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Chapter 1

Introduction

The study of quasistationary distributions is a long standing problem in several areas of
probability theory and a complete understanding of the structure of quasistationary dis-
tributions seems to be available only in rather special situations such as Markov chains on
finite sets or more general processes with compact state space. For a regularly updated
extensive bibliography with about 380 entries concerning the topic of quasistationary dis-
tributions we refer to [77]. In this work we consider one-dimensional diffusions on the
half-line and study the problem of convergence to quasistationarity. The starting point of
our investigation is the recent contribution [84] of S. Evans and D. Steinsaltz. It might
be rather surprising that despite the key contributions [25], [65], [66], [84] and [20] the
structure of quasistationary distribution of one-dimensional killed diffusions has not been
completely clarified. Even worse, since the proof of the main result of [25] has a serious
gap1 even for the case of one-dimensional diffusions with trivial internal killing the general
picture is still rather incomplete. Similar problems for other classes of stochastic processes
have also been investigated quite frequently (see e.g. the important contributions [41] and
[56] of H. Kesten and his co-authors and the work [89] of E. van Doorn, where classes of
Markov-chains on the integers and in particular birth and death chains are considered) but
often a complete understanding is still missing.
The first work concerning the Yaglom limit for special one-dimensional diffusions including
non-trivial internal killing seems to be [54]. Some results for one-dimensional diffusions
with a compact state space have been established by N. Sidorova in chapter 4 of her phd-
thesis under supervision of Prof. H. von Weizsäcker (see also [80]). The case of general
one-dimensional diffusions with a non-compact state space seems to be considered for the
first time in [84]. Steinsaltz and Evans establish in [84] several results concerning the qua-
sistationary convergence of one-dimensional diffusions killed at the boundary and in the
interior of the state space. In particular they prove an interesting dichotomy. Under quite
general conditions a one-dimensional diffusion conditioned on long survival either runs off
to infinity or converges to a quasistationary distribution given by the lowest eigenfunction

1J. San Mart́ın communicated to the author several new ideas, which might after providing some further
arguments finally lead to a rigorous new proof of the results in [25]. Moreover we should stress that the
ideas developed in [25] played an important role in further developments.

1



2 CHAPTER 1. INTRODUCTION

of the generator. In this thesis we complete some of the results of Steinsaltz and Evans by
giving conditions which allow to decide whether convergence to quasistationarity or escape
to infinity occurs. Furthermore, we will be able to remove some unnecessary conditions
posed in [84]. Unfortunately there are still several natural questions, which we leave open.
These are collected at the end of each chapter.
The dichotomy of Evans and Steinsaltz is derived mainly by purely probabilistic arguments.
In contrast to this we include several basic facts from the analytic theory of Sturm-Liouville
operators. Although it is well-known since the pioneering work of Mandl [63] that the
convergence to quasistationary distributions for one-dimensional diffusions is intimately
connected to the bottom of the spectrum of the diffusion generator, only elementary rudi-
ments and in many proceeding works on the problem nothing more than definitions and
very basic results of the rich spectral theory have been used. The inclusion of some analytic
methods allows to provide a more transparent picture. The use of these techniques even
seems to be necessary since in contrast to the case of trivial internal killing methods based
on the scale function are no longer available. But we have to stress that we strongly rely
on Theorem 3.3 of [84] which seems to be difficult to prove by purely analytic methods.
Thus the study of quasistationary distributions represents an area, where probabilistic and
analytic methods cross-fertilize each other.
Let us formulate the following theorem, which follows from our general analysis presented
in chapter 1, which might be considered as the main part of this work.

Theorem 1.0.1. Let (Xt)t≥0 be a diffusion process in (0,∞) corresponding to the generator

Lκ = −1
2
d2

dx2 +b(x) d
dx

+κ(x) with Dirichlet boundary conditions at 0, where b ∈ L1
loc([0,∞))

and 0 ≤ κ ∈ C([0,∞)). Moreover, assume that
∫∞

0
e

R x
0 2b(s) ds dx = ∞. Then the following

assertions hold

1. Assume that ∞ is a natural boundary point and in case of κ 6= 0 suppose that
limx→∞ κ(x) 6= λκ0 , where λκ0 denotes the bottom of the spectrum of the Sturm-
Liouville operator Lκ. Then Xt converges to quasistationarity if and only if the
lowest eigenfunction ϕ(λκ0 , ·) is integrable with respect to the measure ρ.

2. If ∞ is an entrance boundary point, then Xt converges to quasistationarity if and
only if the lowest eigenfunction ϕ(λκ0 , ·) is integrable with respect to ρ.

This theorem answers a question which was posed to me in a private communication
with David Steinsaltz. The assertion of the above theorem can be interpreted as a ’qua-
sistationary analogue’ of the classical recurrence/transience dichotomy. In the classical
case a process with a transition function p(t, ·, ·) is transient iff the integral

∫∞
0
p(t, x, y) dt

is finite, and recurrent else. In the quasistationary setting, we have convergence to qua-
sistationarity iff

∫∞
0
ϕ(λκ0 , y) ρ(dy) is finite and escape to infinity, else. The analogy with

the recurrence/transience dichotomy does not perfectly fit and we refer the reader to [66],
where different ideas and connections to ergodic properties of h-transformed processes are
presented.
We actually prove more than Theorem 1.0.1, e.g. we show that λκ0 < limx→∞ κ(x) al-
ways implies convergence to quasistationarity. In order to prove our results we borrow
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some methods and ideas from mathematical physics, especially the theory of Schrödinger
operators. Extensions and adaptions of these ideas in combination with methods already
available in the literature on quasistationary distribution of one-dimensional diffusions play
an important role in this work.
In the recent paper [20] the authors consider diffusions on the half-line including those,
whose coefficients are strongly singular, in particular they are not integrable near 0. In this
work the authors are interested in establishing results concerning existence and uniqueness
of quasistationary distributions. Under the assumption that κ ≡ 0 and that a quasista-
tionary distribution exists the uniqueness question is completely solved in [20], but the
existence question is only answered under a whole bunch of conditions, which in particular
ensure the discreteness of the spectrum of the diffusion operator. This condition simplifies
the existence problem considerably: the up to multiplicative constants uniquely determined
ground state gives rise to a quasistationary distribution as soon as it is integrable. Thus
the existence problem is reduced to the question of the integrability of the ground state.
If the bottom of the spectrum is not a L2-eigenvalue the existence question becomes even
more involved. Thus it might be surprising that a very elementary inequality turns out to
play an important role. This inequality is a direct consequence of the fundamental theorem
of calculus and will be used many times in this work.
In chapter 3 we consider similar to [20] generators of diffusions, whose coefficients are non-
regular at 0 without assuming the discreteness of the spectrum. We are able to prove the
existence of quasistationary distributions also in cases, where the spectrum is not necessar-
ily discrete. This will done via a mixture of analytic and probabilistic techniques similar
to the regular case. But the spectral theoretic considerations require more advanced tools.
Let us summarize the progress which is achieved in this work. In the regular case we are
able to complete recent results of D. Steinsaltz and S. Evans in a non-trivial way. Even
in the case κ ≡ 0 complete proofs of our main results are still missing in the literature.
In the non-regular case the results of this work extend several of the recent results of [20].
Indeed for a large class of diffusions we will be able to show the existence of quasistationary
distribution under the assumption of the strict positivity of the spectrum of the generator
associated to the diffusion. Moreover our arguments are in large parts also applicable to
higher dimensional problems. We hope that we are able to contribute to the higher dimen-
sional case in near future. For first steps towards a better understanding of quasistationary
distributions in higher dimensions with non-compact state space we refer to the very recent
preprint [21].
In the third chapter of this work we consider a problem, which might seem quite unrelated
to the proceeding results at least at the first glance. A second look at this problem already
indicates that tools and ideas very similar to the ones used in the previous chapters might
lead to new and in part rather precise results. We consider a rather exotic superprocess,
which was constructed quite recently by Klaus Fleischmann and Carl Mueller in [42]. This
process, which is called the super Brownian motion with a single point source, is strongly
related to a certain family of selfadjoint extensions of the restriction of the Laplacian to
smooth functions whose compact support does not contain zero. In order to get a better
understanding of this process we derive results concerning the large time behavior of the
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expected mass. Moreover a form of the strong law of large numbers for this process is
established under the assumption that a certain formula for the variance holds true. Thus
it only remains to derive this formula for the second moment. Our interest in this project
comes from two sources. First the process is interesting in its own since until now the
probabilistic meaning of the process is quite unclear. In his review of [43] Peter Mörters
calls this process ’probabilistically somewhat mysterious’. We hope that our study of the
large time behavior will be a first step towards a better probabilistic understanding of the
Super-Brownian motion with a single point source. This process might also be useful in
order to extend results concerning probabilistic approaches to the scattering length. In
[87] Michael Taylor investigates several analytic questions concerning Schrödinger oper-
ators with positive potentials. In particular he extends the path integral representation
for the scattering length, which originally goes back to Kac and Luttinger (see [55]), to a
large class of positive potentials. In this work M. Taylor also poses the question whether
similar results are possible for potentials with a non-trivial negative part. Since negative
potentials generate mass one should look for probabilistic representations of the scattering
length via branching or super-processes. Since the scattering length can be easily calcu-
lated for the selfadjoint extensions of the Laplacian, we hope to be able to give a path
integral representation for the scattering length in this special case and to use this as a
guideline for further extensions. On the other hand part of the interest in the study of large
time behavior of superprocesses stems from the work [86], where Steinsaltz and Evans use
some of their results on quasistationary distribution in order to investigate the large time
behavior of a superprocess modeling damage segregation in cell branching. Their analysis
is restricted to a one dimensional spatial state-space. In order to design a more realistic
biological model the inclusion of a higher dimensional spatial state-space becomes neces-
sary. Our investigation of the large time behavior of the two dimensional Super-Brownian
motion with a single point source can be seen as a first small step toward this direction.

The last chapter is rather unrelated to the previous ones. It is included only for reasons of
completeness in order to describe a topic which has also been part of my research during the
last years. Here we establish essential selfadjointness of a singular magnetic Schrödinger
operator on arbitrary complete Riemannian manifolds without boundary. This result is
new and extends a previous result of M. Shubin. Moreover, it turned out that the same
method can also be used in order to establish a new result concerning strong uniqueness
of a class of finite dimensional Dirichlet operators (see [58]).

Let us end this introduction with a few words concerning the prerequisites, which we
believe to be necessary in order to understand this work. Since this work is partly analytic
and partly probabilistic we assume that the reader has basic knowledge in both subjects.
The analytic background which we use without specific references can be found in [95],
for the probabilistic background we refer to [39] and [45]. A certain familiarity with the
most basic parts of the theory of Sturm-Liouville operators (as presented e.g. in [53], [19]
and [96]) will certainly be helpful. For other results used in this work we will usually give
precise references.
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1.1 Demographic Motivation

In this section we sketch the original motivation for the work [84] of Steinsaltz and Evans.
We borrow several arguments from [83], where a much more complete discussion is pre-
sented. From the early days of demography it was known that there is an exponential
increase in mortality through a wide range of the lifespan. As mentioned in [83] this ob-
servation dates back at least to the 1820s and is usually attributed to B. Gompertz. Much
more recently demographers found out that the exponential rate of increase in mortality
rates tends to slow down at extreme old ages. Let us be more precise and give some def-
initions used in demography. We mainly follow Appendix A in [88]. For a given group
of individuals we denote by lx the number of individuals who survive to reach the age
x. Among these there are individuals who survive for 12 months. The number of these
survivors is lx+1. The mortality rate µx (also force of mortality or hazard rate) is on a
purely formal level defined as

µx = − 1

lx

dlx
dx

= − d

dx
log(lx). (1.1.1)

Integration of this equation gives

lx+1

lx
= e−

R x+1
x µz dz. (1.1.2)

Gombertz’s law of mortality states that the force of mortality increases with age exponen-
tially, i.e.

µx = a ebx.

For a large part of the age range this seems to be a good approximation, but the following
figure 1.1 indicates that at extreme old ages this is no longer the case. Figure 1.1 is copied

Figure 1.1: The force of mortality µ by age from [88], page 82

from page 82 in [88] and displays the force of mortality µ by age. In order to give a clean
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picture at the extreme ages above 95 data of Japan and 13 Western European countries
are pooled. It is visible that the exponential increase of the death rates slows down at
extreme ages. Thus for very high ages the usual Gombertz law is not valid anymore.

We should also point out again that the slow down of mortality rates at extreme ages
is a rather universal phenomenon. It is also observed in large cohorts of drosophila or med-
flies. The graphic 1.1 as well as the following graphic should only serve as an illustration
of the demographic phenomenon described above. For details concerning the data set and
other statistical details we therefore refer to the original sources.

Figure 1.2: In the left picture again the death rates for human females are displayed.
Moreover it includes the exponential curve that best fits the data at age 80, the logistic
cure that best fits the entire data set. Moreover a curve. the logarithm of which is
quadratic. is fit to the data at ages 105 and higher. The right diagram displays death rates
for a cohort of 1,203,646 medflies taken from from [90]. The dark curve is for female flies
and the bright curve for males.

There exist at least two different common types of explanations for this phenomenon. One
type of explanation is usually referred to as temporal heterogeneity. The advocates of this
type of explanation argue that the slow down of the exponential increase of the mortality
rate is caused by a slow down of the aging process itself at extremely large ages. On the
other side there is a type of explanation, which is referred to as population heterogeneity.
Population heterogeneity refers to differences in the initial population, which cause the oc-
currence of mortality plateaus. Thus according to this type of explanation an individuum
which reaches a large age has just been intrinsically healthier.
Quite recently J. Weitz and H. Fraser presented in [98] a completely different explanation
for this phenomenon. They describe a rather simple toy model, which uses a Markov pro-
cess in order to model the aging process. Such models are often referred to as Markov
mortality models. Weitz and Fraser model ’vitality’ Xt at age t as a one dimensional
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Brownian motion with constant drift b towards 0. The time of death is the first hitting
time of 0. In this rather specific model the time of death has a distribution which has a
closed analytic form. Let T0 be the time of death then the probability of survival until age
t with initial vitality y ∈ (0,∞) is

Py
(
T0 > t

)
=

∫ ∞

t

y√
2πr3

e−
(y−br)2

2r dr.

A rather straightforward computation shows that in the model of Weitz and Fraser

lim
t→∞

Py(T0 > t+ 1)

Py(T0 > t)
= lim

t→∞
Py(T0 > t+ 1 | T0 > t) = e−

b2

2 .

Asymptotically the model of Weitz and Fraser therefore predicts constant hazard rates.
The important point in the work of Weitz and Fraser consists in giving an example where
mortality plateaus arise ex nihilo. What Weitz and Fraser did not observe is the fact
that mortality plateaus are a quite common feature of a large class of Markov mortality
models. Steinsaltz and Evans showed that mortality plateaus are a very general phe-
nomenon, which should be expected in many Markov models and is related to convergence
to quasistationary distributions. In the Weitz-Fraser model this means that conditioned
on survival the vitality converges in the large age limit to a non-trivial distribution, i.e.
the distribution Py(Xt ∈ · | T0 > t) has a non-trivial limit as t→∞. Therefore the demo-
graphic phenomenon of mortality plateaus leads to the interesting mathematical question
of convergence to quasistationarity of one-dimensional diffusions on the half-line. And the
mathematical analysis indicates that in quite arbitrary Markov mortality models the oc-
currence of mortality plateaus is unavoidable. Let us finally mention that in the review
article [26] written by the biologist J.R. Carey the work of Steinsaltz and Evans is referred
to as one of the most innovative works in biodemographic modeling. Thus the problem
considered in this work seems to be not entirely of purely mathematical interest.
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Chapter 2

Quasistationary Distributions in the
Regular Case

In this chapter we aim to complete previous results of David Steinsaltz and Steve Evans
in several directions. In order to do this we have to explore some analytic consequences
of several of their assumptions. These consequences will already indicate how we have to
proceed. In the next section we summarize several known facts and apply them in section
2.2 to our situation. The probabilistic conclusion is finally drawn in section 2.3, where
the main results are presented. In the final section 2.4 a short summery of our strategy is
given and some open problems are formulated and discussed. During this chapter standard
notation will be used. For a Radon measure µ on (0,∞) Lp((0,∞), µ) denotes as usual
the space of all (equivalence classes of) functions f which satisfy

∫∞
0
|f(y)|p µ(dy) <∞. If

µ is the Lebesgue measure we also denote this space just by Lp((0,∞)).

2.1 Assumptions, Definitions and Previous Results

In this section we describe our setting and basic assumptions. Let us start with the
necessary analytic terminology. In general a Sturm-Liouville operator is any formal differ-
ential operator of the form τ = τp,q,V = − 1

2p
d
dx
q d
dx

+ V , where p, q : (a, b) → (0,∞) and

V : (a, b) → R are sufficiently well behaved functions. In this work we consider only oper-
ators where p = q = ρ, V = κ ≥ 0 and a = 0, b = ∞. Moreover we always assume in this
chapter that ρ(x) = e−2

R x
0 b(s) ds for some continuous b ∈ L1

loc([0,∞)) and 0 ≤ κ ∈ C([0,∞).
These conditions are not at all necessary but the inclusion of even bigger classes of diffusion
generators seems to be only of purely academic interest. Concerning the assumptions on b
we could replace the condition b ∈ L1

loc([0,∞)) by the condition that for some c ∈ (0,∞)∫ 1

0
e−

R x
c 2b(s) ds dx < ∞ and

∫ 1

0
e

R x
c 2b(s) ds dx < ∞, which exactly means that the boundary

point 0 is regular in the sense of Feller and also in the sense of Weyl (see Definition 2.1.1
and Definition 2.1.2). The formal differential operator Lκ = − 1

2ρ
d
dx
ρ d
dx

+ κ gives rise to a

9
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closable densely defined quadratic form q̃κ in L2((0,∞), ρ(y) dy) by

C∞
c ((0,∞)) 3 ϕ 7→ q̃κ(ϕ) =

1

2

∫ ∞

0

|ϕ′(y)|2ρ(y) dy +

∫ ∞

0

κ(y)|ϕ(y)|2 ρ(y) dy.

The closure of this quadratic form will be denoted by qκ. In the sequel ρ will also denote
the measure ρ(y) dy. To the quadratic form qκ there corresponds a uniquely defined pos-
itive selfadjoint operator Lκ. This selfadjoint extension of the Sturm-Liouville differential
expression is the so called Friedrichs extension. It is easy to see that the action of the
operator Lκ is given by

Lκϕ(x) = −1

2
ϕ′′(x) + b(x)ϕ′(x) + κ(x)ϕ(x).

The bottom of the spectrum of Lκ will be denoted by λκ0 . σ(Lκ) will denote the spectrum
of the selfadjoint operator Lκ. The corresponding objects with κ ≡ 0 are often denoted
by q, L and λ0 instead of q0, L0 and λ0

0, respectively. Since Lκ and L are selfadjoint
operators the spectral theorem implies the existence of spectral resolutions (Eκ

λ)λ∈[λκ
0 ,∞)

and (Eλ)λ∈[λκ
0 ,∞), respectively. For the basic facts concerning spectral theory of selfadjoint

operators the reader should consult [95]. Furthermore, the spectral theorem for selfadjoint
operators allows to consider functions f(Lκ) of the operator. As explained in section 8.2
of [95] for a given Borel-measurable function f : R → R the operator f(Lκ) is defined via

D(f(Lκ)) =

{
u ∈ L2((0,∞), ρ) |

∫
σ(Lκ)

|f(λ)|2 d‖Eκ
λu‖2

L2(ρ) <∞
}

f(Lκ)u =

∫
σ(Lκ)

f(λ) dEκ
λu.

(2.1.1)

Observe that for a Borel-measurable function f : [0,∞) → R and α ≥ 0 we have
Ran(f(Lκ)) ⊂ D((Lκ)α) if [0,∞) 3 λ 7→ |λαf(λ)| is bounded. This implies in partic-
ular that the range of e−tL

κ
is contained in the domain of all powers of Lκ. Moreover, the

spectral theorem allows to clarify further the connection between the quadratic form qκ and
the associated non-negative operator Lκ. Let

√
Lκ denote the unique non-negative square

root of Lκ which is defined via the spectral theorem. Then we have D(qκ) = D(
√
Lκ) and

for every f ∈ D(Lκ) we have

qκ(f, g) =
(√

Lκf,
√
Lκg)L2((0,∞),ρ). (2.1.2)

Using the ’elliptic’ Harnack inequality it is not difficult (see [63] and Lemma 2.2 in [84])
to see that

λκ0 = max{λ ∈ R |there is a positive solution of (Lκ − λ)u = 0

with u(0) = 0, u′(0) = 1}.
(2.1.3)

Equation (2.1.3) already indicates that for 0 ≤ λ ≤ λκ0 solutions of (Lκ − λ)u = 0 might
have a probabilistic significance.
In the sequel we usually denote by ϕ(λ, ·) the solution of the ordinary differential equation

(Lκ − λ)ϕ(λ, ·) = 0, ϕ(λ, 0) = 0, ϕ′(λ, 0) = 1. (2.1.4)
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It might be important to note that solutions in (2.1.3) and (2.1.4) are solutions in the
sense of the theory of ordinary differential equations. Despite the fact that we write Lκ in
(2.1.3) and (2.1.4) we do not suppose in (2.1.3) and (2.1.4) that u and ϕ(λ, ·) belongs to
L2((0,∞), ρ). In the sequel we usually try to make clear whether we consider solutions in
the sense of ordinary differential equation or solutions in the sense of Hilbert space theory.
Thus we do not require that the solution also belongs to the Hilbert space L2((0,∞), ρ)
and thus is an eigenfunction in the sense of spectral theory. Usually we denote solutions
of (2.1.4) which are also eigenfunctions in the sense of spectral theory by uλ. In this case
we always assume uλ to be normalized, i.e. ‖uλ‖L2((0,∞),ρ) = 1.
At one point we will refer to the operator LN which is associated to the closure of the
quadratic form

C∞
c ([0,∞)) 3 ϕ 7→ q̃N(ϕ) =

1

2

∫ ∞

0

|ϕ′(y)|2ρ(y) dy,

i.e. LN is the selfadjoint realization of the differential expression− 1
2ρ

d
dx

(
ρ d
dx

)
in L2((0,∞), ρ),

which has Neumann-boundary conditions at 0. The quadratic form q is a Dirichlet form
and the canonically associated Markov-process is a solution for the martingale problem
associated to the operator L with pure killing at 0. This means that there exists a fam-
ily of measures (Px)x∈(0,∞) on the space C([0,∞),R) of real valued continuous functions
on [0,∞) such that for every f ∈ L2((0,∞), ρ) and every x ∈ (0,∞) (due to the Feller
property)

(e−tLf)(x) = Ex[f(Xt), T0 > t],

where (Xt)t is the canonical process on C([0,∞),R) and T0 = inf{t > 0 | Xt = 0}. One
dimensional diffusions have the great advantage that several important probabilities can
be calculated quite explicitly (see chapter 5 in [75]). We just recall that Px

(
T0 <∞

)
= 1

for x > 0, if and only if for some c > 0
∫∞
c
e

R t
0 2b(s) ds dt = ∞. If

∫∞
c
e

R t
0 2b(s) ds dt <∞ then

Px
(
T0 <∞

)
=

∫∞
x
e

R t
0 2b(s) ds dt∫∞

0
e

R t
0 2b(s) ds dt

.

Several other qualitative properties can be deduced in a similar way. In the next remark
we summarize another important fact from the theory of one-dimensional diffusions.

Remark 2.1.1. The diffusion corresponding to L is recurrent (see [75] chapter 5) if and
only if for x0 ∈ (0,∞)∫ x0

0

exp

(∫ x

x0

2b(s) ds

)
dx = ∞ and

∫ ∞

x0

exp

(∫ ∞

x0

2b(s) ds

)
dx = ∞.

In analytic terms recurrence means that the associated generator is critical (see [46] and
[75]). Recall that Lκ is called critical iff there exists a unique (up to constant multiples)
positive solution ψ of Lκψ = 0. Otherwise Lκ is called subcritical. The following fact
from the criticality theory will be used later in Lemma 2.2.2: If 0 is an eigenvalue in the
L2-sense, then the generator is necessarily critical. This follows e.g. from Theorem 3.15
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of [46] or Theorem 4.2 in [67]. The fact that the technical assumptions of Theorem 4.2 in
[67] are satisfied follows from the proof of Lemma 2.2.2 (1). In order to apply Theorem
4.2 in [67] observe assuming further that the bottom of the spectrum of Lκ is an eigenvalue
in the L2-sense. Then for every negative 0 6= W ∈ L∞((0,∞)) with compact support in
(0,∞) we get

inf
φ∈C∞c ((0,∞))

‖ϕ‖L2((0,∞),ρ)=1

(
qκ(ϕ) +

∫ ∞

0

W (x)|ϕ(x)|2 ρ(dx)
)
≤
∫ ∞

0

W (x)|uλκ
0
(x)|2 ρ(dx) < 0.

Also the semigroup e−tL
κ

has a probabilistic representation: We consider the product
space

C([0,∞))× [0,∞) = {(ω, ξ) ∈ C([0,∞))× [0,∞)}

endowed with the natural product σ-field. Let (P̃x)x∈(0,∞) denote the family of measures
which is induced by the Dirichlet form q0. For x ∈ (0,∞) we define the measures

P̃x ⊗ e−ξ dξ.

and the stopping time

Tκ(ω, ξ) = inf

{
s ≥ 0 |

∫ s

0

κ(ωs) ds ≥ ξ

}
.

If we set

τ∂ = min
(
T0, Tκ

)
then

(e−tL
κ

f)(x) = Ẽx [f(Xt), τ∂ > t] = Ex

[
e−

R t
0 κ(Xs) dsf(Xt), T0 > t

]
(2.1.5)

Since it will be clear from the context, which probability measure is meant we omit the
tilde. It is rather straightforward to justify the Feynman-Kac representation (2.1.5) using
standard methods which are explained in great detail in the first three chapters of [29].

Let us recall the usual Feller classification (see e.g. chapter 3 in [10]) for diffusion generators
−1

2
d2

dx2 + b(x) d
dx

in an open interval (0, r).

Definition 2.1.1. Let c ∈ (0, r) be given and set ρ(t) = e−
R t

c 2b(s) ds. The point r is
called accessible, if

∫ r
c
ρ(y)−1

∫ y
c
ρ(z) dz dy < ∞, and otherwise inaccessible. If r is

an accessible boundary point, then it is called regular iff
∫ r
c

∫ y
c
ρ(t)−1 dtρ(y) dy < ∞. If

r is accessible and
∫ r
c

∫ y
c
ρ(t)−1 dtρ(y) dy = ∞, then r is called exit boundary. If r is

inaccessible then it is called entrance boundary, iff
∫ r
c

∫ y
c
ρ(t)−1 dtρ(y) dy < ∞. If r is

inaccessible and
∫ r
c

∫ y
c
ρ(t)−1 dtρ(y) dy = ∞, then r is called natural. Of course the same

classification holds for 0.
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In this chapter we will always assume that the boundary point infinity is
inaccessible. As mentioned in [84] the case of two accessible boundary points will offer
no additional novelty.

The names of the boundaries can be justified by the behavior of the associated diffu-
sion process, e.g. if the boundary point r is accessible, then Px(Tr < ∞) > 0 for every
r ≥ x > 0. On the other hand if r = ∞ is natural then for any y ∈ (0,∞)

lim
x→∞

Px
(
Ty > s

)
= 0 for any s > 0.

It is easy to check that the boundary point r is regular if and only if
∫ r
c
ρ(t) dt < ∞ and∫ r

c
ρ(t)−1 dt <∞. If r is an entrance boundary, then

∫ r
c
ρ(t) dt <∞ but

∫ r
c
ρ(t)−1 dt = ±∞.

If r is exit then
∫ r
c
ρ(t)−1 dt is finite but

∫ r
c
ρ(t) dt is not finite.

A boundary point is thus regular in the sense of Feller if and only if it is regular in
the sense of Weyl. For convenience of the reader let us recall the relevant definition of
the well-known Weyl theory of selfadjoint extensions of singular Sturm-Liouville operators
Lκ = − 1

2ρ
d
dx

(ρ d
dx

) + κ in (0, r) adapted to our special situation.

Definition 2.1.2. Let z ∈ C. We say that boundary r is of limit point type, if there
exists c ∈ (0, r) and a solution f of (Lκ − z)f = 0 such that

∫ r
c
|f(r)|2ρ(y) dy = ∞.

If there exists c ∈ (0,∞), such that for every solution of the equation (Lκ − z)f = 0 the
integral

∫ r
c
|f(y)|2ρ(y) dy is finite, then we say that r is of limit-circle type. An analogous

notation applies to the boundary point 0.

A fundamental result in the theory of Sturm-Liouville operators is the so called Weyl-
alternative, which states that exactly one of the above situations holds and that the limit-
point/limit-circle classification is independent of z ∈ C (see [53]). Moreover if we are in
the limit point case at r then for every z ∈ C \ R there exists exactly one solution of the
equation (Lκ− z)f = 0 which satisfies

∫ r
c
|f(s)|2 ρ(dy) <∞. Roughly limit-circle case at a

boundary point r means that we have to specify boundary conditions at r in order to get
a selfadjoint realization, whereas in the limit-point case at r no boundary conditions at r
are necessary.

As we mentioned in the introduction we are mainly interested in the asymptotic behavior
of the diffusion process (Xt)t≥0 corresponding to the operator Lκ on the half line condi-
tioned on survival. Therefore let us summarize the relevant definitions. Observe that our
formulation slightly differs from the one in [84] as we use the measure ρ as a reference
measure instead of the Lebesgue measure.

Definition 2.1.3. We say that Xt converges from the initial distribution ν to the
quasistationary distribution ϕ on compacta if for any positive z, and any Borel
A ⊂ [0, z]

lim
t→∞

Pν
(
Xt ∈ A | Xt ≤ z

)
=

∫
A
ϕ(y) ρ(dy)∫ z

0
ϕ(y) ρ(dy)

;
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Xt converges from the initial distribution ν to the quasistationary distribution
ϕ if for any Borel subset A ⊂ [0,∞)

lim
t→∞

Pν
(
Xt ∈ A | τ∂ > t

)
=

∫
A
ϕ(y) ρ(dy)∫∞

0
ϕ(y) ρ(dy)

.

Finally we say that Xt escapes from the initial distribution ν to infinity if

lim
t→∞

Pν
(
Xt ≤ z | τ∂ > t

)
= 0.

Remark 2.1.2. In the literature there is no commonly accepted definition of quasistation-
ary distributions. The probability measure ϕ(y) ρ(dy)R∞

0 ϕ(y) ρ(dy)
in Definition 2.1.3 is sometimes also

called a quasi-limiting distribution. A quasistationary distribution ν̃ is often defined as a
probability measure ν̃ supported in (0,∞) satisfying

Pν̃
(
Xt ∈ A | τ∂ > t

)
= ν̃(A), ∀ Borel sets A ⊂ (0,∞), t > 0.

Quasi-limiting distributions are also called Yaglom limits. It is not difficult to see that
quasi-limiting distributions are in particular quasistationary distributions. Most of the
time we use both terms interchangeable since we are mainly interested in the quasi-limiting
distribution.

Let us now describe one of the main results of Steinsaltz and Evans (Theorem 3.3 in
[84]). Observe that we have due to equation (2.1.3) that ϕ(λκ0 , ·) is positive.

Theorem 2.1.1 (Theorem 3.3 in [84]). Let (Xt)t≥0 denote the diffusion which is associated
to the Dirichlet form qκ and let Lκ denote the operator associated to qκ. Moreover let λκ0 =
inf σ(Lκ) and the ϕ(λκ0 , ·) solve the ordinary differential equation Lκϕ(λκ0 , ·) = λκ0ϕ(λκ0 , ·)
with ϕ(λκ0 , 0) = 0 and ϕ′(λκ0 , 0) = 1. Assume that ∞ is a natural boundary point and that
we are in the limit-point case at ∞. Suppose that either

lim inf
x→∞

κ(x) > λκ0 or lim sup
x→∞

κ(x) < λκ0 .

Then either Xt converges to the quasistationary distribution ϕ(λκ0 , ·), or Xt escapes to
infinity. In the case lim inf κ(x) > λκ0 , Xt converges to the quasistationary distribution
ϕ(λκ0 , ·) if and only if

∫∞
0
ϕ(λκ0 , y) ρ(dy) is finite.

We would like to stress that the assertion of Theorem 2.1.1 is not at all trivial. A
priori it is neither clear that the conditional distribution converges nor that the mass can
not split with part of the mass remaining on (0,∞) and part of the mass escaping to
infinity. Missing are obviously simple general conditions, which allow to decide which case
actually occurs. Steinsaltz and Evans are able to specify one case, in which Xt converges to
quasistationarity. They prove that in the case λκ0 < K =: limt→∞ κ(t) one has convergence
to quasistationarity if the condition

(GB’) ∃b̃, κ̃ ≥ 0∀y large enough : |b(y)| ≤ b̃y and κ(y) ≤ κ̃y
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or the related condition

(GB”) ∃b̄1, b̄2, κ̄, β ≥ 0∀y large enough : b̄1y
β ≥ b(y) ≥ −b̄1y, b′(y) ≥ −b̄2y2

and κ(y) ≤ κ̃y

are satisfied (Notice, that our sign convention differs from that of [84]). We would like to
point out that though these conditions are satisfied in many applications they are from a
theoretical point of view somewhat unnatural, e.g. there seems to be no natural reason,
why an upper bound on the killing rate as in (GB’) should be necessary. On the contrary
if one strengthens the killing rate κ then from a heuristic point of view it should be easier
to prove convergence to quasistationarity.

Remark 2.1.3. We make use of Theorem 2.1.1 only in the case λκ0 > limx→∞ κ(x) and
ρ((0,∞)) <∞. In the other cases we use different techniques. In the next section we show
that ∞ is always in the limit-point case. As emphasized in [84] in this case the heuristic
behind Theorem 2.1.1 is quite clear, but the translation of this idea into formal mathematics
is not trivial.

2.2 Analytic Results

In this section we present several results, which are mainly derived via analytic techniques.
We use standard methods from the theory of Sturm-Liouville operators but the inclusion of
these methods in the study of quasistationary distributions seems to be new. The results are
most probably not surprising for or even known to experts in the Sturm-Liouville theory but
since our results will mainly be of interest for the probability community we present rather
complete proofs. We start by establishing a connection between the Feller classification
and the Weyl classification of boundary points. This has already been investigated in [99]
for the case κ = 0, but in this work the author introduces the notion of weak entrance
boundary and shows that one is in the limit-circle case if the boundary point is of weak
entrance type. In particular we show that there are no weak entrance boundaries at ∞ by
proving that ∞ is of limit-point case if and only if it is not a regular boundary point. The
proof we give is rather well-known in the Schrödinger case (see [13] and [79] for similar
ideas in a much more general context and section 13.4 in [96]). The required regularity of
the coefficients of the Sturm-Liouville expression is far from being optimal and is assumed
only for convenience.

Lemma 2.2.1. Let the Sturm-Liouville expression τf(x) = 1
r(x)

(
r(x)f ′(x)

)′
+ q(x)f(x) be

given. Assume that r is strictly positive and locally Lipschitz in (0,∞) and q ∈ L2
loc([0,∞))

such that q(x) ≥ −C|x|2 +D for some constants C,D ≥ 0 Then we are in the limit point
case at ∞.

Proof. Obviously we can assume that D = 0. As usual in the theory of Sturm-Liouville
operators we define the maximal operator T and the minimal operator T̃ associated to the
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differential expression τ via

D(T ) :=
{
f ∈ L2((0,∞), r(x)dx) | f, rf ′ absolutely continuous in (0,∞),

τf ∈ L2((0,∞), r(x)dx
}

Tf := τf for f ∈ D(T )

and

D(T̃ ) :=
{
f ∈ D(T ) | f has compact support in (0,∞)

}
, T̃ f : = Tf for f ∈ D(T̃ ),

respectively. Let Tγ be the restriction of the maximal operator T to the domain

D =
{
f ∈ D(T ) | f(0) cos(γ)− rf ′(0) sin(γ) = 0

}
,

where γ ∈ [0, π). The reader may even set γ = 0 in the sequel. Then (Tγ,D) is a 1-
dimensional restriction of the maximal operator. We will prove that Tγ defines a symmetric
operator, i.e. (f, Tγf)L2(ρ) ∈ R for every f ∈ D. This proves the assertion of the Lemma,
since if we are in the limit-circle case at ∞ then the deficiency indices of the minimal
operator T̃ would be (2, 2) and the operator Tγ would be a 3-dimensional extension of T̃ .
This is a contradiction to the symmetry of Tγ since every maximal symmetric extension of
T̃ is a 2-dimensional extension. Let ϕ ∈ C∞

c (R) such that 0 ≤ ϕ ≤ 1 and

ϕ(x) =

{
1 if |x| ≤ 1

0 if |x| ≥ 2.

Further we set ϕk(x) = ϕ(x
k
) (k ∈ N). Then we get∫ ∞

0

ϕk(x)
2f(x)Tγf(x)r(x) dx =

∫ ∞

0

ϕk(x)
2f(x)

(
(rf ′(x))′ + r(x)q(x)

)
dx

=

∫ ∞

0

ϕk(x)
2
(
|f ′(x)|2 + q(x)|f(x)|2

)
r(x) dx

+ 2

∫ ∞

0

ϕk(x)ϕ
′
k(x)f(x)f ′(x)r(x) dx.

This gives for f ∈ D(Tγ) and k ∈ N

(f, Tγf)L2(0,b,r) = lim
k→∞

∫ ∞

0

ϕk(x)
2f(x)Tγf(x) r(x)dx

= lim
r→∞

{∫ ∞

0

ϕ2
k(x)

(
|f ′(x)|2 + q|f |2

)
r(x)dx

+ 2

∫ ∞

0

ϕr(x)ϕ
′
r(x)f(x)f ′(x)r(x) dx

}
.

(2.2.1)
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The first term on the right hand side of equation (2.2.1) is real and therefore is suffices to
prove that the second term converges to 0 as k → ∞. For the second term on the right
hand side of equation (2.2.1) we have for some constant M > 0∣∣∣∣∫ ∞

0

ϕk(x)ϕ
′
k(x)f(x)f ′(x) r(x)dx

∣∣∣∣ ≤ (∫ ∞

0

ϕk(x)
2|f ′(x)|2r(x) dx

∫ ∞

0

|ϕ′k(x)|2|f(x)|2 r(x)dx
) 1

2

≤Mk−1

(∫ ∞

0

ϕk(x)
2|f ′(x)|2 r(x)dx

∫ 2k

k

|f(x)|2r(x) dx
) 1

2

.

(2.2.2)

For the first integral on the right hand side of the inequality (2.2.2) we get with the help
of (2.2.1)∫ ∞

0

ϕk(x)
2|f ′(x)|2r(x) dx =

∫ ∞

0

ϕ2
k(x)f(x)(Tγf(x)) r(x)dx−

∫ ∞

0

ϕ2
k(x)q(x)|f(x)|2 r(x)dx

− 2

∫ ∞

0

ϕkϕ
′
k(x)f(x)f(x)′ r(x)dx

≤
∫ ∞

0

ϕk(x)|f(x)||Tγf(x)| r(x)dx+ C

∫ ∞

0

ϕ2
k(x)x

2|f(x)|2 r(x)dx

+
1

2

∫ ∞

0

ϕk(x)
2|f ′(x)|2 r(x)dx+ 4M2k−2‖f‖2

L2(r(x)dx)

≤ ‖f‖L2(r(x)dx)‖Tγf‖L2(r(x)dx) + C(2k)2‖f‖L2(r(x)dx)

+
1

2

∫ ∞

0

ϕk(x)
2|f ′(x)|2 r(x)dx+ 4M2k−2‖f‖L2(r(x)dx).

This gives∫ ∞

0

ϕk(x)
2|f ′(x)|2 r(x)dx ≤ 2‖f‖L2(r(x)dx)‖Tγf‖L2(r(x)dx) + 2C(2k)2‖f‖2

L2(r(x)dx)

+ 8M2k−2‖f‖2
L2(r(x)dx)

and therefore for large k∫ ∞

0

ϕk(x)
2|f ′(x)|2 dx ≤ C1 + C2k

2 ≤ C3k
2.

Using (2.2.2) this implies that as k →∞∣∣∣∣∫ ∞

0

ϕk(x)ϕ
′
k(x)f(x)f ′(x) r(x)dx

∣∣∣∣ ≤Mk−1

(
C3k

2

∫ 2k

k

|f(x)|2 r(x)dx
) 1

2

→ 0.

This finishes the proof of the assertion.
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The above result in particular shows that the assumption (LP) (= limit point case at
infinity) in [84] can always be dropped and we are allowed to use the results established
by Steinsaltz and Evans. Steinsaltz and Evans proved that (LP) holds true if κ ≡ 0 or if
the assumption

(LP’) lim inf
z→∞

z−2
(
b(z)2 − b′(z) + 2κ(z)) > −∞

is satisfied. The occurrence of (LP’) is explained by the fact that Steinsaltz and Evans do
not use the space L2((0,∞), ρ) from the very beginning but instead work with L2((0,∞), dx).
Let us recall another fundamental result from the theory of Sturm-Liouville operators with
one regular boundary point. A proof of it can be found in [47], [19] or any other textbook
on the theory of Sturm-Liouville operators.

Theorem 2.2.1. Let τ = − 1
2ρ

d
dx

(
ρ d
dx

)+κ be a Sturm-Liouville expression which is regular
at 0 and in the limit point case at infinity and let H be the selfadjont realization of τ
in L2((0,∞), ρ(x)dx) with Dirichlet boundary conditions at 0, where ρ(x) = e−

R x
0 2b(s) ds.

