
Online Delay Management

Sven O. Krumke
∗

Clemens Thielen
∗

Christiane Zeck
∗

Abstract

We present extensions to the Online Delay Management Problem
on a Single Train Line. While a train travels along the line, it learns
at each station how many of the passengers wanting to board the train
have a delay of δ. If the train does not wait for them, they get delayed
even more since they have to wait for the next train. Otherwise, the
train waits and those passengers who were on time are delayed by δ.
The problem consists in deciding when to wait in order to minimize
the total delay of all passengers on the train line.

We provide an improved lower bound on the competitive ratio of
any deterministic online algorithm solving the problem using game tree
evaluation. For the extension of the original model to two possible
passenger delays δ1 and δ2, we present a 3-competitive deterministic
online algorithm.

Moreover, we study an objective function modeling the refund sys-
tem of the German national railway company, which pays passengers
with a delay of at least ∆ a part of their ticket price back. In this
setting, the aim is to maximize the profit. We show that there cannot
be a deterministic competitive online algorithm for this problem and
present a 2-competitive randomized algorithm.

Keywords: delay management, online optimization, competitive anal-
ysis, public transportation

1 Introduction

The Online Delay Management Problem on a Single Train Line was
introduced by Gatto et al. [8]. The input of this problem is a train
line with n stations such that the train stops at each station 1, 2, ..., n.
Also known in advance are fixed passenger trails pij , which stand for
a number of passengers who want to take the train from station i to
station j for 1 ≤ i < j ≤ n. When the train arrives at a station k, it
learns how many of the passengers pij with i = k planning to get on
the train at station k are late. The delayed passengers have a delay of δ
minutes due to delayed feeder trains. We call δ the source delay of the
delayed passengers. By dij we denote the delayed passengers traveling

∗Department of Mathematics, University of Kaiserslautern, Paul-Ehrlich-Str. 14,

67663 Kaiserslautern, Germany. {krumke,thielen,zeck}@mathematik.uni-kl.de

1

from i to j and by oij the on time passengers. Hence, pij = dij + oij .
The problem is to decide whether the train should wait for the delayed
passengers or depart on time. If it waits, the on time passengers get
delayed by δ minutes. If it departs on time, the delayed passengers
have to wait for the next train that runs in T > δ minutes, so their
delay then increases to T minutes.

1.1 Previous Work

In the paper of Gatto et al. [8] the aim is to minimize the total pas-
senger delay. For this problem, the authors present a family of 2-
competitive online algorithms and prove that the golden ratio is a
lower bound on the competitive ratio of any deterministic online al-
gorithm. Anderegg et al. [2] also investigate an online transportation
problem. They consider a sequence of buses serving a station one after
another and assume that passengers arrive at the station constantly at
a certain rate. Assuming that the last bus is delayed, the question is
how long the other buses should wait in order to minimize the total
delay of all passengers. To our knowledge, these are the only papers
treating delay management problems as theoretical online problems.
For details on online optimization, we refer the reader to Borodin et
al. [5].

Other authors consider complex realistic models for the delay man-
agement problem. Adenso-Dı́az et al. [1] apply heuristics and pro-
vide a decision tool that can be used in practice. Biederbick et al. [4]
discuss decision support tools which are based on agent-based sim-
ulation. Berger et al. [3] provide a simulation platform for testing
different heuristics and give a PSPACE-hardness proof for the online
delay management problem they consider.

Other papers focusing on complexity are [6, 7]. The authors inves-
tigate different models for the delay management problem and examine
the border between the polynomially solvable and NP-hard variants.

Another approach to the delay management problem is the formu-
lation as mixed integer program [11, 12].

1.2 Our Contribution

In Section 2, we study the objective function of minimizing the total
delay of all passengers. We show that, for the case of 3 stations, the
lower bound on the competitive ratio by Gatto et al. [8] is tight by
giving an algorithm which actually achieves this competitive ratio. It
remains an open question to close the gap for more than 3 stations.
Viewing the problem as a game and using game tree evaluations, we
can determine an optimal online algorithm and present an improved
lower bound for n > 3 stations. Moreover, we extend the model to two
possible source delays δ1 and δ2 and present a 3-competitive online
algorithm for this more general setting.

In Section 3, we introduce an objective function maximizing the
profit in a setting where passengers delayed by at least ∆ get a refund

2

on their ticket price. We prove that there does not exist a deter-
ministic competitive online algorithm for this problem and present a
2-competitive randomized online algorithm.

