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Chapter 1

Introduction, Overview and
Notation

1.1 Objective: Homologation of Safety Relevant
Components

Deciding about homologation of safety relevant components from passenger or
utility cars means to verify reasonable large lifetimes under specified loads. Scat-
tering production processes require to model the lifetime as a random variable
T ∼ F . Therefore the homologation claim can be formulated as:

Survival probability at design/target life q0 (reliable life) is greater
than R0 (reliability)

If q1−R0 denotes the (1 − R0)-quantile of the lifetime distribution F , then an
equivalent formulation of the claim is:

q0 < q1−R0 (1.1)

There is a popular approach referred to as success run:

Grant homologation if N tested units reach lifetimes L > q0, without
exception.

The experimental design (N,L) is calculated such that the resulting sta-
tistical test will reach a desired significance α. In a generalised version of the
success run ("success run with failures") it is allowed to observe some failures
before time L, if only (N,L) are chosen large enough. There is even a Bayesian
extension of the method, allowing to model prior knowledge with beta distribu-
tions as a conjugated family.

Unfortunately, the method shows two major drawbacks:

1. For fixed significance, the power of the test does depend strongly on the
experimental design (N,L).

2. Success runs with failures do not allow for beta distributions as conjugated
families.

7



8 CHAPTER 1. INTRODUCTION, OVERVIEW AND NOTATION

The scope of this thesis is to further generalise the success run method to fix
both drawbacks as far as possible by introducing partially-passed component
counting.

In the remainder of this chapter a short introduction to the topic is given,
before we start to analyse the approaches in detail.

1.2 Current Approach

1.2.1 Data Situation
Samples are drawn by testing several prototypes on test tracks or test rigs.
Limiting the available sample sizes and/or the testing times leads to different
censoring patterns:

• Failure-censored sampling: After r observed failures out of N tested
units, the remaining N − r experiments are suspended.

• Time-censored sampling: Suspend every item exceeding testing time
L. The number of observed failures is random, but the maximal overall
test time is known to be N · L.

Depending on the censoring pattern a statistical method is chosen:

• Reliability estimation test plans (RET) try to observe as many fail-
ures as possible, for fitting parametric models (failure-censored sampling).

• Reliability demonstration test plans (RDT) try to demonstrate a
minimum lifetime, working for time-censored sampling.

In fatigue studies time-censored sampling is the preferred censoring pattern
and will be the focus of this thesis. Special attention is paid to the emerging
small sample sizes, using the following paradigm:

P1 Information on the reliability at time q0 shall be gathered by increasing the
test duration L rather than the sample size N .

Every manufacturer possesses experience in developing safety relevant com-
ponents. It is desired to use this experience in a quantitative way:

P2 The applied statistical test should allow for Bayesian methods.

1.2.2 Reliability Estimation using Quantile Estimation
Let q̂1−R0 be a point estimate of the quantile q1−R0 . To judge if (1.1) is satisfied,
we compare the lower bound q̂1−R0,α of a one-sided (1 − α)-cofidence interval
(CI) to q0. Two methods were chosen for further study:

• Delta method: Assume that q̂1−R0 follows a normal distribution. The
Fisher information matrix delivers the estimator’s asymptotic covari-
ance: Cov

(
θ̂
)

= (NIN )−1. Gaussian error propagation provides es-
timates V1−R0 for Var(q̂1−R0). Using an asymptotic normal distribution
for q̂1−R0 gives confidence intervals for q1−R0 :

q̂1−R0,α = q̂1−R0 −
√

V1−R0 · t−1
N−1(1− α)
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This approach is motivated by asymptotic arguments and is algorithmi-
cally cheap.

• Bootstrap methods: Estimate the sampling distributions parameter
by θ̂ to generate M samples of length N from Fθ̂. For each resample x∗

the ML quantile estimate q̂∗p0
is calculated. The (empirical) CDF G∗ of

q̂∗p0
is an estimate for the CDF G of the estimator q̂p0 . There are two main

types of bootstrap methods: bootstrap quantile method (BQM) and
bootstrap-t, explained in section 2.3.

One exemplary simulation study about CI for means can be found in [19],
showing good results for the bootstrap-t. Adapting it to censored survival data
gives the well known hybrid bootstrap1.

1.2.3 Reliability Demonstration using Success Runs

Success runs claim, that N units have to survive at least L cycles to achieve
homologation (time-censored sampling). To verify a reasonably small failure
quota p = F (q0) < p0 = 1 − R0, count the number SL of tested components
T1, . . . , TN surviving time L = λq0, λ ≥ 1. Reject H0 : p ≥ p0 if SL = N (no
failure before time L). If pL denotes the failure probability at time L, then the
binomial distribution of SL gives the significance equation:

(1− pL)N ≤ α (1.2)

where α is the significance of the statistical test. It has to be assumed,
that p0 = F (q0) uniquely determines F within the chosen family, allowing the
calculation of pL = F (L).

1.2.4 Bayesian Reliability Demonstration

Developing safety relevant components is rather evolutionary than revolution-
ary. To respect previous knowledge Bayesian statistics is used. If the reliability
R = 1− p ∈ [0, 1] is used to describe quality, priors can be formulated and up-
dated using the sample information. The theory of Bayesian reliability analysis
is well developed, including methods for success runs. It can be shown, that
binomial sampling with prior knowledge modeled by beta PDF Beta(A0;B0)
does lead to beta PDF for posterior knowledge:

For L = q0 binomial sampling gives likelihoods proportional to

RSL(1−R)N−SL ,

where F (q0) = 1−R. If a beta distribution

π ∝ RA0−1(1−R)B0−1

is used as a prior, then the posterior will be proportional to

RA0+SL−1(1−R)B0+N−SL−1

1as explained in [16]
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Figure 1.1: Test power for different (N,L), all fulfilling equation (1.2).

The result is a parameter update formula

A = A0 + SL, B = B0 + N − SL

It follows, that beta distributions are conjugated to binomial sampling
for L = q0.

1.2.5 Drawbacks and Gaps of the Current Approaches

Reliability Estimation

Small sample sizes will lead to large coverage errors of all CI. When used for
testing they will give wrong significances. Time-censoring with small L might
lead to completely censored samples. In this situation all quantile estimates will
degenerate and one has to switch to reliability demonstration.

Reliability Demonstration

Success runs are well adapted to completely censored samples, but have major
drawbacks concerning their power function. For given α there are countably
many pairs (N,L) fulfilling equation (1.2). These pairs do not lead to the same
power of the test, as figure 1.1 indicates. Small N are desirable to ensure
affordability but decrease the probability of homologation for actually reliable
designs.

Bayesian Reliability Demonstration

Since for Weibull distributions (1−F (L)) = (1−F (q0))λγ

, where λ = L/q0, the
case L > q0 does lead to a likelihood Rλγ ·SL(1 − Rλγ

)N−SL . If SL < N , then
it is not possible to name the beta parameters of the posterior. This means,



1.3. GENERALISING SUCCESS RUNS 11

that one runs the risk to have no parameterisation of the posterior for
L > q0 and SL < N .

1.3 Generalising Success Runs
The main topic of this thesis is to introduce a method working for all types of
incomplete samples and power invariant w.r.t. N,L for given α.

1.3.1 Combining RET and RDT
Success runs are counting passed components in a discrete way:

Every component Ti surviving time L will add summand 1 to S

Homologation is granted only if S ≥ Scrit ∈ N. Chapter 5 will modify the
counting:

Components Ti failing before time L will add a summand s = s(Ti),
where s is monotonically increasing with s(0) = 0 and s(L) = 1.

If we choose

s(Ti) =
1
pL

FH0(Ti), B =
N∑

i=1

s(Ti)

then B (called PPC-count) is a direct generalisation of the success runs test
statistic S. If the critical value for B is calculated correctly, the continuous
nature of B allows the test to have correct significance for every feasible
pair (N,L).

While the count is derived by generalising a reliability demonstration method,
it also allows point estimation of the reliability for Weibull models. The result-
ing estimator in section 6.2 is equivalent to MLE for the sampling distribution.
In this sense PPC counting is some hybrid of RET and RDT.

1.3.2 Applying Bayesian Methods
If the success run SL is replaced by the PPC count BL a beta PDF might still
be used to get an easy knowledge-update formula. An approximation formula
for the true posterior will be derived in section 7.2.2.
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1.4 Overview
Censoring patterns determine which statistical method to use: Quantile esti-
mates require a sufficient large number of failures, otherwise success runs are
needed. The main result will be, that for small time-censored samples
the PPC count should be the favored method. This is shown in several
steps:

Chapter 2: Different algorithms for quantile-CI. In terms of their coverage er-
ror (deviation between nominal and empirical confidence) the asymptotic
delta method is compared to some resampling methods. Both methods
show inadmissible large coverage errors.

Section 2.5.1: Monte Carlo corrections of the delta method for lowering cov-
erage errors. Even after correction the method will show undesirable dis-
continuities.

Chapter 3: Verification of F (q0) < p0 using binomial sampling to derive suc-
cess runs. For small sample size, reliable designs are frequently refused
(error of second kind).

Chapter 4: Randomisation of success runs by randomly branching the tests
decision rule. The probability for errors of second kind decreases, but the
problem of repeatability occurs.

Chapter 5: Introduction of partially passed component counting (PPC count-
ing) as a generalisation of success runs. Comparing both concepts to
randomisation makes the PPC counting the method to be preferred.

Chapter 6: Maximum likelihood estimation for CUS models are equivalent to
MLE of the sampling distribution.

Appendix D Introduction to Bayesian statistics and conjugated families.

Chapter 7: Bayesian quality control for success runs and PPC-counts using
beta distributions. The beta PDF will not be exactly conjugated to CUS
sampling, but the approximation is reasonable. Different to binomial sam-
pling the parameter update formulas are also available for L > q0.

Chapter 8: Statistical tests coming from PPC counting are almost equivalent
to corrected quantile estimates in terms of power functions, but are free
of discontinuities.
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1.5 Notation
Let T ∼ F with F ∈ {Fθ | θ ∈ Rk} (typically k ∈ {2, 3}). Possible families for
F are Weibull or lognormal (see appendix A). In this thesis, most results are
formulated for Weibull distributions.

The homologation claim is formulated as a quantile hypothesis ,

P(T < q0) = F (q0) < p0 = 1−R0, (1.3)

making H0 : F (q0) ≥ p0 the null hypothesis to be rejected. A sample with
lifetimes T1, . . . , TN is drawn, using time-censoring.

Definition 1:
The censored version X+ of a random variable X w.r.t. censoring time L is
defined as:

X+ =
{

X, X ≤ L
L, X > L

Further define the censoring indicator δ by:

δ =
{

1, X ≤ L
0, X > L

Samples with
∑

δ = N are called complete sample.

Statistical inference may only use the information available from T+ =
(T+

1 , . . . , T+
N ) and δ = (δ1, . . . , δN ).

Prior knowledge about the reliability R will be described by a prior density
π(R). Togheter with the models likelihood L(R | T , δ) a posterior density
π(R | T , δ) will be calculated using bayesian theorem:

π(R | T , δ) ∝ π̄ · L(R | T , δ)

As a short form write π̄(R) for π(R | T , δ), which should not be confused with
the survivor function of π, which will be written as 1−Π if it is needed.nMain
candidate for π will be the beta distribution as introduced in section A.4.



Chapter 2

Quantile Estimation for
Reliability Estimation

Consider the p0-quantile qp0 of Fθ from the homologation claim of section 1.1.
Based on a sample T+, δ a (1−α)-CI q̂p0,α is calculated using delta and bootstrap
methods. In contrary to success runs (chapter 3) the exact lifetimes are needed,
giving this approach the name variables life test. We start with looking at
point estimates.

2.1 Parametric Point Estimates for Quantiles
Fatigue applications most frequently make use of least squares in probability
paper. Details of the approach can be found in [2]. It is known, that this
method has less efficiency than maximum likelihood estimation (MLE) (see
[21]), which will be the preferred method here.

For incomplete samples the likelihood is defined to be:

L(θ | x, δ) =
∏
δi=1

fθ(xi) ·
∏
δi=0

(1− Fθ(xi)), (2.1)

using the notation of definition 1. This modification ensures the consistency of
the MLE in the presence of censored data, if the censoring pattern fulfills some
independence conditions (see [20]). All patterns used in this thesis fulfill these
conditions.

The argument θ̂, maximizing the log-likelihood l = ln L, is used to construct
the ML quantile estimate:

q̂p = F−1

θ̂
(p)

Remark 1 (Completely censored samples):
For completely censored samples the likelihood degenerates to:

L(θ | x) =
∏
δi=0

(1− Fθ(xi))

E.g. think of a normal distribution with unknown µ. Obviously, L is monoton-
ically increasing in µ, making it impossible to define the MLE for parameters
or quantiles. This problem is addressed again in section 2.5.2.

14
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2.2 Delta Method

The delta method derives quantile CI by writing point estimates as functions
of the parameter estimates. This is done in 4 steps:

1. Establish an asymptotic normal distribution for the parameter estimate
θ̂.

2. Get the asympotic covariance of θ̂ from the Fisher information matrix.

3. Use Gaussian error propagation for the quantile function to get the
asymptotic variance of q̂p.

4. Finish with an estimated normal distribution for the asymptotically un-
biased quantile estimator q̂p.

Details of the approach and corresponding proofs can be found in [10] or [11].

2.2.1 Theoretical Background

In this section, we review the standard theory of maximum likelihood estimates
(MLE) without going into technical details. The regularity conditions which
we skip in formulating the main results are typically used in particular in the
situation of interest for this thesis satisfied. For the details we refer to the
literature, e.g. [13].

Asymptotic Covariance and Fisher Information

Under some smoothness conditions most MLE θ̂ follow asymptotically a normal
distribution: √

N
(
θ̂ − θ

)
L→ Np(0; Σ) (2.2)

To calculate the asymptotic covariance Σ, the concept of Fisher information
is needed.

Definition 2:
The Fisher information matrix is defined as the score function’s second
moment:

IN (θ) = Eθ

((
∂

∂θi
l(X | θ)

)(
∂

∂θj
l(X | θ)

))
i,j

If the model is correctly specified and the distribution is smooth enough as a
function of θ, then I(θ) may also be written as:

IN (θ) = −Eθ

(
∂2

∂θiθj
l(X | θ)

)
Theorem 1
Under some smoothness conditions, it holds that:

√
N
(
θ̂ − θ

)
L→ Np

(
0; I1(θ)−1

)
(2.3)
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Delta Method and Error Propagation

Theorem 2 (Delta Method)
Let Xn ∈ Rp be an asymptotic normal random vector with unit covariance
matrix

an (Xn − µ) L→ Np(0; Ip)

Further g : Rp → Rq be a mapping, differentiable at µ, then:

an(g(Xn)− g(µ)) L→ Nq

(
0;∇g(µ) · ∇g(µ)t

)
,

Proof Perform a Taylor expansion of g around µ:

g(Xn) = g(µ) +∇g(µ)(Xn − µ) + higher order terms

Since Xn converges in probability to µ, the remaining higher order terms con-
verge in probability to zero. Finally, applying Slutsky’s theorem to

an(g(Xn)− g(µ)) = ∇g(µ) an(Xn − µ)︸ ︷︷ ︸
→Np(0;Ip)

+ an(higher order terms)︸ ︷︷ ︸
→0

gives the desired result.

qed
Using Theorem 2 for a function g of the parameter estimates gives:

√
N
(
θ̂ − θ

)
L→ Np(0; Σ)

⇒
√

N
(
g(θ̂)− g(θ)

)
L→ Np

(
0;∇g(µ)Σ∇g(µ)t

)
(2.4)

2.2.2 Estimation of the Asymptotic Covariance
For i.i.d. data X = (X1, . . . , XN ) we have immediately

l(θ | X =
N∑

i=1

l(θ | Xi)

and therefore IN (θ) = NI1(θ). Definition 2 has given two interpretations of
IN (θ): Second likelihood derivatives (under regularity conditions) or squared
score function (general case). Therefore two estimators of I1(θ) may be defined:

Definition 3 (Hesse estimator):

ÎHesse (θ) =

(
− 1

N

N∑
i=1

∂2

∂θi∂θj
l(θ | Xi)

)
i,j∈{1,...,k}

(2.5)

Definition 4 (BHHH estimator (Bernd-Hall-Hall-Hausmann)):

ÎBHHH (θ) =
1
N

(
N∑

i=1

∇l(θ|Xi) · ∇l(θ|Xi)t

)
(2.6)

Finally estimate Σ by:
Σ̂ = Î1(θ)−1
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2.2.3 Application to Quantile CI
To use equation (2.4) for quantile CI estimation consider the quantile function
g(·) = F−1

· (p), θ ∈ Θ ⊂ R2 and get estimates for g(θ) = qp and Σ.
The asymptotic normal distribution of q̂p is now used to construct a one-

sided CI:

qp ≤ q̂p,α = q̂p + t−1
N−1(1− α) · σ̂θ̂, with probability α (2.7)

(Usage of a student distribution to take into account the estimated variance)

Remark 2 (Logarithmic Delta Method):
Appendix B gives the necessary formulas for censored Weibull samples. Loga-
rithmic transformations will be used to work with Gumbel distributions, being
closer to a normal distribution than the original Weibull distribution. Further
details will be explained in section 2.3.5, when using logarithmic transformations
for bootstrap methods.

