
Local Smoothers
with Regularization

Hani Kabajah
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Abstract

Mrázek et al. [25] proposed a unified approach to curve estimation which combines local-
ization and regularization. Franke et al. [10] used that approach to discuss the case of the
regularized local least-squares (RLLS) estimate. In this thesis we will use the unified approach
of Mrázek et al. to study some asymptotic properties of local smoothers with regularization.
In particular, we shall discuss the Huber M-estimate and its limiting cases towards the L2

and the L1 cases. For the regularization part, we will use quadratic regularization. Then,
we will define a more general class of regularization functions. Finally, we will do a Monte
Carlo simulation study to compare different types of estimates.
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Abbreviations

abbreviation meaning

N The set of natural numbers: N = {1, 2, 3, . . . }
R The set of real numbers: R = (−∞,∞)

an, bn Real-valued sequences

an = O(bn) ∃ C > 0, N ∈ N : |an/bn| ≤ C for every n > N

an = o(bn) limn→∞ |an/bn| = 0

an ∼ bn limn→∞ |an/bn| = 1

an ∼ constant bn limn→∞ |an/bn| = constant 6= 0

Xn Sequence of random variables

Xn = Oa.s.(bn) |Xn(ω)|/|bn| < Cω for almost all ω where Cω is a positive constant

Xn = oa.s.(bn) limn→∞ |Xn|/|bn| = 0 almost surely

Xn = Op(bn) ∀δ > 0, ∃M > 0, N ∈ N : P (|Xn|/|bn| > M) < δ for every n > N

Xn = op(bn) limn→∞ P (|Xn|/|bn| > δ) = 0 for every δ > 0

supp(f) Support of a function: supp(f) = {x ∈ R : f(x) 6= 0}
K(u) A kernel function

Kh(u) A rescaled kernel function: Kh(u) = 1
h
K
(
u
h

)
QK =

∫
K2(u)du

SK =
∫
K3(u)du

VK =
∫
u2K(u)du

xi



xii

µ(x) The regression function of the nonparametric model

µi Shorthand writing for µ(xi) where xi = i/N

µ = (µ(x1), . . . , µ(xN))T = (µ1, . . . , µN)T

µ′′ = (µ′′(x1), . . . , µ′′(xN))T = (µ′′1, . . . , µ
′′
N)T

µ̂(x) The Priestley-Chao (PC) kernel estimate of µ(x)

µ̂i Shorthand writing for µ̂(xi) where xi = i/N

µ̂ = (µ̂1, . . . , µ̂N)T

µ̂K(x, h) The PC-estimate with kernel K and bandwidth h

µ̂L(x, g) The PC-estimate with kernel L and bandwidth g

µ̃(x) The local Huber M-estimate (LHM-estimate) of µ(x)

µ̃i Shorthand writing for µ̃(xi) where xi = i/N

µ̃ = (µ̃1, . . . , µ̃N)T

µ̃K(x, h) The LHM-estimate with kernel K and bandwidth h

µ̃L(x, g) The LHM-estimate with kernel L and bandwidth g

ûPC Vector of PC-estimates at the grid points xi = i/N

ûLS Vector of QRLLS-estimates at the grid points xi = i/N

ûHM(c) Vector of QRLHM-estimates at the grid points xi = i/N

ûLA Vector of QRLLA-estimates at the grid points xi = i/N
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Chapter 1

Estimation and Smoothing

In this chapter, we introduce the general idea of smoothing and, in particular, kernel smooth-
ing. Then we introduce the general approach for image denoising developed by Mrázek et al.
[25]. Based on this approach, we present some of the results obtained by Franke et al. [10]
for the case of RLLS-estimates. Finally, we describe the problem we would like to discuss in
detail here.

1.1 What is Smoothing?

Smoothing of a data set {(Xj, fj) : j = 1, . . . , N} involves the approximation of the mean
response curve µ in the regression relationship

fj = µ(Xj) + εj, j = 1, . . . , N. (1.1)

The functional of interest could be the regression curve itself µ, certain derivatives of it
or functions of derivatives such as extrema or inflection points. But we restrict the case here
to estimating µ only.

If there are repeated observations at a fixed point X = x estimation of µ(x) can be done
by using just the average of the corresponding f -variables. However, in the majority of
cases, repeated responses at a given x can not be obtained. In most studies of the regression
relationship given by (1.1), there is just a single response variable f and a single predictor
variable X which may be a vector in Rd. In our study, we will consider only the case d = 1.

In the trivial case in which µ(x) is a constant, estimation of µ reduces to the point
estimation of location, since an average over the response variable f yields an estimate of µ.
In practical studies, it is unlikely that the regression curve is constant. Rather the assumed
curve is modeled as a smooth continuous function of a particular structure which is “nearly
constant” in a small neighbourhood of x.

A quite natural choice of the estimator of µ, denoted by µ̂, is the mean of the response
variables near a point x. This (local average) should be constructed in such a way that it is
defined only from observations in a small neighbourhood around x, since f -observations from
points far away from x will have, in general, very different mean values. This local averaging
procedure can be viewed as the basic idea of smoothing. More formally this procedure can

1



2 CHAPTER 1. ESTIMATION AND SMOOTHING

be defined as

µ̂(x) =
1

N

N∑
j=1

WNj(x)fj (1.2)

where {WNj(x)}Nj=1 denotes a sequence of weights which depend on the whole vector {Xj}Nj=1.
Smoothing methods are strictly or asymptotically of the form (1.2). The estimator of the

regression function µ(x) (denoted by µ̂(x), µ̃(x), etc.) is called a smoother.
Special attention has to be paid to the fact that smoothers average over observations

with different mean values. The amount of averaging is controlled by the weight sequence
{WNj(x)}Nj=1 which is tuned by a smoothing parameter. The smoothing parameter regulates
the size of the neighbourhood around x, and should be chosen in a way to balance over-
smoothing and under-smoothing.

1.2 Kernel Smoothing

In this section we describe the basic idea of kernel smoothing and give some examples of
kernel estimates.

For more details see Jennen-Steinmetz and Gasser [21] where they discuss the nonpara-
metric regression estimation methods well-know up to 1988 (for example: the Priestley-Chao
kernel estimate, the Nadaraya-Watson kernel estimate, the Gasser-Müller kernel estimate,
the spline smoother, etc.).

We start by defining kernel functions.

Definition 1.1 A kernel K is a bounded, continuous function on R satisfying
∫
K(u)du = 1.

In estimating functions, a kernel usually has to satisfy the following

K(u) ≥ 0,

∫
uK(u)du = 0,

∫
u2K(u)du <∞. (1.3)

These are the least assumptions imposed on kernels, further assumptions will be imposed
later.

In the context of smoothing, we define

Kh(u) :=
1

h
K
(u
h

)
where h > 0. Kh is called the rescaled kernel and the smoothing parameter h is called the
bandwidth.

Definition 1.2 Let m be a real-valued function then the support of m is defined as

supp(m) = {x ∈ R : m(x) 6= 0}.

Moreover, if supp(K) = [−1,+1], then supp(Kh) = [−h,+h].

Example 1.3 (Some kernel functions) a) Gauss kernel:

K(u) =
1√
2π
e−

u2

2 , u ∈ R.
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The support of this kernel is the whole real line.

b) Epanechnikov (or Bartlett-Priestley) kernel:

K(u) =
3

4
(1− u2)+, u ∈ R,

where u+ = u1{u≥0}(u). The support of this kernel is the interval [−1, 1].

Regression Models

Now, we introduce two designs associated with the regression model (1.1). The first design is
the equidistant design or the deterministic equidistant design model. This model arises when
we observe a sample (x1, f1), . . . , (xN , fN) of data pairs which follows the regression model
(1.1), where εj are independent identically distributed random variables with mean zero and
variance σ2, and the xj come from an equidistant grid in the unit interval [0, 1]. That is,

fj = µ(xj) + εj, L(εj) = i. i. d. (0, σ2), xj =
j

N
, j = 1, . . . , N. (1.4)

The second design is the stochastic design or the random design model. This model arises
when we observe a sample (X1, f1), . . . , (XN , fN) of data pairs which follows the regression
model (1.1), where (conditional on X1, . . . , XN) εj are independent identically distributed
random variables with mean zero and variance σ2. That is,

fj = µ(Xj) + εj, L(εj|X1, . . . , XN) = i. i. d. (0, σ2), j = 1, . . . , N. (1.5)

In the stochastic design context µ(x) = E (f |X = x) and σ2 = var (f |X = x) are the
conditional mean and variance of f given X = x. The density of X1, . . . , XN will be denoted
by p.

Priestley-Chao and Nadaraya-Watson Kernel Estimates

Now, we introduce some estimates of the regression function µ.

Definition 1.4 Let the model (1.5) hold. The Priestley-Chao kernel estimate of µ : R→ R
with bandwidth h > 0 and some kernel K is defined as

µ̂K(x, h) :=
N∑
j=1

(Xi −Xi−1)Kh(x−Xj)fj

=
1

h

N∑
j=1

(Xi −Xi−1)K

(
x−Xj

h

)
fj, x ∈ R.

If the model (1.4) holds, then the Priestley-Chao kernel estimate of µ : [0, 1]→ R is given by

µ̂K(x, h) :=
1

N

N∑
j=1

Kh(x− xj)fj
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=
1

Nh

N∑
j=1

K

(
x− xj
h

)
fj, x ∈ [0, 1].

In view of (1.2), the Priestley-Chao estimate under the equidistant design can be seen as
a weighted average with weights

WNj(x) = Kh(x− xj).

Definition 1.5 Let the model (1.5) hold. The Rosenblatt-Parzen kernel density estimate of
p(x) with bandwidth h > 0 and some kernel K is defined as

p̂K(x, h) :=
1

N

N∑
j=1

Kh(x−Xj), x ∈ R.

Definition 1.6 Let the model (1.5) hold. The Nadaraya-Watson kernel estimate of µ : R→
R with bandwidth h > 0 and some kernel K is defined as

µ̂NW (x, h) :=

∑N
j=1Kh(x−Xj)fj∑N
j=1Kh(x−Xj)

=
1

p̂K(x, h)

1

N

N∑
j=1

Kh(x−Xj)fj, x ∈ R.

If the model (1.4) holds, then the Nadaraya-Watson kernel estimate of µ : [0, 1]→ R with
bandwidth h > 0 and some kernel K is given by

µ̂NW (x, h) :=

∑N
j=1 Kh(x− xj)fj∑N
j=1 Kh(x− xj)

=
µ̂K(x, h)

p̂K(x, h)
, x ∈ [0, 1].

Like the Priestley-Chao estimate, the Nadaraya-Watson kernel estimate can also be seen
as a weighted average with weights

WNj(x) =
Kh(x−Xj)

p̂(x, h)
.

Under the equidistant design p̂K(x, h) → 1 as N → ∞ (cf. Lemma 1.9 below). Using
this fact we can say that under the equidistant design the Priestley-Chao and the Nadaraya-
Watson kernel estimates are asymptotically equivalent.
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1.3 Spline Smoothing

Another well known method in nonparametric regression estimation is the method of spline
smoothing. For example, under model (1.4), the cubic spline estimator µ̂CS(x, λ) is defined
as the minimizer of

Sλ(g) =
1

N

N∑
j=1

(fj − g(xj))
2 + λ

∫ 1

0

(g′′(x))2dx (1.6)

over functions g which are twice continuously differentiable. The parameter λ > 0 is a
smoothing parameter which controls the trade-off between smoothness (measured here by

the total curvature
∫ 1

0
(g′′(x))2dx) and goodness of fit to the data (measured here by the

least-squares). The larger the value of λ the smoother the estimate.
This form of spline smoothing is due to Schoenberg in 1964 and Reinsch in 1967. However,

the idea of penalizing a measure of goodness of fit by a one for roughness was described by
Whittaker in 1923.

In 1984, Silverman [30] showed that spline smoothers (which could be written as in (1.2)
with weights W λ

Nk(x)) are asymptotically equivalent to kernel estimates.
For more details about spline smoothers and further references see Silverman [30].

1.4 Robust M-Estimation

Under model (1.4), we can see the Nadaraya-Watson kernel estimate µ̂NW (x, h) as the solution
of the following local least-squares minimization problem

1

N

N∑
j=1

Kh(x− xj)(u− fj)2 = min
u∈R

! (1.7)

The Nadaraya-Watson kernel estimate and its asymptotically equivalent estimate, under
model (1.4), the Priestley-Chao estimate, are optimal when the error terms are Gaussian.
However, they are highly disturbed by outliers.

To get an estimate which is robust against outliers, Huber [16] proposed in 1964 using

ρ(u) =

{
1
2
u2, |u| ≤ c,

c|u| − 1
2
c2, |u| > c,

(1.8)

as a target function of the minimization problem instead of the quadratic function. For large
c, ρ behaves like u2 while for small c it behaves like |u|. For example, under model (1.4), the
local Huber M-estimate µ̃(x, h) is defined as the solution of

1

N

N∑
j=1

Kh(x− xj)ρ(u− fj) = min
u∈R

! (1.9)

For more details see Huber [16] (for M-estimates) and Härdle [13] (for local M-estimates).
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1.5 Approach by Mrázek et al.

In this section we introduce the general approach for image denoising proposed by Mrázek
et al. [25]. This approach covers most of the methods described above for nonparametric
regression estimates and makes use of the penalization strategy to reduce over-smoothing
when it occurs.

Let us assume there is an unknown (constant) signal u, and it is observed N -times. We
obtain the noisy samples fj, j = 1, . . . , N, according to fj = u + εj where εj stands for
the noise. If εj are zero-mean Gaussian (normal) random variables, one can estimate u by

calculating the sample mean ū = 1
N

∑N
j=1 fj. The mean ū is the maximum a posteriori

(MAP) estimate of u, and minimizes the L2 error Q(u) =
∑N

j=1(u− fj)2.

In image analysis, the data (grey values) fj are measured at positions (pixels) xj, and we
want to find a solution vector u = (uj)j=1,...,N where each output value uj belongs to the
position xj.

Mrázek et al. established a general approach for image denoising which combines localiza-
tion and regularization. The localization effect comes from the weight functions introduced
into the energy functional to be minimized, and the regularization effect is obtained by
adding another smoothness penalizing term. The final energy functional to be minimized
(with respect to u) is:

Q(u) = QD(u) +
λ

2
QS(u)

=
N∑

i,j=1

ΨD

(
|ui − fj|2

)︸ ︷︷ ︸
tonal wt. func.

wD
(
|xi − xj|2

)︸ ︷︷ ︸
spatial wt. func.︸ ︷︷ ︸

Data Term

+
λ

2

N∑
i,j=1

ΨS

(
|ui − uj|2

)︸ ︷︷ ︸
tonal wt. func.

wS
(
|xi − xj|2

)︸ ︷︷ ︸
spatial wt. func.︸ ︷︷ ︸

Smoothness Term

. (1.10)

The data loss function or the data tonal weight function ΨD is a penalizing function mea-
suring the fit of u to the observations f1, . . . , fN , where the smoothness loss function or the
smoothness tonal weight function ΨS is a penalizing function measuring the smoothness of
the solution. The data weight function or the data spatial weight function wD takes care of
the localization effect in the data part, that is, the observations fj whose corresponding xj are
closest to the point where we are making the estimation has more weight than other obser-
vations. Whereas the smoothness weight function or the smoothness spatial weight function
wS takes care of the localization effect in the smoothness part of the energy functional. The
tuning parameter or the regularization parameter λ ≥ 0 balances between fit and smoothness.

Example 1.7 Under model (1.4), the general approach gives the following estimates for µ.

1. Least-squares estimate (the mean): ΨD(s2) = s2, wD(x2) = 1, and λ = 0. The solution
is the vector

f̄ =

(
1

N

N∑
j=1

fj, . . . ,
1

N

N∑
j=1

fj

)T

=
(
f̄ , . . . , f̄

)T
.

(We can see from here the importance of localization.)
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2. Least-absolute deviation estimate (the median): ΨD(s2) = |s|, wD(x2) = 1, and λ = 0.
The solution is the vector

f̃ =
(
f̃ , . . . , f̃

)T
,

where f̃ is the sample median of the values f1, . . . , fN . The solution is obtained by the
so-called median minimizing property (for example, see [3]).

3. Local least-squares estimate (the Nadaraya-Watson kernel estimate): ΨD(s2) = s2,
wD(x2) = Kh(x), and λ = 0. The solution is the vector

µ̂NW =

(∑N
j=1Kh(x1 − xj)fj∑N
j=1 Kh(x1 − xj)

, . . . ,

∑N
j=1Kh(xN − xj)fj∑N
j=1 Kh(xN − xj)

)T

= (µ̂NW (x1, h), . . . , µ̂NW (xN , h))T .

4. Local Huber M-estimate: ΨD(s2) = ρ(s), where ρ is the Huber function given by (1.8),
wD(x2) = Kh(x), and λ = 0. The solution is the vector

µ̃ =

(
argmin
u1∈R

1

N

N∑
j=1

Kh(x1 − xj)ρ(u1 − fj), . . . , argmin
uN∈R

1

N

N∑
j=1

Kh(xN − xj)ρ(uN − fj)

)T

= (µ̃(x1, h), . . . , µ̃(xN , h))T .

1.6 Regularized Local Least-Squares Estimates

In this section we will have a look at the case of regularized local least-squares (RLLS)
estimates discussed by Franke et al. [10]. All results presented in this section are due to
Franke et al. [10], where complete proofs can be found.

Assuming model (1.4) the RLLS case is driven from the general approach by Mrázek et
al. [25] by choosing

ΨD(s2) = s2, wD(x2) = Kh(x), ΨS(s2) = s2, wS(x2) = Lg(x),

where the kernels K and L are standardized nonnegative, symmetric functions on R and
the bandwidths h, g > 0 can be chosen to control the smoothness of the function estimate
together with the balancing factor λ. Therefore, the RLLS minimization problem can be
written as

Q(u1, . . . , uN) =
N∑

i,j=1

(ui − fj)2Kh(xi − xj)

+
λ

2

N∑
i,j=1

(ui − uj)2Lg(xi − xj) = min
u1,...,uN

!

(1.11)

The solution here has an explicit representation in terms of the Priestley-Chao estimate.
For convenience, the following notation for the values of the Priestley-Chao estimate at the
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grid points xi, i = 1, . . . , N will be used

µ̂ = (µ̂1, . . . , µ̂N)T with µ̂i = µ̂K(xi, h), i = 1, . . . , N.

Proposition 1.8 Let p̂L(x, g) be defined analogously to p̂K(x, h) with L, g replacing K,h,
and let p̂λ(x, h, g) = p̂K(x, h) +λp̂L(x, g). Let Λ denote the N ×N-matrix with entries Λi,j =
1
N
Lg(xi − xj), and let P̂ denote the N × N-diagonal matrix with entries P̂ii = p̂λ(xi, h, g).

Then, if P̂ − λΛ is invertible, the RLLS-estimate as the minimizer of (1.11) is given by

u =
(
P̂ − λΛ

)−1

µ̂.

But in order to get the bias and variance terms as well as the asymptotic distribution of
the estimate, some asymptotic expansion is needed. For that purpose Franke et al. impose
the following assumptions,

(A1) a) K is a nonnegative, symmetric kernel function with compact support [−1, 1].

b)
∫
K(u)du = 1.

c) K is Lipschitz continuous with Lipschitz constant CK .

d) K(±1) = 0.

e) K ∈ C2(−1,+1) with bounded second derivative K ′′.

f) K ′′ is Lipschitz continuous, and K ′(±1) = 0.

To make arguments simple, the discussion is restricted to the case where boundary effects
are neglected, i.e. x ∈ [h, 1−h] and h > 0. However, boundary effects vanish asymptotically
since h→ 0 as N →∞.

Throughout the text we will use the following abbreviations

VK =

∫
z2K(z)dz, QK =

∫
K2(z)dz.

In the case discussed here, x1, . . . , xN are equidistant and behave similar to uniform ran-
dom variables. In particular, p̂K(x, h) converges to the density of the uniform distribution
under the assumptions mentioned above. This is given in the following lemma.

Lemma 1.9 Assuming (A1) a)-e) for the kernel K, we have for some constant α > 0

|1− p̂K(x, h)| ≤ α

N2h2
for all x ∈ [h, 1− h].

To make notation easier we make the following definition.

Definition 1.10 (PC-iterated smoothers) Set µ̂1(x, h, g) := µ̂K(x, h), and recursively
define the “iterated smoothers” as follows

µ̂n+1(x, h, g) :=
1

N

N∑
j=1

Lg(x− xj)µ̂n(xj, h, g), n ≥ 1.
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Using the recursion above

µ̂n+1(x, h, g) =
1

Nn

∑
j1,...,jn

Lg(x− xj1) . . . Lg(xjn−1 − xjn)µ̂K(xjn , h).

The “iterated differences” are defined recursively as follows

ν̂n+1(x, h, g) := µ̂n+1(x, h, g)− µ̂n(x, h, g), n ≥ 1.

To get an asymptotic approximation of the regularized local least-squares estimate ui,
Franke et al. first investigated the asymptotic properties of the iterated smoothers µ̂n(x, h, g),
n ≥ 1. For that purpose, they assumed the following

(A2) a) µ is twice continuously differentiable.

b) µ′′(x) is Hölder continuous on [0, 1] with exponent β, i.e. for some β > 0, H < ∞
|µ′′(x)− µ′′(y)| ≤ H|x− y|β for all x, y ∈ [0, 1].

These assumptions, along with the previous set of assumptions, will help us in getting the
bias and the variance terms for each iterated smoother, and the covariance terms between
any two iterated smoothers.

Proposition 1.11 Assuming (A1) a)-e) and (A2), we have for the Priestley-Chao estimate
µ̂K(x, h) (denoting µ̂K(xi, h) by µ̂i), for N →∞, h→ 0 such that Nh→∞,

i) bias µ̂i = E µ̂i−µ(xi) = h2

2
µ′′(xi)VK +O

(
h2+β

)
+O

(
1

N2h2

)
uniformly in xi ∈ [h, 1− h].

ii) var µ̂i = E (µ̂i − E µ̂i)2 = σ2

Nh
QK +O

(
1

N3h3

)
uniformly in xi ∈ [h, 1− h].

iii) mse µ̂i = E (µ̂i − µ(xi))
2 = σ2

Nh
QK + h4

4
{µ′′(xi)}2V 2

K + O
(
h4+2β

)
+ O

(
1

N3h3

)
uniformly

in xi ∈ [h, 1− h]. In particular

µ̂i − µ(xi)
P→ 0.

iv) cov (µ̂i, µ̂k) = 0 if |xi − xk| > 2h, and

cov (µ̂i, µ̂k) = σ2

Nh
K ∗K

(
xk−xi
h

)
+O

(
1

N3h3

)
uniformly in xi, xk ∈ [h, 1− h], else,

where K ∗K denotes the convolution of K with itself.

Theorem 1.12 Let the model (1.4) hold. Let K, L satisfy (A1) a)-e) and let (A2) hold.
Then we have for N →∞, h, g, λ→ 0 such that Nh→∞, Ng →∞

ui = (1− θ)
t∑

k=0

θkµ̂k+1(xi, h, g) +RN,i, (1.12)

where the remainder term satisfies uniformly in max(h, g) + tg ≤ xi ≤ 1−max(h, g)− tg

RN,i = Op(λ
t+1) +Op

(
1

N2h2

)
+Op

(
λ

N2g2

)
, and θ =

λ

1 + λ
.
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Lemma 1.13 Assume that K and L satisfy (A1) a)-f), and that µ satisfies (A2). Then, if
h, g → 0, Ng4, Nh4 → ∞ for N → ∞, we have for all n ≥ 1 uniformly in h + ng ≤ x ≤
1− (h+ ng)

E ν̂n+1(x, h, g) = bias µ̂L(x, g) + o(g2).

Theorem 1.14 Let the model (1.4) hold. Let K, L satisfy (A1) a)-f), and let (A2) hold.
Let, for N →∞, h, g, λ→ 0, such that Nh4, Ng4 →∞. Then, with t chosen as the smallest
integer satisfying λt = o(g2), we have uniformly for all i satisfying h+ tg ≤ xi ≤ 1− (h+ tg)

biasui = Eui − µ(xi)

= bias µ̂K(xi, h) + λ bias µ̂L(xi, g) + o
(
λg2
)

+O

(
1

N2h2

)
=

1

2
µ′′(xi)

{
h2VK + λg2VL

}
+O(hβ+2) + o

(
λg2
)

+O

(
1

N2h2

)
.

Proposition 1.15 Assume that K and L satisfy (A1) a)-e), and that µ satisfies (A2). Then,
if h, g → 0, Ng,Nh→∞ for N →∞, for all n ≥ m ≥ 0,

cov (µ̂m+1(x, h, g), µ̂n+1(x̄, h, g))

=
σ2

N
L∗(n+m)
g ∗Kh ∗Kh(x− x̄) +O

(
1

N3h3

)
+O

(
1

N3g2h ∨ g

)
uniformly in ng + 2h ≤ x, x̄ ≤ 1− (ng + 2h). In particular,

var µ̂n+1(x, h, g)

=
σ2

N
L∗(2n)
g ∗Kh ∗Kh(0) +O

(
1

N3h3

)
+O

(
1

N3g2h ∨ g

)
.

We define the Fourier transforms of K,L as follows

L̂(ω) :=

∫
L(z)e−iωzdz, K̂(ω) :=

∫
K(z)e−iωzdz. (1.13)

Theorem 1.16 Let the model (1.4) hold. Let K and L satisfy (A1) a)-e). Let µ satisfy
(A2). For N → ∞, let h, g, λ → 0 such that Nh4 → ∞, Ng4 → ∞. Then, with t chosen
as the smallest integer satisfying

λt = O

(
1

N2g2

)
, (1.14)

we have uniformly in all i satisfying 2h+ tg ≤ xi ≤ 1− (2h+ tg)

varui =
σ2

Nh
Q
(g
h
, λ
)
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+O

(
1

(Nh)5/2

)
+O

(
λ

N3g2h ∨ g

)
+O

(
λ

N2g2

)
,

and

Q (b, λ) =
1

2π

∫ (
K̂(ω)

1 + λ− λL̂(ωb)

)2

dω

=
1

2π

∫
K̂2(ω)dω +O(λ) = QK +O(λ).

Proposition 1.17 Assuming model (1.4) as well as (A1) a)-e) and (A2), we have for t ≥ 1
and all 0 < x < 1,

√
N
µ̂t(x, h, g)− E µ̂t(x, h, g)√
L
∗(2t−2)
g ∗Kh ∗Kh(0)

L−→N (0, σ2)

for N →∞, h, g → 0 such that Ng,Nh→∞.

Theorem 1.18 a) Under the assumptions of Theorem 1.16, we have for 0 < x < 1

√
Nh

u(x)− Eu(x)√
Q
(
g
h
, λ
) L−→N (0, σ2) for N →∞

with Q
(
g
h
, λ
)

= QK +O(λ).
b) If, additionally, the assumptions of Theorem 1.14 are satisfied

biasu(x) = Eu(x)− µ(x) =
1

2
µ′′(x)

{
h2VK + λg2VL

}
+R′N

with remainder R′N = O(h2+β)+o (λg2)+O
(

1
N2h2

)
uniformly in 2h+tg ≤ x ≤ 1−2h−tg− 1

N
.

Combining both parts of the theorem, we get

u(x)− µ(x)
L
≈N

(
1

2
µ′′(x)

{
h2VK + λg2VL

}
,
σ2

Nh
Q
(g
h
, λ
))

.

