
SmallSync: A Methodology for Diagnosis &
Visualization of Distributed Processes on the Web

Ming C. Hao, Deon Glajchen, Joseph S. Sventek

Abstract

SmallSync, an internet event synchronizer, is intended to
provide a monitoring and visualization methodology for
permitting simultaneous analysis and control of multiple
remote processes on the web. The current SmallSync in-
cludes: (1) a mechanism to multicast web window-based
commands, message passing events and process execution
events among processes; (2) an event synchronizer to allow
concurrent execution of some functions on multiple ma-
chines; (3) a means to report when these events cause er-
rors in the processes; and (4) ad hoc visualization of
process states using existing visualizers.

1.0 Introduction

There is increasing interest in having software systems
execute over the internet. The web presents tremendous
opportunity to develop many different mechanisms[1, 3, 4]
to support multi-process coordination and diagnostics. We
anticipate that the future will see the development of web
extensions for synchronous collaboration among pro-
cesses. These facilities are developed by bring together
existing diagnostic and visualization facilities to allow
users to share process states, to share web pages and to
invoke visualization for direct communication. In addition,
the technique can be used to expand the diagnostic toolset
available to the user for cases where ‘a-priori’ indications
of likely sources of observed error conditions are not avail-
able.

SmallSync is an integrated visualization and diagnostic
environment that has been developed at Hewlett-Packard
Laboratories to meet these challenges of tool development
and to facilitate the task of distributed processing. Its main
objective is to use the strengths of network-based comput-
ing for sequential/distributed processing and to apply the
existing technologies and tools to solve the problems of
distributed process development. Due to the nature of the
specific issues involved in developing distributed pro-
cesses as opposed to the development of sequential pro-

cesses, the manner in which these existing tools and
technologies are applied is the key to solving several tool
development problems. The design of SmallSync
addresses these issues to enable the users to use their
favorite diagnostic tools for analyzing their distributed
processes. Similarly, it enables the users to add multiple
visualization tools of their choice to the SmallSync envi-
ronment to understand the dynamic execution behavior of
their applications.

Tool development for distributed systems has been an
active area of research but has largely fallen short of the
user expectations [10]. In many cases users are not satis-
fied with the way a particular tool works and the learning
curve associated with using it to accomplish a specific
task. SmallSync allows the user to use his/her favorite tool
by making it a part of the processing environment. In order
to realize this environment, the following issues are
involved:

1. Enabling the programmer’s favorite, existing diagnos-
tic and visualization tools to become a part of this pro-
cess development environment. This has become an
important issue in view of increasing indifference of
users toward “novel” distributed process development
tools.

2. Synchronizing and controlling the activities of diag-
nostic and visualization tools to provide a consistent
view of process execution to the user.

3. Integrating heterogenous types of visualization tools,
such as general-purpose and conventional performance
visualization tools across different platforms. This is
necessary to address a wide range of requirements of
various types of process behavior visualizations, such
as application performance, system performance, and
process data visualization.

4. Reducing transmission bandwidth requirements to per-
mit simultaneous visualization of the process flow of
multiple machines.

We have addressed these issues in the design of SmallSync
to assist the users in developing distributed processes

{(mhao, sventek)@hpl.hp.com}, deon-glajchen@hp.com

Hewlett-Packard Co., CA



using a message-passing library for a large number of
machines. We have enabled several commonly used diag-
nostic tools, Similarly, we have integrated popular distrib-
uted process visualization tools such as ParaGraph in our
system, in addition to commercially available visualization
tools, such as Matlab and Gnuplot for customized process
performance and data visualization. This paper depicts the
architecture and the main features of SmallSync.

