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Abstract. We present an exact algorithm for computing an earliest
arrival flow in a discrete time setting on series-parallel graphs. In contrast
to previous results for the earliest arrival flow problem this algorithm
runs in polynomial time.
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1 Introduction

Many applications can be suitably modeled using network flows. The
theory of network flows is well-understood and related problems can
often be solved efficiently. Flows on networks have been extended in
various ways to meet the growing requirements of demanding real-
world scenarios. The assumption of a flow unit consuming time to
traverse an arc in the network leads to one such extension, so-called
dynamic network flows or network flows over time. Especially pro-
cesses with an inherent temporal component of movement can be
properly modeled by dynamic network flows. Examples are among
others transportation problems, traffic flow modeling, or evacuation
planning (see, e.g. [1] or [9]).

In the 1950s, Ford and Fulkerson initiate research on dynamic
flows by introducing the maximum dynamic flow problem (see [5],
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[6]). In this problem the goal is to find a shipping schedule sending a
dynamic flow from source to sink within a given time horizon T ∈ N.
Ford and Fulkerson map this dynamic flow problem to a (static)
flow problem via transformation into the so-called time-expanded
network. In addition they propose an efficient algorithm based on the
solution of a static minimum cost flow problem, the decomposition of
the resulting flow, and the temporal repetition of the paths obtained.

In this article we focus on an extension of the maximum dynamic
flow problem, the so-called earliest arrival flow problem. The differ-
ence between the two problems becomes obvious when considering
an evacuation scenario. Modeling the egress movement of evacuees
by a maximum dynamic flow problem asks for the maximum number
of people reaching safety within a given time bound T . In addition,
an earliest arrival flow requires the number of people reaching safety
to be maximal at every time step 0 ≤ θ ≤ T .

Gale [7] shows the existence of (discrete time) earliest arrival
flows for networks with a single source and a single sink. Minieka
[12] and Wilkinson [15] propose exact algorithms which may need
exponential running time. Hoppe and Tardos [10] develop a fully
polynomial-time approximation scheme for the earliest arrival flow
problem with single source and single sink. Their approximation al-
gorithm delivers at least (1−ǫ) times the amount of flow that should
have reached the sink up to time θ, for every θ ≤ T . In networks
with multiple sources and multiple sinks with given supplies and de-
mands, an earliest arrival flow does not necessarily exist (see [2]). For
the case of multiple sources and single sink Baumann and Skutella
[2] show existence and give an algorithm the running time of which
is polynomial in the input and output size of the instance. Tjandra
[14] proposes an algorithm for problems with time-dependent tran-
sit times and capacities. This algorithm is polynomial in the time
horizon T and the maximum capacity.

Dynamic problems on networks include among others the quick-
est flow problem (see [4]), the dynamic minimum cost flow problem
(see [11]), or the multi-commodity flow problem over time (see [8]).
Klinz and Woeginger [11] show that the minimum-cost maximum
dynamic flow problem on series-parallel networks is NP -hard.
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Our Contribution We constructively prove the existence of a tem-
porally repeated flow on series-parallel graphs having the earliest
arrival property. Our exact greedy approach is based on a result of
Bein et al. [3] for solving the minimum cost flow problem on series-
parallel graphs and runs in polynomial time.

Road Map We introduce some notation and recall preliminary results
in Section 2 and establish our results about earliest arrival flows on
series-parallel graphs in Section 3. Afterwards we recapitulate the
work in Section 4.

2 Preliminaries and Notation

Let G = (N,A) be a directed graph, where N is the set of all nodes,
including the source s and the sink t, and A denotes the set of all arcs.
For an arc a ∈ A, we denote by t(a) and h(a) the tail and head (node)
of a, respectively. A (directed) path P = (i0, a1, i1, a2, . . . , ak, ik) is
an alternating sequence of nodes and arcs with iν = t (aν+1) = h (aν)
for all ν = 1, . . . , k− 1, i0 = t(a1), and ik = h(ak). A (directed) cycle
C is a path with ik = i0.

