm - non-isothermal tube drawing).
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Figure 5.6: Tube geometry before and after optimization at t = tf . (for
h = 0.01, k = 0.004 and λ = 1.8× 10−4)

Convergence of the cost functional to the minimum under four differ-
ent optimization algorithms is shown in figures 5.7 (non-isothermal) and 5.8
(isothermal). We observe decrease in the cost functional with the iterations,
indicating that the objective functional has been minimized. Figures 5.10
and 5.11 show the decrease of the L2 norm of the gradient against the num-
ber of iterations for each of the solution algorithms. Observations are shown
in the figure 5.9. From these figures, we also conclude that our iterative
schemes for the minimization problems (3.4) and (A.3) converge.
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Figure 5.7: Evaluation of Cost Functional under SD, NCG, BFGS, Newton-
CG (p1 = 1.5) optimization algorithms (non-isothermal tube drawing). λ =
1.8× 10−4

Opt. Algo. Comp. Time (min) Itrs. Func. Evaluations

SD 36.96 42 196
NCG 31.77 36 173
BFGS 23.3 30 118
Newton-CG (p1 = 1.5) 7.54 6 (30) 9

Table 5.3: Performance evaluations of optimization algorithms when h =
0.01, k = 0.004 and λ = 1.8× 10−4 (non-isothermal tube drawing)
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Figure 5.8: Evaluation of Cost Functional under SD, NCG, BFGS, Newton-
CG (p1 = 1.5) optimization algorithms (isothermal tube drawing). λ =
1.4× 10−4
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Figure 5.9: Cost functional and observations under SD, NCG, BFGS, and
Newton-CG optimization algorithms for h = 0.01, k = 0.004 and λ = 1.8×
10−4 (non-isothermal tube drawing) .



78 CHAPTER 5. NUMERICAL RESULTS

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

SD

|| 
gr

ad
 J

(u
) 

|| 2

iterations
10

0
10

1
10

2
10

−6

10
−4

10
−2

10
0

NCG

|| 
gr

ad
 J

(u
) 

|| 2

iterations

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

BFGS

|| 
gr

ad
 J

(u
) 

|| 2

iterations

2 4 6
10

−6

10
−4

10
−2

10
0

Newton−CG (p
1
=1)

|| 
gr

ad
 J

(u
) 

|| 2

iterations

2 4 6
10

−6

10
−4

10
−2

10
0

Newton−CG (p
1
=1.5)

|| 
gr

ad
 J

(u
) 

|| 2

iterations
1 2 3 4 5

10
−4

10
−3

10
−2

10
−1

Newton−CG (p
1
=2)

|| 
gr

ad
 J

(u
) 

|| 2

iterations

Figure 5.10: Evaluation of ‖Ĵ ′(u)‖2 under different optimization algorithms
for h = 0.01, k = 0.004 and λ = 1.8× 10−4 (non-isothermal tube drawing).
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Figure 5.11: Evaluation of ‖Ĵ ′(u)‖2 under different optimization algorithms
for h = 0.01, k = 0.004 and λ = 1.4× 10−4 (isothermal tube drawing).
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5.1.2 Comparisons of Algorithms

We used the first order (SD, NCG), the superlinear (BFGS) and the sec-
ond order (Newton-CG) optimization algorithms to find the optimal control
(drawing speed) for the control problems (3.4) and (A.3). From the obtained
results, we notice that less number of optimization iterations are needed in
the case of superlinear Algorithm 4.5 and the second order Algorithm 4.4 as
compared to the first order Algorithms 4.1-4.2 (see the tables 5.3 and 5.5).
Further comparisons of these algorithms in terms of number of solution iter-
ations can be seen in figures 5.7 and 5.8 where the cost functional is plotted
against the solution iterations.