1.7 Regularized Local Huber M-Estimates

In this section we will give an outline of the next chapters. The goal of the next chapters
is to consider the case of the Quadratically Regularized Local Huber M-estimate. Assuming
model (1.4) the QRLHM case is derived from the general approach by Mrázek et al. [25] by
choosing

ΨD(s2) = ρ(s), wD(x2) = Kh(x),
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where ρ is the Huber function given by (1.8). We first study the case of quadratic regular-
ization with a kernel weight, i.e.

ΨS(s2) = s2, wS(x2) = Lg(x).

Later on we can see different choices for the loss function ΨS.
The kernels K and L are standardized nonnegative, symmetric functions on R and the

bandwidths h, g > 0 can be chosen to control the smoothness of the function estimate together
with the balancing factor λ. Therefore, the QRLHM minimization problem can be written
as

Q(u1, . . . , uN) =
N∑

i,j=1

ρ(ui − fj)Kh(xi − xj)

+
λ

2

N∑
i,j=1

1

2
(ui − uj)2Lg(xi − xj) = min

u1,...,uN
!

(1.15)

and the solution is called the QRLHM-estimate.
The solution here does not have an explicit form like Proposition 1.8. For that reason we

will try to get an approximation to the solution. This will be done by using a Taylor series
expansion around the “Local Huber M-estimate” (the LHM-estimate is the QRLHM-estimate
in the case λ = 0). The Taylor expansion used here is analogous to the Newton method for
solving a system of equations, but we do not iterate here since the function of interest is at
most quadratic.

To get the asymptotic properties (bias, variance, distribution) of the QRLHM-estimate
we will establish some results similar to those in Franke et al. [10], which were presented in
the previous section.



Chapter 2

Some Asymptotics of Local Huber
M-Estimates (LHM-Estimates)

In this chapter we shall see some asymptotic properties of the M-estimates under the deter-
ministic equidistant design model. In M-estimation many choices for the target function to
be minimized are available. Our target function here is going to be the Huber function [16].
For localization, there are various choices as well, but we do the localization here using kernel
weights.

Huber [16] provided some asymptotic properties of M-estimates without localization.
Stützle and Mittal [33] gave some comments on the method as a generalization of kernel-type
smoothers where they provided asymptotic rates for the bias and the variance. Härdle [13]
and Fan et al. [7] provided some asymptotic properties of M-estimates under a different
setting, where they considered the random design. Härdle and Gasser [14] showed some
asymptotic properties of M-estimates under the fixed design but using the Gasser-Müller
weights for localization. Chu et al. [4] considered M-estimates with kernel weights for local-
ization but they used the kernel function as the tonal weight function. In their work they
have assumed that the regression function to be estimated has four Lipschitz continuous
derivatives. This assumption is relaxed here to two continuous derivatives where the second
derivative is Hölder continuous.

According to Mrázek et al. terminology [25] the spatial weight function is the function
responsible for localization and the tonal weight function is the function responsible for the
quality of the estimate.

2.1 Setup of the Problem

We assume that our data (xj, fj), j = 1, . . . , N, comes from the nonparametric regression
model:

fj = µ(xj) + εj, j = 1, . . . , N, (2.1)

where εj ∼ i. i. d. (0, σ2), and xj = j
N

form an equidistant grid in the unit interval [0, 1].

We are interested here in investigating some of the asymptotic properties of the local Huber
M-estimate, abbreviated as the LHM-estimate.

13
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The LHM-estimate at a point x is denoted by µ̃(x), and it is defined implicitly as the
solution of

N∑
j=1

ρ(u− fj)Kh(x− xj) = min
u∈R

! (2.2)

or, equivalently, as the solution of

N∑
j=1

ψ(u− fj)Kh(x− xj) = 0, (2.3)

with respect to u, where ψ is the derivative of the Huber function [16],

ρ(u) =

{
1
2
u2, |u| ≤ c,

c|u| − 1
2
c2, |u| > c,

(2.4)

and K is a kernel function that is nonnegative and symmetric on R, and the bandwidth
h > 0. The equivalence between the two problems above is due to the convexity of ρ. To tell
which kernel and bandwidth we are using we may also denote the LHM-estimate by µ̃K(x, h)
or µ̃(x, h).

The LHM-estimate belongs to a larger class of estimates known as the M-smoothers. An
M-smoother at a point x is defined implicitly as the solution of

N∑
j=1

ψD(u− fj)Kh(x− xj) = 0 (2.5)

with respect to u, where ψD : R→ R is a bounded, monotone, antisymmetric function.

Alternatively, the LHM-estimate could be obtained using the general approach for image
denoising proposed by Mrázek et al. [25] with λ = 0. That is, by considering the problem:

Q(u1, . . . , uN) =
N∑

i,j=1

ρ(ui − fj)Kh(xi − xj) = min
u1,...,uN

! (2.6)

The solution of the problem is a vector whose entries are the LHM-estimates at the grid points
xj = j/N , i.e. µ̃ = (µ̃1, . . . , µ̃N)T = (µ̃K(x1, h), . . . , µ̃K(xN , h))T . To get the LHM-estimate
at any point x in the interval [0, 1] we have to interpolate.

In the context of estimation with regularization we may call the M-smoothers without
regularization pure M-smoothers.

For further analysis, it is useful to calculate the derivatives of ρ. The first two derivatives
of ρ are

ρ′(u) =


c, u > c,

u, |u| ≤ c,

−c, u < −c,
and ρ′′(u) =


0, |u| > c,

1, |u| < c,

DNE, |u| = c,

(2.7)
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while all higher derivatives

ρ(k)(u) =

{
0, |u| 6= c,

DNE, |u| = c,
for all k ≥ 3. (2.8)

The term “DNE” stands for “does not exist”.
Let us now define the indicator function as follows: Let A ⊆ R then

1A(u) =

{
1, u ∈ A,
0, u 6∈ A.

(2.9)

Using this definition we note that for all u ∈ R \ {−c, c}

ρ′′(u) = 1(−c,c)(u) and ρ(k)(u) = 0 for all k ≥ 3. (2.10)

Equivalently, we write

ρ′′(u) = 1(−c,c)(u) a.s. and ρ(k)(u) = 0 a.s. for all k ≥ 3,

where “a.s.” stands for “almost surely with respect to the probability measure of εj”.

However, choosing the Huber function as given by (2.4) means that ρ(u)
c→∞−→ 1

2
u2, but

ρ(u)
c→0−→ 0. Of course, this is undesired. It would be more interesting if the second limit

tends to the absolute-value function instead of zero.
To get over this problem, we redefine the Huber function in the following manner,

ρ(u) :=



{
1
2
u2, |u| ≤ c,

c|u| − 1
2
c2, |u| > c,

c ≥ 1,

{
1
2c
u2, |u| ≤ c,

|u| − 1
2
c, |u| > c,

c ≤ 1.

(2.11)

We call the new ρ the modified Huber function. Using the modified Huber function it is

now clear that ρ(u)
c→∞−→ 1

2
u2, and ρ(u)

c→0−→ |u|. Hence, we capture both L2 and L1 cases as
limit cases to our minimization problem.

Mark that (2.4) and (2.11) differ only by a positive factor for 0 < c < 1, such that our
modification of the distance ρ makes no difference for the estimate which we get as a solution
of a minimization problem like (2.6).

2.2 Assumptions and Notation

Throughout our work we assume that we are dealing with a kernel function that satisfies the
following assumptions.

(A1) a) K is a nonnegative, symmetric kernel function with compact support [−1, 1].
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b)
∫
K(u)du = 1.

c) K is Lipschitz continuous with Lipschitz constant CK .

Wals and Sewell [37] gave the following useful analytical tool that will enable us to inter-
change between Riemann integrals and Riemann sums.

Theorem 2.1 (Wals and Sewell, [37]) Let g(x) be continuous in the interval [0, 1] and
possess there the modulus of continuity ω(g, δ) in the sense that for values x and y in the
interval (0, 1) the inequality |x− y| ≤ δ implies |g(x)− g(y)| ≤ ω(δ). Then we have∣∣∣∣∣

∫ 1

0

g(x)dx− 1

N

N∑
k=1

g

(
k

N

)∣∣∣∣∣ ≤ ω

(
g,

1

N

)
.

The modulus of continuity of a function g on an interval I is formally defined as

ω(g, δ) = sup
x,y∈I : |x−y|<δ

|g(x)− g(y)|.

If g is Lipschitz continuous with Lipschitz constant M then

ω(g, δ) ≤Mδ.

Hence, the result holds true in particular for Lipschitz continuous functions.

Corollary 2.2 Let g(x) be Lipschitz continuous in the interval [0, 1] with Lipschitz constant
M . Let xj = j

N
for all j = 1, . . . , N . Then we have∣∣∣∣∣

∫ 1

0

g(x)dx− 1

N

N∑
j=1

g(xj)

∣∣∣∣∣ ≤ M

N
.

A useful consequence of this corollary is that we can interchange the following sums with
their Riemann integrals.

Lemma 2.3 Let the kernel K satisfy (A1) a)-c). Let xj = j
N

for j = 1, . . . , N . For N →∞,
let h→ 0 such that Nh2 →∞. Then,

(1)
1

N

N∑
j=1

Kh(x− xj) = 1 +O

(
1

Nh2

)

(2)
1

N2

N∑
j=1

K2
h(x− xj) =

QK

Nh
+O

(
1

N2h3

)
=
QK

Nh
+ o

(
1

Nh

)

(3)
1

N3

N∑
j=1

K3
h(x− xj) =

SK
N2h2

+O

(
1

N3h4

)
=

SK
N2h2

+ o

(
1

N2h2

)
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uniformly in x ∈ [h, 1− h], where

QK =

∫ 1

−1

K2(u)du and SK =

∫ 1

−1

K3(u)du.

Proof. The proof depends on the previous corollary. Equation (1) is clear since g(·) =
Kh(x − ·) is Lipschitz continuous with Lipschitz constant CK/h

2 and K integrates to 1 for
all x ∈ [h, 1− h]. That is,

1

N

N∑
j=1

Kh(x− xj) =

∫ 1

0

Kh(x− y)dy +O

(
1

Nh2

)
=

∫ 1−x
h

−x
h

K(z)dz +O

(
1

Nh2

)
.

For all x ∈ [h, 1− h] we have

−x
h
≤ −1 and

1− x
h
≥ 1,

therefore ∫ 1−x
h

−x
h

K(z)dz =

∫ −1

−x
h

K(z)dz +

∫ 1

−1

K(z)dz +

∫ 1−x
h

1

K(z)dz = 1.

Similarly, equation (2) holds true since g(·) = K2
h(x − ·) is Lipschitz continuous with

Lipschitz constant of order 1/h3, and equation (3) holds true since g(·) = K3
h(x − ·) is

Lipschitz continuous with Lipschitz constant of order 1/h4. �

Lemma 2.4 Let the kernel K satisfy (A1) a)-c). Let xj = j
N

for j = 1, . . . , N . For N →∞,
let h→ 0 such that Nh2 →∞. Then,

(1)
1

Nh

N∑
j=1

K

(
x− xj
h

)(
xj − x
h

)
= O

(
1

Nh2

)

(2)
1

Nh

N∑
j=1

K

(
x− xj
h

)(
xj − x
h

)2

= VK +O

(
1

Nh2

)
uniformly in x ∈ [h, 1− h], where

VK =

∫
z2K(z)dz.

Proof. The proof is similar to the proof of Lemma 2.3. Using (A1) a) we have
∫
zK(z)dz =

0. �

Remark 2.5 From (A1) a)-c) we get that VK, QK and SK are bounded.

Remark 2.6 In view of the previous two lemmas we are going to consider only the case where
x ∈ [h, 1− h], that is, we are neglecting the performance of the estimate at the boundaries of
the unit interval. However, we have h→ 0 as N →∞, that is, the boundaries are vanishing
asymptotically.
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Discussing the boundary effects in (0, h) and (1 − h, 1) would be possible as for common
kernel estimates (compare, e.g., Härdle [12], Section 4.4), but we do not want to go into the
rather technical details. We would rather concentrate on the main ideas.

We assume that the function we are estimating satisfies,

(A2) a) µ is twice continuously differentiable.

b) µ′′(x) is Hölder continuous on [0, 1] with exponent β, i.e. for some β > 0, H <∞

|µ′′(x)− µ′′(y)| ≤ H|x− y|β ∀ x, y ∈ [0, 1].

These assumptions are just technical assumptions and they determine the least smoothness
properties our estimate should have.

Remark 2.7 From assumptions (A2) a)-b) we get that the function µ is Lipschitz continuous
with Lipschitz constant Cµ. Therefore, for all x ∈ [h, 1 − h] and for all xj = j/N where
j = 1, . . . , N such that |x− xj| ≤ h we have

|µ(x)− µ(xj)| ≤ Cµ|x− xj| ≤ Cµh
N→∞−→ 0. (2.12)

The error terms in the regression model are assumed to satisfy the following,

(E1) a) εj are continuous random variables with a probability density function pε(x) that
is symmetric around zero.

b) pε(x) is a decreasing function of |x|.
c) pε(x) is twice continuously differentiable.

We will denote the cumulative distribution function (CDF) of {εj}j=1...,N by Pε, that is

Pε(x) =

∫ x

−∞
dPε(t) =

∫ x

−∞
pε(t)dt.

Using the definition of the modified Huber function, given by (2.11), and assumptions
(E1) we are interested in getting the value of the following integrals,

(1)

∫ ∞
−∞

ψ(u)pε(u)du,

(2)

∫ ∞
−∞

ψ′(u)pε(u)du,

(3)

∫ ∞
−∞

ψ2(u)pε(u)du.

(2.13)

Direct calculation shows that ∫ ∞
−∞

ψ(u)pε(u)du = 0,
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and

∫ ∞
−∞

ψ′(u)pε(u)du =


c∫
−c
pε(u)du, c ≥ 1,

1
c

c∫
−c
pε(u)du, c < 1.

To make notation easier we make the following definition.

Definition 2.8 For any fixed c we define

η =

∫ c

−c
pε(u)du, and ηc =

{
η, c ≥ 1,
η
c
, c < 1.

Using this definition the value of the second integral of (2.13) is∫ ∞
−∞

ψ′(u)pε(u)du = ηc.

The value of the third integral of (2.13) is calculated as follows∫ ∞
−∞

ψ2(u)pε(u)du =

∫ −c
−∞

ψ2(u)pε(u)du+

∫ c

−c
ψ2(u)pε(u)du+

∫ ∞
c

ψ2(u)pε(u)du

=

{∫ −c
−∞(−c)2pε(u)du+

∫ c
−c(u)2pε(u)du+

∫∞
c

(c)2pε(u)du, c ≥ 1,∫ −c
−∞(−1)2pε(u)du+

∫ c
−c(u/c)

2pε(u)du+
∫∞
c

(1)2pε(u)du, c < 1,

=

{
c2

(
1−

∫ c

−c
pε(u)du

)
+

∫ c

−c
u2pε(u)du

}
·

{
1, c ≥ 1,
1
c2
, c < 1,

=

{
c2(1− η) +

∫ c
−c u

2pε(u)du, c ≥ 1,

(1− η) + 1
c2

∫ c
−c u

2pε(u)du, c < 1.

An interesting value obtained from the second and the third integrals of (2.13) is

∫∞
−∞ ψ

2(u)pε(u)du(∫∞
−∞ ψ

′(u)pε(u)du
)2 =


c2(1−η)
η2

+ 1
η2

c∫
−c
y2(y)pε(y)dy, c ≥ 1,

(1−η)
(η/c)2

+ 1
c2(η/c)2

c∫
−c
y2(y)pε(y)dy, c < 1,

=
c2(1− η)

η2
+

1

η2

∫ c

−c
y2pε(y)dy.

As in the context of M-estimation without localization, the ratio calculated above, namely∫
ψ2dPε/(

∫
ψ′dPε)

2, turns out to be the asymptotic variance.
Since we are going to use these integrals often in our analysis we make the following

definition.
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Definition 2.9 For any fixed c we define

σ2
M =

∫ ∞
−∞

ψ2(u)pε(u)du, and σ2
c =

σ2
M

η2
c

=
c2(1− η)

η2
+

1

η2

∫ c

−c
y2pε(y)dy.

2.3 Consistency

In this section we want to show that the M-estimate (with kernel spatial weights) is consistent.

Proposition 2.10 a) Let ψ be the derivative of the modified Huber function given by
(2.11). Define

HN(x, s) =
1

N

N∑
j=1

Kh(x− xj)ψ(fj − s).

Then HN(x, s) is non-increasing in s.

b) Moreover, let the model (2.1) hold. Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj
satisfy (E1) a). For N →∞, let h→ 0 such that Nh2 →∞. Then, for all x ∈ [h, 1−h]

varHN(x) =
QK

Nh
σ2
M + o

(
1

Nh

)
,

where HN(x) = HN(x, µ(x)).

Proof. Consider s1, s2 ∈ R. Since ψ is non-decreasing we get

s1 < s2 =⇒ fj − s1 > fj − s2

=⇒ ψ(fj − s1) ≥ ψ(fj − s2)

=⇒ HN(x, s1) ≥ HN(x, s2).

Since ε1, . . . , εN are independent, then for all j, k = 1, . . . , N such that j 6= k we get

cov {ψ(fj − µ(x)), ψ(fk − µ(x))}
= cov {ψ(εj + µ(xj)− µ(x)), ψ(εk + µ(xk)− µ(x))}

=

∫ ∫
ψ(y + µ(xj)− µ(x)) ψ(z + µ(xk)− µ(x)) pεj ,εk(y, z)dydz

−
(∫

ψ(y + µ(xj)− µ(x))pεj(y)dy

)
·
(∫

ψ(z + µ(xk)− µ(x))pεk(z)dz

)
=

∫ ∫
ψ(y + µ(xj)− µ(x)) ψ(z + µ(xk)− µ(x)) pεj(y) pεk(z)dydz

−
(∫

ψ(y + µ(xj)− µ(x))pεj(y)dy

)
·
(∫

ψ(z + µ(xk)− µ(x))pεk(z)dz

)
= 0.
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Also, since ε1, . . . , εN are identically distributed and using the continuity of ψ and the
Lipschitz continuity of µ we have for every |x− xj| ≤ h

varψ(fj − µ(x)) = varψ(εj + µ(xj)− µ(x))

= Eψ2(εj + µ(xj)− µ(x))− (Eψ(εj + µ(xj)− µ(x)))2

=

∫
ψ2(u+ µ(xj)− µ(x))dPε(u)−

(∫
ψ(u+ µ(xj)− µ(x))dPε(u)

)2

=

∫
ψ2(u)dPε(u)−

(∫
ψ(u)dPε(u)

)2

+ o(1)

=

∫
ψ2(u)dPε(u) + o(1)

= σ2
M + o(1).

From Lemma 2.3 we have

varHN(x) =
1

N2

N∑
j=1

K2
h(x− xj) varψ(µ(xj)− µ(x) + εj)

=

{
QK

Nh
+ o

(
1

Nh

)}
·
{
σ2
M + o(1)

}
=

QK

Nh
σ2
M + o

(
1

Nh

)
.

�
A useful tool for proving consistency of the LHM-estimate is the law of large numbers (for

example, see [29]).

Theorem 2.11 (WLLN & SLLN) Let Γj be a sequence of independent random variables
with EΓj = γj and var Γj = v2

j .

(Chebyshev) If
N∑
j=1

v2
j = o(N2) then

1

N

N∑
j=1

Γj −
1

N

N∑
j=1

γj
P−→ 0.

(Kolmogorov) If
N∑
j=1

1

j2
v2
j converges then

1

N

N∑
j=1

Γj −
1

N

N∑
j=1

γj → 0 a.s.

Now, we can prove that the LHM-estimate is consistent.

Theorem 2.12 (LHM Consistency) Let the model (2.1) hold. Let ρ be the modified
Huber function given by (2.11). Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy
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(E1) a)-b). For N →∞, let h→ 0 such that Nh2 →∞. Then,

µ̃(x)
P−→ µ(x)

for all x ∈ [h, 1− h].

If additionally,
N∑
j=1

1
j2
K2
h(x− xj) converges then,

µ̃(x)→ µ(x) a.s.

Proof. To have consistency we need to show that

P(µ̃(x)− µ(x) > δ)→ 0 and P(µ̃(x)− µ(x) < −δ)→ 0 for all δ > 0.

We use Chebyshev’s LLN (Theorem 2.11) with

Γj = Kh(x− xj)ψ(fj − µ(x)) = Kh(x− xj)ψ(µ(xj)− µ(x) + εj).

The random variables Γj are independent since εj are independent and

EΓj = Kh(x− xj)Eψ(fj − µ(x)).

From the proof of Proposition 2.10

1

N2

N∑
j=1

var Γj =
1

N2

N∑
j=1

K2
h(x− xj) varψ(µ(xj)− µ(x) + εj)

=
QK

Nh
σ2
M + o

(
1

Nh

)
.

Chebyshev’s LLN (Theorem 2.11) implies that

1

N

N∑
j=1

Kh(x− xj)ψ(fj − µ(x)− δ)− 1

N

N∑
j=1

Kh(x− xj)Eψ(fj − µ(x)− δ) P−→ 0,

1

N

N∑
j=1

Kh(x− xj)ψ(fj − µ(x))− 1

N

N∑
j=1

Kh(x− xj)Eψ(fj − µ(x))
P−→ 0,

1

N

N∑
j=1

Kh(x− xj)ψ(fj − µ(x) + δ)− 1

N

N∑
j=1

Kh(x− xj)Eψ(fj − µ(x) + δ)
P−→ 0.

Assuming (E1) a)-b) and that ψ is anti-symmetric around zero we get from Theorem 10.2
in [24] that

E ρ(ε1 − δ) has a unique minimum at δ = 0,



2.4. BIAS AND VARIANCE 23

where ρ is any even function. In particular that is true when ρ is the modified Huber function.
Therefore,

Eψ(ε1 − δ) < 0 and Eψ(ε1 + δ) > 0 for all δ > 0.

Using Lemma 2.3 and since εj have identical distributions, and ψ is continuous, the above
three limits become

HN(x, µ(x) + δ)
P−→ Eψ(ε1 − δ) < 0,

HN(x, µ(x))
P−→ Eψ(ε1) = 0,

HN(x, µ(x)− δ) P−→ Eψ(ε1 + δ) > 0.

Since HN is non-increasing in the second argument (Proposition 2.10) we have

µ̃(x) > µ(x) + δ =⇒ HN(x, µ̃(x)) ≤ HN(x, µ(x) + δ)⇐⇒ HN(x, µ(x) + δ) ≥ 0.

That is,
lim
N→∞

P(µ̃(x) > µ(x) + δ) ≤ lim
N→∞

P(HN(x, µ(x) + δ) ≥ 0),

and
lim
N→∞

P(HN(x, µ(x) + δ) ≥ 0) = 0

since HN(x, µ̃(x) + δ)
P−→ Eψ(ε1 − δ) for all δ > 0 and Eψ(ε1 − δ) is strictly less than zero.

Analogously,

µ̃(x) < µ(x)− δ =⇒ HN(x, µ̃(x)) ≥ HN(x, µ(x)− δ)⇐⇒ HN(x, µ(x)− δ) ≤ 0.

lim
N→∞

P(µ̃(x) < µ(x)− δ) ≤ lim
N→∞

P(HN(x, µ(x)− δ) ≤ 0) = 0.

Hence,
lim
N→∞

P(|µ̃(x)− µ(x)| > δ) = 0.

�

2.4 Bias and Variance

Using the mean value theorem

µ̃(x)− µ(x) =
HN(x)

DN(x)
a.s. (2.14)

where HN(x) is defined as in Proposition 2.10, i.e.

HN(x) = HN(x, µ(x)) =
1

N

N∑
j=1

Kh(x− xj)ψ(fj − µ(x)), (2.15)
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and DN(x) is defined as

DN(x) =
1

N

N∑
j=1

Kh(x− xj)ψ′(fj − µ(x) + wj), (2.16)

where |wj| < |µ̃(x) − µ(x)|. Note that (2.14) holds true only almost surely since ψ is only
almost everywhere differentiable.

The variance of HN(x) is already given in Proposition 2.10. So, we will calculate the
expected value of HN(x), then we will prove that DN(x) converges in probability to ηc.
Consequently, we will see that the bias and the variance are given by

bias µ̃(x) =
1

ηc
EHN(x) · (1 + o(1)) and var µ̃(x) =

1

η2
c

varHN(x) · (1 + o(1)),

if the bandwidth h is chosen appropriately.

Using this notation we can refer to the dominant part of 1
ηc
EHN(x) as the “asymptotic

bias term” and to the dominant term of 1
η2c

varHN(x) as the “asymptotic variance term”.

So, let us start by calculating the expected value of HN(x).

Proposition 2.13 Let the model (2.1) hold. Let ρ be the modified Huber function given by
(2.11). Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1). For N → ∞, let
h→ 0 such that Nh3 →∞. Then,

BN(x) = EHN(x) = EHN(x, µ(x))

=
1

N

N∑
j=1

Kh(x− xj)(µ(xj)− µ(x))ηc + o(h2)

=
1

2
h2µ′′(x)VKηc + o(h2)

uniformly in x ∈ [h, 1− h].

Proof. Consider the case c ≥ 1, the other case is completely analogous.

BN(x) = EHN(x) = EHN(x, µ(x))

=
1

N

N∑
j=1

Kh(x− xj)Eψ(fj − µ(x))

=
1

N

N∑
j=1

Kh(x− xj)
{∫

R
ψ(µ(xj)− µ(x) + u)pε(u)du

}

=
1

N

N∑
j=1

Kh(x− xj)
{∫

I1

(−c)dPε(u) +

∫
I2

(µ(xj)− µ(x) + u)dPε(u) +

∫
I3

(c)dPε(u)

}
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where

I1 = (−∞,−c+ µ(x)− µ(xj)],

I2 = [−c+ µ(x)− µ(xj), c+ µ(x)− µ(xj)],

I3 = [c+ µ(x)− µ(xj),∞).

The goal now is to calculate the three integrals above. We will denote them by
∫
I1

,
∫
I2

,

and
∫
I3

respectively. Using Remark 2.7 we can see that as N grows very largely, the intervals

tend to the simple intervals (−∞,−c], [−c, c], [c,∞).

We start with
∫
I1

.∫
I1

=

∫
I1

(−c)dPε(u) = −c
∫ −c+µ(x)−µ(xj)

−∞
dPε(u) = −cPε(−c+ µ(x)− µ(xj)).

From Remark 2.7 we get that |µ(x) − µ(xj)|
N→∞−→ 0 for all x ∈ [h, 1 − h] and all xj = j/N

such that |x− xj| ≤ h. Using this fact, we may expand Pε around −c as follows,

Pε(−c+ µ(x)− µ(xj)) = Pε(−c) + (µ(x)− µ(xj))pε(−c)

+
1

2
(µ(x)− µ(xj))

2p′ε(−c) + o
(
|µ(x)− µ(xj)|2

)
,

then∫
I1

= −cPε(−c)− c(µ(x)− µ(xj))pε(−c)−
c

2
(µ(x)− µ(xj))

2p′ε(−c) + o
(
|µ(x)− µ(xj)|2

)
.

Analogously,∫
I3

=

∫
I3

(c)dPε(u) = c

∫ ∞
c+µ(x)−µ(xj)

dPε(u) = c(1− Pε(c+ µ(x)− µ(xj))).

Now, we expand Pε around c as follows,

Pε(c+ µ(x)− µ(xj)) = Pε(c) + (µ(x)− µ(xj))pε(c)

+
1

2
(µ(x)− µ(xj))

2p′ε(c) + o
(
|µ(x)− µ(xj)|2

)
,

then∫
I3

= c(1− Pε(c))− c(µ(x)− µ(xj))pε(c)−
c

2
(µ(x)− µ(xj))

2p′ε(c) + o
(
|µ(x)− µ(xj)|2

)
.