Let ϕ(z, ·) be the unique solution of the ordinary differential equation τϕ(z, ·) = zϕ(z, ·)
satisfying ϕ(z, 0) = 0 and ϕ′(z, 0) = 1. Then there exists a measure σ such that supp(σ) =
σ(H) an such that

U : L2((0,∞), ρ) → L2(σ(H), σ), h 7→ ĥ(·) =

∫ ∞

0

h(x)ϕ(·, x) ρ(x)dx

uniquely extends to a unitary mapping with the property that for every F ∈ C(R)

U F (H)U−1 = MF

in L2(R, µ), where MF denotes the maximal operator acting by multiplication with F .
Moreover the spectrum of H is simple and σ(F (H)) = ess ranσ(F ).

The spectrum of a selfadjoint operator can be classified at least into two parts. Recall
that the essential spectrum σess(A) of a selfadjoint operator A consists of all limit points
of the spectrum σ(A) and all eigenvalues of A of infinite multiplicity. The discrete part
σd(A) of the spectrum σ(A) of A consists of all isolated eigenvalues of finite multiplicity. In
the Sturm-Liouville case every eigenvalue has finite multiplicity and therefore the essential
spectrum of Sturm-Liouville operators consists of the limit points of the spectrum. It is
well-known that the essential part of the spectrum of selfadjoint operators is invariant with
respect to relatively compact perturbations. It might be useful to recall the definition of
relative compactness. Let T : X → X be an operator acting in a Banach space X. Then
an operator V : X → X is called relatively compact with respect to T , if D(T ) ⊂ D(V )
and if for some z ∈ C\σ(T ) the operator V (T −z)−1 is compact. We refer to section 9.2 of
[95] for further details, which will be used in the next Lemma, where several consequences
of the condition λκ0 6= limt→∞ κ(t) are investigated.

Lemma 2.2.2. Let the Sturm-Liouville expression τf = − 1
2ρ

(ρf ′)′ in (0,∞) be given and

let L be the selfadjoint realization of τ in the Hilbert space L2((0,∞), ρ(x) dx) satisfying
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Dirichlet boundary conditions at 0. For some continuous and bounded function 0 ≤ κ ∈
C([0,∞)) let Lκ denote the selfadjoint realization of the Sturm-Liouville expression τ + κ
satisfying Dirichlet boundary conditions at 0. As usual set λ0 = inf(σ(L)) and λκ0 =
inf(σ(Lκ)). Then the following assertions are true:

(1) If limt→∞ κ(t) = 0, then σess(L) = σess(L
κ)

(2) λ0 > 0 and
∫∞

0
ρ(t)−1 dt = ∞ imply ρ(R+) <∞.

(3) λ0 > 0 and ρ([0,∞)) = ∞ imply limr→∞
1
r
log ρ([0, r)) > 0.

(4) If λκ0 < limt→∞ κ(t) then λκ0 is a simple isolated eigenvalue with a unique positive
eigenfunction.

(5) If λκ0 > limt→∞ κ(t) then λ0 > 0

Proof. Assertion (1) can be derived from the fact that the essential spectra of two selfad-
joint operators T1 and T2 coincide, if the for some z ∈ C \ (σ(T1) ∪ σ(T2)) the difference

(T1 − z)−1 − (T2 − z)−1

is a compact operator. Set κn(t) = 1[0,n](t)κ(t). The resolvent equation gives for z ∈ C \R

(Lκn − z)−1 − (L− z)−1 = (Lκn − z)−1(L− Lκn)(L− z)−1 = −(Lκn − z)−1κn(L− z)−1.

Observe now that the operator κn(L− z)−1 is compact, i.e. the operator acting by multi-
plication with κn is relatively compact with respect to the operator L. This can be seen
by considering the explicit form of the resolvent (see chapter 3.3 in [53], similar results can
be found in [24]). We have

[κn(L− z)−1]g(x) = κn(x)
1

W (v, u)

(
v(x)

∫ x

0

u(y)g(y)ρ(y)dy + u(x)

∫ ∞

x

v(y)g(y)ρ(y)dy

)
,

where the Wronskian W (f, g) of two locally absolutely continuous functions f and g is
defined by W (f, g)(x) = f(x)ρg′(x)−ρf ′(x)g(x) and u,v are linearly independent solutions
of (τ − z)w = 0 satisfying u(0) = 0,u′(0) = 1 and

∫∞
1
|v(y)|2 ρ(dy) <∞. As is well known

the Wronskian W (v, u) is actually independent of x ∈ (0,∞) and is not zero due to the
linear independence of v and u. Observe that we are using the fact that we are in the limit
point case at infinity. Thus κn(L− z)−1 is an integral operator in L2(ρ) with kernel k(·, ·)
given by

k(x, y) =

{
κn(x)
W (v,u)

v(x)u(y) if y ≤ x,
κn(x)
W (v,u)

v(y)u(x) if y ≥ x,

which is Hilbert-Schmidt and therefore in particular compact. In order to prove the Hilbert-
Schmidt property observe that due to the mentioned properties of u and v∫ ∞

0

∫ ∞

0

|k(x, y)|2 ρ(dy) ρ(dx) =
1

W (v, u)2

∫ n

0

(∫ x

0

|u(y)|2 ρ(dy)|κn(x)v(x)|2

+

∫ ∞

x

|v(y)|2 ρ(dy)|κn(x)u(x)|2
)
ρ(dx) <∞.
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It remains to show that Lκn converges in the norm-resolvent sense to Lκ since in this case

(L− z)−1 − (Lκn − z)−1 → (L− z)−1 − (Lκ − z)−1

with respect to the operator norm. But this follows from the resolvent equation

(Lκn − z)−1 − (Lκ − z)−1 = (Lκn − z)−1(κ− κn)(L− z)−1

since ∥∥(Lκn − z)−1 − (Lκ − z)−1
∥∥ ≤ ‖(Lκn − z)−1‖‖κ− κn‖∞‖(Lκ − z)−1‖

≤ 1
(=z)2

‖κ− κn‖∞ → 0

as n→∞. In the second inequality we used the fact that the operator norm of an operator,
which acts by multiplication with a function f , coincides with the supremum norm of the
function f .
Assertion (2) is contained in [65] and also follows from Theorem 1 of the recent work [76]
(In [76] somewhat stronger conditions on the drift are imposed, but an inspection of the
proof shows that these are not necessary).
Assertion (3) follows e.g. from the work of Notarantonio [69]. His result implies that the
bottom of the essential spectrum of the operator LN with Neumann boundary conditions
at 0 is bounded above by lim supr→∞

1
r
log ρ((0, r)). This is 0 if the volume growth is

subexponential. In order to prove assertion (3) it is therefore enough to show that λ0 > 0
implies the strict positivity of the bottom of the spectrum of LN . Since the difference
(LN + 1)−1 − (L + 1)−1 is obviously compact, the bottom of the essential spectrum of
LN coincides with the bottom of the essential spectrum of L. Thus if the bottom of the
spectrum of L is strictly positive, then also the bottom of the essential spectrum of LN is
strictly positive. If λN0 := inf σ(LN) = 0 then λN0 = 0 is necessarily an isolated eigenvalue
of the operators LN . Let us assume that λN0 = 0. The unique (up to positive multiples)
non-trivial and non-negative eigenfunction vN ∈ L2((0,∞), ρ(x)dx) associated to λN0 = 0
therefore solves the boundary value problem

LNv
N = λN0 v

N = 0, vN(0) > 0 and ρ
dvN

dx
(0) = 0.

Since this ordinary differential equation has a unique solution and since for some constant
c > 0 the constant function c1 is also a solution of this equation, we conclude that
vN = c1. Since due to the assumption ρ((0,∞)) = ∞ we finally arrive at the contradiction
vN /∈ L2((0,∞), ρ(dx)) and therefore λN0 > 0.
Assertion (4): If λκ0 < limt→∞ κ(t) = K then an application of the result in (1) shows that
Lκ = L + K + (κ −K) has the same essential spectrum as L + K. Since L is a positive
operator the bottom of the essential spectrum of L+K has to be bigger than or equal to
K. The assumption λκ0 < K therefore implies

λκ0 < K ≤ λess(L+K) = λess(L
κ),
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which implies the assertion of the theorem.
Assertion (5): Again the application of (1) implies that Lκ = L + K + (κ − K) and
L+K have the same essential spectrum. In particular we conclude that inf σess(L) +K =
inf σess(L+K) ≥ λκ0 and therefore inf σess(L) ≥ λκ0 −K > 0. If 0 ≤ λ0 < inf σess(L) then
λ0 is an isolated eigenvalue. Because of the transience of the diffusion corresponding to
the generator L (see Remark 2.1.1) and criticality theory (see Remark 2.1.1 and [46], [75])
0 can not be an isolated eigenvalue. Thus λ0 > 0.

In some sense it is Lemma 2.2.2, which allows us to go beyond the assertions of Theorem
2.1.1, since it allows us to separate the influence of the drift from the effect of the killing
term. Moreover it clearly shows, why the case λκ0 < K will turn out to be easier than the
case λκ0 > K.

Remark 2.2.1. In Lemma 2.2.2 we usually worked with the assumption that the limit
limt→∞ κ(t) exists. Since Theorem 2.1.1 does not assume such a condition it is natural to
ask, which assertions of Lemma 2.2.2 really rely on the existence of the limit limt→∞ κ(t).
In assertion (4) of Lemma 2.2.2 we assumed that limt→∞ κ(t) > λκ0 . Let us now assume
only that lim inft→∞ κ(t) > λκ0 . By the so called decomposition principle (as in the proof of
Theorem 14.11 in [51]) it is not difficult to see that the essential spectrum of Lκ and the
essential spectrum of the operator Lκa (a > 0) do not differ, where the operator Lκa is the
selfadjoint extension of τκ in L2((a,∞), ρ) satisfying Dirichlet boundary conditions at a.
Therefore we have

inf σess(L
κ) ≥ lim

a→∞
inf σ(Lκa).

If a0 > 0 and ε > 0 are such that inft≥a0 κ(t) > λκ0 + ε we thus conclude that

inf σess(L
κ) ≥ lim

a→∞
inf σ(Lκa)

≥ inf
ϕ∈C∞c (a0,∞)

‖ϕ‖L2((a0,∞),ρ)=1

(
1

2

∫ ∞

a0

|ϕ′(x)|2 ρ(dx) +

∫ ∞

a0

κ(x)|ϕ(x)|2ρ(dx)
)

≥ λκ0 + ε.

Summarizing we have shown that already the condition lim inft→∞ κ(t) > λκ0 implies the
bottom of the spectrum of Lκ is an isolated eigenvalue. A similar argument applies also to
assertion (5). We preferred to present Lemma 2.2.2 in the given form, since in this case
the necessary arguments are very straightforward.

Remark 2.2.2. The assertion (2) of the above lemma can be made much more precise.
Assuming that absorption is certain Ross Pinsky proves in [76] that

1

8A(b)
≤ λ0 ≤

1

2A(b)
, (2.2.3)

where

A(b) = sup
x>0

ρ([x,∞))

∫ x

0

ρ(t)−1 dt.
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Related analytic inequalities, which are usually referred to as weighted Hardy inequalities,
can be found in [68]. Indeed the results of [68] can be used in order to deduce Pinsky’s
bounds in a rather straightforward way.

Remark 2.2.3. The fact that the bottom of the spectrum is an isolated eigenvalue is also of
practical interest, because in this case the associated eigenfunction can be approximated in
a quite accurate way by the ground states of regular Sturm-Liouville operators on bounded
intervals (see the recent survey [97]). Such a result is reproved in the recent preprint [91] in
order to provide an approximation of the minimal quasistationary distribution of a diffusion
generator with discrete spectrum via a Fleming-Viot type interacting particle system.

Remark 2.2.4. Assume that λκ0 is an eigenvalue with associated eigenfunction uλκ
0
∈

L2((0,∞), ρ), which by general theory is strictly positive and simple (this is a direct con-
sequence of standard theorems of Perron-Frobenius type, see e.g. Satz 17.6 in [96]). Then

lim
t→∞

eλ
κ
0 tpκ(t, x, y) = c uλκ

0
(x)uλκ

0
(y),

where c is a normalizing constant, which is 1 if ‖uλκ
0
‖L2((0,∞),ρ) = 1. This was proved

in [82] for the transition function of Brownian motion on Riemannian manifolds but the
proof carries over without essential changes to our case. The interested reader will find the
necessary arguments later in the proof of Lemma 4.3.1.

We will also make use of the following result which is a special case of Theorem 3.1 in
[84].

Lemma 2.2.3 (Theorem 3.1 in [84]). Let 0 ≤ f ∈ L2((0,∞), ρ) with compact support
supp(f) ⊂ [0,∞) be given and let νf denote the measure f(x)ρ(dx). Let Lκ be as in
Lemma 2.2.2 and let pκ(t, ·, ·) denote the integral of e−tL

κ
. Then for arbitrary measurable

bounded sets A,B ⊂ (0,∞)

lim
t→∞

∫∞
0
f(x)

∫
B
pκ(t, x, y) ρ(dy) ρ(dx)∫∞

0
f(x)

∫
A
pκ(t, x, y) ρ(dy) ρ(dx)

=

∫
B
ϕ(λκ0 , y) ρ(dy)∫

A
ϕ(λκ0 , y) ρ(dy)

,

i.e. Xt converges from the initial distributions
νfR∞

0 f(s) ρ(ds)
on compacta to the quasistation-

ary distribution ϕ(λκ0 , ·).

The above lemma can be proved rather directly using the spectral representation for
Sturm-Liouville operators. The reader will see the necessary arguments later in this work
in the proof of Theorem 2.2.3. Our first goal consists in extending this result to the case
of general compactly supported initial distributions ν. Before we prove such an extension
we will deduce some consequences of Lemma 2.2.3. This will lead to Theorem 2.2.2, which
is often referred to as a strong ratio limit theorem. Before we begin with the proof of the
strong ratio limit theorem we explain another analytic fact which has no direct relation to
spectral theory but which will turn out to be very useful.
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Remark 2.2.5. We will make good use of the local parabolic Harnack inequality which
quite general holds for second order parabolic differential equations. The local parabolic
Harnack inequality ([62]) states that for fixed x0 ∈ (0,∞), t ∈ (0,∞) and R > 0 there is a
constant C such that for every weak solution u of (∂t − Lκ)u = 0 which is non-negative in
Q((x0, t0), 4R) ⊂ (0,∞)× (0,∞)

sup
Θ((x0,t0),R/2)

u ≤ C inf
Q((x0,t0),R)

u,

where
Q((x0, t0), R) = {X ∈ R2 | max

(
|x− x0|,

√
|t− t0|

)
< R, t < t0}

and Θ((x0, t0), R/2) = Q((x0, t0 − R2), R). As in Theorem 10 of [28] this inequality can
be applied to the transition kernel pκ(t, x, y) in order to prove that for every compact K ⊂
(0,∞) and T > 0 there is a constant c = c(K,T ) > 0 such that for t ≥ T , x1, x2, x3, x4 ∈ K

c−1pκ(t, x1, x2) ≤ pκ(t, x3, x4) ≤ cpκ(t, x1, x2).

Moreover the local parabolic Harnack inequality shows that there exists a locally bounded
function F : (0,∞) → (0,∞) such that for every t ≥ 1, y ∈ (0,∞) and |z − x| < 1

2
∧ |x|

4

pκ(t, x, y) ≤ F (x)pκ(t+ 1, z, y)

Some very important ingredients for the following proofs go back to [5], where it played
an important role in a different context. Since we do not assume criticality of the operator
and since no Hölder-continuity of the coefficients is required we can not directly copy the
proof of Theorem 2.2 in [5].

Lemma 2.2.4. For any x0 ∈ (0,∞) the family of functions{
[0,∞)× R+ × R+ 3 (t, x, y) 7→ pκ(t+ s, x, y)

pκ(s, x0, x0)
| s ≥ 1

}
is relatively compact in the space C((0,∞)2,R) of real-valued continuous functions on
(0,∞)2.

Proof. Let (sn)n∈N be a sequence with 1 ≤ sn →∞ and set for t ∈ [0,∞), x, y ∈ (0,∞)

rn(t, x, y) =
pκ(sn + t, x, y)

pκ(sn, a, a, )
,

where a ∈ (0,∞) is fixed. The functions (t, x, y) 7→ rn(t, x, y) (n ∈ N) are solutions to the
parabolic equation

(2∂t + Lκx + Lκy)rn(t, x, y) = 0,

where the operator Lκx and Lκy act as Lκ on x- and y-variable, respectively. By the local
parabolic Harnack inequality (compare Remark 2.2.5) we conclude that for each compact
set K ⊂ (0,∞) there exists a constant CK such that for all n ∈ N, t ≥ 0 and x, y, a ∈ K

pκ(sn + t, x, y) ≤ CKp
κ(sn + t, a, a)
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By general spectral theory it is proved by Davies in Lemma 4.3.1 of his work [28] that
r 7→ pκ(r, x0, x0) is non-increasing. Therefore we conclude that for t ≥ 0 and x, y ∈ K

pκ(sn + t, x, y)

pκ(sn, a, a)
≤ CK .

Theorem 6.28 in [62] shows that the set {rn | n ∈ N} is locally uniformly equicontinu-
ous. Therefore by the theorem of Arzela-Ascoli there exists a subsequence (rnk

)k∈N which
converges locally uniformly.

In the following proof we compare the quotient of the heat kernel at different time and
different spatial points. In the probability literature one usually refers to such results as
strong ratio limit theorems. These are known for several types of stochastic processes.
Results for certain branching processes can be found in the book [6] of Athreya and Ney.
A proof of the strong ratio property for certain Markov chains on the integers was given
in the work [57] of Kesten.

Theorem 2.2.2. Let pκ(t, ·, ·) denote the integral kernel of the selfadjoint operator e−tL
κ

then for any x0 ∈ (0,∞)

lim
s→∞

p(t+ s, x, y)

p(s, a, a)
= e−λ0t

ϕ(λκ0 , x)ϕ(λκ0 , y)

ϕ(λκ0 , a)ϕ(λκ0 , a)

Proof. For every sequence (sn)n∈N ⊂ (0,∞) converging to infinity we know by Lemma
2.2.4 that for some subsequence (snk

)k of (sn) there exists a function ψ such that

pκ(snk
+ t, x, y)

pκ(snk
, a, a)

→ ψ(t, x, y),

where the convergence is locally uniform in [0,∞) × (0,∞)2. Since by Lemma 7.7 in [84]
(see also the proof of Theorem 25 in [28]) for every f ∈ L2((0,∞), ρ) with compact support

lim
t→∞

〈e−(t+s)Lκ
f, f〉L2(ρ)

〈e−sLκf, f〉L2(ρ)

= e−λ
κ
0 t

one easily concludes that
ψ(t, x, y) = e−λ

κ
0 (t)ψ(0, x, y).

Lemma 2.2.3 shows that for every f, g, h ∈ C∞
c (0,∞)∫∞

0
g(y)ϕ(λκ0 , y) ρ(dy)∫∞

0
h(y)ϕ(λκ0 , y) ρ(dy)

= lim
k→∞

∫∞
0
f(x)

∫∞
0
g(y)pκ(snk

, x, y) ρ(dy) ρ(dx)∫∞
0
f(x)

∫∞
0
h(y)pκ(snk

, x, y) ρ(dy) ρ(dx)

= lim
k→∞

∫∞
0
f(x)

∫∞
0
g(y)

pκ(snk
,x,y)

pκ(snk
,x0,x0

) ρ(dy) ρ(dx)∫∞
0
f(x)

∫∞
0
h(y)

pκ(snk
,x,y)

pκ(snk
,x0,x0)

ρ(dy) ρ(dx)

=

∫∞
0
f(x)

∫∞
0
g(y)ψ(0, x, y) ρ(dy)∫∞

0
f(x)

∫∞
0
h(y)ψ(0, x, y) ρ(dy)
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This implies that for x ∈ (0,∞), g, h ∈ C∞
c ((0,∞)∫∞

0
g(y)ϕ(λκ0 , y) ρ(dy)∫∞

0
h(y)ϕ(λκ0 , y) ρ(dy)

∫ ∞

0

h(y)ψ(0, x, y) ρ(dy) =

∫ ∞

0

g(y)ψ(0, x, y) ρ(dy)

and furthermore for every h ∈ C∞
c (0,∞)

ψ(0, x, y) = ϕ(λκ0 , y)

∫∞
0
h(y)ψ(0, x, y) ρ(dy)∫∞

0
h(y)ϕ(λκ0 , y) ρ(dy)

Due to the symmetry of ψ(0, ·, ·) we conclude that for some constant c ≥ 0

ψ(0, x, y) = c ϕ(λκ0 , x)ϕ(λκ0 , y).

Because of ψ(0, a, a) = 1 we arrive at c−1 = ϕ(λκ0 , a)ϕ(λκ0 , a). Since this is true for every
subsequence the assertion of the theorem is proved.

Corollary 2.2.1. Let A ⊂ (0,∞) and B ⊂ (0,∞) be precompact sets and let s ≥ 0 be
given. Then

lim
t→∞

Pν(Xt+s ∈ A)

Pν(Xt ∈ B)
= e−λ

κ
0 s

∫
A
ϕ(λκ0 , x) ρ(dx)∫

B
ϕ(λκ0 , y) ρ(dy)

for every initial distribution ν, which is compactly supported in (0,∞)

Proof. We have seen in Theorem 2.2.2 that for fixed x ∈ (0,∞) we have

lim
t→∞

p(t+ s, x, y)

p(t, a, a)
= e−λ

κ
0 s
ϕ(λκ0 , x)ϕ(λκ0 , y)

ϕ(λκ0 , a)ϕ(λκ0 , a)
,

where the convergence is locally uniform on (0,∞) × (0,∞). For every Borel measure ν
with compact support in [0,∞) we therefore get

Pν
(
Xt+s ∈ A | Xt ∈ B

)
=

Pν
(
Xt+s ∈ A

)
Pν
(
Xt ∈ B

) =

∫∞
0
ν(dx)

∫∞
0
ρ(dy)p(t+ s, x, y)1A(y)∫∞

0
ν(dx)

∫∞
0
ρ(dy)pκ(t, x, y)1B(y)

=

∫∞
0
ν(dx)

∫∞
0
ρ(dy)pκ(t+ s, x, y)1A(y)

pκ(t, a, a)

·
(∫∞

0
ν(dx)

∫∞
0
ρ(dy)pκ(t, x, y)1B(y)

pκ(t, a, a)

)−1

=

∫ ∞

0

ν(dx)

∫ ∞

0

ρ(dy)
pκ(t+ s, x, y)

pκ(t, a, a)
1A(y)

·
(∫ ∞

0

ν(dx)

∫ ∞

0

ρ(dy)
pκ(t, x, y)

pκ(t, x,a)
1B(y)

)−1

→ e−λ
κ
0 s

∫
A
ϕ(λκ0 , y) ρ(dy)∫

B
ϕ(λκ0 , y) ρ(dy)
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Remark 2.2.6. Theorem 2.2.2 has an intimate relation to the parabolic Martin bound-
ary theory. In terms of this theory it says that every sequence (sn, x) ⊂ (0,∞) × (0,∞)
with limn→∞ sn = −∞ converges in the parabolic Martin topology to the parabolic Martin
boundary point corresponding to the minimal parabolic function hλκ

0
(t, x) = eλ

κ
0 tϕ(λκ0 , x).

The parabolic Martin theory probably allows to conclude that the parabolic function hλκ
0

is
even invariant, since it corresponds to a point in the parabolic Martin boundary, whose
time coordinate is ∞, and therefore the hλκ

0
-transformed process should be conservative. It

might be worth to look at the relation to the parabolic Martin boundary in more detail.

The next result is an extension of Theorem 3.1 of [84]. Steinsaltz and Evans had to
pose an additional condition on the initial distribution ν and they stated the general case
as an open problem. Their most general condition reads

(ID’) If X0 has distribution ν, then ∃s ≥ 0 for which the distribution of Xs

has a density f ∈ L2((0,∞), ρ), with lim inf
λ↓λκ

0

Uf(λ) > −∞.

Obviously it is not at all easy to check, whether an initial distribution ν with compact
support satisfies the condition (ID’). Using some results from spectral theory and several
ideas of Steinsaltz and Evans we are able to allow arbitrary compactly supported initial
distributions. We give a rather detailed proof of this theorem and only sketch the proof of
the analogous result for the case of an exit boundary at 0 in the next section, since it is
virtually the same. Observe however that for our main results concerning the convergence
to quasistationary distributions Theorem 2.2.3 is not needed at least in this chapter. One
main ingredient in the proof is the insight that the ’high-energy’ spectrum can be cut out
without changing anything. For a Radon measure ν on (0,∞) and a Borel measurable
function f : (0,∞) 7→ C we use the notation 〈ν, f〉 :=

∫∞
0
f(s) ν(ds).

Theorem 2.2.3. Let ν be an initial distribution which is compactly supported in (0,∞).
Let (Xt)t≥0 be the diffusion corresponding to the Dirichlet form qκ. Then Xt converges
from the initial distribution ν on compacta to the quasistationary distribution ϕ(λκ0 , ·).

Proof. For reasons of convenience let us denote during this proof the spectral resolution of
Lκ by (Eλ)λ instead of (Eκ

λ)λ. Let us first prove that for every λ1 ∈ (λκ0 ,∞)

lim
t→∞

〈ν, E([λκ0 , λ1])e
−tLκ

1A〉
〈ν, E([λκ0 , λ1])e−tL

κ1[0,z]〉
=

∫
A
ϕ(λκ0 , y) ρ(dy)∫ z

0
ϕ(λκ0 , y) ρ(dy)

. (2.2.4)

Observe that the operator E([λκ0 , λ1))e
−tLκ

has an continuous integral kernel (t, x, y) 7→
hλ1(t, x, y) with respect to the measure ρ(dx), where

hλ1(t, x, y) =

∫
[λκ

0 ,λ1]

e−tλϕ(λ, x)ϕ(λ, y)σ(dλ). (2.2.5)

This implies that for every pre-compact subset K ⊂ [0,∞) the function E([λκ0 , λ1])e
−tLκ

1K
is continuous and therefore 〈ν, E([λκ0 , λ1])e

−tLκ
1K〉 =

∫
RE([λκ0 , λ1])e

−tLκ
1K(x) ν(dx) is
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welldefined. The formula (2.2.5) follows directly from the eigenfunction expansion the-
orem of Weyl as for compactly supported function f, g ∈ L∞((0,∞), ρ)

(g, E([λκ0 , λ1])e
−tLκ

f)L2((0,∞),ρ) =

∫
[λκ

0 ,∞)

1[λκ
0 ,λ1]e

λtf̂(λ)ĝ(λ)σ(dλ)

=

∫ ∞

0

f(x)

∫ ∞

0

g(y)

∫
[λκ

0 ,λ1]

eλtϕ(λ, x)ϕ(λ, y)σ(dλ) ρ(dy)ρ(dx),

where we used Fubini’s theorem and the notation

f̂(λ) =

∫ ∞

0

ϕ(λ, x)f(x) ρ(dx) and ĝ(λ) =

∫ ∞

0

ϕ(λ, x)g(x) ρ(dx).

Observe that the use of Fubini’s theorem in (2.2) is easily justified by the fact that the
bounded functions f, g have compact support and that (λ, x) 7→ ϕ(λ, x) is continuous.
Using (2.2.5) we have that for every Borel set A ⊂ [0, z]

〈ν, E([λκ0 , λ1])e
−tLκ

1A〉 =

∫
[λκ

0 ,λ1]

e−tλ
∫
ϕ(λ, x) ν(dx)

∫
A

ϕ(λ, y) ρ(dy)σ(dλ) (2.2.6)

The assertion (2.2.4) follows from the facts that for continuous functions g, h : R → R∫
[λκ

0 ,λ1]
e−tλg(λ)σ(dλ)∫

[λκ
0 ,λ1]

e−tλh(λ)σ(dλ)
=

∫
[λκ

0 ,λ1]
e−tλg(λ)σ(dλ)∫

[λκ
0 ,λ1]

e−tλ σ(dλ)
·
(∫

[λκ
0 ,λ1]

e−tλh(λ)σ(dλ)∫
[λκ

0 ,λ1]
e−tλ σ(dλ)

)−1

(2.2.7)

and that

lim
t→∞

∣∣∣∣
∫

[λκ
0 ,λ1]

e−tλg(λ)σ(dλ)∫
[λκ

0 ,λ1]
e−tλ σ(dλ)

− g(λκ0)

∣∣∣∣ = 0. (2.2.8)

Equation (2.2.7) is obvious. In order to establish equation (2.2.8) we first show that for
0 ≤ f ∈ L1([λκ0 ,∞), dσ) ∩ C([λκ0 ,∞))

lim sup
t→∞

∫
[λκ

0 ,λ1]
eλtf(λ)σ(dλ)∫

[λκ
0 ,λ2]

eλt σ(dλ)
and lim inf

t→∞

∫
[λκ

0 ,λ1]
eλtf(λ)σ(dλ)∫

[λκ
0 ,λ2]

eλt σ(dλ)
(2.2.9)

are independent of λ1, λ2 ∈ (λκ0 ,∞). As in the proof of Theorem 3.1 of [84] (page 1299-
1300) this directly follows from the estimate

∣∣∣∣
∫

[λκ
0 ,λ1]

e−tλf(λ)σ(dλ)∫
[λκ

0 ,λ2]
e−tλ σ(dλ)

−

∫
[λκ

0 ,λ̃1]
e−tλf(λ)σ(dλ)∫

[λκ
0 ,λ2]

e−tλ σ(dλ)

∣∣∣∣ ≤ e(λ
κ
0−λ1∧λ̃1∧λ2)t

∫
[λκ

0 ,λ1∨λ̃1∨λ2]
f(λ)σ(dλ)∫

[λκ
0 ,λ2]

σ(dλ)
,
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where λ1, λ̃1, λ2 > λκ0 . Because of

lim sup
t→∞

∣∣∣∣
∫

[λκ
0 ,λ1]

e−tλg(λ)σ(dλ)∫
[λκ

0 ,λ1]
e−tλ σ(dλ)

− g(λκ0)

∣∣∣∣
= lim sup

t→∞

∣∣∣∣
∫

[λκ
0 ,λ1]

e−tλg(λ)σ(dλ)∫
[λκ

0 ,λ1]
e−tλ σ(dλ)

−

∫
[λκ

0 ,λ1]
e−tλg(λκ0)σ(dλ)∫

[λκ
0 ,λ1]

e−tλ σ(dλ)

∣∣∣∣
= lim sup

t→∞

∫
[λκ

0 ,λ1]
e−tλ|g(λ)− g(λκ0)|σ(dλ)∫

[λκ
0 ,λ1]

e−tλ σ(dλ)

≤ sup
[λκ

0 ,λ1]

|g(λ)− g(λκ0)|

(2.2.9) together with the continuity of g implies (2.2.8). The assertion of the Theorem
follows from (2.2.4) once it is shown that

lim
t→∞

Pν(Xt ∈ A)

Pν(Xt ≤ z)
= lim

t→∞

〈ν, E([λκ0 , λ1])e
−tLκ

1A〉
〈ν, E([λκ0 , λ1])e−tL

κ1[0,z]〉
(2.2.10)

Here observe that

〈ν, e−tLκ
1A〉

〈ν, E([0, λ1])e−tL
κ1A〉

=
〈ν, E([0, λ1])e

−tLκ
1A〉+ 〈ν, E((λ1,∞))e−tL

κ
1A〉

〈ν, E([0, λ1])e−tL
κ1A〉

= 1 +
〈ν, E((λ1,∞))e−tL

κ
1A〉

〈ν, E([0, λ1])e−tL
κ1A〉

.

(2.2.11)

Again we should point out that the function E((λ1,∞))e−tL
κ
1A is continuous, since e−tL

κ
1A

and E([0, λ1])e
−tLκ

1A are continuous. Thus 〈ν, E((λ1,∞))e−tL
κ
1A〉 is welldefined. Observe

that there is a constant Cν > 0 such that

sup
x∈supp(ν)

∣∣E((λ1,∞))e−tL
κ

1A(x)
∣∣ = sup

x∈supp(ν)

∣∣e−tLκ

E((λ1,∞))1A(x)
∣∣

≤ Cν

(∫ ∞

0

∣∣√Lκe−tLκ

E((λ1,∞))1A(x)
∣∣2 ρ(dx)) 1

2

= Cν

(∫
(λ1,∞)

e−2tλλ d‖Eλ1A‖2
L2((0,∞),ρ)

) 1
2

.

(2.2.12)

Here we used the inequality which has been mentioned in the introduction: for every
f ∈ C1([0,∞) vanishing at 0 and x ∈ (0, a) we have

|f(x)| ≤
∫ x

0

|f ′(x)|
√
ρ(t)

−1√
ρ(t) dt

≤
(

2

∫ a

0

ρ(t)−1 dt

) 1
2
(

1

2

∫ ∞

0

|f ′(x)|2ρ(dt) +

∫ ∞

0

κ(x)|f(x)|2ρ(t) dt
) 1

2

.
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Equation (2.2.12) shows that for every ε > 0

− lim
t→∞

1

t
log
∣∣〈ν, E((λ1,∞))e−tL

κ

1A〉
∣∣ ≥ λ1 − ε. (2.2.13)

As ϕ(λκ0 , x) > 0 for every x ∈ (0,∞) there is by continuity λ1 > λκ0 such that for every
λ ∈ [λκ0 , λ1] ∫ ∞

0

ϕ(λ, x)ν(dx),

∫
A

ϕ(λ, x)ρ(dx) > 0.

Then it is easy to see that

− lim
t→∞

1

t
log

∫
[λκ

0 ,λ1]

e−λt
∫ ∞

0

ϕ(λ, x)ν(dx)

∫
A

ϕ(λ, y)ρ(dx)σ(dλ) ≤ λκ0 . (2.2.14)

Equation (2.2.11), (2.2.13) and (2.2.14) clearly show

lim
t→∞

〈ν, e−tLκ
1A〉

〈ν, E([0, λ1])e−tL
κ1A〉

= 1

and therefore (2.2.10).

As mentioned above with exception of the recent work [20] all authors consider the case,
where 0 is at least regular and ∞ natural. We will show that in some sense the situation
is much more transparent, if ∞ is an entrance boundary. This is due to the fact that the
spectrum of the operator Lκ is purely discrete. This important fact has been overseen by
previous authors (see e.g. section 3 in [20]) working on quasistationary distributions for
one-dimensional diffusions, though the proof is very simple. In the course of the proof we
use some ideas, which are rather standard in the literature concerning spectral theory of
differential operators. We point out that this result also appears with a different proof in
the preprint [78].

Theorem 2.2.4. Assume that 0 is regular and that ∞ is an entrance boundary point
and let 0 ≤ κ ∈ C([0,∞)) be an arbitrary non-negative continuous real-valued function.
As usual let Lκ denote the selfadjoint extension of the Sturm-Liouville expression τκ =
− 1

2ρ
d
dx

(
ρ d
dx

) + κ with Dirichlet boundary conditions at 0. Then the spectrum of Lκ is
discrete.

Proof. Assume that 0 is a regular boundary point. Observe that the spectrum of Lκ is
discrete if the canonical imbedding

ικ : D(qκ) → L2((0,∞), ρ)

is compact. This follows from the fact that the spectrum of Lκ is discrete iff the resolvent
(Lκ + 1)−1 is a compact operator and the fact that Ran((Lκ + 1)−1) ⊂ D(qκ) such that
(Lκ+1)−1 can be factorized as ικ◦(Lκ+1)−1. It is enough to prove that the spectrum of L is
discrete since we have ικ = ι0 ◦ j, where j : D(qκ) → D(q), f 7→ f is continuous. Therefore
we may assume that κ = 0. In order to prove the discreteness of the spectrum of L we will
use oscillation theory. We show that for every λ ≥ 0 every solution f of (L− λ)f = 0 has
only finitely many zeroes and then apply a well-known result of Hartmann1 (see e.g. Satz

1We thank Prof. Dr. Hubert Kalf for directing us to the result of P. Hartmann
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1.1 in [94]). Let f be a solution of the eigenvalue equation

−1

2
f ′′(x) + b(x)f ′(x) = λf(x), x ∈ (0,∞), λ > 0

and assume that f has infinitely many zeros in (1,∞), which are denoted by (zk)k∈N.
Between two successive zeros the function has a local extremum. Let x1 > 1 be a minimum
between two successive zeros, then denote by x̃1 > x1 the first local maximum following
x1. Iterating this procedure we arrive at two sequence (xk)k∈N and (x̃k)k∈N. Since f solves
the equation τu = λu one easily sees that local maxima are positive and local minima are
negative. Observe now that a direct calculation gives for x > 1

f(x) = f(1) + f ′(x)ρ(x)

∫ x

1

ρ(s)−1 ds+

∫ x

1

ρ(s)−1 ds

∫ x

s

2λf(t)ρ(t) dt

= f(1) + f ′(x)ρ(x)

∫ x

1

ρ(s)−1 ds+

∫ x

1

dt f(t)ρ(t)

∫ t

1

ρ(s)−1 ds.

(2.2.15)

The fastest way to prove equation (2.2.15) consists in the calculation of∫ x

1

ρ(s)−1 ds

∫ x

s

2λf(t)ρ(t) dx =

∫ x

1

ρ(s)−1 ds

∫ x

s

−1

ρ(t)

(
ρ(t)f ′(t)

)′
ρ(t)dt

using the fundamental theorem of calculus. Equation (2.2.15) gives

0 < f(x̃k)− f(xk) = 2λ

∫ x̃k

xk

dt ρ(t)f(t)

∫ t

1

ρ(s)−1 ds

≤ 2λ
(
f(x̃k)− f(xk)

) ∫ x̃k

xk

dt ρ(t)f(t)

∫ t

1

ρ(s)−1 ds

and therefore
1

2λ
≤
∫ x̃k

xk

dt ρ(t)

∫ t

1

ρ(s)−1 ds.

This is a contradiction to our assumption that infinity is an entrance boundary.

Remark 2.2.7. The above result concerning the spectrum can certainly also be deduced
from general necessary and sufficient conditions for the discreteness of the spectrum of
Sturm-Liouville operators obtained in [27]. Since the application of the main result in [27]
seems to be not immediate, we decided to present the above simple proof. Theorem 1 in
[76] also does not apply directly.

2.3 Convergence to Quasistationarity

In this section we consider the problem of the existence of the Yaglom limit. More precisely
we ask for conditions, which ensure that Xt converges to the quasistationary distribution
ϕ(λκ0 , ·). Recall that we always assume that 0 is regular.
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2.3.1 0 Regular and ∞ Natural

In this section we assume that 0 is regular (as mentioned in section 2.1 we even assume for
simplicity that b ∈ L1

loc([0,∞)) and if not otherwise stated that infinity is natural in the
sense of Feller. We are now ready to draw our probabilistic conclusions from the analytic
results of the last section.

The Case limx→∞ κ(x) > λκ0

In this section we consider the case where the asymptotic killing rate K = limx→∞ κ(x)
is strictly bigger than λκ0 . Theorem 2.1.1 shows that one has convergence to the quasis-
tationary distribution if and only if the lowest eigenfunction is integrable. We give a new
proof of this assertion and moreover prove that the lowest eigenfunction is actually always
integrable. Therefore K > λκ0 always implies convergence to the quasistationary distribu-
tion. In contrast to Steinsaltz and Evans we do not have to assume that ∞ is a natural
boundary. The important new ingredient is the fact that in this case the bottom of the
spectrum is an isolated eigenvalue This already implies the square-integrability and the
λκ0-invariance of the corresponding eigenfunction.

Theorem 2.3.1. Consider the Sub-Markov semigroup e−tL
κ

and denote by (Xt)t≥0 the
process which is associated to the Dirichlet form qκ. Assume that limx→∞ κ(x) > λκ0 . Then
we have

lim
t→∞

eλ
κ
0 tPx(τ∂ > t) = uλκ

0
(x)

∫ ∞

0

uλκ
0
(y) dρ(y),

where uλκ
0
∈ L2((0,∞), ρ) denotes the up to positive multiples uniquely determined eigen-

function associated to the eigenvalue λκ0 . Furthermore, Xt converges to the quasistationary
distribution uλκ

0
.

Proof. As we have already seen λκ0 is an isolated eigenvalue and therefore the eigenfunction
uλκ

0
is square integrable and satisfies

e−tL
κ

uλκ
0

= e−tλ
κ
0uλκ

0
.

Notice that we really use the fact that λκ0 is an discrete eigenvalue in the L2-sense in this
step. In general at lest without any bounds on the coefficients it is not at all clear that
e−tL

κ
ϕ(λ, ·) = e−tλ

κ
0ϕ(λ, ·).