2 Minimizing Total Delay

2.1 One Possible Source Delay

In this section, we assume that all passengers who are delayed have the
same source delay δ. In this setting, the train can wait at most once
at a certain station. From this point on, it is delayed by δ minutes and
can, hence, pick up all passengers (whether delayed or not) that get
on the train later on. If the train waits at station k ∈ {1, . . . , n}, the
total delay of all passengers amounts to

D(k) = T
∑

i<k,j

dij + δ
∑

i≥k,j

dij + δ
∑

i,j>k

oij .

The delayed passengers who want to board the train before k have a
delay of T > δ, whereas all delayed passengers boarding the train after
k − 1 have a delay of δ. The on time passengers who leave the train
after k end up having a delay of δ. Note that the option k = n signifies
that the train does not wait at all.

In order to increase readability, we omit double sums for i and j.
Also, we do not indicate that we always assume i < j in our sum
notation since this is clear from the definition of the passenger trails.

We start by considering the Online Delay Management Problem for
n = 3 train stations, i.e.,

D(1) = δ(p12 + p13 + p23),

D(2) = T (d12 + d13) + δ(p13 − d13 + p23),

D(3) = T (d12 + d13 + d23).

At station 1, we already know whether D(1) is larger or smaller
than D(2) since none of the terms include the only unknown variable
d23. If D(1) ≥ D(2), waiting at 1 cannot be the (unique) optimal
solution and, hence, it makes no sense to choose D(1). If, however,
D(1) < D(2), we know that waiting at 2 yields a worse objective value
than waiting at 1, but, still, waiting at 3 might be the optimal strategy.
So we have to decide if we wait at station 1, or if it might be better
not to wait with the chance of getting a better outcome by waiting
at 3. Our algorithm makes this decision by determining ”how much”
smaller D(1) is compared to D(2).

ALG 1: Wait at station 1 if and only if D(2) > α · D(1), where
α ≥ 1 is a parameter to be chosen later.
In case we do not wait at station 1, wait at station 2 iff D(2) < D(3),
which is known then.

The competitive analysis shows that this online algorithm achieves a
competitive ratio equal to the lower bound by Gatto et al. [8] and is
in this sense best possible.

3

Theorem 2.1. For α = 1+
√

5
2 , ALG 1 is 1+

√
5

2 -competitive.

Proof. In case that D(2) ≤ α ·D(1), ALG 1 does not wait at station 1
and yields a cost of min{D(2),D(3)}. If the offline optimal solution is
D(1), we get a ratio of

ALG 1

OPT
=

min{D(2),D(3)}

D(1)
≤

D(2)

D(1)
≤ α,

where OPT denotes the cost of an optimal (offline) solution.
If D(2) > α · D(1), ALG 1 waits at station 1 which leads to a cost

of D(1). If the optimum is D(3), we have

ALG 1

OPT
=

D(1)

D(3)
=

δ(p12 + p13 + p23)

T (d12 + d13 + d23)

≤
δ(p12 + p13 + p23)

T (d12 + d13)

D(2)>αD(1)

≤
δ(p12 + p13 + p23)

αδ(p12 + p13 + p23) − δ(p13 − d13 + p23)

≤
δ(p12 + p13 + p23)

(α − 1)δ(p12 + p13 + p23)

≤
1

α − 1
.

For α = 1+
√

5
2 , we have α = 1

α−1 = 1+
√

5
2 .

Competitive analysis is often described as a game between an online
algorithm ALG and an evil adversary ADV [5]. According to that,
the Online Delay Management Problem can be written as a game in
extensive form.

The root of the tree represents the situation at station 1. Given
the delayed passengers, the online algorithm has two choices: Waiting
at station 1 or not. Then, the evil adversary reveals how many of
the passengers getting on the train at station 2 are delayed. This can
be any number between 0 and the total number of people connecting
at station 2. Then, if the online player has already waited before, it
cannot wait any more. If she has not waited, she still has the choice
to either wait or not wait. At the next station, the adversary again
reveals the number of delayed passengers at station 3, and so on. The
payoff of a leaf is defined as the corresponding competitive ratio, i.e.,
the total delay occurring when the actions of the players correspond to
the path leading to the respective leaf divided by the cost of an optimal
solution obtainable if the online player had known the decisions of the
adversary in advance.

Figure 1 shows a game tree for n = 2 stations and 2 passengers
connecting at station 2. At first, the online algorithm chooses between
waiting (w) and not waiting (n). Then the adversary reveals if 0,1, or
2 passengers are delayed at station 2. If the algorithm has not waited
yet, it again has the option to wait or not. Note that, also in case

4

w

0

b

n

1

b

n

2

b

n

n

0

b

n

1

b

w

b

n

2

b

w

b

n

Figure 1: A game tree for 2 stations: The white nodes belong to the

online algorithm, the black nodes to the adversary.

it has not waited and there are no delayed passengers at station 2, it
makes no sense to wait there, so this branch can be omitted.

