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Chapter 1

Introduction

Travelling from one place to another requires time, as everybody experiences.

To create a mathematical model of travelling or transportation, it is thus nec-

essary to take this travel time into account. In mathematical optimization

travelling or transportation problems are modelled by network flows.

Static network flows, which do not take into account the aspect of time, have

been studied extensively in the last century. A network consists of nodes and

arcs, which connect the nodes. Each node models a town, a factory, a com-

puter, etc. and each arc corresponds to the connection between these nodes,

e.g. a street, a cable. To each arc a capacity is assigned, which bounds the

amount that can be transported on this arc.

Static network flow theory is the basis of dynamic network flow theory. In

a dynamic network, each arc has a transit time, which models the time it

takes to traverse the arc. In this thesis we consider discrete time steps. The

capacity of an arc then defines the amount that may enter the arc at each

time step. Some dynamic network flow problems can be viewed as a gen-

eralization of static network flow problems, e.g. the maximal dynamic flow

problem. Furthermore solution approaches for static network flow problems

can be transferred to dynamic network flow problems by using the time-

expanded graph, which was introduced by Ford and Fulkerson [11]. The

time-expanded graph is a copy of the original network for every time step

until time horizon T is reached and models transit times implicitly. Thus

the time-expanded network is a static network. But all algorithms working

on time-expanded graphs depend on T and thus are pseudo polynomial.

Dynamic network flows are applicable to various real life problems, e.g. pro-

duction planning, communication, personnel assignment, building evacua-

tion, scheduling. For a more complete list of applications and more informa-

tion about static network flows see the textbook of Ahuja et al.[2].
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2 CHAPTER 1. INTRODUCTION

Taking the example of building evacuation, there are different interesting

real life questions. Imagine that you receive a bomb scare for a building.

You know that the bomb will explode after a certain time T and you want

to evacuate as many people as possible within this given time horizon T .

This is a maximal dynamic flow problem, which was first studied by Ford

and Fulkerson [11], [12], who also gave a clever algorithm for solving this

problem. We introduce and discuss the maximal dynamic flow problem in

Chapter 3.

Another question related to the maximal dynamic flow problem is the ear-

liest arrival flow problem: Consider the same situation as described above,

but now you want to evacuate the people in such a way, that at every point

of time t, 0 ≤ t ≤ T , as many people as possible arrive in the secure region

outside the endangered building. Existence of a solution to such problems

was proved by Gale [14]. Minieka [25] and Wilkinson [28] gave independently

of each other pseudo polynomial algorithms to solve the earliest arrival flow

problem. Hoppe and Tardos [19] gave a polynomial approximation algorithm

to find earliest arrival flows. In Chapter 4 we introduce and discuss exten-

sively the earliest arrival flow problem.

To the best of our knowledge no polynomial time exact algorithm for the

earliest arrival flow problem is known unto today. Thus, we consider maxi-

mal dynamic and earliest arrival flows on the special class of series-parallel

graphs. We develop a maximal dynamic flow algorithm for series-parallel

graphs that takes the special structure of these graphs into consideration.

Then we show that this polynomial algorithm also solves the earliest arrival

flow problem on series-parallel graphs.

Outline of this thesis: In Chapter 2 we define dynamic networks and

dynamic network flows. The maximal dynamic flow problem is studied in

Chapter 3, where we introduce time-expanded graphs and present the algo-

rithm of Ford and Fulkerson [11]. The extensive study of earliest arrival flows

in Chapter 4 includes a formal problem formulation, the existence proof of

Gale [14], the exact pseudo polynomial algorithm of Minieka [25], the ap-

proximation algorithm of Hoppe and Tardos [19], a summary of the research

on flow-dependent earliest arrival flows and an outline on further literature.

In Chapter 5 we examine maximal dynamic and earliest arrival flows on

series-parallel graphs and give a polynomial algorithm for both. Eventually

in Chapter 6 we conclude with summary, evaluation and open problems.



Chapter 2

Preliminaries

In this thesis we consider a directed graph G = (N,A), where N is the set

of all nodes of the graph and A is the set of all arcs. We have one source

node s and one sink node z and to each arc (i, j) a certain capacity cij ∈ Z

with 0 ≤ cij < ∞ is assigned. The classical maximal flow problem on such a

static network is given as follows, where xij denotes the flow from node i to

node j and v is the total flow value induced by this flow x:

maximize v

subject to
∑

i∈N

(xij − xji) = 0 ∀j ∈ N

∑

i∈N\{s}

xsi = v

∑

i∈N\{z}

xiz = v

0 ≤ xij ≤ cij ∀i, j ∈ N

(2.1)

As mentioned in the introduction, static flows do not take into account that it

takes time to traverse an arc. To model this important property, we assign to

each arc (i, j) a traversal time τij ∈ N, which corresponds to the time it takes

one unit of flow to travel from node i to node j on arc (i, j). Furthermore

we assume to have a finite amount of time T for the flow to travel through

the network. In this thesis we consider discrete time steps, which is an

approximation to the continuous time of real world problems. The smaller

the discrete time intervals are, the better the approximation. So the accuracy

of discrete time models is a trade-off to the computation time, as it takes

more time to consider more time intervals. In the discrete-time dynamic

3



4 CHAPTER 2. PRELIMINARIES

setting the capacity cij on each arc represents the maximal amount of flow

that may enter arc (i, j) per time period.

We have the following definition:

Definition 1 A discrete-time dynamic network G = (N,A, T ) is a directed

network G = (N,A) with capacities cij and transit times τij on each arc (i, j)

and a given finite integer T , where the time horizon from 0 to T is discretized

into time intervals.

A feasible dynamic flow on a dynamic network has to fulfil some constraints.

We have a capacity constraint which ensures that on every arc (i, j) ∈ A at

most cij units of flow enter at every time step:

0 ≤ xij(t) ≤ cij, ∀i, j ∈ N, t ∈ {0, .., T} , (2.2)

where xij(t) denotes the amount of flow that enters arc (i, j) at time t. Fur-

thermore we have dynamic flow conservation constraints for each node i ∈ N ,

which imply that at every point of time t the amount of flow that reaches

a node i is the same as the amount of flow that leaves this node at time t.

For every intermediate node i ∈ N \ {s, z} the flow conservation constraint

is defined as follows:

∑

j∈N

(xji(t − τji) − xij(t)) = 0, ∀i ∈ N \ {s, z} , t ∈ {0, .., T} . (2.3)

Note that flow that reaches node i at time t, must have left node j at time

t − τji, for the flow needs time τji to traverse arc (j, i).

For the source and the sink nodes we want that all the flow that leaves the

source arrives at the sink within time horizon T and thus we get the following

dynamic flow conservation constrains for these nodes:

∑

i∈N

T
∑

t=0

(xsi(t) − xis(t − τis)) = −
∑

i∈N

T
∑

t=0

(xzi(t) − xiz(t − τiz)) (2.4)

Note that hold-overs, i.e. storage of flow in a node, are modelled for all nodes

i ∈ N \{s, z} implicitly by (2.3). Of course we can also allow hold-over at the

source and sink node, resp., where we would just have to add a loop starting

in s and ending in s (resp. z) with capacity ∞.

In the following we present two important dynamic network flow prob-

lems: The maximal dynamic flow problem and the earliest arrival flow prob-

lem.



Chapter 3

Maximal dynamic flows

3.1 Problem Formulation

First we consider maximal dynamic flows, which were introduced by Ford

and Fulkerson [11],[12] in 1958. The maximum dynamic flow problem asks

the following question: Find a feasible dynamic flow on G = (N,A, T ) that

sends the maximal amount of flow from source s to sink z in time T .

Example 1 Consider the dynamic graph given in Figure 3.1 to get a better

understanding of the maximal dynamic flow problem. The maximal dynamic

flow problem is for example: What is the maximal amount of flow that can

travel from source node s to sink node z within time horizon T = 6?

s

1

2

z

(5, 1)

(10, 4)

(5, 4)

(10, 2)

(2, 1)

Figure 3.1: Dynamic network with capacities cij and transit times τij on the

arcs.

5



6 CHAPTER 3. MAXIMAL DYNAMIC FLOWS

We can formulate the maximal dynamic flow problem as a linear program:

maximize v

subject to
∑

i∈N

T
∑

t=0

(xsi(t) − xis(t − τis)) = v

∑

i∈N

T
∑

t=0

(−xzi(t) + xiz(t − τiz)) = v

∑

j∈N

(xji(t − τji) − xij(t)) = 0 ∀i ∈ N \ {s, z} , t ∈ {0, .., T}

0 ≤ xij(t) ≤ cij ∀i, j ∈ N, t ∈ {0, .., T}

where xij only appears if (i, j) ∈ A and τij ≥ 0. The constraints are es-

sentially those we introduced in Chapter 2 and ensure the feasibility of the

maximal dynamic flow.

Ford and Fulkerson [11] gave two important solution strategies for this prob-

lem: time-expanded graphs and a clever algorithm to solve single source

single sink dynamic network flow problems.

3.2 Time-Expanded Graph

Ford and Fulkerson [11] introduced a time-expanded network D(T ) which is a

static network obtained by an expansion of the dynamic network. A dynamic

flow through the dynamic network G = (N,A, T ) corresponds to a static flow

in the time-expanded network D(T ). Time-expanded networks are a mighty

tool to solve dynamic network flow problems, for they allow to apply the

solution methods for static network flow problems to dynamic network flow

problems.

Such a time-expanded network D(T ) may be constructed as follows: Copy

each node i of the graph T times, so that the nodes in D(T ) are of the form

i(t) ∀i ∈ N, t ∈ {0, .., T}. Also copy the original arcs between the nodes, that

is, D(T ) has arcs (i(t), j(t + τij)), where 0 ≤ t ≤ T − τij, with capacity cij.

The hold-over property, which allows storage at the nodes, can be modelled

by adding arcs (i(t), i(t + 1)), 0 ≤ t < T and capacity ∞ for each node.

Example 2 In Figure 3.2 the time-expanded graph of Figure 3.1 is shown.

The capacity of each arc is given in Figure 3.2 and corresponds to the capacity

of the original arc of the underlying dynamic network. Note that the transit
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s(0) s(1) s(2) s(3) s(4) s(5) s(6)

1(0) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6)

2(0) 2(1) 2(2) 2(3) 2(4) 2(5) 2(6)

z(0) z(1) z(2) z(3) z(4) z(5) z(6)

5 5 5 5 5 5

2 2 2 2 2

10 10 10

10 10 10

5 5

Figure 3.2: Time-expanded graph of the dynamic network shown in Figure

3.1 with time-horizon T = 6.

times are modelled implicitly, e.g. τs1 = 1 is expressed in the time-expanded

graph by the form of that arc always pointing from s(t) to 1(t + 1). Due to

clarity, we have left out the hold over arcs, which would just point from i(t)

to i(t + 1) for each node i ∈ {s, 1, 2, z} and each t ∈ {0, .., 6}.

As stated above we can find a maximal flow on this time-expanded graph

in Figure 3.2 by applying the usual static network flow theory. One such

maximal flow is presented in Figure 3.3: The total flow arriving at sink z

within time T = 6 is
∑6

t=0 v(z(t)) = 20. 5 units of flow arrive at node z(5)

and 15 units of flow arrive at node z(6). This corresponds to 5 units arriving

at the sink at time 5 and 15 units arriving at the sink at time 6. Before time

5 no flow arrives at the sink.

The main problem with time-expanded graphs is their size, which is de-

pendent on the time horizon T . Thus any algorithm that works on the

time-expanded graph can only be a pseudo-polynomial algorithm.

3.3 Algorithm of Ford and Fulkerson

Considering the drawbacks of the time-expanded graph, Ford and Fulkerson

[11] work on the underlying static network G = (N,A) to develop a polyno-

mial algorithm.
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s(0) s(1) s(2) s(3) s(4) s(5) s(6)

1(0) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6)

2(0) 2(1) 2(2) 2(3) 2(4) 2(5) 2(6)

z(0) z(1) z(2) z(3) z(4) z(5) z(6)

5 5 5 5 5 5

2 2 2 2 2

10 10 10

10 10 10

5 5

Figure 3.3: A maximal flow on the time-expanded graph of the dynamic

network shown in Figure 3.1

To get a static network they interpret the transit times τij as costs aij of each

arc. Then they solve a minimum cost flow problem on the static network

G = (N,A). The minimum cost flow problem P (v) answers the question:

”What is the minimum cost of sending a flow with given flow value v from s

to z in G?” Problem P (v) is defined by:

minimize
∑

(i,j)∈A

aij · xij

subject to
∑

j∈N

xsj − v = 0

∑

j∈N

xjz − v = 0

∑

j∈N

(xji − xij) = 0 ,∀i ∈ N

0 ≤ xij ≤ cij ,∀i, j ∈ N

(3.1)

A feasible solution x of this problem fulfils all constraints. We denote the

maximal integer value v for which P (v) has a feasible solution by vmax.

In the maximal dynamic flow problem we want to maximize the flow, so

that the costs of this flow are minimal and that all flow arrives at the sink

within time T . Thus we need to model the time horizon T in the minimum
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cost flow problem to be allowed to transfer the results of this problem to the

maximum dynamic flow problem. Ford and Fulkerson presented the primal-

dual Algorithm 1 to solve the minimum cost flow problem with respect to

the time horizon.

In the next step Ford and Fulkerson decompose with Algorithm 2 the flow

they found with Algorithm 1 into chain flows. To get a maximal dynamic

flow, these chain flows have to be repeated over time as often as possible, i.e.

each chain flow starts at zero and is repeated (at every time interval) as long

as there is enough time for the flow to reach the sink within time horizon T .

Definition 2 A (standard) chain decomposition Ps of a flow x is a set

of paths P1, P2, . . . , Pq with associated flows (γ1, γ2, . . . , γq) and flow values

v(γ1), v(γ2), . . . , v(γq). The sum of these flows equals x.

Definition 3 A temporally-repeated flow (TRF) is a dynamic flow on G =

(N,A, T ) that can be generated by repeating all chain flows γ1, . . . , γq of a

chain decomposition Ps of a flow x. All chain flows in the chain decomposi-

tion use arcs in the direction of the flow. Every chain flow γm starts at t = 0

and is repeated T + 1 − τ(γm) times, where τ(γm) denotes the total travel

time of chain flow γm. Thus the flow value v(Ps) of the temporally repeated

flow is defined by:

v(Ps) :=
∑

γm∈Ps

v(γm)(T + 1 − τ(γm))

Example 3 Now we apply the algorithm of Ford and Fulkerson to our exam-

ple 1: Starting the procedure as stated in Algorithm 1 with πi = 0 , i ∈ N \{z}

and πz = 1, we see that no flow can travel from s to z, that is for no node

j ∈ {1, 2, z} we have πs +asj = πj and the other case is not possible since no

arcs are pointing at s. So we are in Step 4 and increase the node numbers

π1, π2, πz. Now flow can reach node 1, i.e. we have πs+as1 = 0+1 = 1 = π1,

but not yet node 2 or z. Therefore we jump to Step 4 immediately and in-

crease π2 and πz. With these updated node numbers πs = 0, π1 = 1, π2 = 2

and πz = 3 nodes s, 1 and 2 can be labeled, but not yet node z, since

π1 + a1z = 1 + 4 6= 3 = πz and π2 + a2z = 2 + 2 = 4 6= 3 = πz. Again

we are in Step 4 and increase πz. Via path s − 1 − 2 − z the sink node z is

reached for the first time. Now we assign in Step 3 to this path flow value

2, since c12 = 2 is the smallest capacity on this path and of course all nodes

are labeled with +, since xij = 0, ∀(i, j) ∈ A at the beginning. This yields
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Algorithm 1 Algorithm of Ford and Fulkerson, Routine 1

Require: dynamic network G = (N,A, T )