Because of the quadratic convergence of the Newton-CG Algorithm 4.4, very
few iterations are needed to reach the optimal solution as compared to the
others. We present the figures 5.12 and 5.13 to see the convergence behaviour
of the Newton-CG algorithm. In figure 5.12, decrease of the residual rjk is
shown for different values of p1 = 1, 1.5, 2 (see stopping criterion in inner CG
loop of the Algorithm 4.4). For all of the three cases we observe a linear
convergence at the beginning of the iterations but later on the superlinear
convergence (for p1 = 1.5) and the quadratic convergence (for p1 = 2) be-
haviour are also noticed. From figure 5.13, we also observe the influence of
the parameter p1 on the number of CG steps. For p1 = 1 we have almost
constant amount of CG steps in each Newton iteration and for p1 = 2 we get
a sudden increase towards the end of the iterations. However, overall number
of CG steps are almost the same in both of the cases.

To study the influence of the grid spacing h on the performance of the
Newton-CG Algorithm 4.4, we keep the parameter p1 = 1.5 and the reg-
ularization parameter λ = 1.8 × 10−4 fixed and vary only the grid spacing
from 1/80 through 1/125 to 1/225. We, from the figure 5.14, don’t observe
any dependence of the residuals on the grid spacing h. However a small de-
pendence of the CG iterations on the grid spacing h is observed in figure 5.15.

Finally we perform the numerical test for three different values of the regular-
ization parameter λ to see its influence on the algorithm. In figure 5.16(top)
where observations are plotted against number of Newton iterations, we no-
tice a significant reduction after two steps. For the smallest value of λ, this
reduction is comparatively more but on the other hand one more Newton
iteration and more CG iterations are needed to meet the stopping criterion,
e.g. see the figure 5.16(middle). We also observe bad convergence of the
algorithm in figure 5.16(bottom) with the decrease of the regularizing param-
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Opt. Algo. Comp. Time (min) Itrs. Func. Evaluations

SD 9.51 43 202
NCG 6.92 34 169
BFGS 3.06 19 90
Newton-CG (p1 = 1.5) 1.21 5 (20) 8

Table 5.4: Performance evaluations of the optimization algorithms when h =
0.02, k = 0.01 and λ = 1.8× 10−4 (non-isothermal tube drawing)

eter λ.

We end our discussion on results for the isothermal and the non-isothermal
tube drawing with the tables 5.3, 5.4, 5.5 and 5.6 that show the performance
comparison of all of the four algorithms for optimal control problems (3.4)
and (A.3) in terms of the solutions iterations, the functional evaluations, and
the computation time. From these tables we can conclude that Newton-CG
algorithms is more efficient than the others.
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Figure 5.12: Dependence of the residuals on p1. Here h = 0.01, k = 0.004
and λ = 1.8× 10−4 (non-isothermal tube drawing)
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Opt. Algo. Comp. Time (min) Itrs. Func. Evaluations

SD 14.66 48 234
NCG 13.29 43 214
BFGS 6.56 17 99
Newton-CG (p1 = 1.5) 2.24 7 (32) 8

Table 5.5: Performance evaluations of the optimization algorithms when h =
0.01, k = 0.004 and λ = 1.4× 10−4 (isothermal tube drawing)
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Figure 5.13: Dependence of CG iterations on p1. Here h = 0.01, k = 0.004
and λ = 1.8× 10−4 (non-isothermal tube drawing)

Opt. Algo. Comp. Time (min) Itrs. Func. Evaluations

SD 3.49 46 227
NCG 2.05 37 186
BFGS 1.13 14 80
Newton-CG (p1 = 1.5) 0.34 7 (26) 8

Table 5.6: Performance evaluations of the optimization algorithms when h =
0.02, k = 0.01 and λ = 1.4× 10−4 (isothermal tube drawing)
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Figure 5.14: Dependence of the residuals on grid spacing h with k = 0.004.
(non-isothermal tube drawing)
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5.2 Control of Area at Final Time

Here we consider the control problems (3.4) and (A.3) with w1 = 0, w2 = 1
and try to find the optimal drawing speed vd(t) such that the cross-sectional
area at final time t = tf matches the desired area Ad defined as

Ad(x) =







−
7

2
x+ 1, 0 ≤ x ≤ 0.2,

−
1

4
x+

7

20
, 0.2 ≤ x ≤ 0.6,

0.2, 0.6 ≤ x ≤ 1.

