
Formal Framework for
Proof Generating Optimizers

Vom Fachbereich Informatik

der Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

von

Marek Jerzy Gawkowski

November 25, 2008

Termin der wissenschaftlichen Aussprache: 20.04.2009
Dekan: Prof. Dr. Karsten Berns
Vorsitzender des Prüfungsausschusses: Prof. Dr. Karsten Berns
1. Berichterstatter: Prof. Dr. Arnd Poetzsch-Heffter
2. Berichterstatter: Prof. Dr. Klaus Schneider

D 386

V

Zusammenfassung. Ein Softwaresystem wird meistens entweder in einer Spezifikations- oder einer
höheren Programmiersprache geschrieben. Dessen Laufzeitverhalten wird jedoch durch den Maschinen-
code, der das Ergebnis der Übersetzung seiner Beschreibung in einer höheren Quellsprache ist, bestimmt.
Für ein unkritisches Softwaresystem mag es ausreichen, dieses auf die Abwesenheit der Fehler durch Über-
prüfung von Testläufen zu testen. Für ein sicherheitskritisches Softwaresystem kommen jedoch erschwerend
zwei Faktoren hinzu. Erstens, der Software-Producer, der dieses Softwaresystem implementiert hat, muss
formal nachweisen, dass sein Maschinencode die formale Spezifikation, die vom Software-Consumer aus-
gestellt wird und seine Safety-Policy beschreibt, erfüllt. Zweitens, die Quellsprachenbeschreibung des Soft-
waresystems ist das Ergebnis der Anwendung der statischen Analyse und formaler Methoden, welche diese
Beschreibung in Richtung Effizienz und Korrektheit optimieren. Demnach ist das Ziel der Erstellung der
formal nachweisbaren Übersetzungskorrektheit ausschlaggebend für den Erfolg bei der Implementierung
eines sicherheitskritischen Softwaresystems.

In dieser Dissertation schlage ich einen Ansatz zu zertifizierenden Übersetzern vor, der die Formalis-
men und Techniken aus den Bereichen der mathematischen Logik und Programmiersprachen anwendet, um
das letztgennante Ziel zu erreichen. Ich nenne den Ansatz foundational translation validation (FTV). Ein
Compilerhersteller, der diesen Ansatz verfolgt, implementiert ein FTV-System, das neben dem Übersetzer-
programm aus einem Spezifikations- und Verifikationsframework (SVF) besteht. Das SVF wird in der Logik
höherer Stufe (HOL) implementiert und seine wichtigste Komponente ist ein Übersetzungsvertrag, der die
Formalisierungen der Quell- und Zielsprache sowie eines zweistelligen Übersetzungskorrektheitsprädikates
corrTrans(S ,T) über die Quellprogramme S und die Zielprogramme T enthält. Die Formalisierungen der
Sprachen werden als sog. tiefe Einbettungen in HOL realisiert. Durch Verwendung von tiefen Einbet-
tungen erreicht man, dass ganze Programme in diesen Sprachen als HOL-Konstanten deklariert werden
können. Die Definition von corrTrans drückt formal aus, was es heißt, dass T die korrekte Übersetzung
von S ist, und verwendet explizit die Definitionen der Programmsemantiken der Quell- und Zielsprachen,
die vom Übersetzungsvertrag festgelegt werden. Im Anschluss an die Übersetzung des Quellprogramms
übersetzt der Übersetzerprogramm das Quell- und das Zielprogramm in ihre textuellen Repräsentationen
als HOL-Konstanten S und T und generiert einen Korrektheitsbeweis für die Gültigkeit des der Aussage
corrTrans(S ,T). Ich nenne ein Übersetzerprogramm, das den FTV-Ansatz verfolgt, ein beweisgenerierender
Übersetzer und ein Beweisskript, das den Korrektheitsbeweis enthällt, ein Übersetzungszertifikat.

Die Idee, dass Programme in Korrektheitsbeweisen als logische Konstante repräsentiert werden können,
ist nicht neu und wurde von dem foundational proof-carrying code-Ansatz übernommen. Andere Merkmale
des Ansatzes, die neuartig sind, und ihn von anderen Ansätzen zu zertifizierenden Übersetzern, wie proof-
carrying code (PCC) und translation validation (TV), unterscheiden, sind die folgenden:

Die Anwesenheit eines expliziten und formalen Übersetzungsvertrags: Die Ansätze PCC und TV sehen
weder die Formalisierungen des Übersetzungsvertrags noch die Verwendung von Theorembeweisern
zum Zwecke der Verifikation der Übersetzungen vor. Stattdessen werden zum Zwecke der Überset-
zungsverifikation dedizierte Übersetzungsvalidierungswerkzeuge verwendet. Dabei werden die oper-
ationalen Semantiken der Quell- und Zielsprache sowie ein sogenanntes Übersetzungskorrektheits-
kriterium mit Mitteln der Implementierungssprachen dieser Werkzeuge kodiert und in diese eingebet-
tet.

Die Repräsentation der Programme in Korrektheitsbeweisen als logische Konstanten: Im Rahmen der An-
sätze PCC and TV werden die Programme in ihre semantische Abstraktionen übersetzt. Diese Ab-
straktionen werden den Übersetzungsvalidierungswerkzeugen als Eingaben übergeben.

Zertifizierung von Programmtransformationsketten: Im Gegensatz zu dem TV-Ansatz, der auf die Zerti-
fizierung von einzelnen Programmtransformationen spezialisiert ist, ermöglicht der FTV-Ansatz die
Zertifizierung von ganzen Ketten von Programmtransformationen. Dies rührt von der Tatsache her,
dass die Definitionen der Programmsemantikfunktionen im Übersetzungsvertrag die Programme in
Elemente der Menge, die durch eine transitive Relation "≤" partiell geordnet sind, abbilden.

Diese Dissertation erläutert den FTV-Ansatz anhand eines FTV-Systems, das im Rahmen der Dok-
torarbeit implementiert wurde. Das System besteht aus einem Übersetzer-Frontend, das seine Opti-
mierungsphase zertifiziert und einem SVF, das mit dem Theorembeweiser Isabelle/HOL implementiert
wurde. Der Schwerpunkt dieser Dissertation liegt auf der Beschreibung des SVF und seiner Techniken der
Übersetzungsverifikation.

VI

Summary. Most software systems are described in high-level model or programming languages. Their
runtime behavior, however, is determined by the compiled code. For uncritical software, it may be sufficient
to test the runtime behavior of the code. For safety-critical software, there is an additional aggravating
factor resulting from the fact that the code must satisfy the formal specification which reflects the safety
policy of the software consumer and that the software producer is obliged to demonstrate that the code
is correct with respect to the specification using formal verification techniques. In this scenario, it is of
great importance that static analyses and formal methods can be applied on the source code level, because
this level is more abstract and better suited for such techniques. However, the results of the analyses and
the verification can only be carried over to the machine code level, if we can establish the correctness of
the translation. Thus, compilation is a crucial step in the development of software systems and formally
verified translation correctness is essential to close the formalization chain from high-level formal methods
to the machine-code level.

In this thesis, I propose an approach to certifying compilers which achieves the aim of closing the
formalization chain from high-level formal methods to the machine-code level by applying techniques
from mathematical logic and programming language semantics. I propose an approach called foundational
translation validation (FTV) in which the software producer implements an FTV system comprising
a compiler and a specification and verification framework (SVF) which is implemented in higher-order
logic (HOL). The most important part of the SVF is an explicit translation contract which comprises
the formalizations of the source and the target languages of the compiler and the formalization of a
binary translation correctness predicate corrTrans(S, T) for source programs S and target programs T .
The formalizations of the languages are realized as deep embeddings in HOL. This enables one to declare
the whole program in a formalized language as a HOL constant. The predicate formally specifies when T

is considered to be a correct translation of S. Its definition is explicitly based on the program semantics
definitions provided by the translation contract. Subsequent to the translation, the compiler translates
the source and the target programs into their syntactic representations as HOL constants, S and T , and
generates a proof of corrTrans(S, T). We call a compiler which follows the FTV approach a proof generating
compiler.

Our approach borrows the idea of representing programs in correctness proofs as logic constants from
the foundational proof-carrying code (FPCC) approach. Novel features that distinquish our approach from
further approaches to certifying compilers, such as proof-carrying code (PCC) and translation validation
(TV) are the following:

The presence of an explicit translation contract formalized in HOL: The approaches PCC and TV do not
formalize a translation contract explicitly. Instead of this, they incorporate operational semantics and
translation correctness criterion in translation validation tools on the programming language level.

Representation of programs in correctness proofs as logic constants: The approaches PCC and the TV
translate programs into their representations as semantic abstractions that serve as inputs for trans-
lation validation tools.

Certification of program transformation chains: Unlike the TV approach, which certifies single program
transformations, the FTV approach achieves the aim of certifying whole chains of program transfor-
mations. This is possible due to the fact that the translation contract provides, for all programming
languages involved in the program transformation chain, definitions of program semantics functions
which map programs to mathematical objects that are elements of a set with an (at least) partial
order "≤". Then, the proof makes use of the fact that the relation "≤" is transitive.

In this thesis, the feasibility of the FTV approach is exemplified by the implementation of an FTV
system. The system comprises a compiler front-end that certifies its optimization phase and an accompa-
nying SVF that is implemented in the theorem prover Isabelle/HOL. The compiler front-end translates
programs in a small C-like programming language, performs three optimizations: constant folding, dead
assignment elimination, and loop invariant hoisting, and generates translation certificates in the form of
Isabelle/HOL theories. The main focus of the thesis is on the description of the SVF and its translation
verification techniques.

VII

Acknowledgement. First and foremost, I would like to thank my supervisor Arnd Poetzsch-Heffter for
his expert guidance, constant encouragment and enduring patience during my doctoral research.

I thank Klaus Schneider for being my referee, and am I indebted to him to his numerous comments
on this dissertation, which increased its technical and scientific quality significantly.

I thank the - former and current - members of our working group, namely (in alphabetical order): Anca
Bealu, Jan Olaf Blech, Giorgio Dal Molin, Christoph Feller, Jean-Marie Gaillourdet, Kathrin Geilmann,
Patrick Michel, Nicole Rauch, Markus Reitz, Ina Schaefer, Jan Schäfer, Christian Stenzel, and Yannick
Welsch, as well as staff members of our chair, for the excellent working atmosphere and the technical and
organizational support.

Last but not the least, special thanks go to my family. I thank my mother Teresa and my father
Eugeniusz for their love and support. Finally, I thank my wife Małgorzata for her support and patience
and our daughter Marianna who’s birth right at the beginning of writing this dissertation gave me zest for
live and inspired me with tremendous power to find the golden mean required to write this dissertation
as concise as possible but not to concise.

VIII

IX

To Małgorzata and Marianna

Contents

1 Introduction . 1
1.1 Approaches to certifying compiler . 3
1.2 Our approach . 7
1.3 Objectives of this thesis . 9
1.4 The ProGenCo project . 10
1.5 Overview of our implementation . 13

1.5.1 Compiler front-end . 13
1.5.2 Specification and verification framework . 18

1.6 Related work . 23
1.6.1 Work on certified compilers . 24
1.6.2 Work on certifying compilers . 26

1.7 Overview of the thesis . 29

2 Preliminaries . 33
2.1 Modelling and proving in Isabelle/HOL . 33

2.1.1 Terms, types, formulae and theories . 33
2.1.2 Recursive datatypes and functions . 34
2.1.3 Isabelle/HOL library . 34

2.2 Programming language formalization style . 36
2.3 Conventions . 36

3 Overview of the SVF . 39
3.1 Layer 0: Higher-order logic . 39
3.2 Layer 1: Logic extension . 39
3.3 Layer 2: Translation contract . 41
3.4 Layer 3: Type safety proofs . 43
3.5 Layer 4: Compiler phase independent translation correctness criterion 44
3.6 Layer 5: Translation correctness criteria for particular compiler phases 48
3.7 Layer 6: Proof environments specific to particular proof tasks 49
3.8 Proof checking: an example . 51

4 Translation contract . 55
4.1 Abstract syntax of IL . 55
4.2 Semantics of IL . 57
4.3 Translation correctness predicate . 65

XII Contents

5 Type safety of the language IL . 69
5.1 Well-formedness . 69
5.2 Well-typedness . 72
5.3 Conform configuration . 77
5.4 Type safety theorem . 78

6 Optimization independent translation correctness criterion 81
6.1 Overview . 82
6.2 Block position environments . 85
6.3 Well-formedness of block position environments . 97
6.4 Formalization of the language IL’ . 103

6.4.1 Abstract syntax of IL’ . 103
6.4.2 Semantics of the IL’ language . 103

6.5 Equality of the semantics of the languages IL and IL’ . 110
6.6 Formalization of the language IL” . 113

6.6.1 Abstract syntax . 113
6.6.2 Semantics of the language IL” . 114

6.7 Bisimulation predicate on pairs of IL” program executions . 116
6.8 Optimization independent translation correctness criterion . 118
6.9 Optimization independent translation correctness theorem . 118

7 Translation correctness criteria for particular optimizations 121
7.1 SVF for CF optimizations . 122

7.1.1 Abstract syntax of CPA results . 123
7.1.2 Bisimulation relation for the CF optimization . 124
7.1.3 Optimization correctness criterion for the CF optimization 127
7.1.4 Verification of the optimization correctnes criterion TCCCF 142

7.2 SVF for DAE optimizations . 143
7.2.1 Abstract syntax of LA results . 145
7.2.2 Bisimulation relation for the DAE optimization . 145
7.2.3 Optimization correctness criterion for the DAE optimization 150
7.2.4 Verification of the optimization correctnes criterion TCCDAE 163

7.3 SVF for NI optimizations . 164
7.3.1 Corresponding block edge pairs . 168
7.3.2 Bisimulation relation for the NI optimization . 168
7.3.3 Optimization correctness criterion for NI transformations 174
7.3.4 Verification of the optimization correctness criterion TCCNI 184

7.4 SVF for RAI optimizations . 185
7.5 SVF for RAE . 187

7.5.1 Abstract syntax of AEA results . 188
7.5.2 Bisimulation relation for the RAE optimization . 189
7.5.3 Optimization correctness criterion for the RAE optimization 194
7.5.4 Verification of the optimization correctnes criterion TCCRAE 206

8 Evaluation . 209
8.1 Proof script size . 209
8.2 Performance . 213
8.3 Framework evaluation . 215

Contents XIII

9 Conclusions and future work . 217
9.1 Contributions . 217
9.2 Future work . 219

A Intermediate programs illustrating work-flow of our front-end 223

B Specification of optimization relation for constant folding 229
B.1 Optimization patterns for expressions . 229
B.2 Optimization patterns for l-value . 240

C Specification of optimization relation for nop insertion . 251
C.1 Assignment . 252
C.2 Printi . 255
C.3 Branch . 258
C.4 Goto . 261
C.5 Exit . 264

D The companion CD . 267
D.1 The content . 267
D.2 Compiling the frontend . 268
D.3 Using the frontend . 269
D.4 Using the SVF . 269

References . 273

Chapter 1

Introduction

The compiler is a crucial part in the development of software systems. Most software systems
are described in high-level model or programming languages. Their runtime behavior, however, is
determined by the compiled code. For uncritical software, it may be sufficient to test the runtime
behavior of the code. If an error is detected, it can be caused by the programmer, by the compiler,
or by a semantical ambiguity, e.g. the programmer might assume a particular evaluation order
of expressions that is not realized by the used compiler. For safety-critical software, there is an
additional aggravating factor resulting from the fact that the code must satisfy the formal speci-
fication which reflects the safety policy of the software consumer and that the software producer
is obliged to demonstrate that the code is correct with respect to the specification using formal
verification techniques. In this scenario, it is of great importance that static analyses and formal
methods can be applied on the source code level, because this level is more abstract and better
suited for such techniques. However, the results of the analyses and the verification can only be
carried over to the machine code level, if we can establish the correctness of the translation. Thus,
translation correctness is essential to close the formalization chain from high-level formal methods
to the machine-code level.

Following the classification given in [67] and [93], we distinguish between two general approaches
to how one establishes that a translation performed by a compiler is correct:

• Certified compiler approach: The software producer provides two proofs that both the compiler
algorithm defines a correct translation for all given well-formed input programs (compiler
algorithm correctness) and that the algorithm is correctly implemented on a given machine
(compiler implementation correctness). The software consumer’s confidence in the correctness
of a translation is due to the fact that it was performed by a certified compiler.

• Certifying compiler approach: The software producer equips the compiler with a certifying unit
which, for each translation run, takes the source and the target programs as input and returns
a formal proof, a translation certificate, that the target program is a correct translation of
the source program. Whenever a translation is performed by the compiler, an accompanying
certificate is generated by the certifying unit and it is attached to the translation result. The
certificate can serve for two different purposes: Firstly, the certificate can be verified directly
by the compiler user. Secondly, the certificate can be verified by the software consumer in a
scenario with an untrusted software producer delivering software to the software consumer.
The software consumer’s confidence in the correctness of a translation is due to the fact that
there exists a formally verifiable proof that the translation is correct.

Both approaches refer to the notions of translation correctness criterion/predicate and trans-
lation correctness proofs to provide confidence in the correctness of translations. The translation

2 1 Introduction

correctness proof shows that the source and the target programs of a translation fulfill the trans-
lation correctness criterion.

The definition of the translation correctness criterion/predicate is based on the notion of trans-
lation relation over program pairs and it says that a target program is a correct translation of a
source program iff the pair consisting of these programs is in the relation. The translation relation
is specified by a predicate function which is based on the definitions of the source and the target
programming language semantics which map respective programs to their meanings. Further, both
approaches aim at providing high confidence in the correctness by focusing on machine-checkable
proofs. This requires the existence of a formal specification and verification framework (SVF)
within which the above notions and correctness proofs can be formalized and conducted, respec-
tively. In the case of certified compilers, the SVF is a proof assistant within which a compiler
correctness proof is conducted. In the case of certifying compilers, the SVF can be either a proof
assistant or a program, a translation checker. As of proof assistants, proofs have the form of proof
scripts in the language provided by the proof assistant. The translation checker can be either a
general purpose program, such as a model checker or verification condition verifier or a dedicated
program, a translation validator, which is a part of checking infrastructure implemented together
with the certifying compiler program. In both cases, the translation checker provides a language
for encoding of program abstractions and checks whether source and target program abstractions
generated by a certifying compiler fulfill a predefined translation correctness criterion.

In general, the certifying compiler approach has four advantages compared to the certified
compiler approach. Firstly, the issue of implementation correctness can be completely avoided,
the implementation of the compiler algorithms on a hardware system does not have to be trusted
or to be proved correct (cf. [94]). This is due to the fact that a translation certificate makes no
statements about the algorithm or the implementation details of the compiler, which generated
it, but only about two programs associated to a corresponding translation, i.e. the source and the
target programs. Secondly, the technique provides, similar to the proof carrying code approach ([76,
75, 4]), a clear interface between compiler producer and user. In the certified compiler approach, the
software producer has to provide access to the compiler correctness proof if he seeks the compiler
user’s confidence in the translation correctness. This results in revealing the internal details of
the compiler. In contrast, the translation correctness proofs generated by certifying compilers
can be independent of compiler implementation details. Thirdly, the effort needed to implement
certifying infrastructure for a certifying compiler is less than the effort needed for conducting a
compiler correctness proof. Realistic optimizing compilers are large software systems implementing
sophisticated optimization algorithms. Certifying them by conducting machine-checkable compiler
correctness proofs, which is highly desirable, is both challenging and time consuming. Therefore,
in practise there exist only a small number of machine-checkable correctness proofs for realistic
compilers. In the majority of cases, the compiler correctness proofs are conducted either to verify
a selected aspect of the compiler alogrithm, such as a compiler phase, or to present a proof of
concept for a representative subset of the source language. In contrast, it was demonstrated in
the literature that implementing a realistic certifying compiler is feasible [78, 75, 103, 104, 105,
29, 123, 122, 92, 7, 125, 124, 126, 77, 109, 110, 43, 41, 39, 20, 18]. Fourthly, the effort needed to
maintain certifying infrastructure is less than the effort needed for for a certifying compiler than for
a certified compiler as every change to the algorithm of a compiler requires redoing its correctness
proof. On the contrary, the translation correctness proof generated by the certifying compiler are
not sensitive to changes to the translation algorithm. This is due to the aforementioned fact that
translation certificates make only statements about whether two programs are in a predefined
translation relation which is defined independently of the compiler algorithm.

The certifying compiler approach has two major disadvantages: Firstly, users have to check the
certificates for each (critical) compilation. This check may fail, if the compiler has a bug. Secondly,

1.1 Approaches to certifying compiler 3

verifying a realistic translation certificate by a third party program requires large amounts of time
and memory resources and there is still a lot of research to be done in this realm to improve this.
There are two reasons for this unsatisfying situation: the inefficiency of software tools used to
implement the SVF’s and the inefficiency of present proof techniques used in certifying compilers.

1.1 Approaches to certifying compiler

This section focuses on the certifying compiler approach and discusses existing approaches to
certifying compilers. In the discusssion, we consider the following aspects of each approach:

1. kind of property certified by the compiler,
2. certificate generation technique,
3. the size of trusting computing base (TCB) of the approach, i.e. which parts of the certifying

infrastructure of the compiler has to be trusted,
4. the flexibility and modularity of the techniques used by the approach.

A more detailed discussion of the related work on both certified and certifying compilers will
be given in Section 1.6.

Proof-carrying code (PCC) [78, 75] is a framework for guaranteeing that compiled programs
meet certain safety requirements such as type safety or the absence of stack overflows. The frame-
work works in the following scenario: The code consumer wants to assure himself that it is safe to
execute a program supplied by an untrusted source. Hence, he defines a safety policy, i.e. a set of
the safety requirements which have to be met by each program in order to be permitted for execu-
tion on the code consumer’s machine, makes it public, and requires that the code supplied by the
untrusted code producer must be accompanied by a machine checkable safety proof that attests
to the adherence of the code to his safety policy. Before executing the code, the code consumer
validates the proof (proof validation) without consulting any external agents.

A typical PCC system comprises four basic software components: a compiler, a verification
condition generator (VCG), a proof assistant, and a proof checker. In a typical scenario, they are
used as follows. Firstly, a source program is given as input to the compiler which translates it into
a machine code, a target program. Secondly, the VCG incorporates a semantic framework for the
representation of the machine code as a vector of verification conditions (VC vector). The target
program is given as input to the VCG which automatically generates a representation of the target
program as a VC vector (semantic mapping step). The generated VC vector serves as a program
abstraction of the target program. Thirdly, the code producer uses a proof assistant to interactively
conduct a safety proof that the VC vector is correct according to the safety policy of the consumer
(abstraction validation step on the part of the code producer). Fourthly, the code producer delivers
the target program together with the corresponding VC vector and the safety proof to the code
consumer. Fifthly, as the semantic mapping step results in reducing the information about the
original target program to a VC vector, which is, basically, a vector of first-order logic formulas,
the code consumer does not trust that the delivered VC vector is indeed the output of the VCG
started with the target program as input. Therefore, the consumer regenerates the VC vector using
his own VCG, checks if the delivered VC vector is the same as the delivered one. Sixthly, if the
delivered VC vector is the same as the delivered one, then it is passed together with the safety
proof to a proof checker (abstraction validation and proof validation steps on the part of the code
consumer). If the proof checker validates the proof, then the code consumer permits the target
program to be executed on his machine.

The reliance of the code consumer that a delivered machine code can be safely executed on his
machine is drawn from the following facts: Firstly, he trusts in the implementation correctness of

4 1 Introduction

the VCG and in the correctness of semantical framework incorporated in the VCG, i.e. he trusts in
the correctness of the semantic mapping performed by the VCG. Secondly, there exists a machine
checked safety proof of a statement which is a function of a program abstraction delivered with the
machine code, i.e. a VC vector, and says that the program abstraction meets the code consumer’s
safety policy.

Foundational proof-carrying code (FPCC) [5, 4] is a generalized version of PCC. In a conven-
tional approach to proof-carrying code, the machine checkable proofs are written in a logic with
built-in understanding of a particular type system, i.e. type constructors appear as primitives of
the logic and the typing judgement is defined by a set of type inference rules which are built into
the VCG component of the PCC system and the designers of the PCC verification system assume
that these typing rules are valid. Due to this restriction, Appel and Felty, the authors of the FPCC,
call the conventional PCC a type-specialized PCC as the type system has to be constructed for
each PCC verification system seperately. Unlike type-specialized PCC, the FPCC avoids using a
VCG by formalizing the type system, the operational semantics of the machine code, and safety
policies within a proof assistent using the higher order logic (HOL). In comparison with the PCC
approach, the FPCC approach can be characterized as follows. Firstly, there is no semantic map-
ping step and no program abstraction in the FPCC in the sense that the FPCC system applies
a syntax-directed translation algorithm to translate the target program into a HOL constant in a
proof script. Secondly, the safety requirements for a machine code are formalized explicitly in the
HOL as a safety predicate on the target program. Thirdly, certification is realized as generation
of a proof of a lemma stating that this HOL constant fulfills the safety predicate.

As stated in [4], the FPCC approach has two advantages over the PCC approach: Firstly, it
is more flexible as novel type systems or safety policies can be introduced to the code consumer
without reimplementing of the type system or the safety policy incorporated in the VCG. Secondly,
the size of the TCB associated with the FPCC is less the one associated with the PCC approach
as the code consumer does not have to rely on the soundness of the typing rules encoded in the
VCG and the correctness the VCG itself as the type safety proof is the part of the safety proof
delivered by the code producer.

It is still possible that a FPCC system computes semantic mappings of some auxiliary data
structures, possibly byproducts of data flow analysis, which are usefull in the safety proof. Never-
theless, this does not change the fact that the original target program is not represented as program
abstraction in the safety proof and that the code consumer can always check if the constant def-
inition in the proof script matches the delivered target program by translating the program into
a constant definition and comparing the result of translation with the constant definition in the
proof script. Thus, the reliance of the code consumer that a delivered target program can be safely
executed on his machine is drawn from the fact that there exists a machine checked proof script
with the definition of a constant which corresponds to the program and a proof of a safety property
with that constant as parameter.

The PCC and FPCC approaches developed are techniques for certifying various safety proper-
ties of one program associated with a compiler run, the target program. Now, we turn to approaches
that deal with both the source and the target programs of a compiler run and certify that they
are in a translation relationship.

The translation validation (TV) approach [103, 123, 122, 92] regards the compiler as a black box
with at most minor instrumentation. In a typical implementation of this approach, each run of the
compiler results in a source program, which served as input for the compiler, a target program, and
in some implementations an auxiliary data, possibly byproduct of data flow analysis, revealing some
details on how the translation was performed. The TV system considers these programs as state
transition systems (STS) and defines them as semantically equivalent iff their STS representations
are in a predefined relation. The common relations between the sets of STS’s used in the literature

1.1 Approaches to certifying compiler 5

are the refinement and the bisimulation relations. Below, we use the refinement relation for the
purpose of explanation. The programs that are resulting from a compiler run are passed to a
separate program, a translation validator, which establishes that the STS representations of these
programs are in refinement relation. If the validator succeeds, it generates a proof script with a
proof of the statement saying that the STS representations of the source and the target programs
are in refinement relation. Otherwise, the validator returns a counter example. In general, checking
program equivalence is an undecidable problem. For this reason, we cannot hope to have a complete
translation validator. However, equivalence checking is possible if the validator uses an auxiliary
data delivered by the compiler. In the following, we explain a typical implementation of the
validator:

Firstly, the code producer formalizes the notion of a refinement relation ! between two sets
of state transition systems (STS). Secondly, the code producer formalizes a proof rule of the form
TCC (STST ,STSS) =⇒ STST ! STSS where TCC is a translation correctness criterion on two
STS’s which formulates necessary conditions which have to be discharged in order to prove that
a target state transition system STST refines a source state transition system STSS . Thirdly, he
proves a metatheorem that this proof rule is valid. Fourthly, the code producer implements the
components of the validator: a semantic mapping unit and an abstraction validator. The semantic
mapping unit incorporates a semantic framework for the representation of the source and the target
program as STS’s in the programming language level. The abstraction validator is basically an
analysing procedure TCC which is a programming language level representation of the translation
correctness criterion TCC .

The validator takes the source and the target programs with auxiliary data as input and passes
them to the semantic mapping unit which translates them into their programming language level
representations as the source and the target STS’s, STSS and STST, respectively (semantic map-
ping step). The common auxiliary informations used in this step are data structures encoding a
relation over corresponding program point pairs, a VC vector, and a refinement mapping between
corresponding STS representations of states of execution. The generated STS’s serve as abstrac-
tions of the source and the target programs (program abstractions). Then, the validator passes
STSS and STST to the abstraction validator which checks if the translation correctness criterion
TCC (TST ,TSS) holds in the programming language level by calling TCC(STST, STSS) (abstraction
validation step). In principle, checking the predicate TCC (STST ,STSS) is based on performing
symbolic executions on corresponding STS representations of states of executions and checking
the successor states for the correspondency relation between the states which is defined by the
auxiliary data provided by the compiler. If the procedure TCC establishes that STSS and STST fulfill
the TCC criterion, then it generates a proof script with a proof of TCC(STST, STSS). Otherwise, it
generates a counter-example.

In a typical application scenario of the TV approach, the compiler user is also the code con-
sumer. In this case, the certificate is the proof script generated by the translation validator. To
gain confidence in the output of the validator, the compiler user can use a proof checker to validate
the proof script (proof checking step). In a scenario with the compiler user not being the code con-
sumer, the certificate gets similar to certificates issued by the PCC: The semantic mapping step
results in a loss of the information about how the original program, which served as input for the
semantic mapping, look like and the code consumer does not trust that the proof script delivered
with the source and the target program is indeed the output of the translation validator program
started with those programs as input. Therefore, the translation producer has to deliver the source
and the target programs S and T, the auxiliary data, which was used during the semantic mapping
step, the STS representations STSS and STST, which were generated by the semantic mapping step,
and the proof script with a proof of TCC(STST, STSS). Then, the code consumer regenerates the
STS representations from the source and the target programs and the proof script using his own

6 1 Introduction

translation validator and checks if the STS representations and the proof script generated by the
translation validator are equal to the delivered ones and validates the proof using the proof checker
(proof checking step on the part of the code consumer).

In the TV approach, the reliance of the code consumer that the delivered source and the target
programs which are semantically equivalent is drawn from the following facts: Firstly, he trusts
in the correctness of semantical framework incorporated in the semantic mapping unit, i.e. that
semantic mapping from the source and the target programs to their STS was correct. Secondly,
he trusts in the implementation correctness of the abstraction validator, in particular, in the
correctness of the semantical framework incorporated in the abstraction validator’s unit which is
responsible for performing symbolic executions. Thus, the code consumer trusts that the existence
of a machine checked proof script, which is the result of the successfull call TCC(STST, STSS), implies
STST refines STSS in the programming language level.

The TV approach has the following disadvantages:
Type-specialization issue: In the TV, the proofs are written, as in the PCC, in a logic with built-

in understanding of particular source and target type systems. For this reason the TV approach
can also be called type-specialized in the same sense as the PCC approach. The type-specialization
of the TV leads to a situation in which the translation validator functions like a black box with
internal details, like incorporated type systems and their soundness or the incorporated semantics,
which can not be examined by the code consumer and thus they are part of the TCB.

Phase-specialization issue: Let us consider again the source and the target programs S and
T ; and the refinement relation ! between the sets of STS’s, which we used above to explain the
principle of the TV approach. As aforementioned, the TV approach regards these programs as
STS’s and translates them into their STS representations STSS and STST, respectively, and shows
that STST refines STSS. Thus, the TV is suitable for certifying the results of a single compiler
phase, provided that the code consumer accepts the size of TCB of the TV approach. However,
the question arises whether the TV approach is suitable for developing a certification technique
for whole chains of program transformations, which are successively performed by the compiler
phases, which can be applied to generate a translation certificate attesting to the correctness of
translation of the first program in the chain into the last program in the chain. As aforementioned
in the beginning of this chapter, this would allow us to achieve the goal of carrying the results
of the analysis and the verification of the source code over to the machine code level. To answer
this question, consider a chain of three programs S ,IL,T . The chain consists of a source program
S , an intermediate program IL, and a target program T . Assume that the chain is the result of a
compiler run with two phases and that all auxiliary informations, which are needed for generating
the STS representations from S , IL, and T , are available. Application of the TV technique to
program pairs (S , IL) and (IL,T) results in four STS representations STSS, STSIL, STS′IL, and
STST; and two proof scripts showing that STSS refines STSIL and that STS′IL refines STST. Does it
automatically holds that STSS refines STSIL and STS′IL refines STST implies STSS refines STST? The
answer is ’not in general’. For the case STSIL = STS′IL, we are able to prove an additional proof
rule

STSA ! STSB ∧ STSC ! STSD ∧ STSB = STSC =⇒ STSA ! STSD

and to incorporate application of this rule in the translation validator. But, it is not possible
to prove such a rule for the case STSB $= STSC , which is common in the optimizer phase of a
compiler. The proof rule

STSA ! STSB ∧ STSC ! STSD ∧ STSB $= STSC =⇒ STSA ! STSD

can only be proved, if we show STSB ! STSC first. To show this, we need an additional general
assumption that STSB and STSC fulfill the translation correctness condition TCC (STSB ,STSC).

1.2 Our approach 7

But this can be shown automatically only in special cases of STSB and STSC . For this reason, we
say that the conventional TV approach is phase-specialized as it requires introducing additional
proof rules of the form

STSA ! STSB ∧ STSC ! STSD ∧ P(STSB ,STSC) =⇒ STSA ! STSD

where the predicate P denotes additional assumptions about the pair (STSB ,STSC), if one wants
to apply the transitivity argument in order to generate a translation certificate for the fact that
STSS refines STST. Introducing new proof rules to the abstraction validator is disadvantageous as
it results in increasing the TCB size of a TV system.

1.2 Our approach

In this section, we describe our approach to certifying compilers, a foundational translation vali-
dation (FTV).

The FTV is a generalized version of the TV approach and it avoids the shortcommings of the
TV in the same way as the FPCC approach does to avoid the shortcommings of the PCC. The
FTV formalizes the source and the target languages within a proof assistant using the HOL logic.
The formalizations of the languages include soundness proofs of their type systems and formal-
izations of their corresponding program semantics that are defined as mappings from programs to
partially ordered sets of meanings of programs. The FTV formalizes an explicit translation cor-
rectness predicate which says that two programs, a source and a target programs, are semantically
equivalent iff their program semantics are equal. We call the part of the SVF which includes the
formalizations of the source and the target languages and the translation correctness predicate
a translation contract between the code producer and the code consumer. The proof assistant,
which was used to formalize the translation contract within the SVF, can also be used as proof
checker. The certifying compiler comprises the instrumentation which is needed to generate proof
scripts (which are actually HOL theory scripts) which serve as the translation certificates. After
each compiler run translating a source program into a target program, the compiler generates a
HOL theory which contains two definitions of HOL constants representing those programs and
a proof that these constants fulfill the translation correctness predicate. We call such compiler a
proof generating compiler.

The overall characterization of the FTV approach is as follows (cf. [94]):

Translation contract: We require an explicit translation contract which comprises
• formalization of source language SL,
• formalization of target language TL,
• formal definition of the translation correctness predicate corrTrans(S ,T) specifying when

a target program T is a correct translation of a source program S .
Each language formalization in the translation contract includes the formalizations of the un-
derlying type system, the operational semantics, the program semantics, and the type safety
proof. The definition of the translation correctness predicate corrTrans(S ,T) says that a target
program T is a correct translation of a source program S iff their program semantics are equal.
The introduction of the program semantics for both languages is essential in our approach as
it enables the compiler to apply the argument of transitivity in the correctness proofs. A trans-
lation contract serves as the specification of the proof task and plays the role of the contract
between producer and client of the compiler and should be available to and comprehensible
for the client. In particular, it can and should be independent of the structure and algorithms
of the compilers satisfying the contract.

8 1 Introduction

Automatic certification and machine-checkability: We require that the compiler generates proof
scripts automatically and that all specifications and proofs are machine-checkable. The
machine-checkability requirement is essential because of the complexity and size of the proof
tasks.

Independence of logic: We require that all specifications and proofs are based on a formal general
logic, that is, a logic that is independent of languages and techniques used in the translation.
The logical independency is important in order to reduce the size of the TCB of our approach.
Using a logical framework that is not specifically developed for the translation task and used
in many other areas, increases the confidence in the framework. Of course, as argued in [94],
a framework in which only a very small core has to be trusted is desirable.

Program representations in proofs: There is no semantic mapping step in the FTV in the sense
that the compiler uses a syntax-directed translation algorithm to translate the source and the
target programs into respective HOL constant definitions in a proof script.

Certification technique: Certification is realized as generation of a HOL theory proof script con-
taining
• definitions of constants representing the source and the target programs of a compiler run,
• a lemma stating that these constants fulfill the translation correctness predicate, and
• a proof of this lemma.

The FTV approach has the following advantages over the TV approach:

• It is more flexible as novel type systems or programming language semantics or translation
correctness definitions can be introduced to the code consumer without reimplementing the
semantic framework incorporated in the semantic mapping unit in the translation validator.
This means that each translation contract defines a clear interface between the code producer
and the code consumer.

• The size of the TCB associated with the FTV approach is smaller than the size of the TCB
associated with the TV approach because the code consumer does not have to rely on the
correctness of the translation validator itself and the correctness the semantic framework and
the soundness of typing rules incorporated in the semantic mapping unit of a TV system. The
programming language semantics is formalized directly in the SVF and the type safety proof
is the part of the translation correctness proof delivered by the code producer.
Similar to the FPCC approach, a FTV system computes semantic mappings of some auxiliary
data structures, possibly byproducts of data flow analysis, which are useful in the translation
correctness proof. Nevertheless, this does not change the fact that the representation of the
original programs involved in the compiler run contain the whole information about those
programs and that the code consumer can always check if the constant definitions in the proof
script define delivered source and target programs by translating those programs into constant
definitions and comparing the result of translation with the constant definitions in the proof
script. In summary, the size of the TCB associated with the FTV is smaller than the size of the
TCB associated with the TV approach because in the TV approach programs are represented
in proofs by semantic abstractions and in the FTV approach programs are represented in proofs
by their another syntactic forms.

• The FTV enables certification of transformation chains. As the program semantics maps pro-
grams to mathematical objects which are partially ordered, it is possible to check program
semantics pairs for equality and to derive the correctness of a chain of program transforma-
tions by applying the transitivity rule.

• The FTV is more flexible when it comes to introducing new verification techniques. As de-
scribed above, a TV system applies one verification technique which is implemented in its
components. The abstraction validator applies symbolic execution technique to check if two

1.3 Objectives of this thesis 9

STS representations are in the refinement relation. Switching to other verification techniques
would require to implement new abstraction validators or to employ other verification tools,
which would have dramatic impact on the size of TCB associated with the TV system in ques-
tion. In contrast to the TV, the FTV enables the code producer to freely extend the SVF by
new formalizations which can be applied in proof scripts as long as he proves that they are
correct by proving corresponding program independent lemmas.

Figure 1.1 shows an overview of the architecture of the FTV approach. The most important
components of the architecture are a compiler itself and its accompanying SVF. The SVF comprises
a translation contract, a proof checker and compiler-specific parts which belong to the verification
infrastructure. The translation contract comprises formal specifications of a source language SL,
a target language TL, and a binary predicate corrTrans : SL × TL → Bool for source programs
S and target programs T . The definition of corrTrans is based on formal semantics definitions of
SL and TL and it precisely specifies when T is considered to be a correct translation of S. The
compiler generates –in addition to the target T– a proof for corrTransl(S, T). The proof is subject
to validation by the proof checker.

translation correct:

certifying
compiler

target program Tsource program S

proof script for
corrTransl(S,T)specification and

verification
framework

proof
checker

compiler−specific parts, e.g:

specification of
− source language SL
− target language TL
− correct translation

 SL * TL −> bool
corrTransl:

− analysis formalizations
− specification of inter−

mediate languages
− derived properties

translation contract:

yes/no

Fig. 1.1. The architecture of the foundational translation validation approach

1.3 Objectives of this thesis

This thesis describes an implementation of a prototype FTV system for a small imperative
language. The FTV system comprises an optimizing compiler front-end, which generates Is-
abelle/HOL theory files serving as proof scripts, and an accompanying SVF implemented in the
Isabelle/HOL. As the compiler front-end applies standard translation and optimization algorithms

10 1 Introduction

[1, 3, 119], we only provide a brief overview of its architecture and its work-flow and our demon-
stration focuses on the SVF in our FTV system. The objectives of our demonstration are as
follows.

• Our main objective is to demonstrate that the FTV approach is a viable formal method for
certification of whole chains of program transformations which are typically performed by the
compiler and that implementation of an FTV system for an imperative programming language
is feasible.

• We explain formalizations of concepts in our SVF which make the FTV approach distinguish-
able from the TV approach:
– explicit formalization of the programming languages involved in the translation,
– explicit formalization of translation correctness predicates,
– type safety proofs,
– explicit formalizations of the notions of translation relations which are independent of

program transformations performed by the compiler,
– explicit formalizations of the notions of translation relations which are specific to program

transformations performed by the compiler (translation patterns),
– proofs of translation correctness theorems, which can be seen as explicit versions of proof

rules in the TV approach.
• The demonstration of our framework is meant to be a guideline for future developments of

SVF’s and research on certifying compilers following the FTV approach. In particular, the
objective is to demonstrate:
– how to formalize a translation contract for optimizations of programs written in a small

imperative programming language,
– how to formalize translation correctness criteria for individual program transformations

performed by the compiler and how to verify their correctness by proving corresponding
translation correctness theorems. A translation correctness theorem for a particular pro-
gram transformation says that if the source and the target programs of this transformation
fulfill a translation corrrectness criterion which is specific to this transformation, then these
programs fulfill the translation correctness predicate specified in the translation contract.
We exemplify this by describing the translation correctness criteria which we formalized for
the optimizations performed by our compiler front-end,

– how to implement a SVF as a stack of the translation correctness criteria and the respective
translation correctness theorems such that
· the formalization of the translation correctness predicate relating the source and the

target programs of the compiler is placed at the bottom of the stack,
· the formalizations of the translation correctness criteria relating the source and the

target programs of the individual compiler phases are placed in the middle of the stack,
and

· the formalizations of the translation correctness criteria relation the source and the
target programs of the individual program transformations performed by the compiler
are placed atop of the stack.

– how to specify correctness predicates for single optimization phases in a way that makes
them composable and reusable in translation certificates.

1.4 The ProGenCo project

As mentioned in the previous section, this thesis reports on the implementation of a compiler front-
end that follows the FTV approach to certifying compilers. The implementation of the compiler

1.4 The ProGenCo project 11

S

checker

corrComp(S,T)
proof script for

applies−lemmas−from − relation

proof script for
0corrTrans(S,IL) 0corrOpt(IL

proof script for
,ILn)

proof script for
corrCodeGen(IL ,T)n

Optimization

ILi

Translation Code Generation
IL0 ILn

mikroC
program

MIPS
program

Isabelle/HOL

Specification of the source language mikroC

Specification of intermediate language IL

Specification of the target language MIPS

Specification of translation correctness

−corrTrans : mikroC * mikroC −> bool
−corrOpt : IL * IL −> bool
−corrCodeGen : IL * MIPS −> bool
−corrComp : mikroC * MIPS −> bool

predicates:

Optimization correct: yes/no

derived properties

analysis formalizations

proof tactics

...

Verification framework parts:

Translation contract:

ProGenCo compiler

T

proof

Fig. 1.2. The architecture of the ProGenCo compiler

is a part of an ongoing work on the proof generating compiler project (ProGenCo project). This
section describes the objectives of the project and the architecture of the ProGenCo compiler.

The aim of the project is to implement a prototype compiler that can be seen as an imple-
mentation of the FTV approach in the sense that it certifies its complete translation runs. Here,
the certification of a complete translation run means that after each translation run the com-
piler generates a certificate that the translation of its input source program into a target program
was correct regardless what compilation phases and optimizations are performed. As a result, the

12 1 Introduction

ProGenCo compiler allows the compiler user to close the formalization chain from high-level
methods to the machine-code level mentioned in the beginning of this chapter. In the following,
we describe the architecture of the compiler.

Figure 1.2 shows the architecture of ProGenCo compiler. The ProGenCo compiler consists
of two parts: the compiler itself and a corresponding SVF implemented within the proof assistant
Isabelle/HOL. The front-end of the compiler uses a small C-like language as input, which is called
µC in this thesis. The back-end comprises an optimization phase and code generation phase.
The optimization phase uses an intermediate language IL as input and performs a number of
optimizations. The code generation phase uses the IL language as input and generates MIPS
code.

The SVF comprises two parts: a translation contract and a verification framework. The trans-
lation contract comprises formalizations of all three languages involved during translation runs of
the compiler, µC, IL, and MIPS; and specifications of translation correctness predicates for all
intermediate translations performed by the compiler and overall translations from µC into MIPS.
Each language formalization comprises definition of program semantics and the definitions of the
translation correctness predicates are based on the definitions of corresponding program seman-
tics. The definitions of the translation correctness predicates corrTrans(S , IL0), corrOpt(IL0, ILn),
corrCodeGen(ILn,T), and corrComp(S ,T), are straightforward and formulated uniformly in the
following sense: Each predicate says that a translation of a program in a source language into a
program in a target language is correct iff their program semantics are equal.

The verification framework of the SVF is a proof environment for conducting translation cor-
rectness proofs for all translations performed by the compiler. It comprises auxiliary specifications,
such as specifications of program analysis results or specifications of optimization patterns, pro-
gram independent lemmas, and implementations of Isabelle/HOL proof tactics.

The aim of the proof environment’s design is twofold: Firstly, the proof environment provide
proofs of lemmas which allow for conducting proofs of translation correctness statements of the
forms corrTrans(S , IL0), corrOpt(IL0, ILn), corrCodeGen(ILn,T), and corrComp(S ,T). Secondly,
the existence of proof tactics in the environment enables the compiler to generate theories with
translation correctness proofs that are machine-checkable in batch mode. As the compiler knows
the interface of the SVF, it incorporates appropriate proof tactic calls in the generated proof scripts
which automatically prove all lemmas in the proof scripts. As a result, the compiler user can use
the Isabelle/HOL proof assistant as a proof checker in order to verify the theories generated by
the compiler.

The work-flow of the proof checking process is as follows. The translation certificate generated
by the compiler is structured according to compiler phases. For each compiler phase, the compiler
generates an Isabelle/HOL theory with the proof of the corresponding translation correctness
predicate, corrTrans(S , IL0) or corrOpt(IL0, ILn) or corrCodeGen(ILn,T), respectively. Further, the
compiler generates a root theory that imports these theories and additionally contains a proof of the
predicate corrComp(S ,T) which specifies correctness of the complete translation run. All theories
are given as input to the Isabelle/HOL proof assistant and the verification of the proof scripts
proceedes as follows. First, the Isabelle/HOL reads import clauses in the root theory. The import
clauses comprise the names of the theories that were generated for the individual compiler phases.
The Isabelle/HOL reads those theories and verifies proofs of the translation correctness predicates
in those theories. Second, the proof assistant verifies the proof of the predicate corrComp(S ,T). The
proof of corrComp(S ,T) is straightforward as it merely requires to show that program semantics of
a source program S and a target program T are equal. The first step of the proof introduces three
new assumptions which state that program transformations performed by the compiler phases
were correct: corrTrans(S , IL0), corrOpt(IL0, ILn), and corrCodeGen(ILn,T). The second step of

1.5 Overview of our implementation 13

the proof derives the predicate corrComp(S ,T) by unfolding the definitions of the predicates
corrTrans, corrOpt, corrCodeGen, and corrComp and applying the transitivity rule.

Both generation of proof scripts by the compiler and verifying them by the Isabelle/HOL are
completely automated.

1.5 Overview of our implementation

As mentioned in Section 1.3, we implemented the most challenging part of the ProGenCo com-
piler, a certifying optimizer and its accompanying SVF. This section gives a brief overview of our
implementation.

Figure 1.3 shows the architecture of our compiler front-end. Our implementation comprises two
parts: an optimizing compiler front-end and an accompanying SVF formalized in Isabelle/HOL.
The front-end has two phases: a translation phase translating µC programs into IL programs
and an optimization phase. The front-end takes a µC program S as input, translates it into an
IL program IL0 , passes IL0 to an optimization phase which performes several optimizations and
returns an optimized IL program ILn . Subsequently, the front-end generates an Isabelle/HOL
theory, which serves as a translation certificate. The theory contains a proof that ILn is a correct
optimization of IL0 according to the definition of a translation correctness predicate corrTrans
specified in the translation contract part of the SVF. The Isabelle/HOL theory can then be given
as input to the theorem prover Isabelle/HOL which serves as a proof checker and verifies the proof
of the statement corrTrans(IL0 , ILn) in that theory.

The rest of this section is organized as follows. The IL language and the work-flow of our
compiler front-end is described in Section 1.5.1. Section 1.5.2 gives a brief overview of our SVF.

1.5.1 Compiler front-end

The main features of the language IL are

• a simple type system comprising four types (integer, boolean, integer array, and boolean array),
• an instruction set comprising five instructions (assignment, integers printing, branch, goto, and

exit),
• an array-index-out-bounds exception,
• program semantics of IL programs is explicitly defined in terms of their behavior observable

to the outside world, where the observable behavior of a program is determined by a sequence
of integer printed by that program and whether it terminates or not.

Figure 1.4 gives an example of a µC program and its translation into the language IL.
Figure 1.5 gives an overview of the work-flow of our front-end. The front-end takes a µC pro-

gram S as input. If S is well-formed, it is translated into an IL program IL0. The translation
algorithm is standard [1, 3]. Subsequently, the program IL0 is passed to the optimization phase
which performs the following three optimizations successively: constant folding (CF), dead as-
signment elimination (DAE), and loop invariant hoisting (LIH). The implementations of these
optimizations are standard [3, 1]. However, an unusual and additional feature of our implementa-
tion of the LIH optimization is that it delivers three programs that are results of three intermediate
transformations modifying programs locally only, i.e. in the same way as the optimizations CF
and DAE do. These transformations are the following: nop insertion (NI), redundant assignment
insertion (RAI), and redundant assignment elimination (RAE).

• The NI transformation takes integers n and pc as input and inserts a list of n nop instructions
between the (pc − 1)-th and pc-th instructions of a program. As the nop instruction is not in

14 1 Introduction

Compiler front−end

 optimization patterns

Implementation of proof tactics

Formalization of the notion of bisimulation

Formalization of the notion of basic blocks

Verification framework parts:
proof
checker

predicate corrTrans: IL * IL −> bool
Specification of translation correcntess

Specification of intermediate language IL

Translation contract:

corrTrans(IL 0,IL n)
proof script for

intermediate
language

ILn

mikroC
program

Translation Optimization
ILnIL0

IL i

Optimization correct: yes/no

Isabelle/HOL

S

Formalization of the notion of

Fig. 1.3. The architecture of our certifying compiler front-end

the instruction set of the language IL, we emulate it using goto instructions with appropriately
adjusted values of jump destinations. In our example program in Figure 1.4, the compiler
detects that the nop instruction from the line [11], which is emulated by the goto instruction
[11] goto [12], is a head of the loop and that the lines [12] and [13] contain loop invariant
code and the assignment from the line [12] can be moved out of the loop and that this
move can be certified using our framework. Therefore, the compiler performs nop insertion
transformation with parameters n and pc set to the values 1 and 11, respectively. The inserted
nop instruction in the line [11] plays the role of a placeholder for the next transformations.

• The RAI transformation takes an integer pc and an assignment instruction x := e; as input
and replaces a nop instruction at pc-th program point by x := e;. We call this transformation
a redundant assignment insertion because it is used to insert an assignment x := e; only at

1.5 Overview of our implementation 15

sum(int n, int a []) {
int i, tmp, res;

i=0;
res=0;

while(n < 2){
n=n+1;

}

do{
tmp = n*n;
res = res + tmp + a[i];
printi (tmp + a[i]);
i = i + 1;

} while(i < length(a));

printi res;
}

main(){
int b[4];
int x;

x=1;
b[0]=9;
b[1]=7;
b[2]=5;
sum(x,b);

}

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: _tI_1 = 0;
[1]: i = _tI_1;
[2]: _tI_2 = 0;
[3]: res = _tI_2;
[4]: _tI_3 = 2;
[5]: _tB_1 = n < _tI_3;
[6]: BRANCH ~_tB_1 [11];
[7]: _tI_4 = 1;
[8]: _tI_5 = n + _tI_4;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: GOTO [12];
[12]: _tI_6 = n * n;
[13]: tmp = _tI_6;
[14]: _tI_7 = res + tmp;
[15]: _tI_8 = a[i];
[16]: _tI_9 = _tI_7 + _tI_8;
[17]: res = _tI_9;
[18]: _tI_10 = a[i];
[19]: _tI_11 = tmp + _tI_10;
[20]: PRINTI _tI_11;
[21]: _tI_12 = 1;
[22]: _tI_13 = i + _tI_12;
[23]: i = _tI_13;
[24]: _tI_14 = 4;
[25]: _tB_2 = i < _tI_14;
[26]: BRANCH _tB_2 [11];
[27]: PRINTI res [28];
[28]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

Fig. 1.4. An example of an µC program and its translation into the language IL

16 1 Introduction

0

IL1

IL2
IL2

IL1

IL0

Insertion
Nop

Insertion

Redundant
Assignment

Elimination

Redundant
Assignment

IL3
IL3

IL4
IL4

Loop
Invariant
Hoisting

IL5
IL5

Generation
Proof

Front−end

Dead
Assignment
Elimination

Constant
Folding

)=sem(IL

3sem(IL)=sem(IL4)

IL5

sem(IL)=sem(IL)0 5

S
Compiler

sem(IL)1 2

sem(IL)=sem(IL)2 3

sem(IL)=sem(IL)4 5

)=sem(ILsem(IL)0 1

Proof script for

Proof script for

Proof script for

Proof script for

Proof script for

Proof script for

and

applies lemmas from relation

theory import

IL

relation

Fig. 1.5. The work-flow of our compiler front-end

a program point pc at which it is made dead by an equal assignment instruction at another
program point pc′. In our example program in Figure 1.4, the compiler performs the RAI
transformation with parameters x := e; and pc set to _tI_6 = n ∗ n; and 11, respectively.

• The RAE transformation takes an integer pc as input and replaces an assignment x := e; at
pc-th program point by a nop instruction. We call this transformation a redundant assignment
elimination because it is used to remove an assignment x := e; at a program point pc at which
it makes dead an equal assignment instruction at another program point pc′. In our example
program in Figure 1.4, the compiler performs the RAE transformation with parameters x := e;
and pc set to _tI_6 = n ∗ n; and 12, respectively.

As a result of performing the above program transformations NI , RAI , and RAE successively,
the 11-th instruction is hoisted out of the loop whose head is the program point 11.

Figures A.1, A.2, A.3, A.4, and A.5 in Appendix A depict program pairs (IL0 , IL1), (IL1 , IL2),
(IL2 , IL3), (IL3 , IL4), and (IL4 , IL5), which are the continuation of the example depicted in Figure
1.4, i.e. the program IL0 in Figure 1.4 is the same as program IL0 in Figure A.1. Figure 1.6 depicts
the program IL0 and the output of the optimization phase of our compiler, a program IL5 .

The intermediate optimizations CF , DAE , NI , RAI , and RAE , produce five intermediate pro-
grams: IL1 , IL2 , IL3 , IL4 , and IL5 , respectively. For each intermediate optimization with a source
program ILi and a target program ILi+1 , a pair (ILi , ILi+1) is build and passed to the proof gener-

1.5 Overview of our implementation 17

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: _tI_1 = 0;
[1]: i = _tI_1;
[2]: _tI_2 = 0;
[3]: res = _tI_2;
[4]: _tI_3 = 2;
[5]: _tB_1 = n < _tI_3;
[6]: BRANCH ~_tB_1 [11];
[7]: _tI_4 = 1;
[8]: _tI_5 = n + _tI_4;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: GOTO [12];
[12]: _tI_6 = n * n;
[13]: tmp = _tI_6;
[14]: _tI_7 = res + tmp;
[15]: _tI_8 = a[i];
[16]: _tI_9 = _tI_7 + _tI_8;
[17]: res = _tI_9;
[18]: _tI_10 = a[i];
[19]: _tI_11 = tmp + _tI_10;
[20]: PRINTI _tI_11;
[21]: _tI_12 = 1;
[22]: _tI_13 = i + _tI_12;
[23]: i = _tI_13;
[24]: _tI_14 = 4;
[25]: _tB_2 = i < _tI_14;
[26]: BRANCH _tB_2 [11];
[27]: PRINTI res [28];
[28]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: GOTO [1];
[1]: i = 0;
[2]: GOTO [3];
[3]: res = 0;
[4]: GOTO [5];
[5]: _tB_1 = n < 2;
[6]: BRANCH ~_tB_1 [11];
[7]: GOTO [8];
[8]: _tI_5 = n + 1;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: _tI_6 = n * n;
[12]: GOTO [13];
[13]: GOTO [14];
[14]: tmp = _tI_6;
[15]: _tI_7 = res + tmp;
[16]: _tI_8 = a[i];
[17]: _tI_9 = _tI_7 + _tI_8;
[18]: res = _tI_9;
[19]: _tI_10 = a[i];
[20]: _tI_11 = tmp + _tI_10;
[21]: PRINTI _tI_11;
[22]: GOTO [23];
[23]: _tI_13 = i + 1;
[24]: i = _tI_13;
[25]: GOTO [26];
[26]: _tB_2 = i < 4;
[27]: BRANCH _tB_2 [12];
[28]: PRINTI res
[29]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

Fig. 1.6. The programs IL0 , left, and IL5 , right, which are the source and the target programs of the
optimization phase of our compiler.

18 1 Introduction

ation unit of the compiler. For each such pair, the proof generation unit generates an Isabelle/HOL
theory file containing a proof of the statement corrTrans(ILi , ILi+1). After all intermediate opti-
mizations are completed and the respective proof scripts are generated, the proof generating unit
generates a root proof script which contains a proof of the statement corrTrans(IL0 , IL5). Theory
files can be either inspected by the human and verified interactively using the theorem prover
Isabelle/HOL or verified by the Isabelle/HOL in batch mode.

1.5.2 Specification and verification framework

The main field of our work was developing the SVF and its underlying concepts and proof tech-
niques within the theorem prover Isabelle/HOL.

In the following, we provide a brief overview of our SVF. The specification part of the SVF
comprises the specification of a translation contract for optimizations of IL programs. The veri-
fication part of SVF comprises auxiliary specifications, lemmas, and Isabelle/HOL tactics which
make up a proof environment for proving IL optimizations correct. The architecture of our SVF
is organized hierarchically in layers. In the following, we describe briefly the architecture of the
SVF.

Figure 1.7 gives an overview of the architecture of our SVF. The bottom layer comprises the
most general formalizations. The top layer comprises the most specific formalizations which are
dedicated to particular proof tasks which can be performed using our SVF. Formalizations from
upper layers use definitions and apply lemmas from lower layers. The idea behind this architecture
is that our SVF provides a set of translation correctness criteria defining semantic equivalence
of intermediate programs on different levels of abstraction. The translation contract in our SVF
provides the most abstract criterion which compares observable behaviors of two intermediate
programs. The most specific criteria in our SVF are defined for particular optimizations and
are based on the notions of control flow graphs with blocks (CFGB), and translation relations
over pairs of CFGB’s (also called optimization patterns). As these criteria are based on different
concepts, there is a significant abstraction gap between them. This makes a task of proving that
satisfying an optimization specific criterion by two CFGB’s declared for two programs S and
T implies equality of observable behaviors of S and T hard. To be able to conduct proofs of
such implications, we introduced an intermediate translation correctness criterion which closes the
abstraction gap and is based on the notions of bisimulation relation and bisimulation of partial
executions of programs. Further, we arranged all criteria and theorems provided by our SVF in a
stack of criteria and theorems such that more specific criteria are on top of more abstract criteria
and for each two translation correctness criteria TCC 1 and TCC 2 provided by our SVF such that
TCC 2 is on top of TCC 1 there is a theorem stating that if two programs fulfill TCC 2, they fulfill
TCC 1. We anticipate that future FTV systems will have their SVF’s structured in the same way.
Therefore, we summarize the above discussion by giving a description of arrangement for a set of
translation correctness criteria for the whole compiler:

• the formalization of the translation correctness predicate relating the source and the target
programs of the compiler is placed at the bottom of the stack,

• the formalizations of the translation correctness criteria relating the source and the target
programs of the individual compiler phases are placed in the middle of the stack, and

• the formalizations of the translation correctness criteria relation the source and the target
programs of the individual program transformations performed by the compiler are placed
atop of the stack.

We start explaining the bottom layer of the architecture and work through to the top layer.

1.5 Overview of our implementation 19

Layer 6: proof environments
specific to particular proof tasks

Layer 5: translation correctness criteria
specific to particular optimizations

Layer 4: optimization independent
translation correctness criterion

Layer 3: IL type safety proof

Layer 2: translation contract for IL optimizations

Layer 1: auxiliary extensions of HOL

Layer 0: implementation of HOL within
the proof assistant Isabelle/HOL

Fig. 1.7. The layer architecture of our SVF

Layer 0: Logic layer. The logic layer provides an implementation of higher-order logic on which
the implementation of a particular SVF is based. Our implementation of the SVF is based on
the implementation of HOL provided by the theorem prover Isabelle/HOL in the theory HOL.

Layer 1: Logic extension layer. The logic extension layer provides auxiliary generic formalizations
which are both programming language independent and optimization independent. Our im-
plementation of the SVF applies the formalisms provided by the Isabelle/HOL in the theory
Main and specifies additional auxiliary definitions involving sets, functions, lists, etc, and proves
lemmas about them.

Layer 2: Translation contract layer. Layer 2 provides the specification of our translation contract.
As our work deals with intermediate language optimizations, we formalized a special case of
the translation contract in which the source language SL and the target language TL are equal.
The translation contract consists of the following formalizations:

• The formalization of an intermediate language IL which comprises the following:

– The abstract syntax of the language IL is defined by giving formation rules for a
syntactic set

S ,T ∈ Program

20 1 Introduction

– The operational semantics of the IL language is formalized in terms of configurations

σ ∈ Configuration

and a transition function

exec : Program×Configuration→ Configuration

where a configuration σ models a state of execution of an IL program and exec computes
the successor configuration for an IL program and a configuration.

– The program semantics of the language IL is defined formalizing the notion of ob-
servable behavior of IL programs, which is done by giving formation rules for a set
ObservableBehavior, and by giving the definition of a function

Sem : Program→ ObservableBehavior

which maps IL programs to their observable behaviors.
• The definition of a translation correctness predicate corrTrans : Program×Program →

Bool. The definition of corrTrans is straightforward:

corrTrans(S ,T) = (Sem(S) = Sem(T))

Informally, the definition of corrTrans says that two IL programs S and T are semantically
equivalent iff they have the same observable behaviors.

Summing up, Layer 2 provides the most general translation correctness criterion, the predicate
corrTrans, which is used in our framework. In our translation contract, the predicate corrTrans
is used to check the correctness of the optimization phase of our compiler front-end by relating
the observable behavior of the source program of the phase to the observable behavior of
the target program of the phase. As the optimization phase performs a chain of five program
transformations, which results in producing of a chain of five IL programs, this means that the
predicate corrTrans can be used to relate the observable behavior of the first program of this
chain to the observable behavior of the last program from this chain. The corrTrans constitutes
the bottom element of the aforementioned stack of translation correctness criteria.

Layer 3: Type safety layer. Layer 3 provides formalizations of the notions of program type and
well-typedness; and a proof that the IL language is type safe. Each translation certificate
generated for a source and a target program by our compiler contains a proof that these
programs are well-typed w.r.t. their respective program types. Type safety, which expresses a
typing invariant of program executions, is a necessary prerequisite when implementing a SVF
following the FTV approach. The necessity of proving type safety comes from the fact that in
the FTV approach one often reasons inductively about executions of programs and the type
safety property of a language allows introducing deciding assumptions which makes proving
the inductive steps in that reasoning possible.

Layer 4: Optimization independent translation correctness criterion layer. The purpose of Layer
4 is to provide
• the formalization of an optimization independent translation correctness criterion TCC

on two IL programs which formulates a property which is independent of optimizations
performed by our compiler front-end, bisimulation of two executions of programs.

• a proof of a translation correctness theorem saying the following:
If two IL programs S and T fulfill the translation correctness criterion TCC, then
corrTrans(S ,T) holds true.

1.5 Overview of our implementation 21

The optimization independent translation correctness criterion TCC is an intermediate crite-
rion in our aforementioned stack of criteria. The idea behind this criterion and the translation
correctness theorem will explained later on when describing the content of Layer 5.
Our formalization of the TCC criterion is based on the following formalizations:
1. the formalization of the notion bisimulation relation over pairs of configurations R,
2. the formalization of the notion of a declaration of a control flow graph with blocks (CFGB)

for an IL program,
3. the formalization of the notion of well-formedness of a CFGB declaration w.r.t. an IL

program,
4. the formalization of an intermediate language of control flow graphs with blocks IL’ whose

programs are tuples (P ,B) consisting of an IL program P and a CFGB declaration B ;
the operational semantics is defined in terms of transfers of the flow of control from block
position to block position, and the denotional semantics of programs in this language is
defined in terms of their observable behaviors in the set ObservableBehavior,

5. the formalization of an intermediate language of control flow graphs with blocks IL” whose
programs are tuples (P ,B) as in the IL’ language and the operational semantics is defined
in terms of block-wise transfers of the flow of control. The definition of the control flow
transfers from block to block is based on the definition of control flow transfers from block
position to block position in the IL’ language. The denotional semantics of IL” programs
is defined in terms of their observable behaviors in the set ObservableBehavior,

6. the formalization of a predicate bisimulation on two IL” programs (S ,BS) and (T ,BT)
and a bisimulation relation R which checks if block-wise executions of two IL” programs
(S ,BS) and (T ,BT) bisimulate w.r.t. R.

Based on these formalizations, our optimization independent translation correctness criterion
TCC on a source language program S , a target language program T , and bisimulation relation
R is formulated as a statement of the following form:

There exist BS and BT such that the IL” programs (S ,BS) and (T ,BT) fulfill the
predicate bisimulation w.r.t. the bisimulation relation R.

Layer 5: Optimization specific correctnes criteria layer. In general, the purpose of Layer 5 is to
provide, for each program transformation T performed by the compiler, the specification and
the verification of a translation correctness criterion TCCT on the source and the target lan-
guage programs which is specific to that transformation. The specification of TCCT has to
fulfill the following requirements:
1. TCCT formulates a translation correctness property which is specific to the transformation

T. In particular, TCCT has additional, auxiliary parameters such as CFGB declarations
and a result of data flow analysis specific to the transformation T.

2. The formulation of TCCT enables automatic checking if two programs fulfill that criterion.
3. It is possible to prove a program indpendent theorem saying that if a source and a target

language programs fulfill the criterion TCCT, then they fulfill the transformation specific
transformation independent translation correctness criterion TCC.

The verification part of Layer 5 provides the following for each transformation T:
1. A proof of a translation correctness theorem saying that

If a source program S , a target program T , and other parameters specific to the
transformation T fulfill the criterion TCCT, then S and T fulfill transformation
independent translation correctness criterion TCC.

2. A corollary which is the result of conjoining of the above theorem and the translation
correctness provided by Layer 4:

If a source program S , a target program T , and other parameters specific to the
transformation T fulfill the criterion TCCT, then corrTrans(S ,T) holds true.

22 1 Introduction

Our implementation of Layer 5 provides the following for each intermediate optimization O
peformed by our compiler front-end:
1. The formalization of the notion of a result of data flow analysis AO which is specific to

the optimization O and is always performed by our front-end prior to O,
2. The formalization of the bisimulation relation RO as a function of two IL” programs and

a data flow analysis result AO.
3. The formalization of a translation relation transrelO on two IL” programs (S ,BS) and

(T ,BT) and a result of data flow analysis AO which is specific to the optimization O.
4. The formalization of an optimization correctness criterion TCCO on two IL” programs

(S ,BS) and (T ,BT) and a result of data flow analysis AO which checks if (S ,BS), (T ,BT),
and AO are in a translation relation transrelO.

5. A proof of an optimization correctness theorem about two IL” programs (S ,BS) and
(T ,BT), a data flow analysis AO, and a bisimulation relation RO which says that

If S and T are well-typed and (S ,BS) and (T ,BT) are well-formed and (S ,BS),
(T ,BT), and AO fulfill optimization correctness criterion TCCO, then (S ,BS) and
(T ,BT) fulfill the optimization independent criterion TCC w.r.t. RO.

The optimization specific criterion TCCO is placed atop of our stack of correctness criteria and
the purpose of the intermediate criterion TCC becomes clear: For each optimization correctness
criterion TCCO and a corresponding optimization correctness theorem, our implementation of
Layer 5 provides a proof of a corollary which is the result of conjoining of the optimization
correctness theorem and the translation correctness theorem provided by Layer 4 which says
the following:

If S and T are well-typed and (S ,BS) and (T ,BT) are well-formed and (S ,BS),
(T ,BT), and AO fulfill optimization correctness criterion TCCO, then S and T fulfill
the translation correctness predicate corrTrans.

The above corollary is directly applicable in proof scripts generated by the compiler. We
explain this by way of example:

Example 1.1. Let us assume that the optimization O transforms an IL program S in a pro-
gram T and that our SVF provides proof tactics allowing for proving well-typedness of an IL
program, well-formedness of a CFGB declaration w.r.t to IL program, and if two IL” programs
and a data flow analysis result fulfill the predicate transrelO. Then, generating an Isabelle/HOL
theory with a proof that an IL program T is a correct O optimization of S , is straightforward.
The compiler merely has to generate an Isabelle/HOL theory with
1. constant definitions of S , T ,
2. constant definiton of CFGB declarations BS , BT ,
3. constant definition of the data flow analysis result AO,
4. proofs that programs S and T are well-typed,
5. proofs that the CFGB declarations BS and BT are well-formed w.r.t. S and T , respectively,
6. proof that (S ,BS), (T ,BT) and AO fulfill the predicate TCCO,
7. proof of the translation correctness predicate corrTrans(S ,T) which, in the first step, ap-

plies the corollary provided by Layer 5 for the optimization O and in the second step
discharges its assumptions by application of lemmas proved in 4., 5., and 6..

♦

Layer 6: Proof environments for particular proof tasks. Layer 6 provides auxiliary lemmas and
proof tactics which are directly applied in proof scripts generated by our compiler in order to
prove concrete lemmas about IL programs.

1.6 Related work 23

At the end of the description of Layer 5, we give an example which demonstrated how the
corollaries about the optimization specific criteria (or, in general, about the program trans-
formation specific criteria) can be directly applied in proof scripts generated by the compiler.
Nevertheless, it should be noted that this example also demonstrates that a corollary which
is specific to an optimization O determines the layout of proof scripts which are generated by
the compiler in order to certify the optimization O. Each assumption Ai of a criterion specific
to an optimization O induces a section in a proof script, which is generated as a translation
certificate for the correctness of a concrete optimization O, which provides a proof of a lemma
whose statement is Ai with appropriately instantiated parameter. Each section providing the
proof of Ai must appear in the proof script before the section in which the corollary specific to
the optimization O is applied. In our proof scripts, the section applying the corollary specific
to an optimization is always the last one in the proof script.
In our SVF, we call the statements Ai with the instantiated parameters and the translation
correctness predicates corrTrans with the parameters S and T instantiated with constants
representing IL programs proof tasks.
The example from Layer 5 demonstrates what proof tasks has to be performed by the theorem
prover in order to verify a proof script:
1. proofs of well-typedness of IL programs,
2. proofs of well-formedness of CFGB declarations,
3. proofs of optimization specific correctness criteria, and
4. proofs of the translation correctness predicates.

The proof tactics for 1. and 2. are uniformely defined for all optimizations performed by
our compiler. The proof tactics for 3. and 4. are specific to optimizations which they are
implemented for.
The content of this layer is the most technical one in our SVF as the implementation of the
proof tactics provided by this layer uses the programming interface of the theorem prover
Isabelle/HOL and the lemmas proved in this layer do not extend the generic framework set
up in the lower layers but are merely used by the proof tactics implemented in this layer.
As future implementations of this layer in FTV systems will vary depending of the theorem
prover used to implement the SVF and the content of the SVF itself, explaning the implemen-
tation of proof tactics and the lemmas is beyond of the scope of this thesis.
Finaly, it should be noted that the content of this layer does not increases the size of the TCB
in our FTV system. If a proof tactic has a bug, then a call to this tactic can merely result in
a false alarm, i.e. in a situation that the theorem prover Isabelle/HOL which acts as a proof
checker rejects that tactic due to its inability to prove a statement of interest although it is
provably valid.

1.6 Related work

For more than thirty years researchers have worked on the problem of compiler correctness. As
the problem of compiler correctness is an instance of a general problem of gaining confidence in
the output of programs, we differentiate after Blum and Kannan [22], between the following main
approaches to achieve this:

• The program verification approach [27] seeks to achieve the confidence in the output of pro-
grams by proving that a program is correct. The seminal papers on formal reasoning about
program correctness were published by Floyd in [37] and Hoare in [53]. The first compiler
correctness proof was published by McCarthy and Painter in [71]. The research on certified
compilers follows the program verification approach.

24 1 Introduction

• Program testing method [95] runs programs on test inputs for which the outputs are known
and checks if the generated output matches the expected output.

• Program checking uses a program correctness checker which is supplied to the program. A
program correctness checker is an algorithm for checking the output of a computation. Given
a program and an instance on which the program is run, the checker certifies whether the
output of the program on that instance is correct. Thus, program checking yields certificates,
mostly in form of mathematical proofs, about program behavior. This is in contrast to testing
where only acception or rejection answer is delivered by the testing program. The research on
certifying compilers follows the program checking approach. The notion of program checking
was first proposed by Blum and Kannan in 1989 in [21] and later by Blum and Kannan and
Wasserman in [22, 113]. In these papers, the authors demonstrate the usability of the program
checking method on selected group-theoretic problems and numeric problems. Nevertheless,
the first certifying compiler was published in 1975 by Samet [103].

1.6.1 Work on certified compilers

The first proof of the correctness of the compiling algorithm was published by McCarthy and
Painter in [71]. They present a paper-and-pencil proof of the correctness of a simple compiling
algorithm for compiling arithmetic expressions into machine language. The ultimate goal of their
work, however, is to set up a formal framework for the future research aiming at machine-checkable
proofs that compiler algorithms are correct1. Some of the concepts and the proof idea presented
in their paper are now standard in both the certified and certifying compilers.

More paper-and-pencil proofs of the correctness of compilers or their parts can be found in
[74, 108, 6, 50, 51, 89, 9]. Dave [35] gives a survey of literature about the research on the compiler
correctness until the year 2003. In the following, we focus on the work on certified compilers in
which correctness proofs are machine-checked.

Probably, the first work on certified compilers that was conducted in a theorem prover and
was concerned with both the compiler algorithm correctness and the compiler implementation
correctness was presented by Bevier et al. in [14]. In their work, they outline an approach to the
verification of the execution environment of programs which are written in a subset of the language
Gypsy. The code generator for the Gypsy language is verified in [121] and sits atop a "stack" of
verified system components building the execution environment. The target language of the code
generator is the Piton [73] assembly language. The stack elements below the code generator are
an assembler and linking loader [73], a simple operating system kernel [13], and a microprocessor
design [54]. Each of these elements are formally specified and proved correct in the Boyer-Moore
theorem prover [26].

Curzon [31, 32, 34, 33] presents a machine-checked verification of the specification of a code
generator whose source language is a subset of the structured assembly language Vista [56] and
the target language is a subset of the assembly language for the VIPER microprocessor [30]. The
code generation correctness proof was conducted in the HOL system [46, 44]

In a more recent work, Nipkow [81] specified and verified a simple lexical analyzer generator
in the Isabelle/HOL theorem prover [85].

1 [71] was published in 1966. At the time, the area of automated theorem proving was in the early
stage of development. One of the first tools for automated theorem proving, Edinburgh LCF [72] and
Cambridge LCF [90], were implemented in the early 1970’s. The successor of LCF is the HOL system
[52, 45, 46, 44, 47]. The theorem prover Isabelle/HOL [91, 85], which we used in our work, is among a
successor of HOL.

1.6 Related work 25

Broy et al. [28] present a formalization of a denotational semantics for a small functional
language and a correctness proof of its interpreter conducted in the Isabelle/LCF which is the
LCF logic [72] instantiation of the generic theorem prover Isabelle [91].

A substantial body of work [86, 88, 84, 82, 58, 83, 59, 60] on mechanically certifying proper-
ties of Java-like languages and their translations to bytecode was made in the Isabelle/HOL by
working group of Nipkow in Munich: Nipkow and Klein [82, 58] formalized a subset of the Java
Virtual Machine bytecode, proved its type safety, and proved an executable bytecode verifier in
the style of Kildall’s algorithm correct. Von Oheimb [87, 112] formalized a sequential subset of
the Java language and proved its type safety. In [112], he presents the formalization of a Hoare-
like axiomatic semantics of partial correctness and a proof of its soundness w.r.t. the operational
semantics and its completeness. Strecker [107] presents a formal proof of correctness for a subset
of the Java source language to a subset of the Java bytecode language. The formalizations of the
languages involved in the translation are based on the formalizations presented in [82, 58, 87, 112].
Later, Berghofer and Strecker [10] extend the formalization of the compiling algorithm in [107]
by adapting it to the source language µJava and a subset of Java Virtual Machine bytecode as
the target language formalized in [84], prove the algorihm correct and use the extraction facility
of Isabelle/HOL to generate an executable compiler program in the programming language ML.
Nipkow [83] presents a formalization of a Java-like language Jinja, which is basically a subset of
Java. In this work, he defines a small and a big step operational semantics for Jinja and shows
that they are equivalent. Klein and Nipkow [60] extend the formalization of Jinja in [83] by the
formalization of a bytecode language, which is a subset of the Java Virtual Machine bytecode
language, its operational semantics, a bytecode verifier in the style of the Kildall’s algorithm, and
a type safety proof for the bytecode language. Further, they formalize a compiler algorithm which
uses the Jinja and the bytecode languages as source and target languages, respectively, and show
that compilation of a Jinja program preserves its big-step semantics, the well-typedness of its
expressions, and its well-formedness, i.e. that compilation of a well-typed and well-formed Jinja
program produces a well-typed and a well-formed bytecode. The result of their work is a unified
formal model of both a Java-like source language, a JVM bytecode-like target language, and a
corresponding compiler.

Compcert [68, 16, 67, 69, 15, 12, 99] is an ongoing project of the working group of Leroy that
aims at developing a realistic and lightly-optimizing2 compiler Compcert that generates PowerPC
code from Clight, a large subset of the C programming language. [68] provides an overview of the
project. Most of the compiler phases of the Compcert compiler are specified and verified within the
proof assistant Coq [11]. An executable compiler is obtained by automatic extraction of executable
Caml code from the Coq specification. The proofs for the correctness of the phases are based on the
notion of preservation of observational behavior. In [16, 15], Blazy et al. present the formal verifica-
tion of the front-end of the Compcert compiler, which translates Clight into the Cminor language,
a low-level imperative intermediate language. The specification of the dynamic semantics of Clight
is based on the memory model for C-like imperative languages described by Blazy and Leroy in
[69]. In [67], Leroy present the formal verification of the back-end of the Compcert compiler. The
input language of the back-end of the Compcert compiler is the Cminor language and the output
language is PowerPC code. The back-end produces four intermediate programs in four different
languages and data-flow based optimizations are performed on intermediate representations in
the first of these languages, RTL (Register Transfer Language, also known as “3-address-code”
language). In [12], Bertot et al. report on the correctness proof of compiler optimizations based on
data-flow analysis and performed on RTL representations. Rideau et al. [99] describe the formal

2 The Compcert compiler performs two optimizations: constant folding and common subexpressions elim-
ination but no code-moving optimizations.

26 1 Introduction

verification of a compilation algorithm that translates parallel assignments between variables into
a semantically equivalent sequence of atomic assignments. The ultimate goal of this work is to have
a verified specification of the translation algorithm from which a functional program is extracted
by applying the extraction facility of the theorem prover Coq and integrated into the Compcert
compiler.

Lacey et al. [63, 62, 61] present a specification language for transformations that combines
elements of rewriting, temporal logic and logic programming. In this language, the transformations
are specified using rules of the form action if condiction, where each rule has some free variables.
The action part of a rule specifies how to transform a program in terms of its free variables, and
the condition part of the rule is a temporal logic formula which specifies what condition must
hold for the free variables of the rule. As a proof of concept, Lacey describes in [61] a specification
language for optimizations of program written in a very simple imperative language and provides
a paper-and-pencil proof for the correctness of the optimizations.

Lerner et al. [65, 98, 66, 64] follow philosophically similar approach as Lacey. In [65], they
present a domain-specific language Cobalt for writing optimization specifications as predicates
over the entire control flow graph in a restricted version of temporal logic. The specifications
can be checked for soundness by generating from them a set of proof obligations and asking
an automatic theorem prover to discharge them. The authors proved by hand that if a Cobalt
optimization satisfies these obligations then the specified optimization is sound, i.e. it preserves
the semantics of any program it optimizes. Later, Lerner et al. [98, 66] and Lerner in [64] present
the successor of Cobalt, a language Rhodium, which uses a separate and extensible set of local
propagation and transformation rules. Rhodium is more expressive than Cobalt as it allows for
expressing data-flow facts explicitly and in Cobalt it is made implicitly.

Blech et al. [17] present two different formalizations of static single assignment (SSA) form
in the Isabelle/HOL, which follow two different approaches, and two correctness proofs of code
generation from static single assignment form which verify these formalizations. Their first for-
malization of the SSA form is based on term graphs [80] and abstract states machines [48, 49, 23]
and the second formalization is based on partial orders. In their work, Blech et al. conduct the
correctness proofs for both formalizations of the SSA form and formalize sufficient, easily check-
able correctness criteria characterizing correct compilation results which can be used in a program
checker [38]. The latter is a part of the translation validation approach, which we discuss below in
work on certifying compilers.

1.6.2 Work on certifying compilers

The first work on a certifying compiler was published by Samet in [103]. In his work, Samet
designed and implemented translation result checking program for proving that programs written
in a subset of LISP 1.6 are correctly translated into LAP, an assembly language for the PDP-
10 computer. The proof algorithm of the checking program is independent of the translation
algorithm. For the purpose of the proof procedure, Samet implemented the notions of a canonical
form of LISP programs, a rederived form of LAP programs, and the notion of matching of the
canonical form of a LISP program and the rederived form of a LAP program, [104, 105]. The
algorithm proving translation correct takes the source LISP program and the target LAP program
as input, converts them into their canonical and rederived forms, respectively, and proves that
they match. The matching procedure manipulates the canonical form to obtain a form that is
identical to the rederived form [106].

The idea of the PCC approach, which was described in Section 1.1, was firstly published by
Necula and Lee in [78]. In their work, they described how the PCC approach can be applied
to implement efficient network packet filters and later on, in [75], they demonstrated how the

1.6 Related work 27

approach to can be applied to certify type safety of hand-optimized assembly language programs.
Later, Necula and Lee demonstrated the concept of a certifying compiler based on the PCC
approach [76, 79]. The demonstration is exemplified by a compiler from a type-safe subset of the
C language to optimized DEC Alpha machine code that contains a certifier checking automatically
type safety and memory safety of an assembly language program produced by the compiler. In [29],
Colby et al. describe design and implementation details of an optimizing compiler that compiles
Java bytecode [70] into target code for the Intel x86 architecture [55].