2.2.4 Coverage error
The derivation of the delta CI (2.7) has used several assumptions:

1. The inverse Fisher information approximates the covariance matrix Σ.

2. Delta method can be used to get the variance of q̂p.

3. q̂p is asymptotically normally distributed.

4. Σ̂ was a good estimate for Σ.

5. q̂p is asymptotically unbiased.

Definition 5:
Let I be any (1 − α)-confidence interval for the unknown true value g(θ), then
P(g(θ) ∈ I) is called coverage probability or empirical confidence of I. 1− α is
called nominal confidence. The deviation |P(g(θ) ∈ I)− (1− α)| will be called
coverage error.

For small samples the upper assumptions will not hold, making the delta
methods coverage error large (see section 2.4). Resampling methods are known1

to work quite well for small samples and will be studied in the next section.
Additionally, assumption 1 is crucial. As, due to the small sample sizes in

the applications we are interested in, we have to restrict ourselves to simple
parametric models, we expect those models to be misspecified. In that case, the
two expressions which we have in Definition 2 do not coincide, an the asymp-
totic covariance matrix of θ̂ is of a more complicated form. This could also
be estimated consistently refering to the law of large numbers, but as asymp-
totic normality does not provide a good enough approximation for small sample
anyhow, we do not go into that direction.

1see e.g. [19]
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2.3 Bootstrap Methods

Two main types of bootstrap methods are presented: Bootstrap-t and bootstrap
quantile method. Adapting both concepts to censored data will lead to the
hybrid bootstrap. A complete discussion can be found in [16] or [15].

2.3.1 Bootstrap Quantile Method

Consider a statistic T = T (X) ∼ G, estimating g(θ). Let F̂ estimate the sam-
pling distribution F (empirical-CDF or MLE). For each resample X∗, drawn
from F̂ , the statistic T ∗ = T (X∗) ∼ G∗ can be calculated. Repeating this mul-
tiple times, say M , the empirical CDF of T ∗1 , . . . , T ∗M approximates G∗ (we will
not distinguish between G∗ and its step function approximation).

The bootstrap quantile method (BQM) intuitively uses G∗-quantiles
to construct an equal-tailed CI for g(θ):

P
(
G∗,−1

(α

2

)
≤ g(θ) ≤ G∗,−1

(
1− α

2

))
≈ 1− α (2.8)

The true tail probabilities are not equal, since in general G∗ 6= G. To correct
for the resulting coverage errors, there is a bias corrected version of the BQM.

2.3.2 Bias Corrected Bootstrap Quantile Method

To motivate the bias corrected BQM the concept of pivotal statistics is needed:

Definition 6:
A random variable T = T (X) ∼ G, X ∼ F ∈ {Fθ | θ ∈ Θ ⊂ Rk} is called
pivotal, if G does not depend on θ. E.g. the distribution of the familiar t-
statistic does not depend on the parameter of the gaussian data.

Assume, that there is a z0, σ ∈ R and a monotonically transformation s,
making S(X) pivotal2:

s(T )− s(g(θ)) ∼ N
(
−z0σ;σ2

)
,

s(T ∗)− s(T ) ∼∗ N
(
−z0σ;σ2

)
Consequently, a CI for s(g(θ)) can be defined by:

s(T ) + z0σ ± σΦ−1
(
1− α

2

)
z0 is yet unknown, but using s−1 on the equation

P∗(s(T ∗) ≤ s(T )) = Φ(z0)

gives:
z0 = Φ−1 (G∗(T ∗)) , T ∗ ∼ G∗

2Compare: hybrid bootstrap in section 2.3.4
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Definition 7 (Bias corrected BQM):

[
G∗,−1

(
Φ
(
2z0 − Φ−1

(
1− α

2

)))
, G∗,−1

(
Φ
(
2z0 + Φ−1

(
1− α

2

)))]
(2.9)

As a special case z0 = 0 is giving the ordinary BQM:[
G∗,−1

(α

2

)
, G∗,−1

(
1− α

2

)]
(2.10)

Changing the lower normal quantile gives left-sided CI:[
G∗,−1

(
Φ
(
2z0 − Φ−1 (1− α)

))
, ∞

)
(2.11)

2.3.3 Bootstrap-t Method

Since F is substituted by F̂ , the dependence of G on F should be minimal.
Bootstrap-t applies BQM to pivotal statistics. Since pivotal transformation

are seldom available, studentisation is used:

S =
T − g(θ)

σ̂

σ̂ is the estimated3 variance of T . Due to replacing σ by σ̂, coverage errors will
not vanish completely.

Let γ∗1−α denote a (1−α)-quantile of S∗, then the resulting left-sided CI is:

P
(
S∗ ≤ γ∗1−α

)
= 1− α

⇒ P
(
T − σ̂ · γ∗1−α ≤ g(θ)

)
≈ 1− α (2.12)

Remark 3:
An important difference between BQM and Bootstrap-t is their switched usage
of quantiles: BQM uses G∗,−1 (α) (α-quantile of resampled T ∗ values), but
Bootstrap-t uses γ∗1−α ((1−α)-quantile of resampled S∗ values). The upcoming
hybrid bootstrap will shad more light on the version of Bootstrap-t.

2.3.4 Bootstrap Principle and Hybrid Bootstrap

Bootstrap Principle

Assume that an unknown quantity g(θ) is estimated by g(θ̂), where F = Fθ is
the sampling distribution. In the bootstrap community it is preferred to write
F0 = F , F1 = F̂ and g(θ) = T (F0), g(θ̂) = T (F1). Many statistical problems
now take the form:

Population equation (solve for t): E(ft(F0, F1) | F0) = 0 (2.13)

for a suitable functional ft. The solution t0 of equation (2.13) is the quantity
of interest, e.g.:

3e.g. using the jackknife, see [15], or a bootstrap algorithm (double bootstrap)
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• Calculation of the true bias
Set ft(F0, F1) = T (F1)−T (F0) + t, then the solution t0 of the population
equation is the bias of T (F1).

• Exact (1− α)-CI for T (F0)
Set

ft(F0, F1) = 1[T (F1)−t, T (F1)+t](T (F0))− (1− α), (2.14)

then [T (F1)− t0, T (F1) + t0] will be an exact (1− α)-CI for T (F0).

Solving (2.13) requires F0, hence the bootstrap principle4 substitutes
(F0, F1) by (F1, F2) to estimate t0:

Sample equation: E(ft(F1, F2) | F1) = 0 (2.15)

F2 denotes an estimate of F1, when resampled data X∗ ∼ F1 are used.

Hybrid Bootstrap

Applying the bootstrap principle to quantile-CI gives the sample equation:

E
(
1[T (F2)−t̂, T (F2)+t̂](T (F1)) | F1

)
= 1− α

Inserting the solution t̂0 to [T (F1) − t0, T (F1) + t0] gives the CI [T (F1) −
t̂0, T (F1) + t̂0]. For left-sided CI, the functional

ft(F0, F1) = 1[S(F1)−t,∞)(S(F0))− (1− α),

is needed, giving:

E
(
1[T (F2)−t̂0,∞)(T (F1)) | F1

)
= P

(
T (F2)− t̂0 ≤ T (F1) | F1

)
= 1− α

It follows that t̂0 has to be the (1−α)-quantile of T (F2)−T (F1). Notice, that
BQM would use the α-quantile of T (F2) to construct left-sided CI, contrary to
the bootstrap principle. A direct consequence of this observation is the hybrid
bootstrap (see [16]), applying BQM to nl(T (F1)− T (F0)) (for some constant
l). In practice hybrid bootstrap is preferred to bypass the calculation of σ̂ (via
jackknife or nested bootstrap) for each bootstrap sample.

The resulting CI is given by:

P
(
T − σ̂γ∗1−α ≤ g(θ)

)
≈ 1− α (2.16)

Here γ∗1−α is the (1− α)-quantile of T ∗ − T . If G∆ denotes the distribution of
T − g(θ) and G the distribution of T , then it holds:

1− α = G(γ∗1−α) = P
(
T − g(θ) ≤ γ∗1−α

)
= G∆(g(θ) + γ∗1−α)

⇒ G∗,−1(1− α) = T + G∗,−1
∆ (1− α) = T + γ∗1−α

Hence, equation (2.16) is taking the form:

P
(
2T −G∗,−1(1− α) ≤ g(θ)

)
≈ 1− α

4As formulated in [17]
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Figure 2.1: Histogram of 100,000 bootstrap 1%-quantiles.

2.3.5 Application to Survival Data
Negative CIs

Lifetimes are nonnegative, but for positively skewed G hybrid Bootstrap (as
well as Bootstrap-t) CI reaching into the negative numbers might appear:

Example 1:
10 data were randomly drawn from a W(100; 2)-distribution:

34, 45, 71, 102, 114, 126, 127, 141, 169, 215

The Weibull models MLE are β̂ = 129.25, γ̂ = 2, 35. 100,000 bootstrap samples
were generated, each time the 1%-quantile was estimated.

Figure 2.1 shows a histogram of the resampled quantiles q̂∗0.01. A left-sided
5%-CI can be read of as [8.03, ∞) (=BQM), a right sided 95%-CI as [0, 46.78].
The hybrid Bootstrap (l = 1) uses the MLE q̂0.01 = 18.22 and G∗,−1(0.95) = 46.78
to give the CIs left side:

q̂p,α = 2 · 18.22− 46.78 = −10.34

.

Logarithmic Transformations

The problem of negative CI can be fixed using logarithmic transformations:
Transform the sample to Y = ln X, get a quantile-CI q̂ln

p,α and transform it back
to q̂p,α = exp q̂ln

p,α. Step by step this means:

1. Relation between quantiles of X and lnX:

P(X ≤ s) = P(lnX ≤ ln s) ⇒ qln
p = ln qp

2. Consequence for quantile estimates: q̂ln
p = ln q̂p

3. Analogously for G∗ quantiles: G∗,−1
ln (1− α) = lnG∗,−1(1− α)
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4. Write down the logarithmic quantile (hybrid bootstrap):

q̂ln
p,α = 2 · q̂ln

p −G∗,−1
ln (1− α)

5. Transform q̂ln
p,α back:

q̂p,α = eq̂ln
p,α = e2·q̂ln

p −G∗,−1
ln (1−α)

= q̂p ·
q̂p

G∗,−1(1− α)

Example 2 (Example 1 continued):
Using the logarithmic approach for the hybrid Bootstrap, we get the following
95%-CI for 1%-quantile:

q̂0.01,0.05 = 18.22 · 18.22

46.78
= 7.10

Bias-Corrected Logarithmic Hybrid Bootstrap

As a final possible refinement, bias-corrected BQM might be used to get the
CI for T ∗ − T . This means using G∗,−1

(
Φ
(
2z0 + Φ−1 (1− α)

))
instead of

G∗,−1 (1− α). Remember that z0 = Φ−1(G∗(T )).

Example 3 (Example 1 continued):
The 95%-quantile 46.78 of G∗ has to be replaced by a different quantile. First of
all, G∗(T ) = 0.379, i.e. 37.9% of the resampled 1%-quantile were less or equal
than q̂0.01 = 18.22. It follows that z0 = Φ−1(0.379) = −0.3081. Hence we have to
calculate the Φ(2z0 + Φ−1(1−α) = Φ(2 · (−0.3081) + 1.6449) = 0.8482-quantile of
G∗. Finally G∗,−1(0.8482) = 35.61, giving the quantile-CI:

q̂0.01,0.05 = 18.22 · 18.22

35.61
= 9.32

In practical applications not only one quantile is calculated, but a variety
of values p ∈ [0, 1] is used for reasons of visualisation. This might lead to some
undesirabilities as shown in the next example.

Example 4:
Assume that the following censored sample was observed:

80, 288, 69, 241, 100, 000+, 53, 514, 59, 009, 100, 000+

A 95%-CI for several p ∈ [0, 1] is calculated using hybrid bootstrap and its bias
corrected version. The results are displayed in a probability net. This means,
that the CDF is plotted in coordinate systems with axes transformations:

x′ = ln x, y′ = ln(− ln(1− y)) (inverse of standard Gumbel)

Due to this transformation, every Weibull CDF y = F (x), F = W(β; γ) will appear
as a straight line y′ = γx′ − γ ln β. Figure 2.2 shows, that for small p the CI of
both methods are similar. For p > 0.2 the bias-corrected hybrid bootstrap starts
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Figure 2.2: Confidence lines of the hybrid bootstrap and its bias-corrected
version.

showing kinks, roughly between two neighbouring data points. The influence of the
bias correction starts to get very large for growing p, making the mapping q̂p,α 7→ p
not even injective. E.g. the lifetime 40,000 is the 30%- as well as the 75% quantile
CI.

To get a consistent visualisation, the bias-corrected version should
not be used for censored data.

2.4 Comparison of the Quantile CI Estimators

To compare the logarithmic delta method with the bias-corrected logarithmic
hybrid Bootstrap a small simulation study was done. A Weibull sample, with
β = 80, 000, γ ∈ {1.8, 2.5}, of size N = 10 was chosen. All data where censored5

at L = 100, 000, leading to a censoring probability of 77.56% resp. 82.57 (de-
pending on γ). To calculate coverage errors of left-sided 95%-CI for q0.01 (true
value 6,211 resp. 12,704) Monte Carlo simulation is used6.

Table 2.1 shows the empirical confidences of the methods for N = 10. While
the hybrid Bootstrap’s coverage error is less than 5%, the delta method has one
of about 10%. Event further, censoring has almost no effect on the bootstraps’s
coverage error, while for the delta method it has a positive effect. For this small
sample size, resampling methods work much better than asymptotic methods.
For reasons of completeness, table 2.2 shows coverage errors for N = 20.

While the delta method improves slightly to coverage errors of 5%, the hy-
brid Bootstraps coverage error decreases to less than 2%. This time censoring
has suprisingly a positive effect on the delta method, while the bootstrap is
almost not touched. The overall result of our simulations fits the gen-
eral believe, that resampling methods do well for small samples. In

5values in brackets belong to L =∞, i.e. no censoring
6Simulation size depending on method: MDelta = 10, 000, MBoot = 1, 000
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γ Method Emp. confidence CI (95%)
1.8 Delta 86.85% [86.17%,87.51%]

(83.20%) (82.54%,84.02%])
hybrid Boot 89.10% [87.00%,90.96%]

(90.60%) ([88.62%,92.34%])
2.5 Delta 85.91% [85.21%,86.59%]

(83.09%) ([82.34%,83.82%])
hybrid Boot 91.20% [89.27%,92.88%]

(89.70%) ([87.65%,91.51%])

Table 2.1: Coverage errors for N = 10 and γ = 1.8 (γ = 2.5).

γ Method Emp. confidence CI (95%)
1.8 Delta 89.47% [88.85%,90.07%]

(86.57%) ([85.89%,87.23%])
hybrid Boot 94.30% [92.68%,95.65%]

(93.90%) ([92.23%,95.30%)
2.5 Delta 89.33% [88.71%,89.93%]

(85.69%) ([84.99%,86.37%])
hybrid Boot 93.70% [92.01%,95.13%]

(94.70%) ([93.12%,96.01%])

Table 2.2: Coverage errors for N = 20.

practice further reduction of the coverage error is achieved by fixing the shape
parameter, as is done in the next section.