The parameters s1 and s2 used in the strong Wolfe conditions (4.1) are given
as s1 = 10−4, s2 = 0.9 (for isothermal) and 0.78 (for non-isothermal).

5.2.1 Comparison of Isothermal and Non-isothermal

Processes

Optimal profiles of the drawing speed vd(t) both for the isothermal and the
non-isothermal processes are shown in the figure 5.17. We observe that both
of the processes start with almost similar drawing speeds which remain con-
stant till t = 0.6 and then change with time. We notice a high increase in
the drawing speed near t = 1 for the isothermal process as compared to the
non-isothermal process. This behaviour of the drawing speed is quite differ-
ent from that of the optimal speed determined in the previous section where
the processes start with high drawing speeds. The reason is the profile of the
area to be controlled.

Cross-sectional area A(x, t) before and after optimization at different times
is shown in the figures 5.18 and 5.19. From these figures, we can observe
how the increase in the drawing speeds near the final time t = tf is forcing

Processes Comp. Time (min) Itrs. Func. Evaluations

Isothermal 4.58 19 96
non-isothermal 40.5 89 355

Table 5.7: Performance evaluations of the NCG algorithm for control prob-
lems (3.4) and (A.3) with w1 = 0, w2 = 1
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Figure 5.17: Drawing speed (control) before and after optimization. Isother-
mal: λ = 1.6× 10−5, Non-isothermal: λ = 5.8× 10−5.

the cross-sectional area to meet the desired area. In the non-isothermal case,
matching at the final time is more accurate as compared to the isothermal
case.

Tube geometry before and after optimization is shown in figure 5.20. Con-
vergence of the cost functional to the minimum and the observations both
for the isothermal and non-isothermal processes are shown in figure 5.21.
Mean radius R(x, t) of the tube, temperature T (x, t) and viscosity µ(T ) of
the fluid (glass) before and after optimization at time t = tf are shown in
the figure 5.22.

The results presented in this section are obtained by using the NCG Al-
gorithm 4.2 whose performance evaluation is given in table 5.7.
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Figure 5.18: Cross-sectional area A before and after optimization at different
times for h = 0.01, k = 0.004, Isothermal: before opt.- green, after opt.- blue
and λ = 1.6 × 10−5. Non-isothermal: before opt.- cyan, after opt.- red and
λ = 5.8× 10−5. (NCG algorithm).
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Figure 5.19: Cross-sectional area A before and after optimization at different
times for h = 0.01, k = 0.004, Isothermal: before opt.- green, after opt.- blue
and λ = 1.6 × 10−5. Non-isothermal: before opt.- cyan, after opt.- red and
λ = 5.8× 10−5. (NCG algorithm).
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Figure 5.20: Tube geometry before and after optimization at t = tf . (for
h = 0.01, k = 0.004 and λ = 5.8× 10−5- NCG algorithm)
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Figure 5.21: Cost functional and observations for h = 0.01, k = 0.004,
Isothermal (top): λ = 1.6× 10−5, Non-isothermal (bottom): λ = 5.8× 10−5

.
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Figure 5.22: Mean radius R (top), temperature T (middle) and viscosity µ(T )
(bottom) before and after optimization at time t = tf for h = 0.01, k = 0.004
and λ = 5.8× 10−5 (NCG algorithm - non-isothermal tube drawing).
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Figure 5.23: Cross-sec. Area (top) and mean radius (bottom) under different
pressures (non-isothermal tube drawing).

Remark 5.1 For the simulations presented above, we did not consider the
inside blowing pressure as a control variable. The reason is that it does not
have any effect on the cross-sectional area A, as shown in figure 5.23(top)
where one cannot see any change in the area under different blowing pres-
sures. However depending upon the physical parameters used for the simu-
lations, it may only affect the mean radius R and the width W of the tube.
But for the physical parameters used in our numerical simulations, we don’t
observe any significant change in the mean radius R under different blowing
pressures (see the figure 5.23(bottom)).