2.0 Architecture of SmallSync

In a distributed programming environment, an application
consists of multiple processes running on one or more
physical nodes that are distributed on the web. SmallSync
executes each of these application processes under the
control of an available (and perhaps the user’s favorite)
analyzer. One analyzer executing a single process presents
the same scenario as analyzing a single sequential applica-
tion. The only difference is the message-passing among
these otherwise independent processes. Visualization has
been recognized as an appropriate technique to represent
message-passing and process execution behavior [7]. Sev-
eral tools have been developed and used to represent vari-
ous aspects of concurrent process and system behavior [9].
SmallSync enables the use of these visualization tools on-
line by providing three major capabilities:

1. multicasting message-passing events among multiple
processes;

2. integrating visualization tools to represent multiple
perspectives of application behavior; and

3. controlling and synchronizing the execution of applica-
tion processes and visualization tools.

Figure 1 depicts the overall architecture of SmallSync and
its functionality. Despite the distributed processes, the
environment allows the user to control the configuration
and actions of all the distributed application and tools. It is
important to note that SmallSync is running locally,
whereas the other application processes, analyzers, and
visualization tools might be running locally or remotely.
Therefore, SmallSync acts as a controller for the whole
environment which is the key to resolving the problems
involved in visualizing distributed applications. We
present the major functions of SmallSync related with dis-
tributed process visualization in the next section.

2.1 Multicasting Process Events

Distributed process visualization tools have to rely on
some mechanism for multicasting events among the con-
current processes, in order to represent this activity graph-
ically. Process code is instrumented and linked with the

available communication library to multicast these com-
munication events. However, most of the instrumentation
systems for distributed processes perturb the application
behavior mainly due to the additional message-passing
required for generating and communicating the trace data.
SmallSync does not need such explicit message-passing.
Instead, it relies on a Multiple Event Protocol (MEP [6]) to
multicast message-passing and process execution events
among processes. MEP uses inter-client communication
primitives to receive these events. Additionally, there is no
explicit binding between application and SmallSync’s
multiple event processing and synchronization activities.
Whenever a process executes a particular message-passing
function, it sends that event to the event queue of underly-
ing system which can be triggered by SmallSync. Once
SmallSync receives the event, it assigns the event a time-
stamp and generates a corresponding trace record. This
trace record can be further processed and passed on to the
visualization tools to dynamically visualize the process
behavior.

2.2 Monitoring Multiple Tools

Tool integration is a well-known problem in software engi-
neering and there is an on-going standardization effort to
develop more practical frameworks for this purpose[2].
More recently, it has found its way into the design of tools
for distributed processing because it is difficult for a single
tool to satisfy all the requirements of all users [10]. Moni-
toring multiple tools will be useful in distributed process
development; it meets two requirements:

1. There should be no dependence between the internal
semantics of a tool and the rest of the environment, to
ensure generality of the design and to avoid any prob-
lems related with the issues of overall performance and
portability.

Visualization

analyzers
Application
processes

Synch.
Synch.

Comm.
events

Control

Data and
control
events

events

User

of application
behavior

Appl

inputs

process
output

FIGURE 1. Architecture of SmallSync distributed
process development and visualization
environment.

Application
Process

SmallSync

diagnostic

(http)



2. It should be possible for the environment to pass neces-
sary performance data and the desired actions to be
taken on that data by the tool.

A tool interface (TI) was designed to specifically meet the
above two requirements. The functionality of the TI is
depicted by Figure 2. As shown in the figure, each visual-
ization tool which is to be integrated in the rest of the envi-
ronment needs an interface. This interface is used for two
specific purposes: (1) receiving data and control informa-
tion from SmallSync; and (2) forwarding this data and
control information to the particular tool that the interface
is responsible for. The interface converts the control infor-
mation into a form which is in accordance with the seman-
tics of that particular tool. Optional bi-directional
communication is supported by the interface for synchro-
nization purposes.

SmallSync simplifies the issues involved in tool integra-
tion. It provides a common interface to obtain user input to
control visualization tools as well as the rest of the envi-
ronment. SmallSync sends the trace records to the visual-
izers as soon as they are generated to provide on-line
visualization of dynamic process behavior.