In a dynamic network, every arc a ∈ A is equipped with a ca-
pacity ua ∈ N0, corresponding to the maximal amount of flow which
may enter the arc per time period, and a transit time τa ∈ N0. The
latter describes how long it takes one unit of flow to travel from
node t(a) to h(a) on arc a ∈ A. Furthermore, we assume a finite
time horizon T ∈ N for the flow to travel through the network and
we consider discrete time steps.

A dynamic network flow is a function x : A × {0, . . . , T} → R
+
0 .

The flow which enters arc a at time θ is denoted by xa(θ). Due to
our model assumptions, this flow reaches node h(a) at time θ + τa.

Let x be a static network flow, i.e., a function x : A → R
+
0 . In the

residual network G(x) = (N,A+ ∪ A−) of G = (N,A) with respect
to static flow x, the sets A+ and A− are defined as follows. The set
A+ contains all arcs +a = a with xa < ua. To each of these arcs we
assign a capacity of ua − xa and a transit time of τa. The set A−

consists of all reversed arcs −a = (h(a), t(a)) with xa > 0. Each of
these arcs gets a capacity of xa and a transit time of −τa.
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The maximal dynamic flow problem of finding a feasible dynamic
flow which sends the maximal amount of flow from source s to sink t

up to time T can be formulated as a linear program. Due to intended
brevity we assume in the following that there are neither arcs a with
h(a) = s nor t(a) = t.

max v (1a)

s.t.
∑

a∈A
t(a)=s

T
∑

θ=0

xa (θ) = v (1b)

∑

a∈A
h(a)=t

T
∑

θ=0

xa (θ − τa) = v (1c)

∑

a∈A
h(a)=i

xa (θ − τa) =
∑

a∈A
t(a)=i

xa (θ) ∀i ∈ N \ {s, t} , θ ∈ {0, . . . , T}

(1d)

0 ≤ xa (θ) ≤ ua ∀a ∈ A, θ ∈ {0, . . . , T} (1e)

The objective (1a) maximizes the total flow value v which can be
sent from source s to sink t within time horizon T . Constraints (1b),
(1c) and (1d) ensure flow conservation at the nodes. Note that flow
arriving in h(a) at time θ must leave node t(a) at time θ − τa. Con-
straints (1e) limit the amount of flow which may enter arc a at
time θ ∈ {0, . . . , T}. Every feasible dynamic flow has to fulfill con-
straints (1b) to (1e). Storage of flow in a node is not needed through-
out this article.

One approach to solve the maximal dynamic flow problem is the
transformation of this dynamic problem into a static maximal flow
problem in the time-expanded network GT = (NT , AT ). This network
is obtained by an expansion of the dynamic network: Each node i

of the underlying (static) graph is copied T times to obtain a node
i(θ) for each i ∈ N and each θ ∈ {0, . . . , T}. For each arc a ∈ A

and θ ≤ max{0, T − τa}, we introduce a copy with tail i(θ) and head
j(θ + τa) where i is the tail and j the head of arc a. A capacity of
ua is assigned to each of these arcs.
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A dynamic flow in graph G corresponds to a static flow in this
time-expanded network GT and vice versa. Time-expanded networks
are useful tools to solve dynamic network flow problems since they
allow the application of solution methods for static network flow
problems. However, the size of a time-expanded network depends on
the time horizon T . Thus, every algorithm constructing GT explicitly
is not polynomial.

This drawback of time-expanded networks can be overcome for
the maximal dynamic flow problem by using a polynomial algorithm
on the underlying static network G = (N,A) (see Ford and Fulker-
son [5]): Add an additional arc ā from sink to source with infinite
capacity and transit time −(T +1). The transit times τa on the arcs
of this modified network Ḡ =

(

N, Ā
)

with Ā := A ∪ {ā} are then
interpreted as costs of arcs and a minimum cost circulation prob-
lem is solved. To obtain a maximal dynamic flow, the flow on arc ā

is neglected and the resulting flow from s to t is decomposed into
paths. Along each path its (static) flow value, obtained in the path
decomposition, is sent at each time step for which the flow can reach
the sink before time T . Flows obtained by this technique are called
temporally repeated flows. Ford and Fulkerson [5] show that there
always exists a temporally repeated flow which solves the maximal
dynamic flow problem.