N =: Nu := set of all unlabeled nodes

∅ =: Nl := set of all labeled but unscanned nodes

∅ =: Ns := set of all labeled and scanned nodes

dual parameters π with πi := 0 ∀i ∈ N \ {z} and πz = 1, flow x with

xij = 0 ∀(i, j) ∈ A, arc costs or transit times aij

while πz ≤ T + 1 do

Step 1: assign label [n+,∞] to source s, update Nl := Nl ∪ {s}, Nu =

Nu \ {s}

Step 2:

while Nl 6= ∅ or z /∈ Nl do

take node i ∈ Nl with label [k±, h]

for all j ∈ Nu such that πi + aij = πj do

if xij < cij then

assign label [i+, min(h, cij − xij)] to j,

update Nl := Nl ∪ {j} , Nu := Nu \ {j}

end if

end for

for all j ∈ Nu such that πj + aji = πi do

if xji > 0 then

assign label [i−, min(h, xji)] to j, update Nl := Nl ∪ {j} , Nu :=

Nu \ {j}

end if

end for

consider i as scanned, i.e. Nl := Nl \ {i} , Ns := Ns ∪ {i}

end while

Step 3:

if z ∈ Nl then

if z has label [k+, h] then

xkz := xkz + h

Otherwise if z has label [k−, h] then

xkz := xkz − h

end if

then go to k and update the flow values accordingly

do this for all predecessors found in this way until you reach node s

set Nu := N, Nl := ∅, Ns := ∅ and GOTO Step 1

else

Step 4:

define π
′

i by: πi = πi, if i ∈ Nl and πi = πi + 1, if i ∈ Nu.

set πi := π
′

i, Nu := N, Nl := ∅, Ns := ∅

GOTO Step 1

end if

end while
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Algorithm 2 Algorithm of Ford and Fulkerson, Routine 2

Require: a dynamic network G = (N,A, T ) and flow x found by routine 1

set Nu := N, Nl := ∅, Ns := ∅, set m := 1

Step 1:

assign label [n,∞] to s, set Nu := Nu \ {s} , Nl := Nl ∪ {s}

Step 2:

while Nl 6= ∅ and z /∈ Nl do

take i ∈ Nl with label [k, h]

for all j ∈ Nu do

if xij > 0 then

assign label [i, min(h, xij)] to j and set Nu := Nu \ {j} , Nl :=

Nl ∪ {j}

end if

end for

set Nl := Nl \ {i} , Ns := Ns ∪ {i}

end while

Step 3:

if z ∈ Nl and labeled [k, h] then

xkz := xkz − h

add node k to path Pm

repeat for all predecessors k found in this way until k = s

in each step add the new node to the path Pm

assign to path Pm = {s, . . . , z} the flow value h = v(Pm)

set Nu := N, Nl := ∅, Ns := ∅ and m := m + 1

GOTO Step 1

Step 4:

else

all xij are zero and we have found all paths, so STOP Routine 2

end if
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s0

1

1

2

2

z 4

2 (5, 1)

(10, 4)

(5, 4)

2 (10, 2)

2 (2, 1)

(a)

s0

1

1

2

3

z 5

2 (5, 1)

(10, 4)

(5, 4)

2 (10, 2)

2 (2, 1)

(b)

s0

1

2

2

4

z 6

5 (5, 1)

(10, 4)

3 (5, 4)

2 (10, 2)

2 (2, 1)

(c)

s0

1

3

2

4

z 7

5 (5, 1)

8 (10, 4)

3 (5, 4)

10 (10, 2)

2 (2, 1)

(d)

s0

1

3

2

4

z 7

5 (5, 1)

8 (10, 4)

5 (5, 4)

10 (10, 2)

(2, 1)

(e)

Figure 3.4: the node numbers are given at the nodes and the flow values on

the blue arcs.
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the graph shown in Figure 3.4a. Then we remove all labels, preserve the flow

and return to Step 1.

In Step 1 we can again label node 1, but we cannot reach node 2 any longer

since c12 = x12 = 2. So we go to Step 4 and π2 and πz are increased which is

shown in Figure 3.4b. Again we can label node 1, this time with label [s+, 3],

where 3 = min(∞, 5− 2). We cannot reach node 2, for on arc (1, 2) we have

already x12 = c12 = 2 and πs + as2 = 0 + 4 6= 3 = π2. But we can reach

node z via arc (1, z), since π1 + a1z = 1 + 4 = 5 = πz. We get a new flow

augmenting path s − 1 − z and the update of the flow values in Step 3 yields

xs1 = 2+3 = 5 and x1z = 3. Then we go to Step 1 and find that we can label

no node except node s, so all the other node numbers have to be increased

and we get the flow shown in Figure 3.4c.

Going through Step 1 we label node 2, since πs + as2 = 0 + 4 = 4 = π2. With

i = 2 we can only reach node z, where we have to assign label [2+, 8], since

8 = min(10, 10 − 2). The update of the flow in Step 3 yields the following

changes: xs2 = 8 and x2z = 10. Repeating Step 1 with this updated flow,

labels nodes s and 2 but cannot label neither node 1 nor node z, so we go to

Step 4 and increase π1, πz and get the graph shown in Figure 3.4d.

Starting Step 1 with these node numbers and this flow, we can label node

2 with [s+, 2]. Now with i = 2, we assign to node 1 label [2−, 2] since

π1 + a12 = 3 + 1 = 4 = π2 and x12 = 2 > 0. Eventually we assign to

node z label [1+, 2], since we can reach node z via arc (1, z), i.e. π1 + a1z =

3 + 4 = 7 = πz. Updating the flows in Step 3 yields the minimal cost static

flow shown in Figure 3.4e. It is not possible to find another flow on this

graph, thus we have to increase the node numbers and stop, since the in-

crease yields πz = 8 > 6 + 1 = T + 1.

Now we can apply Algorithm 2 to decompose this minimal cost flow into

chain flows. Algorithm 2 starts with the flow found in Algorithm 1. A

forward-backwards structure is used to find the chain flows: In the forward

procedure (Step 1 and Step 2) a path from s to z with positive flow, i.e.

xij > 0 is determined. In the backwards step (Step 3), we start at z and

pursue backward the path found in the forwards procedure where each node

we encounter this way is added to Pm which gives the nodes of the path of

the chain flow. On this path we decrease the flow as much as possible, i.e. at

least on one arc of the path the flow value will be decreased to 0.

We detect two chain flows in our example: γ1 = {z, 1, s} with flow value 5

and γ2 = {z, 2, s} with flow value 10.

To get a maximal dynamic flow we have to repeat these chain flows as often
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as possible. Chain flow s − 1 − z needs five time units to reach the sink, so

we can start it at time 0 and at time 1. On γ2 the flow needs 6 time units

to reach the sink, so we can send it only once. Drawing these results in the

time-expanded graph we get the time-expanded graph shown in Figure 3.3.

Notice that the algorithm works on the underlying static network and not on

the time-expanded network.

Note, that the number of chain flows found by Algorithm 2 is bounded by

the number of arcs of the static network, since in every iteration the flow

value on at least one arc is decreased to zero.

The flow generated by the algorithm of Ford and Fulkerson is not necessarily

a maximal flow on the static network. It is not obvious that the algorithm of

Ford and Fulkerson always yields a maximal dynamic flow, in other words,

it is not obvious that there always exists a maximal dynamic flow within

the subclass of temporally-repeated flows. To prove this important result

Ford and Fulkerson argue on the time-expanded graph and show that the

flow generated through the chain flows and the cuts defined by the algorithm

are equal. Thus, due to the max-flow-min-cut theorem, the flow must be

maximal and the cut must be minimal.

3.4 Minimum Cost Circulation Problem

As we have seen in the previous section the Ford and Fulkerson maximal

dynamic flow algorithm is a primal-dual schema. We have also seen that

there is a close relation between the maximal dynamic flow problem and the

minimal cost flow problem. In this section we first present the minimal cost

flow algorithm of Klein [21] and then modify it, so that it solves the maximal

dynamic flow problem.

The minimum cost flow algorithm of Klein [21] is a primal method which

works on the residual network G′(x) of the original network G with associated

flow x.

Definition 4 The residual network G′(x) = (N,A′(x)) of the original net-

work G = (N,A) with flow x is defined by :

arc set A′(x) := A+(x) ∪ A−(x), where

A+(x) := {(i, j) ∈ A with xij < cij}

A−(x) := {(j, i) : (i, j) ∈ A with xij > 0} .
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To each arc in A′(x) we assign the following capacities

c′ij := cij − xij if (i, j) ∈ A+(x)

c′ji := xji if (j, i) ∈ A−(x)

and arc costs

a′
ij := aij if (i, j) ∈ A+(x)

a′
ji := −aji if (j, i) ∈ A−(x).

We can use the following theorem to check whether a flow x is a minimal

cost flow or not:

Theorem 1 (Busacker and Saaty [6]) The flow x is a minimal cost flow

if and only if there is no directed cycle C in the residual network G′(x) such

that the sum of the costs around the arcs of C is negative.

In his algorithm Klein uses this theorem to transform a maximal static flow

x on network G = (N,A) into a minimal cost flow:

Algorithm 3 Minimal Cost Flow Algorithm of Klein

Input: Static network G = (N,A) with capacities cij and arc costs aij on

each arc (i, j) ∈ A.

Output: minimal cost flow on G

1. Find a maximal flow x of flow value v on G by using any appropriate

algorithm, e.g. Labeling Algorithm (s.f. [17], page 152)

2. Form the residual network G′(x).

3. Test for negative dicycles.

4. If a negative dicycle C is found, increase the flow around C as much

as possible without violating the capacity of any arc (i, j) ∈ A(x) in the

cycle:

xij :=







xij if (i, j) /∈ C

xij − δ if (i, j) ∈ C and a′
ij ≤ 0

xij + δ if (i, j) ∈ C and a′
ij > 0

where δ := min
{

c′ij : (i, j) ∈ C
}

.

Go to Step 2.

5. If no negative dicycle is found

STOP: x is a minimal cost flow.
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In Algorithm 3 we need to determine negative dicycles in Step 3. This can

be done, for example by using the matrix multiplication method presented

in [1] as Klein [21] proposes.

As mentioned above we need to alter Algorithm 3 to get a temporally re-

peated flow which solves the maximal dynamic flow problem: This can be

done by adding arc (z, s) to the original graph G = (N,A, T ) and assigning

to this arc capacity czs = ∞ and transit time τzs = −(T + 1). Now apply

Klein’s algorithm where the starting flow is the zero flow. Since arc (z, s)

has negative costs, there might be negative dicycles. In the first iteration

this negative cycle uses the arcs of the original graph G from s to z and then

arc (z, s) to complete the cycle. The arcs on this dicycle, except arc (z, s),

form a path from s to z in G and have positive costs. Only if the sum of the

costs of these arcs are less than or equal to T , the cycle is a negative cycle

and Algorithm 3 sends flow along this dicycle. Translated into the dynamic

setting this means, that only if the total transit time of a s-z-path is less

than or equal to T flow is sent via this path. This is exactly what we need

for the maximal dynamic flow problem. We get Algorithm 4 to solve the

maximal dynamic flow problem.

Algorithm 4 Minimal Cost Circulation Flow Algorithm

Input: dynamic network G = (N,A, T ) with given capacities and transit

times and an additional arc (z, s) with capacity czs = ∞ and transit time

τzs = −(T + 1)

Output: A maximal dynamic flow

Set the flow xij := 0 for all arcs (i, j) ∈ A

Interpret the transit time on each arc as costs and apply Algorithm 3 to

find a minimal cost flow x∗.

Decompose x∗ into path flows using Algorithm 2

Note that it might happen that Algorithm 4 uses arc (z, s) in the reverse

direction during the execution and that the minimal cost flow it finds might

not be a maximal flow on the static graph G\{(z, s)}. Example 4 illustrates

these cases:

Example 4 Consider the graph given in Figure 3.5: We apply the Minimum

Cost Circulation Flow Algorithm given above. Let the first dicycle we find, be

C1 = (s, 1, 2, z, s) with costs a(C1) = −1 and flow x with flow value v(C1) =

5. Now consider the residual network G′(x) and look for negative dicycles.

We find C2 = (s, 3, 4, z, s) with costs a(C2) = −3 and flow value v(C2) = 10.

We update flow x by adding the flow on C2 and again consider the residual
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s

1 2

3 4

z

(5, 2)

(15, 1)

(8, 5)

(3, 1)
(5, 2)

(1, 1)

(10, 5)

(10, 1)

(∞,−10)

Figure 3.5: Dynamic network with capacities and transit times as given on

the arcs.

network G′(x), which is given in Figure 3.6. In Figure 3.6 we have marked a

negative dicycle C3 = (s, z, 2, 1, 4, 3, s) which uses the backwards arc of (z, s)

and takes flow back. The costs of this dicycle are a(C3) = −2 and the flow

value is v(C3) = 3. We have to update the flow x again and look for negative

dicycles in the corresponding residual network G′(x). We find negative dicycle

C4 = (s, 3, 2, z, s) with flow value v(C4) = 1 and costs a(C4) = −6. Update

the residual network once more and look for negative dicycles. As there are

no more negative dicycles in G′(x) the algorithm stops. We apply Algorithm

2 and find the maximal dynamic flow on G with time horizon T = 9. This

maximal dynamic flow is not a maximal flow on the static network, since it

sends only 13 units of flow from s to z in the static network.
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s

1 2

3 4

z

(5,−2)

(5, 1)

(10,−1)

(3, 5)

(5,−5)

(3, 1)
(5,−2)

(1, 1)

(10,−5)

(10,−1)

(∞,−10)

(15, 10)

Figure 3.6: Residual network of the graph given in Figure 3.5 after the second

negative circulation was found. The third negative circulation is marked.



Chapter 4

Earliest Arrival Flows

In this chapter we study earliest arrival flows, which specify the maximal

dynamic flow problem by asking the flow to deliver the maximum amount

of flow into the sink up to every point of time and not only at the end at

time T . We start with giving the problem formulation of the earliest arrival

flow problem and make some observations. Next we answer the question of

existence of earliest arrival flows by following the results of Gale [14]. An

algorithm for computing earliest arrival flows was given independently by

Minieka [25] and Wilkinson [28] in the early 70s. We follow the approach

of Minieka and present his earliest arrival flow algorithm. The idea of the

algorithm of Minieka is the same as the idea of the algorithm of Wilkinson and

both are pseudo polynomial. As far as we know it is still an open question, if

it is possible to find an exact polynomial algorithm for the earliest arrival flow

problem. Therefore we present the polynomial-time approximation scheme

for earliest arrival flows of Hoppe and Tardos [19].

Next we give a short summary about the research on flow-dependent transit

times. Flow-dependent transit time means, that the transit time on each arc

is dependent of the flow that enters the arc or is on the arc. We present

two models for modeling flow-dependent transit times and evaluate them.

Then we present the fan graphs of Köhler et al. [8] which try to transform

the concept of time-expanded graphs to flow-dependent transit times and

the bow graph, which is the underlying dynamic version of the fan graph.

Baumann and Köhler [3] show that existence of earliest arrival flows with

flow-dependent transit times is not given in general for any of the presented

models and give an approximation.

Finally we give a short overview of further literature about earliest arrival

flows.

19
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4.1 Problem Formulation and Observations

As presented in the previous section Ford and Fulkerson showed how to ob-

tain for each integer T a maximal dynamic flow x with largest possible flow

value v within this time horizon T .

Shortly after their contribution, Gale [14] came up with a closely related

problem called earliest arrival flow or universal maximal flow problem: Does

there exist a dynamic flow in G = (N,A, T ) from s to z which is maximal at

all times 0 ≤ t ≤ T , for a given integer T?

Such earliest arrival flows are of interest for us, because applied to evacu-

ation problems an earliest arrival flow ensures that at any point of time the

maximal number of persons is evacuated. In any case of emergency like a

fire or a terroristic attack, where it is not sure how long the building will

resist before it collapses, an earliest arrival flow evacuation strategy makes

sure that as many lives as possible are saved.

Due to the definition of earliest arrival flows given above, we can make the

following simple observation:

Observation 1 All earliest arrival flows are maximal dynamic flows.

A natural question arising from this observation is if the reverse is also true,

i.e. are all maximal dynamic flows also earliest arrival flows? In the following

example we show that this is not the case.

Example 5 Looking at Figure 3.1 again, we see that flow taking the path

s − 1 − 2 − z would only need four time units, so at time four the maximal

amount of flow that could have arrived at the sink is 2 (due to the capacity on

arc (1, 2)). In the maximal dynamic flow in Figure 3.3 no flow at all arrives

at time four. Consequently this cannot be an earliest arrival flow. In Figure

4.1 an earliest arrival flow for our original problem is shown: In Figure 4.1

at time four the first 2 flow units arrive. At time five another 5 flow units

are added, so in total at time five 2 + 5 = 7 flow units have already arrived

at the sink (note that this is also more than in the maximum dynamic flow

presented in Figure 3.3). At time six 13 more units of flow enter the sink, so

in total 20 units have reached the sink by time six. Note that this flow is not

a temporally repeated flow, since the chain flow s−1−2−z is only started at

times zero and one but not at time two, though there would be enough time
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s(0) s(1) s(2) s(3) s(4) s(5) s(6)

1(0) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6)

2(0) 2(1) 2(2) 2(3) 2(4) 2(5) 2(6)

z(0) z(1) z(2) z(3) z(4) z(5) z(6)

5 5

2 2

2 2 10

10

3 3

Figure 4.1: Earliest arrival flow for the dynamic graph shown in Figure 3.1.