Summing up the integral over I1 and I3 we have∫
I1∪I3

= c(1− Pε(c)− Pε(−c))− c(µ(x)− µ(xj))[pε(c) + pε(−c)]

− c

2
(µ(x)− µ(xj))

2[p′ε(c) + pε(−c)] + o
(
|µ(x)− µ(xj)|2

)
.
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By (E1) a), we get that: Pε is a symmetric distribution function, pε is a symmetric function
around zero, and p′ε is an anti-symmetric function, i.e.

Pε(−c) = 1− Pε(c), pε(−c) = pε(c), and p′ε(−c) = −p′ε(c).

This reduces the integral over I1 ∪ I3 to∫
I1∪I3

= − 2c(µ(x)− µ(xj))pε(c) + o
(
|µ(x)− µ(xj)|2

)
.

Now, we consider the integral over I2,∫
I2

=

∫ c+µ(x)−µ(xj)

−c+µ(x)−µ(xj)

(µ(xj)− µ(x) + u)pε(u)du.

Substituting z = µ(xj)− µ(x) + u,∫
I2

=

∫ c

−c
z pε(z + µ(x)− µ(xj))dz.

Since µ(x)− µ(xj) goes to zero as N →∞, we use (E1) c) to expand pε around z,∫
I2

=

∫ c

−c
z

{
pε(z) + (µ(x)− µ(xj))p

′
ε(z) +

1

2
(µ(x)− µ(xj))

2p′′ε(z) + o(|µ(x)− µ(xj)|2)

}
dz

=

∫ c

−c
z pε(z)dz + (µ(x)− µ(xj))

∫ c

−c
z p′ε(z)dz

+
1

2
(µ(x)− µ(xj))

2

∫ c

−c
z p′′ε(z)dz + o(|µ(x)− µ(xj)|2).

The symmetry of the density implies that∫ c

−c
z pε(z)dz = 0 and

∫ c

−c
z p′′ε(z)dz = 0.

This reduces the integral to,∫
I2

= (µ(x)− µ(xj))

∫ c

−c
z p′ε(z)dz + o(|µ(x)− µ(xj)|2).

Combining
∫
I2

with
∫
I1∪I3 ,∫

R
= (µ(x)− µ(xj))

{
−2cpε(c) +

∫ c

−c
z p′ε(z)dz

}
+ o(|µ(x)− µ(xj)|2).

Using integration by parts and the symmetry of pε∫ c

c

z p′ε(z)dz = zpε(z)

∣∣∣∣c
−c
−
∫ c

−c
pε(z)dz = cpε(c)− (−c)pε(−c)− η = 2cpε(c)− η.
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That is, ∫
R

= − η (µ(x)− µ(xj)) + o(|µ(x)− µ(xj)|2).

Therefore,

BN(x) = −η 1

N

N∑
j=1

Kh(x− xj) (µ(x)− µ(xj)) + o(h2).

Using assumption (A2) a), we expand µ(xj) around x as follows,

µ(xj) = µ(x) + µ′(x)(xj − x) +
1

2
µ′′(x)(xj − x)2 + o(|xj − x|2),

then,

BN(x) = η
1

N

N∑
j=1

Kh(x− xj) {µ′(x)(xj − x) +
1

2
µ′′(x)(xj − x)2}+ o(h2)

= µ′(x)η
1

N

N∑
j=1

Kh(x− xj)(xj − x) +
1

2
µ′′(x)η

1

N

N∑
j=1

Kh(x− xj)(xj − x)2 + o(h2)

= hµ′(x)η
1

Nh

N∑
j=1

K

(
x− xj
h

)(
xj − x
h

)

+
1

2
h2µ′′(x)η

1

Nh

N∑
j=1

K

(
x− xj
h

)(
xj − x
h

)2

+ o(h2).

Using Lemma 2.4 we get that,

BN(x) =
1

2
h2µ′′(x)VKη +O

(
1

Nh

)
+O

(
1

N

)
+ o(h2).

Assuming that Nh3 →∞ combines the remainder terms to o(h2). �
To get the limit of DN(x) we will use the continuous mapping theorem (for example, see

[1]) and Slutsky’s theorem (for example, see [34]) which are going to be used repeatedly in
the proofs.

Theorem 2.14 (Continuous Mapping Theorem) Let m be a measurable function and
let Dm be the set of discontinuity points of m.

Xn
L−→X, P(X ∈ Dm) = 0 =⇒ m(Xn)

L−→m(X).
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Theorem 2.15 (Slutsky’s Theorem) Let XN
L−→X and let YN

P−→ a, where a is a con-
stant. Then

(1) XNYN
L−→ aX.

(2) XN
YN

L−→ X
a
, a 6= 0.

(3) XN + YN
L−→X + a.

The continuous mapping theorem will help us first to prove the following lemma.

Lemma 2.16 Let the model (2.1) hold. Let ρ be the modified Huber function given by (2.11).
Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1) a)-b). Let ε∗j = fj−µ(x)+wj
where |wj| < |µ̃(x) − µ(x)|. For N → ∞, let h → 0 such that Nh2 → ∞. Then, for all
x ∈ [h, 1− h], xj = j/N , j = 1, . . . , N such that |x− xj| ≤ h we have the following:

If c ≥ 1 then

(1) Eψ′(ε∗j)
N→∞−→ η, (2) Eψ′2(ε∗j)

N→∞−→ η, (3) varψ′(ε∗j)
N→∞−→ η(1− η).

If c < 1 then

(4) Eψ′(ε∗j)
N→∞−→ η

c
, (5) Eψ′2(ε∗j)

N→∞−→ η

c2
, (6) varψ′(ε∗j)

N→∞−→ η(1− η)

c2
.

Proof. We will only prove part (1). The other parts follow directly.

From fj = µ(xj) + εj we have, ε∗j = εj +µ(xj)−µ(x) +wj. Using the Lipschitz continuity

of µ and the consistency of µ̃ we have that ε∗j
L−→ εj for all |x− xj| ≤ h.

Consider the indicator function m(·) = 1(−c,c)(·) then m is measurable and P(εj ∈ Dm) =
P(εj ∈ {−c, c}) = 0 for all j since the distribution of εj is assumed to be continuous.

Using the continuous mapping theorem (Theorem 2.14) we get,

1(−c,c)(ε
∗
j)

L−→ 1(−c,c)(εj)

By the definition of weak convergence we get that

E b(1(−c,c)(ε
∗
j))

N→∞−→ E b(1(−c,c)(εj)) (2.17)

for every bounded and continuous function b.

That is true in particular if b = ψ (c ≥ 1), i.e.

Eψ(1(−c,c)(ε
∗
j))

N→∞−→ Eψ(1(−c,c)(εj)). (2.18)

But,
ψ ◦ 1(−c,c)(u) = 1(−c,c)(u) ∀ u ∈ R,
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then,

E1(−c,c)(ε
∗
j)

N→∞−→ E1(−c,c)(εj). (2.19)

Since ψ′ = 1(−c,c) almost everywhere we get that,

Eψ′(ε∗j)
N→∞−→ Eψ′(εj) =

∫ c

−c
pε(u)du = η. (2.20)

�
Now using the previous lemma we get the limit of DN(x).

Proposition 2.17 Let the model (2.1) hold. Let ρ be the modified Huber function given by
(2.11). Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1) a)-b). Let

DN(x) =
1

N

N∑
j=1

Kh(x− xj)ψ′(fj − µ(x) + wj),

where |wj| < |µ̃(x) − µ(x)|. For N → ∞, let h → 0 such that Nh2 → ∞. Then, for all
x ∈ [h, 1− h] we have the following,

DN(x)
P−→ ηc and

1

DN(x)

P−→ 1

ηc
.

Proof. From Lemma 2.3 we have

1

N2

N∑
j=1

K2
h(x− xj) =

QK

Nh
+ o

(
1

Nh

)
.

Lemma 2.16 implies that for all |x− xj| ≤ h

var (ψ′(fj − µ(x) + wj)) = O(1).

Hence,

1

N2

N∑
j=1

var {Kh(x− xj)ψ′(fj − µ(x) + wj)} → 0.

Then, by Chebyshev’s LLN (Theorem 2.11)

1

N

N∑
j=1

Kh(x− xj)ψ′(fj − µ(x) + wj)−
1

N

N∑
j=1

Kh(x− xj)Eψ′(fj − µ(x) + wj)
P−→ 0

Lemmas 2.3 and 2.16 imply

1

N

N∑
j=1

Kh(x− xj)Eψ′(fj − µ(x) + wj)
N→∞−→ ηc.
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Using Slutsky’s theorem completes the proof. �
Now, we need to prove that DN(x) is bounded from below away from zero. This is needed

to show that the expected value of 1/DN(x) converges to 1/ηc. For the convergence of the
expected values we will use the dominated convergence theorem (for example, see [34]).

Theorem 2.18 (Dominated Convergence Theorem) Let |Xn| ≤ Y a.s., where Y is
integrable. Then,

Xn
P−→X =⇒ EXn

N→∞−→ EX.

Lemma 2.19 Let the model (2.1) hold. Let ρ be the modified Huber function given by (2.11).
Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1) a)-b). Let

DN(x) =
1

N

N∑
j=1

Kh(x− xj)ψ′(fj − µ(x) + wj),

where |wj| < |µ̃(x)− µ(x)|. For N →∞, let h→ 0 such that Nh2 →∞. Then,

inf
x∈[h,1−h]

DN(x) ≥ 1

2
ηc a.s.

That is, there exists an M > 0 such that

inf
x∈[h,1−h]

DN(x) ≥M a.s. and sup
x∈[h,1−h]

1

DN(x)
≤ 1

M
a.s.

Proof. Assume there exists an x∗ ∈ [h, 1− h] such that DN(x∗) < 1
2
ηc, then

0 ≤ 1

N

N∑
j=1

Kh(x
∗ − xj)ψ′(fj − µ(x∗) + wj) <

1

2
ηc,

integrating with respect to the probability measure of εj

0 ≤ 1

N

N∑
j=1

Kh(x
∗ − xj)Eψ′(fj − µ(x∗) + wj) <

1

2
ηc,

taking the limits as N →∞ (using the proof of Proposition 2.17)

0 ≤ ηc ≤
1

2
ηc,

which is a contradiction to the fact that ηc is never zero.
Note that the proof also works if we choose any constant which is strictly less than ηc

instead of 1
2
ηc. Hence, we can write the result as follows

inf
x∈[h,1−h]

DN(x) ≥M a.s. for some M > 0
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and

sup
x∈[h,1−h]

1

DN(x)
≤ 1

M
a.s.

�

2.4.1 The Bias Term

Now, we give the bias term of the LHM-estimate.

Theorem 2.20 (LHM Bias) Let the model (2.1) hold. Let ρ be the modified Huber func-
tion given by (2.11). Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1). For
N →∞, let h→ 0 such that h ∼ constant N−1/5. Then,

bias µ̃(x) =
1

2
h2µ′′(x)VK + o(h2),

for x ∈ [h, 1− h].

Proof. From Propositions 2.10 and 2.13 and since h is chosen such that h ∼ constant N−1/5

we get

1

h4
EH2

N(x) =
1

h4
O

(
1

Nh

)
+

1

h4
O(h4) = O

(
1

Nh5

)
+O(1) = O(1).

From Proposition 2.17, Lemma 2.19 and Slutsky’s theorem we get(
1

DN(x)
− 1

ηc

)2
P−→ 0 and

(
1

DN(x)
− 1

ηc

)2

≤
(

1

M
+

1

ηc

)2

a.s.

therefore, the dominated convergence theorem yields

E
(

1

DN(x)
− 1

ηc

)2
N→∞−→ 0.

Using (2.14),

bias µ̃(x)− 1
ηc
EHN(x)

h2
=

E (µ̃(x)− µ(x))− 1
ηc
EHN(x)

h2

=
E HN (x)

DN (x)
− 1

ηc
EHN(x)

h2

=
1

h2
EHN(x)

(
1

DN(x)
− 1

ηc

)
(Using Cauchy-Schwarz inequality)

≤
√

1

h4
EH2

N(x)

√
E
(

1

DN(x)
− 1

ηc

)2
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=
√
O(1)

√
o(1)

N→∞−→ 0.

Therefore,

bias µ̃(x) =
1

ηc
EHN(x) + o

(
h2
)

=
1

2
h2µ′′(x)VK + o(h2).

�

2.4.2 The Variance Term

In this section we will show that,

Nh var µ̃(x)
N→∞−→ QKσ

2
c .

Before we see the proof we present the following lemma.

Lemma 2.21 Let the model (2.1) hold. Let ρ be the modified Huber function given by (2.11).
Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1). For N → ∞, let h → 0
such that h ∼ constant N−1/5. Then

ENhH2
N(x)

(
1

D2
N(x)

− 1

η2
c

)
= o(1)

for all x ∈ [h, 1− h].

Proof. We start with calculating EH4
N(x).

EH4
N(x) = E [BN(x) +HN(x)−BN(x)]4

= E [B4
N(x) + 4B3

N(x)(HN(x)−BN(x)) + 6B2
N(x)(HN(x)−BN(x))2

+ 4BN(x)(HN(x)−BN(x))3 + (HN(x)−BN(x))4]

= B4
N(x) + 4B3

N(x)E (HN(x)−BN(x)) + 6B2
N(x)E (HN(x)−BN(x))2

+ 4BN(x)E (HN(x)−BN(x))3 + E (HN(x)−BN(x))4.

Using Propositions 2.10 and 2.13 and h ∼ constant N−1/5

EH4
N(x) = O(h8) +O(h6) · 0 +O(h4) varHN(x)

+O(h2)E (HN(x)−BN(x))3 + E (HN(x)−BN(x))4

= O(h4)O

(
1

Nh

)
+O(h2)E (HN(x)−BN(x))3 + E (HN(x)−BN(x))4.

To get the rate of EH4
N(x), we have to calculate

E (HN(x)−BN(x))3 and E (HN(x)−BN(x))4.

For making notation easier in this proof, we will write

ψi instead of ψ(fi − µ(x)) and γi instead of Eψ(fi − µ(x)).
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Then,

E (HN(x)−BN(x))3 = E

(
1

N

N∑
i=1

Kh(x− xi)(ψi − γi)

)3

=
1

N3

N∑
i,j,k=1

Kh(x− xi)Kh(x− xj)Kh(x− xk)

E (ψi − γi)(ψj − γj)(ψk − γk).

Since {εj : j = 1, . . . , N} are independent and identically distributed we get,

E (ψi − γi)(ψj − γj)(ψk − γk) =

{
E (ψi − γi)3, i = j = k,

0, else.

By the symmetry of pε we get for all x, xi such that |x− xi| ≤ h

E (ψi − γi)3 =

∫ ∞
−∞

ψ3(u)pε(u)du+ o(1) = o(1).

Therefore,

E (HN(x)−BN(x))3 =
1

N3

N∑
i=1

K3
h(x− xi)E (ψi − γi)3

=

(
SK
N2h2

+ o

(
1

N2h2

))
· o(1)

= o

(
1

N2h2

)
.

Similarly,

E (HN(x)−BN(x))4 = E

(
1

N

N∑
i=1

Kh(x− xi)(ψi − γi)

)4

=
1

N4

N∑
i,j,k,`=1

Kh(x− xi)Kh(x− xj)Kh(x− xk)Kh(x− x`)

E (ψi − γi)(ψj − γj)(ψk − γk)(ψ` − γ`).
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Since {εj : j = 1, . . . , N} are independent and identically distributed we get,

E (ψi − γi)(ψj − γj)(ψk − γk)(ψ` − γ`) =



E (ψi − γi)4, i = j = k = `,

σ4
M + o(1), i = j and k = ` but i 6= k,

σ4
M + o(1), i = k and j = ` but i 6= j,

σ4
M + o(1), i = ` and j = k but i 6= j,

0, else.

For all x, xi such that |x− xi| ≤ h

E (ψi − γi)4 =

∫ ∞
−∞

ψ4(u)pε(u)du+ o(1) = O(1).

Therefore,

E (HN(x)−BN(x))4 =

(
1

N4

N∑
i=1

K4
h(x− xi)

)
·O(1)

+ 3

( 1

N2

N∑
i=1

K2
h(x− xi)

)2

− 1

N4

N∑
i=1

K4
h(x− xi)

 ·O(1)

= O

(
1

N3h3

)
+

[
O

(
1

N2h2

)
+O

(
1

N3h3

)]
= O

(
1

N2h2

)
.

Therefore,

EH4
N(x) = O(h4)O

(
1

Nh

)
+O(h2)o

(
1

N2h2

)
+O

(
1

N2h2

)
= O

(
1

N2h2

)
.

From Proposition 2.17, Lemma 2.19 and Slutsky’s theorem we get(
1

D2
N(x)

− 1

η2
c

)2
P−→ 0 and

(
1

D2
N(x)

− 1

η2
c

)2

≤
(

1

M2
+

1

η2
c

)2

a.s.

therefore, the dominated convergence theorem (Theorem 2.18) yields

E
(

1

D2
N(x)

− 1

η2
c

)2
N→∞−→ 0.
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From Cauchy-Schwarz inequality we get,

EH2
N(x)

(
1

D2
N(x)

− 1

η2
c

)
≤
√
EH4

N(x) ·

√
E
(

1

D2
N(x)

− 1

η2
c

)2

=

√
O

(
1

N2h2

)√
o(1)

= o

(
1

Nh

)
.

�

Theorem 2.22 (LHM Variance) Let the model (2.1) hold. Let ρ be the modified Huber
function given by (2.11). Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1).
For N →∞, let h→ 0 such that h ∼ constant N−1/5. Then

var µ̃(x) =
QK

Nh
σ2
c + o

(
1

Nh

)
,

for x ∈ [h, 1− h].

Proof. Using (2.14),

var µ̃(x)− var

(
HN(x)

ηc

)
= var

(
HN(x)

DN(x)

)
− var

(
HN(x)

ηc

)
= E

(
HN(x)

DN(x)

)2

−
(
E
HN(x)

DN(x)

)2

− E
(
HN(x)

ηc

)2

+

(
E
HN(x)

ηc

)2

(using the proof of the Theorem 2.20)

= EH2
N(x)

(
1

D2
N(x)

− 1

η2
c

)
+

(
E
HN(x)

ηc

)2

−
(
E
HN(x)

ηc
+ o(h2)

)2

(using Proposition 2.13)

= EH2
N(x)

(
1

D2
N(x)

− 1

η2
c

)
+ o(h4)

Therefore, if h ∼ constant N−1/5 we get,

Nh

[
var µ̃(x)− var

(
HN(x)

ηc

)]
= ENhH2

N(x)

(
1

D2
N(x)

− 1

η2
c

)
+ o(1).

Using Lemma 2.21 completes the proof. �
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2.5 Asymptotic Normality

In this section we will show that the LHM-estimate has an asymptotic normal distribution.
To do that we will use Lyapounov’s CLT (for example, see [1]).

Theorem 2.23 (Lyapounov’s CLT) Let Γj be a sequence of independent random vari-

ables with EΓj = γj and var Γj = v2
j . Let also s2

N =
N∑
j=1

v2
j . If for some δ > 0, E |Γj|2+δ <∞

for all j and the Lyapounov’s condition hold, i.e.

1

s2+δ
N

N∑
j=1

E |Γj − γj|2+δ N→∞−→ 0,

then

ZN =

∑N
j=1(Γj − γj)

sN

L−→N (0, 1).

Now, we present the asymptotic normality of the LHM-estimate. A usual assumption that
has to be fulfilled is

∫
|K(u)|2+δdu <∞ for some δ > 0. This holds in our case by (A1) a)-c).

Theorem 2.24 (LHM Asymptotic Normality) Let the model (2.1) hold. Let ρ be the
modified Huber function given by (2.11). Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let
εj satisfy (E1).

(a) For N →∞, let h→ 0 such that h ∼ constant N−1/5, then we have

√
Nh

(
µ̃(x)− µ(x)− 1

2
h2µ′′(x)VK√

σ2
cQK

)
L−→N (0, 1)

for all x ∈ [h, 1− h], where

σ2
c =

σ2
M

η2
c

=
c2(1− η)

η2
+

1

η2

∫ c

−c
y2pε(y)dy.

(b) Suppose that h→ 0 as N →∞ such that Nh5 → 0, then

√
Nh

(
µ̃(x)− µ(x)√

σ2
cQK

)
L−→N (0, 1).

Proof. Using the mean value theorem, we get that

µ̃(x)− µ(x) =
HN(x)

DN(x)
, a.s.



2.5. ASYMPTOTIC NORMALITY 37

where HN(x) = HN(x, µ(x)) and DN(x) are defined as above. The equation holds true only
almost surely since ψ is only almost everywhere differentiable.

We decompose the term we are interested in as follows,

√
Nh

(
µ̃(x)− µ(x)− 1

2
h2µ′′(x)VK√

QKσ2
c

)

a.s.
=

HN (x)
DN (x)

−
1
2
h2µ′′(x)VKηc

ηc√
QK
Nh
σ2
c

=

HN (x)
DN (x)

− BN (x)
DN (x)

+ BN (x)
DN (x)

− BN (x)
ηc

+ BN (x)
ηc
−

1
2
h2µ′′(x)VKηc

ηc√
QK
Nh
σ2
c

=
HN(x)−BN(x)√

QK
Nh
σ2
cη

2
c

· ηc
DN(x)

+
BN(x)

(
1

DN (x)
− 1

ηc

)
√

QK
Nh
σ2
c

+
BN(x)− 1

2
h2µ′′(x)VKηc√

QK
Nh
σ2
cη

2
c

.

Using Propositions 2.13 and 2.17 and the assumption h ∼ constant N−1/5 we get,

√
Nh

(
µ̃(x)− µ(x)− 1

2
h2µ′′(x)VK√

QKσ2
c

)
a.s.
=

HN(x)−BN(x)√
QK
Nh
σ2
M

· ηc
DN(x)︸ ︷︷ ︸

P−→ 1

+

√
NhBN(x)√
QKσ2

c︸ ︷︷ ︸
=O(
√
Nhh2)+o(

√
Nhh2)=O(1)

·
(

1

DN(x)
− 1

ηc

)
︸ ︷︷ ︸

P−→ 0

+
o(h2)√
QK
Nh
σ2
M︸ ︷︷ ︸

=o(
√
Nhh2)=o(1)

.

To prove the asymptotic normality we have to show that

HN(x)−BN(x)√
QK
Nh
σ2
M

L−→N (0, 1). (2.21)

Part b) follows by Slutsky’s theorem. �

Proposition 2.25 Let the model (2.1) hold. Let ρ be the modified Huber function given by
(2.11). Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1). For N → ∞, let
h→ 0 such that Nh→∞, then we have

HN(x)−BN(x)√
QK
Nh
σ2
M

L−→N (0, 1).

for all x ∈ [h, 1− h].

Proof. We will show the asymptotic normality of HN(x) using the Lyapounov’s CLT
(Theorem 2.23) and taking δ = 1.
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Using the notation of the CLT, define

Γj =
1

N
Kh(x− xj)ψ(fj − µ(x)).

Then, Γj are independent due to the independence of εj and

γj = EΓj =
1

N
Kh(x− xj)Eψ(fj − µ(x)), v2

j = var Γj =
1

N2
K2
h(x− xj) varψ(fj − µ(x)).

Using Proposition 2.10,

s2
N =

N∑
j=1

v2
j =

N∑
j=1

1

N2
K2
h(x− xj) varψ(fj − µ(x))

= varHN(x) =
QK

Nh
σ2
M + o

(
1

Nh

)
.

From the definition of ψ we have |ψ|3 ≤ max{c3, 1} and thus,

E |Γj|3 = E
∣∣∣∣ 1

N
Kh(x− xj)ψ(fj − µ(x))

∣∣∣∣3 ≤ 1

N3
K3
h(x− xj) max{c3, 1},

and this is bounded for every j ∈ {1, . . . , N} since K is Lipschitz continuous on a compact
support.

Moreover, for |x− xj| ≤ h we have

E |ψ(fj − µ(x))− Eψ(fj − µ(x))|3 = E |ψ(εj)− Eψ(εj) + o(1)|3 , (ψ is continuous)

= E |ψ(εj)|3 + o(1), (| · |3 is continuous)

≤ max{c3, 1}+ o(1). (|ψ|3 ≤ max{c3, 1})

Now, we will use the above and Lemma 2.3 to show that the Lyapounov’s condition holds,

0 ≤ 1

s3
N

N∑
j=1

E |Γj − γj|3

=
1

s3
N

N∑
j=1

E
∣∣∣∣ 1

N
Kh(x− xj)ψ(fj − µ(x))− 1

N
Kh(x− xj)Eψ(fj − µ(x))

∣∣∣∣3

=
1

s3
N

1

N3

N∑
j=1

K3
h(x− xj)E |ψ(fj − µ(x))− Eψ(fj − µ(x))|3

≤ 1

s3
N

1

N3

N∑
j=1

K3
h(x− xj)

{
max{c3, 1}+ o(1)

}
=

{
QKσ

2
M

Nh
+ o

(
1

Nh

)}−3/2{
SK
N2h2

+ o

(
1

N2h2

)}{
max{c3, 1}+ o(1)

}
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=
{
QKσ

2
M + o (1)

}−3/2 · {SK + o (1)} ·
{

max{c3, 1}+ o(1)
}
·
{

1√
Nh

}
−→ 0,

as Nh→∞. �

2.6 The L2 and the L1 Limiting Cases

It is also interesting to see the behavior of the LHM-estimate as c→ 0 (i.e. the least absolute
deviation estimate, abbreviated as LAD-estimate) and as c→∞ (i.e. the Nadaraya-Watson
estimate, abbreviated as NW-estimate).

Remark 2.26 Since pε is a continuous density we have

lim
c→∞

ηc = lim
c→∞

∫ c

−c
pε(y)dy = 1. (L2 limiting case)

Let Pε be the cumulative distribution function of {εj}j=1...,N then

lim
c→0

ηc = lim
c→0

1

c

∫ c

−c
pε(y)dy = lim

c→0

2

c

∫ c

0

pε(y)dy

= 2 lim
c→0

Pε(c)− Pε(0)

c
= 2P ′ε(0) = 2pε(0). (L1 limiting case)

Note that if pε is not symmetric around zero we will still have that ηc → 2pε(0) as c→ 0
since

lim
c→0

ηc = lim
c→0

1

c

∫ c

−c
pε(y)dy = lim

c→0

Pε(c)− Pε(−c)
c

= lim
c→0

Pε(c)− Pε(0)

c
+ lim

c→0

Pε(0)− Pε(−c)
c

= lim
c→0

Pε(c)− Pε(0)

c
+ lim

c→0

Pε(−c)− Pε(0)

−c
= P ′ε(0) + P ′ε(0) = 2pε(0).

The assumption that pε is symmetric is not essential to have ηc → 2pε(0) as c → 0, but
makes work easier.

Corollary 2.27 Let the model (2.1) hold. Let K satisfy (A1) a)-c). Let µ satisfy (A2).
Let εj satisfy (E1). For N → ∞, let h → 0 such that h ∼ constant N−1/5, then for all
x ∈ [h, 1− h] we have the following,

(a) the asymptotic distribution of the least-absolute deviation estimate is given by

√
Nh

(
µ̃LAD(x)− µ(x)− 1

2
h2µ′′(x)VK

)
L−→N

(
0,

QK

4p2
ε(0)

)
,
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(b) and the asymptotic distribution of the Nadaraya-Watson kernel estimate is given by

√
Nh

(
µ̃NW (x)− µ(x)− 1

2
h2µ′′(x)VK

)
L−→N

(
0, σ2QK

)
.

