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NUMERICAL ANALYSIS OF COSSERAT ROD AND STRING MODELS FOR

VISCOUS JETS IN ROTATIONAL SPINNING PROCESSES

WALTER ARNE, NICOLE MARHEINEKE, ANDREAS MEISTER, AND RAIMUND WEGENER

Abstract. This work deals with the curling behavior of slender viscous jets in rotational spinning
processes. In terms of slender-body theory a instationary incompressible viscous Cosserat rod
model is formulated which differs from the approach of [17] in the incompressibility approximation
and reduces to the string model of [12] for a vanishing slenderness parameter. Focusing exclusively
on viscous and rotational effects on the jet in the exit plane near the spinning nozzle, the stationary
two-dimensional scenario is described by a two-point boundary value problem of a system of first
order ordinary differential equations for jet’s center-line, tangent, curvature, velocity, inner shear
and traction force and couple. The numerical analysis shows that the rod model covers the string
model in an inertia-dominated jet regime. Beyond that it overcomes the limitations of the string
model studied in [10] and enables even the handling of the viscous-inertial jet regime. Thus, the
rod model shows its applicability for the simulation of industrially relevant parameter ranges and
enlarges the domain of validity with respect to the string approach.

Keywords. Rotational spinning process; curved viscous fibers; asymptotic Cosserat models;
boundary value problem; existence of numerical solutions

AMS-Classification. 65L10, 76-xx, 41A60

1. Introduction

The rotational spinning of viscous jets is of interest in many industrial applications, including
pellet manufacturing [4, 14, 19, 20] and drawing, tapering and spinning of glass and polymer fibers
[8, 12, 13], see also [15, 21] and references within. In [12] an asymptotic model for the dynamics of
curved viscous inertial fiber jets emerging from a rotating orifice under surface tension and gravity
was deduced from the three-dimensional free boundary value problem given by the incompressible
Navier-Stokes equations for a Newtonian fluid. In the terminology of [1], it is a string model con-
sisting of balance equations for mass and linear momentum. Accounting for inner viscous transport,
surface tension and placing no restrictions on either the motion or the shape of the jet’s center-line,
it generalizes the previously developed string models for straight [3, 5, 6] and curved center-lines
[4, 13, 19]. Moreover, the numerical results investigating the effects of viscosity, surface tension,
gravity and rotation on the jet behavior coincide well with the experiments of Wong et.al. [20].

However, the applicability of the string model is restricted to certain parameter ranges. Ne-
glecting surface tension and gravity, already for jets in a stationary, two-dimensional scenario no
physically relevant solutions exist for Rb2 < Re−1 with Reynolds number Re−1 ≪ 1 and Rossby
number Rb ≪ 1, as shown in [10]. The numerical simulations also break down for viscous fiber jets
under very high rotations (Re ≪ 1, Rb ≪ 1) as they occur in industrial production processes of
glass wool. When surface tension and gravity are included, the question of existence and solvability
becomes even more difficult to answer. Numerical problems are generally encountered at the spin-
ning nozzle for high rotations since huge gradients in the angle arise, [12]. These problems might be
handled by modified boundary conditions at the nozzle, see comments and studies to this point in
[4, 7, 9, 11]. Alternatively, the incorporation of angular momentum effects and the formulation of a
consistent viscous rod theory for rotational spinning raises hope to cover the string model and even
more to overcome the restrictions and open the parameter ranges of practical interest to simulation
and optimization, in analogy to the previous studies on string and rod models for fluid-mechanical
sewing machines in [2, 18]. In that application the coupling of twisting with the motion of the
center-line turned out to be crucial for the coiling of a viscous jet falling on a rigid substrate. Ribe
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proposed the underlying viscous rod model that allows for stretching, bending and twisting. Its
asymptotic derivation was based on the cross-sectional averaging of the balance laws for mass, linear
and and angular momentum. The assumptions of a stationary and moderately curved center-line
in [16] were released in [17] to describe a dynamic center-line.

In this work, we develop an incompressible viscous Cosserat rod model for rotational spinning
processes and compare it theoretically and numerically with the string model in view of performance,
validity and applicability. Enabling the simulation of practically relevant parameter ranges and
particularly the investigation of the curling behavior of the fiber jet near the spinning nozzle, the
rod model shows its expected superiority to the string model. However, the simpler string model
turns out to a good approximation to the rod model in an inertia-dominated jet regime for high
Reynolds number flows. In case of negligible thickness, the models even coincide.

This paper is structured as follows. Starting with a short introduction into the specific Cosserat
rod theory according to [1], we develop an instationary viscous rod model in a Lagrangian frame-
work based on an incompressible geometrical model and appropriate constitutive laws in section 2.
Moreover, we discuss its difference to Ribe’s proposed rod model [17] in an Eulerian setting (see
(2.8) for our Cosserat model). In section 3, we apply the rod model to rotational spinning of
slender, viscous jets. Focusing on the curling behavior the jet near the nozzle in dependence of
viscous friction Re and rotation Rb, we consider a simplified, stationary two-dimensional scenario.
We come up with a two-point boundary value problem of first order ordinary differential equations
(3.4) for jet’s center-line, tangent, curvature, velocity, inner shear and traction force and couple,
whose limit for a vanishing slenderness parameter ǫ corresponds to the string model of [13, 12].
Providing an appropriate numerical method, we proceed with the numerical analysis of rod and
string model and compare the results in view of performance and applicability. Two jet regimes,
i.e. inertial and viscous-inertial regime, arise in rotational spinning – dependently on the considered
parameters (Re, Rb, ǫ) –, which we investigate numerically in section 4. We finally conclude with
jet simulations for parameter ranges of practical interest.