The flow values are given on the arcs.

for that chain flow to reach the sink.

We have thus derived the following observation:

Observation 2 Maximal dynamic flows are not necessarily earliest arrival

flows.

It is interesting to consider the structure of earliest arrival flows. It would be

nice, if for every graph and every time horizon T , we could find an earliest

arrival flow which has the property, that it is also a temporally repeated flow.

Unfortunately, this is not true in general, but we show in Chapter 5 that for

a special class of graphs, it is always possible to find an earliest arrival flow

which has the temporally repeated flow property. For general graphs we have

the following observation:

Observation 3 On general graphs G = (N,A, T ) it is not always possible

to find an earliest arrival flow which is a temporally repeated flow.

Proof: We prove this observation by counterexample:

Assume that on every graph G = (N,A, T ) it is possible to find an

earliest arrival flow that is a temporally repeated flow.

Now consider again the graph given in Example 1 with time horizon

T = 7. We have already argued in Example 5, that flow must be send

via path s − 1 − 2 − z to get an earliest arrival flow. In order to get
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an earliest arrival flow with the temporally repeated flow property, we

thus have to repeat this chain flow as often as possible. The flow on

the time-expanded graph in Figure 4.2a shows the maximal temporally

repeated flow we can get on this graph with T = 7, when we repeat

chain flow s−1−2−z. In Figure 4.2a the total amount of flow that has

s(0) s(1) s(2) s(3) s(4) s(5) s(6) s(7)

1(0) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6) 1(7)

2(0) 2(1) 2(2) 2(3) 2(4) 2(5) 2(6) 2(7)

z(0) z(1) z(2) z(3) z(4) z(5) z(6) z(7)

5 5 5 2

2 2 2 2

2 2 10 10

8 8

3 3 3

(a) Maximal temporally repeated flow on the graph shown in Figure 3.1 with time horizon T = 7.

s(0) s(1) s(2) s(3) s(4) s(5) s(6) s(7)

1(0) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6) 1(7)

2(0) 2(1) 2(2) 2(3) 2(4) 2(5) 2(6) 2(7)

z(0) z(1) z(2) z(3) z(4) z(5) z(6) z(7)

5 5 5

2 2

2 2 10 10

10 10

3 3 5

(b) Maximal dynamic flow on the graph shown in Figure 3.1 with time horizon T = 7.

Figure 4.2: Counterexample proving Observation 3.

reached the sink z after 7 time units is 33. But this is not the maximal

amount of flow that can reach the sink within time horizon T = 7, as

the maximal dynamic flow given in Figure 4.2b shows. There we see
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that 35 flow units have reached the sink after 7 time units. Thus, due

to Observation 1, the maximal temporally repeated flow in Figure 4.2a

cannot be an earliest arrival flow, since it is not a maximal dynamic

flow. 2

4.2 Existence of Earliest Arrival Flows

The main contribution of Gale [14] is an existence proof of earliest arrival

flows in the following cases:

• single source - single sink dynamic network

• generalized single source - single sink dynamic network with time de-

pendent capacities and transit times

• multiple sources - single sink dynamic network (with time dependent

capacities and transit times)

Unfortunately, as Gale pointed out, his existence theorem does not extend

to the case of multiple sinks.

In the following we give the proof of existence of earliest arrival flows in

the single source - single sink case according to Gale [14]. Therefore we need

to introduce the concept of demands on nodes:

Definition 5 (Gale [14]) A demand is a function δ : N \{s} → Z
+ assign-

ing to each node i ∈ N \ {s} a certain demand δ(i), which has to be satisfied

by a flow. If there exists a flow satisfying the demand of each node, i.e.,

δ(i) ≤
∑

j∈N

xji ,∀i ∈ N \ {s}

then the demand is feasible.

The following feasibility theorem relates feasible demands to the capacity of

cuts:

Theorem 2 (Feasibility Theorem [14]) The demand δ is feasible if and

only if, for every subset B ⊆ N \ {s} δ satisfies the relation

∑

i∈B

δ(i) ≤
∑

j∈N\B, i∈B

cji. (4.1)
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s

1

6

2

2

z 5

(5, 1)

(10, 4)

(5, 4)

(10, 2)

(2, 1)

Figure 4.3: Dynamic network with demands on the nodes.

We give an illustration of this result in the following example:

Example 6 Consider the dynamic network as given in Figure 4.3, where

demands are assigned to the nodes. Then for subset B1 = {1, 2, z} we have
∑

i∈B1
δ(i) = 6 + 2 + 5 = 13 ≤ 15 = 5 + 10 =

∑

j∈N\B1, i∈B1
cji

and for B2 = {1, 2} we get 6 + 2 = 8 ≤ 15 = 5 + 10.

For B3 = {1, z} we get 6 + 5 = 11 ≤ 15 = 5 + 10.

However, for B4 = {1}, we have
∑

i∈B4
δ(i) = 6 > 5 =

∑

j∈N\B4, i∈B4
cji.

The demand of the sets B1, B2, B3 could be satisfied, since the capacities

on the arcs entering these sets are large enough. But the demand of set

B4 = {1} cannot be satisfied, since the only arc entering node 1, i.e. arc

(s, 1), has capacity 5 which is less than the demand. Since the feasibility

theorem states that the flow is feasible if and only if the inequality (4.1) holds

for every subset, we can conclude that the demand in the example is not

feasible.

For the existence proof we need the following lemma which is a simple corol-

lary of the feasibility Theorem 2.

Lemma 1 (Gale [14]) Choose i1, . . . , im distinct nodes of N \ {s} and let

δ1, . . . , δm be feasible demands such that

δl(il) =: µl ≤ δl+1(il+1) =: µl+1 , l < m
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Let δ be defined as follows:

δ(i1) = µ1

δ(il) = µl − µl−1 , l > 1

δ(i) = 0 otherwise.

Then the demand δ is feasible.

Proof: Let B be any subset of N \ {s} and let t be the largest index for

which it still belongs to B. Then

∑

i∈B

δ(i) ≤
∑

l≤t

δ(il) = µt (4.2)

where the first equality follows, since for all unchosen nodes we have

δ(i) = 0 and t was the largest index which belonged to B, so all positive

demands up to t are summed up on the right hand side where on the

left hand side it might be that not all nodes il, l ≤ t are in B. The

equality follows since the sum is a telescopic sum and so every term

except the last µt is cancelled out.

We know that δt is feasible, so from Theorem 2 follows:

µt = δt(it) ≤
∑

i∈B

δt(i) ≤
∑

j∈N\B,i∈B

cji (4.3)

where the first equality is due to the definition of µt. Combining (4.2)

and (4.3) we get

∑

i∈B

δ(i) ≤ µt ≤
∑

j∈N\B,i∈B

cji (4.4)

so (4.1) holds and the constructed δ is feasible 2

This lemma will be very useful, since we can apply it to the time-expanded

graph. There we assign to each of the sink nodes z(t), 0 ≤ t ≤ T , a cer-

tain demand which should be maximal. We need the following definition of

maximal demand :

Definition 6 (Gale [14]) A maximal demand δ on a single source - single

sink network is a feasible demand δ for which the value δ(z) is as large as

possible.
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To construct the demand in such a way that it indicates an earliest arrival

flow, we consider the time-expanded graphs D(t) for each time step 0 ≤ t ≤

T . The only sink of such a network D(t) should be z(t), which is easily

achieved by hold-over arcs with infinite capacity, directing the flow from z(0)

to z(1) and from z(1) to z(2) etc. In each network D(t) the demand assigned

to the sink node z(t) should be maximal. We would like to have that these

maximal demands δt(z(t)) are increasing as t increases:

Lemma 2 (Gale [14]) Let δt be the maximal demand on D(t) and let µt =

δt(z(t)). Then µt ≤ µt+1 for all 0 ≤ t ≤ T .

Proof: Let xt be the maximal flow in D(t) such that µt = δt(z(t)) =
∑

j∈D(t) xt
jz(t). Now we can define a new demand δ̃ on D(t + 1):

δ̃(i) = δ̃t(i) for i ∈ D(t), i 6= z(t)

δ̃(z(t + 1)) = µt

δ̃(i) = 0 otherwise

that is all demands are conserved except the demand of z(t) which is

set to 0 and instead the demand of z(t + 1) is set to µt; all other nodes

i(t + 1) have demand zero.

This demand is feasible, since flow xt sends µt units into z(t) and these

can be directed to z(t + 1) via the hold-over arc (z(t), z(t + 1)) which

has infinite capacity. All other demands are also satisfied by xt since

they are unchanged or 0.

⇒ δt+1(z(t + 1)) ≥ µt. 2

Now the theorem stating the existence of earliest arrival flows is merely a

corollary of Lemma 1 and Lemma 2:

Theorem 3 (Gale [14]) Let δ1, . . . , δT be maximal demands on D(1), . . . , D(T )

and let µt = δt(z(t)). Then the demand δ, where δ(z(1)) = µ1, δ(z(t)) =

µt − µt−1 for t > 1 and δ(i) = 0 otherwise is feasible.

The proof follows immediately since due to Lemma 2 the assumptions of

Lemma 1 are fulfilled and Lemma 1 gives the feasibility.

4.3 Lexicographically Maximal Flows or How

to Find Earliest Arrival Flows

Gale’s proof is not constructive and it took some time until algorithms for

finding earliest arrival flows have been developed. In the early 1970s Wilkin-
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son [28] and Minieka [25] independently of each other came up with an algo-

rithm for finding earliest arrival flows. In the following we present and discuss

the approach of Minieka [25], which allows some interesting insight into the

structure of arrival and departure patterns of maximal flows. Minieka devel-

ops his theory on static graphs and then translates it to dynamic flows using

time-expanded graphs.

Minieka introduces the concept of lexicographically maximal flows on static

networks with multiple sources and sinks.

Consider a static network G = (N,A) with a set of sources S, S ⊂ N,S 6= ∅

and a set of sinks Z,Z ⊂ N \ S, Z 6= ∅. The classical maximal flow problem

as given in (2.1) changes as follows to obtain a maximal flow problem with

multiple sources and sinks:

maximize v(Z) := −
∑

i∈Z

(
∑

j∈N

(xij − xji))

subject to
∑

j∈N

(xij − xji) = 0 ∀i ∈ N \ (S ∪ Z)

∑

j∈N

(xij − xji) ≥ 0 ∀i ∈ S

∑

j∈N

(xij − xji) ≤ 0 ∀i ∈ Z

0 ≤ xij ≤ cij ∀i, j ∈ N

(4.5)

For a maximal flow let:

• V (s) denote the greatest number of flow units that can leave source

node set s ⊆ S.

• V (z) denote the greatest number of flow units that can enter sink node

set z ⊆ Z.

• v(s) denote the smallest number of flow units that can leave source

node set s ⊆ S.

• v(z) denote the smallest number of flow units that can enter sink node

set z ⊆ Z.

Observation 4 Since the flow is maximal, we have V (S) = V (Z) = v(S) =

v(Z).
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Definition 7 Let the sink set be structured as follows: Z1 ⊆ Z2 ⊆ . . . ⊆

Zn ⊆ Z.

A lexicographically maximal flow on the sinks is a maximal flow that sends

V (Zi) units of flow into each subset Zi, i = 1, 2, . . . , n.

A lexicographically minimal flow on the sinks is a maximal flow that delivers

v(Zi) flow units to each subset Zi, i = 1, 2, . . . , n.

Similarly a lexicographically maximal flow on the sources and a lexicograph-

ically minimal flow on the sources can be defined.

Definition 8 A departure schedule or pattern α is a function from S → R
+

assigning to every source node s ∈ S a certain amount of flow α(s) that has

to leave node s. An arrival schedule or pattern is a function ω : Z → R
+

that assigns to every sink node z ∈ Z an amount of flow ω(z) which has to

arrive at the corresponding sink z.

In his article Minieka [25] first shows the independence between departure

and arrival schedules in maximal flows. If we consider maximal flows, then

for any departure schedule and any arrival schedule there exists a maximal

dynamic flow satisfying this departure schedule and this arrival schedule

simultaneously.

We know from static network flow theory that every flow from S to Z can

be decomposed into paths and cycle flows, where a path flow is a path that

contains only forward arcs.

Lemma 3 (Minieka, [25]) Let c1 and c2 be two circulations in graph G.

The circulation c2 can be constructed from the circulation c1 by generating

a finite sequence C := {C1, C2, . . . , Cn} of circulations in graph G, where

C1 = c1 and Cn = c2 and where Ci differs from Ci−1 only in a flow change

along a cycle in graph G, for i = 2, 3, . . . , n.

Using this lemma, we can show the independence between departure and

arrival patterns for maximal flows:

Theorem 4 (Minieka,[25]) If there exists a maximal flow f1 in graph G =

(N,A) with α(s) units departing from each source s ∈ S and if there exists

a maximal flow f2 in graph G = (N,A) with ω(z) units arriving at each sink

z ∈ Z, then there exists a maximal flow f3 in G = (N,A) with α(s) units

leaving each source s ∈ S and ω(z) units arriving at each sink z ∈ Z.

Proof: Add a supernode B and arcs (B, s) to each source s ∈ S and (z,B)

to each sink z ∈ Z with infinite capacity. Then f1 and f2 can be
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regarded as circulations on this extended graph by directing the flow

from sink set Z via supernode B to the source set S. Denote the flow

value of f1 on each arc (i, j) ∈ A∪ {(B,S)} ∪ {(Z,B)} by f 1(i, j), and

the flow value of f2 on each arc (i, j) ∈ A ∪ {(B,S)} ∪ {(Z,B)} by

f 2(i, j).

Now apply the following procedure to get flow f3 with departure pattern

α(s), s ∈ S, and arrival pattern ω(z), z ∈ Z:

1. Mark all arcs (i, j) with f 1(i, j) 6= f 2(i, j).

2. Now consider only f1.

3. Choose any sink z ∈ Z at which less than ω(z) units of flow arrive

(with respect to f1).

4. There exists a marked arc (i, z) on which f 1(i, z) < f2(i, z).

5. Label this arc with INCREASE, for we want to increase the flow

along this arc.

6. To ensure the flow conversation for each node we have to continue

this flow-change procedure. That is, choose another marked arc

incident to node i and if this arc is of the from (j, i) and f 1(i, j) <

f 2(i, j) label it with INCREASE. If the arc is of the form (i, j)

and f 1(i, j) > f 2(i, j) label it with DECREASE. Go on to choose

and label arcs in this way (avoiding arcs of the form (B, s)) until

you get a cycle.

7. The largest possible flow change on arcs (i, j) labeled INCREASE

is the minimum of the flow differences f 2(i, j) − f 1(i, j) and the

largest possible flow change on arcs (i, j) labeled DECREASE is

the minimum of the flow differences f 1(i, j)− f 2(i, j). Choose the

minimum of these largest possible flow changes to ensure feasibility

and make this flow change.

8. Go to Step 3 and repeat this procedure until at every sink ω(z)

units of flow arrive.

Some verification of this procedure is necessary:

If f1 = f2 then of course there is no arc to mark and no sink to choose

and f3 = f1 = f2 and otherwise there must exist marked arcs. First we

have to ensure the existence such incident marked arcs as claimed in

Step 6: Since f1 delivers less flow units into the considered sink z than

f2 there must exist an arc (i, z) with f 1(i, z) < f2(i, z). By Lemma 3

we know that there must be at least one other marked arc incident to
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node i. Remember that f1 is a feasible maximal flow and therefore it

fulfils the flow conversation. Since f 1(i, z) < f2(i, z), it could be that

less flow arrives in i with f1 than with f2 or that f1 sends more flow

out of node i via a different arc (i, j) than f2. Thus we always find a

marked arc incident to such a node i with properties as claimed in Step

6.

Since we do not want the procedure to change any of the α(s) we have

to argue why the flow changing cycle never includes any of the source

nodes: If the flow-change procedure reaches supernode B first via an

arc (z̃, B), then f 1(z̃, B) > f 2(z̃, B) = ω(z̃). Then we can use arc

(B, z) to finish the cycle. Arc (B, z) must be marked since the flow

that arrives at z in f1 is less than ω(z). Obviously a flow-change along

this cycle does not change the flow of any of the source nodes.