Assume that uλκ
0
∈ L1((0,∞), ρ). By the local parabolic Harnack inequality (see Remark

2.2.5) there exists a locally bounded function F : (0,∞) 7→ (0,∞) such that for t ≥ 1,
y, x ∈ (0,∞) and every x̃ with |x− x̃| < 1

2
∧ x

4
= r(x)

pκ(t, x, y) ≤ F (x)pκ(t+ 1, x̃, y).
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Denoting by B(x, r(x)) the ball with center x and radius r(x) this gives

pκ(t, x, y) ≤

∫
B(x,r(x))

pκ(t, x, y)uλκ
0
(x̃) dρ(x̃)∫

B(x,r(x))
uλκ

0
(x̃) dρ(x̃)

≤ C(x)

∫
B(x,r(x))

pκ(t, x, y)uλκ
0
(x̃) dρ(x̃)∫

B(x,r(x))
uλκ

0
(x̃) dρ(x̃)

≤ C(x)

∫
B(x,r(x))

pκ(t, x̃, y)uλκ
0
(x̃) dρ(x̃)∫

B(x,r(x))
uλκ

0
(x̃) dρ(x̃)

≤ C(x)
e−tλ

κ
0uλκ

0
(y)∫

B(x,r(x))
uλκ

0
(x̃) dρ(x̃)

The dominated convergence theorem together with (see Remark 2.2.4)

lim
t↗∞

eλ
κ
0 tpκ(t, x, y) = uλκ

0
(x)uλκ

0
(y)

implies that

lim
t→∞

eλ
κ
0 tPx

(
τ∂ > t) = lim

t→∞

∫ ∞

0

eλ
κ
0 tpκ(t, x, y) dρ(y) = uλκ

0
(x)

∫ ∞

0

uλκ
0
(y) dρ(y). (2.3.1)

In order to show the convergence to the quasistationary distribution uλκ
0

let a measurable
subset U ⊂ (0,∞) be given. Equation (2.3.1) together with the dominated convergence
theorem give

lim
t→∞

eλ
κ
0 tPx

(
Xt ∈ U, τ∂ > t

)
= lim

t→∞
eλ

κ
0 t

∫ ∞

0

1U(y)pκ(t, x, y) dρ(y)

= uλκ
0
(x)

∫
U

uλκ
0
(y) dρ(y).

(2.3.2)

Using equation (2.3.2) we arrive at

lim
t→∞

Px
(
Xt ∈ U | τ∂ > t

)
= lim

t→∞

Px
(
Xt ∈ U, τ∂ > t

)
Px
(
τ∂ > t

) =
limt→∞ eλ

κ
0 tPx

(
Xt ∈ U, τ∂ > t

)
limt→∞ eλ

κ
0 tPx

(
τκ > t

)
=

∫
U
uλκ

0
(y) dρ(y)∫∞

0
uλκ

0
(y) dρ(y)

.

It remains to prove the integrability of uλκ
0
. This will be done in the following Lemma.

Remark 2.3.1. A closer look at the above proof shows that under the assumption that the
bottom of the spectrum of Lκ is an eigenvalue with associated eigenfunction uλκ

0
then Xt

converges to the quasistationary distribution ϕ(λκ0 , ·) if and only if
∫∞

0
uλκ

0
(y) ρ(dy) < ∞.

Let us stress that this equivalence is already contained in Theorem 3.3 of [84] but our proof
is new.

In the following Lemma we will use a variation of a very nice argument, which we
learned from the book [19] of Carmona and Lacroix, where a similar strategy was used in
order to derive properties of eigenfunctions of Schrödinger operators. That similar ideas
are also applicable in our situation is not obvious for at least two reasons. First in contrast
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to the situation in [19] we have a domain with boundary and second we do not know a
priori that eigenfunctions are bounded. We will show, how the one-dimensional character
of our problem helps us to overcome these problems. In the course of the proof we use a
well-known result form the potential theory of Markov-processes. Namely we use that for
a right continuous Markov process (Ω,F , (Qx)x∈E, (Xt)t≥0) with state space (E, E) with
life time ζ, which satisfies certain conditions (which hold in our case) the following fomrula
holds (see Proposition D.15 in [29]): For every Borel set B ⊂ E and λ > 0 there exists a
measure µλB, called the λ-equilibrium measure, such that∫

gλ(x, y)µλB(dy) = EQx

[
e−λTB − e−λζ , TB <∞

]
, (2.3.3)

where TB = inf{t > 0 | Xt ∈ B} denotes the first hitting time of B and gλ(x, y) the
λ-potential. The measure µλB is a Radon measure and (for further details see appendix D
in [29] and the monograph [11]) its support is always contained in the closure of B. In
our case we consider a one-dimensional diffusion with life time T0 and B = {a}. Then for
x > a by the strong Markov property we arrive at

Ex

[
e−λTa − e−λT0 ;Ta <∞

]
= Ex

[
e−λTa − e−λ(Ta+T0◦θTa );Ta <∞

]
= Ex

[
e−λTa(1− e−λT0◦θTa ;Ta <∞

]
= Ex

[
Ex

[
e−λTa(1− e−λT0◦θTa );Ta <∞ | FTa

]]
= Ex

[
e−λTa1{Ta<∞}Ex

[
(1− e−λT0◦θTB | FTa

]]
= Ex

[
e−λTa1{Ta<∞}EXTa

[
1− e−λT0

]]
= Ea

[
1− e−λT0

]
Ex

[
e−λTa1{Ta<∞}

]
=: B(a)Ex

[
e−λTa1{Ta<∞}

]
.

(2.3.4)

These potential theretic facts will be used in the proof of the next Lemma. During the
proof we use methods, which might also be applicable to higher dimensional problems.
Therefore we do not use specific one-dimensional features at several points in the proof.

Lemma 2.3.1. Assume that λκ0 < K := limt→∞ κ(t). Then the square integrable non-
negative eigenfunction uλκ

0
associated to the isolated eigenvalue λκ0 is integrable with respect

to the measure ρ.

Proof. We have already seen that λκ0 < K implies that λκ0 is an isolated eigenvalue and
therefore the non-negative function uλκ

0
belongs to L2((0,∞), ρ). Thus we have for every

x ∈ [0,∞)

e−λ
κ
0 tuλ0(x) = Ex

[
e−

R t
0 κ(Xs) dsuλκ

0
(Xs), T0 > t

]
. (2.3.5)

For t ≥ 0 set

Mt = e−
R t
0 (κ−λκ

0 )(Xs) dsuλκ
0
(Xt)1{T0>t}.
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Then (Mt)t≥0 is a positive martingale, since for s < t

Ex

[
e−

R t
0 (κ−λκ

0 )(Xr) druλκ
0
(Xt)1{T0>t} | Fs

]
= e−

R s
0 (κ−λκ

0 )(Xr) dr1{T0>s}

· Ex

[
e−

R t−s
0 (κ−λκ

0 )(Xr) druλκ
0
(Xt−s) ◦ θs1{T0>t−s} ◦ θs | Fs

]
= e−

R s
0 (κ−λκ

0 )(Xs) ds1{T0>s}

· EXs

[
e−

R t−s
0 (κ−λκ

0 )(Xr) druλκ
0
(Xt−s)1{T0>t−s}

]
= e−

R s
0 (κ−λκ

0 )(Xr) druλκ
0
(Xs)1{T0>s},

where we used equation (2.3.5) in the last step. By the assumption λκ0 < K there exist
positive real numbers a and ε such that κ(x)− λκ0 > ε for every x ∈ [a,∞). Let Ta be the
first hitting time of the set {a}. By the optional sampling theorem we get for every T > 0
and x > a

uλκ
0
(x) = Ex

[
e−

R Ta∧T
0 (κ−λκ

0 )(Xs) dsuλκ
0
(XTa∧T )1{T0>Ta∧T}

]
= Ex

[
e−

R T
0 (κ−λκ

0 )(Xs) dsuλκ
0
(XT )1{T0>T}1{Ta>T}

]
+ Ex

[
e−

R Ta
0 (κ−λκ

0 )(Xs) dsuλκ
0
(XTa)1{T0>Ta}1{Ta≤T}

]
= Ex

[
e−

R T
0 (κ−λκ

0 )(Xs) dsuλκ
0
(XT )1{Ta>T}

]
+ Ex

[
e−

R Ta
0 (κ−λκ

0 )(Xs) dsuλκ
0
(XTa)1{Ta≤T}

]
(2.3.6)

In contrast to [19] we do not know that uλκ
0

is bounded (in general this will indeed not be
true), since in our situation the semigroup e−tL

κ
is not necessarily ultracontractive. Thus

we can not directly refer to the optional stopping theorem. Instead of this we will use the
fact that our problem is one-dimensional, again. We prove that for each fixed x > a

lim
T→∞

Ex

[
e−

R T
0 (κ−λκ

0 )(Xs) dsuλκ
0
(XT )1{Ta>T}

]
= 0. (2.3.7)

First observe that by the choice of a we obtain

Ex

[
e−

R T
0 (κ−λκ

0 )(Xs) dsuλκ
0
(XT )1{Ta>T}

]
≤ e−εTEx

[
uλκ

0
(XT )1{Ta>T}

]
.

Thus it is enough to show, that

Ex

[
uλκ

0
(XT )1{Ta>T}

]



2.3. CONVERGENCE TO QUASISTATIONARITY 35

remains bounded as T → ∞. Denote by La the positive selfadjoint operator which is
associated to the closure of the quadratic form

C∞
c ((a,∞)) 3 ϕ 7→ 1

2

∫ ∞

a

|ϕ′(t)|2 ρ(dt).

Then we get
(e−tLauλκ

0
)(x) = Ex

[
uλκ

0
(Xt)1{Ta>t}

]
. (2.3.8)

In order to convert the L2-bounds into pointwise estimates we again use the following
simple estimate

|f(x)| =
∣∣∣∣∫ x

0

f ′(t) dt

∣∣∣∣ ≤ ∣∣∣∣∫ x

0

f ′(t)
√
ρ(t)

−1√
ρ(t) dt

∣∣∣∣
≤
(∫ x

0

ρ(t)−1 dt

) 1
2
(∫ ∞

0

|f ′(t)|2ρ(t) dt
) 1

2

= C(x)

(
1

2

∫ ∞

0

|f ′(t)|2ρ(t) dt
) 1

2

.

By equation (2.1.2) this simple inequality allows us to conclude that a ≤ x ≤ M and
T > t0 for some t0 > 0

Ex

[
uλκ

0
(XT ), Ta > T

]
=
∣∣(e−TLauλκ

0

)
)(x)

∣∣
≤ C(M)

(∫ ∞

a

∣∣ d
dx

(e−TLauλκ
0
)(x)

∣∣2ρ(x) dx) 1
2

= C(M)‖
√
Lae

−TLauλκ
0
‖L2((a,∞),ρ)

≤ C(M) sup
t∈[t0,∞)

‖
√
Lae

−tLauλκ
0
‖L2((a,∞),ρ) <∞

(2.3.9)

Here we used the fact that uλκ
0

is square integrable in order to be able to use the Hilbert
space spectral theory. Using (2.3.9) we arrive at

lim
T→∞

Ex

[
e−

R T
0 (κ−λκ

0 )(Xs) dsuλκ
0
(XT )1{Ta>T}

]
= 0. (2.3.10)

(2.3.6) and (2.3.10) imply that

0 ≤ uλ0(x) = Ex

[
e

R Ta
0 (κ−λκ

0 )(Xs) dsuλκ
0
(XTa)

]
≤ CaEx

[
e−εTa ;Ta <∞

]
.

(2.3.11)

In order to show the integrability of the right-hand side we apply the basic facts (2.3.3)
and (2.3.4) from potential theory. This gives that for some compactly supported measure
µεa

Ex

[
e−εTa ;Ta <∞

]
= B(a)−1

∫
gε(x, y)µεa(dy).
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The ε-potential gε is defined by

gε(x, y) =

∫ ∞

0

e−εtp(t, x, y) dt,

where p(t, x, y) = p0(t, x, y) denotes the integral kernel of the operator e−tL
0
. Observe

that due to the selfadjointness of the operator e−tL the integral kernel p(t, x, y) of e−tL is
necessarily symmetric with respect to the measure ρ. This shows that∫ ∞

0

∫ ∞

0

e−εtp(t, x, y) dt ρ(dx) =

∫ ∞

0

∫ ∞

0

e−εtp(t, x, y) ρ(dx) dt

=

∫ ∞

0

e−εtPy
(
T0 > t) dt ≤

∫ ∞

0

e−εt dt <∞

Since the measure µεa is compactly supported the function

x 7→
∫
gε(x, y)µεa(dy)

thus belongs to L1(R+, ρ). This finally finishes the proof.

Remark 2.3.2. The above result displays a general principle, which seems to be well-known
to analysts and mathematical physicists. The decay of eigenfunctions associated to isolated
eigenvalues is dictated by the decay of the Green’s function at least in regions where the
potential κ is negligible .

We have observed in Remark 2.2.1 that assertion (4) of Lemma 2.2.2 remains valid if
one replaces the condition limt→∞ κ(t) > λκ0 by the condition lim inft→∞ κ(t) > λκ0 . Thus
as in the proof of Theorem 2.3.1 one shows that Xt converges to quasistationarity if and
only if the eigenfunction uλκ

0
∈ L2((0,∞), ρ) corresponding to the eigenvalue λκ0 belongs to

L1((0,∞), ρ).
In the proof of Lemma 2.3.1, where the integrability of uλκ

0
was shown, the condition

limt→∞ κ(t) > λκ0 entered only in order to find a real number a ∈ (0,∞) such that κ(t)−
λκ0 > ε for every t ∈ [a,∞) and some ε > 0. Thus we arrive at the following result.

Corollary 2.3.1. Consider the Sub-Markov semigroup e−tL
κ

and let (Xt)t≥0 denote the
process associated to the Dirichlet form qκ. Moreover, assume that lim infx→∞ κ(x) > λκ0 .
Then we have

lim
t→∞

eλ
κ
0 tPx(τ∂ > t) = uλκ

0
(x)

∫ ∞

0

uλκ
0
(y) dρ(y),

where uλκ
0
∈ L2((0,∞), ρ) denotes the up to positive multiples uniquely determined eigen-

function associated to the eigenvalue λκ0 . Moreover, Xt converges to the quasistationary
distribution uλκ

0
.

Remark 2.3.3. Observe that in the situation λκ0 < K it is essentially the killing rate that
is responsible for the existence of the Yaglom limit. The process conditioned on survival will
in general be located with high probability in regions where the killing rate κ is small. It will
turn out that in the situation λκ0 > K it is the drift which decides whether convergence to
quasistationarity or escape to infinity occur. Thus the condition λκ0 6= K allows to separate
the effects of the drift and the killing.
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The Case limx→∞ κ(x) < λκ0 : Part I

In this section we consider the case limx→∞ κ(x) < λκ0 and
∫∞

0
ρ(t)−1 dt = ∞. In the case

limx→∞ κ(x) < λκ0 the situation is more subtle than in the case limx→∞ κ(x) > λκ0 . This is
due to the fact that in contrast to the case limx→∞ κ(x) > λκ0 one usually has

lim
t→∞

eλ
κ
0 t Px(Xt ∈ A, τ∂ > t) = 0 (2.3.12)

for every bounded Borel set A ⊂ [0,∞). This can be seen for a Brownian motion with
constant drift by a direct computation. Equation (2.3.12) remains true for every diffusion,
if the bottom of the spectrum of the diffusion generator is not an eigenvalue in the L2-sense.
Therefore we cannot expect a longtime behavior which is precisely exponential. The key
to a complete understanding of this situation is to distinguish two cases. We show that the
additional assumption

∫∞
0
ρ(t)−1 dt = ∞ implies actually convergence to quasistationarity.

In particular the lowest eigenfunction ϕ(λκ0 , ·) is integrable.
As in [84] we set

Ft(ν, ·) = Pν
(
Xt ∈ · | τ∂ > t

)
and

at(ν, r) = Pν
(
τ∂ > t+ r | τ∂ > t

)
=

∫
Ft(ν, dy)Py

(
τ∂ > r

)
.

If the process Xt started from the compactly supported initial distribution ν escapes to
infinity, then for any sequence (tn)n∈N converging to infinity the measures Ftn(ν, dy) con-
verge weakly to point measure δ∞. If the process Xt started from ν converges to the
quasistationary disdistribution ϕ then then the limit of Ftn(ν, dy) is concentrated on R+

and has the density
ϕ(λκ

0 ,·)R∞
0 ϕ(λκ

0 ,y) ρ(dy)
with respect to the measure ρ. The next Lemma is a

just a combination of Lemma 5.3 and Theorem 3.3 in [84] together with Theorem 2.2.3.

Lemma 2.3.2. Assume that∞ is a natural boundary point and suppose that λκ0 6= limx→∞ κ(x).
Then the limit a(ν, r) = limt→∞ at(ν, r) exists and is equal to

a(ν, r) = F (ν,R+)

∫
ϕ(λκ0 , y)Py

(
τ∂ > r

)
ρ(dy) + (1− F (ν,R+)e−Kr. (2.3.13)

Either F (ν,R+) = 0 for every compactly supported initial distribution ν or F (ν,R+) = 1
for every such ν.

Proof. Let ν be a compactly supported initial distribution. Let (tn)n ⊂ (0,∞) be a se-
quence converging to infinity. On the compactification [0,∞] of (0,∞) the sequence of
measures Ftn(ν, dy) has a limit point. By Theorem 2.1.1 this limit point is either a mea-

sure on (0,∞) which has the density
ϕ(λκ

0 ,·)R∞
0 ϕ(λκ

0 ,y) ρ(dy)
with respect to the measure ρ or is

the point mass at ∞. Theorem 2.1.1 shows that there is only one limit point and that
the limit point is independent of the sequence (tn) and the initial distribution ν. Thus
Ft(ν, dy) converges weakly. If ∞ is natural than one has

lim
y→∞

Py
(
τ∂ > t

)
= e−Kt,
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where K = limt→∞ κ(t). This shows that

lim
t→∞

∫
Ft(ν, dy)Py

(
τ∂ > r

)
= F (ν,R+)

∫
ϕ(λκ0 , y)Py

(
τ∂ > r

)
ρ(dy) + (1− F (ν,R+)e−Kr

In order to decide, whether Xt converges to the quasistationary distribution, we inves-
tigate the asymptotic behavior r 7→ Pν

(
τ∂ > r

)
for r →∞.

Lemma 2.3.3. Assume that the bottom of the spectrum λκ0 is strictly positive and that
ρ(dy) is a finite measure. Then for any compactly supported initial distribution ν we have

− lim
t→∞

1

t
log Pν

(
τ∂ > t

)
= λκ0

Proof. Due to the assumption on ρ we conclude that 1 belongs to L2((0,∞), ρ). This
allows us to use tools from the Hilbert-space theory. First as in the proof of Lemma 2.3.1
that for all f ∈ {g ∈ L2(R+, ρ) | g′ ∈ L2(R+, ρ)}

|f(x)| ≤

√∫ x

0

ρ(s)−1 ds

(∫ ∞

0

|f ′(t)|2ρ(t) dt
) 1

2

.

Since 1 ∈ L2(R+, ρ) we have e−tL
κ
1 ∈ D(q[κ]) ⊂ {f ∈ L2(R+, ρ) | f ′ ∈ L2(R+, ρ)} and

therefore for f(x) = Px
(
τ∂ > t

)
= (e−tL

κ
1)(x)

Px
(
τ∂ > t

)
≤

√
2

∫ x

0

ρ(s)−1 ds

(
1

2

∫ ∞

0

|f ′(t)|2 ρ(dt)
) 1

2

≤

√
2

∫ x

0

ρ(s)−1 ds

(
1

2

∫ ∞

0

|f ′(t)|2 ρ(dt) +

∫ ∞

0

κ(y)|f(y)|2 ρ(dy)
) 1

2

≤

√
2

∫ x

0

ρ(s)−1 ds‖
√
Lκe−tL

κ

1‖L2(ρ)

=

√
2

∫ x

0

ρ(s)−1 ds

(∫
[λκ

0 ,∞)

λe−2λt d‖Eκ
λ1‖2

L2(ρ)

) 1
2

(2.3.14)

This shows that with A(ν) =
√

2
∫ suppν

0
ρ(s)−1 ds

lim sup
t→∞

1

t
log Pν

(
τ∂ > t

)
≤ lim sup

t→∞

1

t
log

(
A(ν)

(∫
[λκ

0 ,∞)

λe−2λt d‖Eκ
λ1‖2

L2(ρ)

) 1
2
)

≤ lim sup
t→∞

1

t
logA(ν) +

1

2
lim sup
t→∞

1

t
log

∫
[λκ

0 ,∞)

λe−2λt d‖Eκ
λ1‖2

L2(ρ)

≤ −λ0

(2.3.15)
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Now we need a matching lower bound but we want to stress that for our main application
of the assertion of this lemma the upper bound already suffices. By the local parabolic
Harnack inequality (see Remark 2.2.5) there exists a locally bounded function F : (0,∞) →
(0,∞) such that for every z with |z − x| < 1

2
∧ x

4

pκ(t, x, y) ≤ F (x)pκ(t+ 1, z, y).

For given z ∈ (0,∞) and every x ∈ (0,∞) with |x− z| < 1
2
∧ z

5
we therefore have

pκ(t, x, y) ≤
(

sup
{x∈(0,∞)||x−z|< 1

2
∧ z

5
}
F (x)

)
pκ(t+ 1, z, y). (2.3.16)

Thus for the open ball B := B(z, 1
2
∧ z

5
) ⊂ (0,∞) around z with radius 1

2
∧ z

5
and some

constant C with the help of (2.3.16) we arrive at∫
[λκ

0 ,∞)

e−λt d(Eκ
λ1B,1B)L2(ρ) =

∫
B

∫
B

pκ(t, x, y) ρ(dy) ρ(dz)

≤
∫
B

∫
pκ(t, x, y) ρ(dy) ρ(dz)

≤ C

∫
pκ(t+ 1, z, y) ρ(dy)

= C Pz
(
τ∂ > t+ 1

)
.

(2.3.17)

If we can show that the infimum of the support of the finite measure dµ = d‖Eκ
λ1B‖2

L2(ρ)

equals λκ0 then we are done since then (2.3.17) implies that the exponential rate of Pz
(
τ∂ >

t
)

is bigger or equal to λκ0 and another application of the local parabolic Harnack inequality
shows that the exponential rate of decay of Pz

(
τ∂ > t

)
is locally uniform in z. Therefore

assume that λκ0 < µ0 = inf supp(µ). Then we necessarily have ‖Eκ(I)1B‖2
L2(ρ) = 0 for

every interval I ⊂ [λκ0 , µ0). Because of∫
[µ0,∞)

e−λt d(Eκ
λ1B,1B)L2((0,∞),ρ) =

∫
[λκ

0 ,∞)

e−λt d(Eκ
λ1B,1B)L2((0,∞),ρ)

=

∫
B

∫
B

pκ(t, x, y) ρ(dy) ρ(dz)

≥
∫
B̃

∫
B̃

pκ(t, x, y) ρ(dy) ρ(dz)

=

∫
[λκ

0 ,∞)

e−λt d(Eκ
λ1B̃,1B̃)L2((0,∞),ρ)

for every Borel measurable B̃ ⊂ B we conclude inf supp
(
d‖Eλ1B̃‖2

L2((0,∞),ρ)

)
≥ µ0. For

every B̃ ⊂ B and every interval I ⊂ [λκ0 , µ0) we thus have

Eκ(I)1B̃ ≡ 0.
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This implies that for every Borel subset B̃ ⊂ B and λ ∈ (0,∞)

0 = (U Eκ(I)1B̃)(λ) = 1I(λ)(U1B̃)(λ) = 1I(λ)

∫ ∞

0

ϕ(λ, y)1B̃(y)ρ(dy)

This implies that for every λ ∈ I and y ∈ B ϕ(λ, y) = 0. Obviously this is impossible since
the function ϕ(λ, ·) solves the initial value problem Lκϕ(λ, ·) = λϕ(λ, ·) with ϕ(λ, 0) = 0
and ϕ′(λ, 0) = 1 in the sense of the theory of ordinary differential equations and therefore
can not be the trivial solution.

Lemma 2.3.4. Assume that K := limx→∞ κ(x) 6= λκ0 and let ν be a compactly supported
initial distributions, then there exists ην ∈ R such that

a(ν, r) = e−ηνr (2.3.18)

If Xt escapes to infinity then ην = K.

Proof. By Lemma 2.3.2 for every sequence (tn)n converging to ∞ the limit

a(ν, r) = lim
n→∞

Pν(τ∂ > tn + r)

Pν(τ∂ > tn)

= lim
n→∞

Pν(τ∂ > tn + r | τ∂ > tn)

= F (ν,R+)

∫ ∞

0

ϕ(λκ0 , y)Py
(
τ∂ > r

)
ρ(dy) + (1− F (ν,R+)e−Kr

exists and defines a continuous function. Moreover we have

a(ν, r + s) = lim
n→∞

Pν(τ∂ > tn + r + s)

P(τ∂ > tn)

= lim
n→∞

Pν(τ∂ > tn + r + s)

Pν(τ∂ > tn + s)

Pν(τ∂ > tn + s)

Pν(τ∂ > tn)

= lim
n→∞

Pν(τ∂ > tn + r + s)

Pν(τ∂ > tn + s)
lim
n→∞

Pν(τ∂ > tn + s)

Pν(τ∂ > tn)

= a(ν, r)a(ν, s).

This gives for some ην ∈ R
a(ν, r) = e−ηνr.

The last assertion follows from (2.3.13).

The following definition is obviously motivated by the demographic phenomenon, which
is explained in the introduction and in part stimulated the results of [84] and this work.

Definition 2.3.1. The quantity ην in (2.3.18) will be called the asymptotic mortality
rate for the process (Xt)t≥0 started from the initial distribution ν.
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Theorem 2.3.2. Let infinity be a natural boundary point for the diffusion (Xt)t, which is
associated to the Dirichlet form qκ. Assume that K := limx→∞ κ(x) < λκ0 and Λ(∞) =∫∞

0
ρ(t)−1 dt = ∞. Then Xt started from an arbitrary compactly supported initial distri-

bution ν converges to the quasistationary distribution ϕ(λκ0 , ·). Moreover the asymptotic
mortality rate ην is independent of ν and equals λκ0 .

Proof. If Xt escapes to infinity then we know from Lemma 2.3.4 that

a(ν, r) = lim
t→∞

Pν(τ∂ > t+ r)

Pν(τ∂ > t)
= e−K r.

Since by assumption λκ0 > K we conclude using Lemma 2.2.2 (5) the strict positivity of λ0.
The strict positivity of λ0 together with the assumption

∫∞
0
ρ(t)−1 dt = ∞ allows to apply

Lemma 2.2.2 (2) in order to conclude that the symmetrizing measure ρ is finite. Therefore
Lemma 2.3.3 shows that for every compactly supported measure ν

− lim
t→∞

1

t
log Pν

(
τ∂ > t

)
= λκ0 .

In the case of escape to infinity equation (2.3.18) implies

− lim
n→∞

1

n
log Pν(τ∂ > n) = ην = K := lim

x→∞
κ(x) 6= λκ0 .

Therefore the assumption F (ν,R+) = 0 can not be true and thus by Theorem 2.1.1 we con-
clude F (ν,R+) = 1 and F (ν,∞) = 0. Thus Xt converges from every compactly supported
initial distribution ν to the quasistationary distribution ϕ(λκ0 , ·).

The above theorem has the following Corollary, which in a slightly more restrictive
form already appears in the work [25] of Collet, Mart́ınez and San Mart́ın. But since the
proof given in [25] has a serious gap it seems to be worth to point out that the assertion
is in fact correct.

Corollary 2.3.2. Let κ ≡ 0 and let (Xt)t≥0 be the diffusion which is associated to the
Dirichlet form q. Furthermore assume that ∞ is a natural boundary point for (Xt)t≥0. If
λ0 > 0 and

∫∞
0
ρ(t)−1 dt = ∞ then Xt converges from every compactly supported initial

distribution ν to the quasistationary distribution ϕ(λ0, ·). If λ0 = 0 and
∫∞

0
ρ(t)−1 dt = ∞

then Xt started from ν escapes to infinity.

Proof. The first part of the assertion follows directly from Theorem 2.3.2. In order to prove
the second assertion we use the fact that the assumption concerning the boundary point
infinity implies

∫∞
0
ϕ(λ0, x) ρ(dy) =

∫∞
0
ϕ(0, y) ρ(dy) =

∫∞
0

∫ x
0
ρ−1(t) dt ρ(dx) = ∞.

Remark 2.3.4. The heuristics behind Theorem 2.3.2 are quite clear. If λκ0 > K =
limt→∞ κ(t) and if

∫∞
0
ρ(t)−1 = ∞, then already the drift prevents escape to infinity and

therefore we get convergence to quasistationarity.



42 CHAPTER 2. QUASISTATIONARY DISTRIBUTIONS IN THE REGULAR CASE

The Case limt→∞ κ(t) < λκ0 : Part II

In this section we consider the case where limt→∞ κ(t) > λκ0 and
∫∞

0
ρ(t)−1 dt < ∞. Intu-

ition for this case can be gained from the analytic result of Lemma 2.2.2 (3). The assertion
lim supr→∞

1
r
log ρ((0, r)) > 0 implies a strong drift towards infinity. Thus one should ex-

pect that the process, conditioned on survival, follows the tendency of the original process
and escapes to infinity. In the proof of this assertion we will play the same game as above.
We use information from the L2-theory and turn it into pointwise results by an elementary
inequality.

Theorem 2.3.3. Assume that ∞ is a natural boundary point and that
∫∞

0
e

R t
0 2b(s) ds dt <

∞. Let (Xt)t≥0 be the diffusion corresponding to the Dirichlet form qκ and assume that
λκ0 > limx→∞ κ(x). Then Xt escapes from every initial distribution ν, which is compactly
supported in (0,∞), to infinity. The rate of escape is exponential.

Proof. Let z ∈ (0,∞) be given. We will show that

Px
(
Xt ≤ z | τ∂ > t

)
→ 0

as t → ∞. Observe that the condition
∫∞

0
ρ(t)−1 dt < ∞ implies that for each a ∈ (0,∞)

and each x ∈ (a,∞) the probability that the diffusion corresponding to L starting from
x does not hit a is positive. For ε > 0. We can choose a = aε ∈ (0,∞) such that
κ(t) ∈ (K − ε,K + ε) for every t ∈ [a,∞). Then we have for every x ∈ (2a,∞)

Px
(
τ∂ > t

)
= Ex

[
e−

R t
0 κ(Xs) ds, T0 > t

]
≥ Ex

[
e−

R t
0 κ(Xs) ds, Ta > t

]
≥ e−(K+ε)tPx

(
Ta > t

)
≥ e−(K+ε)tPx

(
Ta = ∞

) (2.3.19)

Therefore the large time asymptotic of Px(τ∂ > t
)

in t is slower than e−(K+ε)t at least
if x > 2a. Another application of the local parabolic Harnack principle shows that the
inequality Pz(τ∂ > t

)
≥ Cze

−(K+ε)t implies that for some constant C1 > 0 and C2 > 0 for

every x with |z − x| < 1
2
∧ |z|

5

C2 e−t(K+ε) ≤ C1 Pz
(
τ∂ > t) ≤ Px

(
τ∂ > t+ 1).

Thus we have for every x0 > 0

− lim
t→∞

sup
x≥x0

Px
(
τ∂ > t

)
< (K + ε).

Furthermore, we have

Px
(
Xt ≤ z | τ∂ > t

)
=

Px
(
Xt ≤ z, τ∂ > t

)
Px
(
τ∂ > t

)
≤

Px
(
Xt ≤ z, τ∂ > t

)
e−(K+ε)tPx(Ta = ∞)

=
e(K+ε)tPx

(
Xt ≤ z, τ∂ > t

)
Px
(
Ta = ∞)

.

(2.3.20)
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Thus it remains to show that
Px
(
Xt ≤ z, τ∂ > t

)
vanishes faster than e−(K+ε)t for some ε > 0. Once more we use the inequality (valid for
f ∈ D(q[κ]))

|f(x)|2 ≤
(∫ x

0

|f ′(t)| dt
)2

=

(∫ x

0

|f ′(t)|
√
ρ(t)

√
ρ(t)−1 dt

)2

≤ 2

∫ ∞

0

ρ(t)−1 dt

(
1

2

∫ ∞

0

|f ′(t)|2 ρ(dt) +

∫ ∞

0

κ(t)|f(t)|2 ρ(dt)
)

= 2

∫ ∞

0

ρ(t)−1 dt ‖
√
Lκf‖2

L2(ρ)

Hence we get

Px
(
Xt ≤ z, τ∂ > t

)
= (e−tL

κ

1[0,z])(x)

≤
(

2

∫ ∞

0

ρ(t)−1 dt

) 1
2

‖
√
Lκe−tL

κ

1[0,z]‖L2(ρ) =

=

(
2

∫ ∞

0

ρ(t)−1 dt

) 1
2
(∫

[λκ
0 ,∞)

λe−2tλ d‖Eκ
λ1[0,z]‖2

L2(ρ)

) 1
2

(2.3.21)

The inequality (2.3.21) implies that for every l < λκ0

lim
t→∞

elt sup
x∈(0,∞)

Px
(
Xt ≤ z, τ∂ > t

)
= 0.

Remark 2.3.5. Again we want to stress that in the proof of Theorem 2.3.3 we did not
use the existence of the limit limt→∞ κ(t) =: K. What we did use is the existence of a real
number a ∈ (0,∞) such that for some ε > 0 and every x ∈ [0,∞) we have κ(x) < λκ0 − ε.
Therefore it is possible to replace the assumption limt→∞ κ(t) < λκ0 by the weaker

lim sup
t→∞

κ(t) < λκ0 .

The sufficiency of such a condition is strongly suggested by Theorem 2.1.1, again.

The above proof shows more than stated in the theorem. It shows that the condition
limx→∞κ(x) < λκ0 and

∫∞
0
ρ(r)−1 dt < ∞ imply that Xt escapes to infinity exponentially

fast with rate λκ0 − K. In order to compare this with previous results we formulate the
following Corollary.

Corollary 2.3.3. Assume that κ ≡ 0,
∫∞

0
ρ(t)−1 dt <∞ and that λ0 > 0. Then for every

x0, z ∈ (0,∞)
lim
t→∞

eλ0t sup
x∈[x0,∞)

Px
(
Xt ≤ z | T0 > t

)
<∞.
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If κ ≡ 0,
∫∞

0
ρ(t)−1 dt <∞ and λ0 = 0 then

lim
t→∞

sup
x∈[x0,∞)

Px
(
Xt ≤ z | T0 > t

)
= 0.

Proof. This follows from (2.3.21) as for x ∈ [x0,∞)

Px
(
Xt ≤ z | T0 > t

)
=

Px(Xt ≤ z;T0 > t)

Px(T0 > t)
≤

supx∈[x0,∞) Px(Xt ≤ z;T0 > t)

Px0(T0 = ∞)

≤ Px0(T0 = ∞)−1

(∫ ∞

0

ρ(t)−1 dt

) 1
2
(∫

[λ0,∞)

λe−2tλ d‖Eλ1[0,z]‖2
L2(ρ)

) 1
2

and

lim
t→∞

eλ0t

(∫
[λ0,∞)

λe−2tλ d‖Eλ1[0,z]‖2
L2(ρ)

) 1
2

<∞.

Assume now that λ0 = 0. Using Remark 2.1.1 conclude that 0 is not an eigenvalue in the
L2-sense and therefore the for every z ∈ (0,∞) the measure d‖Eλ1[0,z]‖2

L2(ρ) puts no mass
on λ0 = 0. This implies that

lim
t→∞

(∫
[0,∞)

λe−2tλ d‖Eλ1[0,z]‖2
L2(ρ)

) 1
2

≤ ‖E({0})1[0,z]‖2
L2(ρ) = 0.

The one-dimensional inequality of Sobolev-type finishes the proof of this assertion.

Remark 2.3.6. The above theorem shows that in the situation of the theorem the L2-
eigenvalue λκ0 gives the exponential convergence rate at which Xt escapes to infinity. In
the situation of Corollary 2.3.3 a similar but slightly weaker result has been obtained by
Mart́ınez and San-Mart́ın (see Theorem 4 in [65]) by completely different methods. Our
proof seems to be simpler and more transparent.

As another consequence of Theorem 17 we note the following Corollary concerning the
non-existence of general quasistationary distributions. Until now we did not distinguish
between the Yaglom limit or a quasi-limiting distributions and the general notion of quasis-
tationary distributions. As already mentioned in Remark 2.1.2 a quasi-limiting distribution
ν̃, which is in our case a probability measure on (0,∞) is always quasistationary in the
sense that for every Borel set A ⊂ (0,∞)

Pν̃
(
Xt ∈ A | τ∂ > t

)
= ν̃(A).

Observe that for every such quasistationary distribution ν̃ there is a λ ∈ R such that
Pν(τ∂ > t) = e−λt.

Corollary 2.3.4. Let infinity be a natural boundary and assume that λκ0 > K and
∫∞

0
ρ(t)−1 dt <

∞. Then there is no quasistationary distribution ν̃ satisfying supx≤c
∫
p(t, x, y)ν̃(dy) <∞

for every c > 0.
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Proof. Assume that ν̃ is a general quasistationary distribution. It is easy to see, that
the measure ν̃ has to be absolutely continuous with respect to ρ with a positive locally
bounded density r : [0,∞) → (0,∞). In order to see this observe first that due to the
quasistationarity of ν̃ we have for some λ ∈ R and every measurable A ⊂ (0,∞) and t > 0

e−λtν̃(A) = Pν̃
(
Xt ∈ A) =

∫ ∞

0

ν̃(dx)

∫
A

p(t, x, y) ρ(dy)

=

∫
A

∫ ∞

0

ρ(dy)

∫ ∞

0

p(t, x, y) ν̃(dx).

This implies that eλt
∫∞

0
p(t, x, y) ν̃(dx) is independent of t > 0 and that ν̃ is absolutely

continuous with density r(y) := eλt
∫∞

0
p(t, x, y) ν̃(dx) with respect to ρ(dy). In order to

prove the desired properties of r fix y0 ∈ (0,∞) and observe that by the local parabolic

Harnack inequality again we have for some F (y) and all |y − y0| < 1
2
∧ |x|

4
and x ∈ (0,∞)∫ ∞

0

p(t, x, y0) ν(dx) ≤ F (y0)

∫ ∞

0

p(t+ 1, x, y) ν(dx).

Thus if r(y0) is strictly positive then also is r(y) for all |y − y0| < 1
2
∧ |x|

4
. For c > 1 set

νc1(dx) = 1[0,c](x)r(x)ρ(dx) and νc2(dx) = 1(c,∞)r(x)ρ(dx). Since

P1[1/2,1]dν(τ∂ > t) ≤ Pνc
1
(τ∂ > t) ≤ Pν(τ∂ > t) = e−λt and − lim

t→∞

1

t
log P1[1/2,1]dν(τ∂ > t) = K

we conclude that λ ≤ K < λκ0 . Let ε be smaller than (λκ0 −K)/2 and choose c such that
supt≥c/2 |K − κ(t)| < ε. Then we have for every a, b ∈ (0,∞)

ν((a, b]) = Pν̃
(
Xt ∈ (a, b] | τ∂ > t

)
= eλtPνc

1

(
Xt ∈ (a, b]

)
+ Pνc

2

(
Xt ∈ (a, b] | τ∂ > t

)Pνc
2

(
τ∂ > t

)
Pν
(
τ∂ > t

)
≤ eλtPνc

1

(
Xt ∈ (a, b]

)
+ Pνc

2

(
Xt ∈ (a, b] | τ∂ > t

)
→ 0

as t→∞. Here we used

Pνc
1
(Xt ∈ (a, b]) =

(
1[0,c]r, e

−tLκ

1(a,b]

)
L2((0,∞),ρ)

≤ e−λ
κ
0 t‖1[0,c]r‖L2((0,∞),ρ) ‖1(a,b]‖L2((0,∞),ρ)

and that by the proof of Theorem 2.3.3 for some constant C

Pνc
2

(
Xt ∈ (a, b] | τ∂ > t

)
≤
e(K+ε)t supx≥c Px(Xt ∈ (a, b])

Pc(Ta = ∞)
≤ C e−t(λ

κ
0−K−ε).

This proves the assertion

It seems very reasonable to conjecture that the additional assumption

sup
x≤c

∫
p(t, x, y)ν̃(dy) <∞ for every c > 0

automatically holds true. Since we are mainly interested in the quasilimiting distributions
we did not try to remove this additional assertion.
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Remark 2.3.7. Let us consider a diffusion with generator given by −1
2
d2

dx2 + b(x) d
dx

. If
Px(T0 = ∞) > 0, then there are good reasons to consider the long-time asymptotics of

Px(Xt ∈ · | T0 ∈ (t,∞)).

Thus one includes the condition that absorption happens in finite time. Conditions of this
kind can often be found in the analogous problems in the theory of branching processes.
In our setting this problem can be reduced to the above by an h-transform. The function
h(x) = Px(T0 < ∞) is harmonic and by general theory (see e.g. [75], chapter 4, sections
3 and 10) the process (Xt) conditioned to hit 0 is corresponds to the generator Lh whose
action is given by

(
1

h
L(h f))(x) = −1

2

d2f

dx2
(x) +

(
b(x)− h′(x)

h(x)

)
df

dx
(x)

The process associated to the operator Lh can again be defined by Dirichlet form techniques
and the associated measures on the path space is denoted with P̃x. As explained above we
have

Px(· | T0 <∞) = P̃x(·).

The operator Lh can be realized as a selfadjoint operator in the Hilbert space L2((0,∞), h(x)ρ(dx)).
Since the spectrum is invariant under h-transforms, we conclude that the positivity of the
bottom of the spectrum of L implies the positivity of the spectrum of Lh. Since absorption
is certain with respect to the measure P̃x we can apply our previous results in order to
conclude that for every Borel set A ⊂ (0,∞)

lim
t→∞

Px(Xt ∈ A· | T0 ∈ (t,∞)) =

∫∞
0
ϕh(λ0, x)h(X)ρ(dx)∫∞

0
ϕh(λ0, x)h(X)ρ(dx)

,

where ϕh(λ0, x) is the unique solution of (Lh − λ0)u = 0, which satisfies ϕh(λ0, 0) = 0 and
(ϕh)′(λ0, 0) = 1.