2.5 Hypothesis Testing using Quantile Estimates

Section 1.5 formulated a quantile hypothesis H0 : F (q0) ≥ p0, to be rejected.
Reliability estimation compares estimates quantile-CI q̂p0,α to the design life.
Emerging coverage errors will lead to a test having wrong significance.

2.5.1 Monte Carlo Corrected Delta Method

Reliability estimation technique (RET) uses test statistic q̂p0,α and critical value
q0. Since quantile-CI methods are not exact, the nominal significance α is not
achieved. Monte Carlo methods may be used to decrease the coverage error.

General concept: Let T | H0 ∼ F0 be a test statistic. The true critical
values of T are given by quantiles of F0, which may be approximated by the
empirical CDF of simulated F0 realisations. Algorithmic cheap T , like the delta
method, are desirable. In anticipation to section 3.2 we restrict ourselves to one-
parameter distribution models F ∈ {Fθ | θ ∈ Θ ⊆ R} (typically achieved
by fixing the distributions shape parameter to worst-case-values). This claim is
needed to determine θ uniquely by H0 for lognormal and Weibull distributions.

Remark 4 (Delta method for one parameter distributions):
Fixing the shape parameter in equation (2.7) allows to use normal- instead of
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t-quantiles. The asymptotic covariance matrix reduces to a real number. For
details see appendix B.

MC corrected delta method: Design a test with significance α for a sample
of size N (censored at L)

1. Determine the unique θ0, such that Fθ0(q0) = p0.

2. Draw M samples X∗
i of size N from Fθ0 .

3. Censor each sample at L (failure censoring also possible).

4. Apply the delta method to each resample to get q̂∗,ip0,α.

5. Calculate the α-quantile qcrit of q̂∗,ip0,α.

2.5.2 Design of Experiments
Remark 1 already addressed the problem of completely censored samples, mak-
ing the calculation of quantile CI impossible. Since such samples belong to
unexceptional large lifetimes, we decide for H1. Consequently the experimental
design must be in a way, such that completely censored samples are unlikely
under H0. If the maximal test duration is given by L, then the H0-probability
for completely censored samples is:

PH0(δ1 = · · · = δN = 0) = (1− Fθ0(L))N !
≤ α (2.17)

We refer to this as the significance (un)equation. Chapter 3 will take
deeper look at this equation. For the moment we just claim, that N and L are
chosen adequate.

Remark 5 (Minimal sample sizes):
Most statistical test only require minimal sample sizes if the error of second
kind is to be bounded. In our case, censoring leads to discontinuous distribution
functions, requiring minimal sample sizes already to ensure a small error of first
kind.

2.5.3 Discontinuities and Resulting Power Functions
The delta methods critical value q0 was replaced by a Monte Carlo calculated
quantile qcrit. This quantile is a compromise between usual and degenerated
quantile-CI estimation, as is shown in the next example.

Example 5:
We want to test for H1 : F (10, 000) < 0.01. The lifetimes are modeled to be
Weibull with γ ≤ 1.8. If N = 8 prototypes are available, using equation (2.17), a
test duration L ≥ 9.47q̇0 is needed (α = 0.01).

If H0 : F (10, 000) ≥ 0.01 is true, then β ≤ β0 = 128, 795. Figure 2.3 shows the
quantile estimates of 2,000 W(β0; γ)-samples. The main proportion of results lies
in the area 3,000-7,000, and some values isolated at 10,000, belonging to completely
censored samples (single observations censoring probability: 53.04%, sample prob-
ability 0.53048 = 0.0062 = 0.62%).
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Figure 2.3: Histogram of 20,000 simulated quantile-CI under H0 for L = 10q0.

Figure 2.4: Histogram of 20,000 simulated quantile-CI under H0 for L = 15q0.

The reason for this separation (discontinuity) is of course the small sample size
resp. the short test duration. E.g. larger N would lower the probability of com-
pletely censored samples on one hand (isolated values appear with less probability),
and reduce the mean squared error of the non-degenerated estimates on the other
hand (main proportion of quantile estimates would move toward q0 = 10, 000).
Figure 2.4 shows this effect for an increased test duration.

The delta methods coverage error would hence lead to an empirical significance
of 0.62% (sample censoring probability) instead of the desired 1% (this means only
completely censored samples lead to H1). Due to histogram 2.3 we get a corrected
critical value of qcrit = 6, 692 (99%-quantile of the histogram). In case of failures,
the quantile-CI will exceed this value only with probability 1%− 0.62% = 0.38%,
giving the corrected delta method the correct significance.

We are now interested in the influence of correcting critical values on the
tests power function.
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Figure 2.5: Delta method’s power functions for L = 10q0.

Figure 2.6: Delta method’s power functions for L = 15q0.

Example 6 (Example 5 continued):
At each position F (10, 000) = pi, pi = 0.001 + i · 0.001, i ∈ {0, . . . , 19} the power
was calculated using 10,000 Monte Carlo samples7. Figure 2.5 shows, that the
empirical significance of about 0.62% is fixed by the correction.

In the case L = 15q0, leading to a censoring probability of 26.83%, it is very
unlikely to get a completely censored sample: 0.26838 = 2.6851 ·10−5. However the
mse of the quantile estimates is still large, making it unlikely to get values beyond
q0 = 10, 000. As a consequence the power is very poor and using qcrit = 8, 638 has
a large impact on the power (see figure 2.6)

Further power functions can be found in chapter 8, where the corrected delta
method will be compared to counting methods.

7see also section 8.1



28CHAPTER 2. QUANTILE ESTIMATION FOR RELIABILITY ESTIMATION

2.6 Summary
Using quantile estimates for hypothesis testing has to deal with the problem of
completely censored samples, leading to degenerated quantile estimates. Grant-
ing homologation in these cases requires:

PH0(δ1 = · · · = δN = 0) = (1− Fθ0(L))N !
≤ α (2.18)

To get a unique left hand side, we have to assume one-parameter distribution
models (e.g. by fixing shape to worst-case values). The numbers N, L have to
be chosen accordingly. As soon as failures are observed, the delta quantile-CI
is formally defined, but has a considerable coverage error. To fix the coverage
error of the resulting test, a new critical value has to be calculated using Monte
Carlo methods.

The effect of this correction is large if many failures are observed (figure 2.6),
since otherwise most homologations are due to completely censored samples
(figure 2.5) (i.e. no usage of the critical value), leading to discontinuities in the
test statistics distribution. Overall, using reliability estimation was not
convincing for small samples sizes.



Chapter 3

Success Runs for Reliability
Demonstration

Success runs try to demonstrate the claimed reliability H1 : F (q0) < p0 by
comparing the postulated failure quota p0 at time q0 with the observed one.
If a one parameter distribution model Fθ, θ ∈ R is given, one can shift the
hypothesis to time L ≥ q0. The effect of hypothesis transformation on the
power function will be studied, showing the model’s drawback.

3.1 Nonparametric Distribution Models

3.1.1 Test Statistic and Acceptance Region
Success runs simply count the number of units surviving the test duration. Since
the exact lifetime is not considered, one speaks of an attribute life test.

Definition 8 (Number of passed components):
Let T1, . . . , TN

iid∼ F then the number of passed components (w.r.t. q0) is defined
as:

Sq0 = |{i | Ti ≥ q0}| ∈ N

An immediate consequence is the binomial distribution of Sq0 :

P(Sq0 = k) =
(

N

k

)
(1− F (q0))kF (q0)N−k (3.1)

giving this approach the name binomial sampling

Remark 6:
With a view to the upcoming CUS sampling, Sq0 can be interpreted as follows:
Each passed component (i.e. Ti > q0) is valued with one point, each failure (i.e.
Ti ≤ q0) with zero points. The test statistic Sq0 then is the total number of
points achieved with the sample.

The validity of H0 means, that for k near to N , the probability

P(Sq0 = k) =
(

N

k

)
(1− F (q0))kF (q0)N−k

29
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can be bounded from above by

PH0(Sq0 = k) ≤
(

N

k

)
(1− p0)kpN−k

0

Large Sq0 indicate the correctness of the alternative H1 : F (q0) < p0, i.e.
choose the critical value Scrit such that the significance equation holds:

PH0(Sq0 ≥ Scrit) ≤ α (3.2)

The frequently used success run method uses the critical value Scrit = N
(no failures before time L), giving the significance equation:

PH0(Sq0 ≥ N) = (1− p0)N ≤ α (3.3)

Using Scrit < N is sometimes called generalised success run or success
run with failures.

3.1.2 Minimal Sample Sizes

Choosing smaller critical values than Scrit = N increases the minimal sample
size in 3.2. Therefore the sample size required to fulfil is given by equation (3.3)
as:

Nmin =
⌈

lnα

ln(1− p0)

⌉
(3.4)

and no failure may occur
Since p0 is very small ln(1 − p0) may be approximated by the Taylor poly-

nomial (1− p0)− 1 = −p0. Therefore the minimal sample size is of order:

Nmin ≈
− lnα

p0
(3.5)

E.g. α = 0.01 implies that Nmin ≈ 4.6 · p−1
0 . Therefore the verification of p0

in ppm (parts per million) would require testing several million prototypes.

Example 7:
For p0 = 0.01, q0 = 10, 000, α = 0.05 one finds:

Scrit N N-1 N-2 N-3 N-4
Nmin 299 473 628 773 913

This means: If 299 units were tested without failure, homologation is achieved.
If one failure occurred before time q0, then an additional number of 473-299=174
units have to be observed without failure before time q0. These sample sizes are
much too high for practical applications.
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3.1.3 Success Runs for Small Lots
Assume that N units are tested from a lot of size N0 (in section 3.1.1 N0 was
not specified, but assumed to be large). If D0 of the N0 units are defective, the
number D of units tested defective follows a hypergeometric distribution:

P(D = k) =

(
D0
k

)(
N0−D0
N−k

)(
N0
N

)
The lot is accepted if at most Dcrit failures are observed:

P(D ≤ Dcrit) =
Dcrit∑
k=0

(
D0
k

)(
N0−D0
N−k

)(
N0
N

) !
≤ α

In case of Dcrit = 0 it holds:

(N0 −N) · · · (N0 −N −D0 + 1)
N0 · · · (N0 −D0 + 1)

≤ α

allowing for numerical calculation of the minimal sample size.
For large N0 a binomial approximation can be used (giving success runs):

P(D ≤ Dcrit) ≈
Dcrit∑
k=0

(
N

k

)
pk(1− p)N−k, p =

D0

N0

Alternatively via Poisson distributions:

P(D ≤ Dcrit) ≈
Dcrit∑
k=0

Nkpk

k!
e−Np, p =

D0

N0

Binomial approximations require N ≤ 0.1 · N0, Poisson ones additionally
p < 0.1 and normal ones large sample sizes to give Np(1 − p) > 9 (see [9]).
The number of produced components is large compared to any tested sample,
making us use the binomial approximation.

3.2 One-Parameter Distribution Models
Consider parametric distribution models, e.g. Weibull or lognormal1. From
experience (or tables like in [1] or [2]) the shape parameter is held at some worst
case value, describing the productions scatter. The unknown scale parameter
θ is determined uniquely under the hypothesis boundary ∂H0 : Fθ(q0) = p0.
The hypothesis might hence be shifted to the censoring time L. Counting the
components passing time L requires pL = Fθ(L) to derive critical values for SL.

3.2.1 Hypothesis Transformation
Consider any one-parameter lifetime distribution with the property that the
mapping θ 7→ Fθ(q) is bijective for every q. Weibull and lognormal distributions
with fixed γ resp. σ2 are of such type. The initial hypothesis H0 : Fθ(q0) ≥ p0

1As introduced in appendix A
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determines θ0 uniquely at its boundary Fθ(q0) = p0. Consequently, a shifted
hypothesis can be formulated: H0 : Fθ(L) ≥ pL, where pL = P(T ≤ L | θ = θ0).
Due to monotonicity of F and q0 < L it will hold that pL > p0. This property
will allow for small minimal sample sizes in the next section.

3.2.2 Test Statistic and Acceptance Region
The reason for the enormous sample sizes in (3.4) was the verification of a small
failure probability p0 (see equation 3.5). Shifting the hypothesis to increased
test durations L helps lowering N .

Lemma 1 If the hypothesis H0 : Fθ(q0) ≥ p0 is transformed to H ′
0 : Fθ(L) ≥ pL

with L > q0, then for the resulting minimal sample sizes (see equation (3.4)) it
holds:

Nmin (q0) ≥ Nmin (L)

Proof

(1− p0) ≥ (1− pL) ⇒ α ≥ (1− p0)N ≥ (1− pL)N

⇒ Nmin (p0) =
⌈

lnα

ln(1− p0)

⌉
≥ Nmin (pL) =

⌈
lnα

ln(1− pL)

⌉
qed

Example 8 (Lognormal distributions):
The lifetime of the component is modeled lognormally distributed LN

(
µ; σ2

)
with

unknown scale µ and σ ≤ 0.6. It follows under H0:

p0 = Φ

(
ln q0 − µ0√

σ2

)
⇔ µ0 = ln q0 − σ · Φ−1(p0)

⇔ pL = Φ

(
1

σ
ln

L

q0
+ Φ−1(p0)

)
Hence, the failure quota at time L does only depend on the ratio λ = L

q0
of test

duration and design life. Table 3.1 shows the impact of this transformation on the
sample size.

Example 9 (Weibull distributions):
The lifetime of the component is modeled Weibull-distributed W(β; γ) with un-
known scale β and γ ≥ 2. Under H0:

p0 = 1− e
−
(

q0
β0

)γ

⇔ β0 = q0 · (− ln(1− p0))
− 1

γ

⇔ pL = 1− (1− p0)

(
L
q0

)γ

Again, pL depends only on the ratio λ = L
q0

. The sample size Nmin (L) can be
calculated as:

Nmin (L) =

⌈
ln α

ln(1− pL)

⌉
=

⌈
λ−γ ln α

ln(1− p0)

⌉
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λ N − Scrit(L) Nmin (L)
5 0 (success run) 5

1 8
2 10

10 0 (success run) 2
1 4
2 5

20 0 (success run) 1
1 2
2 4

Table 3.1: Acceptance region and sample size for p0 = 0.01, q0 = 10, 000, α =
0.01 for a lognormal distribution with σ2 ≤ 0.36

λ N − Scrit(L) Nmin (L)
5 0 (success run) 19

1 27
2 35

10 0 (success run) 5
1 8
2 10

20 0 (success run) 2
1 3
2 4

Table 3.2: Acceptance region and sample size for p0 = 0.01, q0 = 10, 000, α =
0.01 for a Weibull distribution with γ ≥ 2

3.3 Power of the Test
Transforming the hypothesis to large L secures the applicability of the success
run approach by decreasing the sample size. Looking at the resulting power
functions reveals a major drawback. For reasons of simplification only Scrit = N
is considered, but the results transfer to the general case.

Definition 9 (Power of a test):
Let A be the acceptance region for H1 for a statistical test with test statistic T .
While the error of first kind (significance) is given by PH0(T ∈ A), the error of
second kind is given by PH1(T 6∈ A). If F = Fθ, θ ∈ Θ and H0 : θ ∈ Θ0 ⊆ Θ,
H1 : θ ∈ Θ \Θ0, then the power of the test at position θ is defined by:

g(θ) = P(T ∈ A | F = Fθ)

In this sense, the power describes the opposite event to an error of second kind.

3.3.1 Calculation of the Power Function
The hypothesis H0 is rejected, if and only if all units pass time L. Let gL(p)
denote the probability of this event, given Fθ(q0) = p (i.e. H0 : p ≥ p0,
H1 : p < p0), then:

gL(p) = (1− Fθp
(L))Nmin (L)
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While an ideal test would imply

g(p) =
{

0, p ≥ p0

1, p < p0

the integer nature of N implies that in general no equality will hold in

gL(p0) = (1− pL)N ≤ α (3.6)

as will be explained in the next subsection.