Proof. The proof follows from Theorem 2.24. The bias term has no dependence on c
therefore it is the same in both cases. The variance in both cases could be obtained as a limit
of σ2

c as c tends to zero (for the LAD-estimate) and as a limit of σ2
c as c tends to infinity (for

the Nadaraya-Watson estimate).

From,

lim
c→∞

ηc = lim
c→∞

∫ c

−c
pε(y)dy =

∫ ∞
−∞

pε(y)dy = 1,

lim
c→0

ηc = lim
c→0

1

c

∫ c

−c
pε(y)dy = 2pε(0).

And,

lim
c→∞

σ2
M = lim

c→∞

{
c2(1− η) +

∫ c

−c
y2pε(y)dy

}
= σ2,

lim
c→0

σ2
M = lim

c→0

{
(1− η) +

1

c2

∫ c

−c
y2pε(y)dy

}
= 1.

We get,

lim
c→∞

σ2
c = lim

c→∞

σ2
M

η2
c

=
σ2

1
= σ2,

lim
c→0

σ2
c = lim

c→0

σ2
M

η2
c

=
1

(2pε(0))2
=

1

4p2
ε(0)

.

�

2.7 Note on the Optimal Choice of the Bandwidth h

It has been stated in Section 2.4 that we can refer to the dominant part of 1
ηc
EHN(x) as

the “asymptotic bias term” and to the dominant term of 1
η2c

varHN(x) as the “asymptotic

variance term”. That is,

ABIAS µ̃(x) =
1

2
h2µ′′(x)VK and AVAR µ̃(x) =

QK

Nh
σ2
c .

Hence,

AMSE µ̃(x) =
QK

Nh
σ2
c +

1

4
h4 (µ′′(x))

2
V 2
K .

To get an optimal choice of h “locally” in the sense of minimal asymptotic mean-squared
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error we differentiate AMSE µ̃(x) with respect to h.

∂ AMSE µ̃(x)

∂h
= − QK

Nh2
σ2
c + h3 (µ′′(x))

2
V 2
K .

Setting the derivative equal to zero yields a “local asymptotically optimal bandwidth”,
i.e.

hopt(x) =

(
QKσ

2
c

(µ′′(x))2 V 2
K

)1/5

N−1/5.

The result fits with the assumption h ∼ constant N−1/5. This assumption was required
to show that the bias and variance terms of the LHM-estimate have right convergence rates,
and to show that the LHM-estimate has an asymptotic normal distribution.
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Chapter 3

Uniform Consistency of the Local
Huber M-Estimate

In Chapter 2 we have seen that the LHM-estimate is consistent. In this chapter, we will
show, under the same assumptions, that the LHM-estimate is uniformly consistent.

Härdle and Luckhaus [15] have shown uniform consistency of the M-estimate under two
settings. The first was under the random design and using a rescaled kernel function as the
tonal weight function. While, the second was under the fixed design but using the Gasser-
Müller weight function for localization.

Franke [9] has shown uniform consistency for the Priestley-Chao kernel estimate under
the fixed design and using a rescaled kernel function as the tonal weight function.

Using the methods of Härdle and Luckhaus [15] and Franke [9], we will prove here the
uniform consistency of the Huber M-estimate, under the fixed design, and using a rescaled
kernel function as the tonal weight function.

3.1 Preliminaries

We recall from (2.14) that

µ̃(x)− µ(x) =
HN(x)

DN(x)
a.s.

where

HN(x) = HN(x, µ(x)) =
1

N

N∑
j=1

Kh(x− xj)ψ(fj − µ(x)),

and

DN(x) =
1

N

N∑
j=1

Kh(x− xj)ψ′(fj − µ(x) + wj),

where |wj| < |µ̃(x)− µ(x)|.

43
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We have seen in Lemma 2.19 that there exists an M > 0 such that

inf
x∈[h,1−h]

DN(x) ≥M a.s. and sup
x∈[h,1−h]

1

DN(x)
≤ 1

M
a.s.

Using the above argument

sup
x∈[h,1−h]

|µ̃(x)− µ(x)| a.s.= sup
x∈[h,1−h]

∣∣∣∣HN(x)

DN(x)

∣∣∣∣
≤ sup

x∈[h,1−h]

|HN(x)| · sup
x∈[h,1−h]

1

DN(x)

a.s.

≤ 1

M
sup

x∈[h,1−h]

|HN(x)| .

(3.1)

So, our goal now is to study the behavior of supx∈[h,1−h] |HN(x)|.

3.2 The Uniform Behavior of HN(x)

The methods used here are similar to those used by Härdle and Luckhaus [15] and Franke
[9]. Again, we ignore the boundaries [0, h) and (1− h, 1], i.e. we take x ∈ [h, 1− h].

We assume model (2.1) where

xj =
j

N
, j = 1, . . . , N.

Now, we consider the following equidistant mesh points ξk in [h, 1− h]

h ≤ ξ1 < ξ2 < · · · < ξ`N ≤ 1− h where `N →∞ but `N � N.

Note that these mesh point differ from xj.
Using the above setting we decompose supx |HN(x)| as follows

sup
x∈[h,1−h]

|HN(x)|

≤ sup
1≤k≤`N

sup
|x−ξk|≤`−1

N

∣∣∣∣∣ 1

N

N∑
j=1

Kh(x− xj)ψ(fj − µ(x))

∣∣∣∣∣
≤ sup

1≤k≤`N
sup

|x−ξk|≤`−1
N

∣∣∣∣∣ 1

N

N∑
j=1

Kh(x− xj)ψ(fj − µ(x))− 1

N

N∑
j=1

Kh(x− xj)ψ(fj − µ(ξk))

∣∣∣∣∣
+ sup

1≤k≤`N
sup

|x−ξk|≤`−1
N

∣∣∣∣∣ 1

N

N∑
j=1

Kh(x− xj)ψ(fj − µ(ξk))−
1

N

N∑
j=1

Kh(ξk − xj)ψ(fj − µ(ξk))

∣∣∣∣∣
+ sup

1≤k≤`N
sup

|x−ξk|≤`−1
N

∣∣∣∣∣ 1

N

N∑
j=1

Kh(ξk − xj)ψ(fj − µ(ξk))−
1

N

N∑
j=1

Kh(ξk − xj)Eψ(fj − µ(ξk))

∣∣∣∣∣
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+ sup
1≤k≤`N

sup
|x−ξk|≤`−1

N

∣∣∣∣∣ 1

N

N∑
j=1

Kh(ξk − xj)Eψ(fj − µ(ξk))

∣∣∣∣∣
=: U1(x) + U2(x) + U3(x) + U4(x),

and for short, we will write

sup
x∈[h,1−h]

|HN(x)| ≤ U1(x) + U2(x) + U3(x) + U4(x). (3.2)

Now, we will study the behavior of U1(x), U2(x), U3(x), and U4(x).

Lemma 3.1 Let the model (2.1) hold. Let ρ be the modified Huber function given by (2.11).
Let K satisfy (A1) a)-c). Let µ satisfy (A2). For N → ∞, let h → 0 such that Nh2 → ∞.
Then,

U1(x) = O

(
1

`N

)
.

Proof. Using the Lipschitz continuity of ψ and µ

|ψ(fj − µ(x))− ψ(fj − µ(ξk))| ≤ Cψ|µ(x)− µ(ξk)|
≤ CψCµ|x− ξk|,

then

U1(x) = sup
1≤k≤`N

sup
|x−ξk|≤`−1

N

∣∣∣∣∣ 1

N

N∑
j=1

Kh(x− xj)ψ(fj − µ(x))− 1

N

N∑
j=1

Kh(x− xj)ψ(fj − µ(ξk))

∣∣∣∣∣
≤ sup

1≤k≤`N
sup

|x−ξk|≤`−1
N

1

N

N∑
j=1

Kh(x− xj) |ψ(fj − µ(x))− ψ(fj − µ(ξk))|

≤ CψCµ
1

`N
sup

h≤x≤1−h

1

N

N∑
j=1

Kh(x− xj) = O

(
1

`N

)
,

since

sup
h≤x≤1−h

1

N

N∑
j=1

Kh(x− xj) = O (1)

by Lemma 2.3. �

Lemma 3.2 Let the model (2.1) hold. Let ρ be the modified Huber function given by (2.11).
Let K satisfy (A1) a)-c). Let µ satisfy (A2). For N → ∞, let h → 0 such that Nh2 → ∞.
Then,

U2(x) = O

(
1

Nh2

)
.
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Proof. Using Lemma 2.3 we have

sup
h≤x≤1−h

∣∣∣∣∣ 1

N

N∑
j=1

Kh(x− xj)− 1

∣∣∣∣∣ ≤ CK
Nh2

, and sup
h≤ξk≤1−h

∣∣∣∣∣ 1

N

N∑
j=1

Kh(ξk − xj)− 1

∣∣∣∣∣ ≤ CK
Nh2

for all k = 1, . . . , `N . Since |ψ(·)| ≤ max{c, 1} we have

U2(x) = sup
1≤k≤`N

sup
|x−ξk|≤`−1

N

∣∣∣∣∣ 1

N

N∑
j=1

Kh(x− xj)ψ(fj − µ(ξk))

− 1

N

N∑
j=1

Kh(ξk − xj)ψ(fj − µ(ξk))

∣∣∣∣∣
≤ max{c, 1} sup

1≤k≤`N
sup

|x−ξk|≤`−1
N

∣∣∣∣∣ 1

N

N∑
j=1

Kh(x− xj)−
1

N

N∑
j=1

Kh(ξk − xj)

∣∣∣∣∣
≤ max{c, 1}2CK

Nh2
= O

(
1

Nh2

)
,

regardless of the choice of `N . �

Lemma 3.3 Let the model (2.1) hold. Let ρ be the modified Huber function given by (2.11).
Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1) a). For N →∞, let h→ 0
such that Nh2 →∞. Then,

U3(x) = Op

(
1

rN

)
provided that

rN →∞ and
r2
N`N
Nh

is bounded.

Proof. Note that x does not appear in U3(x). So, we will write U3 instead. Then

U3 = sup
1≤k≤`N

∣∣∣∣∣ 1

N

N∑
j=1

Kh(ξk − xj)ψ(fj − µ(ξk))−
1

N

N∑
j=1

Kh(ξk − xj)Eψ(fj − µ(ξk))

∣∣∣∣∣ .
Using Chebyshev’s inequality and Proposition 2.10, we have for any γ > 0

P (rNU3 > γ) = P
(
rN sup

1≤k≤`N
|HN(ξk)− EHN(ξk)| > γ

)
≤

`N∑
k=1

P (rN |HN(ξk)− EHN(ξk)| > γ)

≤
`N∑
k=1

r2
N varHN(ξk)

γ2
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=
r2
N

γ2

`N∑
k=1

O

(
1

Nh

)
= O

(
r2
N`N
Nh

)
.

Therefore,

U3 = Op

(
1

rN

)
provided that rN →∞ and

r2
N`N
Nh

is bounded.

�

Lemma 3.4 Let the model (2.1) hold. Let ρ be the modified Huber function given by (2.11).
Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1). For N → ∞, let h → 0
such that Nh3 →∞. Then,

U4(x) = O
(
h2
)
.

Proof. Also here x does not appear in U4(x). So, we will write U4 instead. Then

U4 = sup
1≤k≤`N

∣∣∣∣∣ 1

N

N∑
j=1

Kh(ξk − xj)Eψ(fj − µ(ξk))

∣∣∣∣∣ .
From Proposition 2.13, we have

U4 = sup
1≤k≤`N

|BN(ξk)|

≤ h2

2
VKηc sup

1≤k≤`N
|µ′′(ξk)|+ o(h2) = O

(
h2
)
.

�
Collecting the previous four lemmas we get the following result.

Proposition 3.5 Let the model (2.1) hold. Let ρ be the modified Huber function given by
(2.11). Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1). For N → ∞, let
h→ 0 such that Nh3 →∞. Moreover, assume that

(1) `N →∞ but `N � N .

(2) rN →∞ and
r2N `N
Nh

is bounded.

(3) rN
`N

is bounded.

(4) rN
Nh2

is bounded.

(5) rNh
2 is bounded.

Then,

rN sup
x∈[h,1−h]

|HN(x)| = Op (1) .
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In particular, if

`N =
3
√
Nh and rN =

3
√
Nh, provided that Nh7 = O(1),

then

3
√
Nh sup

x∈[h,1−h]

|HN(x)| = Op(1).

Proof. Using (3.2) and Lemmas 3.1, 3.2, 3.3, and 3.4 we get

rN sup
x∈[h,1−h]

|HN(x)| = O

(
rN
`N

)
+O

( rN
Nh2

)
+Op (1) +O

(
rNh

2
)
.

Now, we have to choose the sequences rN and `N such that they are of the same order and such

that
r2N `N
Nh

is bounded for rN →∞, i.e. assumptions (2) and (3). Choosing rN = `N = 3
√
Nh

will satisfy these assumptions and the assumptions (1) and (4) as well. Adding Nh7 = O(1)
will satisfy the assumption (5). �

Corollary 3.6 Let the assumptions of Proposition 3.5 hold. For N → ∞, let h → 0 such
that h ∼ constant N−1/5. Then,

N4/15 sup
x∈[h,1−h]

|HN(x)| = Op (1) .

3.3 Uniform Consistency

Using (3.1) and Proposition 3.5 we will prove now that the LHM-estimate is uniformly
consistent.

Theorem 3.7 Let the model (2.1) hold. Let ρ be the modified Huber function given by
(2.11). Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1). For N →∞, let
h→ 0 such that Nh3 →∞. Moreover, assume that

(1) `N →∞ but `N � N .

(2) rN →∞ and
r2N `N
Nh

is bounded.

(3) rN
`N

is bounded.

(4) rN
Nh2

is bounded.

(5) rNh
2 is bounded.

Then,

rN sup
x∈[h,1−h]

|µ̃(x)− µ(x)| = Op (1) .
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In particular, if

`N =
3
√
Nh and rN =

3
√
Nh, provided that Nh7 = O(1),

then

3
√
Nh sup

x∈[h,1−h]

|µ̃(x)− µ(x)| = Op(1).

Proof. From (3.1) we have for all γ > 0

P

(
rN sup

x∈[h,1−h]

|µ̃(x)− µ(x)| > γ

)
≤ P

(
rN sup

x∈[h,1−h]

|HN(x)| > Mγ

)
.

The rest follows from Proposition 3.5. �

Corollary 3.8 Let the assumptions of Theorem 3.7 hold. For N →∞, let h→ 0 such that
h ∼ constant N−1/5. Then,

N4/15 sup
x∈[h,1−h]

|µ̃(x)− µ(x)| = Op (1) .
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Chapter 4

Mathematical Formalization of the
Asymptotic Analysis

In this small chapter we will see the basic definitions of the Landau symbols in vector spaces.
By letting the sample size N tend to infinity, we are confronted with sequences of vectors and
matrices increasing in size. These sequences as they are do not form vector spaces and thus
the mathematical tools do not apply immediately. A way out is to redefine these sequences
in a way such that the resulting sequences form vector spaces. Thus, the mathematical tools
will hold without any problem.

4.1 Asymptotic Notations

Asymptotic order notations or asymptotic notations, for short, are powerful tools for writ-
ing asymptotic expressions in a compact way and they are very often used in approxima-
tion theory (for example see [19]). The asymptotic notations are “big-O”, “little-o, “big-
Omega”, “little-omega”, “big-Theta”, and “in the order of”. They have the following symbols
O, o,Ω, ω,Θ and ∼ respectively.

In our work, we are only interested in the first two notations (big-O and little-o) which
are sometimes called the “Landau symbols”. We start with the definition of the Landau
symbols for real-valued sequences and then we generalize the definition for vector-valued and
matrix-valued sequences.

Definition 4.1 Let {an}n∈N , {bn}n∈N be sequences of real numbers. Then we have the
following notations,

1) an = O(bn) if and only if there exists an M ∈ (0,∞) such that |an||bn| ≤M for all n ∈ N.

2) an = o(bn) if and only if lim
n→∞

|an|
|bn| → 0.

3) an ∼ bn if and only if lim
n→∞

|an|
|bn| → 1.

In the same manner, we can generalize the definition to vector-valued sequences. For
example, we say a vector-valued sequence is big-O of a real-valued sequence if the norm of

51
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the vector-valued sequence is big-O of the real-valued sequence (same for little-o). More
generally, we say that a vector-valued sequence is big-O of another vector-valued sequence if
the norm of the first sequence is big-O of the norm of the second. In the same manner the
Landau symbols are defined for matrix-valued sequences.

Definition 4.2 Let {an}n∈N and {bn}n∈N be Rp-valued sequences, let {An}n∈N and {Bn}n∈N
be Rp×q-valued sequences, and let {cn}n∈N be a real-valued sequence. Then,

1) an = O(cn) if and only if there exists an M > 0 such that ‖an‖|cn| ≤M for all n ∈ N.

2) an = o(cn) if and only if lim
n→∞

‖an‖
|cn| → 0.

3) an = O(‖bn‖) if and only if there exists an M > 0 such that ‖an‖‖bn‖ ≤M for all n ∈ N.

4) an = o(‖bn‖) if and only if lim
n→∞

‖an‖
‖bn‖ → 0.

5) An = O(cn) if and only if there exists an M > 0 such that ‖An‖|cn| ≤M for all n ∈ N.

6) An = o(cn) if and only if lim
n→∞

‖An‖
|cn| → 0.

7) An = O(‖Bn‖) if and only if there exists an M > 0 such that ‖An‖‖Bn‖ ≤M for all n ∈ N.

8) An = o(‖Bn‖) if and only if lim
n→∞

‖An‖
‖Bn‖ → 0.

Throughout our work, we will consider the infinity-norm for vectors and its induced norm
for matrices. That is,

‖a‖ := ‖a‖∞ = sup
1≤i≤p

|a(i)|

for all vectors a =
(
a(1), . . . , a(p)

)T ∈ Rp. And

‖A‖ := ‖A‖∞ = sup
1≤i≤p

q∑
j=1

|a(i,j)|

for all matrices A =
(
a(i,j)

)
i=1,...,p
j=1,...,q

∈ Rp×q.

4.2 Building the Vector Spaces

A technical problem we confront in our asymptotic expansion is that the vectors and matrices
we are dealing with come from RN and RN×N respectively. Whenever N is fixed there is no
problem. But since we are interested in an asymptotic analysis we shall have N →∞. Then,
for different sample sizes we will have vectors and matrices of different sizes. This means
that these vectors no longer form a vector space (same holds for the matrices). Thus, we
have to check most of the analytical results for vector spaces before we can use them!
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A way out is to define a mapping that maps our vectors which are of varying lengths into
vectors that have the same length. For that purpose we define the extension mapping E1

which maps vectors from the space RN into the space `∞(R), where

`∞(R) =

{
x = (x(i))i∈N : x(i) ∈ R ; ‖x‖`∞(R) := sup

i∈N
|x(i)| <∞

}
, (4.1)

that is,

E1 :
(
RN , ‖ · ‖∞

)
−→

(
`∞(R), ‖ · ‖`∞(R)

)
x =

(
x(1), . . . , x(N)

)
−→ x∗ =

(
x(1), . . . , x(N), 0, 0, 0, . . .

)
(4.2)

The space `∞(R) is now considered as the space of vectors both when N is fixed and when
N →∞ and it is indeed a vector space.

In a similar manner we define a mapping that maps our N × N matrices into infinite
“∞×∞” or “N× N” matrices as follows

E2 :
(
RN×N , ‖ · ‖∞

)
−→

(
M∞(R), ‖ · ‖M∞(R)

)
A =

(
a(i,j)

)
i,j=1,...,N

−→ A∗ =
(
a∗(i,j)

)
i,j∈N (4.3)

where

a∗(i,j) =

{
a(i,j), i, j ∈ {1, . . . , N},
0, i, j ∈ N \ {1, . . . , N},

and the space M∞(R) is defined as follows

M∞(R) =

{
A = (a(i,j))i,j∈N : a(i,j) ∈ R ; ‖A‖M∞(R) := sup

i∈N

∞∑
j=1

|a(i,j)| <∞

}
. (4.4)

Similar to vectors, the spaceM∞(R) is now considered as the space of matrices both when
N is fixed and when N →∞ and it is indeed a vector space.

The extension mappings E1 and E2 are defined in a way to result in vectors spaces and to
preserve the norm of the vectors and matrices being mapped. That is

‖x‖∞ = ‖x∗‖`∞(R) for all x ∈ RN (4.5)

where x∗ = E1(x) ∈ `∞(R), and

‖A‖∞ = ‖A∗‖M∞(R) for all A ∈ RN×N (4.6)

where A∗ = E2(A) ∈M∞(R).
Moreover, if we restrict ourselves to symmetric matrices, then we have

S∞(R) =
{
A =

(
a(i,j)

)
i,j∈N : A ∈M∞(R) ; a(i,j) = a(j,i)

}
,

which is clearly a subspace of M∞(R).
In the following chapters, we will work with S∞(R).
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4.3 A Note on the Built Vector Spaces

Throughout our work we will continue to write x ∈ RN for vectors and A ∈ RN×N for
matrices. But for the precise mathematical writing we actually mean the E1 and E2 extended
versions, i.e. x∗ = E1(x) ∈ `∞(R) and A∗ = E2(A) ∈ S∞(R). Using this shorthand writing,
we will also write ‖x‖ in stead of ‖x∗‖`∞(R) and ‖A‖ in stead of ‖A∗‖M∞(R).



Chapter 5

Huber M-Estimates with Localization
and Quadratic Regularization
(QRLHM-Estimates)

In this chapter, we will consider the LHM-estimate by adding a regularization term to the
problem of interest. We will use here the general approach by Mrázek et al. [25] which
is described in Section 1.5. The data term will be the same as that already discussed in
Chapter 2. For the smoothness term we use the quadratic function as the smoothness loss
function. First, we consider an asymptotic expansion of the solution in vector form then in
component form. The component form is of interest because it enables us to calculate the
bias and variance terms more easily.

5.1 Setup of the Problem

As in Chapter 2 we assume we are given data (xj, fj), j = 1, . . . , N from the nonparametric
regression model:

fj = µ(xj) + εj, j = 1, . . . , N,

where εj ∼ i. i. d. (0, σ2), and xj = j
N

from an equidistant grid in the unit interval [0, 1].
We are interested in this chapter in getting an estimate of the function µ using the general

approach for image denoising proposed by Mrázek et al. [25]. Using that approach we consider
the problem:

Q(u1, . . . , uN) =
N∑

i,j=1

ρ(ui − fj)Kh(xi − xj)

+
λ

2

N∑
i,j=1

1

2
(ui − uj)2Lg(xi − xj) = min

u1,...,uN
!

(5.1)

where the kernels K and L are nonnegative, symmetric functions on R, the bandwidths
h, g > 0, and the regularization parameter λ ≥ 0. The function ρ is the modified Huber

55
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function as given by (2.11).
The solution û = (û1, ..., ûN)T of problem (5.1) estimates µ = (µ(x1), ..., µ(xN))T and

is called the quadratically regularized local Huber M-estimate, abbreviated as the QRLHM-
estimate.

A special case of the QRLHM-estimate is the local Huber M-estimate already discussed in
Chapter 2. This could be seen by setting λ = 0 in problem (5.1).

5.2 A Rough Approximation

If we look at problem (5.1) we can see that it does not have an explicit solution due to the
structure of the Huber function. But solving the problem is still possible. One way is to
solve the problem numerically. An example of a numerical solution is given in the following
theorem.

Theorem 5.1 Let the model (2.1) hold. The solution of (5.1) can be approximated by the
Priestley-Chao kernel estimate µ̂ or by the LHM-estimate µ̃. That is,

û ≈ µ̂− [∇2Q(µ̂)]−1∇Q(µ̂) (5.2)

provided that ∇2Q(µ̂) is invertible, and

û ≈ µ̃− [∇2Q(µ̃)]−1∇Q(µ̃) (5.3)

provided that ∇2Q(µ̃) is invertible.

Proof. The vector of Priestley-Chao kernel estimates with kernel K and bandwidth h is
given at the grid points by

µ̂ = (µ̂K(x1, h), . . . , µ̂(xN , h))T = (µ̂1, . . . , µ̂N)T

and the vector of LHM-estimates at the grid points is given by

µ̃ = (µ̃K(x1, h), . . . , µ̃(xN , h))T = (µ̃1, . . . , µ̃N)T .

The QRLHM-estimate û solves (5.1) so ∇Q(û) = 0N×1. By a Taylor series expansion of
∇Q around µ̂ we have

∇Q(û) = ∇Q(µ̂) +∇2Q(µ̂)(û− µ̂) + o (‖û− µ̂‖)
∇Q(û) ≈ ∇Q(µ̂) +∇2Q(µ̂)(û− µ̂)

0N×1 ≈ ∇Q(µ̂) +∇2Q(µ̂)(û− µ̂)

û ≈ µ̂− [∇2Q(µ̂)]−1∇Q(µ̂).

The approximation is exactly the same using µ̃. Both approximations rely on the facts
that ‖û− µ̂‖ and ‖û− µ̃‖ go to zero as N →∞. �

However, this is not really helpful if we are interested in studying the properties of the
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solution. For that purpose, we need a more precise result. To do that we will use assumptions
(A1), (A2) and (E1), which are already stated in Chapter 2.

5.3 Notation: The Gradient and the Hessian

In this section we establish some results for the gradient vector and the Hessian matrix of
the energy functional Q.

The gradient vector and its Jacobian are defined as follows,

∇Q(u) = (Q1(u), . . . , QN(u))T and ∇2Q(u) = (Qi,`(u))i,` ,

where i, ` = 1, . . . , N . The Jacobian of the gradient vector is a matrix and is called the
Hessian matrix. Qi stands for the first partial derivative of the energy functional Q with
respect to the ith entry of the vector u ∈ RN and Qi,` stands for the second partial derivative
of the energy functional Q with respect to the ith and the `th entry of the vector u ∈ RN .

That is,

Qi(u) :=
∂Q(u)

∂ui
=

N∑
j=1

ρ′(ui − fj)Kh(xi − xj) + λ
N∑
j=1
j 6=i

(ui − uj)Lg(xi − xj),

Qi,i(u) :=
∂2Q(u)

∂u2
i

=
N∑
j=1

ρ′′(ui − fj)Kh(xi − xj) + λ
N∑
j=1
j 6=i

Lg(xi − xj),

Qi,`(u) :=
∂2Q(u)

∂u`∂ui
= −λLg(xi − x`), ` 6= i.

We define the vector

G :=
∇Q(µ̃)

N
, (5.4)

and the matrix

J :=
∇2Q(µ̃)

N
= P̃ − λΛ, (5.5)

where for i, ` = 1, . . . , N

P̃i,` =

 1
N

N∑
j=1

ρ′′(µ̃i − fj)Kh(xi − xj) + λ
N

N∑
j=1

Lg(xi − xj), i = `,

0, i 6= `,

(5.6)

and

Λi,` =
1

N
Lg(xi − x`). (5.7)

Mark that for quadratic ρ, i.e. ρ(u) = 1
2
u2, where ρ′′(u) = 1, the matrix P̃ coincides with

the matrix P̂ of Proposition 1.8.



58 CHAPTER 5. QRLHM-ESTIMATES

Throughout the text we will use the following abbreviations,

Qi = Qi(µ̃) =
∂Q(u)

∂ui

∣∣∣∣
u=µ̃

and Qi,` = Qi,`(µ̃) =
∂2Q(u)

∂u`∂ui

∣∣∣∣
u=µ̃

,

to stand for the derivatives evaluated at the LHM-estimate. If the derivatives are evaluated
at any other point it will be explicitly indicated.