Remark 2.3.8. It seems to be a rather general principle that there are three possibilities.
The first possibility is the non-existence of quasistationary distributions. If there exists
a quasistationary distribution then it is either unique or there is a whole continuum of
quasistationary distributions parameterized by an real interval. This is at least true for
birth and death processes on the non-negative integers

2.3.2 The Case of an Entrance Boundary at Infinity

Observe that
∫∞

0
e

R t
0 2b(s) ds dt = ∞ if ∞ is an entrance boundary. This follows e.g. from

the fact that in this situation
∫∞

0
e−

R∞
0 2b(s) ds dt <∞ and therefore

x =

∫ x

0

e
R t
0 b(s) dse−

R t
0 b(s) ds dt ≤

(∫ x

0

e
R t
0 2b(s) ds dt

) 1
2
(∫ x

0

e−
R t
0 2b(s) ds dt

) 1
2
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This clearly implies
∫∞

0
e

R t
0 2b(s) ds dt = ∞. Thus we are not in the case, where absorption

of the unkilled process is certain and the reasoning used in the proof of Theorem 2.3.3
does not apply. In deed in the next theorem we prove that we always have convergence to
quasistationarity if infinity is an entrance boundary.

Theorem 2.3.4. Assume that 0 is regular and that ∞ is an entrance boundary point. Let
0 ≤ κ ∈ C([0,∞)) be given and let (Xt)t≥0 denote the prosses associated to the Dirichlet
form qκ. Then the bottom of the spectrum is an isolated eigenvalue with associated non-
negative eigenfunction uλκ

0
and Xt converges to the quasistationary distribution uλκ

0
from

every compactly supported initial distribution ν.

Proof. The first assertion follows from Theorem 2.2.4. Remark 2.3.1 directly implies that
Xt converges to the quasistationary distribution uλκ

0
from every compactly supported initial

distribution if and only if
∫∞

0
uλκ

0
(y) ρ(dy). Since we are assuming that 0 is regular and

infinity is an entrance boundary we have∫ ∞

0

ρ(x) dx <∞

and therefore ∫ ∞

0

uλκ
0
(y)ρ(dy) ≤

(∫ ∞

0

ρ(x) dx

) 1
2
(∫ ∞

0

|uλκ
0
(y)|2ρ(dy)

) 1
2

.

Since by Theorem 2.2.4 uλκ
0

is an L2-eigenfunction this shows that uλκ
0

is integrable.

Remark 2.3.9. The uniqueness of quasistationary distributions (assuming their exis-
tence) was successfully addressed in the recent paper [20] at least under the assumption
κ ≡ 0. In [20] the authors show that in this case the uniqueness of quasistationary dis-
tributions is equivalent to the assertion that for any a > 0 there exists ya > 0 such that
supx>ya

Ex

[
eaTya

]
<∞, where Tya denotes the first hitting time of ya. Thus uniqueness of

quasistationary distributions is equivalent to the fact that ’time of implosion from infinity
into the interior’ has arbitrary large exponential moments. It is also proved in [20] that
this is equivalent to infinity being an entrance boundary. If κ ≡ 0 and if absorption is
certain our results show that the existence of a quasistationary distribution is equivalent to
the existence of exponential moments of the first hitting time of 0. Both results together
explain the macrostructure of the set of quasistationary distributions.

2.3.3 Concluding Remarks and Open Problems

It is useful to summarize the basic strategy which has been applied in the previous chapter
in order to study the large time behavior of one dimensional diffusions conditioned on
extended survival. Our main strategy can be divided into three steps. In the first step one
establishes a local version of the desired limit theorems. Via ideas of Steinsaltz and Evans
this local result allows one to prove a dichotomy as a first step. This dichotomy asserts
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that the conditioned law has a limit and the limit is either the point mass at infinity or

a measure
ϕ(λκ

0 ,y)ρ(dy)R∞
0 ϕ(λκ

0 ,y)ρ(dy)
on (0,∞). In the next step one investigates the tail behavior of

the distribution of the killing time in order to conclude which case occurs. This strategy
is quite robust and might even apply to certain multidimensional problems.
We end this chapter with a discussion of natural questions, which are left open. Assume
that 0 regular, ∞ natural and λκ0 = limx→∞ κ(x). We conjecture that still Xt either
converges to quasistationarity or escapes to ∞. A rather simple case, where this is true is
the Brownian motion with killing κ ≥ 0. It is shown in [84] that ϕ(λκ0 , ·) is λκ0 invariant,
i.e. for Lκ = −1

2
d2

dx2 + κ

e−tL
κ

ϕ(λκ0 , ·) = e−λ
κ
0 tϕ(λκ0 , ·).

Assume that ϕ(λκ0 , ·) ∈ L1((0,∞), dx), then due to the ultracontractivity of e−tL
κ

one easily
concludes ϕ(λκ0 , ·) ∈ L2((0,∞), dx), which means that λκ0 belongs to the point spectrum of
Lκ and therefore Xt converges to the quasistationary distribution ϕ(λκ0 , ·). In general we
do not know how to prove the required dichotomy. Even if one is able to prove that the
process either escapes to infinity or converges to a quasistationary distribution, it seem to
be difficult to decide, which case actually occurs. If λκ0 6= limx→∞ we used the fact the decay
of Px(τ∂ > t) on an exponential scale is λκ0 , if Xt converges to quasistationary and strictly
smaller than λκ0 if Xt escapes to infinity. This will no longer be true if λκ0 = limx→∞ κ(x).
Since we now that in many situation a whole set of quasistationary distributions exists it
would be clearly desirable to study the role of quasistationary distributions whose domain
of attraction does not contain the set of compactly supported initial distributions. We will
come to this problem again in the next chapter.



Chapter 3

Quasistationary Distributions : the
Non-regular Case

In this chapter we consider diffusions on the half-line, for which the boundary point 0 is an
exit boundary. Since we just have seen how one can handle non-trivial killing rates κ in the
interior and since this does not change the general picture we assume for simplicity that
κ ≡ 0. The spectral analysis of Chapter 2 which was necessary in order to separate the
effects of the drift and the killing is more ore less the same in the case of an exit boundary at
0. As mentioned in the introduction the only results which are available in the literature
are contained in the recent work [20]1 of Cattiaux, Collet et al.. We are aiming in the
extension of some of their results. Our strategy is similar to the one used in the regular
case, but in contrast to the regular case a more detailed investigation of the Weyl spectral
representation is necessary. This will be done in the first section. Our main strategy
follows the one used in the regular case but the technical problems become more difficult.
In comparison to [20] we are able to remove several technical assumptions. The most
important point is the fact that in our results the diffusion generator has not necessarily
a purely discrete spectrum. We have already seen that existence of continuous spectral
types in general complicates the problem of existence of quasistationary distributions. The
spectral representation theorem of Weyl was the key in the proof of the convergence to
quasistationary distributions on compacta.
Since 0 is no longer a regular boundary point the situation becomes even more subtle now.
Since this time we are in the limit point case at both boundary points we generally have
to expect that the spectrum does not have multiplicity 1 and therefore a spectral matrix
is involved in the spectral representation. Therefore it is not clear whether and how the
convergence to quasistationary distributions on compacta can be proved. We avoid this
additional complication by showing that for a large class of diffusions the spectrum will still
have multiplicity one. Her we heavily rely on ideas of Fritz Gesztesy and Maxim Zinchenko
developed in [47] in the case of Schrödinger operators. At this point we emphasize that the

1We want to stress that we greatly benefited from ideas developed in [20]. From [20] we learned e.g.
the importance of the Harnack inequality in the context of quasistationary distributions

49
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investigation of diffusions which have a singular behavior at 0 is interesting for applications
to biology. The reader is referred to [20] for a detailed explanation of the role of these
diffusions in certain models of population dynamics. We just mention that these diffusions
arise as scaling limits of birth-death processes.

3.1 One-dimensional Diffusions on the half-line

In this section we describe the basic setting of this work and recall very shortly some
of the basic facts from the probabilistic and analytic theory of one dimensional Sturm-
Liouville operators, though they have already been collected in greater detail in chapter
1. In contrast to chapter 1 we generally work with diffusion which are killed only at 0, i.e.
we assume that κ ≡ 0. This is mainly for reasons of convenience, since we have already
seen in chapter 1 how one can include non-trivial internal killing. Let b : (0,∞) → R be a
continuous function. We consider the quadratic form q, which is defined as the closure of
the form

C∞
c (R) 3 ϕ 7→ 1

2

∫ ∞

0

|ϕ′(x)|2 ρ(dx),

where ρ(dx) = ρ(x) dx = e−
R x
1 2b(s) ds dx. It is easy to see that q is a Dirichlet form, to which

there is an associated strong Markov process (Xt)T0>t≥0, which has continuous paths. The
generator of this diffusion is given by the unique selfadjoint extension of associated to the
form q in L2((0,∞), ρ). This selfadjoint realization of the formal differential expression

τ = −1

2

d2

dx2
+ b(x)

d

dx

will be denoted by L. We define e−tL via the spectral calculus, i.e.

e−tLg =

∫
σ(L)

e−tλEL(dλ)g, for g ∈ L2((0,∞), ρ),

where (EL(λ))λ∈R denotes the spectral resolution of L. By Stone’s formula the spectral
resolution of L can be calculated from the resolvent (L− z)−1 (z ∈ C \σ(L)) via (compare
Satz 8.11 in [95] and Lemma 2.5 in [47])

(f,EL((λ1, λ2])g)L2((0,∞),ρ)

= lim
δ→0+

lim
ε→0+

∫ λ2+δ

λ1+δ

dλ
(
f,
[
(L− (λ+ iε))−1 − (L− (λ− iε))−1

]
g
)
L2((0,∞,ρ)

.
(3.1.1)

Let λ0 denote the bottom of the spectrum of L, i.e. λ0 = inf σ(L). From the general
theory of symmetric Markov semigroups we know that e−tL generates a consistent family
of strongly continuous semigroups on Lp((0,∞), ρ) (1 ≤ p < ∞ and by duality also give
rise to a family of operators on L∞((0,∞), ρ) (see [45]). Moreover there exists a continuous
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function (0,∞)3 3 (t, x, y) 7→ p(t, x, y) ∈ (0,∞), which is symmetric in x and y, such that
for all f ∈ Lp((0,∞), ρ)

e−tLf(x) =

∫ ∞

0

p(t, x, y)f(y)ρ(dy).

The general theory of Dirichlet forms (see e.g. [45]) implies that there is a ρ-symmetric
Hunt process (C([0,∞), (0,∞)), (Xt)t≥0(Ft)t≥0, (Px)x∈(0,∞)) such that for every x ∈ (0,∞)
and every f ∈ C∞

c ((0,∞)) the process(
f(Xt)− f(X0)−

∫ t

0

Lf(Xs) ds

)
t≥0

is a martingale up to the explosion time with quadratic variation
∫ t

0
|f ′(Xs)|2 ds. Moreover

it is easy to see that for all f ∈ C∞
c ((0,∞))

e−tLf(x) = Ex[f(Xt), T∞ ∧ T0 > t],

where Ta = inf{t > 0 | Xt = a}. In the sequel we will assume that ∞ is inaccessible, in
which case Px(T∞ = ∞) = 1. Under the above assumptions there exists one and only one
symmetric Markov semigroup corresponding to L and in this sense the process is unique.
The reader, who is not familiar with the theory of Dirichlet forms should assume that b
is locally Lipschitz and should think of the process (Xt) as solution of the corresponding
stochastic differential equation killed when hitting 0. We consider the case, where the
boundary point 0 is in the Feller classification an exit boundary point and infinity is
inaccessible. This means, that∫ 0

1

(∫ t

1

ρ(s) ds

)
ρ(t)−1 dt <∞ and

∫ 0

1

(∫ t

1

ρ(s)−1 ds

)
ρ(t) dt = ∞ (3.1.2)

and that ∫ ∞

1

(∫ t

1

ρ(s) ds

)
ρ(t)−1 dt = ∞. (3.1.3)

The condition (3.1.2) implies that
∫ 1

0
ρ(t) dt = ∞ and

∫ 1

0
ρ(t)−1 dt < ∞. Recall that an

inaccessible boundary point is called natural if∫ ∞

1

(∫ t

1

ρ(s)−1 ds

)
ρ(t) dt = ∞

and entrance if the integral is finite. As seen in Theorem 2.2.1 (see also [99]) the differential
expression τ is in the limit point case at 0 and at infinity if 0 is exit and ∞ is inaccessible,
i.e. the restriction of L to C∞

c ((0,∞)) is even essentially selfadjoint and hence has a unique
selfadjoint extension.
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3.2 Spectral decomposition of L

We are interested in extending the approach used in [63], [84] and chapter 1 to the case,
where 0 is allowed to be an exit boundary. One first uses spectral theoretic tools in order to
prove a local result and then establishes the global result similar to the regular case. In the
case of a regular boundary point at 0 it is known that the spectrum is of multiplicity one
and therefore the Weyl-Titchmarsh spectral representation has a particular simple scalar
form. If 0 is an exit boundary infinity is inaccessible then in the Weyl terminology we are
in the limit point case at both endpoints and therefore a priori the spectrum might also
have multiplicity two. This means that one has to consider 2× 2-matrix valued measures
instead of scalar measures. For more information concerning the classical spectral theory
of Sturm-Liouville operators the reader is referred to [19]. In this section we establish, that
for ε > 0 at least the operator EL((0, ε))L has a scalar spectral representation, which is
more than enough for the solution of our problem. We will strongly rely on some ideas
which are due to Gesztesy and Zinchenko in the context of Schrödinger operators with
strongly singular potentials. New is the offered connection to the Feller classification.
Since Gesztesy and Zinchenko presented their results for Schrödinger operators only and
since we mainly have probabilists as readers in mind we include complete proofs of the
necessary analytic machinery in a form which is adapted to our situation. In the final
part of this section we show that for a large class of diffusions the results of Gesztesy and
Zinchenko directly apply. We need some definitions.

Definition 3.2.1. A solution ϕ̃ of

(τψ)(z, x) = zψ(z, x) (3.2.1)

is called analytic Weyl-Titchmarsh solution in BR, if ϕ̃ satisfies the following con-
ditions for every z ∈ BR:

i) for every fixed z ∈ BR ϕ̃(z, ·) is a non-trivial solution and for every fixed x ∈ (0,∞)
the function ϕ̃(z, x) is analytic in z ∈ BR

ii) ϕ̃(z, x) ∈ R for every (z, x) ∈ (−R,R)× (0,∞)

iii) ϕ̃(z, x) satisfies the following L2-condition near 0∫ b

0

|ϕ̃(z, x)|2 ρ(dx) <∞

for every b ∈ (0,∞), z ∈ BR

For z ∈ C and x0 ∈ (0,∞) we denote by ϕ(z, ·, x0) and θ(z, ·, x0) the solutions of

(τψ)(z, x) = zψ(z, x)

satisfying

ϕ(z, x0, x0) = ρ(x0)θ
′(z, x0, x0) = 0, ρ(x0)ϕ

′(z, x0, x0) = θ(z, x0, x0) = 1.
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For every fixed x ∈ (0,∞) the solutions ϕ(z, x, x0) and θ(z, x, x0) are analytic with respect
to z ∈ C. Moreover we have

W (θ(z, ·, x0), ϕ(z, ·, x0))(x) = 1,

where W (f, g)(x) = f(x)ρ(x)g′(x) − ρ(x)f ′(x)g(x) denotes the Wronskian. Later we will
use the fact that for any fixed x ∈ (0,∞) the function ϕ̃(z, x) is analytic in z ∈ BR. For
this observe that

ϕ̃(z, x) = ϕ̄(z, x) := ϕ̃(z, x0)ρ(x0)ϕ(z, x, x0) + ϕ̃(z, x0)θ(z, x, x0),

as both sides are solutions of τu = zu satisfying ϕ̃(z, x0) = ϕ̄(z, x0) and ρ(x0)ϕ̃(z, x0) =
ρ(x0)ϕ̄(z, x0). Differentiating both sides shows the required analyticity of ϕ̃(z, x) in z ∈ BR.
Moreover we introduce the Weyl-Titchmarsh solutions ψ±(z, ·, x0) (x0 ∈ (0,∞), z ∈ C \R)
of the equation (3.2.1). Since we are in the limit-point case at 0 and at ∞ the Weyl-
Titchmarsh solutions are up to constant multiples characterized by

ψ−(z, ·, x0) ∈ L2((0, x0), ρ), ψ+(z, ·, x0) ∈ L2((x0,∞), ρ), z ∈ C \ R.

We normalize ψ±(z, ·, x0) by requiring

ψ±(z, x0, x0) = 1.

This gives

ψ±(z, x, x0) = θ(z, x, x0) +m±(z, x0)ϕ(z, x, x0), x, x0 ∈ (0,∞), z ∈ C \ R,

where m±(z, x0) is given by

m±(z, x) =
ρ(x)ψ′±(z, x, x0)

ψ±(z, x, x0)
(x, x0 ∈ (0,∞), z ∈ C \ R).

It is known that m±(z, x) are Herglotz- and anti-Herglotz-functions, respectively (details
about Herglotz function can be found in our standard reference [95] and in the appendix
of [47]).

Lemma 3.2.1. Assume that there exists an analytic Weyl-Titchmarsh solution ϕ̃(z, x) in
BR. Then there exists a solution θ̃(z, x) of (3.2.1), which for every x ∈ (0,∞) is analytic
in z ∈ BR, real-valued for z ∈ R, such that for every z ∈ BR

W (θ̃(z, ·), ϕ̃(z, ·)) ≡ 1.

Proof. We basically follow the proof of Lemma 3.3 in [47]. Fix x0 ∈ (0,∞) and consider

θ̃(z, x) =
ρ(x0)ϕ̃

′(z, x0)

(ϕ̃(z, x0))2 + (ρ(x0)ϕ̃′(z, x0))2
θ(z, x, x0)−

ϕ̃(z, x0)

(ϕ̃(z, x0))2 + (ρ(x0)ϕ̃′(z, x0))2
ϕ(z, x, x0).
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Since the solution ϕ̃(z, ·) is non-trivial for every z ∈ BR we have (ϕ̃(z, x0), ρ(x0)ϕ̃
′(z, x0)) 6=

(0, 0) for every every z ∈ BR. Thus we conclude that θ̃(z, ·) is well defined for z ∈ BR and
due to the properties of ϕ̃(z, x0), θ(z, x, x0) and ϕ(z, x, x0) analytic in z ∈ BR for every
fixed x ∈ (0,∞). Moreover we have

W (θ̃(z, ·), ϕ̃(z, ·))(x) = W (θ̃(z, ·), ϕ̃(z, ·))(x0)

= θ̃(z, x0)ρ(x0)ϕ̃
′(z, x0)− ρ(x0)θ̃

′(z, x0)ϕ̃(z, x0)

=
(ρϕ̃′(z, x0))

2

(ϕ̃(z, x0))2 + (ρ(x0)ϕ̃′(z, x0))2
+

(ϕ̃(z, x0))
2

(ϕ̃(z, x0))2 + (ρ(x0)ϕ̃′(z, x0))2
= 1

Introduce m̃+(z) in such a way that

ψ̃+(z, x) = θ̃(z, x) + m̃(z)ϕ̃(z, x), x ∈ (0,∞)

satisfies for z ∈ BR \ R

ψ̃+(z, ·) ∈ L2((a,∞), ρ), a ∈ (0,∞),

since the differential expression is in the limit point case at infinity the solution ψ̃+(z, ·) is
proportional to ψ+(z, ·, x0). This gives

m+(z, x) =
ρθ̃′(z, x) + m̃+(z)ρϕ̃′(z, x)

θ̃(z, x) + m̃(z)ϕ̃(z, x)
.

Thus by a simple calculation we get

m̃+(z) =
m+(z, x)θ(z, x)− ρ θ̃′(z, x)

ρ ϕ̃(z, x)−m+(z, x)ϕ̃(z, x)
=
W (θ̃(z, ·), ψ+(z, ·, x0))

W (ψ+(z, ·, x0), ϕ̃(z, ·)

=
θ̃(z, x)

ϕ̃(z, x)

m+(z, x)

m−(z, x)−m+(z, x)
− ρ θ̃′(z, x)

ϕ̃(z, x)

1

m−(z, x)−m+(z, x)

(3.2.2)

Since m− and m+ are Herglotz- and Anti-Herglotz functions respectively and ϕ̃(x, z),
θ̃(z, x) are analytic and since ϕ̃(z, x) 6= 0 we see that m̃+(z) is analytic in z ∈ BR. Note
that ϕ̃(z, x) is not 0, since if there would be an x0 with ϕ̃(z, x0) = 0, then the function
ϕ̃(z, ·) would be an eigenfunction to a non-real eigenvalue of the selfadjoint realization of
τ in L2((0, x0), ρ) with Dirichlet boundary condition at x0. A direct computation shows
that the Green’s function G(z, x, y) (z ∈ BR \ σ(L), x, y ∈ (0,∞)) is given by

G(z, x, y) =

{
ϕ̃(z, x)ψ̃+(z, y) if 0 < x ≤ y,

ϕ̃(z, y)ψ̃+(z, x) if 0 < y ≤ x
. (3.2.3)

This means that for every x ∈ (0,∞) and f ∈ L2((0,∞), ρ)

((L− z)−1f)(x) =

∫ ∞

0

G(z, x, y)f(y)ρ(dy). (3.2.4)

The following Lemma corresponds to Lemma 3.4 in [47]
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Lemma 3.2.2. Assume that there exists an analytic Weyl-Titchmarsh solution in BR.
Then the function m̃+ satisfies the following conditions.

i) m̃+(z) = m̃+(z) for z ∈ BR

ii ε|m̃+(λ+ iε)| ≤ C(λ1, λ2, ε0) for λ ∈ [λ1, λ2], 0 < ε ≤ ε0

iii) ε|<(m̃+(λ+ iε)| =ε↓0 o(1) for λ ∈ [λ1, λ2], 0 < ε ≤ ε0

iv) limε↓0(iε)m̃+(λ + iε) = limε↓0 ε=m̃+(λ + iε) exists for all λ ∈ (−R,R) and is non-
negative.

v) m̃+(λ + i0) = limε↓0 m̃+(λ + iε) exists for a.e. λ ∈ [λ1, λ2] and =(m̃+(λ + i0)) ≥ 0
for a.e. λ ∈ [λ1, λ2].

Moreover there exists a measure σ such that∫
(λ1,λ2]

dσ(λ) = σ((λ1, λ2]) = lim
δ↓0

lim
ε↓0

1

π

∫ λ2+δ

λ1+δ

dλ=(m̃+(λ+ iε)) (3.2.5)

Proof. Since for (λ, x) ∈ (−R,R)× (0,∞) the numbers ϕ̃(λ, x) and θ̃(λ, x) are real, we get
for (z, x) ∈ BR × (0,∞)

ϕ̃(z, x) = ϕ̃(z, x), θ̃(z, x) = θ̃(z, x).

Let c, d ∈ (0,∞) with c < d then∫
σ(L)

d‖EL(λ)χ[c,d]‖2
L2((0,∞),ρ)

λ− z
= (χ[c,d], (L− z)−1χ[c,d])L2((0,∞),ρ)

=

∫ d

c

ρ(dx)

∫ x

c

ρ(dy) θ̃(z, x)ϕ̃(z, y)

+

∫ d

c

ρ(dx)

∫ d

x

ρ(dy) ϕ̃(z, x)θ̃(z, y)

+ m̃+(z)

[∫ d

c

ρ(dx)ϕ̃(z, x)

]2

(3.2.6)

Observe that we can find c, d in such a way that∫ d

c

ϕ̃(z, x) ρ(dx) 6= 0

for all z in sufficiently small complex open neighborhood of [λ1, λ2]. Equation (3.2.6)
already implies i). Now remark that the function H given by

H : C \ σ(L) 3 z 7→
∫
σ(L)

d‖EL(λ)χ[c,d]‖2
L2((0,∞),ρ)

λ− z
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is a Herglotz function which together with the basic properties of θ̃(z, x) and ϕ̃(z, x) directly
implies ii)-v). Due to the Herglotz property of H we have

lim
δ↓0

lim
ε↓0

1

π

∫ λ2+δ

λ1+δ

dx=
∫
σ(L)

d‖EL(λ)χ[c,d]‖2
L2((0,∞),ρ)

λ− (x+ iε)
= ‖EL((λ1, λ2])χ[c,d]‖2

L2((0,∞),ρ).

Then (3.2.6) applied to λ + iε with λ ∈ (λ1, λ2) and ε > 0 small enough implies that σ,
defined in (3.2.5) satisfies

σ((λ1, λ2]) = lim
δ↓0

lim
ε↓0

1

π

∫ λ2+δ

λ1+δ

dλ=(m̃+(λ+ iε))

= lim
δ↓0

lim
ε↓0

1

π

∫ λ2+δ

λ1+δ

dλ=
{∫

σ(L)

d‖EL(λ̃)χ[c0,d0]|2L2((0,∞)ρ)

λ̃− λ− iε

·
[(∫ d0

c0

ρ(dx)ϕ̃(λ, x)

)2

+ 2iε

(∫ d0

c0

ρ(dx)(d/dz)ϕ̃(z, x)|z=λ
)

+O(ε2)

]−1

+O(ε)

}
=

∫
(λ1,λ2]

d‖EL(λ)χ[c0,d0]‖2
L2((0,∞),ρ)

[∫ d0

c0

ρ(dx)ϕ̃(λ, x)

]−2

.

and thus really defines a measure on R.

The following theorem connects the measure σ with the spectral measure

Theorem 3.2.1. Assume that there exists an analytic Weyl-Titchmarsh solution in BR.
Let f, g ∈ C∞

c (0,∞) and F ∈ C(R) be given. Moreover let λ1, λ2 ∈ (−R,R) with λ1 < λ2.
Then we have

(f, F (L)EL((λ1, λ2])g)L2((0,∞),ρ) = (f̂ ,MFχ(λ1,λ2]
ĝ)L2(R,σ), (3.2.7)

where MFχ(λ1,λ2]
denotes the bounded operator, which acts by multiplication with Fχ(λ1,λ2].

Proof. As in [47] we use Stone’s formula in order to connect σ with the spectral resolution
EL of L. Stone’s formula implies that

(f, F (L)EL((λ1, λ2])g)L2((0,∞),ρ) = lim
δ↓0

lim
ε↓0

∫ λ2+δ

λ1+δ

dλ

2πi
F (λ)

[
(f, (L− (λ+ iε))−1g)L2((0,∞),ρ)

− (f, (L− (λ− iε))−1g)L2((0,∞),ρ)

]
.
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Using the formula (3.2.3) for the kernel of the resolvent we get

(f,F (L)EL((λ1, λ2])g)L2((0,∞),ρ)

= lim
δ↓0

lim
ε↓0

1

2πi

∫ λ2+δ

λ1+δ

dλF (λ)

{∫ ∞

0

ρ(dx)

[
f(x)ψ̃+(λ+ iε, x)

∫ x

0

ϕ̃(λ+ iε, y)g(y)ρ(dy)

+ f(x)ϕ̃(λ+ iε, x)

∫ ∞

x

ρ(dy)ψ̃+(λ+ iε, y)g(y)

]
−
[
f(x)ψ̃+(λ− iε, x)

∫ x

0

ρ(dy)ϕ̃(λ− iε, y)g(y)

+ f(x)ϕ̃(λ− iε, x)

∫ ∞

x

ρ(dy)ψ̃+(λ− iε, y)g(y)

]}
.

Since all integrals are on bounded sets and since the integrands are continuous we are
allowed to interchange integrations to get

(f,F (L)EL((λ1, λ2])g)L2((0,∞),ρ)

=

∫ ∞

0

ρ(dx) f(x)

{∫ x

0

ρ(dy) g(y) lim
δ↓0

lim
ε↓0

1

2πi

∫ λ2+δ

λ1+δ

dλF (λ)
[
ψ̃+(λ+ iε, x)ϕ̃(λ+ iε, y)

− ψ̃+(λ− iε, x)ϕ̃(λ− iε, y)
]

+

∫ ∞

x

ρ(dy) g(y) lim
δ↓0

lim
ε↓0

1

2πi

∫ λ2+δ

λ1+δ

dλF (λ)
[
ϕ̃(λ+ iε, x)ψ̃+(λ+ iε, y)

− ϕ̃(λ− iε, x)ψ̃+(λ− iε, y)
]}

(3.2.8)

Due to the regularity properties of ϕ̃ and θ̃ we have

θ̃(λ± iε) =ε↓0 θ̃(λ, x)± iε
d

dz
θ̃(z, x)|z=λ +O(ε2)

ϕ̃(λ± iε) =ε↓0 ϕ̃(λ, x)± iε
d

dz
ϕ̃(z, x)|z=λ +O(ε2),

(3.2.9)

where O(ε) is locally uniform in (λ, x). Therefore we get by (3.2.9) and by ii) and iii) of
Lemma 3.2.2

ϕ̃(λ+ iε, x)ψ̃+(λ+ iε, y)− ϕ̃(λ− iε)ψ̃+(λ− iε, y) = ϕ̃(λ, x)[θ̃(λ, y) + m̃+(λ− iε)ϕ̃(λ, y)]

+ ϕ̃(λ, x)[θ̃(λ, y) + m̃+(λ− iε)ϕ̃(λ, y)]

+ o(1),

(3.2.10)
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where o(1) is locally uniform. Equation (3.2.10) together with (3.2.8) gives

(f,F (L)EL((λ1, λ2])g)L2((0,∞),ρ) =

=

∫ ∞

0

ρ(dx) f(x)

∫ ∞

0

ρ(dy) g(y) lim
δ↓0

lim
ε↓0

1

π

∫ λ+δ

λ1+δ

dλF (λ)ϕ̃(λ, x)ϕ̃(λ, y)=(m̃+(λ+ iε))

(3.2.11)

By definition of the measure σ we have for every h ∈ C(R)∫
(λ1,λ2]

h(λ)σ(dλ) = lim
δ↓0

lim
ε↓0

1

π

∫ λ2+δ

λ1+δ

dλ=(m̃+(λ+ iε))h(λ)

and therefore we arrive at

(f, F (L)EL((λ1, λ2])g)L2((0,∞),ρ)

=

∫ ∞

0

ρ(dx)f(x)

∫ ∞

0

ρ(dy)g(y)

∫
(λ1,λ2]

σ(dλ)F (λ)ϕ̃(λ, x)ϕ̃(λ, y).

In the next Theorem we apply our results to diffusion generators, for which the bound-
ary point 0 is an exit boundary.

Theorem 3.2.2. Assume that 0 is an exit boundary. Then for every R > 0 there exists an
analytic Weyl-Titchmarsh solution ϕ̃R(z, x) for L in BR. Therefore there is a measure σR
on R, such that for every F ∈ C(R), every f, g ∈ C∞

c ((0,∞)) and every λ1, λ2 ∈ (−R,R)
with λ1 < λ2

(f, F (L)EL((λ1, λ2])g)L2((0,∞),ρ) = (f̂ ,MFMχ(λ1,λ2]
ĝ)L2(R,σR),

where for h ∈ C∞
c ((0,∞))

ĥ(λ) =

∫ ∞

0

ϕ̃R(λ, x)g(x) ρ(dx)

Proof. We have to show that there exists an analytic Weyl-Titchmarsh function ϕ̃(z, ·)
(z ∈ BR). For z ∈ BR we construct a solution solution uR(z, x) of the equation (L−z)u = 0
in a certain neighborhood U of 0, which for every fixed x ∈ U is analytic in z ∈ BR and
which for every fixed z ∈ BR satisfies limx→0 uR(z, x) = 1. Since the ordinary differential
equation (L−z)u = 0 is linear each uR(z, ·) (z ∈ BR) gives rise to a solution of (L−z)u = 0
not only in U but also in (0,∞). Thus it is enough to construct uR(z, ·) only in U . This
will be done by the usual iteration procedure. For 1 > ε > 0 we choose δ = δR > 0 such
that for every z ∈ BR and x ∈ (0, δ)∫ x

0

ρ(r)−1 dr

∫ δ

r

ρ(s) ds < ε.
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Set uR0 (z, x) = 1 and recursively uRn+1(z, x) = 1 + z
∫ x

0
ρ(r)−1 dr

∫ δ
r
uRn (z, s)ρ(s) ds. By in-

duction one easily shows that the sequence (uRn (z, x))n∈N converges uniformly in x ∈ [0, δR]
and z ∈ BR. This implies that for every x ∈ [0, δR] the limit uR(z, x) = limn→∞ uRn (z, x) is
continuous and for every fixed x is analytic in z ∈ BR. Moreover the limit satisfies

uR(z, x) = 1 + 2z

∫ x

0

ρ(r)−1 dr

∫ δ

r

uRn (z, s)ρ(s) ds

and solves for every z ∈ BR the equation (L− z)u = 0 in (0, δR) with limx→0 u
R(z, x) = 1

(z ∈ BR). Moreover uR(λ, x) ∈ R for λ ∈ R ∩ BR. Now choose δ̃R > 0 such that
uR(z, x) 6= 0 for every (z, x) ∈ BR × (0, δ̃R) and set for every x ∈ (0, δ̃R)

ϕ̃R(z, x) = uR(z, x)

∫ x

0

uR(z, y)−2ρ(y)−1 dy.

Observe that ϕ̃R(λ, x) ∈ R for real λ and that limx→0 ϕ̃
R(z, x) = 0. Furthermore ϕ̃R(z, x)

is analytic in z ∈ BR since for any simple closed path γ in BR due to the analyticity of
uR(z, x) in z ∈ BR∫

γ

(∫ x

0

uR(z, s)−2ρ(s)−1 ds

)
dz =

∫ x

0

(∫
γ

uR(z, s)−2 dz

)
ρ(s)−1 ds = 0

Morera’s theorem then gives the analyticity of ϕ̃R(z, x) in z ∈ BR. The two solutions
uR(z, ·) and ϕ̃R(z, ·) are linear independent and the solution ϕ̃(z, ·) is moreover integrable
since ∣∣∣∣∫ x

0

ϕ̃R(z, t)ρ(t) dt

∣∣∣∣ ≤ maxy∈[0,x] |uR(z, y)|
[miny∈[0,x] |uR(z, y)|]2

∫ x

0

ρ(t)

∫ t

0

ρ(s)−1 ds <∞

by the definition of an exit boundary. It remains to observe that ϕ̃R(z, ·) ∈ L∞((0, 1), ρ).
Since bounded and integrable functions are square integrable we get for every z ∈ BR∫ a

0

|ϕ̃R(z, x)|2 ρ(dx) <∞

for every a ∈ (0,∞). The remaining assertion follows directly from Theorem 3.2.1.

Remark 3.2.1. The assertion of Theorem 3.2.2 is important for our problem since it pro-
vides the function ϕ̃R(λκ0(, cdot) as a natural candidate for the quasistationary distribution
of the diffusion associated to the diffusion operator L. Without an assertion similar to
Theorem 3.2.2 such a natural choice is only possible in the case, where the bottom of the
spectrum is an eigenvalue in the L2-sense.

The proof of the above theorem has the following Corollary

Corollary 3.2.1. Assume that 0 is an exit boundary. Then for every λ ∈ C the ordinary
differential equation (τ − λ)u = 0 has a fundamental system (u1

λ, u
2
λ) of solutions with

lim
x→0

u1
λ(x) = 0 and lim

x→0
u2
λ(x) = 1.

Moreover one has u1
λ ∈ L1((0,∞), ρ) ∩ L2((0,∞), ρ).
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Proposition 3.2.1. Let τ = −1
2
d2

dx2 + b(x) d
dx

be a Sturm-Liouville expression, which is in
the limit-point case at infinity. Moreover assume that 0 is and exit boundary and let L
denote the uniquely determined selfadjoint extension of τ in L2((0,∞), ρ). If λ0 = inf σ(L)
and R > 2λ0 then the function ϕ̃R(λ0, ·) does not change sign in (0,∞).

Proof. Assume that λ0 = inf σ(L) is an eigenvalue in the sense of spectral theory. Then
since e−tL is positivity improving we conclude that uλ0 can be chosen to be strictly positive.
Thus assume that λ0 is the bottom of the essential spectrum and suppose that ϕ̃R(λ0, ·) has
a zero in (0,∞), say ϕ̃R(λ0, x0) = 0. Let us consider the selfadjoint realization Lx0 of τ in
L2((x0,∞), ρ), which satisfies Dirichlet boundary conditions at x0. Then λ0 = inf σ(Lx0)
and ϕ̃R(λ0, ·) solves the boundary value problem (τ − λ0)ϕ̃

R(λ0, ·) = 0 in (x0,∞) with
ϕ(λ0, x0) = 0 and ρϕ̃R(λ0, x0) 6= 0. It follows from Theorem 3.2.4 (see also [78]) later
in this work that the spectrum of Lx is discrete and therefore λ0 is an eigenvalue. Thus
ϕ̃R(λ0, ·) has no zero in (0, x0). Using Lemma 2.2 of [84] we conclude that ϕ̃(λ0, ·) does not
change sign in (x0,∞). Therefore we may assume that in (0, x0) ϕ̃(λ0, ·) is positive and
in (x0,∞) is negative. Choose 0 ≤ f ∈ C∞

c ((0, x0)) and g ∈ C∞
c ((x0,∞)). Then we have

limR>λ↓λ0

∫
ϕ̃R(λ, x)f(x) ρ(dx)

∫
ϕ̃R(λ, x)g(x) ρ(dx) < 0. Choose ε > 0 and λ1 < R such

that for every λ ∈ [λ0, λ1] we have∫
ϕ̃R(λ, x)f(x) ρ(dx)

∫
ϕ̃R(λ, x)g(x) ρ(dx) < −ε < 0.

Then we get the contradiction

0 ≤ (g, e−tLf)L2((0,∞),ρ) =

∫
[λ0,λ1)

e−tλf̂(λ)ĝ(λ)σ(dλ)

+ (E((λ1,∞)g, e−tLE((1λ0,∞)f)L2((0,∞),ρ) < 0.

for sufficiently large t > 0 since

|(E((λ1,∞)g, e−tLE((λ1,∞)f)L2((0,∞),ρ)| ≤ e−tλ1‖f‖L2((0,∞),ρ)‖g‖L2(((0,∞),ρ).

In the sequel we comment on the direct applicability of the results of Gesztesy and
Zinchenko. Let for some b ∈ C((0,∞) ρ be given by ρ(x) = e−2

R x
1 b(s) ds = e−B(x) and

let τf = − 1
2ρ

(ρf ′)′ be a Sturm-Liouville expression, for which 0 is an exit boundary and
infinity is inaccessible. Then we know already that the differential expression τ is in the
limit point case at 0 and infinity. Thus τ has a unique selfadjoint extension L. Let the
unitary mapping U : L2((0,∞)) → L2((0,∞), ρ) be given by Uf(x) = eB(x)/2f(x). The
unitary U transforms the operator L into the operator L̃, which acts on f ∈ C∞

c ((0,∞))
by

L̃f = −1

2
f ′′ +

1

2

(
b2 − b′)f. =:

1

2

(
−f ′′ + V f

)
. (3.2.12)

Thus we end up we a differential expression of Schrödinger type, for which Gesztesy and
Zinchenko established their results. As already remarked above we are interested in drifts
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b, which are singular at 0 with a singularity, which is of Bessel type. Thus we consider
drifts b of the form

b(x) =
a

x
+ c(x), (3.2.13)

where x ∈ R and c ∈ C1((0,∞)) ∩ L2
loc([0,∞)) with c′ ∈ L1

loc([0,∞, x dx). For such a drift
b our potential V in (3.2.12) has the form

V (x) =
a2

x2
+

a

x2
+ c(x)

2a

x
+ c(x)2 − c′(x) =

(a+ 1/2)2 − 1/4

x2
+W (x). (3.2.14)

Using the fact that L̃ � C∞
c ((0,∞)) is essentially selfadjoint, Example 3.10 in [47], The-

orem 3.5 in [47] and Theorem 3.6 in [47] we arrive at the analogue of the Weyl spectral
representation for the regular case (see Theorem 2.2.1)

Theorem 3.2.3. Let V be given as in 3.2.14 and assume that a ≥ 1
2
. Let f, g ∈

C∞
c ((0,∞)), F ∈ C(R) and λ1, λ2 ∈ R, λ1 < λ2. Then there exists a continuous function

R × (0,∞) 3 (λ, x) 7→ ψ̃(λ, x) satisfying L̃ψ̃(λ, x) = ψ̃(λ, x) in the sense of the theory of
ordinary differential equations and a measure σ such that(

f, F (L̃)EL̃((λ1, λ2])g
)
L2((0,∞),dx)

=
(
f̂ ,MFM1(λ1,λ2]

ĝ
)
L2(R,σ)

,

where for h ∈ C∞
c ((0,∞))

Ũh(λ) = ĥ(λ) =

∫ ∞

0

dx ψ̃(λ, x)h(x)

and MG denotes again the maximally defined operator of multiplication by the dσ-measurable
function G in the Hilbert space L2(R, σ). The operator Ũ extends canonically to a unitary
mapping such that

ŨF (L̃)Ũ−1 = MF .

in L2(R, σ). Moreover the spectrum is simple and

σ(F (L̃)) = ess.ranσ(F ) and σ(L̃) = supp(σ).