3.3.2 Properties of the Power Function
The shortfall in equation (3.6) will increase for increasing L:

• If 1 − Fθp
(L) ≈ 1, a large N is needed for (1 − Fθ0(L))N ≤ α. Simulta-

neously the difference between (1−Fθ0(L))i and (1−Fθ0(L))i+1 is small,
making the sequence slowly decreasing w.r.t i.

• If 1 − Fθp(L) � 1, a small N is needed for (1 − Fθ0(L))N ≤ α. Now the
difference between (1−Fθ0(L))i and (1−Fθ0(L))i+1 is larger, making the
sequence decrease faster.

Consequently for the power functions and sample sizes of L1 < L2:

Nmin (L1) ≥ Nmin (L2) but α ≥ gL1(p0) ≥ gL2(p0)

The impact on the rest of the power function can be seen in fig. 3.1: The
conservative behavior increases with L, i.e. feasible components will enter pro-
duction less likely.

Definition 10 (Consumers and producers risk):
In connection to the homologation of components, the errors of first and second
kind are renamed:

• Consumers risk: Probability of granting homologation for unreliable
designs (error of first kind).

• Producers risk: Probability of refusing homologation for reliable designs
(error of second kind).

Using these new risk notions we can summarise: For fixed α, every
feasible experimental design (N,L) bounds the consumers risk by α,
but the producers risks increases for decreasing N .
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Figure 3.1: Power function for different L with p0 = 0.01, q0 = 10, 000, α = 0.01,
for a lognormal distribution with σ2 = 0.36. Sample sizes due to table 3.1.

3.4 The Suitability of Lognormal and Weibull Mod-
els for Success Runs

3.4.1 The Hazard of Lognormal Distributions

In appendix A.1.2 the hazard of a lognormal distribution is shown to be non-
monotonic with a maximum. Only left of this maximum wearout failures are
the modeled failure mechanism (see figure A.1). If lognormal models are used
to derive success runs, one has to take care, that the test duration L is left of
the maximum (or even left of the point of inflection).

For reasons of simplicity we study which values of pL might appear and how
these values depend on the distributions parameter. First consider pdf and cdf
of a lognormal distribution:

f(t) =
1
σt

φ

(
ln t− µ

σ

)
F (t) = Φ

(
ln t− µ

σ

)
The hazard (as introduced in appendix A) is defined to be

h(t) =
f(t)

1− F (t)

Lemma 2 Let x0 be the maximum of the hazard h of a lognormal model, then
F (x0) does not depend on µ.
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Figure 3.2: CDF of the lognormal hazards maximum.

Proof The PDF, CDF and hazard of a lognormal distribution are:

h′(t) =
f ′(t)(1− F (t)) + f2(t)

(1− F (t))2

Let t0 = eµ+σz0 denote the maximum of h, then it holds h′(t0) = 0. There-
fore:

0 = f ′(t)(1− F (t)) + f2(t)

=
(
−1
σt2

φ

(
ln t− µ

σ

)
+

1
σt

φ′
(

ln t− µ

σ

)
· 1
σt

)
(1− F (t)) + f2(t)

=
(
−1
σt2

φ(z0) +
1
σt

φ′(z0) ·
1
σt

)
(1− Φ(z0)) +

(
1
σt

)2

φ2(z0)

⇔ 0 = (φ′(z0)− σφ(z0)) (1− Φ(z0) + φ2(z0)

It follows, that z0 does only depend on σ. Finally, the CDF is given by
F (t0) = Φ(z0), which gives the claim.

qed
An explicit calculation of the maximum is not possible, since there is no

closed formula for the lognormal CDF. Numerical maximisation of the hazard
was done to visualise F (x0) as a function of σ in figure 3.2.

It can be seen, that e.g. σ = 0.6 does allow for pL ≤ 0.7455. In example 8
there was a design λ = 10, N = 2, requiring 1− pL ≤ α1/N = 0.1, i.e. pL ≥ 0.9.
This design is therefore doubtful, since its test duration lies clearly beyond the
hazards maximum. Due to figure 3.2 a smaller σ would allow for such a pL, e.g.
σ ≈ 0.4.

3.4.2 Weibull Analysis
Consider again example 9 where the formula

pL = 1− (1− p0)
(

L
q0

)γ
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appeared. Using RL = 1−pL, R0 = 1−p0 gives R0 = Rλγ

0 (compare: appendix
A.2.3). The significance equation of the success run does take the simple form:

RN ·λγ

0 ≤ α

There is no comparable formula for lognormal distributions, distinguishing
Weibull distributions for success runs. Due to this convincing relation between
N,L, α the success run is strongly connected to Weibull models, giving the
method also the name Weibull analysis.

3.5 Summary: Binomial models
The number N , needed to test the hypothesis H0 : F (q0) = p0, can be calculated
using binomial models for the number of passed components SL:

Nmin =
⌈

lnα

ln(1− pL)

⌉
One-parameter distribution models reduce N by accounting for the censoring
time L. Success runs (Scrit = N) offer the smallest sample sizes. Whenever
N gets too small, the power function decreases and the success run ends up
being conservative (increased producers risk). The reason for this conservative
behavior is the integer nature of Scrit and SL.

Using lognormal models causes the problem, that large L might leave the
area, where wearout failures are modeled (depending only on σ, which is required
to be small). On the contrary, Weibull distributions fit very well to the success
runs update due to their quantile relations.



Chapter 4

Randomisation of Success
Runs

Randomisation is a classical approach to address the problem of integer valued
critical values. First the general concept is described, secondly it will be applied
to success runs. After one is getting improved power functions the problem of
repeatability is discussed.

4.1 Randomisation for General Tests

Let T be a test statistic and A be an acceptance region for the alternative H1.
To keep the significance α, A is chosen such that PH0(T ∈ A) ≤ α. If T is integer
valued, then typically PH0(T ∈ A) < α and PH0(T ∈ B) > α for any B ⊃ A. So,
the significance can not be kept exactly. Now, randomisation chooses randomly
between the acceptance regions A and B, where B is chosen as small as possible.

Let H ∈ {0, 1} with P(H = 1) = φB , independent of T . For H = 1 the set B
is used, for H = 0 the set A is used as acceptance region. Then the probability
of rejecting H0 is:

α
!= (1− φB)PH0(T ∈ A) + φBPH0(T ∈ B \A)

⇒ φB =
α− PH0(T ∈ A)
PH0(T ∈ B \A)

(4.1)

From equation 4.1 one derives the power function of the randomised test:

gRand = (1− φB)gA + φBgB (4.2)

where gA, gB are the power functions from the tests with acceptance regions
A,B. By construction gRand(p0) = α, but also the rest of the power function is
improved:

Lemma 3 On the whole domain of the power functions it holds that:

gA ≤ gRand ≤ gB

38
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Figure 4.1: Power of success runs after randomisation.

Proof Since A ⊂ B it follows immediately that P(SL ∈ A) ≤ P(SL ∈ B) show-
ing gA ≤ gB. Now φB ∈ [0, 1], which means, that gRand is by equation (4.2)
contained in the convex hull of gA and gB.

qed

4.2 Application for Success Runs

For generalised success runs A is the event that at most N −Scrit failures occur
and B is the event that at most N − Scrit + 1 failures occur. For the case of
success runs:

PH0(SL = N) = (1− pL)N

PH0(SL = N − 1) = NpL(1− pL)N−1

⇒ φB =
α− (1− pL)N

NpL(1− pL)N−1
(4.3)

Of course this formula for φB can be extended to any other critical value
Scrit < N in complete analogy.

Example 10:
For a lognormal distribution with σ2 = 0.36 and p0 = 0.01, q0 = 10, 000, α = 0.01,
L = 5q0. With pL = 0.9349 and equation (4.3) one is deriving φB = 0.0735.
This means in 92,65% of the the evaluations one claims no failure for among the
N = 5 tested units, in the remaining 7,35% of possible cases one failure is allowed
to achieve homologation.

Figure 4.1 shows how the powers of the initial success runs with Scrit = N and
Scrit = N − 1 are combined to a test with g(p0) = α.
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4.3 Acceptance of Randomised Tests
From a mathematical point of view the randomisation approach is correct, but
it is unlikely that it will be adopted in practice due to legal aspects. The
verification of safety is based on the result of a coin toss, letting components
enter production despite failures where observed. Every evaluation of the test
results might therefore lead to different decisions about homologation. Therefore
we present a different approach to fix the success runs drawback in the next
chapter.



Chapter 5

Partially-Passed Component
Counting

Success runs without hypothesis transformation require large sample sizes, suc-
cess runs with hypothesis transformation behave conservatively. As already
mentioned, the reason for this behavior lies in the discrete test statistic and/or
critical value. In this chapter a generalisation of the success run method is
introduced, allowing to count every failure as a partial success to improve the
methods power.

5.1 Motivation

The current test statistic of the success run can be written as:

SL = |{Ti | Ti ≥ L}| =
N∑

i=1

1[L,∞)(Ti)

Components with Ti ≥ L contribute 1 to SL, otherwise 0, no matter how
close Ti is to L. The latter information is dismissed completely

Definition 11 (PPC count):
Let H0 : Fθ0(q0) ≥ p0 be a hypothesis in an one parameter model θ0 ∈ Θ ⊆
R, then the partially-passed component (PPC) count test statistic BL is
defined as:

BL =
N∑

i=1

Fθ0(T
+
i ) (5.1)

where T+
i denotes the right-censored (at L) observation of Ti.

Using Fθ0 is based on the fact, that Fθ0(Ti) would lead to an uniform dis-
tribution under H0. Using T+

i instead of Ti will lead to the densitiy stated in
Theorem 3.

41
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Remark 7:
The statistic 1

Fθ0 (L)BL can be interpreted as follows1:

• If Ti = 0 then 1
Fθ0 (L)Fθ0(0) = 0 and no points are achieved.

• If Ti = L then 1
Fθ0 (L)Fθ0(L) = 1.

• Results 0 < T+
i < L are scoring in (0, 1), depending on the relation

between T+
i and L in Terms of Fθ0 .

In particular 1
Fθ0 (L)BL = SL for success runs.

5.2 The Distribution of BL

The simulation lemma states that F (T ) follows a uniform distribution if
T ∼ F . In case of BL we need a version of the simulation lemma for sums of
F (T+).

Theorem 3
Let T1, . . . , TN

iid∼ Fθ, θ ∈ Θ ⊆ R, H0 : Fθ0(q0) = p0, F̄ = 1− F and θ 7→ Fθ(q)
be bijective for every q, further T+

1 , . . . , T+
N be the right censored versions of

T1, . . . , TN at time L, then BL(T+
1 , . . . , T+

N ) has under H0 the following PDF:

g+
N (u) =

N−1∑
i=0

(
N

i

)
Fθ0(L)N−1−iF̄θ0(L)igN−i

(
u

Fθ0(L)
− i

)
(5.2)

+F̄θ0(L)NδNFθ0 (L)(u), u ∈ [0, NFθ0(L)]

here δ is a delta distribution:∫
A

δx(s)ds =
{

1, x ∈ A
0, x 6∈ A

and gk denotes the PDF of the k-fold convoluted uniform distribution on [0, 1],
i.e. the density of U1 + · · ·Uk where Ui is uniform distributed on [0, 1].

Proof Induction on N , see Appendix C.

qed

Remark 8:
For Weibull distributions, Theorem 3 will turn out to be a special case of theorem
7 in section 6.1, were sums of beta distributions appear, since F 6= F0.

In the special case of Fθ0(L) = 1, g+
N (u) = gN (u) is simply the convolution

of N uniform distributions on [0, 1].

1See also remark 6
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5.3 Properties of the Distribution of BL

The approach of using the PPC count will hence be the censored uniform
sum (CUS) model, in analogy to the binomial models for SL.

Definition 12:
A random variable with PDF

g+
N (u) =

N−1∑
i=0

(
N

i

)
ρN−1−i(1− ρ)igN−i

(
u

ρ
− i

)
(5.3)

+(1− ρ)NδNρ(u), u ∈ [0, Nρ(L)]

(compare Theorem 3 with ρ = Fθ0(L)) will be called CUS(N, ρ) distributed.

Theorem 4
Let X ∼ CUS(N, ρ), Y ∼ CUS(M,ρ) be independent, then:

E(X) = N
ρ(2− ρ)

2
, Var(X) = N

ρ3(4− 3ρ)
12

(5.4)

X + Y ∼ CUS(N + M,ρ) (5.5)

Proof From the proof of theorem 3 it is known, that

F (s) = s + 1[ρ,1](s) · (1− ρ), s ≥ 0,

is the distribution fucntion of a CUS(1, ρ) variable. It follows:

E(CUS(1, ρ)) =

ρ∫
0

s · (1 + δρ(s) · (1− ρ)) ds

=

ρ∫
0

sds + (1− ρ)

ρ∫
0

sδρ(s)ds

=
ρ2

2
+ (1− ρ)ρ

Var(CUS(1, ρ)) =

ρ∫
0

s2 · (1 + δρ(s) · (1− ρ)) ds−
(

ρ(2− ρ)
2

)2

=

ρ∫
0

s2ds + (1− ρ)

ρ∫
0

s2δρ(s)ds−
(

ρ(2− ρ)
2

)2

=
ρ3

3
+ (1− ρ)ρ2 − ρ2(2− ρ)2

4

Now, the property X + Y ∼ CUS(N + M,ρ) and the formulas for expectation
and variance follow immediately from the fact that CUS(N, ρ) is the distribution
of the sum of N i.i.d. CUS(1, ρ)-variables.

qed
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5.4 Calculation of Critical Values

5.4.1 Exact calculation
The alternatives H1 acceptance region for 1

Fθ0 (L)BL is chosen in the form[
mcrit

Fθ0(L)
, N

]
where mcrit is determined by:

NFθ0 (L)∫
mcrit

g+
N (u)du = α (5.6)

Since the PDF is known from theorem 3 one is getting with k =
⌊

mcrit
Fθ0 (L)

⌋
:

α =

NFθ0 (L)∫
mkrit

g+
N (u)du

=
N−1∑
i=0

(
N

i

)
Fθ0(L)N−iF θ0(L)i

N−i∫
mkrit

Fθ0
(L)−i

gN−i(s)ds + F θ0(L)N

=
N∑

i=k+1

(
N

i

)
Fθ0(L)N−iF θ0(L)i

︸ ︷︷ ︸
αR(k)

+
k∑

i=0

(
N

i

)
Fθ0(L)N−iF θ0(L)i

N−i∫
mkrit

Fθ0
(L)−i

gN−i(s)ds

In the special case Fθ0(L) = 1:

α =

N∫
mkrit

gN (s)ds

For numerical calculations a minimal k is chosen with αR(k) ≤ α first (i.e.
k is the critical value of a success run with failures), secondly a solution of

α− αR(k) =
k∑

i=0

(
N

i

)
Fθ0(L)N−iF θ0(L)i

N−i∫
mcrit

Fθ0
(L)−i

∆N−i(s)ds

is searched in the interval [kFθ0(L); (k + 1)Fθ0(L)] (e.g. via bisection). The
equations left hand side is recognised to be the success runs coverage
error. The necessary densities ∆N−i can be calculated explicitly for small N−i,
for large N − i be approximated by normal distributions, compare section 5.4.2.
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Corollary 1 The minimal sample size for CUS sampling is given by:

(1− Fθ0(q0))N ≤ α (5.7)

Proof Assume equation (5.7) will not hold, then NFθ0(L) will have point mass
greater α. Since this point is also the minimal possible acceptance region for the
alternative, the desired significance can not be reached.

qed

This means, that the minimal sample size is the same for CUS and binomial
samples2. However, the PPC count does not show conservative behavior at
point p0. Switching from binomial to CUS sampling improves power
without increasing the sample size.

Remark 9:
The problem with the quantile estimates significance equation was, that they are
not defined for completely censored samples. Success runs and binomial models
are well defined for this case, but their CDFs do have point masses that should
be below the significance. Hence, the reasons for required minimal sample sizes
are slightly different, leading to the same equation.