5.4 Auxiliary Results

In this section we present some auxiliary results regarding the gradient vector and the above
mentioned matrices.

We start with an asymptotic approximation to the gradient vector.

Lemma 5.2 Let the model (2.1) hold. Assume (A1) a)-c) for the kernel L and assume (A2).
For N →∞, let g → 0 such that Ng2 →∞. Then, we have

1

N

N∑
j=1

(
µ(xi)− µ(xj)

)
Lg(xi − xj) = o(1)

uniformly in xi ∈ [g, 1− g].

Proof. Let xi ∈ [g, 1 − g] then using Lemma 2.3 and the Lipschitz continuity of µ (from
assumptions (A2)) we have

sup
xi

∣∣∣∣∣ 1

N

N∑
j=1

(
µ(xi)− µ(xj)

)
Lg(xi − xj)

∣∣∣∣∣ ≤ Cµg sup
xi

1

N

N∑
j=1

Lg(xi − xj)

= Cµg ·O(1)

= o(1).

�

Proposition 5.3 Let the model (2.1) hold. Let ρ be the modified Huber function given by
(2.11). Assume (A1) a)-c) for the kernels K and L and assume (A2) and (E1). For N →∞,
let h→ 0 and g → 0 such that h ∼ constant N−1/5 and Ng2 →∞. Then,

Qi

N
= op(λ)

uniformly in xi ∈ [max(h, g), 1−max(h, g)].

Proof. Let xi ∈ [max(h, g), 1−max(h, g)] then using Corollary 3.8 and the previous lemma

sup
xi

∣∣∣∣1λQi

N

∣∣∣∣ = sup
xi

∣∣∣∣∣ 1

N

N∑
j=1

(µ̃K(xi, h)− µ̃K(xj, h))Lg(xi − xj)

∣∣∣∣∣
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≤ sup
xi

∣∣∣∣∣ 1

N

N∑
j=1

(µ̃K(xi, h)− µ(xi))Lg(xi − xj)

∣∣∣∣∣
+ sup

xi

∣∣∣∣∣ 1

N

N∑
j=1

(µ(xi)− µ(xj))Lg(xi − xj)

∣∣∣∣∣
+ sup

xi

∣∣∣∣∣ 1

N

N∑
j=1

(µ(xj)− µ̃K(xj, h))Lg(xi − xj)

∣∣∣∣∣
= op(1) + o(1) + op(1) = op(1).

�
Now, we write the result in vector form using the notation introduced in Chapter 4.

Proposition 5.4 (Norm of G) Let the model (2.1) hold. Let ρ be the modified Huber func-
tion given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume (A2) and (E1).
For N →∞, let h→ and g → 0 such that h ∼ constant N−1/5 and Ng2 →∞. Then,

‖G‖ = op(λ).

for x1, . . . , xN ∈ [max(h, g), 1−max(h, g)].

Proof. Using the norm defined in (4.5) we have

‖G‖ = ‖G∗‖`∞(R) = sup
i∈N
|G∗i | = sup

1≤i≤N
|Gi| = sup

1≤i≤N

∣∣∣∣Qi

N

∣∣∣∣ = op(λ),

for x1, . . . , xN ∈ [max(h, g), 1−max(h, g)]. �
We now give an approximation to the second derivative of the data term of the energy

functional Q. The result is similar to Proposition 2.17.

Lemma 5.5 Let the model (2.1) hold. Let ρ be the modified Huber function given by (2.11).
Assume (A1) a)-c) for the kernel K and assume (A2) and (E1) a)-b). Then, for N → ∞,
h→ 0 such that Nh2 →∞ and for every c ∈ (0,∞) we have

1

N

N∑
j=1

Kh(xi − xj)ρ′′(µ̃i − fj)
P−→ ηc

for all xi ∈ [h, 1− h].

Proof. For i = 1, . . . , N define

Yi =
1

N

N∑
j=1

Kh(xi − xj)1(−c,c)(µ̃i − fj).

Using the facts that µ̃ is consistent, µ is Lipschitz continuous, and that the indicator
function is almost surely continuous with respect to the probability measure of εj, we get
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from the continuous mapping theorem (Theorem 2.14) that

1(−c,c)(µ̃i − fj)
L−→ 1(−c,c)(−εj) = 1(−c,c)(εj),

for all |xi − xj| ≤ h. Therefore, since the indicator function is bounded, we get from the
definition of weak convergence that

E1(−c,c)(µ̃i − fj)→ E1(−c,c)(εj) = η,

for all |xi − xj| ≤ h. Using Lemma 2.3 we get

EYi =
1

N

N∑
j=1

Kh(xi − xj)E1(−c,c)(µ̃i − fj)→ η.

To make notation easier we define Aij = (−c + µ̃i − µj, c + µ̃i − µj) for i, j = 1, . . . , N .
Then,

varYi =
1

N2

N∑
j,k=1

Kh(xi − xj)Kh(xi − xk) cov
(
1Aij(εj),1Aik(εk)

)
.

Since ε1, . . . , εN are independent, then for j, k = 1, . . . , N such that j 6= k we get

cov
[
1Aij(εj),1Aik(εk)

]
= E

[
1Aij(εj) · 1Aik(εk)

]
−
[
E1Aij(εj)

]
· [E1Aik(εk)]

= P(εj ∈ Aij ∧ εk ∈ Aik)− P(εj ∈ Aij) · P(εk ∈ Aik)
= P(εj ∈ Aij) · P(εk ∈ Aik)− P(εj ∈ Aij) · P(εk ∈ Aik)
= 0,

and

var
[
1Aij(εj)

]
=

{
η(1− η) c ≥ 1,
1
c2
η(1− η) c < 1,

for all i, j = 1, . . . , N such that |xi − xj| ≤ h. Using Lemma 2.3 we have

varYi =
1

N2

N∑
j=1

K2
h(xi − xj) var

[
1Aij(εj)

]
= O

(
1

Nh

)
→ 0.

Therefore, Yi
L2

→ η and hence in probability.

Since

ρ′′(u) =

{
1(−c,c)(u), c ≥ 1,
1
c
1(−c,c)(u), c < 1,
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almost surely with respect to the probability measure of εj, we get

1

N

N∑
j=1

Kh(xi − xj)ρ′′(µ̃i − fj) =

{
Yi, c ≥ 1,
Yi
c
, c < 1,

a.s.

and therefore,

1

N

N∑
j=1

Kh(xi − xj)ρ′′(µ̃i − fj)
P−→ ηc.

�

Lemma 5.6 Let the model (2.1) hold. Let ρ be the modified Huber function given by (2.11).
Let K satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy (E1) a)-b). For N → ∞, let
h→ 0 such that Nh2 →∞. Then for any c ∈ (0,∞) we have

(1) sup
h≤xi≤1−h

∣∣∣∣∣ 1

N

N∑
j=1

Kh(xi − xj)ρ′′(µ̃(xi)− fj)− ηc

∣∣∣∣∣ = Oa.s.(1).

(2) inf
h≤xi≤1−h

1

N

N∑
j=1

Kh(xi − xj)ρ′′(µ̃(xi)− fj) ≥
ηc
2
a.s.

(3) sup
h≤xi≤1−h

∣∣∣∣∣∣∣∣∣
1

1
N

N∑
j=1

Kh(xi − xj)ρ′′(µ̃(xi)− fj)
− 1

ηc

∣∣∣∣∣∣∣∣∣ = Oa.s.(1).

Proof. The proof of the first relation is direct from Lemma 2.3 and the boundedness of
the indicator function.

From the proof of Lemma 5.5

E
1

N

N∑
j=1

Kh(xi − xj)ρ′′(µ̃(xi)− fj)
N→∞−→ ηc.

An argument similar to that used in the proof of Lemma 2.19 yields

inf
h≤xi≤1−h

1

N

N∑
j=1

Kh(xi − xj)ρ′′(µ̃(xi)− fj) ≥
ηc
2
a.s.

The third relation follows directly from the second one. �
We now present some results regarding the norms of the matrices P̃−1, P̃−1Λ and J−1.

These results will be helpful tools for getting a more precise form of the QRLHM-estimate.

Proposition 5.7 (Norm of P̃−1) Let the model (2.1) hold. Let ρ be the modified Huber
function given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume (A2) and
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(E1) a)-b). For N →∞, let h→ 0, such that Nh2 →∞ then we have

‖P̃−1‖ = Oa.s.(1)

for x1, . . . , xN ∈ [h, 1− h], g ≥ 0, and λ ≥ 0.

Proof. Since L is nonnegative and using Lemma 5.6 we have

‖P̃−1‖ = sup
1≤i≤N

∣∣∣∣∣∣∣∣∣
1

1
N

N∑
j=1

ρ′′(µ̃i − fj)Kh(xi − xj) + λ
N

N∑
j=1

Lg(xi − xj)

∣∣∣∣∣∣∣∣∣
≤ sup

1≤i≤N

∣∣∣∣∣∣∣∣∣
1

1
N

N∑
j=1

ρ′′(µ̃i − fj)Kh(xi − xj)

∣∣∣∣∣∣∣∣∣
≤ 2

ηc
a.s.

for x1, . . . , xN ∈ [h, 1− h]. �

Proposition 5.8 (Norm of P̃−1Λ) Let the model (2.1) hold. Let ρ be the modified Huber
function given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume (A2) and
(E1) a)-b). For N → ∞, let h → 0, g → 0 and λ → 0 such that Nh2 → ∞ and Ng2 → ∞
then we have

‖P̃−1Λ‖ = Oa.s.(1), ‖λP̃−1Λ‖ = oa.s.(1), and ‖λP̃−1Λ‖ < 1 a.s.

for x1, . . . , xN ∈ [max(h, g), 1−max(h, g)].

Proof. From Lemma 2.3 for the kernel L and Lemma 5.6 we get that

‖P̃−1Λ‖ = sup
1≤i≤N

N∑
j=1

|Λi,j|
|P̃i,i|

= sup
1≤i≤N

1
N

N∑
j=1

Lg(xi − xj)∣∣∣∣∣ 1
N

N∑
j=1

ρ′′(µ̃i − fj)Kh(xi − xj) + λ
N

N∑
j=1

Lg(xi − xj)

∣∣∣∣∣
a.s.

≤ 2

ηc
sup

1≤i≤N

1

N

N∑
j=1

Lg(xi − xj) = O(1)

for x1, . . . , xN ∈ [max(h, g), 1−max(h, g)].
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Therefore,

‖P̃−1Λ‖ = Oa.s.(1) and ‖λP̃−1Λ‖ a.s.−→ 0.

Since ρ′′(u) ≥ 0 for all u ∈ R \ {−c, c}, we have for all i = 1, . . . , N

1

N

N∑
j=1

ρ′′(µ̃i − fj)Kh(xi − xj) ≥ 0

almost surely with respect to the probability measure of εj.

That is, for all i we have almost surely that

λ
N

N∑
j=1

Lg(xi − xj)

1
N

N∑
j=1

ρ′′(µ̃i − fj)Kh(xi − xj) + λ
N

N∑
j=1

Lg(xi − xj)
≤ 1

Therefore, ‖λP̃−1Λ‖ ≤ 1 almost surely. What is left to be shown is that ‖λP̃−1Λ‖ 6= 1 almost
surely.

Consider,

P
(
‖λP̃−1Λ‖ = 1

)

= P

 sup
1≤i≤N

λ
N

N∑
j=1

Lg(xi − xj)

1
N

N∑
j=1

ρ′′(µ̃i − fj)Kh(xi − xj) + λ
N

N∑
j=1

Lg(xi − xj)
= 1



= P


λ
N

N∑
j=1

Lg(xk − xj)

1
N

N∑
j=1

ρ′′(µ̃k − fj)Kh(xk − xj) + λ
N

N∑
j=1

Lg(xk − xj)
= 1, for some k


= P

(
1

N

N∑
j=1

ρ′′(µ̃k − fj)Kh(xk − xj) = 0, for some k

)
= 0,

since
1

N

N∑
j=1

ρ′′(µ̃k − fj)Kh(xk − xj) ≥
1

2
ηc a.s.

uniformly in xk ∈ [h, 1− h]. �

Proposition 5.9 (Norm of J−1) Let the model (2.1) hold. Let ρ be the modified Huber
function given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume (A2) and
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(E1) a)-b). For N → ∞, let h → 0, g → 0 and λ → 0 such that Nh2 → ∞ and Ng2 → ∞
then we have

‖J−1‖ = Oa.s.(1)

for x1, . . . , xN ∈ [max(h, g), 1−max(h, g)].

Proof. Using Neumann series and Propositions 5.7 and 5.8 we get

‖J−1‖ = ‖(P̃ − λΛ)−1‖ ≤ ‖(IN − λP̃−1Λ)−1‖ · ‖P̃−1‖
a.s.

≤ 1

1− ‖λP̃−1Λ‖
· ‖P̃−1‖

=
1

1 + oa.s.(1)
·Oa.s.(1) = Oa.s.(1).

�

5.5 Vector and Component Form of QRLHM-Estimates

Now, we can present more precise results regarding the asymptotic approximation of the
QRLHM-estimate in terms of the LHM-estimate µ̃.

Theorem 5.10 (QRLHM Vector) Let the model (2.1) hold. Let ρ be the modified Huber
function given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume (A2) and
(E1) a)-b). For N →∞, let h→ 0, g → 0 and λ→ 0 such that Nh2 →∞ and Ng2 →∞.
If ∇2Q(µ̃) is invertible, then the solution of problem (5.1) is given by,

û = µ̃− [∇2Q(µ̃)]−1∇Q(µ̃) + oa.s.

(
1

N

)
(5.8)

for x1, . . . , xN ∈ [max(h, g), 1−max(h, g)].

Proof. Using a Taylor series expansion of the gradient vector ∇Q around µ̃ or equivalently
using the definition of the derivative for ∇Q as a function from RN to RN , we have

∇Q(û) = ∇Q(µ̃) +∇2Q(µ̃)(û− µ̃) + o (‖û− µ̃‖) ,

that is,

‖∇Q(û)−∇Q(µ̃)−∇2Q(µ̃)(û− µ̃)‖
‖û− µ̃‖

→ 0 as û→ µ̃.

Since û is the solution of problem (5.1) then ∇Q(û) = 0N×1.

Letting λ→ 0 implies that
‖û− µ̃‖ → 0.
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Using Proposition 5.9 we have

N
∥∥û− µ̃+ J−1G

∥∥ = N
∥∥J−1{J(û− µ̃) +G}

∥∥
≤ N‖J−1‖ · ‖J(û− µ̃) +G‖
= ‖J−1‖ · ‖∇2Q(µ̃)(û− µ̃) +∇Q(µ̃)‖

= ‖J−1‖ · ‖∇
2Q(µ̃)(û− µ̃) +∇Q(µ̃)‖

‖û− µ̃‖
· ‖û− µ̃‖

= Oa.s.(1) · o(1) · o(1) = oa.s.(1),

that is,

û = µ̃− [∇2Q(µ̃)]−1∇Q(µ̃) + oa.s.

(
1

N

)
.

�

To get the bias and variance terms it would be easier to have a componentwise version of
the previous theorem.

Theorem 5.11 (QRLHM Component 1) Let the model (2.1) hold. Let ρ be the modi-
fied Huber function given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume
(A2) and (E1). For N → ∞, let h → 0, g → 0 and λ → 0 such that h ∼ constant N−1/5

and Ng2 →∞. Then, with t chosen as the smallest integer satisfying

λt+1 = O

(
1

N

)
, (5.9)

we have uniformly in xi ∈ [max(h, g) + tg, 1−max(h, g)− tg], that:

ûi = µ̃i −
1

ηc + λ

Qi

N
− 1

ηc + λ

t∑
n=1

(
λ

ηc + λ

)n
1

Nn

∑
j1,...,jn

Lg(xi − xj1) · · ·

· · ·Lg(xjn−1 − xjn)
Qjn

N
+RN,i

where µ̃i = µ̃K(xi, h), Qi = ∂Q(u)
∂ui

∣∣∣
u=µ̃

, and RN,i = op(λ).

Proof. Using Neumann series and Propositions 5.7 and 5.8 we get

1

λt+1

∥∥∥∥∥J−1 −
t∑

j=0

(λP̃−1Λ)jP̃−1

∥∥∥∥∥ =
1

λt+1

∥∥∥∥∥(I − λP̃−1Λ)−1P̃−1 −
t∑

j=0

(λP̃−1Λ)jP̃−1

∥∥∥∥∥
a.s.

≤ 1

λt+1

∥∥∥∥∥
∞∑
j=0

(λP̃−1Λ)j −
t∑

j=0

(λP̃−1Λ)j

∥∥∥∥∥ · ∥∥∥P̃−1
∥∥∥
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≤ 1

λt+1
‖P̃−1‖

∞∑
j=t+1

‖λP̃−1Λ‖j

=
1

λt+1
‖P̃−1‖ · ‖λP̃−1Λ‖t+1

∞∑
j=0

‖λP̃−1Λ‖j

a.s.
= ‖P̃−1‖ · ‖P̃−1Λ‖t+1 · 1

1− ‖λP̃−1Λ‖

= Oa.s.(1) ·Oa.s.(1) · 1

1 + oa.s.(1)

= Oa.s.(1),

that is,

J−1 =
t∑

j=0

(λP̃−1Λ)jP̃−1 +Oa.s.(λ
t+1).

Using the previous expansion of J−1 and Proposition 5.4, we get from (5.8) that

N

∥∥∥∥∥û− µ̃+

(
t∑

j=0

(λP̃−1Λ)jP̃−1

)
·G

∥∥∥∥∥
≤ N

∥∥û− µ̃+ J−1 ·G
∥∥+N

∥∥∥∥∥
(

t∑
j=0

(λP̃−1Λ)jP̃−1

)
·G− J−1 ·G

∥∥∥∥∥
≤ N

∥∥û− µ̃+ J−1 ·G
∥∥+N

∥∥∥∥∥
t∑

j=0

(λP̃−1Λ)jP̃−1 − J−1

∥∥∥∥∥ · ‖G‖
= oa.s.(1) +N ·Oa.s.(λ

t+1) · op(λ)

= op(1).

For the last step we have assumed that Nλt+1 = O(1).

Therefore,

û = µ̃−

(
t∑

j=0

(λP̃−1Λ)jP̃−1

)
∇Q(µ̃)

N
+ op

(
1

N

)
. (5.10)

After calculating the matrices, the componentwise version is,

ûi = µ̃i −
1

P̃ii

Qi

N
− 1

P̃ii

t∑
n=1

λn

Nn

∑
j1,...,jn

Lg(xi − xj1)
P̃j1j1

· · ·

· · ·
Lg(xjn−1 − xjn)

P̃jnjn

Qjn

N
+ op

(
1

N

) (5.11)

uniformly in xi ∈ [max(h, g) + tg, 1−max(h, g)− tg].
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From Propositions 5.3 and 5.7 we have∣∣∣∣∣ 1

P̃jj

Qj

N
− 1

ηc + λ

Qj

N

∣∣∣∣∣ =

∣∣∣∣∣ 1

P̃jj
− 1

ηc + λ

∣∣∣∣∣ ·
∣∣∣∣Qj

N

∣∣∣∣ = Oa.s.(1) · op(λ) = op(λ), (5.12)

uniformly in xj ∈ [max(h, g), 1−max(h, g)].

Finally, we use (5.12) to interchange 1
P̃••

Q•
N

with 1
ηc+λ

Q•
N

in (5.11). �

5.6 Bias and Variance of QRLHM-Estimates

Now, we will try to get a more compact form of the QRLHM-estimate which was given in
Theorem 5.11. For that purpose we will define the LHM-iterated smoothers and the LHM-
iterated differences (compare to Definition 1.10).

5.6.1 LHM-Iterated Smoothers (ILHM-Estimates)

Definition 5.12 (ILHM) Set µ̃1(x, h, g) := µ̃K(x, h), and recursively define the “LHM-
iterated smoothers” as follows

µ̃n+1(x, h, g) :=
1

N

N∑
j=1

Lg(x− xj)µ̃n(xj, h, g), n ≥ 1.

Using the recursion above

µ̃n+1(x, h, g) =
1

Nn

∑
j1,...,jn

Lg(x− xj1) . . . Lg(xjn−1 − xjn)µ̃K(xjn , h).

The “LHM-iterated differences” are defined recursively as follows

ν̃n+1(x, h, g) := µ̃n+1(x, h, g)− µ̃n(x, h, g), n ≥ 1.

Getting the bias, variance and covariance terms of the iterated LHM-smoothers depends
on Theorems 2.20 and 2.22. The calculations are very similar to the case of the PC-iterated
smoothers discussed in [10], therefore the proofs are skipped.

Proposition 5.13 (ILHM Bias) Let the model (2.1) hold. Let ρ be the modified Huber
function given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume (A2) and
(E1). For N → ∞, let h → 0, g → 0 such that h ∼ constant N−1/5 and Ng4 → ∞. Then,
we have for all n ≥ 1 and for all h+ ng ≤ x ≤ 1− (h+ ng) that

bias µ̃n(x, h, g) =

{
1

2
h2µ′′(x)VK + o(h2)

}
+ (n− 1)

{
1

2
g2µ′′(x)VL + o(g2)

}
.

Consequently,

E ν̃n+1(x, h, g) =
1

2
g2µ′′(x)VL + o(g2).
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Proposition 5.14 (ILHM Variance) Let the model (2.1) hold. Let ρ be the modified Huber
function given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume (A2) and
(E1). For N → ∞, let h → 0, g → 0 such that h ∼ constant N−1/5 and Ng2 → ∞. Then,
for all n ≥ m ≥ 0,

cov (µ̃m+1(x, h, g), µ̃n+1(x̄, h, g)) =
σ2
c

N
L∗(n+m)
g ∗Kh ∗Kh(x− x̄) + o

(
1

Nh

)
for all 2h+ ng ≤ x, x̄ ≤ 1− (2h+ ng). In particular,

var µ̃n+1(x, h, g) =
σ2
c

N
L∗(2n)
g ∗Kh ∗Kh(0) + o

(
1

Nh

)
.

Using the LHM-iterated smoothers we will write the QRLHM-estimate in a compact form.
This compact form will make the calculations of the bias and variance terms easier.

Theorem 5.15 (QRLHM Component 2) Let the model (2.1) hold. Let ρ be the modi-
fied Huber function given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume
(A2) and (E1). For N → ∞, let h → 0, g → 0 and λ → 0 such that h ∼ constant N−1/5

and Ng2 →∞. Then, with t chosen as the smallest integer satisfying

λt+1 = O

(
1

N

)
,

we have uniformly in xi ∈ [max(h, g) + tg, 1−max(h, g)− tg], that:

ûi = µ̃i +
t∑

n=0

δn+1ν̃n+2(xi, h, g) +RN,i (5.13)

where δ = λ
ηc+λ

and RN,i = op(λ). Moreover,

ûi = (1− δ)
t∑

n=0

δnµ̃n+1(xi, h, g) +RN,i (5.14)

uniformly in xi ∈ [max(h, g) + (t+ 1)g, 1−max(h, g)− (t+ 1)g].

Proof. From Corollary 3.8 and assumptions (A2) we have

µ̃(xi, h) = µ(xi) + op(1) = Op(1). (5.15)

uniformly in xi ∈ [h, 1− h]. Moreover, from Lemma 2.3 we have∣∣∣∣Qi

N
+ λν̃(xi, h, g)

∣∣∣∣
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=

∣∣∣∣∣ 1

N

N∑
j=1

ρ′(µ̃i − fj)Kh(xi − xj) +
λ

N

N∑
j=1

(µ̃i − µ̃j)Lg(xi − xj) + λν̃2(xi, h, g)

∣∣∣∣∣
=

∣∣∣∣∣ λN
N∑
j=1

(µ̃i − µ̃j)Lg(xi − xj) +
λ

N

N∑
j=1

Lg(xi − xj)µ̃j − λµ̃i

∣∣∣∣∣
= λ |µ̃(xi, h)| ·

∣∣∣∣∣ 1

N

N∑
j=1

Lg(xi − xj)− 1

∣∣∣∣∣
= λ ·Op(1) ·O

(
λ

Ng2

)
= op

(
λ

Ng2

)
uniformly in xi ∈ [max(h, g), 1−max(h, g)].

Interchanging Q•/N with λν̂(x•, h, g) in the ûi obtained in Theorem 5.11 we have,

ûi = µ̃i +
λ

ηc + λ
ν̃2(xi, h, g)

+
λ

ηc + λ

t∑
n=1

δn

Nn

∑
j1,...,jn

Lg(xi − xj1) · · ·

· · ·Lg(xjn−1 − xjn)(µ̃2(xjn , h, g)− µ̃1(xjn , h, g))

+ op(λ),

and hence (5.13).

To get the second relation we rewrite the estimate as follows,

ûi = µ̃i +
t∑

n=0

δn+1ν̃n+2(xi, h, g) + op(λ)

= µ̃1(x, h, g) +
t∑

n=0

δn+1µ̃n+2(xi, h, g)−
t∑

n=0

δn+1µ̃n+1(xi, h, g) + op(λ)

=
t−1∑
n=−1

δn+1µ̃n+2(xi, h, g) + δt+1µ̃t+2(xi, h, g)− δ
t∑

n=0

δnµ̃n+1(xi, h, g) + op(λ)

=
t∑

k=0

δkµ̃k+1(xi, h, g) + δt+1µ̃t+2(xi, h, g)− δ
t∑

n=0

δnµ̃n+1(xi, h, g) + op(λ)

ûi = (1− δ)
t∑

n=0

δnµ̃n+1(xi, h, g) + δt+1µ̃t+2(xi, h, g) + op(λ).

From Corollary 3.8 and Lemmas 2.3 and 5.2 we have

µ̃t+2(xi, h, g) = µ(xi) + op(1) = Op(1) (5.16)
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uniformly in xi ∈ [max(h, g) + (t+ 1)g, 1−max(h, g)− (t+ 1)g]. Therefore,

ûi = (1− δ)
t∑

n=0

δnµ̃n+1(xi, h, g) +Op(λ
t+1) + op(λ),

and hence (5.14). �
Important consequences of this result are the L2 and L1 limiting cases.

Corollary 5.16 Let the assumptions of Theorem 5.15 hold.

a) The L2 limiting case: If c→∞ then

ûQRLLSi = lim
c→∞

ûQRLHMi = (1− θ)
t∑

n=0

θnµ̃NW,n+1(xi, h, g) + op(λ),

for all xi ∈ [max(h, g) + (t+ 1)g, 1−max(h, g)− (t+ 1)g] where θ = λ
1+λ

.

b) The L1 limiting case: If c→ 0 and pε(0) 6= 0 then

ûQRLLAi = lim
c→0

ûQRLHMi = (1− ζ)
t∑

n=0

ζnµ̃LAD,n+1(xi, h, g) + op(λ),

for all xi ∈ [max(h, g) + (t+ 1)g, 1−max(h, g)− (t+ 1)g] where ζ = λ
2pε(0)+λ

.

Mark that part a) of the corollary above corresponds to result in Theorem 1.12.

5.6.2 The Bias Term

To get the bias term it will be easier to use the form obtained in (5.13).