Using our unitary operator U we can now transform the spectral represention of L̃
obtained in Theorem 3.2.3 back in order to obtain a spectral representation of L. Since L
is unitarily equivalent to L̃ we conclude first that the spectrum of the operator L is simple.
Setting Y (z, x) = W (x)−2z we conclude by formula (3.106) in [47] that for every compact
K ⊂ C× [0,∞) and (z, x) ∈ K

∣∣ψ̃(z, x)
∣∣ ≤ x1/2+γ exp

(
1

γ

∫ x

0

y|Y (z, y)| dy
)
, (3.2.15)

where γ = (a+1/2)2. This estimate implies that |ψ̃(z, ·)| ∈ L2((0, a)) for every a ∈ (0,∞).
An application of Theorem 3.2.3 implies that for f, g ∈ C∞

c ((0,∞)), F ∈ C(R), λ1, λ2 ∈ R,
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λ1 < λ2(
f, F (L)EL((λ1, λ2])g

)
L2((0,∞),ρ)

=
(
U−1f, U−1F (L)EL((λ1, λ2])UU

−1g
)
L2((0,∞))

=
(
U−1f, F (L̃)EL̃((λ1, λ2])U

−1g
)
L2((0,∞))

=
(
U−1f,MFM1(λ1,λ2]U−1g

)
L2(R,σ)

,

(3.2.16)

where2

U−1f(λ) :=

∫ ∞

0

dx ψ̃(λ, x)e−B(x)/2f(x) =

∫ ∞

0

ρ(dx) ψ̃(λ, x)eB(x)/2f(x). (3.2.17)

Notice that the function ξ(λ, ·) := ψ̃(λ, ·)eB(·)/2 solves the ordinary differential equation
L(ψ̃(λ, x)eB(x)/2) = λψ̃(λ, x)eB(x)/2 and that (3.2.15) gives bounds on the generalized eigen-
functions ξ(λ, ·) in a neighborhood of 0. Thus we arrive at an expansion into generalized
eigenfunction as in the regular case with the advantage that there is no restriction of the
type |λ1|, |λ2| < R but with the drawback that we have to assume that (3.2.13) hold. We
hope that in a future work Theorem 3.2.2 will allow to remove hypotheses concerning the
drift further, since this result only uses assumptions which are formulated in terms of the
Feller classification.

In the rest of this chapter we only consider diffusions whose drift b has the form (3.2.13),
since later we even have to restrict our class of diffusion further by adding another con-
dition. Thus we can use Theorem 3.2.2 as well as Theorem 3.2.3. Finally let us end this
section with a result concerning the case, where 0 is an exit boundary and ∞ is an entrance
boundary. In Theorem 2.2.4 we included a simple proof of the fact that the spectrum of
L is discrete, if 0 is regular and ∞ is entrance. After having worked out the proof of
this theorem and the next theorem we found out that in the preprint [78] I. Shigekawa
establishes a similar result using quite different techniques.

Theorem 3.2.4. Assume that 0 is an exit boundary and ∞ is entrance. Then the spectrum
of L is purely discrete and the eigenfunctions belong to L1((0,∞), ρ).

Proof. Since we already know from Theorem 2.2.4 that for every a ∈ (0,∞) the spectrum
of La is discrete, where La denotes the operator associated to the closure of the quadratic
form qa

C∞
c ((0,∞)) 3 f 7→ qa(f) =

1

2

∫ ∞

a

|f(t)|2ρ(dt),

it is enough to prove that the spectrum of the operator La is discrete, where the operator
La is associated to closure of the quadratic form

C∞
c ((0,∞)) 3 f 7→ qa(f) =

∫ a

0

|f(t)|2ρ(dt).

2In contrast to the following chapters z does not denote complex conjugation of a complex number z
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Without loss of generality assume that 1 ∈ (0, a). The associated diffusion has a regular
boundary at a and an exit boundary at 0. In order to simplify the notation we prove the
result for the converse situation, i.e. we assume that 0 is regular and a is exit. Again, the
main tool is the result of Hartmann (see e.g. Satz 1.1 in [94]), which says that the essential
spectrum is empty if for every λ ∈ R every solution of the equation (τ − λ)u = 0 has only
finitely many zeros in (0, a). It is enough to prove this for λ > 0 since the assertion for
λ ≤ 0 then follows from Korollary 14.20 b) in [94]. Thus assume that λ > 0 and that v is
a non-trivial solution of the equation (τ − λ)u = 0 and assume that v has infinitely many
zeros in (0, a). Observe that no x0 with v(x0) = 0 is a local extremum since v is assumed
to be a nontrivial solution. Between two successive zeros there is necessarily an extremum.
As λ > 0 and v satisfies τv = λv local maxima of v are necessarily positive and local
minima negative. Thus we can choose a sequence (xn)n converging to a and (x̃n)n∈N such
that xn is a maximum with v(xn) > 0 between two successive zeros and a sequence (x̃n)n∈N
such that x̃n is the first zero of v which is bigger than xn and that v is non-increasing in
(xn, x̃n). This gives

0 < v(xn) =

∫ x̃n

xn

ρ(s)−1 ds

∫ s

xn

ρ(t)2λv(t) dt ≤ 2λv(xn)

∫ x̃n

xn

ρ(s)−1 ds

∫ s

xn

ρ(s) dt

and therefore
1

2λ
≤
∫ x̃n

xn

ρ(s)−1 ds

∫ s

xn

ρ(t) dt. (3.2.18)

Since a is assumed to be an exit boundary we have
∫ a

1
ρ(s)−1

∫ s
1
ρ(t) dt < ∞, (3.2.18) can

not be true. Thus every solution of the eigenvalue equation (τ − λ)u = 0 has only a finite
number of zeros in (0, a). Summarizing we have shown that the spectrum of L is purely
discrete.
It remains to prove the integrability of the eigenfunction uλ0 corresponding to the lowest
eigenvalue λ0 of L. First observe that limx→0 uλ0(x) = 0. This follows from the fact that
by definition of L there exists a sequence (ϕn)n∈N ⊂ C∞

c ((0,∞)) which converges to uλ0

with respect to the norm

D(q) 3 f 7→
(
‖f‖2

L2((0,∞),ρ) +

∫ ∞

0

|f ′(x)|2 ρ(dx)
) 1

2

.

The elementary inequality

sup
x∈([0,a])

|ϕ(x)| ≤ Ca

(∫ ∞

0

|ϕ′(x)|2 ρ(dx)
) 1

2

implies that for a ∈ (0,∞) ‖ϕn−ϕm‖C([0,a)) → 0 as n,m→∞ and therefore limx→0 uλ0(x) =
0. We have seen in the proof of Theorem 3.2.2, that there exists a solution vλ0 of the equa-
tion (L − λ0)u = 0 with the property that limx→0 vλ0(x) = 1 and a solution ṽλ0 with
limx→0 ṽλ0(x) = 0 and ṽλ0 ∈ L1((0, a), ρ) (a ∈ (0,∞)) such that (vλ0 , ṽλ0) forms a basis of
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the space of solutions of (L − λ0)u = 0. Due to the basis property of (vλ0 , ṽλ0) we have
uλ0 = avλ0 + bṽλ0 for some scalars a, b. But because of

0 = lim
x→0

uλ0(x) = lim
x→0

(
avλ0(x) + bṽλ0(x)

)
= a

we get uλ0 = bṽλ0 . Thus we conclude that uλ0 ∈ L1((0, a), ρ). Since ∞ is entrance we
moreover have

∫∞
1
ρ(dy) <∞ and therefore

uλ0 ∈ L1((1,∞), ρ) ⊂ L2((1,∞), ρ).

Here we used that uλ0 is an L2-eigenvalue. All in all we have shown that uλ0 ∈ L1((0,∞), ρ).

In the following Corollary we formulate a direct consequence of the above proof.

Corollary 3.2.2. Assume that 0 is an exit boundary and that the boundary point infinity
is inaccessible. Let L be the unique selfadjoint realization of the Sturm-Liouville expression
τ defined by τf = − 1

2ρ
d
dx

(
ρ df
dx

)
. For any f ∈ D(

√
L) we have

lim
x↓0
|f(x)| = 0.

Observe that this Corollary allows us to use methods as in the regular case. If f ∈
D(
√
L) then we have for every x > ε > 0

|f(x)| = lim
ε→0

∣∣f(x)− f(ε)
∣∣ ≤ lim

ε→0

∫ x

ε

|f ′(s)| ds

≤ lim
ε→0

[(
2

∫ x

ε

ρ(t)−1 dt

) 1
2
(

1

2

∫ x

ε

|f ′(s)|2 ρ(ds)
) 1

2
]

=

(
2

∫ x

0

ρ(t)−1 dt

) 1
2
(

1

2

∫ x

0

|f ′(s)|2 ρ(ds)
) 1

2

,

where we used the fact that
∫ x

0
ρ(t)−1 dt <∞ since 0 is exit.

Remark 3.2.2. In [20] the authors proved that the spectrum is discrete under the assump-
tions b ∈ C1((0,∞)) and

C = − inf
y∈(0,∞)

(b(y)2 − b′(y)) <∞ and lim
y→∞

(b(y)2 − b′(y)) = ∞.

applying some facts from the theory of Schrödinger operators to the Schrödinger operator
−1

2
d2

dx2 + b2−b′
2

, which is unitarily equivalent to L. Similarly we also used ideas from the
theory of Schrödinger operators, but translated them in a suitable form. In order to get
a complete characterization of the existence of quasistationary distributions our result is
more useful.
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3.3 Existence of Quasistationary Distributions

As in the regular case we are interested in the existence of quasistationary distributions. As
explained we will assume that 0 is an exit boundary and thus have to work with diffusions
with two singular boundary points. As in chapter 1 we prove existence of quasistationary
distributions by proving the existence of the Yaglom limit. At several points the technical
problems become much more involved and we are not able to solve the problem in complete
generality. Still our results are new and extend the only existing work [20] on this problem
in some respect and together with the uniqueness result in [20] a better understanding of
the problem is obtained.

We assume for the rest of this chapter that the condition

(H) ∃z ∈ (0,∞)∀t > 0 : e−tL1[0,z] ∈ L2((0,∞), ρ)
and limε→0 e

−tL1[ε,z] = e−tL1[0,z] in L2((0,∞), ρ)

is satisfied.

Assuming certain absorption at 0 condition (H) will allow to establish the existence of
quasistationary distributions under the assumption of strict positivity of the bottom of the
spectrum. In the following Proposition we will find a class of diffusions which satisfies (H).
We make use of the same methods as in Proposition 2.2 of [20].

Proposition 3.3.1. Assume that b ∈ C1(0,∞) and that for some c > 0 infs>0(|b(s)|2 −
b′(s)) > c. If ∫ 1

0

s
√
ρ(s) ds <∞

then

e−tL1[0,ε] ∈ L2((0,∞), ρ).

Moreover for any sequence (an)n∈N ⊂ (0, , ε) with limn→∞an = 0 we have

lim
n→∞

e−tL1[an,ε] = e−tL1[0,ε]

in L2((0,∞), ρ).

Proof. First observe that it is enough to prove e−tL1[0,ε] ∈ L2((0,∞), ρ) for 1 > ε > 0. By
the Girsanov theorem (see also proposition 2.2 in [20]) we have

e−tL1[0,ε](x) = EBM
x

[
1[0,ε](Xt)e

1
2
Q(x)− 1

2
Q(Xt)− 1

2

R t
0 (b2−b′)(Xs) ds , t < T0

]
≤ e−

c
2
te

1
2
Q(x)

∫ ε

0

pD(t, x, y)e−
1
2
Q(y) dy

(3.3.1)
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where EBM denotes the expectation with respect to the Brownian motion, Q(x) = 2
∫ x

1
b(s) ds

and pD(t, x, y) denotes the heat kernel for the Laplacian on (0,∞) with Dirichlet boundary
conditions at 0, i.e.

pD(t, x, y) =
1√
2πt

(
e

(x−y)2

2t − e
(x+y)2

2t

)
=

1√
2πt

e−
x2

2t e−
y2

2t =

√
2√
πt
e−

x2

2t e−
y2

2t sinh
(xy
t

)
Using sinh

(
xy
t

)
≤ y sinh

(
x
t

)
≤ y

2
e

x
t (for y ∈ (0, 1) and x ∈ (0,∞)) we therefore get by 3.3.1

e−tL1[0,ε](x) ≤ e−
c
2
te

1
2
Q(x)

√
2√
πt
e−

x2

2t e
x
t

∫ ε

0

ye−
1
2
Q(y) dy (3.3.2)

The estimate 3.3.2 implies e−tL1[0,ε] ∈ L2((0,∞), ρ).

As explained in Remark 4.6 in [20] Proposition 3.3.1 is applicable to drifts of the form
b(s) = a

x
+ g(x), where g ∈ C1([0,∞)) and 0 ≤ a < 2. In order to get a more complete

picture it is desirable to include regular perturbations of arbitrary Bessel processes, for
which 0 is an exit boundary. A step in this direction is the following proposition. The
general idea used in the proof is similar to the idea used in Proposition 3.3.1

Proposition 3.3.2. Assume that ν ≥ 1 that b(s) = −−2ν+1
2s

+ c(s) where c ∈ C1([0,∞))

is such that infx>0

[
1
2
(c2(x) − c′(x)) − (−2ν+1)c(x)

x

]
> −∞. Moreover assume that Px(T0 <

∞) = 1. Then
e−tL1[0,z] ∈ L2((0,∞), ρ)

for every z ∈ (0,∞). Moreover we have

lim
ε→0

e−tL1[ε,z] = e−tL1[0,z]

in L2((0,∞), ρ).

Proof. Obviously we can without loss of generality assume 0 < z < 1, since we already
know that for every z′ ∈ [1,∞)

e−tL1[z,z′] ∈ L2((0,∞), ρ).

Denote by Iν the modified Bessel function of the first kind, i.e. (see [12] page 638)

Iν(x) =
∞∑
k=0

(x/2)ν+2k

k!Γ(ν + k + 1)
,

where Γ denotes the Γ-function. LetRν denote the Bessel process, i.e. the minimal diffusion
associated to the generator −1

2
d2

dx2 − 2ν+1
2x

d
dx

. For ν ≥ 1 the process Rν has the transition
function (see [12] page 73 formula 44)

pν(t, x, y) =
1

2t
(xy)−νe−

x2+y2

2t Iν

(
xy

t

)
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with respect to the measure mν(dx) = 2x2ν+1dx. Let P±ν denote the measure associated
to R±ν . From the h-transform property (compare [12] page 75 formula 43) we get that the
transition function p−ν(t, x, y) for the process R−ν with respect to the measure mν(dx) =
2x2ν+1dx is given by

p−ν(t, x, y) =
1

h(x)
pν(t, x, y)h(y) = x2ν 1

2t
(xy)−νe−

x2+y2

2t Iν

(
xy

t

)
y−2ν

=
1

2t
xνe−

x2+y2

2t Iν

(
xy

t

)
y−3ν ,

(3.3.3)

where h(x) = 1
2ν
x−2ν . Set C(x) =

∫ x
1
c(s) ds. Let ρ̃ denote the symmetrizing measure

of the Sturm-Liouville expression τ̃B = −1
2
d2

dx2 − −2ν+1
2s

d
dx

. For f ∈ L2((0,∞), ρ̃) de-

fine the operators P̃t by P̃tf(x) = e−C(x)/2(Pt(e
C/2f))(x). Since

∫∞
0
|fe−C/2(x)|2 ρ̃(dx) =∫∞

0
|f(x)|2 ρ(dx) <∞ the expression Pt(e

C/2f) is well-defined and we have P̃tf ∈ L2((0,∞), ρ̃).

We see by a simple calculation that the generator L̃ of P̃t acts on smooth functions with
compact support via

L̃f(x) = τBf(x) +

[
1

2
(c2(x)− c′(x))− (−2ν + 1)c(x)

x

]
f(x).

Since L̃ � C∞
c ((0,∞) is essentially selfadjoint if this is true for the operator L we conclude

that it is enough to check the action of L̃ on C∞
c ((0,∞) . Applying the Feynman-Kac

formula and the assumptions of the proposition and (3.3.3) we get for some constants Kt,
K̃t

Ft(x) := e−tL1[0,ε](x) = eC(x)/2P̃t(e
−C(x)/21[0,ε])(x) = eC(x)/2e−tL̃(e−C(x)/21[0,ε])(x)

= eC(x)/2E−ν
x

[
e−

R t
0 [ 1

2
(c2(Xs)−c′(Xs))− (−2ν+1)c(Xs)

Xs
] dse−C(x)/21[0,ε](Xt), T0 > t

]
≤ eC(x)/2KtE−ν

x

[
1[0,ε](Xt), T0 > t

]
= eC(x)/2Kt

∫ ε

0

p−ν(t, x, y)(y)y2ν+1 dy

≤ eC(x)/2Kt

∫ ε

0

1

2t
xνe−

x2+y2

2t Iν

(
xy

t

)
y−3νy2ν+1 dy

≤ e
C(x)

2 K̃t
xν

2t
e−

x2

2t

∫ ε

0

e−
y2

2t Iν

(
xy

t

)
y−3νy2ν+1 dy.

Using

Iν

(
xy

t

)
=

∞∑
k=0

(xy/2t)ν+2k

k!Γ(ν + k + 1)
≤ yν

∞∑
k=0

(x/2t)ν+2k

k!Γ(ν + k + 1)
= yνIν(x/t)

we get for some constant K1
t > 0

Ft(x) ≤ K1
t e

1
2
C(x)x

ν

2t
e−

x2

2t Iν(x/t). (3.3.4)
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Near 0 the density ρ(x) = e−2
R t
1
−(−2ν+1)

2s
+c(s) ds behaves as e−C(x)x−2ν+1 and near ∞ the

density ρ behaves as e−C(x)x−2ν+1. Using the asymptotics (see page 638 in [12])

Iν(z) ∼
1

Γ(ν + 1)

(
z

2

)ν
for small z and Iν(z) ∼

ez√
2πz

for large z

we obtain ∫ ∞

0

|Ft(x)|2 ρ(dx) ≤
∫ ∞

0

|K1
t e

1
2
C(x)x

ν

2t
e−

x2

2t Iν(x/t)|2ρ(dx) <∞.

Remark 3.3.1. Despite our permanent effort we have not been able to give necessary and
sufficient conditions, which ensure e−tL1[0,z] ∈ L2((0,∞), ρ). Such a result would clarify
the status of our hypotheses. In the above results we have seen, that this holds in many
interesting cases, in particular it is always satisfied under the assumptions of [20]. In a
subsequent joint work with Leif Döring we try to extend the above proposition further by
making use of Khas’minskii’s Lemma. It is an interesting task to search for more general
and if possible even optimal assumptions which imply the validity of (H).

The following result is a local version of the Yaglom limit and is the first important
step in the analysis of the full problem. Recall that we always assume the validity of (H)
and notice that in the right side of the assertion does not depend on R. This is so since
for different R,R′ the solutions ϕ̃R(λκ0 , ·) and ϕ̃R

′
(λ0, ·) are linearly dependent by Corollary

3.2.1 and therefore the quotient in the assertion does not change, if one replaces in the
assertion ϕ̃R(λκ0 , ·) by ϕ̃R

′
(λ0, ·). Moreover as observed in (3.2.16) and (3.2.17) ϕ̃R(λκ0 , ·)

can replaced by ψ̃(λ0, ·)eB(·)/2.

Theorem 3.3.1. Assume that 0 is an exit boundary and A ⊂ B are compact subsets of
[0,∞). Let ν be an initial distribution, which is compactly supported in (0,∞).

lim
t→∞

Pν
(
Xt ∈ A | Xt ∈ B

)
=

∫
A
ϕ̃R(λ0, x)ρ(dx)∫

B
ϕ̃R(λ0, x)ρ(dx)

.

Proof. Let us fix R > 10|λ0| and denote the for λ ∈ R with |λ| < R ϕ̃R(λ, ·) just by ϕ̃(λ, ·).
The proof relies on the above spectral theoretic results. First observe that it is easy to see
that for z > 0 and a subsets A,B ⊂⊂ (0, z] with A ⊂ B we have

lim
t→∞

Pν
(
Xt ∈ A | Xt ∈ B) =

∫
A
ϕ̃(λ0, z) ρ(dz)∫

B
ϕ̃(λ0, z) ρ(dz)

.

This can be done exactly as in the proof of the corresponding result for a diffusion with a
regular boundary. An additional problem occurs if A ⊂ [0, z] due to the fact that 1A does
not necessarily belong to L2((0,∞), ρ). Here condition (H) will be used. Let for a subset
A ⊂ [0, z] and ε > 0 Aε denote the set {x ∈ A | |x| > ε}. Then by condition (H) we have
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for every t > 0 limε→0 e
−tL1Aε = e−tL1A in L2((0,∞), ρ). This allows to decompose e−tL1A

as
Px(Xt ∈ A) = e−tL1A(x) = E([λ0, λ1])e

−tL1A(x) + E((λ1,∞))e−tL1A(x)

for almost every x ∈ (0,∞) and due to continuity for every x ∈ (0,∞). Observe moreover
that for λ1 ∈ (0,∞) the continuous integral kernel hλ1(t, x, y) of the operator E((0, λ1))e

−tL

is given by

hλ1(t, x, y) =

∫
[λ0,λ1]

e−tλϕ̃(λ, x)ϕ̃(λ, y)σ(dλ)

If ν is an initial distribution with compact support in (0,∞), then due to continuity of the
functions e−tL1A, E([λ0, λ1])e

−tL1A and E((λ1,∞))e−tL1A the expressions

〈e−tL1A, ν〉, 〈E([λ0, λ1])e
−tL1A, ν〉 and 〈E((λ1,∞))e−tL1A, ν〉

are welldefined and we get

〈e−tL1A, ν〉 = 〈E([λ0, λ1])e
−tL1A, ν〉+ 〈E((λ1,∞))e−tL1A, ν〉.

and using Fubini’s theorem we arrive at

E([λ0, λ1])e
−tL1A(x) =

∫ ∞

0

hλ1(t, x, y)1A ρ(dy)

=

∫
[λ0,λ1]

e−λt
∫ ∞

0

ϕ̃(λ, x) ν(dx)

∫
A

ϕ̃(λ, y) ρ(dy)σ(dλ)
(3.3.5)

The use of Fubini’s theorem may be easily justified by using properties of the generalized
eigenfunctions ϕ̃(λ, x). Now observe that

lim
t→∞

〈E([λ0, λ1])e
−tL1A, ν〉

〈E([λ0, λ1])e−tL1[0,z], ν〉
=

∫
A
ϕ̃(λ0, x) ρ(dx)∫ z

0
ϕ̃(λ0, x) ρ(dx)

(3.3.6)

Using the integrability properties of ϕ(z, ·) established in Corollary 3.2.1 and the proof of
Theorem 3.2.2 this follows exactly as in the regular case (see Theorem 2.2.3 chapter 2).
Thus it remains to show that

lim
t→∞

Pν(Xt ∈ A | Xt ≤ z) = lim
t→∞

〈E([λ0, λ1])e
−tL1A, ν〉

〈E([λ0, λ1])e−tL1[0,z], ν〉
(3.3.7)

This will be proved using ideas, which are similar to the case of a regular boundary at 0.
In order to do so observe that

Pν(Xt ∈ A)

〈E([λ0, λ1])e−tL1A, ν〉
=
〈E([λ0, λ1])e

−tL1A, ν〉+ 〈E((λ1,∞))e−tL1A, ν〉
〈E([λ0, λ1])e−tL1A, ν〉

= 1 +
〈E((λ1,∞))e−tL1A, ν〉
〈E([λ0, λ1])e−tL1A, ν〉

.
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Using e−tL1A ∈ L2((0,∞), ρ) and the elementary inequality

|g′(x)| ≤
(

2

∫ x

0

ρ(x)−1 dx

) 1
2
(

1

2

∫ ∞

0

|g′(x)|2ρ(dx)
) 1

2

valid for g ∈ D(
√
L) gives

〈E((λ1,∞))e−tL1A, ν〉 ≤ Cν

(
1

2

∫ ∞

0

|g′t(x)|2ρ(dx)
) 1

2

=

(∫
[λ1,∞)

e−2(t−ε)λ ‖E(dλ)e−εL1A‖2
L2((0,∞),ρ)

) 1
2

,

where gt = E((λ1,∞))e−tL1A and ε > 0 is small enough. Therefore t 7→ 〈E((λ1,∞))e−tL1A, ν〉
decays exponentially with an exponential rate which is strictly bigger than the exponential
rate of decay of 〈E([λ0, λ1])e

−tL1A, ν〉

Remark 3.3.2. Let τf = − 1
2ρ

(
ρf ′)′ be a Sturm-Liouville operator for which is 0 is the

exit point case and infinity is inaccessible and let L be the unique selfadjoint realization of
τ . Exactly as in the regular case it is possible to deduce the strong ratio limit property if
the transition function p(t, ·, ·) corresponding to e−tL, i.e. for s > 0, x0 ∈ (0,∞)

lim
t→∞

p(t+ s, x, y)

p(t, x0, x0)
= e−λ0s

ϕ̃(λ0, x)ϕ̃(λ0, y)

ϕ̃(λ0, x0)ϕ̃(λ0, x0)
, (3.3.8)

where is the non-trivial function ϕ̃(λ0, ·) is an element of the one-dimensional space of
solutions of τ ϕ̃(z, ·) = zϕ̃(t, ·) satisfying limx↓0 ϕ̃(z, x) = 0. Observe that the hypothesis
(H) is not necessary in order to deduce the strong ratio limit property.

Having established Mandl’s local version of the convergence to quasistationarity we
are now able to prove with the methods of Steinsaltz and Evans the dichotomy In the
following we use a beautiful argument, which under the assumption, that 0 is regular,
is due to Steinsaltz and Evans. Due to Theorem 3.3.1 their reasoning works without
substantial changes. In order to make this work self contained we present a full proof.

Lemma 3.3.1. Let 0 be an exit boundary and let ∞ be natural. Suppose the initial distri-
bution ν is compactly supported and λ0 > 0. Then either

• Xt converges to the quasistationary distribution ϕ̃(λ0, ·); or

• Xt escapes to infinity.

Proof. Let

f(z, t) :=
Pν(Xt > z)

Pν(Xt ≤ z)
,
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then

lim
t→∞

f(z, t) = ∞, ∀z ≥ 0 ⇐⇒ Xt escapes to infinity,

lim
z→∞

lim
t→∞

f(z, t) = 0 ⇐⇒ Xt converges to the qsd ϕ(λ0, ·).

Hence, to prove the dichotomy it has to be ensured that no other limits of f than zero and
infinity are possible. First note that for fixed 0 ≤ a ≤ z

Pν(Xn+1 > z) = Pν(Xn+1 ≥ a)− Pν(a ≤ Xn+1 ≤ z)

≥ Pν(Xn+1 ≥ a|Xn > z)Pν(Xn > z)− Pν(a ≤ Xn+1 ≤ z)

≥ Pz(∀t ∈ [0, 1] : Xt ≥ a)Pν(Xn > z)− Pν(a ≤ Xn+1 ≤ z),

where we used the strong Markov property. Due to naturality of∞, Pz(∀t ∈ [0, 1] : Xt ≥ a)
converges to 1 as z tends to infinity. Further, using convergence to the quasistationary
distribution ϕ(λ0, ·) on compacta we get

Pν(a ≤ Xn+1 ≤ z)

Pν(Xn+1 ≤ z)

n→∞→
∫ z
a
ϕ̃(λ0, x) ρ(dx)∫ z

0
ϕ̃(λ0, x) ρ(dx)

≤
∫∞
a
ϕ̃(λ0, x) dx∫ z

0
ϕ(λ0, x) ρ(dx)

.

For each ε > 0 we can find n′, z0, a such that Pz(∀t ∈ [0, 1] : Xt ≥ a) > 1 − ε and
Pν(a≤Xn+1≤z)

Pν(Xn+1≤z) < ε for n ≥ n′, z ≥ z0. Further, since λ0 > 0, Lemma ... can be used to find

some n′′ such that Pν(Xn≤z)
Pν(Xn+1≤z) ≥ q > 1/(1− ε) for n ≥ n′′ and ε small enough. Altogether,

for a, n, z large enough

f(z, n+ 1) =
Pν(Xn+1 > z)

Pν(Xn+1 ≤ z)

≥ Pz(∀t ∈ [0, 1] : Xt ≥ a)Pν(Xn > z)

Pν(Xn+1 ≤ z)
− Pν(a ≤ Xn+1 ≤ z)

Pν(Xn+1 ≤ z)

≥ Pz(∀t ∈ [0, 1] : Xt ≥ a)
Pν(Xn > z)

Pν(Xn ≤ z)

Pν(Xn ≤ z)

Pν(Xn+1 ≤ z)
− Pν(a ≤ Xn+1 ≤ z)

Pν(Xn+1 ≤ z)

≥ q(1− ε)f(z, n)− ε.

Since ε is arbitrary small taking limits on both sides yields

• lim supn→∞ f(n, z) = ∞, ∀z ≥ 0; or

• limz→∞ lim supn→∞ f(n, z) = 0.

We still have to extend the above to real times t ≥ 0. First note that

lim
z→∞

lim sup
t→∞

Pν(Xt > z)

Pν(Xt ≤ z)

= lim
z→∞

lim sup
t→∞

Pν(Xt > z)

Pν(Xn ≤ z)

Pν(Xn ≤ z)

Pν(Xt ≤ z)

≤ lim
z→∞

lim sup
n→∞

Pν(∃t ∈ [n, n+ 1) : Xt > z)

Pν(Xn ≤ z)
sup

t∈[n,n+1)

Pν(Xn ≤ z)

Pν(Xt ≤ z)
.
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Further,

Pν(∃t ∈ [n, n+ 1) : Xt > z)

= Pν(∃t ∈ [n, n+ 1) : Xt > z,Xn ≥ z) + Pν(∃t ∈ [n, n+ 1) : Xt > z,Xn < z)

≤ Pν(Xn ≥ z) + Pν(∃t ∈ [n, n+ 1) : Xt > z|Xn < z)P(Xn ≤ z)

≤ Pν(Xn ≥ z) + Pν(∃t ∈ [n, n+ 1) : Xt > z|Xn < z)

The second summand tends to zero due to convergence to the quasistationary distribution
ϕ(λ0, ·) on compacta. Indeed,

Pν(∃t ∈ [n, n+ 1) : Xt > z|Xn < z)
n→∞→

∫ z
0

Px(∃t ∈ [0, 1) : Xt > z)ϕ̃(λ0, x) ρ(dx)∫∞
0
ϕ̃(λ0, x) ρ(dx)

.

Without loss of generality we may assume
∫∞

0
ϕ̃(λ0, x) ρ(dx) < ∞ since otherwise Xt

escapes to infinity. Hence, due to dominated convergence the limit in z can be taken in
the inside which tends to zero since ∞ is inaccessible. In total from the above follows
limz→∞ limt→∞

Pν(Xt>z)
Pν(Xt≤z) = 0. Finally, the second case is similar. For any a > z

lim inf
t→∞

f(z, t)

≥ lim inf
n→∞

Pν(Xn > a))− Pν(a < Xn,∃t ∈ [n, n+ 1) : Xt ≤ z)

Pν(Xn ≤ a) + Pν(a < Xn,∃t ∈ [n, n+ 1) : Xt ≤ z)

≥ lim inf
n→∞

f(a, n)(1− Pν(∃t ∈ [n, n+ 1) : Xt ≤ z|a < Xn)

1 + f(a, n)Pν(∃t ∈ [n, n+ 1) : Xt ≤ z|a < Xn)

= lim inf
n→∞

Pν(∃t ∈ [n, n+ 1) : Xt ≤ z|a < Xn)
−1 − 1,

where the last equality is true since limn→∞ f(a, n) = ∞. Hence, the right-hand side
diverges as a tends to infinity since ∞ is natural. Finally, we proved that for all z ≥ 0,
limt→∞ f(z, t) = ∞.

Lemma 3.3.1 gives us an important dichotomy. Either we have escape to infinity or
convergence to quasistationarity. Let us first comment on the case where absorption at 0
is not certain.

Theorem 3.3.2. Assume that 0 is an exit boundary and that
∫∞

1
ρ(t)−1 dt <∞. Then we

have for every a ∈ (0,∞) and every compact subset K ⊂ [0,∞)

lim sup
t→∞

eλ0t sup
x∈[a,∞)

Px
(
Xt ∈ K | T0 > t

)
<∞

Proof. As we did quite often we use the elementary fact that for fixed a ∈ (0,∞) and for
every f ∈ D(q)

sup
c∈(0,a)

|f(x)| ≤
(

2

∫ a

0

ρ(t)−1 dt

) 1
2
(

1

2

∫ ∞

0

|f(t)|2ρ(dt)
) 1

2

≤
(

2

∫ ∞

0

ρ(t)−1 dt

) 1
2
(

1

2

∫ ∞

0

|f(t)|2ρ(dt)
) 1

2

,
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where we use our assumption and that 0 is assumed to be an exit boundary. By the
spectral calculus we conclude that e−tLg ∈ D(q) for every g ∈ L2((0,∞), ρ) and therefore
for t > ε > 0, f := e−εL1K ∈ L2((0,∞), ρ) (by hypothesis (H)) and C =

∫∞
0
ρ(t)−1 dt <∞

sup
x∈(0,∞)

Px
(
Xt ∈ K) = sup

x∈(0,∞)

|(e−tL1K)′(x)| ≤ C

(∫ ∞

0

|(e−tL1K)′(x)|2ρ(dx)
) 1

2

= C

(∫ ∞

0

|(e−(t−ε)Le−εL1K)′(x)|2ρ(dx)
) 1

2

= C

(∫
[λ0,∞)

λe−2(t−ε)λ d‖Eλf‖2
L2((0,∞),ρ)

) 1
2

.

(3.3.9)

This inequality therefore gives us

lim sup
t→∞

eλ0tPx
(
Xt ∈ K) ≤ C lim sup

t→∞

(∫
[λ0,∞)

λe2λ0te−2(t−ε)λ d‖Eλf‖2
L2((0,∞),ρ)

) 1
2

.

The right hand side is finite and is even equal to 0 if λ0 does not belong to the point
spectrum of L and in particular in the case λ0 = 0. Therefore we get for any ε > 0

lim sup
t→∞

eλ0t sup
x∈(ε,∞)

Px
(
Xt ∈ K | T0 > t

)
<∞.

In the sequel we consider only diffusions which are absorbed in 0 with probability one.
We are interested in finding sufficient conditions ensuring the existence of quasistation-
ary distributions. In the following Theorem we show in particular that the behavior of
Pν(Xt ∈ · | T0 > t) does not depend on the initial distribution ν. Moreover we prove that
convergence to quasistationarity is implied by the strict positivity of the generator of the
diffusion.

Theorem 3.3.3. Assume that 0 is an exit boundary and infinity is natural and that Px(T0 <
∞) = 1. If λ0 > 0 then Xt converges to the quasistationary distribution ϕ̃(λ0, ·).

Proof. By Lemma 3.3.1 we know that Xt converges either to the quasistationary distribu-
tion or escapes to infinity. This means that the family of measures

Ft(ν, ·) = Pν(Xt ∈ · | T0 > t)

converges weakly either to the measure ϕ̃(λ0, ·) dρ or to δ∞. In the second case we have
for every distribution ν which is compactly supported in (0,∞)

lim
s→∞

Pν
(
T0 > t+ s | T0 > s

)
= lim

s→∞

∫ ∞

0

Py(T0 > t)Pν(Xs ∈ dy | T0 > s)

= lim
y→∞

Py
(
T0 > t) = 1,
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where we used the assumption that ∞ is a natural boundary point. If Xt converges to the
quasistationary distribution, then we have for some α > 0

lim
t→∞

Px
(
T0 > t+ s)

Px
(
T0 > t

) = e−αs

and therefore

− lim
t→∞

1

t
log Px

(
T0 > t

)
= α.

Thus in order to prove the assertion of the theorem it is enough to show that

− lim
t→∞

1

t
log Pν(T0 > t) > 0.

As in the regular case it remains to investigate the exponential asymptotic behavior of
Pν(T0 > t) but in contrast to the regular case the function 1 is not in L2((0,∞), ρ) and
therefore we have to use a slightly different route. We will apply a well-known martingale
technique. The bottom of the spectrum of the operator L − λ0/2 is λ0/2. Therefore the
operator L− λ0/2 is subcritical or equivalently the Greens function

g(x, y) =

∫ ∞

0

esλ0/2p(s, x, y) ds

exists. Thus by Proposition 5.1.3 in [75] there exist two linearly independent positive so-
lutions u1, u2 of the equation (L − λ0/2)u = 0. Thus by Corollary 3.2.1 there exists a
positive solution ũ of (L−λ0/2)u = 0 with limx→0+ u(x) = 1. Consider the stochastic pro-
cess (Yt)t≥0 = (eλ0/2(t∧T0)u(Xt∧T0))t≥0. Then by the Itô formula (Yt∧TM

)t>0 is a martingale
with respect to Px. Therefore we conclude that for x ∈ (0,M)

Ex

[
u(Xt∧T0∧TM

)eλ0/2(t∧T0)] = u(x).

Sending M to ∞ and then t to ∞ we conclude by double application of Fatou’s Lemma

Ex

[
eλ0/2T0

]
≤ u(x). (3.3.10)

Observe that we used the assumption Px(T0 < ∞) = 1 in this step in order to conclude

that limt→∞ t ∧ T0 = T0 Px-almost surely. The integrability of e
λ0
2
T0 implies the desired

∀x ∈ (0,∞) : − lim
t→∞

1

t
log Px(T0 > t) ≥ λ0

2
> 0,

as the exponential Markov inequality in combination with (3.3.10) gives

lim
t→∞

1

t
log Px

(
T0 > t

)
≤ lim

t→∞

1

t
log
[
e−

λ0t
2 Ex

[
e

λ0T0
2

]
≤ −λ0

2
.

Another approach to the exponential decay of the tails of T0 is to use assumption (H)
and similar arguments as in the regular case. The ideas used above do not make use of
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hypothesis (H).
Now we can apply the parabolic Harnack principle in order to conclude that for every
compact K ⊂ (0,∞)

− lim
t→∞

1

t
log sup

x∈K
Px(T0 > t) >

λ0

2
,

which finishes the proof.

In our final theorem we consider the case, where infinity is an entrance boundary. In
the proof we make again use of the following fact: Assume that λ0 is an eigenvalue in the
spectral theoretic sense then

lim
t→∞

eλ0tp(t, x, y) = uλ0(x)uλ0(y),

where uλ0 denotes the unique nonnegative normalized eigenfunction associated to λ0 and
the convergence is locally uniform in (0,∞).

Theorem 3.3.4. Assume that 0 is an exit boundary and that ∞ is entrance. Then there
is only one quasistationary distribution and Xt converges from every initial distribution
ν, which is compactly supported in (0,∞) to the quasistationary distribution vλ0(x)ρ(dx),
where vλ0 is the unique (up to multiples) positive L2-eigenfunction to the eigenvalue λ0.

Proof. The proof3 of the next theorem does not differ from the corresponding result in the
regular case. We have seen in Theorem (3.2.4) that the spectrum of L is purely discrete
and the lowest eigenfunction is integrable with respect to ρ. Moreover by [82] (see also
Remark 2.2.4)

lim
t→∞

eλ0tp(t, x, y) = uλ0(x)uλ0(y), (3.3.11)

where uλ0 is the unique positive eigenfunction, normalized to ‖uλ0‖L2((0,∞),ρ) = 1, corre-
sponding to the lowest eigenvalue λ0. Assume that the initial distribution ν is compactly
supported in (0,∞). Using again the parabolic Harnack principle we get for some locally
bounded function Θ : (0,∞ → (0,∞), every z ∈ (0,∞) with |z − x| < δ(x) = 1

2
∧ x

4
and

every y ∈ (0,∞)
p(t, x, y) ≤ Θ(x)eλ0tp(t+ 1, z, y)

and therefore

p(t, x, y) = Θ(x)

∫
|z−x|<δ(x) p(t, z, y)uλ0(z) ρ(dz)∫

|z−x|<δ(x) uλ0(z) ρ(dz)

=
Θ(x)∫

|z−x|<δ(x) uλ0(z)ρ(dz)
e−λ0(t+1)uλ0(y).

(3.3.12)

Therefore dominated convergence directly implies

lim
t→∞

Pν
(
Xt ∈ A | T0 > t

)
= lim

t→∞

eλ0t
∫∞

0
ν(dx)

∫
A
ρ(dy) p(t, x, y)

eλ0t
∫∞

0
ν(dx)

∫∞
0
ρ(dy) p(t, x, y)

=

∫
A
uλ0(x)ρ(dx)∫∞

0
uλ0(x) ρ(dx)

.

The remaining assertions are already contained in chapter 7 of [20].

3A similar strategy is already used in [20] in the case of a purely discrete spectrum



76CHAPTER 3. QUASISTATIONARY DISTRIBUTIONS : THE NON-REGULAR CASE

The following Corollary gives a short summary of our results. The reader should have
in mind that we still work under the assumption (H).

Corollary 3.3.1. Assume that 0 is an exit boundary point and that infinity is inaccessible.

a) If infinity is an entrance boundary point then we have η = λ0 > 0 and Xt converges
to the quasistationary distribution uλ0(x), where uλ0 is the unique (up to constant
multiples) positive L2-eigenfunction corresponding ton the bottom of the spectrum λ0.
In this case there is exactly one quasistationary distribution.

b) If infinity is natural and absorption is certain and λ0 > 0 then η = λ0 and Xt

converges to the quasistationary distribution ϕ̃(λ0, ·), where ϕ̃(λ0, ·) is the unique (up
to positive multiples) positive solution of (τ − λ0)u = 0 with limx→0 ϕ̃(λ0, x) = 0

b) If infinity is natural and if Px(T0 <∞) 6= 1 then Xt escapes to infinity exponentially
fast, where the exponential rate is given by λ0.