2. Cosserat rod theory

A fiber jet is a slender long body, i.e. a rod in the context of three-dimensional continuum
mechanics. Because of its slender geometry, its dynamics might be reduced to an one-dimensional
description by averaging the underlying balance laws over its cross-sections. This procedure is based
on the assumption that the displacement field in each cross-section can be expressed in terms of a
finite number of vector- and tensor-valued quantities. The most relevant case is the special Cosserat
rod theory that consists of only two constitutive elements, a curve specifying the position and an
orthonormal director triad characterizing the orientation of the cross-sections. In the following we
present the special Cosserat rod theory for a viscous fiber jet in a Lagrangian as well as Eulerian
framework.

2.1. Lagrangian framework. A special Cosserat rod in the three-dimensional Euclidean space
E

3 is defined by a curve r : Q → E
3 and an orthonormal director triad {d1,d2,d3} : Q → E

3 with
Q = {(σ, t) ∈ R

2 |σ ∈ [σa(t), σb(t)], t > 0}, where σ addresses a material cross-section (material
point) of the rod. The domain of the material parameter is chosen to be time-dependent to allow
for inflow and outflow boundaries in the Lagrangian description.

The derivatives of the curve r with respect to time and material parameter are the velocity and
the tangent field,

v = ∂tr, τ = ∂σr.

Due to the orthonormality of the directors there exist vector-valued functions ω (angular velocity)
and κ (generalized curvature) satisfying

∂tdk = ω × dk, ∂σdk = κ × dk

for k = 1, 2, 3. The definitions of v, τ as well as ω, κ imply the compatibility conditions,

∂tτ = ∂σv, ∂tκ = ∂σω + ω × κ.



VISCOUS JETS IN ROTATIONAL SPINNING PROCESSES 3

Combining the kinematic equations with the dynamic ones, i.e. the balance laws for linear and
angular momentum, yields the full framework of the special Cosserat rod theory [1]

∂tr = v

∂tdk = ω × dk

∂tτ = ∂σv (2.1)

∂tκ = ∂σω + ω × κ

(̺A)∂t(v + ∂tc) = ∂σn + f

∂th + (̺A)c × ∂tv = ∂σm + τ × n + l

equipped with appropriate boundary and initial conditions. The line density (̺A) is defined as
Lagrangian quantity in the reference configuration and is hence time-independent. To complete the
system (2.1), the angular momentum line density h has to be specified in terms of the kinematic
quantities by a geometrical model, the contact force and couple n, m by material laws and the
external loads (body force and body couple line density) f , l by the considered application. The
offset field c is defined such that r(σ, t) + c(σ, t) equals the center of mass in the corresponding
material cross-section. We choose r as the mass-associated center-line, i.e.

c = 0. (2.2)

Remark 1. The first two evolution equations for curve r and triad dk in (2.1) can alternatively be
replaced by

∂σr = τ , ∂σdk = κ × dk, (2.3)

which is particularly necessary for stationary considerations, see section 3. Certainly, (2.3) can also
make up for the compatibility conditions for τ and κ in (2.1).

Calculus 2. For the discussion of closure relations and later on for the reformulation of the com-
plete rod model (2.7), we decompose any vector field x of our rod theory in the director basis
{d1,d2,d3}. Moreover, we introduce a fixed outer orthonormal basis {e1, e2, e3}, consequently

x =
∑3

k=1 xkdk =
∑3

k=1 x̄kek. Note that the corresponding component triples x = (x1, x2, x3)

and x̄ = (x̄1, x̄2, x̄3) ∈ R
3 in the director basis and the fixed outer basis respectively are strictly to

distinguish from the original field x ∈ E
3 in the Euclidean vector space.

The director basis can be transformed into the fixed outer basis by the tensor-valued rotation D,
i.e. D = ei ⊗ di = Dijei ⊗ ej ∈ E

3 ⊗ E
3 with associated orthogonal matrix D = (Dij) = (di · ej) ∈

SO(3). For the coordinate tupels, x = D · x̄ holds.
The component triples of the partial derivatives with respect to t and σ in the director basis are

(∂tx · dk)k=1,2,3 = ∂tx + ω × x, (∂σx · dk)k=1,2,3 = ∂σx + κ × x.

These relations yield

∂tD = −ω × D, ∂σD = −κ × D.

for the derivatives of the rotation matrix. Here, the cross-product a × A ∈ R
3×3 between a vector

a ∈ R
3 and a matrix A ∈ R

3×3 is defined by (a × A) · x = a × (A · x) for all x ∈ R
3.

For the geometrical model for h, we need an ansatz how the three-dimensional geometry changes
with respect to the deformations of the Cosserat rod. The incompressibility of a three-dimensional
viscous jet leads to a shrinking of the cross-sections when stretching the body. During this defor-
mation their shapes are assumed to be retained. Moreover, we restrict to fiber jets with circular
cross-sections and constant mass density ̺ in the following. Introducing the dilatation measure
e = τ3 = τ · d3 and the referential cross-sectional area A◦(σ), our geometrical model yields a
angular momentum h linearly in the angular speed ω of the specific form

h =
1

e
̺J◦ · ω, J◦ = Jij di ⊗ dj, J◦ = (Jij) = I◦diag(1, 1, 2), I◦ =

A2
◦

4π
. (2.4)
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Moreover, (̺A) = ̺A◦ holds. The matrix J◦ associated to the tensor-valued moment of inertia J◦

is exclusively based on the referential cross-sectional area A◦ via the definition of the polar moment
of inertia I◦ and is hence time-independent.