Now the Online Delay Management Problem translates to a two-
person zero sum game in which the online algorithm wants to minimize
the payoff, while the adversary tries to maximize it (for details on these
games see [10]). Hence, the best option for the players is to act ac-
cording to a minmax strategy: The online player will always choose
the subtree in which the maximum payoff is minimal, whereas the ad-
versary chooses the subtree in which the minimal payoff is maximal.
Thus, for any given instance, the minmax strategy for the correspond-
ing game tree determines the best online strategy and the best com-
petitive ratio. The downside, however, is that the size of a game tree
is exponential in the encoding length of the game. At each node, ALG
has up to two possible choices, and ADV has 1 + pi choices, where pi

is the number of passengers getting on the train at station i. Hence,
we have O(2n−1

∏n−1
i=1 (pi + 1)) leaves.

In order to find a lower bound for n = 4 stations, we implemented
the minmax procedure and enumerated over the parameters of the
game tree in order to gain insight into which could be ”worst case”
instances.

One scenario we have found is the following: Let δ = 1, p12 = d12 =
1, p14 = d14 = 12, p24 = 7, and let T and p34 be large.

If an online algorithm ALG waits at station 1, let p24 and p34 be
on time. Then it would have been optimal to not wait at all and we

get ALG
OPT = 20+p34

13T
.

If ALG does not wait at station 1, let p24 be delayed. If, in this
case, ALG waits at station 2, let p34 be on time. Then again not

5

waiting at all would have been optimal and ALG
OPT = 13T+7+p34

20T
.

If ALG does not wait at station 2, let p34 be delayed. Then, ALG
waits at station 3, whereas waiting at station 1 would have been the

optimal solution and ALG
OPT = 20T+p34

20+p34

.
Writing everything in a nonlinear program yields

20 + p34 ≥ c · 13T

13T + 7 + p34 ≥ c · 20T

20T + p34 ≥ c · (20 + p34).

Our aim is to find the maximum c such that the program is feasible.
Note that, for a fixed c, the program becomes linear and we can check
feasibility easily. We found that the program is still feasible for c =
1.83733373 (with a precision of 8 digits) using binary search. Values
that are feasible for the corresponding program are p34 = 1111318826
and T = 46527238.72702379. This improves the lower bound of Gatto
et al. [8].

Theorem 2.2. No deterministic online algorithm for the Online Delay
Management Problem on a Single Train Line can have a competitive
ratio smaller than 1.83733373.

2.2 Two Possible Source Delays

In this section, we allow two different source delays, i.e., passengers
who want to board the train might either be on time, have a delay of
δ1, or a delay of δ2, where δ1 < δ2 < T . In this new scenario, the train
can wait at most twice. It can wait δ1 minutes at station k and an
additional δ2 − δ1 minutes at a station l ≥ k. If l = k, this means that
the train does not wait until station l where it waits δ2 minutes. As in
the original model, the train cannot catch up on its delay, so, starting
from station k, the train has a delay of δ1 minutes, whereas its delay
amounts to δ2 minutes from station l on.

Similar to the notation used before, we write pij for all passengers
traveling from station i to station j. These passengers are divided into
the on time passengers oij , the passengers d1

ij with source delay δ1 and

the passengers d2
ij with source delay δ2.

By D(k, l) we denote the total delay of all passengers occurring
when the train waits δ1 minutes at station k and δ2 − δ1 minutes at
station l ≥ k, i.e.,

D(k, l) = δ1

∑

i,j

d1
ij + δ2

∑

i,j

d2
ij

+(T − δ1)
∑

i<k,j

d1
ij + (T − δ2)

∑

i<l,j

d2
ij

+δ1

∑

i,j>k

oij + (δ2 − δ1)
∑

i,j>l

oij

+(δ2 − δ1)
∑

i≥k,j>l

d1
ij ,

6

where the particular sums can be explained as follows: The first line
includes the source delays of all delayed passengers, which cannot be
optimized. The second line contains the extra delay of the passengers
with source delay who miss the train, i.e., passengers with source delay
δ1 who want to board the train before station k and passengers with
source delay δ2 who want to board it before l. The next line contains
the delay of the on time passengers. They reach their destination with
a delay of δ1 minutes if they leave the train after station k and with a
delay of δ2 minutes if they leave after station l. The last line represents
the delay of the passengers with source delay δ1 who board the train
at or after station k and leave it after station l and end up getting
delayed by δ2 − δ1 more minutes.

We are now ready to extend the algorithm by Gatto et al. [8] for
the online delay management problem on a single train line to our new
scenario with two different source delays:

ALG 2:

• If the train has not waited before and, at station k,

T
∑

i≤k

j

d1
ij ≥ δ1(

∑

i≤k

j>k

oij +
∑

i>k

j

pij), (1)

wait until the delay of the train is at least δ1 minutes.