Chapter 6

Conclusions

In this thesis we studied the optimal control problems of the tube draw-
ing process with the aim to control the circular cross-sectional area of the
tube. Since pulling speed of the drawing machine greatly influences the cross-
sectional area, we considered it as the control variable. We derived the model
equations both for the isothermal and the non-isothermal tube drawing pro-
cesses. In section 2.1, we considered the Stokes equations and the energy
equation to describe the slow flow of the molten glass and then by exploiting
the large aspect ratio of the flow, we derived the simplified model equations.
In section 2.2 we described the isothermal model of the tube drawing and
proved the existence and the uniqueness of the solutions of the stationary
nonlinear equations of the model.

Based on our goal and the derived model equations, we formulated the con-
strained optimization problem to determine the optimal drawing speed which
in turn led us to the desired cross-sectional area. To solve the problem, we
used the adjoint variable approach. We introduced the Lagrangian functional
associated with the minimization problem and derived the first order and the
second order optimality conditions both for the isothermal (see appendix A)
and the non-isothermal models. In section 3.4.1.1, we presented the existence
and uniqueness results for the solution of the stationary adjoint equations for
isothermal tube drawing process.

To solve the optimality conditions, we defined the solution algorithms based
on the steepest descent, nonlinear conjugate gradient, BFGS and the New-
ton approaches. In the Newton method, we introduced the CG iterations to
solve the Newton equation in order to avoid more numerical efforts involved
in computing the Hessian matrix. To stop these CG iterations, the criterion

93
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defined in [33, 37, 44] was used, which (depending upon the parameters in-
volved) also gave us the linear, the superlinear and the quadratic convergence
of the algorithm (Newton-CG). In each of the solution algorithms, we used
the strong Wolf conditions to find the optimal step length.

Numerical results are obtained for two different cases. In the first case,
we controlled the area for the entire time domain. In this case, we observed
that the isothermal process starts with a higher drawing speed as compared
to the non-isothermal process and after time t = 0.1 both have a significant
decrease in speed and become almost similar. We also noticed that the cross-
sectional area in the non-isothermal case reaches the desired state earlier than
the isothermal case. However the overall computing time for the isothermal
process is less than that of the non-isothermal process. In the second case,
we controlled the area at the final time t = tf . Our observation in this case
is that both the isothermal and the non-isothermal processes start with the
same low drawing speeds which remain constant till t = 0.6 and afterwards
start varying with time and get a significant increase in the speed at the
end. The isothermal process stops with a higher drawing speed as compared
to the non-isothermal process. This sudden increase in the speed near the
final time is because of our objective to control area at the final time. We
also notice in this case that the cross-sectional area exactly matches to the
desired area in non-isothermal tube drawing.

For our optimal control problems, we also compared the performance of the
optimization algorithms in terms of the solution iterations, functional evalu-
ations and the computation time. From the performance comparisons shown
in the tables 5.3 and 5.5, we can conclude that the Newton-CG method is
better than the others for our optimal control problems. However, to imple-
ment this algorithm we have to collect the second derivative informations.



Appendix A

Control Problem for Isothermal

Tube Drawing

We define here the optimal control problem for the isothermal tube drawing
process and give a brief derivation of the first order and the second order op-
timality conditions necessary for solving the control problem. The detailed
procedure of derivation is given in Chapter 3.

The isothermal model (2.21) in dimensionless form is given as:

(A)t + (vA)x = 0, (A.1a)

(3Avx)x + StA = 0, (A.1b)

(
R2
)

t
+
(
vR2

)

x
=
πc1p

A

(

R4 −
A2

(4πc1)
2

)

(A.1c)

(A.1d)

where dimensionless parameters are

St =
ρgL2

v0µ
, c1 =

R2
0

A0
.

The initial and boundary conditions are respectively given as:

A (x, 0) = 1, R (x, 0) = 1, for x ∈ [0, 1] (A.1e)

and

A (0, t) = 1, R (0, t) = 1, v (0, t) = 1, v (1, t) = vd, for t ∈ [0, tf ] (A.1f)

where vd =
vL
v0

.
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A.1 Optimal Control Problem

The integration domains used in the weak formulation are Q := Ω× (0, tf),
Σ0 := 0× (0, tf) and Σ1 := 1× (0, tf) where Ω = (0, 1) is the space domain.
The appropriately chosen spaces are the Hilbert space U and the Banach
spaces Y and Z where U is the space of controls u = (vd), Y is the space of
states y = (A, v, R) and Z is the space of test functions.