3.4 Concluding Remarks and Open Problems

In this chapter we established a characterization for the existence of quasistationary dis-
tributions for class of one-dimensional diffusions on the halfline, for which 0 is accessible
and ∞ is inaccessible. We have not been able to work without further conditions, though
we have been able to extend results of the recent paper [20] significantly. Our assumptions
allowed us to give sufficient conditions for the existence of quasistationary distributions
for diffusions, whose drift behaves like the drift of a Bessel diffusion at 0 and satisfies a
mild condition at infinity. Under these conditions let us assume that absorption is certain.
Then we know by the above results that there is a unique quasistationary distribution
if and only if the bottom of the spectrum is strictly positive and infinity is an entrance
boundary. Thus if the bottom of the spectrum is strictly positive and if infinity is natural
then there are quasistationary distribution, which are not associated to the bottom of the
spectrum. One quasistationary distribution µ0 is given by the Yaglom limit. Let µ be an-
other quasistationary distribution. Then µ is absolutely continuous with respect to ρ with
a continuous non-negative density f and there is α > 0 such that Pµ(T0 > t) = e−αt. In
the case of birth and death processes on N0 it is known that 0 ≤ α ≤ λ0. The quasistation-
ary distribution given by the Yaglom limit µ0 is thus minimal under the quasistationary
distributions in the sense that that the expected absorption Eµ0 [T0] is minimal. More-
over we see that quasistationary distributions µ different from µ0 somehow correspond to
positive values below λ0. This is rather interesting, since these values have no meaning
in the L2-theory of the diffusion operator and until now little seems to be known about
these quasistationary distributions in the case of diffusions. As we have shown above the
minimal quasistationary distribution occurs naturally as the Yaglom limit

lim
t→∞

Pν(Xt ∈ · | T0 > t), (3.4.1)
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where ν is compactly supported in (0,∞). This means that the compactly supported
initial distributions belong to the domain of attraction of the minimal quasistationary
distributions. Moreover it is known that every initial distribution belongs o the domain of
attraction of the minimal quasistationary distributions, if there is a unique quasistationary
distribution, i.e. if infinity is an entrance boundary. It is thus natural to expect that
other quasistationary distributions might occur as limits (3.4.1), if one starts with initial
distributions whose tails decay not too rapidly. A further analysis of the whole set of
quasistationary distribution constitutes an interesting project for further research.
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Chapter 4

Large time behavior of the
two-dimensional Super-Brownian
motion with a single point source

In this chapter we study the multi-dimensional super-Brownian motion with a single point
source as introduced by Fleischmann and Mueller in [42]. More precisely we mainly inves-
tigate the large time behavior of the two-dimensional super-Brownian motion with a single
point source and finite variance. This was mentioned as an open problem by Fleischmann,
Mueller and Vogt in [43]. Heuristically, the class of processes that is studied in this chapter
are super-Brownian motions with additional birth at the origin. Formally these processes
are defined via the log-Laplace equation

Eµ

[
exp

(
−〈Xt, ϕ〉

)]
= exp

(
−
∫

Rn

v(t, x)µ(dx)

)
,

where v is the unique positive solution of the non-linear equation

∂tv(t, x) = −∆αv(t, x)− v(t, x)1+β, v(0, ·) = ϕ(·),

where α ∈ R, β ∈ (0, 1] (d = 2), β ∈ (0, 1) (d = 3) and ϕ belongs to a suitable class of
testfunctions. Here the operator −∆α (α ∈ R) is not a fractional power of the Laplacian,
but is an element of the 1-parameter family of selfadjoint extensions of −∆ � C∞

c (Rd \{0})
with d = 2, 3. Heuristically, the operators −∆α represent the Laplacian perturbed by a
certain δ0-potential and are sometimes called Hamiltonians with point interaction in the
analytic literature. The superprocess associated to −∆α is rather interesting, since a first
thought could indicate that in dimensions greater than 1 such a process does not exist just
because in higher dimensions single points are polar. This might be the reason, why these
operators have not been considered from a probabilistic point of view (apart from [42])
despite of the enormous analytic literature about this subject. The situation is different
in one dimension, where a rather good understanding of the super-Brownian motion with
a single point source has been obtained. We only mention that, after the derivation of

79
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the large time behavior of the expected total mass in [34] by Engländer and Fleischmann,
Engländer and Turaev proved in [36] a (weak) law of large numbers for this process. As in
one dimension single points are non-polar for the Brownian motion a probabilistic approach
via a Feynman-Kac formula is rather straightforward. In higher dimensions the semigroups
corresponding to the selfadjoint extensions −∆α (α ∈ R) are positivity preserving, but
they are not transition functions of a Markov process with state space Rd (d = 2, 3). Using
purely analytic techniques Fleischmann and Mueller constructed in a quite non-trivial way
a superprocess associated to −∆α and thus in principle opened the way for a probabilistic
investigation of these operators. Unfortunately the probabilistic meaning and almost all
qualitative aspects concerning the process seem to be unclear at the moment. In [43]
Fleischmann, Mueller and Vogt started to study the large scale behavior of this process in
three dimensions. Their results concerning the large time scaling of the expectation are still
incomplete. Moreover, the scaling behavior in the two dimensional case is mentioned as an
open problem and it seems to be a common belief that in two dimensions the derivation
of the large time behavior of the expectation is even more difficult (see e.g. [32] p. 500).
In this work we complement the results of [43] concerning the scaling behavior of the
expectation in the three dimensional case. Furthermore, we prove that the process in two
dimensions exhibits a behavior, which is quite different from the three dimensional case.
More precisely we prove that in two dimensions the large time behavior of the expected
mass is always precisely exponential, whereas in the three dimensional case the exact
scaling of the expectation depends on the parameter α. If α < 0, the expectation has
precise exponential long time asymptotics. If α > 0, the long time behavior of Eµ[〈Xt, ϕ〉]
(ϕ ∈ Cc(R3)) is comparable to the one of the usual super Brownian motion, i.e. it is given
by t−3/2. If α = 0, we find that Eµ[〈Xt, ϕ〉] behaves like t−1/2 as t→∞.

On the one hand we hope that our results will help to reveal the probabilistic mechanism
underlying the process and to understand the scope of probabilistic representations of
rather exotic operators such as the above mentioned Hamiltonians with point interaction.
Further research in this direction will be necessary and our results are only a small step. On
the other hand we want to demonstrate at a concrete example that our main tool, which
is a Fourier type analysis, has a broader scope than usually thought in the probabilistic
literature.

This chapter is organized in the following way. In section 2 we recall and provide some
analytic facts concerning the operator −∆α. In particular we describe the spectrum and
show how the operator can be diagonalized. In section 3 we recall the precise definition of
the Super-Brownian motion with a single point source. The main results of this work can
be found in section 4, where we give the precise long time behavior of the expectation and
also establish the law of large numbers in the case of dimension two under the assumption
that a formula for the second moment, known to hold true for more regular superprocesses,
is also valid in our case. More details concerning the heuristics for the law of large numbers
can be found in [37] and [44]. Our main result is Theorem 4.3.3 where we prove that there
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is a random variable Nα depending only on α and the initial measure µ such that

lim
t→∞

〈f,Xt〉
Eµ

[
〈f,Xt〉

] =
Nα∫

R2 ψα(x)µ(dx)
,

where f ∈ Cc(R2 \ {0}), ψα is a certain explicitly known function and the limit denotes
almost sure convergence.
We stress that in many previous results only convergence in probability or even weaker
kinds of convergence have been established (see [36], [37] and [32]). Almost sure conver-
gence results are given in [93], [44] and [35] for certain branching diffusions, in [92] for
super-Brownian motion and [22] for a quite large class of superprocesses. Assuming that
a certain formula for the second moment holds also true in our case we prove the strong
law of large numbers. As it is quite common to most of the above mentioned results con-
cerning the large time behavior of super-processes our method is a combination of analytic
facts with some probabilistic (mainly martingale) arguments. An exception is the work
[35] where Engländer, Harris and Kyprianou use a more probabilistic approach which is
still not extended to superprocesses. Therefore this technique which is often called spine
technique is not applicable to our setting.

4.1 Analytic Results

In this section we present some known analytic results concerning the formal operator
−1

2
∆ − δα0 . These operators are often referred to as Hamiltonians with point interaction

in the mathematical physics literature. We present only the most basic facts. For addi-
tional details we refer to the comprehensive work [4]. First, we have to clarify how we
rigorously define the formal operator −∆− δα0 . This will be done via the theory of selfad-
joint extensions of symmetric operators. Though this topic is well-known in the analytic
community we present some basic results for the convenience of the reader. In order to
use all spectral theoretic results it will sometimes be necessary to use the complex Hilbert
space L2(Rd) = L2(Rd,C). The operators −∆ − δα0 are rigorously defined as a selfadjoint
extension −∆α of the symmetric operator −∆ � C∞

c (Rd \ {0}). Since in dimensions d ≥ 4
the operator −∆ � C∞

c (Rd \ {0}) is essentially selfadjoint, point interactions do not exist.
If the dimension is strictly smaller than four, this is no longer true and there are self-
adjoint extensions which differ from the Friedrichs extension. These extensions will play
an important role in this work. The operator −∆α should not be confused with fractal
powers of the ordinary Laplacian, which occur as generators of certain symmetric Levý
processes. Since each operator −∆α is selfadjoint we can associate to −∆α a projection
valued spectral measure Eα(dλ), where the subscript α is sometimes omitted. At several
points we will make use of the Sobolev embedding theorem (see chapter 4 in [17]). As
in [4] we denote by H2(U) = H2,2(U) the standard Sobolev space consisting of all L2(U)
functions whose weak derivatives up to second order also belong to L2(U). One version of
the Sobolev embedding theorem states that for d = 2, 3 and for every open set U ⊂ Rd
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with a smooth boundary there exists a constant C > 0 such that for every f ∈ H2,2(U)

sup
x∈U

|f(x)| ≤ C ‖f‖H2,2(U) = C

(
‖f‖L2(U) + ‖∇f‖L2(U) +

d∑
i,j=1

‖∂i∂jf‖L2(U)

)
.

In case of U = Rd the above inequality implies that form some C̃ > 0 and every f ∈ H2,2(U)

sup
x∈U

|f(x)| ≤ C̃
(
‖f‖L2(U) + ‖∆f‖L2(U)

)
.

The last inequality can be read as the fact that for every λ ∈ C \ [0,∞) the operator
(−∆ − λ)−1 maps L2(Rd) continuously to the space Cb(Rd) of all bounded continuous
functions on Rd.

4.1.1 Point Interactions in Three Dimensions

We start with an explanation of the 3-dimensional problem. Consider the operator H̃ =
−∆ � C∞

c (R3 \ {0}). H̃ is a densely defined, symmetric and non-negative operator in the
Hilbert space L2(R3), which has self-adjoint extensions given by the Krein-theory. Since the
deficiency indices are (1, 1) there exists a one-parameter, parameterized by α ∈ (−∞,∞],
family of selfadjoint extension. The selfadjoint extension corresponding to α = ∞ is the
Friedrichs extension. The domain D(−∆α) (α ∈ R) consists of all elements ψ of the form

ψ(x) = ϕk(x) + (α− ik/4π)−1ϕk(0)Gk(x) x ∈ Rd \ {0}, (4.1.1)

where ϕk belongs to the Sobolev space H2,2(R3) and Gk(x) = (4π|x|)−1eik|x| (=k > 0)
denotes the free Greens function. Observe that, due to the Sobolev-embedding, ϕk is
continuous and therefore ϕk(0) is well-defined. The decomposition in (4.1.1) is unique and
with such a ψ one has

(−∆α − k2)ψ = (−∆− k2)ϕk. (4.1.2)

The spectral analysis of the operator Hα := −∆α in R3 is rather straightforward (see
Theorem 1.1.4. in [4]). Its essential spectrum coincides with the absolutely continuous
spectrum and is given by [0,∞). The point spectrum σp(H

α) is empty if α > 0 and
σp(H

α) = {−8π2α2} if α < 0. If α = 0, the operator Hα exhibits a resonance at zero.
If α < 0, the unique (up to constant multiples) eigenfunction associated to the discrete
eigenvalue λα = −8π2α2 is given by

ψα(x) =
1

4π|x|
e4πα|x|.

Thus the eigenfunction corresponding to the bottom of the spectrum belongs to L2(R2)
and is exponentially decreasing at infinity and therefore it is in particular integrable. The
strongly continuous semigroup (e−tH

α
)t>0 in L2(R3) consists of integral operators e−tH

α

(t > 0), whose integral kernels pα(t, x, y) are given by (see formula array (3.4) in [1])

pα(t, x, y) = p(t, x, y) +
2t

|x||y|
1

(4πt)
3
2

e−
(|x|+|y|)2

4t − 8παt

|x||y|

∫ ∞

0

du
e−4παu

(4πt)
3
2

e−
(u+|x|+|y|)2

4t . (4.1.3)



4.1. ANALYTIC RESULTS 83

This explicit expression for the heat kernel has been derived in [1]. There is another fact
concerning the operator which will be used extensively. It can be diagonalized in a way
which is quite similar to the diagonalization of the Laplacian via Fourier transform. Set

ϕα(k, x) = eik·x +
1

4πα− i|k|
ei|k||x|

|x|
(4.1.4)

and let

Fα : Hac → Hac, Fαf(k) =

∫
R3

ϕα(k, x)f(x)
dx

(2π)
3
2

, (4.1.5)

where Hac = E([0,∞))L2(R3) denotes the absolutely continuous subspace of L2(R3) (see
e.g. equation (3) in [72] and section I.1.4 in [4]). It is known that Fα defines unitary
operators, which diagonalize the absolutely continuous part of the operator −∆α in the
sense that Fα(−∆α)F−1

α acts as multiplication with | · |2. We stress that Fα acts as an
ordinary Lebesgue integral only for functions, which are not too singular and decay at
infinity. For a general L2-function f ∈ Hac, Ff is given as the L2-limit of the sequence(∫

|x|<n f(x)ϕ(k, x) dx
)
n∈N. Notice that we often omit the subscript α in the quantities

introduced above. This should not cause any confusion since in our results α ∈ R is
usually fixed.
The fact that in the case α = 0 the generalized eigenfunction ϕα(·, x) (x ∈ R3 \ {0}) has
a ’pole of first order’ will be responsible for the fact that the large time behavior of P 0

t

differs from the large time behavior of P β
t (β > 0). In the spectral theoretic literature one

says that 0 is a resonance if α = 0.

4.1.2 Point Interactions in Two Dimensions

Let us finally describe the situation in two dimensions. We stress that our parameterization
of the family of selfadjoint extensions is the same as in [1] and thus differs from the one
used in [4] (see the footnote on page 225 of [1]). Our α and their parameter, which will be
denoted by α̃, are related by α = 4πα̃ − 2Ψ(1) − 2 ln 2, where Ψ denotes the Digamma-
function. The non-negative operator −∆ � C∞

c (R2 \ {0}) has deficiency indices (1, 1).
Thus there is a one-parameter family of selfadjoint extension (−∆α)α∈R of the symmetric
operator −∆ � C∞

c (R2 \ {0}). The construction of all selfadjoint extensions is analogous
to the three-dimensional case. Essentially one has to replace the free three-dimensional
Greens function by the free two-dimensional Greens function, i.e. as formulated in [4] as
Theorem 5.3 the domain D(−∆α) of the selfadjoint operator −∆α is given by

D(−∆α) =
{
ψ | ψ = φk + 2π[2πα̃−Ψ(1) + ln(k/2i)]−1φk(0)Gk,

where φk ∈ D(−∆), Gk(x) = (i/4)H
(1)
0 (k|x|)

} (4.1.6)

and

(−∆α− k2)−1 = (−∆− k2)−1 + 2π
[
2πα̃−Ψ(1)− ln(k/2i)

]−1
(Gk(·), · )L2(R2)Gk(·) (4.1.7)
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The spectrum of the operator σ(−∆α) consists of an absolutely continuous part σac(−∆α) =
[0,∞) and the point spectrum σp(−∆α) = {−e−α} = {λα} (recall that our parameteri-
zation of the selfadjoint extensions differs from [4]). As remarked on page 100 in [4] this
bound state is determined by the pole structure of (4.1.7). (−∆α−k2)−1(x, y) (x 6= y) has
a meromorphic continuation to the entire logarithmic Riemann surface such that in the cut
plane {k ∈ C \ {0} | −π < arg k < π} −∆α there is only the pole at λα. The multiplicity
of the eigenvalue is one and the unique positive unnormalized eigenfunction ψ̃α is given .

ψ̃α(x) = Gie−α/2(x),

where Gλ(x − y) denotes the integral kernel of (−λ2 −∆)−1 (=λ > 0). Observe that the
lowest eigenfunction ψα(x) inherits the properties of the two-dimensional Greens function.
It decays exponentially as x → ∞ and has a logarithmic singularity at 0. Set ψα :=
‖ψ̃α‖−1

L2(R2)ψ̃α. Thus in contrast to the three-dimensional case the point spectrum is non-
empty for every α ∈ R and there is never a resonance. As −∆α is selfadjoint we may
consider the operators e−t(−∆α) = Pα

t , again. These are integral operators and the kernel
of Pα

t is given by (see equation (3.12) and equation (3.15) in [1])

pα(t, x, y) :=
1

4πt
e−

(x−y)2

4t

+

√
4πt√
|x||y|

1

4πt
e−

(|x|+|y|)2
4t

∫ ∞

0

du
tue−αu

Γ(u)

∫ ∞

0

dr
ru−1e−r(|x|+|y|)

2/4t

(r + 1)u+
1
2

K̃0

(
|x||y|

2t
(r + 1)

)
=

1

4πt
e−

(x−y)2

4t

+
1

2π

∫ ∞

0

tu−1 e
−αu

Γ(u)

∫ ∞

1

(z − 1)u−1z−ue−z
|x|2+|y|2

4t K0

(
|x||y|

2t
z

)
dz du

=: p(t, x, y) + p̃α(t, x, y)

(4.1.8)

Here Γ denotes the Gamma function and K̃0 is defined by

K̃0(z) = ez(2z/π)
1
2K0(z),

where K0 ≥ 0 is the Macdonald function (modified Bessel function of the third kind) of
order zero. Observe that in Lemma 2.6 of [42] it is shown that for every T > 0 there exists
a constant C = C(α, T ) such that for t ∈ (0, T ] and x, y ∈ R2 \ {0}

pα(t, x, y) ≤ p(t, x, y) + C t−
1
2

1√
|x||y|

e−
|x|2
4t e−

|y|2
4t . (4.1.9)

Furthermore we use expansions in generalized eigenfunctions again. In two dimensions the
generalized eigenfunctions or scattering wave functions ϕα(k, x) (see formula (2.36) in [3])
read

ϕα(k, x) = eik·x +
iπ

2

(
2πα̃−Ψ(1) + ln(|k|/2i)

)−1
H

(1)
0 (|k||x|), (4.1.10)
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where H
(1)
0 denotes the Hankel function of first kind and of order zero. Their asymptotic

behavior is

H
(1)
0 (s) ≈ i

2

π
ln(s) as s→ 0 andH

(1)
0 (s) ≈

√
2

πs
e−i(π+ 3π

4
)eis as s→∞. (4.1.11)

Observe that A(α, k) := iπ
2

(
2πα̃−Ψ(1)+ln(|k|/2i)

)−1
is bounded as a function of k. Using

the generalized eigenfunctions we arrive, as in the three-dimensional case, at a generalized
Fourier transform Fα, which diagonalizes the absolutely continuous part of the operator
−∆α. In the sequel we will often omit the subscript α.

Remark 4.1.1. In the previous chapters we have already seen that expansions in gener-
alized eigenfunctions are an extremely useful tool. In one dimension this is much better
known due to the Weyl theory of Sturm-Liouville operators part of which is formulated in
Theorem 2.2.1 above. But we want to stress that in higher dimensions there exist several
useful results concerning expansions in generalized eigenfunctions as well and the existence
of eigenfunction expansions is not restricted to the class of exactly solvable problems such
as Hamiltonians with point interactions. These analytic results are useful in probabilistic
problems, too. For example the results of [56] can be used in order to recover some of
the interesting results of Collet et Al. (see [26]) concerning the asymptotic behavior of a
Brownian motion on exterior domains.

In order to clarify whether the local behavior, i.e. the mass in bounded regions, and the
global behavior, i.e. the mass in unbounded regions have the same large time asymptotics
it is important to consider the large time behavior of Pα

t on L∞(R2). Roughly the large
time behavior of the mass in bounded regions is given by the L2-behavior of Pα

t . The
large time behavior of the mass in unbounded regions is more closely connected to the
L∞-behavior of Pα

t . The investigation of the large time behavior of supx∈R2(Pα
t 1)(x) is the

content of Lemma 2.1 in [9]. Observe first that the authors of [9] seem to have missed that
the parameters in [4] and [1] differ. This becomes clear e.g. in formula (17) of [9]. Moreover
the assertion of the following lemma is not correct. We explain the hidden mistake made
by Blanchard and Ben Amor in Remark (4.1.2). In a first approach to several of our results
we used the results stated in the work of Blanchard and Ben-Amor and only recently found
out that several of these results are not correct.

Lemma 4.1.1 (Lemma 2.1 in [9]). In two dimensions the integral kernels pα(t, x, y) induce
bounded positivity preserving operators Pα

t on L∞(R2), whose norm is given by

‖Pα
t ‖∞,∞ ≤ 1 + ν(te−α)

where the ν-function is defined (see [38] p. 219) by

ν(t) =

∫ ∞

0

tr

Γ(r + 1)
dr
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Remark 4.1.2. In this remark we comment on Lemma 4.1.1. The mistake Blanchard and
Ben Amor did is not easy to detect for two reasons. The first reason is the following: On
might expect that exponential asymptotic behavior of ‖Pα

t ‖∞,∞ is similar to the one of the
semigroup in L2. And indeed this expectancy is actually met by the asymptotic behavior of
the ν-function. Indeed in [38] (p. 210) one finds Ramanujan’s formula

ν(x) = ex −
∫ ∞

0

e−xt

t
[
π2 + (log t)2

] dt, (4.1.12)

which directly implies that

lim
t→∞

1

t
log ν(t) = 1.

Assuming that Lemma 4.1.1 is correct the exponential growth rate limt→∞
1
t
log ‖Pα

t ‖∞,∞
of the norms ‖Pα

t ‖∞,∞ is given by

−λα(∞) : = lim
t→∞

1

t
log ‖Pα

t ‖∞,∞ = lim
t→∞

1

t
log sup

x∈R2\{0}
Pα
t 1(x) =

= lim
t→∞

1

t
log ν(te−α) = e−α = −λα.

Thus the assertion of Lemma 4.1.1 beautiful fits in the general picture and it is tempting
to believe the truth of this propostion.
The second reason, why the mistake in Lemma 4.1.1 is difficult to detect, is the fact that the
calculation in [9] is indeed correct. What is not correct is their declaration of the Whittaker
function W− 1

2
,0. The authors use the formula W− 1

2
,0(z) =

√
zez/2 for which they refer to

[64] but in this reference a different formula for W− 1
2
,0(z) is given.

Let us finally point out that also Lemma 2.2 in [9] contains a serious mistake. In this
Lemma Ben Amor and Blanchard claimed to have shown, that the operators Pα

t (t >
0) are ultracontractive in two dimensions. If Pα

t = e−t(−∆α) is ultracontractive then all
eigenfunctions have to be bounded, but the eigenfunction ψα of −∆α is unbounded. Thus
several basic properties such as the p-independence (p ∈ (1,∞)) of the generator of the
two-dimensional semigroup (Pα

t )t≥0 considered in Lp(R2) are still open.

Remark 4.1.3. The situation in three dimensions the situation is the following. A di-
rect calculation shows that the operator Pα

t does not map bounded functions to bounded
functions. Furthermore, it is shown in [2] that in three dimensions the operators −∆α are
generators of strongly continuous semigroups in Lp(R3) iff p ∈ (3/2, 3). In two dimensions
e−t∆α is strongly continuous in Lp(R2) for every p ∈ (1,∞). The integral kernels pα(t, ·, ·)
probably do not induce bounded operators on L∞(R2 \ {0}). However using the bound in
(4.1.9) a direct calculation shows that for every x ∈ R2 \ {0}, t > 0, α ∈ R and f ∈ L∞(R)
the expression

Pα
t f(x) =

∫
Rd\{0}

pα(t, x, y)f(y) dy

is well-defined and even continuous in x ∈ R2 \ {0}.
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In the next proposition we state some basic mapping properties of the generalized
Fourier transform.

Proposition 4.1.1. Let d = 2 and assume that the element g ∈ Hac belongs to
⋂
n∈N0

(
D((−∆α)

n)∩
L1(R2)

)
, where D((−∆α)

n) denotes the domain of the n-th power of the operator −∆α.
Then

|ĝ(k)| ≤ cn |k|−2n for |k| large enough .

Moreover, if additionally g ∈ Lp(R2) for every p ∈ (1,∞) then

lim
k→0

|k|γ ĝ(k) = 0

for every γ > 0.

Proof. The general principle is the same as in the case of the classical Fourier transform.
The Fourier transform maps smooth functions to decaying ones. In our case smoothness
means roughly that g belongs to the domain of high powers of −∆α. First observe that
for k ∈ R2 \ {0} and n ∈ N0 the assumption −∆n

αg ∈ L2(Rd) implies that∫
|x|≤1

|ϕ(k, x)(−∆αg(x))| dx ≤
(∫

|x|≤1

|ϕ(k, x)|2 dx
) 1

2
(∫

R2

|(−∆αg(x))|2 dx
) 1

2

<∞.

Moreover observe that for some constants C1, C2, C3 > 0∫
|x|≤1

|ϕ(k, x)|2 dx ≤ C1 + C2|k|−2

∫
|x|≤|k|

|H(1)
0 (|y|)| dy ≤ C3,

where we made use of the explicit form of the generalized eigenfunctions, again. This gives

sup
|k|>1

∫
|x|≤1

|ϕ(k, x)(−∆αg(x))| dx <∞.

Since we also assume that −∆αg ∈ L1(R2) we conclude using (4.1.10) that

sup
|k|>1

∫
|x|≥1

|ϕ(k, x)(−∆α)
ng(x)| dx <∞

and finally that

sup
|k|>1

∫
R2

|ϕ(k, x)(−∆α)
ng(x)| dx <∞. (4.1.13)

In particular for every fixed k ∈ R2 \ {0} the function ϕ(k, ·)(−∆α)
ng(·) is absolutely

integrable. Since F diagonalizes the operator −∆α we have

|k|2n
∫

R2

ϕ(k, x)g(x) dx =

∫
R2

ϕ(k, x)(−∆α)
ng(x) dx.
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Together with (4.1.13) we arrive at (|k| > 1)∫
R2

ϕ(k, x)g(x) dx ≤ |k|−2n sup
|k|>1

∫
R2

|ϕ(k, x)(−∆α)
ng(x)| dx

The last assertion is a direct consequence of the dominated convergence theorem and the
special form of the generalized eigenfunctions given in (4.1.10).

Usually we apply Proposition 4.1.1 to functions of the following rather special type.
If f ∈ C∞

c (R2 \ {0}) then by the very definition of the operator −∆α we have f ∈⋂
n∈N0

D((−∆α)
n) and since ψα is an eigenfunction we also have ψα ∈

⋂
n∈N0

D((−∆α)
n).

Because of
E([0,∞))f = f −

(
ψα, f

)
L2(R2)

ψα ∈ L1(R2)

we therefore see that also E([0,∞))f ∈
⋂
n∈N0

D((−∆α)
n). Due to the decay proper-

ties of ψα we also get E([0,∞))f ∈ L1(R2) and using the fact that −∆αE([0,∞))f =
E([0,∞))(−∆αf) = E([0,∞))(−∆f). Since −∆f has the same basic properties as f we
can iterate this and finally conclude that E([0,∞))f satisfies the conditions of Proposition
4.1.1.

The assertion of the following lemma seems to be folklore but we have not been able
to find a suitable reference for it. Therefore and since most of our readers will have a
probabilistic background we decided to present an abstract proof though a verification of
the assertion might also be possible by a direct (but probably tedious) calculation. But
the abstract argument has the obvious advantage of being applicable to situations, where
bounds for the heat kernel and the generalized eigenfunctions are available.

Lemma 4.1.2. Let d = 2, 3 and α ∈ R fixed. For every k, x ∈ Rd \ {0} we have

Pα
t ϕ(k, ·)(x) = e−t|k|

2

ϕ(k, x).

Proof. For t > 0 the expression Pα
t f(x) are well-defined for x ∈ Rd \{0} and f ∈ L2(Rd)+

L∞(Rd) due to Remark 4.1.3. Moreover it is easy to see from the properties of the heat
kernel, the bounds in Lemma 2.6 [42] (see (4.1.9) for the two-dimensional bound) that

(k, x) 7→ (Pα
t ϕ(k, ·))(x)

is continuous in Rd \ {0} × Rd \ {0}. Let ψ ∈ C∞
c (R2 \ {0}) be given. Decompose ψ as

ψ = (ψ, ψα)ψα+E([0,∞))ψ = ψ1 +ψ2. Assume we have shown that (ψα, ϕ(k, ·))L2(Rd) = 0
then the following arguments imply the assertion of the theorem. Due to our assumption
on ψ the expression (ψ, Pα

t ϕ(k, ·))L2(R2\{0}) is well-defined and due to the symmetry of the
integral kernel of Pα

t we have(
ψ, Pα

t ϕ(k, ·)
)
L2(Rd)

= (Pα
t ψ, ϕ(k, ·)

)
L2(Rd)

= (Pα
t ψ1, ϕ(k, ·)

)
L2(Rd)

+ (Pα
t ψ2, ϕ(k, ·)

)
L2(Rd)

= (Pα
t ψ2, ϕ(k, ·)

)
L2(Rd)

=

∫
R2

Pα
t ψ2(x)ϕ(k, x) dx

= e−t|k|
2

(ψ2, ϕ(k, ·))L2(Rd) = e−t|k|
2

(ψ, ϕ(k, ·))L2(Rd),
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where the penultimate equality holds for Lebesgue almost every k ∈ Rd. Since this is
true for every ψ ∈ C∞

c (Rd \ {0}), we first conclude that the assertion of the Lemma
holds for Lebesgue almost every (k, x) ∈ Rd × Rd and due to the continuity for every
(k, x) ∈ (Rd × Rd) \ {(0, 0)}. Thus it remains to prove that (ψα, ϕ(k, ·))L2(Rd\{0}) = 0 for
every k ∈ Rd \ {0}. Heuristically this is obvious since ϕ(k, ·) is an ’eigenfunction’ to the
’eigenvalue’ |k|2 6= λα. Since ϕ(k, ·) does not belong to L2(Rd) the required ’orthogonality’
does not follow directly from the spectral theorem. In order to prove this ’orthogonality’
first observe that due to the decay properties of the ground state ψα the expression

(ψα, ϕ(k, ·))L2(Rd) :=

∫
Rd

ψα(x)ϕ(k, x) dx

is welldefined for every k ∈ Rd\{0}. Fix k0 ∈ Rd\{0} and consider the balls Bn := B 1
n
(k0)

with center k0 and radius 1
n

for n ∈ N such that 1
n
∈ (0, |k0|/2). Denote by |Bn| the

Lebesgue measure of the set Bn. Notice that for g ∈ Hac the L2(Rd)-function

x 7→
∫
Bn

dk ϕ(k, x)ĝ(k)

again belongs to the absolutely continuous spectral subspace and therefore is orthogonal
to the ground state ψα. For every g ∈ Hac such that ĝ ∈ C(Rd \ {0}) we thus have

0 =
1

|Bn|

∫
Rd

dxψα(x)

∫
Bn

dk ϕ(k, x)ĝ(k) →
∫

Rd

ψα(x)ϕ(k0, x) dx · ĝ(k0),

where we used that ψα(·) supk∈B|k0|/2(k0) ϕ(k, ·) ∈ L1(Rd),

lim
n→∞

1

|Bn|

∫
Bn

dk ϕ(k, x)ĝ(k) = ϕ(k0, x)ĝ(k0) (4.1.14)

for every x ∈ R2 \ {0} and dominated convergence. Equation (4.1.14) follows from Since
there exists an g ∈ Hac such that ĝ ∈ C(Rd \ {0}) and ĝ(k0) 6= 0 we arrive at∫

Rd

ψα(x)ϕ(k0, x) dx = 0.

Remark 4.1.4. Let F : R3 → [0,∞] given by F (x) = |x|−1 and let (Bt)t≥0 denote a
standard three-dimensional Brownian motion. It is a well known textbook example that
the process (F (Bt))t≥0 = (〈F, δBt〉)t≥0 is a local martingale but not a martingale. This is
obviously connected to the fact, that F is an invariant density for the semigroups P 0

t , which
can be shown by an explicit calculation. Since we will not use this fact, we omit the proof.
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4.2 Super-Brownian Motion with a Single Point Source

The construction of super-Brownian motions with a single point source was carried out in
dimension 2 and 3 in the work [42] of Fleischmann and Mueller. As we already mentioned
in the introduction it is a priori not at all clear, that the selfadjoint extensions −∆α

correspond in any way to a well defined Markov process. Define

Φρ =

{
ϕ : Rd\{0} → R | 0 ≤ ϕ ≤ Cϕ |·|−(d−1)/2 for some Cϕ > 0 and

∫
Rd

dx |ϕ(x)|ρ <∞
}

and let M(Rd \{0}) denote the set of all Radon measures in Rd \{0} such that 〈µ, ϕ〉 <∞
for all continuous ϕ ∈ Φρ with 0 ≤ ϕ ≤ C | · |−(d−1)/2. Fleischmann and Mueller constructed
a measure-valued process (Xt)t≥0 associated to the operator −∆α in the following sense.

Theorem 4.2.1 (Theorem 4.4 in [42]). If d = 2, let 0 < β ≤ 1, and if d = 3 let 0 < β < 1
and assume furthermore that

1

1− β(d− 1)/(d+ 1)
< ρ <

d+ 1

d− 1
.

Then for each α ∈ R, there is a (unique in law) non-degenerate M(Rd \ {0})-valued time-
homogeneous Markov process X = (X,Pµ, µ ∈ M(Rd \ {0}) with log-Laplace transition
functional

− log E
(
e−〈ϕ,Xt〉

)
= 〈v(t, ·), X0〉, t > 0,

where v solves

v(t, x) = Pα
t ϕ(x)−

∫ t

0

dsPα
t−s(v

1+β(s, ·))(x)

and ϕ ∈ Φρ.

A characterization of the process in terms of a martingale problem seems to be still
missing in the literature. Observe that in contrast to d = 2 the case β = 1 is excluded
in three dimensions. This seems to be a technical artefact of the proof in [42], which
occurs due to the additional singularity at zero. Due to this singularity the solution of the
log-Laplace equation was constructed in a highly non-trivial way via Picard iteration in
weighted Lp-spaces. For d = 2 and β = 1 recall the important formula

E
[
〈ϕ,Xt〉

]
= 〈Pα

t ϕ,X0〉. (4.2.1)

Moreover we assume the validity of the following formula

E
[
〈ϕ,Xt〉〈ϕ̃, Xt〉

]
= 〈Pα

t ϕ,X0〉〈Pα
t ϕ̃, X0〉+

〈∫ t

0

Pα
s

(
Pα
t−sϕP

α
t−sϕ̃

)
ds,X0

〉
. (4.2.2)

We hope to be able to derive equation (4.2.2) from the log-Laplace equation in a subsequent
work. In this thesis we show that (4.2.2) implies some kind of strong law of large numbers.
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Note again that in two dimensions we always take β = 1. Equation (4.2.1) remains also
true if d = 3 and β ∈ (0, 1). In the sequel we will derive some additional basic properties
of this superprocess. After having established existence and uniqueness of a stochastic
process one is usually interested in its large time behavior. First steps towards a better
understanding of the large scale behavior have been carried out in [43]. Assuming that

d = 3 and that for some sequence (λk)k∈N the limit α∗ := limk→∞ k
1
2λkα ∈ [−∞,∞] exists

the authors of [43] proved in Theorem 3 that for a large class of starting measures µ

lim
k→∞

k−
1
2 Eµ

[
Xλkα
kt (k

1
2dy)

]
= 〈µ, θα∗t (·, y)〉dy, (4.2.3)

where (Xβ
t )t≥0 denotes the superprocess from Theorem 4.2.1 corresponding to the param-

eter β and

θαt (x, y) =


2t

|x||y|
e−

|y|2
4t

(4πt)
3
2
− 8πα

|x||y|

∫∞
0
du e−4παu

(4πt)
3
2
e−

(u+|y|)2
4t if α ∈ R

0 if α = +∞
+∞ if α = −∞.

Their techniques show in particular that for α = 0 and a large class of initial distributions
µ

lim
k→∞

k−
1
2 Eµ

[
〈Xkt,1〉

]
= 2t〈µ, | · |−1〉

∫
R3

e
|y|2
4t

|y|(4πt) 3
2

dy. (4.2.4)

The results of [43] are derived using the explicit scaling behavior of the three-dimensional
heat kernel pα(t, x, y) (see Lemma 1 in [43]). Since the two dimensional heat kernel is
analytically more subtle this technique does not apply directly. Thus we are forced to use
different techniques in order to understand the large time behavior of the two dimensional
superprocess. Observe that in the results of [43] concerning the three-dimensional super-
process together with time and space also the parameter α varies. We believe that it
is also interesting to derive results on the large time behavior of the expected mass in
bounded regions for fixed values of α. In three dimensions it will turn out that the long
time behavior of the expected mass in bounded regions differ. In particular we show that
for α = 0 the limit on the left hand side of (4.2.4) will be 0 if the constant function 1 is
replaced by f ∈ C∞

c (R2 \ {0}).

4.3 Law of Large Numbers

Several authors obtained versions of the law of large numbers for superprocesses. The first
such law of large numbers for branching diffusions seems to be the pioneering work [93] of
Watanabe (see also the recent work [92], where Watanabe’s ideas are presented in detail for
super-Brownian motion). More recently Engländer and coauthors established weak laws of
large number for classes of superprocesses (see [36], [37] and [33]). Their methods can not
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be used in our case, since they strongly rely on analytic and probabilistic results which are
not known to hold for the superprocess with a single point source. Quite recently Chen et
Al. proved in [22] the strong law of large numbers for a large class of superprocesses, where
the underlying spatial motion is a symmetric Hunt process satisfying certain assumptions.
The results of [37], [32] and [22] are applicable to different situations and it is not clear at
the moment, how to establish results which contain all previous ones. Our setting differs
from the above mentioned works again and none of the existing results is applicable in
our case. Therefore we use a different route but we want to point out that we greatly
benefit from all of the above mentioned works. Our approach to the law of large numbers
is motivated by a similar result of Steinsaltz and Evans in [86] concerning superprocesses
whose spatial motion is a one-dimensional diffusion on the half-line. In order to establish
results concerning the large time behavior of the super-diffusion Steinsaltz and Evans make
use of their results concerning quasistationary distributions of one-dimensional diffusions on
the half-line, where expansions in generalized eigenfunctions play a central role. Later we
found out that Watanabe already used Fourier-analytic methods in the branching process
context. In this work we will demonstrate that such a Fourier-analytic method is not
restricted to the case of super-Brownian motions. In our setting the technical details are
more involved than in the case of a classical Super-Brownian motion and some care is
needed in order to handle several singularities at zero. Let us finally stress that the case of
a one-dimensional super-Brownian motion with a single point source can be treated in a
very similar way and is technically more elementary since all appearing objects are smooth.

4.3.1 Scaling of the Expectation

The analytic situation already indicates that the large time behavior of the two-dimensional
superprocess should be similar to the large-time behavior of the three-dimensional super-
process with α < 0. In both cases the point spectrum is not empty and one should expect
precise exponential decay. We start with a simple Lemma, which is well known for sym-
metric differential operators having regular lower order terms (see e.g. [82]). Since our
operator has a highly singular potential we provide the proof for convenience of the reader.
Let us remark that it might be possible (though probably quite tedious) to derive the
following assertion by a direct calculation.

Lemma 4.3.1. Let pα(t, x, y) denote the kernel of the semigroup Pα
t . Then for every

x, y ∈ Rd \ {0}
lim
t→∞

eλαtpα(t, x, y) = ψα(x)ψα(y) (4.3.1)

in two dimensions for every α ∈ R and in three dimensions for every α < 0.

Proof. Proving the assertion in three dimensions is very similar to proving it in two di-
mensions. Therefore we restrict ourselves to the latter case. The strategy is to derive first
an L2-version of the assertion and then use a Sobolev estimate to convert this into the
pointwise result. Using the spectral theorem and the nature of the spectrum of −∆α it is
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easy to see that for every f ∈ L2(R2)

lim
t→∞

eλαtPα
t f = lim

t→∞
eλαt

∫
σ(−∆α)

e−tλ dEλf

= lim
t→∞

eλαt

(
e−tλαE({λα})f +

∫
[0,∞]

e−λt dEλf

)
= E({λα})f

(4.3.2)

in the L2-norm. Due to the simplicity of the eigenvalue λα we have

E({λα})f = (ψα, f)L2(R2)ψα.

This already proves that for every f ∈ L2(R2)

L2 − lim
t→∞

e−λαt

∫
R2

pα(t, ·, y)f(y) dy = ψα(·)(ψα, f)L2(R2).

In order to use the Sobolev inequality we also need

lim
t→∞

(
‖eλαtPα

t f − E({λα})f‖L2(R2) + ‖(−∆α)
k(eλαtPα

t f − E({λα})f)‖L2(R2)

)
= 0,

which can be seen to hold true for all f ∈ D((−∆α)
k) and k ∈ N using equation (4.3.2)

and the fact that Pα
t , E({λα}) and −∆α commute. To convince ourselves that these

results apply to the heat kernel of −∆α as well we notice that for x, y ∈ Rd \ {0}
pα(t, ·, y), pα(t, x, ·) ∈ L2(R2) and

pα(t+ s, x, y) =

∫
R2

pα(t, x, z)pα(s, z, y) dz.