2.3 Controlling and Synchronization

SmallSync control and synchronization permit diagnosis
of multiple components as a single high-level process. A
user can start or stop the execution of the entire distributed
application using the control mechanism provided by
SmallSync through its GUI. Application processes are
executed under the control of analyzers and SmallSync

sends the control commands to the multiple analyzers
using the Event Sense Protocol (ESP [5]). ESP provides a
mechanism to multicast window based commands from a
single control window to some subset of analyzers and
visualizers on various processes. It allows SmallSync to
control the analyzers without any binding between the
two. Therefore, the SmallSync environment is efficient,
flexible and extensible. Application processes and visual-
ization tools can be synchronized with SmallSync to
ensure the consistency between application behavior and
visualization displays.

3.0 Features of SmallSync

The design features of SmallSync presented in Section 2
have been used to provide several distributed process visu-
alization features. This section briefly presents some of
these features.

3.1 Global Concurrence Control and Update

SmallSync allows a user to control several clients (applica-
tions) simultaneously. A key feature of our system is that
any existing application can be used with no modification
of any kind. For example, SmallSync enables us to update
multiple copies of a Lotus spreadsheet by entering the
commands once. In fact, the applications being controlled
need not be running on machines of the same architecture
or even be identical applications. SmallSync allows us to
control Lotus running on HP and Sun workstations and
Excel on an IBM system by typing commands once. The
only requirement is that the commands typed be meaning-
ful to each system.

This kind of multiple process, multiple data repository col-
laboration has many uses. We could simultaneously update
all the data servers, or print servers, or the like -within a
particular account that we are managing.

Combining the conventional single client, multiple server
collaborative environment with the multiple server, multi-
ple client model of SmallSync completes the picture by
providing for multiple processes monitoring. Application
experts in different locations could simultaneously control
various aspects of a distributed processes running on mul-
tiple machines.

TI # 1

TI # 2

TI # n

Visualization
tool # 1

Visualization
tool # 2

tool # n

Data / Ack

Control / Ack

Data / Ack

Control / Ack

Data / Ack

Control / Ack

tool # 2

Visualization

Data and control / Ack

SmallSync

FIGURE 2. Integrating visualization tools into SmallSync
for interactive visualization and animation.



3.2 Relative Remote Diagnostic

SmallSync is capable of handle several processes at the
same time. This methodology could be used to run a
diagnostic application on two or more remote systems,
and to do a real-time intelligent comparison of the
results. In this way multiple ‘known good’ systems
could be compared to a ‘problem’ system. Comparisons
can take into account differences in data representations
of the reference process and the process being analyzed.

The diagnostic model presented in Figure 1 makes it
necessary to use as many instances of the user’s selected
analyzers as the number of concurrent processes. The
user sets breakpoints in the code, interactively examines
process variables, and verifies that these variables have
expected values. This step-wise diagnosis-comparison
can be single-stepped, and stopped based on any
required set of ‘flag’ criteria - and so used as a non-inva-
sive diagnostic tool.

3.3 Deadlock and Error Notification

Usually deadlocks are hard to identify during the execu-
tion of a typically long-running process. In practice,
deadlocks might occur if a process is in a blocked
receiving state for a message type which was never sent
to it by any other process.This is a common processing
error and without a real-time display of the states of all
the processes, it might be rather tedious to identify and
analyze this error. SmallSync recognizes the states of
individual processes belonging to one of, busy comput-
ing, sending a message, blocked for receiving a mes-
sage, normal process enter or exit, analyzer-notified
processing error, and meeting with a user defined condi-
tion (threshold). These states are represented by differ-
ent colors in four status windows provided by
SmallSync. The same result could be accomplished by
using an appropriate display of one of the visualization
tools integrated with this environment.

The user can monitor the states of all the processes
throughout the execution of the process. If one or more
processes are blocked, they can be identified by their
PID and the user can click on the context to bring up its
corresponding analyzer and source code that shows the
line of code where it is blocked. The user can then figure
out the cause of deadlock or any other process error
resulting in undesirable behavior. Figure 3 illustrates an
example where deadlock is detected and the correspond-
ing process of the deadlocked process has been located.