The idea of the FPCC approach, which was described in Section 1.1, was proposed by Appel
and Felty in [5, 4].

Lightweight bytecode verification is an instance of PCC, where the proof carried by the byte-
code is the type annotation of the code. The lightweight bytecode verification approach can be
applied to resource-bounded Java Virtual Machine (JVM) implementations on smart cards, which
have to rely on cryptographic methods to ensure that bytecode verification has taken place off-
card. In order to allow on-card verification, Rose [102] proposes a sparse annotation of bytecode
with types to enable a one-pass verification of well-typedness. In the presence of type annotations,
problem of type reconstruction for a bytecode transforms into a type checking problem, which
can be solved more easily. Klein and Nipkow [57] formalized a variant of lightweight bytecode
verification in [102] and proved it correct.

Nipkow et al. [118, 117, 116, 115] propose a generic framework for PCC which is developed and
mechanically verified in Isabelle/HOL. In their framework, they formalize and prove sound a veri-
fication condition generator with minimal assumptions on the underlying programming language,
safety policy, and safety logic. They instantiated the framework to a simple assembly language
[118, 116] and Jinja bytecode [117, 115] and formalized a safety policy for artihmetic overflow.
Their approach differs from PCC by Necula and Lee and FPCC by Appel and Felty in that it
works with an explicit, executable, verified VCG, which is generated from the verified specification
using the extraction facility of the theorem prover Isabelle/HOL.

The TV approach, which was described in Section 1.1, was developed independently by Zim-
mermann and Gaul [123, 122] and by Pnueli et al. [92]. Zimmermann and Gaul applied the TV
approach to code generators using the DEC-Alpha as target architecture. They use the notion of
abstract state machines to specify the semantics of the source and the target language and specify
the code selection phase using a large set of term-rewrite rules. For these rules, they provide a
proof that performing the code selection phase using the rules produces a code which preserves
observable behavior of the original intermediate program which served as input for the phase.
Checking if no register containing a live value, i.e. a value that is still required, is written is done
by an independent program checker. The checking requires that intermediate programs have an-
notations giving a rule cover for each instruction, a register assignment w.r.t. a rule cover, and a
schedule specifying the order of application of term-rewrite rules. The correctness of the assembly
phase is validated by another program checker. For checking purposes, they specify a large set of
term-rewrite rules for the code selection phase and verify them mechanically.

Pnueli et al. [92] developed the TV approach in the area of safety-critical systems and consid-
ered translation from the synchronous multi-clock data-flow language SIGNAL to the asynchronous
C code. They use synchronous transition systems to formalize the semantics of the source and the
target languages. Their notion of program equivalence is based on the notion of refinement be-
tween synchronous transition systems. Their validator is provided by a single refinement proof
rule whose premises are mechanically verified.

The implementations of the TV approach by Zimmermann and Gaul [123] and Pnueli et al.
[92] demonstrate that the approach works well for code generation with the one-to-many corre-
spondence between program points of the source and the target programs and, as stated by Pnueli

28 1 Introduction

et al. in [92], in all scenarios of translating synchronous languages in which the source and the
target programs are limited to a single external loop.

Zuck et al. [7, 125, 124, 126] extended the application area of the TV approach to optimizations
performed a compiler targeted at EPIC architecture (the SGI Pro-G4). In their work, they distin-
guish between structure preserving and structure modifying optimizations. The former ones cover
most high-level optimizations and admit a clear definition of the corresponding program points
relation. The latter ones admit no such relations. The structure modifying optimizations cover
reordering transformations such as loop distribution and fusion, loop tiling, and loop interchange.
The implementation of their validator pursues a similar approach to the one presented by Pnueli
et al. in [92]: For both transformation classes, they give common semantics to the source and the
target language using transition systems. The notion of correct translation is defined in terms of
a refinement relation over transition systems. The validation technique for structure preserving
transformations is similar to the one in [92]. The validator is equipped with a single proof rule
which is proved separately in [124]. It breaks the proof into a set of proof obligations by applying
the rule. The proof obligations are then shown to be valid using auxiliary invariants which can be
provided by the compiler or inferred by a set of heuristics and analysis techniques. For structure
modifying transformations, they propose a set of additional "permutation rules" which the val-
idator may use to deal with these transformations. They provide a paper-and-pencil sketch of the
soundness proof for these rules [126].

Necula [77] implements a prototype optimization validator for the GNU C compiler which
follows the TV approach. His validator requires no auxiliary informations from the compiler at
all. Instead of this, it applies various heuristics to identify the optimizations performed and to
recover associated refinement mappings. This can result in a false alarm. A false alarm means
that the validator rejects a correct optimization due to its inability to understand precisely what
transformation took place. Necula reports that the ratio of false alarms is very low for most
optimizations, but for some others about 10% of validations result in false alarms. As stated
in [124], the main limitation of Necula’s validator is that its heuristics can only be applied to
structure-preserving optimizations.

Van Engelen et al. in [109, 110] presents a work that is closely related to Necula’s work in
[77]. The authors describe an implementation of an automatic TV system in the vpo compiler
[8] which is able to validate all code-improving transformations in the vpo compiler, except those
that affect blocks across loop levels. Further, the system is less restrictive than the one presented
by Necula [77] as it is also able to validate transformations which change the branch structure
of the program. The key idea of the validating system is based on the observation that most of
the transformations typically consist of only a few changes performed locally within a region. To
validate such a transformation, it is sufficient to identify that region and its entry point and to
show that the effects of the changes associated with the transformation on the rest of the programs
are the same. The effects of two regions are considered semantically equivalent if they are identical
at each exit point of the region. The system automatically detects the region associated to the
changes associated to a transformation by identifying a pair of corresponding blocks in the source
and the target programs that were syntactically changed and finding the closest block in the
control-flow graph that dominates the blocks from the pairs. The blocks in the pair identified by
the system need not have the same basic block structure. Symbolic computations of the effects are
performed by the Ctadel system [111].

The Verifix [43, 41, 39] project developes methods for combination of techniques from certified
and certifying compilers to construct certifying compilers which are as efficient as typical com-
mercial compilers. The correctness of the Verifix compiler is shown in two steps: The first step
uses verification techniques from certified compilers and proves the correctness of the compiling
algorithms in the compiler (compiler algorithm correctness). The second step shows compiler im-

1.7 Overview of the thesis 29

plementation correctness by using techniques from program checking [39, 40, 38]. The correctness
of the program checker algorithm itself is shown using standard program verification techniques.
The correctness of the translation of the program checker algorithm written in a high-level lan-
guage into machine code is guaranteed by a rigorous implementation of an initial compiler [42, 36].
In [38], Glesner gives an overview of the program checking approach and of the results of applying
program checking in optimizing backend transformations.

Credible compilation (CC) is a (paper and pencil) framework for certifying optimizations pro-
posed by Rinard and Marinov [101, 100]. Their approach is a hybrid of the TV and the FTV
approaches: it is not type-specialized, as the FTV approach, but it is phase-specialized, as the
TV approach. The CC approach is not type-specialized as it translates programs into their rep-
resentations as constants definitions. The SVF of a credible compiler comprises the definition of
the abstract syntax of the intermediate programming language, the definition of the operational
semantics, the formalization of a simulation invariant, a simulation criterion Sim on two interme-
diate programms and a set of simulation invariants, and a logic for proving optimizations correct.
The simulation criterion Sim considers two programs as control flow graphs. The third parameter
of Sim is a set of simulation invariants, where each simulation invariant in the set defines a pair
of corresponding nodes and an invariant. The definition of Sim is based on the corresponding
node relation defined by the set of simulation invariants. However, as the simulation criterion for
two control flow graphs is a function of a relation between the sets of nodes of these graphs, it
is not possible to prove a universal transitivity rule which would allow to apply the argument of
transitivity to the result of two consequtive optimizations. For this reason, the CC approach is
phase-specialized as the TV approach.

Blech and Poetzsch-Heffter present in [19] an approach to certifying code generation phase
which can be seen as a hybrid of the approaches TV and FTV. They implemented a compiler for a
small subset of the programming language C with a code generation phase which translates inter-
mediate language (IL) programs into the MIPS code. Within the theorem prover Isabelle/HOL,
they formalized the operational semantics of the language IL, the operational of the MIPS lan-
guage, and a translation correctness criterion on a intermediate language program and a MIPS
program. The criterion interprets these programs as two STS’s with observable behavior defined in
terms of sequences of integers printed by the STS’s and defines program equivalence of the source
and the target programs of the code generation as equality of observable behaviors of their repre-
sentations as STS’s. The compiler performs the code generation phase and translates the source
and the target programs the phase into their representations as HOL constants a Isabelle/HOL
theory and generates a proof of a lemma which states that these constants fulfill the translation
correctness criterion. Thus, the translation step of certification is identical to the one in the FTV
approach and the idea of formalizing the translation correctness criterion which interpretes pro-
grams as STS’s is borrowed from the TV approach. Later, Blech et al. in [20] applied this approach
to certification of system transformations performed in adaptable systems. Further, Blech and Gre-
goire in [18] used the theorem prover Coq and investigated the efficiency and the suitability of
this approach for certification of the code generation phase performed during translation of large
programs.

1.7 Overview of the thesis

This section outlines this thesis. As aforementioned, the focus of the presentation is on the SVF. In
the thesis, we present Layers 0 through 5 of our SVF. The presentation of Layer 6, which provides
the implementations of proof tactics called in proof scripts, is beyond the scope of this thesis. In
general, we do not present proofs of the theorems presented in this thesis as they can be inspected

30 1 Introduction

in the Isabelle/HOL theories in the CD attached to this thesis. We only present proofs for selected
theorems for the brevity of the presentation.

There follows chapter-by-chapter outline of the thesis.

Preliminaries

This thesis proposes an approach which applies techniques from mathematical logic and program-
ming language semantics. This chapter briefly surveys the formalisms from higher-order logics we
use throughout the thesis.

Overview of the SVF

The main focus of this thesis is on the description of the formal framework which is comprised by
the SVF of our FTV system. This chapter gives a brief introduction to our implementation of the
SVF. Moreover, the chapter description of the general layer architecture of the SVF for an FTV
system. The layer architecture of the SVF is the recurrent theme of this thesis.

Translation contract

This chapter describes the content of Layer 2 of our SVF: the formalization of the translation
contract for intermediate language optimizations. The first part of the chapter presents the for-
malization the abstract syntax of an intermediate language IL. The second part of the chapter
presents the formalization the program semantics of IL programs. The last part of the chapter
presents the definition of the translation correctness predicate on two IL programs.

Type safety of the language IL

This chapter presents the content of Layer 3 of our SVF. The first part of the chapter presents the
formalizations of the notions of program type and well-typedness. The second part of the chapter
presents a theorem which states that the IL language is type safe.

Optimization independent translation correctness criterion

This chapter presents the content of Layer 4 of our SVF. The first part of the chapter presents
the formalizations of the notion of control flow graphs with blocks, a bisimulation relation, and an
optimization independent translation correctness criterion TCC. The second part of the chapter
presents an optimization independent translation correctness theorem.

Translation correctness criteria for particular optimizations

This chapter presents the content of Layer 5 of our SVF. For each optimization O performed
by our compiler front-end, the chapter provides a section which presents formal framework pro-
vided by Layer 5 for the optimization O. Each of these sections follows a presentation scheme which
adheres to the description of Layer 5 in Section 1.5.2, i.e. consists of five parts which present the
following:

• The first part of the section presents the formalization of the notion of data flow analysis result
AO.

• The second part of the section presents the formalization of the bisimulation relation RO.

1.7 Overview of the thesis 31

• The third part of the section presents the formalization a translation relation transrelO.
• The fourth part of the section presents the formalization of an optimization correctness criterion

TCCO.
• The last part of the section presents an optimization correctness theorem.

Evaluation

This chapter presents the evaluation of our formal framework. The evaluation is split in three
parts:

1. The first part provides the estimation of the proof script size and evaluates it.
2. The second part provides the first results of the measurements of time which Isabelle/HOL

needs for checking proof scripts generated by our compiler front-end.
3. The third part presents our evaluation of the formal framework presented in this thesis.

Conclusions and future work

The final chapter summarizes the achievements of this thesis. A discussion of the work is pre-
sented along with possible future directions of research.

Chapter 2

Preliminaries

This chapter presents a brief introduction to the theorem prover Isabelle/HOL, basic mathematical
notions in HOL, and conventions we adopted in this thesis. In the presentation we assume that the
reader is familiar with basic concepts in the realm of compiler construction and mathematical logic.
The content of Sections 2.1 and 2.2 is an adapted compilation of the sections with preliminaries
in [84, 87].

2.1 Modelling and proving in Isabelle/HOL

The term higher-order logic traditionally means a typed logic that permits quantification over
functions or sets. In the theorem proving community, higher-order logic is often abbreviated to
HOL and refers to Church’s Simple Theory of Types, which is a variant of the lambda calculus -
a typed lambda calculus. The work reported in this thesis has been conducted with the help of
Isabelle/HOL: Isabelle [91] is a generic interactive theorem prover, and Isabelle/HOL an instance
of Isabelle which is a formalization of HOL with equality and total polymorphic higher-order
functions. The set of the primitive inference rules of HOL comprises the law of the excluded
middle, which makes the logic classical, and the system Isabelle/HOL is more than just a theorem
prover for HOL, it is a fully fledged specification and programming language. Therefore familiarity
with classical predicate logic and functional programming is required when reading this thesis.
Comming from a programming perspective, one could characterize Isabelle/HOL as combination
of functional programming, logic programming, and quantifiers. The remainder of this section
describes the main features of Isabelle/HOL and a selected content of predefined theories we used
in our work. The description is made from an abstract perspective, i.e. as independent as possible
of the theorem prover.

2.1.1 Terms, types, formulae and theories

The type system is similar to that of typed functional programming languages like ML. There
basic types like bool, nat, and int, and type constructors (written postfix) like (τ)list and (τ)set.
Functions types are written τ1 → τ2 and represent the type of all total functions. Type variables,
which are used to express polymorphism, are written α, β etc.

Terms are formed as in λ-calculus by application and abstraction. The constructions let x =
e1 in e2 end, if b then e1 else e2 and case e of p1 → e1 | ... familiar from functional programming
are also supported. Formulae are terms of type bool.

34 2 Preliminaries

Modules in Isabelle/HOL are called theories to emphasize their mathematical content. They
contain collections declarations and definitions of types and constants (which include functions).
Besides the basic non-recursive definitions of the form

name ≡ term

Isabelle/HOL additionally provides several application-oriented definition principles: recursive
datatypes, recursive functions and inductively defined sets. Although we used inductively defined
sets in our work, they are not presented in this thesis. In the following, we only discuss recursive
datatypes and recursive functions.

2.1.2 Recursive datatypes and functions

Functional programming is supported by constructs for the definition of recursive datatypes and
recursive functions. A simple example is the theory of lists:

datatype α list = Nil ([])

| Cons α (α list) (infixr #)

consts app :: α list → α list → α list (infixr@)

primrec

[] @ ys = ys

(x#xs) @ ys = x#(xs @ ys)

It defines the recursive datatype of lists together with some syntactic sugar, declares a function
app (with infix syntax @), and defines app by primitive recursion. The key proof technique in
this setting is structural induction on datatypes. Such proofs are performed automatically by
Isabelle/HOL.

More complex recursion patterns can be expressed by well-founded recursion, which requires a
termination ordering to convince Isabelle/HOL of the totality of the defined function.

Totality is always the key requirement when defining a function in HOL since HOL is a logic
of total functions, and the introduction of a truly partial function would cause an inconsistency.

2.1.3 Isabelle/HOL library

Our formalization of the SVF makes use of many predefined theories. We quickly summarize the
most important ones.

Cartesian products

The type (τ1 × τ2) of Cartesian products of τ1 and τ2 comes with projection functions

fst :: α× β → α

fst ≡ λ (x, y). x

snd :: α× β → β

snd ≡ λ (x, y). y

and with (postfix) operators for constructing the transitive closure R+ and transitive reflexive
closure R∗ of a relation R :: (α × α)set. Although we used these operators in our work, they are
not presented in this thesis.

2.1 Modelling and proving in Isabelle/HOL 35

Lists

In addition to the basic list constructs show above, the list library contains the following relevant
functions:

length :: α list → nat

set :: α list → α set

map :: (α → β) → α list → β list

zip :: α list → β list → (α× β)list

nth :: α list → nat → α

The meaning of length, set, map, and zip should be obvious. nth xs i selects the i -th element
(starting from 0) and is abbreviated by xs!i . The usual notation [x, y, z] instead of x#y#z#[] is
also supported.

Options

The datatype of optional values

datatype α option = None | Some(α)

is used to add a new element None to a type and wrap the remaining elements up in Some. We
use this datatype when modelling partial mappings. Another method to declare a partial mapping
will be presented in the next section.

Mappings

In our work, we frequently reason about partial functions in which domains are modified. Typical
application is the state of computation (where variables are mapped to their value during execution
of a program). They are called mappings and are defined as functions with optional range type:

types α ! β = α → β option

For the manipulation of mappings the following functions are provided:

empty :: α ! β

(%→ _) :: (α ! β) → α → β → (α ! β)

mapof :: (α× β)list → (α ! β)

They represent the empty mapping, updating in one place, and turning an association list into a
mapping. Their definitions are as follows.

empty ≡ λ k . k

m(x %→ y) ≡ λ k . if k = x then Some(y) else m(k)

mapof([]) = empty

mapof((x, y)#l) = (mapof l)(x %→ y)

36 2 Preliminaries

2.2 Programming language formalization style

When formalizing a programming language in a theorem prover, which is also called embedding,
one has basically two options [84, 87, 24, 2, 25, 96, 97, 114]:

Deep embeddings use a separate datatype to define the abstract syntax of the language and define
the semantics by formalizing a semantics function which maps the abstract syntax to a seman-
tics. This is useful when doing meta-theory in the language since one can express properties of
the syntactic structure and prove generic properties of the language such as type soundness.

Shallow embeddings define the semantics directly, i.e. each construct in the language is represented
directly by some function on a semantic domain. This is advantageous for reasoning about
individual programs of the language as the extra syntactic level is avoided.

In this thesis, we only use a deep embedding. The reason for this decision is as follows: We are
interested in implementing a specification and verification framework for a certifying optimizer.
Within this framework, we want to formalize program independent optimization correctness cri-
teria and respective optimization correctness theorems that can be applied in proofs verifying
correctness of an optimization. Such correctness criteria have the form of binary predicates on
two programs that express some syntactic patterns for corresponding syntactic fragments of these
programs. Further, all proofs of these theorems require introducing certain assumptions saying
that the corresponding syntactic program fragments are well-typed and their types comply with
the states of computation during execution of the programs. As proving type soundness of the
language is the prerequisite for discharging such assumptions, the deep embedding style was a
natural choice in our work.

2.3 Conventions

In this thesis, we adopted the presentation style of the programming language formalizations from
Winskel in [120]. Therefore, in our presentation, we do not use built-in HOL types, such nat
and bool. Instead of this, whenever needed, we introduce fresh syntactic sets associated with the
formalism of interest. Further, we do not use polymorphism in our presentation. The only poly-
morphic types and functions we use in our presentation are the ones already presented in Sections
2.1 and 2.2. Instead of this, for each instantiation of the polymorphic type, we declare a separate
syntactic set and a metavariable ranging over this set. The following example demonstrates the
type declaration in Isabelle/HOL and how it would be presented using our convention.

Example 2.1.

• A type declaration in Isabelle/HOL:

types int_bool_list = (int list)× (bool list)

• A declaration of a syntactic set IntBoolList :
– The syntactic sets associated with the definition of IntBoolList are the following:

· numbers Int,
· truth values Bool.

– The metavariables ranging over these sets are the following:
· i ranges over numbers Int,
· b ranges over truth values Bool.

2.3 Conventions 37

– The formation rules for the syntactic set IntBoolList :

i ∈ Int = {0, 1,−1, 2,−2, ...}
b ∈ Bool = {true, false}

IntList (il ::= [] | i#il

BoolList (bl ::= [] | b#bl

IntBoolList (ibl ::= (il , bl)
♦

Chapter 3

Overview of the SVF

This section focuses on the architecture of the SVF. As aforementioned in Section 1.5.2, a SVF
consists of two main parts, a specification part and a verification part, and the whole formal frame-
work of the SVF is organized hierarchically in layers. The specification part of the SVF provides a
translation contract and the verification part of the SVF provides auxiliary specifications, lemmas,
and proof tactics which make up a proof environment for proving translations correct. The bottom
layer of the framework comprises the most general formalizations and the top layer comprises the
most specific formalizations which are dedicated to particular proof tasks, and the formalizations
from upper layers use definitions and apply lemmas from lower layers. In the following, we describe
the general purpose of the layers how we implemented these layers within our SVF.

Figures 3.1 and 1.7 give overviews of the general architecture of the SVF and the architecture of
our SVF, respectively. We start explaining the bottom layer of the architecture and work through
to the top layer.

3.1 Layer 0: Higher-order logic

The general purpose of Layer 0:
Layer 0 provides an implementation of higher-order logic (HOL) within a specification and ver-
ification system which is needed to implement logical formalisms within an SVF for a FTV system.

Layer 0 in our implementation:
Our implementation of the SVF is based on the implementation of HOL within the theorem prover
Isabelle/HOL, which provides the implementation of HOL in the theory HOL.

3.2 Layer 1: Logic extension

The general purpose of Layer 1:
Layer 1 provides auxiliary formalizations in HOL which are both program independent and op-
timization such as the formalizations of the set theory, the theories of well-founded recursion,
well-founded relations, partial mappings, lists, etc.

Further, Layer 1 provides a programming interface for the verification part of the SVF which
allows for implementing proof tactics. The proof tactics support automatic verification of proof
scripts.

40 3 Overview of the SVF

Layer 6: proof environments
specific to particular proof tasks

Layer 5: translation correctness criteria
specific to particular

compiler phase

Layer 4: compiler phase independent
translation correctness criterion

Layer 3: type safety proofs

Layer 2: translation contract

Layer 1: auxiliary HOL extensions

Layer 0: implementation of HOL
within a theory prover

Fig. 3.1. The layer architecture of the SVF

Layer 1 in our implementation:
The Isabelle/HOL provides the implementations of the above formalisms in the theory Main. By
way of example, we list some of them, which we used in our implementation of the SVF.

• the set theory,
• basic predefined types α, nat , α list , int , real , α option, etc.
• the type definition mechanism,
• the datatype definition package,
• the mechanisms of defining recursive functions,
• Isabelle/HOL’s package for inductive definitions, etc.

Further, we formalized a small library of auxiliary specifications and auxiliary lemmas about lists,
sets, mappings, etc, which proved to be useful in our proofs.

During our work on the SVF, we used two instantiations of Isabelle, Isabelle/HOL and Is-
abelle/Isar. We used Isabelle/Isar to formalize Layers 1 through 4 of the SVF architecture and
Isabelle/HOL to implement proof tactics in Layer 5. Isabelle/Isar is an extension of Isabelle/HOL
providing a proof language which is perfectly suitable for setting up specifications and perform-
ing interactive proofs. The proof language of Isabelle/Isar is highly apprehensible for the human
reader which is of particular interest when it comes to form an opinion about the translation
contract provided by Layer 2. Isabelle/HOL is a predecessor of Isabelle/Isar and provides direct
programming interface to the underlying ML system. We used that interface to write ML functions
computing proof tactics for particular proof tasks.

3.3 Layer 2: Translation contract 41

3.3 Layer 2: Translation contract

The general purpose of Layer 2:
Layer 2 provides the specification of a translation contract which comprises

• the formalization of the source language SL including
1. the formalization of the abstract syntax of SL programs which is done by giving the defi-

nition of a HOL type of SL programs, ProgramS ,
2. the formalization of the meaning of an SL program which is done by giving the definition

of a HOL type τS ,
3. the formalization of a program semantics function SemS : ProgramS → τS which maps

SL programs to their meanings of the type τS ,
• the formalization of the target language TL including

1. the formalization of the abstract syntax of TL programs which is done by giving the defi-
nition of a HOL type of TL programs, ProgramT ,

2. the formalization of the meaning of a TL program which is done by giving the definition of
a type τT ,

3. the formalization of a program semantics function SemT : ProgramT → τT which maps
TL programs to their meanings of the type τT ,

• the formalization of a transitive relation

_ ≤R _ : τS × τT → Bool

which allows to compare a meaning of an SL program with a meaning of a TL program.
• the specification of the translation correctness predicate corrTrans : ProgramS×ProgramT →

Bool which takes a source language program S and a target language program T and checks
if T is a correct translation of S . In the FTV approach, the definition of corrTrans has a
straightforward form:

corrTrans(S ,T) ≡ SemS(S) ≤R SemT (T)

The following should be noted about the translation contract:
Firstly, the transitivity property of the relation ≤R is essential for an SVF which follows the

FTV approach as it enables the compiler to generate an explicit translation certificate containing
a proof of the statement corrTrans(S ,T) for a source program S and a target program T even if
T is the output of a chain of program transformations performed by the compiler phases.

Secondly, the formalizations of the languages SL and TL include the formalizations of their
underlying type systems. In particular, if the program semantics functions for SL and TL are
partial mappings which are well-defined only for well-typed programs, then Layer 2 also provides
the formalizations of well-typedness for both SL and TL by giving the definitions of program well-
typedness predicates wtS : ProgramS → Bool and wtT : ProgramT → Bool for the SL and TL,
respectively, that take programs in the languages SL and TL, respectively, and check if they are
well-typed. In this case, the definition of corrTrans has the following form:

corrTrans(S ,T) ≡ if wtS(S) ∧ wtT(T) then SemS(S) ≤R SemT (T) else False

Layer 2 in our implementation:
As the purpose of our SVF is to serve as a verification framework for intermediate language
optimizations and we are interested in translation certificates which attest to the equality of two
intermediate language program semantics, we formalized a special case of the translation contract
in which

42 3 Overview of the SVF

1. the source language SL and the target language TL are equal,
2. the program semantics functions are total functions, and
3. the relation ≤R is the equality relation.

Our translation contract comprises the following:

• The formalization of an intermediate language IL includes
– the abstract syntax of the language IL which is defined by giving formation rules for a set

Program.
– the notion of a configuration which models the state of execution of an IL program which

is defined by giving formation rule for a set Configuration
– the operational semantics of the language IL which is formalized in terms of configurations

σ ∈ Configuration and a transition function

exec : Program×Configuration→ Configuration .

The transition function exec computes the successor configuration exec(P , σ) for an IL
program P and a configuration σ.

– the definition of a function

M : Program×Configuration×Nat→ Configuration

which models a simple machine executing IL programs. We use this function in our proofs
when we want to formalize a configuration which is the result of partial execution of an
IL program P : Given that σ0 denotes an initial configuration for the program P , then
M(P , σ0,n) denotes a configuration which is the result of n successive applications of the
transition function exec to σ0.

– the notion of observable behavior of an IL program: A transfer of execution from a configu-
ration σ to the successor configuration exec(P , σ) can result in behavior which is observable
to the outside world. This behavior can be either printing an integer or termination of exe-
cution, which we model by an integer token and a termination token. Therefore, we model
the observable behavior of an IL program as a sequence of tokens printed during its ex-
ecution. The set of observable behaviors is formalized by giving formation rules for a set
ObservableBehavior.

– the program semantics for the IL language which is defined by a function

Sem : Program→ ObservableBehavior

which is total and maps IL programs to their observable behaviors. The definition of Sem
is based on the operational semantics of IL and on the notion of partial executions of IL
programs.

• the definition of a translation correctness predicate corrTrans : Program×Program→ Bool
which defined as follows.

corrTrans(S ,T) ≡ Sem(S) = Sem(T)

Informally, the definition of corrTrans says that two IL programs S and T are semantically
equivalent iff they have the same observable behaviors, i.e. they print the same sequences of
tokens.

3.4 Layer 3: Type safety proofs 43

3.4 Layer 3: Type safety proofs

The general purpose of Layer 3:
Layer 3 provides proofs that the source and the target languages, SL and TL, respectively, are
type safe. In the following, we explain why the SVF for a FTV system has to provide these proofs.

The type safety is a property of a language which is a necessary prerequisite whenever one
wants to prove an invariant property about partial executions of a program P in that language.
The proof of such a property is by induction on the length of partial execution of P and to prove
the inductive step one has to derive the statement that the invariant holds for a configuration σn+1

which is the result of partial execution of the length n + 1 from the assumption that the invariant
holds for a configuration σn which is the result of partial execution of the length n. As σn+1 is the
result of application of transition function exec to σn, one has to show that the invariant holds
for the successor configuration exec(P , σn). To prove this, one has to introduce some additional
assumptions about σn which enables the derivation of the value of exec(P , σn). For instance, if we
want to conduct the proof of the inductive step by cases over instructions of P , then we have to
prove first that the program counter pc in the current state of execution σn is valid and points
to one of the instructions of P , i.e. to show that 0 ≤ pc < n holds, where n is the length of the
instruction list of P . However, the configuration σn fulfills the property 0 ≤ pc < n only, if P is
well-typed and the language is type safe.

The same argumentation holds in case of proofs of invariant properties about partial executions
of two programs such as bisimulation relation - except that in this case, there is an aggravating
factor to be added: As the compiler phases transform programs in such a way that they need to
make different number of transitions to produce the same observable behaviors, one has to formalize
what does it mean that the lengths of partial executions of a source and a target program are
corresponding.

In summary, the necessity of proving type safety of the languages involved in the translation
contract is a feature which distinquishes the FTV approach from the TV approach and it comes
from the fact that the FTV approach reasons inductively about the whole executions of programs
which is in contrast to the TV approach which reasons about executions of small fragments of
programs and takes type safety of the underlying system for granted, cf. Section 1.1 for our
discussion on the approaches to certifying compilers.
Layer 3 in our implementation:
The formal framework of our implementation of Layer 3 provides the following:

1. a simple type system for the language IL including formation rules for a set of types of IL
programs ProgramType,

2. the definition of a program well-typedness predicate

wtp : Program×ProgramType→ Bool

where an expression wtp(P , Φ) says that an IL program P is well-typed w.r.t. to a program
type Φ,

3. the definition of a configuration conformance predicate

, - _
√

: ProgramType×Program×Configuration→ Bool

where an expression P , Φ - σ
√

says that a configuration σ conforms to a program type Φ and
a program P , and

4. a type safety theorem which, informally, says the following:
Given that σ0 denotes an initial configuration for an IL program P then,
wtp(P , Φ) implies ∀n.P , Φ - M(P , σ0,n)

√
.

44 3 Overview of the SVF

In other words, the theorem says that if an IL program is well-typed w.r.t. to a program type,
then all partial executions of that program are type safe.

3.5 Layer 4: Compiler phase independent translation correctness
criterion

The general purpose of Layer 4:
The general purpose of Layer 4 is to provide

• the formalization of a translation correctness criterion TCC on two programs, a source language
program S and a target language program T ; and other auxiliary parameters describing S and
T which we abbreviate here as a parameter AuxParams. The definition of TCC expresses a
sufficient condition of corrTrans(S ,T) in terms of notions which are not specific to any program
transformations performed by the compiler phases, such as the notions of a refinement relation
or simulation relation or bisimulation of executions. The formulation of the criterion TCC is
akin to the formulation of translation correctness criteria used in the proof rules in the TV
approach and its exact definition is dependent on how the program semantics functions SemS

and SemT and the transitive relation ≤R used in the definition of corrTrans are defined. In
general, the definition of TCC is a function of the translation correctness predicate and a proof
technique used by the FTV system. For instance, in our SVF, the relation ≤R is defined as the
equality and the program semantics function Sem defines a sequence of output tokens printed
by a program. Therefore, we defined the predicate TCC(S ,T ,AuxParam) as a predicate of the
form

∃BS BT R. bisimulation(S ,T ,BS ,BT ,R)

where the tuples (S ,BS) and (T ,BT) denote a source and a target control flow graphs with
blocks and the parameter R denotes a bisimulation relation between the sets of configurations
and bisimulation(S ,T ,BS ,BT ,R) denotes a property of bisimulation of block-wise executions
of S and T w.r.t. R. Our formulation of the translation correctness criterion TCC is program
transformation independent for the following reasons: Firstly, it is optimization independent
as the bisimulation relation R, which has to be formalized for an optimization, is ∃-quantified.
Secondly, it is independent of a concrete optimization as the parameters BS and BT , whose
concrete values have to be provided by the compiler for concrete programs S and T , are
∃-quantified.

• a proof of a translation correctness theorem (TCT) whose statement has the following form:

TCC(S ,T ,AuxParams) =⇒ corrTrans(S ,T) (TCT)

In the following, we put forward the motivation behind this layer: As mentioned in Section 1.1,
all approaches to certifying compiler have in common that they strive for automatic verification of
translation correctness. For instance, the TV approach regards the source and the target programs
of a compiler run as STS’s and seeks for proof techniques for automatic verification that the
target STS refines the source STS. The general strategy of the TV approach to achieve this is to
translate the source and the target programs S and T into their semantic abstractions STSS and
STST and to automatically check if they fulfill a translation correctness criterion TCC by executing
the procedure call TCC(STSS, STST). Then, the refinement relation between STSS and STST holds
implicitly by the lemma of the form

TCC (STSS ,STST) =⇒ STSS ! STST

which is proved separately, e.g. in the theorem prover. The key idea behind that strategy is that
checking STSS ! STST is an undecidable problem, checking TCC (STSS ,STST) is a decidable

3.5 Layer 4: Compiler phase independent translation correctness criterion 45

problem, checking TCC (STSS ,STST) can be done efficiently, and the compiler generates (hope-
fully) only programs S and T such the procedure calls TCC(STSS, STST), where STSS and STST are
the STS representations of S and T , successfully terminate.

Other approaches to certifying compiler, inclu ding the FTV approach, follow the analogous
strategy. In particular, the strategy of the FTV approach to achieve the automation includes the
following steps: Firstly, the source and the target programs of a compiler run, S and T , and data
structures describing those programs are translated into their syntactical representations as HOL
constants in a proof script. Secondly, the proof of corrTrans(S ,T) is initialized by application of
the translation correctness theorem whose statement is analogous to the above statement (TCT).
Thirdly, the assumptions of the theorem are discharged automatically by application of a dedicated
proof tactic. There is, however, one feature which distinguishes the FTV approach from the TV
approaches: As opposed to the TV approach, which is phase-specialized and provides proof tech-
niques for certifying one-phase transformations, the FTV approach seeks for proof techniques for
certifying whole transformation chains. Consequently, for each program transformation T , a SVF
following the FTV approach has to provide a transformation correctness criterion TCCT, whose
definition is specific to the program transformation T , and a translation correctness theorem about
TCCT which is analogous to the statement TCT.

At the first glance, this means for our FTV system, which certifies the chain of five optimiza-
tions CF, DAE, NI, RAI, and RAE, that we can consider each optimization O as one program
transformation and that our SVF should contain a layer providing the formalizations of opti-
mization correctness critera: TCCCF, TCCDAE, TCCNI, TCCRAI, and TCCRAE, respectively, with
corresponding proofs of optimization correctness theorems of the form as follows, see below for
the explanation.

TCCCF(S ,T ,BS ,BT ,ACF) =⇒ corrTrans(S ,T)

TCCDAE(S ,T ,BS ,BT ,ADAE) =⇒ corrTrans(S ,T)

TCCNI(S ,T ,BS ,BT ,ANI) =⇒ corrTrans(S ,T)

TCCRAI(S ,T ,BS ,BT ,ARAI) =⇒ corrTrans(S ,T)

TCCRAE(S ,T ,BS ,BT ,ARAE) =⇒ corrTrans(S ,T)

In the above list, each predicate TCCOn has parameters S , T , BS , and BT which denote the
same values as for the previously mentioned predicate bisimulation and its additional parameter
AOn denotes the result of data flow analysis which was performed prior to the optimization On.
Informally, the predicate TCCOn(S ,T ,BS ,BT ,AO) denotes that control flow graphs with blocks
(S ,BS) and (T ,BT) are in a translation relation which is a function of the optimization O and
AO.

However, designing our correctness criterion layer in this way would lead us to a SVF which is
not modular: Each time we would introduce a new optimization On+1 into our compiler we would
have to prove the n + 1-th optimization correctness theorem of the form

TCCOn+1(S ,T ,BS ,BT ,AOn+1) =⇒ corrTrans(S ,T)

which would force us to prove for the n + 1-th time a property that is actually both optimization
independent, namely,

if there exist two control flow graphs with blocks (S ,BS) and (T ,BT) and a bisimula-
tion relation R such that block-wise executions of S and T bisimulate w.r.t. R, then the
observable behaviors of S and T are equal.

46 3 Overview of the SVF

Using our notation, we can express this property concisely as follows.

∃BS BT R. bisimulation(S ,T ,BS ,BT ,R) =⇒ corrTrans(S ,T) (TCT′)

As (TCT’) is a special case of (TCT), this leads to us to the second approach to the design of
our SVF in which we factor out the statement (TCT’) from the optimization correctness criteria
TCCO:

If we know the algorithm of an optimization O and the algorithm of the data flow analysis
performed prior to that optimization, then we are able to formalize a bisimulation relation RO and
a set AO comprising results of data flow analyses perfomed prior to that optimization such that we
can prove the following statement, which is program independent and specific to the optimization
O:

if two control flow graphs with blocks programs (S ,BS) and (T ,BT) are in a translation
relation which is a function of O, and AO, then block-wise executions of S and T bisimulate
w.r.t. RO

Using our notation, we can express this statement concisely as follows.

TCCO(S ,T ,BS ,BT ,AO) =⇒ bisimulation(S ,T ,BS ,BT ,RO) (OptSpecCT)

In the following, we call a theorem which proves a statement of the form of (OptSpecCT) an
optimization criterion correctness theorem.

Now, we can redesign the translation correctness criteria layer of our SVF: We split this layer
into two layers which are designed as follows:

Layer 4: Transformation independent translation correctness criterion layer: In general, we des-
ignate Layer 4 to provide the formalization of a transformation independent translation cor-
rectness criterion TCC and to prove a transformation independent translation correctness the-
orem whose statement is based on the definition of the TCC criterion. The statement of this
theorem is analogous to the statement (TCT).

Layer 5: Transformation specific correctness criteria layer: In general, we designate Layer 5 to
provide, for each transformation T perfomed by the compiler, the following:
• the formalization of a transformation correctness criterion TCCT which is specific to the

definition of the transformation T ,
• the proof of a corresponding TCCT criterion correctness theorem whose statement says

that the specification of the TCCT criterion is correct in the following sense:
If two programs are the source and the target programs of the transformation T and
they fulfill the transformation correctness criterion TCCT, then the programs fulfill
the transformation independent translation correctness criterion TCC provided by
Layer 4.

The statement of this theorem is analogous to (OptSpecCT).
• the proof of a transformation correctness theorem whose statement is the result of conjoin-

ing statements of two theorems: the transformation independent translation correctness
theorem provided by Layer 4 and the TCCT criterion correctness theorem provided by
Layer 5. The theorem has the following form:

If two programs are the source and the target programs of the transformation T and
they fulfill the transformation correctness criterion TCCT, then the programs fulfill
the translation correctness predicate corrTrans provided by the translation contract
layer.

3.5 Layer 4: Compiler phase independent translation correctness criterion 47

Besides providing the translation contract, providing a transformation correctness theorem for
each transformation T performed by the compiler is the main purpose of the SVF in an FTV
system. Such a theorem is directly applicable in translation certificates generated by the compiler.
Layer 4 in our implementation:
In our implementation of the SVF, Layer 4 provides all formalizations which are needed to for-
mulate and to prove an optimization independent translation correctness theorem which has the
form similar to (TCT’). In the following, we present a brief overview of our implementation of
Layer 4. Among other things, Layer 4 provides the following:

1. formalization of the notions of basic blocks and block positions,
2. formalization of the set of declarations of control flow graphs with blocks (CFGB) BlckPosEnv.

A CFGB declaration B ∈ BlckPosEnv is always defined for an IL program P and it describes
the structure of a CFGB which adheres to the structure of a control flow graph (CFG) which
corresponds to P .

3. formalization of a well-formedness predicate on CFGB declarations and IL programs,

wfB : Program×BlckPosEnv → Bool

which checks if a CFGB declaration is well-formed w.r.t. an IL program,
4. formalization of an intermediate language IL”, which is a language of control flow graphs

with blocks1. IL” programs are tuples (P ,B) consisting of an IL program P and a CFGB
declaration B :

(P ,B) ∈ Program′′ ::= Program×BlckPosEnv

and the operational semantics is defined in terms of block-wise transfers of the flow of control.
The denotional semantics of an IL” program is defined as a sequence of tokens printed by that
program, i.e. we give the definition of a program semantics function which is a mapping from
the set of IL” programs to the set ObservableBehavior,

5. formalization of the notion of a bisimulation relationR as a predicate on the set Configuration×
Configuration.

BisimulationRelation = P(Configuration×Configuration)

6. formalization of the notion of bisimulation relation between partial executions of two IL” pro-
grams w.r.t. a bisimulation relation R. The bisimulation relation is formalized by a predicate
bisimulation on two IL′′ programs and a bisimulation relation R.

bisimulation : Program′′ ×Program′′ ×BisimulationRelation→ Bool

7. a proof of a transformation independent translation correctness theorem which, informally,
says the following:

if there exist program types ΦS and ΦT , CFGB declarations BS and BT , and a
bisimulation relation R such that wtp(S , ΦS) and wtp(T , ΦT) and wfB(S ,BS) and
wfB(T ,BT) and bisimulation(S ,T ,BS ,BT ,R), then S and T fulfill the translation
correctness predicate corrTrans provided by the translation contract layer.

1 Layer 4 also provides formalization of an intermediate language IL’. The definition of IL” is based on
the definition of IL’.

48 3 Overview of the SVF

Using our notation, we can express the statement of this theorem as follows.

∃ΦS ΦT BS BT R.
wtp(S , ΦS) ∧ wtp(T , ΦT) ∧ wfB(S ,BS) ∧ wfB(T ,BT) ∧
bisimulation((S ,BS), (T ,BT),R)

=⇒
corrTrans(S ,T)

The theorem is generic in the sense that its statement is optimization independent and not
specific to any kind of optimization. For this reason, it is possible to reuse the theorem by
defining a different bisimulation relations for particular IL optimizations and to prove opti-
mization specific versions of the theorem after instantiating its ∃-quantified variable R in its
assumption. The ∃-quantified variables BS and BT will be instantiated in a concrete proof
script by concrete constants representing CFGB declarations for concretes source and a target
programs.

3.6 Layer 5: Translation correctness criteria for particular compiler
phases

The general purpose of Layer 5:
In general, we designate Layer 5 to provide all formalizations which are needed to formulate
translation correctness criteria which are specific to program transformations performed by the
compiler and to prove corresponding translation correctness theorems, see the previous section for
the motivation behind this layer.
Layer 5 in our implementation:
For each optimization O performed by our compiler, Layer 5 provides the following:

• the formalization of a bisimulation relation RO whose definition is specific to the optimization
O,

• the formalization of an optimization correctness criterion TCCO(ILS , ILT ,BS ,BT ,AO)
• a proof of an optimization specific correctness theorem whose statement is equal to the state-

ment (OptSpecCT).

For each intermediate optimization phase O peformed by our compiler, Layer 5 provides the
following:

1. The formalization of a set of results of data flow analyses, which are performed prior to the
optimization O, DataFlowAnalysisResultO.

2. The specification of a concrete bisimulation relation RO for the optimization O. The relation
RO is specified by a function bisimrelO which computes RO from two control flow graphs with
blocks and the result of data flow analysis.

bisimrelO : Program′′×Program′′×DataFlowAnalysisResultO → BisimulationRelation

3. The specification of an optimization correctness criterion TCCo, whose definition is based on
the notion of a translation relation between IL” programs

TCCO : Program′′ ×Program′′ ×DataFlowAnalysisResultO → Bool

where an expression TCCO((S ,BS), (T ,BT),AO) denotes that control flow graphs with blocks
(S ,BS) and (T ,BT) are in a translation relation which is a function of the optimization O
and the data flow analysis result AO.

3.7 Layer 6: Proof environments specific to particular proof tasks 49

4. The verification of the criterion TCCO: To verify the correctness of the criterion TCCO, Layer 5
provides a proof of a TCCO criterion correctness theorem which, informally, says the following:

if two control flow graphs with blocks (S ,BS) and (T ,BT) and a data flow analysis
result AO fulfill the optimization correctness criterion TCCO, then block-wise executions
of S and T bisimulate w.r.t. the bisimulation relation defined by the predicate bisimrelO
for the optimization O.

Using our notation, we can express this statement consicely as follows.

wtp(S , ΦS) ∧ wtp(T , ΦT) ∧ wfB(S ,BS) ∧ wfB(T ,BT) ∧
TCCO((S ,BS), (T ,BT),AO)
=⇒
bisimulation(S ,T ,BS ,BT , bisimrelO((S ,BS), (T ,BT),AO))

5. The proof of an optimization correctness theorem whose statement is specific to the optimiza-
tion O which, informally, says the following:

if two control flow graphs with blocks (S ,BS) and (T ,BT) and a data flow analysis
result AO fulfill the optimization correctness criterion TCCO, then S and T fulfill the
translation correctness predicate corrTrans provided by the translation contract layer.

Using our notation, we can express this statement consicely as follows.

wtp(S , ΦS) ∧ wtp(T , ΦT) ∧ wfB(S ,BS) ∧ wfB(T ,BT) ∧
TCCO((S ,BS), (T ,BT),AO) (I)
=⇒
corrTrans(S ,T)

The proof of Theorem (I) is straightforward as its statement is the result of conjoining the
optimization independent translation correctness theorem provided by Layer 4 and the TCCO

criterion correctness theorem provided by Layer 5 in 4.

Theorem (I) is directly applicable in proof scripts generated by the compiler: Let us assume
that the optimization O transforms an IL program S in a program T . Thus, given that our
SVF provides proof tactics allowing for proving statements of the form wtp(P , Φ), wfB(P ,B),
and TCCO((S ,BS), (T ,BT),AO), then generating an Isabelle/HOL theory with a proof that S
and T are semantically equivalent, is straightforward. The compiler merely has to generate an
Isabelle/HOL theory with

1. constant definitions of S , T , BS , BT , AO, ΦS , ΦT ,
2. proofs that programs S and T are well-typed w.r.t. program types ΦS and ΦT ,
3. proofs that the CFGB declarations BS and BT are well-formed w.r.t. S and T , respectively,
4. proof of the predicate TCCO((S ,BS), (T ,BT),AO)
5. proof of the translation correctness predicate corrTrans(S ,T) which, in the first step, applies

Theorem (I) and in the second step discharges its assumptions using the results in 2., 3., and
4..

Finally, it should be noted that the above corollary defines a particular proof script layout which
is used by the proof generation unit of our compiler.

3.7 Layer 6: Proof environments specific to particular proof tasks

Layer 6 provides lemmas and proof tactics which are applied in proof scripts generated by our
compiler. In our implementation of the SVF, the content of this layer is the most technical one as

50 3 Overview of the SVF

the implementation of the proof tactics provided by this layer uses the programming interface of
the theorem prover Isabelle/HOL and the lemmas proved in this layer do not extend the generic
framework set up in the lower layers but are merely used by the proof tactics implemented in this
layer as a kind of "glue code" lemmas.

In the following, we discuss two issues concerning proof tactics: Firstly, in interactive theorem
proving using Isabelle/HOL, the proof tactics are usually applied as procedures searching for the
proof of a statement in the proof state space and sometimes they fail to find the proof. Below,
we show why computing proof tactics in our SVF is a decidable problem. Secondly, we sketch the
idea of the algorithm, which is used to compute proof tactics.

From the technical point of view, proof tactics in Isabelle/HOL are higher-order ML functions
and, to put it simply, they function similarly to transition functions in the operational semantics of
programming languages: they take a proof state in the form of a stack of proof goals and compute
the successor proof state in which the top element of the goal stack is replaced by a sequence of proof
goals. Further, Isabelle/HOL provides tacticals which are ML constructs allowing for combining
tactics into new tactics. For instance, Isabelle/HOL provides a tactical EVERY which takes a list
of tactics [t0, . . . , tn] and combines them into a tactic which takes a proof state and computes
the successor proof state which is the result of successive applications of the tactics from the list
[t0, . . . , tn]. Using the above analogy to the operational semantics, we can say that if application
of a tactic to an initial proof state corresponds to application of a transition function to the initial
state of execution for a program, then application of tactic EVERY [t0, . . . , tn] to that proof state
corresponds to partial execution of a program which starts from the initial state of execution
for that program. As the compiler generates proof scripts in which programs are represented as
constants and all lemmas are statements with those constants as parameters, the compiler can, for
each lemma in the script, deterministically compute a tactic of the form EVERY [t0, . . . , tn] which
proves the lemma.

As aforementioned at the end of the previous section, Layer 4 and 5 provide a set of transla-
tion correctness theorems which give raise to a uniform proof script layout for each optimization
performed by the compiler. For example, if we want to generate proof scripts with proofs of the
statements of the form corrTrans(S ,T) and we want to apply Theorem (I) from the previous
section, then the layout of such proof scripts consists of the following parts:

Part 1.: provides constant definition of a source program S ,

Part 2.: provides constant definition of a target program T ,

Part 3.: provides constant definition of a program type ΦS ,

Part 4.: provides constant definition of a program type ΦT ,

Part 5.: provides constant definition of a CFGB declaration BS ,

Part 6.: provides constant definition of a CFGB declaration BT ,

Part 7.: provides constant definition of a result of data flow analysis AO,

Part 8.: provides proof of the predicate wtp(S , ΦS),

Part 9.: provides proof of the predicate wtp(T , Φt),

Part 10.: provides proof of the predicate wfB(S ,BS),

Part 11.: provides proof of the predicate wfB(T ,BT),

Part 12.: provides proof of the predicate TCCO((S ,BS), (T ,BT),AO)

Part 13.: provides proof of the predicate corrTrans(S ,T)

3.8 Proof checking: an example 51

Using this property, we implemented, for each optimization O and each lemma ln which has
to be proved in a proof script which was generated to certify a concrete result of application of O,
a parameterized tactic, i.e. an ML function of the form

fun fn x1 . . . xn−1 = let ... in EVERY [f1(x1), . . . , fn−1(xn−1)] end

which proves the lemma ln, if the values of the parameters x0,...,xn−1 are properly set. The
parameterized tactics have two kinds of parameters:

1. parameters which are identifiers of constants defined in the proof script, e.g. constants repre-
senting IL programs or constants representing the results of data flow analysis, and

2. parameters which are lemma names of lemmas which have been proven earlier in the script.

Thus, if Layer 6 provides, for each optimization phase, an ML structure with signatures of param-
eterized tactics which are needed to prove all lemmas in proof scripts generated to certify that
optimization phase, then generation of proof scripts for an optimization phase is straightforward:
After an optimization is completed, the compiler passes data structures representing the source
and the target programs; and the result of data flow analysis performed prior to the optimization
to a proof generation unit. The proof generation unit generates an abstract syntax tree which
describes the proof script layout: The leaves of tree, which are records with fields defining proper
values of the actual parameters in calls to parameterized tactics, like lemma names, program iden-
tifiers, etc, are unparsed to strings representing lemmas and calls to parameterized tactics which
prove that lemmas. The nodes of the tree are interpreted as string concatenation operators. The
proof generation unit unparses the tree in the same manner as the standard compiler does during
the code generation phase.

As future implementations Layer 6 will vary depending of the theorem prover used to implement
the SVF and the content of the SVF itself, explaning the implementation of proof tactics and "glue
code" lemmas is beyond of the scope of this thesis. In Section 3.8, we merely give a small example
which illustrates the purpose of "glue code" lemmas in our SVF.

Finally, we note that the content of this layer does not increases the size of the TCB in our
FTV system. If a proof tactic has a bug, then a call to this tactic can merely result in a false
alarm, i.e. in a situation that the proof checker rejects that tactic due to its inability to prove a
statement of interest although it is provably valid.

3.8 Proof checking: an example

As mentioned in Section 1.5.1, the theory files generated by our compiler can be either inspected
by the human and verified interactively using the theorem prover Isabelle/HOL or Isabelle/HOL
can be used as a proof checker in batch mode. This section illustrates the purpose of "glue code"
lemmas in our SVF and the work-flow of proof checking in batch mode by small example. In the
example, we use the Isabelle/HOL syntax.

Example 3.1. Let us consider again the work-flow of our compiler, cf. Figure 1.5. It follows from the
definition of corrTrans that proof of corrTrans(IL0,IL5) would be straightforward, if we proved
intermediate optimizations CF, DAE, NI, RAI, and RAE correct and if we had the following "glue
code" lemma which would allow us to derive corrTrans(IL0,IL5) from intermediate correctness
results directly in one proof step.

52 3 Overview of the SVF

Lemma 3.2. ("Glue code" lemma from Layer 6)

[| corrTrans(P0,P1);
corrTrans(P1,P2);
corrTrans(P2,P3);
corrTrans(P3,P4);
corrTrans(P4,P5)

|]
==>
corrTrans(P0,P5)

12

The proof of this lemma is trivial as by the definition of corrTrans we have to derive the conclusion
Sem(P0) = Sem(P5) from the following premises

• Sem(P0) = Sem(P1),
• Sem(P1) = Sem(P2),
• Sem(P2) = Sem(P3),
• Sem(P3) = Sem(P4), and
• Sem(P4) = Sem(P5).

It should be noted that the root theory Main in the theorem prover Isabelle/HOL already contains
the lemma trans:

[| P = Q; Q = R |] ==> P = R

which we could apply four times to derive the equation corrTrans(IL0,IL5) in our example.
Nevertheless, the statement of Lemma 3.2 reflects a fact about the layout of our proof scripts
which is program independent, namely, that we always prove the optimizations CF, DAE, NI,
RAI, and RAE in corresponding proof scripts and then show the equation corrTrans(IL0,IL5)
as a direct consequence of the results proved in those proof scripts. Omitting "glue code" lemmas
would lead to complex and cluttered proof tactics.

In the following, we demonstrate how Lemma 3.2 is applied during the proof checking. In our
example, we assume that our compiler generated all proof scripts with Isabelle/HOL theories as
visualized in Figure 1.5, i.e. it generated the following files:

1. a file CF.thy with the theory containing a proof of the lemma

Lemma 3.3. corrTrans(IL0,IL1)
12

2. a file DAE.thy with the theory containing a proof of the lemma

Lemma 3.4. corrTrans(IL1,IL2)
12

3. a file NI.thy with the theory containing a proof of the lemma

Lemma 3.5. corrTrans(IL2,IL3)
12

4. a file RAI.thy with the theory containing a proof of the lemma

Lemma 3.6. corrTrans(IL3,IL4)
12

5. a file RAE.thy with the theory containing a proof of the lemma

3.8 Proof checking: an example 53

Lemma 3.7. corrTrans(IL4,IL5)
12

6. a file Root.thy with the root theory containing the preambel

theory Root = CF + DAE + NI + RAI + RAE:

and a file Root.ML with a proof of the main lemma

"corrTrans(IL0,IL5)";

In the following, we describe the proof checking steps, which are made by the proof checker in
our scenario:

1. step: The file Root.thy is given as input to the theorem prover Isabelle/HOL.
2. step: The preamble in the Root.thy causes the theorem prover to read files CF.thy, DAE.thy,

NI.thy, RAI.thy, and RAE.thy; and to check proofs of Lemmas 3.3, 3.4, 3.5, 3.6, and 3.7.
Once the proofs are verified, the theorem prover extends the theory Root by these lemmas.

3. step: As the theory file contains no constant definitions, the Isabelle/HOL starts to read the
proof script Root.ML.

4. step: The theorem prover encounters the statement of the main lemma in the theory Root

Goal "corrTrans(IL0,IL5)";

parses the statement, and starts checking the proof of the lemma. The proof of the lemma
consists of a single tactic call as follows, see the explanation below.

by (Root.main_lemma_tac "Lemma 1.3" "IL1"
"Lemma 1.4" "IL2"
"Lemma 1.5" "IL3"
"Lemma 1.6" "IL4"
"Lemma 1.7");

The line of the form by (S.t); is interpreted by the theorem prover as a call of a tactic t
which is defined in the structure S. The tactic main_lemma_tac is defined as follows (we omit
some technical details here).

structure Root =
struct
...

fun main_lemma_tac s1 p1 s2 p2 s3 p3 s4 p4 s5 =
EVERY [res_inst_tac [("P1",p1),("P2",p2),("P3",p3),("P4",p4)]

(thm "Lemma 1.2") 1,
resolve_tac (thm s1) 1,
resolve_tac (thm s2) 1,
resolve_tac (thm s3) 1,
resolve_tac (thm s4) 1,
resolve_tac (thm s5) 1
];

...
end

The call to the tactic Root.main_lemma_tac results in application of the tactic

EVERY [res_inst_tac [("P1","IL1"),("P2","IL1"),("P3","IL3"),("P4","IL4")]
(thm "Lemma 1.2") 1,

resolve_tac (thm "Lemma 1.3") 1,
resolve_tac (thm "Lemma 1.4") 1,

54 3 Overview of the SVF

resolve_tac (thm "Lemma 1.5") 1,
resolve_tac (thm "Lemma 1.6") 1,
resolve_tac (thm "Lemma 1.7") 1
]

to the current state of the proof. Application of the first tactic from the list to the conclusion
of the main lemma (proof in backward fashion), where the free variables of the lemma: P1, P2,
P3, and P4, are instantiated with the constant identifiers of constants representing programs
in the example, results in splitting of the current proof state in five subgoals which are pushed
on the stack.

1. subgoal: corrTrans(IL0,IL1)
2. subgoal: corrTrans(IL1,IL2)
3. subgoal: corrTrans(IL2,IL3)
4. subgoal: corrTrans(IL3,IL4)
5. subgoal: corrTrans(IL4,IL5)

Then, successive application of the remaining tactics from the list results in successive popping
the top elements from this stack as the semantics of a tactic of the form
resolve_tac (thm lemmaname) is that Isabelle/HOL applies the lemma lemmaname to the
top element of the stack and removes that element from the stack. When the list of tactics is
completely proceed, the stack is empty and thus the proof of the main lemma is successfully
checked.

♦

The example illustrates

• how the generated proof scripts are checked,
• how the proofs in our SVF are structured in program dependent and program independent

parts using "glue code" lemmas and the Isabelle/HOL tacticals.
• how the proof script layout and "glue code" lemmas are adjusted in a way which allows for

generating proof scripts realized as unparsing of abstract syntax trees in prefix order.
• that the computation of a tactic proving a lemma is realized as visiting in infix order nodes of

an imaginary proof tree, which corresponds to the proof of that lemma.

Chapter 4

Translation contract

This section presents the content of Layer 2 of our implementation of the SVF. In Section 3.3,
we motivated that the general purpose of Layer 2 is to provide the formalization of a translation
contract for translations from a source into a target language programs. Also there, we explained
what requirements have to be fulfilled by a translation contract provided by a SVF which follows
the FTV approach and mentioned that, as we are interested in translation certificates attesting
to the optimization correctness, we formalized a special case of the translation contract in which

1. the source language and the target language are equal,
2. the program semantics functions are total functions, and
3. the relation between the sets of meanings of programs, which is used in the definition of the

translation correctness predicate is defined as the equality.

In particular, our translation contract comprises the following:

• The formalization of an intermediate language IL which includes
– The definition of the abstract syntax of the language IL.
– The definition of the program semantics function for the language IL.

• The formalization of a translation correctness predicate corrTrans on two IL programs which
checks if their program semantics are equal.

The rest of this section is organized as follows. The formalization of IL is presented in Sections
4.1 and 4.2 that present the abstract syntax of the language IL and the definition of the program
semantics function, respectively. Section 4.3 presents the specification of the translation correctness
predicate.

4.1 Abstract syntax of IL

This section presents abstract syntax of the language IL. IL is a small intermediate language
of goto programs which provides, together with its formally defined semantics, a basis for the
optimization phase of our compiler. As is standard, we present the syntax in adherence to the
presentation style given by Winskel in [120].

We begin the presentation by listing the syntactic sets associated with IL:

• finite set of identifiers Variable,
• natural numbers Nat, consisting of positive integers with zero,
• numbers Int, consisting of positive and negative integers with zero,
• truth values Bool = {true, false}
• types Type,

56 4 Translation contract

• values Value,
• indexes Index,
• operands Operand,
• l-values LValue,
• expressions Expression,
• variable declarations VariableDecl,
• lists of variable declarations VariableDeclList,
• instructions Instruction,
• lists of instructions InstructionList,
• program declarations ProgramDecl, and
• programs Program.

Before we describe how the syntactic sets are built-up, we define metavariables ranging over
these sets and notational conventions we follow in this thesis:

• Metavariables are represented by lower-case letters,
• a, v range over identifiers Variable,
• n ranges over natural numbers Nat,
• i ranges over numbers Int,
• b ranges over truth values Bool,
• τ ranges over types Type,
• val ranges over values Value,
• idx ranges over indexes Index,
• o ranges over operands Operand,
• lv ranges over l-values LValue,
• vd ranges over variable declarations VariableDecl,
• vds ranges over lists of variable declarations VariableDeclList,
• instr ranges over instructions Instruction,
• instrs ranges over lists of instructions InstructionList,
• Pdcl ranges over program declarations ProgramDecl,
• S , T , P range over programs Program,
• The metavariables we use to range over the syntactic categories can be primed or subprimed,
• (s, s), (s, s, s),. . . range over n-tuples of syntactic structures s, e.g. (b, b, b) ranges over product

set Bool×Bool×Bool,
• [s, . . . , s] ranges over lists of syntactic structures s, e.g. [b, . . . , b] ranges over lists of truth

values.

Definition 4.1 gives formation rules for the syntactic sets. An IL program P is a pair (Pdcl , I)
consisting of a program declaration Pdcl and an input I . A program declaration is a pair
(vds, instrs) consisting of a list of variable declarations vds and a list of instructions instrs. A
variable declaration is a pair (v , τ) consisting of an identifier v and a type τ . Each element of
a variable declaration list vds, (v , τ), indicates that the declared type of identifier v is τ . A de-
clared type of an identifier can be either boolean type bool, integer type int, boolean array type
barray(n), or integer array iarray(n). In an array declaration, the value of the parameter n
indicates that its declared array type comprises only lists with n elements. The instruction set
Instruction comprises five commands:

1. assignment lv := e,
2. print integer printi(e),
3. conditional branch branch(e, n),
4. unconditional branch goto(n), and

4.2 Semantics of IL 57

5. exit exit.

An input I for a program P = (Pdcl , I) is a list of pairs (v , val), where v is an identifier and val
is a value.

Definition 4.1.

v , a ∈ Variable = {v0, v1, . . . , vn, a0, a1, . . . , am}
Type (τ ::= bool | int | barray(n) | iarray(n)

IntArray (il ::= [] | i#il

BoolArray (bl ::= [] | b#bl

Value (val ::= b | i | il | bl

Index (idx ::= i | v

Operand (o ::= i | b | v | a[idx]

Expression (e ::= o | o1 + o2 | o1 − o2 | o1 ∗ o2 | − o |
o1 ∧ o2 | ¬o | o1 ∨ o2 |
o1 = o2 | o1 ,= o2 | o1 < o2 | o1 ≤ o2

LValue (lv ::= v | a[idx]

Instruction (instr ::= lv := e | printi(e) | branch(e, n) |
goto(n) | exit

InstructionList (instrs ::= [] | instr#instrs

VariableDecl (vd ::= (v , τ)

VariableDeclList (vds ::= [] | vd#vds

Input (I ::= [] | (v , val)#I

ProgramDecl (Pdcl ::= (vds, instrs)

Program (P , S ,T ::= (Pdcl , I)

4.2 Semantics of IL

This section presents a formal semantics definition of a language IL. The section is divided in
three parts which are organized as follows. The first part of the section introduces syntactic sets
and metavariables associated with the semantics definition of IL. The second part of the section
presents the definition of the operational semantics of IL. The last part of the section presents the
definition of a program semantics function for the language IL.

We begin the presentation by listing the syntactic sets assiociated with the semantics of IL:

• program termination flag values
TerminationFlag = {T, NT},

• array-index-out-of-bounds exception flag values
ArrayIndexFlag = {ABok, AB},

• program counters ProgramCounter,
• output buffers OutputBuffer,
• states of computations State, and
• configurations, i.e. states of program executions, Configuration;

and define metavariables ranging over these sets:

• tf ranges over program termination flags TerminationFlag,
• af ranges over array-index-out-of-bounds exception flags ArrayIndexFlag,
• pc ranges over program counters ProgramCounter,
• b ranges over buffers OutputBuffer,
• s ranges over states of computations State, and

58 4 Translation contract

• σ ranges over configurations Configuration.

Definition 4.2 gives formation rules for the syntactic set Configuration. We use elements
of the Configuration set to model states of executions IL programs. A configuration σ ∈
Configuration is a tuple (tf , af , pc, b, s) which we consider as a result of partial execution of
a program. The components of σ have their meanings as follows.

• The value of the flag tf ∈ TerminationFlag indicates whether a program terminated, tf = T,
or not, tf = NT.

• The value of the flag af ∈ ArrayIndexFlag indicates whether execution of the last preceding
instruction caused an array-index-out-of-bounds exception, af = AB, or not, af = ABok.

• The meaning of the program counter pc is standard. Its value indicates which instruction of
an executed program will be fetched as next.

• The set OutputBuffer models a set of states of an output buffer. During execution of a
program, a buffer b ∈ OutputBuffer can be put into a state whose form is either FLUSH(n)
or WRITE(n, i). The meaning of a state of the buffer component b is always related to a partial
execution that produced a configuration σ comprising b.
1. The meaning of a state of the form FLUSH(n) is the following:

a) The last preceding executed instruction of the partial execution producing σ was a
non-printing instruction.

b) n integers have been written into the buffer during the partial execution producing σ.
2. The meaning of a state of the form WRITE(n, i) is the following:

a) The last preceding executed instruction of the partial execution producing σ was a
printi instruction.

b) n integers have been written into the buffer during the partial execution producing σ.
c) The i was n-th integer written into the buffer.

Thus, the value of the buffer component b in a configuration describes observable part of
program behavior resulting from execution of the last preceding instruction.

• We use elements of the set State to model states of computations resulting from all partial
executions of IL programs. A state s ∈ State is a partial mapping from identifiers to values.
In an initial configuration σ0 for a program P = (Pdcl , I), the domain of the component s0 is
a function of the input I = [(v0, val0), . . . , (vn, valn)], dom(s0) = set(map fst I), and it remains
unchanged for all partial executions of P . The value of the state component s in a configuration
belongs to a non-observable part of program behavior.

Definition 4.2.

TerminationFlag (tf ::= T | NT
ArrayIndexFlag (af ::= ABok | AB

OutputBuffer (b ::= FLUSH(n) | WRITE(n, i)

pc ∈ ProgramCounter = Nat

s ∈ State = Variable ! Value

Configuration (σ ::= (tf , af , pc, b, s)

In the following, we present the definitions of functions which constitute the operational se-
mantics of IL.

Definition 4.3 defines the function evalo which evaluates an operand o in the context of a state
of computation s, evalo(o, s). According to the definition, an operator o is evaluated in a context
of a state of computation s. The result of the evaluation is a tuple of the form (af , oval) whose
components denote the following: The value of the component af is either equal ABok or equal AB.

4.2 Semantics of IL 59

A result tuple with the component af set to ABok indicates that evaluation of o caused no array-
index-out-bounds exception. Otherwise, it is set to AB. The component af is relevant only when
considering evalution results of indexed operators, i.e. operators having either the form a[i] or the
form a[v]. As for the operators of the former form, the definition of evalo requires that a must be
either a well-defined integer list or a well-defined boolean list in s and that i is a valid index of that
list. As for the operators of the latter form, the definition requires additionally that v must be a
well-defined integer in s that is a valid index of the list. The value of the component oval is either
of the form Some(val) or is equal None. A result tuple with the component oval set to a value of
the form Some(val) indicates that all identifiers of o are well-defined in s. Otherwise, it is set to
None. The component is not relevant when considering evaluation results of constant operands,
i.e. operands having the form either i or b. Further, the reader should note that according to
the definition of evalo the tuples resulting from evaluation of indexed operands, evalo(a[i], s) and
evalo(a[v], s), can not be of the form (ABok,None) which is in contrast to evaluation of variable
operands. Section 5.4 presents a type safety theorem which we proved for the language IL that
captures the issue of operand evaluation too: Applying the theorem, we proved a corollary for each
operand variant containing variables, i.e. v , a[i], and a[v], that says the following: if a program is
well-formed and the operand variant is in the set of operands of the program then all variables of
the operands are well-defined in a context of a current state of computation of the program and
evaluation of the operand w.r.t. the state yields a result tuple that has one of two forms only:
either (ABok,Some(val)) or (AB,None).

Definition 4.3.

OptionalValue (oval ::= Some(val) | None

evalo : Operand× State −→ ArrayIndexFlag ×OptionalValue

evalo(i , s) = (ABok, Some(i))

evalo(b, s) = (ABok, Some(b))

evalo(v , s) = (ABok, s(v))

evalo(a[i], s) =

8
><

>:

(ABok, Some(il !i)) if s(a) = Some(il) ∧ 0 ≤ i < length(il),

(ABok, Some(bl !i)) if s(a) = Some(bl) ∧ 0 ≤ i < length(bl),

(AB, None) otherwise

evalo(a[v], s) =

8
><

>:

(ABok, Some(il !i)) if s(a) = Some(il) ∧ s(v) = Some(i) ∧ 0 ≤ i < length(s(a)),

(ABok, Some(bl !i)) if s(a) = Some(bl) ∧ s(v) = Some(i) ∧ 0 ≤ i < length(s(a)),

(AB, None) otherwise

Definition 4.4 defines a function evale which evaluates an expression e in the context of a state
of computation s, evale(e, s). The evaluation of expressions is similar to the evaluation of operands
in the following sense. Firstly, an expression e is evaluated in a context of a state of computation
s. Secondly, evaluation of e w.r.t. s, evale(e, s), yields a tuple (af , oval) which is an encoding of the
result. The meaning of the tuple is the same as by tuples resulting from evaluation of operands.
Thirdly, the definition of evale requires that types of operand evaluation results conform with the
type of evaluated expression. Here, types play an even more important role than it was the case by
the evaluation of operands themself as they were checked there only during evaluation of indexed
operators. For example, the definiton of evale requires that in order to evaluate on expression
o1 + o2 w.r.t. a state the results of evaluations of operands o1 and o2 w.r.t. to the state must be
well-defined integer values.

60 4 Translation contract

Definition 4.4.

evale : Expression× State −→ ArrayIndexFlag ×OptionalValue

evale(o, s) = (evalo(o, s))

evale(o1 + o2, s) =

8
><

>:

(ABok, Some(i1 + i2)) if evalo(o1, s) = (ABok, Some(i1)) ∧
evalo(o2, s) = (ABok, Some(i2)) ,

(AB, None) otherwise

evale(o1 − o2, s) =

8
><

>:

(ABok, Some(i1 − i2)) if evalo(o1, s) = (ABok, Some(i1)) ∧
evalo(o2, s) = (ABok, Some(i2)) ,

(AB, None) otherwise

evale(o1 ∗ o2, s) =

8
><

>:

(ABok, Some(i1 ∗ i2)) if evalo(o1, s) = (ABok, Some(i1)) ∧
evalo(o2, s) = (ABok, Some(i2)) ,

(AB, None), otherwise

evale(−o, s) =

(
(ABok, Some(−i)) if evalo(o, s) = (ABok, Some(i)),

(AB, None), otherwise

evale(o1 ∧ o2, s) =

8
><

>:

(ABok, Some(b1 ∧ b2)) if evalo(o1, s) = (ABok, Some(b1)) ∧
evalo(o2, s) = (ABok, Some(b2))

(AB, None) otherwise

evale(¬o, s) =

(
(ABok, Some(¬b)), if evalo(o, s) = (ABok, Some(b)),

(AB, None) otherwise

evale(o1 ∨ o2, s) =

8
><

>:

(ABok, Some(b1 ∨ b2)) if evalo(o1, s) = (ABok, Some(b1)) ∧
evalo(o2, s) = (ABok, Some(b2))

(AB, None) otherwise

evale(o1 = o2, s) =

8
><

>:

(ABok, Some(i1 = i2)) if evalo(o1, s) = (ABok, Some(i1)) ∧
evalo(o2, s) = (ABok, Some(i2))

(AB, None) otherwise

evale(o1 ,= o2, s) =

8
><

>:

(ABok, Some(i1 ,= i2)) if evalo(o1, s) = (ABok, Some(i1)) ∧
evalo(o2, s) = (ABok, Some(i2))

(AB, None) otherwise

evale(o1 < o2, s) =

8
><

>:

(ABok, Some(i1 < i2)) if evalo(o1, s) = (ABok, Some(i1)) ∧
evalo(o2, s) = (ABok, Some(i2))

(AB, None) otherwise

evale(o1 ≤ o2, s) =

8
><

>:

(ABok, Some(i1 ≤ i2)) if evalo(o1, s) = (ABok, Some(i1)) ∧
evalo(o2, s) = (ABok, Some(i2))

(AB, None) otherwise

Definition 4.5 defines an instruction execution function execi which computes a successor con-
figuration execi(pc, b, s, instr) for an instruction instr in the context of a program counter pc, an
output buffer b, a state of computation s. The values of pc, b, and s model component values
of a configuration σn whose components tf and af are set to NT and ABok, respectively, i.e. a
configuration that is a result of an exception-free partial execution of a program, and the result
of execution of instr is a configuration that corresponds to successor configuration of σn, σn+1, in
the execution of the program. In the following, we call configurations produced by exception-free
partial executions the error-free ones and configurations produced by partial executions which
raised an array-index-out-of-bounds exception the erroneous ones. As execution of an instruction
makes only sense in a context of an error-free configuration and executing of an instruction yields a

4.2 Semantics of IL 61

successor configuration, execi computes a successor configuration doing without values of the flags
tf and af . In the following, we discuss instruction evaluation rules for each instruction separately.

Evaluation of assignment instructions. Execution of an assignment does not terminate execu-
tion of a program. Because of this, execi always returns a successor configuration with the value
of the termination flag tf set to NT. Further, execution of an assignment a program does not
modify observable behavior of the program. On the other hand, execi has to take into account
that the last preceding executed instruction could possibly have modified observable behavior of
the program by writting an integer into the buffer and that the state of the buffer can have the
form WRITE(n, i). For this reason, execi always returns a configuration with the buffer component
flushed, flush(b). The values of remaining components in the successor configuration depend on
the result of evaluation of the assignment’s expression in the following way: If evaluation of the
expression yields a well-defined value then execi returns an error-free configuration with values
of exception flag af , program counter pc, and state of computation s set to ABok, Suc(pc), and
properly updated s, respectively. Otherwise, execi returns an erroneous configuration with af set
to AB and unchanged pc and s.

Evaluation of printi instructions. Execution of a printi instruction of a program neither ter-
minates execution of the program nor updates current state of computation but it does modify
observable behavior of the program. For this reason, execi computes values of termination flag
tf , exception flag af , and program counter pc in a successor configuration in the same way as
in the case of the assignment instruction and leaves the state of computation unchanged. The
modification of observable behavior is done by updating the state of output buffer b. Here, execi
must take into account two possible cases of the last preceding executed instruction:

1. The last preceding executed instruction has been a non-printi instruction and the buffer is
flushed, i.e. it has the form FLUSH(n). In this case, execi evaluates printi’s expression to an
integer value, writes the value into the buffer, and increments the buffer counter. The last two
steps are modeled by the buffer state WRITE(Suc(n), i) in the successor configuration.

2. The last preceding executed instruction has been a printi instruction and the buffer non-
empty, i.e. it has the form WRITE(n, i). In this case, execi evaluates printi’s expression to an
integer value, flushes the buffer, writes the value into the buffer, and increments the buffer
counter. The last three steps are modeled by the buffer state WRITE(Suc(n), i) in a successor
configuration.

Evaluation of branch instruction. Execution of a branch instruction of a program neither ter-
minates execution of the program nor updates the current state of computation nor modifies
observable behavior of the program. For this reason, execi computes values of termination flag tf ,
exception flag af , buffer state b in a successor configuration in the same way as in the assign-
ment instruction case and leaves state of computation s unchanged. Computation of the value of
program counter is standard. execi evaluates branch’s expression to a boolean value b and sets
program counter to either Suc(pc) or to n according to the value of b.

Evaluation of goto instructions. Execution of a goto instruction of a program neither terminates
execution of the program nor updates current state of computation nor modifies observable be-
havior of the program nor can produce an erronoeus successor configuration. For this reason, execi
computes values of termination flag tf , exception flag af , buffer state b, and state of computation
s in a successor configuration in the same way as in the branch instruction case. Computation
of the value of program counter is standard. execi sets program counter to the value of goto’s
unconditional destination n.

Evaluation of exit instructions. Execution of an exit instruction of a program flushes output
buffer and terminates execution of the program. The values of other components of a successor
configuration are carried from the predecessor configuration over.

62 4 Translation contract

Summarizing the above, an erroneous successor configuration σn+1 arises from an error-free
predecessor configuration σn by flushing output buffer in σn and "freezing" the remaining compo-
nents of σn, i.e. carrying the components from σn to σn+1 over.

Definition 4.5.

flush : OutputBuffer → OutputBuffer

flush(FLUSH(n)) = FLUSH(n)

flush(WRITE(n, i)) = FLUSH(n)

execi : ProgramCounter×OutputBuffer× State× Instruction → Configuration

execi(pc, b, s, v := e) =(
(NT, ABok, Suc(pc), flush(b), s(v %→ val)), if evale(e, s) = (ABok, Some(val))

(NT, AB, pc, flush(b), s), otherwise

execi(pc, b, s, a[i] := e) =8
><

>:

(NT, ABok, Suc(pc), flush(b), s(a %→ s(a)[(nat(i)) := val])),

if evale(e, s) = (ABok, Some(val))

(NT, AB, pc, flush(b), s), otherwise

execi(pc, b, s, a[v] := e) =8
><

>:

(NT, ABok, Suc(pc), flush(b), s(a %→ s(a)[(nat(s(v))) := val])),

if evale(e, s) = (ABok, Some(val))

(NT, AB, pc, flush(b), s), otherwise

execi(pc, FLUSH(n), s, printi(e)) =(
(NT, ABok, Suc(pc), WRITE(Suc(n), val), s), if evale(e, s) = (ABok, Some(val))

(NT, AB, pc, flush(b), s), otherwise

execi(pc, WRITE(n, i), s, printi(e)) =(
(NT, ABok, Suc(pc), WRITE(Suc(n), val), s), if evale(e, s) = (ABok, Some(val))

(NT, AB, pc, flush(b), s), otherwise

execi(pc, b, s, branch(e,n)) =8
><

>:

(NT, ABok,n, flush(b), s), if evale(e, s) = (ABok, Some(val)) ∧ val

(NT, ABok, Suc(pc), flush(b), s), if evale(e, s) = (ABok, Some(val)) ∧ ¬val

(NT, AB, pc, flush(b), s), otherwise

execi(pc, b, s, goto(n)) = (NT, ABok,n, flush(b), s)

execi(pc, b, s, exit) = (T, ABok, pc, flush(b), s)

Definition 4.6 defines a transition definition exec which computes a successor configuration
exec(P , σ) for an IL program P and a configuration σ. exec is a wrapper function that takes into
account that a configuration resulting from a partial execution of P can have one of the following
three forms:

1. A configuration can result from a partial program execution of P whose last preceding ex-
ecuted instruction has been an exit instruction. In this case, the configuration has the form
(T, af , pc, b, s) as execution of exit instruction sets the value of termination flag tf to T.

2. A configuration can result from a partial execution of P with a property that execution of the
last preceding executed instruction raised an array-index-out-of-bound exception. In this case
the configuration is an erroneous one and it has the form (tf , AB, pc, b, s).

3. A configuration can result from a partial execution of P whose last preceding executed in-
struction has been neither an exit instruction nor its execution caused an exception. In this
case, the configuration is an error-free one and it has the form (NT, ABok, pc, b, s).

In the first two cases, evaluation of the expression exec(P , σ) yields unchanged configuration σ. In
other words, exec functions as projection λ(P , σ′). σ′ passing "frozen" configuration σ on. In the

4.2 Semantics of IL 63

third case, the input configuration is an error-free one and exec computes its successor by dropping
flags tf and af , which are not needed for performing the task of computation, looking up for an
instruction instrs!pc to be executed as next one, and evaluating expression execi(pc, b, s, instrs!pc).

Definition 4.6.

exec : Program×Configuration → Configuration

exec(((vds, instrs), I), (T, af , pc, b, s)) = (T, af , pc, b, s)

exec(((vds, instrs), I), (tf , AB, pc, b, s)) = (tf , AB, pc, b, s)

exec(((vds, instrs), I), (NT, ABok, pc, b, s)) = execi(pc, b, s, instrs!pc)

Definition 4.7 defines a function init which computes an initial configuration init(P) for an IL
program P . The components of an initial configuration for a program P are defined as follows.

• The value of the program termination flag is set to NT so as to indicate that execution of P is
about to begin.

• The value of the array-index-out-of-boundss exception flag is set to ABok so as to indicate that
no no exceptions has been raised yet.

• As the first instruction to be executed in a program is always the first one in the instruction
list of P , the value of the program counter is set to 0.

• The value of the output buffer is set to FLUSH(0) so as to indicate that no printi instructions
has been executed yet.

Definition 4.7.

init : Program → Configuration

init(Pdcl , I) = (NT, ABok, 0, FLUSH(0), mapof(I))

Definition 4.8 defines a machine function M which models a simple machine executing IL pro-
grams. M computes a configuration M(P , σ,n) which is a result of n successive program execution
transitions starting from a configuration σ.

Definition 4.8.

M : Program×Nat → Configuration

M(P , σ, 0) = σ

M(P , σ, Suc(n)) = exec(P , M(P , σ,n))

At the beginning of this thesis, we informally defined semantics of an IL program as its ob-
servable behavior and the observable behavior of a program as a sequence of integers printed by
the program. Now, with the definition of the operational semantics at hand, we can formalize the
notion of the observable behavior and give the definition of a program semantics function for the
language IL.

We begin by introducing syntactic sets associated with the notion of the observable behavior:

• tokens Token,
• emissions Emission, and
• observable behavior ObservableBehavior;

and metavariables ranging over these sets:

• tok ranges over tokens Token,

64 4 Translation contract

• em ranges over emissions Emission, and
• seq ranges over observable behaviors ObservableBehavior.

Our formalization of sequences of integers printed by a program differs from standard formal-
izations of sequences as it must take into account the following constraints:

• Sequences can be finite or infinite (standard constraint).
• Our formalization of sequences must take into account that the sequences model observable

behaviors of programs and programs can terminate or not. As termination is also a part of
observable behavior of a program, a sequence of integers printed by the program alone does
not completely specify its behavior. Consequentially, the equality of two integer sequences
printed by two different programs alone can not be the main criterion for observable behavior
equivalence of the programs as the first one can terminate directly after printing a sequence
and the second one can print the same sequence and then start looping infinitely.