Assume that the flow-change procedure first reaches supernode B via

an arc of the form (B, s), s ∈ S. This means that additional flow can

be sent from s to z which is a contradiction to fact that f1 is a maximal

flow.

2

To illustrate the result and the procedure we give the following example:

Example 7 Consider the network given in Figure 4.4 with three sources and

two sinks. We have already included the supernode B to perform the proce-

dure given in the proof of Theorem 4. The two maximal flows f1 and f2 are

coloured red (f1) and green (f2), resp. The arcs on which the flow values

differ are printed in bold type. Now we apply Theorem 4 to get a maximal

dynamic flow f3 with the departure pattern of f1 and the arrival pattern of f2.

So we want that 15 units of flow leave source s1, 25 flow units leave source

s2 and 10 units of flow leave source s3. At sink z1 20 flow units should arrive

and 30 flow units at sink z2.

In Step 3 of the procedure we choose sink z2, since f1 only delivers 20 flow

units there whereas in f2 30 units of flow arrive at sink z2. In Step 4 we

choose arc (5, z2), which is marked and on which the flow to z2 can be in-

creased. The next marked arc incident to node 5 is (5, z1), where we have to

decrease the flow according to Step 6. Arc (z1, B) is the only other marked arc

incident to z1 so we choose it and decrease the flow along this arc. To node

B several marked arcs are incident and we choose arc (z2, B), since we want

to avoid arcs of the form (B, s). Along this arc the flow needs to be increased.

The largest possible change along the flow change cycle z2−5−z1−B−z2 is
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Figure 4.4: Static network with two different maximal flows. The flow values

on the arc of f1 are given in red and those of f2 in green.
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10 flow units. The new maximal flow we get already fulfils the requirements

and therefore is the searched f3.

We have seen that for every departure pattern on the sources, corre-

sponding to a maximal flow f1, and every arrival pattern on the sinks, cor-

responding to another maximal flow f2, it is possible to find a maximal flow

f3 fulfilling this arrival and departure pattern simultaneously.

In the following we prove that lexicographically maximal flows always exist.

We give the proof for lexicographically maximal flows on the sinks, since

earliest arrival flows are just a special case of these flows, as we see later on.

The proof for the existence of lexicographically maximal flows on the sources

follows along the same lines as the one we give for the sinks.

Theorem 5 (Minieka,[25]) Let G = (N,A) be any finite graph with inte-

ger capacities for all arcs (i, j) ∈ A. If Z1 ⊆ Z2 ⊆ . . . ⊆ Zn = Z, then

there exists a maximal flow that delivers V (Zi) units into subset Zi for all

i = 1, . . . , n.

Proof: We use an induction argument to prove the statement.

Basis:

Claim: For a subset Z1 ⊆ Z there exists a maximal flow in G that

delivers V (Z1) units into this subset.

Proof of claim: Let G̃ be the modified graph of G, obtained by deleting

all sink nodes z ∈ Z \ Z1 and all arcs pointing to these sinks; i.e. the

only sinks in G̃ are z ∈ Z1. Apply a flow augmenting path algorithm

to this modified graph G̃. The algorithm finds a maximal flow which

delivers the maximum possible amount of flow into Z1, i.e. per defini-

tion V (Z1).

Now apply the flow augmenting path algorithm with this flow as initial

flow to the original network G, i.e. all sinks are open. Assume that a

flow augmenting path generated by the algorithm contains a node in

Z1 ⊂ Z. This is a contradiction to the initial flow being maximal into

subset Z1. Therefore the flow into subset Z1 is not altered during the

repeated execution of the flow augmenting path algorithm. Thus we

get a maximal flow on G sending V (Z1) units into set Z1.

Inductive Hypothesis: There exists a maximal flow on G that de-

livers V (Zk) units into each subset Z1 ⊆ Z2 ⊆ . . . ⊆ Zl for k = 1, . . . , l.

Inductive Step: To construct a flow that fulfils the inductive hypoth-

esis for the first l + 1 subsets, we add to graph G two extra nodes B1
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and B2. Connect all sinks in Zl+1 to node B1 and all sinks in Z \ Zl+1

to B2 and also connect B2 to all sources. Let all the arcs have infinite

capacity. In this augmented graph we regard B2 as the source node

and B1 as the sink node. So the flow into subset Zl+1 in G equals the

flow into B1 in the augmented graph. Obviously there is a one to one

correspondence between flows in G and in the augmented graph.

Due to the inductive hypothesis we know that there exists a maximal

flow f in graph G that sends V (Zk) units into each subset Zk, k =

1, . . . , l. To obtain the image of this flow f in the augmented graph, we

have to assign to each arc (B2, s) the flow leaving source s and to each

arc (z,B1) , z ∈ Zl+1 and (z,B2) , z ∈ Z \Zl+1, resp., the flow entering

the sink node z. Now we use this image of f as initial flow for the flow

augmenting path algorithm in the augmented graph.

Obviously no flow augmenting path generated by the algorithm can

contain a source node s ∈ S, since otherwise f had not been a maximal

flow in G.

Also no flow augmenting path can contain any node in Zl, since that

would imply that additional flow could be send into Zl, contradicting

the inductive hypothesis.

So the flow augmenting path algorithm constructs a maximal flow in

the augmented graph without changing the flow of any node in S ∪Zl.

The image of this flow in the original graph G is a maximal flow that

delivers V (Zl+1) units into Zl+1 and due to the argumentation above

and the inductive hypothesis the flow delivers V (Zk) units into each

subset Zk, k = 1, . . . , l + 1. 2

The existence of lexicographically minimal flows can be reduced to the

existence of lexicographically maximal flows.

Clearly these results apply to the time-expanded graph of any dynamic

network D(T ). So if

Zk :=
k

⋃

t=0

z(t) , t = 0, 1, . . . , T

and

Sk :=
k

⋃

t=0

s(t) , t = 0, 1, . . . , T

then:
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• A lexicographically maximal flow in D(T ) on the sinks is a maximal

dynamic flow on G with earliest possible arrival schedule.

• A lexicographically maximal flow in D(T ) on the sources is a maximal

dynamic flow on G with earliest possible departure schedule.

• A lexicographically minimal flow in D(T ) on the sinks is a maximal

dynamic flow on G with latest possible arrival schedule.

• A lexicographically minimal flow in D(T ) on the sources is a maximal

dynamic flow on G with latest possible departure schedule.

Note, that earliest arrival flows are just a special case of the more general

lexicographically maximal flows. Also the notion of lexicographically maxi-

mal and minimal flows, respectively, on the sinks and sources, respectively,

gives us the possibility to arrange certain departure and arrival patterns, as

specified above. So the work of Minieka is much more general than coping

only with earliest arrival flows.

Example 8 Consider the time-expanded graph given in Figure 3.2. The

sets Zk look as follows: Z0 = {z(0)}, Z1 = Z0 ∪ {z(1)}, Z2 = Z1 ∪ {z(2)},

Z3 = Z2 ∪ {z(3)}, Z4 = Z3 ∪ {z(4)}, Z5 = Z4 ∪ {z(5)}, Z6 = Z5 ∪ {z(6)}. A

lexicographically maximal flow in D(T ) on the sinks maximizes the amount

of flow entering Zk subject to the constraint that the flow entering Zk−1 is

maximal. So we first have to maximize the flow entering Z0, which is 0,

since no flow can arrive in 0 time. Similarly the maximal amount of flow for

Z1, Z2 and Z3 is zero. For Z4 the maximal possible amount of flow entering

Z4 is 2, since the path s−1−2−z takes 4 time units and thus flow travelling

via this path can reach z(4) ∈ Z4. The maximal flow arriving in Z5 is 7,

since 5 more flow units can be send into Z5 via s− 1− z and we have to add

them to the 2 flow units from Z4. The maximal flow arriving in Z6 is 20,

where 13 units are added to the amount in Z5 corresponding to the amount

of flow entering z(6). Obviously this is indeed a maximal flow with earliest

arrival schedule.

Minieka shows that there is a symmetry between earliest arrival and latest

departure schedules by considering the network Ĝ consisting of the same

nodes as G but all directions of the arcs are reversed.

He furthermore develops an algorithm for finding a latest departure and ear-

liest arrival schedule which is based on the algorithm of Ford and Fulkerson

[11]:

Consider the following modified time-expanded network D̃(T ): replace each
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(a) Original capacity

c12 = 3.
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1

1

(b) Modified arcs (1, 2).

Figure 4.5: Modification of arcs.

arc (i, j)(t) with cij > 1 by cij arcs of capacity one; for an illustration con-

sider Figure 4.5.

Using this modified time-expanded network D̃(T ) we can state the algorithm

of Minieka, given in Algorithm 5.

Algorithm 5 Earliest Arrival and Latest Departure Maximal Dynamic Flow

Algorithm [25]

Input: modified time-expanded graph D̃(T )

Output: Earliest arrival and latest departure maximal dynamic flow.

Begin

Apply the maximal dynamic flow Algorithm 1 to find a maximal dynamic

flow on the underlying static network G = (N,A).

Whenever a flow augmenting path is found, consider the corresponding

arcs of each copy of this path in D̃(T ):

if the arc is a forward arc then

label it with the time when the flow enters this arc.

else

remove the former label.

end if

End

At termination these labels indicate a latest departure - earliest arrival

schedule. The algorithm of Minieka works on the time-expanded graph.

Since the size of this graph grows exponentially with T , Algorithm 5 is only

pseudo polynomial. In 1973 Zadeh[29] constructed bad networks for shortest

augmenting paths algorithms and thus proved that, in the worst case, the

algorithm of Minieka needs an exponential number of general chain flows.
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s(0) s(1) s(2) s(3) s(4) s(5) s(6)

1(0) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6)

2(0) 2(1) 2(2) 2(3) 2(4) 2(5) 2(6)

z(0) z(1) z(2) z(3) z(4) z(5) z(6)

5 5 2

2 2 2

2 2 10

8

3 3

Figure 4.6: Latest departure - earliest arrival flow.

Example 9 Consider again the graph given in Figure 3.1 with time horizon

T = 6. Applying Algorithm 5, yields the latest departure - earliest arrival

schedule shown in Figure 4.6. The numbers on the arcs denote the units of

flow using that path. Note, that this flow is not the same as in Figure 4.1,

due to the difference in the departure schedules: In Figure 4.1 15 units leave

s(0) and 5 units leave node s(1), but in Figure 4.6 only 13 units leave s(0),

5 flow units leave s(1) and 2 units leave s(2). We see that in Figure 4.1 we

have only an earliest arrival flow but not a latest departure - earliest arrival

flow as in Figure 4.6.

4.4 A Polynomial Time Approximation Algo-

rithm for the Earliest Arrival Flow Prob-

lem

As we have seen in the previous section, the exact algorithm of Minieka

[25] is a pseudo-polynomial algorithm since it depends directly on T . The

algorithm of Wilkinson [28] also works on the time-expanded graph, and thus

is a pseudo polynomial algorithm. The main problem that makes computing

earliest arrival flows that expensive, is that we cannot always find an earliest

arrival flow that has the temporally repeated flow property, as we have shown

in Observation 3. We will see in the next chapter, that for a special class of
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graphs, we can always find an earliest arrival flow which has the temporally

repeated flow property and thus the computation of such an earliest arrival

flow is much easier.

For a long time not even a polynomial time approximation algorithm for the

earliest arrival flow problem was known. In 1994 Hoppe and Tardos [19]

presented the first polynomial time approximation algorithm for the earliest

arrival flow problem, which gives a (1+ ǫ) approximation for any fixed ǫ > 0.

4.4.1 Generalized Chain-Decomposable Flows

Hoppe and Tardos solve the problem of the non-existence of temporally re-

peated flows for the earliest arrival problem by generalizing the chain decom-

position defining a temporally repeated flow. The idea of these generalized

chain flows corresponds to the idea of Minieka, who transferred the shortest

augmenting paths directly to the time-expanded network.

The temporally repeated flows defined in Chapter 3 are a subclass of so-

called (general) chain-decomposable flows which were introduced by Hoppe[20]

and Hoppe and Tardos [19]. Recall that we defined temporally repeated flows

- or standard chain-decomposable flows, as Hoppe and Tardos name them -

via a standard chain decomposition Ps of flow x. This means that the flow

chains are only allowed to use arcs in the same direction as the flow x does.

Definition 9 (Generalized chain decomposition and general chain decom-

posable flows) A generalized chain decomposition P of a dynamic flow x is

a set of chain flows {γ1, . . . , γq}, where each chain flow may use arcs in the

opposite direction of the flow direction. This means that a chain flow might

use a residual arc with negative transit time.

A general chain decomposable flow is obtained by repeating these chain flows

γl, l = 1, . . . , q. The first repetition starts at t = 0 and the last one at T −τγl
,

where τγl
is the total transit time of chain flow γl.

Example 10 Consider again our example from Chapter 3 with time horizon

T = 7 and the non-standard chain decomposition of a static flow. In Figure

4.7 chain flow γ1 is marked red, and chain flow γ2 is coloured blue, each with

flow value 2. In Figure 4.8 is shown the time-expanded graph corresponding to

γ1, and in Figure 4.9 the time-expanded graph corresponding to γ2. Adding γ1

and γ2 together this non-standard chain decomposition induces the dynamic

flow shown in Figure 4.10.
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Figure 4.7: Chain flows

s(0) s(1) s(2) s(3) s(4) s(5) s(6) s(7)

1(0) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6) 1(7)

2(0) 2(1) 2(2) 2(3) 2(4) 2(5) 2(6) 2(7)

z(0) z(1) z(2) z(3) z(4) z(5) z(6) z(7)

Figure 4.8: Time-expanded graph corresponding to chain flow γ1.

s(0) s(1) s(2) s(3) s(4) s(5) s(6) s(7)

1(0) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6) 1(7)

2(0) 2(1) 2(2) 2(3) 2(4) 2(5) 2(6) 2(7)

z(0) z(1) z(2) z(3) z(4) z(5) z(6) z(7)

Figure 4.9: Time-expanded graph corresponding to chain flow γ2.
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z(0) z(1) z(2) z(3) z(4) z(5) z(6) z(7)

Figure 4.10: Time-expanded graph of the non-standard chain decomposition

γ1 + γ2.

Using non-standard chain decompositions P, feasibility of the resulting

flow x =
∑

γ∈P
γ is no longer clear. It depends on the timing, when the

dynamic flow reaches an arc via the chain flow used.

Example 11 Consider the network given in Figure 4.11 (transit times are

changed!) with time horizon T = 7 and chain flows γ1 = 1 − 2 − 3 − 4 and

γ2 = 1−3−2−4. Chain flow γ2 reaches node 2 at time 2+(−1) = 1, but γ1

only reaches node 2 at time 3. Adding γ1 and γ2 the resulting dynamic flow

is infeasible, since γ2 uses arcs (3(2), 2(1)) and (3(3), 2(2)). But there is no

flow on the forward correspondents (2(1), 3(2)) and (2(2), 3(3)) and thus it is

not possible to take back flow on these arcs.

4.4.2 Earliest Arrival Flow Approximation Algorithm

of Hoppe and Tardos

In the following we derive and explain the algorithm of Hoppe and Tardos

and estimate how good the approximation is. First remember that Zadeh [29]

showed that it might happen that we need exponentially many chain flows.

Thus it is important to bound the number of chain flows by a polynomial, to

get a polynomial approximation algorithm. To get such a bound Hoppe and

Tardos develop a clever capacity scaling algorithm:

Let all the capacities be bounded by some integer U . Hoppe and Tardos

develop a capacity scaling shortest augmented path algorithm, with the un-

usual feature of scaling upwards. This means that the algorithm starts with

∆ := 1 and increases ∆ by setting ∆ := 2∆ after every iteration until no
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(a) Dynamic network G with

chain flows γ1 and γ2 coloured.

s(0) s(1) s(2) s(3) s(4) s(5) s(6) s(7)
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z(0) z(1) z(2) z(3) z(4) z(5) z(6) z(7)

(b) Corresponding time-expanded network.

Figure 4.11: Infeasible flow resulting of a non-standard chain decomposition.
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s-z-path of length less or equal than T exists. Since in a dynamic flow a

short arc with small capacity might carry more flow than a long arc with

large capacity, scaling downwards (as it is usually done) does not yield any

good results.