A problem closely related to maximal dynamic flows is the earliest
arrival flow problem asking for a feasible dynamic flow from s to t

which is maximal at all times 0 ≤ θ ≤ T .

Obviously, every earliest arrival flow is also a maximal dynamic
flow. The converse implication is not true in general and, even more,
on general graphs there might not exist any temporally repeated flow
having the earliest arrival property (see [13]).

In Section 3 we show that on series-parallel graphs there always
is a temporally repeated flow that is maximal and earliest arrival.
Series-parallel graphs are a proper subset of acyclic digraphs and
defined recursively as follows: A single arc a = (s̃, t̃) is series-parallel
with start-terminal s̃ and end-terminal t̃ by definition. Let Gi be
series-parallel with start-terminal s̃i and end-terminal t̃i (i = 1, 2).
Then the graph S(G1, G2) obtained by identifying t̃1 as s̃2 is a series-
parallel graph, with s̃1 and t̃2 as its terminals (series composition).
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The graph P (G1, G2) obtained by identifying s̃1 as s̃2 and also t̃1 as
t̃2 is a series-parallel graph (parallel composition) with s̃1(= s̃2) and
t̃1(= t̃2) as its terminals.

Figure 1a shows an example of a series-parallel graph and Fig-
ure 1b the “smallest” graph which is acyclic but not series-parallel.

For vertices i and j in a series-parallel graph, we denote by P [i, j]
the subgraph of G including all paths from i to j. Observe that this
might be the empty set. For example in the series-parallel graph
shown in Figure 1a there is no path from 2 to 3 and P [1, 2] contains
all three parallel edges from 1 to 2.

P [i, j] is the inclusionwise maximal composition having i and j as
its terminals in the iterative construction of the series-parallel graph
and thus any s-t-path using an edge of this subgraph must use both
i and j.

1 42

3

P [1, 2]

(a) Series-parallel graph

1 4

2

3

(b) Not series-parallel graph

Algorithm 1 - which is due to Bein et al. [3] - solves the mini-
mum cost flow problem on series-parallel graphs in polynomial time
O (|N | · |A| + |A| · log(|A|)) for all flow values up to the maximal flow
value vmax. Starting with the zero flow, Algorithm 1 uses a greedy
approach and iteratively finds the currently cheapest path Pk with
cost τ(Pk) =

∑

a∈Pk
τa and assigns the flow value v(Pk) to it. The

latter is calculated as the maximal remaining capacity on the arcs
of the path. Afterwards the capacity on the arcs of Pk is updated.

The output (Pk, τ(Pk), v(Pk)) for k = 1, . . . , q for some q ≤ |A|
describes a continuous, piecewise linear and convex function where
τ(Pk) are the slopes of the linear parts and v(Pk) indicates the length
of the interval on which the function is linear. This function de-
scribes the objective function value of the minimum cost flow prob-
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lem depending on the flow value. The maximal flow value is given
by vmax =

∑

k=1,...,q v(Pk).

Algorithm 1 Minimum Cost Flows on Series-Parallel Graphs [3]

Input: Series-parallel graph G = (N, A) with source s and sink t, costs τa and capac-
ities ua on each arc a ∈ A.

Output: Triples (Pk, τ(Pk), v(Pk)) for k = 1, . . . , q for some q ≤ |A|.

1. k := 1 // initialization
2. while there exists a path connecting s and t do

3. Find a minimal cost s-t-path Pk and its costs τ(Pk) // path, cost
4. v(Pk) := min {ua |a ∈ Pk } // flow on path
5. for all a ∈ Pk do

6. ua := ua − v(Pk) // decrease capacity on used arcs
7. if ua = 0 then

8. then A := A \ {a} // delete full arcs
9. end if

10. end for

11. k := k + 1
12. end while

3 Earliest arrival flows on series-parallel graphs

In this section we restrict our analysis to series-parallel graphs as
the recursive structure of these graphs is crucial for our results. We
modify Algorithm 1 to obtain a polynomial time algorithm solving
the maximal dynamic flow problem using a temporally repeated flow.
Then, we show that the output of the algorithm has the earliest
arrival property.