• The notion of observable behavior has to be formalized in a way that allows to reason formally
about equivalence of program behaviors. In particular, it has to support reasoning by inductive
arguments.

Hence, we model sequences of integers printed by IL programs as sets of indexed tokens seq ∈
ObservableBehavior where each token tok ∈ Token in seq has either the form WRITETOK(n, i)
or the form ENDTOK(n), cf. Definition 4.9. The modelling relation between observable behavior of
a program P and a sequence seq is defined as follows.

• A token of the form WRITETOK(n, in) is an element of seq iff P prints a sequence with a prefix
{i0, i1, . . . , in}.

• A token of the form ENDTOK(n) is an element of seq iff P prints a sequence {i0, i1, . . . , in−1}
and terminates.

Definition 4.9.

Token (tok ::= WRITETOK(n, i) | ENDTOK(n)

seq ∈ ObservableBehavior = P(Token)

Let us consider a transition of execution from a configuration to successor configuration for a
program. As the transition does not necessarily changes observable behavior of the program and
if it does it, then the change can result either from printing an integer or from termination of the
program, we formalized an auxiliary notion of emission which captures all possible behaviors of
a program during a transition and allows us to formally describe overall observable behavior of a
program during its whole execution.

Definition 4.10 gives formation rule for the syntactic set Emission that models the set of emis-
sions and definition of a function emission that computes emission emission(σ) for a configuration
σ. If one takes into account the forms of tokens then an emission em ∈ Emission of a program
has one of three forms:

1. An emission of the form NOEMIT is associated to a transition of a program iff the program
neither prints an integer during the transition nor terminates during the transition.

2. An emission of the form EMIT(WRITETOK(n, in)) is associated to a transition of a program iff
the program has already printed a sequence of integers {i0, i1, . . . , in−1} and it prints integer
in during the transition.

3. An emission of the form EMIT(ENDTOK(n)) is associated to a transition iff the program has
already printed a sequence of integers {i0, i1, . . . , in−1} and it terminates during the transition.

4.3 Translation correctness predicate 65

Definition 4.10.

Emission (em ::= EMIT(tok) | NOEMIT

emission : Configuration → Emission

emission(T, af , pc, FLUSH(n), s) = EMIT(ENDTOK(n))

emission(NT, af , pc, FLUSH(n), s) = NOEMIT

emission(NT, af , pc, WRITE(n, i), s) = EMIT(WRITETOK(n, i))

With the above definitions at hand, we can give a definition of a program semantics function
for the IL language, cf. Definition 4.11. The program semantics is defined by a function Sem
which maps IL programs to their observable behaviors, cf. Figure As sequences resulting from
execution of IL program can possibly be infinite, the definition of Sem is given in declarational
style and is based both on operational semantics and trace semantics. An informal idea of the
algorithm underlying Sem is as follows. We let the machine M execute a program P forever by
applying successively the transition function exec in an infinite loop. In doing so, we generate an
infinite trace of configurations t where each element of the trace is a configuration resulting from
n successive transitions starting from initial configuration init(P), t(n) = M(P ,n). Each trace
element t(i + 1) carries information about changes of observable behavior of P during transition
from t(i) to t(i+1) encoded in the state of output buffer. The algorithm builds an output sequence
of tokens from the trace in three steps:

1. First step inspects iteratively all elements of t in the order of their producing, t(0), t(1), . . . ,
and computes an intermediate sequence of emmissions of P .

2. Second step filters out NOEMIT emissions from the intermediate sequence.
3. Third step builds output sequence of tokens by stripping EMIT constructors from elements of

the sequence resulting from the second step.

Definition 4.11.

Sem : Program → ObservableBehavior

Sem(P) = {tok | ∃n. emission(M(P ,n)) = EMIT(tok)}

4.3 Translation correctness predicate

This section presents the definition of a translation correctness predicate which is based on the
definition of program semantics given in the previous section.

As IL programs are defined as pairs (Pdcl , I) consisting of a program declarations Pdcl and
an input I , there are in general two possible definitions of the correctness predicate that seem to
be reasonable:

The first one is defined as a predicate corrTrans in Definition 4.12. According to the definition
of corrTrans, two programs are semantically equivalent iff their observable behaviors are the same.
In this thesis, we use corrTrans as translation correctness predicate.

Definition 4.12.

corrTrans : Program×Program → Bool

corrTrans(S, T) ≡ Sem(S) = Sem(T)

66 4 Translation contract

The second one, shown in Definition 4.13, uses additionally two predicates wfi and conform
with signatures

wfi : ProgramDecl× Input→ Bool

and

conform : Input× Input→ Bool,

respectively.

Definition 4.13.

corrTrans2 : ProgramDecl×ProgramDecl → Bool

corrTrans2(PdclS ,PdclT) ≡
∀ IS IT . wfi(PdclS , IS) ∧ wfi(PdclT , IT) ∧ conform(I1, I2)

−→ Sem(PdclS , IS) = Sem(PdclT , IT)

Informally, expressions wfi(Pdcl , I) and conform(IS , IT) say that program input I is well-formed
w.r.t. to a program declaration Pdcl and that inputs IS and IT conform to each other according
to the definition of conform. A formal definition of wfi will be given later on. A formal definition of
conform is not given in this thesis. The most commonly used definition of conform(IS , IT) is equality
of two inputs, IS = IT . Although the corrTrans2 is more suitable for verification of intraprocedural
optimizations, which are subject of this thesis too, we made a design decision to favor the predicate
corrTrans over corrTrans2. The reasons for making such decision are as follows.

Firstly, our IL programs comprise only one procedure Pdcl and input definition I ; and IL
instruction set contains no procedure calls. For this prototype scenario, we wanted to investigate
the problem of verification of optimizations performed on standalone programs with known inputs
using a correctness predicate which makes no assumptions weakening its statement. Here, the
reader should note that it is easier to prove a statement

corrTrans2(PdclS ,PdclT)

for two IL program declarations PdclS and PdclT than to prove a statement

corrTrans((PdclS , IS), (PdclT , IT))

for the same program declarations and concrete inputs IS and IT . To prove corrTrans2(PdclS ,PdclT),
we are allowed to introduce two fresh variables I ′S ∈ Input and I ′T ∈ Input and to make three
assumptions:

1. wfi(PdclS , I ′S),
2. wfi(PdclT , I ′T), and
3. conform(I ′1, I ′2)

and from this we have to derive the equation Sem(PdclS , I ′S) = Sem(PdclT , I ′T). In contrast, if we
want to prove corrTrans((PdclS , IS), (PdclT , IT)) for two programs (PdclS , IS) and (PdclT , IT))
then we are not allowed to make any assumptions and we have to discharge the assumptions

1. wfi(PdclS , IS),
2. wfi(PdclT , IT), and
3. conform(I1, I2)

4.3 Translation correctness predicate 67

first before we derive from them the equation Sem(PdclS , IS) = Sem(PdclT , IT).
Secondly, our framework can be easily adapted to allow verifications according to the defini-

tion of corrTrans2 as it provides more proof techniques than necessary to prove a corresponding
statement corrTrans2(PdclS ,PdclT).

Thirdly, in some programming languages there is a calling convention that local variables are
assumed to have predefined values (for example in the Java language). This means that if we extend
our language IL by procedure calls with this calling convention, then we have to adapt syntax and
semantics of a new language by splitting states of computations and inputs for new programs in
global and local parts. As in this new scenario local parts on inputs will have to be treated exactly in
the same way as in our framework, large parts of our work will be directly reusable. In particular,
our proof environments providing proof techniques for discharging aforementioned assumptions
about well-formedness of program declarations since well-formedness of program declarations is
one of prerequisites of well-typedness property of IL programs which is formalized in the next
section.

Chapter 5

Type safety of the language IL

This section presents the content of Layer 3 of our implementation of the SVF. In Section 3.4, we
motivated that the general purpose of Layer 3 is to provide proofs that the source and the target
languages are type safe. Also there, we explained why the type safety proofs have to be provided by
a SVF which follows the FTV approach. As we are interested in translation certificates attesting
to the optimization correctness and our translation contract provides the formalization of only one
langugae IL, our implementation of Layer 3 provides a formal framework for one language only,
IL. The formal framework of our implementation of Layer 3 provides the following:

1. The formalization of a simple type system for the language IL.
2. The formalization of the notion of well-typedness of IL programs.
3. The formalization of the notion of type safe execution of an IL program.
4. A proof of a type safety theorem saying that if an IL program is well-typed w.r.t. to a program

type, then all partial executions of that program are type safe.

The rest of this section is organized as follows. Section 5.1 presents definitions of predicates
checking well-formedness of IL programs and their parts. Section 5.2 gives a definition of a pred-
icate that says when an IL program is considered as well-typed. Section 5.3 gives a definition of
a configuration conformance predicate that says when a configuration conforms with a program
type. The last Section 5.4 presents type safety theorem.

5.1 Well-formedness

This section presents a formal specification of well-formedness of IL programs. Figure 5.1 shows
the definitions of auxiliary functions used in this sections.

Definition 5.1 defines a wfvds which checks if a variable declaration list vds is well-formed:
wfvds(vds) holds true iff the variable declariation list contains no doubly declared identifiers.

Definition 5.1.

wfvds : VariableDeclList → Bool

wfvds(vds) = unique(vds)

Definition 5.2 defines a predicate wfo which specifies when an operator o is well-formed w.r.t.
a variable declaration list vds: wfo(vds, o) holds true for an operand o and a variable declaration
list vds iff o is either a constant value or all variables in o declared in vds.

70 5 Type safety of the language IL

set : α list → α set

set(l) = {x | ∃ i . 0 ≤ i ∧ i < length(l) ∧ l !i = x}

fst : α× β → α

fst(x , y) = x

distinct : α list → Bool

distinct(l) = ∀ i j . 0 ≤ i < j < length(l) −→ l !i ,= l !j

unique : α× β list → Bool

unique(l) = distinct(map fst vds)

idxof : α×Nat× ((α× β) list) → Natoption

idxof(x ,n, []) = None

idxof(x ,n, (x ′, y)#xs) = if x = x ′ then Some(n) else idxof(x , Suc(n), xs)

vars : α× β list → α set

vars(l) = set(map fst vds)

Fig. 5.1. Auxiliary function definitions

Definition 5.2.

wfo : VariableDeclList×Operand → Bool

wfo(vds, i) = True

wfo(vds, b) = True

wfo(vds, v) = v ∈ vars(vds)

wfo(vds, a[i]) = a ∈ vars(vds)

wfo(vds, a[v]) = a ∈ vars(vds) ∧ v ∈ vars(vds)

Definition 5.3 defines a predicate wflv which specifies when an l-value lv is well-formed w.r.t.
a variable declaration list vds: wflv(vds, lv) holds true for an l-value lv and a variable declaration
list vds iff lv is either a declared variable v or lv has the form of an indexed operator whose all
variables are declared in vds.

Definition 5.3.

wflv : VariableDeclList× LValue → Bool

wflv(vds, v) = v ∈ vars(vds)

wflv(vds, a[i]) = a ∈ vars(vds)

wflv(vds, a[v]) = a ∈ vars(vds) ∧ v ∈ vars(vds)

Definition 5.4 defines a predicate wfe which specifies when an expression e is well-formed w.r.t.
a variable declaration list vds: wfe(vds, e) holds true for an expression e and a variable declaration
list vds iff e fulfills one of the following three conditions:

1. e is an operator o and o is well-formed w.r.t. the variable declaration list vds or
2. e is a unary expression of the form unop o, where unop stands for a unary operator, unop ∈

{−,¬}, and o well-formed w.r.t. the variable declaration list vds or

5.1 Well-formedness 71

3. e is a binary expression of the form o1binop o2 where binop stands for a binary operator,
binop ∈ {+,−, ∗,∧,∨,=, $=, <,≤}, and o1 and o2 are well-formed w.r.t. the variable declaration
list vds.

Definition 5.4.

wfe : VariableDeclList×Expression → Bool

wfe(vds, o) = wfo(vds, o)

wfe(vds, o1 + o2) = wfo(vds, o1) ∧ wfo(vds, o2)

wfe(vds, o1 − o2) = wfo(vds, o1) ∧ wfo(vds, o2)

wfe(vds, o1 ∗ o2) = wfo(vds, o1) ∧ wfo(vds, o2)

wfe(vds, −o) = wfo(vds, o)

wfe(vds, o1 ∧ o2) = wfo(vds, o1) ∧ wfo(vds, o2)

wfe(vds, ¬o) = wfo(vds, o)

wfe(vds, o1 ∨ o2) = wfo(vds, o1) ∧ wfo(vds, o2)

wfe(vds, o1 = o2) = wfo(vds, o1) ∧ wfo(vds, o2)

wfe(vds, o1 ,= o2) = wfo(vds, o1) ∧ wfo(vds, o2)

wfe(vds, o1 < o2) = wfo(vds, o1) ∧ wfo(vds, o2)

wfe(vds, o1 ≤ o2) = wfo(vds, o1) ∧ wfo(vds, o2)

Definition 5.5 defines a predicate wfi which formulates well-formedness requirements for an
instruction instr which must hold w.r.t. a variable declaration list vds if instr is the pc-th in-
struction of an instruction list instrs, the flow of control is currently at the program point pc,
and the machine M is about to execute this instruction. Basically, there are two well-formedness
requirements for an instruction in a program declaration to be executable by the machine M :

1. Each variable occuring in the instruction must be declared in the variable declaration list of
the program declaration.

2. After executing the instruction, the flow of control must be again at a program point, i.e. the
flow of control must remain within the bounds of the instruction list of the program declaration.

Definition 5.5.

wfi : ProgramDecl×ProgramCounter× Instruction → Bool

wfi((vds, instrs), pc, lv :=e) = wflv(vds, lv) ∧ wfe(vds, e) ∧ Suc(pc) < length(instrs)

wfi((vds, instrs), pc, printi(e)) = wfe(vds, e) ∧ Suc(pc) < length(instrs)

wfi((vds, instrs), pc, branch(e, dst)) = wfe(vds, e) ∧ Suc(pc) < length(instrs) ∧
dst < length(instrs)

wfi((vds, instrs), pc, goto(dst)) = dst < length(instrs)

wfi((vds, instrs), pc, exit) = True

Definition 5.6 defines a predicate wfil which takes a program declaration (vds, instrs) as input
and checks if the instruction list instrs is well-formed w.r.t. the variable declaration list vds:
wfil(vds, instrs) holds true iff each instruction in the instruction list instrs is well-formed w.r.t. the
program declaration (vds, instrs) and its index in instrs.

Definition 5.6.

wfil : ProgramDecl → Bool

wfil(vds, instrs) = ∀ pc < length(instrs). wfi((vds, instrs), pc, instrs!pc)

72 5 Type safety of the language IL

Definition 5.7 defines a predicate wfI which checks if an input I is well-formed w.r.t. a variable
declaration list vds: wfI(vds, I) holds for an input I and a variable declaration list vds iff there is a
one-to-one correspondence between the elements of the list vds and the elements of the list I that
is defined as follows: the i -th element of the variable declaration list vds is a variable declaration
(v , τ) iff the i -th element of the input list I is a pair (v , val) such that the value val has the type
of τ .

Definition 5.7.

typeof : Value → Bool

typeof(b) = bool

typeof(i) = int

typeof(bl) = barray(length(bl))

typeof(il) = iarray(length(il))

wfI : VariableDeclList× Input → Bool

wfI(vds, I) = length(vds) = length(I) ∧
∀((v , τ), (v ′, val)) ∈ set(zip(vds, I)) . (v = v ′) ∧ (typeof(val) = τ)

Definition 5.8 defines a well-formedness predicate wfprg on IL programs. An IL program
((vds, instrs), I) is well-formed iff its variable declaration list vds is well-formed and its instruction
list instrs is well-formed w.r.t. vds and input list I are well-formed w.r.t. vds.

Definition 5.8.

wfprg : Program → Bool

wfprg((vds, instrs), I) = wfvds(vds) ∧ wfil(vds, instrs) ∧ wfI(vds, I)

5.2 Well-typedness

This section presents formalization of the notion well-typedness of IL programs.
A standard formalization of assigning types to programs (typing) [86, 88, 84, 82, 58, 83, 59, 60]

comprises three parts: The first part formalizes the notion of a typing environment. The second
part formalizes the notion of program type. The third part specifies typing by giving a finite set
of derivation rules to build inductively a typing relation over pairs consisting of programs and
program types in the context of a typing environment. The fourth part specifies a well-typedness
predicate that says when a program is well-typed in the context of a typing environment. A
standard formulation of the well-typedness predicate says that a program is well-typed w.r.t. a
typing environment and a program type iff the pair consisting of the program and the program
type is in the typing relation built in the context of the typing environment.

As our IL language and its type system are very simple, we can simplify the above well-
typedness formalization scheme: The first and the second parts collapse to one part since in our
formalization a program type and a typing environment for a program are the same. Further, we
are concerned with a special case of the typing relation which comprises only one pair consisting
of the program and its type. For this reason, it is not necessary to define explicitly a typing
environment for a program and to define an inductive typing relation; the third and the fourth
parts collapse into one part which specifies typing by means of a well-typedness predicate which
has a program and a program type as parameters and is defined by primitive recursion.

5.2 Well-typedness 73

We begin our presentation by introducting a syntactic set of program types ProgramType
and a metavariable Φ ranging over program types Φ.

Definition 5.9 gives formation rule for the syntactic set ProgramType. A program type Φ is
a list of type identifiers τ which is always defined for a program ((vds, instrs), I) as follows.

map snd vds

For this reason, our program well-typedness predicate could actually do without the program
type parameter but we left it for brevity. As aforementioned, Φ is an encoding of both a program
type and a typing environment for a program. The interpretation of Φ as an implicit typing
environment {v0 4→ τ0, . . . , vn−1 4→ τn−1} for a program ((vds, instrs), I) is done as follows: The
variable declariation (vi, τi) is the i -th element of the variable declaration list vds iff binding
vi 4→ τi is in the typing environment for ((vds, instrs), I).

Definition 5.9.

ProgramType (Φ ::= [] | τ#Φ

Definition 5.10 defines a predicate wtv which checks if a variable is well-typed. Checking is done
in the context of three further parameters: a program ((vds, instrs), I), a program type Φ, and a
type identifier τ ; and the variable well-typedness predicate wtv requires for a variable v to have a
type τ in the context of a program ((vds, instrs), I) and a program type Φ that if the i -th element
of the variable declaration list vds is a variable declaration (v , τ) then τ is the i -th element of the
program type Φ.

Definition 5.10.

wtv : ProgramType×ProgramDecl×Type×Variable → Bool

wtv(Φ, (vds, instrs), τ, v) =

(
Φ!(idxof(v , 0, vds)) = τ if (v , τ) ∈ set(vds) ,

False otherwise

Definition 5.11 defines a predicate wtio which checks if an operand o is of the type int in the
context of a program declaration (vds, instrs) and a program type Φ: An operator o is of the type
int in the context of the program declaration (vds, instrs) and a program type Φ iff

1. o is an integer constant i or
2. o is a well-typed integer variable v in the context of (vds, instrs) and Φ or
3. o is an indexed operator of the form a[i] and the variable a is a well-typed integer array

variable in the context of (vds, instrs) and Φ or
4. o is an indexed operator of the form a[v] and the variables a and v are well-typed integer

array and integer variables, respectively, in the context of (vds, instrs) and Φ.

Definition 5.11.

wtio : ProgramType×ProgramDecl×Operand → Bool

wtio(Φ,Pdcl , i) = True

wtio(Φ,Pdcl , b) = False

wtio(Φ,Pdcl , v) = wtv(v , int,Pdcl , Φ)

wtio(Φ,Pdcl , a[i]) = ∃n. wtv(Φ,Pdcl , iarray(n), a)

wtio(Φ,Pdcl , a[v]) = ∃n. wtv(Φ,Pdcl , iarray(n), a) ∧ wtv(Φ,Pdcl , int, v)

74 5 Type safety of the language IL

Definition 5.12 defines a predicate wtbo which checks if an operand o is of the type bool in
the context of a program declaration (vds, instrs) and a program type Φ: An operator o is of the
type bool in the context of the program declaration (vds, instrs) and a program type Φ iff

1. o is a boolean constant b or
2. o is a well-typed boolean variable v in the context of (vds, instrs) and Φ or
3. o is an indexed operator of the form a[i] and the variable a is a well-typed boolean array

variable in the context of (vds, instrs) and Φ or
4. o is an indexed operator of the form a[v] and the variables a and v are well-typed boolean

array and integer variables, respectively, in the context of (vds, instrs) and Φ.

Definition 5.12.

wtbo : ProgramType×ProgramDecl×Operand → Bool

wtbo(Φ,Pdcl , i) = False

wtbo(Φ,Pdcl , b) = True

wtbo(Φ,Pdcl , v) = wtv(v , bool,Pdcl , Φ)

wtbo(Φ,Pdcl , a[i]) = ∃n. wtv(Φ,Pdcl , barray(n), a)

wtbo(Φ,Pdcl , a[v]) = ∃n. wtv(Φ,Pdcl , barray(n), a) ∧ wtv(Φ,Pdcl , int, v)

Definition 5.13 defines a predicate wtbe which checks if an expression e is of the type bool in
the context of a program declaration (vds, instrs) and a program type Φ: An expression e is of the
type bool in the context of the program declaration (vds, instrs) and a program type Φ iff

1. e is a well-typed boolean operator o in the context of (vds, instrs) and Φ or
2. e is a binary expression of the form o1 bop o2 where bop stands for a binary boolean operator,

bop ∈ {∧,∨}, and o1 as well as o2 are both well-typed boolean operators in the context of
(vds, instrs) and Φ or

3. e is a unary expression of the form ¬o and o is a well-typed boolean operator o in the context
of (vds, instrs) and Φ or

4. e is a binary expression of the form o1 bop o2 where bop stands for an integer comparisation
operator, bop ∈ {=, $=, <,≤}, and o1 as well as o2 are both well-typed integer operators in the
context of (vds, instrs) and Φ or

Definition 5.13.

wtbe : Expression×ProgramDecl×ProgramType → Bool

wtbe(o,Pdcl , Φ) = wtbo(o,Pdcl , Φ)

wtbe(o1 + o2,Pdcl , Φ) = False

wtbe(o1 − o2,Pdcl , Φ) = False

wtbe(o1 ∗ o2,Pdcl , Φ) = False

wtbe(−o,Pdcl , Φ) = False

wtbe(o1 ∧ o2,Pdcl , Φ) = wtbo(o1,Pdcl , Φ) ∧ wtbo(o2,Pdcl , Φ)

wtbe(o1 ∨ o2,Pdcl , Φ) = wtbo(o1,Pdcl , Φ) ∧ wtbo(o2,Pdcl , Φ)

wtbe(¬o,Pdcl , Φ) = wtbo(o,Pdcl , Φ)

wtbe(o1 = o2,Pdcl , Φ) = wtio(o1,Pdcl , Φ) ∧ wtio(o2,Pdcl , Φ)

wtbe(o1 ,= o2,Pdcl , Φ) = wtio(o1,Pdcl , Φ) ∧ wtio(o2,Pdcl , Φ)

wtbe(o1 < o2,Pdcl , Φ) = wtio(o1,Pdcl , Φ) ∧ wtio(o2,Pdcl , Φ)

wtbe(o1 ≤ o2,Pdcl , Φ) = wtio(o1,Pdcl , Φ) ∧ wtio(o2,Pdcl , Φ)

Definition 5.14 defines a predicate wtie which checks if an expression e is of the type int in
the context of a program declaration (vds, instrs) and a program type Φ: An expression e is of the
type int in the context of the program declaration (vds, instrs) and a program type Φ iff

5.2 Well-typedness 75

1. e is a well-typed integer operator o in the context of (vds, instrs) and Φ or
2. e is a binary expression of the form o1 bop o2 where bop stands for a binary integer operator,

bop ∈ { +,−, ∗}, and o1 as well as o2 are both well-typed integer operators in the context of
(vds, instrs) and Φ or

3. e is a unary expression of the form −o and o is a well-typed integer operator o in the context
of (vds, instrs) and Φ.

Definition 5.14.

wtie : Expression×ProgramDecl×ProgramType → Bool

wtie(o,Pdcl , Φ) = wtio(o,Pdcl , Φ)

wtie(o1 + o2,Pdcl , Φ) = wtio(o1,Pdcl , Φ) ∧ wtio(o2,Pdcl , Φ)

wtie(o1 − o2,Pdcl , Φ) = wtio(o1,Pdcl , Φ) ∧ wtio(o2,Pdcl , Φ)

wtie(o1 ∗ o2,Pdcl , Φ) = wtio(o1,Pdcl , Φ) ∧ wtio(o2,Pdcl , Φ)

wtie(−o,Pdcl , Φ) = wtio(o,Pdcl , Φ)

wtie(o1 ∧ o2,Pdcl , Φ) = False

wtie(¬o,Pdcl , Φ) = False

wtie(o1 ∨ o2,Pdcl , Φ) = False

wtie(o1 = o2,Pdcl , Φ) = False

wtie(o1 ,= o2,Pdcl , Φ) = False

wtie(o1 < o2,Pdcl , Φ) = False

wtie(o1 ≤ o2,Pdcl , Φ) = False

Definition 5.15 defines a predicate wtblv which checks if an l-value lv is of the type bool in the
context of a program declaration (vds, instrs) and a program type Φ: An l-value lv is of the type
bool in the context of the program declaration (vds, instrs) and a program type Φ iff

1. lv is a well-typed boolean variable v in the context of (vds, instrs) and Φ or
2. lv is of the form a[i] and the variable a is a well-typed boolean array variable in the context

of (vds, instrs) and Φ or
3. o is of the form a[v] and the variables a and v are well-typed boolean array and integer

variables, respectively, in the context of (vds, instrs) and Φ.

Definition 5.15.

wtblv : ProgramType×ProgramDecl× LValue → Bool

wtblv(Φ,Pdcl , v) = wtv(Φ,Pdcl , bool, v)

wtblv(Φ,Pdcl , a[i]) = ∃n. wtv(Φ,Pdcl , barray(n), a) ∧
wtblv(Φ,Pdcl , a[v]) = ∃n. wtv(Φ,Pdcl , barray(n), a) ∧

wtv(Φ,Pdcl , int, v)

Definition 5.16 defines a predicate wtilv which checks if an l-value lv is of the type int in the
context of a program declaration (vds, instrs) and a program type Φ: An l-value lv is of the type
int in the context of the program declaration (vds, instrs) and a program type Φ iff

1. lv is a well-typed integer variable v in the context of (vds, instrs) and Φ or
2. lv is of the form a[i] and the variable a is a well-typed integer array variable in the context of

(vds, instrs) and Φ or
3. o is of the form a[v] and the variables a and v are well-typed integer array and integer variables,

respectively, in the context of (vds, instrs) and Φ.

76 5 Type safety of the language IL

Definition 5.16.

wtilv : ProgramType×ProgramDecl× LValue → Bool

wtilv(Φ,Pdcl , v) = wtv(Φ,Pdcl , int, v)

wtilv(Φ,Pdcl , a[i]) = ∃n. wtv(Φ,Pdcl , iarray(n), a) ∧
wtilv(Φ,Pdcl , a[v]) = ∃n. wtv(Φ,Pdcl , iarray(n), a) ∧

wtv(Φ,Pdcl , int, v)

Definition 5.17 defines a predicate wtinstr which checks if an instruction instr is well-typed
in the context of a program declaration (vds, instrs) and a program type Φ: An instr instr is
well-typed in the context of the program declaration (vds, instrs) and a program type Φ iff

1. instrs is an assignment instruction lv :=e and the l-value lv and the expresssion e are both of
the type either int or bool in the context of (vds, instrs) and Φ or

2. instrs is a printi instruction printi(e) and e is well-typed integer expression in the context
of (vds, instrs) and Φ or

3. instrs is a branch instruction branch(e, dst) and e is well-typed boolean expression in the
context of (vds, instrs) and Φ or

4. instrs is a goto instruction goto(dst) or an exit instruction exit.

Definition 5.17.

wtinstr : ProgramDecl×ProgramType× Instruction → Bool

wtinstr(Φ,Pdcl , lv :=e) = wtblv(Φ,Pdcl , lv) ∧ wtbe(Φ,Pdcl , e) ∨
wtilv(Φ,Pdcl , lv) ∧ wtie(Φ,Pdcl , e)

wtinstr(Φ,Pdcl , printi(e)) = wtie(Pdcl , Φ, e)

wtinstr(Φ,Pdcl , branch(e, dst)) = wtbe(Pdcl , Φ, e)

wtinstr(Φ,Pdcl , goto(dst)) = True

wtinstr(Φ,Pdcl , exit) = True

Definition 5.18 defines a predicate wtvds which checks if a variable declaration list vds is well-
typed w.r.t. a program type Φ: A variable declaration list vds is well-typed w.r.t. a program type
Φ iff the following holds true for all type identifiers: a type identifier τi is the i -th element of the
list Φ iff there exists a variable vi such that the variable declaration (vi, τi) is the i -th element of
the list vds.

Definition 5.18.

wtvds : ProgramType×VariableDeclList → Bool

wtvds(Φ, vds) = (Φ = map snd vds)

Definition 5.19 defines a predicate wtinstrs which checks if an instruction list is well-typed in the
context of a program type and a variable declaration list: An instruction list instrs of a program
declaration (vds, instrs) is well-typed in the context of a program type Φ iff

1. the instrs list is not empty and
2. each instruction in instrs is well-typed in the context of the program type Φ and the program

declaration (vds, instrs).

5.3 Conform configuration 77

Definition 5.19.

wtinstrs : ProgramType×ProgramDecl → Bool

wtinstrs(Φ, (vds, instrs)) = 0 < length(instrs) ∧
∀ pc. 0 ≤ pc < length(instrs) −→ wtinstr(Φ, (vds, instrs), instrs!pc)

Definition 5.20 defines a predicate wtp which checks if a program is well-typed w.r.t. a program
type: A program ((vds, instrs), I) is well-typed w.r.t. a program type Φ iff

1. the program is well-formed and
2. the variable declaration vds is well-typed w.r.t. to the program type Φ and
3. the instruction list instrs is well-typed w.r.t. to the program type Φ and the variable declaration

list vds.

Definition 5.20.

wtp : ProgramType×Program → Bool

wtp(Φ, ((vds, instrs), I)) = wfprg((vds, instrs), I) ∧
wtvds(Φ, vds) ∧
wtinstrs(Φ, instrs)

5.3 Conform configuration

This section presents a formalization of hierarchically organized notions of conformance which are
necessary to express type soundness of a programming language. The notion and the notation of
the conformance we use in this section was inspired by von Oheimb’s work [87] on analysing type
safety of Java in Isabelle/HOL.

Definition 5.21 defines a variable conformance predicate which checks if a state maps a variable
to a value that conforms to a type: The definition uses the notation s - v ::5 τ to formalize that
the value of a variable v conforms to a type τ in the context of a state s iff

1. s maps v to a boolean and τ is equal bool or
2. s maps v to an integer and τ is equal int or
3. s maps v to a boolean array of the length equal n and τ is equal barray(n) or
4. s maps v to an integer array of the length equal n and τ is equal iarray(n).

Definition 5.21.

_ / _ ::0 _ : State×Variable×Type → Bool

s / v ::0 τ =

8
>>>>><

>>>>>:

True if s(v) = Some(b) ∧ τ = bool,

True if s(v) = Some(i) ∧ τ = int,

True if s(v) = Some(bl) ∧ τ = barray(n) ∧ length(bl) = n,

True if s(v) = Some(il) ∧ τ = iarray(n) ∧ length(il) = n,

False otherwise

The notion of conformance to a type can be extended to conformance to a list of types. For
this, we introduce two new syntactic sets: variable lists VariableList and type identifier lists
TypeList; and two metavariables vl and τl ranging over variable lists VariableList and type
lists TypeList, respectively. Definition 5.22 gives formation rules for these sets.

78 5 Type safety of the language IL

Definition 5.22.

VariableList (vl ::= [] | v#vl

TypeList (τl ::= [] | τ#τl

Definition 5.23 defines a predicate _ - _ [::5]_ which checks if a list of variables conforms
pointwise to a list of types in the context of a state: A list of variables vl conforms pointwise to a
type list τl in the context of a state s, s - vl [::5] τl , iff each variable vl !i from the variable list vl
conforms to the corresponding type τl !i from the type list τl .

Definition 5.23.

_ / _ [::0]_ : State×VariableList×TypeList → Bool

s / vl [::0] τl = ∀ (v , τ) ∈ zip(vl , τl). s / v ::0 τ

Definition 5.24 defines a configuration conformance predicate which checks if a configuration
conforms to a program type and a program. The definition uses the notation Φ, ((vds, instrs), I) -
σ
√

to formalize that a configuration σ = (tf , af , pc, b, s) conforms to a program type Φ and a
program ((vds, instrs), I) iff

1. the program counter pc points to a valid program point in the instruction list instrs and
2. a variable v is declared in the variable declaration list vds iff the state s maps v into a well-

defined value and
3. all declared variables are mapped by the state s into values that are conform to types declared

for these variables.

Definition 5.24.

, / _
√

: ProgramType×Program×Configuration → Bool

Φ, ((vds, instrs), I) / (tf , af , pc, b, s)
√

= pc < length(instrs) ∧
dom(s) = set(vars(vds)) ∧
s / (vars(vds)) [::0] Φ

Definition 5.25 defines a configuration reachability predicate which checks for two configurations
and a program if one configuration is the result of partial execution of the program starting from the
other configuration. The definition uses the notation P - σ −→M σ′ to express that a configuration
σ′ is reachable from a configuration σ during execution of a program P by the machine function
M iff M can produce σ′ after finitely many successive transitions starting from the configuration
σ.

Definition 5.25.

_ / _ −→M _ : Program×Configuration×Configuration → Bool

P / σ −→M σ′ = ∃n. M(P , σ,n) = σ′

5.4 Type safety theorem

This section uses the definitions of well-formedness, well-typedness, and conformance from sections
5.1, 5.2, and 5.3, respectively, and formalizes the notion of type safety for the IL language and
sets up a type safety theorem which we proved in Isabelle/HOL.

5.4 Type safety theorem 79

With the definitions of well-formedness, well-typedness, and conformance at hand, we can
formulate the following theorem about the type safety of the IL language: If a program P is well-
typed w.r.t. a program type Φ and a configuration σ conforms to P and Φ, program execution
makes transition from σ to the successor configuration exec(P , σ), then exec(P , σ) conforms to P
and Φ.

Theorem 5.26 (Type safety of the IL language).

wtp(P , Φ) ∧ P , Φ - σ
√

=⇒ P , Φ - exec(P , σ)
√

!

We proved Theorem 5.26 in Isabelle/HOL. However, to be able to apply the result proved in
Theorem 5.26 in our translation correctness framework, we need a corollary about the type safety
of partial executions of programs starting from the initial configurations for those programs. For
the proof of the corollary, we proved first the following two statements:

The first statement is expressed by Lemma 5.27 and it says that initial configuration for an IL
program P , which is well-typed w.r.t. a program type Φ, conforms to P and Φ.

Lemma 5.27 (Conformance of initial configuration).

wtp(P , Φ) =⇒ P , Φ - init(P)
√

!

The second statement is expressed by Corollary 5.28 and it says that partial execution of a
well-typed program starting from a configuration that conforms to that program and its type
produces a configuration that also conforms to the program and the program type.

Corollary 5.28 (Type safety of partial executions).

wtp(P , Φ) ∧ P , Φ - σ
√
∧ P - σ −→M σ′

=⇒
P , Φ - σ′

√

Proof. To prove the corollary, we have to show that the conclusion P , Φ - σ′
√

is derivable from
the premises: wtp(P , Φ), P , Φ - σ

√
, and P - σ −→M σ′. The proof is straightforward if we first

unfold the definition of the reachability predicate in P - σ −→M σ′, skolemize the ∃-quantified

80 5 Type safety of the language IL

variable n, and rewrite the conclusion and the premises. The resulting conclusion M(P , σ,n) can be
easily derived from the premises wtp(P , Φ) and P , Φ - σ

√
, if we first prove an auxiliary statement

wtp(P , Φ)
=⇒

P , Φ - σ
√
−→ P , Φ - M(P , σ,n)

√

by induction over number of execution transitions n.
The proof of the induction begin is straightforward as by the definition of M the following equation
it holds

P , Φ - M(P , σ, 0)
√

= P , Φ - σ
√

To show the induction step, we have to show

wtp(P , Φ) ∧ P , Φ - σ
√
−→ P , Φ - M(P , σ,n)

√

=⇒
P , Φ - σ

√
−→ P , Φ - M(P , σ,Sucn)

√
.

As by the definition of the function M holds M(P , σ,Sucn) = exec(P ,M(P , σ,n)), we can rewrite
the premises and the conclusion as follows.

wtp(P , Φ) ∧ P , Φ - M(P , σ,n)
√

=⇒
P , Φ - exec(P ,M(P , σ,n))

√

The last holds by Theorem 5.26.

!

Now, we can set up Corollary 5.29 which states that partial execution of a well-typed program
starting from its initial configuration always produces a configuration that conforms to the program
and the program type.

Corollary 5.29 (Type safety of partial program executions).

wtp(P , Φ) ∧ P - init(P) −→M σ
=⇒

P , Φ - σ
√

!

The proof of Corollary 5.29 is straightforward and applies the results proved in Lemma 5.27 and
Corollary 5.28.

Chapter 6

Optimization independent translation correctness criterion

This section presents the content of Layer 4 of our implementation of the SVF. In Section 3.5, we
motivated that our implementation of Layer 4 provides the following:

1. the formalization of a translation correctness criterion TCC on the source and the target
programs whose definition is independent of optimizations performed by our compiler and
expresses a sufficient condition of the translation correctness predicate provided by the trans-
lation contract,

2. a proof of an optimization independent translation correctness theorem saying that if a source
and a target programs S and T , respectively, fulfill the criterion TCC, then corrTrans(S ,T)
holds true.

Also there, we explained the motivation behind the TCC criterion: For each optimization O
performed by our compiler, the implementation of the SVF has to provide a translation correctness
criterion TCCO on the source and the target programs and an optimization correctness theorem
which are specific to the optimization O. The statement of such a theorem has the following form:

If the source and the target programs of an optimization O, S and T , respectively, fulfill
the criterion TCCO, then they fulfill the translation correctness predicate corrTrans(S ,T).

The proof of this theorem has to be conducted in two steps:

1. The first step proves and applies a theorem of the following form:
If S and T fulfill the criterion TCCO, then S and T fulfill the criterion TCC.

2. The second step is the same for all optimizations supported by the SVF: It proves applies and
applies a theorem which has the following form:

If S and T fulfill the criterion TCC, then corrTrans(S ,T) holds true.

As the second step is independent of the optimizations, we factored out the formalization of the
criterion TCC and a proof of the theorem that proves the second step and inserted them into a
dedicated Layer 4. Layer 5 provides the formalizations of the optimization specific criteria TCCO,
proofs of the first steps, and proofs of the optimization specific translation correctness theorems
themself. Doing this way, we make the SVF more structured:

• Layer 4 provides only formalizations which are independent of program transformations.
• Layer 5 provides only formalizations which are specific to concrete program transformations

performed by the compiler.

Specifying and verifying a translation correctness citerion TCCO for a new optimization requires
less effort as only Layer 5 is affected by that change.

82 6 Optimization independent translation correctness criterion

6.1 Overview

This section gives an overview of Layer 4. Layer 4 provides the formalizations of the following:

The notion of a declaration of a control flow graph with blocks (CFGB): Our notion of a CFGB
declaration can be characterized as follows:
1. A CFGB declaration is always defined for an IL program.
2. A CFGB declaration is not a part of the syntax of an IL program which is defined for1

but a separate data structure which declares the structure of the graph.
3. A CFGB declaration for an IL program does not define the graph explicitly but rather

implicitly. A possible explicit definition of the CFGB for a program would be, for example,
to define its node set as a mapping from block identifiers to lists of program points which
are allocated to that identifiers and its edge set as a mapping from block identifiers to block
identifier sets which would render the successor relation between the block sets. Instead of
this, we formalized the notions of a block position and a block position descriptor which
is a tuple of the form (pid , bid , bsize, bidx , pc) and whose components elaborately describe
the "includes" relationship between the block bid and the program point pc: The meaning
of a block position descriptor (pid , bid , bsize, bidx , pc) for an IL program P is that the
program point pc is allocated to a block position with the identifier pid and that pid is
included in a block with the identifier bid whose length is equal bsize and that pc has
the index bidx within the block bid , i.e. that the pc-th instruction of P is the bidx -th
instruction of bid .

4. A CFGB declaration itself is a tuple of mappings which define
• the set of block position descriptors as a mapping from block position identifiers to

block position descriptors,
• the "includes" relation between the set of block positions and the set of blocks, and
• the successor and predecessor relations between the sets of block positions.

5. The formalization of CFGB declarations enables one to encode CFGs with nested blocks.
This feature is used in proofs of the correctness of the NI optimizations.

6. The notion of CFGB declarations is formalized by giving formation rules for the set
BlckPosEnv.

The motivation for the formalization of the CFGB declarations is as follows.
Firstly, for each optimization in the chain of five optimizations CF, DAE, NI, RAI, and RAE,
the compiler performs data flow analysis. The analysis is performed on a control flow graph
(CFG), which is generated from an IL program, and its result is used by the compiler as
a justification for an optimization. Optimizations are internally realized by the compiler as
modifications of CFGs. Thus, each optimization results in two data structures encoding CFGs
for two IL programs, source and target programs, and a data structure encoding the result
of the data flow analysis performed on the CFG of the source program. Apparently, these
encodings can be used by the proof generation unit of the compiler to generate a proof script
with correctness proof for a concrete optimization, provided that the following is formalized
within a SVF:
• the notion of CFGs,
• the notion of data flow analysis results,
• a predicate on two CFGs of source and target programs S and T , CFGS and CFGT , and

a data flow analysis result A that expresses what does it mean that A "justifies" applying

1 For example, one can embed control flow graphs with blocks in the abstact syntax of the IL language
by defining a new intermediate language whose programs are lists of lists of IL instructions.

6.1 Overview 83

optimization O to CFGS and that CFGT is a result of this optimization (optimization
correctness criterion).

• the proof a theorem saying that if CFGS , CFGT , and A fulfill the above predicate, then
the original programs S and T , which they represent, are semantically equivalent.

Secondly, in this thesis, structure preserving optimizations, like CF or DAE, have in common
that they do not modify the sets of edges and nodes of the CFG of a source program but
merely the node labels - the program instructions. Formalizing a SVF for such optimizations
is relatively straightforward as the corresponding program points relation between program
points of the source and the target programs and the corresponding nodes relation between
nodes of the CFGs of these programs are one-to-one correspondences. In contrast to such op-
timizations, the NI optimization is a structure modifying transformation which modifies the
sets of nodes and edges of the CFG of a source program with corresponding program points
relations between the source and the target programs being one-to-many correspondences. As
a consequence, all correspondences, which are of interest when formalizing an optimization
correctness criterion for NI optimizations and a corresponding optimization correctness theo-
rem, are one-to-many correspondences: corresponding nodes relation and corresponding edges
relation. In order to be able to reason formally about such relations, one has to to introduce
to the SVF a formalization of CFGs with nested blocks.

A well-formedness predicate on CFGB declarations and IL programs:

wfB : Program×BlckPosEnv → Bool

which checks if a CFGB declaration for an IL program adheres to the CFG of that program.
An intermediate language of control flow graphs with blocks IL’: Sections 4.1 and 4.2 presented

the formalizations of the abstract syntax and the semantics of the intermediate language
IL which can also be seen as a language of control flow graphs with the operational semantics
defined by means of node-wise transitions of the flow of control in the following sense:
• For each IL program P , there exists a unique CFG with the node set comprising all

program points of P and the edge set comprising node pairs which render the successor
relation between the sets of program points of P . The nodes of the CFG are labeled with
IL instructions which are at the respective program points in P .

• The definition of the operational semantics of the IL language is based on the definition of
the configuration σ = (tf , af , pc, b, s) which is the result of partial execution of P and the
value of its program counter component pc denotes both a program point of P and a node
of the CFG which corresponds to P . As during execution of a program the flow of control
transfers from program point to program point, we can also say that the flow of control
transfers from node to node of the CFG which corresponds to that program and therefore
we can say that IL is also a language of control flow graphs with node-wise transitions of
the flow of control.

We formalized an intermediate language IL’ which, according to the above analogy, can be
seen as a language of control flow graphs with blocks whose operational semantics is defined
by means of block-position-wise transfers of the flow of control:
• Each IL’ program is a pair (P ,B) consisting of an IL program P and a CFGB declaration

B .

(P ,B) ∈ Program′ ::= Program×BlckPosEnv

• The definition of the operational semantics of the IL’ language is based on the notion of
an augmented configuration σ′ which is the result of partial execution of an IL’ program
and has the form of a tuple (β, σ) consisting of a configuration σ and a component β

84 6 Optimization independent translation correctness criterion

that contains, among other things, block position descriptor (pid , bid , bsize, bidx , pc) whose
value denotes a block position in B . The transition function of the IL’ language computes
the successor configuration σ′n+1 = (βn+1, σn+1) from a configuration σ′n = (βn , σn) by
computing successor configuration σn+1 = exec(P , σn) and computing the βn+1 component
from B , βn , and σn+1. The idea behind the augmented configuration (β, σ) is that the value
its component β indicates current position of the flow of control in the CFGB declared by
B and at the same time the value of the program counter component pc in σ indicates
current position of the flow of control in the CFG that corresponds to P . This enables one
to conduct proofs of statements comparing the operational semantics of IL programs and
corresponding IL’ programs.

• The semantics of an IL’ program is defined as a sequence of tokens printed by that program,
i.e. we give the definition of a program semantics function that is a mapping from the set
Program′ to the set ObservableBehavior,

We proved for all IL’ programs (P ,B) and their corresponding IL programs P that their
observable behaviors are equal.

An intermediate language of control flow graphs with blocks IL”: Based on the formalization of
the IL’ language, we formalized an intermediate language IL” which can be also seen as a
language of control flow graphs with blocks whose operational semantics is defined by means
of block-wise transfers of the flow of control:
• IL” programs have the same syntax as IL’ programs, i.e. they are tuples (P ,B) consisting

of an IL program P and a CFGB declaration B .

(P ,B) ∈ Program′′ ::= Program×BlckPosEnv

• The transition function of the IL” language is based on the notion of an augmented con-
figuration σ′′ which is equal to the configuration σ′ and it computes the successor config-
uration from a configuration σ′′ = (β, σ) by extracting the value of the position descriptor
(pid , bid , bsize, bidx , pc) from the component β and applying successively bsize times the
transition function of the language IL’ to the configuration (β, σ). In other words, the
transition function extracts the information about the position of the flow of control in the
CFGB and and finds out that the flow of control is currently in the block bid and the length
of bid is equal bsize. This means that the flow of control has to make bsize transitions from
block position to block position in order to make one transition to the next block.

• The denotional semantics of an IL” program is defined as a sequence of tokens printed
by that program, i.e. we give the definition of a program semantics function which is a
mapping from the set of IL” programs to the set ObservableBehavior,

We proved for all IL’ programs (P ,B) and their corresponding IL” programs (P ,B) that if P
is a well-typed IL program and B is a well-formed CFGB declaration w.r.t. to P , then their
observable behaviors are equal.

Bisimulation relation: We formalized the notion of bisimulation relation R between the sets of
augmented configurations defined for the language IL”.

R ∈ BisimulationRelation ::= P(Configuration×Configuration)

Bisimulation predicate on pairs of IL” program executions: We formalized a bisimulation predi-
cate bisimulation which takes two IL” programs and a bisimulation relation and checks if the
executions of the programs bisimulate w.r.t. the bisimulation relation.

bisimulation : Program′′ ×Program′′ ×BisimulationRelation→ Bool

The formulation of the predicate is akin to bisimulation criteria in the literature on translation
validation approach in which they are used by the validators as translation correctness rules.

6.2 Block position environments 85

Optimization independent translation correctness criterion TCC: We formalized the translation
correctness criterion TCC as a predicate on two IL language programs as follows.

∃ΦS ΦT BS BT R. wtp(S , ΦS) ∧ wtp(T , ΦT) ∧ wfB(S ,BS) ∧ wfB(T ,BT) ∧
bisimulation((S ,BS), (T ,BT),R)

Translation correctness theorem about bisimulation of IL” program executions: We proved an op-
timization independent theorem whose statement has the following form:

∃ΦS ΦT BS BT R. wtp(S , ΦS) ∧ wtp(T , ΦT) ∧ wfB(S ,BS) ∧ wfB(T ,BT) ∧
bisimulation((S ,BS), (T ,BT),R)

=⇒
corrTrans(S ,T)

Thus, the formal framework provided by Layer 4 allows for proving the first step in our aforemen-
tioned proof scheme.

The rest of the section is organized as follows. Section 6.2 presents a formalization of the notion
of a declaration of a control flow graph with blocks (CFGB) for an IL program. Section 6.3 presents
a formalization of the notion of well-formedness of a CFGB declaration w.r.t. an IL program. The
formalization of the language IL’ and the theorem about the equality of the semantics of the
languages IL and IL’ are presented in Sections 6.4 and 6.5, respectively. Section 6.6 presents the
formalization of the language IL”. Section 6.7 presents a formalization of a bisimulation predicate
on pairs of IL” program executions. Our optimization independent translation correctness criterion
TCC is defined in terms on this notion. The definition of this criterion is presented in Section 6.8.
The translation correctness theorem about bisimulation of program executions is presented in
Section 6.9.

6.2 Block position environments

This section presents formalization of the notion of block position environments. In our work, we
use block position environments to declare the structure of a control flow graph with blocks for an
IL program. In the following, we list prerequisites which a formal model of the CFGB declaration
has to adhere to, and which we took into account settting up the formalization of block position
environments.

• A CFGB declaration for a program has to declare a finite set of blocks as a set of block identifiers
and an allocation of program points of that program to blocks.

• In a CFGB declaration, the allocation of program points to blocks must be provably complete
in the following sense:
1. Each program point has to be allocated to at least one block. In case that a program point is

included by a block which not nested in any other blocks, the program point must allocated
exactly to that block. Otherwise, the CFGB declaration must allocate the program point
to each block, in which it is included, separately. This means that the allocation mapping
from blocks to program points must be surjective and therefore the CFGB declaration must
declare for each pair (pc, bid) consisting of a program point pc and a block identifier bid a
unique identifier (block position identifier).

2. For each block, the CFGB declaration has to declare how many program points that block
includes (the length of the block).

3. For each block bid and program point pc which is included in bid , the CFGB declaration
has to declare what is the index of pc within bid (block index).

86 6 Optimization independent translation correctness criterion

Example 6.1. If the a block with block identifier bid has a length equal equal one, then it
includes exactly one program point whose block index within bid is equal 0. ♦

• For the set of blocks, a CFGB declaration for a program has to declare
– the successor and the predecessor relations between the sets of blocks,
– the set of program points that are entry points of blocks in the block set,
– a pair consisting of a program point and a block such that the program point is both the

entry point of the program and the entry point of the block.
• In a CFGB declaration for an IL program, the allocation program points of that program to

blocks and the successor relation between the block sets have to adhere to the successor relation
between the program point sets defined by the set of edges of the CFG that corresponds to the
program. The property of adherence must be provable.

• The presence of nested blocks in a CFGB declaration for an IL program means that if the
flow of control reaches a program point pc at two different points of program execution and
pc is included in a block b that is nested in another block b′, then it can be within one of
two different blocks, i.e. it can be either in b or in b′. For this reason, we require that the
formal model of the CFGB declaration is defined in such a way that we can prove the following
statement for all CFGB declarations and IL programs: If a CFBG declaration fulfills the above
completeness and adherence properties w.r.t. an IL program P , then the following conclusion
is derivable from the hypotheses as follows.
1. Hypothesis: a configuration σn = (tf n , af n , pcn , bn , sn) is the result of partial execution of

P , ∃n.M(P , init(P),n) = σn .
2. Hypothesis: program point pcn is allocated to a block with identifier bid i with a block index

bidx i.
3. Hypothesis: a configuration σn+1 = (tf n+1, af n+1, pcn+1, bn+1, sn+1) is the result of pro-

gram execution transition: exec(P , σn) = σn+1.
Conclusion: There exist a unique identifier bid j and a unique value bidx j such that pcn+1 is

allocated as the bidx j -th program point to the block bid j .
To make this derivation possible, it must be provable within our formal model of the CFGB
declaration that the values of bid j and bidx j can be deterministically computed from bid i ,
bidx i , pcn , and pcn+1 at each point of program execution.

We begin the presentation of our formalization by listing the syntactic sets associated with the
notion of block position environments:

• block identifiers BlckId,
• block sizes BlckSize,
• block position identifiers BlckPosId,
• block indexes BlckIdx,
• program points Pc,
• block position descriptors BlckPosDescr,
• block position status BlckPosStat,
• block beginning environments BBEnv,
• block position descriptor environments BPEnv,
• successor block position environments succBPEnv,
• buffer types Buffertype,
• predecessor block environments predBEnv,
• block position environments BlckPosEnv;

and defining metavariables ranging over these sets:

6.2 Block position environments 87

• bid , predbid , succbid are ranging over block identifiers BlckId,
• bsize is ranging block sizes BlckSize,
• pid is ranging over block position identifiers BlckPosId,
• bidx is ranging over block indexes BlckIdx,
• pc is ranging over program points Pc,
• bpos is ranging over block position descriptors BlckPosDescr,
• bposstat is ranging over block position status BlckPosStat,
• BB is ranging over block beginning environments BBEnv,
• BP is ranging over environments of block position descriptors BPEnv,
• succBP is ranging over successor block position environments succBPEnv,
• bt is ranging over buffer types Buffertype,
• predB is ranging over predecessor block environments predBEnv,
• B is ranging over block position environments BlckPosEnv;

Definition 6.2 gives formation rules for the set of block position environments BlckPosEnv.

Definition 6.2.

BlckId (bid ::= bid0 | . . . | bidn

BlckPosId (pid ::= pid0 | . . . | pidm

pc ∈ Pc = Nat

bsize ∈ BlckSize = Nat

bidx ∈ BlckIdx = Nat

BlckPosDescr (bpos ::= (pid , bid , bsize, bidx , pc)

BB ∈ BBEnv = BlckId ! BlckPosId

BP ∈ BPEnv = BlckPosId ! BlckPosDescr

succBP ∈ succBPEnv = (BlckPosId×Pc) ! BlckPosId

Buffertype (bt ::= FTYPE | OTYPE
predB ∈ predBEnv = BlckPosId ! P(BlckId×Buffertype)

BlckPosEnv (B ::= (pid0,BP ,BB , succBP , predB)

The starting point for the definition a block position environment B ∈ BlckPosEnv which
declares a CFGB for an IL program are three finite sets:

1. The set of basic block identifiers BlckId comprises an identifier bid for each block in the node
set of the CFGB.

2. The set of block position identifiers BlckPosId comprises a unique identifier pid for each
element of the "includes" relation between the set of blocks BlckId and the set of program
points of the program and is defined as follows. For each pair (bid i , pcj) consisting of a block
identifier bid i ∈ BlckId and a program point pcj such that the block bid i includes pcj , there is
a unique block position identifier pid i,j ∈ BlckPosId. The construction of BlckPosId imposes
the following two intended logical consequences: Firstly, if a CFGB declaration contains nested
blocks and each block bid i includes exactly one program point pcj , then there exists a one-
to-one correspondence between the set of program points and the power set of BlckPosId
which maps each pcj to the unique singleton {pid i,j}. Secondly, if a CFGB declaration contains
nested blocks and there exists a program point pck and blocks bid i and bid j such that pck is
included in bid i and bid i is nested in bid j , then the there exists a one-to-one correspondence
between the set of program points and the the power set of BlckPosId which maps pck to
the unique set {pid i,k , pid j ,k}.

3. The set of block position descriptors BlckPosDescr comprises a unique tuple (pid , bid , bsize,
bidx , pc) for each block position identifier pid ∈ BlckPosId. Each such tuple describes elab-

88 6 Optimization independent translation correctness criterion

orately the "includes" relationship (bid , pc) between a block bid and a program point pc. A
tuple (pid , bid , bsize, bidx , pc) indicates the following:
• the "includes" relationship (bid , pc) between a block bid and a program point pc has a

unique identifier pid ,
• the block bid includes bsize program points, i.e. that the length of the block bid is equal

bsize, and
• bidx is the index of the program point pc in the block, i.e. that the pc-th instruction of the

instruction list is the bidx -th instruction of the block bid .

Example 6.3. Figure 6.1 depicts the instruction list of the program IL3 in Figure A.3, a CFG with
basic blocks marked as dashed boxes, and a CFGB for the program IL3 . The program IL3 is
the result of application of the optimizations CF, DAE, and NI to the program IL0 depicted in
Figures A.1 and 1.4. For example, the chain of these optimizations replaced the 0-th instruction
of the program IL0 , [0]: _tI_1 = 0;, by the instruction [0]: GOTO 1;, which emulates nop
instruction, cf. Figures A.1, A.2, A.3, . As for each well-formed IL program there exists a unique
representation as CFG and for most of CFGs one can give at least one definition of basic blocks,
the CFG is furnished with dashed boxes to visualize for which basic block definition is the CFGB
in the figure. Figure 6.2 depicts the CFGB from Figure 6.1 and three sets which are the starting
point for the declaration of that CFGB: the set of block identifiers BlckId, the set of block position
identifiers BlckPosId, and the set of block position descriptors BlckPosDescr.

The first example: The program point 5 is included in the block with the identifier b1 with
the block index equal 1 and the length of b1 is equal 3. For this reason, the sets BlckPosId
and BlckPosDescr comprise the block position identifer p1,5 and the block position descriptor
(p1,5, b1, 3, 1, 5), respectively.

The second example: The program point 12 is included in the block b6 which is nested in the
block b3. The block indexes of the program point 12 in the blocks b6 and b3 are equal 0 and 1,
respectively. The lengths of those blocks are equal 1 and 2 respectively. For this reason, the sets
BlckPosId and BlckPosDescr comprise the block position identifiers p3,12 and p6,12 and the
block position descriptors (p3,12, b3, 2, 1, 12) and (p6,12, b6, 1, 0, 12), respectively.

♦

The BPEnv set contains partial mappings from block position identifiers to block position
descriptors, which we call block position descriptor environments. A well-formed block position en-
vironment BP ∈ BPEnv is a total function which maps each pid ∈ BlckPosId to a unique block
position descriptor, BP(pid) = Some(pid ′, bid , bsize, bidx , pc) with pid = pid ′, and its purpose is
to model the "includes" relation between the set of blocks BlckId and the set of program points.
Thus, BP can be used to either prove or disprove a statement that a block bid includes a block
position pid .

Example 6.4. This example is the continuation of Example 6.3. Figure 6.3 depicts the CFGB from
Figure 6.1 and the diagram of a function BP ∈ BPEnv which which is declared for that CFGB.
For instance, the program point 5 is included in the block with the identifier b1 with the block
index equal 1 and the length of b1 is equal 3. This relationship is described by the block position
descriptor (p1,5, b1, 3, 1, 5). For this reason, BP maps the block position identifier p1,5 to the block
position descriptor (p1,5, b1, 3, 1, 5).

♦

To declare a CFGB completely, we need to declare its set of edges. We do not, however, declare
this set explicitly, for example by defining a successor relation over block pairs as a subset of
BlckId × BlckId, but rather in an implicit way, which is due to the purpose of our formalism,

6.2 Block position environments 89

[0]: GOTO [1];
[1]: i = 0;
[2]: GOTO [3];
[3]: res = 0;
[4]: GOTO [5];
[5]: _tB_1 = n < 2;
[6]: BRANCH ~_tB_1 [11];
[7]: GOTO [8];
[8]: _tI_5 = n + 1;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: GOTO [12];
[12]: GOTO [13];
[13]: _tI_6 = n * n
[14]: tmp = _tI_6;
[15]: _tI_7 = res + tmp;
[16]: _tI_8 = a[i];
[17]: _tI_9 = _tI_7 + _tI_8;
[18]: res = _tI_9;
[19]: _tI_10 = a[i];
[20]: _tI_11 = tmp + _tI_10;
[21]: PRINTI _tI_11;
[22]: GOTO [23];
[23]: _tI_13 = i + 1;
[24]: i = _tI_13
[25]: GOTO [26];
[26]: _tB_2 = i < 4;
[27]: BRANCH _tB_2 [12];
[28]: PRINTI res;
[29]: EXIT;

0

1

2

3

5

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

p0,0

p0,1

p0,2

p0,3

b1

b2

b3

1

0

p1,4

p1,5

p1,6

p2,7

p2,8

p2,9

p2,10

p3,12

p3,11

b6

b4

b5

b0

p6,12

p4,16

p4,17

p4,15

p4,14

p4,13

p4,18

p4,19

p4,20

p4,21

p4,22

p4,23

p4,24

p4,25

p4,26

p4,27

p5,28

p5,29

Fig. 6.1. The instruction list of the program IL3 in Figure A.3, its CFG with a basic block definition
marked as dashed boxes, and a CFGB which corresponds to the CFG in the middle of the figure.

90 6 Optimization independent translation correctness criterion

0,0

p0,1

p0,2

p0,3

b1

b2

b3

p1,4

p1,5

p1,6

p2,7

p2,8

p2,9

p2,10

p3,12

p3,11

b6

b4

b5

b0

p6,12

p4,16

p4,17

p4,15

p4,14

p4,13

p4,18

p4,19

p4,20

p4,21

p4,22

p4,23

p4,24

p4,25

p4,26

p4,27

p5,28

p5,29

p5,29

p5,28

p4,27

p4,26

p4,25

p4,24

p4,23

p4,22

p4,21

p4,20

p4,19

p4,18

p4,17

p4,16

p4,15

p4,14

p4,13

p6,12

p3,12

p3,11

p2,10

p2,9

p2,8

p2,7

p1,5

p1,4

p0,1

p0,3

p0,2

p0,0

p1,6

BlckPosId

(p0,0,b0,4,0,0)

(p0,1,b0,4,1,1)

(p0,2,b0,4,2,2)

(p0,3b0,4,3,3)

(p1,5,b1,3,1,5)

(p1,4,b1,3,0,4)

(p1,6,b1,3,2,6)

(p2,7,b2,4,0,7)

(p2,8,b2,4,1,8)

(p2,9,b2,4,2,9)

(p2,10,b2,4,3,10)

(p3,11,b3,2,0,11)

(p3,12,b3,2,1,12)

(p6,12,b6,1,0,12)

(p4,13,b4,15,0,13)

(p4,14,b4,15,1,14)

(p4,15,b4,15,2,15)

(p4,16,b4,15,3,16)

(p4,17,b4,15,4,17)

(p4,18,b4,15,5,18)

(p4,19,b4,15,6,19)

(p4,20,b4,15,7,20)

(p4,21,b4,15,8,21)

(p4,22,b ,15,9,22)
4

(p4,23,b4,15,10,23)

(p4,24,b4,15,11,24)

(p4,25,b4,15,12,25)

(p4,26,b4,15,13,26)

(p4,27,b4,15,14,27)

(p5,28,b5,2,0,28)

(p5,29,b5,2,1,29)

BlckPosDescr

b0 b1 b2 b3 b4 b5 b6

BlckId
p

Fig. 6.2. The CFGB from Figure 6.1 and the sets BlckId, BlckPosId, and BlckPosDescr.

6.2 Block position environments 91

BP

0,0

p0,1

p0,2

p0,3

b1

b2

b3

p1,4

p1,5

p1,6

p2,7

p2,8

p2,9

p2,10

p3,12

p3,11

b6

b4

b5

b0

p6,12

p4,16

p4,17

p4,15

p4,14

p4,13

p4,18

p4,19

p4,20

p4,21

p4,22

p4,23

p4,24

p4,25

p4,26

p4,27

p5,28

p5,29

p5,29

p5,28

p4,27

p4,26

p4,25

p4,24

p4,23

p4,22

p4,21

p4,20

p4,19

p4,18

p4,17

p4,16

p4,15

p4,14

p4,13

p6,12

p3,12

p3,11

p2,10

p2,9

p2,8

p2,7

p1,5

p1,4

p0,1

p0,3

p0,2

p0,0

p1,6

BlckPosId

(p0,0,b0,4,0,0)

(p0,1,b0,4,1,1)

(p0,2,b0,4,2,2)

(p0,3b0,4,3,3)

(p1,5,b1,3,1,5)

(p1,4,b1,3,0,4)

(p1,6,b1,3,2,6)

(p2,7,b2,4,0,7)

(p2,8,b2,4,1,8)

(p2,9,b2,4,2,9)

(p2,10,b2,4,3,10)

(p3,11,b3,2,0,11)

(p3,12,b3,2,1,12)

(p6,12,b6,1,0,12)

(p4,13,b4,15,0,13)

(p4,14,b4,15,1,14)

(p4,15,b4,15,2,15)

(p4,16,b4,15,3,16)

(p4,17,b4,15,4,17)

(p4,18,b4,15,5,18)

(p4,19,b4,15,6,19)

(p4,20,b4,15,7,20)

(p4,21,b4,15,8,21)

(p4,22,b ,15,9,22)
4

(p4,23,b4,15,10,23)

(p4,24,b4,15,11,24)

(p4,25,b4,15,12,25)

(p4,26,b4,15,13,26)

(p4,27,b4,15,14,27)

(p5,28,b5,2,0,28)

(p5,29,b5,2,1,29)

BlckPosDescr

p

Fig. 6.3. The CFGB for the instruction list in Figure 6.1 and the declaration of a function BP ∈ BPEnv

for that CFGB.

92 6 Optimization independent translation correctness criterion

which is to suport formal reasoning about the correctness of optimizations. In particular, our
framework has to enable one to do the following three things:

1. Expressing formally statements which describe transfers of the flow of control along the edges
of a CFGB during partial execution of a program and how the current position of the flow of
control in the CFGB has changed after making a transition. There follow some examples of
such statements expressed informally:
a) "The flow of control has transfered from the block bid i and enters the block bid j ."
b) "The flow of control has transfered from the program point pcj , which is included by the

block bid , to the program point pcj and remained in that block."
c) "The flow of control has transfered from the program point pci , which is included by the

block bidk , to the program point pcj , which is included by another block bid l ."
2. Expressing formally that a CFGB declared for a program is well-formed, i.e. it fulfills the

aforementioned completeness and adherence properties. Below, Example 6.5 illustrates what
does it mean that a concrete CFGB declaration adheres to the CFG that corresponds to a IL
program:

3. The formalisation has to provide means which enables one to prove for a concrete CFGB
declaration and a concrete IL program that the declaration is well-formed w.r.t. the program.

Example 6.5. Let us consider Figure 6.3. The pair of program points (7, 8) is in the set of edges
of the CFG in Figure 6.3 and both 7 and 8 are included in the same block bid2 with the block
indexes 0 and 1, respectively, and the length of the block bid2 is equal 4. Further, the BlckPosId
set comprises the block position identifiers p2,7 and p2,8 for the "includes" relationships (b2, 7)
and (b2, 8) Then, the edge (p2,7, p2,8) in the CFGB adheres to the edge (7, 8) in the CFG iff the
set BlckPosDescr comprises the descriptors (pid2,7, bid2, 4, 0, 7) and (pid2,8, bid2, 4, 1, 8); and
the block position descriptor environment BP maps pid2,7 and pid2,8 to (pid2,7, bid2, 4, 0, 7) and
(pid2,8, bid2, 4, 1, 8), respectively.

♦

In the following, we explain formation rules for the sets BBEnv, succBPEnv, Buffertype,
and predBEnv which implicitly declare the set of edges of a control flow graph with blocks.

The BBEnv set contains partial mappings from block identifiers to block position identifiers
which we call block beginning environments. A well-formed block beginning environment BB ∈
BBEnv maps each block identifier bid ∈ BlckId to a well-defined block position identifier pid ∈
BlckPosId iff there exists a block length bsize and a program point pc such that BP(pid) =
Some(pid , bid , bsize, 0, pc). Thus, BB can be used to either prove or disprove that pid marks the
beginning of the block bid and that program point pc is the entry point of the block bid .

Example 6.6. This example is the continuation of Examples 6.3, 6.4. Figure 6.4 depicts the CFGB
from Figure 6.1 and the diagram of a function BB ∈ BBEnv which is declared for that CFGB.
For instance, the block b2 includes four block positions and the first block position in that block,
i.e. a block position with the block index equal 0, is p2,7. For this reason, the block beginning
environment BB maps b2 to p2,7.

♦

The succBPEnv set contains partial mappings from pairs (pid , pc) consisting of block po-
sition identifiers and program points to block position identifiers pid ′ which we call successor
block position environments. The purpose of a mapping succBP ∈ succBPEnv is to declare
a successor relation over block position pairs that adheres to the successor relation between
the sets of program points of a program. A well-formed successor block position environment

6.2 Block position environments 93

BB

0,0

p0,1

p0,2

p0,3

b1

b2

b3

p1,4

p1,5

p1,6

p2,7

p2,8

p2,9

p2,10

p3,12

p3,11

b6

b4

b5

b0

p6,12

p4,16

p4,17

p4,15

p4,14

p4,13

p4,18

p4,19

p4,20

p4,21

p4,22

p4,23

p4,24

p4,25

p4,26

p4,27

p5,28

p5,29

p5,29

p5,28

p4,27

p4,26

p4,25

p4,24

p4,23

p4,22

p4,21

p4,20

p4,19

p4,18

p4,17

p4,16

p4,15

p4,14

p4,13

p6,12

p3,12

p3,11

p2,10

p2,9

p2,8

p2,7

p1,5

p1,4

p0,1

p0,3

p0,2

p0,0

p1,6

BlckPosId

b1

b2

b3

b6

b4

b5

b0

BlckId

p

Fig. 6.4. The CFGB for the instruction list in Figure 6.1 and the declaration of a function BB ∈ BBEnv

for that CFGB.

94 6 Optimization independent translation correctness criterion

succBP maps a pair (pid , pc′) to a block position identifier pid ′ iff the corresponding block po-
sition descriptor environment BP maps pid and pid ′ to descriptors (pid , bid , bsize, bidx , pc) and
(pid ′, bid ′, bsize ′, bidx ′, pc′), respectively, and pc′ is successor program point of pc. The following
example illustrates this.

Example 6.7. This example is the continuation of Examples 6.3, 6.4, and 6.6. Figure 6.5 depicts the
CFGB from Figure 6.1 and the diagram of a function succBP ∈ succBPEnv which is declared
for that CFGB. For instance, the CFGB comprises the edge (p4,27, p6,12) which adheres to the
edge (27, 12) in the CFG in Figure 6.1. For this reason, the successor block position environment
succBP maps the pair (p4,27, 12) to the block identifier p6,12.

♦

The purpose of the set of buffer types Buffertype is to model two possible forms of the
output buffer component b in the configuration σ = (tf , af , pc, b, s). The value FTYPE is used
as abstraction of the set of values of b which have the form FLUSH(n) and the value OTYPE as
abstraction of the set of values of b which have the form WRITE(n, i). The values FTYPE and OTYPE
are used in a CFGB declaration to express that we can statically predict that whenever the flow
of control transfers along an edge (pc, pc′) of the corresponding CFG than the current state of the
output buffer has a certain form.

Example 6.8. It follows directly from the definition of the operational semantics of the IL language
that if the pc-th instruction of a program is an assignment instruction than, each time the flow of
control transfers from the program point pc to the program point pc + 1, the state of the output
buffer has the form FLUSH(n).

♦

Example 6.9. It follows directly from the definition of the operational semantics of the IL language
that if the pc-th instruction of a program is a printi instruction than, each time the flow of control
transfers from the program point pc to the program point pc + 1, the state of the output buffer
has the form WRITE(n, i).

♦

The predBEnv set contains partial mappings from block position identifiers pid to sets of
pairs (bid , bt) consisting of block identifiers and buffertypes. We call these mappings predecessor
block environments. The purpose of an environment predB ∈ predBEnv is to declare the set of
all predecessor blocks for a block position pid which has the block index equal 0 in some block bid
(i.e. marks is an entry block position of bid) together with the form of the output buffer b in the
current state of program execution σ whenever the flow of control flows into bid making transition
along the edges connecting these blocks with bid .

Example 6.10. This example is the continuation of Examples 6.3, 6.4, 6.6, and 6.7. Figure 6.6
depicts the CFGB from Figure 6.1 and the diagram of a function predB ∈ predBEnv which
is declared for that CFGB. For instance, the predecessor block environment predB in Figure 6.6
maps p4,13 to the set {(b3, FTYPE), (b6, FTYPE)} for the following reasons:

1. The 12-th instruction of the instruction list in Figure 6.3 is [12]: GOTO [13],
2. The program point 12 is allocated to the block positions p3,12 and p6,12,
3. p3,12 and p6,12 are the last block positions in the blocks b3 and b6, respectively,
4. The block position p4,13 has the block index 0 in the block b4, and
5. The CFGB comprises the edges (p3,12, p4,13) and (p6,12, p4,13).

♦

6.2 Block position environments 95

BlckPosId Pc

0,0

p0,1

p0,2

p0,3

b1

b2

b3

p1,4

p1,5

p1,6

p2,7

p2,8

p2,9

p2,10

p3,12

p3,11

b6

b4

b5

b0

p6,12

p4,16

p4,17

p4,15

p4,14

p4,13

p4,18

p4,19

p4,20

p4,21

p4,22

p4,23

p4,24

p4,25

p4,26

p4,27

p5,28

p5,29

p0,1

p0,2

p0,3

p14

p1,5

p1,6

p2,7

p3,11

p2,8

p2,9

p2,10

p3,12

p4,13

p4,13

p4,14

p4,15

p4,16

p4,17

p4,18

p4,19

p4,20

p4,21

p4,22

p4,23

p4,24

p4,25

p4,26

p4,27

p5,28

p6,12

p5,29

BlckPosId

(p0,0,1)

(p0,1,2)

(p0,2,3)

(p0,3,4)

(p1,4,5)

(p1,5,6)

(p1,6,7)

(p1,6,11)

(p2,7,8)

(p2,8,9)

(p2,9,10)

(p3,11,12)

(p3,12,13)

(p6,12,13)

(p4,13,14)

(p4,16,17)

(p4,17,18)

(p4,20,21)

(p4,21,22)

(p4,22,23)

(p4,23,24)

(p4,24,25)

(p4,25,26)

(p4,26,27)

(p4,27,28)

(p4,27,12)

(p5,28,29)

(p4,15,16)

(p4,18,19)

(p4,19,20)

(p4,14,15)

succBP

p

Fig. 6.5. The CFGB for the instruction list in Figure 6.1 and the declaration of a function succBP ∈
succBPEnv for that CFGB.

96 6 Optimization independent translation correctness criterion

predB

0,0

p0,1

p0,2

p0,3

b1

b2

b3

p1,4

p1,5

p1,6

p2,7

p2,8

p2,9

p2,10

p3,12

p3,11

b6

b4

b5

b0

p6,12

p4,16

p4,17

p4,15

p4,14

p4,13

p4,18

p4,19

p4,20

p4,21

p4,22

p4,23

p4,24

p4,25

p4,26

p4,27

p5,28

p5,29

{(b 1,FTYPE)}

{(b 3,FTYPE),(b 6,FTYPE)}

{(b 4,FTYPE)}

{(b 1,FTYPE)}

p5,29

p5,28

p4,27

p4,26

p4,25

p4,24

p4,23

p4,22

p4,21

p4,20

p4,19

p4,18

p4,17

p4,16

p4,15

p4,14

p4,13

p6,12

p3,12

p3,11

p2,10

p2,9

p2,8

p2,7

p1,5

p1,4

p0,1

p0,3

p0,2

p0,0

p1,6

{(b 0,FTYPE),(b 2,FTYPE)}

{(b 4,FTYPE)}

P(BlckId Buffertype)

{}

BlckPosId

p

Fig. 6.6. The CFGB for the instruction list in Figure 6.1 and the declaration of a function predB ∈
predBEnv for that CFGB.

6.3 Well-formedness of block position environments 97

In our work, we declare a CFGB for an IL program P as a block position environment B ∈
BlckPosEnv, where B is defined as a tuple (pid0,BP ,BB , succBP , predB) whose components
denote the following:

• pid0 denotes a block position identifier of the "include" relationship between a program point
0 which is both the entry point of P and the entry point of the entry block of the CFGB,

• BP denotes a block position descriptor environment,
• BB denotes a block beginning environment,
• succBP denotes a successor block position environment, and
• predB denotes a predecessor block environment.

If a CFGB declaration (pid0,BP ,BB , succBP , predB) is well-formed, then the entry block
of the CFGB can be determined by looking up in the set of block position descriptors BP for
the descriptor of the block position pid0. The result has always the same form, BP(pid0) =
Some(pid0, bid0, bsize0, 0, 0) where bid0 and bsize0 denote the identifier of the entry block and its
length, respectively, as 0-th instruction of a program is always established as the entry point of
the program and the entry point of the entry block.

The following section presents the formalization of the notion of well-formedness of a CFGB
declaration.

6.3 Well-formedness of block position environments

This section presents the formalization of the notion well-formedness of a CFGB declaration w.r.t.
a IL program.

As aforementioned, the starting point for declaring of a block position environment B for an
IL program P are three finite sets:

1. the set of block identifiers BlckId,
2. the set of block position identifiers BlckPosId, and
3. the set of block position descriptors BlckPosDescr

where the sets BlckPosId and BlckPosDescr must fulfill the completeness property w.r.t. the
block set BlckId and an IL program.

Definition 6.11 defines an auxiliary function pc2pidset which we use to check if the sets BlckId,
BlckPosId, and BlckPosDescr defined for a CFGB declaration fulfill the completeness property
w.r.t. an IL program.

Definition 6.11.

pc2pidset : BPEnv ×Pc → P(BlckPosId)

pc2pidset(BP , pc) = {pid | ∃ bid bsize bidx . BP(pid) = Some(pid , bid , bsize, bidx , pc)}

Example 6.12. This example is the continuation of Examples 6.3 and 6.4. Figure 6.3 depicts the
CFGB from Figure 6.1 and the diagram of a function BP ∈ BPEnv which is declared for that
CFGB. For instance, as the program point 11 is included in only one block b3 the program point
12 is included in nested blocks b6 and b3, it holds the following for the function BP :

1. pc2pidset(BP , 11) = {p3,11} and
2. pc2pidset(BP , 12) = {p3,12, p6,12}.

♦

98 6 Optimization independent translation correctness criterion

Using the function pc2pidset, we can formally express the completeness property of a CFGB
declaration (pid0,BP ,BB , succBP , predB) w.r.t. an IL program ((vds, instrs), I) as follows.

∀ pc. 0 ≤ pc < length(instrs) −→ pc2pidset(BP , pc) ,= {} ∧
∀ pid . ∃ bid bsize bidx pc. BP(pid) = Some(pid , bid , bsize, bidx , pc) ∧ 0 ≤ bidx ∧ bidx < bsize

In the following, we present definitions of predicates which we use to check if a CFGB decla-
ration for a program adheres to the CFG which corresponds to that program.

Definitions 6.13 and 6.15 define two auxiliary predicates wfB_succpc_in_blck and
wfB_succpc_next_blck which we use to check if a pair (pid , succpid) consisting of two block
position identifiers which are in the successor relationship in a CFGB declaration adheres to an
edge (pc, succpc) of a CFG.

Let us consider an edge (pc, succpc) in the edge set of a CFG, a block bid , and a block position
identifier pid such that bid has the length bsize; and bid includes pc; and pid is the unique identifier
of the "includes" relationship (bid , pc). Then, in a well-formed CFGB declaration, the program
point succpc is also allocated to a block bid ′ (according to the completeness property of CFGB)
and there are two possibilities for bid ′:

1. The program point pc is not the last program point included in the block bid . Consequentially,
succpc must also be included in bid and it holds bid = bid ′.

2. The program point pc is the last program point included in the block bid . Consequentially,
succpc must be the entry point of bid ′ and it holds bid $= bid ′.

The predicate wfB_succpc_in_blck formalizes the property of adherence of a block position
pair (pid , succpid) to a CFG edge (pc, succpc) in the former case. The predicate wfB_succpc_next_blck
formalizes the property of adherence of a block position pair (pid , succpid) to a CFG edge
(pc, succpc) in the latter case.

In the definition of wfB_succpc_in_blck, the conjuncts BP(pid) = Some(pid , bid , bsize, bidx , pc)
and BP(succpid) = Some(succpid , bid , bsize, bidx ′, succpc) state that the program points pc
and succpc are allocated to the block positions pid and succpid , respectively, which are in-
cluded in the same block bid with the block indexes bidx and bidx ′, respectively. The conjuncts
succBP(pid , succpc) = Some(succpid)) and Suc(bidx) = bidx ′ states that succpid is declared in
the CFGB declaration (pid0,BP ,BB , succBP , predB) as the successor block position of pid w.r.t.
the successor program point succpc and that succpid is the successor of pid within the block bid .
The conjunct succpid ∈ pc2pidset(BP , succpc) states that succpid is one of the block positions to
which the program point succpc is allocated to.

Definition 6.13.

wfB_succpc_in_blck : BPEnv × succBPEnv ×BlckPosId×BlckPosId×Pc×Pc → Bool

wfB_succpc_in_blck(BP , succBP , pid , succpid , pc, succpc) =

∃ bid bsize bidx bidx ′.

BP(pid) = Some(pid , bid , bsize, bidx , pc) ∧
BP(succpid) = Some(succpid , bid , bsize, bidx ′, succpc) ∧
succBP(pid , succpc) = Some(succpid)) ∧
succpid ∈ pc2pidset(BP , succpc) ∧
Suc(bidx) = bidx ′

Example 6.14. This example is the continuation of Examples 6.3, 6.4, 6.7, and 6.12. Figures 6.3
and 6.5 depicts the CFGB from Figure 6.1 and the diagrams of the function BP ∈ BPEnv and
succBP ∈ succBPEnv which are declared for that CFGB. For instance, using the definitions of

6.3 Well-formedness of block position environments 99

those functions, we can prove that the block position pair (p3,11, p3,12) adheres to the CFG edge
(11, 12):

wfB_succpc_in_blck(BP , succBP , p3,11, p3,12, 11, 12)

Proof.

wfB_succpc_in_blck(BP , succBP , p3,11, p3,12, 11, 12)

⇐= [by the definition of wfB_succpc_in_blck]

∃ bid bsize bidx bidx ′.
BP(p3,11) = Some(p3,11, bid , bsize, bidx , 11) ∧
BP(p3,12) = Some(p3,12, bid , bsize, bidx ′, 12) ∧
succBP(p3,11, 12) = Some(p3,12) ∧
p3,12 ∈ pc2pidset(BP , p3,12) ∧
Suc(bidx) = bidx ′

⇐= [by the existential introduction rule]

BP(p3,11) = Some(p3,11, b3, 2, 0, 11) ∧
BP(p3,12) = Some(p3,12, b3, 2, 1, 12) ∧
succBP(p3,11, 12) = Some(p3,12) ∧
p3,12 ∈ pc2pidset(BP , p3,12) ∧
Suc(0) = 1

⇐= [by the definition of pc2pidset and BP]

BP(p3,11) = Some(p3,11, b3, 2, 0, 11) ∧
BP(p3,12) = Some(p3,12, b3, 2, 1, 12) ∧
succBP(p3,11, 12) = Some(p3,12) ∧
p3,12 ∈ {p3,12, p6,12} ∧
Suc(0) = 1

This holds by the definitions of BP and succBP ; and by the definition of 1 in HOL.
12
♦

In the definition of wfB_succpc_next_blck, the conjunct BP(succpid) = Some(succpid , bid ′,
bsize ′, 0, succpc) states the program point succpc is allocated to the block positions succpid which
has the block index equal 0 in the block bid ′, i.e. succpc is the entry point of bid ′. The conjunct
succBP(pid , succpc) = Some(succpid)) states that succpid is declared in the CFGB declaration
(pid0,BP ,BB , succBP , predB) as the successor block position of pid w.r.t. the successor program
point succpc. The conjunct succpid ∈ pc2pidset(BP , succpc) states that succpid is one of the block
positions to which the program point succpc is allocated to.