Remark 3. The derivation of the geometrical model (2.4) follows straightforward the standard
averaging techniques described in [1] where we take the following ansatz for the position field of the
three-dimensional rod in appropriate Cartesian coordinates

p(x1, x2, σ, t) = r(σ, t) +
1

√

e(σ, t)
(x1d1(σ, t) + x2d2(σ, t)), (2.5)

(x1,x2) ∈ A◦(σ) = {(x1, x2) ∈ R
2 |x2

1 + x2
2 ≤ R2

◦(σ)}, A◦ = πR2
◦.

Allowing time-dependent shrinking, our ansatz (2.5) differs from the classical one, p(x1, x2, σ, t) =
r(σ, t)+x1d1(σ, t)+x2d2(σ, t), which is standard in the theory of elastic rods [1]. It implies that at
the same time r is a material curve, i.e. p(0, 0, σ, t) = r(σ, t) for all t, the mass-associated centerline,
i.e. c =

∫

A◦

p dx1 dx2/A◦ − r = 0, and the geometrical center-line, i.e. r(σ, t) is the midpoint of

the circle p(R◦(σ) cos φ, R◦(σ) sin φ, σ, t), φ ∈ [0, 2π[ with radius R(σ, t) = R◦(σ)/
√

e(σ, t). More-
over, the scaling with the dilatation measure e ensures the incompressibility at the center-line, i.e.
det ∂xp(0, 0, σ, t) = 1.

Formulating material laws for the contact force n and couple m, the objectivity, i.e. the invariance
of the laws with respect to spatial translation and rotation as well as to time shifts, plays a very
important role. Therefore, it is most elegant to prescribe the constitutive laws in the director basis.
The constitutive laws are often combined with algebraic constraints restricting the dynamics. An
example is the so-called Kirchhoff constraint τ = d3 suppressing shear and forcing inextensibility,
then the contact force n becomes a variable of the system (2.1) – as Lagrangian multiplier to the
constraint. For the stretching of viscous fibers, it is necessary to weaken the non-extensibility by
introducing a modified Kirchhoff constraint τ = ed3, e > 0. Then, only the normal contact force
components n1 and n2 are Lagrangian multipliers, whereas the tangential one n3 together with the
contact couple m have to be specified by a material law. We use laws that are linear in the rates of
the strain variables τ and κ, i.e.

τ = ee3 = (0, 0, e), n3 = 3µA◦

∂te

e2
, m = 3µI◦ diag(1, 1, 2/3) · ∂tκ

e3
, I◦ =

A2
◦

4π

with dynamic viscosity µ of the fiber (cf. calculus 2). These constitutive laws correspond to the
ones Ribe derived in an Eulerian framework, see [16, 17].

In the rotational fiber spinning the external loads rise from gravity, i.e. f = ̺A◦g eg and l =
c × f = 0.

Remark 4. Asymptotic analysis of the three-dimensional free boundary fiber spinning problem
allows the systematic, formally strict derivation of an one-dimensional viscous model, (see [6, 5] for
straight and [13, 12] for curved fibers in an Eulerian framework). However, the leading-order terms
with respect to the slenderness parameter do not result in a Cosserat rod model, but in a string
model where all angular momentum effects cancel out. It has the form

∂tr = v, ∂tτ = ∂σv, ̺A◦ ∂tv = ∂σ

(

n
τ

‖τ‖

)

+ f , (2.6)

with the same constitutive law for the scalar-valued traction as in the above rod theory, cf. n = n3,
‖τ‖ = e.
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Summing up, we present the complete rod system for the unknowns (̄r, D, e, κ, v, ω, n1, n2) in the
director basis

D · ∂t r̄ = v

∂tD = −ω × D

∂tee3 = ∂σv + κ × v + ee3 × ω (2.7)

∂tκ = ∂σω + κ × ω

̺A◦∂tv = ∂σn + κ × n + ̺A◦v × ω + D · f̄

ρJ◦ · ∂t

ω

e
= ∂σm + κ × m + ee3 × n + ̺(J◦ ·

ω

e
) × ω

with

J◦ = I◦diag(1, 1, 2), n3 = 3µA◦

∂te

e2
, m = 3µI◦diag(1, 1, 2/3) · ∂tκ

e3
, I◦ =

A2
◦

4π
.

Note that the cross-section at a material position σ at time t is given by

A(σ, t) =
1

e(σ, t)
A◦(σ)

in consequence of the geometrical model. The reference area A◦ might be replaced by the actual
area A in (2.7), which implies the inclusion of an additional evolution equation

∂t(eA) = 0

with appropriate initial condition. In this context, we further introduce I(σ, t) = I◦(σ)/e2(σ, t) as
the actual polar moment of inertia and J = Idiag(1, 1, 2) as the corresponding matrix.

2.2. Eulerian framework. System (2.7) is formulated in a Lagrangian setting. Thereby, the
material parameterization might be determined up to orientation and a constant by an arc-length
parameterized reference configuration. Alternatively, any other time-dependent parameterization
could be used for the formulation of the Cosserat theory, defined via an orientated bijective mapping

S(·, t) : [σa(t), σb(t)] → [S(σa(t), t), S(σb(t), t)] = [sa(t), sb(t)], σ 7→ S(σ, t).

Assuming sufficient regularity, a scalar convective velocity ũ and spatial Jacobian j belongs to S,

∂tS(σ, t) = ũ(S(σ, t), t), ∂σS(σ, t) = j(σ, t) > 0,

for which the following compatibility condition holds

∂sũ(S(σ, t), t) =
∂tj

j
(σ, t).