• If the train has not waited before and, at station l,

T
∑

i≤k

j

d2
ij ≥ δ2(

∑

i≤k

j>k

oij +
∑

i>k

j

pij) + (δ2 − δ1)
∑

i=k

j>k

d1
ij , (2)

wait δ2 minutes.

• If the train has waited before δ1 minutes at station k and, at
station l,

T
∑

i≤l

j

d2
ij ≥ (δ2 − δ1)(

∑

i≤l

j>l

oij +
∑

k≤i≤l

j>l

d1
ij +

∑

i>l

j

pij) (3)

holds, wait δ2 − δ1 minutes.

In all cases, the algorithm compares the accumulated delay of pas-
sengers with source delay δ1 or δ2, respectively, who have missed the
train because it did not wait for them with the maximum delay that
could be caused by waiting δ1 or δ2 minutes at the current station. In
the first case, waiting δ1 minutes delays all on time passengers who
are currently on the train and possibly all passengers who board the
train in the future by δ1 minutes. The second case reflects the same
circumstance for δ2. In the third case, waiting δ2 minutes delays the
passengers who are already on the train and possibly all passengers
getting on the train in the future by δ2 − δ1 minutes.

7

Theorem 2.3. ALG 2 is 3-competitive for the Online Delay Manage-
ment Problem on a Single Train Line with two different source delays.

Proof. Let k be the station where ALG 2 waits δ1 minutes and l ≥ k
the station where it waits δ2 − δ1 minutes. By k∗ and l∗ ≥ k∗ denote
the stations where OPT waits δ1 and δ2 − δ1 minutes, respectively.

Case 1: k < k∗, l > l∗: Comparing the objective values of the two
solutions, we get

D(k, l) =D(k∗, l∗) − (T − δ1)
∑

k≤i<k∗

j

d1
ij + (T − δ2)

∑

l∗≤i<l

j

d2
ij

+ δ1

∑

i

k<j≤k∗

oij −(δ2 − δ1)
∑

i

l∗<j≤l

oij

︸ ︷︷ ︸

≤0

+ (δ2 − δ1)
∑

k≤i<k∗

j>l

d1
ij −(δ2 − δ1)

l∑

i≥k∗

l∗<j≤l

d1
ij

︸ ︷︷ ︸

≤0

.

• Note that

(δ2 − δ1)
∑

k≤i<k∗

j>l

d1
ij − (T − δ1)

∑

k≤i<k∗

j

d1
ij ≤ 0.

• Since Condition (3) was not fulfilled at station l − 1, we have

(T − δ2)
∑

l∗≤i<l

j

d2
ij ≤ T

∑

i≤l−1

j

d2
ij

(3)
< (δ2 − δ1)(

∑

i≤l−1

j>l−1

oij +
∑

k≤i≤l−1

j>l−1

d1
ij +

∑

i>l−1

j

pij)

l∗≤l−1

≤ D(k∗, l∗).

• At station k, Condition (1) was fulfilled which yields

δ1

∑

i

k<j≤k∗

oij ≤ δ1(
∑

i≤k

j>k

oij +
∑

i>k

j

pij)

(1)

≤ T
∑

i≤k

j

d1
ij

k<k∗

≤ D(k∗, l∗)

and, hence, D(k, l) ≤ 3D(k∗, l∗).

8

Case 2: k > k∗, l < l∗:

D(k, l) =D(k∗, l∗) + (T − δ1)
∑

k∗≤i<k

j

d1
ij −(T − δ2)

∑

l≤i<l∗

j

d2
ij

︸ ︷︷ ︸

≤0

−δ1

∑

i

k∗<j≤k

oij

︸ ︷︷ ︸

≤0

+(δ2 − δ1)
∑

i

l<j≤l∗

oij

−(δ2 − δ1)
∑

k∗≤i<k

j>l

d1
ij

︸ ︷︷ ︸

≤0

+(δ2 − δ1)
∑

i≥k

l<j≤l∗

d1
ij .

• ALG 2 did not wait at station k − 1 and, hence, Condition (1)
was not fulfilled.

(T − δ1)
∑

k∗≤i<k

j

d1
ij < T

∑

i≤k−1

j

d1
ij

< δ1(
∑

i≤k−1

j>k−1

oij +
∑

i>k−1

j

pij)

k∗≤k−1

≤ D(k∗, l∗).

• ALG 2 waited at station l and, hence, if k < l, Condition (3) was
fulfilled. If k = l, this means that Condition (2) was fulfilled. In
both cases, we get

(δ2 − δ1)
∑

i≥k

l<j≤l∗

d1
ij + (δ2 − δ1)

∑

i

l<j≤l∗

oij

(3)

≤ T
∑

i≤l,j

d2
ij

l<l∗

≤ D(k∗, l∗).