Definition 6.15.

wfB_succpc_next_blck : BPEnv × succBPEnv ×BlckPosId×BlckPosId×Pc×Pc → Bool

wfB_succpc_next_blck(BP , succBP , pid , succpid , pc, succpc) =

∃ bid ′ bsize ′.

BP(succpid) = Some(succpid , bid ′, bsize ′, 0, succpc) ∧
succBP(pid , succpc) = Some(succpid) ∧
succpid ∈ pc2pidset(BP , succpc)

100 6 Optimization independent translation correctness criterion

Example 6.16. This example is the continuation of Examples 6.3, 6.4, 6.7, and 6.12. Figures 6.3
and 6.5 depicts the CFGB from Figure 6.1 and the diagrams of the function BP ∈ BPEnv and
succBP ∈ succBPEnv which are declared for that CFGB. For instance, using the definitions of
those functions, we can prove that the block position pair (p3,12, p4,13) adheres to the CFG edge
(12, 13):

wfB_succpc_next_blck(BP , succBP , p3,12, p4,13, 12, 13)

Proof.

wfB_succpc_next_blck(BP , succBP , p3,12, p4,13, 12, 13)

⇐= [by the definition of wfB_succpc_next_blck]

∃ bid ′ bsize ′.
BP(p4,13) = Some(p4,13, bid ′, bsize ′, 0, 13) ∧
succBP(p3,12, 13) = Some(p4,13) ∧
p4,13 ∈ pc2pidset(BP , 13)

⇐= [by the existential introduction rule]

BP(p4,13) = Some(p4,13, bid ′, bsize ′, 0, 13) ∧
succBP(p3,12, 13) = Some(p4,13) ∧
p4,13 ∈ pc2pidset(BP , 13)

⇐= [by the definition of pc2pidset and BP]

BP(p4,13) = Some(p4,13, bid ′, bsize ′, 0, 13) ∧
succBP(p3,12, 13) = Some(p4,13) ∧
p4,13 ∈ {p4,13}

This holds by the definitions of BP and succBP .
12
♦

Definition 6.17 defines a predicate wfBinstr which takes a CFGB declaration (pid0,BP ,BB ,
succBP , predB), a program point pc, and an instruction instr as input and checks if the set of
block positions to whom pc is allocated, pc2pidset(BP , pc), adheres to pc w.r.t. the operational
semantics of the instruction instr . The property of adherence of pc2pidset(BP , pc) to pc is defined
as follows.

The program point pc is interpreted as a node of a CFG that corresponds to an IL program. For
this reason, the predicate has an auxiliary argument, the pc-th instruction of the program instr ,
which is needed to determine the set of CFG edges (pc, succpc) in which pc is in the predecessor
relationship with succpc. The edge set is determined in accordance with the operational semantics
of instr . For each edge (pc, succpc) in the set, the CFGB declaration must declare a block position
edge (pid , succpid) such that pc is allocated to the block position pid , i.e. pid ∈ pc2pidset(BP , pc),
and the edge (pid , succpid) adheres to the edge (pc, succpc).

6.3 Well-formedness of block position environments 101

Definition 6.17.

wfBinstr : BlckPosEnv ×Pc× Instruction → Bool

wfBinstr((pid0,BP ,BB , succBP , predB), pc, lv :=e) =

∀ pid ∈ pc2pidset(BP , pc).

∃ bid bsize bidx .

BP(pid) = Some(pid , bid , bsize, bidx , pc) ∧
if Suc(bidx) < bsize

then ∃ succpid . wfB_succpc_in_blck(BP , succBP , pid , succpid , pc, Suc(pc))

else ∃ succpid . wfB_succpc_next_blck(BP , succBP , pid , succpid , pc, Suc(pc))

wfBinstr((pid0,BP ,BB , succBP , predB), pc, printi(e)) =

∀ pid ∈ pc2pidset(BP , pc).

∃ bid bsize bidx .

BP(pid) = Some(pid , bid , bsize, bidx , pc) ∧
if Suc(bidx) < bsize

then ∃ succpid . wfB_succpc_in_blck(BP , succBP , pid , succpid , pc, Suc(pc))

else ∃ succpid . wfB_succpc_next_blck(BP , succBP , pid , succpid , pc, Suc(pc))

wfBinstr((pid0,BP ,BB , succBP , predB), pc, branch(e, dst)) =

∀ pid ∈ pc2pidset(BP , pc).

∃ bid bsize bidx .

BP(pid) = Some(pid , bid , bsize, bidx , pc) ∧
if Suc(bidx) < bsize

then ∃ succpid . wfB_succpc_in_blck(BP , succBP , pid , succpid , pc, Suc(pc)) ∧
∃ succpid . wfB_succpc_in_blck(BP , succBP , pid , succpid , pc, dst)

else ∃ succpid . wfB_succpc_next_blck(BP , succBP , pid , succpid , pc, Suc(pc)) ∧
∃ succpid . wfB_succpc_next_blck(BP , succBP , pid , succpid , pc, dst)

wfBinstr((pid0,BP ,BB , succBP , predB), pc, goto(dst)) =

∀ pid ∈ pc2pidset(BP , pc).

∃ pid ′ bid bsize bidx pc′.

BP(pid) = Some(pid ′, bid , bsize, bidx , pc′) ∧
pc = pc′ ∧
if Suc(bidx ′) < bsize

then ∃ succpid . wfB_succpc_in_blck(BP , succBP , pid , succpid , dst)

else ∃ succpid . wfB_succpc_next_blck(BP , succBP , pid , succpid , dst)

wfBinstr((pid0,BP ,BB , succBP , predB), pc, exit) =

∀ pid ∈ pc2pidset(BP , pc).

∃ pid ′ bid bsize bidx pc′.

BP(pid) = Some(pid ′, bid , bsize, bidx , pc′) ∧
Suc(bidx ′) = bsize

Definition 6.18 defines a predicate wfBinstrs which checks if a CFGB declaration (pid0,BP ,BB ,
succBP , predB) is complete w.r.t. to an instruction list instrs and the successor relation over block
position pairs, which is declared by succBP , adheres to the set of node edges of the CFG which
corresponds to instrs. The former property is defined as follows. (pid0,BP ,BB , succBP , predB)
is complete w.r.t. instrs iff each program point pc of instrs is allocated to at least one block
position, i.e. the set pc2pidset(BP , pc) must not be empty for each pc. The latter property is
defined as follows. (pid0,BP ,BB , succBP , predB) adheres to the set of node edges of the CFG
which corresponds to instrs iff it holds for each program point of instrs, pc, that the set of block

102 6 Optimization independent translation correctness criterion

positions pc2pidset(BP , pc) adheres to pc w.r.t. the operational semantics of the pc-th instruction
of instrs.

Definition 6.18.

wfBinstrs : BlckPosEnv × InstructionList → Bool

wfBinstrs((pid0,BP ,BB , succBP , predB), instrs) =

∀ pc. 0 ≤ pc < length(instrs) −→ pc2pidset(BP , pc) ,= {} ∧
wfBinstr((pid0,BP ,BB , succBP , predB), pc, instrs!pc)

Definition 6.19 defines a predicate wfB which checks if a CFGB declaration (pid0,BP ,BB ,
succBP , predB)) is well-formed w.r.t. an IL program ((vds, instrs), I). The declaration (pid0,BP ,BB ,
succBP , predB) is well-formed w.r.t. (pid0,BP ,BB , succBP , predB)) iff it fulfills the following re-
quirements:

• BP is an injective mapping from block positions to block position descriptors, i.e. we require
the following:
– For each block position pid there exists a block well-formed descriptor (pid , bid , bsize, bidx , pc)

which describes the "includes" relationship between a block bid and a program point pc
with a valid block index bidx and

– if the descriptor’s block index component bidx is equal 0, then the block position pid is
declared by the mapping BB as the entry of the block bid .

• For each block bid there exists a block position pid which is the entry of bid .
• The program point 0 is allocated to the block position pid0 which is the entry of the entry

block of the CFGB.
• The CFGB declaration is both complete w.r.t. to the instruction list instrs and the successor

relation over block position pairs, which is declared by succBP , adheres to the set of node
edges of the CFG which corresponds to instrs.

Definition 6.19.

wfB : Program×BlckPosEnv → Bool

wfB(((vds, instrs), I), (pid0,BP ,BB , succBP , predB)) =

∀ pid . ∃ bid bsize bidx pc.

BP(pid) = Some(pid , bid , bsize, bidx , pc) ∧
0 ≤ bidx ∧
bidx < bsize ∧
bidx = 0 −→ BB(bid) = Some(pid)

∧
∀ bid. ∃ pid bid bsize pc.

BB(bid) = Some(pid) ∧
BP(pid) = Some(pid , bid , bsize, 0, pc)

∧
∃ bid0 bsize0. BP(pid0) = Some(pid0, bid0, bsize0, 0, 0) ∧
∧

wfBinstrs((pid0,BP ,BB , succBP , predB), instrs)

6.4 Formalization of the language IL’ 103

6.4 Formalization of the language IL’

This section presents the formalization of an intermediate language IL’ which can be seen as a
language of CFGB declarations whose operational semantics is defined by means of block-position-
wise transitions of the flow of control.

The section consists of two parts and is organized as follows. The first part of the section
presents the abstract syntax of the IL’ language. The second part presents the semantics definition
of IL’.

6.4.1 Abstract syntax of IL’

We begin our presentation of the abstract syntax definition by introducing a syntactic set of IL’
programs, Program′, and metavariables ranging over IL’ programs: P ′, S ′, and T ′.

Definition 6.20 defines formation rule for the syntactic set Program′. An IL’ program is tuple
(P ,B) consisting of an IL program P and a CFGB declaration B .

Definition 6.20.

Program′ (P ′,S ′,T ′ ::= (P ,B)

6.4.2 Semantics of the IL’ language

This section presents the definition of the semantics of the IL’ language. We begin our presentation
by introducing sets and metavariables that are associated with the definition.

For the purpose of the operational semantics definition, we introduce the following syntactic
sets:

• numbers of transitions from block position to block position made by the flow of control ("small
step" numbers) SS,

• numbers of transitions from block to block made by the flow of control ("block step" numbers)
BS,

• numbers of transitions which were made by the flow of control until entering into the current
block ("until" numbers) Until, and

• augmented configurations Configuration′;

and metavariables ranging over these sets:

• ss ranges over small step numbers SS,
• bs ranges over numbers of block steps BS,
• until and ss range over until numbers Until
• σ′ ranges over augmented configurations Configuration′.

Definition 6.21 defines the set of augmented configurations Configuration′. An augmented
configuration σ′ is a tuple (ss, bs, until , bpos, bid , σ) consisting of

• a small step number ss,
• a block step number bs,
• an until number until ,
• a block position status bposstat ,
• a predecessor block identifier predbid , and
• a configuration σ.

104 6 Optimization independent translation correctness criterion

The meaning of the components ss, bs, until , bposstat , predbid , and σ will be explained below in
the part of the section which presents the definition of the operational semantics of IL’.

Definition 6.21.

ss ∈ SS = Nat

bs ∈ BS = Nat

until ∈ Until = Nat

BlckPosStat (bposstat ::= EXITBLCK |
EXCBLCK |
RESTBLCK(bsize, bidx) |
NORMBLCK(bpos)

Configuration′ (σ′ ::= (ss, bs, until , bposstat , predbid , σ)

Definition 6.22 defines a transition function exec′

exec′ : Program′ ×Configuration′ → Configuration′

which computes a successor configuration exec′(P ′, σ′) for an IL’ program P ′ and an augmented
configuration σ′. exec′ is a wrapper function which takes into account that an IL’ program is a
tuple of the form (P ,B) which consists of an IL program P and a CFGB declaration B ; and
that the σ component in an augmented configuration σ′ = (ss, bs, until , bposstat , predbid , σ) is an
element of the Configuration set which is used by the definition of the operational semantics of
the IL language. Independently of the status of program execution, the successor of an augmented
configuration σ′ = (ss, bs, until , bposstat , predbid , σ) has always the same form

exec′((P ,B), (ss, bs, until , bposstat , predbid , σ)) = (Suc ss, bs ′, until ′, bposstat ′, predbid ′, exec(P , σ))

where the values of the components bs ′, until ′, bposstat ′, predbid ′ are functions of σ′ and the
successor configuration exec(P , σ). In the following, we explain the meaning of the components of
σ′ and how their values are computed by the function exec′ during execution of (P ,B).

The component σ: The most important component in σ′ is the configuration σ ∈ Configuration.
The components of σ are interpreted in the same way as explained in Section 4.2.

The components ss, bs, and until : The components ss, bs, and until serve as step counters
and are defined as follows.

• The small step number ss is incremented by each application of the transition function exec′.
Thus, the value of the ss component in an augmented configuration σ′ is equal n iff σ′ is
the result of n successive applications of exec′ to an initial augmented configuration for the
program (P ,B). Later on, we present a function init′, which computes an initial augmented
configuration for an IL’ program.

• The block step number bs is incremented whenever the flow of control leaves the current
block and transfers to another block. Thus, the value of the bs component in an augmented
configuration σ′ is equal n iff the flow of control transferred through n blocks during partial
execution of (P ,B) that produced σ′.

• Given that the flow of control is currently at one of the block positions included in a block,
then the value of the component until indicates how many transitions were made by the flow of
control before transfering to the first block position of that block. During the whole execution
of the program (P ,B), the following invariant holds:

until ≤ ss < (until + bsize) ∧ ss = until + bidx ,

where until and ss denote the values of the components until and ss, respectively, and bsize
denotes the length of a block which the flow of control is currently transferring through.

6.4 Formalization of the language IL’ 105

The component predbid : Given that the flow of control is currently at one of the block positions
included in a block, the value of the component predbid indicates that the flow of control was
transferred to that block from the block predbid .

The component bposstat : In an augmented configuration σ′ = (ss, bs, until , bposstat , predbid ,
(tf , af , pc, b, s)), the block status component bposstat describes a block position in the CFGB,
which the flow of control is currently at, and its value depends of one of four modes of execution
of the program:

The normal mode: A program is executed in the normal mode iff the values of the components
tf and af in σ′ are equal NT and ABok, respectively, and the value of the component bposstat
has the form NORMBLCK(pid , bid , bsize, bidx , pc). The meaning of the value is that the flow
of control is currently at the program point pc which is allocated to a block position pid
which is included in a block bid and that the includes relationship between pid and bid
is described by a block position descriptor (pid , bid , bsize, bidx , pc) ∈ BlckPosDescr such
that BP = Some(pid , bid , bsize, bidx , pc). The value of predbid denotes a block predbid which
is a predecessor of bid , i.e. that the flow of control, which is currently being in the block
bid , transferred to bid from predbid . There is only one possibility for how computing of the
successor augmented configuration σ′ can result in switching of the execution mode into the
normal mode: The program is already executed in the normal mode, i.e. σ′ has the form

(ss, bs, until , NORMBLCK(pid , bid , bsize, bidx , pc), predbid , (NT, ABok, pc, b, s)) ,

and the values of the components tf and af in the successor configuration
exec(P , (NT, ABok, pc, b, s)) remain unchanged. In this case, the transition function exec′ com-
putes a new value of the component bposstat and adjusts the values of remaining components
according to the result of computation:
If the block position pid is not the last block position included in the block bid , i.e. it holds
Suc(bidx) < bsize), then the flow of control merely transfers to a next block position pid ′

included in the block bid with the block index bidx ′ equal Suc(bidx). This means that the
value of the components bposstat , predbid , ss, bs, and until are computed as follows.
bposstat : The function looks up for the successor of the block position pid , pid ′, and its de-
scriptor (pid ′, bid ′, bsize ′, bidx ′, pc′) and sets the value of the block position status component
bposstat to the value NORMBLCK(pid ′, bid ′, bsize ′, bidx ′, pc′).
predbid : The value of the predecessor block component remains unchanged as the flow of
control does not leave the block bid .
ss, bs, and until : Only the value of the small step number component is incremented as the
flow of control does not leave the block bid .
If the block position pid is the last block position included in the block bid , i.e. it holds
Suc(bidx) = bsize), then the flow of control transfers to a next block position pid ′ included
in a successor block bid ′ with the block index bidx ′ equal 0. This means that the value of the
components bposstat , predbid , ss, bs, and until are computed in the following way:
bposstat : The function looks up for the successor of the block position pid , pid ′, and its de-
scriptor (pid ′, bid ′, bsize ′, bidx ′, pc′) and sets the value of the block position status component
bposstat to the value NORMBLCK(pid ′, bid ′, bsize ′, bidx ′, pc′).
predbid : The value of the predecessor block component is set to bid as the flow of control leaves
the block bid transfers into the successor block bid ′.
ss, bs, and until : The small step number and block step number components are incremented
to indicate that the flow of control transferred to both the next block position and the next
block. The value of the component until is adjusted according to the length of the block bid

106 6 Optimization independent translation correctness criterion

in order to maintain the aforementioned invariant: If the CFGB declaration B is well-formed,
then it holds

bidx ′ = 0 ∧ 0 < bsize ∧ 0 < bsize ′ .

This implies

until ≤ ss < until + bsize ∧ ss = until + bidx
=⇒
(until + bsize) ≤ Suc(ss) < (until + bsize) + bsize ′ ∧ Suc(ss) = (until + bsize) + bidx ′ .

The exit mode: In this mode, the values of the components bposstat and pc in σ′ denote that
the last instruction which was executed during partial execution that produced σ′ was an
exit instruction and that this instruction is the pc-th instruction of the program. Further,
the value EXITBLCK denotes that the flow of control is currently in a virtual block which has
the length equal 1. There are two possibilities for how computing of the successor augmented
configuration can result in switching of the mode of execution into the exit mode:
The first possibility is that the program is already executed in the exit mode: As aforemen-
tioned in Section 4.2, if the value of the termination flag component tf in a configuration σ
is equal T, then value of the successor configuration exec(P , σ) is equal σ. In other words,
the transition function exec "freezes" the values of other components, if it holds tf = T. For
this reason, the transition function exec′, which is a wrapper function, also freezes the values
bposstat and predbid in the successor configuration of (ss, bs, until , EXITBLCK, predbid , σ) and
computes new values of the step number components ss, bs, and until according to the length
of the virtual block.
The second possibility is that the program is executed in the normal mode, i.e. the values
of the components t and af are equal NT and ABok, respectively, the flow of control is at a
block position pid described by a block position descriptor (pid , bid , bsize, bidx , pc), the pc-th
instruction of the program is an exit instruction, and pid is the last block position included
in the block bid , i.e. it holds Suc(bidx) = bsize. In this case, it follows from the definition
of the operational semantics of the IL language that executing the exit instruction results in
setting the values of the components tf and af in the successor configuration of the σ to T
and ABok, respectively. The function exec′ interpretes these values as making transition by the
flow of control transfers from the block bid to the virtual exit block and sets the values of the
components bposstat and predbid to EXITBLCK and bid , respectively. The new values of the
components ss, bs, and until are computed according to the length of the block bid .

The emulation mode: A program is executed in the emulation mode iff the values of the com-
ponents tf and af are equal NT and AB, respectively, and the value of bposstat has the form
RESTBLCK(bid , bsize, bidx). In this mode, the values of the components bposstat and pc in σ′

denote that the pc-th instruction was the last instruction that was executed by the partial
execution that produced σ′ and that execution of that instruction resulted in raising an array-
index-out-bounds exception. Further, the values denote that there exists a block position pidpc

and a block index bidxpc such that pidpc is included in bid with the block index bidxpc and
that pidpc is not the last block position in bid , i.e. it holds Suc(bidxpc) < bsize, where bsize
is the length of bid . Additionally, the value RESTBLCK(bid , bsize, bidx) denotes that the flow of
control is currently at one of virtual block positions that are included in a virtual rest block
which is defined for the block bid , its length bsize, and one of its block indexes bidxpc . The
set of virtual block positions which are included in this block is defined as follows.

{(bid , bsize, bidx) | bidxpc < bidx ∧ bidx < bsize}

There are two possibilities for how computing of the successor augmented configuration can
result in switching of the mode of execution into the emulation mode:

6.4 Formalization of the language IL’ 107

The first possibility is that the program is already executed in this mode: If the flow of
control is currently at a virtual block position (bid , bsize, bidx) which is not the last one in
the virtual block bid , i.e. if Suc(bidx < bsize holds, then the flow of control transfers to the
next virtual block position (bid , bsize,Suc bidx), the values of the step number components
are updated correspondingly and execution proceeds in the emulation mode since it follows
from the definition of the operational semantics of the IL language that the values of the
components tf and af in the successor configuration exec(P , σ) have the same values as in σ.
The second possibility is that the program is executed in the normal mode, the flow of control is
at a block position described by the descriptor (pidpc , bid , bsize, bidxpc , pc), the block position
pidpc is not the last block position in the block bid , and execution of the pc-th instruction
raises an array-index-of-bounds exception. In this case, it follows from the definition of the
operational semantics of the IL language that the values of the components tf and af are
equal NT and AB, respectively. Thus, the step number components are updated correspondigly,
the flow of control transfers to a virtual block position (bid , bsize,Suc bidxpc), which is the
first block position of a virtual rest block defined for the values bid , bsize, and bidxpc . The
resulting successor configuration of σ′ has the form

(Suc ss, bs, until , RESTBLCK(bsize, Suc bidxpc), predbid , exec(P , σ))

which means that execution switched to the emulation mode. Emulation of execution of the
rest of a block bid means that the next bsize−(bidx+1) successive applications of the transition
function to this configuration results in bsize − (bidx + 1) successive increments of the values
Suc(ss) and Suc(bidxpc) only. The rest of the components will remain unchanged.

The exception mode: A program is executed in the exception mode iff the values of the components
tf , af , and bposstat in σ′ are equal NT, AB, and EXCBLCK, respectively. In this mode, the
values of the components bposstat and pc in σ′ denote that the pc-th instruction was the last
instruction that was executed by the partial execution that produced σ′ and that execution of
that instruction resulted in raising an array-index-out-of-bounds exception. Further, the value
EXCBLCK denotes that the flow of control is currently at a virtual block position of a virtual
exception block which has the length equal 1, i.e. it includes only that block position. There
are two possibilities for how computing of the successor augmented configuration can resulting
in switching of the mode of execution into the exception mode:
The first possibility is that the program is already executed in this mode: If the flow of control
is currently at the virtual block position in the virtual exception block, then the flow of control
remains at that block position after making transition to the successor configuration of σ′, the
values of the step number components are updated according to the length of the virtual
block, and execution proceeds in the exception mode since it follows from the definition of the
operational semantics of the IL language that the values of the components tf and af in the
successor configuration exec(P , σ) have the same values as in σ.
The second possibility is that the program is executed in the emulation mode and that the
flow of control is currently at the last virtual position of a virtual rest block defined for a block
bid that has the length bsize, i.e. the values of the components tf and af are equal NT and AB,
respectively, and the value of the bposstat component has the form RESTBLCK(bid , bsize, bidx)
with Suc(bidx) = bsize. The function exec′ interprets the values of the components in σ′ as if
there were a virtual edge connecting the virtual block position (bid , bsize, bidx) and the virtual
block position in the virtual exception block and the flow of control transfers along that edge
into the virtual exception block. Transition of the flow into the exception block is realised as
setting the values of the components bposstat and predbid to EXITBLCK and bid , respectively,
updating the values of the step number components according to the length of the block V bid
(not the length of the virtual rest block!), and switching of the mode of execution into the
exception mode as it follows from the definition of the operational semantics of the IL language

108 6 Optimization independent translation correctness criterion

that the values of the components tf and af in the successor configuration exec(P , σ) are equal
NT and AB respectively, and thus the same as corresponding values of the components in σ.
The fact that the values of step number components are updated according to the length of the
block V bid and not the length of the virtual rest block is an important part of the definition
of the operational semantics of the IL’: Whenever the flow of control transfers from the last
block position of a virtual rest block defined for a block bid , which has the length bsize, into
the virtual exception block, the values of the step number components denote that the flow of
control made bsize transitions before leaving bid .

Definition 6.22.

exec′ : Program′ ×Configuration′ → Configuration′

exec′((P ,B), (ss, bs, until , EXITBLCK, predbid , σ)) =

(Suc ss, Suc bs, Suc until , EXITBLCK, predbid , exec(P , σ))

exec′((P ,B), (ss, bs, until , EXCBLCK, predbid , σ)) =

(Suc ss, Suc bs, Suc until , EXCBLCK, predbid , exec(P , σ))

exec′((P ,B), (ss, bs, until , RESTBLCK(bsize, bidx), predbid , σ)) =(
(Suc ss, bs, until , RESTBLCK(bsize, Suc bidx), predbid , exec(P , σ)) if Suc(bidx) < bsize,

(Suc ss, Suc bs, until + bsize, EXCBLCK, predbid , exec(P , σ))) otherwise

exec′((P ,B), (ss, bs, until , NORMBLCK(pid , bid , bsize, bidx , pc), predbid , σ)) =

let

(tf ′, af ′, pc′, b′, s ′) = exec(P , σ);

Some(pid ′) = succBP(pid , pc′);

Some(pid ′, bid ′, bsize ′, bidx ′, pc′) = BP(pid ′)

in 8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

(Suc ss, bs, until , NORMBLCK(pid ′, bid ′, bsize ′, bidx ′, pc′), predbid , exec(P , σ))

if Suc(bidx) < bsize ∧ af ′ = ABOK,

(Suc ss, bs, until , RESTBLCK(bsize, Suc bidx), predbid , exec(P , σ))

if Suc(bidx) < bsize ∧ af ′ = AB,

(Suc ss, Suc bs, until + bsize, EXIT, bid , exec(P , σ))

if Suc(bidx) = bsize ∧ af ′ = ABOK ∧ tf ′ = T,

(Suc ss, Suc bs, until + bsize, NORMBLCK(pid ′, bid ′, bsize ′, bidx ′, pc′), bid , exec(P , σ))

if Suc(bidx) = bsize ∧ af ′ = ABOK ∧ tf ′ = NT,

(Suc ss, Suc bs, until + bsize, EXCBLCK, bid , exec(P , σ)))

otherwise

end

Definition 6.23 defines a function init′ which computes an initial augmented configuration for an
IL’ program P ′ = (P ,B) where the CFGB declaration has the form (pid0,BP ,BB , succBP , predB).
Given that the CFGB declaration B is well-formed, then the values of the components of an initial
configuration σ′0 = init′(P , (pid0,BP ,BB , succBP , predB)) are defined as follows.

• The values of all three step number components ss, bs, and until are set to 0,
• The block position status bposstat is set the value NORMBLCK(pid0, bid0, bsize0, bidx 0, pc0) with

Some(pid0, bid0, bsize0, bidx 0, pc0) = BP(pid0). The value of bposstat denotes that the flow of
control is at the first block position of the entry block bid0.

• The value of the predecessor block component predbid is set to bid0 and it denotes that in our
setting the predecessor block of the entry block is predefined as entry block itself.

• The value of the σ component in an initial augmented configuration for an IL’ program (P ,B)
is defined as initial configuration for an IL program P , init(P).

6.4 Formalization of the language IL’ 109

Definition 6.23.

init′ : Program′ → Configuration′

init′(P ,B) =

let

(pid0,BP ,BB , succBP , predB) = B

in 8
><

>:

(0, 0, 0, NORMBLCK(pid0, bid0, bsize0, bidx0, pc0), bid0, init(P))

if Some (pid0, bid0, bsize0, bidx0, pc0) = BP(pid0),

arbitrary otherwise

end

Definition 6.24 defines a function M′ which models a simple machine performing partial execu-
tions of IL’ programs. The function M′ takes an IL’ program P ′, an augmented configuration σ′,
and a small step number ss; and computes an augmented configuration, M′(P ′, σ′, ss), which is
the result of ss successive applications of the transition function exec′ to the configuration σ′. We
use this function to formalize results of partial executions of IL’ programs, e.g. M′(P ′, init′(P ′),n).

Definition 6.24.

M′ : Program′ ×Configuration′ ×Nat → Configuration′

M′(P ′, σ′, 0) = σ′

M′(P ′, σ′, Suc(n)) = exec′(P ′, M′(P ′, σ′,n))

For the definition of the program semantics of the IL’ language, we need to formalize the
notions of emission of an augmented configuration σ′ ∈ Configuration′ and observable behavior
of an IL’ program.

Definition 6.25 defines a function emission′ which computes emission of an augmented configu-
ration σ′. emission′ is a wrapper function which computes emission of an augmented configuration
σ′ = (ss, bs, until , bposstat , predbid , σ) as emission of its σ component, emission(σ).

Definition 6.25.

emission′ : Configuration′ → Emission

emission′(ss, bs, until , bposstat , predbid , σ) = emission(σ)

Definition 6.26 defines a function Sem′ which computes observable behavior of an IL’ program
during its execution by the machine M′. An informal idea of the algorithm computing observable
behavior of an IL’ programs P ′ as follows. We let the machine M′ execute the program P ′ forever
by applying the transition function exec′ successively in an infinite loop. In doing so, we generate an
infinite trace of augmented configurations t where each element of the trace t(n) is the result of n
applications of the transition function exec applied successively to initial augmented configuration
t(n) = M′(P ′, init′(P ′), n). Each trace element t(i + 1) carries information about changes of the
observable behavior of P ′ during transition from the trace element t(i) to t(i+1). This information
is encoded in the state of the output buffer b in the σ component in t(i +1). The algorithm builds
an output sequence of tokens from the trace t in three steps:

1. First step inspects iteratively all elements of t in the order of their producing, t(0), t(1), ...,
and computes an intermediate sequence of emissions of P ′ by applying the function emission′

to the elements of t .

110 6 Optimization independent translation correctness criterion

2. Second step filters out NOEMIT emissions from the intermediate sequence.
3. Third step builds output sequence of tokens by stripping EMIT constructors from elements of

the sequence which results from the second step.

Definition 6.26.

Sem′ : Program′ → ObservableBehavior

Sem′(P ′) = {tok | ∃n. emission′(M′(P ′,n)) = EMIT(tok)}

The semantics of an IL’ program P ′, Sem′(P ′), is defined as observable behavior of P ′ during
execution of P ′ by the machine M′.

6.5 Equality of the semantics of the languages IL and IL’

Definition 6.27 defines a projection function config which takes an augmented configuration σ′ ∈
Configuration′ and projects to its configuration component σ ∈ Configuration.

Definition 6.27.

config : Configuration′ → Configuration

config(ss, bs, until , bposstat , predbid , σ) = σ

Below, we present Lemma 6.28 which states for an IL’ program (P ,B) and its corresponding IL
program P that a transition function λ σ′. exec′((P ,B), σ′) maps the σ component in its argument,
which is an augmented configuration σ′ ∈ Configuration′, to the same value as a corresponding
transition function λ σ. exec(P , σ). Informally, the lemma states that exec′ is a proper wrapper
function w.r.t. the function exec and that the diagramm in Figure 6.7 commutates.

(ss, bs , until , bposstat , predbid , σ) σ

exec′((P ,B), (ss , bs , until , bposstat , predbid , σ)) exec(P , σ)

λσ′. exec′((P ,B), σ′)

config

λ σ. exec(P , σ)

config

Fig. 6.7.

Lemma 6.28. (Commutativity of exec, exec′, and config)

exec(P , config(σ′)) = config(exec′((P ,B), σ′)

!

6.5 Equality of the semantics of the languages IL and IL’ 111

Lemma 6.29 is a statement about two machine functions λn.M′((P ,B), init′((P ,B),n)) and
λn.M(P , init(P),n) defined for an IL’ program (P ,B) and its corresponding IL program P ,
respectively, which states for all transition numbers n that a partial execution of the program
(P ,B) which makes n transitions from block position to block position in B produces an augmented
configuration σ′ whose σ component is equal to a configuration which is the result of partial
execution of P which makes equal number of transitions from program point to program point in
P . Informally, the lemma states that M′ is a proper wrapper function w.r.t. the function M and
that the diagramm in Figure 6.8 commutates.

M′((P ,B), init′(P ,B), 0) M(P , init(P), 0)
config

M′((P ,B), init′(P ,B), 1) M(P , init(P), 1)
config

λσ′. exec′((P ,B), σ′) λ σ. exec(P , σ)

M′((P ,B), init′(P ,B), 2) M(P , init(P), 2)
config

λσ′. exec′((P ,B), σ′) λ σ. exec(P , σ)

λσ′. exec′((P ,B), σ′) λ σ. exec(P , σ)

M′((P ,B), init′(P ,B),n − 1) M(P , init(P),n − 1)

λσ′. exec′((P ,B), σ′) λ σ. exec(P , σ)

config

M′((P ,B), init′(P ,B),n) M(P , init(P),n)

λσ′. exec′((P ,B), σ′) λ σ. exec(P , σ)

config

Fig. 6.8.

112 6 Optimization independent translation correctness criterion

Lemma 6.29. (Commutativity of M, M′, and config)

wfB(P ,B) =⇒ M(P , init(P), n) = config(M′((P ,B), init′(P ,B), n))

Proof. The proof of this lemma follows by induction over the number n.
The induction begin:
For the induction begin, one has to show the following:

wfB(P ,B) =⇒ M(P , init(P), 0) = config(M′((P ,B), init′(P ,B), 0))

By the definitions of M and M′, this can be simplified to

wfB(P ,B) =⇒ init(P) = config(init′(P ,B))

By the definition of B , there exist pid0, BP , BB , succBP , and predB such that B = (pid0,BP ,
BB , succBP , predB). Therefore, by application of the existential elimination rule, the following
statement has to be shown for arbitrary but fixed pid0, BP , BB , succBP , and predB :

wfB(P , (pid0,BP ,BB , succBP , predB))
=⇒
init(P) = config(init′(P , (pid0,BP ,BB , succBP , predB)))

From wfB(P , (pid0,BP ,BB , succBP , predB)) follows

∃ bid0 bsize0. BP(pid0) = Some(pid0, bid0, bsize0, 0, 0)

by the definition of wfB. Therefore, by application of the existential elimination rule, the following
statement has to be shown for arbitrary but fixed bid0 and bsize0:

BP(pid0) = Some(pid0, bid0, bsize0, 0, 0)
=⇒
init(P) = config(init′(P , (pid0,BP ,BB , succBP , predB)))

Unfolding the definition of init′ and simplifying the conclusion and the premise yields:

BP(pid0) = Some(pid0, bid0, bsize0, 0, 0)
=⇒
init(P) = config(0, 0, 0, NORMBLCK(pid0, bid0, bsize0, 0, 0), bid0, init(P))

This holds by the definition of config.

The induction step:
For the induction step, the following statement has to shown:

wfB(P ,B) ∧ M(P , init(P), n − 1) = config(M′((P ,B), init′(P ,B), n − 1))
=⇒
M(P , init(P), n) = config(M′((P ,B), init′(P ,B), n))

To show this, one has to derive the conclusion from the premise in a forward manner:

6.6 Formalization of the language IL” 113

M(P , init(P), n − 1) = config(M′((P ,B), init′(P ,B), n − 1))

=⇒ [by HOL rule x=y ==> f(x)=f(y)]

(λ σ′. exec(P , σ′))(M(P , init(P), n − 1))
=
(λ σ′. exec(P , σ′))(config(M′((P ,B), init′(P ,B), n − 1)))

=⇒

exec(P ,M(P , init(P), n − 1)) = exec(P , config(M′((P ,B), init′(P ,B), n − 1)))

=⇒ [by the definition of M and application of Lemma 6.28]

M(P , init(P), n) = config(exec′((P ,B),M′((P ,B), init′(P ,B), n − 1)))

=⇒ [by the definition of M’]

M(P , init(P), n) = config(M′((P ,B), init′(P ,B), n))

12
Theorem 6.30 states that observable behaviors of an IL’ program (P ,B) and a corresponding

IL program P are equal.

Theorem 6.30. (Equality of the program semantics of the languages IL and IL’)

wfB(P ,B) =⇒ Sem(P) = Sem′(P ,B)

12

The proof of Theorem 6.30 is straighforward as its statement is a direct consequence of Lemma
6.29.

6.6 Formalization of the language IL”

This section presents the formalization of an intermediate language IL” which can be seen as a
language of control flow graphs with blocks with the operational semantics defined in terms of
block-wise transfers of the flow of control. The formalization of the IL” language is based on the
formalization of the IL’ language: The IL” programs have the same abstract syntax as the IL’
language programs and the definition of their operational semantics is based on the definition of
the operational semantics for the language IL’ which is defined in terms of block-position-wise
transfers of the flow of control.

The rest of the section is organized as follows. The first part of the section presents the abstract
syntax of the IL” language. The second part presents the semantics definition of IL”.

6.6.1 Abstract syntax

We begin our presentation of the abstract syntax of the language IL” by introducing a syntactic
set of IL” programs Program′′; and metavariables P ′′, S ′′, and T ′′ ranging over IL” programs
Program′′.

114 6 Optimization independent translation correctness criterion

Definition 6.31 defines a formation rule for the syntactic set Program′′ which defines the
abstract syntax of the language IL”. An IL” program is tuple (P ,B) consisting of an IL program
P and a block environment B . Thus, the languages IL’ and IL” have the same abstract syntax.

Definition 6.31.

Program′′ (P ′′,S ′′,T ′′ ::= P ′

6.6.2 Semantics of the language IL”

For the purpose of the semantics definition of the IL”, we introduce a syntactic set of augmented
configurations Configuration′′, which is equal to the syntactic set of augmented configurations
Configuration′, and a metavariable σ′′ ranging over augmented configurations Configuration′′.
Definition 6.32 gives formation rule of the set Configuration′′.

Definition 6.32.

Configuration′′ (σ′′ ::= σ′

Definition 6.33 defines two auxiliary functions ss and blcksize for the definition of the operational
semantics of IL”. The function ss projects an augmented configuration σ′ to its small step number
component ss. The function blcksize takes an augmented configuration σ′ as input and computes
the length of a block which includes a block position which described by the value of its block
position status component bposstat .

Definition 6.33.

ss : Configuration′′ → SS

ss(ss, bs, until , bposstat , predpid , σ) = ss

blcksize : Configuration′′ → BlckSize

blcksize(ss, bs, until , EXITBLCK, predpid , σ) = 1

blcksize(ss, bs, until , EXCBLCK, predpid , σ) = 1

blcksize(ss, bs, until , RESTBLCK(bid , bsize, bidx), predpid , σ) = bsize

blcksize(ss, bs, until , NORMBLCK(pid , bid , bsize, bidx , pc), predpid , σ) = bsize

Definition 6.34 defines a function init′′ which computes an initial configuration σ′′0 ∈ Configuration′′

for an IL” program P ′′. As the sets Program′ and Program′′; and Configuration′ and
Configuration′′ are equal, respectively, the initial augmented configurations for IL” programs
are defined in the same way as their counterparts for IL’ programs.

Definition 6.34.

init′′ : Program′′ → Configuration′′′

init′′(P ′′) = init′(P ′′)

Definition 6.35 defines a transition function exec′′ which computes a successor configuration
exec(P ′′, σ′′) for an IL” program P ′′ and an augmented configuration σ′′. The function exec′′

6.6 Formalization of the language IL” 115

assumes that σ′′ is the result of partial execution of P ′′ and that the flow of control is at the entry
block position pid of a block bid , i.e. the block index of pid is equal 0, and computes the successor
in three steps as follows.

1. First step computes the number of successive applications of the transition function exec′

which where performed by the partial execution. This number is recorded in the ss component
of σ′′.

2. Second step computes the length of the block bid including pid , bsize.
3. Third step uses the results delivered the first and second steps: According to the value of the

small step number ss, σ′′ is the result of ss successive applications of the transition func-
tion exec′ to the initial augmented configuration init′′(P ′′), M′(P ′′, init′′(P ′′), ss). Thus, the
result of execution of all instructions at program points allocated to block positions included
by bid must be a configuration that is the result of bsize successive application of exec′ to
M′(P ′′, init′′(P ′′), ss). This configuration is equal M′(P ′′, init′′(P ′′), ss + bsize).

Definition 6.35.

exec′′ : Program′′ ×Configuration′′ → Configuration′′

exec′′(P ′′, σ′′) =

let

ss = ss(σ′′)

bsize = blcksize(σ′′)

in

M′(P ′′, init′′(P ′′), ss + bsize)

end

Definition 6.36 defines a function M′′ which models a simple machine performing partial ex-
ecutions of IL” programs. The function M′′ takes an IL” program P ′′, an augmented configura-
tion σ′′, and a block step number bs; and computes an augmented configuration, M′′(P ′′, σ′′, bs),
which is the result of bs successive applications of the transition function exec′′ to the configu-
ration σ′′. We use this function to formalize results of partial executions of IL” programs, e.g.
M′′(P ′′, init′′(P ′′),n).

Definition 6.36.

M′′ : Program′′ ×Configuration′′ ×Nat → Configuration′′

M′′(P ′′, σ′′, 0) = σ′′

M′′(P ′′, σ′′, Suc(n)) = exec′′(P ′′, M′′(P ′′, σ′′,n))

Definition 6.37 defines a function emission′′ which formalizes the notion of emission sets for
the IL” language. A set of emissions of an IL” program P ′′ is build w.r.t. two points of partial
execution of P ′′ by the machine M′, ss i and ss j with ss i ≤ ss j , and comprises all changes of
observable behavior which happen after producing the configuration M′(P ′′, init′(P ′′), ss i) and
before producing the configuration M′(P ′′, init′(P ′′), ss j) by the machine M′. We use this function
to compute the set of changes of observable behavior of an IL” program while the flow of control
is making transition from a block position which is the entry of a block to a block position which
is the entry of a successor block of that block.

116 6 Optimization independent translation correctness criterion

Definition 6.37.

emission′′ : Program′′ ×Configuration′′ ×Configuration′′ → ObservableBehavior

emission′′(P ′′, σ′′
i , σ′′

j) = {tok | ∃ i . ss(σ′′
i) ≤ i ∧ i < ss(σ′′

j) ∧
emission′(M′(P ′′, init′(P ′′), i)) = Some(tok)}

Definition 6.38 defines a function Sem′′ which computes observable behavior of an IL” program
during its execution by the machine M′′. An informal idea of the algorithm computing observable
behavior of an IL” program P ′′ is as follows. We compute the observable behavior of P ′′ in three
steps. First, we let the machine M′′ execute the program P ′′ forever by applying the transition
function exec′′ successively in an infinite loop. In doing so, we generate an infinite trace of aug-
mented configurations t where each element of the trace is the result of n successive transitions
starting from initial augmented configuration init′′(P ′′), t(n) = M′′(P ′′, init′′(P ′′),n). Second, for
each pair of successive trace elements (t(i), t(i + 1)), we compute the set of tokens emitted by P ′′

during making transition from t(i) to t(i +1), emission′′(P ′′, t(i), t(i +1)). The second step yields
a (possibly infinite) sequence of sets of tokens. The third step returns the result as the union of
all sets in the sequence.

Definition 6.38.

Sem′′ : Program′′ → ObservableBehavior

Sem′′(P ′′) =

let

σ′′
0 = init′′(P ′′)

in

{tok | ∃ i . tok ∈ emission′′(P ′′, M′′(P ′′, σ′′
0 , i), exec′′(P ′′, M′′(P ′′, σ′′

0 , i))) }
end

Theorem 6.39 states that if an IL program P is well-typed w.r.t. to a program type Φ and a
CFGB declaration B is well-formed w.r.t. P , then observable behaviors of an IL’ program (P ,B)
and an IL” program (P ,B) are equal. Informally, the theorem states that if the CFGB declaration
B is well-formed w.r.t. the program P , then it does not make any difference to the resulting
observable behavior of the tuple (P ,B) whether it is interpreted as an IL’ program and executed
by the machine M′, which transfers the flow of control from block position to block position, or
it is interpreted as an IL” program and executed by the machine M′′, which transfers the flow of
control from block entry to block entry.

Theorem 6.39. (Equality of the semantics of IL’ and IL”)

wtp(P , Φ) ∧ wfB(P ,B) =⇒ Sem′(P ,B) = Sem′′(P ,B)

!

6.7 Bisimulation predicate on pairs of IL” program executions

This section presents formalizations of the notions of bisimulation relation and bisimulation pred-
icate.

We begin the presentation of our formalization by introducing a set of bisimulation relations
BisimulationRelation and a metavariable R ranging over bisimulation relations.

6.7 Bisimulation predicate on pairs of IL” program executions 117

Definition 6.40 gives the formation rule for the set of bisimulation relations BisimulationRelation.
A bisimulation relation between the sets of augmented configurations Configuration′′ is a subset
of Configuration′′ ×Configuration′′.

Definition 6.40.

R ∈ BisimulationRelation = P(Configuration′′ ×Configuration′′)

Definition 6.41 defines a bisimulation predicate bisimulation on executions of two IL” programs
w.r.t. a bisimulation relation. Executions of two IL” programs S ′′ and T ′′ bisimulate w.r.t. a
bisimulation relation R iff

1. a pair (init′′(S ′′), init′′(T ′′)) consisting of initial augmented configurations for S ′′ and T ′′ is in
the relation R; and

2. R is closed under the operator

λ (σ′′S , σ′′T). (exec′′(S ′′, σ′′S), exec′′(T , σ′′T)) ;

and
3. it holds for each configuration pair (σ′′S , σ′′T) in R that the sets of changes of observable

behaviors of S ′′ and T ′′ resulting from applying the above operator to that pair are equal.

Definition 6.41.

bisimulation : Program′′ ×Program′′ ×BisimulationRelation → Bool

bisimulation(S ′′,T ′′,R) =

(init′′(S ′′), init′′(T ′′)) ∈ R ∧
∀ (σ′′

S , σ′′
T) ∈ R. (exec′′(S ′′, σ′′

S), exec′′(T , σ′′
T)) ∈ R ∧

emission′′(S ′′, σ′′
S , exec′′(S ′′, σ′′

S)) = emission′′(T ′′, σ′′
T , exec′′(T ′′, σ′′

T))

We call the function bisimulation a bisimulation predicate on executions of two IL” programs
as the right hand side of its definition implies the statement

∀n. (M′′(S ′′,n), M′′(T ′′,n)) ∈ R ∧
emission′′(S ′′, init′′(S ′′), M′′(S ′′,n)) = emission′′(T ′′, init′′(T ′′), M′′(T ′′,n))

which says for all partial executions of S ′′ and T ′′ that if they make the same number of transitions,
then observable behaviors of S ′′ and T ′′ during those executions are equal and they produce two
augmented configurations σ′′S and σ′′T with (σ′′S , σ′′T) ∈ R.

Theorem 6.42 says that if two partial executions of two IL” programs S ′′ and T ′′ bisimulate
w.r.t. a bisimulation relation R, then observable behaviors of S ′′ and T ′′ are equal.

Theorem 6.42. (Bisimulation of executions of two IL” programs implies equality of their observ-
able behaviors)

bisimulation(S ′′, T ′′, R) =⇒ Sem′′(S ′′) = Sem′′(T ′′)

!

118 6 Optimization independent translation correctness criterion

6.8 Optimization independent translation correctness criterion

In the beginning of Chapter 6, we mentioned that the main purpose of Layer 4 in our implemen-
tation of the SVF is to provide a formal definition of an optimization independent translation
correctness criterion on two IL programs which expresses a sufficient condition of the translation
correctness predicate provided by the translation contract.

In Sections 5.2, 6.3, and 6.7, we formalized the well-typedness predicate wtp on IL programs and
program types, the well-formedness predicate wfB on CFGB declarations and IL programs, and
the bisimulation predicate bisimulation on IL” programs and bisimulation relations, respectively.
Now, with the definitions of those predicates at hand, we can give the definition of an optimization
indpendent translation correctness criterion on two IL programs and a bisimulation relation which
is independent of any optimizations performed by our compiler.

Definition 6.43.

TCC : Program×Program×BisimulationRelation → Bool

TCC(S ,T ,R) = ∃ΦS ΦT BS BS . wtp(S , ΦS) ∧ wtp(T , ΦT) ∧ wfB(S ,BS) ∧ wfB(T ,BT) ∧
bisimulation((S ,BS), (T ,BT),R)

6.9 Optimization independent translation correctness theorem

This section presents the main theorem provided by Layer 4 of our SVF which says that opti-
mization independent translation correctness criterion TCC constitutes sufficient condition of the
translation correctness predicate corrTrans.

Theorem 6.44 is a statement about two IL programs S and T and it says that if there exists a
bisimulation relation such that S and T fulfill the optimization independent translation correctness
criterion TCC w.r.t. that relation, then they fulfill the translation correctness predicate corrTrans.

Theorem 6.44. (Optimization independent translation correctness theorem)

∃R.TCC(S ,T ,R) =⇒ corrTrans(S ,T)

6.9 Optimization independent translation correctness theorem 119

Proof. By the definition of the criterion TCC, we have to show

∃RΦS ΦT BS BS . wtp(S , ΦS) ∧ wtp(T , ΦT) ∧ wfB(S ,BS) ∧ wfB(T ,BT) ∧
bisimulation((S ,BS), (T ,BT),R)

=⇒
corrTrans(S ,T)

By application of the existential elimination rule, we have to show the following statement for
arbitrary but fixed program types ΦS and ΦT ; CFGB declarations BS and BT ; and a bisimulation
relation R:

wtp(S , ΦS) ∧ wtp(T , ΦT) ∧ wfB(S ,BS) ∧ wfB(T ,BT) ∧
bisimulation((S ,BS), (T ,BT),R)
=⇒
corrTrans(S ,T)

By Theorem 6.30, the following holds

Sem(S) = Sem′(S ,BS) and Sem(T) = Sem′(T ,BT) .

By application of Theorem 6.39, from

wtp(S , ΦS) ∧ wtp(T , ΦT) ∧ wfB(S ,BS) ∧ wfB(T ,BT)

follows

Sem′(S ,BS) = Sem′′(S ,BS) ∧ Sem′(T ,BT) = Sem′′(T ,BT) .

By application of Theorem 6.42, from

bisimulation((S ,BS), (T ,BT),R)

follows

Sem′′(S ,BS) = Sem′′(T ,BT) .

By application of standard HOL rules, from

Sem′′(S ,BS) = Sem′′(T ,BT) ∧
Sem(S) = Sem′(S ,BS) ∧ Sem′(S ,BS) = Sem′′(S ,BS)
Sem(T) = Sem′(T ,BT) ∧ Sem′(T ,BT) = Sem′′(T ,BT)

follows

Sem(S) = Sem(T) .

This is equivalent to the conclusion corrTrans(S ,T) by the definition of the predicate corrTrans.
12

Chapter 7

Translation correctness criteria for particular optimizations

This chapter presents the content of Layer 5 of our implementation of the SVF. In Sections 3.5,
3.6 and 6, we motivated that Layer 5 in our implementation of the SVF is to provide, for each
optimization O in the chain of optimizations performed by the compiler, the following:

• the formalization of an optimization correctness criterion TCCO, whose definition is specific to
the definition of the optimization O,

• the proof of a TCCO criterion correctness theorem whose statement says that the specification
of the TCCO criterion is correct and has the following form:

If two programs are the source and the target programs of the transformation T and
they fulfill the optimization correctness criterion TCCO, then the programs fulfill the
optimization independent translation correctness criterion TCC provided by Layer 4.

• the proof of an optimization correctness theorem whose statement is specific to the optimization
O and has the following form:

If two programs are the source and the target programs of the transformation T and
they fulfill the optimization correctness criterion TCCO, then the programs fulfill the
translation correctness predicate corrTrans provided by the translation contract layer.

In our implementation of the SVF, the statement of the optimization correctness theorem is
the result of conjoining of Theorem 6.44 provided by Layer 4 and the above TCCO criterion
correctness theorem. The proof of this theorem is the ultimate result provided by this layer as
the theorem is directly applicable in translation certificates generated by our compiler front-end.
As mentioned in Section 6, the proof of this theorem is conducted in two steps: The first step is
specific to the optimization O and applies the TCCO criterion correctness theorem. The second step
is optimization independent and makes use of the optimization independent translation correctness
theorem. The idea behind the formal framework provided by Layers 5 and 4 is that it is structured
in two parts comprising formalizations and theorems which are needed to conduct the first and
the second step of the proof, respectively, cf. Section 3.5.

The rest of this chapter is organized as follows:

• Section 7.1 presents the implementation of the SVF for constant folding optimizations (CF).
In particular, this section presents the formalization of an optimization correctness criterion
TCCCF which is an instance of the above criterion TCCO and Theorem 7.27 which is the
optimization correctness theorem in this section.

• Section 7.2 presents the implementation of the SVF for dead assignment elimination optimiza-
tions (DAE). In particular, this section present the formalization of an optimization correctness
criterion TCCDAE which is an instance of the above criterion TCCO and Theorem 7.55 which
is the optimization correctness theorem in this section.

122 7 Translation correctness criteria for particular optimizations

• Section 7.3 presents the implementation of the SVF for nop insertion optimizations (NI). In
particular, this section presents the formalization of an optimization correctness criterion TCCNI

which is an instance of the above criterion TCCO and Theorem 7.72 which is the optimization
correctness theorem in this section.

• Section 7.4 presents our implementation of the SVF for redundant assignment insertion opti-
mizations (RAI). In particular, this section explains how the formal framework provided by the
SVF for DAE optimizations can directly be reused in proofs of the RAI correctness generated
by our compiler.

• Section 7.5 presents our implementation of the SVF for redundant assignment elimination
optimizations (RAE). In particular, this section presents the formalization of an optimization
correctness criterion TCCRAE which is an instance of the above criterion TCCO and Theorem
7.97 which is the optimization correctness theorem in this section.

7.1 SVF for CF optimizations

This section presents formalization of an optimization correctness criterion for CF optimizations,
TCCCF, and a corresponding optimization correctness theorem which is directly applied in trans-
lation certificates generated by our compiler front-end.

As aforementioned in Section 1.5.1, our implementation of the CF procedure is standard [1, 3,
119]. In the following, we give a general description of this procedure. The description only provides
details which we need for the purpose of the explanation of the SVF for CF optimizations.

In general, the CF is performed by our compiler front-end in two steps:

The first step: The compiler performs a constant propagation analysis (CPA) on the input pro-
gram. The result of this analysis, ACPA, is a mapping from program points to invariants which
are partial mappings from program variables to constants. If, during the CPA, the compiler
determines that whenever the flow of control reaches a program point pc the value of a variable
v is invariantly equal to a constant i , then ACPA maps pc to inv and inv maps v to i .

The second step: The compiler takes the source program S and the CPA result ACPA as input
and transforms S in two steps:
Constant propagation: For each program point pc and each expression e in the pc-th instruc-

tion and each variable v in e, the compiler checks if ACPA declares v as constant, i.e. if
there exist an invariant inv and a constant value i such that ACPA maps pc to inv and
inv maps v to i . If this holds, the compiler replaces v by i .

Constant folding: For each program point pc and each expression e in the pc-th instruction,
the compiler checks if all operands in e are constant values and e can be evaluated at
compile time. If this holds, the compiler evaluates e to a constant value ie and replaces e
by ie.

It follows from the above description that the CF optimization performed by the compiler,
which is a part of the FTV system described in this thesis, is structure preserving, i.e. does not
modify the set of edges and nodes of the CFG of the source program. Therefore, the formalization
of the optimization correctness criterion TCCCF makes the following assumptions about the CFGs
and the CFGB declarations involved in the CF optimization:

• The sets of nodes and edges of the CFGs of the source and the target programs are identical.
• The CFGB declarations for the source and the target programs of the CF are identical.
• The corresponding program points relation between program points of the source and the

target programs is defined as identity, i.e. as a one-to-one correspondence between program
points of the source and the target programs.

7.1 SVF for CF optimizations 123

• For both the source and the target program, the allocation relation between program points
and block positions is a one-to-one correspondence.

• The "includes" relation between blocks and block positions is a one-to-one correspondence.
• The CFGB declaration used to formalize the criteria TCCCF comprises no nested blocks.

As aforementioned in Chapter 3, the SVF for CF optimizations also provides formalizations of
further notions which are needed to formulate the TCCCF criterion and to conduct the proof the
optimization correctness theorem. These notions are as follows.

• The definition of TCCCF is based on the definition of a function cf_transrel_instr which com-
putes a translation relation over instruction pairs for CF optimizations. This function is an
instance of the translation relation predicate TCC0 in Section 3.6.

• The proof of the optimiziation correctness theorem adheres to the proof scheme described in
Chapter 3. The first step of this proof scheme is based on the notion of bisimulation and a
bisimulation relation. Therefore, the SVF presented in this section provides the definition of
a function bisimrelCF which computes a bisimulation relation RCF as a function of the source
and the target programs and the CF result involved in a CF optimization. This function is an
instance of the function bisimrelO in Section 3.6.

The rest of this section is organized as follows. Section 7.1.1 presents formation rules for the set
of CPA results. Section 7.1.2 presents the definition of a function bisimrelCF which computes the
bisimulation relation RCF. Section 7.1.3 presents the definitions of the function cf_transrel_instr
and the criterion TCCCF. Section 7.1.4 presents the optimization correctness theorem for CF op-
timizations.

7.1.1 Abstract syntax of CPA results

This section presents the definition of the abstract syntax of the CPA results. We begin the
presentation by listing syntactic sets associated with this notion:

• instruction numbers InstructionNr,
• constant value environments ConstantValueEnv,
• invariant environments InvariantEnv;

and defining metavariables ranging over these sets:

• pc is ranging over instruction numbers InstructionNr,
• inv is ranging over constant value environments ConstantValueEnv, and
• ACPA is ranging over invariant environments InvariantEnv.

Definition 7.1 gives formation rules for the set of CPA results InvariantEnv. A CPA result
ACPA is a partial mapping from the set of instruction numbers InstructionNr to the set of
invariants ConstantValueEnv. We call CPA results invariant environments and if a CPA result
ACPA is well-formed, then it is total. An invariant inv is a partial mapping from program variables
to values. The purpose of a CPA result is to model facts about the values of certain program
variables during execution of a program which where determined by the compiler during the
CPA of that program. Informally, the meaning of a CPA result ACPA is as follows. Given that
the compiler performs the CPA on an IL program P , the result of this analysis is ACPA, then
ACPA(pc) = Some(inv) ∧ inv(v) = Some(val) iff the compiler determines that the value of a
variable v is always equal val each time the flow of control transfers to the program point pc.

124 7 Translation correctness criteria for particular optimizations

Definition 7.1.

pc ∈ InstructionNr = Pc

inv ∈ ConstantValueEnv = Variable ! Value

ACPA ∈ InvariantEnv = InstructionNr ! ConstantValueEnv

7.1.2 Bisimulation relation for the CF optimization

This section presents the definition of a function bisimrelCF which computes a bisimulation relation
for two IL” programs, which are the source and the target programs of a concrete CF optimization,
and a CPA result.

Informally, our notion of a bisimulation relation RCF, which is a function of a concrete CF
optimization, can be characterized as follows.

• By Definition 6.40, RCF has to be a subset of

Configuration′′ ×Configuration′′ .

• Being a function of a concrete CF optimization means that RCF is a function of the source
and the target programs of that optimization, S and T , and a result of the CPA that was
performed prior to that optimization, ACPA.

• As the CF optimization is a structure preserving optimization, i.e. it does not modify the sets
of nodes and edges of the CFG of a program, the CFGB declarations BS and BT for S and
T are also identical. For this reason, it must hold for those programs that they have the same
observable behaviors, if it holds for two arbitrary partial executions of (S ,BS) and (T ,BT)
of the same length, then they produce equal augmented configurations σ′′S and σ′′T . Therefore,
RCF has to comprise pairs (σ′′S , σ′′T) consisting of augmented configurations which are equal

∀ (σ′′S , σ′′T) ∈ RCF. σ′′S = σ′′T .

• As the proof of a statement saying that if (T ,BT) is a correct CF optimization of (S ,BS)
implies bisimulation((S ,BS), (T ,BT),RCF) has to be conducted by induction on the length of
partial execution of (S ,BS), we have to strengthen the induction invariant

M′′((S ,BS), init(S ,BS),n) = M′′((T ,BT), init(T ,BT),n)

which follows from the above requirement by an additional invariant saying that the augmented
configuration M′′((S ,BS), init(S ,BS),n) conforms with the CPA result ACPA. The notion of
conformance is organized hierarchically: At first, we define the notion of conformance of a
state s to an invariant inv . Then, we give the definition of the notion of conformance of an
augmented configuration σ′′ to a CPA result ACPA which is based on the previous notion.

We begin the presentation of the definition of RCF with the formalization of the notion of
conformance.

Definition 7.2 defines a predicate confinv on invariants and state which checks if a state s
conforms with an invariant inv . An invariant inv is a mapping which models all informations
about invariant variables for a program point which were determined by the compiler during
the CPA and it is always defined for a program point pc. If the compiler determines during the
analysis that whenever the flow of control transfers to a program point pc the value of a variable
v in the context of a state of computation s is always equal val , then the invariant inv defined
for pc comprises a binding v 4→ val . For this reason, an invariant inv conforms to a state s iff all
bindings which are in inv defined properly, i.e. if inv maps a variable v to a constant value val ,
then s also maps v to val .

7.1 SVF for CF optimizations 125

Definition 7.2.

confinv : ConstantValueEnv × State → Bool

confinv(inv , s) = ∀ v ∈ dom(inv). inv(v) = s(v)

Definition 7.3 defines a predicate confcpares on a CPA result ACPA and an augmented con-
figuration σ′′ which checks if σ′′ conforms with ACPA. A CPA result ACPA is a mapping which
models all informations about invariant variables for all program points which were determined
by the compiler during the CPA. A CPA result ACPA conforms to an augmented configuration σ′′

iff ACPA maps its program counter component pc to a well-defined invariant inv that conforms to
its state component s.

Definition 7.3.

confcpares : InvariantEnv ×Configuration′′ → Bool

confcpares(ACPA, (ss, bs, until , bposstat , predbid , (tf , af , pc, b, s))) =(
confinv(inv , s) if ACPA(pc) = Some(inv),

False otherwise

With the definition of the conformance predicate at hand, we can give the definition of the
bisimulation relation RCF.

As aforementioned, our main aim is to define a bisimulation relation over pairs of augmented
configurations (σ′′S , σ′′T) which supports inductive reasoning about pairs of executions of IL” pro-
grams, i.e. we want to define a function bisimrelCF which takes an IL program S , its CF optimization
T , a CFGB declaration1 B , and a CPA result ACPA and computes a set of pairs consisting of
augmented configurations such that

∀n. (M′′((S ,B), init(S ,B),n), M′′((T ,B), init(T ,B), n)) ∈ RCF

By the definition of M′′, we know that each augmented configuration of the form

M′′((P ,B), σ′′0 ,n) = (ss,n, ss, bposstat , predbid , σ)

is the result of n block-wise transfers of the flow of control in the CFGB which is declared by B
for the program P . Further, we know from Definitions 6.36, 6.35 6.24, and 6.22 that

• the machine function M′′ in this equation uses the operational semantics of the language IL’
to compute the result of partial execution M′′((P ,B), σ′′0 ,n),

• the operational semantics of the IL’ language is defined by means of transfers of the flow of
control from block position to block position in that CFBG,

• transfers of the flow are computed by the transition function exec′, and
• computing the successor configuration by the function exec′ can result in switching of the mode

of execution into the one of four modes: the normal mode, the exit mode, the emulation mode,
and the exception mode.

In Section 6.4.2, we explained that computing the successor configuration by the function exec′ can
result in switching of the mode of execution into the emulation mode only, if the flow of control
is within a block at a block position which is not the last one in that block and executing an
1 As we previously mentioned, in the case of the CF optimization, respective CFGB declarations for S

and T , BS and BT , are equal. So, we need to declare only one CFGB for both S and T .

126 7 Translation correctness criteria for particular optimizations

instruction at a program point which is allocated to that block position results in an exception.
In other words, if the flow of control leaves a block by transfering to a block position which is the
first one in another block, then this transfer always results in switching into one of three modes:
either the normal mode or the exception mode or the exit mode.

As we know what syntactic forms the augmented configurations have in those modes, we can
define our bisimulation relation RCF as a union of three sets which are defined for a respective
mode of execution and each of those sets fulfills the following properties:

• For each configuration pair (σ′′S , σ′′T) in the set, it holds σ′′S = σ′′T .
• If the set is defined for a particular mode of execution, then it holds for each configuration

pair(σ′′S , σ′′T) in this set that σ′′S has the syntactic form which corresponds to that mode of
execution, cf. Section 6.4.2 for the syntactic forms of augmented configurations in the respective
modes of execution.

• For each configuration pair (σ′′S , σ′′T) in the set, it holds that σ′′S and σ′′T are results of partial
executions of IL” programs (S ,B) and (T ,B) by the machine M′′ and that these executions
which has the same length

∃n. (M′′((S ,B), init(S ,B),n),M′′((T ,B), init(T ,B), n)) = (σ′′S , σ′′T)

• If the set is build for the normal mode of execution, then it additionally holds for each pair
(σ′′S , σ′′T) in this set that σ′′S conforms with the CPA result ACPA.

In the following, we specify these three sets by giving the definitions of respective predicates
which check if a configuration pair (σ′′S , σ′′T) in the respective set defined w.r.t. IL” programs (S ,B)
and (T ,B); and a CPA result ACPA.

Definition 7.4 defines a function bisimrel_CF_normblck which checks if a configuration pair
(σ′′S , σ′′T) is in a subset of the bisimulation relation RCF which is defined for the normal mode of
execution and w.r.t. two IL” programs, (S ,B) and (T ,B), and a CPA result ACPA.

Definition 7.4.

bisimrel_CF_normblck : Program×Program×BlckPosEnv × InvariantEnv

× Configuration′′ ×Configuration′′ → Bool

bisimrel_CF_normblck(S ,T , (pid0,BP ,BB , succBP , predB),ACPA, σ′′
S , σ′′

T) =

∃ bs ss pid bid pc predbid b s bt set .

σ′′
S = σ′′

T ∧
σ′′

S = (ss, bs, ss, NORMBLCK(pid , bid , 1, 0, pc), predbid , (NT, ABok, pc, b, s)) ∧
M′′((S ,B), bs) = (ss, bs, ss, NORMBLCK(pid , bid , 1, 0, pc), predbid , (NT, ABok, pc, b, s)) ∧
M′′((T ,B), bs) = (ss, bs, ss, NORMBLCK(pid , bid , 1, 0, pc), predbid , (NT, ABok, pc, b, s)) ∧
BB(bid) = Some(pid) ∧
BP(pid) = Some(pid , bid , 1, 0, pc) ∧
predB(pid) = Some(set) ∧
(predbid , bt) ∈ set ∧
confbuffer(bt, b) ∧
confcpares(ACPA, (ss, bs, ss, NORMBLCK(pid , bid , 1, 0, pc), predbid , (NT, ABok, pc, b, s)))

Definition 7.5 defines a function bisimrel_CF_excblck which checks if a configuration pair
(σ′′S , σ′′T) is in a subset of the bisimulation relation RCF which is defined for the exception mode of
execution and w.r.t. two IL” programs, (S ,B) and (T ,B).

7.1 SVF for CF optimizations 127

Definition 7.5.

bisimrel_CF_excblck : Program×Program×BlckPosEnv

× Configuration×Configuration′′ → Bool

bisimrel_CF_excblck(S ,T , (pid0,BP ,BB , succBP , predB), σ′′
S , σT) =

∃ bs ss pc predbid n s.

σ′′
S = σ′′

T ∧
σ′′

S = (ss, bs, ss, EXCBLCK, predbid , (NT, AB, pc, FLUSH(n), s)) ∧
M′′((S ,B), bs) = (ss, bs, ss, EXCBLCK, predbid , (NT, AB, pc, FLUSH(n), s)) ∧
M′′((T ,B), bs) = (ss, bs, ss, EXCBLCK, predbid , (NT, AB, pc, FLUSH(n), s))

Definition 7.6 defines a function bisimrel_CF_exitblck which checks if a configuration pair
(σ′′S , σ′′T) is in a subset of the bisimulation relation RCF which is defined for the exit mode of
execution and w.r.t. two IL” programs, (S ,B) and (T ,B), and a CPA result ACPA.

Definition 7.6.

bisimrel_CF_exitblck : Program×Program×BlckPosEnv

× Configuration′′ ×Configuration′′ → Bool

bisimrel_CF_exitblck(S ,T , (pid0,BP ,BB , succBP , predB), σ′′
S , σ′′

T) =

∃ bs ss pc predbid n s.

σ′′
S = σ′′

T ∧
σ′′

S = (ss, bs, ss, EXITBLCK, predbid , (T, ABok, pc, FLUSH(n), s)) ∧
M′′((S ,B), bs) = (ss, bs, ss, EXITBLCK, predbid , (T, ABok, pc, FLUSH(n), s)) ∧
M′′((T ,B), bs) = (ss, bs, ss, EXITBLCK, predbid , (T, ABok, pc, FLUSH(n), s))

Definition 7.7 defines a function bisimrelCF which checks if a configuration pair (σ′′S , σ′′T) is in
the bisimulation relation RCF which is defined for two IL” programs, (S ,B) and (T ,B), and a
CPA result ACPA.

Definition 7.7.

bisimrelCF : Program×Program×BlckPosEnv × InvariantEnv → BisimulationRelation

bisimrelCF(S ,T ,B ,ACPA) = { (σ′′
S , σ′′

T) | bisimrel_CF_normblck(S ,T ,B ,ACPA, σ′′
S , σ′′

T) ∨
bisimrel_CF_excblck(S ,T ,B , σ′′

S , σ′′
T) ∨

bisimrel_CF_exitblck(S ,T ,B , σ′′
S , σ′′

T) }

7.1.3 Optimization correctness criterion for the CF optimization

This section presents the formalization of a translation relation predicate TCCCF on two IL”
programs, S and T , and a CPA result ACPA, which we call optimization correctness criterion for
the CF optimization. The parameters of TCCCF denote source and target programs of a concrete
CF optimization, and a result of the CP analysis that was performed by the compiler prior to that
optimization, respectively, and TCCCF checks if T is a correct CF optimization of S w.r.t. ACPA.
In our implementation, the TCCCF predicate defines an instance of the optimization correctness
criterion TCC0 that was described in the overview of Layer 5 in Section 3.6

We begin the presentation by listing sets associated with the definition of TCCCF:

• relations over l-value pairs LValueTransRel_CF,
• relations over expression pairs ExpressionTransRel_CF, and

128 7 Translation correctness criteria for particular optimizations

• relations over instruction pairs InstrTransRel_CF.

Definition 7.8 gives formation rules for those sets.

Definition 7.8.

LValueTransRel_CF = P(LValue× LValue)

ExpressionTransRel_CF = P(Expression×Expression)

InstrTransRel_CF = P(Instruction× Instruction)

The rest of this section is organized as follows: The first part of this section presents the
definition of a function cf_transrel_expr which computes a CF optimization relation over ex-
pression pairs (e, e ′) w.r.t. an invariant inv . The second part of this section presents the defini-
tion of a function cf_transrel_lv which computes a CF optimization relation over l-value pairs
(lv , lv ′) for a source and a target programs of a concrete CF optimization and a result of the
CPA which was performed prior to that optimization. The definition of cf_transrel_lv uses the
definition of cf_transrel_expr. The third part of this second presents the definition of a function
cf_transrel_instr which computes a CF optimization relation over instruction pairs (instr , instr ′)
for a source and a target programs of a concrete CF optimization and a result of the CPA which
was performed prior to that optimization. The definition of cf_transrel_instr uses the definitions
of cf_transrel_lv and cf_transrel_expr. The last part this section presents the definition of the
optimization correctness criterion TCCCF.

Definition 7.9 defines a function cf_transrel_expr_operand which computes a subset of a CF
optimization relation over expression pairs (e, e ′) w.r.t. an invariant inv such that each expression
e in the pair (e, e ′) is an operand, i.e. e has the syntactic form o.

Definition 7.9.

cf_transrel_expr_operand : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_operand(inv) =

{(e, e ′) | ∃ i . (e, e ′) = (i , i) ∨
∃ b. (e, e ′) = (b, b) ∨
∃ v . (e, e ′) = (v , v) ∧ inv(v) = None ∨
∃ v i . (e, e ′) = (v , i) ∧ inv(v) = Some(i) ∨
∃ v b. (e, e ′) = (v , b) ∧ inv(v) = Some(b) ∨
∃ a i . (e, e ′) = (a[i], a[i]) ∨
∃ a v . (e, e ′) = (a[v], a[v]) ∧ inv(v) = None ∨
∃ a v i . (e, e ′) = (a[v], a[i]) ∧ inv(v) = Some(i) }

Definition 7.10 defines a function cf_transrel_expr_unmin which computes a subset of a CF
optimization relation over expression pairs (e, e ′) w.r.t. an invariant inv such that each expression
e in the pair (e, e ′) is a unary operand prefixed by the unary operator −, i.e. e has the syntactic
form −o.

7.1 SVF for CF optimizations 129

Definition 7.10.

cf_transrel_expr_unmin : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_unmin(inv) = {(e, e ′) |
∃ i1 i2 i3. (e, e ′) = (−i1, i2) ∧ −i1 = i2 ∨
∃ v1 i2. (e, e ′) = (−v ,−v) ∧ inv(v) = None ∨
∃ v i1 i2. (e, e ′) = (−v , i2) ∧ inv(v) = Some(i1) ∧ −i1 = i2 ∨
∃ a i . (e, e ′) = (−a[i],−a[i]) ∨
∃ a v . (e, e ′) = (−a[v],−a[v]) ∧ inv(v) = None ∨
∃ a v i . (e, e ′) = (−a[v],−a[i]) ∧ inv(v) = Some(i) ∨

Definition 7.11 defines a function cf_transrel_expr_plus which computes a subset of a CF
optimization relation over expression pairs (e, e ′) w.r.t. an invariant inv such that each expression
e in the pair (e, e ′) is a binary expression consisting of two operands joined by a binary operator
+, i.e. e has the syntactic form o + o.

130 7 Translation correctness criteria for particular optimizations

Definition 7.11.

cf_transrel_expr_plus : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_plus(inv) = {(e, e ′) |
∃ i1 i2 i3. (e, e ′) = (i1 + i2, i3) ∧ i1 + i2 = i3 ∨
∃ v1 i2. (e, e ′) = (v1 + i2, v1 + i2) ∧ inv(v1) = None ∨
∃ v1 i1 i2 i3. (e, e ′) = (v1 + i2, i3) ∧ inv(v1) = Some(i1) ∧ i1 + i2 = i3 ∨
∃ a i1 i2. (e, e ′) = (a[i1] + i2, a[i1] + i2) ∨
∃ a v1 i2. (e, e ′) = (a[v1] + i2, a[v1] + i2) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (a[v1] + i2, a[i1] + i2) ∧ inv(v1) = Some(i1) ∨
∃ v1 i2. (e, e ′) = (i1 + v2, i1 + v2) ∧ inv(v2) = None ∨
∃ v1 i2 i3. (e, e ′) = (i1 + v2, i3) ∧ inv(v2) = Some(i2) ∧ i1 + i2 = i3 ∨
∃ v1 v2. (e, e ′) = (v1 + v2, v1 + v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ v1 v2 i2. (e, e ′) = (v1 + v2, v1 + i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ v1 v2 i1. (e, e ′) = (v1 + v2, i1 + v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ v1 v2 i1 i2 i3. (e, e ′) = (v1 + v2, i3) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∧ i1 + i2 = i3 ∨
∃ a i1 v2. (e, e ′) = (a[i1] + v2, a[i1] + v2) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (a[i1] + v2, a[i1] + i2) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (a[v1] + v2, a[v1] + v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (a[v1] + v2, a[v1] + i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2. (e, e ′) = (a[v1] + v2, a[i1] + v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 i1 v2 i2. (e, e ′) = (a[v1] + v2, a[i1] + i2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a i1 i2. (e, e ′) = (i1 + a[i2], i1 + a[i2]) ∨
∃ a v1 i2. (e, e ′) = (v1 + a[i2], v1 + a[i2]) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (v1 + a[i2], i1 + a[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a1 i1 a2 i2. (e, e ′) = (a1[i1] + a2[i2], a1[i1] + a2[i2]) ∨
∃ a1 v1 a2 i2. (e, e ′) = (a1[v1] + a2[i2], a1[v1] + a2[i2]) ∧ inv(v1) = None ∨
∃ a1 v1 i1 a2 i2. (e, e ′) = (a1[v1] + a2[i2], a1[i1] + a2[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a i1 v2. (e, e ′) = (i1 + a[v2], i1 + a[v2]) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (i1 + a[v2], i1 + a[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (v1 + a[v2], v1 + a[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 i1 v2. (e, e ′) = (v1 + a[v2], i1 + a[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (v1 + a[v2], v1 + a[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2 i2. (e, e ′) = (v1 + a[v2], i1 + a[i2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a1 i1 a2 v2. (e, e ′) = (a1[i1] + a2[v2], a1[i1] + a2[v2]) ∧ inv(v2) = None ∨
∃ a1 i1 a2 v2 i2. (e, e ′) = (a1[i1] + a2[v2], a1[i1] + a2[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 a2 v2. (e, e ′) = (a1[v1] + a2[v2], a1[v1] + a2[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a1 v1 i1 a2 v2. (e, e ′) = (a1[v1] + a2[v2], a1[i1] + a2[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a1 v1 a2 v2 i2. (e, e ′) = (a1[v1] + a2[v2], a1[v1] + a2[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 i1 a2 v2 i2. (e, e ′) = (a1[v1] + a2[v2], a1[i1] + a2[i2])∧

inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) }

Definition 7.12 defines a function cf_transrel_expr which computes a CF optimization relation
over expression pairs (e, e ′) w.r.t. an invariant inv such that it holds for each expression pair (e, e ′)
in that relation that its right component e ′ is a result of constant folding performed w.r.t. the
invariant inv . An optimization relation cf_transrel_expr(inv) is defined as a union of optimization
relations over expression pairs (e, e ′) such that each of those relations is defined for a respective
syntactic form of the expressions e in the pairs (e, e ′). The definitions of those relations build for
expressions having the syntactic forms o, −o, and o + o are defined by Definitions 7.9, 7.10, and
7.11, respectively. For the brevity, we moved the definitions of functions computing the sets for
the remaining the syntactic forms of expresssion e in Chapter B. These functions are as follows.

7.1 SVF for CF optimizations 131

1. The function cf_transrel_expr_binmin is defined by Definition B.5 and computes a subset of
a CF optimization relation over expression pairs (e, e ′) w.r.t. an invariant inv such that each
expression e in the pair (e, e ′) is a binary expression consisting of two operands joined by a
binary operator −, i.e. e has the syntactic form o − o.

2. The function cf_transrel_expr_mult is defined by Definition B.6 and computes a subset of a
CF optimization relation over expression pairs (e, e ′) w.r.t. an invariant inv such that each
expression e in the pair (e, e ′) is a binary expression consisting of two operands joined by a
binary operator ∗, i.e. e has the syntactic form o ∗ o.

3. The function cf_transrel_expr_and is defined by Definition B.7 and computes a subset of a
CF optimization relation over expression pairs (e, e ′) w.r.t. an invariant inv such that each
expression e in the pair (e, e ′) is a binary expression consisting of two operands joined by a
binary operator ∧, i.e. e has the syntactic form o ∧ o.

4. The function cf_transrel_expr_not is defined by Definition B.2 and computes a subset of a
CF optimization relation over expression pairs (e, e ′) w.r.t. an invariant inv such that each
expression e in the pair (e, e ′) is a unary operand prefixed by the unary operator ¬, i.e. e has
the syntactic form ¬o.

5. The function cf_transrel_expr_or is defined by Definition B.8 and computes a subset of a
CF optimization relation over expression pairs (e, e ′) w.r.t. an invariant inv such that each
expression e in the pair (e, e ′) is a binary expression consisting of two operands joined by a
binary operator ∨, i.e. e has the syntactic form o ∨ o.

6. The function cf_transrel_expr_eq is defined by Definition B.9 and computes a subset of a
CF optimization relation over expression pairs (e, e ′) w.r.t. an invariant inv such that each
expression e in the pair (e, e ′) is a binary expression consisting of two operands joined by a
binary operator =, i.e. e has the syntactic form o = o.

7. The function cf_transrel_expr_neq is defined by Definition B.10 and computes a subset of a
CF optimization relation over expression pairs (e, e ′) w.r.t. an invariant inv such that each
expression e in the pair (e, e ′) is a binary expression consisting of two operands joined by a
binary operator $=, i.e. e has the syntactic form o $= o.

8. The function cf_transrel_expr_lt is defined by Definition B.11 and computes a subset of a
CF optimization relation over expression pairs (e, e ′) w.r.t. an invariant inv such that each
expression e in the pair (e, e ′) is a binary expression consisting of two operands joined by a
binary operator <, i.e. e has the syntactic form o < o.

9. The function cf_transrel_expr_le is defined by Definition B.12 and computes a subset of a
CF optimization relation over expression pairs (e, e ′) w.r.t. an invariant inv such that each
expression e in the pair (e, e ′) is a binary expression consisting of two operands joined by a
binary operator ≤, i.e. e has the syntactic form o ≤ o.

132 7 Translation correctness criteria for particular optimizations

Definition 7.12.

cf_transrel_expr : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr(inv) = {(e, e ′) | (e, e ′) ∈ cf_transrel_expr_operand(inv) ∨
(e, e ′) ∈ cf_transrel_expr_plus(inv) ∨
(e, e ′) ∈ cf_transrel_expr_binmin(inv) ∨
(e, e ′) ∈ cf_transrel_expr_mult(inv) ∨
(e, e ′) ∈ cf_transrel_expr_unmin(inv) ∨
(e, e ′) ∈ cf_transrel_expr_and(inv) ∨
(e, e ′) ∈ cf_transrel_expr_not(inv) ∨
(e, e ′) ∈ cf_transrel_expr_or(inv) ∨
(e, e ′) ∈ cf_transrel_expr_eq(inv) ∨
(e, e ′) ∈ cf_transrel_expr_neq(inv) ∨
(e, e ′) ∈ cf_transrel_expr_lt(inv) ∨
(e, e ′) ∈ cf_transrel_expr_le(inv) }

Now, we present the second part of the formalization of the optimization relation predicate
TCCCF, the definition of a function cf_transrel_lv which computes a CF optimization relation over
l-value pairs (lv , lv ′) for two IL” programs and a CPA result.

The function cf_transrel_lv is used later on by a function cf_transrel_instr_assign which
computes a subset of a CF optimization relation over instruction pairs (instr , instr ′) in which the
left component of each instruction pair (instr , instr ′) is an assignment, i.e. instr has the syntactic
form lval :=e.