Example 11:
To reject the hypothesis H0 : Fθ0(10, 000) ≥ 0.01 with significance α = 0.01 one
can test N = 5 units. Their lifetime is supposed to be Weibull distributed with
γ ≥ 1.8. In the first step, the necessary test duration L has to be calculated. From
the significance equation for Weibull distributions we have:(

1−
(

1− e
−
(

L
β0

)γ0
))N

≤ α

e
−
(

L
β0

)γ0

≤ N
√

α

⇒ L ≥ β0 ·
(
− ln α

N

) 1
γ0

It follows for the scale parameter β0 under H0:

1− e
−
(

q0
β0

)γ0

≥ p0

⇔ β0 ≥ q0

(− ln(1− p0))
1

γ0

⇒ L ≥ q0 ·
(

ln α

N · ln(1− p0)

) 1
γ0

For the chosen values one has L ≥ 123, 042 (β0 ≥ 128, 795), which might be rounded
towards L = 125, 000. In this setup, success runs allow no failure:

pL = Fθ0(125, 000) = 1− e−( 125,000 )
1.8

= 0.6123

⇒ (1− pL)4 > α, (1− pL)5 ≤ α

2As well as quantile estimates, see section 2.5.2
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CUS sampling uses (1 − α)-quantile mcrit of a CUS(5, 0.6123) distribution,
which is mcrit = 3.05. The sample then has to achieve 3.05

0.6123
= 4.98 points out

of 5 possible. This could happen for example, if the first four tested units pass
L = 125, 000 and the fifth unit achieves 0.98 points, which means:

Fθ0(X5) ≥ 0.98 · 0.6123 ⇒ X5 ≥ 122, 699
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5.4.2 Approximation with Normal Distributions

Since BL is a sum iid random variables (having finite mean and variance ac-
cording to theorem 4), the central limit theorem with ρ = Fθ0(L) applies:

Theorem 5
Let B1, . . . , BN be CUS(N, ρ)-distributed, then 1

N BN converges in distribution
to a normal distribution:

√
N

1
N B − ρ(2−ρ)

2√
ρ3(4−3ρ)

12

N→∞−→ N(0; 1)

Proof By theorem 4, BN can be decomposed into N iid summands X1, . . . , XN

with distribution CUS(1, ρ). Each Xi has finite mean and variance:

E(Xi) = µ =
ρ(2− ρ)

2
, Var(Xi) = σ2 =

ρ3(4− 3ρ)
12

By the central limit theorem the random variable:

BN −Nµ

σ
√

N
=
√

N
1
N B − ρ(2−ρ)

2√
ρ3(4−3ρ)

12

converges in distribution to a normal distribution.

qed
For large N one can consequently try to use the approximation:

B ∼ N
(

N
Fθ0(L)(2− Fθ0(L))

2
;N

Fθ0(L)3(4− 3Fθ0(L))
12

)
The quality of this approach depends strongly on ρ, which is deciding if the

single summand distributions are symmetric. From figures 5.1, 5.2 and 5.3 one
can see, that a small ρ requires a larger N to get a good normal approximation.
As a rule of thumb the approximation with normal distributions is reasonable
if Nρ ≥ 4.

5.5 PPC for Other Censoring Patterns

Up to now, the described new counting method is heavily connected to time
censored sampling. If CUS sampling shall be applied to a censoring pattern like
failure censored sampling or sudden death sampling (to be defined in the next
subsection), the whole method has to be adapted. Success runs are not used for
such censoring patterns, since the resulting samples do typically consist of some
failures (information a success run would ignore). PPC counting will allow to
introduce counting methods for these patterns without loosing information.
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Figure 5.1: Approximation with normal distributions for ρ = 1

Figure 5.2: Approximation with normal distributions for ρ = 0.8
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5.5.1 Failure Censored Sampling
In failure censored sampling one always waits for the first r failures to happen.
All other experiments still running are suspended. Therefore, one observes
failures T(1), . . . , T(r) and N − r suspended items at time T(r). The PPC count
for failure censored samples is therefore:

Br =
r∑

i=1

Fθ0

(
T(i)

)
+ (N − r) · Fθ0

(
T(r)

)
(5.8)

Different to time censored sampling Br will not reach the maximum value
N . Typically, a failure censored sample is not even evaluated with counting
methods at all. Nevertheless, CUS sampling can be adapted as soon as a criti-
cal value is available.

Since Fθ0 defines a monotonic increasing transformation, Fθ0

(
T(i)

)
∼ U(i)

where T ∼ Fθ0 and U(r) is the r-th order statistic out of N uniform variables.
The distribution of BL (under H0) therefore only depends on N and
r.

Lemma 4 The r-th order statistic of N Uniform distributions is Beta dis-
tributed with parameters Beta(r;N + 1− r).

Proof A uniform distribution has PDF f(x) = 1 and CDF F (x) = x. In
general, the PDF of the r-th order statistic is given by:

f(r)(x) =
N !

(r − 1)!(N − r)!
F r−1(x) · f(x) · (1− F (x))N−r

(See e.g. [9]). Plugin in f , F gives the claim.

qed
Unfortunately, since T(1), . . . , T(r) are not independent, the distribution of

Br can not be calculated by convoluting the PDFs from lemma 4. Especially,
Br is not CUS distributed, but an ordered uniform sum (OUS(N, r)). Monte
Carlo simulation might be used to calculate the critical values for BL.

Example 12:
Consider again the values of example 11. Instead of suspending every component
surviving time L = 125, 000, r = 3 failures are claimed. To get the distribution
of Br one million realisation of U(1), U(2), U(3) where simulated. Using lemma 4 a
simulated value for Br is obtained as:

Br = U(1) + U(2) + 3U(3)

Figure 5.4 shows the histogram of the one million simulated values. The critical
value for Br is given by the 99%-quantile of simulated values, which is 3.8008.

Remark 10:
Br is a linear combination of order statistics (L-estimate, see [14]). There is
a huge amount of literature for this topic, mainly deriving asymptotic results.
Since r is small, asymptotic theory can not be applied.
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Figure 5.3: Approximation with normal distributions for ρ = 0.5

Figure 5.4: PPC count for failure censoring with N = 5, r = 3.
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Figure 5.5: PPC count for sudden death censoring with N = 3 pairs.

5.5.2 Sudden Death Sampling
In sudden death sampling units are tested pairwise (e.g. wheel carriers in a
system test). Let Ti,1, Ti,2 denote the random lifetimes of the i-th pair (out
of N pairs). When the first component fails, both are suspended, giving PPC
count:

BN = 2 ·
N∑

i=1

min (Fθ0 (Ti,1) , Fθ0 (Ti,2))

The single summand BN follows an ordered uniform sum distribution

OUS(2, 1) = Beta(1; 2)

having PDF 2(1−x). All N pairs are independent, making 1
2BN the convolu-

tion of N Beta(1; 2)-variables. This time, the distribution of the PPC count BN

might be called OUS21-sum, depending only on the number of pairs N . One
simple way of getting critical values is again given by Monte Carlo simulation.

Example 13:
If 3 pairs of components are tested, the PPC count has the distribution of figure
5.5 (calculated by 1.000.000 Monte Carlo simulations).

Figure 5.4 shows the histogram of the one million simulated values. The critical
value for BN is given by the 99%-quantile of simulated values, which is 2.0178.
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5.6 Summary
CUS sampling was introduces as a generalisation of binomial sampling, account-
ing for the exact lifetimes:

1
pL

BL =
1
pL

N∑
i=1

Fθ0(T
+
i )

Critical values may be calculated numerically, allowing for a test that has the
correct significance. Further properties of the power function will be discussed in
chapter 8. The test statistics distribution unter H0 does depend on the sample
size N and the censoring probability Fθ0(L). The PPC count can be considered
as a direct generalisation of the success run. Both counting methods require the
same minimal sample size:

Nmin =
⌈

lnα

ln(1− pL)

⌉
For other censoring patterns PPC counting is also available. Due to its

usage of all information, PPC counting can be used for all three cen-
soring patterns, and one does not need to switch between success runs
(time censoring with small L or failure censoring with small r) and quantile
estimates (time censoring with large L or failure censoring with large r).



Chapter 6

Maximum Likelihood for CUS
Sampling

Up to now we only considered the distribution of 1
pL

BL under H0 to derive crit-
ical values for reliability demonstration (RDT). It is left to derive the likelihood
of BL under other values of the unknown distribution parameters to get a reli-
ability estimation (RET) method from censored uniform sum (CUS) sampling.
This serves as a basis for next chapters about Bayesian methods.

6.1 The Likelihood of CUS Sampling
To develop the theory of CUS sampling for the case T 6∼ F0, Weibull distribu-
tions have to be assumed. Weibulls special quantile structure (see section A.2.3)
leads to convolutions of beta distributions.

Lemma 5 Assume that T ∼ W(β; γ) and γ to be the fixed nuisance parameter.
If β0 denotes the unknown parameter under hypothesis H0, then it holds:

Fβ0,γ(T ) ∼ Beta
(

1;
(

β0

β

)γ)

Proof The CDF of Fβ0,γ(T ) can immediately be derived as:

P(Fβ0,γ(T ) ≤ s) = P
(
T ≤ F−1

β0,γ(s)
)

= 1− e
−

(
β0(− ln(1−s))

1
γ

β

)γ

= 1− (1− s)
(

β0
β

)γ

The PDF is given by the derivative:

d

ds
P(Fβ0,γ(T ) ≤ s) =

(
β0

β

)γ

· (1− s)
(

β0
β

)γ
−1

which is recognised to be the claimed beta density.

qed

53
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Remark 11:
The case β = β0 gives F0(T ) ∼ Beta(1; 1) which is a uniform distribution. This
shows that Theorem 3 is a special case of Theorem 7 below.

Theorem 6
Let T+ be the censored version of T ∼ F = W(β; γ) at time L and F0 =
W(β0; γ) be the distribution under H0, then BL = F0(T+) has the following
PDF:

g+
1 (u) = g1 (u) · 1[0,F0(L)](u) + (1− F (L))δF0(L)(u) (6.1)

where g1 denotes the PDF of a Beta
(
1;
(

β0
β

)γ)
-variable (see lemma 5).

Proof Given T ≤ L, the random variables T , T+ can not be distinguished. In
case of T > L the CDF G+

1 has to collect all mass of G1 in the single point F0.
It follows:

G+
1 (s) = G1(min(s, F0)) + 1[F0(L),1](s) · F̄

Hence the PDF is:

g+
1 (s) = g1(min(s, F0)) · 1[0,F0](s) + F̄ · δF0(s), s ∈ [0, F0(L)]

qed
Remark 12:
When deriving the likelihood from (6.1) one has to account for the dependency of
F (L) on the sampling distributions parameter β additionally to the dependency
of g1 on β. The likelihood is now given by a product

L(R | T+
1 , . . . , T+

N ) =
N∏

i=1

g+
1

(
F0(T+

i )
)
,

where R is the component’s probability to survive time L.

A formal expression for the distribution of BL for general N may be derived,
but requires numerics.

Theorem 7
Let T1, . . . , TN

iid∼ W(β; γ), H0 : Fβ0(q0) = p0, further T+
1 , . . . , T+

N be the right
censored versions of T1, . . . , TN at time L, then BL(T+

1 , . . . , T+
N ) has the follow-

ing PDF:

gN (u) =
N−1∑
i=0

(
N

i

)
Fθ0(L)N−1−iF̄θ0(L)ig+

N−i

(
u

Fθ0(L)
− i

)
(6.2)

+F̄θ0(L)NδNFθ0 (L)(u), u ∈ [0, NFθ0(L)]

here δ is a delta distribution:∫
A

δx(s)ds =
{

1, x ∈ A
0, x 6∈ A

and g+
k is denotes the PDF of k independent convoluted Beta

(
1;
(

β0
β

)γ)
-

variables.
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Proof Simple imitation of the proof in section C, where Theorem 6 serves as
induction start.

6.2 Maximum Likelihood Estimation of CUS Sam-
pling

Using Theorem 7 the log-likelihood for the reliability R (probability of surviving
time L) is given by:

l(R | T+) =
N∑

i=1

ln
(
g1

(
F0(T+

i )
)
· 1[0,F0(L)]

(
F0(T+

i )
)

+ (1− F (L))δF0(L)(F0(T+
i ))
)

=
∑
δi=1

ln g1

(
F0(T+

i )
)

+
∑
δi=0

ln
(
(1− F (L))δF0(L)(F0(L))

)
=

∑
δi=1

lnB(R) +
∑
δi=1

(B(R)− 1) · ln(1− F0(T+
i ))

+ ln(1− F (L)) ·
∑
δi=0

1

= Nu lnB(R) + (B(R)− 1)
∑
δi=1

ln(1− F0(T+
i )) + Ncλ

γ lnR

where Nu =
∑

δi, Nc = N − Nu, B(R) =
(

β0
β(R)

)γ

and F (L) = Fβ(R)(L)
depends on R (see Theorem 6). The derivatives of l require the ones of B(R):

B(R) = −
(

β0

q0

)γ

· lnR

B′(R) = −

(
β0
q0

)γ

R

B′′(R) =

(
β0
q0

)γ

R2

Additionally the derivatives of the function R 7→ 1− Fβ(R)(L) are needed:

1− Fβ(R)(L) = Rλγ

∂

∂R
(1− Fβ(R)(L))) = λγRλγ−1

∂2

∂R2
(1− Fβ(R)(L))) = λγ(1− λγ)Rλγ−2

It follows:

∂

∂R
l(R | T+) =

Nu

R · lnR
−

(
β0
q0

)γ

R
·
∑
δi=1

ln(1− F0(T+
i )) +

Ncλ
γ

R

Hence, the MLE is:

Nu

ln R̂
+ Ncλ

γ =
(

β0

q0

)γ

·
∑
δi=1

ln(1− F0(T+
i ))
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ln R̂ =
Nu(

β0
q0

)γ

·
∑

δi=1 ln(1− F0(T+
i ))−Ncλγ

⇒ ln R̂ =
−Nu

λγ ·
∑(

T+
i

L

)γ (6.3)

Theorem 8
The MLE of CUS sampling, given by

ln R̂ =
−Nu

λγ ·
∑(

T+
i

L

)γ ,

has the same form as the MLE of the sampling distribution Ti ∼ W(β; γ) for
known γ but with Ti replaced by T+

i .

Proof Derive the MLE for β̂ from R̂ using the Weibull CDF:

ln R̂ = −
(

q0

β̂

)γ

⇔ Nu

λγ ·
∑(

T+
i

L

)γ =
(

q0

β̂

)γ

⇔ β̂γ = qγ
0

λγ ·
∑(

T+
i

L

)γ

Nu

=
∑(

T+
i

)γ
Nu

Looking at the MLE (B.1) of appendix B gives the claim.

qed

6.3 Confidence Intervals from CUS Sampling
CUS sampling decides about a hypothesis H0 : F (q0) ≤ p0 with significance α.
For a given sample T+, δ, define the CUS-CI for R as the set of all H0 which
could be rejected:

{R | BL ≥ mcrit, H0 : F (q0) ≤ 1−R}

Here, F (q0) = 1−R determines β0 = q0 · (− lnR)−
1
γ . It follows for the CI:

mcrit(R) ≤
N∑

i=1

F0(T+
i ) = N −

N∑
i=1

e
−
(

T
+
i

β0

)γ

= N −
N∑

i=1

e
−

(
T

+
i

q0·(− ln R)
− 1

γ

)γ

= N −
N∑

i=1

R

(
T

+
i

q0

)γ
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Numerical solving of

N∑
i=1

R

(
T

+
i

q0

)γ

+ mcrit(R) ≤ N

gives the desired CI.

6.4 Summary
Calculating likelihood CUS sampling for Weibull distributions does lead to a
sum of censored beta distributions. A MLE can be obtained via

ln R̂ =
−Nu

λγ ·
∑(

T+
i

L

)γ

being equivalent to a MLE for fixed γ using the sampling distributions likelihood.

By construction, the CUS CI gives correct significance when used for testing.
However their application requires a fixed shape parameter. In this sense, CUS
sampling is a hybrid of reliability estimation and reliability demon-
stration. The test statistic is a direct generalisation of success runs. From the
test statistics likelihood, a point estimator can be defined, equivalent to MLE
for the sampling distribution. Different to other quantile estimates the method
is free of coverage errors or discontinuities.