Definition A.1 The weak formulation of the state system (A.1) is given by

E(y, u) = 0, (A.2a)

where the operator

E = (E1, E2, E3, EA0
, ER0

) : Y × U → Z∗

is defined as

〈E1(y, u), ξA〉 :=

∫ tf

0

〈At, ξA〉dt−

∫

Q

vA(ξA)xdxdt−

∫

Σ0

ξAdt

+

∫

Σ1

vd(t)AξAdt = 0, (A.2b)

〈E2(y, u), ξv〉 :=

∫

Q

(3A(ξv)x)xvdxdt+

∫

Q

(St)Aξvdxdt+

∫

Σ0

3(ξv)xdt

−

∫

Σ1

3Avd(t)(ξv)xdt−

∫

Σ0

3vxξvdt+

∫

Σ1

3Avxξvdt = 0,

(A.2c)

〈E3(y, u), ξR〉 :=

∫ tf

0

〈(R2)t, ξR〉dt−

∫

Q

πc1p

A

(

R4 −
A2

(4πc1)2

)

ξRdxdt

−

∫

Q

vR2(ξR)xdxdt−

∫

Σ0

ξRdt+

∫

Σ1

vd(t)R
2ξRdt = 0

(A.2d)

with

EA0
= A(0)− 1, ER0

= R(0)− 1 (A.2e)

for all test functions (ξA, ξv, ξR) ∈ Z.

Now the minimization problem subject to cost functional (3.1) reads

min
(y,u)∈Y×U

J(y, u) subject to E(y, u) = 0. (A.3)
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A.2 Derivatives

Lemma A.1 Let the mapping E : Y × U → Z∗ be twice continuously
Fréchet differentiable. Then the action of the first two derivatives of E =
(E1, E2, E3) at (y, u) ∈ Y × U in directions ỹ = (Ã, ṽ, R̃) and (ỹ, ŷ) =
(

(Ã, ṽ, R̃), (Â, v̂, R̂)
)

∈ (Y × U)2 are respectively given by

〈E1y(y, u)ỹ, ξA〉 =

∫ tf

0

〈(Ã)t, ξA〉dt−

∫

Q

(vÃ+ ṽA)(ξA)xdxdt+

∫

Σ1

vdÃξAdt,

〈E2y(y, u)ỹ, ξv〉 =

∫

Q

StÃξvdxdt−

∫

Q

3
(

Ãvx + Aṽx

)

(ξv)xdxdt

+

∫

Σ1

3
(

Ãvx + Aṽx

)

ξvdt−

∫

Σ0

3ṽxξvdt,

〈E3y(y, u)ỹ, ξR〉 =

∫ tf

0

〈(2RR̃)t, ξR〉dt+

∫

Q

πc1p

(
R4

A2
+

1

(4πc1)2

)

ÃξRdxdt

−

∫

Q

2vRR̃(ξR)xdxdt−

∫

Q

4πc1pR
3R̃

A
ξRdxdt

−

∫

Q

ṽR2(ξR)xdxdt+

∫

Σ1

2vdRR̃dt

and

〈E1yy(y, u) [ỹ, ŷ] , ξA〉 =−

∫

Q

(ṽÂ+ v̂Ã)(ξA)xdxdt,

〈E2yy(y, u) [ỹ, ŷ] , ξv〉 =

∫

Σ1

3
(

Âṽx + Ãv̂x

)

ξvdt−

∫

Q

3
(

Âṽx + Ãv̂x

)

(ξv)xdxdt,

〈E3yy(y, u) [ỹ, ŷ] , ξR〉 =

∫ tf

0

〈(2R̂R̃)t, ξR〉dt−

∫

Q

12πc1pR
2R̂R̃

A
ξRdxdt

+

∫

Q

4πc1pR
3R̂Ã

A2
ξRdxdt+

∫

Q

2πc1pR
3

(

2R̃

A2
−
RÃ

A3

)