The first assertion can be easily proved by an abstract principle using spectral theory
and elliptic regularity but also follows from the bound derived in Lemma 2.6 of [42] the
second assertion is just the semigroup property. If we define pα,yt (x) = pα(t+1, x, y) for all
y ∈ R2 \ {0} and t > 0, the latter fact implies on the one hand Pα

t p
α,y
0 = pα,yt . And on the

other hand it implies that pα,yt ∈ D((−∆α)
k) for every k ∈ N since by the spectral calculus

Ran(Pα
t ) ⊂ D

(
(−∆α)

k
)
. Hence

lim
t→∞

‖(−∆α)
k(eλαtpα,yt − E({λα})pα,y0 )‖L2(R2) = 0

for all k ∈ N0. Now we are ready to derive the pointwise assertion. In order to do so, recall
from section 4.1 that every element ψ in the domain of −∆α can be written as

ψ(x) = φk(x) + 2π[2πα̃−Ψ(1) + log(k/2i)]−1φk(0)Gk(x),

where k ∈ C with =k > 0 and φk ∈ H2(R2). From this section we also know that
(−∆α − k2)ψ(x) = (−∆ − k2)φk(x) holds true for every x ∈ R2 \ {0}. Therefore the
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Sobolev-embedding theorem implies that for every x0 ∈ R2 \ {0} and r < |x0|/2 there is a
constant Cr,x0 > 0 such that

sup
x∈Br(x0)

|ψ(x)| ≤ Cr,x0

(
‖(−∆α)ψ‖L2(R2) + ‖ψ‖L2(R2)

)
for all ψ ∈ D(−∆α). Since this implies that for every compact set K ⊂ R2 \ {0} and some
constant CK > 0

sup
x∈K

∣∣(eλαtpα,yt − E({λα})pα,y0 )(x)
∣∣ = sup

x∈K

∣∣(eλαtpα,yt (x)− e−λαψα(y)ψα(x)
∣∣

≤ CK
(
‖(−∆α)(e

λαtpα,yt − E({λα})pα,y0 )‖L2(R2)

+ ‖eλαtpα,yt − E({λα})pα,y0 ‖L2(R2)

)
→ 0

as t→∞, we conclude

lim
t→∞

eλαtpα(t, x, y) = ψα(x)ψα(y)

for every y ∈ R2 locally uniformly in x ∈ R2. Due to the symmetry of pα(t, ·, ·) this holds
also locally uniformly in (x, y).

Remark 4.3.1. An alternative route to the assertion of Lemma 4.3.1 is via an eigen-
value expansion of the heat kernel. It is rather easy to see, that the operator Pα

t acts
on E((−∞, 0))L2(R2) ⊕ E([0,∞))L2(R2) as the direct sum of the operator with integral
kernel e−λαtψα(x)ψα(y) and an operator with integral kernel pα+(t, x, y), where for fixed
x, y,∈ R2 \ {0}

pα+(t, x, y) =

∫
R2

e−t|k|
2

ϕ(k, x)ϕ(k, y) dk.

Using this formula one easily derives Lemma 4.3.1 using the fact that pα+(t, x, y) decays
locally uniformly in x, y ∈ R2 \ {0} as t→∞.

In the proof of the following Corollary we use an argument, which is often used in the
theory of quasistationary distributions (see the previous chapters and e.g. Lemma 5.3 in
[20]).

Corollary 4.3.1. Let d = 2, 3 and let g ∈ L∞(Rd) be given. If d = 3, we assume addi-
tionally that α < 0. Then

lim
t→∞

eλαte−t(−∆α)g(x) = ψα(x)

∫
Rd

ψα(y)g(y) dy

locally uniformly in x ∈ Rd \ {0} and in particular

lim
t→∞

eλαt

∫
R2

µ(dx)

∫
R2

pα(t, x, y) dy =

∫
R2

ψα(x)µ(dx).
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Proof. The proof of the Corollary for d = 3 is completely analogous to the proof for d = 2,
therefore it will be given only for the latter case. Due to the fact that

Eµ

[
〈1, Xt〉

]
=

∫
R2

µ(dx)Pα
t 1(x),

the second assertion is a direct consequence of the first one. Thus it remains to prove the
first assertion. From Corollary 2.5 of [42] it is known that the kernels pα(t, x, y) satisfy the
free heat equation ∂tp

α(t, x, y) = ∆xp
α(t, x, y) in R2 \{0}. Therefore, we are allowed to use

the parabolic Harnack inequality in order to conclude that for a locally bounded function
θ : R2 \ {0} → (0,∞)

pα(t, x, y) ≤ θ(x) pα(t, z, y).

This gives

pα(t, x, y) =

∫
Bε(x)

pα(t, x, y)ψα(z) dz∫
Bε(x)

ψα(z) dz
≤
θ(x)

∫
Bε(x)

pα(t, z, y)ψα(z) dz∫
Bε(x)

ψα(z) dz

≤ θ(x)
e−λαtψα(y)∫
Bε(x)

ψα(z) dz
.

(4.3.3)

Using (4.3.3), dominated convergence and Lemma 4.3.1 we arrive at

lim
t→∞

eλαt

∫
R2

pα(t, x, y)g(y) dy = ψα(x)

∫
R2

ψα(y)g(y) dy.

Corollary 4.3.1 in particular shows that in two dimensions the exponential asymptotic
large time behavior of the expected mass in bounded regions equals the expected total
mass for every α ∈ R . This is no longer true in three dimensions. The fact that we
have precise exponential large time behavior is analytically expressed by the fact that the
bottom of the spectrum is a discrete eigenvalue if d = 2 or if d = 3 and α < 0. In the case
d = 3 and α ≥ 0 we cannot expect such a behavior because of σ(−∆α) = σac(−∆α), i.e.
the spectrum is purely absolutely continuous. In order to investigate the expected mass in
bounded regions in three dimonsion we prove the following simple Lemma.

Lemma 4.3.2. For d = 3 and ψ ∈ Cc(R3 \ {0}) the generalized Fourier transform of ψ
is continuous everywhere if α 6= 0 and continuous everywhere except at k = 0 if α = 0.
Specifically,

Fψ(k) =

{
F0(k)
|k| if α = 0

Fα(k) if α 6= 0,

where F0 : R3 → C and Fα : R3 → C are continuous and F0(0) = i

(2π)
3
2

∫
R3

ψ(x)
|x| dx.
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Proof. Due to (4.1.4) and (4.1.5), the generalized Fourier transform is given by

(2π)
3
2Fψ(k) =

∫
ψ(x)ϕ(k, x) dx =

∫
ψ(x)eik·x dx︸ ︷︷ ︸

I1(k)

+
1

4πα− i|k|

∫
ψ(x)

ei|k||x|

|x|
dx︸ ︷︷ ︸

I2(k)

. (4.3.4)

Since by assumption ψ ∈ Cc(R3 \{0}) the theorem of dominated convergence justifies that
I2 as well as I1 are continuous everywhere. For α = 0 this implies that

(2π)
3
2Fψ(k) = |k|−1(|k|I1(k) + iI2(k)) =: |k|−1f̃(k),

where f̃ is continuous everywhere. And for α 6= 0 this implies that Fψ(k) is continuous
everywhere.

Now we are prepared for the case α ≥ 0. It will turn out that for α = 0 the expectation
neither scales like in the α > 0 case nor like in the α < 0 case. The mathematical reason
being a significant change of behavior of the generalized eigenfunctions in the variable k
due to the existence of a resonance at zero. The time evolution of some solutions to the
Schrödinger equation would show spreading that is delayed compared to the α > 0 case
due to this changed behavior. The probabilistic counterpart of this effect is proved in the
following Theorem, which shows that for α = 0 the expected mass in bounded regions
(which refers to the expression Eµ[〈ϕ,Xr〉] for ϕ ∈ C∞

c (R3 \ {0}))decays slower than in
the case α > 0. In analogy to the Schrödinger case one could therefore call the modified
scaling of the expectation a resonance effect. The formulation of this result and also it proof
will probably remind the reader of what we have done in the chapters on quasistationary
distributions.

Theorem 4.3.1. Let d = 3, ψ ∈ Cc(R3 \{0}) and let µ be a measure with compact support
in R3 \ {0} then expectation Eµ[〈Xt, ψ〉] shows the following large time behavior

lim
t→∞

t1/2Eµ

[
〈Xt, ψ〉

]
=
π3/2

2

∫
R3

ψ(y)

|y|
dy

∫
R3

|x|−1 µ(dx) if α = 0

and

lim
t→∞

t3/2Eµ

[
〈Xt, ψ〉

]
=

1

(4π)
3
2

∫
R3

ϕ(0, x)ψ(x) dx

∫
R3

ϕ(0, x)µ(dx) if α > 0.

Proof. The crucial step is to rewrite the expectation value such that it admits to be cal-
culated analytically. This can be done by using the formula for the heat kernel given in
Remark 4.3.1 for the case that there is no eigenvalue, that is

pα(t, x, y) =
1

(2π)3

∫
R3

e−t|k|
2

ϕ(k, x)ϕ(k, y) dk.
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Hence we find that

(2π)
3
2 Eµ

[
〈Xt, ψ〉

]
= 〈X0, P

α
t ψ〉 =

∫ ∫
ψ̂(k)ϕ(k, x)e−|k|

2t dk µ(dx).

Using this, the explicit form of the generalized eigenfunctions ϕ and Lemma 4.3.2 we can
calculate how the expectation value scales in the large time limit. In the notation of the
previous lemma we have for α = 0,

(2π)
3
2Pα

t ψ(x) =

∫
F0(k)

|k|

(
eik·x +

i

|k||x|
ei|k||x|

)
e−|k|

2t dk

=

∫ 2π

0

∫ 1

−1

∫ ∞

0

F0(k)e
−i|k||x| cos θ|k|e−|k|2t dk d(cos θ) dφ

− i

|x|

∫ 2π

0

∫ π

0

∫ ∞

0

F0(k)e
−i|k||x|e−|k|

2t sin θ dk dθ dφ,

where we have used Lemma 4.3.2 and equation (4.1.4) in the first equality and spherical
coordinates in the second. Due to the factor e−|k|

2t, the integral is dominated by those
k ∈ R3 which have modulus close to zero if t � 1. Therefore we can approximate the
integral by replacing F0(k) by F0(0) for all k, which will be exact in the limit of t tending
to ∞. Thus we are left with

(2π)
3
2Pα

t ψ(x) ≈ 2πF0(0)

∫ ∞

0

|k|e−|k|2t
(∫ 1

−1

e−i|k||x| cos θ d(cos θ)

)
dk

− 4πF0(0)
i

|x|

∫ ∞

0

e−|k|
2te−i|k||x| dk

≈ πF0(0)

(
2

∫ ∞

0

e−|k|
2t−1

i|x|
(e−i|k||x| − ei|k||x|) dk + 4

i

|x|

∫ ∞

0

e−|k|
2te−i|k||x| dk

)
≈ −iπ

|x|
F0(0)

∫ ∞

0

2(ei|k||x| + e−i|k||x|)e−|k|
2t dk

≈ −iπ3/2

2|x|
F0(0)t−1/2e−

|x|2
4t .

Using the particular form of the generalized Fourier transform of ψ given in (4.3.4), this
implies

lim
t→∞

t1/2Eµ

[
〈Xt, ψ〉

]
=
π3/2

2

∫
R3

ψ(x)

|x|
dx

∫
|x|−1 µ(dx).

In the case of α > 0, the explicit form of the generalized eigenfunctions gives

(2π)
3
2Pα

t ψ(x) =

∫
ψ̂(k)eik·xe−|k|

2t dk +
1

|x|

∫
ψ̂(k)

1

4πα− i|k|
ei|k||x|e−|k|

2t dk.
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Since ψ̂(k) is continuous everywhere for α 6= 0 we can approximate the integral for the
same reason as above by

(2π)
3
2Pα

t ψ(x) ≈ ψ̂(0)

∫
e−|k|

2te−ik·x dk +
1

|x|
ψ̂(0)

4πα

∫
e−|k|

2te−i|k||x| dk

≈ ψ̂(0)

(
3∏
i=1

∫ ∞

−∞
e−k

2te−ikxi dk +
1

α|x|

∫ ∞

0

|k|2e−|k|2te−i|k||x| dk

)
.

Now, the Fourier transform of a Gaussian functions is well known. And in order to calculate
the second integral, note that for t � 1 the integrand is strongly peaked around k = 1√

t
,

which is the maximum of |k|2e−|k|2t. Therefore,

(2π)
3
2Pα

t ψ(x) ≈ ψ̂(0)

(
π3/2t−3/2e−

|x|2
4t +

1

α|x|
e
−i|k| |x|√

t

∫ ∞

0

|k|2e−|k|2t dk
)

≈ ψ̂(0)

(
π3/2e−

|x|2
4t +

e
−i|k| |x|√

t

α|x|

√
π

4

)
t−3/2,

which implies that

lim
t→∞

t3/2Eµ

[
〈Xt, ψ〉

]
= 2−

3
2

∫
ψ̂(0)

(
1 +

1

4πα|x|

)
µ(dx).

In the following remark we summarizearize our results and give some heuristic explana-
tions. Since the rigorous probabilistic meaning of the process is not yet clear, the following
heuristic explanations have a preliminary character.

Remark 4.3.2. The difference between the long time behavior of Eµ

[
〈ϕ,Xt〉

]
(ϕ ∈ Cc(R3))

established in Theorem 4.3.1 and the result of [43] concerning the long time behavior of
Eµ

[
〈1, Xt〉

]
(see (4.2.4)) seems to be due to the transience of the three-dimensional Brow-

nian motion. Because of the transient behavior one should expect that the mass of the
three-dimensional superprocess Xt has some tendency to escape to infinity as t → ∞. If
the point source does not produce enough new mass at 0, i.e. if α ≥ 0, then the portion
of mass which moves out to infinity is bigger than the portion of newly created mass at 0.
Therefore the behavior of the expected total mass differs from the behavior of expected mass
in bounded regions. In the case α = 0 the point source seems to produce almost enough
mass at 0 in order to compensate the transience of the underlying spatial motion. If the
production of new mass at 0 is high enough, i.e. if α < 0 then effect of the transience
of the underlying spatial motion is negligible and the large time behavior of the expected
mass in bounded and that in unbounded regions coincides. Due to recurrence the picture
is different in two dimensions, i.e. Eµ

[
〈ϕ,Xt〉

]
(ϕ ∈ Cc(R3)) and Eµ

[
〈1, Xt〉

]
exhibit the

same behavior.
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4.3.2 Pathwise Large Time Behavior

We are now prepared to present the weak law of large numbers for the two-dimensional
super-Brownian motion with single point source, i.e. we show that for f ∈ Cc(R2 \ {0})
the random variable eλαt〈f,Xt〉 converges in L2(Pµ) and therefore also in probability. This
result will later be used in the derivation of the strong law of large numbers. Recall that
we only consider the two-dimensional case with β = 1 in this section. Let us point out
that due to the spectral gap, which exists in the two dimensional version of our problem,
one might expect to be able to use arguments similar to the recent work [22] of Chen
et Al, in order to prove the law of large numbers. That is the case in so far, that we
also decompose the function f into an eigenfunction part and the orthogonal part. But
as already mentioned above, the semigroup e−t(−∆α) is not ultracontractive in dimensions
greater than one. So the arguments of Chen et Al. are not directly applicable, which is
why we take a different route and use expansions in generalized eigenfunctions.

Theorem 4.3.2. Let d = 2 and α ∈ R be given, let (Xt)t≥0 denote the super-Brownian
motion with a single point source associated to −∆α and assume that (4.2.2) holds true.
Then for every measure µ ∈M(R2 \ {0}), having compact support in R2 \ {0} there exists
a non-negative, non-degenerate random variable Nα such that Eµ[Nα] =

∫
R2 ψα(x)µ(dx)

and such that for f ∈ C∞
c (R2 \ {0})

lim
t→∞

eλαt〈Xt, f〉 = Nα ·
∫

R2

f(x)ψα(x) dx

as well as

lim
t→∞

〈Xt, f〉
Eµ

[
〈Xt, f〉

] =
Nα∫

R2 ψα(x)µ(dx)

in L2(Pµ). The random variable Nα is defined as

Nα := lim
t→∞

eλαt〈ψα, Xt〉

where the limit holds almost surely and in L2(Pµ).

Remark 4.3.3. Our results and in particular the law of large numbers allows to uncover
some probabilistic features of the process. First, we conclude that also on a pathwise level
the mass in every bounded region grows precisely exponential in time, where the exponential
rate coincides with the bottom of the L2-spectrum. Second, one sees by inspecting the explicit
form of the eigenfunction ψα that most of the mass will be concentrated in a neighborhood
of zero. This agrees with the heuristic interpretation of 0 as a single point source.

Proof. Let f in C∞
c (R2 \ {0}) be given. Recall from section 4.1 that the spectrum of

−∆α is of the form σ(−∆α) = {λα} ∪ [0,∞) and that [0,∞) belongs to the absolutely
continuous part of the spectrum. The eigenvalue λα is simple with a (modulo multiples)
unique positive eigenfunction ψα. As an element of L2(R2) the function f can therefore be
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decomposed as f = (f, ψα)ψα + g, where g ∈ L2(R2) belongs to the absolutely continuous
subspace E([0,∞))L2(R2) of L2((R2). Thus

eλαt〈f,Xt〉 = eλαt(f, ψα)〈ψα, Xt〉+ eλαt〈g,Xt〉.

Observe first that the process (Mα
t )t≥0 = (eλαt〈ψα, Xt〉)t≥0 is a non-negative martingale as

according to the Markov property for Fs = σ(Xr; r ≤ s) and t > s

Eµ

[
Mα

t | Fs
]

= eλαtEXs

[
〈ψα, Xt−s〉

]
= eλαt〈e−(t−s)∆αψα, Xs〉

= eλαs〈ψα, Xs〉 = Mα
s .

(4.3.5)

Moreover, we have by formula (4.2.2) again

Eµ

[(
eλαt〈Xt, ψα〉

)2]
= e2λαt〈Pα

t ψα, X0〉2 + e2λαt

〈∫ t

0

Pα
s

(
(Pα

t−sψα)
2
)
ds,X0

〉
= 〈ψα, X0〉2 + e2λαt

〈∫ t

0

e−2(t−s)λαPα
s (ψ2

α) ds,X0

〉
= 〈ψα, X0〉2 +

〈∫ t

0

e2λαsPα
s (ψ2

α) ds,X0

〉
≤ 〈ψα, X0〉2 +

〈∫ ∞

0

e2λαsPα
s (ψ2

α) ds,X0

〉
.

(4.3.6)

We will show that supt≥0 E
[
(Mα

t )2
]

= supt≥0 E
[
(eλαt〈Xt, ψα〉)2

]
< ∞. In order to do

so, observe that ψα ∈ L4(R2) since the divergence at 0 is only logarithmic and that∫∞
0
e2λαsPα

s ds = (−∆α − 2λα)
−1. These facts together with (4.1.6) and the Sobolev em-

bedding give for every compact set K ⊂ R2 \ {0}

sup
x∈K

(∫ ∞

0

e2λαsPα
s dsψ

2
α

)
(x) = sup

x∈K
(−∆α − 2λα)

−1ψ2
α(x) ≤ CK <∞. (4.3.7)

Observe that we used the fact that the resolvent is the Laplace transform of the semigroup.
Equation (4.3.5) together with the inequalities (4.3.6) and (4.3.7) imply that (Mα

t )t≥0 is
an L2-bounded martingale. By standard martingale convergence results there exists a
non-negative random variable Nα such that

lim
t→∞

Mα
t = Nα Pµ-a.s. and in L2(Pµ). (4.3.8)

Moreover, the random variable Nα is non-degenerate as due to the strict positivity of ψα

Eµ

[
Nα

]
= lim

t→∞
eλαtEµ

[
〈ψα, Xt〉

]
=

∫
R2

ψα(x)µ(dx) > 0

for every non-trivial measure µ with compact support in R2 \ {0}. In order to get the
assertion of the theorem it remains to show that

lim
t→∞

eλαt〈g,Xt〉 = 0
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in L2(Pµ). Heuristically, this is quite obvious since g belongs to the subspace E([0,∞))L2(R2)
and therefore et∆αg converges to zero at least in L2(R2). Since g belongs to the absolutely
continuous spectral subspace, we can expand g in generalized eigenfunctions as

g(x) = F−1ĝ(x) =

∫
R2

ϕ(k, x)ĝ(k)
dk

2π
.

Therefore we get

〈g,Xt〉 =

∫
R2

〈ϕ(k, ·), Xt〉ĝ(k)
dk

2π
.

The use of Fubini’s theorem in this step is easily justified, since Lemma 2.6 from [42] and
Proposition 4.1.1 imply

Eµ

[∫
R2

〈|ϕ(k, ·)|, Xt〉|ĝ(k)| dk
]

=

∫
R2

〈Pα
t |ϕ(k, ·)|, X0〉|ĝ(k)| dk <∞. (4.3.9)

In order to prove (4.3.9) observe that due to the asymptotic bahavior of the Hankel func-
tions (4.1.11) the absolute value |ϕ(k, x)| of the generalized eigenfunction ϕ(k, x) can be
dominated by a function ϕ̃(k, x) := C1√

|k||x|
+C2 where C1, C1 > 0 are appropriate constants.

Therefore we get with Lemma 2.6 from [42] (see (4.1.9)) for another constant C3

(
Pα
t |ϕ(k, ·)|

)
(x) ≤ C1√

|k|

∫
R2

p(t, x, y)|y|−1/2 dy + C2

+ C3

(
C1√
|k|

1√
t|x|

e−|x|
2/4t

∫
R2

1

|y|
e−|y|

2/4t dy

+
C2√
t|x|

e−|x|
2/4t

∫
R2

1√
|y|
e−|y|

2/4t dy

)
.

(4.3.10)

The inequality (4.3.10) and Proposition 4.1.1 show the validity of (4.3.9). Thus by equation
(4.3.9) we have

∫
R2〈|ϕ(k, ·)|, Xt〉ĝ(k) dk < ∞ almost surely and Fubini’s theorem applies.

Let us consider the second moment of the process (〈ϕ(k, ·), Xt〉)t≥0, that is

Eµ

[
|〈ϕ(k, ·), Xt〉|2

]
= |〈Pα

t ϕ(k, ·), X0〉|2 +

∫ t

0

〈
Pα
s

[
|Pα
t−sϕ(k, ·)|2

]
, X0

〉
ds

= e−2t|k|2|〈ϕ(k, ·), X0〉|2 +

∫ t

0

e−2(t−s)|k|2〈Pα
s

[
|ϕ(k, ·)|2

]
, X0

〉
ds

= e−2t|k|2I1(k) + I2(k, t).



102CHAPTER 4. SUPER-BROWNIAN MOTION WITH A SINGLE POINT SOURCE

Jensen’s inequality and Fubini’s theorem give

(2π)2Eµ

[∣∣eλαt〈g,Xt〉
∣∣2] = e2λαt Eµ

[∣∣∣∣∫
R2

ĝ(k)〈ϕ(k, ·), Xt〉 dk
∣∣∣∣2]

≤ Cge
2λαt Eµ

[∫
R2

|ĝ(k)||〈ϕ(k, ·), Xt〉|2 dk
]

= Cge
2λαt

∫
R2

|ĝ(k)|Eµ

[
|〈ϕ(k, ·), Xt〉|2

]
dk

= Cge
2λαt

∫
R2

|ĝ(k)|e−2t|k|2I1(k) dk

+ Cge
2λαt

∫
R2

|ĝ(k)|I2(k, t) dk.

(4.3.11)

where by Proposition 4.1.1 Cg =
∫

R2 |ĝ(k)| dk <∞. The first term on the right of (4.3.11)
converges obviously to zero. and due to Proposition 4.1.1 and the form of the generalized
eigenfunctions we even get

lim
t→∞

e2λαt

∫
R2

|ĝ(k)|e−2t|k|2I1(k) dk = 0.

Concerning the second term observe that

e2λαt

∫
R2

|ĝ(k)|I2(k, t) dk = e2λαt

∫
R2

|ĝ(k)|
∫ t

0

e−2(t−s)|k|2〈Pα
s

[
|ϕ(k, ·)|2

]
, X0

〉
ds dk

≤ e(λα+ε)t

∫
R2

|ĝ(k)|
〈∫ t

0

e(λα−ε)sPα
s

[
|ϕ(k, ·)|2

]
ds,X0

〉
dk

In order to handle that term, divide the function |ϕ(k, ·)|2 in two parts, by letting |ϕ(k, ·)|2 =
h1(k, ·) + h2(k, ·). Here we have defined h1(k, ·) = |ϕ(k, ·)|21B1/|k|(0)(·) and h2(k, ·) =

|ϕ(k, ·)|2(1 − 1B1/|k|(0))(·). Then supx,k∈R2\{0} |h2(k, x)| < C < ∞ and we get for x ∈
supp(X0) and k ∈ R2 \ {0}(∫ t

0

e(λα−ε)sPα
s h2(k, ·) ds

)
(x) ≤ C

∫ ∞

0

e(λα−ε)s sup
x∈supp(µ)

Pα
s 1(x) ds <∞ (4.3.12)

by Corollary 4.3.1. So it remains to consider∫ t

0

e(λα−ε)sPα
s h1(k, ·) ds (x).

Observe that, due to the particular form of the generalized eigenfunctions, we have

h1(k, ·) = |ϕ(k, ·)|21B1/|k|(0)(·) = |eikx + A(α, k)H
(1)
0 (|k||x|)|21B1/|k|(0)(x)

≤ 2 + 2|A(α, k)|2|H(1)
0 (|k||x|)|21B1/|k|(0)(x) = 2 + h̃1(k, ·),
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where A(α, k) = iπ
2
(2πα̃−Ψ(1)+ln(|k|/2i))−1. By the argument applied above, it therefore

remains to consider h̃1(k, ·). Although h̃1(k, ·) is not bounded, it belongs to L2(R2). And
this together with formula (4.1.7), which expresses the −∆α resolvent in terms of the −∆
resolvent, implies that for x ∈ K = supp(µ) ⊂ R2 \ {0}∫ t

0

e(λα−ε)sPα
s h̃1(k, ·) ds (x) ≤

∫ ∞

0

e(λα−ε)sPα
s h̃1(k, ·) ds (x)

= ((−∆ + (λα − ε))−1h̃1(k, ·)
)
(x)

+ 2π[2πα̃−Ψ(1) + ln(l/2i)]−1
(
Gl, h̃1(k, ·)

)
L2(R2)

Gl(x)

≤ CK‖h̃1(k, ·)‖L2(R2)

+ 2π[2πα̃−Ψ(1) + ln(l/2i)]−1
(
Gl, h̃1(k, ·)

)
L2(R2)

Gl(x)

= CK‖h̃1(k, ·)‖L2(R2)

+
4π

α+ ln(e−α + ε)

(
i

4
H

(1)
0 (l|x|), h̃1(k, x)

)
L2(R2)

i

4
H

(1)
0 (l|x|),

(4.3.13)

where the representation of the resolvent as Laplace transform of the semigroup and the
Sobolev embedding was used as explained in the very beginning of section 2 and where α̃
was expressed in terms of α with the help of l = i

√
ε− λα. Since the first term of the right

hand side can be estimated by

CK‖h̃1(k, ·)‖L2(R2) = CK

(∫
B|k|−1 (0)

|h̃1(k, ·)|2 dx
) 1

2

=
C̃K
|k|

(∫
B1(0)

|H(1)
0 (x)|4 dx

) 1
2

(4.3.14)

and since the second term has at most a logarithmic singularity in k due to h̃1, we can
conclude with the help of Proposition 2 that∫

R2

|ĝ(k)|
〈∫ ∞

0

e(λα−ε)sPα
s

[
h1(k, ·)

]
ds,X0

〉
dk <∞.

This finishes the proof that eλαt 〈g,Xt〉 converges to zero as t tends to ∞, thereby imply-
ing the assertion of the Theorem. Notice that the L2-convergence of eλαt 〈g,Xt〉 is even
exponentially fast with an exponential rate, which is at least λα + ε for every ε > 0.

Remark 4.3.4. As an immediate consequence of the proof of Theorem 4.3.2 and the Borel-
Cantelli Lemma, we get the following assertion: Let µ be an initial measure with compact
support in R2\{0}. Let (tn)n∈N be a sequence, such that for some ε > 0

∑∞
n=1 e

tn(λα+ε) <∞.
Then for every f ∈ C∞

c (R2 \ {0}) there exists a set Ωf of full Pµ-measure such that for
every ω ∈ Ωf

lim
n→∞

eλαtn〈f,Xtn(ω)〉 = Nα(ω)

∫
R2

f(x)ψα(x) dx.
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Remark 4.3.4 makes it rather plausible that even the strong law of large numbers holds.
Indeed Chen et Al. found an interesting highly non-trivial method, which allows to get rid
of the assumptions on the sequence (tn)n in Remark 4.3.4 for a large class of superprocesses.
In their approach Perkin’s time-dependent Itô formula (see [73]) for superprocesses plays
an important role. Since to our best knowledge such an Itô formula is not known to hold
for our process we proceed differently. The proof of the strong law will be given in the
remaining part of this work. Choose a subset D = {dn | n ∈ N} ⊂ C∞

c (R2 \ {0}) such that
for every compact set K ⊂ E there is n0 ∈ N with 0 ≤ dn0 ≤ 1 and dn0 � K = 1. Let
{Uk | k ∈ N} be a countable basis of open sets in R2 \ {0}, which is closed under finite
intersections. Assume that for every Uk there exists sequence (d̃l)l∈N ⊂ D such that for
l ∈ N d̃l < d̃l+1 and d̃l ↗ 1Uk

as l↗∞. Then

ρ(·, ·) :=
∞∑
n=1

2−n min
(
1,
∣∣〈dn, ·〉 − 〈dn, ·〉∣∣)

defines a metric for the vague topology (see the proof of Satz 31.5 and in particular equation
(31.4) in [8]). Thus a sequence of measures (µk)k∈N on R2 \ {0} converges vaguely to the
measure µ̃ iff for every n ∈ N limk→∞〈dn, µk〉 = 〈dn, µ̃〉. It is well known (see Satz
31.2 in [8]) that a set H of measures is vaguely relatively compact iff for every n ∈ N
supµ∈H〈dn, µ〉 < ∞. For this and further facts concerning the vague topology we refer to
section 31 of [8]. In the following we restrict ourselves to rational times. Of course the
set of rationals can be replaced by any other countable dense subset of [0,∞). Such a
restriction is necessary in our setting since we do not know, whether the process has a
’good’ modification, which is e.g. right continuous with left limits. Though it is desirable
from a aesthetical point of view to remove such a restriction we believe that our result is
still interesting and clarifies the large time behavior to some extend.
Assume that we show that there exists a set Ω1 of full Pµ-measure such that for ω ∈ Ω1

and for every n ∈ N
sup

Q3t≥0
eλαt〈dn, Xt(ω)〉 <∞. (4.3.15)

Then the set {eλαtXt(ω) | Q 3 t ≥ 0} is precompact in the vague topology and therefore
has limit points. If we can show that there exists only one limit point µ(ω), then eλαtXt(ω)
converges to µ(ω) in the vague topology. By Remark 4.3.4 there exists a set of full measure
Ω2 such that for every ω ∈ Ω2, n ∈ N and every sequence (tk)k∈N with

∑∞
k=1 e

tk(λα+ε) <∞
for some ε > 0

lim
k→∞

eλαtk〈dn, Xtk(ω)〉 = Nα(ω)

∫
R2

dn(x)ψα(x) dx

Using our assumptions concerning D this shows that for ω ∈ Ω0 = Ω1 ∩ Ω2 the only limit
point µ(ω) of {eλαtXt(ω) | t ≥ 0} is the measure given by µ(ω)(f) = Nα(ω)

∫
R2 dn(x)ψα(x) dx.

Thus it remains to prove (4.3.15). This will be done in the following Lemma 4.3.4. In the
proof of this Lemma we use the following simple Lemma
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Lemma 4.3.3 (Lemma 3.4 in [93]). If Y is a non-negative random variable such that
P(Y > y) ≤My−2, then for every η > 0

E
[
Y
]
≤ η +M η−1.

The proof of this Lemma consits only in writing the expectation as the integral
∫∞

0
P(Y >

y) dy =
∫ η

0
P(Y > y) dy +

∫∞
η

P(Y > y) dy. Now we prove and state the Lemma which

establishes the validity of (4.3.15).

Lemma 4.3.4. Assume that (4.2.2) holds true and let µ be a measure with compact support
in R2 \ {0}. Then there exists a set of full Pµ-measure Ω1 such that for every n ∈ N and
ω ∈ Ω1

sup
Q3t≥0

eλαt〈dn, Xt(ω)〉 <∞

holds.

Proof. We show that there exists a set Ω1 of full measure and a sequence (gn)n∈N of non-
negative functions such that for every n ∈ N and ω ∈ Ω1, dn ≤ gn and
supQ3t≥0 e

λαt〈gn, Xt(ω)〉 < ∞. Similar to Lemma 3.1 in [93] we choose a non-negative
function hn ∈ C∞

c (R2 \ {0}) such that for some ε > 0 one has ε+ dn ≤ hn in some neigh-
borhood of the support of dn. Then we have Pα

t hn ≥ 0 and Pα
t hn → hn uniformly on the

support of hn as t → 0. This uniform convergence holds true as for x ∈ supp(hn) there
exists by Lemma 2.6 in [42] (see the inequality (4.1.9)) a constant C such that for t ∈ (0, 1)

∣∣Pα
t hn(x)− hn(x)

∣∣ ≤ ∣∣Pα
t hn(x)− et∆hn(x)

∣∣+ ∣∣et∆hn(x)− hn(x)
∣∣

= Pα
t hn(x)− et∆hn(x) +

∣∣et∆hn(x)− hn(x)
∣∣

≤ Ct−1 1√
|x|
e−|x|

2/4t

∫
R2

hn(y)
√
|y|

−1
e−|y|

2/4t dy +
∣∣et∆hn(x)− hn(x)

∣∣
→ 0

uniformly on compact subsets of R2\{0} as t→ 0. This finally shows, that gn := Pα
r hn ≥ dn

for r sufficiently small.
Consider now eλαt〈gn, Xt〉 and the decomposition gn = (gn, ψα)L2ψα+Gn. We already know
that eλαt〈ψα, Xt〉 converges almost surely and in L2(Pµ) to the random variable Nα. Thus
it remains to show that there exists a set Ωn of full Pµ-measure such that for every ω ∈ Ωn

supt≥0 e
λαt〈Gn, Xt(ω)〉 < ∞. First observe that by Lemma 4.1.2 (et|k|

2〈ϕ(k, ·), Xt〉)t≥0 de-

fines a martingale and that Doob’s inequality applied the martingale (et|k|
2〈ϕ(k, ·), Xt〉)t≥0
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gives for |k| 6= 0 and a constant Q 3 c > 0 which has to be determined later

Pµ
(

sup
t∈[cn,c(n+1)]∩Q

|etλα〈ϕ(k, ·), Xt〉| > ε
)

= Pµ
(

sup
t∈[cn,c(n+1)]∩Q

|etλα−t|k|2et|k|
2〈ϕ(k, ·), Xt〉| > ε

)
≤ e2cnλα−2cn|k|2

ε2
Eµ

[
|ec(n+1)|k|2〈ϕ(k, ·), Xc(n+1)〉|2

]
=
e2cnλα−2cn|k|2

ε2

(
|〈ϕ(k, ·), µ〉|2

+ e2c(n+1)|k|2
〈∫ c(n+1)

0

e−2[c(n+1)−s)|k|2Pα
s |ϕ(k, ·)|2 ds, µ

〉)
=
e2cnλα−2cn|k|2

ε2
|〈ϕ(k, ·), µ〉|2

+
e2cnλα+2c|k|2

ε2

〈∫ c(n+1)

0

e−2[c(n+1)−s)|k|2Pα
s |ϕ(k, ·)|2 ds, µ

〉
≤ e2cnλα−2cn|k|2

ε2
|〈ϕ(k, ·), µ〉|2

+ ecn(λα+ε)+2c|k|2e−c(λα−ε)e−c(n+1)(λα−ε)

·
〈∫ c(n+1)

0

e−2[c(n+1)−s)|k|2Pα
s |ϕ(k, ·)|2 ds, µ

〉
≤ e2cnλα−2cn|k|2

ε2
|〈ϕ(k, ·), µ〉|2

+
ecn(λα+ε)+2c|k|2

ε2
e−c(λα−ε) ·

〈∫ c(n+1)

0

es(λα−ε)Pα
s |ϕ(k, ·)|2 ds, µ

〉
.

(4.3.16)

In the proof of Theorem 4.3.2 via (4.3.12), (4.3.13) and (4.3.14) we have seen that for some
constant C (which depends on the support of µ)〈∫ c(n+1)

0

ecs(λ−ε)Pα
s |ϕ(k, ·)|2 ds, µ

〉
≤
〈∫ ∞

0

ecs(λ−ε)Pα
s |ϕ(k, ·)|2 ds, µ

〉
≤ C

(
1 +

1

|k|
)
.

Observe moreover that the expression |〈ϕ(k, ·), µ〉|2 can also be estimated by K(1 + |k|−1)
for some constant K since the singularity of the Hankel function at 0 is logarithmic and
supx∈supp(µ),|k|>1 ϕ(k, x) < ∞. Therefore (4.3.16) shows that there is a constant C̃ such
that

Pµ
(

sup
t∈[cn,c(n+1)]∩Q

|etλα〈ϕ(k, ·), Xt〉| > ε
)
≤
(
C̃
(
1 +

1

|k|
))ecn(λα+ε)

ε2
e2c|k|

2

. (4.3.17)

Inequality (4.3.17) implies by Lemma 4.3.3 (see Lemma 3.4 in [93]) with η = ecn(λα+ε)/2

Eµ

[
sup

t∈[cn,c(n+1)]∩Q
eλαt|〈ϕ(k, ·), Xt〉|

]
≤
(

1 + C̃
(
1 +

1

|k|
)

)
e

cn(λα+ε)
2 e2c|k|

2

.
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Choose the constant c > 0 such that 2c < r, then using 0 ≤ t ∈ Q

(2π)〈Gl, Xt〉 = 〈E([0,∞))Prhl, Xt〉 = 〈PrHl, Xt〉 =

∫
R2

e−r|k|
2

Ĥl(k)〈ϕ(k, ·), Xt〉 dk,

with Hl := E([0,∞))hl we get

2πEµ

[
sup

t∈[cn,c(n+1)]∩Q
eλαt|〈Gl, Xt〉|

]
= Eµ

[
sup

t∈[cn,c(n+1)]∩Q
eλαt

∣∣∣∣∫
R2

e−r|k|
2

Ĥl(k)〈ϕ(k, ·), Xt〉 dk
∣∣∣∣]

≤ Eµ

[∫
R2

e−r|k|
2|Ĥl(k)| sup

t∈[cn,c(n+1)]∩Q
eλαt|〈ϕ(k, ·), Xt〉| dk

]
=

∫
R2

e−r|k|
2|Ĥl(k)|Eµ

[
sup

t∈[cn,c(n+1)]∩Q
eλαt|〈ϕ(k, ·), Xt〉|

]
dk

≤
∫

R2

(
1 + C̃

(
1 +

1

|k|
)

)
e−r|k|

2|Ĥl(k)|e2c|k|
2

dk · e
cn(λα+ε)

2

=

∫
R2

(
1 + C̃

(
1 +

1

|k|
)

)
e−(r−2c)|k|2|Ĥl(k)| dk · e

cn(λα+ε)
2 .

(4.3.18)

Hence by (4.3.18) and Proposition 2

Eµ

[∑
n∈N0

sup
t∈[cn,c(n+1)]∩Q

eλαt|〈Gl, Xt〉|
]
<∞. (4.3.19)

The inequality (4.3.19) immediately implies that there exists a set Ωl of full measure such
that for every ω ∈ Ωl

lim
Q3t→∞

eλαt〈Gl, Xt(ω)〉 = 0

and therefore supQ3t≥0 e
λαt〈dl, Xt(ω)〉 < ∞. Setting Ω1 :=

⋂
n∈N Ωn finishes the proof of

the assertion.

By the discussion above we finally proved the strong law of large numbers for the
two-dimensional super-Brownian motion with a single point source.