Calculus 5. For the definition of the rod-associated fields and the conservation of their physical
meaning in an other parameterization, we introduce the formalism of so-called type-n-fields, n ∈ Z,
that are transformed according to

jn(σ, t)f̃ (S(σ, t), t) = f(σ, t)

where f(σ, t) and f̃(s, t) denote a type-n-field in the material and the new parameters, respectively.
In the following we treat r̄, D, A, v, ω, n, m, J, I as type-0-fields and e, κ, f as type-1-fields. The
transformation of (2.7) requires the computation of certain derivatives with respect to t and σ. In
particular, we need

∂tf(σ, t) = (∂tf̃ + ũ∂sf̃)(S(σ, t), t) and ∂σf(σ, t) = j(σ, t) ∂sf̃(S(σ, t), t) for type-0-fields

∂tf(σ, t) = j(σ, t) (∂tf̃ + ∂s(ũf̃))(S(σ, t), t) for type-1-fields.

Considering j as type-1-field yields consistently j̃ = 1 by definition.
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The re-parameterization of all fields carries convective terms with speed ũ into (2.7). Choos-
ing ũ = 0 implies a material description. Instead of imposing ũ explicitly, a constraint might
alternatively be prescribed so that ũ becomes the associated Lagrangian multiplier and hence an
additional unknown of the system. A well-known constraint is the arc-length parameterization of
the fiber curve for all times, ẽ = ‖τ̃‖ = j̃ = 1, that yields an Eulerian setting. Here, e = j = ∂σS
coincides. Moreover, ∂tS(σ, t) = ũ(S(σ, t), t) prescribes the rate of change of the arc-length S(σ, t)
to the material point σ, e is a measure for the strain and ∂sũ(S(σ, t), t) = (∂te/e)(σ, t) the corre-
sponding relative strain rate. The Eulerian (spatial) description is undoubtedly the most intuitive
one for flow problems and allows the transition to stationary flow considerations. Suppressing the
notation ˜ for readability in the following, the Cosserat rod theory in Eulerian parameterization
is given by

D · ∂t r̄ = v − ue3

∂tD = −(ω − uκ) × D

∂s(ue3) = ∂sv + κ × v + e3 × ω

∂tκ + ∂s(uκ) = ∂sω + κ × ω (2.8)

∂tA + ∂s(uA) = 0

ρ∂t(Av) + ρ∂s(uAv) = ∂sn + κ × n + ρAv × ω + D · f̄
ρ∂t(J · ω) + ρ∂s(uJ · ω) = ∂sm + κ × m + e3 × n + (ρJ · ω) × ω

with

J = Idiag(1, 1, 2), n3 = 3µA∂su, m = 3µIdiag(1, 1, 2/3) · (∂sω + κ × ω), I =
A2

4π
.

Remark 6. Our system (2.8) differs from the rod model that Ribe [16, 17] originally proposed and
investigated for viscous rope coiling in a lacking term in the angular momentum balance. In our
terminology, Ribe’s equation has an additional term a = A/(4π)(κ × e3) × (∂sn + κ × n + D · f̄) on
the right-hand side which can be traced back to the choice of a non-zero offset function in Lagrange
description,

c = −A◦

4π

κ × d3

e2
, (2.9)

cf. (2.1). However, no corresponding term occurs in his linear momentum equation.
In the embedding into the three-dimensional theory (cf. remark 3), the offset function (2.9) might

be interpreted as consequence of an improved incompressibility model. The underlying ansatz for
the position field of the three-dimensional rod in Cartesian coordinates

p(x1, x2, σ, t) = r(σ, t) +
1

√

e(σ, t)
(x1d1(σ, t) + x2d2(σ, t)) +

x2
1 + x2

2 − A◦(σ)/π

2e2(σ, t)
κ × d3,

(x1,x2) ∈ A◦(σ) = {(x1, x2) ∈ R
2 |x2

1 + x2
2 ≤ R2

◦(σ)}, A◦ = πR2
◦.

ensures not only the incompressibility at r as our ansatz (2.5), but also as linear approximation in
its surrounding, i.e. det ∂xp(ǫx1, ǫx2, σ, t) = 1+O(ǫ2). Additionally, it still treats the rod curve r as
geometrical center-line in agreement to Ribe’s assumption. Hence, the improved incompressibility
model implies linear and angular momentum equations that both contain offset-associated terms,
(2.1), (2.9). In this context Ribe’s model can be viewed as simplification for A◦ ≪ 1, where all
terms of O(A2

◦) in the linear momentum balance and of O(A3
◦) in the angular momentum balance

are neglected. However, note that this deduction lacks asymptotic consistency, since the coupling
of both equations generates additional terms of O(A2

◦) in the linear momentum equation. Conse-
quently, the consideration of all terms of O(A2

◦) seems to be necessary to obtain an one order higher
incompressible rod model than (2.8).

For the numerical comparison of (2.8) and Ribe’s model we refer to section 4.
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Figure 3.1. Left: Rotational fiber spinning process, photo by industrial partner.
Right: Sketch of three-dimensional set-up and its two-dimensional simplification
under the neglect of gravity.

3. Models for rotational spinning

In this section we apply the special Cosserat theory to rotational spinning processes. In these
processes, a viscous liquid jet leaves a small spinning nozzle located on the curved face of a circular
cylindrical drum rotating about its symmetry axis, cf. figure 3.1. At the nozzle, the velocity, cross-
sectional area, direction and curvature of the jet are prescribed. Starting from an initial length of
zero, the extruded liquid jet grows and moves due to viscous friction, surface tension and gravity. To
describe the process, we choose a coordinate system rotating with the drum. This makes the position
of the nozzle and the direction of the inflow time-independent, but introduces fictitious rotational
body forces due to inertia. Since the curling behavior of the jet at the nozzle in dependence of fiber
viscosity and rotational frequency of the drum is of special interest, we will focus on a simplified,
stationary two-dimensional situation, neglecting surface tension, gravity and considering a spun
fiber of certain length with stress-free end in the following.