× ÂξRdxdt−

∫

Q

2
(

vR̂R̃+ ṽRR̂+ v̂RR̃
)

(ξR)xdxdt

+

∫

Σ1

2vdR̂R̃ξRdt,

�
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A.3 First order conditions

The Lagrange functional L : Y × U × Z → R associated with the prob-
lem (A.3) is defined as

L (y, u, ξ) = J (y, u) + 〈E(y, u), ξ〉Z∗,Z

where ξ = (ξA, ξR, ξv) ∈ Z are the adjoint variables.

The first-order optimality conditions are then computed by setting the direc-
tional derivatives of L with respect to (y, u, ξ) equal to zero in all admissible
directions. Taking variation of L with respect to y in direction ỹ leads us to
the following system of adjoint equations.

−(ξA)t − v(ξA)x =3vx(ξv)x − St(ξv)− w1(A− Ad)

− πc1pξR

(
R4

A2
+

1

(4πc1)2

)

, (A.4a)

(3A(ξv)x)x =A(ξA)x +R2(ξR)x, (A.4b)

−(ξR)t − v(ξR)x =
2πc1pR

2

A
ξR. (A.4c)

with the boundary conditions

ξA(1, t) = 0, ξR(1, t) = 0, ξv(1, t) = 0, ξv(0, t) = 0, for t ∈ [0, tf ] (A.4d)

and the terminal conditions

ξA(x, t = tf ) = −w2 (A(x, tf )− Ad) , ξR(x, tf) = 0, for x ∈ [0, 1] (A.4e)

Then taking variation of L with respect to u in the direction ũ and assuming
sufficient regularity and the uniqueness of the solution of (A.1), we write the
gradient of the reduced cost functional Ĵ(u) = J(y(u), u) as

Ĵ ′(u) = λu− 3A(ξv)x, on {1} × [0, tf ] (A.5)

A.4 Second order conditions

To implement the Newton Algorithm 4.4, we need to collect the second
derivative information of the reduced cost functional Ĵ(u) := J(y(u), u).
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By using the definition of the Lagrange functional, for arbitrary ξ ∈ Z,

L (y(u), u, ξ) = J (y(u), u) + 〈E (y(u), u) , ξ〉Z∗,Z = J (y(u), u) = Ĵ(u).
(A.6)

the second derivative of Ĵ is given as

Ĵ ′′(u)δu =y′(u)∗Lyy (y(u), u, ξ(u))y′(u)δu+ y′(u)∗Lyu (y(u), u, ξ(u)) δu

+ Luy (y(u), u, ξ(u))y′(u)δu+ Luu (y(u), u, ξ(u)) δu. (A.7)

We use the following procedure to compute Ĵ ′′(u)δu.

1. compute the solution

V = y′(u)δu = −Ey(y(u), u)
−1Eu(y(u), u)δu

for linearized state variables V := (VA, Vv, VR) i.e.,

(VA)t + (vVA)x =− (AVv)x, (A.8a)

(3A(Vv)x)x =− (3VAvx)x − StVA, (A.8b)

(RVR)t + (vRVR)x −
2πc1pR

3

A
VR =−

1

2
(R2Vv)x

−
πc1pVA

2

(
R4

A2
+

1

(4πc1)2

)

, (A.8c)

with boundary conditions

VA(0, t) = 0, VR(0, t) = 0, Vv(0, t) = 0, Vv(1, t) = δu, t ∈ [0, tf ] (A.8d)

and initial conditions

VA(x, 0) = 0, VR(x, 0) = 0, x ∈ [0, 1] (A.8e)

2. compute

(
s1

s2

)

=

(
(Jyy + 〈Eyy, ξ〉)(V, .) + (Jyu + 〈Eyu, ξ〉)(δu, .)
(Juy + 〈Euy, ξ〉)(V, .) + (Juu + 〈Euu, ξ〉)(δu, .)