The definitions of functions computing relations over l-value pairs make the following context
assumptions:

1. The compiler performed the CPA on an IL program S . The result of this analysis is ACPA.
2. The compiler performed the CF optimization on S . The result of this optimization is a target

program T .
3. The compiler generated a CFGB declaration B which is identical for both S and T , and all

blocks in the CFGB declared by B have the length equal one.
4. There exists a program point pc which is allocated to a block position pid which is included

in a block bid .
5. The pc-th instruction of S is an assignment, i.e. the pc-th instruction of S has the syntactic

form lval :=e.
6. The pc-th instruction of T is an assignment, i.e. the pc-th instruction of T has the syntactic

form lval ′:=e ′.
7. There exists a well-defined invariant inv such that ACPA(pc) = Some(inv) and the expression

pair (e, e ′) is in the optimization relation cf_transrel_expr(inv).

Definition 7.13 defines a function cf_transrel_lv_case1 which makes the above context as-
sumptions 1. through 7. and computes a subset of a CF optimization relation over l-value pairs
(lval , lval ′) w.r.t. an invariant inv , a program point pc, and an expression pair (e, e ′) such that
the following holds for that relation:

1. In each l-value pair (lval , lval ′) in this relation, the left and the right components, lval and
lval ′, have both the syntactic form v .

2. The pc-th instruction of the source program S has the syntactic form v :=e.
3. The pc-th instruction of the target program T has the syntactic form v :=i . , i.e. e has either

the form i or it could be folded completely during the CF optimization.
4. The expression pair (e, i) is in the translation relation cf_transrel_expr(inv).

7.1 SVF for CF optimizations 133

Definition 7.13.

cf_transrel_lv_case1 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State×
Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case1((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set .

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
e ′ = i ∧
(e, i) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s(v %→ i)) }

Definition 7.14 defines a function cf_transrel_lv_case2 which makes the above context as-
sumptions 1. through 7. and computes a subset of a CF optimization relation over l-value pairs
(lval , lval ′) w.r.t. an invariant inv , a program point pc, and an expression pair (e, e ′) such that
the following holds for that relation:

1. In each l-value pair (lval , lval ′) in this relation, the left and the right components, lval and
lval ′, have both the syntactic form v ,

2. the pc-th instruction of the source program S has the syntactic form v :=e, and
3. the pc-th instruction of the target program T has the syntactic form v :=b, i.e. e has either

the form b or it could be folded completely during the CF optimization.
4. The expression pair (e, b) is in the translation relation cf_transrel_expr(inv).

Definition 7.14.

cf_transrel_lv_case2 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State×
Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case2((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set .

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
e ′ = b ∧
(e, b) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s(v %→ b)) }

Definition 7.15 defines a function cf_transrel_lv_case3 which makes the above context as-
sumptions 1. through 7. and computes a subset of a CF optimization relation over l-value pairs
(lval , lval ′) w.r.t. an invariant inv , a program point pc, and an expression pair (e, e ′) such that
the following holds for that relation:

134 7 Translation correctness criteria for particular optimizations

1. In each l-value pair (lval , lval ′) in this relation, the left and the right components, lval and
lval ′, have both the syntactic form v ,

2. the pc-th instruction of the source program S has the syntactic form v :=e,

3. the pc-th instruction of the target program T has the syntactic form v :=v ′, i.e. e also hase
the form v ′ and it could not be folded during the CF optimization.

4. The expression pair (e, v) is in the translation relation cf_transrel_expr(inv).

Definition 7.15.

cf_transrel_lv_case3 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State×
Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case3((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set .

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v) = None ∧
e ′ = v ′ ∧
(e, v ′) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition 7.16 defines a function cf_transrel_lv_case19 which makes the above context as-
sumptions 1. through 7. and computes a subset of a CF optimization relation over l-value pairs
(lval , lval ′) w.r.t. an invariant inv , a program point pc, and an expression pair (e, e ′) such that
the following holds for that relation:

1. In each l-value pair (lval , lval ′) in this relation, the left and the right components have the
syntactic forms a[v] and a[i], respectively.

2. the pc-th instruction of the source program S has the syntactic form a[v]:=e,

3. the pc-th instruction of the target program T has the syntactic form a[i]:=e ′.

4. There exists an invariant inv such that ACPA(pc) = Some(inv) and inv(a) = None and
inv(v) = Some(i).

7.1 SVF for CF optimizations 135

Definition 7.16.

cf_transrel_lv_case19 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State×
Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case19((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(a[v], a[i]) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv(a) = None ∧
inv(v) = Some(i) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition 7.17 defines a function cf_transrel_lv which makes the above context assumptions 1.
through 7. and computes a CF optimization relation over l-value pairs (lval , lval ′) w.r.t. an invari-
ant inv , a program point pc, and an expression pair (e, e ′) such that it holds for each l-value pair
(lval , lval ′) in that relation that its right component lval ′ is a result of constant folding perfomed
w.r.t. lval , pc, and (e, e ′). An optimization relation cf_transrel_lv(B ,ACPA, pc, pid , bid , s, e, e ′)
is defined as a union of nineteen optimization relations over l-value pairs (lval , lval ′) defined for
respective syntactic forms of the expression e ′ and the l-value lval ′.

For the brevity, we moved a part of the definitions of functions computing those relations in
Chapter B. These definitions are as follows.

1. The definition of the relation cf_transrel_lv_case1(B ,ACPA, pc, pid , bid , s, e, e ′) was described
in Definition 7.13.

2. The definition of the relation cf_transrel_lv_case2(B ,ACPA, pc, pid , bid , s, e, e ′) was described
in Definition 7.14.

3. The definition of the relation cf_transrel_lv_case3(B ,ACPA, pc, pid , bid , s, e, e ′) was described
in Definition 7.15.

4. The definition of the relation cf_transrel_lv_case4(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.17

5. The definition of the relation cf_transrel_lv_case5(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.18

6. The definition of the relation cf_transrel_lv_case6(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.19

7. The definition of the relation cf_transrel_lv_case7(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.20

8. The definition of the relation cf_transrel_lv_case8(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.21

9. The definition of the relation cf_transrel_lv_case9(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.22

10. The definition of the relation cf_transrel_lv_case10(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.23

11. The definition of the relation cf_transrel_lv_case11(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.24

136 7 Translation correctness criteria for particular optimizations

12. The definition of the relation cf_transrel_lv_case12(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.25

13. The definition of the relation cf_transrel_lv_case13(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.26

14. The definition of the relation cf_transrel_lv_case14(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.27

15. The definition of the relation cf_transrel_lv_case15(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.28

16. The definition of the relation cf_transrel_lv_case16(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.29

17. The definition of the relation cf_transrel_lv_case17(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.30

18. The definition of the relation cf_transrel_lv_case18(B ,ACPA, pc, pid , bid , s, e, e ′) is given in
Definition B.31

19. The definition of the relation cf_transrel_lv_case19(B ,ACPA, pc, pid , bid , s, e, e ′) was de-
scribed in Definition 7.16.

Definition 7.17.

cf_transrel_lv : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State×
Expression×Expression → LValueTransRel_CF

cf_transrel_lv(B ,ACPA, pc, pid , bid , s, e, e ′) =

{(lv , lv ′) | (lv , lv ′) ∈ cf_transrel_lv_case1(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case2(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case3(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case4(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case5(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case6(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case7(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case8(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case9(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case10(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case11(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case12(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case13(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case14(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case15(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case16(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case17(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case18(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case19(B ,ACPA, pc, pid , bid , s, e, e ′) ∨ }

The third part of the formalization of the optimization relation predicate TCCCF is the definition
of a function cf_transrel_instr which makes the same context assumptions about the source and
the target programs, the CFGB declaration B , and a CPA result as the function cf_transrel_lv
and computes a CF optimization relation over instruction pairs (instr , instr ′) w.r.t. program point
pc, and a block position pid .

Definition 7.18 computes a subset of a CF optimization relation over instruction pairs
cf_transrel_instr_assign(B ,ACPA, pc, pid , bid , s) such that it holds for each instruction pair
(instr , instr ′) in this subset that

• both instr and instr ′ are pc-th instructions in a source and the target programs in the context,

7.1 SVF for CF optimizations 137

• the program point pc is allocated to a block position pid that is included in a block bid

• both instr and instr ′ are assignment instructions, i.e. each pair has the syntactic form
(lv :=e, lv ′:=e ′),

• the CPA result ACPA maps the program point pc into a well-defined invariant inv ,

• the l-value pair (lv , lv ′) is in the CF optimization relation over l-value pairs
cf_transrel_lv(B ,ACPA, pc, pid , bid , s).

• the expression (e, e ′) is in the CF optimization relation over expression pairs cf_transrel_expr(inv).

Definition 7.18.

cf_transrel_instr_assign : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

→ InstrTransRel_CF

cf_transrel_instr_assign(B ,ACPA, pc, pid , bid , s) =

{(lv :=e, lv ′:=e ′) | ∃ inv . ACPA!pc = Some(inv) ∧
(lv , lv ′) ∈ cf_transrel_lv(B ,ACPA, pc, pid , bid , s, e, e ′) ∧
(e, e ′) ∈ cf_transrel_expr(inv) }

Definition 7.19 computes a subset of a CF optimization relation over instruction pairs
cf_transrel_instr_printi(B ,ACPA, pc, pid , bid , s) such that it holds for each instruction pair (instr , instr ′)
in this subset that

• both instr and instr ′ are pc-th instructions in a source and the target programs in the context,

• the CFG of the source program comprises an edge (pc, pc + 1),

• the program points pc and pc + 1 are allocated to block positions pid and pid ′, respectively,
that are included in blocks bid and bid ′, respectively,

• the CFGB declaration declares bid as the predecessor block of bid ′ and the edge (bid , bid ′) is
labeled with the buffertype OTYPE,

• both instr and instr ′ are printi instructions, i.e. each pair has the syntactic form
(printi(e), printi(e ′)),

• the CPA result ACPA maps the program points pc and pc + 1 into well-defined invariants inv
and inv ′,

• the expression pair (e, e ′) is in the CF optimization relation over expression pairs cf_transrel_expr(inv),
and

• if the IL” program (S ,B) is executed and the flow of control transfers to the block position pid
and the state component s in the current configuration conforms with the invariant inv , then
the state component in the successor configuration remains unchanged and conforms with the
invariant inv ′.

138 7 Translation correctness criteria for particular optimizations

Definition 7.19.

cf_transrel_instr_printi : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

→ InstrTransRel_CF

cf_transrel_instr_printi((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s) =

{(print(e), print(e ′)) | ∃ inv inv ′ pc′ pid ′ bid ′ set .

ACPA!pc = Some(inv) ∧
(e, e ′) ∈ cf_transrel_expr(inv) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , OTYPE) ∈ set ∧
ACPA(pc′) = Some(inv ′) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition 7.20 computes a subset of a CF optimization relation over instruction pairs
cf_transrel_instr_branch(B ,ACPA, pc, pid , bid , s) such that it holds for each instruction pair
(instr , instr ′) in this subset that

• both instr and instr ′ are pc-th instructions in a source and the target programs in the context,

• both instr and instr ′ are branch instructions, i.e. each pair has the syntactic form
(branch(e, dst), branch(e ′, dst)),

• the CFG of the source program comprises two edges (pc, pc + 1) and (pc, dst),

• the program points pc, pc + 1, and dst are allocated to block positions pid , pid ′, and pid ′′,
respectively, that are included in blocks bid , bid ′, and bid ′′, respectively,

• the CFGB declaration (pid0,BP ,BB , succBP , predB) declares bid ′ and bid ′′ to be the successor
blocks of bid and the block edges (bid , bid ′) and (bid , bid ′′) to be labeled with the buffertype
FTYPE,

• the CPA result ACPA maps the program points pc, pc + 1, and dst into well-defined invariants
inv , inv ′, and inv ′′,

• the expression pair (e, e ′) is in the CF optimization relation over expression pairs cf_transrel_expr(inv),
and

• if the IL” program (S ,B) is executed and the flow of control transfers to the block position pid
and the state component s in the current configuration conforms with the invariant inv , then
the state component in the successor configuration remains unchanged and conforms with the
invariants either inv ′ or inv ′′, which is dependent on whether the flow of control transfers to
pid ′ or pid ′′, respectively.

7.1 SVF for CF optimizations 139

Definition 7.20.

cf_transrel_instr_branch : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

→ InstrTransRel_CF

cf_transrel_instr_branch((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s) =

{(branch(e, dst), print(e ′, dst)) | ∃ inv inv ′ inv ′′ pc′ pid ′ pid ′′ bid ′ bid ′′ set ′ set ′′.

ACPA!pc = Some(inv) ∧
(e, e ′) ∈ cf_transrel_expr(inv) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set ′) ∧
(bid , FTYPE) ∈ set ′ ∧
ACPA(pc′) = Some(inv ′) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) ∧
succBP(pid , dst) = Some(pid ′′) ∧
BP(pid ′′) = Some(pid ′′, bid ′′, 1, 0, dst) ∧
BB(bid ′′) = Some(pid ′′) ∧
predB(pid ′) = Some(set ′′) ∧
(bid , FTYPE) ∈ set ′′ ∧
ACPA(dst) = Some(inv ′′) ∧
confcpares(inv , s) −→ confcpares(inv ′′, s) }

Definition 7.21 computes a subset of a CF optimization relation over instruction pairs
cf_transrel_instr_goto(B ,ACPA, pc, pid , bid , s) such that it holds for each instruction pair (instr , instr ′)
in this subset that

• both instr and instr ′ are pc-th instructions in a source and the target programs in the context,

• both instr and instr ′ are goto instructions, i.e. each pair has the syntactic form
(goto(dst), goto(dst)),

• the CFG of the source program comprises an edge (pc, dst),

• the program points pc and dst are allocated to block positions pid and pid ′, respectively, that
are included in blocks bid and bid ′, respectively,

• the CFGB declaration declares bid as the predecessor block of bid ′ and the edge (bid , bid ′) is
labeled with the buffertype FTYPE,

• the CPA result ACPA maps the program points pc and dst into well-defined invariants inv and
inv ′,

• if the IL” program (S ,B) is executed and the flow of control transfers to the block position pid
and the state component s in the current configuration conforms with the invariant inv , then
the state component in the successor configuration remains unchanged and conforms with the
invariant inv ′.

140 7 Translation correctness criteria for particular optimizations

Definition 7.21.

cf_transrel_instr_goto : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

→ InstrTransRel_CF

cf_transrel_instr_goto((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s) =

{(goto(dst), goto(dst)) | ∃ inv inv ′ pc′ pid ′ bid ′ pc′ set .

ACPA!pc = Some(inv) ∧
succBP(pid , dst) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, dst) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set ′) ∧
(bid , FTYPE) ∈ set ′ ∧
ACPA(dst) = Some(inv ′) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition 7.22 defines a function cf_transrel_instr which makes the same context assumptions
as the functions cf_transrel_instr_assign, cf_transrel_instr_printi, cf_transrel_instr_branch, and
cf_transrel_instr_goto and computes a CF optimization relation over instruction pairs
cf_transrel_instr(ACPA, pc, pid , bid , s) in which each instruction pair (instr , instr ′) fulfills the fol-
lowing property:

• Both instr and instr ′ are pc-th instructions in a source and the target programs in the context.
• The program point pc is allocated to a block position pid is included in a blocks bid which has

the length equal one.

Further, it holds that the relation cf_transrel_instr(ACPA, pc, pid , bid , s) is a union of five disjoint
sets which are defined as follows.

1. The first set comprises assignment instruction pairs which are in the relation
cf_transrel_instr_assign(ACPA, pc, pid , bid , s).

2. The second set comprises printi instruction pairs which are in the relation
cf_transrel_instr_printi(ACPA, pc, pid , bid , s).

3. The third set comprises branch instruction pairs which are in the relation
cf_transrel_instr_branch(ACPA, pc, pid , bid , s).

4. The fourth set comprises goto instruction pairs which are in the relation
cf_transrel_instr_printi(ACPA, pc, pid , bid , s).

5. The fifth set is equal {(exit, exit)}.

Definition 7.22.

cf_transrel_instr : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

→ InstrTransRel_CF

cf_transrel_instr(B ,ACPA, pc, pid , bid , s) = cf_transrel_instr_assign(B ,ACPA, pc, pid , bid , s) ∪
cf_transrel_instr_printi(B ,ACPA, pc, pid , bid , s) ∪
cf_transrel_instr_branch(B ,ACPA, pc, pid , bid , s) ∪
cf_transrel_instr_goto(B ,ACPA, pc, pid , bid , s) ∪
{(exit, exit)}

Finally, with the definitions of the conformance predicate confcpares and the function cf_transrel_instr,
we can give the definition of the optimization correctness criterion TCCCF on two IL programs, S
and T , a CFGB declaration B , and a CPA result ACPA which formalizes what does it mean that
T is a correct CF optimization of S w.r.t. B and ACPA.

7.1 SVF for CF optimizations 141

In the beginning of the presentation of the definition of the function cf_transrel_instr, we
explained that this function makes the following context assumptions: The compiler takes an IL
program S and performs the CPA on it. The result of this analysis is ACPA. The result of the CF
optimization is an IL program T . Additionally, the compiler generates a CFGB declaration B for
both S and T such that the allocation mappings from the program points of those programs to
block positions are identical. The definition of our optimization correctness criterion TCCCF makes
these assumptions explicit.

The definition of TCCCF consists of two conjuncts: The first conjunct denotes a well-formedness
criterion for the entry block of B and the input of an IL program w.r.t. a CPA result. The
second conjunct denotes an optimization correctness criterion on the set of pairs consisting of
corresponding instructions of a source program S and a target program T .

Definition 7.23 defines the first conjunct TCC_CF_entry_block(B ,ACPA, I) which checks if
the entry block of a CFGB declaration B is well-formed and if the initial state mapof(I), which is
computed from a program input I , conforms with the invariant inv0, which was computed by the
compiler for the entry program point 0. The entry block of B , bid0, is well-formed iff it includes
the entry block position of B , pid0, has the length equal one, the 0-th program point is allocated
to pid0, and is declared by B to be among his own predecessor blocks.

Definition 7.23.

TCC_CF_entry_block : BlckPosEnv × InvariantEnv × Input → Bool

TCC_CF_entry_block(B ,ACPA, I) =

let

(pid0,BP ,BB , succBP , predB) = B

in

∃ bid0 set . BP(pid0) = Some(pid0, bid0, 1, 0, 0) ∧
predB(pid0) = Some(set) ∧
(bid0, FTYPE) ∈ set

∧
∃ inv0. ACPA(0) = Some(inv0) ∧ conf(inv0, mapof(I))

end

Definition 7.24 defines the predicate TCC_CF_normal_block on a source program S , a target
program T , a CFGB declaration B , a CPA result ACPA, a state s, and a block bid which checks
if the block bid in the CFGB (S ,B) and the block bid in the CFGB (T ,B) fulfill the following opti-
mization correctness criterion for the block pair (bid , bid): TCC_CF_normal_block(S ,T ,B ,ACPA, s, bid)
holds true iff there exist pc-th program points pc in S and T ; and a block position pid such that
pc is allocated to pid , pid is included by the block bid , and the pair (instrs!pc, instrs ′!pc) con-
sisting of the pc-th instructions of S and T , respectively, are in the CF optimization relation
cf_transrel_instr(B ,ACPA, pc, pid , bid , s).

142 7 Translation correctness criteria for particular optimizations

Definition 7.24.

TCC_CF_normal_block : Program×Program×BlckPosEnv × InvariantEnv × State

×BlckId → Bool

TCC_CF_normal_block(S ,T ,B ,ACPA, s, bid) =

let

((vds, instrs), I) = S ;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

∃ pid pc. BB(bid) = Some(pid) ∧
BP(pid) = Some(pid , bid , 1, 0, pc) ∧
(instrs!pc, instrs ′!pc) ∈ cf_transrel_instr(B ,ACPA, pc, pid , bid , s)

end

Definition 7.25 defines our optimization correctness criterion for the CF optimizations on a
source program S , a target program T , a CFGB declaration B , and a CPA result ACPA which
checks if T is a correct CF optimization of S w.r.t. V B and ACPA. According to the definition of
TCCCF, an IL program T is a correct CF optimization of S iff the entry blocks of IL” programs
(S ,B) and (T ,B) are well-formed and the initial state computed from the input of S is well-formed
w.r.t. to the CPA result ACPA.

Definition 7.25.

TCCCF : Program×Program×BlckPosEnv × InvariantEnv → Bool

TCCCF(S ,T ,B ,ACPA) =

let

((vds, instrs), I) = S ;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

TCC_CF_entry_block(B ,ACPA, I)

∧
∀ s bid . TCC_CF_normal_block(S ,T ,B ,ACPA, s, bid)

end

7.1.4 Verification of the optimization correctnes criterion TCCCF

This section presents the theorems which we proved in order to verify the specification of the
optimization correctness criterion TCCCF presented in the previous section. The main result in
this section is a theorem which can be used directly in translation certificates generated by our
compiler.

To verify the specification of the criterion TCCCF, we proved Theorem 7.26 which is a statement
about a source and a target programs of a concrete CF optimization, S and T , a program type Φ,
a CFGB declaration B , and a result of the CP analysis which was performed on S prior to that
optimization, ACPA, and it says that if S and T are well-typed w.r.t. Φ; and B is well-formed
w.r.t. S and T ; and S and T fulfill the optimization correctness criterion TCCCF w.r.t. B and
ACPA, then S and T fulfill the optimization independent translation correctness TCC w.r.t. the
bisimulation relation bisimrelCF(S ,T ,B ,ACPA).

7.2 SVF for DAE optimizations 143

Theorem 7.26.

wtp(S , Φ) ∧ wtp(T , Φ) ∧ wfB(S ,B) ∧ wfB(T ,B) ∧ TCCCF(S ,T ,B ,ACPA)
=⇒
TCC(S ,T , bisimrelCF(S ,T ,B ,ACPA))

!

Finally, we present the main result in this section, a theorem which is a statement about a
source and a target programs of a concrete CF optimization, S and T , a program type Φ, a
CFGB declaration B , and a result of the CP analysis which was performed on S prior to that
optimization, ACPA, and it says that if S and T are well-typed w.r.t. Φ; and B is well-formed
w.r.t. S and T ; and S and T fulfill the optimization correctness criterion TCCCF w.r.t. B and
ACPA, then S and T fulfill the translation correctness predicate corrTrans.

Theorem 7.27.

wtp(S , Φ) ∧ wtp(T , Φ) ∧ wfB(S ,B) ∧ wfB(T ,B) ∧ TCCCF(S ,T ,B ,ACPA)
=⇒
corrTrans(S ,T)

Proof.

wtp(S , Φ) ∧ wtp(T , Φ) ∧ wfB(S ,B) ∧ wfB(T ,B) ∧ TCCCF(S ,T ,B ,ACPA)

=⇒ [by application of Theorem 7.26]

TCC(S ,T , bisimrelCF(S ,T ,B ,ACPA))

=⇒ [by application of the existential introduction rule]

∃R.TCC(S ,T ,R) .

=⇒ [by application of Theorem 6.44]

corrTrans(S ,T)

!

Theorem 7.27 is an instance of the corollary (I) in Section 3.6 and is directly applicable in
translation certificates which are generated by the compiler for each CF optimization, see the end
of Section 3.6 for a general application scheme of this theorem.

7.2 SVF for DAE optimizations

This section presents formalization of an optimization correctness criterion for DAE optimiza-
tions, TCCDAE, and a corresponding optimization correctness theorem which is directly applied in
translation certificates generated by our compiler front-end.

As aforementioned in Section 1.5.1, our implementation of the DAE procedure is standard [1, 3,
119]. In the following, we give a general description this procedure. The description only provides
details which we need for the purpose of the explaination of the SVF for DAE optimizations.

In general, the DAE is performed by our compiler front-end in two steps:

144 7 Translation correctness criteria for particular optimizations

The first step: The compiler performs a liveness analysis (LA) on the input program. The LA
determines for each node pc in the node set of the CFG of a program, which variables are live
at the exit from pc where a variable is live at the exit from a node pc if there exists a path from
pc to a node pc′ such that the pc′-th instruction of the program uses that variable and the
nodes between pc and pc′ do not re-define the variable. In the following, we call a variable live
in or live out if it may be live at the entry into a CFG node or it may be live at the exit from
a CFG node, respectively. The result of this analysis, ALA, is a mapping from program points
to tuples of sets of program variables. Each tuple has the syntactic form (use, def , in, out). If,
during the LA, the compiler determines that whenever the flow of control leaves a node pc a
variable v is live in or live out, then there exist sets use, def , in, and out such that ALA maps
pc to the tuple (use, def , in, out) and v ∈ in or v ∈ out , respectively.

The second step: The compiler takes the source program S and the LA result ACPA as input and
transforms S as follows. For each program point pc and each assignment of syntactic form
v :=e, the compiler checks if ALA declares v as live out at the program point pc. If it does not
hold, the compiler replaces the assignment by a goto instruction goto(pc + 1) which emulates
a nop instruction.

It follows from the above description that the DAE optimization is structure preserving, i.e.
does not modify the set of edges and nodes of the CFG of the source program. Therefore, the
formalization of the optimization correctness criterion TCCDAE makes the following assumptions
about the CFG’s and the CFGB declarations involved in the DAE optimization:

• The sets of nodes and edges of the CFG’s of the source and the target programs are identical,
• The CFGB declarations for the source and the target programs of the DAE are identical,
• The corresponding program points relation between program points of the source and the

target programs is defined as identity, i.e. as a one-to-one correspondence between program
points of the source and the target programs,

• For both the source and the target program, the allocation relation between program points
and block positions is a one-to-one correspondence,

• The "includes" relation between blocks and block positions is a one-to-one correspondence,
• The CFGB declaration used to formalize the criteria TCCDAE comprises no nested blocks.

As aforementioned in Chapter 3, the SVF for DAE optimizations also provides formalizations
of further notions which are needed to formulate the TCCDAE criterion and to conduct the proof
the optimization correctness theorem. These notions are as follows.

• The definition of TCCDAE is based on the definition of a function dae_transrel_instr which
computes a translation relation over instruction pairs for DAE optimizations. This function is
an instance of the translation relation predicate transrelO in Chapter 3.

• The proof of the optimiziation correctness theorem adheres to the proof scheme described in
Chapter 3. The first step of this proof scheme is based on the notion of bisimulation and a
bisimulation relation. Therefore, the SVF presented in this section provides the definition of a
function bisimrelDAE which computes a bisimulation relation RDAE as a function of the source
and the target programs and the LA result involved in a DAE optimization. This function is
an instance of the function bisimrelO in Chapter 3.

The rest of this section is organized as follows. Section 7.2.1 presents formation rules for the
set of LA results. Section 7.2.2 presents the definitions of function bisimrelDAE which computes the
bisimulation relation RDAE. Section 7.2.3 presents the definitions of the function dae_transrel_instr
and the criterion TCCDAE. Section 7.2.4 presents the optimization correctness theorem for DAE
optimizations.

7.2 SVF for DAE optimizations 145

7.2.1 Abstract syntax of LA results

This section presents the definition of the abstract syntax of the LA results. We begin the presen-
tation by listing syntactic sets associated with this notion:

• "use" variables UseSet,
• "def" variables DefSet,
• "in" variables InSet,
• "out" variables OutSet,
• tuples of sets of variables VarSets, and
• variable set environments VarSetsEnv;

and defining metavariables ranging over these sets:

• use ranges over "use" variables UseSet,
• def ranges over "def" variables DefSet,
• in ranges over "in" variables InSet,
• out ranges over "out" variables OutSet,
• varsets ranges over tuples of sets of variables VarSets, and
• ALA ranges over variable set environments VarSetsEnv;

Definition 7.28 gives formation rules for the set of the LA results VarSetsEnv. An LA result
ALA is a partial mapping from the set of instruction numbers InstructionNr to the set of tuples
of variable sets VarSets. We call a LA result a variable set environment and if an LA result
ALA is well-formed, then it is total. A tuple varsets = (use, def , in, out) consists of a set of "use"
variables use, a set of "def" variables def , a set of "in" variables in, and a set of "out" variables
out . The purpose of a LA result ALA is to model facts about the live variables of a program which
were determined by the compiler during a concrete LA. A variable v is live at the exit from a
node pc in the CFG of a program if there exists a path from pc to a node pc′ such that the pc′-th
instruction of the program uses v and the nodes between pc and pc′ do not re-define the variable.
In the following, we call a variable live in or live out if it may be live at the entry into a node or
it may be live at the exit from a node, respectively. Thus, the LA determines for each program
program point, which variables are live out at that program point. Informally, the meaning of a
LA result ALA is as follows. Given that the compiler performs the LA on an IL program P , the
result of this analysis is ALA, then ALA(pc) = Some(use, def , in, out) ∧ v ∈ out iff the compiler
determines that the value of a variable v is live out each time the flow of control transfers from
the program point pc to its successor.

Definition 7.28.

use ∈ UseSet = P(Variable)

def ∈ DefSet = P(Variable)

in ∈ InSet = P(Variable)

out ∈ OutSet = P(Variable)

varsets ∈ VarSets = UseSet×DefSet× InSet×OutSet

ALA ∈ VarSetsEnv = InstructionNr ! VarSets

7.2.2 Bisimulation relation for the DAE optimization

This section presents the definition of a function bisimrelDAE which computes a bisimulation relation
for two IL” programs, which are the source and the target programs of a DAE optimization, and
a result of the LA which was performed prior to this optimization.

Informally, our notion of a bisimulation relation RDAE can be characterized as follows.

146 7 Translation correctness criteria for particular optimizations

• RDAE is a function of a DAE optimization which is described by the following values:
1. a source IL program S ,
2. a target IL program T ,
3. a CFGB declaration B , and
4. a result of the LA, ALA.

• By Definition 6.40, RDAE has to be a subset of

Configuration′′ ×Configuration′′ .

• As the DAE is a structure preserving optimization, i.e. it does not modify the sets of nodes
and edges in the CFG of the program S , the CFGB declarations BS and BT for S and T ,
respectively, are also identical, BS = BT . Therefore, we use in our SVF for DAE optimizations
only one CFGB declaration, B , which for both S and T . On the other hand, our compiler
performs DAE optimizations by replacing assignments to variables which are not live out by
goto instructions emulating nop instructions. Thus, we know that it holds for two arbitrary
partial executions of (S ,B) and (T ,B) of the same length that if they produce augmented
configurations σ′′S and σ′′T , then all their corresponding components describing position in the
CFGB are equal.

∀n S T B .
M′′((S ,B), init(S ,B),n) = σ′′S ∧
M′′((T ,B), init(T ,B),n) = σ′′T
−→
∃ ss bs bposstat predbid tf af pc b s ss ′ bs ′ bposstat ′ predbid ′ tf ′ af ′ pc′ b′ s ′.

σ′′S = (ss, bs, ss, bposstat , predbid , (tf , af , pc, b, s)) ∧
σ′′T = (ss ′, bs ′, ss ′, bposstat ′, predbid ′, (tf ′, af ′, pc′, b′, s ′)) ∧
ss = ss ′ ∧
bs = bs ′ ∧
bs = n ∧
bposstat = bposstat ′ ∧
predbid = predbid ′ ∧
tf = tf ′ ∧
af = af ′ ∧
pc = pc′ ∧
b = b′

• As the proof of a theorem saying that
If (T ,B) is a correct DAE optimization of (S ,B) implies bisimulation((S ,B), (T ,B),RDAE)

has to be conducted by induction on the length of partial execution of (S ,BS) and we know
that the state components s and s ′ in the configurations σ′′S and σ′′T in the above invariant are
not necessarily equal, we have to strengthen the above induction invariant by an additional
statement expressing a property about two states and a LA result which, informally, says the
following:

For all variables v which are live in at the program point pc holds s(v) = s ′(v).
In order to be able to expresss the statements of this kind, we formalized the notion of confor-
mance of two states with a LA result.

We begin the presentation of the definition of RDAE with the formalization of the notion of
conformance.

Definition 7.29 defines a function oper2use which computes the set of "use" variables of an
operand.

7.2 SVF for DAE optimizations 147

Definition 7.29.

oper2use : Operand → UseSet

oper2use(i) = {}
oper2use(b) = {}
oper2use(v) = {v}
oper2use(a[i]) = {a}
oper2use(a[v]) = {a, v}

Definition 7.30 defines a function expr2use which computes the set of "use" variables of an
expression.

Definition 7.30.

expr2use : Expression → UseSet

expr2use(o) = oper2use(o)

expr2use(o1 + o2) = oper2use(o1) ∪ oper2use(o2)

expr2use(o1 − o2) = oper2use(o1) ∪ oper2use(o2)

expr2use(o1 ∗ o2) = oper2use(o1) ∪ oper2use(o2)

expr2use(−o) = oper2use(o)

expr2use(o1 ∧ o2) = oper2use(o1) ∪ oper2use(o2)

expr2use(¬o) = oper2use(o)

expr2use(o1 ∨ o2) = oper2use(o1) ∪ oper2use(o2)

expr2use(o1 = o2) = oper2use(o1) ∪ oper2use(o2)

expr2use(o1 ,= o2) = oper2use(o1) ∪ oper2use(o2)

expr2use(o1 < o2) = oper2use(o1) ∪ oper2use(o2)

expr2use(o1 ,= o2) = oper2use(o1) ∪ oper2use(o2)

Definition 7.31 defines a function instr2use which computes the set of "use" variables of an
instruction.

Definition 7.31.

instr2use : Instruction → UseSet

instr2use(v :=e) = expr2use(e)

instr2use(a[i]:=e) = {a} ∪ expr2use(e)

instr2use(a[v]:=e) = {a, v} ∪ expr2use(e)

instr2use(printi(e)) = expr2use(e)

instr2use(branch(e, dst)) = expr2use(e)

instr2use(goto(dst)) = {}
instr2use(exit = {}

Definition 7.32 defines a function instr2def which computes the set of "use" variables of an
instruction.

148 7 Translation correctness criteria for particular optimizations

Definition 7.32.

instr2def : Expression → UseSet

instr2def(v :=e) = {v}
instr2def(a[i]:=e) = {a}
instr2def(a[v]:=e) = {a}
instr2def(printi(e)) = {}
instr2def(branch(e, dst)) = {}
instr2def(goto(dst)) = {}
instr2def(exit = {}

Definition 7.33 defines a predicate confvarsets on an IL program P , an LA result ALA, a CFG
edge (pc, succpc), and two states, s and s ′. The confvarsets makes a context assumption that s and
s ′ are results of two partial executions of the source and the target program of a DAE optimization
which are of the same length, and that the flows of control of those executions has made transitions
along the CFG edge (pc, pc′). Then, the predicate checks the following:

1. The variable sets declared by ALA for the program points pc and succpc must be consistent
with the operational semantics of the pc-th and succpc-th instructions of the program P .

2. The states s and s ′ must conform with the "in" set of variables declared by ALA for the node
succpc.

Definition 7.33.

confvarsets : Program×VarSetsEnv × InstructionNr× InstructionNr

× State× State → Bool

confvarsets(((vds, instrs), I),ALA, pc, succpc, s, s ′) =

∃ use def in out use ′ def ′ in ′ out ′.

ALA(pc) = Some(use, def , in, out) ∧
ALA(succpc) = Some(use ′, def ′, in ′, out ′) ∧
use ′ = instr2use(instrs!succpc) ∧
def ′ = instr2def(instrs!succpc) ∧
in ′ = use ′ ∪ (out ′ − def ′) ∧
in ′ ⊆ out ∧
∀ v ∈ in ′. s(v) = s ′(v)

In Section 6.4.2, we explained that computing the successor configuration by the function exec′

can result in switching of the mode of execution into the emulation mode only, if the flow of
control is within a block at a block position which is not the last one in that block and executing
an instruction at a program point which is allocated to that block position results in an exception.
In other words, if the flow of control leaves a block by transfering to a block position which is the
first one in another block, then this transfer always results in switching into one of three modes:
either the normal mode or the exception mode or the exit mode.

As we know what syntactic forms the augmented configurations have in those modes, we
can define our bisimulation relation RDAE as a union of three disjoint sets which are defined
for respective modes of execution as functions of the source and the target programs, a CFGB
declaration, and an LA result, such that each of those sets fulfills the following properties:

• If the set is defined for a particular mode of execution, then it holds for each configuration pair
(σ′′S , σ′′T) in this set that σ′′S and σ′′T have the syntactic forms which comply with that mode of
execution, cf. Section 6.4.2 for the syntactic forms.

7.2 SVF for DAE optimizations 149

• For each configuration pair (σ′′S , σ′′T) in the set, it holds that all components except their state
components are equal.

• For each configuration pair (σ′′S , σ′′T) in the set, it holds that σ′′S and σ′′T are results of partial
executions of IL” programs (S ,B) and (T ,B) by the machine M′′ and that these executions
of the same length.

• If the set is build for the normal mode of execution, then it additionally holds for each pair
(σ′′S , σ′′T) in this set that the state components of σ′′S and σ′′T conform with the LA result ALA.

In the following, we specify these three sets by giving the definitions of functions which compute
the subsets for respective modes of executions.

Definition 7.34 defines a function bisimrel_DAE_normblck which computes a subset of the
bisimulation relation RDAE which is defined for the normal mode of execution and w.r.t. two IL”
programs, (S ,B) and (T ,B), and a LA result ALA.

Definition 7.34.

bisimrel_DAE_normblck : Program×Program×BlckPosEnv ×VarSetsEnv

→ BisimulationRelation

bisimrel_DAE_normblck(S ,T ,B ,ALA) =

let

(pid0,BP ,BB , succBP , predB) = B

in

{(σ′′
S , σ′′

T) | ∃ bs ss pid bid pc predbid b s s ′ bt set .

σ′′
S = (ss, bs, ss, NORMBLCK(pid , bid , 1, 0, pc), predbid , (NT, ABok, pc, b, s)) ∧

σT = (ss, bs, ss, NORMBLCK(pid , bid , 1, 0, pc), predbid , (NT, ABok, pc, b, s ′)) ∧
M′′((S ,B), bs) = σ′′

S ∧
M′′((T ,B), bs) = σ′′

T ∧
BB(bid) = Some(pid) ∧
BP(pid) = Some(pid , bid , 1, 0, pc) ∧
predB(pid) = Some(set) ∧
(predbid , bt) ∈ set ∧
BB(predbid) = Some(predpid) ∧
BP(predpid) = Some(predpid , predbid , 1, 0, predpc) ∧
confbuffer(bt , b) ∧
confvarsets(S ,ALA, predpc, pc, s, s ′) }

end

Definition 7.35 defines a function bisimrel_DAE_excblck which computes a subset of the bisim-
ulation relation RDAE which is defined for the exception mode of execution and w.r.t. two IL”
programs, (S ,B) and (T ,B).

Definition 7.35.

bisimrel_DAE_excblck : Program×Program×BlckPosEnv → BisimulationRelation

bisimrel_DAE_excblck(S ,T ,B) =

{(σ′′
S , σT) | ∃ bs ss pc predbid n s s ′.

σ′′
S = (ss, bs, ss, EXCBLCK, predbid , (NT, AB, pc, FLUSH(n), s)) ∧

σ′′
T = (ss, bs, ss, EXCBLCK, predbid , (NT, AB, pc, FLUSH(n), s ′)) ∧

M′′((S ,B), bs) = σ′′
S ∧

M′′((T ,B), bs) = σ′′
T }

150 7 Translation correctness criteria for particular optimizations

Definition 7.36 defines a function bisimrel_DAE_exitblck computes a subset of the bisimulation
relation RDAE which is defined for the exit mode of execution and w.r.t. two IL” programs, (S ,B)
and (T ,B).

Definition 7.36.

bisimrel_DAE_exitblck : Program×Program×BlckPosEnv → BisimulationRelation

bisimrel_DAE_exitblck(S ,T ,B) =

{(σ′′
S , σ′′

T) | ∃ bs ss pc predbid n s s ′.

σ′′
S = (ss, bs, ss, EXITBLCK, predbid , (T, ABok, pc, FLUSH(n), s)) ∧

σ′′
T = (ss, bs, ss, EXITBLCK, predbid , (T, ABok, pc, FLUSH(n), s ′)) ∧

M′′((S ,B), bs) = σ′′
S ∧

M′′((T ,B), bs) = σ′′
T }

Definition 7.37 defines a function bisimrelDAE which computes the bisimulation relation RDAE

for two IL” programs, (S ,B) and (T ,B), and a LA result ALA.

Definition 7.37.

bisimrelDAE : Program×Program×BlckPosEnv ×VarSetsEnv → BisimulationRelation

bisimrelDAE(S ,T ,B ,ALA) = bisimrel_DAE_normblck(S ,T ,B ,ALA) ∪
bisimrel_DAE_excblck(S ,T ,B) ∪
bisimrel_DAE_exitblck(S ,T ,B)

7.2.3 Optimization correctness criterion for the DAE optimization

This section presents the formalization of a translation relation predicate TCCDAE on two IL”
programs, (S ,B) and (T ,B), and a LA result ALA. The parameters of TCCDAE denote a source
and a target programs of a concrete DAE optimization, and a result of the liveness analysis
that was performed by the compiler prior to that optimization, respectively, and, informally,
TCCDAE(S ,T ,B ,ALA) holds true iff (T ,B) is a correct DAE optimization of (S ,B) w.r.t. ALA.
In the following, we call the TCCDAE predicate an optimization correctness criterion for the DAE
optimization. In our implementation, the TCCDAE predicate is an instance of the optimization
correctness criterion TCCO that was described in the overview of Layer 5 in Section 3.6

The rest of this section consists of the following four parts:

• The first part gives formation rules for the sets associated with the definition of the optimization
correctness criterion TCCDAE.

• The second part formalizes the notion of array-index-out-of-bounds exception safety for ex-
pression by giving the definition of a predicate ABexc_safe_expr on IL program P and an
expression e. ABexc_safe_expr(P , e) holds true iff e is array-index-out-of-bounds exception
safe (ABexc-safe) in P , i.e. it can be guarranteed that its evaluation during execution of P
never results in raising the array-index-out-of-bounds exception.

• The third part presents the definition of a function dae_transrel_instr which computes a DAE
optimization relation over instruction pairs (instr , instr ′) for two programs which are the source
and the target of a DAE optimization and a result of the LA which was performed by the
compiler prior to that optimization. The definition of dae_transrel_instr uses the definition of
ABexc_safe_expr.

• The last part this section presents the definition of the optimization correctness criterion
TCCDAE.

7.2 SVF for DAE optimizations 151

We begin the presentation by introducing a set of translation relations over instruction pairs
InstrTransRel_DAE. Definition 7.38 gives formation rule for this set.

Definition 7.38.

InstrTransRel_DAE = P(Instruction× Instruction)

Definition 7.39 defines a function ABexc_safe_oper which checks if an operand o is ABexc-safe
in an IL program P . An operand o is ABexc-safe in a program ((vds, instrs), I) iff it fulfills one
of the following requirements:

1. o is an integer constant or a boolean constant.
2. o is a variable.
3. o is an indexed operator a[i] with a constant index i whose value is less than the length of a

which is declared in the variable declaration vds.

Definition 7.39.

ABexc_safe_oper : Program×Operand → Bool

ABexc_safe_oper(((vds, instrs), I), i) = True

ABexc_safe_oper(((vds, instrs), I), b) = True

ABexc_safe_oper(((vds, instrs), I), v) = True

ABexc_safe_oper(((vds, instrs), I), a[i]) = ∃ k n. k < length(vds) ∧ vds!k = (a, barray(n)) ∧ i < n

∨
∃ k n. k < length(vds) ∧ vds!k = (a, iarray(n)) ∧ i < n

ABexc_safe_oper(((vds, instrs), I), a[v]) = False

Definition 7.40 defines a function ABexc_safe_expr which checks if an expression e is ABexc-
safe in an IL program P . An expression e is ABexc-safe in a program P iff all operands in e are
ABexc-safe in P .

Definition 7.40.

ABexc_safe_expr : Program×Expression → Bool

ABexc_safe_expr(P , o) = ABexc_safe_oper(P , o)

ABexc_safe_expr(P , o1 + o2) = ABexc_safe_oper(P , o1) ∧ ABexc_safe_oper(P , o2)

ABexc_safe_expr(P , o1 − o2) = ABexc_safe_oper(P , o1) ∧ ABexc_safe_oper(P , o2)

ABexc_safe_expr(P , o1 ∗ o2) = ABexc_safe_oper(P , o1) ∧ ABexc_safe_oper(P , o2)

ABexc_safe_expr(P ,−o) = ABexc_safe_oper(P , o)

ABexc_safe_expr(P , o1 ∧ o2) = ABexc_safe_oper(P , o1) ∧ ABexc_safe_oper(P , o2)

ABexc_safe_expr(P ,¬o) = ABexc_safe_oper(P , o)

ABexc_safe_expr(P , o1 ∨ o2) = ABexc_safe_oper(P , o1) ∧ ABexc_safe_oper(P , o2)

ABexc_safe_expr(P , o1 = o2) = ABexc_safe_oper(P , o1) ∧ ABexc_safe_oper(P , o2)

ABexc_safe_expr(P , o1 ,= o2) = ABexc_safe_oper(P , o1) ∧ ABexc_safe_oper(P , o2)

ABexc_safe_expr(P , o1 < o2) = ABexc_safe_oper(P , o1) ∧ ABexc_safe_oper(P , o2)

ABexc_safe_expr(P , o1 ≤ o2) = ABexc_safe_oper(P , o1) ∧ ABexc_safe_oper(P , o2)

Now, we present the third part of the formalization of TCCDAE, the definition of a function
dae_transrel_instr which computes a translation relation over instruction pairs for a block position
in a CFGB declaration B w.r.t. an IL” program (P ,B) and a LA result ALA. The result of
this computation is a relation in the set InstrTransRel_DAE. The function dae_transrel_instr
computes a relation which is defined as a union of nine disjoint sets which arise from nine syntactic

152 7 Translation correctness criteria for particular optimizations

optimization patterns which possible for a pair of corresponding instructions in the source and the
target programs of a DAE optimization. These sets are computed by respective auxiliary functions
which are presented below in Definitions 7.41, 7.42, 7.43, 7.44, 7.45, 7.46, 7.47, 7.48, 7.49, and 7.50.
The auxiliary functions have the same parameters as the function dae_transrel_instr and make
the following context assumptions about these parameter:

1. The compiler performed the LA on an IL program S . The result of this analysis is ALA.

2. The compiler performed the LA optimization on S . The result of this optimization is a target
program T .

3. The compiler generated a CFGB declaration B which is identical for both S and T , and all
blocks in the CFGB declared by B have the length equal one.

4. In both (S ,B) and (T ,B), there exists a program point pc which is allocated to a block
position pid which is included in a block bid .

Then, an auxiliary function computes a subset of the DAE optimization relation
InstrTransRel_DAE such that each pair (instr , instr ′) in this subset consists of two instructions
instr and instr ′ which are the pc-th instruction of S and the pc-th instruction of T , respectively,
and they satisfy a particular optimization pattern which is specified by the function.

Definition 7.41 defines a function dae_transrel_instr_case1 which computes a subset of a DAE
optimization relation for two IL” programs, (S ,B) and (T ,B), and a LA result ALA w.r.t. a pair
of block positions in (S ,B) and (T ,B) described by the tuple (bid , pid , pc). The following holds
for the relation dae_transrel_instr_case1(S ,T ,B ,ALA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation consists of two assignments which are equal
and have the syntactic form v :=e.

2. The LA result ALA declares that the variable v is live out at the CFG node pc.

3. The successor program point of pc is pc + 1.

4. The program point pc + 1 is allocated to a block position pid ′ which is included by a block
bid ′ which is the successor of bid and has the length equal one.

5. The variable sets declared by ALA for the program points pc and pc + 1 are consistent with
the operational semantics of the assignment v :=e.

7.2 SVF for DAE optimizations 153

Definition 7.41.

dae_transrel_instr_case1 : Program×Program×BlckPosEnv ×VarSetsEnv

× BlckId×BlckPosId× InstructionNr → InstrTransRel_DAE

dae_transrel_instr_case1(S ,T ,B ,ALA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(v :=e, v :=e) | ∃ bid ′ pid ′ pc′ set use def in out use ′ def ′ in ′ out ′.

instrs!pc = v :=e ∧
instrs ′!pc = v :=e ∧
ALA(pc) = Some(use, def , in, out) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ALA(pc′) = Some(use ′, def ′, in ′, out ′) ∧
use ′ = instr2use(instrs!pc′) ∧
def ′ = instr2def(instrs!pc′) ∧
in ′ = use ′ ∪ (out ′ − def ′) ∧
in ′ ⊆ out ∧
v ∈ out }

end

Definition 7.42 defines a function dae_transrel_instr_case2 which computes a subset of a DAE
optimization relation for two IL” programs, (S ,B) and (T ,B), and a LA result ALA w.r.t. a pair
of block positions in (S ,B) and (T ,B) described by the tuple (bid , pid , pc). The following holds
for the relation dae_transrel_instr_case2(S ,T ,B ,ALA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation consists of an assignment and a goto in-
struction which emulates a nop instruction, i.e. tuple has the syntactic form (v :=e, gotopc).

2. The LA result ALA declares that the variable v is not live out at the CFG node pc.

3. The expression e in the assignment is ABexc-safe in the IL program S .

4. The successor program point of pc is pc + 1.

5. The program point pc + 1 is allocated to a block position pid ′ which is included by a block
bid ′ which is the successor of bid and has the length equal one.

6. The variable sets declared by ALA for the program points pc and pc + 1 are consistent with
the operational semantics of the assignment v :=e.

154 7 Translation correctness criteria for particular optimizations

Definition 7.42.

dae_transrel_instr_case2 : Program×Program×BlckPosEnv ×VarSetsEnv

×BlckId×BlckPosId× InstructionNr → InstrTransRel_DAE

dae_transrel_instr_case2(S ,T ,B ,ALA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(v :=e, goto(pc′)) | ∃ bid ′ pid ′ pc′ set use def in out use ′ def ′ in ′ out ′.

instrs!pc = v :=e ∧
instrs ′!pc = goto(pc′) ∧
ALA(pc) = Some(use, def , in, out) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ALA(pc′) = Some(use ′, def ′, in ′, out ′) ∧
use ′ = instr2use(instrs!pc′) ∧
def ′ = instr2def(instrs!pc′) ∧
in ′ = use ′ ∪ (out ′ − def ′) ∧
in ′ ⊆ out ∧
v /∈ out ∧
ABexc_safe_expr(S , e) }

end

Definition 7.43 defines a function dae_transrel_instr_case3 which computes a subset of a DAE
optimization relation for two IL” programs, (S ,B) and (T ,B), and a LA result ALA w.r.t. a pair
of block positions in (S ,B) and (T ,B) described by the tuple (bid , pid , pc). The following holds
for the relation dae_transrel_instr_case3(S ,T ,B ,ALA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation consists of two assignments, i.e. the pair
has the syntactic form (v :=e, v :=e).

2. The LA result ALA declares that the variable v is not live out at the CFG node pc.
3. The expression e in the assignment is ABexc-safe in the IL program S .
4. The successor program point of pc is pc + 1.
5. The program point pc + 1 is allocated to a block position pid ′ which is included by a block

bid ′ which is the successor of bid and has the length equal one.
6. The variable sets declared by ALA for the program points pc and pc + 1 are consistent with

the operational semantics of the assignment v :=e.

The subset of the DAE optimization, which is computed by the function dae_transrel_instr_case3
is actually not necessary in our framework for the DAE optimizations since but it enables the
compiler to decide freely if it replaces an assignment to a variable that is not live out or not. In
the following, we explain the reason why we formalized this function anyway.

The reader should recall that our compiler performs a chain of five optimizations: CF, DAE, NI,
RAI, and RAE and that the RAI optimization replaces nop instructions by assignments to variables

7.2 SVF for DAE optimizations 155

which are not live out. Interestingly, the RAI optimization2 has a reverse effect comparing to the
DAE optimization and therefore the optimization correctness criterion TCCDAE can be reused in
an optimization correctness criterion for RAI optimizations if one treats the target program of
the RAI optimization as a source program of the DAE optimization and the source program of
the RAI optimization as a target program of the DAE optimization. However, to able to apply
our framework also for RAI optimizations, we have to adapt our formalization of a translation
relation over instruction pairs InstrTransRel_DAE as follows. Let us consider two IL programs
S and T such that T is a RAI optimization of S . If there already exists a program point pc
such that the pc-th instruction of the program S is an assignment to a variable which is not live
out, the RAI optimization replaces a nop instruction at another program point pc′ by another
assignment to a variable which is not live out, and we want to verify that optimization as having
effect which is reverse to the DAE optimization, then we are obliged to prove that S is a correct
DAE optimization of T where the compiler freely decided to replace the assignment at the pc′-th
program point by the nop instruction and to leave the pc-th instruction unchanged. To be able to
deal with such optimizations, we augmented the translation relation InstrTransRel_DAE by a
subset which is computed by the function dae_transrel_instr_case3.

Definition 7.43.

dae_transrel_instr_case3 : Program×Program×BlckPosEnv ×VarSetsEnv

×BlckId×BlckPosId× InstructionNr → InstrTransRel_DAE

dae_transrel_instr_case3(S ,T ,B ,ALA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(v :=e, v :=e) | ∃ bid ′ pid ′ pc′ set use def in out use ′ def ′ in ′ out ′.

instrs!pc = v :=e ∧
instrs ′!pc = v :=e ∧
ALA(pc) = Some(use, def , in, out) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ALA(pc′) = Some(use ′, def ′, in ′, out ′) ∧
use ′ = instr2use(instrs!pc′) ∧
def ′ = instr2def(instrs!pc′) ∧
in ′ = use ′ ∪ (out ′ − def ′) ∧
in ′ ⊆ out ∧
v /∈ out ∧
ABexc_safe_expr(S , e) }

end

Definition 7.44 defines a function dae_transrel_instr_case4 which computes a subset of a DAE
optimization relation for two IL” programs, (S ,B) and (T ,B), and a LA result ALA w.r.t. a pair

2 The RAI should actually be called the RAI transformation because it does not makes the program more
efficient but merely enables other transformation.

156 7 Translation correctness criteria for particular optimizations

of block positions in (S ,B) and (T ,B) described by the tuple (bid , pid , pc). The following holds
for the relation dae_transrel_instr_case4(S ,T ,B ,ALA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation consists of two assignments to indexed
l-values with an integer constant as index, i.e. tuple has the syntactic form (a[i]:=e, a[i]:=e).

2. The successor program point of pc is pc + 1.
3. The program point pc + 1 is allocated to a block position pid ′ which is included by a block

bid ′ which is the successor of bid and has the length equal one.
4. The variable sets declared by ALA for the program points pc and pc + 1 are consistent with

the operational semantics of the assignment a[i]:=e.

Definition 7.44.

dae_transrel_instr_case4 : Program×Program×BlckPosEnv ×VarSetsEnv

×BlckId×BlckPosId× InstructionNr → InstrTransRel_DAE

dae_transrel_instr_case4(S ,T ,B ,ALA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(a[i]:=e, a[i]:=e) | ∃ bid ′ pid ′ pc′ set use def in out use ′ def ′ in ′ out ′.

instrs!pc = a[i]:=e ∧
instrs ′!pc = a[i]:=e ∧
ALA(pc) = Some(use, def , in, out) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ALA(pc′) = Some(use ′, def ′, in ′, out ′) ∧
use ′ = instr2use(instrs!dst) ∧
def ′ = instr2def(instrs!dst) ∧
in ′ = use ′ ∪ (out ′ − def ′) ∧
in ′ ⊆ out }

end

Definition 7.45 defines a function dae_transrel_instr_case5 which computes a subset of a DAE
optimization relation for two IL” programs, (S ,B) and (T ,B), and a LA result ALA w.r.t. a pair
of block positions in (S ,B) and (T ,B) described by the tuple (bid , pid , pc). The following holds
for the relation dae_transrel_instr_case5(S ,T ,B ,ALA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation consists of two assignments to indexed
l-values with a variable index, i.e. tuple has the syntactic form (a[v]:=e, a[v]:=e).

2. The successor program point of pc is pc + 1.
3. The program point pc + 1 is allocated to a block position pid ′ which is included by a block

bid ′ which is the successor of bid and has the length equal one.
4. The variable sets declared by ALA for the program points pc and pc + 1 are consistent with

the operational semantics of the assignment a[v]:=e.

7.2 SVF for DAE optimizations 157

Definition 7.45.

dae_transrel_instr_case5 : Program×Program×BlckPosEnv ×VarSetsEnv

×BlckId×BlckPosId× InstructionNr → InstrTransRel_DAE

dae_transrel_instr_case5(S ,T ,B ,ALA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(a[v]:=e, a[v]:=e) | ∃ bid ′ pid ′ pc′ set use def in out use ′ def ′ in ′ out ′.

instrs!pc = a[v]:=e ∧
instrs ′!pc = a[v]:=e ∧
ALA(pc) = Some(use, def , in, out) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ALA(pc′) = Some(use ′, def ′, in ′, out ′) ∧
use ′ = instr2use(instrs!dst) ∧
def ′ = instr2def(instrs!dst) ∧
in ′ = use ′ ∪ (out ′ − def ′) ∧
in ′ ⊆ out }

end

Definition 7.46 defines a function dae_transrel_instr_case6 which computes a subset of a DAE
optimization relation for two IL” programs, (S ,B) and (T ,B), and a LA result ALA w.r.t. a pair
of block positions in (S ,B) and (T ,B) described by the tuple (bid , pid , pc). The following holds
for the relation dae_transrel_instr_case6(S ,T ,B ,ALA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation consists of printi instructions, i.e. tuple has
the syntactic form (printi(e), printi(e)).

2. The successor program point of pc is pc + 1.

3. The program point pc + 1 is allocated to a block position pid ′ which is included by a block
bid ′ which is the successor of bid and has the length equal one.

4. The variable sets declared by ALA for the program points pc and pc + 1 are consistent with
the operational semantics of the printi printi(e).

158 7 Translation correctness criteria for particular optimizations

Definition 7.46.

dae_transrel_instr_case6 : Program×Program×BlckPosEnv ×VarSetsEnv

×BlckId×BlckPosId× InstructionNr → InstrTransRel_DAE

dae_transrel_instr_case6(S ,T ,B ,ALA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(printi(e), printi(e)) | ∃ bid ′ pid ′ pc′ set use def in out use ′ def ′ in ′ out ′.

instrs!pc = printi(e) ∧
instrs ′!pc = printi(e) ∧
ALA(pc) = Some(use, def , in, out) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set ′) ∧
(bid , OTYPE) ∈ set ′ ∧
ALA(pc′) = Some(use ′, def ′, in ′, out ′) ∧
use ′ = instr2use(instrs!pc′) ∧
def ′ = instr2def(instrs!pc′) ∧
in ′ = use ′ ∪ (out ′ − def ′) ∧
in ′ ⊆ out }

end

Definition 7.47 defines a function dae_transrel_instr_case7 which computes a subset of a DAE
optimization relation for two IL” programs, (S ,B) and (T ,B), and a LA result ALA w.r.t. a pair
of block positions in (S ,B) and (T ,B) described by the tuple (bid , pid , pc). The following holds
for the relation dae_transrel_instr_case7(S ,T ,B ,ALA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation consists of two branch instructions, i.e.
tuple has the syntactic form (branch(e, dst), branch(e, dst)).

2. The successor program points of pc are pc + 1 and dst .

3. The program point pc is allocated to the block position pid . The block position pid is included
by the block bid of the length equal one.

4. The program point pc + 1 is allocated to a block position pid ′ which is included by a block
bid ′ which is the successor of bid and has the length equal one.

5. The program point dst is allocated to a block position pid ′′ which is included by a block bid ′′

which is the successor of bid and has the length equal one.

6. The variable sets declared by ALA for the program points pc, pc + 1, and dst are consistent
with the operational semantics of the printi printi(e).

7.2 SVF for DAE optimizations 159

Definition 7.47.

dae_transrel_instr_case7 : Program×Program×BlckPosEnv ×VarSetsEnv

×BlckId×BlckPosId× InstructionNr → InstrTransRel_DAE

dae_transrel_instr_case7(S ,T ,B ,ALA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(branch(e, dst), branch(e, dst)) |
∃ bid ′ pid ′ bid ′′ pid ′′ set ′ set ′′ use def in out use ′ def ′ in ′ out ′ use ′′ def ′′ in ′′ out ′′.

instrs!pc = branch(e, dst) ∧
instrs ′!pc = branch(e, dst) ∧
ALA(pc) = Some(use, def , in, out) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set ′) ∧
(bid , FTYPE) ∈ set ′ ∧
ALA(pc′) = Some(use ′, def ′, in ′, out ′) ∧
use ′ = instr2use(instrs!pc′) ∧
def ′ = instr2def(instrs!pc′) ∧
in ′ = use ′ ∪ (out ′ − def ′) ∧
in ′ ⊆ out ∧
succBP(pid , dst) = Some(pid ′′) ∧
BP(pid′′) = Some(pid ′′, bid ′′, 1, 0, dst) ∧
BB(bid ′′) = Some(pid ′′) ∧
predB(pid′′) = Some(set ′′) ∧
(bid , FTYPE) ∈ set ′′ ∧
ALA(dst) = Some(use ′′, def ′′, in ′′, out ′′) ∧
use ′′ = instr2use(instrs!dst) ∧
def ′′ = instr2def(instrs!dst) ∧
in ′′ = use ′′ ∪ (out ′′ − def ′′) ∧
in ′′ ⊆ out }

end

Definition 7.48 defines a function dae_transrel_instr_case8 which computes a subset of a DAE
optimization relation for two IL” programs, (S ,B) and (T ,B), and a LA result ALA w.r.t. a pair
of block positions in (S ,B) and (T ,B) described by the tuple (bid , pid , pc). The following holds
for the relation dae_transrel_instr_case8(S ,T ,B ,ALA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation consists of two branch instructions, i.e.
tuple has the syntactic form (goto(dst), goto(dst)).

2. The successor program point of pc is dst .
3. The program point pc is allocated to the block position pid . The block position pid is included

by the block bid of the length equal one.
4. The program point dst is allocated to a block position pid ′ which is included by a block bid ′

which is the successor of bid .
5. The variable sets declared by ALA for the program points pc and dst are consistent with the

operational semantics of the goto instruction goto(e).

160 7 Translation correctness criteria for particular optimizations

Definition 7.48.

dae_transrel_instr_case8 : Program×Program×BlckPosEnv ×VarSetsEnv

×BlckId×BlckPosId× InstructionNr → InstrTransRel_DAE

dae_transrel_instr_case8(S ,T ,B ,ALA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(goto(dst), goto(dst)) | ∃ bid ′, pid ′ set use def in out use ′ def ′ in ′ out ′.

instrs!pc = goto(dst) ∧
instrs ′!pc = goto(dst) ∧
ALA(pc) = Some(use, def , in, out) ∧
succBP(pid , dst) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, dst) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ALA(dst) = Some(use ′, def ′, in ′, out ′) ∧
use ′ = instr2use(instrs!dst) ∧
def ′ = instr2def(instrs!dst) ∧
in ′ = use ′ ∪ (out ′ − def ′) ∧
in ′ ⊆ out }

end

Definition 7.49 defines a function dae_transrel_instr_case9 which computes a subset of a DAE
optimization relation for two IL” programs, (S ,B) and (T ,B) w.r.t. a pair of block positions in
(S ,B) and (T ,B) described by the tuple (bid , pid , pc) consisting of a block bid , a block position
pid , and a program point pc. The following holds for the relation dae_transrel_instr_case9(S ,T ,B , bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation consists of two branch instructions, i.e.
tuple has the syntactic form (exit, exit).

2. The program point pc has no successor program points.
3. The program point pc is allocated to the block position pid . The block position pid is included

by the block bid of the length equal one. The block bid has no successors.

Definition 7.49.

dae_transrel_instr_case9 : Program×Program×BlckPosEnv

×BlckId×BlckPosId× InstructionNr → InstrTransRel_DAE

dae_transrel_instr_case9(S ,T ,B , bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(exit, exit) | instrs!pc = exit ∧
instrs ′!pc = exit ∧
BP(pid) = Some(pid , bid , 1, 0, pc) ∧
BB(bid) = Some(pid) }

end

7.2 SVF for DAE optimizations 161

Definition 7.50 defines a function dae_transrel_instr which makes the same context assumptions
as the functions in Definitions 7.41, 7.42, 7.43, 7.44, 7.45, 7.46, 7.47, 7.48, and 7.49 and computes
a DAE optimization relation over instruction pairs dae_transrel_instr(S ,T ,B ,ALA, bid , pid , pc)
for two IL programs, S and T , a CFGB declaration B , a LA result ALA, and three values which
describes the position of the instruction pair in IL” programs (S ,B) and (T ,B): a block bid ,
a block position pid , and a program point pc, i.e. for each instruction pair (instr , instr ′) in the
relation, it holds that both instr and instr ′ are pc-th instructions in S and T , respectively.

The relation is defined as a union of neun disjoint sets which are computed by the functions
from Definitions 7.41, 7.42, 7.43, 7.44, 7.45, 7.46, 7.47, 7.48, and 7.49, respectively.

Definition 7.50.

dae_transrel_instr : Program×Program×BlckPosEnv ×VarSetsEnv

×BlckId×BlckPosId× InstructionNr → InstrTransRel_DAE

dae_transrel_instr(S ,T ,B ,ALA, bid , pid , pc) =

dae_transrel_instr_case1(S ,T ,B ,ALA, bid , pid , pc) ∪
dae_transrel_instr_case2(S ,T ,B ,ALA, bid , pid , pc) ∪
dae_transrel_instr_case3(S ,T ,B ,ALA, bid , pid , pc) ∪
dae_transrel_instr_case4(S ,T ,B ,ALA, bid , pid , pc) ∪
dae_transrel_instr_case5(S ,T ,B ,ALA, bid , pid , pc) ∪
dae_transrel_instr_case6(S ,T ,B ,ALA, bid , pid , pc) ∪
dae_transrel_instr_case7(S ,T ,B ,ALA, bid , pid , pc) ∪
dae_transrel_instr_case8(S ,T ,B ,ALA, bid , pid , pc) ∪
dae_transrel_instr_case9(S ,T ,B , bid , pid , pc)

Finally, with the definitions of the conformance predicate confvarsets and the function
dae_transrel_instr at hand, we can give the definition of the optimization correctness criterion
TCCDAE which is a predicate on two IL programs, S and T , a CFGB declaration B , and a LA
result ALA. The definition of TCCDAE formalizes what does it mean that T is a correct DAE
optimization of S w.r.t. B and ALA.

In the beginning of the presentation of the definition of the function dae_transrel_instr, we
explained that this function makes the following context assumptions:

• The compiler performed the LA on a source IL program S .
• The result of this analysis is ALA.
• The result of the LA optimization is an IL program T .
• Additionally, the compiler generates a CFGB declaration B which is for both S and T since

the allocation mappings from the program points of those programs to block positions are
identical.

The definition of the correctness criterion TCCDAE makes the same context assumptions.
The definition of TCCDAE consists of two conjuncts: The first conjunct expresses a well-

formedness property of the entry block of B and the LA result ALA w.r.t. to the source program S .
The second conjunct expresses that all instruction pairs consisting of instructions of the programs
S and T , which are at program points included by the same block bid , are in the optimization
relation computed by the function dae_transrel_instr.

Definition 7.51 defines a function TCC_DAE_entry_block which checks if the first conjunct
of the definition of TCCDAE is holds true. The first conjunct TCC_DAE_entry_block(S ,B ,ALA)
holds true iff

1. the entry block of a CFGB declaration B is well-formed. The entry block of B , bid0, is well-
formed iff it includes the entry block position of B , pid0, has the length equal one, the 0-th

162 7 Translation correctness criteria for particular optimizations

program point is allocated to pid0, and is declared by B to be among his own predecessor
blocks.

2. The variable sets declared by ALA for the program point 0 is consistent with the operational
semantics of the 0-th instruction of the program S .

Definition 7.51.

TCC_DAE_entry_block : Program×BlckPosEnv ×VarSetsEnv → Bool

TCC_DAE_entry_block(S ,B ,ALA) =

let

((vds, instrs), I) = S ;

(pid0,BP ,BB , succBP , predB) = B

in

∃ bid0 set .

BP(pid0) = Some(pid0, bid0, 1, 0, 0) ∧
predB(pid0) = Some(set) ∧
(bid0, FTYPE) ∈ set

∧
∃ use def , in out .

use = instr2use(instrs!0) ∧
def = instr2def(instrs!0) ∧
in = instr2use(instrs!0) ∪ (out − (instr2def(instrs!0)))

ALA(0) = Some(use, def , in, out) ∧
(use ∪ (out − def)) ⊆ out

end

Definition 7.52 defines the predicate TCC_DAE_normal_block on a source program S , a target
program T , a CFGB declaration B , a LA result ALA, a and a block bid which checks if the block bid
in the CFGB (S ,B) and the block bid in the CFGB (T ,B) fulfill an optimization correctness crite-
rion for the block pair (bid , bid) which is defined as follows: TCC_DAE_normal_block(S ,T ,B ,ALA, bid)
holds true iff there exist pc-th program points pc in S and T ; and a block position pid such that
pc is allocated to pid , pid is included by the block bid , and the pair (instrs!pc, instrs ′!pc) con-
sisting of the pc-th instruction of S and the pc-th instruction of T , respectively, are in the DAE
optimization relation dae_transrel_instr(S ,T ,B ,ALA, bid , pid , pc).

Definition 7.52.

TCC_DAE_normal_block : Program×Program×BlckPosEnv ×VarSetsEnv → Bool

TCC_DAE_normal_block(S ,T ,B ,ALA, bid) =

let

((vds, instrs), I) = S ;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

∃ pid pc.

BB(bid) = Some(pid) ∧
BP(pid) = Some(pid , bid , 1, 0, pc)) ∧
(instrs!pc, instrs ′!pc) ∈ dae_transrel_instr(S ,T ,B ,ALA, bid , pid , pc)

end

Definition 7.53 defines our optimization correctness criterion for the DAE optimization on a
source program S , a target program T , a CFGB declaration B , and a LA result ALA which checks

7.2 SVF for DAE optimizations 163

if T is a correct DAE optimization of S w.r.t. B and ALA. According to the definition of TCCDAE,
an IL program T is a correct DAE optimization of S iff

1. the entry blocks of IL” programs (S ,B) and (T ,B) fulfill the criterion TCC_DAE_entry_block
w.r.t. the LA result ALA, and

2. all pairs of corresponding blocks in (S ,B) and (T ,B) fulfill the criterion
TCC_DAE_normal_block w.r.t. the LA result ALA.

Definition 7.53.

TCCDAE : Program×Program×BlckPosEnv ×VarSetsEnv → Bool

TCCDAE(S ,T ,B ,ALA) =

let

((vds, instrs), I) = S ;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

TCC_DAE_entry_block(S ,B ,ALA)

∧
∀ bid . TCC_DAE_normal_block(S ,T ,B ,ALA, bid)

end

7.2.4 Verification of the optimization correctnes criterion TCCDAE

This section presents the theorems which we proved in order to verify the specification of the
optimization correctness criterion TCCDAE presented in the previous section. The main result in
this section is a theorem which can be used directly in translation certificates generated by our
compiler.

To verify the specification of the criterion TCCDAE, we proved Theorem 7.54 which is a state-
ment about a source and a target program of a concrete DAE optimization, S and T , a program
type Φ, a CFGB declaration B , and a result of the LA analysis which was performed on S prior to
that optimization, ALA, and it says that if S and T are well-typed w.r.t. Φ; and B is well-formed
w.r.t. S and T ; and S and T fulfill the optimization correctness criterion TCCDAE w.r.t. B and
ALA, then S and T fulfill the optimization independent translation correctness TCC w.r.t. the
bisimulation relation bisimrelDAE(S ,T ,B ,ALA).

Theorem 7.54.

wtp(S , Φ) ∧ wtp(T , Φ) ∧ wfB(S ,B) ∧ wfB(T ,B) ∧ TCCDAE(S ,T ,B ,ALA)
=⇒
TCC(S ,T , bisimrelDAE(S ,T ,B ,ALA))

!

Finally, we present the main result in this section, a theorem which is a statement about
a source and a target programs of a concrete DAE optimization, S and T , a program type Φ, a
CFGB declaration B , and a result of the LA which was performed on S prior to that optimization,
ALA, which says that if S and T are well-typed w.r.t. Φ; and B is well-formed w.r.t. S and T ;
and S and T fulfill the optimization correctness criterion TCCDAE w.r.t. B and ALA, then S and
T fulfill the translation correctness predicate corrTrans.

164 7 Translation correctness criteria for particular optimizations

Theorem 7.55.

wtp(S , Φ) ∧ wtp(T , Φ) ∧ wfB(S ,B) ∧ wfB(T ,B) ∧ TCCDAE(S ,T ,B ,ALA)
=⇒
corrTrans(S ,T)

Proof.

wtp(S , Φ) ∧ wtp(T , Φ) ∧ wfB(S ,B) ∧ wfB(T ,B) ∧ TCCDAE(S ,T ,B ,ALA)

=⇒ [by application of Theorem 7.54]

TCC(S ,T , bisimrelDAE(S ,T ,B ,ALA))

=⇒ [by application of the existential introduction rule]

∃R.TCC(S ,T ,R) .

=⇒ [by application of Theorem 6.44]

corrTrans(S ,T)

!

This theorem is directly applicable in translation certificates which are generated by the com-
piler for each DAE optimization.

Theorem 7.55 is an instance of the corollary (I) in Section 3.6 and is directly applicable in
translation certificates which are generated by the compiler for each DAE optimization, see the
end of Section 3.6 for a general application scheme of this theorem.

7.3 SVF for NI optimizations

This section presents formalization of an optimization correctness criterion for NI optimizations,
TCCNI, and a corresponding optimization correctness theorem which is directly applied in trans-
lation certificates generated by our compiler front-end.

In Sections 7.1 and 7.2, we presented formalizations of optimization correctness criteria for
the optimizations CF and DAE, respectively. Both optimizations have in common that they are
structure preserving, i.e. that they do not modify the sets of edges and nodes of the CFG of the
source program. Therefore, the formalizations of the optimization correctness criteria TCCCF and
TCCDAE make the following assumptions about the CFG’s and the CFGB declarations involved in
the optimizations CF and DAE:

• The CFG’s of the source and the target programs of are identical,
• The CFGB declarations for the source and the target programs are identical,
• The corresponding program points relation between program points of the source and the target

programs is defined as identity, i.e. a one-to-one correspondence between program points of the
source and the target programs,

• For both the source and the target program, the allocation relation between program points
and block positions is a one-to-one correspondence,

• The "includes" relation between blocks and block positions is a one-to-one correspondence,
• The CFGB declaration used to formalize the criteria TCCCF and TCCDAE comprises no nested

blocks.

7.3 SVF for NI optimizations 165

This results in relatively straightforward formalizations of the bisimulation relations over pairs
of augmented configurations, RCF and RDAE , presented in Sections 7.1 and 7.2: As the source
and the target CFGB declarations are equal, it holds for all configuration pairs (σ′′S , σ′′T) in RCF

and RDAE that corresponding components of σ′′S and σ′′T describing position of the flow of control
in a respective CFGB are equal. The sole aggravating factor which has to be taken into account
when formalizing the relations RCF and RDAE is the fact that the optimizations CF and DAE
modify instructions and that we have to strengthen the execution invariants expressed by RCF

and RDAE by introducing additional requirements about conformance of the state components
with the results of data flow analysis ACPA and ALA.

In contrast to the optimizations CF and DAE, the NI optimization is a structure modifying
transformation which modifies the sets of nodes and edges of the CFG of the source program. As
a result, the CFGB declarations for the source and the target programs of the NI optimization are
also different and our formalization of the optimization correctness criterion TCCNI has to take
the following determining factors into account:

• The CFG’s of the source and the target programs are not equal.
• The CFGB declarations for the source and the target programs are not equal.
• The corresponding program points relation between program points of the source and the

target program is a one-to-many relation.
• The allocation relation between program points of the source program and block positions of

the CFGB declaration for this program is a one-to-one correspondence.
• The "includes" relation between blocks and block positions of the CFGB declaration for the

source program is a one-to-one correspondence.
• The CFGB declaration for the source program declares no nested blocks.
• The allocation relation between program points of the target program and block positions of

the CFGB declaration for this program is a one-to-many correspondence.
• The "includes" relation between blocks and block positions of the CFGB declaration for the

target program is a one-to-many correspondence.
• The CFGB declaration for the target program declares at least one nested block.
• The NI optimization inserts nop instructions into the source program and does not modify the

rest of its instructions in the following sense:
– An assignment instruction is not modified by the NI optimization,
– A printi instruction is not modified by the NI optimization,
– As inserting of nop instruction alters the length of the program, the destination address dst

in a branch instruction branch(e, dst) has to be adjusted in order to maintain the semantic
of the source program. The expression e in the branch instruction is not changed.

– As inserting of nop instruction alters the length of the program, the destination address
dst in a goto instruction goto(dst) has to be adjusted in order to maintain the semantic of
the source program.

– An exit instruction is not modified by the NI optimization.

The above determining factors express constraints which are the starting point for the formalization
of a bisimulation relation RNI which is necessary to formulate the statement of a theorem verifying
correctness of the specification of the TCCNI criterion. The theorem is formulated analogously to
Theorems 7.26 and 7.54.

The determining factors of the NI optimization are dual to the determining factors for the
optimizations CF and DAE. This implies dual constraints of the bisimulation relation RNI:

• It holds for each pair of augmented configurations (σ′′S , σ′′T) ∈ RNI that all corresponding com-
ponents of σ′′S and σ′′T which describe position of the flow of control in the CFGB declarations
for the source and the target programs are, in general, not equal. This constraint results from

166 7 Translation correctness criteria for particular optimizations

the fact that the optimization NI alters the length of the program and that we have to define
two different CFGB declarations to formalize the relation RNI. In these CFGB declarations,
both the block sets and the block position sets are different.

• It holds for each pair of augmented configurations (σ′′S , σ′′T) ∈ RNI that the state components
in σ′′S and σ′′T are equal. This results from the fact that the optimization NI modifies neither
expressions nor l-values in the source program instructions. It merely adjusts the destination
values in the branch and goto instructions.

• Our compiler front-end does not perform any data flow analyses prior to the optimization NI.
This constraint results from the fact that the optimization NI is actually the first intermediate
program transformation in a chain of three program transformations which altogether perform
the LIH optimization. The function of the optimization NI is to insert a limited number of nop
instructions which serve as placeholders for the next program transformation which replaces
these instructions by dead assignments, the RAI optimization.

• Our compiler front-end performs only such intermediate NI optimizations, which insert nop
instructions between a pc-th and a pc′-th instruction where the following holds true:
– The pc′-th instruction is the successor of the pc-the instruction.
– The pc′-th instruction is a loop header of the loop being the result of translation of a

do-while loop in the original µC program.
This constraint results from the fact that the optimization NI is the first intermediate program
transformation in a chain of three program transformations, which altogether perform the LIH
optimization, and that LIH optimizations are only possible on do-while loops, cf. [3].

In order to able to formalize the bisimulation relation RNI which satisfies the above constraints,
we define two different CFGB declarations for the source and the target program of an optimization
NI which are as follows. For the purpose of the explanation, we use two CFGB’s, which are
generated by our compiler front-end for the programs IL2 and IL3 , where IL2 and IL3 are the
source and the target programs of the NI optimization in our example illustrating the work-flow
of our compiler front-end in Figure 1.5.

The left side of Figure 7.1 depicts two CFGB’s which are declared for the pair of IL programs
IL2 and IL3 which are the source and the target programs of the NI optimization described in
the example illustrating the work-flow of our compiler in Figure 1.5. The programs themself are
depicted in Figure A.3. In Figure 7.1, the left CFGB is declared for the program IL2 and the
right CFGB is declared for the progam IL3 . In the following explanation, we call the CFGB’s
for the programs IL2 and IL3 a source and a target CFGB’s, respectively. The optimization NI
inserted a nop instruction between the 10-th and the 11-th instructions of the program IL2 . In
the source CFGB, the program points 10 and 11 are allocated to block positions p10,10 and p11,11,
respectively. Inserting the nop instruction resulted in translating the loop header instruction and
all instructions below the loop header in the program IL2 , the 11-th instruction, one program point
downwards. In the target program IL3 , the inserted nop instruction is the 11-th instruction and
the loop preheader instruction became the 12-th instruction. Further, the sets of block identifiers
and block position identifiers are different for the source and the target CFGB’s. In the target
CFGB, the program point 11 is allocated to the block position p11,11 and the program point 12
is allocated to the block position p11,12. As the inserted nop instruction at the program point 11
does not modify the state during execution of the program IL3 , we merged the block positions
p11,11 and p11,12 into one block because execution of instructions in the blocks b11 and b11 in the
source and the target CFGB’s, respectively, yields equal states, if it starts from equal states. As
the nop instruction allocated to the block position p11,11 in the target CFGB is a placeholder for
an assignment instruction which will be executed before the flow of control enters the loop whose
header is the program point 12 allocated to block position p11,12, the jumping destination value in

7.3 SVF for NI optimizations 167

the branch instruction at the program point 27 has to be set to 12. In doing so, we assure that the
semantics of the program IL2 is maintained after the NI optimization. Whenever during execution
of the program IL3 the flow of control to transfer from the program point 27 to a successor
program point, the next executed instruction will be the same as it would be in case of making
transition from the program point 26 in the program IL2 . This introduces a complication: In the
source program IL2 , the successor of the block position p26,26 is the block position p11,11 and the
successor of the block b26 is the block b11. However, in the target program IL3 , the block position
p11,12 can not be declared as a successor of p26,27 because it would violate the well-formedness
of the target CFGB. As the block position p26,27 is the last one in the block b26 its successor
must be a block position which is the first one in a block by which it is included, i.e. must be a
block position with the block index equal 0 in the block. Therefore, we have to declare a block
b29 which includes an additional block position p29,12 to which the loop header program point is
allocated. As the program point 12 already is allocated to the block position p11,12, this means
that we introduce a nested block b29.

As the graphs of the source and the target CFGB’s are not isomorph, we can not formalize a one-
to-one correspondence relation over block pairs or over block position pairs, as we did in the SVF for
CF optimizations and in the SVF for DAE optimizations, respectively: For this reason, we can not
use the same technique to formalize the bisimulation relation RNI which we used to formalize the
bisimulation relations RCF and RDAE . To cope with this issue, we introduced into our framework
a notion which replaces the notion of corresponding block position, a relation of labeled pairs
consisting of corresponding block edges. Each labeled pair ((bid , bid ′), (bid ′′, bid ′′′), bt) consists of
two pairs of block identifiers (bid , bid ′) and (bid ′′, bid ′′′) and a buffertype bt which is a label of the
pairs. In the following, we call these pairs corresponding block edge pairs. For each optimization NI,
our compiler front-end generates a set of corresponding block edge pairs CBEP and the meaning
of a pair

((bid , bid ′), (bid ′′, bid ′′′), bt) ∈ CBEP

is that the blocks bid and bid ′′ in the source and the target CFGB’s, respectively, are declared as
corresponding and if the flows of control transfer during executions of the source and the target
CFGB to blocks bid ′ and bid ′′′, then the output buffers in respective configurations have the forms
which conform to the value of the buffertype bt and there exists a corresponding block edge pair

((bid2, bid ′2), (bid
′′
2 , bid ′′′2), bt2) ∈ CBEP

such that

bid ′ = bid2 ∧ bid ′′′ = bid ′′2

Example 7.56. As aforementioned, the left side of Figure 7.1 shows the source and the target
CFGB’s for the programs IL2 and IL3 , respectively. The right side of Figure 7.1 shows a set of
corresponding block edge pairs CBEP which was generated by our compiler front-end for those
CFGB’s. For instance, if the flows of control transfer along the block position edges (p26,26, p11,11)
and (p26,27, p29,12) in the source and the target CFGB’s, respectively, then they proceed along
the edges (p11,11, p12,12) and (p29,12, p12,13), respectively. Further, the 26-th and 11-th instructions
of the program IL2 are BRANCH _tB_2 [11] and GOTO [12], respectively, the 27-th and 12-th
instructions of the program IL3 are BRANCH _tB_2 [12] and GOTO 13, respectively. Therefore,
the set CBEP comprises the following two corresponding block edge pairs:

1. ((b26, b11), (b26, b29), FTYPE)
2. ((b11, b12), (b29, b12), FTYPE)

168 7 Translation correctness criteria for particular optimizations

♦

The rest of the section is organized as follows. Section 7.3.1 presents the formalization of
the relation of corresponding block edge pairs. Section 7.3.2 presents the formalization of the
bisimulation relation RNI. Section 7.62 presents the formalization of an optimization correctness
criterion for NI optimizations TCCNI.