Chapter 7

Bayesian Reliability
Demonstration

To account for previous knowledge in binomial sampling1 Bayesian methods
for success runs as described in [26], [7] and [8] can be used. After a short
introduction to the current theory the methods are applied to CUS sampling
(For an introduction on Bayesian statistics see appendix D).

7.1 Bayesian Methods for Binomial Sampling

7.1.1 Uniform Priors
Consider again the setup of success runs of chapter 3. If all tested units survive
test duration L the samples likelihood, conditional to H0, is:

L(T1 = · · · = TN = L | H0) = (1− Fθ0(L))N

where θ0 is uniquely determined by H0. Homologation is granted if:

(1− Fθ0(L))N ≤ α

Using the term reliability RL = 1−Fθ0(L) = 1−pL practitioners sometimes
interpret RN

L as a p-value. According to statistical test theory H1 is accepted if
the p-value falls below α.

Remark 13:
German fatigue literature2 often uses the term "Aussagesicherheit", translating
to "statement certainty" when speaking about the p-value and writes PA = RN

L .
This notion suggests, that PA is the probability of drawing a correct conclusion
from the test, while it is actually the significance. Therefore this term has to
be avoided!

For one-parameter distribution models there is a 1:1-correspondence between
RL and the unknown scale parameter. The Bayesian approach of [4]3 now uses

1See also paradigm P2
2e.g. [3]
3see also [2]
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a uniform prior4 for the reliability RL with prior density:

π(RL) =
{

1, 0 ≤ RL ≤ 1
0, otherwise

Using the Bayesian theorem (D.1) gives the posterior density:

π(RL | T1 = · · · = TN = L) =
RN

L
1∫
0

RN
L dRL

= (N + 1)RN
L (7.1)

Constructing a left sided (1− α)-CI for RL gives:

1− α =

1∫
RCI

π(RL | T1 = · · · = TN = L) dRL

⇔ α = RN+1
CI (7.2)

Comparing equation (7.2) with the common Weibull significance equation
RN

L = α gives rise to the idea, that using the uniform prior reduces the necessary
sample size by one unit.

Remark 14 (Uniform prior paradox):
Some fatigue literature5 calls this approach "success run with presupposition",
reflecting that RL is a probability, i.e. RL ∈ [0, 1]. The possibility of lower-
ing the necessary sample size by one sounds paradox: Even though π seems to
model no new information, the sample size is reduced.

This prior gives H0 : R0 ≤ 1− p0 a large prior probability of 1− p0, making
a success run strongly indicate H1. Therefore the "presupposition" of the ap-
proach is not that R0 is known to be in [0, 1], but in fact the strong supposition
that H0 is true. It is now comprehensible, that less efforts have to be spend to
topple this supposition.

However, RL is also a probability, so why not applying the same uniform
prior argument to RL? In this case H0 would get a small prior probability
1−pL. Therefore this paradox originates from the missing invariance of Bayesian
methods under reparametrisation6.

7.1.2 Beta Priors for the Case L = q0

In [4] a compound prior, consisting of a uniform and a beta7 prior, is introduced:

π(R0) =
ρ

B(A0, B0)
RA0−1

0 (1−RL)B0−1 + (1− ρ) (7.3)

The factor ρ determines the contribution of the beta distribution to the prior
and is called knowledge factor, again emphasing a uniform prior to contain
no information (which is not true due to remark 14).

4In fact the uniform distribution is a special case of the beta distribution, see remark 20
5e.g. [3] or [2]
6See [25] for more information about uniform "noninformative" priors
7see section A.4
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Remark 15:
The prior introduced by (7.3) contains the special cases of a uniform prior
(ρ = 0) and a pure beta prior (γ = 1), used to summarise results from previous
similar experiments. Hence ρ is a measure for the transferability of previous
knowledge. Since uniform distributions belong to the beta family, it is
sufficient to study this family’s behaviour when used for priors:

π(R0) =
1

B(A0, B0)
RA0−1

0 (1−R0)B0−1 (7.4)

Observing Sq0 passed components w.r.t time L gives the likelihood

L(R0 | Sq0) =
(

N

Sq0

)
R

Sq0
0 (1−R0)N−Sq0

Using Bayesian formula gives the posterior density:

π(R0 | Sq0) =

(
N

Sq0

)
R

Sq0
0 (1−R0)N−Sq0 1

B(A0,B0)
RA0−1

0 (1−R0)B0−1

1∫
0

(
N

Sq0

)
RSq0 (1−R)N−Sq0 1

B(A0,B0)
RA0−1(1−R)B0−1 dR

=
R

(A0+Sq0 )−1
0 (1−R0)(B0+N−Sq0 )−1∫ 1

0
R(A0+Sq0 )−1(1−R)(B0+N−SL)−1 dR

(7.5)

Hence, π(· | Sq0) is the PDF of a Beta(A0 + Sq0 ;B0 + N − Sq0) distribution.
I.e. the beta distribution is a conjugated family for success runs with
L = q0 and parameter update formula

A = A0 + Sq0 , B = B0 + (N − Sq0) (7.6)

In this context we call:

• A0: Pseudo number of survivors

• A0 + Sq0 : Combined number of survivors

• A0 + B0: Pseudo sample size

• A0 + B0 + N : Combined sample size

A Bayesian version of the significance equation (5.7) can be formulated as:
1∫

R0

π(R | Sq0)dR = 1− α

Using formula (A.3) gives:

A0+B0+N−1∑
j=A0+Sq0

(A0 + B0 + N − 1)!
j!(A0 + B0 + N − 1− j)!

Rj
0(1−R0)A0+B0+N−1−j = α

This equation can in general not be solved analytically, hence numerics are
used whenever necessary.
Remark 16:
Some hints for choosing adequate priors can be found in [26] section 6.5. There,
the prior construction is based on its desired 5%-, 95%-quantile and its mean.
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7.1.3 Priors for the Case L > q0

If two tests differ in their values for L, it might be still desirable to use the same
prior. Therefore it is not advisable to simply use the methods from the previous
section to model knowledge about RL, but to formulate priors for R0:

π(R0) =
1

B(A0, B0)
RA0−1

0 (1−R0)B0−1

For the remaining chapter a Weibull distribution with shape γ is assumed,
to get an easy relation between the reliabilities8 R0 and RL:

RL = R(q0)λγ

, λ =
L

q0

The likelihood does now assyme the form:

L(R | SL) =
(

N

SL

)(
Rλγ

)SL

(1−Rλγ

)N−SL

From the last factor it can immediately be seen, that the current prior π
and the likelihood L will in general not lead to a conjugated family. Only in
case of N = SL the factor (1−Rλγ

) vanishes and the posterior is a beta
PDF:

π(R0 | SL = N) =
1

β(A0 + Nλγ , B0)
RA0+Nλγ

0 (1−R0)B0

7.1.4 Summary
When using binomial sampling, the class of beta distributions is a conjugated
family for L = q0. The parameter update is given by the simple formula

A = A0 + Sq0 , B = B0 + N − Sq0 ,

where Sq0 is the number of component surviving time L = q0.

For the case L > q0 the update formula for Weibull distributions is

A = A0 + Nλγ , B = B0,

if SL = N . Otherwise, for SL < N (likely for large L) no update formula is
available.

8See section A.2.3
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Figure 7.1: Prior approximation for N = 1 and a result BL = 0.9 · F0(L).

7.2 Bayesian Methods for CUS Sampling
In plain language, PPC counts are success runs with non-integer values for
SL, suggesting that beta priors might at least be approximately conjugated
to CUS sampling. We will now adapt beta priors to CUS sampling to get an
approximative beta posterior PDF for the case L > q0 and SL < N .

7.2.1 Transferring the Conjugated Family
Let π be a beta prior with parameters A0, B0. Our first guess of generalising
the update formula (7.6) for L = q0 to CUS sampling would be

A = A0 +
1
pL

BL, B0 = B0 + (N − 1
pL

BL)

The following example shows the falseness of this guess.

Example 14:
Let N = 1 and L = q0 = 10, 000 for a Weibull distribution with γ = 2 and
p0 = 0.01. This test will not fulfill the significance equation, but we are only
interested in the prior approximation. If the prior was chosen to be Beta(45; 5)
and the result was BL = 0.9 · F0(L), then we try to approximate the posterior by
a Beta(45 + 0.9; 5 + (1− 0.9)). Figure 7.1 shows that approximation is not even
satisfying, since the approximated posterior is closer to the prior than to the true
posterior.
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7.2.2 Derivation of an Approximation Formula
To find the correct update formula we start with the true posterior. π̄ can be
calculated in N steps using lemma 9. This means we can stick to N = 1 w.l.o.g.:

π̄(R) ∝ RA0−1(1−R)B0−1 ·
(
g1 (u) · 1[0,F0(L)](u) + (1− F (L))δF0(L)(u)

)
g1 is the PDF of a Beta(1;B(R)) with B(R) =

(
β0

β(R)

)γ

= − log R
− log R0

. Further

1− F (L) = Rλγ

gives:

π̄(R) ∝ RA0−1(1−R)B0−1B(R)
R

− ln(1−u)
− ln R0

1− u
1[0,F0(L)](u)

+RA0+λγ−1(1−R)B0−1δF0(L)(u) (7.7)

Using a Taylor expansion for the logarithm gives log s ≈ s− 1, for s ≈ 1. If
π(R) ≈ 0 for R � 1, then also lnR ≈ R− 1. It follows:

(7.7) ≈ RA0+
− ln(1−u)
− ln R0

−1(1−R)B0+1−1 1
(− lnR0) · (1− u)

1[0,F0(L)](u)

+RA0+λγ−1(1−R)B0−1δF0(L)(u)

We now have two different possibilities for parameter update:

T+ < L ⇒ A = A0 +
− ln(1− F0(T+))

− lnR0
, B = B0 + 1 (7.8)

T+ = L ⇒ A = A0 + λγ , B = B0 (7.9)

This means, that partially-passed components will always add one pseudo fail-
ure and a partial pseudo survivor.

Lemma 6 Let T+
1 , . . . , T+

N be censored at time L = λq0, λ ≥ 1 with censoring
indicator δi and F0 ∼ W(β0; γ0) and π ∼ Beta(A0;B0) be a prior for R =
1 − F (L), where F is the sampling distribution of Ti, then the posterior π̄ can
be approximated by a beta distribution Beta(A;B) with:

A = A0 + λγ
∑(

T+
i

L

)γ

B = B0 + N −
∑

δi

Proof Apply lemma 9 consecutively for T+
1 , . . . , T+

N . Each time δi = 0 occurs
equation (7.8) applies, adding summand − ln(1−F0(T

+))
− ln R0

to A and summand 1 to
B. Each time δi = 0 occurs equation (7.9) applies, adding summand λγ to A.

Finally Weibulls quantile property can be used to get

− ln
(
1− F0

(
T+

i

))
− lnR0

=
(

T+
i

q0

)γ

= λγ

(
T+

i

L

)γ
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Figure 7.2: Prior approximation for N = 5 and a result BL = 4.3 · F0(L).

and ∑
δi=0

(
T+

i

L

)γ

+ (
∑

δi) =
∑(

T+
i

L

)γ

qed

Example 15:
Let L = 5 · q0 for a Weibull model with γ = 2. Assume that N = 5 and F0(T

+
1 ) =

· · · = F0(T
+
3 ) = F0(L), F0(T

+
4 ) = 0.8 · F0(L), F0(T

+
4 ) = 0.5 · F0(L). Hence BL =

4.3F0(L) and SL = 3. If R0 = 0.9 has to be verified, and a prior π ∼ Beta(45; 5) is
used, then the posterior can be calculated being Beta(139.81; 7). Figure 7.2 shows,
that the approximation is very good.

Remark 17:
Different to the test statistic BL of CUS sampling, the posterior approximation
(as well the MLE of CUS sampling) does depend on the detailed observations
T+

i . The next lemma shows, that there can not be a different approximation
strategy using only BL.

Lemma 7 The statistic BL (depending only on the hypothesis, not on the sam-
pling distribution) is not sufficient.

Proof Show that the sufficiency principle9 L(R | T+, δ) ∝ L(R | BL) is vio-
lated. Consider a result F0(T+

1 ) = s · pL, F0(T+
2 ) = (1− s)pL, s ∈ [0, 1], always

leading to BL = 1 · pL. Due to Theorem 6:

L(R | spL, (1− s)pL) = B2(R) ((1− spL)(1− (1− s)pL))B(R)−1

It can immediately be seen, that L does depend on s:

(1−spL)(1−(1−s)pL) = 1−spL−(1−s)pL+s(1−s)pL = 1−pL+s(1−s)pL 6≡ const
9See [27] section 2.9.
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qed

7.3 Bayesian Design of Experiments

7.3.1 Priors Using a Knowledge Factor
Success runs and PPC counts as introduced in chapters 5 and 3 require the same
minimal sample size:

Nmin =
⌈

lnα

ln(1− pL)

⌉
In this section we will study the influence of the knowledge factor (see equa-

tion (7.3)) on the sample size and test duration, i.e. consider priors of the
form

π(R0) =
ρ

B(A0, B0)
RA0−1

0 (1−RL)B0−1 + (1− ρ) = ρπβ + (1− ρ)πuniform

The case ρ = 0 leads to a uniform prior as described in section 7.1.1, leading
to sample size Nmin − 1. Once a priors beta component offers∫ 1

R0

π̄β(R)dR ≤ α (7.10)

no additional sample would be required, i.e. N = 0 for ρ = 1.

7.3.2 Derivation of a Design Formula
Let us consider a prior π with beta component fulfilling equation (7.10) and
0 < ρ < 1. Design of experiments (for success runs) consists of solving

PH0(SL = N | π̄) ≤ α (7.11)

where the posterior π̄ is calculated as:

π̄(R) ∝ π(R)fT (R) = (ρπβ(R) + (1− ρ)πuniform(R)) fT (R)
= ρπβ(R)fT (R) + (1− ρ)πuniform(R)fT (R)

The summands πβ(R)fT (R) and πuniform(R)fT (R) are proportional to pos-
teriors given by lemma 6. Unfortunately, the proportionality coefficients will
differ, such that π̄(R) is in fact a linear combination of the single posteriors, but
not with weights ρ, 1− ρ. The true posterior has to be calculated numerically.

Lemma 6 shows, that π̄ does only depend on the success runs result N, λ
via Nλγ . This means that solving equation (7.11) gives a result:

N · λγ ≥ fρ

Notice, that a classical success run (as described for Weibull distributions in
section 3.4.2) would give the design formula

N · λγ ≥ lnα

lnR0
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N 1 2 3 4 5
λ 10.8 7.3 5.9 5 4.4

Table 7.1: Bayesian DoE for verifying a reliability of 99% with 1% significance.

The Bayesian design parameter fρ can be calculated numerically (depending
on R0, α, ρ and the parameters of the priors beta component), as the following
example indicates.

Example 16:
Let πβ be the density of a Beta(1200; 5) and ρ = 0.6, then we have:

Πβ(0.99) = 0.0072, Π(0.99) = 0.2037

This mean, that the reliability described by πβ was satisfying (if R0 = 0.99 and
α = 0.01 was claimed), but after a 60% knowledge transfer homologation is doubt-
full. From example 11 it is known, that N = 5, λ = 12.5 is feasible for a Weibull
distribution with β = 1.8.
For different N the value λ was chosen such that the posteriors (calculated numer-
ically) fulfills ∫ 1

R0

π̄(R)dR ≤ 0.99

The results can be seen in table 7.1, showing that N · λγ ≥ 72.3429. Success
runs claim N · λγ ≥ 458.21, which means a factor of 6 in the efforts.

7.4 Summary
Bayesian methods for binomial sampling use beta distributions as a conjugated
family. If L = q0, then any (integer) result SL will lead to π̄ being a beta dis-
tribution. If L > q0 then only SL = N will lead to beta posteriors.

When switching to CUS sampling, the true posterior is not exactly a beta
PDF, but the approximation is very good. The parameter update formula does
also work for L > q0 for any result. In this sense, CUS sampling generalises the
property of binomial samplings conjugated beta family to any result and test
duration.

Therefore, the success runs second drawback of section 1.1 did not
transfer to PPC counts.