The algorithm works on the residual network G′(x) = (N,A′(x), T ) of the

dynamic network G = (N,A, T ), where the capacities are updated accord-

ing the to flow changes and are rounded at the end of each iteration by the

increasing scaling factor ∆. The update according the changing flow values

is done as given in Definition 4. At the beginning the capacities are not yet

rounded and thus the shortest augmenting paths found in the first iteration

are exact paths. In further iterations, because of the rounding, all capacities

are integer multiples of ∆. Thus and since all initial capacities were integers,

the flows found in each iteration have at least flow value ∆ in the static

network.

Algorithm 6 Polynomial Time Approximation Algorithm for the Earliest

Arrival Flow Problem [19]

Input: dynamic network G = (N,A, T ) with capacity function c and tran-

sit time function τ ∀(i, j) ∈ A and let m denote the number of arcs in A;

chain decomposition set P = ∅, scaling factor ∆ := 1, rounded capacity

function c̃ := c, flow x := 0, some ǫ > 0

Output: (1 + ǫ) Approximation of the Earliest Arrival Flow.

while there exists a s-z-path in G′
c̃(x) with length ≤ T do

set σ := 0

while (σ < m∆
ǫ

) and (there exists a s-z-path in G′
c̃(x) with length ≤ T )

do

find the shortest s-z-path in G′
c̃(x) and denote it by P

l := min (c̃ij |(i, j) ∈ P )

augment the flow x by l along P and update the residual capacities c̃

update the chain decomposition set P := P ∪ {〈l; P 〉}

set σ := σ + l

end while

increase the scaling factor: ∆ := 2∆

round the residual capacities: ∀(i, j) ∈ A′(x) set c̃ij := c̃ij − (c̃ij mod∆)

end while

If P 6= ∅ the dynamic flow x can be obtained by repeating all path flows

in P.

Example 12 Let us consider again the following graph shown in Figure
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4.12a, with time horizon T = 7 and ǫ = 1.25 to see how Algorithm 6 works.
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(a) Dynamic Network
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(4,−1)

(10, 4)

(2,−4)

(2, 4)

(8, 2)

(2,−2)

(2,−1)

(b) Network after first rounding

Figure 4.12: Example illustrating Algorithm 6.

First we set the scaling factor ∆ := 1, the flow x := 0 and P := ∅.

There exists a s-z-path with length less or equal than T . We start with

σ := 0 and since m · ∆/ǫ =5 · 1/1.25 = 4 is larger than 0 we apply the inner

loop. The shortest s-z-path is P = (1, 2, 3, 4) with length 4 and minimum

residual capacity l = 2. Thus we augment the flow x along P by l, get

flow value v(x) := 2 and update the residual capacities. Add P to the chain

decomposition set P and set σ := σ + 2 = 2.

Since σ ≤ 4 is still true and there still exists an s-z-path, we repeat the inner

loop. The shortest path is now P = (1, 2, 4) with length 5 and flow value 3.

Update the residual network and set σ := σ + 3 = 5 which is larger than 4.

Thus we have to increase the scaling factor. Set ∆ := 2 · ∆ = 2 and round

the capacities as shown in Figure 4.12b.

In the next iteration there still exists an s-z-path with length no more than

T and thus we set σ := 0 and start the inner loop. Now we have m · ∆/ǫ

=5 · 2/1.25 = 8 which is of course greater than σ. The shortest s-z-path in

the rounded residual network is P = (1, 3, 4) with length 6 and flow value 8.

Thus we get v(x) := v(x)+8 = 5+8 = 13 and update the residual capacities.
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We have to set σ := 8 and thus cannot repeat the inner loop once again, since

σ is not less than 8. Therefore we increase the scaling factor and get ∆ = 4

and round the arc capacities. We see that there exists no longer a s-z-path.

To prove the feasibility of Algorithm 6 and to estimate later on how good

the algorithm is, we need the following notation:

• Say we have q + 1 scaling phases during the algorithm, numbered

0, . . . , q. The index of the phases is related to the value ∆ := 2k during

the inner loop of phase k.

• Let Pk denote the set of chain flows at the end of phase k, and P−1 := ∅.

• Let Tk denote the length of the longest chain flow in Pk.

• Let xk denote the static flow after phase k.

• Let c̃k denote the capacity function (according to the flow, e.g. xk)

before the rounding of phase k.

• Let Λ∗
k denote a chain decomposition inducing an earliest arrival flow

in the residual graph G′
c̃k

(xk).

• Let Λ̃k denote a chain decomposition inducing an earliest arrival flow in

the further rounded residual network G′
c̃k+1

(xk). This means that here

the capacities still correspond to flow xk, but now they are rounded.

Theorem 6 (Hoppe,[20]) Let P
T
q denote the dynamic flow induced by the

general chain decomposition Pq found by Algorithm 6. Then P
T
q is a feasible

dynamic flow.

Proof: Argumentation via induction on the number of scaling phases:

Induction Beginning: In the first scaling phase, when ∆ = 1, the algo-

rithm finds exact augmenting paths and thus is identical to the algo-

rithm of Minieka in this phase. Therefore the first chain decomposition

P0 induces a feasible dynamic flow.

Inductive Hypothesis: Pk is a feasible dynamic flow, where 0 ≤ k < q.

Inductive Step: Phase k+1 starts with rounded capacity function c̃k+1.

We have to show two claims:

Claim 1: Pk+1 − Pk induces a feasible dynamic flow on the residual

network G′
c̃k+1

(xk).

Proof of Claim 1: First note that

Pk+1 − Pk =
{

γ1
k+1, . . . , γ

l
k+1

}
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where each of these chain flows is a shortest augmenting path.

Thus the flow conservation constraints are trivially true for Pk+1−

Pk.

Consider the capacity constraints of an arc (i, j) at time 0 ≤ t ≤ T .

If the flow of each of these chain flows γ1
k+1, . . . , γ

l
k+1 has value 0

on arc (i, j), i.e. for arc (i, j) nothing has changed, then the ca-

pacity constraint of (i, j) is obviously not violated. Otherwise,

at least one of the chain flows, say γ̂k+1, sends flow via (i, j) at

time t. This means that τγ̂k+1
(s, i) ≤ t ≤ T − τγ̂k+1

(i, z), where

τγ̂k+1
(s, i) denotes the time flow on chain flow γ̂k+1 needs to travel

from s to i; analogously τγ̂k+1
(i, z) is defined. Since we find short-

est augmenting path after shortest augmenting path, this travel

time increases monotonically with k. Thus for any j < k + 1, if

γj uses arc (i, j) or its residual correspondent (j, i), then it also

sends flow unequal to zero over (i, j) at time t. So the flow value

on arc (i, j) stored in the residual network before γ̂k+1 is found,

truly represents the flow on (i, j) at time t when γ̂k+1 first reaches

arc (i, j).

Thus, and since Pk+1 − Pk =
{

γ1
k+1, . . . , γ

l
k+1

}

and each chain

flow γn
k+1, n = 1, . . . , l is a feasible flow in the residual network

G′
ck+1

(xk +
{

γ1
k+1, . . . , γ

n−1
k+1

}

), the capacity constraints are not vi-

olated.

Claim 2: Pk+1 induces a feasible dynamic flow on the original network

G.

Proof of Claim 2: In the algorithm the capacity is rounded after

each phase, and the rounding does not increase the capacity of

any arc. Thus Pk+1 − Pk induces a feasible dynamic flow in the

residual network G′
c(xk) where xk is the flow after iteration k and c

is the original, not-rounded capacity function. Next notice that for

every node i the shortest residual (s, i)− and (i, z)− path lengths

cannot decrease between scaling phases. Thus, if some chain flow

in Pk+1−Pk uses arc (i, j) and sends flow over it at time 0 ≤ t ≤ T ,

then every chain flow in Pk that uses arc (i, j) must also send flow

over (i, j) at this time t. Since Pk+1 − Pk is a feasible flow on the

residual network (Claim 1), and the flow that is already sent over

any arc (i, j) by a chain flow in P0, . . . Pk is stored in the residual

network, it follows that Pk+1 induces a feasible dynamic flow on

the original network.
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The maximum dynamic flow value in the rounded network might be less

than in the original network. Thus, to find out how good the approximation

of Algorithm 6 is, we need to estimate the amount of lost dynamic flow. First

we consider the loss of dynamic flow due to a single rounding: For any time

t, 0 ≤ t ≤ T , the decrease in the dynamic flow value caused by rounding at

the end of phase k is vt(Λ
∗
k) − vt(Λ̃k). (This notation, e.g. vt(Λ

∗
k), denotes

the flow value of the flow that reaches the sink at time t, where the flow is

induced by the chain decomposition given in brackets; in the example Λ∗
k.)

Hoppe and Tardos give the following lemma to bound this loss:

Lemma 4 (Hoppe and Tardos, [19]) If 0 ≤ k ≤ q and 0 ≤ t ≤ T , then

vt(Λ
∗
k) − vt(Λ̃k) ≤ ǫ · vt(Pk − Pk−1). (4.6)

Proof: Denote the static flow that results by summing up all chain flows

in Λ∗
k by x∗

k. Construct the ”difference flow” x̂k from x∗
k by applying

the following procedure:

While there exists an arc in x∗
k violating the further rounded capacity

function c̃k+1 do:

1. Find such and arc (i, j) on which x∗
k sends more flow than c̃k+1

allows.

2. Subtract from x∗
k some 2k-valued s-z-chain flow (in G′

c̃k
(xk)) that

uses this arc (i, j).

Let m be the number of arcs in the original graph. In the rounding at

the end of phase k the capacity might decrease on at most every arc

and is decreased by at most 2k. Thus the above procedure subtracts

no more than m chain flows from x∗
k. Furthermore, every chain flow

that is subtracted has at least length Tk, since after phase k there is

no s-z-path of length less than Tk in the residual network G′
c̃k

(xk). Let

the standard chain decomposition of the resulting flow x̂k be denoted

by Λ̂k. We get the following estimation:

vt(Λ
∗
k) − vt(Λ̂k) ≤ m · 2k(t − Tk + 1).

Note that Λ̂k induces a feasible solution of the earliest arrival flow prob-

lem which is defined on the further rounded residual network G′
c̃k+1

(xk).

Λ̃k also induces a feasible solution for the earliest arrival flow prob-

lem on G′
c̃k+1

(xk) and it is optimal, by definition. This means, that
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vt(Λ̂k) ≤ vt(Λ̃k) and thus

vt(Λ
∗
k) − vt(Λ̃k) ≤ m · 2k(t − Tk + 1). (4.7)

Due to the stopping criterion of the inner loop of Algorithm 6 and since

0 ≤ k < q, we know that the chain flows of Pk − Pk−1 have at least a

total value of m2k/ǫ. Furthermore each of these chain flows has length

at most Tk and we get

vt(Pk − Pk−1) ≥ (m2k/ǫ)(t − Tk + 1). (4.8)

Putting (4.7) and (4.8) together we get the claim. 2

Theorem 7 (Hoppe and Tardos,[19] ) Let G = (N,A, T ) be a dynamic

graph with m arcs and n nodes and let 0 ≤ t ≤ T . Denote the maximal

dynamic flow value in time t by v∗
t . Algorithm 6 computes a non-standard

chain decomposition Pq in time O(m
ǫ
(m + m log n) log U) such that v∗

t ≤

(1 + ǫ)vt(Pq).

Proof: The running time follows easily since there are at most O(log U)

scaling phases. The rounding ensures that in every iteration every aug-

menting path that is found has at least flow value ∆. Thus in each

iteration the constraint σ < m ·∆/ǫ guarantees that there are at most

m/ǫ augmentations. The O(m+n log n) term is the complexity needed

for computing the shortest path, according to [13].

To prove the approximate optimality we make use of Lemma 4. Note

that in phase k + 1 the algorithm starts computing an earliest arrival

flow in the rounded residual network G′
c̃k+1

(xk), where c̃k+1 is the ca-

pacity function after the rounding at the end of phase k. Thus we

have

vt(Pk+1 − Pk + Λ∗
k+1) = vt(Λ̃k). (4.9)

By a similar consideration we get

v∗
t = vt(P0 + Λ∗

0)
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Now we obtain the following chain:

vt(P0) + vt(Λ
∗
0) = vt(Pq) +

q−1
∑

k=0

(vt(Pk − Pk+1)) + vt(Λ
∗
0)

= vt(Pq) +

q−1
∑

k=0

(

vt(Λ
∗
k+1) − vt(Λ̃k)

)

+ vt(Λ
∗
0)

= vt(Pq) +

q−1
∑

k=0

(

vt(Λ
∗
k) − vt(Λ̃k)

)

+ vt(Λ
∗
q)

≤ vt(Pq) + ǫ ·

q−1
∑

k=0

(vt(Pk − Pk−1)) + vt(Λ
∗
q)

= vt(Pq) + ǫ · (vt(Pq−1) − vt(P−1)) + vt(Λ
∗
q)

The second equality follows by applying (4.9) and the inequality fol-

lows from Lemma 4. Remember that P−1 := ∅ and thus vt(P−1) = 0.

Observe that vt(Pq−1) ≤ vt(Pq). Note that, since in the residual net-

work G′
c̃q

(xq) no s-z-path of length less than T exists, it follows that

vt(Λ
∗
q) = 0. Also note that chain flows in the sets P0 and Λ∗

0 are disjoint

and thus vt(P0 + Λ∗
0) = vt(P0) + vt(Λ

∗
0). Thus we obtain:

v∗
t = vt(P0 + Λ∗

0)

≤ vt(Pq) + ǫ · (vt(Pq))

= (1 + ǫ) · vt(Pq).

2

4.5 Earliest Arrival Flows with Flow-Dependent

Transit Times

For a more realistic model of evacuations it is necessary to take into account

how much flow is using an arc. Everybody knows from everyday experience

that one can drive fast if the street is empty but the more cars there are

on the street the slower one has to drive. Thus the transit time of an arc

depends on the flow on that arc.

In this chapter we first introduce two different models to model the flow-

dependency of the transit times and discuss their advantages and drawbacks.

Then we consider a generalization of time-expanded networks to model flow-

dependent transit times. Next we look at the existence of flow-dependent
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earliest arrival flows, which is in general not given and eventually have a look

at an approximation for flow-dependent earliest arrival flows. We mainly

present the results of Baumann and Köhler [3] and also use the results of

Köhler et. al [8] when we explain the modified time-expanded graph.

4.5.1 Models for Flow-Dependent Transit Times

To model earliest arrival flows with flow-dependent transit times Baumann

and Köhler [3] study two different models:

1. Inflow-dependent transit times: The transit time depends on the amount

of flow that enters arc (i, j) at time t. τ((i, j), v(xij(t))) is the transit

time on arc (i, j) that flow value v(xij(t)), which enters that arc at

time t, needs to traverse it. In this model the speed of the flow units

is determined when they enter an arc (i, j) and does not change while

they are on (i, j). Thus, if at any time t a large amount of flow enters

arc (i, j), a long transit time is assigned. If now at time t + 1 only a

small amount of flow enters (i, j) a short transit time is assigned to

these flow units. Therefore it might happen that the few units entering

(i, j) at t + 1 overtake the large amount of flow units and leave (i, j)

before them. Thus the first in - first out property does not hold in this

model.

2. Load-dependent transit times: Here the transit times depend on the

total amount of flow that is on arc (i, j), the load of the arc. Thus

the transit time of an arc (i, j) changes at every time t with every flow

unit that enters or leaves the arc. All flow units have the same speed

on arc (i, j) at every moment. This guarantees the first in - first out

property. But it is expensive to model and also not fully realistic: If

a small amount of flow enters an arc there is no reason why these flow

units should slow down when a large and slow amount of flow enters

the arc after them.

None of these models is able to model the full complexity of traffic flows, but

they can model at least some aspects of the flow behaviour.

4.5.2 Fan Graphs and Bow Graphs

One problem with flow-dependent transit times is, that it is not possible to

define a time-expanded graph as introduced by Ford and Fulkerson [11], since

we only know how much transit time is needed on arc (i, j) when we know
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i(0) i(1) i(2) i(3) i(4) i(5) i(6)

j(0) j(1) j(2) j(3) j(4) j(5) j(6)

x3

x2

x1 ∞
∞

∞

(a) Regulating arcs on (i, j) for t = 0.

i(0) i(1) i(2) i(3) i(4) i(5) i(6)

j(0) j(1) j(2) j(3) j(4) j(5) j(6)

(b) Fan graph of (i, j) with T = 6.