7.3.1 Corresponding block edge pairs

This section presents the formalization of a relation over labeled pairs of corresponding block
edges. We begin the presentation by listing sets associated with this notion:

• labeled block edge pairs BlockEdgePair,
• relations over labeled pairs of corresponding block edges CorrespBlockEdgePairSet;

and defining metavariables ranging over these sets:

• blckedgepair ranges over labeled pairs over corresponding block edges BlockEdgePair,
• CBEP ranges over relations over labeled pairs of correspoinding block edges

CorrespBlockEdgePairSet.

Definition 7.57 gives formation rules for the set of relations over labeled pairs of corre-
sponding block edges. The purpose and the meanining of elements in a relation CBEP ∈
CorrespBlockEdgePairSet was explained in the beginning of Section 7.3.

Definition 7.57.

BlockEdgePair (blckedgepair := ((bid , bid), (bid , bid), bt)

CBEP ∈ CorrespBlockEdgePairSet = P(BlockEdgePair)

7.3.2 Bisimulation relation for the NI optimization

This section presents the definition of a function bisimrelNI which computes a bisimulation relation
RNI for two IL” programs, which are the source and the target programs of a NI optimization, a
source and a target CFGB declarations, and a relation over corresponding block edge pairs.

Informally, a bisimulation relation RNI can be characterized as follows.

• RNI is a function of a NI optimization, which is described by the following values:
1. a source IL program S ,
2. a target IL program T ,
3. a source CFGB declaration BS ,
4. a target CFGB declaration BT , and
5. a corresponding block edges relation CBEP .

• By Definition 6.40, RNI has to be a subset of

Configuration′′ ×Configuration′′ .

• As aforementioned in the beginning of Section 7.3, the NI is a structure modifying transfor-
mation, i.e. it modifies the sets of nodes and edges of the CFG of the source program and that
it does not modify the expressions and l-values of instructions in the source program. For this
reason, the CFGB declarations BS and BT for S and T , respectively, can not be equal. This is
a consequence of the fact that the sets of block identifiers, block position identifiers, and block
position descriptors, which are the starting points for the declarations of BS and BT , has to be

7.3 SVF for NI optimizations 169

CBEP
p0,0

p1,1

p2,2

p3,3

p4,4

p5,5

p6,6

p7,7

p8,8

p9,9

p10,10

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

p0,0

p1,1

p2,2

p3,3

p4,4

p5,5

p6,6

p7,7

p8,8

p9,9

p10,10

p11,11

p11,12

p28,28

b28

p27,27

b27

p26,26

b26

p25,25

b25

p24,24

b24

p23,23

b23

p22,22

b22

p21,21

b21

p20,20

b20

p19,19

b19

p18,18

b18

p17,17

p16,16

b17

b16

p15,15

b15

p14,14

b14

p13,13

b13

p12,12

b12

p11,11

b11

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

b13

b14

b15

b16

b17

b18

b19

b20

b21

b22

b23

b24

b25

b26

b27

b28

b29

((b27, b28), (b 27, b28), OTYPE)

((b26, b11), (b 26, b29), FTYPE)

((b25, b26), (b 25, b26), FTYPE)

((b26, b27), (b 26, b27), FTYPE)

((b24, b25), (b 24, b25), FTYPE)

((b23, b24), (b 23, b24), FTYPE)

((b22, b23), (b 22, b23), FTYPE)

((b21, b22), (b 21, b22), FTYPE)

((b20, b21), (b 20, b21), OTYPE)

((b19, b20), (b 19, b20), FTYPE)

((b18, b19), (b 18, b19), FTYPE)

((b17, b18), (b 17, b18), FTYPE)

((b16, b17), (b 16, b17), FTYPE)

((b15, b16), (b 15, b16), FTYPE)

((b14, b15), (b 14, b15), FTYPE)

((b13, b14), (b 13, b14), FTYPE)

((b12, b13), (b 12, b13), FTYPE)

((b11, b12), (b 29, b12), FTYPE)

((b11,b12), (b 11, b12), FTYPE)

((b10, b4), (b 10, b4), FTYPE)

((b9, b10), (b 9, b10), FTYPE)

((b8, b9), (b 8, b9), FTYPE)

((b7, b8), (b 7, b8), FTYPE)

((b6, b11), (b 6, b11), FTYPE)

((b6, b7), (b 6, b7), FTYPE)

((b5, b6), (b 5, b6), FTYPE)

((b4, b5), (b 4, b5), FTYPE)

((b3, b4), (b 3, b4), FTYPE)

((b2, b3), (b 2, b3), FTYPE)

((b1, b2), (b 1, b2), FTYPE)

((b0, b1), (b 0, b1), FTYPE)

((b0,b0), (b 0,b0), FTYPE)

p29,12

p12,13

p13,14

p14,15

p15,16

p16,17

p17,18

p18,19

p19,20

p20,21

p21,22

p22,23

p23,24

p24,25

p25,26

p26,27

p27,28

p28,29

Fig. 7.1. On the left side of the figure, the CFGB declarations for the IL programs IL2 and IL3 which
are depicted in Figure A.3. IL2 and IL3 are the source and the target programs of the NI optimization.
On the right side of the figure, the corresponding block edge pairs relation CBEP .

170 7 Translation correctness criteria for particular optimizations

different. Further, it holds for two IL” programs (S ,BS) and (T ,BT) that if these programs
are partially executed block-wise and these executions have the same lengths and they produce
augmented configurations σ′′S and σ′′T , then it holds the following:
1. All corresponding components of σ′′S and σ′′T counting transfers of the flow of control from

block position to block position are, in general, not equal. This is due to the fact the
numbers of block positions in BS and BT are not equal.

2. All corresponding components of σ′′S and σ′′T describing positions of the flow of control in
the source and target CFGB declarations are not equal.

3. All corresponding components of σ′′S and σ′′T describing observable and non-observable be-
haviors of (S ,BS) and (T ,BT) are equal. These components are components of the config-
uration component σ in an augmented configuration σ′′ = (ss, bs, ss, bposstat , predbid , σ)
and they are the following: the termination flag tf , the array-index-out-of-bounds exception
flag af , the output buffer b, and the state s.

∀n S BS T BT .
M′′((S ,BS), init(S ,BS),n) = σ′′S ∧
M′′((T ,BT), init(T ,BT),n) = σ′′T
−→
∃ ss bs bposstat predbid tf af pc b s ss ′ bs ′ bposstat ′ predbid ′ tf ′ af ′ pc′ b′ s ′.

σ′′S = (ss, bs, ss, bposstat , predbid , (tf , af , pc, b, s)) ∧
σ′′T = (ss ′, bs ′, ss ′, bposstat ′, predbid ′, (tf ′, af ′, pc′, b′, s ′)) ∧
ss = ss ′ ∨ ss $= ss ′ ∧
bs = bs ′ ∧
bposstat $= bposstat ′ ∧
predbid $= predbid ′ ∧
tf = tf ′ ∧
af = af ′ ∧
pc $= pc′ ∧
b = b′ ∧
s = s ′

• In Section 6.4.2, we explained that computing the successor configuration exec′((V P,B), σ′′)
for an IL” program (P ,B) and an augmented configuration σ′′ by the function exec′ can result
in switching of the mode of execution into the emulation mode only, if the flow of control
is within a block bid at a block position pid which is not the last one in bid and executing
an instruction at a program point which is allocated to pid results in an exception. In other
words, if the flow of control leaves a block by transfering to a block position which is the first
one in another block, then this transfer can result in switching into one of three modes of
execution only: either the normal mode or the exception mode or the exit mode. As we know
what syntactic forms do the augmented configurations have in those modes, we can define our
bisimulation relation RNI as a union of three sets which are defined for respective modes of
execution as a function of the source and the target programs, a source and a target CFGB
declarations, and a correponding block edges relation such that each of those sets fulfills the
following properties:
– If the set is defined for a particular mode of execution, then it holds for each configuration

pair (σ′′S , σ′′T) in this set that σ′′S and σ′′T have the syntactic forms which comply with that
mode of execution, cf. Section 6.4.2 for the syntactic forms.

– For each configuration pair (σ′′S , σ′′T) in the set, it holds that the values of corresponding
components of σ′′S and σ′′T are relating to each other as described above.

7.3 SVF for NI optimizations 171

• Consider two augmented configurations which are results of partial executions of the IL” pro-
grams (S ,BS) and (T ,BT) which have the same length n:

M′′((S ,BS), init(S ,BS),n) = σ′′S
M′′((T ,BT), init(T ,BT),n) = σ′′T

In these configurations, the values of block position status bposstat and bposstat ′ denote block
positions of the flow of control in the CFGB declarations BS and BT , respectively. As both
programs are executed block-wise and program executions made n block-wise transitions, both
flows of control are at block positions pid and pid ′ which are entry block positions of blocks bid
and bid ′, respectively. If both programs are executed in the normal mode of execution, then we
require that execution of (S ,BS) and (T ,BT) makes transitions from block to block along block
edges which are declared by the corresponding block edges relation CBEP as corresponding,
i.e. we require that there exists a buffertype bt such that

((predbid , bid), (predbid ′, bid), bt) ∈ CBEP

In the following, we give three definitions of functions which compute three subsets of the
bisimulation relation RNI for respective modes of executions as described above.

Definition 7.58 defines a function bisimrel_NI_normblck which computes a subset of bisim-
ulation relation RNI, bisimrel_NI_normblck(S ,T ,BS ,BT ,CBEP), for two IL” programs, (S ,B)
and (T ,B), and a corresponding block edges relation CBEP . The following holds for each pair of
augmented configurations (σ′′S , σ′′T) in this subset:

• σ′′S and σ′′T are produced by partial executions of (S ,B) and (T ,B) of equal lengths and that
these executions were performed in the normal mode of execution.

• During partial executions of (S ,B) and (T ,B), the flows of control made the same numbers
of transitions from block to block.

• Each time partial executions of (S ,B) and (T ,B) made the n-th transition from block predbid
to block bid and from block predbid ′ to block bid ′, respectively, then their states of output
buffers were equal, i.e. were both equal b.

• Each time partial executions of (S ,B) and (T ,B) made the n-th transition from block predbid
to block bid and from block predbid ′ to block bid ′, respectively, then the respective flows of
control transfered along block edges which are declared by the relation CBEP as corresponding,
there exists buffertype bt such that

((predbid , bid), (predbid ′, bid), bt) ∈ CBEP

172 7 Translation correctness criteria for particular optimizations

Definition 7.58.

bisimrel_NI_normblck : Program×Program×BlckPosEnv ×BlckPosEnv

× CorrespBlockEdgePairSet → BisimulationRelation

bisimrel_NI_normblck(S ,T ,BS ,BT ,CBEP) =

let

(pid0,BPS ,BBS , succBPS , predBS) = S

(pid ′
0,BPT ,BBT , succBPT , predBT) = T

in

{(σ′′
S , σ′′

T) | ∃ ss bs pid bid pc predbid b s bt set ss ′ pid ′ bid ′ pc′ predbid ′ set ′.

σ′′
S = (ss, bs, ss, NORMBLCK(pid , bid , 1, 0, pc), predbid , (NT, ABok, pc, b, s)) ∧

σ′′
T = (ss ′, bs, ss ′, NORMBLCK(pid ′, bid ′, bsize ′, 0, pc′), predbid ′, (NT, ABok, pc

′, b, s)) ∧
M′′((S ,BS), bs) = σ′′

S ∧
M′′((T ,BT), bs) = σ′′

T ∧
BBS(bid) = Some(pid) ∧
BPS(pid) = Some(pid , bid , 1, 0, pc)) ∧
predBS(pid) = Some(set) ∧
(predbid , bt) ∈ set ∧
BBT (bid ′) = Some(pid ′) ∧
BPT (pid ′) = Some(pid ′, bid ′, bsize ′, 0, pc′)) ∧
predBT (pid ′) = Some(set ′) ∧
(predbid ′, bt) ∈ set ′ ∧
confbuffer(bt , b)∧
((predbid , bid), (predbid ′, bid ′), bt) ∈ CBEP }

end

Definition 7.59 defines a function bisimrel_NI_excblck which computes a subset of the bisim-
ulation relation RNI, bisimrel_NI_excblck(S ,T ,BS ,BT ,CBEP), such that the following holds for
each pair augmented configurations (σ′′S , σ′′T) in this subset:

• σ′′S and σ′′T are produced by partial executions of (S ,B) and (T ,B) of equal length n, i.e. the
respective flows of control made n transitions from block to block.

• Producing these configurations resulted in switching into the exception mode of execution.

Definition 7.59.

bisimrel_NI_excblck : Program×Program×BlckPosEnv ×BlckPosEnv

→ BisimulationRelation

bisimrel_NI_excblck(S ,T ,BS ,BT) =

{(σ′′
S , σ′′

T) | ∃ ss bs predbid pc b n s ss ′ predbid ′ pc′.

σ′′
S = (ss, bs, ss, EXCBLCK, predbid , (NT, AB, pc, FLUSH(n), s)) ∧

σ′′
T = (ss ′, bs, ss ′, EXCBLCK, predbid ′, (NT, AB, pc′, FLUSH(n), s)) ∧

M′′((S ,BS), bs) = σ′′
S ∧

M′′((T ,BT), bs) = σ′′
T }

Definition 7.60 defines a function bisimrel_NI_exitblck which computes a subset of the bisim-
ulation relation RNI, bisimrel_NI_exitblck(S ,T ,BS ,BT ,CBEP), such that the following holds for
each pair augmented configurations (σ′′S , σ′′T) in this subset:

• σ′′S and σ′′T are produced by partial executions of (S ,B) and (T ,B) of equal length n, i.e. the
respective flows of control made n transitions from block to block.

• Producing these configurations resulted in switching into the exit mode of execution.

7.3 SVF for NI optimizations 173

Definition 7.60.

bisimrel_NI_exitblck : Program×Program×BlckPosEnv ×BlckPosEnv

→ BisimulationRelation

bisimrel_NI_exitblck(S ,T ,BS ,BT) =

{(σ′′
S , σ′′

T) | ∃ ss bs pid bid pc predbid n s ss ′ pid ′ bid ′ pc′ predbid ′.

σ′′
S = (ss, bs, ss, EXITBLCK, predbid , (T, ABok, pc, FLUSH(n), s)) ∧

σ′′
T = (ss ′, bs, ss ′, EXITBLCK, predbid ′, (T, ABok, pc

′, FLUSH(n), s)) ∧
M′′((T ,BS), bs) = σ′′

S ∧
M′′((S ,BT), bs) = σ′′

T }

Definition 7.61 defines a function bisimrelNI which computes a bisimulation relation RNI =
bisimrelNI(S ,T ,BS ,BT ,CBEP) for two IL” programs (S ,BS) and (T ,BT), which are the source
and the target programs, respectively, of a NI optimization, and a corresponding block edges rela-
tion CBEP . As aforementioned, a bisimulation relation bisimrelNI(S ,T ,BS ,BT ,CBEP) is defined
as a union of three disjoint sets comprising pairs of augmented configurations having three posible
syntactic forms:

1. Each configuration pair (σ′′S , σ′′T) in the set bisimrel_NI_normblck(S ,T ,BS ,BT ,CBEP) con-
sists of augmented configurations σ′′S and σ′′T such that the following holds:
a) σ′′S and σ′′T are produced by partial executions of the programs (S ,BS) and (T ,BT), re-

spectively.
b) These partial executions have the same length.
c) The syntactic forms of both σ′′S and σ′′T conform with configurations which are produced

by partial executions in the normal mode.
2. Each configuration pair (σ′′S , σ′′T) in the set bisimrel_NI_excblck(S ,T ,BS ,BT) consists of aug-

mented configurations σ′′S and σ′′T such that the following holds:
a) σ′′S and σ′′T are produced by partial executions of the programs (S ,BS) and (T ,BT), re-

spectively.
b) These partial executions have the same length.
c) The syntactic forms of both σ′′S and σ′′T conform with configurations which are produced

by partial executions in the exception mode.
3. Each configuration pair (σ′′S , σ′′T) in the set bisimrel_NI_exitblck(S ,T ,BS ,BT) consists of aug-

mented configurations σ′′S and σ′′T such that the following holds:
a) σ′′S and σ′′T are produced by partial executions of the programs (S ,BS) and (T ,BT), re-

spectively.
b) These partial executions have the same length.
c) The syntactic forms of both σ′′S and σ′′T conform with configurations which are produced

by partial executions in the exit mode.

Definition 7.61.

bisimrelNI : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → BisimulationRelation

bisimrelNI(S ,T ,BS ,BT ,CBEP) = bisimrel_NI_normblck(S ,T ,BS ,BT ,CBEP) ∪
bisimrel_NI_excblck(S ,T ,BS ,BT) ∪
bisimrel_NI_exitblck(S ,T ,BS ,BT ,)

174 7 Translation correctness criteria for particular optimizations

7.3.3 Optimization correctness criterion for NI transformations

This section presents the formalization of a translation relation predicate TCCNI on two IL”
programs, (S ,BS) and (T ,BT), and a corresponding block edge relation CBEP . The programs
(S ,BS) and (T ,BT) are the source and the target program of a NI optimization and the rela-
tion CBEP is a byproduct of data flow analysis performed by the compiler for the LIH opti-
mization and gives information on how the program transformation was performed. Informally,
TCCNI((S ,BS), (T ,BT),CBEP) holds true iff (T ,BT) is a correct NI optimization of (S ,BS) w.r.t.
CBEP .

In the context of the definition TCCNI, the relation CBEP can be seen as a proof hint generated
by the compiler front-end for its proof generation unit. In the following, we call TCCNI an opti-
mization correctness criterion for NI optimizations. In our implementation, the TCCNI predicate is
an instance of the optimization correctness criterion OptCCO that was described in the overview
of Layer 5 in Section 3.6

The rest of this section consists of the following three parts:

• The first part gives formation rules for the sets associated with the definiton of the optimization
correctness criterion TCCNI.

• The second part presents the definition a function ni_transrel_block which computes a NI
optimization relation over block pairs for two IL” programs which are the source and the target
of a NI optimization and a corresponding block edge relation which describes this optimization.

• The last part of this section presents the definition of the optimization correctness criterion
TCCNI.

We begin the presentation by introducing a set of relations over entry block position pairs.
EntryBlockPosTransRel_NI.

Definition 7.62 gives formation rules for this set. A relation between entry block positions
comprises pairs which have the syntactic form ((bid , pid , pc), (bid , pid , pc)). Each such pair consists
of two triples of the syntactic form (bid , pid , pc) consisting of a block identifier bid , a block position
identifier pid , and an instruction number pc. In the context of the definition of the criterion TCCNI,
a triple (bid , pid , pc) denotes a block position pid which is the entry of a block bid . Additionally,
the triple indicates that the program point pc is allocated to the entry block position pid . As we can
always retrieve all informations about a block bid from an entry block position triple (bid , pid , pc)
and a CFGB declaration B = (pid0,BP ,BB , succBP , predB) by computing appriopriate lookups
in the mappings of B , we use the triple as unique representations of blocks in the context of
CFGB declarations. Thus, a set of entry block position pairs ((bid , pid , pc), (bid , pid , pc)) can be
used to define a relation between blocks of two CFGB declarations in the context of two CFGB
declarations.

Definition 7.62.

EntryBlockPos = BlckId×BlckPosId× InstructionNr

EntryBlockPosTransRel_NI = P(EntryBlockPos×EntryBlockPos)

Now, we present the second part of the formalization of TCCNI, the formalization of a function
ni_transrel_block which computes a translation relation over entry block position pairs for two
IL” programs, (S ,BS) and (T ,BT), and a corresponding block edge relation CBEP .

The definition of the function ni_transrel_block and the definitions of auxiliary functions used
by ni_transrel_block make the following context assumptions:

7.3 SVF for NI optimizations 175

• The compiler performed the loop invariant code analysis on a source program S and detected
that n instructions in a loop with the program point pc as loop header are movable out of this
loop.

• The compiler performed a NI transformation by inserting n goto instructions emulating nop
instructions between the pc− 1-th and the pc-the instructions of S . The result of this program
transformation is the program T .

• The number of nop instructions which can be inserted by the compiler is limited by a number n ′

which is determined by the capacity of the SVF. This capacity depends directly on the definition
of the function ni_transrel_block which we explain later on. Our SVF provides a definition of
ni_transrel_block which allows proving NI optimizations correct which insert maximally 10 nop
instructions between two instructions. This thesis presents a definition ni_transrel_block which
allows proving NI optimizations correct which insert maximallly 3 nop instruction between two
instructions.

• The byproduct of the NI transformation are a source and a target CFGB declarations BS and
BT for S and T , respectively.

• All blocks in the source CFGB declaration BS have a length equal one.
• The blocks in the target CFGB declaration BT have a length greater than or equal one.
• The compiler generated a corresponding block edge relation CBEP from BS and BT that

declares, among other things, which blocks of BS and BT are corresponding.

Let us consider source and target CFGB declarations BS and BT , a block bid in the set of
blocks of BS , a block bid ′ in the set of blocks of BT , and a corresponding block edge relation
CBEP . Let us assume that CBEP declares that the block bid and bid ′ are corresponding, i.e.
there exist two blocks predbid and predbid ′ and a buffertype bt such that

((predbid , bid), (predbid ′, bid ′), bt) ∈ CBEP .

Then, it follows from the context assumptions, which we described above that there are three
possibilities when it comes to the lengths of the blocks bid and bid ′:

1. the length of bid and bid ′ are equal 1 and 1, respectively, or
2. the length of bid and bid ′ are equal 1 and 2, respectively, or
3. the length of bid and bid ′ are equal 1 and 3, respectively.

As each block bid in the CFGB declaration B can be represented by a unique entry block position
(bid , pid , pc), there are further five cases for each of the above possibilities which arise from five
cases of the syntactic form the pc-th instruction: The pc-th instruction can be either an assign-
ment instruction or a printi instruction or a branch instruction or a goto instruction or an exit
instruction. Altogether, there are fifteen possibilities for a pair of blocks (bid , bid ′) which are de-
clared by CBEP as corresponding. As obviously there are same number of possibilities for pairs
((bid , pid , pc), (bid ′, pid ′, pc′)) consisting of entry block positions representing the blocks bid and
bid ′ in the context of BS and BT , we define the translation relation over pairs of corresponding
blocks as a relation between entry block position pairs which is a union of fifteen disjoint sets
which arise from the above possibilities for the pair of blocks (bid , bid ′).

In the following, we present the definitions of three auxiliary functions which compute three
respective subsets of the relation between entry block position pairs ((bid , pid , pc), (bid ′, pid ′, pc′))
for the case that the pc-th instruction is an assignment.

Definition 7.63 defines a function ni_transrel_assign_1_1 which make the above context as-
sumptions about its parameters and computes a relation over entry block position pairs for two

176 7 Translation correctness criteria for particular optimizations

IL” programs (S ,BS) and (T ,BT); and a corresponding block edge relation CBEP . For each entry
block position pair

((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1))
∈ ni_transrel_assign_1_1((S ,BS), (T ,BT),CBEP)

the following holds:

• The entry block position (src_bid1 , src_pid1 , src_pc1) represents the block src_bid1 of the
length equal one.

• The entry block position (trg_bid1 , trg_pid1 , trg_pc1) represents the block trg_bid1 of the
length equal one.

• Both blocks src_bid1 and trg_bid1 include exactly one block position src_pid1 and trg_pid1 ,
respectively.

• Program points src_pc1 and trg_pc1 are allocated to block positions src_pid1 and trg_pid1 ,
respectively.

• The src_pc1 -th and trg_pc1 -th instructions of the programs S and T , respectively, are as-
signments which are equal.

• The blocks src_succbid and trg_succbid are successors of the blocks src_bid1 and trg_bid1 ,
respectively.

• The blocks src_succbid and trg_succbid are declared as corresponding by the relation CBEP ,
respectively:

((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), FTYPE) ∈ CBEP

• The CFGB declarations BS and BT declare src_bid1 and trg_bid1 as predecessor blocks of
src_succbid and trg_succbid , respectively.

7.3 SVF for NI optimizations 177

Definition 7.63.

ni_transrel_assign_1_1 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_assign_1_1(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ lval e src_pc2 src_pid2 src_succbid src_set trg_pc2 trg_pid2 trg_succbid succbsize trg_set .

instrs!src_pc1 = (lval :=e) ∧
instrs ′!trg_pc1 = (lval :=e) ∧
src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧
src_pc2 = Suc(src_pc1) ∧
src_succBP(src_pid1 , src_pc2) = Some(src_pid2) ∧
src_BP(src_pid2) = Some(src_pid2 , src_succbid , 1, 0, src_pc2) ∧
src_BB(src_succbid) = Some(src_pid2) ∧
src_predB(src_pid2) = Some(src_set) ∧
(src_bid1 , FTYPE) ∈ src_set ∧
trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 1, 0, trg_pc1) ∧
trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_succbid , succbsize, 0, trg_pc2) ∧
trg_BB(trg_succbid) = Some(trg_pid2) ∧
trg_predB(trg_pid2) = Some(trg_set) ∧
(trg_bid1 , FTYPE) ∈ trg_set ∧
((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), FTYPE) ∈ CBEP }

end

Example 7.64. Consider Figure 7.1 depicting the source and the target CFGB declarations for
the programs IL2 and IL3 depicted in Figure A.3 and the corresponding block edge pair relation
CBEP . Given that our compiler front-end generates a theory with definitions of logic constants BS ,
BT , S , T , and CBEP which represent the source CFGB declaration, the target CFGB declaration,
the program IL2 , the program IL3 , and the relation CBEP on the logic level, respectively, then
the following holds:

((b1, p1,1, 1), (b1, p1,1), 1), FTYPE) ∈ ni_transrel_assign_1_1(S ,T ,BS ,BT ,CBEP)

Consider the source and the target CFGB declarations for the programs IL2 and IL3 depicted
in Figure A.3. According to the definitions of those declarations and programs, it holds that the
entry block position pair ()

♦

Definition 7.65 defines a function ni_transrel_assign_1_2 which make the same context as-
sumptions about its parameters as the function ni_transrel_assign_1_1 and computes a relation

178 7 Translation correctness criteria for particular optimizations

over entry block position pairs for two IL” programs (S ,BS) and (T ,BT); and a corresponding
block edge relation CBEP . For each entry block position pair

((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1))
∈ ni_transrel_assign_1_2((S ,BS), (T ,BT),CBEP)

the following holds:

• The entry block position (src_bid1 , src_pid1 , src_pc1) represents the block src_bid1 of the
length equal one.

• The entry block position (trg_bid1 , trg_pid1 , trg_pc1) represents the block trg_bid1 of the
length equal two.

• The block src_bid1 includes exactly one block position src_pid1 .
• The program point src_pc1 is allocated to block positions src_pid1 .
• The src_pc1 -th instruction of the programs S is an assignment.
• The block trg_bid1 includes two block positions trg_pid1 and trg_pid2 . The block indexes of

trg_bid1 and trg_bid2 are equal 0 and 1, respectively.
• Program points trg_pc1 and trg_pc2 are allocated to block positions trg_pid1 and trg_pid2 ,

respectively.
• The trg_pc1 -th and trg_pc2 -th instructions of the program T are a goto instruction, which

emulates a nop instruction, and an assignment instruction, respectively.
• The src_pc1 -th instruction of the program S and trg_pc2 -th instruction of the program T

are equal.
• The blocks src_succbid and trg_succbid are successors of the blocks src_bid1 and trg_bid1 ,

respectively.
• The blocks src_succbid and trg_succbid are declared as corresponding by the relation CBEP ,

respectively:

((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), FTYPE) ∈ CBEP

• The CFGB declarations BS and BT declare src_bid1 and trg_bid1 as predecessor blocks of
src_succbid and trg_succbid , respectively.

7.3 SVF for NI optimizations 179

Definition 7.65.

ni_transrel_assign_1_2 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_assign_1_2(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ lval e src_pc2 src_pid2 src_succbid src_set trg_pc2 trg_pid2 trg_bid2 trg_pc3 trg_pid3

trg_succbid trg_set .

instrs!src_pc1 = (lval :=e) ∧
instrs ′!trg_pc1 = (goto(trg_pc2)) ∧
instrs ′!trg_pc2 = (lval :=e) ∧
src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧
src_pc2 = Suc(src_pc1) ∧
src_succBP(src_pid1 , src_pc2) = Some(src_pid2) ∧
src_BP(src_pid2) = Some(src_pid2 , src_succbid , 1, 0, src_pc2) ∧
src_BB(src_succbid) = Some(src_pid2) ∧
src_predB(src_pid2) = Some(src_set) ∧
(src_bid1 , FTYPE) ∈ src_set ∧
trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 2, 0, trg_pc1) ∧
trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_bid1 , 2, 1, trg_pc2) ∧
trg_pc3 = Suc(trg_pc2) ∧
trg_succBP(trg_pid2 , trg_pc3) = Some(trg_pid3) ∧
trg_BP(trg_pid3) = Some(trg_pid3 , trg_succbid , succbsize, 0, trg_pc3) ∧
trg_BB(trg_succbid) = Some(trg_pid3) ∧
trg_predB(trg_pid3) = Some(trg_set) ∧
(trg_bid1 , FTYPE) ∈ trg_set ∧
((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), FTYPE) ∈ CBEP }

end

Definition 7.66 defines a function ni_transrel_assign_1_3 which make the same context as-
sumptions about its parameters as the function ni_transrel_assign_1_1 and ni_transrel_assign_1_2
and computes a relation over entry block position pairs for two IL” programs (S ,BS) and (T ,BT);
and a corresponding block edge relation CBEP . For each entry block position pair

((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1))
∈ ni_transrel_assign_1_3((S ,BS), (T ,BT),CBEP)

the following holds:

• The entry block position (src_bid1 , src_pid1 , src_pc1) represents the block src_bid1 of the
length equal one.

• The entry block position (trg_bid1 , trg_pid1 , trg_pc1) represents the block trg_bid1 of the
length equal three.

• The block src_bid1 includes exactly one block position src_pid1 .
• The program point src_pc1 is allocated to block positions src_pid1 .

180 7 Translation correctness criteria for particular optimizations

• The src_pc1 -th instruction of the programs S is an assignment.
• The block trg_bid1 includes three block positions trg_pid1 , trg_pid2 , and trg_pid3 . The block

indexes of trg_bid1 , trg_bid2 , and trg_bid3 are equal 0, 1, and 3, respectively.
• Program points trg_pc1 , trg_pc2 , and trg_pc3 are allocated to block positions trg_pid1 ,

trg_pid2 , and trg_pid3 , respectively.
• The trg_pc1 -th, trg_pc2 -th, and trg_pc3 -th instructions of the program T are a goto instruc-

tion, a goto instruction, and an assignment instruction, respectively. The goto instructions
emulate nop instructions.

• The src_pc1 -th instruction of the program S and trg_pc3 -th instruction of the program T
are equal.

• The blocks src_succbid and trg_succbid are successors of the blocks src_bid1 and trg_bid1 ,
respectively.

• The blocks src_succbid and trg_succbid are declared as corresponding by the relation CBEP ,
respectively:

((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), FTYPE) ∈ CBEP

• The CFGB declarations BS and BT declare src_bid1 and trg_bid1 as predecessor blocks of
src_succbid and trg_succbid , respectively.

7.3 SVF for NI optimizations 181

Definition 7.66.

ni_transrel_assign_1_3 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_assign_1_3(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ lval e src_pc2 src_pid2 src_succbid src_set trg_pc2 trg_pid2 trg_bid2 trg_pc3 trg_pid3

trg_succbid trg_set .

instrs!src_pc1 = lval :=e ∧
instrs ′!trg_pc1 = goto(trg_pc2) ∧
instrs ′!trg_pc2 = goto(trg_pc3) ∧
instrs ′!trg_pc3 = lval :=e) ∧
src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧
src_pc2 = Suc(src_pc1) ∧
src_succBP(src_pid1 , src_pc2) = Some(src_pid2) ∧
src_BP(src_pid2) = Some(src_pid2 , src_succbid , 1, 0, src_pc2) ∧
src_BB(src_succbid) = Some(src_pid2) ∧
src_predB(src_pid2) = Some(src_set) ∧
(src_bid1 , FTYPE) ∈ src_set ∧
trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 3, 0, trg_pc1) ∧
trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_bid1 , 3, 1, trg_pc2) ∧
trg_pc3 = Suc(trg_pc2) ∧
trg_succBP(trg_pid2 , trg_pc3) = Some(trg_pid3) ∧
trg_BP(trg_pid3) = Some(trg_pid3 , trg_bid1 , 3, 2, trg_pc3) ∧
trg_pc4 = Suc(trg_pc3) ∧
trg_succBP(trg_pid3 , trg_pc4) = Some(trg_pid4) ∧
trg_BP(trg_pid4) = Some(trg_pid4 , trg_succbid , succbsize, 0, trg_pc4) ∧
trg_BB(trg_succbid) = Some(trg_pid4) ∧
trg_predB(trg_pid4) = Some(trg_set) ∧
(trg_bid1 , FTYPE) ∈ trg_set ∧
((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), FTYPE) ∈ CBEP }

end

Definition 7.67 defines a function ni_transrel_block which make the same context assumptions
about its parameters as the auxiliary functions ni_transrel_assign_1_1 through ni_transrel_assign_1_3
and computes a relation over entry block position pairs for two IL” programs (S ,BS) and (T ,BT);
and a corresponding block edge relation CBEP . The relation is defined as a union of fifteen disjoint
sets which arise from fifteen cases for an entry block position pair, which we explained above. For
brevity, we moved a part of the definitions of functions computing those sets into Chapter C:

• The definition of the function ni_transrel_printi_1_1 is shown in Definition C.4.
• The definition of the function ni_transrel_printi_1_2 is shown in Definition C.5.
• The definition of the function ni_transrel_printi_1_3 is shown in Definition C.6.
• The definition of the function ni_transrel_branch_1_1 is shown in Definition C.7.

182 7 Translation correctness criteria for particular optimizations

• The definition of the function ni_transrel_branch_1_2 is shown in Definition C.8.
• The definition of the function ni_transrel_branch_1_3 is shown in Definition C.9.
• The definition of the function ni_transrel_goto_1_1 is shown in Definition C.10.
• The definition of the function ni_transrel_goto_1_2 is shown in Definition C.11.
• The definition of the function ni_transrel_goto_1_3 is shown in Definition C.12.
• The definition of the function ni_transrel_exit_1_1 is shown in Definition C.13.
• The definition of the function ni_transrel_exit_1_2 is shown in Definition C.14.
• The definition of the function ni_transrel_exit_1_3 is shown in Definition C.15.

Definition 7.67.

ni_transrel_block : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_block(S ,T ,BS ,BT ,CBEP) =

ni_transrel_assign_1_1(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_assign_1_2(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_assign_1_3(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_printi_1_1(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_printi_1_2(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_printi_1_3(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_branch_1_1(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_branch_1_2(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_branch_1_3(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_goto_1_1(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_goto_1_2(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_goto_1_3(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_exit_1_1(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_exit_1_2(S ,T ,BS ,BT ,CBEP) ∪
ni_transrel_exit_1_3(S ,T ,BS ,BT ,CBEP)

Finally, with the definition of the function ni_transrel_block at hand, we can present the last
part of the formalization of the optimization correctness criterion for NI optimizations, namely, the
definition of the function TCCNI which has the form of a predicate on two IL” programs, (S ,BS)
and (T ,BT), and a corresponding block edges relation CBEP , makes the same context assumptions
about (S ,BS), (T ,BT), and CBEP as the definition of the function ni_transrel_block, and which
checks if (S ,BS) and (T ,BT) are in a translation relation w.r.t. CBEP . Informally, checking if
TCCNI((S ,BS), (T ,BT),CBEP) holds true is done in third steps as follows. The first step computes
a list of block pairs (bid , bid ′) consisting of blocks bid and bid ′ which are in the sets of blocks of the
CFGB declarations BS and BT , respectively. The second step takes the list of block pairs computed
in the first step and the source and target CFGB declarations BS and BT as input and maps this list
to the list of entry block position pairs ((bid , pid , pc), (bid ′, pid ′, pc′)) by mapping blocks to their
unique representations as entry block positions in the context of the respective CFGB declaration.
The third step checks if each entry block position pairs ((bid , pid , pc), (bid ′, pid ′, pc′)) is in the
translation relation ni_transrel_block(S ,T ,BS ,BT ,CBEP). Additionaly, the if the entry blocks
of BS and BT are declared by the relation CBEP as corresponding. Thus, the predicate TCCNI is
a defined as extension of a predicate on a single entry block position pair of the form:

((bid , pid , pc), (bid ′, pid ′, pc′)) ∈ ni_transrel_block(S ,T ,BS ,BT ,CBEP)

to a predicate on a set of entry block position pairs whose elements consist of entry block positions
representing blocks declared by CBEP as corresponding.

7.3 SVF for NI optimizations 183

Definition 7.68 defines a function TCC_NI_entry_block which takes a source and a target
programs S and T , respectively, a source and a target CFGB declarations BS and BT , respec-
tively, and a corresponding block edges relation CBEP and checks if the entry blocks of BS and
BT , src_bid0 and trg_bid0 , respectively, are well-formed and if they are declared by CBEP as
corresponding. The entry blocks src_bid0 and trg_bid0 are well-formed and corresponding w.r.t.
to BS , BT , and CBEP iff they fulfill the following requirements:

1. The length of src_bid0 is equal one.

2. The 0-th instruction of S is a non-printing instruction.

3. The CFGB declaration BS declares src_bid0 as a predecessor of src_bid0 .

4. The length of trg_bid0 is equal to a value trgbsize one.

5. The (trgbsize − 1)-th instruction of T is a non-printing instruction.

6. The CFGB declaration BT declares trg_bid0 as a predecessor of trg_bid0 .

7. The CBEP relation declares the blocks src_bid0 and trg_bid0 as corresponding, i.e. CBEP
comprises a corresponding block edge ((src_bid0 , src_bid0), (trg_bid0 , trg_bid0), FTYPE).

Definition 7.68.

TCC_NI_entry_block : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → Bool

TCC_NI_entry_block(S ,T ,B§,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0, src_BP , src_BB , src_succBP , src_predB) = BS

(pid ′
0, trg_BP , trg_BB , trg_succBP , trg_predB) = BT

in

∃ src_bid0 src_set trg_bid0 trg_set trgbsize.

src_BP(src_pid0) = Some(src_pid0 , src_bid0 , 1, 0, 0) ∧
src_predB(src_pid0) = Some(src_set) ∧
(src_bid0 , FTYPE) ∈ src_set ∧
trg_BP(trg_pid0) = Some(trg_pid0 , trg_bid0 , trgbsize, 0, 0) ∧
trg_predB(trg_pid0) = Some(trg_set) ∧
(trg_bid0 , FTYPE) ∈ trg_set ∧
((src_bid0 , src_bid0), (trg_bid0 , trg_bid0), FTYPE) ∈ CBEP

end

Definition 7.69 defines the predicate TCC_NI_normal_block on a source program S , a target
program T , a source CFGB declaration BS , a target declaration BT , a corresponding block edges
relation CBEP , and a corresponding block edge ((predbid , bid), (predbid ′, bid ′), bt), which declares
blocks bid and bid ′ as corresponding, and checks if the pair of entry block positions representing
these blocks is in the translation relation computed by the function ni_transrel_block for S , T ,
BS , BT , and CBEP .

184 7 Translation correctness criteria for particular optimizations

Definition 7.69.

TCC_NI_normal_block : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet×BlockEdgePair → Bool

TCC_NI_normal_block(S ,T ,BS ,BT ,CBEP , blckedgepair) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0, src_BP , src_BB , src_succBP , src_predB) = BS

(pid ′
0, trg_BP , trg_BB , trg_succBP , trg_predB) = BT

((predbid , bid), (predbid ′, bid ′), bt) = blckedgepair

in

∃ pidpid ′bsize ′pcpc′.

src_BB(bid) = Some(pid) ∧
trg_BB(bid ′) = Some(pid ′) ∧
src_BP(pid) = Some(pid , bid , 1, 0, pc) ∧
trg_BP(pid ′) = Some(pid ′, bid ′, bsize ′, 0, pc′) ∧
((bid , pid , pc), (bid ′, pid ′, pc′)) ∈ ni_transrel_block(S ,T ,BS ,BT ,CBEP)

end

Definition 7.70 defines an optimization correctness criterion for NI optimizations on a source
program S , a target program T , a source CFGB declaration BS , a target CFGB declaration
BT , and a corresponding block edges relation CBEP which checks if entry blocks of BS and BT

are well-formed and declared by CBEP as corresponding; and all pairs consisting of entry block
positions representing block which are declared by CBEP as corresponding are in the translation
relation ni_transrel_block(S ,T ,BS ,BT ,CBEP).

Definition 7.70.

TCCNI : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → Bool

TCCNI(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0, src_BP , src_BB , src_succBP , src_predB) = BS

(pid ′
0, trg_BP , trg_BB , trg_succBP , trg_predB) = BT

in

TCC_NI_entry_block(S ,T ,BS ,BT ,CBEP)

∧
∀ blckedgepair ∈ CBEP . TCC_NI_normal_block(S ,T ,BS ,BT ,CBEP , blckedgepair)

end

7.3.4 Verification of the optimization correctness criterion TCCNI

This section presents the theorems which we proved in order to verify the specification of the
optimization correctness criterion TCCNI presented in the previous section. The main result in
this section is a theorem which can be used directly in translation certificates generated by our
compiler.

To verify the specification of the criterion TCCNI, we proved Theorem 7.71 which is a statement
about a source and a target programs of a concrete NI optimization, S and T , a program type Φ,

7.4 SVF for RAI optimizations 185

a source CFGB declaration BS , a target declaration BT , and a corresponding block edge relation
CBEP which says that if S and T are well-typed w.r.t. Φ; and BS and BT are well-formed w.r.t.
S and T , respectively; and S and T fulfill the optimization correctness criterion TCCNI w.r.t. BS ,
BT , and CBEP , then S and T fulfill the optimization independent translation correctness TCC
w.r.t. the bisimulation relation bisimrelNI(S ,T ,BS ,BT ,CBEP).

Theorem 7.71.

wtp(S , Φ) ∧ wtp(T , Φ) ∧ wfB(S ,BS) ∧ wfB(T ,BT) ∧ TCCNI(S ,T ,BS ,BT ,CBEP)
=⇒
TCC(S ,T , bisimrelNI(S ,T ,BS ,BT ,CBEP))

!

Finally, we present the main result in this section, a theorem which is a statement about a
source and a target programs of a concrete NI optimization, S and T , a program type Φ, a source
CFGB declaration BS , a target CFGB declaration BT , and a corresponding block edge relation
CBEP which says that if S and T are well-typed w.r.t. Φ; and BS and BT are well-formed w.r.t.
S and T ; and S and T fulfill the optimization correctness criterion TCCNI w.r.t. BS , BT , and
CBEP , then S and T fulfill the translation correctness predicate corrTrans.

Theorem 7.72.

wtp(S , Φ) ∧ wtp(T , Φ) ∧ wfB(S ,BS) ∧ wfB(T ,BT) ∧ TCCNI(S ,T ,BS ,BT ,CBEP)
=⇒
corrTrans(S ,T)

Proof.

wtp(S , Φ) ∧ wtp(T , Φ) ∧ wfB(S ,BS) ∧ wfB(T ,BT) ∧ TCCNI(S ,T ,BS ,BT ,CBEP)

=⇒ [by application of Theorem 7.71]

TCC(S ,T , bisimrelNI(S ,T ,BS ,BT ,CBEP))

=⇒ [by application of the existential introduction rule]

∃R.TCC(S ,T ,R) .

=⇒ [by application of Theorem 6.44]

corrTrans(S ,T)

!

Theorem 7.72 is an instance of the corollary (I) in Section 3.6 and is directly applicable in
translation certificates which are generated by the compiler for each NI transformation, see the
end of Section 3.6 for a general application scheme of this theorem.

7.4 SVF for RAI optimizations

This section presents formalization of a formal verification framework for proving RAI transfor-
mations correct.

186 7 Translation correctness criteria for particular optimizations

As aforementioned in Section 1.5.1, the RAI transformation takes an integer pc and an assign-
ment instruction x := e as input and replaces the pc-th instruction of a program by this assignment.
We call this transformation a redundant assignment insertion because it is used to insert an as-
signment x := e only at a program point pc at which it is made dead by an equal assignment
instruction at another program point pc′. The RAI transformations which are performed by our
compiler front-end can be characterized as follows.

• The RAI transformation is the second intermediate program transformation in a chain of three
program transformations which altogether perform the LIH optimization.

• The first transformation in this chain is the NI transformation which inserts a limited number of
nop instructions between the header and preheader of the loop which is the result of translation
of a do-while loop3 in the original µC program and contains loop invariant instructions. The
number of inserted nop instructions depends on the number of loop invariant instructions and
on how many of those instructions can be moved outside the loop without modifying observable
behavior of the program.

• Given that the above loop contains an assignment of the syntactic form v :=e which is invariant
and movable outside the loop, then the function of the RAI transformation is to replace a
nop instruction inserted by the NI transformation between the preheader and header of this
loop by the same assignment v :=e. As the loop is the result of translation of a do-while
loop, the loop header node in the CFG of the program is the dominator4 of all nodes in the
loop. The assignment replaces a nop instruction which is a label of a node inserted by the
NI transformation between the preheader and header nodes of the loop. As this node is the
dominator of the loop header, it is the dominator of the node inside loop which labeled by the
assignment v :=e. This implies that the assignment placed by the RAI transformation is made
dead by the same assignment inside the loop.

Example 7.73. Figure A.4 depicts two programs IL3 and IL4 which are the source and the target
programs of the RAI transformation in our example illustrating the work-flow of our compiler
front-end in Figure 1.5. The CFG’s of the programs IL3 and IL4 are equal. The CFG of the
program IL3 contains a loop comprising the program points: 12 through 27. The node 12 is the
header of this loop. The 11-th instruction is the goto instruction GOTO [12] which emulates a nop
instruction. The 13-th and 14-th instructions, _tI_6 = n * n and tmp = _tI_6, respectively,
are loop invariant and are both movable outside the loop but only moving the 13-th instruction
in one step can be proved correct using our SVF. Therefore, our compiler front-end performed
the RAI transformation which replaced the 11-th instruction by the assignment _tI_6 = n * n.
The result of this transformation is the program IL4 . In the program IL4 , the 11-th instruction
_tI_6 = n * n is made dead by the 13-th instruction _tI_6 = n * n. Inserting both instructions
_tI_6 = n * n and tmp = _tI_6 between the preheader and header of the loop in one step would
not be a proper RAI transformation because the instruction tmp = _tI_6 uses the variable _tI_6
and thus it would make the instruction _tI_6 = n * n live. ♦

In general, the RAI transformation can be characterized as follows.

• The RAI is a structure preserving transformation, i.e. it does not modify the sets of edges and
nodes of the CFG of the source program. For this reason, the CFG’s and the CFGB declarations
involved in RAI transformations have the same properties as CFG’s and CFGB declarations

3 The reader should recall that the LIH optimizations are only possible on do-while loops, cf. [3].
4 In this thesis, the notion of dominators strictly follows the definition given by Andrew W. Appel in [3],

page 407: "Each control-flow graph must have a start node s0 with no predecessors, where program (or
procedure) execution is assumed to begin. A node d dominates a node n if every path of directed edges
from s0 to n must go through d. Every node dominates itself."

7.5 SVF for RAE 187

involved in CF and DAE optimizations performed by our compiler front-end, cf. Sections 7.1
and 7.2:
– The CFG of the source and the target programs of a RAI transformation are identical,
– The CFGB declarations for the source and the target programs of a RAI transformation

are identical,
– The corresponding program points relation between program points of the source and the

target programs of a RAI transformations is defined as identity, i.e. a one-to-one correspon-
dence between program points of these programs,

– For both the source and the target program of a RAI transformation, the allocation relation
between program points and block positions is a one-to-one correspondence,

– The "includes" relation between blocks and block positions is a one-to-one correspondence,
– The CFGB declaration used in a RAI transformation no nested blocks.

• The RAI transformation increases the number of instructions which are dead and decreases the
number of goto instructions which emulate nop instructions in a program since it replaces the
nop instructions of a program by dead assignments. Therefore, the RAI can be seen as a trans-
formation which is can be seen as a "reverse" transformation of the DAE optimization because
the latter replaces dead assignments by goto instructions which emulate nop instructions.

The above general properties of the RAI transformation enables the compiler to reuse the
SVF for DAE optimizations in the correctness proof of a RAI transformation. Reusing is done in
the following way: Let us assume that our compiler front-end has to generate a proof that an IL
program T is a correct RAI transformation of an IL program S , i.e. has to generate a proof of
the statement corrTrans(S ,T). Then, the compiler performs the liveness analysis on the program
T . The result of the analysis are a liveness analysis result ALA and a byproduct of the analysis, a
CFGB declaration B . The compiler passes S , T , B , and ALA to its proof generation unit which
generates a proof script which consists of three parts:

1. The first part comprises definitions of logic constants representing T , S , B , ALA, and a
program type Φ which is the type of both S and T .

2. The second part of the script treats the programs T and S as the source and the target
of a DAE optimization and proves the statement corrTrans(T ,S) by applying SVF for DAE
optimizations presented in Section 7.2. In particular, the first step of this proof applies Theorem
7.55. The subsequent proof steps discharge the assumptions of the theorem by proving that
• wtp(T , Φ) holds true,
• wtp(S , Φ) holds true,
• wfB(T ,B) holds true,
• wfB(S ,B) holds true, and
• TCCDAE(T ,S ,B ,ALA) holds true.

3. The third part of the script derives the statement corrTrans(S ,T) from the statement
corrTrans(T ,S) proved in the second part of the script which is trivial by the definition of
corrTrans.

7.5 SVF for RAE

This section presents formalization of an optimization correctness criterion for RAE optimiza-
tions, TCCRAE, and a corresponding optimization correctness theorem which is directly applied in
translation certificates generated by our compiler front-end.

As aforementioned in Section 1.5.1, the RAE transformation takes an integer pc as input and
replaces the pc-th instruction of a program, which is an assignment x := e, by a goto instruction

188 7 Translation correctness criteria for particular optimizations

which emulates a nop instruction. We call this transformation a redundant assignment elimination
because it is used to remove an assignment x := e which is the label of a node pc in the CFG of a
program and is redundant at the entry to this node. Given an IL program P , the CFG of P , and
a node pc in the set of nodes of the CFG, then an assignment lval :=e is redundant as a label of
the node pc iff

• the assignment has the syntactic form v :=e and the expression e is ABexc-safe in P ,
• for all paths from the entry node of the CFG to the node pc, there exists a node pc′ such that

the assignment v :=e is the label of pc′ and the nodes between pc′ and pc neither re-define the
variable v nor the variables of the expression e.

The above definition implies the following: Whenever the flow of control transfers to a node pc
labeled by a redundant assignment v :=e, evaluation of the variable v and the expression e in the
context of current state of computation yields equal results. Executing the assignment v :=e results
in updating the state but evaluation of the variable v and the expression e in the context of new
state of computation also yields equal results. Therefore, we call the assignment v :=e redundant.

To be able to perfom a correct RAE optimization, the compiler has to perform a data flow
analysis which we call available equations analysis (AEA) and which is a composition of reaching
definitions analysis and available expressions analysis. Informally, the result of this analysis is a
mapping from program points to sets of a available equations, AAEA, where an available equation
is a pair (v , e) consisting of a variable v and an expression e. If the compiler determines during
the AEA that an assignment v :=e is redundant as a label of the node pc, then the result of the
AEA, AAEA, maps pc to an available equation set which comprises the pair (v , e).

7.5.1 Abstract syntax of AEA results

This section presents the definition of the abstract syntax of the AEA results. We begin the
presentation by listing syntactic sets associated with this notion:

• "gen" available equations GenSet,
• "kill" available equations KillSet,
• "in" available equations InSet,
• "out" available equations OutSet,
• tuples of sets of available equations AESets, and
• available equation sets environments AESetsEnv;

and defining metavariables ranging over these sets:

• gen ranges over "gen" available equations GenSet,
• kill ranges over "kill" available equations KillSet,
• in ranges over "in" available equations InSet,
• out ranges over "out" available equations OutSet,
• aesets ranges over tuples of available equation sets AESets, and
• AAEA ranges over available equation sets environments AESetsEnv;

Definition 7.74 gives formation rules for the set of the AEA results AESetsEnv. An AEA
result AAEA is a partial mapping from instruction numbers InstructionNr to tuples of available
equation sets AESets. We call the result of an AEA a available equation environment. If an AEA
result AAEA is well-formed, it is total. A tuple aesets = (gen, kill , in, out) consists of a set of "gen"
variables gen, a set of "kill" variables kill , a set of "in" variables in, and a set of "out" variables
out . The purpose of a AEA result AAEA is to model facts about the sets available equations for
all program points of a program which were determined by the compiler during a concrete AEA.
An equation (v , e) is available at the entry to a node pc in the CFG of a program iff

7.5 SVF for RAE 189

• the expression e is ABexc-safe in P ,
• for all paths from the entry node of the CFG to the node pc, there exists a node pc′ such that

the assignment v :=e is the label of pc′ and the nodes between pc′ and pc neither re-define the
variable v nor the variables of the expression e.

If the compiler determines during the AEA that an equation (v , e) is available at the entry to a
node pc in the CFG of a program, then the AEA result AAEA maps pc to a tuple (gen, kill , in, out)
and (v , e) ∈ in. If an equation (v , e) is available at the entry to a node pc, then the assignment
v :=e is redundant as a label of pc and can be replaced by a goto instruction which emulates a
nop instruction.

Definition 7.74.

AvailableEquation (ae := (v , e)

gen ∈ GenSet = P(AvailableEquation)

kill ∈ KillSet = P(AvailableEquation)

in ∈ InSet = P(AvailableEquation)

out ∈ OutSet = P(AvailableEquation)

aesets ∈ AESets = GenSet×KillSet× InSet×OutSet

AAEA ∈ AESetsEnv = InstructionNr ! AESets

7.5.2 Bisimulation relation for the RAE optimization

This section presents the definition of a function bisimrelRAE which computes a bisimulation relation
for two IL” programs, which are the source and the target programs of a RAE optimization, a result
of the AEA which was performed by the compiler prior to that optimization, and a corresponding
block edges relation. In the following presentation, we use convention that we write abbreviation
RRAE when we mean a bisimulation relation for a RAE optimization.

Informally, our notion of a bisimulation relation RRAE can be characterized as follows.

• RRAE is a function of a RAE optimization which is described by
– a source IL program S ,
– a target IL program T ,
– a CFGB declaration B ,
– a result of the AEA AAEA, and
– a corresponding block edges relation CBEP .

• By Definition 6.40, RRAE has to be a subset of

Configuration′′ ×Configuration′′ .

• As the RAE is a structure preserving optimization, i.e. it does not modify the sets of nodes and
edges of the CFG of a program, the CFGB declarations BS and BT for S and T , respectively,
are also identical. Therefore, our compiler front-end computes only one CFGB declaration B ,
for both S and T . On the other hand, our compiler performs RAE optimizations by replacing
redundant assignments by goto instructions emulating nop instructions. Thus, we know that it

190 7 Translation correctness criteria for particular optimizations

holds for two arbitrary partial executions of (S ,B) and (T ,B) of the same length that if they
produce augmented configurations σ′′S and σ′′T , then all their components are equal

∀n S T B .
M′′((S ,B), init(S ,B),n) = σ′′S ∧
M′′((T ,B), init(T ,B),n) = σ′′T
−→
∃ ss bs bposstat predbid tf af pc b s ss ′ bs ′ bposstat ′ predbid ′ tf ′ af ′ pc′ b′ s ′.

σ′′S = (ss, bs, ss, bposstat , predbid , (tf , af , pc, b, s)) ∧
σ′′T = (ss ′, bs ′, ss ′, bposstat ′, predbid ′, (tf ′, af ′, pc′, b′, s ′)) ∧
ss = ss ′ ∧
bs = bs ′ ∧
bs = n ∧
bposstat = bposstat ′ ∧
predbid = predbid ′ ∧
tf = tf ′ ∧
af = af ′ ∧
pc = pc′ ∧
b = b′ ∧
s = s ′

• The proof of a statement saying that (T ,B) is a correct RAE optimization of (S ,B) implies
bisimulation((S ,B), (T ,B),RRAE) has to be conducted by induction on the length of partial
execution of the IL” program (S ,B), i.e. induction on the number of block-wise transitions
made by the flow of control during execution of (S ,B). For the induction step, one has to prove
that equality of corresponding components of two augmented configurations

M′′((S ,B), init(S ,B),n)
M′′((T ,B), init(T ,B),n)

implies equality of corresponding components of their successors

M′′((S ,B), init(S ,B),n + 1)
M′′((T ,B), init(T ,B),n + 1)

As some of assignments in S are replaced by goto’s, we can not prove that the state components
in the successor configurations always remain equal after making block-wise transition. There-
fore, we have to strengthen the above execution invariant by an additional statement expressing
conformance of a state s and a result of the AEA which, informally, says the following:

For all equations (v , e) which are available at the program point pc, it holds that evalu-
ation of v and e in the context of s yields equal values without causing an array-index-
out-of-bounds exception.

In order to be able to expresss the statements of this kind, we formalized the notion of confor-
mance of a state with a AEA result.

• Analogously to the bisimulation relations RCF , RDAE , and RNI , we define the bisimulation
relation RRAE as a union of three disjoint sets. Each of these sets is defined for one of three
modes of execution into which execution of an IL” program can switch as a result of making
transition: the normal mode, the exception mode, and the exit mode, cf. Section 6.4.2. As we
know what syntactic forms do the augmented configurations have in those modes, we define
three functions which compute these sets as a function of the source and the target programs
of a RAE optimization, a CFGB declaration, a AEA result, and a corresponding block edges
relation.

7.5 SVF for RAE 191

We begin the presentation of the definition of RRAE with the formalization of the notion of
conformance of a state with an AEA result.

Definition 7.75 defines a function prg2Uset which computes the universe set of available equa-
tions for an IL program, i.e. the set of all available equations which are found in the program.

Definition 7.75.

prg2Uset : Program → P(AvailableEquation)

prg2Uset(P) =

let

((vds, instrs), I) = P

in

{ (v , e) | ∃ pc. 0 ≤ pc ∧ pc < length(instrs) ∧
instrs!pc = (v :=e) ∧ v /∈ expr2use(e) ∧ ABexc_safe_expr(P , e) } end

Definition 7.76 defines a function instr2gen which computes the "gen" set from an instruction,
i.e. the set of available equations which are generated by the instruction.

An equation (v , e) is generated by an assignment v :=e in a program P iff the expression e is
ABexc-safe in P and v is not in the set of variables of the expression e.

Definition 7.76.

instr2gen : Program× Instruction → GenSet

instr2gen(P , v :=e) = if ABexc_safe_expr(P , e) ∧ v /∈ expr2use(e) then {(v , e)} else {}
instr2gen(P , a[i]:=e) = {}
instr2gen(P , a[v]:=e) = {}
instr2gen(P , printi(e)) = {}
instr2gen(P , branch(e, dst)) = {}
instr2gen(P , goto(dst)) = {}
instr2gen(P , exit) = {}

Definition 7.77 defines a function instr2kill which computes the "kill" set from an instruction,
i.e. the set of available equations which are killed by the instruction.

An assignment lval :=e in a program P kills an available equation (v , e) from the universe set of
P iff executing an assignment can modify the value of v or e in the current state of computation.

Definition 7.77.

instr2kill : Program× Instruction → KillSet

instr2kill(P , v :=e) = { (v ′, e ′) | (v ′, e ′) ∈ prg2Uset(P) ∧ (v ′ = v ∨ v ∈ expr2use(e ′)) }
instr2kill(P , a[i]:=e) = { (v ′, e ′) | (v ′, e ′) ∈ prg2Uset(P) ∧ a ∈ expr2use(e ′) }
instr2kill(P , a[v]:=e) = { (v ′, e ′) | (v ′, e ′) ∈ prg2Uset(P) ∧ a ∈ expr2use(e ′) }
instr2kill(P , printi(e)) = {}
instr2kill(P , branch(e, dst)) = {}
instr2kill(P , goto(dst)) = {}
instr2kill(P , exit) = {}

Definition 7.78 defines a predicate confaesets on an AEA result AAEA, a CFG edge (pc, succpc),
and a state s which checks if the state s conforms with the AEA result AAEA w.r.t. the CFG edge
(pc, succpc). The confaesets makes the context assumptions as follows

• pc and s are the program counter and state components of a configuration which is the result
of partial execution of an IL program S which is the source program of a RAE optimization.

192 7 Translation correctness criteria for particular optimizations

• The flow of control is about to make transition along the CFG edge (pc, pc′).

and checks if the following holds:

1. The available equation sets in tuples which are declared by AAEA for the program points pc
and succpc must be a proper solution of data flow equations defined for the program S .

2. The state s must conform with the "out" set of available equations declared by AAEA for the
node pc.

Definition 7.78.

confaesets : AESetsEnv × InstructionNr× InstructionNr× State → Bool

confaesets(AAEA, pc, succpc, s) =

∃ gen kill in out gen ′ kill ′ in ′ out ′.

AAEA(pc) = Some(gen, kill , in, out) ∧
AAEA(succpc) = Some(gen ′, kill ′, in ′, out ′) ∧
out = gen ∪ (in − kill) ∧
in ′ ⊆ out ∧
∀ (v , e) ∈ out . ∃ val . evale(v , s) = (ABok, Some(val)) ∧ evale(e, s) = (ABok, Some(val))

With the definition of the function confaesets at hand, we can give the definition of a func-
tion bisimrelRAE which computes the bisimulation relation RRAE . The definition of the function
consists of two parts: The first part defines three auxiliary functions: bisimrel_RAE_normblck,
bisimrel_RAE_excblck, and bisimrel_RAE_exitblck, which compute subsets of RRAE for respec-
tive modes of executions mentioned in the beginning of this section. The second part gives the
definition of the function bisimrelRAE itself which computes the bisimulation relation RRAE as a
union of three disjoint sets computed by the respective auxiliary functions.

Definition 7.79 defines a function bisimrel_RAE_normblck computes a subset of the bisimula-
tion relation RRAE which is defined for the normal mode of execution w.r.t. two IL” programs,
(S ,B) and (T ,B), a AEA result AAEA, and a corresponding block edges relation CBEP . A con-
figuration pair (σ′′S , σ′′T) is in the subset bisimrel_RAE_normblck(S ,T ,B ,CBEP ,AAEA) iff the
following holds:

• σ′′S and σ′′T are produced by partial executions of (S ,B) and (T ,B), respectively. Both execu-
tions have the same length and are performed in the normal mode.

• All corresponding components of σ′′S and σ′′T are equal.

• The value of the block status and the predecessor block components σ′′S and σ′′T have the
syntactic forms NORMBLCK(pid , bid , 1, 0, pc) and predbid which means that in both programs
the flow of control made transition along the block edge (predbid , bid). σ′′S and σ′′T are in the
subset if the relation CBEP declares the block edges (predbid , bid) and (predbid , bid) in (S ,B)
and (T ,B), respectively, as corresponding.

• The predecessor of the program point pc is predpc. The state components s in both configura-
tions conform with the AEA result AAEA w.r.t. the CFG edge (predpc, pc).

7.5 SVF for RAE 193

Definition 7.79.

bisimrel_RAE_normblck : Program×Program×BlckPosEnv ×CorrespBlockEdgePairSet

×AESetsEnv → BisimulationRelation

bisimrel_RAE_normblck(S ,T ,B ,CBEP ,AAEA) =

let

(pid0,BP ,BB , succBP , predB) = B

in

{(σ′′
S , σ′′

T) | ∃ bs ss pid bid pc predbid b s s ′ bt set .

σ′′
S = (ss, bs, ss, NORMBLCK(pid , bid , 1, 0, pc), predbid , (NT, ABok, pc, b, s)) ∧

σT = (ss, bs, ss, NORMBLCK(pid , bid , 1, 0, pc), predbid , (NT, ABok, pc, b, s)) ∧
M′′((S ,B), bs) = σ′′

S ∧
M′′((T ,B), bs) = σ′′

T ∧
BB(bid) = Some(pid) ∧
BP(pid) = Some(pid , bid , 1, 0, pc)) ∧
predB(pid) = Some(set) ∧
(predbid , bt) ∈ set ∧
BB(predbid) = Some(predpid) ∧
BP(predpid) = Some(predpid , predbid , 1, 0, predpc) ∧
confbuffer(bt , b) ∧
((predbid , bid), (predbid , bid), bt) ∈ CBEP ∧
confaesets(AAEA, predpc, pc, s) }

end

Definition 7.80 defines a function bisimrel_RAE_excblck computes a subset of the bisimulation
relation RRAE which is defined for the exception mode of execution and w.r.t. two IL” programs,
(S ,B) and (T ,B).

Definition 7.80.

bisimrel_RAE_excblck : Program×Program×BlckPosEnv → BisimulationRelation

bisimrel_RAE_excblck(S ,T ,B) =

{(σ′′
S , σT) | ∃ bs ss pc predbid n s s ′.

σ′′
S = (ss, bs, ss, EXCBLCK, predbid , (NT, AB, pc, FLUSH(n), s)) ∧

σ′′
T = (ss, bs, ss, EXCBLCK, predbid , (NT, AB, pc, FLUSH(n), s)) ∧

M′′((S ,B), bs) = σ′′
S ∧

M′′((T ,B), bs) = σ′′
T }

Definition 7.81 defines a function bisimrel_RAE_exitblck computes a subset of the bisimulation
relation RRAE which is defined for the exit mode of execution and w.r.t. two IL” programs, (S ,B)
and (T ,B).

Definition 7.81.

bisimrel_RAE_exitblck : Program×Program×BlckPosEnv → BisimulationRelation

bisimrel_RAE_exitblck(S ,T ,B) =

{(σ′′
S , σ′′

T) | ∃ bs ss pc predbid n s s ′.

σ′′
S = (ss, bs, ss, EXITBLCK, predbid , (T, ABok, pc, FLUSH(n), s)) ∧

σ′′
T = (ss, bs, ss, EXITBLCK, predbid , (T, ABok, pc, FLUSH(n), s)) ∧

M′′((S ,B), bs) = σ′′
S ∧

M′′((T ,B), bs) = σ′′
T }

194 7 Translation correctness criteria for particular optimizations

Definition 7.82 defines a function bisimrelRAE which computes the bisimulation relation RRAE

for two IL” programs, (S ,B) and (T ,B), a corresponding block edges relation CBEP , and a AEA
result AAEA.

The function bisimrelRAE makes the following assumptions:

• (S ,B) is the source program of a RAE optimization.
• The compiler performed the AEA on (S ,B).
• The result of the analysis is AAEA.
• The result of the RAE optimization with (S ,B) and AAEA as input is the target program

(T ,B).

The bisimulation relation RRAE is defined as a union of three disjoint sets which are computed
by the functions bisimrel_RAE_normblck, bisimrel_RAE_excblck, and bisimrel_RAE_exitblck, for
the respective modes of execution.

Definition 7.82.

bisimrelRAE : Program×Program×BlckPosEnv ×CorrespBlockEdgePairSet

×AESetsEnv → BisimulationRelation

bisimrelRAE(S ,T ,B ,CBEP ,AAEA) = bisimrel_RAE_normblck(S ,T ,B ,CBEP ,AAEA) ∪
bisimrel_RAE_excblck(S ,T ,B) ∪
bisimrel_RAE_exitblck(S ,T ,B)

7.5.3 Optimization correctness criterion for the RAE optimization

This section presents the formalization of a translation relation predicate TCCRAE on two IL”
programs, (S ,B) and (T ,B), a AEA result AAEA, and a corresponding block edges relation
CBEP . The parameters of TCCRAE relate to a RAE optimization and denote the following:

• (S ,B) denotes the source program of the RAE optimization.
• (T ,B) denotes the target program of the RAE optimization.
• AAEA is the result of the AEA with which was performed by the compiler prior to the REA

optimization with S as input,
• CBEP is a corresponding block edges relation which determines which blocks in the IL” pro-

grams (S ,B) and (T ,B) are corresponding.

Informally, TCCRAE(S ,T ,B ,AAEA,CBEP) holds true iff (T ,B) is a correct RAE optimization of
(S ,B) w.r.t. AAEA and CBEP .

In the following, we call the TCCRAE predicate an optimization correctness criterion for RAE
optimizations. In our implementation, the TCCRAE predicate is an instance of the optimization
correctness criterion OptCCO that was described in the overview of Layer 5 in Section 3.6

The rest of this section consists of three parts which are organized as follows.

• The first part gives formation rules for the set of relations over instruction pairs,
InstrTransRel_RAE, which is associated with the definition of the optimization correctness
criterion TCCRAE.

• The second part presents the definition of a function rae_transrel_instr which computes a
RAE optimization relation over instruction pairs (instr , instr ′) for two programs which are the
source and the target of a RAE optimization and a result of the AEA which was performed by
the compiler prior to this optimization.

• The third part presents the definition of the optimization correctness criterion TCCRAE itself.

7.5 SVF for RAE 195

We begin the presentation by introducing a set of translation relations over instruction pairs
InstrTransRel_RAE. Definition 7.83 gives formation rule for this set.

Definition 7.83.

InstrTransRel_RAE = P(Instruction× Instruction)

The second part of the formalization of the TCCRAE criteria comprises the definition of a
function rae_transrel_instr which computes a translation relation over instruction pairs for two
IL” program (S ,B) and (T ,B), an AEA result AAEA, a corresponding block edges relation
CBEP , a block bid , a block position pid , and a program point pc. The translation relation
rae_transrel_instr(S ,T ,B ,CBEP ,AAEA, bid , pid , pc) is defined as a union of eight disjoint sets
which arise from eight syntactic optimization patterns which are possible for a pair of blocks
which are declared as corresponding in (S ,B) and (T ,B) by the triple (bid , pid , pc). These sets
are computed by respective auxiliary functions presented below in Definitions 7.84, 7.85, 7.86,
7.87, 7.88, 7.89, 7.90, 7.91, and 7.92. The auxiliary functions have the same parameters as the
function rae_transrel_instr and make the following context assumptions these parameters:

1. The compiler performed the AEA on an IL program S . The result of this analysis is AAEA.
2. The compiler performed the AEA optimization on S . The result of this optimization is a target

program T .
3. The compiler generated a CFGB declaration B which is identical for both S and T , and all

blocks in the CFGB declared by B have the length equal one.
4. The compiler generated a corresponding block edges relation CBEP that defines, among other

things, which blocks in (S ,B) and (T ,B) are corresponding.
5. In both (S ,B) and (T ,B), there exists a program point pc which is allocated to a block

position pid which is included in a block bid .

Then, an auxiliary function computes a subset of the RAE optimization relation
InstrTransRel_RAE such that each pair (instr , instr ′) in this subset consists of two instructions
instr and instr ′ which are the pc-th instruction of S and the pc-th instruction of T , respectively,
and they satisfy a particular optimization pattern which is specified by the function.

Definition 7.84 defines a function rae_transrel_instr_case1 which computes a subset of a RAE
optimization relation for two IL” programs, (S ,B) and (T ,B), a AEA result AAEA, and a corre-
sponding block edges relation CBEP w.r.t. a pair of corresponding block positions in (S ,B) and
(T ,B) described by a block bid , a block position pid , and a program point pc. The following holds
for the relation rae_transrel_instr_case1(S ,T ,B ,CBEP ,AAEA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation consists of two assignments to a variable
which are equal, i.e. has the syntactic form (v :=e, v :=e).

2. In both (S ,B) and (T ,T), the program point pc is allocated to a block position pid which is
included by a block bid which has the length equal one.

3. The CFG’s of both S and T comprise an edge (pc, pc + 1), i.e. pc + 1 is the successor of pc in
both S and T .

4. In both (S ,B) and (T ,T), the program point pc+1 is allocated to a block position pid ′ which
is included by a block bid ′ which has the length equal one.

5. The blocks bid and bid ′ are declared as corresponding by the corresponding block edges relation
CBEP .

6. The available equation sets in tuples which are declared by AAEA for the program points
pc and pc + 1 are well-formed: the "gen" and the "kill" are consistent with the operational

196 7 Translation correctness criteria for particular optimizations

semantics of the assignment v :=e and the "in" and "out" sets are a proper solution of data
flow equations for the AEA defined for the program S .

7. The equation (v , e) is not available at the entry to the CFG node pc.

Definition 7.84.

rae_transrel_instr_case1 : Program×Program×BlckPosEnv ×CorrespBlockEdgePairSet

×AESetsEnv ×BlckId×BlckPosId× InstructionNr

→ InstrTransRel_RAE

rae_transrel_instr_case1(S ,T ,B ,CBEP ,AAEA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(v :=e, v :=e) | ∃ bid ′ pid ′ pc′ set gen kill in out gen ′ kill ′ in ′ out ′.

BP(pid) = Some(pid , bid , 1, 0, pc) ∧
BB(bid) = Some(pid) ∧
instrs!pc = (v :=e) ∧
instrs ′!pc = (v :=e) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
AAEA(pc) = Some(gen, kill , in, out) ∧
AAEA(pc′) = Some(gen ′, kill ′, in ′, out ′) ∧
gen = instr2gen(S , instrs!pc) ∧
kill = instr2kill(S , instrs!pc) ∧
in ⊆ prg2Uset(S) ∧
out = gen ∪ (in − kill) ∧
in ′ ⊆ out ∧
(v , e) ∈ in ∧
((bid , bid ′), (bid , bid ′), FTYPE) ∈ CBEP }

end

Definition 7.85 defines a function rae_transrel_instr_case2 which computes a subset of a RAE
optimization relation for two IL” programs, (S ,B) and (T ,B), a AEA result AAEA, and a corre-
sponding block edges relation CBEP w.r.t. a pair of corresponding block positions in (S ,B) and
(T ,B) described by a block bid , a block position pid , and a program point pc. The following holds
for the relation rae_transrel_instr_case2(S ,T ,B ,CBEP ,AAEA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation consists of an assignment to a variable and a
goto instruction which emulates a nop instruction, i.e. has the syntactic form (v :=e, goto(dst)).

2. In both (S ,B) and (T ,T), the program point pc is allocated to a block position pid which is
included by a block bid which has the length equal one.

3. The value of the destination dst in the goto instruction in the pair is equal pc + 1.
4. The CFG’s of both S and T comprise an edge (pc, pc + 1), i.e. pc + 1 is the successor of pc in

both S and T .
5. In both (S ,B) and (T ,T), the program point pc+1 is allocated to a block position pid ′ which

is included by a block bid ′ which has the length equal one.

7.5 SVF for RAE 197

6. The blocks bid and bid ′ are declared as corresponding by the corresponding block edges relation
CBEP .

7. The available equation sets in tuples which are declared by AAEA for the program points
pc and pc + 1 are well-formed: the "gen" and the "kill" are consistent with the operational
semantics of the assignment v :=e and the "in" and "out" sets are a proper solution of data
flow equations for the AEA defined for the program S .

8. The equation (v , e) is available at the entry to the CFG node pc.

Definition 7.85.

rae_transrel_instr_case2 : Program×Program×BlckPosEnv ×CorrespBlockEdgePairSet

×AESetsEnv ×BlckId×BlckPosId× InstructionNr

→ InstrTransRel_RAE

rae_transrel_instr_case2(S ,T ,B ,CBEP ,AAEA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(v :=e, goto(pc′)) | ∃ bid ′ pid ′ pc′ set gen kill in out gen ′ kill ′ in ′ out ′.

BP(pid) = Some(pid , bid , 1, 0, pc) ∧
BB(bid) = Some(pid) ∧
instrs!pc = (v :=e) ∧
instrs ′!pc = (goto(pc′)) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
AAEA(pc) = Some(gen, kill , in, out) ∧
AAEA(pc′) = Some(gen ′, kill ′, in ′, out ′) ∧
gen = instr2gen(S , instrs!pc) ∧
kill = instr2kill(S , instrs!pc) ∧
in ⊆ prg2Uset(S) ∧
out = gen ∪ (in − kill) ∧
in ′ ⊆ out ∧
(v , e) ∈ in ∧
((bid , bid ′), (bid , bid ′), FTYPE) ∈ CBEP }

end

Definition 7.86 defines a function rae_transrel_instr_case3 which computes a subset of a RAE
optimization relation for two IL” programs, (S ,B) and (T ,B), a AEA result AAEA, and a corre-
sponding block edges relation CBEP w.r.t. a pair of corresponding block positions in (S ,B) and
(T ,B) described by a block bid , a block position pid , and a program point pc. The following holds
for the relation rae_transrel_instr_case3(S ,T ,B ,CBEP ,AAEA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation has the syntactic form (a[i]:=e, a[i]:=e).
2. In both (S ,B) and (T ,T), the program point pc is allocated to a block position pid which is

included by a block bid which has the length equal one.
3. The CFG’s of both S and T comprise an edge (pc, pc + 1), i.e. pc + 1 is the successor of pc in

both S and T .

198 7 Translation correctness criteria for particular optimizations

4. In both (S ,B) and (T ,T), the program point pc+1 is allocated to a block position pid ′ which
is included by a block bid ′ which has the length equal one.

5. The blocks bid and bid ′ are declared as corresponding by the corresponding block edges relation
CBEP .

6. The available equation sets in tuples which are declared by AAEA for the program points
pc and pc + 1 are well-formed: the "gen" and the "kill" are consistent with the operational
semantics of the assignment a[i]:=e and the "in" and "out" sets are a proper solution of data
flow equations for the AEA defined for the program S .

Definition 7.86.

rae_transrel_instr_case3 : Program×Program×BlckPosEnv ×CorrespBlockEdgePairSet

×AESetsEnv ×BlckId×BlckPosId× InstructionNr

→ InstrTransRel_RAE

rae_transrel_instr_case3(S ,T ,B ,CBEP ,AAEA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(a[i]:=e, a[i]:=e) | ∃ bid ′ pid ′ pc′ set gen kill in out gen ′ kill ′ in ′ out ′.

BP(pid) = Some(pid , bid , 1, 0, pc) ∧
BB(bid) = Some(pid) ∧
instrs!pc = (a[i]:=e) ∧
instrs ′!pc = (a[i]:=e) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
AAEA(pc) = Some(gen, kill , in, out) ∧
AAEA(pc′) = Some(gen ′, kill ′, in ′, out ′) ∧
gen = instr2gen(S , instrs!pc) ∧
kill = instr2kill(S , instrs!pc) ∧
in ⊆ prg2Uset(S) ∧
out = gen ∪ (in − kill) ∧
in ′ ⊆ out ∧
((bid , bid ′), (bid , bid ′), FTYPE) ∈ CBEP }

end

Definition 7.87 defines a function rae_transrel_instr_case4 which computes a subset of a RAE
optimization relation for two IL” programs, (S ,B) and (T ,B), a AEA result AAEA, and a corre-
sponding block edges relation CBEP w.r.t. a pair of corresponding block positions in (S ,B) and
(T ,B) described by a block bid , a block position pid , and a program point pc. The following holds
for the relation rae_transrel_instr_case4(S ,T ,B ,CBEP ,AAEA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation has the syntactic form (a[v]:=e, a[v]:=e).
2. In both (S ,B) and (T ,T), the program point pc is allocated to a block position pid which is

included by a block bid which has the length equal one.
3. The CFG’s of both S and T comprise an edge (pc, pc + 1), i.e. pc + 1 is the successor of pc in

both S and T .

7.5 SVF for RAE 199

4. In both (S ,B) and (T ,T), the program point pc+1 is allocated to a block position pid ′ which
is included by a block bid ′ which has the length equal one.

5. The blocks bid and bid ′ are declared as corresponding by the corresponding block edges relation
CBEP .

6. The available equation sets in tuples which are declared by AAEA for the program points
pc and pc + 1 are well-formed: the "gen" and the "kill" are consistent with the operational
semantics of the assignment a[v]:=e and the "in" and "out" sets are a proper solution of data
flow equations for the AEA defined for the program S .

Definition 7.87.

rae_transrel_instr_case4 : Program×Program×BlckPosEnv ×CorrespBlockEdgePairSet

×AESetsEnv ×BlckId×BlckPosId× InstructionNr

→ InstrTransRel_RAE

rae_transrel_instr_case4(S ,T ,B ,CBEP ,AAEA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(a[v]:=e, a[v]:=e) | ∃ bid ′ pid ′ pc′ set gen kill in out gen ′ kill ′ in ′ out ′.

BP(pid) = Some(pid , bid , 1, 0, pc) ∧
BB(bid) = Some(pid) ∧
instrs!pc = (a[v]:=e) ∧
instrs ′!pc = (a[v]:=e) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
AAEA(pc) = Some(gen, kill , in, out) ∧
AAEA(pc′) = Some(gen ′, kill ′, in ′, out ′) ∧
gen = instr2gen(S , instrs!pc) ∧
kill = instr2kill(S , instrs!pc) ∧
in ⊆ prg2Uset(S) ∧
out = gen ∪ (in − kill) ∧
in ′ ⊆ out ∧
((bid , bid ′), (bid , bid ′), FTYPE) ∈ CBEP }

end

Definition 7.88 defines a function rae_transrel_instr_case5 which computes a subset of a RAE
optimization relation for two IL” programs, (S ,B) and (T ,B), a AEA result AAEA, and a corre-
sponding block edges relation CBEP w.r.t. a pair of corresponding block positions in (S ,B) and
(T ,B) described by a block bid , a block position pid , and a program point pc. The following holds
for the relation rae_transrel_instr_case5(S ,T ,B ,CBEP ,AAEA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation has the syntactic form (printi(e), printi(e)).
2. In both (S ,B) and (T ,T), the program point pc is allocated to a block position pid which is

included by a block bid which has the length equal one.
3. The CFG’s of both S and T comprise an edge (pc, pc + 1), i.e. pc + 1 is the successor of pc in

both S and T .

200 7 Translation correctness criteria for particular optimizations

4. In both (S ,B) and (T ,T), the program point pc+1 is allocated to a block position pid ′ which
is included by a block bid ′ which has the length equal one.

5. The blocks bid and bid ′ are declared as corresponding by the corresponding block edges relation
CBEP .

6. The available equation sets in tuples which are declared by AAEA for the program points
pc and pc + 1 are well-formed: the "gen" and the "kill" are consistent with the operational
semantics of the printi instruction printi(e) and the "in" and "out" sets are a proper solution
of data flow equations for the AEA defined for the program S .