Chapter 8

Power of RET and RDT
Methods

It is known from lemma 3 and section 5.4, that randomisation and CUS sam-
pling do not show the conservative behaviour of binomial sampling in the area
of p ≈ p0. Further section 2.5.3 has shown that the corrected Delta also im-
proves the power of the ordinary delta method. It is left to compare the power
of randomisation, CUS sampling and the corrected delta method, as well as the
robustness of all methods against misspecified distribution models.

8.1 Power Calculation using Monte Carlo
Calculating the power of CUS sampling and the corrected delta method is done
by Monte Carlo simulation. For each point p = F (q0) the corresponding pa-
rameter θp can be calculated (one parameter distribution model), allowing to
simulate M samples of size N from the distribution Fθp

.

Let X denote the number of rejected hypotheses out of M simulations, then
X
M is an estimate for the power functions value belonging to p:

ĝ(p) =
X

M

Notice that X has a binomial distribution with probability of success g(p).

Near p0, the values of the power function are expected to be around the
significance, which is here chosen to be α = 0.01. If we claim to have a variation
coefficient of about 5% for ĝL,CUS(p0), then for the simulation size M it holds:√

Var(X/M)
E(X/M)

≈
√

1− p0

Mp0
≤ 0.05

⇔ 1− p0

0.052 · p0
≤ M

For p0 = 0.01 a simulation size of M ≥ 39, 600 ≈ 40, 000 is required.

67
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Figure 8.1: PPC count power function for different L with p0 = 0.01, q0 =
10, 000, α = 0.01, lognormal with σ2 = 0.36.

8.2 The Power of CUS Sampling
Using Theorem 6 allows to calculate the power gCUS(p). Hereto, the PDF g+

N

of BL is obtained as the N -fold convolution of:

g+
1 (u) = g1 (u) · 1[0,F0(L)](u) + (1− F (L))δF0(L)(u)

where the parameters of the beta PDF g1 depend on the reliability R.

The power can now be written as:

gCUS(p) = 1−G+
N (mcrit(R0)) , G+

N depending on p

Unfortunately, there is no easy formula for convolutions of g+
1 , since sums

of beta variables follow no easy model1.

Example 17:
Consider a lognormal distribution with σ2 = 0.36 and design three tests for
p0 = 0.01, q0 = 10, 000, α = 0.01 using the pairs (N, L): (5, 50000), (2, 100000)
and (1, 200000). While all three offer a consumers risk below α, they differ in their
producers risk, as was shown in figure 3.1 (and in figure 8.1).

The critical values for the PPC count are 4.9061, 1.9572, 0.99398 and the
power2 (in the area of H1) of the three designs are shown in figure 8.1. The power
does still depend on the special experimental design, but does not longer behave
conservative, i.e. now: g(p0) = α, and is raised as indicated by the red arrows.

The first drawback of success runs of section 1.1 is now reduced: The power
of CUS sampling does still depend on the special choice of the design
(N,L) but offers the correct significance.

1In [12] the problem is solved using the CLT, which will not work for our small sample
sizes

2Monte Carlo simulation with 40,000 samples per point
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8.3 Power of Randomisation of CUS Sampling

8.3.1 Correct Distribution Models
Theoretical Arguments

CUS sampling was constructed for improving the binomial sampling power by
removing discreteness from the test statistic.

Theorem 9
Let F (q0) = p be the true failure quota at time q0 and H0 : p ≥ p0, and
let gL,CUS, gL,BIN denote the power functions of the CUS and binomial models
resp., then it holds:

∀p ∈ [0, 1] : gL,CUS(p) ≥ gL,BIN(p)

Further, typically gL,CUS(p0) = α, gL,CUS < α, where α is the given significance.

Proof First by definition: 1
pL

BL ≥ SL, not depending on p. Secondly Scrit ∈ N
such that:

α =

NFθ0 (L)∫
Scrit

hN (u)du

can in general not be solved for integer Scrit, hence Scrit > mcrit to ensure
gL,BIN ≤ α. This means that SL ≥ Scrit will always imply 1

pL
BL ≥ mcrit.

Inversely samples of the form

T1 = . . . = TN−1 = L, TN = qL

show for sufficiently high q < 1 that the the reverse is not true for success runs.

qed
From lemma 3 we also know, that

∀p ∈ [0, 1] : gL,Rand(p) ≥ gL,BIN(p)

Since randomisation and CUS sampling both have exactly the correct sig-
nificance, it is left to study which one has the better power on the rest of the
interval [0, 1].

Theorem 10
Let N = 1 and L such that the significance equation (3.6) holds, then for a
Weibull model:

∀p ∈ [0, 1] : gL,Rand(p) ≤ gL,CUS(p)

where equality does hold if and only if equality holds in (3.6).

Proof Let pL(p) denote the failure probability at time L, if p is the true failure
probability at time q0. From equations (4.2) and (4.3) under N = 1 we get the
power of randomisation as:

gL,Rand(p) =
(

1− α− (1− pL(p0))
pL(p0)

)
(1− pL(p)) +

α− (1− pL(p0))
pL(p0)

= 1− 1− α

pL(p0)
· pL(p)
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If the significance equation (3.6) is fulfilled, N = 1 gives 1− pL(p0) ≤ α, hence:

gL,Rand(p) = 1− 1− α

pL(p0)
· pL(p)

≤ 1− 1 · pL(p)

= RL(p) = R0(p)λγ

= (1− p)λγ

= α
− ln(1−p)·

(
β0
q0

)γ

= αB(1−p)

Under H0 BL has for N = 1 the PDF f(s) = 1[pL(p0),1](s) + (1 − pL(p0)) ·
δpL(p0)(s) (see section C.2), giving the critical value as

F (mcrit)
!= 1− α

From lemma 5 it follows that BL has CDF:

G+
1 (s) = 1− (1− s)B(R), B(R) = −

(
β0

q0

)γ

· lnR =
lnR

lnR0

It follows:

gL,CUS(p) = 1−G+
1 (mcrit) = αB(1−p) ≥ gL,Rand(p)

qed

8.3.2 Exemplary Power Calculation

Example 18:
Consider again a lognormal distribution with σ = 0.6 and p0 = 0.01, q0 = 10, 000,
α = 0.01, L = 5q0. From example 10 it is known that pL = 0.9349 and φB = 0.0735.
Since there is no analytic formula for the power function of the PPC count available,
Monte-Carlo-Simulation is used. Fig. 8.2 shows, that the PPC count does not
only have the correct significance, but has also approximately the same power as
randomisation. The critical value of p−1

L BL was calculated to be mcrit = 4.9357.
If e.g. four units pass time L, the fifth one has to achieve about 0.94 points, which
means a lifetime of F−1

β0
(pL · 0.94) ≈ 47061.

In this case, the difference between the power functions of CUS and binomial
models is about 2% in the domain of H1. This means: If 100 decisions about
homologations of feasible components are made, then the binomial models will
have 2 more cost-intensive wrong-negative decisions, than CUS models will have.

While the power functions of the CUS model and randomisation
are nearly the same, the CUS model is fully repeatable since its test
statistic and critical value are deterministic. The additionally clear in-
terpretability should give the PPC count a much higher acceptance in practice.
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Figure 8.2: Power functions for p0 = 0.01, q0 = 10, 000, α = 0.01, L = 5q0, for
a lognormal distribution with σ2 = 0.36. Sample sizes N = 5 due to table 3.1.

8.4 Misspecified Distribution Models

To get one-parameter distribution models, the shape parameter of Weibull and
lognormal distributions was fixed. What if this fixing was not suitable?

Example 19 (Example 18 continued):
The power functions will be calculated again, but this time the fixed value σ2 = 0.36
will not be the true one. The critical values and test statistics are not effected by
the true distribution, only the power functions:

• If the true σ2 is smaller than the fixed one, like in figure 8.3, all models show
an increased conservative behavior.

• If the true σ2 is larger, like in figure 8.4, all tests fail to keep the significance.

In both cases randomisation and CUS sampling show approximately the same
power.

The robustness in the upper example can be explained by looking at the
dependence of test statistics and critical values on the fixed parameters. First
SL does not depend on the fixation, different to the critical value Scrit:

• If the fixed parameter underestimates the true variance, too few units are
tested, giving an increased actual significance.

• If the fixed parameter overestimates the true variance, too many units are
tested, giving a more conservative test.

Since φB does not depend on the fixation as well, randomisation looses power
in the same degree as binomial sampling. The PPC count and its critical value
mcrit depend on the distribution model, but in combination the result of the
test shows the same dependence on the model as randomisation.
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Figure 8.3: Power functions for p0 = 0.01, q0 = 10, 000, α = 0.01, L = 5q0, for
a lognormal distribution with σ2 = 0.30. Assumed: σ2 = 0.36. Sample sizes
due to table 3.1. 20,000 samples per MC simulation.

Figure 8.4: Power functions for p0 = 0.01, q0 = 10, 000, α = 0.01, L = 5q0, for
a lognormal distribution with σ2 = 0.40. Assumed: σ2 = 0.36. Sample sizes
due to table 3.1. 20,000 samples per MC simulation.
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Figure 8.5: Power functions of corrected delta and PPC count for L = 10q0.

Remark 18:
Example 19 shows, that σ2 should be fixed conservatively (rather overestimated
than underestimated), in order to keep the significance. In general, it is better
to fix the shape parameter such that the resulting variance of the model is
greater or equal to the true variance. For Weibull models, the shape γ should
be bounded from above, since the variance increases as γ decreases.

8.5 Power of CUS Sampling and Corrected Delta
To close the section, we want to show that CUS sampling has convenient ben-
efits towards the corrected delta method. If H1 is true, most homologations
from the delta method happen when the sample is completely censored (i.e. one
switches to success runs). As soon as failures are present, quantile estimates
drop discontinuously to smaller values, as in figure 2.3. Even though this was
fixed by lowering the critical value, the whole test is not very convincing, but
appears to be a technical artifice.

CUS sampling is free of such discontinuous test statistics and is a more
elegant technique. Instead of switching between quantile estimates and success
runs, one stays in one concept having an easy interpretation and no coverage
error. We believe in a good acceptance in practice.

Example 20 (Example 5 continued):
Figures 8.5 and 8.6 show that both methods are practically equivalent in terms of
power.
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Figure 8.6: Power functions of corrected delta and PPC count for L = 15q0.

8.6 Summary
We finally suggest CUS sampling being method to be preferred. It
offers the following advantages:

• Desired significance is achieved.

• Power almost identical to corrected quantile estimates and randomised
success runs.

• Free of randomised decisions and ...

• ... need for Monte Carlo simulations, ...

• ... test statistic and critical value allow deterministic calculation.

• Direct interpretation as a generalisation of success runs.

• No discontinuities like in the quantile-CI histograms.

• Robustness as good as for other methods.
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Appendix A

Lifetime Distributions

When dealing with survival data we first have to restrict to distributions on
[0,∞). We will mainly use two important distributions: Weibull and lognormal.
For further classification the notion of the hazard rate is needed.
Definition 13 (Hazard):
Let T be a nonnegative random variable with distribution function (cumulative
distribution function, CDF) F . The hazard function is defined to be:

h(t) = lim
∆→0+

P(t ≤ T < t + ∆ | t ≤ T )
∆

(if the limit exists). For all distributions considered here, the hazard can be
written as:

h(t) =
f(t)

1− F (t)
,

where f is the density (probability density function, PDF) of F .

The hazard controls the age-specific failure rate, i.e. h(t) is proportional to
the probability of failing in [t, t+∆), giving time t was survived. Depending on
the hazards behaviour, the failure mechanism can be classified:

• Increasing: Wearout failures (typical for fatigue applications).

• Decreasing: Initial failures (describes infant mortality, e.g. early failures
due to manufacturing errors).

• Constant: Chance failures (failure due to incorrect operation happening
at any time).

For further study see [20] or [22].

A.1 Lognormal

A.1.1 Definition
It was soon recognised, that the well known normal distribution was not suitable
to model lifetimes X. The normal fit does however work better for lnX, defining
the lognormal distribution:
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Figure A.1: Hazard of lognormal distribution.

Definition 14 (Lognormal distribution):
A random variable X has a lognormal distribution LN

(
µ;σ2

)
, if and only if

lnX has normal distribution N
(
µ;σ2

)
.

As a direct consequence CDF and PDF are:

Fµ,σ2(x) = Φ
(

lnx− µ

σ

)
fµ,σ2(x) =

1
σ · x

φ

(
lnx− µ

σ

)
(Φ: Standardnomal CDF, φ: Standard normal PDF). Quantiles can be simply
derived from normal quantiles using an exponential transformation:

qp = eµ+zp·σ, zp = Φ−1(p)

A potential source of confusion is that expectation and variance are not trans-
formed in this way, but:

E(X) = eµ+ σ2
2

Var(X) = e2µ+σ2
(eσ2

− 1)

The term eµ is in fact the median of X.

A.1.2 Hazard

There is no easy formula for the hazard of a lognormal distribution. Figure
A.1 shows the hazard for lognormal distribution with parameter µ = 0, σ = 1.
The lognormal distribution has the artifact, that up to the median fatigue is
modeled, from there on infant failure mechanisms are modeled. Therefore, the
lognormal’s adequacy for lifetimes is disputable (see also section 3.4.1).
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A.2 Weibull

A.2.1 Definition
Based on exponential distributions, Weibull distributions as introduced in [5]
are capable of modeling different failure mechanisms.

Definition 15 (Weibull distribution):
A random variable X is called Weibull distributed with parameters β > 0, γ > 0,

W(β; γ), if
(

X
β

)γ

is exponential distributed with λ = 1.

It follows for CDF and PDF:

Fβ,γ(x) = 1− e−( x
β )γ

fβ,γ(x) =
γ

β

(
x

β

)γ−1

e−( x
β )γ

Quantiles can easily be solved from F (qp) = p giving:

qp = β · (− ln(1− p))
1
γ

Mean and variance are given by:

E(X) = β · Γ
(

1 +
1
γ

)
Var(X) = β2

(
Γ
(

1 +
2
γ

)
− Γ2

(
1 +

1
γ

))
Here Γ denotes the gamma function:

Γ(x) =

∞∫
0

tx−1e−tdt (A.1)

with Γ(n) = (n− 1)! for every n ∈ N.

A.2.2 Hazard
The calculation of hazards is explicitly possible:

h(t) =
f(t)

1− F (t)
=

γ

β

(
x

β

)γ−1

It can be seen, that h is a parabola of degree γ − 1 w.r.t. x. Consequently
the sign of γ − 1 determines whether h is decreasing or increasing:

• γ < 1: h is decreasing, infant failures are modeled.

• γ = 1: h is constant, purely random failures are modeled.

• γ > 1: h is increasing, fatigue life is modeled.

Hence, Weibull distributions can be used to model most common failure
mechanisms. Furthermore is has no strange effects like the lognormal hazard
maximum. It is advised to favour Weibull over lognormal. Therefore,
most discussed examples in this thesis will use Weibull distributions.
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A.2.3 Relation between quantiles
Consider two quantiles qp1 and qp2 . In fatigue applications we frequently have
to switch between failure quotas belonging to different points in time (design life
and test duration). It is therefore useful to study the relation between Weibull
quantiles:

λ =
qp2

qp1

=
β · (− ln(1− p2))

1
γ

β · (− ln(1− p1))
1
γ

=
(

ln(1− p1)
ln(1− p2)

) 1
γ

⇔ (1− p2) = (1− p1)λγ

Using the term reliability as the probability of surviving a certain time
point, we have:

R2 = Rλγ

1

This property helped the Weibull distribution to achieve its importance in
reliability demonstration, creating the notion Weibull analysis (see section
3.4.2).

A.3 Gumbel Distribution
The definition of the Gumbel distribution is not consistent in literature. We
propose a new parameterisation in order to have the same relation between
Weibull and Gumbel as for lognormal and normal.

Definition 16:
A random variable X is called Gumbel distributed G(a; b) if it has CDF:

F (x) = 1− e−e
x−a

b

The density function is:

f(x) =
1
b
e

x−a
b e−e

x−a
b

Quantiles are given by:

qp = a + b ln(− ln(1− p))

Corollary 2 If X is Weibull distributed W(β; γ), then lnX is Gumbel dis-
tributed G

(
lnβ; γ−1

)
.