We proved, that for this case, ALG 2 is 3-competitive.

Case 3: k < k∗, l < l∗:

D(k, l) =D(k∗, l∗) − (T − δ1)
∑

k≤i<k∗

j

d1
ij −(T − δ2)

∑

l≤i<l∗

j

d2
ij

︸ ︷︷ ︸

≤0

+ δ1

∑

k<i≤k∗

j

oij + (δ2 − δ1)
∑

i

l<j≤l∗

oij

+ (δ2 − δ1)
∑

k≤i<k∗

j>l

d1
ij + (δ2 − δ1)

∑

i≥k∗

l<j≤l∗

d1
ij .

9

• First, note that

(δ2 − δ1)
∑

k≤i<k∗

j>l

d1
ij − (T − δ1)

∑

k≤i<k∗

j

d1
ij ≤ 0.

• If k < l, Condition (1) was fulfilled at k, and, hence

δ1

∑

k<i≤k∗

j

oij ≤ δ1

∑

i>k

j

pij

(1)

≤ T
∑

i≤k

j

d1
ij

k<k∗

≤ D(k∗, l∗).

The train waited at l. Thus,

(δ2 − δ1)
∑

k≤i<k∗

j>l

d1
ij + (δ2 − δ1)

∑

i≥k∗

l<j≤l∗

d1
ij

(3)

≤ T
∑

i≤l,j

d2
ij

l<l∗

≤ D(k∗, l∗).

• In case that k = l,

δ1

∑

k<i≤k∗

j

oij + (δ2 − δ1)
∑

i

l<j≤l∗

oij

+(δ2 − δ1)
∑

k≤i<k∗

j>l

d1
ij + (δ2 − δ1)

∑

i≥k∗

l<j≤l∗

d1
ij

(2)

≤ T
∑

i≤k

j

d2
ij

l∗>l

≤ D(k∗, l∗).

Again, ALG 2 is 3-competitive in this case.

Case 4: k > k∗, l > l∗:

D(k, l) =D(k∗, l∗) + (T − δ1)
∑

k∗≤i<k

j

d1
ij + (T − δ2)

∑

l∗≤i<l

j

d2
ij

−δ1

∑

i

k∗<j≤k

oij − (δ2 − δ1)
∑

i

l∗<j≤l

oij

︸ ︷︷ ︸

≤0

−(δ2 − δ1)
∑

i≥k

l∗<j≤l

d1
ij − (δ2 − δ1)

∑

k∗≤i<k

j>l

d1
ij

︸ ︷︷ ︸

≤0

10

• At k − 1, Condition (1) was not fulfilled, which yields

(T − δ1)
∑

k∗≤i<k

j

d1
ij ≤ T

∑

i≤k−1

j

d1
ij

< δ1(
∑

i≤k−1

j>k−1

oij +
∑

i>k−1

j

pij)

k∗≤k−1

≤ D(k∗, l∗).

• At l − 1, Condition (2) was not fulfilled. Thus,

(T − δ2)
∑

l∗≤i<l

j

d2
ij ≤ T

∑

i≤l−1

j

d2
ij

< (δ2 − δ1)(
∑

i≤l−1

j>l−1

oij +
∑

k≤i≤l−1

j>l−1

d1
ij +

∑

i>l−1

j

pij)

l∗≤l−1

≤ D(k∗, l∗),

and, hence, ALG 2 is 3-competitive.
So far, we have omitted the cases with k = k∗ or l = l∗. Their

analysis goes along the same lines only that sum of the terms in the
summation are equal to zero. Hence, we have proved that ALG 2 is
3-competitive.

3 Maximizing Profit

In this section, we consider a modification of the delay management
problem motivated by the refund system of the German national rail-
way company (Deutsche Bahn), which gives passengers a discount of
25% or 50% of the ticket price if they reach their destination with a
delay of at least 60 or 120 minutes, respectively.

For that purpose, we consider the delay management problem with
one possible source delay described in the introduction with a different
objective function. If passengers reach their destination with a delay of
at least ∆, they get a certain percentage of their ticket price refunded.
So passengers with a delay of at least ∆ pay a discounted ticket price
of p > 0, whereas passengers who reach their destination with a delay
less than ∆ pay the full ticket price of α · p, where α > 1 (for the
Deutsche Bahn example, we have α ∈ {4/3, 2}).