Definition 7.88.

rae_transrel_instr_case5 : Program×Program×BlckPosEnv ×CorrespBlockEdgePairSet

×AESetsEnv ×BlckId×BlckPosId× InstructionNr

→ InstrTransRel_RAE

rae_transrel_instr_case5(S ,T ,B ,CBEP ,AAEA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(printi(e), printi(e)) | ∃ bid ′ pid ′ pc′ set gen kill in out gen ′ kill ′ in ′ out ′.

BP(pid) = Some(pid , bid , 1, 0, pc) ∧
BB(bid) = Some(pid) ∧
instrs!pc = (printi(e)) ∧
instrs ′!pc = (printi(e)) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set) ∧
(bid , OTYPE) ∈ set ∧
AAEA(pc) = Some(gen, kill , in, out) ∧
AAEA(pc′) = Some(gen ′, kill ′, in ′, out ′) ∧
gen = instr2gen(S , instrs!pc) ∧
kill = instr2kill(S , instrs!pc) ∧
in ⊆ prg2Uset(S) ∧
out = gen ∪ (in − kill) ∧
in ′ ⊆ out ∧
((bid , bid ′), (bid , bid ′), OTYPE) ∈ CBEP }

end

Definition 7.89 defines a function rae_transrel_instr_case6 which computes a subset of a RAE
optimization relation for two IL” programs, (S ,B) and (T ,B), a AEA result AAEA, and a corre-
sponding block edges relation CBEP w.r.t. a pair of corresponding block positions in (S ,B) and
(T ,B) described by a block bid , a block position pid , and a program point pc. The following holds
for the relation rae_transrel_instr_case6(S ,T ,B ,CBEP ,AAEA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation has the syntactic form
(branch(e, dst), branch(e, dst)).

2. In both (S ,B) and (T ,T), the program point pc is allocated to a block position pid which is
included by a block bid which has the length equal one.

3. The CFG’s of both S and T comprise edges (pc, pc + 1) and (pc, dst), i.e. pc + 1 and dst are
the successors of pc in both S and T .

7.5 SVF for RAE 201

4. In both (S ,B) and (T ,T), the program point pc+1 is allocated to a block position pid ′ which
is included by a block bid ′ which has the length equal one.

5. In both (S ,B) and (T ,T), the program point dst is allocated to a block position pid ′′ which
is included by a block bid ′′ which has the length equal one.

6. The blocks bid and bid ′ are declared as corresponding by the corresponding block edges relation
CBEP .

7. The blocks bid and bid ′′ are declared as corresponding by the corresponding block edges
relation CBEP .

8. The available equation sets in tuples which are declared by AAEA for the program points pc,
pc + 1, and dst are well-formed: the "gen" and the "kill" are consistent with the operational
semantics of the branch instruction branch(e, dst) and the "in" and "out" sets are a proper
solution of data flow equations for the AEA defined for the program S .

202 7 Translation correctness criteria for particular optimizations

Definition 7.89.

rae_transrel_instr_case6 : Program×Program×BlckPosEnv ×CorrespBlockEdgePairSet

×AESetsEnv ×BlckId×BlckPosId× InstructionNr

→ InstrTransRel_RAE

rae_transrel_instr_case6(S ,T ,B ,CBEP ,AAEA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(branch(e, dst), branch(e, dst)) |
∃ bid ′ pid ′ pc′ set gen kill in out gen ′ kill ′ in ′ out ′ gen ′′ kill ′′ in ′′ out ′′.

BP(pid) = Some(pid , bid , 1, 0, pc) ∧
BB(bid) = Some(pid) ∧
instrs!pc = (branch(e, dst)) ∧
instrs ′!pc = (branch(e, dst)) ∧
pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set ′) ∧
(bid , FTYPE) ∈ set ′ ∧
succBP(pid , dst) = Some(pid ′′) ∧
BP(pid′′) = Some(pid ′′, bid ′′, 1, 0, dst) ∧
BB(bid ′′) = Some(pid ′′) ∧
predB(pid′′) = Some(set ′′) ∧
(bid , FTYPE) ∈ set ′′ ∧
AAEA(pc) = Some(gen, kill , in, out) ∧
gen = instr2gen(S , instrs!pc) ∧
kill = instr2kill(S , instrs!pc) ∧
in ⊆ prg2Uset(S) ∧
out = gen ∪ (in − kill) ∧
AAEA(pc′) = Some(gen ′, kill ′, in ′, out ′) ∧
in ′ ⊆ out ∧
AAEA(dst) = Some(gen ′′, kill ′′, in ′′, out ′′) ∧
in ′′ ⊆ out ∧
((bid , bid ′), (bid , bid ′), FTYPE) ∈ CBEP ∧
((bid , bid ′′), (bid , bid ′′), FTYPE) ∈ CBEP }

end

Definition 7.90 defines a function rae_transrel_instr_case7 which computes a subset of a RAE
optimization relation for two IL” programs, (S ,B) and (T ,B), a AEA result AAEA, and a corre-
sponding block edges relation CBEP w.r.t. a pair of corresponding block positions in (S ,B) and
(T ,B) described by a block bid , a block position pid , and a program point pc. The following holds
for the relation rae_transrel_instr_case7(S ,T ,B ,CBEP ,AAEA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation has the syntactic form (goto(dst), goto(dst)).
2. In both (S ,B) and (T ,T), the program point pc is allocated to a block position pid which is

included by a block bid which has the length equal one.
3. The CFG’s of both S and T comprise an edge (pc, dst), i.e. dst is the successor of pc in both

S and T .

7.5 SVF for RAE 203

4. In both (S ,B) and (T ,T), the program point dst is allocated to a block position pid ′ which
is included by a block bid ′ which has the length equal one.

5. The blocks bid and bid ′ are declared as corresponding by the corresponding block edges relation
CBEP .

6. The available equation sets in tuples which are declared by AAEA for the program points pc
and dst are well-formed: the "gen" and the "kill" are consistent with the operational semantics
of the goto instruction goto(dst) and the "in" and "out" sets are a proper solution of data
flow equations for the AEA defined for the program S .

Definition 7.90.

rae_transrel_instr_case7 : Program×Program×BlckPosEnv ×CorrespBlockEdgePairSet

×AESetsEnv ×BlckId×BlckPosId× InstructionNr

→ InstrTransRel_RAE

rae_transrel_instr_case7(S ,T ,B ,CBEP ,AAEA, bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(goto(dst), goto(dst)) | ∃ bid ′ pid ′ pc′ set gen kill in out gen ′ kill ′ in ′ out ′.

BP(pid) = Some(pid , bid , 1, 0, pc) ∧
BB(bid) = Some(pid) ∧
instrs!pc = (goto(dst)) ∧
instrs ′!pc = (goto(dst)) ∧
succBP(pid , dst) = Some(pid ′) ∧
BP(pid′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid′) = Some(set ′) ∧
(bid , FTYPE) ∈ set ′ ∧
AAEA(pc) = Some(gen, kill , in, out) ∧
gen = instr2gen(S , instrs!pc) ∧
kill = instr2kill(S , instrs!pc) ∧
in ⊆ prg2Uset(S) ∧
out = gen ∪ (in − kill) ∧
AAEA(dst) = Some(gen ′, kill ′, in ′, out ′) ∧
in ′ ⊆ out ∧
((bid , bid ′), (bid , bid ′), FTYPE) ∈ CBEP }

end

Definition 7.91 defines a function rae_transrel_instr_case8 which computes a subset of a RAE
optimization relation for two IL” programs, (S ,B) and (T ,B), w.r.t. a pair of corresponding block
positions in (S ,B) and (T ,B) described by a block bid , a block position pid , and a program point
pc. The following holds for the relation rae_transrel_instr_case8(S ,T ,B ,CBEP ,AAEA, bid , pid , pc):

1. Each instruction pair (instr , instr ′) in this relation has the syntactic form (exit, exit).
2. In both (S ,B) and (T ,T), the program point pc is allocated to a block position pid which is

included by a block bid which has the length equal one.

204 7 Translation correctness criteria for particular optimizations

Definition 7.91.

rae_transrel_instr_case8 : Program×Program×BlckPosEnv ×BlckId×BlckPosId

× InstructionNr → InstrTransRel_RAE

rae_transrel_instr_case8(S ,T ,B , bid , pid , pc) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

{(exit, exit) | ∃ bid ′ pid ′ pc′ set gen kill in out gen ′ kill ′ in ′ out ′ gen ′′ kill ′′ in ′′ out ′′.

BP(pid) = Some(pid , bid , 1, 0, pc) ∧
BB(bid) = Some(pid) ∧
instrs!pc = exit ∧
instrs ′!pc = exit }

end

Definition 7.92 defines a function rae_transrel_instr which computes the RAE optimization
relation for two IL” programs, (S ,B) and (T ,B), a AEA result AAEA, and a correspond-
ing block edges relation CBEP w.r.t. a pair of corresponding block positions in (S ,B) and
(T ,B) described by a block bid , a block position pid , and a program point pc. As explained
in the motivation to the defintion of the function rae_transrel_instr, the optimization relation
rae_transrel_instr(S ,T ,B ,AAEA,CBEP , bid , pid , pc) is defined as a union of eight disjoint sets
which arise from eight syntactic patterns.

Definition 7.92.

rae_transrel_instr : Program×Program×BlckPosEnv ×AESetsEnv

×CorrespBlockEdgePairSet×BlckId×BlckPosId× InstructionNr

→ InstrTransRel_RAE

rae_transrel_instr(S ,T ,B ,AAEA,CBEP , bid , pid , pc) =

rae_transrel_instr_case1(S ,T ,B ,AAEA,CBEP , bid , pid , pc) ∪
rae_transrel_instr_case2(S ,T ,B ,AAEA,CBEP , bid , pid , pc) ∪
rae_transrel_instr_case3(S ,T ,B ,AAEA,CBEP , bid , pid , pc) ∪
rae_transrel_instr_case4(S ,T ,B ,AAEA,CBEP , bid , pid , pc) ∪
rae_transrel_instr_case5(S ,T ,B ,AAEA,CBEP , bid , pid , pc) ∪
rae_transrel_instr_case6(S ,T ,B ,AAEA,CBEP , bid , pid , pc) ∪
rae_transrel_instr_case7(S ,T ,B ,AAEA,CBEP , bid , pid , pc) ∪
rae_transrel_instr_case8(S ,T ,B , bid , pid , pc)

Finally, with the definitions of the conformance predicate confaesets and the function
rae_transrel_instr, we can give the definition of the optimization correctness criterion TCCRAE on
two IL programs, S and T , a CFGB declaration B , a AEA result AAEA, a corresponding block
edges relation CBEP which formalizes what does it mean that T is a correct RAE optimization
of S w.r.t. B , AAEA, and CBEP .

The definition of the optimization correctness criterion TCCRAE makes the context assumptions
about its parameters which are analogous to assumptions made by the definition of the function
rae_transrel_instr:

1. The compiler performed the AEA on an IL program S . The result of this analysis is AAEA.
2. The compiler performed the AEA optimization on S . The result of this optimization is a target

program T .

7.5 SVF for RAE 205

3. The compiler generated a CFGB declaration B which is identical for both S and T , and all
blocks in the CFGB declared by B have the length equal one.

4. The compiler generated a corresponding block edges relation CBEP that defines, among other
things, which blocks in (S ,B) and (T ,B) are corresponding.

Analogously to the definitions of the criteria TCCCF, TCCDAE, and TCCNI, the definition of
TCCRAE consists of two conjuncts: The first conjuncts formalizes a well-formedness criterion for
the entry block of the CFGB declaration (T ,B) and the AEA result AAEA w.r.t. the source
program S . The second conjunct formalizes an optimization correctness criterion on the set of
pairs consisting of corresponding blocks in IL” programs (S ,B) and (T ,B).

Definition 7.93 defines a function TCC_RAE_entry_block which checks if the entry block of
the IL” program (S ,B) fulfills the following well-formedness criteria:

1. The entry block of a CFGB declaration B , bid0, includes the entry block position of B , pid0,
and has the length equal one.

2. The program point 0 is allocated to pid0.
3. The CFGB declaration declares bid0 as one of predecessors of bid0.
4. The relation CBEP declares that both (S ,B) and (T ,B) have to declare the block edges

(bid0, bid0) and (bid0, bid0).
5. The available equation sets in tuples which are declared by AAEA for the program point 0

are well-formed: the "gen" and the "kill" are consistent with the operational semantics of the
0-th instruction of S . The "in" set is initialized as empty set and the "out" set is initialized
as follows.

out = gen ∪ (in − kill)
= instr2gen(S , instrs!0) ∪ ({} − instr2kill(S , instrs!0))
= instr2gen(S , instrs!0)

6. The initial state of the program S , mapof(I), conforms with the AEA result AAEA w.r.t. the
pair of program points (0, 0).

Definition 7.93.

TCC_RAE_entry_block : Program×BlckPosEnv ×AESetsEnv ×CorrespBlockEdgePairSet

→ Bool

TCC_RAE_entry_block(S ,B ,AAEA,CBEP) =

let

((vds, instrs), I) = S ;

(pid0,BP ,BB , succBP , predB) = B

in

∃ bid0 set gen kill , out in.

BP(pid0) = Some(pid0, bid0, 1, 0, 0) ∧
predB(pid0) = Some(set) ∧
(bid0, FTYPE) ∈ set ∧
((bid0, bid0), (bid0, bid0), FTYPE) ∈ CBEP ∧
gen = instr2gen(S , instrs!0) ∧
kill = instr2kill(S , instrs!0) ∧
in = {} ∧
out = instr2gen(S , instrs!0) ∧
AAEA(0) = Some(gen, kill , in, out) ∧
confaesets(AAEA, 0, 0, mapof(I)

end

206 7 Translation correctness criteria for particular optimizations

Definition 7.94 defines the predicate TCC_RAE_normal_block on a source program S , a target
program T , a CFGB declaration B , a AEA result AAEA, a corresponding block edges relation
CBEP , and a block bid which checks if the block bid in the CFGB (S ,B) and the block bid
in the CFGB (T ,B) fulfill the following optimization correctness criterion for the block pair
(bid , bid): TCC_RAE_normal_block(S ,T ,B ,AAEA,CBEP , bid) holds true iff there exist pc-th
program points pc in S and T ; and a block positions pid in (S ,B) and (T ,B) such that pc
is allocated to pid , pid is included by the block bid , and the pair (instrs!pc, instrs ′!pc) consist-
ing of the pc-th instructions of S and T , respectively, are in the RAE optimization relation
rae_transrel_instr(S ,T ,B ,AAEA,CBEP , bid , pid , pc).

Definition 7.94.

TCC_RAE_normal_block : Program×Program×BlckPosEnv ×AESetsEnv

×CorrespBlockEdgePairSet×BlckId → Bool

TCC_RAE_normal_block(S ,T ,B ,AAEA,CBEP , bid) =

let

((vds, instrs), I) = S ;

((vds ′, instrs ′), I ′) = T ;

(pid0,BP ,BB , succBP , predB) = B

in

∃ pid pc.

BB(bid) = Some(pid) ∧
BP(pid) = Some(pid , bid , 1, 0, pc)) ∧
(instrs!pc, instrs ′!pc) ∈ rae_transrel_instr(S ,T ,B ,AAEA,CBEP , bid , pid , pc)

end

Definition 7.95 defines our optimization correctness criterion for the RAE optimization on
a source program S , a target program T , a CFGB declaration B , a AEA result AAEA, and
corresponding block edges relation CBEP which checks if T is a correct RAE optimization of
S w.r.t. V B, CBEP , and AAEA. According to the definition of TCCRAE, an IL program T is a
correct RAE optimization of S iff

1. the entry blocks of IL” programs (S ,B) and (T ,B) fulfill the well-formedness criterion
TCC_RAE_entry_block w.r.t. AAEA and CBEP .

2. each block in (S ,B) and (T ,B) fulfills the criterion TCC_RAE_normal_block(S ,T ,B ,AAEA,CBEP).

Definition 7.95.

TCCRAE : Program×Program×BlckPosEnv ×AESetsEnv ×CorrespBlockEdgePairSet

→ Bool

TCCRAE(S ,T ,B ,AAEA,CBEP) = TCC_RAE_entry_block(S ,B ,AAEA,CBEP) ∧
∀ bid . TCC_RAE_normal_block(S ,T ,B ,AAEA,CBEP , bid)

7.5.4 Verification of the optimization correctnes criterion TCCRAE

This section presents the theorems which we proved in order to verify the specification of the
optimization correctness criterion TCCRAE presented in the previous section. The main result in
this section is a theorem which can be used directly in translation certificates generated by our
compiler.

To verify the specification of the criterion TCCRAE, we proved Theorem 7.96 which is a state-
ment about a source and a target programs of a concrete RAE optimization, S and T , a program

7.5 SVF for RAE 207

type Φ, a CFGB declaration B , a corresponding block edges relation CBEP , and a result of the
AE analysis which was performed on S prior to that optimization, AAEA. The statement of the
theorem says that if S and T are well-typed w.r.t. Φ; and B is well-formed w.r.t. S and T ; and
S and T fulfill the optimization correctness criterion TCCRAE w.r.t. B , CBEP , and AAEA, then
S and T fulfill the optimization independent translation correctness TCC w.r.t. the bisimulation
relation bisimrelRAE(S ,T ,B ,CBEP ,AAEA).

Theorem 7.96.

wtp(S , Φ) ∧ wtp(T , Φ) ∧ wfB(S ,B) ∧ wfB(T ,B) ∧ TCCRAE(S ,T ,B ,AAEA,CBEP)
=⇒
TCC(S ,T , bisimrelRAE(S ,T ,B ,CBEP ,AAEA))

!

Finally, we present the main result in this section, a theorem which is a statement about a
source and a target programs of a concrete RAE optimization, S and T , a program type Φ, a
CFGB declaration B , a corresponding block edges relation CBEP , and a result of the AEA which
was performed on S prior to that optimization, AAEA. The statement of the theorem says that
if S and T are well-typed w.r.t. Φ; and B is well-formed w.r.t. S and T ; and S and T fulfill the
optimization correctness criterion TCCRAE w.r.t. B , CBEP , and ALA, then S and T fulfill the
translation correctness predicate corrTrans.

Theorem 7.97.

wtp(S , Φ) ∧ wtp(T , Φ) ∧ wfB(S ,B) ∧ wfB(T ,B) ∧ TCCRAE(S ,T ,B ,AAEA,CBEP)
=⇒
corrTrans(S ,T)

Proof.

wtp(S , Φ) ∧ wtp(T , Φ) ∧ wfB(S ,B) ∧ wfB(T ,B) ∧ TCCRAE(S ,T ,B ,AAEA,CBEP)

=⇒ [by application of Theorem 7.96]

TCC(S ,T , bisimrelRAE(S ,T ,B ,CBEP ,AAEA))

=⇒ [by application of the existential introduction rule]

∃R.TCC(S ,T ,R) .

=⇒ [by application of Theorem 6.44]

corrTrans(S ,T)

!

Theorem 7.97 is an instance of the corollary (I) in Section 3.6 and is directly applicable in
translation certificates which are generated by the compiler for each RAE optimization, see the
end of Section 3.6 for a general application scheme of this theorem.

Chapter 8

Evaluation

This chapter presents evaluation of our FTV system. The evaluation is split into the following
aspects the SVF:

1. the size of proof scripts generated by our compiler,
2. perfomance of proof script checking,
3. suitability of our SVF for certifying further optimizations.

8.1 Proof script size

This section presents evaluation of the size of proof scripts generated by our compiler front-end.
Our evaluation is based on the description of the proof script layout in Sections 3.7 and 3.6.
As aforementioned in these sections, Layer 5 of the SVF provides for each optimization O an
optimization correctness criterion TCCO and an optimization correctness theorem that give raise
to a uniform proof script layout for the optimization O. According to this layout, a proof script
with the correctness proof of a concrete optimization O comprises thirteen parts that are divided
in two sections: a constant definition section and a lemma section. The constant definition section
comprises the following parts:

Part 1.: provides constant definition of the source program S of the optimization O,
Part 2.: provides constant definition of the target program T of the optimization O,
Part 3.: provides constant definition of a program type ΦS which is the program type of S ,
Part 4.: provides constant definition of a program type ΦT which is the program type of T .
Part 5.: provides constant definition of a CFGB declaration BS for the program S .
Part 6.: provides constant definition of a CFGB declaration BT for the program T .
Part 7.: provides constant definition of a result of data flow analysis AO,

It holds for all optimizations supported by our SVF but the NI optimization that the source and
the target program types ΦS and ΦT are equal. Therefore, the compiler generates proof scripts for
these optimizations with Parts 3. and 4. merged into one part providing the constant definition
of a program type Φ which is declared for both S and T . The same holds for the source and the
target CFGB declarations BS and BT which are equal for all optimizations but the NI optimization.
Therefore, the compiler generates proof scripts for these optimizations with Parts 5. and 6. merged
into one part providing the constant definition of a CFGB declaration B which is declared for both
S and T . Futher, it holds that Part 7. significantly differs from optimization to optimization and
depends on the parameters of the optimization correctness criterion TCCO. The part comprises
the following for particular optimizations:

For the CF optimization: the constant definition of a CPA result ACPA,

210 8 Evaluation

For the DAE optimization: the constant definition of a LA result ALA,
For the NI optimization: the constant definition of a corresponding block edge relation CBEP ,
For the RAI optimization: the constant definition of a LA result ALA,
For the RAE optimization: the constant definitions of a corresponding block edge relation CBEP

and a AEA result AAEA,

In the following, we estimate the order of the length of the constant definition part of a proof
script as a function of the length of the instruction list of S , n, and the number of variables of
S , m. The length of the instruction lists of S and T are equal for all optimizations but the NI
optimization which inserts a limited number of nop instructions k which is negligible. Therefore,
to simplify the estimation, we assume that the length of the instruction lists of S and T are equal
for all optimizations and that the number of variables m is less than n.

The constant definition of an IL program S = ((vds, instrs), I) comprises four constant defini-
tions:

1. The constant definition of the variable declaration list vds whose length is a function of the
number of variables m. Each variable declaration tuple (v , τ) is defined in one proof script
line. Therefore, the size of (v , τ) is equal 1 and the size of the constant definition of vds is
equal 1 ∗m = m

2. The constant definition of the instruction list instrs whose length is a function of the length
of instrs. Each instruction instr is defined in one proof script line. Therefore, the size of instrs
is equal 1 and the size of the constant definition of instrs is equal 1 ∗ n = n

3. The constant definition of the input list I whose length is a function of the number of variables
m. Each pair (v , val) in the input list I is defined in one proof script line. Therefore, the size
of (v , val) is equal 1 and the size of the input list I is equal 1 ∗m = m

4. The constant definition of the program S is given in one proof script line:

S = ((vds, instrs), I)

Therefore, the size of this constant definition is equal 1.

Altogether, the size of the constant definition of S has order of m + n + m + 1 = 2 ∗m + n + 1 <
3n+1 ∈ O(n) and the size of S and T together also has order of (3n+1)+(3n+1) = 6n+2 ∈ O(n)
As we assumed that the length of instruction lists in S and T are equal, the size of the constant
definition of T also has order of O(n).

The length of the constant definition of a program type Φ is a function of the number of
variables m. Each type identifier τ is defined in one proof script line. Therefore, the size of τ is
equal 1 and the size of the constant definition of Φ has order of 1 ∗m = m < n ∈ O(n).

The constant definition of a CFGB declaration B = (pid0,BP ,BB , succBP , predB) comprises
five constant definitions.

1. The constant definition of the block position descriptor environment BP has the form

BP = mapof(l)

where l is a list of pairs (pid , bpos) consisting of a block position identifier pid and a block
position descriptor bpos. Each pair (pid , bpos) is defined in one proof script line and the length
of l is a function of the number of block positions. The number of block positions is equal n
for all optimizations with exception of the NI optimization where this number is equal n + k.
Therefore, the size of (pid , bpos) is equal 1 and the size of the constant definition of BP is
equal 1 ∗ (n + k) = n + k

2. The constant definitions of BB , succBP , and predB has forms, which are analogous to the one
of BP . Therefore, it can be roughly estimated that they have the same sizes as BP .

8.1 Proof script size 211

3. The constant definition of the CFGB declaration is given in one proof script line:

B = (pid0,BP ,BB , succBP , predB)

Therefore, the size of this constant definition is equal 1.

Altogether, the size of the constant definition of B has order of 4 ∗ (n + k) + 1 = 4n + 4k + 1 <
8n + 1 ∈ O(n) and the size of BS and BT together has order of 2 ∗ (8n + 1) = 16n + 2 ∈ O(n)

The constant definition of a data flow analysis result AO has the form

AO = mapof(l)

where l is a list of data flow informations which were determined by the compiler for each program
point of S . Each data flow information is defined in one proof script line and the length of l is
equal to the length of the instruction list of S , n. Therefore, the size of the constant definition of
A has order 1 ∗ n = n ∈ O(n)

Altogether, the size of the constant definition part of a proof script has order O(n) + O(n) +
O(n) + O(n) = 4 ∗ O(n) ∈ O(4n) = O(n). Thus, the size of this part of the proof script is a
linear function of the length of the instruction lists of the source and the target programs which
is comparable to the size of semantic abstractions of programs in the traditional approaches to
certifying compilers like the PCC and the TV.

Now, we estimate the size order of the lemma section of a proof script as a function of the length
of the instruction list of S , n, and the number of variables of S , m. To simplify the estimation, we
assume that the size of one lemma has order of O(1). This assumption follows from the following
facts:

• It holds for each lemma that its statement is written in one proof script line.
• Each lemma is proved by a tactic call that is written in one proof script line.
• Each tactic call line is followed by two proof script lines that close the proof and call an ML

function that updates an appropriate lookup table with lemma names.

The lemma section of the proof script comprises the following parts:

Part 8.: provides a sequence of lemmas (lookup lemmas) proving an equation of the form:
instrs!pc = instr , where instrs and instr are a instruction list and and a instruction in the
program S or the program T .

Part 9.: provides a sequence of lookup lemmas proving an equation of the form: BP(pid) =
Some(bpos), where BP , pid and bpos are a block position descriptor environment defined in
the constant definition part of the proof script, a block position identifier, and a block position
descriptor, respectively.

Parts 10. through 12.: provide sequences of lookup lemmas proving equations for the remaining
mappings of the block position environment BS and BT . The forms of those equations are
analogous to those in the previous part.

Part 13.: provides a sequence of lookup lemmas proving an equation of the form: AO(pc) =
Some(x), where AO, pc and x are a result of data flow analysis defined in the constant definition
part of the proof script, a program point , and a data flow information which was determined
by the compiler for the program point pc, respectively.

Part 14.: provides proof of the predicate wtp(S , ΦS),
Part 15.: provides proof of the predicate wtp(T , Φt),
Part 16.: provides proof of the predicate wfB(S ,BS),
Part 17.: provides proof of the predicate wfB(T ,BT),
Part 18.: provides proof of the predicate TCCO((S ,BS), (T ,BT),AO),

212 8 Evaluation

Part 19.: provides proof of the predicate corrTrans(S ,T).

As Part 8. comprises n lookup lemmas for S and n lookup lemmas for T , the size of Part 8.
has order of O(n) + O(n) = O(n).

Analogously, the sizes of Parts 9. through 13. have orders of O(n), respectively.
The predicates in Parts 14. through 18. are proved in single lemmas. Thus, the size of each of

them has order of O(1),
The size of Part 18. has order of O(n). We exemplify the estimation by the optimization cor-

rectness criterion TCCCF, cf. Definition 7.25. The definition of TCCCF has the form of a conjunction
P ∧Q. The first conjunct, P , is

TCC_CF_entry_block(B ,ACPA, I)

which is proved in a single lemma. The second conjunct, Q, is

∀ s bid . TCC_CF_normal_block(S ,T ,B ,ACPA, s, bid)

where the ∀-quantified variable bid is a block identifier. This predicate is proved in n+1 lemmas.
n lemmas prove n cases of bid and one lemma proves Q by cases over bid . Therefore, the size of
Part 18. has order of (O(n) ∗O(1)) = O(n).

Part 19. contains a single lemma whose statement is the predicate corrTrans(S ,T). Therefore,
the size of Part 19. has order of O(1).

Altogether, the size of the lemma section of a proof script has order of

O(n)+O(n)+O(n)+O(n)+O(n)+O(n)+O(1)+O(1)+O(1)+O(1)+O(1)+O(n)+O(1) = O(n) .

The size order of this section is the result of the trade-off decision between the small proof script
size and facility of inspection. The former makes our approach interesting for real life applications.
However, it turned out during the work on the SVF that debugging complex tactics proving
complex predicates is extremely time consuming. Therefore, our tactics applied in proof scripts
are the result of some experimentation and design decisions:

• Well-typedness of S and T is proved in single lemmas in Parts 14. and 15.. The lemmas are
proved by single tactic calls which do not apply any auxiliary lookup lemmas proved in the
script.

• Well-formedness of BS and BT is proved in single lemmas in Parts 16. and 17.. The lemmas
are proved by single tactic calls which apply auxiliary lookup lemmas proved in the script.

• The lemma proving optimization correctness criterion is proved in O(n) lemmas in Part 18..
Each of these is proved by single tactic calls which apply auxiliary lookup lemmas proved in
the script.

Further, it turned out that complex predicates proved in single lemma by a single tactic call
tend to get a bottleneck during the proof checking. This results from the fact that the size of the
proof state which has to be managed by the theorem prover grows quadratically with the size of
the program. We anticipate that the successor FTV systems will split lemmas in the proof script
in a large number of small auxiliary lemmas such that the theorem prover never has to manage
large proof states during the proofs.

Concluding this section, we note that our implementation of tactics proving well-typedness in
the proof script sections 14. and 15. demonstrates that within our approach there exists, at least
potentially, a possibility to generate proof scripts with the lemma part of the size which has order
of O(1).

8.2 Performance 213

8.2 Performance

This section presents the evaluation of efficiency of checking of translation certificates.
In order to evaluate efficiency, we conducted two tests:
The aim of the first test was to investigate the overall time needed to check translation certifi-

cates for individual optimizations. The table in Figure 8.1 shows the runtimes1 required to verify
translation certificates generated by our compiler front-end for a program example_in_thesis
that is a running example in this thesis and four other programs: insert takes an integer array
a, an array index i, and integer x, and replaces the array element a[i] by x. fibonacci_number
takes an integer n and computes the n-th fibonacci number. straight_merge_sort takes an in-
teger array a and sorts a applying the straight merge sort algorithm. example_in_thesis2 is a
simple benchmark program. We created this program by copying-and-pasting the while-loop of the
program example_in_thesis four times and giving it as input to our compiler. An IL program
that is the result of translation of example_in_thesis2 has four times more lines of code that is
loop invariant (8 lines) then example_in_thesis (2 lines). The numbers in the length column of
the table indicates how many lines of code do the results of translation of respective µC programs
have. The times in the columns CF, DAE, NI, RAI, and RAE show how many seconds it takes to
check a translation certificate that is generated for the optimization CF, DAE, NI, RAI, and RAE,
respectively. The results of the tests are slightly better than the results achieved by Blech and
Poetzsch-Heffter in [19]. This shows that

• the FTV approach is in general as feasible for realistic compilers as the TV approach applied
to code generation presented in [19],

• the FTV approach has similar limitations as the TV approach when it comes to the efficiency
of proof checking. Namely, the main limitation factor is the efficiency of the theorem prover.
As aforementioned in Section 1.6, Blech and Gregoire in [18] used the theorem prover Coq and
investigated the efficiency and the suitability of the TV approach for certification of the code
generation phase. The results they achieved are very promising and they suggest that using
the theorem prover Coq to implement our framework would yield a similar result.

program length CF DAE NI RAI RAE
insert 29 286 s 254 s 271 s 284 s 312 s
example_in_thesis 30 314 s 273 s 295 s 322 s 301 s
fibonacci_number 41 721 s 596 s 595 s 641 s 648 s
example_in_thesis2 98 6175 s 4290 s 5025 s 4313 s 4826 s
straight_merge_sort 101 4759 s 4487 s 4514 s 4629 s 5381 s

Fig. 8.1. Overall proof checking time

The aim of the second test was to investigate which parts of translation certificates take the
most time to check the proofs of lemmas they comprise. We investigated this by choosing the CF
optimization and measuring the time it took to check lemmas in all parts of proof scripts generated
of optimizations CF. The table in Figure 8.2 shows the results of the experiment achieved with the
programs from the first part of our evaluation. The numbers in the columns of the tables denote
the following:

• the numbers in the column "auxiliary lemmas" indicate how many time in seconds does it
take to prove auxiliary lemmas in a translation certificate generated for an optimization CF

1 Experiments were conducted on Linux PC with 1.4 GHz.

214 8 Evaluation

and what part does it have in the overall time needed to check the certificate completely. Some
of the auxiliary lemmas in the translation certificates are "glue code" lemmas explained in
Section 3.7.

• The number in the column "lookup lemmas from Parts 8. through 13." indicate how
many time in seconds does it take to prove lookup lemmas in the translation certificate gener-
ated for the optimization CF and what part does it have in the overall time needed to check
the certificate completely.

• The number in the column "lemmas from Parts 14. through 15." indicate how many time
in seconds does it take to prove well-typedness the source and the target programs in a trans-
lation certificate generated for the optimization CF and what part does it have in the overall
time needed to check the certificate completely.

• The number in the column "lemmas from Parts 16. through 17." indicate how many time
in seconds does it take to prove well-formedness of the CFGB declaration in a translation
certificate generated for the optimization CF and what part does it have in the overall time
needed to check the certificate completely.

• The number in the column "lemmas from Parts 18. through 19." indicate how many time
in seconds does it take to prove that the source and the target programs fulfill the optimization
correctness criterion TCCCF and the main lemma in a translation certificate generated for the
optimization CF and what part does it have in the overall time needed to check the certificate
completely.

The results of the test show that, besides the optimization correctness criterion TCCCF, the most
complex proof tasks in translation certificates are those of proving lookup lemmas and well-
formedness of CFGB declarations. There are two reasons for this behavior: The first reason is
the aforementioned inefficiency of the theorem prover Isabelle/HOL in dealing with proof goals
containing assumptions or conlusions of the list type. The second reason is that well-typedness
and CFGB-well-formedness predicates are fairly complex and proof states that emerge during their
proofs are very large. In order to avoid that the Isabelle/HOL has to manage large stacks of proof
subgoals, one should split these proofs in a sequence of proofs of auxiliary lemmas that would then
be applied in a main lemma proving the respective predicate. However, in our prototype frame-
work, we implemented tactics that prove these predicate by applying as little auxiliary lemmas as
possible (cf. the discussion on this topic in the previous section).

program length auxiliary lookup lemmas lemmas lemmas overall
lemmas lemmas from from from time

from Parts Parts Parts Parts (100%)
8. through 13. 14. and 15. 16. and 17. 18. and 19.

insert 29 3 s 42 s 15 s 168 s 55 s 286 s
1.04 % 14.68 % 5.24 % 58.74 % 19.23 %

example_in_thesis 30 5 s 44 s 16 s 189 s 58 s 314 s
1.59 % 14.01 % 5.09 % 60.19 % 18.47 %

fibonacci_number 41 2 s 102 s 35 s 416 s 163 s 721 s
0.27 % 14.14 % 4.85 % 57.69 % 22.60 %

example_in_thesis2 98 38 s 556 s 288 s 3030 s 2260 s 6175 s
0.61 % 9.0 % 4.66 % 49.06 % 36.59 %

straight_merge_sort 101 38 s 572 s 321 s 2999 s 827 s 4759 s
0.79 % 12.01 % 6.74 % 63.01 % 17.37 %

Fig. 8.2. Relative proof checking times for the CF optimization

8.3 Framework evaluation 215

8.3 Framework evaluation

This section presents the evaluation of the formal framework described in this thesis. Our evalua-
tion is focused on the following aspects of the SVF:

• Is our formal framework suitable for certification of complete program transformation chains
performed by the compiler?
The layer architecture of the SVF we propose in this thesis provides a simple and elegant means
for hierarchical structuring a set of translation correctness criteria which are associated with
individual program transformations and phases of the compiler. As our SVF is structured in
this way, it is easily extensible and we explained in Chapter 3 that integrating the extensions
capturing further optimizations or compiler phases in our SVF can be done with the minimal
effort.

• Is it possible to augment the intermediate language IL supported by our SVF by further imper-
ative programming language features?
Augmenting the formalization of the langauge IL in the translation contract by the standard
imperative language features like procedure calls, pointers, and recursion should not be prob-
lematic. The same holds for the effort needed for adapting the formalizations of optimization
correctness criteria to the new formalization of the language IL. However, at the current stage
of the development of our SVF, it is difficult to anticipate what formalizations have to be
implemented to make translation certificates automatically checkable.

• Is it possible to augment our formal framework such that it supports certifying further inter-
mediate language optimizations?
In general, our framework is suitable for certifying all structure preserving optimizations which
can be justified using data flow analysis results. Further, we anticipate that it should be also
possible to formalize optimization criteria for at least some of the structure modifying op-
timizations like the code motion optimizations: branch elimination and partial redundancy
elimination. At the current stage of the development of our SVF, it is unknown how our frame-
work has to be adapted such that it supports other structure modifying optimizations like loop
optimizations.

Chapter 9

Conclusions and future work

This chapter summarizes the achievements of this thesis and considers future directions of research.

9.1 Contributions

Most software systems are described in high-level model or programming languages. Their runtime
behavior, however, is controled by the compiled code. For uncritical software, it may be sufficient to
test the runtime behavior of the code. For safety-critical software, there is an additional aggravating
factor resulting from the fact that the code must satisfy the formal specification which reflects the
safety policy of the software consumer and that the software producer is obliged to demonstrate
that the code is correct with respect to the specification using formal verification techniques. In
this scenario, it is of great importance that static analyses and formal methods can be applied on
the source code level, because this level is more abstract and better suited for such techniques.
However, the results of the analyses and the verification can only be carried over to the machine-
code level, if we can establish the correctness of the translation. Thus, compilation is a crucial step
in the development of software systems and formally verified translation correctness is essential to
close the formalization chain from high-level formal methods to the machine-code level.

In this thesis, we propose an approach to certifying compilers which achieves the aim of closing
the formalization chain from high-level formal methods to the machine-code level by applying tech-
niques from mathematical logic and programming language semantics, a foundational translation
validation (FTV).

The FTV approach has several novel features that, in combination, give it an advantage over
traditional approach to certifying compilers, the TV approach:

The presence of an explicit translation contract formalized in HOL: The traditional TV approach
does not formalizes a translation contract explicitly. Instead of this, the operational semantics
and translation correctness criterion are implicit, i.e. they are incorporated in the translation
validator program on the programming language level. Here, the explicit formalization of
the translation contract entails the following advantages over the TV approach: Firstly, the
formalizations of the source and the target languages in the translation contract makes the
verification infrastructure of the SVF more flexible as novel programming language features,
such as type systems or program semantics definitions, can be introduced to the sofware
consumer without reimplementing of the type system or the operational semantics incorporated
in the translator validator. Secondly, the formalization of the translation correctness predicate
increases sofware consumer’s confidence and makes the verification infrastructure of the SVF
more flexible similarly to the formalizations of the source and the target languages as novel
optimization procedures or further intermediate program transformations can be introduced

218 9 Conclusions and future work

without reimplementing the VCG, which is a part of the translation validator program in the
TV approach.

Representation of programs in correctness proofs as logic constants: The TV approach translates
programs into their semantic abstractions on the programming language level. These abstrac-
tions serve as input for the translation validator. Translating the programs into their rep-
resentations as HOL constants entails smaller size of the TCB that is associated with the
FTV approach in comparisation to the one that associated with the TV approach. This is
due to the fact that, in the FTV approach, program representations as HOL constants are
just other syntactic representations of original programs on the programming language level.
Thus, in general, the software consumer is able to check if a logic constant and a program
are corresponding by translating the constant back and check if the program and the result
of translation are equal. In the TV approach, translating the semantic abstractions back into
programs is, in general, not possible.

Certification of program transformation chains: Unlike the TV approach, which certifies single
program transformations, the FTV approach achieves the aim of certifying whole chains of
program transformations. This is possible due to the following three facts: Firstly, the transla-
tion contract provides, for all programming languages involved in the program transformation
chain, definitions of program semantics functions which map programs to mathematical ob-
jects that are elements of a set with an (at least) partial order "≤". Secondly, the definition
of the translation correctness predicate is based on the definition of "≤". Thirdly, for each
translation run, which performs a chain of program transformations, the compiler generates a
proof that the input and output of the transformation chain fulfill the translation correctness
predicate. The proof makes use of the fact that the relation "≤" is transitive.

We see our work as a study of feasibility of the FTV approach. To investigate this approach, we
implemented a small proof generating compiler and formalized a prototype SVF which accompanies
the compiler. Our work resulted in a novel formal method for certifying compilers following the
FTV approach which can serve as a prototype for further investigations.

The main contributions of this thesis are:

• To our knowledge, our implementation is the first certifying compiler which completely follows
the FTV approach.

• Formalization of a translation contract for a small intermediate language.
• Specification and verification of the notion of declarations of control flow graphs with blocks.
• Formalization and verification of the notion of optimization patterns for selected structure pre-

serving optimizations (i.e. optimizations which transforms programs locally). The optimization
patterns allow for proving optimizations correct without reasoning about symbolic executions
of programs.

• Techniques to combine and to reuse selected formalizations of the optimization patterns. Using
our techniques, we have shown how to certify a nontrival transformation such as loop invariant
hoisting.

• Techniques for structuring the verification of optimizations into program dependent and inde-
pendent parts.

• Implementation of techniques to automate verification of optimizations which applies dedicated
proof tactics implemented within the theorem prover.

• First experimental results, experiences, and technical propositions on how to run proofs more
efficiently.

9.2 Future work 219

9.2 Future work

This section details some possible future directions of research based on the work presented in this
thesis. The possibilities are split into three categories:

1. improving the efficiency of proof checking,
2. augmenting the programming language features,
3. augmenting the set of optimizations supported by the SVF, and
4. researching into possible applications of the FTV approach.

Efficiency : In Chapter 8, we pointed out that our framework comprises two formalisms which
proved to be bottlenecks during proof checking:

1. Our formalizations of the notions of well-typedness, well-formedness of block position environ-
ments, and optimization correctness criterions TCCO formulate their requirements in terms of
equations with lookup expressions on their left-hand side, e.g. the equations Φ!(idxof(v , 0, vds)) =
τ and BP(pid) = Some(pid , bid , bsize, bidx , pc) in Definitions 5.10 and 6.13, respectively. As
it turned out that each such equation has to be proved at least one time during checking of
a translation certificate, these equations are proved in separate lemmas. As the number of
these lemmas has order of O(n), where n is a function of the length of the instruction list of a
program, proving all lookup equations in a proof script requires time which has order of O(n2).
One way to improve the efficiency here would be to implement appropriate Isabelle/HOL ora-
cles, which are ordinary ML functions provided by the programming interface of Isabelle/HOL,
and replace the tactic calls which prove the lookup equations by the respective oracle calls.
This would increase the size of the trusted computing base of the FTV system but the number
of ML code lines which would have to be trusted would be very small. In our work on the SVF,
we already have made some experience in that matter as we wrote ML functions which con-
vert constant definitions in the proof scripts generated by our compiler front-end into ML data
structures which serve as lookup tables for functions which compute tactics solving, among
other things, lemmas with equations involving lookup expressions. Therefore, we can report
that in our SVF an ML function which converts a block position descriptor environment BP
into a corresponding data structure needs 15 lines of ML code. Converting is done only one
time at the beginning of the proof script. Given that a call to such a function would result in
converting the definition of BP into a list l, then an oracle would have to convert a lemma’s
statement of the form

BP(”pid”) = Some(”pid”, ”bid”, bsize, ”bidx”, pc)

into an ML expression of the form

lkp_BP(”pid”, l) = (”pid”, ”bid”, bsize, ”bidx”, pc))

where lkp_BP denotes an ML function in our SVF which performes lookup in l and needs 2
lines of ML code. We anticipate that the implementation of such a function would need no
more than another 15 lines of ML code. Hence, the increase of the size of the TCB would be
very small.

2. Another factor which extremely slows down checking proof scripts is proofs of well-formedness
of block position environments. Proving that wfB(P ,B) holds true for a program P and a block
position environment B is time-consuming due to its definition which is given in a declarative
style. We have roughly estimated that currently the time complexity of proving a statement of
the form wfB(P ,B) has order of O(n2), where n is a function of the length of the instruction
list of a program. As for most optimizations the length of blocks in the CFGB declaration is

220 9 Conclusions and future work

equal 1 and the allocation relation between program points and block positions is defined as a
one-to-one correspondence, it is conceivable to formalize for each optimization O a predicate
expressing well-formedness of B , wfB′, which is specific to the optimization O and has the
following properties:
a) the SVF provides a proof of the lemma of the form

wfB′(P ,B) =⇒ wfB(P ,B)

b) proving that wfB′(P ,B) holds true for a program P and a block position environment B
requires time which has order of O(n), where n is a function of the length of the instruction
list of P .

Then, proving the lemma

wfB(P ,B)

would require O(n) time and would be done in two steps: The first step would apply the lemma
in a). The second lemma would prove

wfB(P ,B)

in O(n) time.

Another direction of research which should be considered is investigating how much efficiency
would be gained and how the size of the TCB would be affected by applying the program gener-
ation mechanism in Isabelle/HOL which generates executable ML programs from Isabelle/HOL
specifications.

The augmentation of the supported source language: In this thesis, we presented a prototype
FTV system. The FTV system comprises two parts: a small certifying compiler front-end and
an accompanying SVF. Our compiler front-end translates a µC language and performes three
optimizations. As the language µC is a small subset of the language C, our FTV system is not
applicable yet in developing real life applications. To improve this, the starting point for further
work would be to make the implementation of our FTV system complete in the sense that it would
be able to certify complete translation runs of the compiler. The work on this would include the
following steps:

• implementing the back-end of our compiler,
• re-defining the translation correctness predicate corrTrans in the translation contract provided

by Layer 3 in the SVF such that corrTrans is a predicate on µC and machine code programs,
• augmenting the implementation of Layer 4 in the SVF with phase independent formal frame-

works which enable certifying complete translation runs of the compiler.
• augmenting the implementation of Layer 5 in the SVF with phase dependent formal frameworks

which enable certifying the translation and the code generation phases.
• augmenting the implementation of Layer 6 in the SVF with proof environments providing

tactics specific to the transation and the code generation phases.

Then, one direction of the research with such FTV system would be to extend the µC and IL
languages by features which are standard in imperative languages, like procedures and pointers,
and to re-implement the SVF in order to support this changes. Another interesting direction of
the research would be to investigate the suitability of the FTV approach to certify translations of
languages which support other paradigms like object-oriented languages.

The augmentation of the SVF : Currently, our SVF supports three optimizations: constant
folding, dead assignment elimination, and loop invariant hoisting, which is certainly not enough to

9.2 Future work 221

make our FTV system suitable for real-life applications. Here, one direction of the research would
be to augment the compiler by additional optimizations and to augment Layer 5 in the SVF by
formalizations of new optimization correctness criteria which enable certifying these optimizations.

This thesis demonstrated that our SVF provides formal means which are suitable for certifying
structure preserving optimizations such as constant folding and dead assignment elimination.
Therefore, extending the SVF by the verification infrastructure for other optimizations of this kind
should not pose any serious problems. This thesis also exemplified certification of one structure
modifying transformation, loop invariant hoisting. However, it is unknown at the current stage of
the development of our FTV system how much the FTV approach is suitable for certifying such
optimizations. We anticipate that the formal method we developed within this thesis is directly
applicable to at least some of them such as the code motion optimizations: branch elimination and
partial redundancy elimination.

Applications: The FTV system described in this thesis provides an elegant and flexible SVF
to specify and verify program semantics equivalence. However, the SVF can also serve as a good
starting point for the research of other applications of the FTV approach. Here, possible directions
of the research would be to investigate the suitability of the approach for the certification of the
following:

• preservation of safety properties by program transformations which are performed during the
development of embedded systems, e.g. preservation of real-time computing constraints,

• preservation of safety and liveness properties by program transformations which are performed
during the development of embedded systems, e.g. preservation of deadlock-freeness property.

To conclude this thesis, we note that the results of our research described here demonstrates
that ideas and techniques from mathematical logic and programming languages can and should
be used for solving problems posed by software systems as complex as compilers. The design and
implementation of our FTV system demonstrates the path one should follow when implementing
a complex software system delivering solution to a sophisticated problem. Namely, the path goes
from analysing the problem and identifying subproblems through a hierarchy of subproblems and
their solutions differing from each other by the level of abstraction to a software system whose
architecture is a hierarchy of subsystems which complies with the hierarchy of the solutions and
builds solutions of the high abstraction-level problems from solutions of problems on the lower
abstraction-level.

Chapter A

Intermediate programs illustrating work-flow of our front-end

224 A Intermediate programs illustrating work-flow of our front-end

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: _tI_1 = 0;
[1]: i = _tI_1;
[2]: _tI_2 = 0;
[3]: res = _tI_2;
[4]: _tI_3 = 2;
[5]: _tB_1 = n < _tI_3;
[6]: BRANCH ~_tB_1 [11];
[7]: _tI_4 = 1;
[8]: _tI_5 = n + _tI_4;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: GOTO [12];
[12]: _tI_6 = n * n;
[13]: tmp = _tI_6;
[14]: _tI_7 = res + tmp;
[15]: _tI_8 = a[i];
[16]: _tI_9 = _tI_7 + _tI_8;
[17]: res = _tI_9;
[18]: _tI_10 = a[i];
[19]: _tI_11 = tmp + _tI_10;
[20]: PRINTI _tI_11;
[21]: _tI_12 = 1;
[22]: _tI_13 = i + _tI_12;
[23]: i = _tI_13;
[24]: _tI_14 = 4;
[25]: _tB_2 = i < _tI_14;
[26]: BRANCH _tB_2 [11];
[27]: PRINTI res [28];
[28]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: _tI_1 = 0;
[1]: i = 0;
[2]: _tI_2 = 0;
[3]: res = 0;
[4]: _tI_3 = 2;
[5]: _tB_1 = n < 2;
[6]: BRANCH ~_tB_1 [11];
[7]: _tI_4 = 1;
[8]: _tI_5 = n + 1;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: GOTO [12];
[12]: _tI_6 = n * n;
[13]: tmp = _tI_6;
[14]: _tI_7 = res + tmp;
[15]: _tI_8 = a[i];
[16]: _tI_9 = _tI_7 + _tI_8;
[17]: res = _tI_9;
[18]: _tI_10 = a[i];
[19]: _tI_11 = tmp + _tI_10;
[20]: PRINTI _tI_11;
[21]: _tI_12 = 1;
[22]: _tI_13 = i + 1;
[23]: i = _tI_13;
[24]: _tI_14 = 4;
[25]: _tB_2 = i < 4;
[26]: BRANCH _tB_2 [11];
[27]: PRINTI res;
[28]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

Fig. A.1. The programs IL0 , left, and IL1 , right, which are the source and the target programs of the
CF transformation.

A Intermediate programs illustrating work-flow of our front-end 225

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: _tI_1 = 0;
[1]: i = 0;
[2]: _tI_2 = 0;
[3]: res = 0;
[4]: _tI_3 = 2;
[5]: _tB_1 = n < 2;
[6]: BRANCH ~_tB_1 [11];
[7]: _tI_4 = 1;
[8]: _tI_5 = n + 1;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: GOTO [12];
[12]: _tI_6 = n * n;
[13]: tmp = _tI_6;
[14]: _tI_7 = res + tmp;
[15]: _tI_8 = a[i];
[16]: _tI_9 = _tI_7 + _tI_8;
[17]: res = _tI_9;
[18]: _tI_10 = a[i];
[19]: _tI_11 = tmp + _tI_10;
[20]: PRINTI _tI_11;
[21]: _tI_12 = 1;
[22]: _tI_13 = i + 1;
[23]: i = _tI_13;
[24]: _tI_14 = 4;
[25]: _tB_2 = i < 4;
[26]: BRANCH _tB_2 [11];
[27]: PRINTI res;
[28]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: GOTO [1];
[1]: i = 0;
[2]: GOTO [3];
[3]: res = 0;
[4]: GOTO [5];
[5]: _tB_1 = n < 2;
[6]: BRANCH ~_tB_1 [11];
[7]: GOTO [8];
[8]: _tI_5 = n + 1;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: GOTO [12];
[12]: _tI_6 = n * n;
[13]: tmp = _tI_6;
[14]: _tI_7 = res + tmp;
[15]: _tI_8 = a[i];
[16]: _tI_9 = _tI_7 + _tI_8;
[17]: res = _tI_9;
[18]: _tI_10 = a[i];
[19]: _tI_11 = tmp + _tI_10;
[20]: PRINTI _tI_11;
[21]: GOTO [22];
[22]: _tI_13 = i + 1;
[23]: i = _tI_13;
[24]: GOTO [25];
[25]: _tB_2 = i < 4;
[26]: BRANCH _tB_2 [11];
[27]: PRINTI res;
[28]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

Fig. A.2. The programs IL1 , left, and IL2 , right, which are the source and the target programs of the
DAE transformation.

226 A Intermediate programs illustrating work-flow of our front-end

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: GOTO [1];
[1]: i = 0;
[2]: GOTO [3];
[3]: res = 0;
[4]: GOTO [5];
[5]: _tB_1 = n < 2;
[6]: BRANCH ~_tB_1 [11];
[7]: GOTO [8];
[8]: _tI_5 = n + 1;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: GOTO [12];
[12]: _tI_6 = n * n;
[13]: tmp = _tI_6;
[14]: _tI_7 = res + tmp;
[15]: _tI_8 = a[i];
[16]: _tI_9 = _tI_7 + _tI_8;
[17]: res = _tI_9;
[18]: _tI_10 = a[i];
[19]: _tI_11 = tmp + _tI_10;
[20]: PRINTI _tI_11;
[21]: GOTO [22];
[22]: _tI_13 = i + 1;
[23]: i = _tI_13;
[24]: GOTO [25];
[25]: _tB_2 = i < 4;
[26]: BRANCH _tB_2 [11];
[27]: PRINTI res;
[28]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: GOTO [1];
[1]: i = 0;
[2]: GOTO [3];
[3]: res = 0;
[4]: GOTO [5];
[5]: _tB_1 = n < 2;
[6]: BRANCH ~_tB_1 [11];
[7]: GOTO [8];
[8]: _tI_5 = n + 1;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: GOTO [12];
[12]: GOTO [13];
[13]: _tI_6 = n * n
[14]: tmp = _tI_6;
[15]: _tI_7 = res + tmp;
[16]: _tI_8 = a[i];
[17]: _tI_9 = _tI_7 + _tI_8;
[18]: res = _tI_9;
[19]: _tI_10 = a[i];
[20]: _tI_11 = tmp + _tI_10;
[21]: PRINTI _tI_11;
[22]: GOTO [23];
[23]: _tI_13 = i + 1;
[24]: i = _tI_13
[25]: GOTO [26];
[26]: _tB_2 = i < 4;
[27]: BRANCH _tB_2 [12];
[28]: PRINTI res;
[29]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

Fig. A.3. The programs IL2 , left, and IL3 , right, which are the source and the target programs of the NI
transformation.

A Intermediate programs illustrating work-flow of our front-end 227

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: GOTO [1];
[1]: i = 0;
[2]: GOTO [3];
[3]: res = 0;
[4]: GOTO [5];
[5]: _tB_1 = n < 2;
[6]: BRANCH ~_tB_1 [11];
[7]: GOTO [8];
[8]: _tI_5 = n + 1;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: GOTO [12];
[12]: GOTO [13];
[13]: _tI_6 = n * n
[14]: tmp = _tI_6;
[15]: _tI_7 = res + tmp;
[16]: _tI_8 = a[i];
[17]: _tI_9 = _tI_7 + _tI_8;
[18]: res = _tI_9;
[19]: _tI_10 = a[i];
[20]: _tI_11 = tmp + _tI_10;
[21]: PRINTI _tI_11;
[22]: GOTO [23];
[23]: _tI_13 = i + 1;
[24]: i = _tI_13
[25]: GOTO [26];
[26]: _tB_2 = i < 4;
[27]: BRANCH _tB_2 [12];
[28]: PRINTI res;
[29]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: GOTO [1];
[1]: i = 0 [2];
[2]: GOTO [3];
[3]: res = 0;
[4]: GOTO [5];
[5]: _tB_1 = n < 2;
[6]: BRANCH ~_tB_1 [11] [7];
[7]: GOTO [8];
[8]: _tI_5 = n + 1;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: _tI_6 = n * n;
[12]: GOTO [13];
[13]: _tI_6 = n * n;
[14]: tmp = _tI_6;
[15]: _tI_7 = res + tmp;
[16]: _tI_8 = a[i];
[17]: _tI_9 = _tI_7 + _tI_8;
[18]: res = _tI_9;
[19]: _tI_10 = a[i];
[20]: _tI_11 = tmp + _tI_10;
[21]: PRINTI _tI_11;
[22]: GOTO [23];
[23]: _tI_13 = i + 1;
[24]: i = _tI_13;
[25]: GOTO [26];
[26]: _tB_2 = i < 4;
[27]: BRANCH _tB_2 [12] [28];
[28]: PRINTI res;
[29]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

Fig. A.4. The programs IL3 , left, and IL4 , right, which are the source and the target programs of the
RAI transformation.

228 A Intermediate programs illustrating work-flow of our front-end

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: GOTO [1];
[1]: i = 0 [2];
[2]: GOTO [3];
[3]: res = 0;
[4]: GOTO [5];
[5]: _tB_1 = n < 2;
[6]: BRANCH ~_tB_1 [11] [7];
[7]: GOTO [8];
[8]: _tI_5 = n + 1;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: _tI_6 = n * n;
[12]: GOTO [13];
[13]: _tI_6 = n * n;
[14]: tmp = _tI_6;
[15]: _tI_7 = res + tmp;
[16]: _tI_8 = a[i];
[17]: _tI_9 = _tI_7 + _tI_8;
[18]: res = _tI_9;
[19]: _tI_10 = a[i];
[20]: _tI_11 = tmp + _tI_10;
[21]: PRINTI _tI_11;
[22]: GOTO [23];
[23]: _tI_13 = i + 1;
[24]: i = _tI_13;
[25]: GOTO [26];
[26]: _tB_2 = i < 4;
[27]: BRANCH _tB_2 [12] [28];
[28]: PRINTI res;
[29]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

vardecls
n int; a int [4]; i int;
tmp int; res int; _tI_1 int;
_tI_2 int; _tI_3 int; _tB_1 bool;
_tI_4 int; _tI_5 int; _tI_6 int;
_tI_7 int; _tI_8 int; _tI_9 int;
_tI_10 int; _tI_11 int; _tI_12 int;
_tI_13 int; _tI_14 int; _tB_2 bool;
begin

[0]: GOTO [1];
[1]: i = 0;
[2]: GOTO [3];
[3]: res = 0;
[4]: GOTO [5];
[5]: _tB_1 = n < 2;
[6]: BRANCH ~_tB_1 [11];
[7]: GOTO [8];
[8]: _tI_5 = n + 1;
[9]: n = _tI_5;
[10]: GOTO [4];
[11]: _tI_6 = n * n;
[12]: GOTO [13];
[13]: GOTO [14];
[14]: tmp = _tI_6;
[15]: _tI_7 = res + tmp;
[16]: _tI_8 = a[i];
[17]: _tI_9 = _tI_7 + _tI_8;
[18]: res = _tI_9;
[19]: _tI_10 = a[i];
[20]: _tI_11 = tmp + _tI_10;
[21]: PRINTI _tI_11;
[22]: GOTO [23];
[23]: _tI_13 = i + 1;
[24]: i = _tI_13;
[25]: GOTO [26];
[26]: _tB_2 = i < 4;
[27]: BRANCH _tB_2 [12];
[28]: PRINTI res
[29]: EXIT;

end

INPUT begin:
(n, 1), (a, [9, 7, 5, 0]),
(i, 0), (tmp, 0),
(res, 0), (_tI_1, 0),
(_tI_2, 0), (_tI_3, 0),
(_tB_1, false), (_tI_4, 0),
(_tI_5, 0), (_tI_6, 0),
(_tI_7, 0), (_tI_8, 0),
(_tI_9, 0), (_tI_10, 0),
(_tI_11, 0), (_tI_12, 0),
(_tI_13, 0), (_tI_14, 0),
(_tB_2, false)
INPUT end

Fig. A.5. The programs IL4 , left, and IL5 , right, which are the source and the target programs of the
RAE transformation.

Chapter B

Specification of optimization relation for constant folding

B.1 Optimization patterns for expressions

Definition B.1. (Translation relation over operand expression pairs)

cf_transrel_expr_operand : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_operand(inv) =

{(e, e ′) | ∃ i . (e, e ′) = (i , i) ∨
∃ b. (e, e ′) = (b, b) ∨
∃ v . (e, e ′) = (v , v) ∧ inv(v) = None ∨
∃ v i . (e, e ′) = (v , i) ∧ inv(v) = Some(i) ∨
∃ v b. (e, e ′) = (v , b) ∧ inv(v) = Some(b) ∨
∃ a i . (e, e ′) = (a[i], a[i]) ∨
∃ a v . (e, e ′) = (a[v], a[v]) ∧ inv(v) = None ∨
∃ a v i . (e, e ′) = (a[v], a[i]) ∧ inv(v) = Some(i) }

Definition B.2. (Translation relation over pairs of expressions of the form ¬o)

cf_transrel_expr_not : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_not(inv) = {(e, e ′) |
∃ b1 b2. (e, e ′) = (¬b1, b2) ∧ ¬b1 = b2 ∨
∃ v . (e, e ′) = (¬v ,¬v) ∧ inv(v) = None ∨
∃ v1 b1 b2 b3. (e, e ′) = (¬v , b2) ∧ inv(v) = Some(b1) ∧ ¬b1 = b2 ∨
∃ a i . (e, e ′) = (¬a[i],¬a[i]) ∨
∃ a v . (e, e ′) = (¬a[v],¬a[v]) ∧ inv(v) = None ∨
∃ a v i . (e, e ′) = (¬a[v],¬a[i]) ∧ inv(v) = Some(i) }

Definition B.3. (Translation relation over pairs of expressions of the syntactic form −o)

cf_transrel_expr_unmin : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_unmin(inv) = {(e, e ′) |
∃ i1 i2 i3. (e, e ′) = (−i1, i2) ∧ −i1 = i2 ∨
∃ v1 i2. (e, e ′) = (−v ,−v) ∧ inv(v) = None ∨
∃ v i1 i2. (e, e ′) = (−v , i2) ∧ inv(v) = Some(i1) ∧ −i1 = i2 ∨
∃ a i . (e, e ′) = (−a[i],−a[i]) ∨
∃ a v . (e, e ′) = (−a[v],−a[v]) ∧ inv(v) = None ∨
∃ a v i . (e, e ′) = (−a[v],−a[i]) ∧ inv(v) = Some(i) ∨

230 B Specification of optimization relation for constant folding

Definition B.4. (Translation relation over pairs of expressions of the syntactic form o1 + o2)

cf_transrel_expr_plus : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_plus(inv) = {(e, e ′) |
∃ i1 i2 i3. (e, e ′) = (i1 + i2, i3) ∧ i1 + i2 = i3 ∨
∃ v1 i2. (e, e ′) = (v1 + i2, v1 + i2) ∧ inv(v1) = None ∨
∃ v1 i1 i2 i3. (e, e ′) = (v1 + i2, i3) ∧ inv(v1) = Some(i1) ∧ i1 + i2 = i3 ∨
∃ a i1 i2. (e, e ′) = (a[i1] + i2, a[i1] + i2) ∨
∃ a v1 i2. (e, e ′) = (a[v1] + i2, a[v1] + i2) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (a[v1] + i2, a[i1] + i2) ∧ inv(v1) = Some(i1) ∨
∃ v1 i2. (e, e ′) = (i1 + v2, i1 + v2) ∧ inv(v2) = None ∨
∃ v1 i2 i3. (e, e ′) = (i1 + v2, i3) ∧ inv(v2) = Some(i2) ∧ i1 + i2 = i3 ∨
∃ v1 v2. (e, e ′) = (v1 + v2, v1 + v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ v1 v2 i2. (e, e ′) = (v1 + v2, v1 + i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ v1 v2 i1. (e, e ′) = (v1 + v2, i1 + v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ v1 v2 i1 i2 i3. (e, e ′) = (v1 + v2, i3) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∧ i1 + i2 = i3 ∨
∃ a i1 v2. (e, e ′) = (a[i1] + v2, a[i1] + v2) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (a[i1] + v2, a[i1] + i2) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (a[v1] + v2, a[v1] + v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (a[v1] + v2, a[v1] + i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2. (e, e ′) = (a[v1] + v2, a[i1] + v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 i1 v2 i2. (e, e ′) = (a[v1] + v2, a[i1] + i2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a i1 i2. (e, e ′) = (i1 + a[i2], i1 + a[i2]) ∨
∃ a v1 i2. (e, e ′) = (v1 + a[i2], v1 + a[i2]) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (v1 + a[i2], i1 + a[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a1 i1 a2 i2. (e, e ′) = (a1[i1] + a2[i2], a1[i1] + a2[i2]) ∨
∃ a1 v1 a2 i2. (e, e ′) = (a1[v1] + a2[i2], a1[v1] + a2[i2]) ∧ inv(v1) = None ∨
∃ a1 v1 i1 a2 i2. (e, e ′) = (a1[v1] + a2[i2], a1[i1] + a2[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a i1 v2. (e, e ′) = (i1 + a[v2], i1 + a[v2]) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (i1 + a[v2], i1 + a[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (v1 + a[v2], v1 + a[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 i1 v2. (e, e ′) = (v1 + a[v2], i1 + a[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (v1 + a[v2], v1 + a[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2 i2. (e, e ′) = (v1 + a[v2], i1 + a[i2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a1 i1 a2 v2. (e, e ′) = (a1[i1] + a2[v2], a1[i1] + a2[v2]) ∧ inv(v2) = None ∨
∃ a1 i1 a2 v2 i2. (e, e ′) = (a1[i1] + a2[v2], a1[i1] + a2[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 a2 v2. (e, e ′) = (a1[v1] + a2[v2], a1[v1] + a2[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a1 v1 i1 a2 v2. (e, e ′) = (a1[v1] + a2[v2], a1[i1] + a2[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a1 v1 a2 v2 i2. (e, e ′) = (a1[v1] + a2[v2], a1[v1] + a2[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 i1 a2 v2 i2. (e, e ′) = (a1[v1] + a2[v2], a1[i1] + a2[i2])∧

inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) }

B.1 Optimization patterns for expressions 231

Definition B.5. (Translation relation over pairs of expressions of the syntactic form o1 − o2)

cf_transrel_expr_binmin : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_binmin(inv) = {(e, e ′) |
∃ i1 i2 i3. (e, e ′) = (i1 − i2, i3) ∧ i1 − i2 = i3 ∨
∃ v1 i2. (e, e ′) = (v1 − i2, v1 − i2) ∧ inv(v1) = None ∨
∃ v1 i1 i2 i3. (e, e ′) = (v1 − i2, i3) ∧ inv(v1) = Some(i1) ∧ i1 − i2 = i3 ∨
∃ a i1 i2. (e, e ′) = (a[i1]− i2, a[i1]− i2) ∨
∃ a v1 i2. (e, e ′) = (a[v1]− i2, a[v1]− i2) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (a[v1]− i2, a[i1]− i2) ∧ inv(v1) = Some(i1) ∨
∃ v1 i2. (e, e ′) = (i1 − v2, i1 − v2) ∧ inv(v2) = None ∨
∃ v1 i2 i3. (e, e ′) = (i1 − v2, i3) ∧ inv(v2) = Some(i2) ∧ i1 − i2 = i3 ∨
∃ v1 v2. (e, e ′) = (v1 − v2, v1 − v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ v1 v2 i2. (e, e ′) = (v1 − v2, v1 − i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ v1 v2 i1. (e, e ′) = (v1 − v2, i1 − v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ v1 v2 i1 i2 i3. (e, e ′) = (v1 − v2, i3) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∧ i1 − i2 = i3 ∨
∃ a i1 v2. (e, e ′) = (a[i1]− v2, a[i1]− v2) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (a[i1]− v2, a[i1]− i2) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (a[v1]− v2, a[v1]− v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (a[v1]− v2, a[v1]− i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2. (e, e ′) = (a[v1]− v2, a[i1]− v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 i1 v2 i2. (e, e ′) = (a[v1]− v2, a[i1]− i2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a i1 i2. (e, e ′) = (i1 − a[i2], i1 − a[i2]) ∨
∃ a v1 i2. (e, e ′) = (v1 − a[i2], v1 − a[i2]) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (v1 − a[i2], i1 − a[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a1 i1 a2 i2. (e, e ′) = (a1[i1]− a2[i2], a1[i1]− a2[i2]) ∨
∃ a1 v1 a2 i2. (e, e ′) = (a1[v1]− a2[i2], a1[v1]− a2[i2]) ∧ inv(v1) = None ∨
∃ a1 v1 i1 a2 i2. (e, e ′) = (a1[v1]− a2[i2], a1[i1]− a2[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a i1 v2. (e, e ′) = (i1 − a[v2], i1 − a[v2]) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (i1 − a[v2], i1 − a[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (v1 − a[v2], v1 − a[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 i1 v2. (e, e ′) = (v1 − a[v2], i1 − a[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (v1 − a[v2], v1 − a[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2 i2. (e, e ′) = (v1 − a[v2], i1 − a[i2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a1 i1 a2 v2. (e, e ′) = (a1[i1]− a2[v2], a1[i1]− a2[v2]) ∧ inv(v2) = None ∨
∃ a1 i1 a2 v2 i2. (e, e ′) = (a1[i1]− a2[v2], a1[i1]− a2[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 a2 v2. (e, e ′) = (a1[v1]− a2[v2], a1[v1]− a2[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a1 v1 i1 a2 v2. (e, e ′) = (a1[v1]− a2[v2], a1[i1]− a2[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a1 v1 a2 v2 i2. (e, e ′) = (a1[v1]− a2[v2], a1[v1]− a2[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 i1 a2 v2 i2. (e, e ′) = (a1[v1]− a2[v2], a1[i1]− a2[i2])∧

inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) }

232 B Specification of optimization relation for constant folding

Definition B.6. (Translation relation over pairs of expressions of the syntactic form o1 ∗ o2)

cf_transrel_expr_mult : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_mult(inv) = {(e, e ′) |
∃ i1 i2 i3. (e, e ′) = (i1 ∗ i2, i3) ∧ i1 ∗ i2 = i3 ∨
∃ v1 i2. (e, e ′) = (v1 ∗ i2, v1 ∗ i2) ∧ inv(v1) = None ∨
∃ v1 i1 i2 i3. (e, e ′) = (v1 ∗ i2, i3) ∧ inv(v1) = Some(i1) ∧ i1 ∗ i2 = i3 ∨
∃ a i1 i2. (e, e ′) = (a[i1] ∗ i2, a[i1] ∗ i2) ∨
∃ a v1 i2. (e, e ′) = (a[v1] ∗ i2, a[v1] ∗ i2) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (a[v1] ∗ i2, a[i1] ∗ i2) ∧ inv(v1) = Some(i1) ∨
∃ v1 i2. (e, e ′) = (i1 ∗ v2, i1 ∗ v2) ∧ inv(v2) = None ∨
∃ v1 i2 i3. (e, e ′) = (i1 ∗ v2, i3) ∧ inv(v2) = Some(i2) ∧ i1 ∗ i2 = i3 ∨
∃ v1 v2. (e, e ′) = (v1 ∗ v2, v1 ∗ v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ v1 v2 i2. (e, e ′) = (v1 ∗ v2, v1 ∗ i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ v1 v2 i1. (e, e ′) = (v1 ∗ v2, i1 ∗ v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ v1 v2 i1 i2 i3. (e, e ′) = (v1 ∗ v2, i3) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∧ i1 ∗ i2 = i3 ∨
∃ a i1 v2. (e, e ′) = (a[i1] ∗ v2, a[i1] ∗ v2) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (a[i1] ∗ v2, a[i1] ∗ i2) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (a[v1] ∗ v2, a[v1] ∗ v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (a[v1] ∗ v2, a[v1] ∗ i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2. (e, e ′) = (a[v1] ∗ v2, a[i1] ∗ v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 i1 v2 i2. (e, e ′) = (a[v1] ∗ v2, a[i1] ∗ i2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a i1 i2. (e, e ′) = (i1 ∗ a[i2], i1 ∗ a[i2]) ∨
∃ a v1 i2. (e, e ′) = (v1 ∗ a[i2], v1 ∗ a[i2]) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (v1 ∗ a[i2], i1 ∗ a[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a1 i1 a2 i2. (e, e ′) = (a1[i1] ∗ a2[i2], a1[i1] ∗ a2[i2]) ∨
∃ a1 v1 a2 i2. (e, e ′) = (a1[v1] ∗ a2[i2], a1[v1] ∗ a2[i2]) ∧ inv(v1) = None ∨
∃ a1 v1 i1 a2 i2. (e, e ′) = (a1[v1] ∗ a2[i2], a1[i1] ∗ a2[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a i1 v2. (e, e ′) = (i1 ∗ a[v2], i1 ∗ a[v2]) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (i1 ∗ a[v2], i1 ∗ a[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (v1 ∗ a[v2], v1 ∗ a[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 i1 v2. (e, e ′) = (v1 ∗ a[v2], i1 ∗ a[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (v1 ∗ a[v2], v1 ∗ a[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2 i2. (e, e ′) = (v1 ∗ a[v2], i1 ∗ a[i2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a1 i1 a2 v2. (e, e ′) = (a1[i1] ∗ a2[v2], a1[i1] ∗ a2[v2]) ∧ inv(v2) = None ∨
∃ a1 i1 a2 v2 i2. (e, e ′) = (a1[i1] ∗ a2[v2], a1[i1] ∗ a2[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 a2 v2. (e, e ′) = (a1[v1] ∗ a2[v2], a1[v1] ∗ a2[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a1 v1 i1 a2 v2. (e, e ′) = (a1[v1] ∗ a2[v2], a1[i1] ∗ a2[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a1 v1 a2 v2 i2. (e, e ′) = (a1[v1] ∗ a2[v2], a1[v1] ∗ a2[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 i1 a2 v2 i2. (e, e ′) = (a1[v1] ∗ a2[v2], a1[i1] ∗ a2[i2])∧

inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) }

B.1 Optimization patterns for expressions 233

Definition B.7. (Translation relation over pairs of expressions of the syntactic form o1 ∧ o2)

cf_transrel_expr_and : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_and(inv) = {(e, e ′) |
∃ b1 b2 b3. (e, e ′) = (b1 ∧ b2, b3) ∧ (b1 ∧ b2 = b3) ∨
∃ v1 b2. (e, e ′) = (v1 ∧ b2, v1 ∧ b2) ∧ inv(v1) = None ∨
∃ v1 b1 b2 b3. (e, e ′) = (v1 ∧ b2, b3) ∧ inv(v1) = Some(b1) ∧ (b1 ∧ b2 = b3) ∨
∃ a i1 b2. (e, e ′) = (a[i1] ∧ b2, a[i1] ∧ b2) ∨
∃ a v1 b2. (e, e ′) = (a[v1] ∧ b2, a[v1] ∧ b2) ∧ inv(v1) = None ∨
∃ a v1 i1 b2. (e, e ′) = (a[v1] ∧ b2, a[i1] ∧ b2) ∧ inv(v1) = Some(i1) ∨
∃ v1 b2. (e, e ′) = (b1 ∧ v2, b1 ∧ v2) ∧ inv(v2) = None ∨
∃ v1 b2 b3. (e, e ′) = (b1 ∧ v2, b3) ∧ inv(v2) = Some(b2) ∧ (b1 ∧ b2 = b3) ∨
∃ v1 v2. (e, e ′) = (v1 ∧ v2, v1 ∧ v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ v1 v2 b2. (e, e ′) = (v1 ∧ v2, v1 ∧ b2) ∧ inv(v1) = None ∧ inv(v2) = Some(b2) ∨
∃ v1 v2 b1. (e, e ′) = (v1 ∧ v2, b1 ∧ v2) ∧ inv(v1) = Some(b1) ∧ inv(v2) = None ∨
∃ v1 v2 b1 b2 b3. (e, e ′) = (v1 ∧ v2, b3) ∧ inv(v1) = Some(b1) ∧ inv(v2) = Some(b2) ∧ (b1 ∧ b2 = b3) ∨
∃ a i1 v2. (e, e ′) = (a[i1] ∧ v2, a[i1] ∧ v2) ∧ inv(v2) = None ∨
∃ a i1 v2 b2. (e, e ′) = (a[i1] ∧ v2, a[i1] ∧ b2) ∧ inv(v2) = Some(b2) ∨
∃ a v1 v2. (e, e ′) = (a[v1] ∧ v2, a[v1] ∧ v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 v2 b2. (e, e ′) = (a[v1] ∧ v2, a[v1] ∧ b2) ∧ inv(v1) = None ∧ inv(v2) = Some(b2) ∨
∃ a v1 i1 v2. (e, e ′) = (a[v1] ∧ v2, a[i1] ∧ v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 i1 v2 b2. (e, e ′) = (a[v1] ∧ v2, a[i1] ∧ b2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(b2) ∨
∃ a b1 i2. (e, e ′) = (b1 ∧ a[i2], b1 ∧ a[i2]) ∨
∃ a v1 i2. (e, e ′) = (v1 ∧ a[i2], v1 ∧ a[i2]) ∧ inv(v1) = None ∨
∃ a v1 b1 i2. (e, e ′) = (v1 ∧ a[i2], b1 ∧ a[i2]) ∧ inv(v1) = Some(b1) ∨
∃ a1 i1 a2 i2. (e, e ′) = (a1[i1] ∧ a2[i2], a1[i1] ∧ a2[i2]) ∨
∃ a1 v1 a2 i2. (e, e ′) = (a1[v1] ∧ a2[i2], a1[v1] ∧ a2[i2]) ∧ inv(v1) = None ∨
∃ a1 v1 i1 a2 i2. (e, e ′) = (a1[v1] ∧ a2[i2], a1[i1] ∧ a2[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a i1 v2. (e, e ′) = (b1 ∧ a[v2], b1 ∧ a[v2]) ∧ inv(v2) = None ∨
∃ a b1 v2 i2. (e, e ′) = (b1 ∧ a[v2], b1 ∧ a[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (v1 ∧ a[v2], v1 ∧ a[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 b1 v2. (e, e ′) = (v1 ∧ a[v2], b1 ∧ a[v2]) ∧ inv(v1) = Some(b1) ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (v1 ∧ a[v2], v1 ∧ a[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 b1 v2 i2. (e, e ′) = (v1 ∧ a[v2], b1 ∧ a[i2]) ∧ inv(v1) = Some(b1) ∧ inv(v2) = Some(i2) ∨
∃ a1 i1 a2 v2. (e, e ′) = (a1[i1] ∧ a2[v2], a1[i1] ∧ a2[v2]) ∧ inv(v2) = None ∨
∃ a1 i1 a2 v2 i2. (e, e ′) = (a1[i1] ∧ a2[v2], a1[i1] ∧ a2[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 a2 v2. (e, e ′) = (a1[v1] ∧ a2[v2], a1[v1] ∧ a2[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a1 v1 i1 a2 v2. (e, e ′) = (a1[v1] ∧ a2[v2], a1[i1] ∧ a2[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a1 v1 a2 v2 i2. (e, e ′) = (a1[v1] ∧ a2[v2], a1[v1] ∧ a2[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 i1 a2 v2 i2. (e, e ′) = (a1[v1] ∧ a2[v2], a1[i1] ∧ a2[i2])∧

inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) }

234 B Specification of optimization relation for constant folding

Definition B.8. (Translation relation over pairs of expressions of the syntactic form o1 ∨ o2)

cf_transrel_expr_or : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_or(inv) = {(e, e ′) |
∃ b1 b2 b3. (e, e ′) = (b1 ∨ b2, b3) ∧ (b1 ∨ b2 = b3) ∨
∃ v1 b2. (e, e ′) = (v1 ∨ b2, v1 ∨ b2) ∧ inv(v1) = None ∨
∃ v1 b1 b2 b3. (e, e ′) = (v1 ∨ b2, b3) ∧ inv(v1) = Some(b1) ∧ (b1 ∨ b2 = b3) ∨
∃ a i1 b2. (e, e ′) = (a[i1] ∨ b2, a[i1] ∨ b2) ∨
∃ a v1 b2. (e, e ′) = (a[v1] ∨ b2, a[v1] ∨ b2) ∧ inv(v1) = None ∨
∃ a v1 i1 b2. (e, e ′) = (a[v1] ∨ b2, a[i1] ∨ b2) ∧ inv(v1) = Some(i1) ∨
∃ v1 b2. (e, e ′) = (b1 ∨ v2, b1 ∨ v2) ∧ inv(v2) = None ∨
∃ v1 b2 b3. (e, e ′) = (b1 ∨ v2, b3) ∧ inv(v2) = Some(b2) ∧ (b1 ∨ b2 = b3) ∨
∃ v1 v2. (e, e ′) = (v1 ∨ v2, v1 ∨ v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ v1 v2 b2. (e, e ′) = (v1 ∨ v2, v1 ∨ b2) ∧ inv(v1) = None ∧ inv(v2) = Some(b2) ∨
∃ v1 v2 b1. (e, e ′) = (v1 ∨ v2, b1 ∨ v2) ∧ inv(v1) = Some(b1) ∧ inv(v2) = None ∨
∃ v1 v2 b1 b2 b3. (e, e ′) = (v1 ∨ v2, b3) ∧ inv(v1) = Some(b1) ∧ inv(v2) = Some(b2) ∧ (b1 ∨ b2 = b3) ∨
∃ a i1 v2. (e, e ′) = (a[i1] ∨ v2, a[i1] ∨ v2) ∧ inv(v2) = None ∨
∃ a i1 v2 b2. (e, e ′) = (a[i1] ∨ v2, a[i1] ∨ b2) ∧ inv(v2) = Some(b2) ∨
∃ a v1 v2. (e, e ′) = (a[v1] ∨ v2, a[v1] ∨ v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 v2 b2. (e, e ′) = (a[v1] ∨ v2, a[v1] ∨ b2) ∧ inv(v1) = None ∧ inv(v2) = Some(b2) ∨
∃ a v1 i1 v2. (e, e ′) = (a[v1] ∨ v2, a[i1] ∨ v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 i1 v2 b2. (e, e ′) = (a[v1] ∨ v2, a[i1] ∨ b2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(b2) ∨
∃ a b1 i2. (e, e ′) = (b1 ∨ a[i2], b1 ∨ a[i2]) ∨
∃ a v1 i2. (e, e ′) = (v1 ∨ a[i2], v1 ∨ a[i2]) ∧ inv(v1) = None ∨
∃ a v1 b1 i2. (e, e ′) = (v1 ∨ a[i2], b1 ∨ a[i2]) ∧ inv(v1) = Some(b1) ∨
∃ a1 i1 a2 i2. (e, e ′) = (a1[i1] ∨ a2[i2], a1[i1] ∧ a2[i2]) ∨
∃ a1 v1 a2 i2. (e, e ′) = (a1[v1] ∨ a2[i2], a1[v1] ∨ a2[i2]) ∧ inv(v1) = None ∨
∃ a1 v1 i1 a2 i2. (e, e ′) = (a1[v1] ∨ a2[i2], a1[i1] ∨ a2[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a i1 v2. (e, e ′) = (b1 ∨ a[v2], b1 ∨ a[v2]) ∧ inv(v2) = None ∨
∃ a b1 v2 i2. (e, e ′) = (b1 ∨ a[v2], b1 ∨ a[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (v1 ∨ a[v2], v1 ∨ a[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 b1 v2. (e, e ′) = (v1 ∨ a[v2], b1 ∨ a[v2]) ∧ inv(v1) = Some(b1) ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (v1 ∨ a[v2], v1 ∨ a[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 b1 v2 i2. (e, e ′) = (v1 ∨ a[v2], b1 ∨ a[i2]) ∧ inv(v1) = Some(b1) ∧ inv(v2) = Some(i2) ∨
∃ a1 i1 a2 v2. (e, e ′) = (a1[i1] ∨ a2[v2], a1[i1] ∨ a2[v2]) ∧ inv(v2) = None ∨
∃ a1 i1 a2 v2 i2. (e, e ′) = (a1[i1] ∨ a2[v2], a1[i1] ∨ a2[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 a2 v2. (e, e ′) = (a1[v1] ∨ a2[v2], a1[v1] ∨ a2[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a1 v1 i1 a2 v2. (e, e ′) = (a1[v1] ∨ a2[v2], a1[i1] ∨ a2[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a1 v1 a2 v2 i2. (e, e ′) = (a1[v1] ∨ a2[v2], a1[v1] ∨ a2[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 i1 a2 v2 i2. (e, e ′) = (a1[v1] ∨ a2[v2], a1[i1] ∨ a2[i2])∧

inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) }

B.1 Optimization patterns for expressions 235

Definition B.9. (Translation relation over pairs of expressions of the syntactic form o1 = o2)

cf_transrel_expr_eq : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_eq(inv) = {(e, e ′) |
∃ i1 i2 b. (e, e ′) = (i1 = i2, b) ∧ (i1 = i2) = b ∨
∃ v1 i2. (e, e ′) = (v1 = i2, v1 = i2) ∧ inv(v1) = None ∨
∃ v1 i1 i2 b. (e, e ′) = (v1 = i2, b) ∧ inv(v1) = Some(i1) ∧ (i1 = i2) = b ∨
∃ a i1 i2. (e, e ′) = (a[i1] = i2, a[i1] = i2) ∨
∃ a v1 i2. (e, e ′) = (a[v1] = i2, a[v1] = i2) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (a[v1] = i2, a[i1] = i2) ∧ inv(v1) = Some(i1) ∨
∃ v1 i2. (e, e ′) = (i1 = v2, i1 = v2) ∧ inv(v2) = None ∨
∃ v1 i2 b. (e, e ′) = (i1 = v2, b) ∧ inv(v2) = Some(i2) ∧ (i1 = i2) = b ∨
∃ v1 v2. (e, e ′) = (v1 = v2, v1 = v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ v1 v2 i2. (e, e ′) = (v1 = v2, v1 = i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ v1 v2 i1. (e, e ′) = (v1 = v2, i1 = v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ v1 v2 i1 i2 i3. (e, e ′) = (v1 = v2, b) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∧ (i1 = i2) = b ∨
∃ a i1 v2. (e, e ′) = (a[i1] = v2, a[i1] = v2) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (a[i1] = v2, a[i1] = i2) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (a[v1] = v2, a[v1] = v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (a[v1] = v2, a[v1] = i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2. (e, e ′) = (a[v1] = v2, a[i1] = v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 i1 v2 i2. (e, e ′) = (a[v1] = v2, a[i1] = i2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a i1 i2. (e, e ′) = (i1 = a[i2], i1 = a[i2]) ∨
∃ a v1 i2. (e, e ′) = (v1 = a[i2], v1 = a[i2]) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (v1 = a[i2], i1 = a[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a1 i1 a2 i2. (e, e ′) = (a1[i1] = a2[i2], a1[i1] = a2[i2]) ∨
∃ a1 v1 a2 i2. (e, e ′) = (a1[v1] = a2[i2], a1[v1] = a2[i2]) ∧ inv(v1) = None ∨
∃ a1 v1 i1 a2 i2. (e, e ′) = (a1[v1] = a2[i2], a1[i1] = a2[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a i1 v2. (e, e ′) = (i1 = a[v2], i1 = a[v2]) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (i1 = a[v2], i1 = a[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (v1 = a[v2], v1 = a[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 i1 v2. (e, e ′) = (v1 = a[v2], i1 = a[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (v1 = a[v2], v1 = a[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2 i2. (e, e ′) = (v1 = a[v2], i1 = a[i2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a1 i1 a2 v2. (e, e ′) = (a1[i1] = a2[v2], a1[i1] = a2[v2]) ∧ inv(v2) = None ∨
∃ a1 i1 a2 v2 i2. (e, e ′) = (a1[i1] = a2[v2], a1[i1] = a2[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 a2 v2. (e, e ′) = (a1[v1] = a2[v2], a1[v1] = a2[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a1 v1 i1 a2 v2. (e, e ′) = (a1[v1] = a2[v2], a1[i1] = a2[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a1 v1 a2 v2 i2. (e, e ′) = (a1[v1] = a2[v2], a1[v1] = a2[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 i1 a2 v2 i2. (e, e ′) = (a1[v1] = a2[v2], a1[i1] = a2[i2])∧

inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) }

236 B Specification of optimization relation for constant folding

Definition B.10. (Translation relation over pairs of expressions of the syntactic form o1 $= o2)

cf_transrel_expr_eq : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_eq(inv) = {(e, e ′) |
∃ i1 i2 b. (e, e ′) = (i1 ,= i2, b) ∧ (i1 ,= i2) = b ∨
∃ v1 i2. (e, e ′) = (v1 ,= i2, v1 ,= i2) ∧ inv(v1) = None ∨
∃ v1 i1 i2 b. (e, e ′) = (v1 ,= i2, b) ∧ inv(v1) = Some(i1) ∧ (i1 ,= i2) = b ∨
∃ a i1 i2. (e, e ′) = (a[i1] ,= i2, a[i1] ,= i2) ∨
∃ a v1 i2. (e, e ′) = (a[v1] ,= i2, a[v1] ,= i2) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (a[v1] ,= i2, a[i1] ,= i2) ∧ inv(v1) = Some(i1) ∨
∃ v1 i2. (e, e ′) = (i1 ,= v2, i1 ,= v2) ∧ inv(v2) = None ∨
∃ v1 i2 b. (e, e ′) = (i1 ,= v2, b) ∧ inv(v2) = Some(i2) ∧ (i1 ,= i2) = b ∨
∃ v1 v2. (e, e ′) = (v1 ,= v2, v1 ,= v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ v1 v2 i2. (e, e ′) = (v1 ,= v2, v1 ,= i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ v1 v2 i1. (e, e ′) = (v1 ,= v2, i1 ,= v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ v1 v2 i1 i2 i3. (e, e ′) = (v1 ,= v2, b) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∧ (i1 ,= i2) = b ∨
∃ a i1 v2. (e, e ′) = (a[i1] ,= v2, a[i1] ,= v2) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (a[i1] ,= v2, a[i1] ,= i2) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (a[v1] ,= v2, a[v1] ,= v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (a[v1] ,= v2, a[v1] ,= i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2. (e, e ′) = (a[v1] ,= v2, a[i1] ,= v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 i1 v2 i2. (e, e ′) = (a[v1] ,= v2, a[i1] ,= i2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a i1 i2. (e, e ′) = (i1 ,= a[i2], i1 ,= a[i2]) ∨
∃ a v1 i2. (e, e ′) = (v1 ,= a[i2], v1 ,= a[i2]) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (v1 ,= a[i2], i1 ,= a[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a1 i1 a2 i2. (e, e ′) = (a1[i1] ,= a2[i2], a1[i1] ,= a2[i2]) ∨
∃ a1 v1 a2 i2. (e, e ′) = (a1[v1] ,= a2[i2], a1[v1] ,= a2[i2]) ∧ inv(v1) = None ∨
∃ a1 v1 i1 a2 i2. (e, e ′) = (a1[v1] ,= a2[i2], a1[i1] ,= a2[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a i1 v2. (e, e ′) = (i1 ,= a[v2], i1 ,= a[v2]) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (i1 ,= a[v2], i1 ,= a[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (v1 ,= a[v2], v1 ,= a[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 i1 v2. (e, e ′) = (v1 ,= a[v2], i1 ,= a[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (v1 ,= a[v2], v1 ,= a[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2 i2. (e, e ′) = (v1 ,= a[v2], i1 ,= a[i2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a1 i1 a2 v2. (e, e ′) = (a1[i1] ,= a2[v2], a1[i1] ,= a2[v2]) ∧ inv(v2) = None ∨
∃ a1 i1 a2 v2 i2. (e, e ′) = (a1[i1] ,= a2[v2], a1[i1] ,= a2[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 a2 v2. (e, e ′) = (a1[v1] ,= a2[v2], a1[v1] ,= a2[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a1 v1 i1 a2 v2. (e, e ′) = (a1[v1] ,= a2[v2], a1[i1] ,= a2[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a1 v1 a2 v2 i2. (e, e ′) = (a1[v1] ,= a2[v2], a1[v1] ,= a2[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 i1 a2 v2 i2. (e, e ′) = (a1[v1] ,= a2[v2], a1[i1] ,= a2[i2])∧

inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) }

B.1 Optimization patterns for expressions 237

Definition B.11. (Translation relation over pairs of expressions of the syntactic form o1 < o2)

cf_transrel_expr_lt : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_lt(inv) = {(e, e ′) |
∃ i1 i2 b. (e, e ′) = (i1 < i2, b) ∧ (i1 < i2) = b ∨
∃ v1 i2. (e, e ′) = (v1 < i2, v1 < i2) ∧ inv(v1) = None ∨
∃ v1 i1 i2 b. (e, e ′) = (v1 < i2, b) ∧ inv(v1) = Some(i1) ∧ (i1 < i2) = b ∨
∃ a i1 i2. (e, e ′) = (a[i1] < i2, a[i1] < i2) ∨
∃ a v1 i2. (e, e ′) = (a[v1] < i2, a[v1] < i2) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (a[v1] < i2, a[i1] < i2) ∧ inv(v1) = Some(i1) ∨
∃ v1 i2. (e, e ′) = (i1 < v2, i1 < v2) ∧ inv(v2) = None ∨
∃ v1 i2 b. (e, e ′) = (i1 < v2, b) ∧ inv(v2) = Some(i2) ∧ (i1 < i2) = b ∨
∃ v1 v2. (e, e ′) = (v1 < v2, v1 < v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ v1 v2 i2. (e, e ′) = (v1 < v2, v1 < i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ v1 v2 i1. (e, e ′) = (v1 < v2, i1 < v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ v1 v2 i1 i2 i3. (e, e ′) = (v1 < v2, b) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∧ (i1 < i2) = b ∨
∃ a i1 v2. (e, e ′) = (a[i1] < v2, a[i1] < v2) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (a[i1] < v2, a[i1] < i2) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (a[v1] < v2, a[v1] < v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (a[v1] < v2, a[v1] < i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2. (e, e ′) = (a[v1] < v2, a[i1] < v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 i1 v2 i2. (e, e ′) = (a[v1] < v2, a[i1] < i2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a i1 i2. (e, e ′) = (i1 < a[i2], i1 < a[i2]) ∨
∃ a v1 i2. (e, e ′) = (v1 < a[i2], v1 < a[i2]) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (v1 < a[i2], i1 < a[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a1 i1 a2 i2. (e, e ′) = (a1[i1] < a2[i2], a1[i1] < a2[i2]) ∨
∃ a1 v1 a2 i2. (e, e ′) = (a1[v1] < a2[i2], a1[v1] < a2[i2]) ∧ inv(v1) = None ∨
∃ a1 v1 i1 a2 i2. (e, e ′) = (a1[v1] < a2[i2], a1[i1] < a2[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a i1 v2. (e, e ′) = (i1 < a[v2], i1 < a[v2]) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (i1 < a[v2], i1 < a[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (v1 < a[v2], v1 < a[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 i1 v2. (e, e ′) = (v1 < a[v2], i1 < a[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (v1 < a[v2], v1 < a[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2 i2. (e, e ′) = (v1 < a[v2], i1 < a[i2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a1 i1 a2 v2. (e, e ′) = (a1[i1] < a2[v2], a1[i1] < a2[v2]) ∧ inv(v2) = None ∨
∃ a1 i1 a2 v2 i2. (e, e ′) = (a1[i1] < a2[v2], a1[i1] < a2[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 a2 v2. (e, e ′) = (a1[v1] < a2[v2], a1[v1] < a2[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a1 v1 i1 a2 v2. (e, e ′) = (a1[v1] < a2[v2], a1[i1] < a2[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a1 v1 a2 v2 i2. (e, e ′) = (a1[v1] < a2[v2], a1[v1] < a2[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 i1 a2 v2 i2. (e, e ′) = (a1[v1] < a2[v2], a1[i1] < a2[i2])∧

inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) }

238 B Specification of optimization relation for constant folding

Definition B.12. (Translation relation over pairs of expressions of the syntactic form o1 ≤ o2)

cf_transrel_expr_le : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr_le(inv) = {(e, e ′) |
∃ i1 i2 b. (e, e ′) = (i1 ≤ i2, b) ∧ (i1 ≤ i2) = b ∨
∃ v1 i2. (e, e ′) = (v1 ≤ i2, v1 ≤ i2) ∧ inv(v1) = None ∨
∃ v1 i1 i2 b. (e, e ′) = (v1 ≤ i2, b) ∧ inv(v1) = Some(i1) ∧ (i1 ≤ i2) = b ∨
∃ a i1 i2. (e, e ′) = (a[i1] ≤ i2, a[i1] ≤ i2) ∨
∃ a v1 i2. (e, e ′) = (a[v1] ≤ i2, a[v1] ≤ i2) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (a[v1] ≤ i2, a[i1] ≤ i2) ∧ inv(v1) = Some(i1) ∨
∃ v1 i2. (e, e ′) = (i1 ≤ v2, i1 ≤ v2) ∧ inv(v2) = None ∨
∃ v1 i2 b. (e, e ′) = (i1 ≤ v2, b) ∧ inv(v2) = Some(i2) ∧ (i1 ≤ i2) = b ∨
∃ v1 v2. (e, e ′) = (v1 ≤ v2, v1 ≤ v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ v1 v2 i2. (e, e ′) = (v1 ≤ v2, v1 ≤ i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ v1 v2 i1. (e, e ′) = (v1 ≤ v2, i1 ≤ v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ v1 v2 i1 i2 i3. (e, e ′) = (v1 ≤ v2, b) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∧ (i1 ≤ i2) = b ∨
∃ a i1 v2. (e, e ′) = (a[i1] ≤ v2, a[i1] ≤ v2) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (a[i1] ≤ v2, a[i1] ≤ i2) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (a[v1] ≤ v2, a[v1] ≤ v2) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (a[v1] ≤ v2, a[v1] ≤ i2) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2. (e, e ′) = (a[v1] ≤ v2, a[i1] ≤ v2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 i1 v2 i2. (e, e ′) = (a[v1] ≤ v2, a[i1] ≤ i2) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a i1 i2. (e, e ′) = (i1 ≤ a[i2], i1 ≤ a[i2]) ∨
∃ a v1 i2. (e, e ′) = (v1 ≤ a[i2], v1 ≤ a[i2]) ∧ inv(v1) = None ∨
∃ a v1 i1 i2. (e, e ′) = (v1 ≤ a[i2], i1 ≤ a[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a1 i1 a2 i2. (e, e ′) = (a1[i1] ≤ a2[i2], a1[i1] ≤ a2[i2]) ∨
∃ a1 v1 a2 i2. (e, e ′) = (a1[v1] ≤ a2[i2], a1[v1] ≤ a2[i2]) ∧ inv(v1) = None ∨
∃ a1 v1 i1 a2 i2. (e, e ′) = (a1[v1] ≤ a2[i2], a1[i1] ≤ a2[i2]) ∧ inv(v1) = Some(i1) ∨
∃ a i1 v2. (e, e ′) = (i1 ≤ a[v2], i1 ≤ a[v2]) ∧ inv(v2) = None ∨
∃ a i1 v2 i2. (e, e ′) = (i1 ≤ a[v2], i1 ≤ a[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a v1 v2. (e, e ′) = (v1 ≤ a[v2], v1 ≤ a[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a v1 i1 v2. (e, e ′) = (v1 ≤ a[v2], i1 ≤ a[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a v1 v2 i2. (e, e ′) = (v1 ≤ a[v2], v1 ≤ a[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a v1 i1 v2 i2. (e, e ′) = (v1 ≤ a[v2], i1 ≤ a[i2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) ∨
∃ a1 i1 a2 v2. (e, e ′) = (a1[i1] ≤ a2[v2], a1[i1] ≤ a2[v2]) ∧ inv(v2) = None ∨
∃ a1 i1 a2 v2 i2. (e, e ′) = (a1[i1] ≤ a2[v2], a1[i1] ≤ a2[i2]) ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 a2 v2. (e, e ′) = (a1[v1] ≤ a2[v2], a1[v1] ≤ a2[v2]) ∧ inv(v1) = None ∧ inv(v2) = None ∨
∃ a1 v1 i1 a2 v2. (e, e ′) = (a1[v1] ≤ a2[v2], a1[i1] ≤ a2[v2]) ∧ inv(v1) = Some(i1) ∧ inv(v2) = None ∨
∃ a1 v1 a2 v2 i2. (e, e ′) = (a1[v1] ≤ a2[v2], a1[v1] ≤ a2[i2]) ∧ inv(v1) = None ∧ inv(v2) = Some(i2) ∨
∃ a1 v1 i1 a2 v2 i2. (e, e ′) = (a1[v1] ≤ a2[v2], a1[i1] ≤ a2[i2])∧

inv(v1) = Some(i1) ∧ inv(v2) = Some(i2) }

B.1 Optimization patterns for expressions 239

Definition B.13. (Translation relation over expression pairs cf_transrel_expr)

cf_transrel_expr : ConstantValueEnv → ExpressionTransRel_CF

cf_transrel_expr(inv) = {(e, e ′) | (e, e ′) ∈ cf_transrel_expr_operand(inv) ∨
(e, e ′) ∈ cf_transrel_expr_plus(inv) ∨
(e, e ′) ∈ cf_transrel_expr_binmin(inv) ∨
(e, e ′) ∈ cf_transrel_expr_mult(inv) ∨
(e, e ′) ∈ cf_transrel_expr_unmin(inv) ∨
(e, e ′) ∈ cf_transrel_expr_and(inv) ∨
(e, e ′) ∈ cf_transrel_expr_not(inv) ∨
(e, e ′) ∈ cf_transrel_expr_or(inv) ∨
(e, e ′) ∈ cf_transrel_expr_eq(inv) ∨
(e, e ′) ∈ cf_transrel_expr_neq(inv) ∨
(e, e ′) ∈ cf_transrel_expr_lt(inv) ∨
(e, e ′) ∈ cf_transrel_expr_le(inv) }

240 B Specification of optimization relation for constant folding

B.2 Optimization patterns for l-value

Definition B.14. (Translation relation over l-value pairs, case 1/19)

cf_transrel_lv_case1 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case1((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set .

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
e ′ = i ∧
(e, i) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s(v %→ i)) }

Definition B.15. (Translation relation over l-value pairs, case 2/19)

cf_transrel_lv_case2 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case2((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set .

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
e ′ = b ∧
(e, b) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s(v %→ b)) }

B.2 Optimization patterns for l-value 241

Definition B.16. (Translation relation over l-value pairs, case 3/19)

cf_transrel_lv_case3 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case3((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set v ′.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v) = None ∧
e ′ = v ′ ∧
(e, v ′) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition B.17. (Translation relation over l-value pairs, case 4/19)

cf_transrel_lv_case4 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case4((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set a i .

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v) = None ∧
e ′ = a[i] ∧
(e, a[i]) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

242 B Specification of optimization relation for constant folding

Definition B.18. (Translation relation over l-value pairs, case 5/19)

cf_transrel_lv_case5 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case5((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set a v ′.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v ′) = None ∧
e ′ = a[v ′] ∧
(e, a[v ′]) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition B.19. (Translation relation over l-value pairs, case 6/19)

cf_transrel_lv_case6 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case6((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v ′) = None ∧
e ′ = o1 + o − 2 ∧
(e, o1 + o2) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

B.2 Optimization patterns for l-value 243

Definition B.20. (Translation relation over l-value pairs, case 7/19)

cf_transrel_lv_case7 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case7((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v ′) = None ∧
e ′ = o1 − o − 2 ∧
(e, o1 − o2) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition B.21. (Translation relation over l-value pairs, case 8/19)

cf_transrel_lv_case8 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case8((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v ′) = None ∧
e ′ = o1 ∗ o − 2 ∧
(e, o1 ∗ o2) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

244 B Specification of optimization relation for constant folding

Definition B.22. (Translation relation over l-value pairs, case 9/19)

cf_transrel_lv_case9 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case9((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set o.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v ′) = None ∧
e ′ = −o ∧
(e,−o) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition B.23. (Translation relation over l-value pairs, case 10/19)

cf_transrel_lv_case10 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case10((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v ′) = None ∧
e ′ = o1 ∧ o − 2 ∧
(e, o1 ∧ o2) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

B.2 Optimization patterns for l-value 245

Definition B.24. (Translation relation over l-value pairs, case 11/19)

cf_transrel_lv_case11 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case11((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set o.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v ′) = None ∧
e ′ = ¬o ∧
(e,¬o) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition B.25. (Translation relation over l-value pairs, case 12/19)

cf_transrel_lv_case12 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case12((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v ′) = None ∧
e ′ = o1 ∨ o − 2 ∧
(e, o1 ∨ o2) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

246 B Specification of optimization relation for constant folding

Definition B.26. (Translation relation over l-value pairs, case 13/19)

cf_transrel_lv_case13 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case13((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v ′) = None ∧
e ′ = o1 = o − 2 ∧
(e, o1 = o2) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition B.27. (Translation relation over l-value pairs, case 14/19)

cf_transrel_lv_case14 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case14((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v ′) = None ∧
e ′ = o1 ,= o − 2 ∧
(e, o1 ,= o2) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

B.2 Optimization patterns for l-value 247

Definition B.28. (Translation relation over l-value pairs, case 15/19)

cf_transrel_lv_case15 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case15((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v ′) = None ∧
e ′ = o1 < o − 2 ∧
(e, o1 < o2) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition B.29. (Translation relation over l-value pairs, case 16/19)

cf_transrel_lv_case16 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case16((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(v , v) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(v ′) = None ∧
e ′ = o1 ≤ o − 2 ∧
(e, o1 ≤ o2) ∈ cf_transrel_expr(inv) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

248 B Specification of optimization relation for constant folding

Definition B.30. (Translation relation over l-value pairs, case 17/19)

cf_transrel_lv_case17 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case17((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(a[i], a[i]) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv ′(a) = None ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition B.31. (Translation relation over l-value pairs, case 18/19)

cf_transrel_lv_case18 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case18((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(a[v], a[v]) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv(v) = None ∧
inv ′(a) = None ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

B.2 Optimization patterns for l-value 249

Definition B.32. (Translation relation over l-value pairs, case 19/19)

cf_transrel_lv_case18 : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv_case19((pid0,BP ,BB , succBP , predB),ACPA, pc, pid , bid , s, e, e ′) =

{(a[v], a[i]) | ∃ inv inv ′ pc′ pid ′ bid ′ set o1 o2.

pc′ = Suc(pc) ∧
succBP(pid , pc′) = Some(pid ′) ∧
BP(pid ′) = Some(pid ′, bid ′, 1, 0, pc′) ∧
BB(bid ′) = Some(pid ′) ∧
predB(pid ′) = Some(set) ∧
(bid , FTYPE) ∈ set ∧
ACPA(pc) = Some(inv) ∧
ACPA(pc′) = Some(inv ′) ∧
inv(a) = None ∧
inv(v) = Some(i) ∧
confcpares(inv , s) −→ confcpares(inv ′, s) }

Definition B.33. (Translation relation over l-value pairs)

cf_transrel_lv : BlckPosEnv × InvariantEnv ×Pc×BlckPosId×BlckId× State

×Expression×Expression → LValueTransRel_CF

cf_transrel_lv(B ,ACPA, pc, pid , bid , s, e, e ′) =

{(lv , lv ′) | (lv , lv ′) ∈ cf_transrel_lv_case1(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case2(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case3(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case4(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case5(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case6(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case7(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case8(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case9(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case10(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case11(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case12(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case13(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case14(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case15(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case16(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case17(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case18(B ,ACPA, pc, pid , bid , s, e, e ′) ∨
(lv , lv ′) ∈ cf_transrel_lv_case19(B ,ACPA, pc, pid , bid , s, e, e ′) }

Chapter C

252 C Specification of optimization relation for nop insertion

Specification of optimization relation for nop insertion

C.1 Assignment

Definition C.1.

ni_transrel_assign_1_1 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_assign_1_1(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ lval e src_pc2 src_pid2 src_succbid src_set trg_pc2 trg_pid2 trg_succbid trg_set .

instrs!src_pc1 = (lval :=e) ∧
instrs ′!trg_pc1 = (val :=e) ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧
src_pc2 = Suc(src_pc1) ∧
src_succBP(src_pid1 , src_pc2) = Some(src_pid2) ∧
src_BP(src_pid2) = Some(src_pid2 , src_succbid , 1, 0, src_pc2) ∧

src_BB(src_succbid) = Some(src_pid2) ∧
src_predB(src_pid2) = Some(src_set) ∧
(src_bid1 , FTYPE) ∈ src_set ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 1, 0, trg_pc1) ∧

trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_succbid , succbsize, 0, trg_pc2) ∧

trg_BB(trg_succbid) = Some(trg_pid2) ∧
trg_predB(trg_pid2) = Some(trg_set) ∧
(trg_bid1 , FTYPE) ∈ trg_set ∧

((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), FTYPE) ∈ CBEP }
end

C.1 Assignment 253

Definition C.2.

ni_transrel_assign_1_2 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_assign_1_2(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ lval e src_pc2 src_pid2 src_succbid src_set trg_pc2 trg_pid2 trg_bid2 trg_pc3 trg_pid3

trg_succbid trg_set .

instrs!src_pc1 = (lval :=e) ∧
instrs ′!trg_pc1 = (goto(trg_pc2)) ∧
instrs ′!trg_pc2 = (val :=e) ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

src_pc2 = Suc(src_pc1) ∧
src_succBP(src_pid1 , src_pc2) = Some(src_pid2) ∧
src_BP(src_pid2) = Some(src_pid2 , src_succbid , 1, 0, src_pc2) ∧

src_BB(src_succbid) = Some(src_pid2) ∧
src_predB(src_pid2) = Some(src_set) ∧
(src_bid1 , FTYPE) ∈ src_set ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 2, 0, trg_pc1) ∧

trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_bid1 , 2, 1, trg_pc2) ∧

trg_pc3 = Suc(trg_pc2) ∧
trg_succBP(trg_pid2 , trg_pc3) = Some(trg_pid3) ∧
trg_BP(trg_pid3) = Some(trg_pid3 , trg_succbid , succbsize, 0, trg_pc3) ∧

trg_BB(trg_succbid) = Some(trg_pid3) ∧
trg_predB(trg_pid3) = Some(trg_set) ∧
(trg_bid1 , FTYPE) ∈ trg_set ∧

((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), FTYPE) ∈ CBEP }
end

254 C Specification of optimization relation for nop insertion

Definition C.3.

ni_transrel_assign_1_3 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_assign_1_3(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ lval e src_pc2 src_pid2 src_succbid src_set trg_pc2 trg_pid2 trg_bid2 trg_pc3 trg_pid3

trg_succbid trg_set .

instrs!src_pc1 = lval :=e ∧
instrs ′!trg_pc1 = goto(trg_pc2) ∧
instrs ′!trg_pc2 = goto(trg_pc3) ∧
instrs ′!trg_pc3 = val :=e) ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

src_pc2 = Suc(src_pc1) ∧
src_succBP(src_pid1 , src_pc2) = Some(src_pid2) ∧
src_BP(src_pid2) = Some(src_pid2 , src_succbid , 1, 0, src_pc2) ∧

src_BB(src_succbid) = Some(src_pid2) ∧
src_predB(src_pid2) = Some(src_set) ∧
(src_bid1 , FTYPE) ∈ src_set ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 3, 0, trg_pc1) ∧

trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_bid1 , 3, 1, trg_pc2) ∧

trg_pc3 = Suc(trg_pc2) ∧
trg_succBP(trg_pid2 , trg_pc3) = Some(trg_pid3) ∧
trg_BP(trg_pid3) = Some(trg_pid3 , trg_bid1 , 3, 2, trg_pc3) ∧

trg_pc4 = Suc(trg_pc3) ∧
trg_succBP(trg_pid3 , trg_pc4) = Some(trg_pid4) ∧
trg_BP(trg_pid4) = Some(trg_pid4 , trg_succbid , succbsize, 0, trg_pc4) ∧

trg_BB(trg_succbid) = Some(trg_pid4) ∧
trg_predB(trg_pid4) = Some(trg_set) ∧
(trg_bid1 , FTYPE) ∈ trg_set ∧

((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), FTYPE) ∈ CBEP }
end

C.2 Printi 255

C.2 Printi

Definition C.4.

ni_transrel_printi_1_1 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_printi_1_1(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ lval e src_pc2 src_pid2 src_succbid src_set trg_pc2 trg_pid2 trg_succbid trg_set .

instrs!src_pc1 = (printi(e)) ∧
instrs ′!trg_pc1 = (printi(e)) ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

src_pc2 = Suc(src_pc1) ∧
src_succBP(src_pid1 , src_pc2) = Some(src_pid2) ∧
src_BP(src_pid2) = Some(src_pid2 , src_succbid , 1, 0, src_pc2) ∧

src_BB(src_succbid) = Some(src_pid2) ∧
src_predB(src_pid2) = Some(src_set) ∧
(src_bid1 , OTYPE) ∈ src_set ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 1, 0, trg_pc1) ∧

trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_succbid , succbsize, 0, trg_pc2) ∧

trg_BB(trg_succbid) = Some(trg_pid2) ∧
trg_predB(trg_pid2) = Some(trg_set) ∧
(trg_bid1 , OTYPE) ∈ trg_set ∧

((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), OTYPE) ∈ CBEP }
end

256 C Specification of optimization relation for nop insertion

Definition C.5.

ni_transrel_printi_1_2 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_printi_1_2(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ lval e src_pc2 src_pid2 src_succbid src_set trg_pc2 trg_pid2 trg_bid2 trg_pc3 trg_pid3

trg_succbid trg_set .

instrs!src_pc1 = (printi(e)) ∧
instrs ′!trg_pc1 = (goto(trg_pc2)) ∧
instrs ′!trg_pc2 = (printi(e)) ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

src_pc2 = Suc(src_pc1) ∧
src_succBP(src_pid1 , src_pc2) = Some(src_pid2) ∧
src_BP(src_pid2) = Some(src_pid2 , src_succbid , 1, 0, src_pc2) ∧

src_BB(src_succbid) = Some(src_pid2) ∧
src_predB(src_pid2) = Some(src_set) ∧
(src_bid1 , OTYPE) ∈ src_set ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 2, 0, trg_pc1) ∧

trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_bid1 , 2, 1, trg_pc2) ∧

trg_pc3 = Suc(trg_pc2) ∧
trg_succBP(trg_pid2 , trg_pc3) = Some(trg_pid3) ∧
trg_BP(trg_pid3) = Some(trg_pid3 , trg_succbid , succbsize, 0, trg_pc3) ∧

trg_BB(trg_succbid) = Some(trg_pid3) ∧
trg_predB(trg_pid3) = Some(trg_set) ∧
(trg_bid1 , OTYPE) ∈ trg_set ∧

((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), OTYPE) ∈ CBEP }
end

C.2 Printi 257

Definition C.6.

ni_transrel_printi_1_3 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_printi_1_3(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ lval e src_pc2 src_pid2 src_succbid src_set trg_pc2 trg_pid2 trg_bid2 trg_pc3 trg_pid3

trg_succbid trg_set .

instrs!src_pc1 = printi(e) ∧
instrs ′!trg_pc1 = goto(trg_pc2) ∧
instrs ′!trg_pc2 = goto(trg_pc3) ∧
instrs ′!trg_pc3 = printi(e) ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

src_pc2 = Suc(src_pc1) ∧
src_succBP(src_pid1 , src_pc2) = Some(src_pid2) ∧
src_BP(src_pid2) = Some(src_pid2 , src_succbid , 1, 0, src_pc2) ∧

src_BB(src_succbid) = Some(src_pid2) ∧
src_predB(src_pid2) = Some(src_set) ∧
(src_bid1 , OTYPE) ∈ src_set ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 3, 0, trg_pc1) ∧

trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_bid1 , 3, 1, trg_pc2) ∧

trg_pc3 = Suc(trg_pc2) ∧
trg_succBP(trg_pid2 , trg_pc3) = Some(trg_pid3) ∧
trg_BP(trg_pid3) = Some(trg_pid3 , trg_bid1 , 3, 2, trg_pc3) ∧

trg_pc4 = Suc(trg_pc3) ∧
trg_succBP(trg_pid3 , trg_pc4) = Some(trg_pid4) ∧
trg_BP(trg_pid4) = Some(trg_pid4 , trg_succbid , succbsize, 0, trg_pc4) ∧

trg_BB(trg_succbid) = Some(trg_pid4) ∧
trg_predB(trg_pid4) = Some(trg_set) ∧
(trg_bid1 , OTYPE) ∈ trg_set ∧

((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), OTYPE) ∈ CBEP }
end

258 C Specification of optimization relation for nop insertion

C.3 Branch

Definition C.7.

ni_transrel_branch_1_1 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_branch_1_1(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ e src_dst src_pcl src_pidl src_succbid l src_set l src_pcr src_pidr src_succbidr src_setr

trg_dst trg_pc2 trg_pid2 trg_pcl trg_pidl trg_succbid l succbsizel trg_set l

trg_pidr trg_succbidr succbsizer trg_setr.

instrs!src_pc1 = (branch(e, src_dst)) ∧
instrs ′!trg_pc1 = (branch(e, trg_dst)) ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

src_pcl = Suc(src_pc1) ∧
src_succBP(src_pid1 , src_pcl) = Some(src_pidl) ∧
src_BP(src_pidl) = Some(src_pidl , src_succbid l, 1, 0, src_pcl) ∧
src_BB(src_succbid l) = Some(src_pidl) ∧
src_predB(src_pidl) = Some(src_set l) ∧ (src_bid1 , FTYPE) ∈ src_set l ∧

src_succBP(src_pid1 , src_dst) = Some(src_pidr) ∧
src_BP(src_pidr) = Some(src_pidr , src_succbidr, 1, 0, src_pcr) ∧
src_BB(src_succbidr) = Some(src_pidr) ∧
src_predB(src_pidr) = Some(src_setr) ∧ (src_bid1 , FTYPE) ∈ src_setr ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 1, 0, trg_pc1) ∧

trg_pcl = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pcl) = Some(trg_pidl) ∧
trg_BP(trg_pidl) = Some(trg_pidl , trg_succbid l, succbsizel, 0, trg_pcl) ∧
trg_BB(trg_succbid l) = Some(trg_pidl) ∧
trg_predB(trg_pidl) = Some(trg_set l) ∧ (trg_bid1 , FTYPE) ∈ trg_set l ∧

trg_succBP(trg_pid1 , trg_dst) = Some(trg_pidr) ∧
trg_BP(trg_pidr) = Some(trg_pidr , trg_succbidr, succbsizer, 0, trg_pcr) ∧
trg_BB(trg_succbidr) = Some(trg_pidr) ∧
trg_predB(trg_pidr) = Some(trg_setr) ∧ (trg_bid1 , FTYPE) ∈ trg_setr ∧

((src_bid1 , src_succbid l), (trg_bid1 , trg_succbid l), FTYPE) ∈ CBEP ∧
((src_bid1 , src_succbidr), (trg_bid1 , trg_succbidr), FTYPE) ∈ CBEP }

end

C.3 Branch 259

Definition C.8.

ni_transrel_branch_1_2 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_branch_1_2(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ e src_dst src_pcl src_pidl src_succbid l src_set l src_pcr src_pidr src_succbidr src_setr

trg_pid2 trg_bid2 trg_pc2

trg_dst trg_pc2 trg_pid2 trg_pcl trg_pidl trg_succbid l succbsizel trg_set l

trg_pidr trg_succbidr succbsizer trg_setr.

instrs!src_pc1 = (branch(e, src_dst)) ∧
instrs ′!trg_pc1 = (branch(e, trg_dst)) ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

src_pcl = Suc(src_pc1) ∧
src_succBP(src_pid1 , src_pcl) = Some(src_pidl) ∧
src_BP(src_pidl) = Some(src_pidl , src_succbid l, 1, 0, src_pcl) ∧
src_BB(src_succbid l) = Some(src_pidl) ∧
src_predB(src_pidl) = Some(src_set l) ∧ (src_bid1 , FTYPE) ∈ src_set l ∧

src_succBP(src_pid1 , src_dst) = Some(src_pidr) ∧
src_BP(src_pidr) = Some(src_pidr , src_succbidr, 1, 0, src_pcr) ∧
src_BB(src_succbidr) = Some(src_pidr) ∧
src_predB(src_pidr) = Some(src_setr) ∧ (src_bid1 , FTYPE) ∈ src_setr ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid2 , 2, 0, trg_pc1) ∧

trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_bid2 , 2, 1, trg_pc2) ∧

trg_pcl = Suc(trg_pc2) ∧
trg_succBP(trg_pid1 , trg_pcl) = Some(trg_pidl) ∧
trg_BP(trg_pidl) = Some(trg_pidl , trg_succbid l, succbsizel, 0, trg_pcl) ∧
trg_BB(trg_succbid l) = Some(trg_pidl) ∧
trg_predB(trg_pidl) = Some(trg_set l) ∧ (trg_bid1 , FTYPE) ∈ trg_set l ∧

trg_succBP(trg_pid1 , trg_dst) = Some(trg_pidr) ∧
trg_BP(trg_pidr) = Some(trg_pidr , trg_succbidr, succbsizer, 0, trg_pcr) ∧
trg_BB(trg_succbidr) = Some(trg_pidr) ∧
trg_predB(trg_pidr) = Some(trg_setr) ∧ (trg_bid1 , FTYPE) ∈ trg_setr ∧

((src_bid1 , src_succbid l), (trg_bid1 , trg_succbid l), FTYPE) ∈ CBEP ∧
((src_bid1 , src_succbidr), (trg_bid1 , trg_succbidr), FTYPE) ∈ CBEP }

end

260 C Specification of optimization relation for nop insertion

Definition C.9.

ni_transrel_branch_1_3 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_branch_1_3(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ e src_dst src_pcl src_pidl src_succbid l src_set l src_pcr src_pidr src_succbidr src_setr

trg_pid2 trg_bid2 trg_pc2 trg_pid3 trg_bid3 trg_pc3

trg_dst trg_pc2 trg_pid2 trg_pcl trg_pidl trg_succbid l succbsizel trg_set l

trg_pidr trg_succbidr succbsizer trg_setr.

instrs!src_pc1 = (branch(e, src_dst)) ∧
instrs ′!trg_pc1 = (branch(e, trg_dst)) ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧
src_pcl = Suc(src_pc1) ∧
src_succBP(src_pid1 , src_pcl) = Some(src_pidl) ∧
src_BP(src_pidl) = Some(src_pidl , src_succbid l, 1, 0, src_pcl) ∧
src_BB(src_succbid l) = Some(src_pidl) ∧
src_predB(src_pidl) = Some(src_set l) ∧ (src_bid1 , FTYPE) ∈ src_set l ∧
src_succBP(src_pid1 , src_dst) = Some(src_pidr) ∧
src_BP(src_pidr) = Some(src_pidr , src_succbidr, 1, 0, src_pcr) ∧
src_BB(src_succbidr) = Some(src_pidr) ∧
src_predB(src_pidr) = Some(src_setr) ∧ (src_bid1 , FTYPE) ∈ src_setr ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid2 , 3, 0, trg_pc1) ∧
trg_pc2 = Suc(trg_pc1) ∧ trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_bid2 , 3, 1, trg_pc2) ∧
trg_pc3 = Suc(trg_pc2) ∧ trg_succBP(trg_pid1 , trg_pc3) = Some(trg_pid3) ∧
trg_BP(trg_pid3) = Some(trg_pid3 , trg_bid2 , 3, 2, trg_pc3) ∧
trg_pcl = Suc(trg_pc3) ∧ trg_succBP(trg_pid1 , trg_pcl) = Some(trg_pidl) ∧
trg_BP(trg_pidl) = Some(trg_pidl , trg_succbid l, succbsize, 0, trg_pcl) ∧
trg_BB(trg_succbid l) = Some(trg_pidl) ∧
trg_predB(trg_pidl) = Some(trg_set l) ∧ (trg_bid1 , FTYPE) ∈ trg_set l ∧
trg_succBP(trg_pid1 , trg_dst) = Some(trg_pidr) ∧
trg_BP(trg_pidr) = Some(trg_pidr , trg_succbidr, succbsize, 0, trg_pcr) ∧
trg_BB(trg_succbidr) = Some(trg_pidr) ∧
trg_predB(trg_pidr) = Some(trg_setr) ∧ (trg_bid1 , FTYPE) ∈ trg_setr ∧

((src_bid1 , src_succbid l), (trg_bid1 , trg_succbid l), FTYPE) ∈ CBEP ∧
((src_bid1 , src_succbidr), (trg_bid1 , trg_succbidr), FTYPE) ∈ CBEP }

end

C.4 Goto 261

C.4 Goto

Definition C.10.

ni_transrel_goto_1_1 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_goto_1_1(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ src_dst src_piddst src_succbid src_set

trg_dst trg_piddst trg_succbid succbsize trg_set .

instrs!src_pc1 = (goto(src_dst)) ∧
instrs ′!trg_pc1 = (goto(trg_dst)) ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

src_succBP(src_pid1 , src_dst) = Some(src_piddst) ∧
src_BP(src_piddst) = Some(src_piddst , src_succbid , 1, 0, src_dst) ∧
src_BB(src_succbid) = Some(src_piddst) ∧
src_predB(src_piddst) = Some(src_set) ∧ (src_bid1 , FTYPE) ∈ src_set ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 1, 0, trg_pc1) ∧

trg_succBP(trg_pid1 , trg_dst) = Some(trg_piddst) ∧
trg_BP(trg_piddst) = Some(trg_piddst , trg_succbid , succbsize, 0, trg_dst) ∧
trg_BB(trg_succbid) = Some(trg_piddst) ∧
trg_predB(trg_piddst) = Some(trg_set) ∧ (trg_bid1 , FTYPE) ∈ trg_set ∧

((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), FTYPE) ∈ CBEP }
end

262 C Specification of optimization relation for nop insertion

Definition C.11.

ni_transrel_goto_1_2 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_goto_1_2(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ src_dst src_piddst src_succbid src_set

trg_pid2 trg_bid2 trg_pc2

trg_dst trg_piddst trg_succbid succbsize trg_set .

instrs!src_pc1 = (goto(src_dst)) ∧
instrs ′!trg_pc1 = (goto(trg_pc2)) ∧
instrs ′!trg_pc2 = (goto(trg_dst)) ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

src_succBP(src_pid1 , src_dst) = Some(src_piddst) ∧
src_BP(src_piddst) = Some(src_piddst , src_succbid , 1, 0, src_dst) ∧
src_BB(src_succbid) = Some(src_piddst) ∧
src_predB(src_piddst) = Some(src_set) ∧ (src_bid1 , FTYPE) ∈ src_set ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 2, 0, trg_pc1) ∧

trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_bid1 , 2, 1, trg_pc2) ∧

trg_succBP(trg_pid2 , trg_dst) = Some(trg_piddst) ∧
trg_BP(trg_piddst) = Some(trg_piddst , trg_succbid , succbsize, 0, trg_dst) ∧
trg_BB(trg_succbid) = Some(trg_piddst) ∧
trg_predB(trg_piddst) = Some(trg_set) ∧ (trg_bid1 , FTYPE) ∈ trg_set ∧

((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), FTYPE) ∈ CBEP }
end

C.4 Goto 263

Definition C.12.

ni_transrel_goto_1_3 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_goto_1_3(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ src_dst src_piddst src_succbid src_set

trg_pid2 trg_bid2 trg_pc2

trg_pid3 trg_bid3 trg_pc3

trg_dst trg_piddst trg_succbid succbsize trg_set .

instrs!src_pc1 = (goto(src_dst)) ∧
instrs ′!trg_pc1 = (goto(trg_pc2)) ∧
instrs ′!trg_pc2 = (goto(trg_pc3)) ∧
instrs ′!trg_pc3 = (goto(trg_dst)) ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

src_succBP(src_pid1 , src_dst) = Some(src_piddst) ∧
src_BP(src_piddst) = Some(src_piddst , src_succbid , 1, 0, src_dst) ∧
src_BB(src_succbid) = Some(src_piddst) ∧
src_predB(src_piddst) = Some(src_set) ∧ (src_bid1 , FTYPE) ∈ src_set ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 3, 0, trg_pc1) ∧

trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_bid1 , 3, 1, trg_pc2) ∧

trg_pc3 = Suc(trg_pc2) ∧
trg_succBP(trg_pid2 , trg_pc3) = Some(trg_pid3) ∧
trg_BP(trg_pid3) = Some(trg_pid3 , trg_bid1 , 3, 2, trg_pc3) ∧

trg_succBP(trg_pid3 , trg_dst) = Some(trg_piddst) ∧
trg_BP(trg_piddst) = Some(trg_piddst , trg_succbid , succbsize, 0, trg_dst) ∧
trg_BB(trg_succbid) = Some(trg_piddst) ∧
trg_predB(trg_piddst) = Some(trg_set) ∧ (trg_bid1 , FTYPE) ∈ trg_set ∧

((src_bid1 , src_succbid), (trg_bid1 , trg_succbid), FTYPE) ∈ CBEP }
end

264 C Specification of optimization relation for nop insertion

C.5 Exit

Definition C.13.

ni_transrel_exit_1_1 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_exit_1_1(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
instrs!src_pc1 = exit ∧
instrs ′!trg_pc1 = exit ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 1, 0, trg_pc1) }
end

Definition C.14.

ni_transrel_exit_1_2 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_exit_1_2(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ trg_pc2 trg_pid2 trg_bid2 .

instrs!src_pc1 = exit ∧
instrs ′!trg_pc1 = goto(trg_pc2) ∧
instrs ′!trg_pc2 = exit ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 2, 0, trg_pc1) ∧

trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_bid1 , 2, 1, trg_pc2) }

end

C.5 Exit 265

Definition C.15.

ni_transrel_exit_1_3 : Program×Program×BlckPosEnv ×BlckPosEnv

×CorrespBlockEdgePairSet → EntryBlockPosTransRel_NI

ni_transrel_exit_1_3(S ,T ,BS ,BT ,CBEP) =

let

((vds, instrs), I) = S;

((vds ′, instrs ′), I ′) = T ;

(pid0,BPS ,BBS , succBPS , predBS) = BS ;

(pid ′
0,BPT ,BBT , succBPT , predBT) = BT

in

{((src_bid1 , src_pid1 , src_pc1), (trg_bid1 , trg_pid1 , trg_pc1)) |
∃ trg_pc2 trg_pid2 trg_bid2 .

instrs!src_pc1 = exit ∧
instrs ′!trg_pc1 = goto(trg_pc2) ∧
instrs ′!trg_pc2 = goto(trg_pc3) ∧
instrs ′!trg_pc3 = exit ∧

src_BP(src_pid1) = Some(src_pid1 , src_bid1 , 1, 0, src_pc1) ∧

trg_BP(trg_pid1) = Some(trg_pid1 , trg_bid1 , 3, 0, trg_pc1) ∧

trg_pc2 = Suc(trg_pc1) ∧
trg_succBP(trg_pid1 , trg_pc2) = Some(trg_pid2) ∧
trg_BP(trg_pid2) = Some(trg_pid2 , trg_bid1 , 3, 1, trg_pc2) ∧

trg_pc3 = Suc(trg_pc2) ∧
trg_succBP(trg_pid2 , trg_pc3) = Some(trg_pid3) ∧
trg_BP(trg_pid3) = Some(trg_pid3 , trg_bid1 , 3, 2, trg_pc3) }

end

Chapter D

The companion CD

This chapter presents and explains the usage of the content of the dissertation companion CD.

D.1 The content

The root directory of the companion CD contains the following entries:

README: The README file contains the text, wich is almost the same as the text in this chapter and
describes the following:
1. The purpose and the content of each entry in the root directory of the companion CD.
2. How to install and compile the software on the CD.

SVF: The directory SVF contains all Isabelle/HOL theories that make up the implementation of the
SVF presented in this dissertation. To develop these theories further, one needs the theorem
prover Isabelle version 2003. Unfortunately, it is not possible to compile the scripts into a
heap image using the batch mode. The reason for this is of the purely technical nature: Some
constant definitions declared in the framework for the optimizations CF and NI are to large
and the Isabelle/HOL is not able to deal with them properly. Fortunately, the theorem prover
Isabelle/Isar, which is used in interactive mode, is able to compile these definitions. Therefore,
one has to translate the theory scripts using the canonical user interface Proof General in the
XEmacs, cf. Section D.4 for the details.

compiler: The directory compiler contains all SML source files, which make up the implementa-
tion of the fronted presented in this dissertation. To compile the frontend, one needs the SML
compiler version 110.41, cf. Section D.2 for the details.

diss.pdf: The file diss.pdf contains the electronic version of this dissertation.
lookup.pdf: The file lookup.pdf contains the electronic version of a lemma lookup document.

The purpose of this document is to enable an interested reader to find, for a definition or
a theorem in the dissertation, a respective constant definition or lemma in a corresponding
Isabelle/HOL theory in the SVF directory.
The document is created directly from the dissertation document by removing all text between
definitions and theorems and keeping the structure of the original document untouched. For
each entry Definition X.Y in Section X in the dissertation, the removed original text, which
contained the explanation of Definition X.Y, has been replaced by the comment explaining
in which Isabelle/HOL theory file in the SVF directory a constant definition, which formalizes
Definition X.Y, can be found. The theorems in the dissertation document has been processed
in an analogous manner. As a result, the lemma lookup document enables the reader, for a
definition Definition X.Y in Section X in the dissertation, to quickly look up for its formal-
ization in the SVF: He or she merely has to look up for Definition X.Y in Section X in the

268 D The companion CD

lemma lookup document and to read the comment below the definition. The same applies to
the theorems in the dissertation.

D.2 Compiling the frontend

The frontend can be compiled as follows.

1. Copy the directory
compiler
to a directory of your choice in your site, say the directory
/home/xyz.

2. Change working directory to
/home/xyz/compiler.

3. Edit the variable CURR_DIR in the makefile
/home/xyz/compiler/Makefile
according to the situation on your site, i.e.
CURR_DIR="/home/xyz/compiler".

4. The makefile contains two targets, which provide the following alternatives of compilation
outputs:
a) Type

make compiler
to create a stand-alone compiler application. The application will be accessible at the fol-
lowing path:
/home/xyz/compiler/bin/mikroC.
If you want to change the directory or the file name, you have to edit the variable
MIKROC_BINARY in the makefile accordingly.

b) Type
make sml-mikroC
to create a heap image with the structure MikroC visible on the top level. If you want to
use this structure as a starting point for a further development, you have to pass the name
of the heap image file as a parameter to the SML compiler. Read the documentation of
the SML compiler on how to pass the name of the heap image file as a parameter to the
SML compiler. A concise description of the parameter syntax can be get by executing the
command
sml -h
in the shell. In particular, you have to read the description on how to specify the argument
@SMLload.
The pathname of the heap image file is controlled by the variable SML_MIKROC in the
makefile. If you want to analyse the source code of the frontend, the good starting point
for this are the files
/home/xyz/compiler/root.sml and
/home/xyz/compiler/sources.cm.
The file root.sml contains the declaration of the structure MikroC. The file sources.cm
is a configuration file for the compilation manager and contains the list of all SML files in
the ProGenCo project.

D.4 Using the SVF 269

D.3 Using the frontend

Edit a mikroC program. The examples of mikroC programs can be found in the directory
IL/test_programs.
To list them, execute the following commands in the shell:
cd /home/xyz/compiler
find IL/test_programs/test* -name "t*.c".
Suppose that the filename of the file with your mikroC program is prog.c. Then, you have to type
/home/xyz/compiler/bin/mikroC prog.c.
The frontend generates the following files:

1. prog.il contains an IL program, which is the result of translation of mikroC program con-
tained in prog.c and five subsequent optimizations described in this thesis.

2. prog.log contains pretty printed output of some functions, which is usefull for the purpose of
debugging.

3. CFcorrect.thy contains constant definitions needed for the correctnes proof of the CF opti-
mization.

4. CFcorrect.ML contains the correctnes proof of the CF optimization.
5. DAEcorrect.thy contains constant definitions needed for the correctnes proof of the DAE

optimization.
6. DAEcorrect.ML contains the correctnes proof of the DAE optimization.
7. DAIcorrect.thy contains constant definitions needed for the correctnes proof of the RAI

optimization.
8. DAIcorrect.ML contains the correctnes proof of the RAI optimization.
9. NOPINScorrect.thy contains constant definitions needed for the correctnes proof of the NI

optimization.
10. NOPINScorrect.ML contains the correctnes proof of the NI optimization.
11. RAEcorrect.thy contains constant definitions needed for the correctnes proof of the RAE

optimization.
12. RAEcorrect.ML contains the correctnes proof of the RAE optimization.

The reader should note that currently our frontend does not generate a theory file with a
proof combining the results proved in the above theory files in order to derive a statement about
the optimization correctness of the whole optimization chain that consists of the optimizations
CF, DAE, RAI, NI, and RAE (as described in this dissertation). The reason for this is that our
framework in a highly experimental stage of development and due to this fact, and from the lack
of time, there was no need to implement a proof generation module which performs this proof
step. The proof of the aforementioned statement, however, is trivial and consists of only one proof
step. Therefore, in our work, we always wrote it by hand working with Isabelle in the interactive
mode.

The next section describes how to verify the Isabelle/HOL theories in the above files using the
theorem prover Isabelle/HOL.

D.4 Using the SVF

To verify the proofs in the theory files described in the previous section, one has to perform the
following steps:

1. Copy the directory
SVF

270 D The companion CD

to a directory of your choice in your site, say the directory
/home/xyz.

2. Change working directory to
/home/xyz/SVF.

3. The directory contains the following entries:
a) ROOT.ML: This is a standard configuration file, which used by Isabelle when generating

heap image file containing a logic. It can be used to create a logic, which comprises the
theories from Layers 1 through 4, cf. the remark on generating heap image files using
Isabelle in the batch mode in Section D.1.

b) Setup.thy: This theory is a workaround, which is used to set proper paths to all theories
in the SVF for Isabelle. Always process this theory in Proof General first, if you want to
work with the SVF in the interactive mode.

c) Layer1_HOLBasics: This directory contains theory files, which contain Isabelle/HOL for-
malizations concepts from Layer 1 in the SVF.

d) Layer2_TranslationContract: This directory contains theory files, which contain Is-
abelle/HOL formalizations concepts from Layer 2 in the SVF.

e) Layer3_TypeSafety: This directory contains theory files, which contain Isabelle/HOL
formalizations concepts from Layer 3 in the SVF.

f) Layer4_OptimizationIndependentTranslCorrCriterion: This directory contains the-
ory files, which contain Isabelle/HOL formalizations concepts from Layer 4 in the SVF.

g) Layer5_OptimizationDependent_TranslCorrCriteria: This directory contais theory
files, which contain Isabelle/HOL formalizations concepts from Layer 5 in the SVF.

h) Layer6_ProofEnvironmentsForParticularProofTasks: This directory contains theory
files, which contain Isabelle/HOL formalizations concepts from Layer 6 in the SVF.

4. Edit SVF/ROOT.ML:
5. Edit SVF/Setup.thy:
6. Open the file Setup.thy in the user interface Proof General by executing the following com-

mand in the shell:
xemacs Setup.thy &.

7. Edit the variable mypath2progenco according to the situation on your site, i.e.
val mypath2progenco = "/home/xyz/SVF/".

8. Start Isabelle/HOL (not Isabelle/Isar) using default logic HOL by opening an arbitrary proof
script file with the extension ML, say the file
/home/xyz/SVF/ROOT.ML.

9. Open the file
Setup.thy

10. Process the whole theory Setup by clicking the button Use.
11. Open file

Layer6_ProofEnvironmentsForParticularProofTasks/SVFramework_IL_main.thy
12. Process the theory SVFramework_IL_main by clicking the button Use. Processing this theory

takes approximately 6 hours for the standard computer with the Linux, the microprocessor
1.6 MHz, and 512 MB RAM.

13. Now, you are ready to verify proofs generated by the frontend. We explain how to perform
this by example of the CF optimization.
a) Given that the frontend has generated the correctness proof in the scripts

/home/xyz/myproject/CFcorrrect.thy and
/home/xyz/myproject/CFcorrrect.ML,
than you have to open the former file and to process the whole theory in this file.

b) Switch to the latter file by pressing the shortcut ctrl-c, ctrl-b.

D.4 Using the SVF 271

c) Process the lemmas in this buffer, for example by pressing repeatedly the shortcut ctrl-c,
ctrl-n.

Analogous has to be done for other optimizations.

References

1. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, and Monica S. Lam. Compilers: Principles, Techniques,
and Tools. Pearson Education, Inc, 2006.

2. C.M. Angelo, L. Claesen, and H. De Man. Degrees of formality in shallow embedding hardware
description languages in HOL. In J.J. Joyce and C.-J.H. Seger, editors, Theorem Proving in Higher
Order Logic (TPHOL), volume 780 of LNCS, pages 89–100, Vancouver, Canada, 1994. Springer.

3. Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge University Press, 1998.
4. Andrew W. Appel. Foundational proof-carrying code. In LICS ’01: Proceedings of the 16th Annual

IEEE Symposium on Logic in Computer Science, page 247, Washington, DC, USA, 2001. IEEE
Computer Society.

5. Andrew W. Appel and Amy P. Felty. A semantic model of types and machine instructions for
proof-carrying code. In POPL ’00: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 243–253, New York, NY, USA, 2000. ACM Press.

6. David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for high-
performance computing. ACM Computing Surveys, 26(4):345–420, 1994.

7. C. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. Zuck. TVOC: A translation validator
for optimizing compilers. In Proceedings of the 17th International Conference on Computer Aided
Verification (CAV), July 2005.

8. M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. SIGPLAN Not., 23(7):329–
338, 1988.

9. Nick Benton. Simple relational correctness proofs for static analyses and program transformations.
In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 14–25, New York, NY, USA, 2004. ACM.

10. Stefan Berghofer and Martin Strecker. Extracting a formally verified, fully executable compiler from
a proof assistant. In Wolf Zimmermann Jens Knoop, editor, COCV’03, Compiler Optimization Meets
Compiler Verification, volume 82 of ENTCS, pages 377–394. Elsevier, April 2004.

11. Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development (Coq’Art:
The Calculus of Inductive Constructions). Texts in Theoretical Computer Science. An EATCS Series.
Springer-Verlag, Berlin, 2004.

12. Yves Bertot, Benjamin Grégoire, and Xavier Leroy. A structured approach to proving compiler
optimizations based on dataflow analysis. In Types for Proofs and Programs, Workshop TYPES
2004, volume 3839 of Lecture Notes in Computer Science, pages 66–81. Springer, 2006.

13. W. R. Bevier. Kit: A study in operating system verification. IEEE Transactions on Software Engi-
neering, 15(11):1382–1396, 1989.

14. William R. Bevier, Warren A. Hunt, J. Strother Moore, and William Young. An approach to systems
verification. Journal of Automated Reasoning, 5(4), 1989.

15. Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C compiler front-end.
In FM 2006: Int. Symp. on Formal Methods, volume 4085 of Lecture Notes in Computer Science,
pages 460–475. Springer, 2006.

274 References

16. Sandrine Blazy and Xavier Leroy. Formal verification of a memory model for C-like imperative
languages. In International Conference on Formal Engineering Methods (ICFEM 2005), volume
3785 of Lecture Notes in Computer Science, pages 280–299. Springer, 2005.

17. Jan Olaf Blech, Sabine Glesner, Johannes Leitner, and Steffen Mülling. A comparison between
two formal correctness proofs in Isabelle/HOL. In Proceedings of the COCV-Workshop (Compiler
Optimization meets Compiler Verification), 8th European Conferences on Theory and Practice of
Software (ETAPS 2005). Elsevier, April 2005.

18. Jan Olaf Blech and Benjamin Gregoire. Certifying code generation with coq. In Proceedings of
the 7th Workshop on Compiler Optimization meets Compiler Verification (COCV 2008), Budapest,
Hungary, to appear in ENTCS, 2008.

19. Jan Olaf Blech and Arnd Poetzsch-Heffter. A certifying code generation phase. In Proceedings
of the 6th Workshop on Compiler Optimization meets Compiler Verification (COCV 2007), Braga,
Portugal, volume 190 of ENTCS, pages 65–82, November 2007.

20. Jan Olaf Blech, Ina Schaefer, and Arnd Poetzsch-Heffter. Translation validation for system abstrac-
tions. In 7th Workshop on Runtime Verification (RV’07), Vancouver, Canada, volume 4839. Springer,
March 2007.

21. Manuel Blum and Sampath Kannan. Designing programs that check their work. In Proceedings of
the Twenty First Annual ACM Symposium on Theory of Computing, Seatle, Washington, 15–17 May
1989, pages 86–97, 1989.

22. Manuel Blum and Sampath Kannan. Designing programs that check their work. J. ACM, 42(1):269–
291, 1995.

23. Egon Börger. Ten years of Gurevich’s abstract state machines. Journal of Universal Computer
Science, 3(4):230–232, 1997.

24. Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Herbert, and John Van Tassel.
Experience with embedding hardware description languages in HOL. In Theorem Provers in Circuit
Design: Proceedings of the IFIP TC10/WG 10.2 International Conference, pages 129–156. North-
Holland, 1992.

25. R.J. Boulton, A. Gordon, M.J.C. Gordon, J. Herbert, and J.P. van Tassel. Experience with embed-
ding hardware description languages in HOL. In Conference on Theorem Provers in Circuit Design
(TPCD), pages 129–156, Nijmegen, 1992. North Holland.

26. R. S. Boyer, M. Kaufmann, and J.S. Moore. The Boyer-Moore theorem prover and its interactive
enhancement. Computers and Mathematics with Applications, 29(2):27–62, 1995.

27. Robert S. Boyer and J. Strother Moore. The Correctness Problem in Computer Science. Academic
Press, Inc., Orlando, FL, USA, 1982.

28. Manfred Broy, Ursula Hinkel, Tobias Nipkow, Christian Prehofer, and Birgit Schieder. Interpreter
verification for a functional language. In P.S. Thiagarajan, editor, Proc. 14th Conf. Foundations of
Software Technology and Theoretical Computer Science, volume 880 of Lecture Notes in Computer
Science, pages 77–88. Springer Verlag, 1994.

29. Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and Kenneth Cline. A
certifying compiler for Java. ACM SIGPLAN Notices, 35(5):95–107, 2000.

30. W. J. Cullyer. Implementing high integrity systems: the VIPER microprocessor. Aerospace and
Electronic Systems Magazine, IEEE, 4(6):5–13, 1989.

31. Paul Curzon. A programming logic for a verified structured assembly language. In A. Voronkov,
editor, Logic Programming and Automated Reasoning, volume 624 of Lecture Notes in Artificial
Intelligence, pages 403–408. Springer-Verlag, 1992.

32. Paul Curzon. A verified compiler for a structured assembly language. In Myla Archer, Jeffrey J.
Joyce, Karl N. Levitt, and Phillip J. Windley, editors, Proceedings of the 1991 International Workshop
on the HOL Theorem Proving System and its Applications. IEEE Computer Society Press, 1992.

33. Paul Curzon. Compiler correctness and input/output. In C.E. Landwehr, B. Randell, and L. Si-
moncini, editors, Dependable Computing for Critical Applications 3, volume 8 of Dependable Com-
puting and Fault-Tolerant Systems, pages 189–209. Springer-Verlag, 1993.

34. Paul Curzon. A verified Vista implementation. Technical Report 311, University of Cambridge,
Computer Laboratory, September 1993.

35. Maulik A. Dave. Compiler verification: a bibliography. SIGSOFT Softw. Eng. Notes, 28(6):2–2, 2003.

References 275

36. A. Dold and V. Vialard. Mechanically verified compiling specification for a lisp compiler. In Proc.
FSTTCS 2001, December 2001.

37. R. W. Floyd. Assigning meanings to programs. In Symposia in Applied Mathematics, American
Math. Soc., pages 19–32, 1967.

38. S. Glesner. Using program checking to ensure the correctness of compiler implementations. Jour-
nal of Universal Computer Science, 9(3):191–222, 2003. http://www.jucs.org/jucs_9_3/using_-
program_checking_to.

39. S. Glesner, G. Goos, F. v. Henke, H. Langmaack, W. Goerigk, and W. Zimmermann. Abschlussbericht
verifix. Technical report, Universitäten Karlsruhe, Kiel, Ulm, July 2004. Bericht zur Vorlage bei der
Deutschen Forschungsgemeinschaft.

40. Sabine Glesner. Program checking with certificates: Separating correctness-critical code. In Proceed-
ings of the 12th International FME Symposium (Formal Methods Europe), volume 2805 of Lecture
Notes in Computer Science, pages 758–777, Pisa, Italy, September 2003. Springer Verlag.

41. Sabine Glesner, Gerhard Goos, and Wolf Zimmermann. Verifix: Konstruktion und Architektur veri-
fizierender Übersetzer (Verifix: Construction and Architecture of Verifying Compilers). it - Informa-
tion Technology, 46(Issue 5/2004):265 – 276, May 2004.

42. Wolfgang Goerigk and Ulrich Hoffmann. Rigorous compiler implementation correctness: How to
prove the real thing correct. In FM-Trends 98: Proceedings of the International Workshop on Current
Trends in Applied Formal Method, pages 122–136, London, UK, 1999. Springer-Verlag.

43. Gerhard Goos and Wolf Zimmermann. Verification of compilers. In Bernhard Steffen and Ernst Rüdi-
ger Olderog, editors, Correct System Design, volume 1710, pages 201–230. Springer, Nov 1999.

44. M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In G. Birtwistle and P. A.
Subrahmanyam, editors, Current Trends in Hardware Verification and Automated Theorem Proving,
pages 73–128. Springer-Verlag, 1989.

45. M.C.J. Gordon. HOL – a machine oriented formulation of higher order logic. Technical Report 68,
University of Cambrigde, Computer Laboratory, 1985.

46. Michael J. C. Gordon and Thomas F. Melham. Introduction to HOL: A Theorem-Proving Environ-
ment for Higher-Order Logic. Cambridge University Press, 1993.

47. Michael J.C. Gordon. From LCF to HOL: a short history. In Mads Tofte (Editor) G. Plotkin (Editor),
Colin P. Stirling (Editor), editor, Proof, Language, and Interaction. MIT Press, 2000.

48. Yuri Gurevich. Specification and validation methods, chapter Evolving algebras 1993: Lipari guide,
pages 9–36. Oxford University Press, Inc., New York, NY, USA, 1995.

49. Yuri Gurevich and Marc Spielmann. Recursive abstract state machines. Journal of Universal Com-
puter Science, 3(4):233–246, apr 1997. http://www.jucs.org/jucs_3_4/recursiv_abstract.

50. Joshua D. Guttman, John D. Ramsdell, and Vipin Swarup. The VLISP verified scheme system. Lisp
Symb. Comput., 8(1-2):33–110, 1995.

51. Joshua D. Guttman, John D. Ramsdell, and Mitchell Wand. Vlisp: a verified implementation of
scheme. Lisp Symb. Comput., 8(1-2):5–32, 1995.

52. F. K. Hanna and N. Daeche. Specification and verification using higher-order logic: A case study.
In G. Milne and P. A. Subrahmanyam, editors, Formal Aspects of VLSI Design: Proceedings of the
1985 Edinburgh Workshop on VLSI, pages 179–213. North-Holland, 1986.

53. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580,
1969.

54. W. A. Hunt. Microprocessor design verification. Journal of Automated Reasoning, 5(4):429–460,
1989.

55. Intel. Intel Architecture Software Developer’s Manual. Intel Corporation, 1997.
56. J. Kershaw. Vista user’s guide. technical report 40186. Technical report, The Royal Signals and

Radar Establishment, 1986.
57. Gerwin Klein and Tobias Nipkow. Verified lightweight bytecode verification. Concurrency and

Computation: Practice and Experience, 13:1133–1151, 2001.
58. Gerwin Klein and Tobias Nipkow. Verified bytecode verifiers. Theoretical Computer Science, 298:583–

626, 2003.
59. Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language, virtual machine

and compiler. Technical Report 0400001T.1, National ICT Australia, Sydney, March 2004.

276 References

60. Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language, virtual machine
and compiler. ACM Transactions on Programming Languages and Systems (TOPLAS), 28(4):619–
695, 2006.

61. David Lacey. Program Transformation using Temporal Logic Specifications. PhD thesis, Oxford
University Computing Laboratory, 2003.

62. David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian Frederiksen. Proving correctness of
compiler optimizations by temporal logic. ACM SIGPLAN Notices, 37(1):283–294, January 2002.

63. David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian Frederiksen. Compiler optimization
correctness by temporal logic. Higher Order Symbol. Comput., 17(3):173–206, 2004.

64. Sorin Lerner. Automatically Proving the Correctness of Program Analyses and Transformations. PhD
thesis, University of Washington, 2006.

65. Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically proving the correctness of compiler
optimizations. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2003), San Diego, California, June 9-11 2003.

66. Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Automated soundness proofs for
dataflow analyses and transformations via local rules. In Conference Record of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2005), Long
Beach, California, January 12-14 2005.

67. Xavier Leroy. Formal certification of a compiler back-end, or: programming a compiler with a proof
assistant. In 33rd symposium Principles of Programming Languages, pages 42–54. ACM Press, 2006.

68. Xavier Leroy. The Compcert verified compiler, commented Coq development. Available at
http://compcert.inria.fr/doc/, March 2008.

69. Xavier Leroy and Sandrine Blazy. Formal verification of a C-like memory model and its uses for
verifying program transformations. Journal of Automated Reasoning, 2008. Accepted for publication,
to appear.

70. Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specification. Addison-Wesley, 2nd
edition, 1999.

71. John McCarthy and James Painter. Correctness of a compiler for arithmetic expressions. In J. T.
Schwartz, editor, Proceedings Symposium in Applied Mathematics, Vol. 19, Mathematical Aspects of
Computer Science, pages 33–41. American Mathematical Society, Providence, RI, 1967.

72. Arthur J. Milner Michael J. Gordon and Christopher P. Wadsworth. Edinburgh LCF: A Mechanised
Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.

73. J. S. Moore. A mechanically verified language implementation. Journal of Automated Reasoning,
Kluwer Academic Publishers, 5(4):461–492, 1989.

74. F. Lockwood Morris. Advice on structuring compilers and proving them correct. In POPL ’73:
Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 144–152, New York, NY, USA, 1973. ACM.

75. George C. Necula. Proof-carrying code. In Conference Record of POPL ’97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 106–119, Paris,
France, January 1997.

76. George C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, 1998.
77. George C. Necula. Translation validation for an optimizing compiler. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 83–95,
2000.

78. George C. Necula and Peter Lee. Safe kernel extensions without run-time checking. In Proceedings of
the Second Symposium on Operating Systems Design and Implementation (OSDI’96), pages 229–243,
Seattle, Washington, October 28–31 1996.

79. George C. Necula and Peter Lee. The design and implementation of a certifying compiler. In Proceed-
ings of the 1998 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 333–344, 1998.

80. Tobias Nipkow. Term rewriting and beyond — theorem proving in Isabelle. Formal Aspects of
Computing, 1:320–338, 1989.

81. Tobias Nipkow. Verified lexical analysis. In J. Grundy and M. Newey, editors, Theorem Proving
in Higher Order Logics, volume 1479 of Lecture Notes in Computer Science, pages 1–15. Springer
Verlag, 1998. Invited talk.

References 277

82. Tobias Nipkow. Verified bytecode verifiers. In M. Miculan F. Honsell, editor, Foundations of Software
Science and Computation Structures (FOSSACS 2001), volume 2030 of Lecture Notes in Computer
Science, pages 347–363. Springer Verlag, 2001.

83. Tobias Nipkow. Jinja: Towards a comprehensive formal semantics for a Java-like language. In
H. Schwichtenberg and K. Spies, editors, Proof Technology and Computation, pages 247–277. IOS
Press, 2006.

84. Tobias Nipkow, David von Oheimb, and Cornelia Pusch. µJava: Embedding a programming language
in a theorem prover. In F.L. Bauer and R. Steinbrüggen, editors, Foundations of Secure Computation.
Proc. Int. Summer School Marktoberdorf 1999, pages 117–144. IOS Press, 2000.

85. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

86. Tobias Nipkow and David von Oheimb. Java!ight is type-safe — definitely. In Proc. 25th ACM Symp.
Principles of Programming Languages, pages 161–170. ACM Press, 1998.

87. David von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and Hoare Logic.
PhD thesis, Technische Universität München, 2001. http://www4.in.tum.de/ oheimb/diss/.

88. David von Oheimb and Tobias Nipkow. Machine-checking the Java specification: Proving type-safety.
In Jim Alves-Foss, editor, Formal Syntax and Semantics of Java, volume 1523 of LNCS, pages 119–
156. Springer, 1999. http://isabelle.in.tum.de/Bali/papers/Springer98.html.

89. Dino P. Oliva, John D. Ramsdell, and Mitchell Wand. The vlisp verified prescheme compiler. Lisp
Symb. Comput., 8(1-2):111–182, 1995.

90. Lawrence C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF. Cambridge
Tracts in Theoretical Computer Science 2. Cambridge University Press, 1987.

91. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Computer
Science. Springer-Verlag, New York, NY, USA, 1994.

92. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. Lecture Notes in Computer Science,
1384:151+, 1998.

93. Arnd Poetzsch-Heffter. Shades of translation correctness. Talk given at Dagstuhl Seminar 05311:
"Verifying Optimizing Compilers", 31.07.-05.08.05, available in http://kathrin.dagstuhl.de/-
files/Materials/05/05311/05311.PoetzschHeffterArnd.Slides.ppt.

94. Arnd Poetzsch-Heffter and Marek J. Gawkowski. Towards proof generating compilers. In W. Zim-
mermann J. Knoop, G. C. Necula, editor, Proceedings of the 3rd International Workshop on Compiler
Optimization Meets Compiler Verification (COCV 2004), volume 132 of Electronic Notes in Theo-
retical Computer Science, pages 37–51. Elsevier B. V., May 2005.

95. W. M. McCracken R. A. DeMillo, R. J. Martin and J. S. Passafiume. Software Testing and Evaluation.
The Benjamin Cummings Publishing Company, Redwood City, 1987.

96. R. Reetz. Deep embedding VHDL. In E.T. Schubert, P.J. Windley, and J. Alves-Foss, editors,
Theorem Proving in Higher Order Logic (TPHOL), volume 971 of LNCS, pages 277–292, Aspen
Grove, Utah, USA, 1995. Springer.

97. R. Reetz and T. Kropf. Simplifying deep embedding: A formalised code generator. In T.F. Melham
and J. Camilleri, editors, Theorem Proving in Higher Order Logic (TPHOL), volume 859 of LNCS,
pages 378–390, Valetta, Malta, 1994. Springer.

98. Erika Rice, Sorin Lerner, and Craig Chambers. Automatically inferring sound dataflow functions
from dataflow fact schemas. In G. C. Necula J. Knoop and W. Zimmermann, editors, Proceedings of
the Fourth International Workshop on Compiler Optimization meets Compiler Verification (COCV
2005), volume 141, Issue 2, Edinburgh, UK, 02 April 2005. Elsevier B.V.

99. Laurence Rideau, Bernard P. Serpette, and Xavier Leroy. Tilting at windmills with Coq: formal verifi-
cation of a compilation algorithm for parallel moves. Journal of Automated Reasoning, 40(4):307–326,
2008.

100. M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings of the FLoC Workshop
on Run-Time Result Verification, Trento, Italy, July 1999.

101. Martin Rinard. Credible compilation. Technical Report MIT-LCS-TR-776, MIT Laboratory for
Computer Science, March 1999.

102. Eva Rose. Lightweight bytecode verification. J. Autom. Reason., 31(3-4):303–334, 2003.

278 References

103. H. Samet. Automatically proving the correctness of translations involving optimized code. PhD thesis,
Computer Science Department, Stanford University, 1975.

104. H. Samet. Compiler testing via symbolic interpretation. In Proceedings of the ACM 29th Annual
Conference, pages 492–497, Houston, TX, October 1976.

105. H. Samet. A normal form for compiler testing. In Proceedings of the SIGART SIGPLAN Symposium
on Artificial Intelligence and Programming Languages, pages 155–162, Rochester, NY, August 1977.

106. H. Samet. A canonical form algorithm for proving equivalence of conditional forms. Information
Processing Letters, 7(2):103–106, February 1978.

107. Martin Strecker. Formal verification of a Java compiler in Isabelle. In Proc. Conference on Automated
Deduction (CADE), volume 2392 of Lecture Notes in Computer Science, pages 63–77. Springer Verlag,
2002.

108. James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. Automata, Languages and Programming,
chapter More on advice on structuring compilers and proving them correct. Springer Berling /
Heidelberg, 1979.

109. Robert van Engelen, David Whalley, and Xin Yuan. Validation of code-improving transformations
for embeded systems. In SAC ’03: Proceedings of the 2003 ACM symposium on Applied computing,
pages 684–691, New York, NY, USA, 2003. ACM.

110. Robert van Engelen, David Whalley, and Xin Yuan. Automatic validation of code-improving trans-
formations on low-level program representations. Sci. Comput. Program., 52(1-3):257–280, 2004.

111. Robert van Engelen, Lex Wolters, and Gerard Cats. CTADEL: A generator of multi-platform high
performance codes for PDE-based scientific applications. In International Conference on Supercom-
puting, pages 86–93, 1996.

112. David von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and Computation: Practice
and Experience, 13(13):1173–1214, 2001. http://isabelle.in.tum.de/Bali/papers/CPE01.html.

113. Hal Wasserman and Manuel Blum. Software reliability via run-time result-checking. J. ACM,
44(6):826–849, 1997.

114. M. Wildmoser and T. Nipkow. Certifying machine code safety: Shallow versus deep embedding.
In K. Slind, A. Bunker, and G. Gopalakrishnan, editors, Theorem Proving in Higher Order Logic
(TPHOL), volume 3223 of LNCS, pages 305–320, Park City, Utah, USA, 2004. Springer.

115. Martin Wildmoser, Amine Chaieb, and Tobias Nipkow. Bytecode analysis for proof carrying code.
In Proceedings of the 1st Workshop on Bytecode Semantics, Verification and Transformation, volume
141 of Electronic Notes in Computer Science, pages 19–34, 2005.

116. Martin Wildmoser and Tobias Nipkow. Certifying machine code safety: Shallow versus deep embed-
ding. In K. Slind, A. Bunker, and G. Gopalakrishnan, editors, Theorem Proving in Higher Order
Logics (TPHOLs 2004), volume 3223 of LNCS, pages 305–320. Springer-Verlag, 2004.

117. Martin Wildmoser and Tobias Nipkow. Asserting bytecode safety. In Mooly Sagiv, editor, Proceedings
of the 14th European Symposium on Programming (ESOP 2005), volume 3444 of LNCS, pages 326–
341. Springer Verlag, 2005.

118. Martin Wildmoser, Tobias Nipkow, Gerwin Klein, and Sebastian Nanz. Prototyping proof carrying
code. In J.-J. Levy, E. Mayer, and J. Mitchell, editors, Exploring New Frontiers of Theoretical
Informatics, pages 333–347. Kluwer, 2004.

119. R. Wilhelm and D. Maurer. Übersetzerbau – Theorie, Konstruktion, Generierung. Springer Verlag,
second edition, 1997.

120. Glynn Winskel. The Formal Semantics of Programming Languages. Foundation of Computing Series.
MIT, 1993.

121. William D. Young. A mechanically verified code generator. Journal of Automated Reasoning, 5(4),
1989.

122. Wolf Zimmermann. On the correctness of transformations in compiler back-ends. In Tiziana Mar-
garia and Bernhard Steffen, editors, Leveraging Applications of Formal Methods. First International
Symposium, ISoLA 2004, Paphos, Cyprus, October 30 - November2, 2004, volume 4313 of Lecture
Notes in Computer Science, pages 74–95. Springer Berlin/Heidelberg, 2006.

123. Wolf Zimmermann and Thilo Gaul. On the construction of correct compiler back-
ends: An asm-approach. Journal of Universal Computer Science, 3(5):504–567, may 1997.
http://www.jucs.org/jucs_3_5/correct_compiler.

References 279

124. L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A translation validator for optimizing compilers.
In COCV’02, Compiler Optimization Meets Compiler Verification (Satellite Event of ETAPS 2002),
volume 65 of Electronic Notes in Theoretical Computer Science, pages 1–17, April 2002.

125. L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A methodology for the translation val-
idation of optimizing compilers. Journal of Universal Computer Science, 9(3):223–247, 2003.
http://www.jucs.org/jucs_9_3/voc_a_methodology_for.

126. L. Zuck, A. Pnueli, and R. Leviathan. Validation of optimizing compilers,. Technical report, Weiz-
mann Institute, Jerusalem, Israel, Israel, 2001.

Lebenslauf

Persönliche Daten

Name: GAWKOWSKI
Vornamen: MAREK, JERZY

Geburtsdatum: 15.05.1965
Geburtstort: Stettin, Polen
Familienstand: verheiratet
Staatsangehörigkeit: deutsch

Anschriften: Davenportplatz 15, 67663 Kaiserslautern,
(bis zum 30.11.2008)
ul. Pogodna 25, 05-502 Wólka Kozodawska, Polen,
(ab dem 01.12.2008)

Telefonnummern: +49 631 303 66 59 (bis zum 30.11.2008)

+48 22 736 24 28 (ab dem 01.12.2008)
Handynummer: +49 176 222 64 330 (bis zum 20.01.2009)

Email: gawkowsk@informatik.uni-kl.de

Ausbildung

1972-1980 Besuch der Jan-Kusociński Grundschule Nr. 6 in Stettin
1980-1984 Besuch des Adam-Asnyk Lyzeums Nr. 5 in Stettin
05/1984 Abitur am Adam-Asnyk Lyzeum Nr. 5 in Stettin
1984-1995 Studium der Sportwissenschaft auf Lehramt an der Universität

Stettin
12/1995 Abschluss als Sportlehrer mit dem Magistertitel
1996-2003 Studium der Informatik an der Universtiät Freiburg

02/2003 Abschluss als Diplom-Informatiker

Beruflicher Werdegang

03/2006 - 10/2008 wissenschaftlicher Mitarbeiter, Fachbereich Informatik,
AG Softwaretechnik (Prof. Dr. A. Poetzsch-Heffter)
Technische Universität, Kaiserslautern

Kaiserslautern, 25.11.2008