Theorem 5.17 (QRLHM Bias) Let the model (2.1) hold. Let ρ be the modified Huber
function given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume (A2)
and (E1). For N → ∞, let h → 0, g → 0 and λ → 0 such that h ∼ constant N−1/5 and
Ng4 →∞. Then, with t chosen as the smallest integer satisfying

λt+1 = O

(
1

N

)
,

we have for all xi ∈ [max(h, g) + (t+ 1)g, 1−max(h, g)− (t+ 1)g], that:

bias ûi = bias µ̃K(xi, h) +
λ

ηc
bias µ̃L(xi, g) + o (λ)

=
1

2
µ′′(xi)

{
h2VK +

λ

ηc
g2VL

}
+ o(h2) + o(λ)

=
1

2
h2µ′′(xi)VK + o(h2) + o(λ).
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Proof. From Proposition 5.13 and (5.13) we have,

bias ûi = bias µ̃i +
t∑

n=0

δn+1E ν̃n+2(xi, h, g) + ERN,i

= bias µ̃i +
t∑

n=0

δn+1
(

bias µ̃L(xi, g) + o(g2)
)

+ ERN,i

= bias µ̃i +
(

bias µ̃L(xi, g) + o(g2)
) t∑
n=0

δn+1 + ERN,i.

Using the facts that δ = O(λ) and that λt+1 = O( 1
N

) we get,

t∑
k=0

δk+1 = δ
1− δt+1

1− δ
=
λ

ηc
− λ

ηc

(
λ

ηc + λ

)t+1

=
λ

ηc
+O

(
λt+2

)
=
λ

ηc
+ o(λ). (5.17)

Therefore,

bias ûi = bias µ̃K(xi, h) +
λ

ηc
bias µ̃L(xi, g) + o

(
λg2
)

+ o(λ)

=
1

2
µ′′(xi)

{
h2VK +

λ

ηc
g2VL

}
+ o(h2) + o(λ).

�

Remark 5.18 Initially the bias seems to consists of two terms. One term of the bias is due
to the data term of the minimization problem, which is bias µ̃K(xi, h). The other is due to
the smoothness term of the minimization problem, that is λ

ηc
bias µ̃L(xi, g) + o(λ).

But since g → 0 we have λ
ηc

bias µ̃L(xi, g)→ 0 whatever λ is, that is, the contribution of

the smoothness term is reduced to the term o(λ).

5.6.3 The Variance Term

We recall the Fourier transforms of K and L from (1.13), that is

L̂(ω) =

∫
L(z)e−iωzdz and K̂(ω) =

∫
K(z)e−iωzdz.

From (A1) K and L are symmetric and integrate to 1, hence K̂ and L̂ are real-valued and
uniformly bounded in absolute value by 1.

Using Plancherel’s theorem and the convolution theorem (for example see [26]) we get

L∗(k+`)
g ∗Kh ∗Kh(0) =

1

2π

∫
L̂k+`(gω)K̂2(hω)dω. (5.18)
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To get the variance term it will be easier to use the form obtained in (5.14).

Theorem 5.19 (QRLHM Variance) Let the model (2.1) hold. Let ρ be the modified
Huber function given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume
(A2) and (E1). For N → ∞, let h → 0, g → 0 and λ → 0 such that h ∼ constant N−1/5

and Ng4 →∞. Then, with t chosen as the smallest integer satisfying

λt+1 = O

(
1

N

)
,

we have for all xi ∈ [max(2h, g) + (t+ 1)g, 1−max(2h, g)− (t+ 1)g], that:

var ûi =
σ2
c

Nh
Q

(
g

h
,
λ

ηc

)
+ o(λ2) + o

(
λ√
Nh

)
,

where

Q

(
b,
λ

ηc

)
=

1

2π

∫ (
K̂(ω)

1 + λ
ηc
− λ

ηc
L̂(ωb)

)2

dω =
1

2π

∫
K̂2(ω)dω +O(λ).

Proof. We write the QRLHM-estimate as in (5.14), i.e.

ûi = (1− δ)
t∑

n=0

δnµ̃n+1(xi, h, g) +RN,i = MN,i +RN,i.

From Cauchy-Schwarz inequality

var ûi = varMN,i + varRN,i + 2 cov (MN,i, RN,i)

≤ varMN,i + varRN,i + 2
√

varMN,i varRN,i.

As λ→ 0 we get that δ → 0 and therefore

(1− δ)2

t∑
k,`=0

δk+` = (1− δt+1)2 → 1. (5.19)

Using the above fact along with Proposition 5.14 and (5.18) we evaluate varMN,i,

varMN,i = (1− δ)2

t∑
k=0

t∑
`=0

δk+` cov (µ̃k+1(xi, h, g), µ̃`+1(xi, h, g))

= (1− δ)2

t∑
k,`=0

δk+`

{
σ2

N
L∗(k+`)
g ∗Kh ∗Kh(0) + o

(
1

Nh

)}

=
σ2

2πN
(1− δ)2

t∑
k,`=0

δk+`

∫
L̂k+`(gω)K̂2(hω)dω + o

(
1

Nh

)
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=
σ2

2πN

∫
(1− δ)2

t∑
k,`=0

δk+`L̂k+`(gω)K̂2(hω)dω + o

(
1

Nh

)

=
σ2

2πN

∫ {
(1− δ)

t∑
k=0

δkL̂k(gω)

}2

K̂2(hω)dω + o

(
1

Nh

)
.

So, we have to calculate the following term,

(1− δ)
t∑

k=0

δkL̂k(gω) = (1− δ) 1− δt+1L̂t+1(gω)

1− δL̂(gω)

=
1− δ

1− δL̂(gω)
+
δt+2L̂t+1(gω)

1− δL̂(gω)

=
1− δ

1− δL̂(gω)
+O(δt+2),

substituting δ = λ
ηc+λ

and using that δ = O(λ) and Nλt+1 = O(1) we get,

=
1

1 + λ
ηc
− λ

ηc
L̂(gω)

+O(λt+2)

=
1

1 + λ
ηc
− λ

ηc
L̂(gω)

+O

(
λ

N

)
.

Then,

varMN,i =
σ2

2πN

∫ {
1

1 + λ
ηc
− λ

ηc
L̂(gω)

+O

(
λ

N

)}2

K̂2(hω)dω + o

(
1

Nh

)

=
σ2

2πN

∫ {
K̂(hω)

1 + λ
ηc
− λ

ηc
L̂(gω)

}2

dω +
QK

Nh
O

(
λ

N

)
+ o

(
1

Nh

)

=
σ2

2πNh

∫ {
K̂(ω)

1 + λ
ηc
− λ

ηc
L̂( g

h
ω)

}2

dω + o

(
1

Nh

)
.

Using the dominated convergence theorem, one can show that varRN,i = o(λ2), and we
have already shown that varMN,i = O

(
1
Nh

)
. Therefore,

var ûi = varMN,i + o(λ2) + o

(
λ√
Nh

)
.

�
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5.7 Consistency and Asymptotic Normality of QRLHM-Estimates

We have seen in the previous section that

mse û(xi)→ 0

for all xi ∈ [max(2h, g) + (t + 1)g, 1 − max(2h, g) − (t + 1)g]. Hence, we have pointwise
consistency.

We have seen in Chapter 2 that the LHM-estimate has an asymptotic normal distribution,
that is,

√
Nh

(
µ̃K(x, h)− µ(x)− 1

2
h2µ′′(x)VK√

σ2
cQK

)
L−→N (0, 1)

for all x ∈ [h, 1− h], where

σ2
c =

σ2
M

η2
c

=
c2(1− η)

η2
+

1

η2

∫ c

−c
y2pε(y)dy.

Our next goal is to prove that the QRLHM-estimate has the same asymptotic distribution.

From (5.14), the QRLHM-estimate can be written as

ûi = (1− δ)
t∑

n=0

δnµ̃n+1(xi, h, g) + op(λ).

for all xi ∈ [max(2h, g) + (t+ 1)g, 1−max(2h, g)− (t+ 1)g].

We will use these two results to show that

û(xi)− E û(xi)√
var û(xi)

L−→N (0, 1) for N →∞.

for all xi ∈ [max(2h, g) + (t+ 1)g, 1−max(2h, g)− (t+ 1)g].

Theorem 5.20 (QRLHM Asymptotic Normality 1) Let the model (2.1) hold. Let ρ
be the modified Huber function given by (2.11). Assume (A1) a)-c) for the kernels K and
L and assume (A2) and (E1). Suppose that

(1) h→ 0 as N →∞ such that h ∼ constant N−1/5,

(2) g → 0 as N →∞ such that Ng4 →∞, and

(2) λ→ 0 as N →∞ such that λ
√
Nh = O(1).

Then, with t chosen as the smallest integer satisfying

λt+1 = O

(
1

N

)
,
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we have

√
Nh

 û(xi)− µ(xi)− 1
2
h2µ′′(xi)VK − 1

2
λ
ηc
g2µ′′(xi)VL√

σ2
cQ
(
g
h
, λ
ηc

)
 L−→N (0, 1),

for all xi ∈ [max(2h, g) + (t+ 1)g, 1−max(2h, g)− (t+ 1)g].

Before proving the above theorem we need the following lemma.

Lemma 5.21 Let the model (2.1) hold. Let ρ be the modified Huber function given by (2.11).
Assume (A1) a)-c) for the kernels K and L and assume (A2) and (E1). For N → ∞, let
h → 0, g → 0 and λ → 0 such that h ∼ constant N−1/5 and Ng2 → ∞. Then for all
n ∈ {1, ..., t}

δ
√
Nh

(
µ̃n+1(x, h, g)− E µ̃n+1(x, h, g)

)
P−→ 0,

for all x ∈ [h+ tg, 1− h− tg], where δ = λ
ηc+λ

.

Proof. We first prove the lemma for n = 1. From the asymptotic normality of the LHM-
estimate and Slutsky’s theorem, we have the following,

δ
√
Nh

(
µ̃2(x, h, g)− E µ̃2(x, h, g)

)
=

1

N

N∑
j=1

Lg(x− xj) δ
√
Nh

(
µ̃K(xj, h)− E µ̃K(xj, h)

)

=
1

N

N∑
j=1

Lg(x− xj) op(1) =

(
1 +O

(
1

Ng2

))
· op(1)

= op(1).

Now recursively for any n ∈ {2, ..., t} we have

δ
√
Nh

(
µ̃n+1(x, h, g)− E µ̃n+1(x, h, g)

)
=

1

N

N∑
j=1

Lg(x− xj) δ
√
Nh

(
µ̃n(xj, h, g)− E µ̃n(xj, h, g)

)

=
1

N

N∑
j=1

Lg(x− xj) op(1) =

(
1 +O

(
1

Ng2

))
· op(1)

= op(1).
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�
Proof of Theorem 5.20. The proof is based on the asymptotic normality of the LHM-

estimate (Theorem 2.24), on (5.14) and on Slutsky’s theorem.

From (5.14) and the assumption λ
√
Nh = O(1)

ûi = (1− δ)
t∑

n=0

δnµ̃n+1(xi, h, g) + op

(
1√
Nh

)
.

Now using the previous lemma and Slutsky’s theorem

√
Nh

(
ûi − E ûi√
σ2
cQK

)
= (1− δ)

t∑
n=0

δn
√
Nh

(
µ̃n+1(xi, h, g)− E µ̃n+1(xi, h, g)√

σ2
cQK

)
+ op(1)

= (1− δ)
√
Nh

(
µ̃K(xi, h)− E µ̃K(xi, h)√

σ2
cQK

)

+ (1− δ)
t∑

n=1

δn−1op(1) + op(1)

L−→N (0, 1).

Hence,

√
Nh

 û(xi)− µ(xi)− 1
2
h2µ′′(xi)VK − 1

2
λ
ηc
g2µ′′(xi)VL√

σ2
cQ
(
g
h
, λ
ηc

)


=
√
Nh

(
ûi − E ûi + o(h2) + o(λ)√

σ2
cQK

)
·
√
QK√

Q
(
g
h
, λ
ηc

)
L−→N (0, 1),

since √
QK√

Q
(
g
h
, λ
ηc

) → 1.

�

5.8 The Optimal Choice of the Parameters

We present now some remarks regarding the optimal choice of h, g, λ, and t. These remarks
are derived from the asymptotic normality result of the pointwise QRLHM-estimate.
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5.8.1 The Optimal Choice of h

The choice of the local optimal h has already been discussed in Section 2.7, it was

hopt(x) ∼ constant N−1/5.

5.8.2 The Optimal Choice of λ

For proving asymptotic normality we have assumed that

λ = O

(
1√
Nh

)
.

This assumption is also necessary to have the term

σ2
c

Nh
Q

(
g

h
,
λ

ηc

)
as the dominant part of the variance term.

Using this assumption and the local optimal choice of h we get

λopt(x) ∼ constant N−2/5.

5.8.3 The Optimal Choice of t

Throughout the work we have assumed that t should be chosen as the smallest positive
integer satisfying

λt+1 = O

(
1

N

)
.

Using the local optimal choice of λ we get

topt = 2.

5.8.4 The Optimal Choice of g

Comparing the bandwidth g to the other bandwidth h we may have

(1) g = h, (2) g < h, (3) g > h.

Equivalently, we may consider the cases

(1) g ∼ h, (2) g = o(h), (3) h = o(g).

From Theorem 5.19 we get

Q

(
g

h
,
λ

ηc

)
=

1

2π

∫ (
K̂(ω)

1 + λ
ηc
− λ

ηc
L̂( g

h
ω)

)2

dω =
1

2π

∫
K̂2(ω)dω +O(λ) = QK +O(λ).
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If we assume that h = o(g) then L̂
(
g
h
ω
)

diverges, which is undesirable. Hence, we con-
centrate on

g ∼ h and g = o(h),

that is,
gopt(x) ∼ constant N−1/5 or gopt(x) = o(N−1/5).

Along with the assumption Ng4 →∞ it is easier to take the first argument, i.e.

gopt(x) ∼ constant N−1/5.

We have already seen that the contribution of the smoothness term to the bias is described
by o(λ). Similarly, we can see that the bias (which is due to the smoothness term) plays
asymptotically no role in the asymptotic normality of the QRLHM-estimate if λ was chosen
such that λ

√
Nh = O(1), i.e.

√
Nh

1

2

λ

ηc
g2µ′′(xi)VL → 0, while

√
Nh

1

2
h2µ′′(xi)VK → constant 6= 0.

5.8.5 Rewriting the Asymptotic Normality Result

Using the remarks above we will now rewrite the asymptotic normality result as follows.

Theorem 5.22 (QRLHM Asymptotic Normality 2) Let the model (2.1) hold. Let ρ
be the modified Huber function given by (2.11). Assume (A1) a)-c) for the kernels K and
L and assume (A2) and (E1). Suppose that

(1) h→ 0 as N →∞ such that h ∼ constant N−1/5,

(2) g → 0 as N →∞ such that g ∼ constant N−1/5, and

(2) λ→ 0 as N →∞ such that λ ∼ constant N−2/5.

Then, for all xi ∈ [5h, 1− 5h] we have

√
Nh

(
û(xi)− µ(xi)− 1

2
h2µ′′(xi)VK√

σ2
cQK

)
L−→N (0, 1).

5.9 Interpolating QRLHM-Estimates

So far, the QRLHM estimate was only evaluated for the grid points xi, i = 1, . . . , N . However,
it would be more interesting if we could extend our estimate for any x ∈ [0, 1].

One way to do so is by interpolating the data set {(xi, ûi) : i = 1, . . . , N} in the following
manner,
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Piecewise constant interpolation:

û(x) = ûi for xi−1 < x ≤ xi, i = 1, . . . , N, (5.20)

where xi = i
N

for i = 1, . . . , N and x0 = 0.

The piecewise constant interpolation is the simplest method of interpolating images. Of
course there are methods which give better results but the main reason for choosing this
interpolation scheme is that it makes further calculations easier.

5.10 Interpolated QRLHM-Estimates: Consistency and Asymp-
totic Normality

In this section we will see that under our assumptions the interpolated version of the QRLHM-
estimate is consistent and asymptotically normal.

Asymptotic Normality

Using the interpolation scheme given above, for any x ∈ (0, 1] we have

û(x) = û(xk) for some k ∈ {1, . . . , N} such that |x− xk| ≤
1

N
.

Theorem 5.23 (QRLHM Asymptotic Normality 3) Let the model (2.1) hold. Let ρ
be the modified Huber function given by (2.11). Assume (A1) a)-c) for the kernels K and
L and assume (A2) and (E1). Suppose that

(1) h→ 0 as N →∞ such that h ∼ constant N−1/5,

(2) g → 0 as N →∞ such that g ∼ constant N−1/5, and

(3) λ→ 0 as N →∞ such that λ ∼ constant N−2/5.

Then, for all x ∈ [5h+ 1
N
, 1− 5h− 1

N
] we have

√
Nh

(
û(x)− µ(x)− 1

2
h2µ′′(x)VK√

σ2
cQK

)
L−→N (0, 1).

Proof. Let x ∈ [5h+ 1
N
, 1− 5h− 1

N
], then

û(x) = û(xk) for some k ∈ {1, . . . , N} such that |x− xk| ≤
1

N
,

i.e. xk ∈ [5h, 1− 5h].
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We decompose the quotient above as follows,

√
Nh

(
û(x)− µ(x)− 1

2
h2µ′′(x)VK√

σ2
cQK

)

=
√
Nh

(
û(xk)− µ(xk)− 1

2
h2µ′′(xk)VK√

σ2
cQK

)

+
√
Nh

(
µ(xk)− µ(x)√

σ2
cQK

)

+
1

2

√
Nhh2VK

(
µ′′(xk)− µ′′(x)√

σ2
cQK

)
.

From Theorem 5.22,

√
Nh

(
û(xk)− µ(xk)− 1

2
h2µ′′(xk)VK√

σ2
cQK

)
L−→N (0, 1).

From (A2) a)-b) we get that µ is Lipschitz continuous, hence

√
Nh

∣∣∣∣∣µ(xk)− µ(x)√
σ2
cQK

∣∣∣∣∣ ≤ √Nh Cµ |xk − x|√
σ2
cQK

≤
√
h

N

Cµ√
σ2
cQK

N→∞−→ 0.

From (A2) b) (µ′′ is Hölder continuous, β > 0) and h = O(N−1/5) we have

1

2

√
Nhh2VK

∣∣∣∣∣µ′′(xk)− µ′′(x)√
σ2
cQK

∣∣∣∣∣ ≤ 1

2

√
Nhh2VK

H |xk − x|β√
σ2
cQK

≤ 1

2

√
Nhh2VK

HN−β√
σ2
cQK

N→∞−→ 0.

Combining the three results above, using Slutsky’s theorem completes the proof. �

Consistency

Using the previous theorem we may write

û(x) = µ(x) +
1

2
h2µ′′(x)VK +Op

(
1√
Nh

)
= µ(x) +O(h2) +Op

(
1√
Nh

)
,

and hence,

û(x)
P−→ µ(x)

for all x ∈ [5h+ 1
N
, 1− 5h− 1

N
].
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5.11 Interpolated QRLHM-Estimates: Uniform Consistency

In this section we will see that under our assumptions the interpolated version of the QRLHM-
estimate is uniformly consistent.

Theorem 5.24 (QRLHM Interpolated) Let the model (2.1) hold. Let ρ be the modified
Huber function given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume
(A2) and (E1). For N → ∞, let h → 0, g → 0 and λ → 0 such that h ∼ constant N−1/5

and Ng2 →∞. Then, with t chosen as the smallest integer satisfying

λt+1 = O

(
1

N

)
,

we have uniformly in x ∈ [max(h, g) + (t+ 1)g + 1
N
, 1−max(h, g)− (t+ 1)g − 1

N
], that:

û(x) = (1− δ)
t∑

n=0

δnµ̃n+1(x, h, g) + op(1) (5.21)

where δ = λ
ηc+λ

.

Proof. Let x ∈ [max(h, g) + (t+ 1)g + 1
N
, 1−max(h, g)− (t+ 1)g − 1

N
], then

û(x) = û(xk) for some k ∈ {1, . . . , N} such that |x− xk| ≤
1

N
,

i.e. xk ∈ [max(h, g) + (t + 1)g, 1−max(h, g)− (t + 1)g]. Then, using (5.16) we have for all
n ∈ {0, . . . , t} that

|µ̃n+1(x, h, g)− µ̃n+1(xk, h, g)| ≤ |µ̃n+1(xk, h, g)− µ(xk)|
+ |µ(xk)− µ(x)|
+ |µ(x)− µ̃n+1(x, h, g)|

= op(1) + o(1) + op(1),

uniformly in x ∈ [max(h, g) + (t+ 1)g + 1
N
, 1−max(h, g)− (t+ 1)g − 1

N
] and

û(x) = û(xk) = (1− δ)
t∑

n=0

δnµ̃n+1(xk, h, g) + op(λ)

= (1− δ)
t∑

n=0

δnµ̃n+1(x, h, g) + op(1)

uniformly in x. �
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Theorem 5.25 (QRLHM UC) Let the model (2.1) hold. Let ρ be the modified Huber
function given by (2.11). Assume (A1) a)-c) for the kernels K and L and assume (A2)
and (E1). For N → ∞, let h → 0, g → 0 and λ → 0 such that h ∼ constant N−1/5 and
Ng2 →∞. Then, with t chosen as the smallest integer satisfying

λt+1 = O

(
1

N

)
,

we have

sup
x∈∆
|û(x)− µ(x)| = op(1) (5.22)

where ∆ = [max(h, g) + (t+ 1)g + 1
N
, 1−max(h, g)− (t+ 1)g − 1

N
].

Proof. Let x ∈ ∆ then using Corollary 3.8

sup
x
|û(x)− µ̃(x)| ≤ sup

x

∣∣∣∣∣û(x)− (1− δ)
t∑

n=0

δnµ̃n+1(x, h, g)

∣∣∣∣∣
+ sup

x

∣∣∣∣∣µ̃(x)− (1− δ)
t∑

n=0

δnµ̃n+1(x, h, g)

∣∣∣∣∣
≤ op(1) + sup

x
|µ̃(x)− (1− δ)µ̃(x)|+ δ sup

x

∣∣∣∣∣(1− δ)
t∑

n=1

δn−1µ̃n+1(x, h, g)

∣∣∣∣∣
= op(1) +Op(δ) +Op(δ)

= op(1).

Using Corollary 3.8 again

sup
x
|û(x)− µ(x)| ≤ sup

x
|û(x)− µ̃(x)|+ sup

x
|µ̃(x)− µ(x)|

= op(1) + op(1)

= op(1).

�



Chapter 6

Huber M-Estimates with Localization
and Convex Regularization
(CRLHM-Estimates)

In this chapter, we again consider M-smoothers with regularization. We go through the
results we obtained in Chapter 5 modifying the smoothness loss function (i.e. the tonal
weight function of the smoothness term) in (5.1) from a quadratic function to a convex
function (which is not necessarily quadratic). Finally, we will see some examples from the
convex regularization class of functions, including nonlinear regularization, and total variation
regularization.

6.1 General Setup

We recall that our data (xj, fj), j = 1, . . . , N, come from the nonparametric regression model:

fj = µ(xj) + εj, j = 1, . . . , N,

where εj ∼ i. i. d. (0, σ2), and xj = j
N

from an equidistant grid in the unit interval [0, 1].

Using the general approach proposed by Mrázek et al. [25], we now consider the problem:

QS(u1, . . . , uN) =
N∑

i,j=1

ρD(ui − fj)Kh(xi − xj)

+
λ

2

N∑
i,j=1

ρS(ui − uj)Lg(xi − xj) = min
u1,...,uN

!

(6.1)

where the kernels K and L are nonnegative, symmetric functions on R, the bandwidths
h, g > 0, and the regularization parameter λ ≥ 0.

83
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Here, we use the modified Huber function (cf. Chapter 5) as ρD, i.e.

ρD(u) = ρ(u) :=



{
1
2
u2, |u| ≤ c,

c|u| − 1
2
c2, |u| > c,

c ≥ 1,

{
1
2c
u2, |u| ≤ c,

|u| − 1
2
c, |u| > c,

c ≤ 1,

and we assume that the smoothness loss function ρS satisfies the following assumptions

(S1)


a) ρS is symmetric around zero.

b) ρS is convex.

c) ρ′S is Lipschitz continuous with Lipschitz constant Cρ′S .

d) ρS(0) = 0, ρ′S(0) = 0 and ρ′′S(0) = constant 6= 0.

Remark 6.1 Mark that, since ρS is convex and continuous then its second derivative exists
almost everywhere and is nonnegative (see Udrişte [35], page 73).

Mark also that, since ρ′S is Lipschitz continuous then it is almost everywhere differentiable
and the derivative is bounded (where it exists).

The solution ûS = (ûS1 , . . . , û
S
N)T of problem (6.1) estimates µ = (µ(x1), . . . , µ(xN))T and

is called the convex regularized local Huber M-estimate, abbreviated as the CRLHM-estimate.
Special cases of the CRLHM-estimate are the LHM-estimate and QRLHM-estimate.

Indeed, all results in Chapter 5 that do not contain any treatment of the function ρS are
still valid in the general context. Our goal in this chapter is to rewrite the results that were
proven in the previous chapter (for ρS(u) = u2/2) for a general ρS satisfying assumptions
(S1).

6.2 Notation and Auxiliary Results

In this section we will rewrite some results regarding the gradient vector and the inverse of
the Hessian matrix of the energy functional QS (which is Q using ρS as the tonal weight
function).

The gradient vector and its Jacobian are written as

∇QS(u) = (QS
1 (u), . . . , QS

N(u))T and ∇2QS(u) =
(
QS
i,`(u)

)
i,`
,

where

QS
i (u) :=

∂QS(u)

∂ui
=

N∑
j=1

ρ′D(ui − fj)Kh(xi − xj) + λ
N∑
j=1

ρ′S(ui − uj)Lg(xi − xj),

QS
ii(u) :=

∂2Q(u)

∂u2
i

=
N∑
j=1

ρ′′D(ui − fj)Kh(xi − xj) + λ

N∑
j=1
j 6=i

ρ′′S(ui − uj)Lg(xi − xj),
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QS
`i(u) :=

∂2Q(u)

∂u`∂ui
= −λρ′′S(u` − ui)Lg(xi − x`), ` 6= i.

for i, ` = 1, . . . , N .
As in Chapter 5 we define

GS :=
∇QS(µ̃)

N
and JS :=

∇2QS(µ̃)

N
= P̃ S − λΛS (6.2)

where for i, ` = 1, . . . , N

P̃ S
i,` =

 1
N

N∑
j=1

ρ′′D(µ̃i − fj)Kh(xi − xj) + λ
N

N∑
j=1

ρ′′S(µ̃i − µ̃j)Lg(xi − xj), i = `,

0, i 6= `,

(6.3)

and (using the symmetry of ρ′′S)

ΛS
i,` =

1

N
ρ′′S(µ̃i − µ̃`)Lg(xi − x`). (6.4)

Mark that using a quadratic smoothness loss function, i.e. ρS(u) = 1
2
u2, the matrices P̃ S

and ΛS coincide with the matrices P̃ and Λ of Section 5.3.
Throughout the text we will use the following abbreviations,

QS
i = QS

i (µ̃) =
∂QS(u)

∂ui

∣∣∣∣
u=µ̃

and QS
i,` = QS

i,`(µ̃) =
∂2QS(u)

∂u`∂ui

∣∣∣∣
u=µ̃

.

Before evaluating the norms of the gradient vector and the inverse of the Hessian matrix
we present some useful lemmas. These lemmas will help us in interchanging expressions
involving the general ρS with the already treated expressions (i.e. involving the quadratic
ρS).