Figure 4.13: Illustration of fan graphs.

how much flow uses (i, j).

In 2000 Carey and Subrahmanian [7] introduced a generalized time-expanded

network for flow-depended transit times, where the flow-dependent transit

times are modelled with help of special capacity constraints. Thus the static

flow problem on this generalized time-expanded graph cannot be tackled with

standard static network flow techniques.

For the inflow-dependent model Köhler et al. [8] introduced so-called fan

graphs in 2002, which modify the standard time-expanded network by adding

regulating arcs. This means that the transit times are modelled by the struc-

ture of the fan graphs and not by additional constraints and thus standard

static network flow techniques apply to fan graphs. In the following we ex-

plain with help of an example how fan graphs are created and evaluate them.

Assume the transit time function of an arc (i, j) is given as piecewise
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constant and non-decreasing with only integral values. The fan graph has

the same nodes as the time-expanded graph. To understand the concept of

regulating arcs look at Figure 4.13 where these are modelled for one arc (i, j).

Assume that the inflow-dependent transit time function for (i, j) is given as

follows:

τ((i, j), v(xij(t))) =







1 , if xij(t) ∈ [0, x1]

2 , if xij(t) ∈ (x1, x2]

4 , if xij(t) ∈ (x2, x3 := cij]

The vertical arcs try to model the distribution of the flow according to the

transit time function. These arcs are called regulating arcs, since they reg-

ulate how much flow can travel with the fastest speed (in out example at

most x1 flow units can travel with speed 1), how many flow units can travel

with second fastest or fastest speed (in out example at most x2 flow units can

traverse the arc within time 3 or less), etc. The diagonal arcs have infinite

capacity and represent the different transit times. If we repeat the structure

shown in Figure 4.13 for every point of time we get a fan graph.

One problem of the fan graph is that if we send a certain amount of flow via

an arc (i, j) then some units of this flow might travel faster than others: In

Figure 4.13 if we send x3 units of flow from i to j, then x1 of these units

only need time 1, x2 − x1 flow units need time 2 and only x3 − x2 units of

flow need time 4. But in the inflow-dependent model all flow units x3 should

have the same speed and should need 4 time units to reach j. Thus the fan

graph does not fully meet the model. It is possible to apply static network

flow theory to the fan graph. But the main drawback of fan graphs is their

size which makes static flow approaches on this graph rather awkward.

The time-expanded graph always corresponds to an underlying dynamic

network and, as we have seen in Chapter 3, working on this underlying

network yields good solution methods for some problems (e.g. the maximal

dynamic flow problem). Thus it might be a good idea to find the underlying

graph of a fan graph. Again we consider the inflow-dependent transit time

functions to be piecewise constant and non-decreasing. The bow graph to

the fan graph given in Figure 4.13 is shown in Figure 4.14. The bow graph

also exists of regulating arcs, which model the inflow-rates and of bow arcs

which model the transit times. The bow graph is considerably smaller than

the fan graph, but the other drawback also holds for bow graphs: the units

that enter an arc (i, j) are not necessarily travelling with the same speed as

some units will use the faster arcs. Thus bow graphs do not fully meet the

inflow-dependent transit time model.
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i j
(x3, 0) (x2, 0) (x1, 0)

(∞, 1)

(∞, 2)

(∞, 4)

Figure 4.14: Bow graph of arc (i, j).

Köhler et al. [8] showed that every dynamic flow in the original graph G can

be viewed as a dynamic flow in the bow graph. Thus the bow graph is a

relaxation of the original inflow-dependent transit time model.

4.5.3 Existence of Earliest Arrival Flows with Flow-

Dependent Transit Times

For flow-dependent transit times maximum dynamic flows exist, but finding

a maximum dynamic flow is NP-hard (see [8],[3]). The existence of earliest

arrival flows is given for none of the above models.

Theorem 8 (Baumann, Köhler,[3]) For inflow-dependent transit times,

earliest arrival flows do not exist in general.

Proof: We prove this statement by counterexample:

Assume that for inflow-dependent transit times, earliest arrival flows

exist for every instance.

Consider the following very easy instance: The dynamic network G

consists only of source node s and sink node z and one arc (s, z), where

csz = 2 and the transit time on (s, z) is given as τsz = 1, if at most 1

unit of flow enters the arc and τsz = 2, if 2 units of flow enter the (s, z).

In the maximal dynamic flow for T = 3, 2 units of flow enter arc (s, z)

at time t = 0 which arrive at z at time t = 2, another 2 units of flow

enter (s, z) at time t = 1 and leave it at t = 3 and eventually 1 unit of

flow enters (s, z) at t = 2 and leaves it at t = 3. Thus in total 5 units

of flow arrive at z.

For an earliest arrival flow, we must have that the flow reaching the

sink at t = 1 and t = 2 is also maximal. At t = 1 at most 1 unit of
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flow could enter the sink, if it enters (s, z) at t = 0. Thus if we want

to have an earliest arrival flow on our network G we must send only

1 unit of flow on (s, z) at time t = 0. But then only 4 flow units can

reach the sink up to time t = 3, which is not maximal. We see that it

is not possible to create an earliest arrival flow on this instance.

⇒ The assumption is wrong and earliest arrival flows do not exist in

general for inflow-dependent transit times. 2

Theorem 9 (Baumann, Köhler, [3]) For load-dependent transit times, ear-

liest arrival flows do not exist in general.

Proof: Again we prove by counterexample:

Assume that earliest arrival flows exist for every instance with load-

dependent transit times.

Consider the dynamic graph G consisting only of source s and sink z

and one arc (s, z) with capacity csz = 1. The transit time for (s, z) is

given as follows: If at most 1 unit of flow is on the arc, it needs 3 time

units to reach the sink. If 2, 3, 4 or 5 flow units are on the arc, they

need 6 time units to reach the sink and if more than 6 flow units are

on the arc the transit time is infinity, which models that the arc has a

maximal load of 6 flow units.

Let T = 8 be the time horizon and consider the maximal amount of

flow that can reach the sink within this time. We can send one unit of

flow on (s, z) at time t = 0, which has travelled at time t = 1 exactly

one third of the way. Then at time t = 1 we let the next unit of flow

enter (s, z) and thus the travel time increases for all flow units on (s, z)

to 6. Thus at time t = 2 the first unit has made already 1/2 of the way

and the second unit only 1/6 of the way. At t = 2 another flow unit

enters (s, z), but does not affect the transit time. Thus at t = 5 the

first unit of flow reaches z. The second unit of flow enters z at t = 7

and the last unit of flow has also reached z by t = 8. Thus the maximal

amount of flow that can be sent through this network G within time

T = 8 is 3.

Again for an earliest arrival flow we must have that at every point of

time t, 0 ≤ t ≤ T the amount of flow that reaches the sink is maximal.

Consider the sink at time t = 3. If we send one unit on (s, z) at time

t = 0 and no flow unit on the arc at time t = 1 and t = 2, the first unit

needs transit time 3 and thus reaches the sink at time t = 3. Therefore

in an earliest arrival flow 1 unit of flow should reach the sink at time

t = 3. But then we can only send 1 more unit of flow on the arc (s, z):
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If we let 1 flow unit enter (s, z) at time t = 3, it reaches z at time t = 6

and there is not enough time to start another flow unit at t = 6. Also

if we would start one flow unit in t = 3 and another one in t = 4, the

first one would reach z at t = 8, but the second one could only reach

the sink by t = 9 which is too late.

⇒ The assumption is wrong, since for the given instance above no

earliest arrival flow for T = 8 can exist. 2

4.5.4 Approximation of Flow-Dependent Earliest Ar-

rival Flows

Since existence of flow-dependent earliest arrival flows is in general not given,

approximation of such flows are of special interest. Baumann and Köhler [3]

relax the time up to when a certain amount of flow has reached the sink, i.e.

they allow a lateness of the flow. The problem to minimize this lateness is

called α-earliest arrival flow problem.

Definition 10 The α-earliest arrival flow problem asks the following ques-

tion: Find the minimum α, such that there exists a feasible dynamic flow

x that sends for each t, 0 ≤ t ≤ T , at least as much flow into the sink

z as can be send into z up to time t/α by the maximal flow xmax, i.e.

vt(x) ≥ vt/α(xmax).

Baumann and Köhler show that for dynamic flows with flow-dependent tran-

sit times there always exists a 4-earliest arrival flow. Furthermore they give

lower bounds on α for the two models. They show

• for inflow-dependent transit times, there are instances that have no

α-earliest arrival flow for α ≤ 3/2 − ǫ, for all ǫ > 0.

• for load dependent transit times, there exist instances that have no

α-earliest arrival flow for α ≤ 5/4.

Finally they modify an approximation scheme for the quickest flow problem in

the inflow-dependent model to approximate an α-earliest arrival flow. Since

quickest flows are not subject of this thesis we do not present this algorithm

but refer the interested reader to [3] and [16].

4.6 Further Literature on Earliest Arrival Flows

It is also possible to discuss earliest arrival flows with time-dependent tran-

sit times and capacities. Considering evacuations, the dependence of transit
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times and capacities on the time, corresponds to streets or hallways that

are blocked completely or partially after some time. Such a blockage might

occur as example, because of the smoke in case of fire or the rising of the

water level in case of a flood. Existence of earliest arrival flows with time-

dependent transit times or capacities is given by Gale [14]. To compute an

earliest arrival flow with time-dependent attributes, it is possible to use the

traditional time-expanded graph. The varying transit times or capacities can

be modelled directly in the time-expanded graph, according to the function

that describes these attributes with respect to the time.

For earliest arrival flows with time-dependent transit times, Tjandra [27]

gives a pseudo polynomial time algorithm, that runs in O(nm2T 3U) time,

where U is the maximum of all capacities. Tjandra [27] uses successive ear-

liest arrival augmenting paths on the residual network of the time-expanded

graph. For every node he finds the earliest possible arrival time, considering

the changing transit times. For an extensive examination of time-dependent

dynamic flows we refer the reader to the PhD thesis ”Dynamic Network Op-

timization with Application to the Evacuation Problem” by Tjandra [27].

In 2002, Fleischer and Skutella [10] gave another fully polynomial time ap-

proximation scheme for earliest arrival flows. They allow the flow that should

arrive at the sink by time t, to be an earliest arrival flow, to arrive at the

sink with a certain lateness, i.e. the flow must have reached the sink by time

(1 + ǫ)t. They develop condensed time-expanded networks to get this ap-

proximation.

Baumann and Skutella [4] consider a modified earliest arrival flow problem.

They examine networks with several sources and sinks, where to each source

and each sink a certain supply and demand, resp., is assigned. A feasible

dynamic flow on this problem must satisfy these supplies and demands as

additional constraint. Such earliest arrival flows with supplies and demands

do not exist for several sinks, but only for the multiple sources - single sink

case. Baumann and Skutella [4] give an algorithm for the multiple sources

- single sink case the running time of which is polynomially bounded in the

input plus output size of the modified earliest arrival flow problem. We did

not discuss this problem in detail, since it is not the original problem and the

questions and difficulties arising in this modified problem are not the same

as the in the original problem.

As already stated, it is still unknown, whether the earliest arrival flow prob-
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lem is NP -hard or not. Anyhow, in 1984 Hajek and Ogier [15] presented the

first polynomial time algorithm for the special case of earliest arrival flows

with zero transit times.

For continuous time, Ogier [26] gave the first polynomial time algorithm

for the earliest arrival flow problem with zero transit times and piecewise-

constant integer capacities in 1988. In 2001 Fleischer [9] showed that the

problem Ogier [26] considered can be reduced to a generalized parametric

maximum flow problem. With this knowledge she develops a faster algo-

rithm than Ogier for this problem.

Surveys on dynamic flows which include the earliest arrival flow problem,

are for example ”Dynamic flows in networks”, by Lovetskii and Melamed

[24] or ”An annotated overview of dynamic network flows”, by Kotnyek [23].

For an State of Art of mathematical modelling of evacuation problems we

refer the interested reader to [18].





Chapter 5

Maximal Dynamic and Earliest

Arrival Flows on Series-Parallel

Graphs

Until today it is still an open question whether the earliest arrival flow prob-

lem is NP -hard or if it is possible to find an exact polynomial algorithm.

In Chapter 4 we presented the polynomial time approximation algorithm of

Hoppe and Tardos [19]. In this chapter we consider a special class of earliest

arrival flows, namely earliest arrival flows on series-parallel graphs.

First we introduce series-parallel graphs. Next we present the minimum cost

flow algorithm of Bein and Brucker [5]. Following the main idea of Ford and

Fulkerson [11], we assemble the algorithm of Bein and Brucker and the mini-

mum cost circulation problem algorithm, presented in Chapter 3, to develop

a new algorithm that solves the maximal dynamic flow problem on series-

parallel graphs in time O(mn + m log m).

We show that this maximal dynamic flow algorithm also solves the earliest

arrival flow problem on series-parallel graphs. Thus we have found a poly-

nomial time algorithm for a special case of the earliest arrival flow problem.

Then we discuss an implementation approach for this algorithm and finally

have a short look on earliest arrival flows on series-parallel graphs with inflow-

dependent transit times.

57



58 CHAPTER 5. SERIES-PARALLEL GRAPHS

5.1 Definition of Series-Parallel Graphs and

Basics

Definition 11 A (two terminal) series-parallel graph G = (N,A) is a di-

rected graph with one source s and one sink z with the following property: G

is defined recursively by the rules given below:

1. K2, i.e. a single arc (s, z) together with its nodes s and z, is a series-

parallel graph.

2. Let G1 and G2 be two series-parallel graphs. Then the graph G obtained

by one of the following operations is also series-parallel:

(a) parallel composition: Merge the source nodes s1 of G1 and s2 of

G2 to the source s of G. Merge the sink nodes z1 of G1 and z2 of

G2 to the sink z of G.

(b) series composition: Identify the sink z1 of G1 with the source s2

of G2.

Example 13 For a better understanding of the definition of series-parallel

graphs, we illustrate the parallel and the series composition in Figure 5.1 It

is also useful to know what is not a series-parallel graph. Thus the smallest

graph that is not a series-parallel graph is given in Figure 5.2

The construction process of a series-parallel graph can be represented in a

binary tree, called decomposition tree. Following the recursive definition we

denote series compositions by nodes labeled S and parallel compositions by

nodes labeled P. We assume without loss of generality that the decomposition

tree has 1, . . . , r nodes which are enumerated topologically. This means that

the number assigned to a father node is larger than the number assigned to

any of its sons. Every leaf b of the decomposition tree is a set of arcs E(b)

representing one or several arcs of the underlying series-parallel graph G,

where each arc of one set E(b) has the same starting and end node in G, i.e.

is of the form (i, j). We show how to get such a decomposition tree in the

following example:

Example 14 Consider again graph G2, where the arcs are labeled as in Fig-

ure 5.3. The topological enumeration is given by the numbers above every

node of the decomposition tree.
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Figure 5.1: Illustration of series and parallel composition of series-parallel

graphs G1 and G2.
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Every series-parallel graph can be represented by such a binary decomposi-

tion tree. We will make use of this representation in the implementation of

our algorithm.

Until now we only took into consideration the structure of the graph, but

did not assume any transit times or capacities on the arcs.

5.2 Minimum Cost Flows on Series-Parallel

Graphs

We follow the general idea of Ford and Fulkerson, presented in chapter 3 to

develop a maximal dynamic flow algorithm that takes into account the spe-

cial structure of series-parallel graphs. Thus we first analyse the minimum

cost flow problem (3.1) introduced in Chapter 3 for series-parallel graphs,

with integer capacities and costs.

Bein and Brucker [5] present the greedy Algorithm 7 which finds a solu-

tion of the minimum cost flow problem (3.1) on series-parallel graphs in time

O(nm + m log m). Algorithm 7 finds the maximal flow value vmax and de-

fines a piecewise linear and convex function f on the interval [0, vmax] with

f(0) = 0. Function f is completely described by a partition of [0, vmax] into

successive subintervals Ik, k = 1, . . . , q of length lk. For each interval Ik a

corresponding path Pk from s to z exists, where the cost of one unit of flow

along Pk is denoted by a(Pk) :=
∑

(i,j)∈Pk
aij. On each subinterval Ik function

f has slope a(Pk) which does not change. The sequence a(P1), . . . , a(Pq) of

the slopes is non-decreasing. The length lk of each interval Ik corresponds to

the maximal amount of flow that can travel along path Pk, where the flow

on the paths P1 to Pk−1 has to be observed.