3.4 On-the-Fly Visualization

SmallSync can send the trace records to visualization
tools, immediately after they are generated by assigning
time-stamps. Mostly, visualization tools[8] such as Para-
Graph process one trace record at a time. As soon as a
new trace record is received, all the selected displays are
updated by the tool. This process is facilitated by the
tool interfaces that were presented in Section 2.

SmallSync provides diagnostic and
synchronization of the environment.

FIGURE 3. Multiple views from multiple domains
and tools to visualize and analyze on-
the-fly execution behavior of a
distributed process.



3.5 Multiple Views using Multiple Tools

Visualizing the behavior and performance of distributed
processes is always a multi-dimensional assessment. Not
only does it take multiple tools but also multiple views and
multiple-domains [11] are needed to represent a complete
picture of process behavior to the user. SmallSync pro-
vides typical performance visualization and animation
views that are implemented in ParaGraph. It can also allow
the use of general-purpose data analysis tools such as
AVS, Matlab, Gnuplot, Mathematica, and so on to repre-
sent multiple perspectives on application performance and
behavior. Figure 3 represents some of these views.

4.0 Conclusions

SmallSync is an on-going experiment in Hewlett-Packard
Laboratories. SmallSync provides standard window inter-
faces to existing diagnostic and visualization tools with
on-the-fly control and synchronization. Processes in the
distributed application can be halted by an analyzer at the
same point that performance and process state visualiza-
tion is being done. In addition, for example, performance
and process errors detected by an analyzer may automati-
cally trigger the diagnostic processing to halt.

Although we have applied our mechanisms to a prototype
diagnostic and visualization environment for distributed
processing, they have much wider applicability. This
approach can be used anytime we want to do the same
thing on more than one machine on the web. Examples
include installing and tuning loosely-coupled, heteroge-
neous software systems, and sharing large volumes of data
on the web.

Acknowledgment & References

Thanks to Mary Loomis from the Software Technology
Laboratory for her encouragement and suggestions.
Umesh Dayal, Renee Jacowitz, Rick Bowers, and Adrian
Pell provided valuable technical discussions.

[1] John F Patterson, Mark Day, Jakov Kucan,
“Notification Servers for Synchronous Groupware”,
CSCW 96, Boston, Massachusetts.

[2] Chen, Minder and Ronald J. Norman, “A Framework
for Integrated CASE,” IEEE Software, March 1992, pp.
18–22.

[3] Stephen G. Eick, Michael C. Nelson, Jeffery D.
Schmidt, “Graphical Analysis of Computer Log Files”,
December, 1994, Communications of the ACM.

Typical application visualization displays from
ParaGraph integrated with SmallSync

Event domain views using Matlab as an analytic
and visualization engine, integrated with
SmallSync.



[4] P.Ciancarini, D. Rossi, F. Vitali, A.Knoche and
R.Tplksdorf, “Coordination Technology for the WWW”,
Workshops of Enabling Technologies: Infrastructure for
Collaborative Enterprises, 1996, Ca.

[5] Hao, Ming C. Alan Karp, Daniel Garfinkel,
“Collaborative Computing: A Multi-Client Multi-Server
Environment”, ACM Organizational Computing Systems
Conference, August, 1995

[6] Hao, Ming C. Alan Karp, Mehdi Jazayeri, “MESH:
Sharing Multiple Events in Distributed Computing” HPL,
Hewlett-Pack Laboratories, Palo Alto 7/94.

[7] Ramesh Jain, “Visual Information Management”, 1997,
Communications of the ACM

[8] Kraemer, Eileen and John T. Stasko, “The Visualization
of Parallel Systems: An Overview,” Journal of Parallel and
Distributed Computing, 18(2), June 1993, pp. 105–117.

[9] Paul Robertson, “Integrating Legacy Systems with
Modern Corporate Applications”, May, 1997,
Communications of the ACM.

[10] Waheed, A., B. Kronmuller, Roomi Sinha, and D. T.
Rover, “A Toolkit for Advanced Performance Analysis,”
proceedings of International Workshop on Modeling,
Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS ‘94) Tools Fair,
Durham, North Carolina, Jan. 31– Feb. 2, 1994.