A Gumbel PDF with a = 0, b = 1 (standard Gumbel) has its mode at 0, but
is not symmetric. Nevertheless, Gumbel PDF are closer to normal distributions
than Weibull distributions (see figure A.2). This motivates methods like in
appendix B.2.4.

Mean and variance are given by:

E(X) = a− γb

Var(X) =
π2

6
b2
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Figure A.2: Standard normal and standard Gumbel PDF.

γ ≈ 0.577 is the Euler-Mascheroni constant. The formulas indicate, that the
Gumbel distribution is a scale-location family.

Remark 19:
Fitting a Weibull distribution W(β; γ) to data T is sometimes done by fitting a
Gumbel distribution G(a; b) to lnT . Based on lemma 2, the resulting parameter
estimates are:

β̂ = eâ, γ̂ =
1

b̂

The required likelihood can be found in section B.2.1.

A.4 Beta Distribution

A.4.1 Definition

The beta distribution is not a lifetime distribution, but can be used to model
prior information on a components reliability (as is done from section 7.1.2 on).

Definition 17 (Beta distribution):
A random variable with density

f(x) =
1

B(p, q)
xp−1(1− x)q−1

is called beta distributed, Beta(p; q). Here

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

=

1∫
0

xp−1(1− x)q−1dx, (A.2)

where Γ is the gamma function from equation (A.1).

For integer p, q there is an explicit formula for the CDF F :
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Lemma 8 For p, q ∈ N the CDF of a Beta(p; q) distribution is given by:

Fp,q(x) =
p+q−1∑

j=p

(p + q − 1)!
j!(p + q − 1− j)!

xj(1− x)p+q−1−j (A.3)

Proof Induction on q.
If q = 1 then:

Fp,1(x) =

x∫
0

1
B(p, 1)

tp−1dt =
xp

pB(p, 1)
= xp

For general q perform integration by parts:

Fp,q(x) =

x∫
0

1
B(p, q)

tp−1(1− t)q−1dt

=
1

B(p, q)

[ tp

p
(1− t)q−1

]x

0

+
q − 1

q

x∫
0

tp(1− t)(q−1)−1


=

(p + q − 1)!
p!(q − 1)!

xp(1− x)q−1 +
q − 1

q
· B(p + 1, q − 1)

B(p, q)
Fp+1,q−1(x)

=
(p + q − 1)!
p!(q − 1)!

xp(1− x)q−1 +
p+q−1∑
j=p+1

(p + q − 1)!
j!(p + q − 1− j)!

xj(1− x)p+q−1−j

=
p+q−1∑

j=p

(p + q − 1)!
j!(p + q − 1− j)!

xj(1− x)p+q−1−j

qed
Mean and variance are given by:

E(X) =
p

p + q

Var(X) =
pq

(p + q + 1)(p + q)2

A.4.2 Beta Priors
As already mentioned, beta distributions are needed to model prior information
on a components reliability R. Figure A.3 shows different possible PDF. It can
be seen, that the case p > q puts mass on values close to 1, while p < q does
the opposite.

In this setup there is possible reparameterisation of the beta distribution
using N = p + q instead of q as second parameter. For reasons that will be-
come clear in chapter 7.1.2 the parameters are also called pseudo number of
survivors p, pseudo number of survivors q and pseudo sample size N .

Remark 20 (Uniform priors):
A special case of the beta distribution is Beta(1; 1), which defines a uniform
distribution on [0, 1]. This will be used in section 7.1.1.
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Figure A.3: Density function for different values of p, q.



Appendix B

Delta Method for Weibull
Distributions

When applying the delta method to a distribution, all derivatives of second
order have to be known. This chapter provides the necessary formulas.

B.1 Weibull

B.1.1 Likelihood

The PDF and CDF of a Weibull distribution are:

f(x) =
γ

β

(
x

β

)γ−1

e−( x
β )γ

F (x) = 1− e−( x
β )γ

Therefore, a sample x with censoring indicator δ results in the likelihood:

L(β, γ | x) =
(

γ

β

)Nu

·
(∏

i: δi=1 xi

βNu

)γ−1

· e−
∑N

i=1(
xi
β )γ

l(β, γ | x) = Nu ln γ −Nu lnβ + (γ − 1)
∑

i: δi=1

ln
xi

β
−

N∑
i=1

(
xi

β

)γ

where Nu =
∑

δi is the number of uncensored data in the sample.

B.1.2 Score and Fisher Information

∂

∂β
l(β, γ | x) = −Nuγ

β
+

γ

βγ+1

N∑
i=1

xγ
i

∂2

∂β2
l(β, γ | x) =

Nuγ

β2
− γ(γ + 1)

βγ+2

N∑
i=1

xγ
i
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∂

∂γ
l(β, γ | x) =

Nu

γ
+
∑

i: δi=1

lnxi −Nu lnβ −
N∑

i=1

(
xi

β

)γ

· ln
(

xi

β

)
∂2

∂γ2
l(β, γ | x) = −Nu

γ2
−

N∑
i=1

(
xi

β

)γ

· ln2

(
xi

β

)
∂2

∂γ∂β
l(β, γ | x) = −Nu

β
+

γ

β

N∑
i=1

(
xi

β

)γ

· ln
(

xi

β

)
+

1
β

N∑
i=1

(
xi

β

)γ

B.1.3 Maximum Likelihood Estimates
From the upper equations the MLE can be written as:

β̂γ̂ =
1

Nu

N∑
i=1

X γ̂
i (B.1)

Nu

N∑
i=1

(
X γ̂

i · lnXi

)
=

Nu

γ̂

N∑
i=1

X γ̂
i +

∑
δi=1

lnXi ·
N∑

i=1

X γ̂
i (B.2)

The second equation is obtained from plugging in ∂
∂β l = 0 into ∂

∂γ l = 0. While
the first equation delivers estimates β̂ if γ̂ is known, γ̂ is the numerical solution
of the second equation.

B.1.4 Estimated Fisher Information
Plugging in the MLE into the second derivatives gives:

∂2

∂β2
l(β̂, γ̂ | x) = −Nuγ̂2

β̂2

∂2

∂γ2
l(β̂, γ̂ | x) = −Nu

γ̂2
−

N∑
i=1

(
xi

β̂

)γ̂

ln
x2

i

β̂2

∂2

∂γ∂β
l(β̂, γ̂ | x) =

Nu

β̂
− Nuγ̂

β̂
+

γ̂

β̂

Nu∑
i=1

lnxi

B.2 Gumbel

B.2.1 Likelihood
The density and distribution function of a Gumbel distribution have the form:

f(x) =
1
b
e

x−a
b e−e

x−a
b

F (x) = 1− e−e
x−a

b

Therefore a sample x with censoring indicator δ gives the likelihood:
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L(a, b | x) =
∏
δi=1

1
b
e

xi−a

b e−e
xi−a

b
∏
δi=0

e−e
xi−a

b

l(a, b | x) = −Nu ln b +

∑
δi=1 xi −Nua

b
−

N∑
i=1

e
xi−a

b

where Nu =
∑

δ is the number of uncensored data in the sample.

B.2.2 Score and Fisher information

∂

∂a
l(β, γ | x) = −Nu

b
+

1
b

N∑
i=1

e
xi−a

b

∂2

∂a2
l(β, γ | x) = − 1

b2

N∑
i=1

e
xi−a

b

∂

∂b
l(β, γ | x) = −Nu

b
−
∑

δi=1 xi −Nua

b2
+

N∑
i=1

xi − a

b2
e

xi−a

b

∂2

∂b2
l(β, γ | x) =

Nu

b2
+ 2

∑
δi=1 xi −Nua

b3

N∑
i=1

(
−
(

xi − a

b2

)2

− 2
xi − a

b3

)
e

xi−a

b

∂2

∂b∂a
l(β, γ | x) =

Nu

b2
− 1

b2

N∑
i=1

e
xi−a

b − 1
b3

N∑
i=1

(xi − a)e
xi−a

b

B.2.3 Maximum Likelihood Estimates

From the upper equations the MLE can be written as solution of:

Nu =
N∑

i=1

e
xi−a

b

Nua =
∑
δi=1

xi + Nub−
N∑

i=1

e
xi−a

b (xi − a)

Numerical solving gives estimates â, b̂.

B.2.4 Logarithmic Delta Method

Assume that a quantile qp has to be estimated in a Weibull model W(β; γ).
To ensure positive CI, logarithms shall be used, and a Gumbel model G(a; b) is
fitted to the data lnT (using remark 19). Pluging in in the ML estimates for
a, b into the likelihood’s Hessian gives the Hesse estimator Î of definition 3. A
quantile CI for ln qp is obtained as:

l̂n qp,α = l̂n qp + t−1
N−1(1− α) · σ̂β
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The quantile functions estimated variance σ̂β is obtained from Gaussian er-
ror propagation for (ln qp)(a, b) = a + b · gp, where gp is the standard Gumbel
quantile.

Transforming the quantile CI back to the scale of T gives the logarithmic
delta method:

q̂p,α = el̂n qp,α = q̂p · exp
(
t−1
N−1(1− α) · σ̂β

)



Appendix C

Proof of the CUS Density

C.1 Proving the General Formula
Let Gk, G+

k denote the CDFs of gk, g+
k and set F = Fθ0(L), F̄ = 1− Fθ0(L) as

short forms.

Induction Start Given T ≤ L, the random variables T , T+ can not be
distinguished. In case of T > L the CDF G+

1 has to collect all mass of G1 in
the single point F (see figure C.1). It follows:

G+
1 (u) = G1(min(u, L)) + 1[F,1](u)

The derivative of G+
1 gives the claimed density :

g+
1 (u) = g1

( u

F

)
+ F̄ δF (u) = 1[1,F ](u) + F̄ · δF (u)

Induction Step
∞∫

−∞

(N−1∑
i=0

(
N

i

)
FN−1−iF̄ igN−i

( u

F
− i
)

+ F̄NδNF (u)
)

+
(
1[0,F ](u−s) + F̄ δF (u− s)

)
ds

=
N−1∑
i=0

(
N

i

)
FN−1−iF̄ i

∞∫
−∞

1[0,F ](u−s) gN−i

( s

F
−i
)

ds

+
N−1∑
i=0

(
N

i

)
FN−1−iF̄ i+1

∞∫
−∞

1[0,F ](u−s) gN−i

( s

F
−i
)

·δF (u−s)ds + F̄N

∞∫
−∞

1[0,F ](u−s) δNF (s)ds

+F̄N+1

∞∫
−∞

δNF (s)δF (u−s)ds
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Figure C.1: Distribution function of F (T+) (red) and F (T ) (green).

=
N−1∑
i=0

(
N

i

)
FN−iF̄ igN+1−i

( u

F
−i
)

+
N−1∑
j=0

(
N

j

)
FN−1−jF̄ j+1gN−j

( u

F
−(j + 1)

)
+F̄ g1

( u

F
−N

)
+ F̄N+1δ(N+1)F (u)

=
N−1∑
i=0

(
N

i

)
FN−iF̄ igN+1−i

( u

F
−i
)

+
N∑

i=1

(
N

i− 1

)
FN−iF̄ igN+1−i

( u

F
−i
)

+F̄ g1

( u

F
−N

)
+ F̄N+1δ(N+1)F )(u)

=
N∑

i=0

(
N + 1

i

)
FN−iF̄ igN+1−i

( u

F
− i
)

+ F̄N+1δ(N+1)F (u)
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C.2 Formulas for Small N

In section 5.4.2 it was shown, that a CUS(N, 1) distribution may be approxi-
mated by a normal distribution for N ≥ 5. For smaller N the exact PDF has to
be calculated convoluting a uniform distribution on [0, 1]. The resulting PDFs
are:

g1(x) =
{

1, 0 ≤ x ≤ 1
0, else

g2(x) =

 x, 0 ≤ x < 1
2− x, 1 ≤ x ≤ 2

0, else

g3(x) =


x2

2 , 0 ≤ x < 1
−x2 + 3x− 3

2 , 1 ≤ x < 2
(x−1)2

2 − 2x + 4, 2 ≤ x ≤ 3
0, else

g4(x) =



x3

6 , 0 ≤ x < 1
− 3x3−12x2+12x−4

6 , 1 ≤ x < 2
x3

2 − 4x2 − 10x− 22
3 , 2 ≤ x < 3

−x3−12x2+48x−64
6 , 3 ≤ x ≤ 3

0, else



Appendix D

Introduction to Bayesian
Statistics

Accounting for previous information in statistical inference is done by using
Bayesian statistics. For reliability analysis this would allow to use knowledge
about the quality of similar units, which are already observed over a longer
period. To get simple knowledge update formulas, the concept of conjugated
families plays a key role.

D.1 Conjugated Families

D.1.1 General Definition

Let θ ∈ Θ ⊂ Rk be the unknown parameter of a distribution family

F = {Fθ | θ ∈ Θ}, with X1, . . . , XN
iid∼ Fθ

Previous information about θ is formulated by means of the prior density
π(θ). E.g., using a normal PDF π with mean µ and variance σ2 implies θ to lie
in the interval µ± 2σ with plausibility 95.45%.

After collecting data X = x Bayes’ theorem allows updating the prior den-
sity π to a posterior density π(· | x) via:

π(θ | x) =
π(θ) · fX(x | θ)∫

Θ

π(θ) · fX(x | θ)dθ
(D.1)

In general π(θ | x) will be from a different distribution family than π(θ),
which might not even be of a common form.

Definition 18 (Conjugated family):
A family Π of prior distributions is said to be conjugated to a family F of
sampling distributions, if for every true sampling distribution F ∈ F , every
sample size N ∈ N and every realisation x the posterior distribution π(· | x)
belongs to Π.

90
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Using conjugated families often allows for simple formulas for getting the
posterior PDF parameters like in equation 7.6 or lemma 6. In this case the
integral in the denominator of equation (D.1) does not have to be calculated
numerically.

Example 21 (Conjugated family of gamma distributions):
Let X be Poisson distributed with unknown parameter µ. If the prior density is
given by a gamma distribution Γ(ν, λ), then the posterior density is also a gamma
distribution Γ(ν +

∑
xi, λ + N). Hence one has the parameter update formula

(ν̄, λ̄) = (ν +
∑

xi, λ + N).

D.2 Bayesian Confidence Intervals
As soon as the posterior π̄ is available, point and interval estimates might be
derived. There are two possibilities for defining point estimates:

• θ̂ = E(π̄): If θ is interpreted as a random variable, then in terms of mean
squared error the posterior expectation is the best guess for the unknown
parameter.

• θ̂ = argmax π̄(θ): Generalises the likelihood approach, by considering the
posterior as a likelihood merged with prior information.

E.g. the beta distribution Beta(p; q) has mode p−1
p+q−2 and expectation p

p+q .
In connection to the theory of section 7.2 p was called pseudo number of sur-
vivors and p + q the pseudo sample size and θ was the a components reliability.
This gives the expectation a clear interpretation, while it is not intuitive why
the pseudo number of survivors should be reduced by one in the mode.

Defining confidence intervals for θ is done with the notion of highest (pos-
terior) density regions:
Definition 19 (Highest density region HDR):
An interval I ⊂ Θ is called highest (posterior) density region if π̄(θ1) > π̄(θ2)
for each θ1 ∈ I, θ2 ∈ Θ \ I.

D.3 Sequential Knowledge Update
Applying Bayes’ Theorem allows for knowledge update after each sample. There
is an important property making this update consistent:

Lemma 9 Consider two independent samples X1, X2 available for inference
about a parameter θ. Let X = (X1, X2) denote the combined sample, then:

π(θ | X) ∝ π(θ | X1)L(θ | X2)

Proof Since X1, X2 are independent, it holds that L(θ | X) = L(θ | X1) ·L(θ |
X2). It follows directly:

π(θ | X) ∝ π(θ)L(θ | X)
∝ π(θ)L(θ | X1)L(θ | X2)
∝ π(θ | X1)L(θ | X2)
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qed
The lemma can even be used to update the prior after each observation.

This will be used in section 7.2.2, when the posterior is calculated w.l.o.g. for
the case N = 1 for reasons of simplicity.
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