)

where s2 is computed as

s2 = −3(ξv)xVA + λδu, on {1} × (0, tf)
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3. compute the solution

W = Ey(y(u), u)
−∗s1

where W := (WA,Wv,WR) i.e., solve

−(WA)t − v(WA)x =πc1p

[
2R3ξR
A3

(2AVR − RVA)−WR

(
R4

A2
+

1

(4πc1)2

)]

+ 3 {(Wv)xvx − (ξv)x(Vv)x}+ w1VA − (St)Wv − Vv(ξA)x

(3A(Wv)x)x =A(WA)x +R2(WR)x − 2RVR(ξR)x + (3VA(ξv)x)x − VA(ξA)x,

−R(WR)t − vR(WR)x −
2πc1pR

3

A
WR =− RVv(ξR)x

+
2πc1pR

2ξR
A2

(RVA − 2VRA) .

with boundary conditions

WA(1, t) = 0, WR(1, t) = 0, Wv(0, t) = 0, Wv(1, t) = 0, t ∈ [0, tf ]

and terminal conditions

WA(x, tf ) = w2VA(x, tf ), WR(x, tf) = 0, x ∈ [0, 1]

4. compute
s3 = −Eu(y(u), u)

∗W = 3A(Wv)x, on Σ1

5. and set
Ĵ ′′(u)δu = s2 + s3

which reads as

Ĵ ′′(u)δu = 3A(Wv)x − 3VA(ξv)x + λδu, on Σ1 (A.10)



Appendix B

Basic Definitions and Theorems

We introduce here some basic definitions, lemmas and theorems that are
needed and used in defining and solving the optimal control problems.

Definition B.1 [37] Let F : U ⊂ X → Y be an operator with Banach spaces
X, Y and U 6= ∅ open. Then

(a) F is called directionally differentiable at x ∈ U if the limit

dF (x, h) = lim
t→0+

F (x+ th)− F (x)

t
∈ Y

exist for all h ∈ X. In this case, dF (x, h) is called directional derivative of
F in the direction h.

(b) F is called Gâteaux differentiable (G-differentiable) at x ∈ U if F is
directionally differentiable at x and the directional derivative F ′(x) : X ∋
h 7→ dF (x, h) ∈ Y is bounded and linear,i.e., F ′(x) ∈ L(X, Y ).

(c) F is called Fréchet-differentiable at x ∈ U if F is G-differentiable at
x and if the following approximation condition holds:

‖F (x+ h)− F (x)− F ′(x)h‖Y = o (‖h‖X) for ‖h‖X → 0.

(d) If F is Fréchet-differentiable in a neighbourhood V of x, and F ′ : V →
L(X, Y ) is itself Fréchet-differentiable at x, then F is called twice Fréchet-
differentiable at x and is written as F ′′(x) ∈ L(X,L(X, Y )).

Remark B.1 Fréchet-differentiability of F at x implies continuity of F at x.
Furthermore F is k-times continuously Fréchet-differentiable if F is k-times
Fréchet-differentiable and F k is continuous [37].

101
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Theorem B.2 [37] (Riesz representation theorem) The dual space H∗ of a
Hilbert space H is isometric to H itself. More precisely, for every v ∈ H the
linear functional u∗ defined by

〈u∗, u〉H∗,H := (v, u)H ∀ u ∈ H

is in H∗ with norm ‖u∗‖H∗ = ‖v‖H . Vice versa, for any u∗ ∈ H∗ there exists
a unique v ∈ H such that

〈u∗, u〉H∗,H = (v, u)H ∀ u ∈ H

and ‖u∗‖H∗ = ‖v‖H .

Theorem B.3 [37](Implicit Function Theorem) Let Y , Y , Z be Banach
spaces and let F : G→ Z be a continuously Fréchet-differentiable map from
an open set G ⊂ X × Y to Z. Let (x̄, ȳ) ∈ G be such that F (x̄, ȳ) = 0 and
that Fy(x̄, ȳ) ∈ L(Y, Z) has a bounded inverse.
Then there exists an open neighbourhood UX(x̄)×UY (ȳ) ⊂ G of (x̄, ȳ) and a
unique continuous function w : UX(x̄)→ Y such that

1. w(x̄) = ȳ,

2. For all x ∈ UX(x̄) there exists exactly one y ∈ UY (ȳ) with F (x, y) = 0,
namely y = w(x).

Moreover, the mapping w : UX(x̄)→ Y is continuously Fréchet-differentiable
with derivative

w′(x) = Fy (x, w(x))−1 Fx (x, w(x)) .