Lemma 6.2 Let the model (2.1) hold. Let ρD be the modified Huber function given by (2.11)
and let ρS satisfy (S1). Let K and L satisfy (A1) a)-c). Let µ satisfy (A2). Let εj satisfy
(E1) a)-b). For N →∞, let h→ 0, g → 0 such that Nh2 →∞ and Ng2 →∞. Then,

λ

N

N∑
j=1

ρ′S(µ̃i − µ̃j)Lg(xi − xj) = ρ′′S(0)
λ

N

N∑
j=1

(µ̃i − µ̃j)Lg(xi − xj) + op (λ)

for all xi ∈ [max(h, g), 1−max(h, g)], where λS = λρ′′S(0).

Proof. From Theorem 2.12 we get that for all xi ∈ [h, 1− h]

µ̃K(xi, h)− µ(xi) = op (1) . (6.5)

That is, for all xi, xj ∈ [h, 1− h]

µ̃i − µ̃j = µi − µj + op(1), (6.6)
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and if |xi − xj| ≤ g then assumptions (A2) imply that

µ̃i − µ̃j = O(g) + op(1) = op(1) (6.7)

as N →∞, h→ 0, g → 0 such that Nh2 →∞.
Since ρ′S is differentiable almost everywhere and ρ′′S(0) exists, we expand ρ′S(µ̃i−µ̃j) around

zero, then for all xi, xj ∈ [h, 1− h] such that |xi − xj| ≤ g,

ρ′S(µ̃i − µ̃j) = ρ′S(0) + (µ̃i − µ̃j)ρ′′S(0) + oa.s. (µ̃i − µ̃j)
= (µ̃i − µ̃j)ρ′′S(0) + op (1) .

Therefore, using Lemma 2.3 for the kernel L, we have

λ

N

N∑
j=1

ρ′S(µ̃i − µ̃j)Lg(xi − xj)

= ρ′′S(0)
λ

N

N∑
j=1

(µ̃i − µ̃j)Lg(xi − xj) + op(1)
λ

N

N∑
j=1

Lg(xi − xj)

= ρ′′S(0)
λ

N

N∑
j=1

(µ̃i − µ̃j)Lg(xi − xj) + op(λ)

as N →∞, h→ 0, g → 0 such that Nh2 →∞ and Ng2 →∞.
�

Proposition 6.3 (Norm of GS) Let the model (2.1) hold. Let ρD be the modified Huber
function given by (2.11) and let ρS satisfy (S1). Assume (A1) a)-c) for the kernels K and L
and assume (A2) and (E1). For N →∞, let h→ 0 and g → 0 such that h ∼ constant N−1/5

and Ng2 →∞. Then,
‖GS‖ = op(λ).

for x1, . . . , xN ∈ [max(h, g), 1−max(h, g)].

Proof. From the Lipschitz continuity of ρ′S, and using the norm defined in (4.5) we have

‖GS‖ = ‖GS∗‖`∞(R) = sup
i∈N
|GS∗

i | = sup
1≤i≤N

∣∣GS
i

∣∣ = sup
1≤i≤N

∣∣∣∣QS
i

N

∣∣∣∣
= sup

1≤i≤N

∣∣∣∣∣ λN
N∑
j=1

ρ′S(µ̃i − µ̃j)Lg(xi − xj)

∣∣∣∣∣
≤ Cρ′S sup

1≤i≤N

∣∣∣∣∣ λN
N∑
j=1

|µ̃i − µ̃j|Lg(xi − xj)

∣∣∣∣∣
(using Proposition 5.3)

= op(λ)

for x1, . . . , xN ∈ [max(h, g), 1−max(h, g)]. �
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We now present some results regarding the norms of the matrices (P̃ S)−1, (P̃ S)−1ΛS and
(JS)−1. These results will be helpful tools for getting the CRLHM-estimate.

Proposition 6.4 (Norm of (P̃ S)−1) Let the model (2.1) hold. Let ρD be the modified Hu-
ber function given by (2.11) and let ρS satisfy (S1). Let K and L satisfy (A1) a)-c). Let µ
satisfy (A2). Let εj satisfy (E1) a)-b). For N →∞, let h→ 0 such that Nh2 →∞. Then,

‖(P̃ S)−1‖ = Oa.s.(1)

for x1, . . . , xN ∈ [h, 1− h], g ≥ 0, and λ ≥ 0.

Proof. Since L is nonnegative and ρ′′S is nonnegative almost everywhere

‖(P̃ S)−1‖ = sup
1≤i≤N

∣∣∣∣∣∣∣∣∣
1

1
N

N∑
j=1

ρ′′D(µ̃i − fj)Kh(xi − xj) + λ
N

N∑
j=1

ρ′′S(µ̃i − µ̃j)Lg(xi − xj)

∣∣∣∣∣∣∣∣∣
a.s.

≤ sup
1≤i≤N

∣∣∣∣∣∣∣∣∣
1

1
N

N∑
j=1

ρ′′(µ̃i − fj)Kh(xi − xj)

∣∣∣∣∣∣∣∣∣
(Using Lemma 5.6)

a.s.

≤ 2

ηc

for x1, . . . , xN ∈ [h, 1− h]. �

Proposition 6.5 (Norm of (P̃ S)−1ΛS) Let the model (2.1) hold. Let ρD be the modified
Huber function given by (2.11) and let ρS satisfy (S1). Let K and L satisfy (A1) a)-c). Let
µ satisfy (A2). Let εj satisfy (E1) a)-b). For N → ∞, let h → 0, g → 0 and λ → 0 such
that Nh2 →∞ and Ng2 →∞. Then,

‖(P̃ S)−1ΛS‖ = Oa.s.(1), ‖λ(P̃ S)−1ΛS‖ = oa.s.(1), and ‖λ(P̃ S)−1ΛS‖ < 1 a.s.

for x1, . . . , xN ∈ [max(h, g), 1−max(h, g)].

Proof. Since L is nonnegative and ρ′′S is nonnegative almost everywhere, and using Lemma
5.6 we get that

‖(P̃ S)−1ΛS‖ = sup
1≤i≤N

N∑
j=1

|ΛS
i,j|
|P̃ S
i,i|

= sup
1≤i≤N

1
N

N∑
j=1

ρ′′S(µ̃i − µ̃j)Lg(xi − xj)∣∣∣∣∣ 1
N

N∑
j=1

ρ′′D(µ̃i − fj)Kh(xi − xj) + λ
N

N∑
j=1

ρ′′S(µ̃i − µ̃j)Lg(xi − xj)

∣∣∣∣∣
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a.s.

≤ 2

ηc

(
sup
u
ρ′′S(u)

)
·

(
sup

1≤i≤N

1

N

N∑
j=1

Lg(xi − xj)

)
(Using Remark 6.1 and Lemma 2.3)

= Oa.s.(1)

for x1, . . . , xN ∈ [max(h, g), 1−max(h, g)].

Therefore,

‖(P̃ S)−1ΛS‖ = Oa.s.(1) and ‖λ(P̃ S)−1ΛS‖ a.s.−→ 0.

Since ρ′′D(u) ≥ 0 for all u ∈ R \ {−c, c}, we have for all i = 1, . . . , N,

1

N

N∑
j=1

ρ′′D(µ̃i − fj)Kh(xi − xj) ≥ 0

almost surely with respect to the probability measure of εj.

That is, for all i we have almost surely that

λ
N

N∑
j=1

ρ′′S(µ̃i − µ̃j)Lg(xi − xj)

1
N

N∑
j=1

ρ′′D(µ̃i − fj)Kh(xi − xj) + λ
N

N∑
j=1

ρ′′S(µ̃i − µ̃j)Lg(xi − xj)
≤ 1.

Therefore, ‖λ(P̃ S)−1ΛS‖ ≤ 1 almost surely. What is left to be shown is that ‖λ(P̃ S)−1ΛS‖ 6= 1
almost surely.

Consider,

P
(
‖λ(P̃ S)−1ΛS‖ = 1

)

= P

 sup
1≤i≤N

λ
N

N∑
j=1

ρ′′S(µ̃i − µ̃j)Lg(xi − xj)

1
N

N∑
j=1

ρ′′D(µ̃i − fj)Kh(xi − xj) + λ
N

N∑
j=1

ρ′′S(µ̃i − µ̃j)Lg(xi − xj)
= 1



= P


λ
N

N∑
j=1

ρ′′S(µ̃k − µ̃j)Lg(xk − xj)

1
N

N∑
j=1

ρ′′D(µ̃k − fj)Kh(xk − xj) + λ
N

N∑
j=1

ρ′′S(µ̃k − µ̃j)Lg(xk − xj)
= 1, for some k


= P

(
1

N

N∑
j=1

ρ′′D(µ̃k − fj)Kh(xk − xj) = 0, for some k

)
= 0,
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since
1

N

N∑
j=1

ρ′′D(µ̃k − fj)Kh(xk − xj) ≥
1

2
ηc a.s.

uniformly in xk ∈ [h, 1− h]. �

Proposition 6.6 (Norm of (JS)−1) Let the model (2.1) hold. Let ρD be the modified Hu-
ber function given by (2.11) and let ρS satisfy (S1). Let K and L satisfy (A1) a)-c). Let µ
satisfy (A2). Let εj satisfy (E1) a)-b). For N →∞, let h→ 0, g → 0 and λ→ 0 such that
Nh2 →∞ and Ng2 →∞. Then

‖(JS)−1‖ = Oa.s.(1)

for x1, . . . , xN ∈ [max(h, g), 1−max(h, g)].

Proof. Using Neumann series and Propositions 6.4 and 6.5 we get

‖(JS)−1‖ = ‖(P̃ S − λΛS)−1‖ ≤ ‖(IN − λ(P̃ S)−1ΛS)−1‖ · ‖(P̃ S)−1‖
a.s.

≤ 1

1− ‖λ(P̃ S)−1ΛS‖
· ‖(P̃ S)−1‖

=
1

1 + oa.s.(1)
·Oa.s.(1) = Oa.s.(1).

�

6.3 Vector and Component Form of CRLHM-Estimates

The following theorem is very similar to Theorem 5.10.

Theorem 6.7 (CRLHM Vector) Let the model (2.1) hold. Let ρD be the modified Huber
function given by (2.11). Let ρS satisfy (S1). Assume (A1) a)-c) for the kernels K and L
and assume (A2) and (E1) a)-b). For N → ∞, let h → 0, g → 0 and λ → 0 such that
Nh2 → ∞ and Ng2 → ∞. If ∇2QS(µ̃) is invertible, then the solution of problem (6.1) is
given by,

ûS = µ̃− [∇2QS(µ̃)]−1∇QS(µ̃) + oa.s.

(
1

N

)
(6.8)

for x1, . . . , xN ∈ [max(h, g), 1−max(h, g)].

Proof. Using a Taylor series expansion of the gradient vector∇QS around µ̃ or equivalently
using the definition of the derivative for ∇QS as a function from RN to RN , we have

∇QS(û) = ∇QS(µ̃) +∇2QS(µ̃)(ûS − µ̃) + o
(
‖ûS − µ̃‖

)
,
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that is,

‖∇QS(û)−∇QS(µ̃)−∇2QS(µ̃)(ûS − µ̃)‖
‖ûS − µ̃‖

→ 0 as ûS → µ̃.

Since ûS is the solution of problem (6.1) then ∇QS(ûS) = 0N×1.

Letting λ→ 0 implies that
‖ûS − µ̃‖ → 0.

Using Proposition 6.6 we have

N
∥∥ûS − µ̃+ (JS)−1GS

∥∥ = N
∥∥(JS)−1{JS(ûS − µ̃) +GS}

∥∥
≤ N‖(JS)−1‖ · ‖JS(ûS − µ̃) +GS‖
= ‖(JS)−1‖ · ‖∇2QS(µ̃)(ûS − µ̃) +∇QS(µ̃)‖

= ‖(JS)−1‖ · ‖∇
2QS(µ̃)(ûS − µ̃) +∇QS(µ̃)‖

‖ûS − µ̃‖
· ‖ûS − µ̃‖

= Oa.s.(1) · o(1) · o(1) = oa.s.(1),

that is,

ûS = µ̃− [∇2QS(µ̃)]−1∇QS(µ̃) + oa.s.

(
1

N

)
.

�

The following theorem is very similar to Theorem 5.11.

Theorem 6.8 (CRLHM Component 1) Let the model (2.1) hold. Let ρD be the modi-
fied Huber function given by (2.11). Let ρS satisfy (S1). Assume (A1) a)-c) for the kernels
K and L and assume (A2) and (E1). For N →∞, let h→ 0, g → 0 and λ→ 0 such that
h ∼ constant N−1/5 and Ng2 →∞. Then, with t chosen as the smallest integer satisfying

λt+1 = O

(
1

N

)
, (6.9)

we have uniformly in xi ∈ [max(h, g) + tg, 1−max(h, g)− tg], that:

ûSi = µ̃i −
1

ηc + λS

QS
i

N
− 1

ηc + λS

t∑
n=1

(
λ

ηc + λS

)n
1

Nn

∑
j1,...,jn

Lg(xi − xj1) · · ·

· · ·Lg(xjn−1 − xjn)
QS
jn

N
+RN,i

where µ̃i = µ̃K(xi, h), QS
i = ∂QS(u)

∂ui

∣∣∣
u=µ̃

, λS = λρ′′S(0), and RN,i = op(λ).
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Proof. Using Neumann series and Propositions 6.4 and 6.5 we get

1

λt+1

∥∥∥∥∥(JS)−1 −
t∑

j=0

(λ(P̃ S)−1ΛS)j(P̃ S)−1

∥∥∥∥∥
=

1

λt+1

∥∥∥∥∥(I − λ(P̃ S)−1ΛS)−1(P̃ S)−1 −
t∑

j=0

(λ(P̃ S)−1ΛS)j(P̃ S)−1

∥∥∥∥∥
a.s.

≤ 1

λt+1

∥∥∥∥∥
∞∑
j=0

(λ(P̃ S)−1ΛS)j −
t∑

j=0

(λ(P̃ S)−1ΛS)j

∥∥∥∥∥ · ∥∥∥(P̃ S)−1
∥∥∥

≤ 1

λt+1
‖(P̃ S)−1‖

∞∑
j=t+1

‖λ(P̃ S)−1ΛS‖j

=
1

λt+1
‖(P̃ S)−1‖ · ‖λ(P̃ S)−1ΛS‖t+1

∞∑
j=0

‖λ(P̃ S)−1ΛS‖j

= ‖(P̃ S)−1‖ · ‖(P̃ S)−1ΛS‖t+1 · 1

1− ‖λ(P̃ S)−1ΛS‖

= Oa.s.(1) ·Oa.s.(1) · 1

1 + oa.s.(1)

= Oa.s.(1),

that is,

(JS)−1 =
t∑

j=0

(λ(P̃ S)−1ΛS)j(P̃ S)−1 +Oa.s.(λ
t+1).

Using the previous expansion of (JS)−1 and Proposition 6.3 we get from (6.8) that

N

∥∥∥∥∥ûS − µ̃+

(
t∑

j=0

(λ(P̃ S)−1ΛS)j(P̃ S)−1

)
·GS

∥∥∥∥∥
≤ N

∥∥ûS − µ̃+ (JS)−1 ·GS
∥∥+N

∥∥∥∥∥
(

t∑
j=0

(λ(P̃ S)−1ΛS)j(P̃ S)−1

)
·GS − (JS)−1 ·GS

∥∥∥∥∥
≤ N

∥∥ûS − µ̃+ (JS)−1 ·GS
∥∥+N

∥∥∥∥∥
t∑

j=0

(λ(P̃ S)−1ΛS)j(P̃ S)−1 − (JS)−1

∥∥∥∥∥ · ‖GS‖

= oa.s.(1) +N ·Oa.s.(λ
t+1) · oa.s.(λ)

= oa.s.(1)

provided that Nλt+1 = O(1).
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Therefore,

ûS = µ̃−

(
t∑

j=0

(λ(P̃ S)−1ΛS)j(P̃ S)−1

)
∇QS(µ̃)

N
+ oa.s.

(
1

N

)
. (6.10)

After calculating the matrices, the componentwise version is,

ûSi = µ̃i −
1

P̃ S
ii

QS
i

N
− 1

P̃ S
ii

t∑
n=1

λn

Nn

∑
j1,...,jn

Lg(xi − xj1)
P̃ S
j1j1

· · ·

· · ·
Lg(xjn−1 − xjn)

P̃ S
jnjn

QS
jn

N
+ op

(
1

N

)
.

(6.11)

uniformly in xi ∈ [max(h, g) + tg, 1−max(h, g)− tg].

From Propositions 6.3 and 6.4 we have∣∣∣∣∣ 1

P̃ S
jj

QS
j

N
− 1

ηc + λS

QS
j

N

∣∣∣∣∣ =

∣∣∣∣∣ 1

P̃ S
jj

− 1

ηc + λS

∣∣∣∣∣ ·
∣∣∣∣∣QS

j

N

∣∣∣∣∣ = Oa.s.(1) · op(λ) = op(λ), (6.12)

uniformly in xj ∈ [max(h, g), 1−max(h, g)].

Finally, we use (6.12) to interchange 1
P̃S••

QS•
N

with 1
ηc+λS

QS•
N

in (6.11). �

As in Chapter 5 we will use the LHM-iterated smoothers to write the CRLHM-estimate
in a compact form as in Theorem 5.15.

Theorem 6.9 (CRLHM Component 2) Let the model (2.1) hold. Let ρD be the modi-
fied Huber function given by (2.11). Let ρS satisfy (S1). Assume (A1) a)-c) for the kernels
K and L and assume (A2) and (E1). For N →∞, let h→ 0, g → 0 and λ→ 0 such that
h ∼ constant N−1/5 and Ng2 →∞. Then, with t chosen as the smallest integer satisfying

λt+1 = O

(
1

N

)
,

we have for all xi ∈ [max(h, g) + tg, 1−max(h, g)− tg], that:

ûSi = µ̃i +
t∑

n=0

δn+1
S

(ρ′′S(0))n
ν̃n+2(xi, h, g) +RN,i (6.13)

where δS = λS
ηc+λS

and RN,i = op(λ). Moreover, if we standardize ρS such that ρ′′S(0) = 1,

then

ûSi = (1− δ)
t∑

n=0

δnµ̃n+1(xi, h, g) +RN,i (6.14)

for all xi ∈ [max(h, g) + (t+ 1)g, 1−max(h, g)− (t+ 1)g].
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In view of Theorem 5.15 and under the above assumptions we have

ûSi = ûi + op(λ) (6.15)

for all xi ∈ [max(h, g) + tg, 1−max(h, g)− tg].

Proof. From Lemmas 2.3 and 6.2 we can rewrite QS
i /N as follows

QS
i

N
=

1

N

N∑
j=1

ρ′D(µ̃i − fj)Kh(xi − xj) +
λ

N

N∑
j=1

ρ′S(µ̃i − µ̃j)Lg(xi − xj)

= ρ′′S(0)
λ

N

N∑
j=1

(µ̃i − µ̃j)Lg(xi − xj) + op(λ)

=
λS
N

N∑
j=1

Lg(xi − xj)µ̃i −
λS
N

N∑
j=1

Lg(xi − xj)µ̃j + op(λ)

= − λS {µ̃2(xi, h, g)− µ̃K(xi, h)}+O

(
λ

Ng2

)
+ op(λ)

= − λS ν̃2(xi, h, g) + op(λ)

for all xi ∈ [max(h, g), 1−max(h, g)].

Interchanging QS
• /N with λS ν̂(x•, h, g) in the ûi obtained in Theorem 6.8 we have,

ûSi = µ̃i +
λS

ηc + λS
ν̃2(xi, h, g)

+
λS

ηc + λS

t∑
n=1

(
λ

ηc + λS

)n
1

Nn

∑
j1,...,jn

Lg(xi − xj1) · · ·

· · ·Lg(xjn−1 − xjn)(µ̃2(xjn , h, g)− µ̃1(xjn , h, g))

+ op(λ)

= µ̃i +
λS

ηc + λS
ν̃2(xi, h, g)

+
λS

ηc + λS

t∑
n=1

(
λ

ηc + λS

)n
(µ̃n+2(xi, h, g)− µ̃n+1(xi, h, g))

+ op(λ)

= µ̃i + δS ν̃2(xi, h, g) +
t∑

n=1

δn+1
S

(ρ′′S(0))n
ν̃n+2(xi, h, g) + op(λ),
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and hence (6.13). Moreover, if we have ρ′′S(0) = 1 then

ûSi = µ̃i +
t∑

n=0

δn+1ν̃n+2(xi, h, g) +RN,i.

This expression is exactly the same as the expression obtained for the QRLHM-estimate in
(5.13). Therefore, (6.14) follows automatically and

ûSi = ûi + op(λ)

for all xi ∈ [max(h, g), 1−max(h, g)]. �

6.4 Conclusion

Important consequences of this result are the L2 and L1 limiting cases.

Corollary 6.10 Let the assumptions of Theorem 6.9 hold and let ρ′′S(0) = 1.

a) The L2 limiting case: If c→∞ then

ûCRLLSi = lim
c→∞

ûSi = (1− θ)
t∑

n=0

θnµ̃NW,n+1(xi, h, g) + op(λ),

for all xi ∈ [max(h, g) + (t+ 1)g, 1−max(h, g)− (t+ 1)g] where θ = λ
1+λ

.

b) The L1 limiting case: If c→ 0 such that pε(0) 6= 0 then

ûCRLLAi = lim
c→0

ûSi = (1− ζ)
t∑

n=0

ζnµ̃LAD,n+1(xi, h, g) + op(λ),

for all xi ∈ [max(h, g) + (t+ 1)g, 1−max(h, g)− (t+ 1)g] where ζ = λ
2pε(0)+λ

.

Remark 6.11 From Theorem 6.9 we see that using any function ρS that satisfies (S1) will
give an estimate that is equivalent to the estimate obtained using the quadratic ρS.

In particular (if we standardize ρ′′S(0) = 1)

ûCRLHMi = ûQRLHMi + op(λ).

Assumptions (S1) define a class of functions that both the quadratic function and the
Huber function belong to. In other words, it make no difference (asymptotically) if we are
using quadratic regularization or Huber M-type regularization.
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6.5 Examples

In practice and in addition to the data smoothing criterion, there are a number of functions
which are usually used as tonal weight function. These functions define different regulariza-
tion methods. Examples are: quadratic regularization, LAD regularization, nonlinear dif-
fusion regularization (using the Perona-Malik function), nonlinear regularization, and total
variation regularization.

In this section, we are interested in checking if these functions belong to the class of
functions defined by assumptions (S1).

We define the class of function G(S1) as follows,

ρS ∈ G(S1) ⇐⇒ ρS satisfies (S1). (6.16)

The functions used in the examples below are taken from Table 1 in [5].

6.5.1 Quadratic Regularization(Q-R)

It can be easily checked that ρS(z) = z2/2 belong to G(S1).

6.5.2 Least-Absolute Deviation Regularization (LAD-R)

To get LAD regularization, we use the modified Huber functions as the tonal weight function
in the smoothness term and and let c go to zero. It can be easily shown that the modified
Huber function belong to G(S1).

6.5.3 Nonlinear Diffusion Regularization (ND-R)

The term nonlinear diffusion regularization stands for using the Perona-Malik function as the
tonal weight function in the smoothness term. There are two versions of the Perona-Malik
function. We will have a look at both and see if they belong to G(S1).

The first version of the Perona-Malik function is given by,

Γ1(u) = γ2 log

(
1 +

u2

γ2

)
, γ > 0. (6.17)

The function is symmetric around zero ⇒ (S1) a).
The first three derivatives are given by

Γ′1(u) =
2u

1 + u2

γ2

, Γ′′1(u) =
2− 2u2

γ2(
1 + u2

γ2

)2 , and Γ′′′1 (u) =
−4u
γ2

(
3− u2

γ2

)
(

1 + u2

γ2

)3 .

Using the first derivative test for Γ′′1 we get that

− 0.25 ≤ Γ′′1(u) ≤ 2 for all u ∈ R, (6.18)
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where
Γ′′1(±

√
3γ) = −0.25 and Γ′′1(0) = 2. (6.19)

Therefore, Γ1 is not convex and hence Γ1 6∈ G(S1).
The second version of the Perona-Malik function is given by,

Γ2(u) = γ2

(
1− e−

u2

γ2

)
, γ > 0. (6.20)

The function is symmetric around zero ⇒ (S1) a).
The first three derivatives are given by

Γ′2(u) = 2ue
−u

2

γ2 , Γ′′2(u) =

(
2− 4u2

γ2

)
e
−u

2

γ2 , and Γ′′′2 (u) = − 2

γ2
u

(
6− 4u2

γ2

)
e
−u

2

γ2 .

The first derivative test for Γ′′2 implies that

− 4e−3/2 ≤ Γ′′2(u) ≤ 2 for all u ∈ R, (6.21)

where
Γ′′2(±

√
1.5γ) = −4e−3/2 ≈ −0.8925 and Γ′′1(0) = 2. (6.22)

Like Γ1, Γ2 6∈ G(S1) since Γ2 is not convex.
That is, we cannot say that nonlinear diffusion regularization (with both versions of the

Perona-Malik function) is asymptotically equivalent to quadratic regularization.

6.5.4 Nonlinear Regularization (N-R) & Total Variation Regularization (TV-R)

The term nonlinear regularization stands for using

Γ3(u) = 2γ2

(√
1 +

u2

γ2
− 1

)
, γ > 0, (6.23)

as the tonal weight function in the smoothness term. While total variation regularization
stands for using

Γ4(u) = 2
(√

u2 + γ2 − γ2
)
, γ > 0, (6.24)

instead.
But a simple calculation shows that

Γ4(u) =
1

γ
Γ3(u). (6.25)

That is, if the scaling parameter γ is fixed and non-zero, then both functions are equivalent
as regularization functions.

So, we will have a look to see if Γ3 belongs to G(S1) and consequently Γ4.
From the u2 ingredient, Γ3 is symmetric around zero ⇒ (S1) a).
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The first three derivatives of Γ3 are given by

Γ′3(u) = 2u

(
1 +

u2

γ2

)−1/2

,

Γ′′3(u) =
−2u2

γ2

(
1 +

u2

γ2

)−3/2

+ 2

(
1 +

u2

γ2

)−1/2

,

Γ′′′3 (u) =
6u3

γ4

(
1 +

u2

γ2

)−5/2

− 6u

γ2

(
1 +

u2

γ2

)−3/2

.

Using the first derivative test for Γ′′3 we get that

0 < Γ′′3(u) ≤ 2 for all u ∈ R. (6.26)

Hence, Γ3 is convex and Γ′3 is Lipschitz continuous. That is, Γ3 fulfills (S1) b) and c).
Finally,

Γ3(0) = 0, Γ′3(0) = 0, Γ′′3(0) = 2 6= 0, (6.27)

hence (S1) d) is fulfilled.
Therefore, Γ3 ∈ G(S1), and hence Γ4 ∈ G(S1).
That is, using nonlinear or total variation regularization is asymptotically equivalent to

using quadratic regularization.

6.5.5 Conclusion on Examples

From the above examples we have the following remarks.

Remark 6.12 (Huber-R, N-R, and TV-R) From the above arguments we can see that
using the Huber function or Γ3 or Γ4 as ρS will give an estimate that is equivalent to the
estimate obtained using the quadratic ρS.

Remark 6.13 (ND-R: PM I and II) Functions Γ1 and Γ2 do not belong to G(S1). That
is, we cannot say that nonlinear diffusion regularization (with both versions of the Perona-
Malik function) is asymptotically equivalent to quadratic regularization.
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Chapter 7

Simulation Study

In this chapter we do a Monte Carlo simulation study to have an idea about the performance
of several proposed solutions of problem (5.1). In this chapter, we do not aim to provide an
algorithm for solving problems like (5.1), such algorithms are given in [5] and [22]. What we
are really interested in here, is to make a comparison among different smoothers which solve
(5.1).