Let Ω be the angular frequency of the rotating device, then we introduce the rotating outer basis
{a1(t),a2(t),a3(t)} satisfying ∂tai = Ω × ai, i = 1, 2, 3. We indicate the corresponding coordinate

tupel to an arbitrary vector field x =
∑3

i=1 x̆iai ∈ E
3 by x̆ = (x̆1, x̆2, x̆3) ∈ R

3. Analogously
to calculus 2, the director basis can be transformed into the rotating outer basis by the tensor-
valued rotation R, i.e. R = ai ⊗ di = Rijai ⊗ aj ∈ E

3 ⊗ E
3 with associated orthogonal matrix

R = (Rij) = (di · aj) ∈ SO(3). For the coordinate tupels, x = D · x̄ = R · x̆ holds. Furthermore, we
introduce an adapted velocity and angular speed by

vΩ = v − (Ω × r), ωΩ = ω − Ω.

Then, skipping the subscript Ω, our rod model (2.8) gets the form

R · ∂tr̆ = v − ue3

∂tR = −(ω − uκ) × R

∂s(ue3) = ∂sv + κ × v + e3 × ω

∂tκ + ∂s(uκ) = ∂sω + κ × ω (3.1)

∂tA + ∂s(uA) = 0

ρ∂t(Av) + ρ∂s(uAv) = ∂sn + κ × n + ρAv × ω − 2ρA(R · Ω̆) × v − ρAR · (Ω̆ × (Ω̆ × r̆)) + R · f̆
ρ∂t(J · ω) + ρ∂s(uJ · ω) = ∂sm + κ × m + e3 × n + (ρJ · (ω + R · Ω̆)) × (ω + R · Ω̆)

+ ρJ · (ω × R · Ω̆) + ρJ · R · Ω̆ ∂su
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with

J = Idiag(1, 1, 2), n3 = 3µA∂su, m = 3µIdiag(1, 1, 2/3) · (∂sω + κ × ω), I =
A2

4π
.

Neglecting gravity f = 0, the fiber jet stays and moves exclusively in the exit plane perpendicular
to the rotation axis of the device for appropriate initial and boundary conditions, figure 3.1. We
particularly set Ω‖d1 and d1 = a1 so that the rotation is prescribed by a single angle α ∈ [0, 2π[.
Then, the quantities r, v, n play in the d2-d3-plane, whereas κ, ω and m are parallel to d1 as
consequence of the kinematic equations and the material law. The coordinate terminology simplifies
in this two-dimensional set-up, we use e.g. v = (v2, v3), v⊥ = (−v3, v2) and ω = ω1, analogously for
the other quantities above. With Ω = Ω1 and rotation matrix

R(α) =

(

sin α − cosα
cosα sinα

)

,

the two-dimensional Cosserat model reads after renumbering (i.e. (x2, x3) turns into (x1, x2) for all
coordinate tupels x)

R(α) · ∂tr̆ = v − ue2

∂tα = ω − uκ

∂s(ue2) = ∂sv + κv
⊥ + ωe1

∂tκ + ∂s(uκ) = ∂sω (3.2)

∂tA + ∂s(uA) = 0

ρ∂t(Av) + ρ∂s(uAv) = ∂sn + κn
⊥ − ρAωv

⊥ − 2ρAΩv
⊥ + ρAΩ2

R(α) · r̆
ρ∂t(Iω) + ρ∂s(uIω) = ∂sm − n1 + ρIΩ ∂su

with

n2 = 3µA∂su, m = 3µI∂sω, I =
A2

4π
.

In the transition to stationarity, the mass flux becomes constant, i.e. uA = Q/ρ = const. More-
over, the first two equations of (3.2) loose their evolution character and yield instead explicit
relations for the kinematic quantities, v = ue2 and ω = uκ, which consistently fulfill the third
and fourth equation. Therefore, we follow remark 1 and incorporate alternatively the equations
for the spatial derivatives of curve and angle, ∂sr̆ = χ(α) and ∂sα = κ using χ(α) = (cos α, sin α),
χ(α)⊥ = (− sinα, cos α). In terms of a first order system for r̆, α, κ, u, n1, n2, m supplemented with
geometric and kinematic boundary conditions at the nozzle (s = 0) and stress-free dynamic bound-
ary conditions at a certain fiber length (s = L), we finally obtain the following boundary value
problem

∂s r̆ = χ(α), r̆(0) = (R, 0)

∂sα = κ, α(0) = 0

∂sκ =
4πρ2

3µQ2
um − ρ

3µQ
κn2, κ(0) = 0

∂su =
ρ

3µQ
un2, u(0) = u0 (3.3)

∂sn1 = κn2 − Qκu + QΩ2 1

u
r̆ · χ(α)⊥ − 2QΩ, n1(L) = 0

∂sn2 =
ρ

3µ
un2 − κn1 − QΩ2 1

u
r̆ · χ(α), n2(L) = 0

∂sm =
ρ

3µ
um + n1 −

Q

12πµ

(

Ω

u
+ κ

)

n2 m(L) = 0.
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System (3.3) contains seven physical parameters, i.e. fiber density ρ, viscosity µ, length L, diameter
d0 and velocity u0 at the nozzle as well as drum radius R and rotational frequency Ω. These in-
duce four dimensionless numbers characterizing the fiber spinning: Reynolds number Re = ρu0R/µ
as ratio between inertia and viscosity, Rossby number Rb = u0/(ΩR) as ratio between inertia
and rotation as well as l = L/R and ǫ = d0/R as length ratios between fiber length, -diameter
respectively and drum radius. For the subsequent numerical investigation of viscous and rota-
tional effects on the fiber behavior, we non-dimensionalize (3.3) by help of the following refer-
ence values: s0 = r0 = R, α0 = 1, κ0 = R−1, u0 = u0, n0 = πµd2