Theorem 4.3.3. Let d = 2 and α ∈ R and assume that (4.2.2) holds true. Then the super-
Brownian motion with single point source started from an initial measure µ with compact
support in R2 \ {0} satisfies the strong law of large numbers, i.e. there exists a set Ω1 of
full measure such that for every ω ∈ Ω1

lim
Q3t→∞

Xt(ω)

Eµ

[
〈1, Xt〉

] =
Nα(ω)∫

ψα(x)µ(dx)

〈ψα, ·〉∫
ψα(x) dx

with respect to the vague topology on M(R2 \ {0}).
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4.4 Concluding Remarks and Open Problems

We already mentioned an open problem connected with the Super-Brownian motion with
a single point source. In three dimension the possible range of β is restricted to β ∈ (0, 1)
(see also Remark 2 in [21]). This seems to be a purely technical problem. Still it would
be interesting to extend the construction to the case β = 1 since in this case our methods
probably allow to study the large time behavior of the three-dimensional Super-Brownian
motion with a single point source. Already our investigation of the large time behavior of
the expected mass in bounded regions indicates that there is a interesting change in the
behavior at α = 0. It would be an very interesting problem to investigate the dependence on
α of the pathwise behavior of the three-dimensional process. Several other basic properties
of the considered Super-process seem also to be unknown at the moment. These range
from regularity properties of the pathes to properties of the support such as the compact
support property.
In the introduction we also referred to possible extensions of path integral formulas for
the scattering length. Extensions of the results of Taylor to Schrödinger operators with
potentials having non-trivial negative part are desirable.
There are several other open problems connected with this superprocess. A very interesting
problem consists in the construction of a branching particle system which approximates
the above super-Brownian motion with a single point source. This would shed light on the
probabilistic meaning of the process. We should also point out, that some rather interesting
ideas without proofs concerning the probabilistic meaning of the operator −∆α can also
be found in [31]. Though Eberle’s explanations sound very reasonable it is not completely
clear, whether they are completely correct. For example in equation (4.4) in [31] seems to
say that the kernels pα(t, ·, ·) induce a semigroup on the bounded functions on Rd, which is
not the case. A rigorous elaboration of Eberle’s ideas is deferred to a subsequent project.
A related problem consists in the investigation of approximations of the Super-Brownian
motion with a single point source by Super-diffusions with regular coefficients. It is known
that the operator −∆α can be approximated in strong way by sequence of Schrödinger
operators −∆ + Vn, where the potentials Vn are bounded functions. Indeed on can choose
bounded potentials Vn such that for every t ≥ 0 e−t(−∆+Vn) → e−t(−∆α) as n → ∞ with
respect to the operator norm. It would be interesting to know, whether also the laws of
associated Super-diffusions converge in some sense. One should observe, that such results
will probably require a very careful investigation, since the convergence of e−t(−∆+Vn) to
e−t(−∆α) depends in a subtle way on the form of the potentials Vn.
Let us finally mention that the results of Ikebe [52] and subsequent generalizations of
his work can probably be used in order to derive strong laws of large numbers for quite
general superprocesses including cases, where different methods fail to apply. With the
exception of the recent papers [33] and [92] most authors focused on the case, where the
bottom of the spectrum is an L2-eigenvalue. As in our investigation of the convergence to
quasistationarity such a spectral theoretic assumption simplifies the problem considerably.
In [33] J. Engländer proves without such an assumption a weak law of large numbers for a
certain class of superdiffusions. The inclusion of general results concerning expansions in
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eigenfunction will most probably allow to include cases, where the bottom of the spectrum
belongs to the continuous spectrum, and may even allow to prove strong laws of large
numbers.
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Chapter 5

Essential Selfadjointness of Singular
Magnetic Schrödinger Operators on
Riemannian Manifolds

In this part of the thesis we present a result, which is completely unrelated to the main
topic of the work. We just included it, in order to give a flavour of the type of problems the
author of this thesis was also working on during the last years. For another topic (which
is actually closer to the main theme of this thesis) we refer to [7], where in a joint work
with A. Bassi and D. Dürr the asymptotic large time behavior of a stochastic Schrödinger
equation has been investigated.

The analysis of Schrödinger operators has been in the focus of many mathematical physi-
cists for almost a century. In the last decade there has been a lot of interest in properties
of Schrödinger operators on Riemannian manifolds (see e.g. [13], [16], [61], [30] and [70]).
In these works the authors extend several results which are known in the euclidean case to
larger classes of manifolds. One of the most fundamental questions concerning Schrödinger
operators is the question of essential selfadjointness. In the euclidean case very general and
in some respect optimal results ensuring essential selfadjointness of magnetic Schrödinger
operators have been derived in the work [60] of Leinfelder and Simader. In contrast to the
euclidean case existing results concerning essential selfadjointness are still incomplete. In
particular the analogue of the result of Leinfelder and Simader is still missing. The most
general result seems to go back to M. Shubin (see [79]), where he proves essential self-
adjointness of semi-bounded magnetic Schrödinger operators under the assumption that
the magnetic potential is continuously differentiable. This type of result has later been
generalized in [13] to operators of Schrödinger type acting in sections of vector bundles.
In this work we prove an extension of the famous result of Leinfelder and Simader on the
essential selfadjointess of magnetic Schrödinger operators in Rn. In the euclidean case the
result of Leinfelder and Simader asserts that essential selfadjointness holds e.g. as long as
the potential satisfies a certain lower bound and the coefficients satisfy certain minimal lo-
cal regularity requirements much weaker than continuous differentiability. Due to the local
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character of the regularity requirements on the coefficients it is tempting to believe that the
result carries over without essential changes to general complete Riemannian manifolds.
Thus in particular the differentiability of the vector potential, as supposed by Shubin in
[79], should not be necessary. A careful look at the original work of Leinfelder and Simader
demonstrates that a sequence of cut-off functions with uniformly bounded derivatives of
first and second order plays an important role in their approach. For arbitrary complete
Riemannian manifolds it seems to be unknown whether such a sequence of cut-off functions
exists. This technical problem might explain why the analogue of the result of Leinfelder
and Simader for Riemannian manifolds has not been established, yet. In order to avoid this
problem we combine ideas of Leinfelder and Simader with an old idea of Chernoff. This
will allow us to give a rather transparent proof of a general result of Povzner-Wienholtz-
Simader-type under more or less minimal local requirements. Our result demonstrates in
contrast to the main result of [79] that essential selfadjointness on manifolds holds under
conditions which parallels those of the euclidean case. Moreover, our proof is even more
elementary than Shubin’s since we can avoid the use a non-trivial result due to Karcher
concerning the existence of smooth cut-off functions with uniformly bounded gradients.
Given the work of Leinfelder and Simader our result is not at all surprising, it is much
more surprising that only weaker results can be found in the literature. Let us finally
remark that Shubin’s result was used in [16] in order to derive continuity properties of
functions of the magnetic Schrödinger operator on manifolds of bounded geometry. Our
result can now be used in order to improve this result. But we should point out that
the well-known probabilistic approach via the Feynman-Kac-Itô formula was used by the
present author in [59] in order to derive quite sharp results which extend the results of the
papers [14] and [15] from the euclidean setting to the case of manifolds with lower bounded
Ricci curvature. In deed once the necessary results concerning essential selfadjointness are
established, such an extension to more general manifolds is rather straightforward.

5.1 The Main Result

Let (M, g) be a complete Riemannian manifold of dimension n. The metric g induces in a
canonical way a measure µ which in local coordinates is given by dµ(x) =

√
gdx1 . . . dxn.

Denote by TM = (TxM)x∈M and T ∗M = (T ∗xM)x∈M the tangent and cotangent bundle,
respectively. We will work with complex valued sections of TM and T ∗M and therefore
have to complexify the inner product spaces TxM and T ∗xM in the usual way. The scalar
product in TxM and T ∗xM will be denoted by 〈·, ·〉 with induced norm | · |. The Riemannian
measure µ induces the Lebesgue spaces Lp(M), Lp(TM) and Lp(T ∗M) consisting of p-th
power integrable functions, vectorfields and 1-forms, respectively. By grad and d we will
denote the Riemannian gradient and the exterior derivative, respeectively. We will also use
the weak adjoint d∗ of the exterior derivative d. Moreover, we have to introduce the Sobolev
space H1

0 (Λ), where Λ ⊂M is an arbitrary open subset. As usual H1
0 (Λ) is defined as the

closure of C∞
c (Λ) with respect to the norm ‖ · ‖L2(Λ) + ‖grad · ‖L2(Λ). Every Riemannian

manifold admits a unique torsion free connection, called the Levi-Civita connection. The
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Levi-Civita connection is denoted by ∇. Moreover we need the Ricci curvature, which we
denote by Ric. Recall that Ric is by definition a smooth section in T ∗(M)⊗ T ∗(M) such
that for every x ∈M the bilinear form Ricx on the vector space TxM is symmetric.
We consider the class M(M) of admissible magnetic potentials given by

M(M) = {A ∈ L4
loc(T

∗M) | d∗A ∈ L2
loc(M)}.

Note that in this chapter M is used differently to chapter 3. Assume that for A ∈M(M)
and V ∈ L2

loc(M) the quadratic form

q[A, V ] � C∞
c (M) : C∞

c (M)× C∞
c (M) → C

(ϕ, ψ) 7→
∫
M

〈dϕ− iAϕ, dψ − iAψ〉 dµ+

∫
M

V ϕψ dµ

is semibounded. Then it is closable since it is the form of a semibounded symmetric
operator H̃(A, V ), which on C∞

c (M) is defined by

H̃(A, V )ψ = −∆ψ − 2i〈A, dψ〉+ (id∗A+ |A|2 + V )ψ.

The closure of the form q[A, V ] � C∞
c (M) will be denoted by q[A, V ] and the uniquely

associated selfadjoint operator by H(A, V ). The operator H(A, V ) is given by

D(H(A, V )) =
{
u ∈ D(q[A, V ]) | ∃v ∈ L2(M)∀w ∈ D(q[A, V ]) : q[A, V ](u,w) = (v, w)L2(M)

}
=
{
u ∈ D(q[A, V ]) | ∃v ∈ L2(M)∀w ∈ C∞

c (M) : q[A, V ](u,w) = (v, w)L2(M)

}
H(A, V )u = v.

Thus H(A, V ) is the Friedrichs extension of H̃(A, V ) and H(A, V ) � C∞
c (M) = H̃(A, V ).

We will also need magnetic Schrödinger operators, which are defined on open subsets of
M and satisfy Dirichlet boundary conditions. Let Λ ⊂ M be an open subset and assume
that the quadratic form qΛ[A, V ]

qΛ[A, V ] : C∞
c (Λ)× C∞

c (Λ) → C

(ϕ, ψ) 7→
∫
M

〈dϕ− iAϕ, dψ − iAψ〉 dµ+

∫
M

V ϕψ dµ

is closable with a closure which is denoted by qΛ[A, V ] then the uniquely associated self-
adjoint operator HΛ(A, V ) is called the magnetic Schrödinger operator in Λ satisfying
Dirichlet conditions. If Λ = B(o, r) with o ∈ M fixed we also write Hr(A, V ) instead of
HB(o,r)(A, V ).
Recall that the Kato class K(M) (compare section E.3 and Definition 2.1 in [29]) on M
consists of all function q : M → R such that

lim
t→0

sup
x∈M

∫ t

0

∫
M

p(s, x, y)|q(y)| dµ(y) ds = 0, (5.1.1)
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where p(t, x, y) denotes the heat kernel associated to the Laplacian on the Riemannina
manifold M . We define the local Kato-class Kloc(M) to consist of all functions q : M → R
such that for all compact K ⊂ M 1Kq ∈ K(M). As is shown on page 57 in [29] Kato-
class potentials are infinitesimally −∆-form bounded. This allows us to define several
quadratic forms using the KLMN-theorem. Moreover Kato-class potentials preserve several
important mapping properties of the free heat semigroup.

Theorem 5.1.1. Let (M, g) be an arbitrary complete Riemannian manifold and let A ∈
M(M) and V ∈ L2

loc(M) be given. Assume that V− ∈ Kloc(M) and that for some C ∈ R

∀ϕ ∈ C∞
c (M) :

∫
M

|(d− iA)ϕ|2 dµ+

∫
M

V |ϕ|2 dµ ≥ C‖ϕ‖2
L2(M).

Then H(A, V ) � C∞
c (M) is essentially selfadjoint.

Theorem 5.1.1 might be called a result of Povzner-Wienholtz-Simader type, since it
asserts that a semibounded Schrödinger operator is already essentially selfadjoint. The
above result is in some respect optimal. Observe e.g. that the formal differential operator
H(A, V ) maps every smooth function with compact support to an element of L2(M,µ)
if and only if |A|2 ∈ L2

loc(M,µ), d∗A ∈ L2
loc(M,µ) and V ∈ L2

loc(M,µ). Thus the local
requirements on A and V+ are minimal.
We want to stress that the same type of condition occurs in a quite different situation.
Consider the diffusion opoerator D := −∆ + grad lnF · ∇ =: −∆ + b · ∇ in the case
M = Rn. Under some weak conditions on the non-negative function F this operator D is
symmetric in L2(Rn, F (x)dx). In [31] it is shown that the condition |b|2 ∈ L2

loc(Rn, F (x)dx)
is necessary in order to have essential selfadjointess of D � C∞

c (Rn). In [58] we proved that
under some additional assumptions on F this is also sufficient. This indicates that the
L4
loc-condition in Theorem 5.1.1 does not only occur because of the multiplicative term
|A|2 but more importantly because of the first order term 〈A, dϕ〉. This will also become
clear during the proof of Theorem 5.1.1.

5.2 Proof of Theorem 5.1.1

We will need the fact that a magnetic potential A ∈M(M) can be suitably approximated
by smooth compactly supported 1-forms. For an open subset Λ ⊂ M and two smooth
compactly supported 1-forms α and β define

lΛ(α, β) =

(∫
Λ

|α− β|4 dµ
) 1

4

+

(∫
Λ

|d∗α− d∗β|2 dµ
) 1

2

.

Let (Λn)n∈N be an exhaustion of M by bounded open subsets with smooth boundary then
we set

l(α, β) =
∞∑
n=1

1

2n
∧ lΛn(α, β).
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It is easy to see that l defines a metric on the space Γcomp(T
∗M) of smooth compactly

supported 1-forms. Let M̃(M) be the completion of Γcomp(T
∗M) with respect to the

metric l.

Lemma 5.2.1. M(M) = M̃(M)

Proof. Because of the local character of the convergence this is a rather direct consequence
of the Friedrichs mollification.

The following Lemma is a geometric version of the well known Gagliardo-Nirenberg
inequality

∀ϕ ∈ C∞
c (Rn) : ‖gradϕ‖2

L4(Rn) ≤ Cn‖ϕ‖∞‖∆ϕ‖L2(Rn) (5.2.1)

used in [60] as a fundamental tool. A closer look at the proof given in [60] shows that
Leinfelder and Simader first establish the inequality

∀ϕ ∈ C∞
c (Rn) : ‖gradϕ‖2

L4(Rn) ≤ Cn‖ϕ‖∞
( n∑
i,j=1

∫
Rn

|∂ijϕ|2 dx
) 1

2

(5.2.2)

which involves the Hessian of ϕ and then use the elementary equation
n∑

i,j=1

‖∂ijϕ‖2
L2(Rn) = ‖∆ϕ‖2

L2(Rn).

in order to derive the inequality (5.2.1). Our proof of the analogue of equation (5.2.2) is a
coordinate free version of the one given in [60]. In the proof we use the Einstein summation
convention and sum over repeated indices.

Lemma 5.2.2. Let ∇dψ denote the Hessian of a smooth function ψ. For all bounded
ϕ ∈ D(−∆) with compact support one has

1. ‖gradϕ‖2
4 ≤ C‖ϕ‖∞‖∇dϕ‖2

2. ‖gradϕ‖2
4 ≤ Cϕ‖ϕ‖∞(‖∆ϕ‖2 + ‖ϕ‖2),

where C depends only on the dimension of M and Cϕ depends only on the lower bound of
the Ricci curvature on the support of ϕ.

Proof. It is enough to prove the assertions for real valued functions. For ϕ ∈ C∞
c (M ; R)

we have∫
M

|gradϕ|4 dµ =

∫
M

〈gradϕ, gradϕ〉〈gradϕ, gradϕ〉 dµ

=

∫
M

〈gradϕ, 〈gradϕ, gradϕ〉gradϕ〉 dµ

= −
∫
M

〈gradϕ, gradϕ〉〈div gradϕ〉ϕdµ

−
∫
M

〈grad |gradϕ|2, gradϕ〉ϕdµ

= −
∫
M

|gradϕ|2(∆ϕ)ϕdµ−
∫
M

〈grad |gradϕ|2, gradϕ〉ϕdµ.
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Using the definition of the Hessian ∇dϕ (see Definition 7.106 [50]) we have

∂l〈gradϕ, gradϕ〉 = 2〈∇∂l
gradϕ, gradϕ〉 = 2(∇dϕ)(∂l, gradϕ)

and therefore we conclude that∣∣∣∣∫
M

〈grad |gradϕ|2, gradϕ〉ϕdµ
∣∣∣∣ = 2

∣∣∣∣∫
M

〈gkl∂l|gradϕ|2∂k, gradϕ〉ϕdµ
∣∣∣∣

≤ 2‖ϕ‖∞
∫
M

|∇dϕ||gradϕ|2 dµ

≤ 2‖ϕ‖∞
(∫

M

|∇dϕ|2 dµ
) 1

2
(∫

M

|gradϕ|4 dµ
) 1

2

.

Hence we see that ∫
M

|gradϕ|4 dµ ≤ (
√
n+ 2)‖ϕ‖∞‖gradϕ‖2

4‖∇dϕ‖2.

By the Bochner-Weitzenböck formula (see e.g. formula (1.1) in [85]) we have for smooth
functions with compact support f ∈ C∞

c (M)

1

2
∆|grad f |2 − 〈grad ∆f, grad f〉 = |∇df |2 + Ric(grad f, grad f).

Using ∫
M

∆|grad f |2 dµ = 0

we get after integrating by parts∫
M

|∇df |2 dµ =

∫
M

|∆f |2 dµ−
∫
M

Ric(grad f, grad f) dµ.

The desired result is now proved for smooth functions ϕ ∈ C∞
c (M). The extension to

ϕ ∈ H2(M) ∩ L∞comp(M) is straightforward.

Remark 5.2.1. Observe that without lower bound on the Ricci curvature one cannot es-
timate the L4-norm of the gradiant of smooth test function u by the L2-norms of the
Laplacian of u and the function u itself. This is another difference to the euclidean case
(5.2.1), which is another point, which makes the general case more complicated.

The following theorem constitutes the core of the hyperbolic approach. The finite
speed of propagation property of solutions of many wave equation can effectively used in a
localization of the problem. This fact was noticed by Chernoff in [26]. The next Theorem
is in some sense an abstract version of his argument and was already applied in this form
e.g. in [58].
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Theorem 5.2.1. Let (N,M, ν)be a σ-finite measure space on a locally compact space N
and let (S̃,D(S̃)) be a symmetric densely defined operator in L2(N, ν) which is semibounded
from below. Let S denote the Friedrichs extension of S̃. Assume that the set of functions in
D(S̃) with compact support is dense in L2(N, ν) and that for every v ∈ D(S) with compact
support the solution u(t) = cos(t

√
S)v to the abstract wave equation

d2u

dt2
(t) = −Su(t), u(0) = v (5.2.3)

has compact support, then the restriction of S to the class of functions in D(S) with compact
support is essentially selfadjoint.

Let us briefly comment on the proof of Theorem 5.2.1. Without loss of generality
let us assume that S ≥ I in the form sense. It is clear that for fixed T > 0 the set
UT = {cos(t

√
S)f | f ∈ D(S)comp, 0 < t ≤ T} ⊂ D(S) is dense in L2(N, ν). Let us

denote by Ŝ the restriction of S to UT . (Ŝ, UT ) is a densely defined symmetric operator
in L2(N, ν) . Let ψ ∈ D(Ŝ∗) with Ŝ∗ψ = 0 be given. For any u(t) = cos(t

√
S)f ∈ UT

the function g(t) = (u(t), ψ)L2(N,ν) = (cos(t
√
S)f, ψ)L2(N,ν) is twice differentiable with

g(0) = (f, ψ)L2(N,ν),
dg
dt

(0) = 0 and

d2g

dt2
= −(S cos(t

√
S)f, ψ)L2(N,ν) = −(cos(t

√
S)f, Ŝ∗ψ)L2(N,ν) = 0.

Thus we get for some a, b ∈ R g(t) = a · t + b. Since a = dg
dt

(0) = 0 and b = g(0) =

(f, ψ)L2(N,ν) this shows that (cos(t
√
S)f, ψ)L2(N,ν) = (f, ψ)L2(N,ν) for every 0 ≤ t < T

and f ∈ D(S) with compact support. Since these functions are dense in L2(N, ν) we get
cos(t

√
S)ψ = ψ for every 0 ≤ t < T . Observe that by the spectral theorem

‖ψ‖2
L2(N,ν) =

∫
[1,∞)

| cos(t
√
λ)|2 d‖Eλψ‖2

L2(N,ν),

where (Eλ)λ denotes the spectral resolution of S. If ψ is not the zero element, then the non-
negative measure ‖E(·)ψ‖2

L2(N,ν) is non-trivial with total mass ‖ψ‖2
L2(N,ν) and must therefore

be concentrated on the set {k2π2

t2
| k ∈ N} which is not independent of t > 1. Thus ψ ≡ 0.

The assertion of Theorem 2 follows from the basic criterion for essential selfadjointness.
This criterion asserts (see chapter 10.1 in [95]) that a symmetric operator A in a Hilbert
space H is essentially selfadjoint, if the deficiency indices γ+(A) := dimKer(A∗ − i) and
γ−(A) := dimKer(A∗ + i) satisfy (γ+(A), γ−(A)) = (0, 0). Recall further that β(A, z) :=
dimRan(A − z) = dimKer(A∗ − z) is locally constant in z on the domain of regularity
Γ(A) ⊂ C of A, where

Γ(A) :=
{
z ∈ C | ∃k(z) > 0∀x ∈ D(A) : ‖(A− z)x‖ ≥ k(z)‖x‖

}
.

Since S ≥ I by assumption we conclude that 0 ∈ Γ(S) and therefore 0 = dimKer(S∗) =
γ+(S) = γ−(S).
The next Lemma is known (see [26] for related results). We give a complete proof for
convenience of the reader.
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Lemma 5.2.3. Let A ∈ Γ(T ∗M) a bounded smooth 1-form and let V ∈ C∞(M) be a
bounded smooth potential. Let H(A, V ) denote the Friedrichs extension of H̃(A, V ). Then
for all open sets Ωi (i = 1, 2) and ui ∈ L2(M,µ) with supp(ui) ⊂ Ωi (i = 1, 2) we have

(cos(t
√
H(A, V ))u1, u2)L2(M,µ) = 0

whenever 0 < t < dist(Ω1,Ω2) = R

Proof. We will use the standard approach via energy estimates. First remark that every
solution to the hyperbolic problem (2.2) with the above assumptions on A and V is in fact
smooth (see [40]). Let u ∈ C∞(M) be such a solution. For fixed r > 0 and o ∈M consider
the local energy

e(t) =

∫
Br−t(o)

|u(t, y)|2 + |ut(t, y)|2 + |(d− iA)u(t, y)|2 dµ(y).

Then we calculate the derivative of e

de

dt
(t) =

∫
Br−t(o)

d

dt
(|u(t, y)|2 + |us(t, y)|2 + |(d− iA)u(t, y)|2) dµ(y)

−
∫
∂Br−t(o)

|u(t, y)|2 + |ut(t, y)|2 + |(d− iA)u(t, y)|2 dHn−1(y)

= 2

∫
Br−t(o)

<(uut) + <(ututt)−<〈(d− iA)u, (d− iA)ut〉 dµ

−
∫
∂Br−t(o)

|u(t, y)|2 + |ut(t, y)|2 + |(d− iA)u(t, y)|2 dHn−1(y)

= 2

∫
Br−t(o)

<(uut) + <(utH(A, V )u)−<〈(d− iA)u, (d− iA)ut〉 dµ

−
∫
∂Br−t(o)

|u(t, y)|2 + |ut(t, y)|2 + |(d− iA)u(t, y)|2 dHn−1(y)

= 2<
∫
Br−t(o)

uut + utH(A, V )u− 〈(d− iA)u, (d− iA)ut〉 dµ

−
∫
∂Br−t(o)

|u(t, y)|2 + |ut(t, y)|2 + |(d− iA)u(t, y)|2 dHn−1(y),
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where Hn−1 denotes the (n−1)-dimensional Hausdorff measure. Integration by parts gives

de

dt
(t) = 2<

[∫
Br−t(o)

uut + utV u dµ+

∫
∂Br−t(o)

〈(grad− iA])u, ν〉TMut dHn−1(y)

]
−
∫
∂Br−t(o)

|u(t, y)|2 + |ut(t, y)|2 + |(d− iA)u(t, y)|2 dHn−1(y)

≤ 2

∫
Br−t(o)

|uut|+ |utV u| dµ+ 2

∫
∂Br−t(o)

|((grad− iA])u, ν)TMut| dHn−1(y)

−
∫
∂Br−t(o)

|u(t, y)|2 + |ut(t, y)|2 + |(d− iA)u(t, y)|2 dHn−1(y)

≤ 2

∫
Br−t(o)

|uut|+ |utV u| dµ+

∫
∂Br−t(o)

|(d− iA)u(t, y)|2 + |ut(t, y)|2 dHn−1(y)

−
∫
∂Br−t(o)

|u(t, y)|2 + |ut(t, y)|2 + |(d− iA)u(t, y)|2 dHn−1(y)

≤ 2

∫
Br−t(o)

|uut|+ |utV u| dµ,

where ν denotes the outward normal vectorfield. In the second inequality we used the
Cauchy-Schwarz inequality together with the elementary inequality 2ab ≤ a2 + b2. Since
V is assumed to be bounded we get for some c > 0

de

dt
(t) ≤ c

∫
Br−t(o)

|u|2 + |ut|2 dµ

≤ c

∫
Br−t(o)

|u|2 + |ut|2 + |(d− iA)u|2 dµ ≤ ce(t),

which by Gronwall’s Lemma implies e ≡ 0. Without loss of generality we assume u2 to be
smooth. If y ∈ M is an arbitrary point in support of u1 then we have u2(x) = 0 for every
x ∈M with |x− y| < R and therefore cos(t

√
H(A, V ))u2(x) = 0 for |x− y| ≤ R− t. This

proves the assertion.

Now let for some constant c ∈ R the potentials Vn, V ∈ L2
loc(M) satisfy Vn, V > c.

Exactly as in Lemma 5 of [60] one shows that An → A in L2
loc(T

∗M) and Vn → V in
L2
loc(M) imply that the operators H(An, Vn) converge to H(A, V ) in the strong resolvent

sense. An application of Theorem 3 together with the just mentioned approximation
result allows to conclude that for every A ∈ L2

loc(T
∗M) and every W ∈ L2

loc(M) which is
semibounded from below

(cos(t
√
H(A,W ))u, v)L2(M) = 0 (5.2.4)

if u, v ∈ L2(M,µ) with t < dist(supp(u), supp(v)). In the next Lemma we remove the
restriction that the potential is semibounded from below. In the next Lemma we will see
that not semiboundedness of the potential but semiboundedness of the operator matters.



120 CHAPTER 5. SELFADJOINTNESS OF SCHRÖDINGER OPERATORS

Lemma 5.2.4. Let H(A, V ) be as in Theorem 1. For every u ∈ L2(M) with compact
support in Br(o) we have

∀v ∈ {w ∈ L2(M) | w � Br+t(o) = 0 a.e.} : (cos(t
√
H(A, V ))u, v)L2(M) = 0

Proof. Consider the sequence (qn,D(qn)) of closed non-negative quadratic forms given by
qn = q[A, V+−V−∧n] with D(qn) = D(q[A, V+−V−∧n]) = D(q[A, V+]). By monotone form
convergence one concludes that the sequence of operators H(A, Vn) = H(A, V+ − V− ∧ n)
converges to the operator H which is associated to the regular part qr of the quadratic
form q (see [81]) where q is given by

q(ϕ) = inf
n
q[A, V+ − V− ∧ n](ϕ), D(q) = D(q[A, V+]).

Recall that the regular part qr of a quadratic form q is by definition the largest closable
quadratic form which is smaller than q. Thus it is enough to show that in our case q is
actually closable and that the closure of q coincides with the closure of q � C∞

c (M). For
every u ∈ D(q[A, V+]) there is a sequence (ϕn)n∈N ⊂ C∞

c (M) such that ϕn →∞ as n→∞
with respect to the norm

√
q[A, V+](·) + ‖ · ‖2

L2(M). By assumption we have

∀n ∈ N :

∫
M

|(d− iA)ϕn|2 dµ+

∫
M

V+|ϕn|2 dµ−
∫
M

V−|ϕn|2 dµ ≥ 0.

Thus

∀n ∈ N :

∫
M

|(d− iA)ϕn|2 dµ+

∫
M

V+|ϕn|2 dµ ≥
∫
M

V−|ϕn|2 dµ

and therefore

lim sup
n∈N

∫
M

V−|ϕn|2 dµ <∞.

This implies that q[A, V ](ϕn − u) + ‖ϕn − u‖2
L2(M) → 0 as n → ∞. The form domain

D(q) is therefore contained in C∞
c (M)

q[A,V ]
. Thus q is closable and its closure q̄ coincides

with the closure of (q[A, V ], C∞
c (M)). Hence we get H(A, Vn) → H(A, V ) in the strong

resolvent sense and we conclude that (2.3) holds with H(A,W ) replaced by H(A, V ).

This gives us directly the following assertion

Corollary 5.2.1. Let A and V as in Theorem 1 be given, then the subspace Dcomp con-
sisting of all compactly supported functions in the domain D(H(A, V )) of H(A, V ) forms
an operator core for H(A, V )

Remark 5.2.2. The above approach to the localization of the problem is also applicable to
operators of Schrödinger type acting on more general vector bundles. We will apply this
approach to the setting considered in [13] in a subsequent project.
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For the proof of Theorem 1 it is essential to show that bounded compactly supported
functions form an operator core, This will be achieved in the Lemma 3 below. For r >
0 let Hr(A, V ) denote the operator H(A, V ) in the ball Br(o) with Dirichlet boundary
condition, i.e. Hr(A, V ) is generated by the closure of qr[A, V ] of the quadratic form
q[A, V ] � C∞

c (Br(o)). The domain D(qr[A, V ]) of the form qr[A, V ] is of course contained
in D(q[A, V ]). Observe that for u ∈ D(H(A, V )) with support contained in Br(o) we also
have u ∈ D(Hr(A, V )) and Hr(A, V )u = H(A, V )u. On the other hand if u ∈ D(Hr(A, V ))
with supp(u) ⊂ Br(o) we also have u ∈ D(H(A, V )) with H(A, V )u = Hr(A, V )u. We
further set for some fixed T > 0

C = {ϕe−tHR+3(A,V )u |0 < t < T, u ∈ D(H(A, V )) with supp(u) ⊂ BR for some

R > 0, ϕ ∈ C∞
c (BR+2(o)), 0 ≤ ϕ ≤ 1, ϕ � BR = 1}

Lemma 5.2.5. Let A ∈ L2
loc(T

∗M) be a locally square integrable 1-form and let V ∈
L2
loc(M) be a potential such that the negative part belongs to the local Kato class Kloc(M).

Then the set C ⊂ D(H(A, V )) ∩ L∞comp(M) forms an operator core for H(A, V )

Proof. We already know that the class of functions in D(H(A, V )) with compact support
form an operator core. Thus it is enough to prove that every u ∈ D(H(A, V )) having
compact support in the ball BR(o) of radius R with center o can be approximated by
bounded compactly supported functions with respect to the graph norm. Let ϕ ∈ C∞

c (M)
be a smooth function with 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for d(x, o) < R + 1 and ϕ(x) = 0
for d(x, o) > R + 2. By the diamagnetic inequality we have for every f ∈ L2(BR+3)
the domination property |e−tHR+3(A,V )f | ≤ e−tHR+3(0,V )|f |. By the Feynman-Kac Formula
and the condition V ∈ Kloc(M) one concludes that the semigroup e−tHR+3(0,V ) consists of
integral operators with integral kernels p(t, x, y) satisfying supx,y∈BR+3(o) p(t, x, y) ≤ c(t) <

∞. In order to see this just recall that for f ∈ L2(M,µ)

e−tHR+3(0,V )f(x) = Ex

[
e−

R t
0 V (Xs) dsf(Xt), t < τBR+3(o)

]
,

where the expectation is with respect to Brownian motion on M killed by exiting BR+3(o).
Now we can use the assumption V− ∈ Kloc(M) and the results in [29] (in particular Theorem
2.21 and Corollary 3.6 in [29]) in order to conclude that e−tHR+3(0,V ) has a bounded integral
kernel given by

p(t, x, y) = Et,y
0,x

[
e−

R t
0 V (Xs) ds, t < τBR+3(o)

]
,

where Et,y
0,x denotes expectation with respect to the unnormalized Brownian bridge measure

and τBR+3(o) = inf{t > 0 | d(o,Xt) ≥ R + 3} the first exit time from the ball BR+3(o).
This property give exactly as in the euclidean case e−tHR+3(0,V )u ∈ L∞loc(M). For ψt =
ϕe−tHR+3(A,V )u = ϕut ∈ L∞(M) we get

L2 − lim
t→0

ψt = ϕu = u



122 CHAPTER 5. SELFADJOINTNESS OF SCHRÖDINGER OPERATORS

and (∫
M

|H(A, V )(ψt − u)|2 dµ
) 1

2

=

(∫
M

|H(A, V )(ψt − ϕu)|2 dµ
) 1

2

=

(∫
M

|ϕHR+3(A, V )(ut − u)− 2i〈dA(ut − u), dϕ〉 − (ut − u)∆ϕ|2 dµ
) 1

2

≤ ‖ϕHR+3(A, V )(ut − u)‖L2(BR+3(o)) + 2

(∫
BR+3(o)

|〈dA(ut − u), dϕ〉|2 dµ
) 1

2

+ ‖(ut − u)∆ϕ‖L2(BR+3(o))

≤ ‖HR+3(A, V )(ut − u)‖L2(BR+3(o)) + c‖(d− iA)(ut − u)‖L2(BR+3(o))

+ ‖(ut − u)∆ϕ‖L2(BR+3(o))

By the spectral theorem we conclude

lim
t→0

(∫
M

|H(A, V )(ψt − u)|2 dµ
) 1

2

= 0

This finishes the proof.

The Gagliardo-Nirenberg inequality allows us to deduce some regularity properties of
functions f belonging to C. First observe that exactly as in Lemma 8 of [60] one deduces

Lemma 5.2.6. Let Ω ⊂ M be a bounded open set and let c > 0. There exists a constant
d > 0 such that for all u ∈ H2(M) ∩ L∞(M) with supp(u) ⊂⊂ Ω and all vector potentials
A ∈M(M) satisfying the conditions of Theorem 5.1.1 and ‖d∗A‖L2(Ω)µ) +‖|A|2‖L2(Ω),µ ≤ c
the inequality

‖∆u‖L2(M) ≤ ‖H(A, V )u‖L2(M) + d‖u‖L∞

holds true.

This gives

Lemma 5.2.7. Let A ∈ M(M) and V ∈ L2
loc(M) with V− ∈ Kloc(M) be as in Theorem

5.1.1. Then we have
C ⊂ H2(M) ∩ L∞comp(M).

In particular gradf ∈ L4(M) for every f ∈ C

Proof. The proof is a modification of Lemma 9 in [60]. Assume that supp(f) is con-
tained in the ball B(o,R). In the proof of the proceeding Lemma we have seen that
ψt = ϕ e−tHR+3(A,V )f = ϕft converges with respect to the graph norm to f , where ϕ ∈
C∞
c (B(o,R+ 2)) with ϕ � B(o,R) = 1. Let (An)n∈N be a sequence of smooth 1-forms such

that ∫
B(0,R+3)

|An − A|4 dµ+

∫
B(o,R+3)

|d∗An − d∗A|2 dµ→ 0
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as n → ∞ and e−tHB(o,R+3)(An,V ) → etHB(o,R+3(A,V ) as n → ∞ with respect to the strong
operator convergence (This assertion directly follows from the Feynman-Kac-Itô represen-
tation of the semigroup etHB(o,R+3(A,V )). Set un = e−tHB(o,R+3)(An,Vn)u. The assumption
V− ∈ Kloc(M) implies that there exists a C > 0 such that for all u ∈ C∞

c (B(o,R+ 3)) and
every n ∈ N

‖(d− iAn)w‖2
L2(B(o,R+3) + ‖w‖2

L2(B(o,R+3) ≤ C
(
‖(d− iAn)w‖2

L2(B(o,R+3)

+ ‖w‖2
L2(B(o,R+3) − ‖

√
V−w‖2

L2(B(o,R+3)

)
.

(5.2.5)

In order to prove equation (5.2.5) just recall that the potential χB(o,R+3)V− ∈ K(M) is
−∆-form bounded with infinitesimal bound 0, i.e. for every ε > 0 there is d(ε) > 0 such
that for all ϕ ∈ H2

0 (B(o,R + 3))

‖
√
V−ϕ‖L2(B(o,R+3)) ≤ ε‖gradϕ‖L2(B(o,R+3)) + d(ε)‖ϕ‖L2(B(o,R+3).

By the quadratic form version of the diamagnetic inequality (see chapter 2.3 of [71]) this
gives for every n ∈ N and every ϕ ∈ H1

0 (B(o,R + 3))

‖
√
V−ϕ‖L2(B(o,R+3)) ≤ ε‖(d− iAn)ϕ‖L2(B(o,R+3)) + d(ε)‖ϕ‖L2(B(o,R+3).

This implies that equation (5.2.5) holds. In particular, there is a constant C̃ such that for
all n ∈ N

‖(d− iAn)un‖2
L2(B(o,R+3) + ‖un‖2

L2(B(o,R+3) ≤ C̃

(
‖(d− iAn)un‖2

L2(B(o,R+3) + ‖un‖2
L2(B(o,R+3)

+

∫
B(o,R+3)

V |un|2 dµ
)
.

This gives

‖(d− iAn)un‖2
L2(B(o,R+3)+‖un‖2

L2(B(o,R+3) ≤ C̃
(
HB(o,R+3)(An, V )un, un

)
L2(B(o,R+3)

≤ C̃‖HB(o,R+3)(An, V )un‖L2(B(o,R+3)‖un‖L2(B(o,R+3),

which implies

‖un‖L2(B(o,R+3) ≤ C‖HR+3(An, V )un‖L2(B(o,R+3)

and

‖(d− iAn)un‖L2(B(o,R+3) ≤ C‖HR+3(An, V )‖L2(B(o,R+3).

Now set vn = ϕun with ϕ as in the definition of the set C. Then vn ∈ D(HR+3(A, V ))∩L∞
and therefore by the product rule

HR+3(An, V )vn = ϕHR+3(An, V )un − 2〈dun − iAnun, dϕ〉 − un∆ϕ.
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General results concerning elliptic regularity (see [40] or [48]) imply vn ∈ H2(M) and by
Lemma 5.2.6 we then conclude that for some constants c, c1, c2, c3, a, b > 0

‖∆vn‖L2(B(o,R+3)) ≤ 2‖HR+3(An, V )vn‖|L2(B(o,R+3)) + c‖vn‖L∞(B(o,R+3))

≤ c1‖HR+3(An, V )un‖L2(B(o,R+3)) + c2‖(d− iAn)un‖Lr(B(o,R+3))

+ c3‖un‖L∞(B(o,R+3))

≤ 2a+ b‖e−tHR+3(0,V )|u|‖L∞(B(o,R+3))

where the diamagnetic inequality |e−tHR+3(An,V )u| ≤ e−tHR+3(0,V )|u| was used in the last
step. Observe that as used already above because of the assumption V− ∈ Kloc(M) the
operator e−tHR+3(0,V ) is ultracontractive. Therefore we have e−tHR+3(0,V )u ∈ L∞(B(o,R +
3)). The unit ball in the Hilbert space L2(B(o,R+3)) is weakly compact and therefore there
exists a weakly convergence subsequence of (∆vn)n∈N. Since vn → ϕu in L2(B(o,R + 3))
we conclude that ϕu ∈ H2(M).

Now we can easily complete the proof of Theorem 5.1.1

Proof. We have already shown that the set D(H(A, V ))∩L∞comp(M) build an operator core
for H(A, V ). Thus it remains to show that every function f ∈ D(H(A, V )) ∩ L∞comp(M)
can be approximated by smooth functions ϕn ∈ C∞

c (M) with respect to the operator
norm. By Lemma 5.2.6 we conclude that ∆f ∈ L2(M) and consequently by Lemma 5.2.2
grad f ∈ L4(TM). Let (fn)n∈N be the sequence obtained from f by Friedrichs mollification.
Since the support of f is a compact subset of M the Friedrichs mollifiers can be constructed
in the standard way in local coordinates. Then we have fn ∈ C∞

c (U) for any n ∈ N and
some bounded open set U ⊂M , fn → f in L∞(M) and

lim
n→∞

‖grad(f − fn)‖L4(TM) und lim
n→∞

‖∆(fn − f)‖L2(M) = 0.

Therefore we get

‖H(A, V )f −H(A, V )fn‖L2(M) ≤ ‖∆(f − fn)‖L2(M) + 2‖〈A, (f − fn)〉‖L2(M)

+ ‖(id∗A+ |A|2 + V )(f − fn)‖L2(M)

≤ ‖∆(f − fn)‖L2(M) + 2‖|A|‖L4(U)‖grad(f − fn)‖L4(TU)

+ ‖(id∗A+ |A|2 + V )‖L2(U)‖f − fn‖L∞ → 0

as n→∞.
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[21] P. Cattiaux and S. Méléard , Competitive or Weak Cooperative Stochastic Lotka-
Volterra Systems Conditioned to Non-Extinction, preprint

[22] Z.-Q. Chen, Y.-X. Ren and H. Wang, An Almost Sure Scaling Limit Theorem for
Dawson-Watanabe Superprocesses, J. Funct. Anal. 254 (2008), 1988–2019

[23] P. Chernoff, Essential self-adjointness of powers of hyperbolic equations, J. Funct.
Anal. 12 (1973), 401 – 414

[24] E. A. Coddington and N. Levinson, Theory of ordinary differential equations,
McGraw-Hill Book Company, Inc, New York, 1955

[25] P. Collet, S. Mart́ınez and J. San Mart́ın, Asymptotic laws for one-dimensional
diffusions conditioned to nonabsorption, Ann. Probab. 23 (1995), 1300–1314

[26] P. Collet, S. Mart́ınez and J. San Mart́ın, Asymptotic behaviour of a Brownian
motion on exterior domains, Probab. Theory Relat. Filds 116 (2000), 303–316
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