7.1 General Setup and Notation

We generate data {(xi, fj) : j = 1, ..., N} using the nonparametric regression model

fj = µ(xj) + εj, j = 1, . . . , N, (7.1)

where xj = j
N

are from an equidistant grid in the unit interval [0, 1].

The regression function is
µ(xj) = sin(2πxj) (7.2)

and the error terms εj follow different laws.

Using the general approach proposed by Mrázek et al. we consider

Q(u1, . . . , uN) =
N∑

i,j=1

ρ(ui − fj)Kh(xi − xj) +
λ

2

N∑
i,j=1

1

2
(ui − uj)2Lg(xi − xj) = min

u1,...,uN
!

We use the probability density function of the standard normal distribution

ϕ(x) =
1√
2π
e−x

2/2

for the kernels K and L.

99
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We use different choices for ρ, namely,

ρLS(u) =
1

2
u2, ρHM(u) =



{
1
2
u2, |u| ≤ c,

c|u| − 1
2
c2, |u| > c,

c ≥ 1,

{
1
2c
u2, |u| ≤ c,

|u| − 1
2
c, |u| > c,

c ≤ 1,

and ρLA(u) = |x|.

we will denote the solutions obtained from solving these problems by ûLS, ûHM(c), and
ûLA respectively. If λ = 0 then the solution of the problem using the quadratic function
as the data loss function is the Nadaraya-Watson kernel estimate which is asymptotically
equivalent to the Priestley-Chao kernel estimate ûPC = µ̂.

Implementation

The Implementation was done using MATLAB. ûPC was calculated directly since it has an
explicit form. The other estimates (ûLS, ûHM(c), and ûLA) were calculated be minimizing
the energy functional Q, using the MATLAB function fminunc. Different values for the
parameters h, g, λ, and c were considered.

The calculations were repeated M times; each time giving the solutions û
(k)
PC, û

(k)
LS, û

(k)
HM(c),

and û
(k)
LA where k = 1, . . . ,M . Then the average was taken, i.e. in the tables below

û∗ =
1

M

M∑
k=1

û(j)
∗ where ∗ ∈ {PC,LS,HM(c),LA}.

As a measure of quality for these estimates we will use the empirical root mean-squared
error and the empirical mean absolute deviation.

Definition 7.1 Let T = (T1, . . . , TN) be an estimate for the parameter θ = (θ1, . . . , θN) then
the empirical root mean-squared error (ermse) and the empirical mean absolute deviation
(emad) are defined as follows,

ermse(T ) =

√√√√ 1

N

N∑
i=1

(Ti − θi)2, emad(T ) =
1

N

N∑
i=1

|Ti − θi|.

Also, we will provide values for the maximum absolute deviation (maxad)

maxad(T ) = max
1≤i≤N

|Ti − θi|.

Types of Error Terms

In the simulations done here we consider two ways to study the performance of our proposed
estimates. First, we consider three different types of errors,
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(1) Pure normal error terms with E εj = 0 and var εj = 0.04,

L(εj) = N (0, 0.22)

that is
pε(x) = ϕ0,0.04(x).

(2) Mixed (or contaminated) normal error terms with E εj = 0 and var εj = 3.232,

L(εj) = B(1, 0.8)N (0, 0.22) + B(1, 0.2)N (0, 42)

that is,
pε(x) = 0.8ϕ0,0.04(x) + 0.2ϕ0,16(x).

(3) Double exponential (or Laplace) error terms with E εj = 0 and var εj = 0.08,

L(εj) = Laplace(0, 0.2)

that is,

pε(x) =
5

2
e−5|x|.

Then, we add outliers to the regression function itself and use normal error terms, i.e.

(4) Single outlier with normal error terms,

µ(x) =

{
sin(2πx), x 6= 1

2

1, x = 1
2
.

and L(εj) = N (0, 0.22).

(5) Two outliers with normal error terms,

µ(x) =


sin(2πx), x 6= 1

4
, 1

2
,

−1, x = 1
4
,

1, x = 1
2
.

and L(εj) = N (0, 0.22).

In this way, we will be able to see the robustness properties of the M-estimates and the
LA-estimates.
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7.2 Results 1: Pure Normal Error Terms

The error terms here follow the law L(εj) = N (0, 0.22), i.e.

x = [0:1/N:1]’;

e = normrnd(0,0.2,length(x),1);

In the following we summarize the results obtained for N = 100 and M = 100.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.050943 0.057118 0.057115 0.056659 0.054807 0.071585
0.03 0.01 0.1 0.048243 0.052190 0.052189 0.051515 0.049269 0.054301
0.03 0.01 2 0.048802 0.058498 0.058497 0.056078 0.053311 0.057599
0.03 0.01 40 0.050839 0.097679 0.097679 0.083246 0.073063 0.073971
0.01 0.005 20 0.040687 0.048018 0.048018 0.043411 0.041613 0.044305
0.01 0.005 40 0.037191 0.050480 0.050480 0.040870 0.037347 0.038798
0.015 0.005 40 0.037770 0.056041 0.056041 0.047909 0.041794 0.043470
0.015 0.005 80 0.040025 0.069836 0.069836 0.058016 0.049473 0.050854

Table 7.1: Pure normal error terms: ermse for ûPC, ûLS, ûHM(c) and ûLA.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.022986 0.021726 0.021722 0.021065 0.018611 0.043629
0.03 0.01 0.1 0.019968 0.017793 0.017790 0.017183 0.015176 0.017856
0.03 0.01 2 0.020386 0.022062 0.022062 0.019941 0.016878 0.019605
0.03 0.01 40 0.021661 0.075522 0.075522 0.051429 0.036414 0.037433
0.01 0.005 20 0.013889 0.015313 0.015313 0.012965 0.012517 0.014336
0.01 0.005 40 0.011357 0.017503 0.017503 0.011038 0.009547 0.010205
0.015 0.005 40 0.011806 0.020688 0.020688 0.014219 0.010987 0.012043
0.015 0.005 80 0.012498 0.035391 0.035391 0.022226 0.015086 0.015887

Table 7.2: Pure normal error terms: emad for ûPC, ûLS, ûHM(c) and ûLA.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.082638 0.147336 0.147334 0.145902 0.147825 0.169853
0.03 0.01 0.1 0.068887 0.124539 0.124537 0.122330 0.118778 0.147371
0.03 0.01 2 0.075555 0.160505 0.160505 0.148463 0.137546 0.159834
0.03 0.01 40 0.079041 0.322278 0.322278 0.264427 0.228605 0.233755
0.01 0.005 20 0.039909 0.114493 0.114494 0.092762 0.074331 0.090366
0.01 0.005 40 0.030475 0.121022 0.121024 0.086823 0.066230 0.073348
0.015 0.005 40 0.038565 0.150667 0.150667 0.117505 0.088399 0.096181
0.015 0.005 80 0.042069 0.202010 0.202010 0.156136 0.122143 0.126962

Table 7.3: Pure normal error terms: maxad for ûPC, ûLS, ûHM(c) and ûLA.
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Figure 7.1: Pure normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 0).
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Figure 7.2: Pure normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 0.1).



104 CHAPTER 7. SIMULATION STUDY

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
PC: h=0.03

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLLS: h=0.03, g=0.01, lambda=2

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLHM(1): h=0.03, g=0.01, lambda=2

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLHM(0.5): h=0.03, g=0.01, lambda=2

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLHM(0.01): h=0.03, g=0.01, lambda=2

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLLA: h=0.03, g=0.01, lambda=2

Figure 7.3: Pure normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 2).
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Figure 7.4: Pure normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 40).
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Figure 7.5: Pure normal error terms: (N,M, h, g, λ) = (100, 100, 0.01, 0.005, 20).
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Figure 7.6: Pure normal error terms: (N,M, h, g, λ) = (100, 100, 0.01, 0.005, 40).
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Figure 7.7: Pure normal error terms: (N,M, h, g, λ) = (100, 100, 0.015, 0.005, 40).
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Figure 7.8: Pure normal error terms: (N,M, h, g, λ) = (100, 100, 0.015, 0.005, 80).
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From the previous tables and figures we note the following,

1) The ermse of both ûLS and ûHM(1.00) were approximately equal.

2) The emad of both ûLS and ûHM(1.00) were approximately equal.

3) The maxad of both ûLS and ûHM(1.00) were approximately equal.

⇒ ûLS is quit close to ûHM(1.00).

4) The estimate with the lowest ermse was ûPC and then ûHM(0.01).

5) The estimate with the lowest emad was ûHM(0.01) for different λ. But, ûPC got smaller
emad values when λ was very big.

6) The smallest maxad was of ûPC then of ûHM(0.01).

⇒ ûPC is best estimate here. Another good estimate would be ûHM(0.01).
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7.3 Results 2: Mixed Normal Error Terms

The error terms here follow the law L(εj) = B(1, 0.8)N (0, 0.22) + B(1, 0.2)N (0, 42), i.e.

x = [0:1/N:1]’;

b = binornd(1,0.8,length(x),1);

e = b.*normrnd(0,0.2,length(x),1) + (1-b).*normrnd(0,4,length(x),1);

In the following we summarize the results obtained for N = 100 and M = 100.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.074307 0.075227 0.058036 0.054972 0.052522 0.064782
0.03 0.01 0.1 0.075126 0.077162 0.054044 0.050466 0.047962 0.052022
0.03 0.01 2 0.087388 0.095469 0.064980 0.059038 0.056165 0.059770
0.03 0.01 40 0.073115 0.106002 0.103856 0.088082 0.077742 0.080670
0.01 0.005 20 0.093787 0.078070 0.054820 0.046327 0.040784 0.042541
0.01 0.005 40 0.103375 0.083676 0.055600 0.047574 0.043383 0.044613
0.015 0.005 40 0.098545 0.091438 0.065016 0.054462 0.048369 0.049275
0.015 0.005 80 0.090448 0.077505 0.068145 0.057923 0.051090 0.052001

Table 7.4: Mixed normal error terms: ermse for ûPC, ûLS, ûHM(c) and ûLA.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.047879 0.049508 0.025214 0.021426 0.019562 0.034841
0.03 0.01 0.1 0.046102 0.049789 0.023985 0.019027 0.014871 0.017445
0.03 0.01 2 0.059276 0.064902 0.028925 0.022794 0.018963 0.021285
0.03 0.01 40 0.044213 0.094155 0.088858 0.060037 0.042203 0.048765
0.01 0.005 20 0.070629 0.052082 0.023938 0.016306 0.012088 0.013089
0.01 0.005 40 0.086919 0.051087 0.022428 0.015334 0.013321 0.013757
0.015 0.005 40 0.077407 0.069110 0.031228 0.021258 0.016146 0.016787
0.015 0.005 80 0.067256 0.045419 0.032590 0.021427 0.015975 0.016908

Table 7.5: Mixed normal error terms: emad for ûPC, ûLS, ûHM(c) and ûLA.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.104916 0.131995 0.146678 0.141179 0.132028 0.169280
0.03 0.01 0.1 0.113405 0.106609 0.120900 0.120215 0.113394 0.138078
0.03 0.01 2 0.192004 0.360224 0.194811 0.165734 0.166709 0.182641
0.03 0.01 40 0.115513 0.362166 0.353351 0.291899 0.256088 0.261158
0.01 0.005 20 0.261608 0.152482 0.117242 0.095657 0.069779 0.079382
0.01 0.005 40 0.257557 0.192903 0.131664 0.106623 0.090481 0.098800
0.015 0.005 40 0.288690 0.225952 0.166206 0.131101 0.111024 0.115408
0.015 0.005 80 0.168083 0.263322 0.204932 0.165205 0.133298 0.137049

Table 7.6: Mixed normal error terms: maxad for ûPC, ûLS, ûHM(c) and ûLA.
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Figure 7.9: Mixed normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 0).
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Figure 7.10: Mixed normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 0.1).
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Figure 7.11: Mixed normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 2).
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Figure 7.12: Mixed normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 40).
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Figure 7.13: Mixed normal error terms: (N,M, h, g, λ) = (100, 100, 0.01, 0.005, 20).
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Figure 7.14: Mixed normal error terms: (N,M, h, g, λ) = (100, 100, 0.01, 0.005, 40).
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Figure 7.15: Mixed normal error terms: (N,M, h, g, λ) = (100, 100, 0.015, 0.005, 40).
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Figure 7.16: Mixed normal error terms: (N,M, h, g, λ) = (100, 100, 0.015, 0.005, 80).
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From the previous tables and figures we note the following,

1) The ermse of ûLS and ûHM(1.00) were significantly different.

2) The emad of ûLS and ûHM(1.00) were significantly different

3) The maxad of ûLS and ûHM(1.00) were significantly different.

⇒ ûLS is different from ûHM(1.00) here. ûHM(1.00) is better here.

4) The estimate with the lowest ermse was ûHM(0.01) and then ûHM(0.50) or ûLA.

5) The estimate with the lowest emad was ûHM(0.01) then ûLA.

6) The smallest maxad was of different estimates for different parameters.

⇒ ûHM(0.01) is the best estimate here. Another good estimate would be ûLA or ûHM(0.50).
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7.4 Results 3: Double Exponential Error Terms

The error terms here follow the law L(εj) = Laplace(0.2), i.e.

x = [0:1/N:1]’;

b = binornd(1,0.5,length(x),1);

e = (2*b-1).*exprnd(1/5,length(x),1);

In the following we summarize the results obtained for N = 100 and M = 100.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.049798 0.05642 0.056205 0.054529 0.053081 0.088469
0.03 0.01 0.1 0.047191 0.054945 0.0546 0.053533 0.05163 0.056168
0.03 0.01 2 0.051128 0.060755 0.060663 0.058167 0.05598 0.059931
0.03 0.01 40 0.046536 0.09528 0.09544 0.082155 0.072019 0.072892
0.01 0.005 20 0.042242 0.0466 0.046456 0.041379 0.040922 0.043555
0.01 0.005 40 0.039473 0.053183 0.052945 0.045212 0.04118 0.042695
0.015 0.005 40 0.04246 0.058419 0.058406 0.050779 0.046894 0.048542
0.015 0.005 80 0.038771 0.066039 0.066137 0.054727 0.048404 0.049699

Table 7.7: Double exponential error terms: ermse for ûPC, ûLS, ûHM(c) and ûLA.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.0202 0.019623 0.019516 0.018589 0.017791 0.070262
0.03 0.01 0.1 0.018198 0.016912 0.016394 0.01554 0.015544 0.018155
0.03 0.01 2 0.021766 0.023568 0.023396 0.021303 0.018538 0.021076
0.03 0.01 40 0.017941 0.071036 0.071389 0.049465 0.033775 0.034718
0.01 0.005 20 0.01464 0.014081 0.013985 0.012216 0.012369 0.014019
0.01 0.005 40 0.012252 0.016486 0.01609 0.010953 0.010774 0.011302
0.015 0.005 40 0.014653 0.022253 0.022181 0.016517 0.013722 0.014777
0.015 0.005 80 0.012595 0.030741 0.030968 0.019521 0.013843 0.01486

Table 7.8: Double exponential error terms: emad for ûPC, ûLS, ûHM(c) and ûLA.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.080986 0.14439 0.14392 0.13679 0.1465 0.15733
0.03 0.01 0.1 0.085084 0.15315 0.15296 0.14931 0.14007 0.16721
0.03 0.01 2 0.085583 0.17842 0.17803 0.16324 0.15875 0.17687
0.03 0.01 40 0.068263 0.31611 0.31729 0.26404 0.22468 0.22896
0.01 0.005 20 0.051542 0.10538 0.10535 0.078236 0.075993 0.087367
0.01 0.005 40 0.057715 0.15091 0.15097 0.12263 0.10636 0.11458
0.015 0.005 40 0.04795 0.16816 0.16799 0.13342 0.12371 0.12956
0.015 0.005 80 0.034213 0.18776 0.18847 0.14289 0.12355 0.12688

Table 7.9: Double exponential error terms: maxad for ûPC, ûLS, ûHM(c) and ûLA.
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Figure 7.17: Double exponential error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 0).
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Figure 7.18: Double exponential error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 0.1).
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Figure 7.19: Double exponential error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 2).
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Figure 7.20: Double exponential error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 40).
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Figure 7.21: Double exponential error terms: (N,M, h, g, λ) = (100, 100, 0.01, 0.005, 20).
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Figure 7.22: Double exponential error terms: (N,M, h, g, λ) = (100, 100, 0.01, 0.005, 40).
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Figure 7.23: Double exponential error terms: (N,M, h, g, λ) = (100, 100, 0.015, 0.005, 40).
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Figure 7.24: Double exponential error terms: (N,M, h, g, λ) = (100, 100, 0.015, 0.005, 80).



7.4. RESULTS 3: DOUBLE EXPONENTIAL ERROR TERMS 119

From the previous tables and figures we note the following,

1) The ermse of both ûLS and ûHM(1.00) were roughly equal.

2) The emad of both ûLS and ûHM(1.00) were roughly equal.

3) The maxad of both ûLS and ûHM(1.00) were roughly equal.

⇒ ûLS is roughly close to ûHM(1.00) here.

4) The estimate with the lowest ermse was ûPC and then ûHM(0.01).

5) There was no single estimate with the lowest emad, but the following estimates had
lowest emad for different parameters: ûHM(0.01), ûHM(0.50), ûLA, ûPC.

6) The smallest maxad was of ûPC then of ûHM(0.01).

⇒ ûPC is the best estimate here. Another good estimate would be ûHM(0.01).
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7.5 Results 4: Single Outlier with Normal Error Terms

We consider here one added outlier to the regression function with normal error terms, i.e.

µ(x) =

{
sin(2πx), x 6= 1

2

1, x = 1
2
.

and L(εj) = N (0, 0.22). (7.3)

In the following we summarize the results obtained for N = 100 and M = 100.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.097426 0.098437 0.098415 0.099643 0.100686 0.105917
0.03 0.01 0.1 0.097050 0.097595 0.097506 0.098444 0.099575 0.104732
0.03 0.01 2 0.096956 0.098904 0.098891 0.099467 0.099619 0.104185
0.03 0.01 40 0.097387 0.116126 0.116139 0.108822 0.105290 0.105597
0.01 0.005 20 0.085106 0.093536 0.093599 0.094023 0.096499 0.099855
0.01 0.005 40 0.084504 0.095519 0.095561 0.095001 0.096946 0.098283
0.015 0.005 40 0.090848 0.097333 0.097392 0.096971 0.097499 0.098360
0.015 0.005 80 0.090946 0.101907 0.102011 0.099491 0.099368 0.099994

Table 7.10: Single outlier with normal error terms: ermse for ûPC, ûLS, ûHM(c) and ûLA.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.035959 0.034612 0.034027 0.031425 0.028785 0.033579
0.03 0.01 0.1 0.036708 0.034799 0.034265 0.031330 0.027805 0.032337
0.03 0.01 2 0.035660 0.037356 0.036758 0.032170 0.028301 0.031412
0.03 0.01 40 0.037948 0.089055 0.088419 0.063287 0.047434 0.048186
0.01 0.005 20 0.023925 0.026906 0.026815 0.023047 0.021872 0.023457
0.01 0.005 40 0.022837 0.033402 0.033290 0.024354 0.020379 0.021232
0.015 0.005 40 0.025589 0.035400 0.035164 0.026332 0.021887 0.022794
0.015 0.005 80 0.026501 0.050962 0.050549 0.035330 0.025755 0.026257

Table 7.11: Single outlier with normal error terms: emad for ûPC, ûLS, ûHM(c) and ûLA.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.888892 0.887781 0.890514 0.933186 0.964727 1.052822
0.03 0.01 0.1 0.867638 0.866935 0.869182 0.913597 0.950190 1.041784
0.03 0.01 2 0.873609 0.883505 0.887120 0.926911 0.944263 1.029417
0.03 0.01 40 0.871161 0.928062 0.933691 0.952868 0.969148 0.971174
0.01 0.005 20 0.638993 0.807845 0.810697 0.849510 0.912877 0.976986
0.01 0.005 40 0.617095 0.829165 0.831622 0.865071 0.924888 0.950046
0.015 0.005 40 0.743505 0.857798 0.861459 0.897424 0.928662 0.944095
0.015 0.005 80 0.741230 0.882595 0.889051 0.918522 0.954366 0.965194

Table 7.12: Single outlier with normal error terms: maxad for ûPC, ûLS, ûHM(c) and ûLA.



7.5. RESULTS 4: SINGLE OUTLIER WITH NORMAL ERROR TERMS 121

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
PC: h=0.03

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLLS: h=0.03, g=0.01, lambda=0

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLHM(1): h=0.03, g=0.01, lambda=0

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLHM(0.5): h=0.03, g=0.01, lambda=0

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLHM(0.01): h=0.03, g=0.01, lambda=0

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLLA: h=0.03, g=0.01, lambda=0

Figure 7.25: Single outlier with normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 0).
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Figure 7.26: Single outlier with normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 0.1).



122 CHAPTER 7. SIMULATION STUDY

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
PC: h=0.03

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLLS: h=0.03, g=0.01, lambda=2

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLHM(1): h=0.03, g=0.01, lambda=2

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLHM(0.5): h=0.03, g=0.01, lambda=2

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLHM(0.01): h=0.03, g=0.01, lambda=2

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
RLLA: h=0.03, g=0.01, lambda=2

Figure 7.27: Single outlier with normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 2).
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Figure 7.28: Single outlier with normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 40).
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Figure 7.29: Single outlier with normal error terms: (N,M, h, g, λ) = (100, 100, 0.01, 0.005, 20).
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Figure 7.30: Single outlier with normal error terms: (N,M, h, g, λ) = (100, 100, 0.01, 0.005, 40).
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Figure 7.31: Single outlier with normal error terms: (N,M, h, g, λ) = (100, 100, 0.015, 0.005, 40).
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Figure 7.32: Single outlier with normal error terms: (N,M, h, g, λ) = (100, 100, 0.015, 0.005, 80).
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From the previous tables and figures we note the following,

1) The ermse of both ûLS and ûHM(1.00) were approximately equal.

2) The emad of both ûLS and ûHM(1.00) were approximately equal.

? The values of the maxad here are not significant since the outlier is included in the
calculation.

⇒ ûLS is quit close to ûHM(1.00) here.

3) The estimate with the lowest ermse was ûPC.

4) The estimate with the lowest emad was ûHM(0.01). Other good estimates are ûLA and
ûHM(0.50).

? If we look at the graphs of this case we can see that the ermse is not a good measure of
quality. The good measure here is the emad, which is more robust against outliers.

⇒ ûHM(0.01) is the best estimate here. Other good estimates are ûLA and ûHM(0.50).

? The performance of the estimates at the outlier was best for ûLA and ûHM(0.01).

? But from the graphs we can see that there is a bit of over resistance in the ûLA.
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7.6 Results 5: Two Outliers with Normal Error Terms

Now we look on the case of the two added outliers with normal error terms, i.e.

µ(x) =


sin(2πx), x 6= 1

4
, 1

2
,

−1, x = 1
4
,

1, x = 1
2
,

and L(εj) = N (0, 0.22). (7.4)

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.143261 0.143569 0.145061 0.147086 0.148404 0.151865
0.03 0.01 0.1 0.143164 0.143353 0.144625 0.146448 0.148022 0.151901
0.03 0.01 2 0.143108 0.144164 0.145367 0.146864 0.148011 0.151957
0.03 0.01 40 0.143313 0.152352 0.152356 0.150063 0.149499 0.149748
0.01 0.005 20 0.125126 0.137437 0.140406 0.142830 0.145690 0.148880
0.01 0.005 40 0.125316 0.140305 0.142497 0.143977 0.146476 0.147611
0.015 0.005 40 0.134864 0.142219 0.143960 0.145274 0.146865 0.147760
0.015 0.005 80 0.135035 0.145024 0.146211 0.146486 0.147515 0.148144

Table 7.13: Two outliers with normal error terms: ermse for ûPC, ûLS, ûHM(c) and ûLA.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 0.070075 0.069070 0.061881 0.055351 0.050866 0.055169
0.03 0.01 0.1 0.070643 0.069096 0.062127 0.055250 0.050153 0.055490
0.03 0.01 2 0.069638 0.072035 0.064862 0.056200 0.050289 0.054856
0.03 0.01 40 0.072128 0.123526 0.116576 0.087804 0.069820 0.070570
0.01 0.005 20 0.047466 0.057616 0.053050 0.045178 0.042267 0.043798
0.01 0.005 40 0.046696 0.066049 0.060655 0.047626 0.041457 0.042654
0.015 0.005 40 0.054534 0.069030 0.062907 0.049932 0.043309 0.044961
0.015 0.005 80 0.055714 0.085515 0.079097 0.059691 0.048080 0.048785

Table 7.14: Two outliers with normal error terms: emad for ûPC, ûLS, ûHM(c) and ûLA.

h g λ ûPC ûLS ûHM(1.00) ûHM(0.50) ûHM(0.01) ûLA

0.03 0.01 0 1.715730 1.722887 1.837174 1.913304 1.951053 2.001648
0.03 0.01 0.1 1.706654 1.714863 1.825518 1.901139 1.948587 2.015806
0.03 0.01 2 1.708818 1.733983 1.837511 1.905009 1.948729 2.024419
0.03 0.01 40 1.718885 1.777737 1.833276 1.895933 1.933945 1.936566
0.01 0.005 20 1.193683 1.557656 1.725950 1.827757 1.903856 1.983818
0.01 0.005 40 1.202828 1.633212 1.771623 1.853353 1.926373 1.952365
0.015 0.005 40 1.457113 1.682031 1.804032 1.877666 1.933273 1.953382
0.015 0.005 80 1.473244 1.733758 1.827582 1.891827 1.935679 1.949680

Table 7.15: Two outliers with normal error terms: maxad for ûPC, ûLS, ûHM(c) and ûLA.
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Figure 7.33: Two outliers with normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 0).
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Figure 7.34: Two outliers with normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 0.1).
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Figure 7.35: Two outliers with normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 2).
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Figure 7.36: Two outliers with normal error terms: (N,M, h, g, λ) = (100, 100, 0.03, 0.01, 40).
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Figure 7.37: Two outliers with normal error terms: (N,M, h, g, λ) = (100, 100, 0.01, 0.005, 20).
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Figure 7.38: Two outliers with normal error terms: (N,M, h, g, λ) = (100, 100, 0.01, 0.005, 40).
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Figure 7.39: Two outliers with normal error terms: (N,M, h, g, λ) = (100, 100, 0.015, 0.005, 40).
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Figure 7.40: Two outliers with normal error terms: (N,M, h, g, λ) = (100, 100, 0.015, 0.005, 80).
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From the previous tables and figures we note the following,

1) The ermse of both ûLS and ûHM(1.00) were roughly equal.

2) The emad of ûLS and ûHM(1.00) were significantly different.

? The values of the maxad here are not significant since the outliers were included in the
calculation.

⇒ ûLS is different from ûHM(1.00). ûHM(1.00) is better here.

3) The estimate with the lowest ermse was ûPC then ûLS.

4) The estimate with the lowest emad was ûHM(0.01) then ûLA.

? Again, if we look at the graphs of this case we can see that the ermse is not a good
measure of quality. The good measure here is the emad.

⇒ ûHM(0.01) is the best estimate here. Another good estimate is ûLA.

? The performance of the estimates at the outlier was best for ûLA and ûHM(0.01).

? But from the graphs we can see that there is a bit of over resistance in the ûLA and
that ûHM(0.01) is slightly affected by the extreme outlier.
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