0u0/(4R) = ρu2
0R

2ǫ2/(4Re),
m0 = πµd4

0u0/(16R2) = ρu2
0R

3ǫ4/(16Re). The last two scalings are motivated by the material laws
and the fact that Q/ρ = Au. This gives

∂sr̆ = χ(α), r̆(0) = (1, 0)

∂sα = κ, α(0) = 0

∂sκ =
4

3
um − 1

3
κn2, κ(0) = 0

∂su =
1

3
un2, u(0) = 1 (3.4)

∂sn1 = κn2 − Reκu +
Re

Rb2

1

u
r̆ · χ(α)⊥ − 2Re

Rb
, n1(l) = 0

∂sn2 =
Re

3
un2 − κn1 −

Re

Rb2

1

u
r̆ · χ(α), n2(l) = 0

∂sm =
Re

3
um +

4

ǫ2
n1 −

Re

12Rb

n2

u
− Re

12
κn2 m(l) = 0.

Remark 7. Comparing with Ribe’s rod model, his offset modification (cf. remark 6) leads to two ad-
ditional terms Q/(12πµ)κn2−(Q2Ω2)/(4πρ)κ/u2 r̆·χ(α) in the angular momentum equation of (3.3),
where the first one cancels out an already existing one. Hence, the resulting non-dimensionalized
equation

∂sm =
Re

3
um +

4

ǫ2
n1 −

Re

12Rb

n2

u
− Re

4Rb2

κ

u2
r̆ · χ(α)

differs from our model (3.4) only in the last term.

In the limit ǫ → 0, the normal force vanishes (n1 = 0) and the angular momentum effects
decouple. The rod model (3.4) reduces to a string model for r̆, α, u, n with traction force n = n2,

∂s r̆ = χ(α), r̆(0) = (1, 0)
(

u − 1

Re
n

)

∂sα =
1

Rb2

1

u
r̆ · χ(α)⊥ − 2

Rb
, α(0) = 0 (3.5)

∂su =
1

3
un, u(0) = 1

∂sn =
Re

3
un − Re

Rb2

1

u
r̆ · χ(α), n(l) = 0.

Note that this string model stands in accordance to the result (2.6) in remark 4 that was asymp-
totically derived from the three-dimensional instationary incompressible Navier-Stokes equations
describing the rotational spinning as free boundary value problem for a Newtonian fluid, see [13]
and its extension to surface tension [12]. Moreover, first investigations of (3.5) have been performed
for the given stationary two-dimensional set-up regarding Rb ≪ 1 and Re−1 ≪ 1, [10].

4. Numerical investigations

According to the studies in [10], the string model (3.5) allows no physically relevant solutions for

Rb2 < Re−1 with Rb ≪ 1 and Re−1 ≪ 1. However, the spinning of less and highly viscous fibers
under fast rotations is daily routine in industry. Therefore, we will investigate the rod model (3.4)
numerically in view of performance, validity and applicability in this section. In particular, we will
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show that the rod model not only covers the string model but also goes far beyond and opens up
new parameter ranges of practical interest.

4.1. Numerical method. For the numerical handling of the boundary value problems (3.4) and
(3.5), systems of non-linear equations are set up via a Runge-Kutta collocation method and solved
by a Newton method. The convergence of the Newton method depends thereby crucially on the
initial guess. An appropriate guess for the rod model (3.4) turns out to be the solution of the limit
case ǫ → 0 for suitable parameters (Re, Rb). Hence, the solution of the string model (3.5) is taken
as initial guess for (̆r, α, u, n = n2) which is supplemented with

n1 = 0

κ =

(

1

Rb2

1

u
r̆ · χ(α)⊥ − 2

Rb

)

/(

u − n2

Re

)

m =
1

4u
(3∂sκ + κn2).

The expressions for κ and m come from the differential equations for n1 and κ in (3.4), respectively,
using n1 = 0. However, solving the string model (3.5) itself also requires an initial guess. This
might be taken from the inviscid limit case Re → ∞, according to [10]. A good approximation is

r̆(s) =

(

1
√

2s√
2s −1

)

· χ(
√

2s)

α(s) = −
√

2s

u(s) =
1

Rb

√

2s + Rb2

n(s) = 0

which is the inviscid solution for r̆, α, n for Rb → 0. The small modification from the inviscid
solution u(s) =

√
2s/Rb ensures the satisfaction of the boundary condition u(0) = 1, while keeping

the property limRb→0 Rb u(s) =
√

2s.

Remark 8. To improve the computational performance it makes sense to adapt the initial guess it-
eratively by solving a sequence of boundary value problems with slightly changed parameters (Re, Rb)
starting from the prescribed one above.

4.2. Applicability of rod and string model. The applicability of the string model (3.5) has
obviously limits as the work [10] on inviscid fibers shows. We observe similar failure for viscous
fibers exposed to fast rotations, Re ≪ 1, Rb ≪ 1. The reason lies in the term on the left-hand side
of the evolution equation for α, i.e.

q(s) = u(s) − 1

Re
n(s)

that can be interpreted as sum of inertia and viscous energy. It is monotonically increasing on [0, l]
and q(l) > 0 since u > 0. Hence, two cases have to be distinguished: q(0) > 0 and q(0) ≤ 0. The
first case indicates a inertia-dominated regime, q > 0, for which the boundary value problem is well-
posed and the numerical simulations yield reasonable results. The second case implies q(s⋆) = 0 for
s⋆ ∈ [0, l[. We have a transition from a viscous to an inertial regime, where the numerical solution
breaks down. The system with the prescribed boundary conditions is inconsistent. There are ideas
to overcome this problem by modifying the boundary conditions, in particular releasing α(0) = 0
see [11]. However, the choice of the boundary conditions is physically reasonable.