Let Ld :=
∑

k=0,...,d lk where l0 := 0. Then f is defined recursively:

f(0) := 0 (5.1)

f(v) := f(Ld) + a(Pd+1) · (v − Ld) on interval Id+1 := [Ld, Ld + ld+1] .

(5.2)

A complete solution of P (v) is given by function f(v) which is character-

ized by these parameters:

vmax and (lk, a(Pk), Pk) for k = 1, . . . , q.
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Algorithm 7 Greedy Algorithm of Bein and Brucker [5]

Input: Series-parallel graph G = (N,A) with one source s and one sink z

with costs aij and capacities cij ∈ R
+ on each arc (i, j) ∈ A.

Output: Solution of P (v) ∀ v ∈ [0, vmax], by giving out vmax and the

parameters lk, a(Pk) and Pk for k = 1, . . . , q.

for all (i, j) ∈ A do

xij := 0, k := 0

end for

while there exists a path connecting s and z do

k := k + 1

Find a minimal cost path Pk and the corresponding a(Pk) value.

lk := min {cij |(i, j) ∈ Pk }

for all (i, j) ∈ Pk do

cij := cij − lk
if cij = 0 then

then A := A \ {(i, j)}

end if

end for

end while

It is not obvious which is the best way to find a minimal cost path on

series-parallel graphs. For the moment it is enough to know that we can find

a minimal path under the given circumstances, as example one can use the

Algorithm of Dijkstra (see for [17]). We show a clever way to find minimal

cost paths on series-parallel graphs, when we discuss the implementation.

The important property of Algorithm 7 is, that it is an augmenting path al-

gorithm which does not use backward arcs. So whenever Algorithm 7 sends

flow over a path Pk, this flow will never be taken back again. This also im-

plies, that the capacity of the cheapest path is completely used up, before

flow is send along any more expensive path.

Example 15 For a better understanding of Algorithm 7 we consider the

series-parallel graph given in Figure 5.4. On the arcs (cij, aij) are given. Ap-

plying the algorithm of Bein and Brucker we get:

First minimal cost path P1 = (s, 1, 2, z) with total costs a(P1) = 4 and maxi-

mal flow value l1 = 5.

Updating the capacities we get cs1 := 5, c12 := 0 and c2z := 1. Consequently

arc (1, 2) is deleted. In the next iteration of the algorithm we get:
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(10, 1)

(5, 2)

(5, 2)

(7, 3) (6, 1)
(10, 2)

(10, 1)
(7, 2)

Figure 5.4: Series-parallel graph.

Second minimal cost path P2 = (s, 4, 5, z) with total costs a(P2) = 5 and max-

imal flow value l2 = 5. The update of the capacities yields cs4 := 0, c45 := 5

and c5z := 2. Arc (s, 4) is deleted and the next iteration gives:

Third minimal cost path P3 = (s, 1, 3, z) with total costs a(P3) = 6 and max-

imal flow value l3 = 5. The capacity update gives cs1 = 0, c13 := 2 and

c3z := 5 and arc (s, 1) is deleted. Since there exists no longer a path from s

to z the algorithm terminates.

The following Theorem 10 of Bein and Brucker [5] shows that Algorithm 7

solves the minimum cost flow problem on series-parallel graphs.

Theorem 10 (Bein and Brucker [5]) Let G be a directed acyclic graph

with a single source s and a single sink z. G is a (two-terminal) series-

parallel graph if and only if for every set of costs {aij} for all (i, j) ∈ A and

every set of nonnegative capacity {cij}, (i, j) ∈ A, Algorithm 7 solves the

corresponding minimal cost flow problem P (v) for 0 ≤ v ≤ vmax.

5.3 Maximal Dynamic Flows on Series-Parallel

Graphs

To solve the maximal dynamic flow problem on series-parallel graphs we com-

bine the algorithm of Bein and Brucker and the MCCP-Algorithm presented

in Chapter 3.

We use again the notation introduced in the proceeding section. We also

want to use Theorem 10 in the verification of the algorithm. As the costs

correspond to the transit times in the dynamic case and we cannot travel

backward in time, we do not allow negative costs. Also, since we only con-

sider the time discretized case, all transit times are integer. Theorem 10
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holds for the more general case and therefore also includes this special case.

Algorithm 8 MCCP Greedy Algorithm for Series-Parallel Graphs

Input: Series-parallel graph G = (N,A, T ) with costs aij ∈ Z
+ and capac-

ities cij ∈ Z
+ for each arc (i, j) ∈ A.

Add an additional arc (z, s) with infinite capacity and cost −(T + 1).

Output: Minimum cost paths Pk and the corresponding parameters a(Pk)

and lk. Also output the last value k∗ of the counting variable k for which

a flow was sent via the shortest s-z path Pk∗ .

for all (i, j) ∈ A do

xij := 0, k := 0

end for

while there exists a path connecting s and z in G do

k := k + 1

Find a minimum cost path Pk and the corresponding a(Pk) value.

Expand Pk to a circulation Ck by directing the flow that reaches z via

Pk to s using arc (z, s).

if a(Pk) − (T + 1) < 0 then

lk := min
{

cij

∣

∣(i, j) ∈ Ck
}

else

Stop the algorithm.

end if

for all (i, j) ∈ Ck do

cij := cij − lk
If cij = 0 then A := A \ {(i, j)}

end for

end while

As Algorithm 8 does not search for negative dicycles, it is not clear that

it really solves the maximal dynamic flow problem. Thus we need to prove

the following theorem:

Theorem 11 Algorithm 8 solves the maximal dynamic flow problem for

series-parallel graphs G = (N,A, T ) with one source s and one sink z and with

given capacities cij ∈ Z
+ and transit times τij ∈ Z

+ on each arc (i, j) ∈ A.

For the proof of this theorem we need the following definition:

Definition 12 Let G = (N,A) be a series-parallel graph (with flow x and

G′(x) the corresponding residual network). G can be decomposed into its
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Figure 5.5: Parallel components

parallel components. Each of these components has two terminals: a source

node u and a sink node w. We denote these parallel components by U(u; w).

Note that every path in the series-parallel graph G that uses node u also has

to use node w.

Example 16 To illustrate this definition, consider the series-parallel graph

given in Figure 5.5. In this series-parallel graph we have two parallel compo-

nents U(s; z) and U(1; z) which are circled.

Proof: Regard the transit times τij as costs and apply Algorithm 8 to the

given series-parallel graph G. Due to the if -condition the algorithm

stops as soon as the costs a(Pk) of the minimum cost path Pk are

larger than T . Or, if T is large enough to allow all necessary minimum

cost paths, Algorithm 8 terminates when there are no more paths from

s to z. At termination the algorithm has found the total amount of

flow v∗ that is sent from s to z within time horizon T . This amount of

flow v∗ is given by

v∗ :=
k∗

∑

k=1

((T + 1) − a(Pk)) · lk

Let f̃(v) denote the function described completely by the parameters

Pk, a(Pk), lk, for k = 1, . . . , k∗, and the maximal flow value v∗ which

are found during Algorithm 8.

Now apply the algorithm of Bein and Brucker to the given graph G,

where the costs aij := τij for all arcs (i, j) ∈ A. Algorithm 7 terminates

when there exist no more paths between s and z and then outputs the

parameters

vmax and (lk, a(Pk), Pk) for k = 1, . . . , q.
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These parameters completely describe the solution function f(v) for

every flow value 0 ≤ v ≤ vmax. Now compare f(v) and f̃(v) on the

interval [0, v∗]. We observe that the paths Pk found by Algorithm 7

are exactly the same as the paths found by our Algorithm 8, since the

algorithms do exactly the same. Additionally the costs a(Pk) of each of

these paths are the same and also the minimum capacities on each path

are identical. Thus, the lk values are also identical, ∀ k = 1, . . . , k∗.

Since we restricted f(v) to the interval [0, v∗], the maximal flow values

are also identical (due to the choice of v∗).

By Theorem 10 we know that Algorithm 7 solves the minimum cost

flow problem on series-parallel graphs. Since the functions f(v), which

gives the solution of P (v) for all v ∈ [0, vmax], and f̃(v) coincide on

[0, v∗], we conclude that Algorithm 8 solves the minimum cost flow

problem P (v∗) on the series-parallel graph G (note that arc (z, s) is

not in G).

Next we show that at termination of Algorithm 8 there are no negative

circulations possible. To do this we look at the residual network of

G ∪ {(z, s)}, with associated flow x found by Algorithm 8, where all

the arcs that have been deleted during Algorithm 8 are represented by

a backward arc only.

Case 1: There exists a negative circulation using only arcs of G.

This is a contradiction to the fact that the flow on G is a minimum

cost flow.

Case 2: A circulation C uses arc (z, s).

Denote the path of C through the original graph G by P := C \

{(z, s)}. If Algorithm 8 stops because there are no more s-z paths,

then obviously P cannot exist and therefore also C. Else, if the

algorithm stops, because the last s-z path it finds is too expensive,

then we know that P was not found by Algorithm 8. For otherwise

at least one arc would be a backward arc, i.e. only point from z to

s. So the cost a(P ) of this path P must be larger than T . ⇒ The

circulation has non-negative costs, since a(P ) − T > T − T = 0.

Case 3: A circulation uses arc (s, z).

This means that the circulation C uses backward arcs in G′(x) to

travel from z to s. If arc (i, j) has a backward arc in the resid-

ual network G′(x), then flow x has sent some units of flow via

arc (i, j). We want to show that the costs of this circulation C

are nonnegative. Thus we need to show that even if the costs are
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as negative as possible , they are still greater than or equal to

−(T + 1), i.e. a(P ) ≥ −(T + 1).

First we show that, without loss of generality, path P consists

only of backward arcs:

Assume that P includes a negative cycle. This is a contradiction

to the fact that the flow x solves the minimum cost flow problem

for v∗ on G. Thus, if P includes any cycles, the cost of these cycles

have to be non-negative, and therefore P is more negative, if we

omit these cycles. Thus we may assume without loss of generality

that P does not inclue any cyles and consists only of backward

arcs.

It might happen that P consists of the arcs of several paths

P1, . . . , Pk∗ which are the backward paths in the residual network

G′(x) where each corresponds to a forward path found by Algo-

rithm 8. The indices of P1, . . . , Pk∗ should correspond to the order

in which Algorithm 8 found the corresponding forward paths, i.e.

a(P1) ≥ a(P2) ≥ . . . ≥ a(Pk∗), since the costs of these backward

paths are negative.

Let Pd, 1 ≤ d ≤ k∗ be the path with the highest index of which P

uses arcs. Thus the costs of Pd are more negative than those of any

other path which shares arcs with P , but still a(Pd) > −(T + 1),

since Algorithm 8 found the corresponding forward path of Pd.

Now consider only those parts of P where P and Pd differ:

Let (u, v) be the first arc of P which is not used by Pd. Then node

u must be a terminal node of a parallel component U(u; w). Since

P and Pd use different ways to travel through U(u; w), let Pd1
be

the path with the largest index d1 < d of which P uses arcs in

U(u; w). Since Algorithm 8 is a greedy algorithm we know that

a(Pd1

∣

∣

U(u;w)) ≥ a(Pd

∣

∣

U(u;w) ).

If P and Pd1
do not coincide on U(u; w) then we can repeat the

argument until P and some Pdl
coincide on a parallel component

U(ul; wl) ⊂ U(u; w).

Thus we get the following estimation:

a(P ) =a(P
∣

∣

U(s;u1) ) + a(P
∣

∣

U(u1;u2) ) + . . . + a(P
∣

∣

U(uw;z) )

≥a(Pd

∣

∣

U(s;u1) ) + a(Pd

∣

∣

U(u1;u2) ) + . . . + a(Pd

∣

∣

U(uw;z) )

=a(Pd) > −(T + 1)
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Thus such a circulation C = P ∪ {(s, z)} has costs

a(C) = a(P ) + a({(s, z)})

≥ a(Pd) + a({(s, z)}

> −(T + 1) + T + 1 = 0

2

Observe that the validity of Algorithm 8 implies that it never happens that

flow has to be taken back on any arc during the algorithm. Thus at termina-

tion of Algorithm 8 all the cheapest paths are completely exhausted whereas

the too expensive paths, i.e. those with
∑

(i,j)∈P τij > T , are not used at all.

The paths Pk found in the algorithm together with the corresponding flow

values lk are essentially temporally repeated flows.

5.4 Earliest Arrival Flows on Series-Parallel

Graphs

Remember that we showed in Chapter 4 that maximal dynamic flows found

by applying the minimum cost circulation problem algorithm are not neces-

sarily earliest arrival flows. For series-parallel graphs we show in this section

that the maximal dynamic flows found by our Algorithm 8 are always earliest

arrival flows. Thus we have solved both problems with one algorithm.

Theorem 12 Let G = (N,A, T ) be a series parallel graph. Let x be the

maximal dynamic flow (MDF) on G obtained by applying Algorithm 8. Then

x is also an earliest arrival flow (EAF).

Proof: Assume that the theorem is wrong, that is the maximal dynamic

flow x is not an earliest arrival flow.

On the corresponding time expanded network D(T ) of G the MDF

x has arrival pattern ω(z) for all sinks z ∈ Z. Let ω∗(z) denote the

earliest arrival pattern of the sinks. Since we assume that x is not

an EAF it follows, that ω(z) 6= ω∗(z) for at least two sinks z ∈ Z.

According to Theorem 4 of Minieka, there exists a path Pearly starting

at one sink z(t′) and going to another sink z(t) with t < t′. Since we

assume that the MDF x is not an earliest arrival flow on G, x does not
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deliver as many flow units into the ”earlier” z(t) as the earliest arrival

flow requires there:

ω∗(z(t)) > ω(z(t)) and ω∗(z(t′)) < ω(z(t′)) with t < t′.

This path Pearly uses arcs of the residual network D′(T )(x) of the time-

expanded network.

We want to use the argument of the parallel components U(u; w) which

we introduced in Definition 12. Since our argumentation takes place

on the residual network D′(T )(x) of the time-expanded graph, we have

to reformulate the definition to apply it to this network:

Definition 13 Let G = (N,A, T ) be a series-parallel graph (with flow

x and G′(x) the corresponding residual network). Let D′(T )(x) be the

residual network of the time expanded network of G with associated

flow x. Remember that G can be decomposed into its parallel compo-

nents and each of these components has two terminals: a source node

u and a sink node w. We denote the corresponding structure to such a

parallel component U(u; w) in D′(T )(x) by U ′(u; w) and call it U(u; w)-

box. Such a U(u; w)-box contains all copies of the nodes of the parallel

component U(u; w) including the terminal nodes u and w and the copies

of all arcs of the residual network between any of the nodes of U(u; w).

Observation 5 One U-box might contain several smaller U-boxes and

it might happen that two different U-boxes have a terminal node in

common. But if a U-box U ′(u1; w1) contains a node of another U-box

U ′(u2; w2) which is not a terminal node of U ′(u1; w1), then U ′(u2; w2) ⊂

U ′(u1; w1).

Now we consider path Pearly in detail: Pearly uses backward and forward

arcs in D′(T )(x) to connect z(t′) to z(t). We call those nodes at which

Pearly changes the arc direction a turning node, e.g. Pearly reaches a

turning node by using a backward arc and leaves it by using a forward

arc of the residual network D′(T )(x). We have at least one such turning

node, since otherwise it is impossible for Pearly to reach sink node z(t).

If Pearly includes more than one turning node, we must have a loop and

the number of turning points must be odd. A loop means, that this

part of Pearly corresponds to a cycle in the residual network G′(x) of

the original graph. Each loop contains two turning nodes which are

both terminal nodes of a U -box.

Let L1 be the smallest loop that Pearly contains and let u1 and w1 be the
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turning nodes in L1. Then this loop L1 only uses arcs of the U(u1; w1)-

box. Thus it is sufficient to consider only this U -box. Assume without

loss of generality that the loop L1 starts in w1(t1) and leaves this node

by using backward arcs, reaches u1(t2), and leaves u1(t2) by using for-

ward arcs. Finally the loop reaches w1(t3) via these forward arcs, where

t1 and t3 might differ. Pearly does not use another loop within L1, since

otherwise L1 would not be the smallest loop.