We assume δ < ∆ ≤ T . Hence, if there are passengers with a
source delay of δ and we do not wait for them, their delay increases to
T ≥ ∆ and they get a refund. By waiting for delayed passengers, their
delay stays smaller than ∆. But waiting involves a delay of δ for the
on time passengers, which causes them to miss their connecting trains
and leads to an even higher delay ≥ ∆. Note that we neglect on time
passengers that still reach their destination with a delay < ∆ even if we
delay them by δ, since, in each case, they are not eligible for a refund.

11

Similarly, we do not consider passengers with source delay δ that will
miss their connecting train and reach their destination with delay ≥ ∆
even if we wait for them, since they get refunded anyway, independently
of our decision. In other words, we only consider those passengers for
which the question if they get refunded or not is dependent of decision.
Hence, if we wait at station k, the profit amounts to

P (k) = α
∑

i,j≤k

p · oij +
∑

i,j>k

p · oij + α
∑

i≥k,j

p · dij +
∑

i<k,j

p · dij .

We get the full profit from the delayed passengers we waited for and
from the on time passengers who do not get delayed by us. Hence, if
we wait at station k, we get full profit from the delayed passengers who
connect at station i ≥ k and from the on time passengers who get off at
station j ≤ k. Note that the objective function does not change if we
multiply the passengers per trail by p, and, therefore, we can assume
that without loss of generality p = 1. Also note that, by definition,
any online strategy for this problem is at least α−competitive.

For the aim of minimizing the refund, there cannot be a compet-
itive online algorithm. Assume that there are two passenger trails,
p13 < p23, and let the p13 be delayed. If ALG does not wait, assume
that the p23 are late. Then ALG has to pay a refund of (α − 1) · p13,
whereas OPT waits at station 1 and has a cost of 0, so ALG cannot
be competitive in this case. Hence, in order to avoid this scenario,
ALG has to wait at station 1. Now assume that the passengers p23

are on time. Then ALG has to pay a refund of (α − 1)p23, whereas
OPT does not wait at all which leads to a cost of (α − 1)p13. So we
get ALG/OPT = p23/p13 which approaches ∞ as p23 goes to ∞.

Thus, we consider the Max Profit Online Delay Management Prob-
lem on a Single Train Line. We start with the case of 3 stations and
give a lower bound on the competitive ratio of any deterministic online
algorithm for the problem.

Theorem 3.1. No deterministic online algorithm on a single train
line with at least 3 stations can have a competitive ratio less than 2α+1

α+2
when maximizing the profit.

Proof. Let p13 = 2, d13 = 1, and p23 = 1. If ALG waits at sta-
tion 1, then p23 is on time and OPT does not wait at all, so we get
OPT/ALG = (2α + 1)/(α + 2). If ALG does not wait, p23 is late
and, hence, OPT waits in station 1. This also yields OPT/ALG =
(2α + 1)/(α + 2).

We develop an online algorithm for the case of 3 stations. It holds

P (1) = o12 + o13 + o23 + αd12 + αd13 + αd23.

P (2) = αo12 + o13 + o23 + d12 + d13 + αd23.

P (3) = αo12 + αo13 + αo23 + d12 + d13 + d23.

12

In station 1, we already know whether P (1) ≤ P (2) since the only
unknown variables are o23 and d23, which have the same coefficients in
both objective functions. If P (1) ≤ P (2), the best strategy is not to
wait in station 1. Then, in station 2, when all information is available,
one can choose between P (2) and P (3) to obtain the optimal solution.

Hence, assume that, in station 1, P (1) > P (2) or equivalently d12+
d13 > o12. If it is already clear at this point that P (3) cannot be the
optimal solution, we can solve the problem to optimality by waiting at
station 1. We know that

P (1) ≥ P (3) ⇔ d12 + d13 + d23 ≥ o12 + o13 + o23

and, hence, we can conclude that P (1) ≥ P (3) (without knowing o23

and d23) if

d12 + d13 ≥ o12 + o13 + p23.

In this case, we know that the optimal solution is P (1).
Hence, it remains to consider the case that P (1) > P (2) and d12 +

d13 < o12 + o13 + p23, in which case we need to decide whether the
train should wait or not.

ALG 3: If P (1) ≤ P (2), do not wait at station 1.
If P (1) > P (2), or equivalently d12 + d13 > o12, wait at station 1 if

• o12 + o13 + p23 ≤ β(d12 + d13) where β ≥ 1

If the train did not wait at station 1, it chooses the better among the
solutions P (2) and P (3) at station 2.

Theorem 3.2. ALG 3 is min{α, 2 + 1
α
}-competitive for β = 2.