Algorithm 1 solves the minimum cost flow problem by successive
computations of shortest paths. Our modification takes into account
that the cost of these paths should not exceed the time horizon T as
flow being sent over longer paths would not arrive in time. Note
that the introduction of the arc ā in the algorithm of Ford and
Fulkerson [5] for solving the maximal dynamic flow problem serves
the same purpose. Thus, we add a condition on the cost of the paths
retrieved by Algorithm 1: If the cost of path Pk is less than T + 1,
then this path is considered as before in Algorithm 1. Otherwise the
path is neglected and the algorithm stops.
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Formally, we replace Line 4 in Algorithm 1 by Procedure 2 in
order to get our modified Algorithm 2.

Procedure 2 Replacement of Line 4 in Algorithm 1

if τ(Pk) − (T + 1) < 0 then

v(Pk) := min {ua |a ∈ Pk }
else

Stop the algorithm. // additional stopping criterion
end if

Checking this additional condition needs only constant time for
each path. The algorithm might stop before all possible s-t paths
are found. Thus, the running time of Algorithm 2 is O(|A| · |N | +
|A| log(|A|)).

The output (Pk, τ(Pk), v(Pk)) with k = 1, . . . , q′ for some q′ ∈ N

of Algorithm 2 induces a temporally repeated flow sending v(Pk) flow
units on path Pk at times 0, . . . , T − τ(Pk). We show that this is
indeed a maximal dynamic flow.

Theorem 1. Algorithm 2 yields a maximal dynamic flow on a series-
parallel graph G = (N,A) with source s, sink t, and time horizon T .

Proof. We show that Algorithm 2 solves the minimum cost circula-
tion problem introduced by Ford and Fulkerson [5] for the maximal
dynamic flow problem (see Section 2).

Let (Pk, τ(Pk), v(Pk))k=1,...,q and (Pk, τ(Pk), v(Pk))k=1,...,q′ with q′ ≤
q be the output of Algorithm 1 and Algorithm 2 on an arbitrary
series-parallel graph, respectively. The notation is justified as both
algorithms yield exactly the same paths except that Algorithm 2
might stop earlier.

We consider the graph Ḡ = (N, Ā) where Ā = A ∪ {ā} with
τā = −(T + 1) and uā = ∞, i.e., we introduce an arc from sink
to source and assign costs and capacity as in the minimum cost
circulation network introduced by Ford and Fulkerson. Additionally,
we extend the paths Pk, k = 1, . . . , q′ in G to cycles Ck in Ḡ by
adding arc ā and sending v(Pk) flow units along ā. This yields a
feasible circulation flow C in Ḡ and, by construction, each of the
cycles Ck has negative costs.
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It remains to show that every cycle in the residual network Ḡ(C)
has nonnegative cost. Hence, the output of Algorithm 2 solves the
minimum cost circulation problem due to the cycle optimality con-
ditions (see [1]).

Consider an arbitrary cycle C in Ḡ(C). C either contains the arc
+ā or −ā. Otherwise there is a contradiction to Algorithm 1 solving
the minimum cost flow problem for flow value v :=

∑q′

k=1 v(Pk).

If the cycle C contains the arc +ā, then the s-t-path induced by
C has costs at least T + 1 due to the revised stopping criterion of
Algorithm 2, and hence C has nonnegative cost.

Suppose the cycle C contains the arc −ā. Denote by P the path
from t to s induced by C. In the following we show that C has
nonnegative cost which is equivalent to showing that P has cost at
least −(T + 1).

Claim: Without loss of generality P does not contain arcs in
Ā+.