Since Pearly uses backward and forward arcs in the U(u1; w1)-box, Algo-

rithm 8 has sent flow from u1 to w1 in the original graph G, but did not

fully exhaust the capacities of all possible u1-w1-paths. Let P1, . . . , Pk

be the paths found by Algorithm 8 that travel via nodes u1 and w1 in

G, where the indices correspond to the order in which the paths were

found.

Let Pearly(w1(t1); u1(t2)) denote the backward part, which only uses

backward arcs, and Pearly(u1(t2); w1(t3)) the forward part, which only

uses forward arcs, of Pearly in L1. We want to estimate the travel time

of Pearly on L1, where we first consider the backward part and then the

forward part:

Pearly(w1(t1); u1(t2)): Here Pearly only uses backward arcs. This means

that the flow x, which the Algorithm 8 found, has sent flow over

these arcs and therefore a backward arc exists in the residual net-

work.

Claim: The travel time of Pearly(w1(t1); u1(t2)) is not less than the

backward travel time of Pk

∣

∣

U ′(u1;w1) , i.e.

τ(Pearly(w1(t1); u1(t2))) ≥ −τ(Pk

∣

∣

U ′(u1;w1) ).

Note that the travel time of Pearly(w1(t1); u1(t2)) is negative, since

it uses backward arcs. So the backward travel time of Pk

∣

∣

U ′(u1;w1)

must also be negative.

Proof of Claim: If Pearly(w1(t1); u1(t2)) = Pk

∣

∣

U ′(u1;w1) , then the

travel times are identical and the claim holds. So consider those

parts of Pearly(w1(t1); u1(t2)) where Pearly(w1(t1); u1(t2)) and the

time-expanded graph correspondents P̃k of Pk

∣

∣

U ′(u1;w1) differ.

Pearly(w1(t1); u1(t2)) might use several correspondents P̃k of path

Pk

∣

∣

U ′(u1;w1) . They can only differ on a U(u2; w2)-box, for which

U ′(u2; w2) ⊂ U ′(u1; w1). Let Wl be the u2-w2-way correspondent

which P̃k uses in G. Then all the other u2-w2-ways W1, . . . ,Wl−1

which carry flow must be exhausted, since otherwise P̃k would
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have used one of these ways, since they are faster. (They are

faster, since the other paths P1, . . . , Pk−1 use these ways and the

greedy Algorithm 8 found them before Pk.) The other u2-w2-ways

Wl+1,Wl+2, . . ., which do not carry flow, have no backward arcs in

the residual network. Thus Pearly(w1(t1); u1(t2)) must use a faster

way than P̃k if they differ.

⇒ τ(Pearly(w1(t1); u1(t2))
∣

∣

U ′(u2;w2) ) ≥ −τ(Pk

∣

∣

U ′(u2;w2) )

⇒ τ(Pearly(w1(t1); u1(t2))) ≥ −τ(Pk

∣

∣

U ′(u1;w1) )

Pearly(u1(t2); w1(t3)): Here Pearly only uses forward arcs. This means

that Pearly can only use arcs the capacity of which is not exhausted

by the flow x the Algorithm 8 found.

Claim: The travel time of Pearly(u1(t2); w1(t3)) is not less than the

travel time of Pk

∣

∣

U ′(u1;w1) , i.e.

τ(Pearly(u1(t2); w1(t3))) ≥ τ(Pk

∣

∣

U ′(u1;w1) ).

Proof of Claim: If Pearly(u1(t2); w1(t3)) = Pk

∣

∣

U ′(u1;w1) , then the

travel times are identical and the claim holds. So consider those

parts of Pearly(u1(t2); w1(t3)) where Pearly(u1(t2); w1(t3)) and the

time expanded graph correspondents P̃k of Pk

∣

∣

U ′(u1;w1) differ. They

can only differ on a U(u3; w3)-box, where U ′(u3; w3) ⊂ U ′(u1; w1).

Let W ∗
l be the u3-w3-way correspondent in G which P̃k uses. Then

all the other, shorter u3-w3 ways W ∗
1 , . . . ,W ∗

l−1 which have flow

on them must be exhausted, since otherwise, P̃k would use one of

these faster ways. All these ways W ∗
1 , . . . ,W ∗

l−1 include at least

one arc that has no forward arc in the residual network. So Pearly

cannot use any of these ways, but has to take a u3-w3-way which

the Algorithm 8 did not use. Thus the travel time from u3 to w3

of Pearly must be larger than that of Pk, if they differ.

⇒ τ(Pearly(u1(t2); w1(t3))
∣

∣

U ′(u3;w3) ) ≥ τ(Pk

∣

∣

U ′(u3;w3) )

⇒ τ(Pearly(u1(t2); w1(t3))) ≥ τ(Pk

∣

∣

U ′(u1;w1) )

Thus we get the following estimation for the travel time of Pearly on

the loop L1:

τ(Pearly |L1 ) = τ(Pearly(w1(t1); u1(t2))) + τ(Pearly(u1(t2); w1(t3)))

≥ −τ(Pk

∣

∣

U ′(u1;w1) ) + τ(Pk

∣

∣

U ′(u1;w1) )

= 0
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This means, that Pearly only looses time by using the loop L1. Thus

we assume that Pearly does not include such a loop L1 and set Pearly :=

Pearly − L1.

If this new Pearly still contains other loops, we iterate the above argu-

mentation: We can again find a smallest loop which does not contain

any other loops. By the same argumentation as above we can eliminate

this loop, because Pearly only looses time by using the loop.

Thus we may assume that Pearly contains no loops at all. Then Pearly

consists only of backward arcs from z(t′) to the turning node and from

the turning node to z(t) it consists only of forward arcs. So Pearly it-

self is a loop. Thus by the same argumentation as above we get that

τ(Pearly) ≥ 0.

⇒ We cannot get such a path Pearly starting in z(t′) and ending in

z(t) with t < t′. Thus, since no such ”earlifying” path Pearly exists,

it follows that the arrival patterns ω(z) and ω∗(z) must be the same

for all sinks z ∈ Z. Hence the assumption is wrong and the maximal

dynamic flow x found by Algorithm 8 is already an earliest arrival flow.

2

We have seen in Chapter 4, that for general graphs, it is not always possible

the find an earliest arrival flow which has the property that it is also a

temporally repeated flow. As a simple consequence of Theorem 12 we get

the following observation:

Observation 6 On series-parallel graphs it is always possible to find for

every time horizon T ≥ 0 an earliest arrival flow, that is a temporally repeated

flow.

The stronger statement that on series-parallel graphs all earliest arrival flows

are temporally repeated flows is not true, as Figure 5.6 illustrates. Thus we

have the following observation:

Observation 7 On series-parallel graphs not every earliest arrival flow is a

temporally repeated flow.
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s 1 z

(10, 1)

(7, 2)

(5, 1)

(a) Series-parallel graph

s(0) s(1) s(2) s(3)

1(0) 1(1) 1(2) 1(3)

z(0) z(1) z(2) z(3)

5

5

5 5

(b) An earliest arrival flow for T = 3.

Figure 5.6: Not every earliest arrival flow on a series-parallel graph has the

temporally repeated flow property

5.5 Implementation and Complexity Analy-

sis

5.5.1 Implementation

Bein and Brucker [5] present a bottom-up procedure for finding a minimal

cost path from s to z in a series-parallel graph G. This procedure makes use

of the special structure of series-parallel graphs by using the corresponding

decomposition tree. Remember that we enumerated the 1, . . . , r nodes of the

decomposition tree topologically. The minimal cost path P and its cost-value

a(P ) can be calculated by using Algorithm 9.

Algorithm 9 Bottom-up Procedure of Bein and Brucker [5]

for b := 1 until r do

if b is a leaf then

INITIALIZE(b)

else

Find the left son c and the right son d of b

if b has label P (corresponding to a parallel composition) then

MERGE(c, d; b)

else

ADD(c, d; b)

end if

end if

end for

Algorithm 9 starts at the leaves and processes upwards through the tree
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until it reaches the root r.

The three procedures INITIALIZE(b), MERGE(c, d; b) and ADD(c, d; b) that

are needed in Algorithm 9 are defined as follows:

INITIALIZE(b)

1. If set E(b) contains several arcs e
′

, e
′′

, . . .

2. Choose arc e with the minimum cost

3. Pb := e

4. a(E(b)) := a(e)

5. Else E(b) = ∅

6. Pb := ∅

7. a(E(b)) := ∞

MERGE(c, d; b)

1. If a(c) ≤ a(d) then

2. a(b) := a(c)

3. Pb := Pc

4. Else

5. a(b) := a(d)

6. Pb := Pd

ADD(c, d; b)

1. a(b) := a(c) + a(d)

2. Pb := Pc ◦ Pd

In procedure ADD(c, d; b) the expression Pc◦Pd denotes the concatenation of

Pc and Pd, where Pc◦Pd = ∅ if Pc or Pd are empty. If Algorithm 9 terminates

with Pr = ∅ then there exists no path from s to z in the corresponding graph.

We need Algorithm 9 in every iteration of our Algorithm 8. In every iter-

ation of our algorithm at least one arc of the original series-parallel graph

is deleted. We can update the decomposition tree in every iteration by just

deleting the arc from the corresponding arc set E(b).
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i

j

n+1

k

Figure 5.7: A not series-parallel graph.

5.5.2 Complexity Analysis

In this section we will denote the total number of arcs of a network by m

and the number of the nodes of the network by n. First we will analyse the

complexity of Algorithm 9. Since we go through the decomposition tree and

have to perform one of the procedures INITIALIZE(b), MERGE(c, d; b) or

ADD(c, d; b) at every node of the tree, we need to know how many nodes

the decomposition tree can have. The decomposition tree is a binary tree

and therefore half of its nodes must be leaf nodes. The leaf nodes of the

decomposition tree represent the arcs of the underlying series-parallel graph

G. The following lemma gives the maximal number of arcs for any series-

parallel graph without parallel arcs:

Lemma 5 For series-parallel graphs without parallel arcs, the maximal num-

ber of arcs is 2n − 3.

Proof: We use an inductive argument to show Lemma 5:

Basis: Consider the easiest possible series-parallel graph: a K2 con-

sisting only of nodes s and z and one arc (s, z). Since we do not allow

parallel arcs, the maximal number of arcs is 1 = 2 · 2 − 3.

Inductive Hypothesis: For series-parallel graphs without parallel arcs,

the maximal number of arcs is 2n − 3.

Inductive Step: Let G be a series-parallel graph with n nodes and 2n−3

arcs. Add node n+1. Assume that it is possible to add three arcs con-

necting node n + 1 to any three distinct other nodes. Then, since G

had the maximal number of arcs and so there are no nodes without any

incident arcs, we must get a component as shown in Figure 5.7.

This is not series-parallel. So the assumption must be wrong and it

is not possible to connect the new node n + 1 to three other distinct

nodes. It is also not possible to add more than three arcs, since this



5.6. INFLOW-DEPENDENT TRANSIT TIMES 75

would cause the same problem. So we can at most add two new arcs.

Hence, the maximal number of arcs for a series-parallel graph with n+1

many nodes is: 2 · n − 3 + 2 = 2 · (n + 1) − 3. 2

Thus the complexity of Algorithm 9 is O(n), if we neglect the effort involved

in the INITIALIZE procedure.

Algorithm 8 deletes at least one arc in every iteration. In the worst case T is

large enough to allow all paths from s to z and only after all arcs are deleted

there exists no longer a path connecting source and sink. In this case we

need m iterations. All steps of Algorithm 8 can be done in constant time,

except finding a minimal path from s to z for which we use Algorithm 9.

Thus, if we do not count the calls of all the INITIALIZE procedures, the

overall complexity of Algorithm 8 is O(mn). Bein and Brucker [5] suggest

to use heaps to implement the INITIALIZE procedure. The heaps should

represent the sets of parallel arcs E(b). Then it takes constant time to find

the arc with minimal costs. The deletion of an arc in Algorithm 8 requires

to update the heap, which can be done in O(log m) time. Thus the overall

complexity of Algorithm 8 is O(mn + m log m).

So our algorithm has the same complexity as the Algorithm 7 of Bein and

Brucker and runs in polynomial time. Thus we found a polynomial time

algorithm for the special class of earliest arrival flows on series-parallel graphs.

5.6 Earliest Arrival Flows on Series-Parallel

Graphs with Inflow-Dependent Transit Times

Consider again the bow graphs of Köhler et al. [8] defined in Chapter 4.

Earliest arrival flows always look for the shortest way from s to z and thus

will always exhaust the regulating arcs with smaller capacity which lead to

faster bow arcs. Thus instead of defining a bow graph with regulating arcs

and bow arcs, we can define it by using only parallel bow arcs:

Definition 14 Let G = (N,A, T ) be a dynamic network with an inflow-

dependent, piecewise constant and non-decreasing transit time function for

every arc (i, j) ∈ A. For each arc denote the inflow rates by x1 < x2 < . . .

and the corresponding transit times by τ 1 < τ 2 < . . .. In a parallel bow graph

we substitute each original arc (i, j) ∈ A by as many parallel arcs going from

i to j as we have different flow rates. To every parallel arc a transit time
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i j

(x3 − x2, 4)

(x2 − x1, 2)

(x1, 1)

Figure 5.8: Parallel bow graph of the bow graph shown in Figure 4.14.

and the corresponding amount of flow that can travel with this transit time

in the bow graph is assigned.

In Figure 5.8 the parallel bow graph of the bow graph given in Figure 4.14

is shown. For a series-parallel graph G the modification of G into a parallel

bow graph is still a series-parallel graph where the number of nodes has

not changed. Thus we can apply Algorithm 8 to the parallel bow graph.

Remember that the bow graph is only a relaxation of the inflow-dependent

transit time model. Following the implementation approach of Bein and

Brucker [5], presented in the previous section, and modelling parallel arcs

via heaps, the computational effort for the parallel bow graph is not much

larger than for the original series-parallel graph.



Chapter 6

Summary and Open Problems

We reviewed two classical dynamic flow problems: the maximal dynamic

flow problem and the earliest arrival flow problem. We extensively discussed

existence, computation and approximation of earliest arrival flows and also

gave an overview over the actual research on flow-dependent earliest arrival

flows.

As far as we know, it is still an open question if there exists a polynomial

time algorithm for the earliest arrival flow problem or not. We have shown

that for a special class of graphs, the series-parallel graphs, there does exist

a polynomial time earliest arrival flow algorithm.

Application: Both maximal dynamic and earliest arrival flows are used to

model transportation or travelling problems where a fixed time horizon is

given. Series-parallel graphs do not play an important role in modeling trans-

portation or travelling problems, since the real-world networks are often not

series-parallel. Thus our results are mainly of theoretical interest. Also we

have not yet implemented our maximal dynamic flow algorithm for series

parallel graphs.

Further research: One point for further research is finding a good implemen-

tation of Algorithm 8 and testing on a representative set of series-parallel

graphs how good the algorithm and its implementation is. Furthermore one

could consider earliest arrival flows on series-parallel graphs with varying pa-

rameters. We argued that for flow-dependent transit times the relaxation of

Köhler et al. [8] can easily be applied to series-parallel graphs and be solved

with our algorithm. Köhler et al. [8] only examined the quickest flow problem

and developed a polynomial approximation algorithm operating on the bow

graph, which is a (2 + ǫ) approximation for the quickest flow problem with

77
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inflow-dependent transit times. Thus it would be interesting to estimate the

quality of this approximation approach for the earliest arrival flow problem.

We have seen that even for a graph consisting of only two nodes and one arc,

it is not possible to find exact earliest arrival flows for flow-dependent transit

times. Thus finding good approximations for this problem is necessary. One

could also consider earliest arrival flows with time-dependent transit times

on series-parallel graphs.

As already stated above, it is still unknown if the earliest arrival flow problem

is NP -hard. So this is also a question for further research.

In the minimum cost dynamic flow problem, each arc has not only assigned

a transit time, but also a transit cost. For this problem Klinz and Woeginger

[22] showed that the minimum cost dynamic flow problem is NP -hard. Also

the minimum cost maximum dynamic flow problem, where the flow value v,

that has to be send through the network, is fixed to the maximal possible

value, with respect to a fixed time horizon T , and the minimum cost quick-

est dynamic flow problem, where the time horizon T is fixed to the minimal

possible value, with respect to a given flow value v, are NP -hard, even on

series-parallel graphs.

Another problem are multicommodity dynamic network flows. Here several

commodities with different transit times have to be transhipped through one

network. It is an interesting question how to model mulitcommodity network

flows and to investigate how to solve mulitcommodity dynamic network flow

problems.
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