Proof. In case that P (1) ≤ P (2), ALG 3 achieves the optimal objective
value. It remains to consider the case P (1) > P (2). If ALG 3 waits at
station 1, P (2) cannot be optimal by definition of the algorithm. In
case that P (3) is the optimal objective value, we obtain

OPT

ALG 3
=

P (3)

P (1)
=

αo12 + αo13 + αo23 + d12 + d13 + d23

o12 + o13 + o23 + αd12 + αd13 + αd23

≤
βα(d12 + d13) + d12 + d13

α(d12 + d13)

= β +
1

α
.

If ALG 3 does not wait at station 1, it achieves the value max{P (2), P (3)}.
If P (1) is the optimal solution, and P (3) ≥ P (2) ⇔ o13 + o23 ≥ d23,

13

we have

OPT

ALG 3
=

P (1)

P (3)
=

o12 + o13 + o23 + αd12 + αd13 + αd23

αo12 + αo13 + αo23 + d12 + d13 + d23

≤
1

α
+

α(d12 + d13 + d23)

αo12 + αo13 + αo23 + d12 + d13 + d23

≤
1

α
+

α(1
β
(o12 + o13 + o23 + d23) + d23)

αo12 + αo13 + αo23 + d12 + d13 + d23

≤
1

α
+

α(1
β
(o12 + o13 + o23 + o12 + o13) + o12 + o13)

αo12 + αo13 + αo23 + d12 + d13 + d23

≤
1

α
+

3

β
.

If P (1) is optimal and P (3) < P (2), or equivalently o13 + o23 < d23,

OPT

ALG 3
=

P (1)

P (2)
=

o12 + o13 + o23 + αd12 + αd13 + αd23

αo12 + o13 + o23 + d12 + d13 + αd23

≤ 1 +
αd12 + αd13

αo12 + o13 + o23 + d12 + d13 + αd23

≤ 1 +

α
β
(o12 + o13 + o23 + d23)

αo12 + o13 + o23 + d12 + d13 + αd23

≤ 1 +

α
β
(o12 + d23 + d23)

αo12 + o13 + o23 + d12 + d13 + αd23

≤ 1 +
2

β
.

For β = 2 we get an 2 + 1/α−competitive algorithm. Since any
algorithm is α-competitive, ALG 3 is min{α, 2 + 1

α
}- competitive.

Theorem 3.3. For arbitrarily many stations, there cannot be a deter-
ministic online algorithm with competitive ratio smaller than α+1

2 .

Proof. Let there be n stations and let there be n − 1 passenger trails
pi,i+1, i = 1, . . . , n−1 consisting of 1 passenger each. Let all passengers
be late until the online algorithm ALG decides to wait. From that time
on, let all passengers be on time. Let k be the station where the online
algorithm waits.

We have ALG = (n − 2) + α for the online algorithm. Depending
on k, the optimal solution is to wait at station 1 or not at all. We have
OPT = max{k, n − 1 − k}α + min{k, n − 1 − k}, so

OPT

ALG
=

max{k, n − 1 − k}α + min{k, n − 1 − k}

(n − 2) + α

≥

⌈
n−1

2

⌉
α +

⌊
n−1

2

⌋

(n − 2) + α
.

The quotient is increasing in n and approaches α+1
2 as n goes to ∞.

14

Since there cannot be any deterministic competitive online algo-
rithm, we consider randomized algorithms. In the above proof, we
used instances with pi,i+1 = 1 for all i = 1, n − 1 such that all pas-
sengers are delayed until a certain station k and after that, they are
on time. Depending on k, the optimal strategy is to wait at station 1
or to wait at station n. In fact, we can show that the algorithm that
chooses between these options randomly, has a competitive ratio of 2:

ALG 4: With probability 1/2 wait at station 1 and with probability
1/2 wait at station n.

Theorem 3.4. The competitive ratio of ALG 4 is 2α
1+α

.

Proof. For a given instance σ, let OPT wait at station k∗. Then,

OPT

E[ALG 4(σ)]
≤

α(
∑

i,j dij +
∑

i,j oij)
1
2 (α

∑

i,j dij +
∑

i,j oij) + 1
2 (α

∑

i,j oij +
∑

i,j dij)

=
α(

∑

i,j dij +
∑

i,j oij)
∑

i,j dij(
1
2α + 1

2) +
∑

i,j oij(
1
2 + 1

2α)

=
2α

1 + α
.

Note that the inequality is an equality for instances such that, first, all
passengers are on time, and, then, all passengers are delayed.

Using Yao’s principle [5] we can prove the following lower bound
for randomized algorithms solving the problem.

Theorem 3.5. No randomized algorithm for the problem can have a
competitive ratio smaller than 1+3α

2+2α
.

Proof. Consider the following scenario: There are n + 1 stations and
n passenger trails such that each consists of one passenger going from
station i to i + 1. The first k passenger trails are delayed and the last
n − k trails are on time. Let k be uniformly distributed in {0, . . . , n}.
In this scenario, the optimal solution is either to wait in station 1 or in
n+1, depending on whether there are more on time or late passengers.