Proof of claim: Assume there is an arc a in P∩Ā+. Consider the
longest (with respect to the number of arcs) connected subpath
π of P containing arc a and only further arcs of Ā+. Let i and j

be the end nodes of this subpath. Then, π is contained in P [i, j].
There is another path from j to i in the residual network Ḡ(C)
using only arcs from Ā− as C sends flow to j via i through
P [i, j].

Thus, we may assume that P consists only of arcs from Ā−.
Algorithm 2 sends flow along some paths which contain some arcs a

such that −a ∈ P . Among these paths denote by Ph the one with
the largest index h. Let P rev

h denote the path in the residual network
Ḡ(C) obtained from Ph by reversing its arcs, i.e., for each arc a in
Ph, P rev

h contains the arc −a.

Consider the nodes t = i1, . . . , il = s on which P and P rev
h

intersect. Each induced subpath πν of P between iν and iν+1 for
ν ∈ {1, . . . , l − 1} may coincide with the corresponding subpath of
P rev

h . Otherwise, πν uses arcs −a induced by flow on paths with in-
dex smaller than h. We conclude that the cost of P in Ḡ(C) is not
less than τ(P rev

h ) = −τ(Ph) due to the greedy choice of paths in
Algorithm 2. The revised stopping criterion of Algorithm 2 implies
−τ(Ph) > −(T + 1) and, hence, the cost of C cannot be negative.
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The temporally repeated flow found by Algorithm 2 is maximal.
In the following, we show that this flow has the earliest arrival prop-
erty.

Theorem 2. Algorithm 2 yields an earliest arrival flow on a series-
parallel graph G = (N,A) with source s, sink t, and time horizon T .

Proof. Denote by x the temporally repeated maximal dynamic flow
obtained from the output of Algorithm 2. Assume this flow does not
have the earliest arrival property.

Let xEAF be an earliest arrival flow in GT . Minieka [12] shows
that xEAF can be obtained by adding a residual flow to x in GT (x).
This residual flow must contain a flow on a path

P = (i0(θ0), a1, i1(θ1), . . . , al, il(θl)) with θ0 > θl

and i0(θ0) = t(θ0) as well as il(θl) = t(θl) as there must be a time
θl < T up to which xEAF sends more flow to the sink than x.

There exists at least one parallel component in G whose end
terminal lies in P for two points of time from {θ0, . . . , θl} as otherwise
il cannot be equal to i0 = t. Consider an inclusionwise minimal
parallel component P [iν , iµ] with this property and let θµ1

, θµ2
∈

{θ0, . . . , θl} be the times at which P visits iµ.

Due to the minimality of P [iν , iµ], the subpath

π := (iµ(θµ1
), aµ1+1, . . . , aν , iν(θν), aν+1, . . . , aµ2

, iµ(θµ2
))

of P decomposes into π1 = (iµ(θµ1
), aµ1+1, . . . , aν , iν(θν)) using only

arcs in A−

T (x) and π2 = (iν(θν), aν+1, . . . , aµ2
, iµ(θµ2

)) using arcs from
A+

T (x).

Due to the greedy choice of paths in Algorithm 2, no path π̃

starting in iν(θν) and using only arcs from A+
T can reach iµ(θ̃) with

θν + τ(π̃) = θ̃ < θµ1
as otherwise Algorithm 2 would have used

this cheaper path π̃. Recalling that τ(π1) < 0, we conclude τ(π2) ≥
−τ(π1). This implies that τ(π) = τ(π1) + τ(π2) ≥ 0.

Iteratively using this argument yields a contradiction to θl < θ0

and hence x is an earliest arrival flow.
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4 Conclusion

Based on an algorithm by Bein et al. [3] we established a greedy
algorithm that computes a maximal dynamic flow with time horizon
T in a discrete time setting. The algorithm does not only run in
polynomial time but additionally yields an earliest arrival flow. In
contrast to more general graph topologies this additionally proves
the existence of a temporally repeated flow on series-parallel graphs
which has the earliest arrival property. To the best of our knowledge
this is the first exact polynomial time algorithm to find an earliest
arrival flow.
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