The handling of both regimes turns out to be no problem for the complexer rod model (3.4). The
boundary value problem is well-posed for ǫ 6= 0 and permits the numerical solution. Containing
additional degrees of freedom via the angular momentum consideration allows the prescription of
exit angle and curvature at the nozzle, α(0) = 0 and κ(0) = 0, and especially the resolution of the
curling behavior near the nozzle. Concerning the applicability of the rod model and its superiority
to a string model, our experiences for the rotational spinning are in accordance with the observations
for the fluid-mechanical sewing machine in [18].
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Figure 4.2. Jet regimes for varying (Re, Rb)-ranges. Illustration of limit curve
q(0; Re, Rb, ǫ) = 0 for the different models: rod model for ǫ = 10−1, 10−2, 10−3 as
solid lines (–), Ribe’s approach for ǫ = 10−2 with marker (⋆) and string model with
red (o). The string results are of accuracy tol = 10−3. The analytical estimate for
non-existence of string solutions with inviscid properties, Rb2Re = 1, is plotted as
dashed line (- -), the actual numerical observation, Rb2Re = 3/2, as dotted line (:),
[10].

Limit curve. Investigating the two jet regimes in the following, figure 4.2 illustrates the limit
curve q(0; Re, Rb, ǫ) = 0 for the rod and string model. Obviously, the curves corresponding to our
ǫ-dependent rod model converge to the string limit as ǫ → 0. Moreover, the limit curves of our and
Ribe’s rod approach coincide for all ǫ > 0, as exemplified for ǫ = 10−2 in figure 4.2. The slenderness
ratio ǫ plays a crucial role for viscous jets of Re < 10, we find limRe→0 q(0; Re, 0.5, 0) = 0. For
non-viscous jets, in contrast, the limit curves are ǫ-independent. They particularly fall together
with the non-existence estimate of physically relevant string solutions, Rb2Re < 1, for Re−1 ≪ 1 in
[10]. This estimate was derived under the assumptions that the fiber jet is accelerated out off the
nozzle and bends in the sense of the drum rotation, ∂su(0) ≥ 0 and ∂sα(0) < 0 yielding q(0) ∈]0, 1],
in combination with the convexity of the Lagrangian velocity at the nozzle. The last is true in the
inviscid case Re → ∞, where the acceleration of the Lagrangian fluid particle increases with its
flight time. Its application to non-viscous jets of Re−1 ≪ 1 might explain the slight difference of
the theoretical estimate in comparison to the numerical results Rb2Re < 3/2, as already observed
in [10].

To determine the limit curve (root of q) we use a combination of bisection, secant and inverse
quadratic interpolation approaches. The nonlinear boundary value problem in the inner loop is
solved via the Newton method on top of the Runge-Kutta collocation method according to sec-
tion 4.1. Thereby, we compute the initial guess iteratively to ensure the convergence of the Newton
method. In the case of the string model, we particularly test against the non-solvability of the
problem, yielding an accuracy of the string results of order O(10−3).
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Inertial regime: comparison of string and rod model. In the inertial regime for high Reynolds
numbers {(Re, Rb) |Rb >

√

3/(2Re), Re > 10}, the dynamics of the jet is unaffected of the thickness
(ǫ ≪ 1). Already for a moderate slenderness ǫ = 10−2, the rod solution coincides well with the string
solution, as figure 4.3 shows. Consequently, the curling behavior at the nozzle is here exclusively
determined by rotation and viscosity. The faster the rotation (smaller Rb), the stronger is certainly
the bending of the jet and hence the higher is the amplitude of curvature κ, internal shear force n1

and couple m. In the string associated quantities we observe a steeper descent of the angle α, a
higher traction force n2 and a faster increase and higher velocity u implying smaller cross-sections.
The jet is stronger pressed out off the nozzle due to higher centrifugal and Coriolis forces. The
influence of the viscosity on the bending is less relevant, but, however, the jet is straighter and
faster for higher Re, see figures 4.3, 4.4 and numerical studies of string model in [10].

For low Reynolds numbers, the slenderness ratio additionally affects the jet behavior, as exempli-
fied for (Re, Rb) = (0.01, 1) in figure 4.4. The thinner the jet (smaller ǫ), the stronger is the bending
κ and the slower is the velocity u. The amplitude of the internal couple m is respectively higher at
the nozzle, whereas the shear n1 and traction forces n2 are of similar magnitude. The rod solution
converges to the string solution as ǫ → 0. However, be aware that the thickest jet in the example
(figure 4.4) satisfies q(0; 0.01, 1, 0.1) < 0 and hence belongs to the other regime by definition.

Viscous-inertial regime: usage of rod model for industrial application. In the viscous-
inertial regime which is generally characterized by fast rotations (Rb ≪ 1), the jet dynamics shows
obviously qualitative differences to the results in the inertial regime. For example the jet becomes
straighter and slower for smaller Re, see figure 4.5. Moreover, the high rotational forces enforce
a strong bending at the nozzle so that a boundary layer arises in angle α, curvature κ, shear
force n2 and couple m. The development of the layer depends on the jet’s thickness ǫ and the
rotational speed Rb. The thinner the jet (smaller ǫ), the smaller is the layer which implies a
higher curvature and internal couple, magnitude of angle and shear force remain unaffected. In
particular, the quantities oscillate in the layer, the curvature for example changes from concave to
convex and back which is physically very surprising. The faster the rotation (smaller Rb), the more
distinct is this behavior, see figure 4.6. More viscous materials (smaller Re) damp the amplitude.
Although the observed oscillation is unexpected and negligible on the large scale l of the jet motion,
it is by no way numerical nonsense, but has its origin in the model since it is independent of the
computational resolution (figure 4.7). To get a deeper insight into the layer without spending higher
computational costs, it is worthwhile to transform the system into Lagrangian coordinates. This
nonlinear transformation zooms into the nozzle region, see appendix for details. For a theoretical
understanding of the boundary layer, a multi-scale analysis might be promising. The existence of
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Figure 4.6. Viscous-inertial regime. Influence of rotation speed on moderate
viscous, slender jet Re = 0.1, ǫ = 0.01: rod dynamics and curvature are plotted
for Rb ∈ {0.1, 0.01, 0.001} as solid (–), dashed (- -), dotted (:) lines, respectively.
Ribe’s approach is marked with (⋆).
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Figure 4.7. Different resolution of the boundary layer in κ for Rb = 0.1, cf. figure 4.6.