If F : G → Z is m-times continuously Fréchet-differentiable then also w :
UX(x̄)→ Y is m-times continuously Fréchet-differentiable.

Proof: see for example [13].

Definition B.2 [37] Let X be a Banach space. A sequence (xk)k∈N ⊂ X
converges weakly to x ∈ X i.e., xk ⇀ x if

〈x∗, xk〉X∗,X → 〈x
∗, x〉X∗,X as k →∞ ∀x∗ ∈ X∗

where 〈x∗, x〉X∗,X := x∗(x) denotes the functional value of x∗ at x.
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Definition B.3 [37] A Banach space X is called reflexive if the mapping
x ∈ X 7→ 〈., x〉X∗,X ∈ (X∗)∗ is surjective, i.e., if for any x∗∗ ∈ (X∗)∗ there
exists x ∈ X with

〈x∗∗, x∗〉(X∗)∗,X∗ → 〈x∗, x〉X∗,X ∀x∗ ∈ X∗

Remark B.4 Lp spaces, because of isometric isomorphisms property (Lp)∗ =
Lq where 1 < p, q <∞, 1

p
+ 1

q
= 1, are reflexive. Moreover, any Hilbert space

is reflexive by the Riesz representation theorem.

Theorem B.5 [37] (Weak sequential compactness) Let X be a reflexive Ba-
nach space. Then the following holds

1. Every bounded sequence (xk) ⊂ X contains a weakly convergent subse-
quence, i.e., there are (xki

) ⊂ (xk) and x ∈ X with xki
⇀ x.

2. Every bounded, closed and convex subset C ⊂ X is weakly sequentially
compact, i.e., every sequence (xk) ⊂ C contains a weakly convergent
subsequence (xki

) ⊂ (xk) with xki
⇀ x, where x ∈ C.

For proof see for example [25, 17].

Definition B.4 [37] Let X be a Banach space, M ⊂ X. A function F :
M → R is weakly lower semicontinuous if xk ∈M and xk ⇀ x ∈M imply

F (x) ≤ lim inf
k→∞

F (xk)

Theorem B.6 [37] Let X be a Banach space. Then any continuous, convex
functional F : X → R is weakly lower semicontinuous, i.e.,

xk ⇀ x =⇒ F (x) ≤ lim inf
k→∞

F (xk)

Theorem B.7 [51] If the functions p(t) and g(t) are continuous on an open
interval I: α < t < β containing the point t = t0, then there exists a unique
solution y = φ(t) that satisfies the differential equation

dy

dt
+ p(t)y = g(t), (B.1a)

for each t in I, and that also satisfies the initial condition

y(t0) = y0, (B.1b)

where y0 is an arbitrary prescribed initial value. �
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Theorem B.8 [51] Let the functions f and ∂f/∂y be continuous in some
rectangle α < t < β, γ < y < δ containing the point (t0, y0). Then, in some
interval t0−h < t < t0 +h contained in α < t < β, there is a unique solution
y = φ(t) of the initial value problem,

dy

dt
= f(t, y), y(t0) = y0.

�

Lemma B.9 [37] (Lax-Milgram lemma) Let V be a real Hilbert space with
inner product (., .)V and let a : V × V → R be a bilinear form that satisfies
with constants α0, β0 > 0

|a(y, v)| ≤ α0‖y‖V ‖v‖V ∀ y, v ∈ V, (boundedness)

a(y, y) ≥ β0‖y‖
2
V ∀ y ∈ V (V − coercivity)

Then for any bounded linear functional F ∈ V ∗, the variational equation

a(y, v) = F (v) ∀v ∈ V

has a unique solution y ∈ V . Moreover, y satisfies

‖y‖V ≤
1

β0

‖F‖V ∗

For proof see [41].
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