Let algorithm Ai be the algorithm that does not wait until station
i and then, if there already has been an on time passenger, it does not
wait at all and else, it waits there. The expected value of Ai is

E[Ai] =

i∑

k=0

1

n + 1
(α(n − k) + k) +

n∑

k=i+1

1

n + 1
(α(k − i) + n − k + i)

=
−2(−1 + α)i + n(−1 + n + α(3 + n))

2(1 + n)
.

The derivative with respect to i is 1−α
1+n

, which is nonpositive since
α ≥ 1. Hence, the term is nonincreasing in i and, therefore, maximal
for i = 0. Thus, A0 is the best algorithm for this randomized online

15

problem and it suffices to consider A0 when applying Yao’s principle.
If n is even, we have

E[OPT] =
1

n + 1
(

n

2∑

k=0

k + (n − k)α +

n∑

k= n

2
+1

kα + n − k)

=
n(n + α(4 + 3n))

4(1 + n)
.

Hence, we get the quotient

E[OPT]

E[A0]
=

n(n + α(4 + 3n))2(1 + n)

4(1 + n)(−2(−1 + α)0 + n(−1 + n + α(3 + n)))

=
n + α(4 + 3n)

2(−1 + n + α(3 + n))
.

For n going to ∞, this approaches 1+3α
2+2α

.
For odd n, we get

E[OPT] =
1

n + 1
(

n

2
− 1

2∑

k=0

k + (n − k)α +

n∑

k= n

2
+ 1

2

kα + n − k)

=
1

n + 1
((1 − α)

n

2
− 1

2∑

k=0

k +

n

2
− 1

2∑

k=0

nα

+ (α − 1)
n∑

k= n

2
+ 1

2

k +
n∑

k= n

2
+ 1

2

n)

=
1

4
(−1 + α + n + 3αn)

and, therefore, a quotient of

(−1 + α + n + 3αn)2(1 + n)

4n(−1 + n + α(3 + n))
.

Its derivative with respect to n is

(−1 + α)(−1 + n)(−1 + n + α(3 + 5n))

2n2(−1 + n + α(3 + n))2
,

which is nonnegative, so the quotient is increasing. It approaches 2+6α
4+4α

as n approaches ∞.

References

[1] B. Adenso-Dı́az, J. Tuya, M. J. Suárez-Cabal, and M. Goitia-
Fuertes. DSS for rescheduling of railway services under unplanned
events. In Mora et al. [9], pages 72–85.

[2] L. Anderegg, P. Penna, and P. Widmayer. Online train dispo-
sition: To wait or not to wait? Electronic Notes in Theoretical
Computer Science, 66(6):32–41, 2002.

16

[3] A. Berger, R. Hoffmann, U. Lorenz, and S. Stiller. TOPSU -
RDM a simulation platform for online railway delay management.
In Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems
(SIMUTools), pages 1–8, 2008.

[4] C. Biederbick and L. Suhl. Decision support tools for customer-
oriented dispatching. In Algorithmic Methods for Railway Opti-
mization, volume 4359 of LNCS, pages 171–183, 2004.

[5] A. Borodin and R. El-Yaniv. Online Computation and Competi-
tive Analysis. Cambridge University Press, 1998.

[6] M. Gatto, B. Glaus, R. Jacob, L. Peeters, and P. Widmayer. Rail-
way delay management: Exploring its algorithmic complexity. In
Proceedings of the 9th Scandinavian Workshop on Algorithm The-
ory (SWAT), volume 3111 of LNCS, pages 199–211, 2004.

[7] M. Gatto, R. Jacob, L. Peeters, and A. Schöbel. The computa-
tional complexity of delay management. In Proceedings of the 31st
International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG), volume 3787 of LNCS, pages 227–238, 2005.

[8] M. Gatto, R. Jacob, L. Peeters, and P. Widmayer. Online delay
management on a single train line. In Proceedings of the 4th Work-
shop on Algorithmic Methods and Models for Optimization of Rail-
ways (ATMOS), volume 4359 of LNCS, pages 306–320, 2004.

[9] M. Mora, G. A. Forgionne, and J. N. D. Gupta, editors. Decision
Making Support Systems: Achievements, Trends and Challenges
for the New Decade. IGI Global, 2003.

[10] M. J. Osborne. An Introduction to Game Theory. Oxford Univer-
sity Press, 2004.

[11] A. Schöbel. A model for the delay management problem based
on mixed-integer-programming. Electronic Notes in Theoretical
Computer Science, 50(1):1–10, 2001.

[12] A. Schöbel. Optimization in Public Transportation. Springer,
2006.

17