different scales are already indicated by the inviscid string solution for the velocity u(s) =
√

2s/Rb
with u(0) = 0 6= 1 for all Rb. But this remains to future research.

At last, note that the numerical solvability of the rod model in this regime depends crucially
on the regularizing effect of the slenderness parameter ǫ. If ǫ is chosen too small (ǫ ≈ 0), the rod
model turns numerically into the string model and the arising huge gradients at the nozzle cause
numerical failures.

Remark 9. In spite of the different approximations of the incompressibility, the numerical results
of our rod model and Ribe’s approach coincide for all parameter ranges (Re, Rb, ǫ). This confirms
the asymptotic consideration in remark 6 and justifies the omission of the offset field in (2.1), i.e.
c = 0.

5. Conclusion

Studying the curling behavior of viscous jets in rotational spinning processes in this paper, we
have developed a consistent, instationary Cosserat rod model based on an incompressible geometrical
model and appropriate material laws in the context of slender-body theory. The rod model differs
from Ribe’s approach [17] in the approximation of incompressibility which turns out to have no
effect on the numerical solution. Moreover, it reduces to the string model of [12] in the limit ǫ → 0
implying the absence of shear forces. The numerical analysis of the representative, stationary two-
dimensional set-up where the jet dynamics depends on viscosity and rotation reveals that the rod
model not only covers the string model in the inertia-dominated jet regime but also overcomes its
limitations [10] and enables the numerical handling of the viscous-inertial jet regime. Thus, the rod
model shows its applicability for the simulation and optimization of jets with certain thickness ǫ
and industrially relevant parameters (Re, Rb).

However, with a view towards the simulation of the instationary three-dimensional rotational
spinning processes in industrial applications, an efficient numerical treatment of the free boundary
value problem of partial differential equations (3.1) is required. Therefore, the consideration of
the Lagrangian framework and a multi-scale analysis could be helpful. Future extensions might
moreover include the incorporation of temperature dependence and aerodynamic forces in the rod
model.

Acknowledgements. This work has been supported by Rheinland-Pfalz Excellence Center for
Mathematical and Computational Modeling (CM)2.

Appendix

In view of an analysis of the boundary layer at the nozzle for Rb → 0, it might be suitable to
consider our stationary Eulerian rod model (3.4) in its associated Lagrangian form. The stationarity
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simplifies the transformation between Eulerian and Lagrangian coordinates (cf. section 2.2) to

∂tS(σ, t) = ũ(S(σ, t)), S(σ, tin(σ)) = 0,

where tin(σ) prescribes the time of the material point σ entering the steady flow domain S(σ, t) ∈
[0, l]. Thus, S(σ, t) = Ŝ(t−tin(σ)) holds. This exclusive dependence on the run time ζ = t−tin(σ) of

the material point is also valid for all other fields, f(σ, t) = f̂(t− tin(σ)). Determining the material

coordinates via tin(σ) = −σ/u0, we have ∂tf(σ, t) = u0∂σf(σ, t) = ∂ζ f̂(t + σ/u0). Consequently,
u = ∂tS = u0∂σS = u0e in the Lagrangian setting, and the convective velocity and the strain
coincide because u0 = 1 in the dimensionless form. Using calculus 5 and dropping ˆ , the Lagrangian
rod model reads

∂ζ r̆ = eχ(α), r̆(0) = (1, 0)

∂ζα = κ, α(0) = 0

∂ζκ =
4

3
e3m, κ(0) = 0

∂ζe =
1

3
e2n2, e(0) = 1

∂ζn1 = κn2 − Reκe +
Re

Rb2
r̆ · χ(α)⊥ − 2Re

Rb
e, n1(T ) = 0

∂ζn2 =
Re

3
e2n2 − κn1 −

Re

Rb2
r̆ · χ(α), n2(T ) = 0

∂ζm =
Re

3
e2m +

4

ǫ2
en1 −

Re

12Rb
n2 −

Re

12
κn2 m(T ) = 0.

The nonlinear transformation between Eulerian and Lagrangian coordinates allows to zoom into
the nozzle region while keeping the same number of discretization points, as visualized in figure 5.8.

0 0.05 0.1 0.15 0.2 0.25 0.3

−30

−25

−20

−15

−10

−5

0

5
Lagrange

ζ

κ

0 0.2 0.4 0.6 0.8 1
−30

−25

−20

−15

−10

−5

0

5
Euler

s

κ

 

 

s
i
=S(ζ

i
), ζ

i
 equidistant

s
i
 equidistant

Figure 5.8. Resolution of boundary layer in κ for (Re, Rb, ǫ) = (1, 0.1, 0.01).
Left: Lagrangian setting, 50 equidistant grid points ζi. Right: Eulerian setting,

transformed grid points Ŝ(ζi) (⋆) versus 50 equidistant arc-lengths si (◦).
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