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Abstract

Classical geometrically exact Kirchhoff and Cosserat models are used to study the nonlin-
ear deformation of rods. Extension, bending and torsion of the rod may be represented by the
Kirchhoff model. The Cosserat model additionally takes into account shearing effects. Second
order finite differences on a staggered grid define discrete viscoelastic versions of these classi-
cal models. Since the rotations are parametrised by unit quaternions, the space discretisation
results in differential-algebraic equations that are solved numerically by standard techniques
like index reduction and projection methods. Using absolute coordinates, the mass and con-
straint matrices are sparse and this sparsity may be exploited to speed-up time integration.
Further improvements are possible in the Cosserat model, because the constraints are just
the normalisation conditions for unit quaternions such that the null space of the constraint
matrix can be given analytically. The results of the theoretical investigations are illustrated
by numerical tests.
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namics, Partial differential algebraic equations, Method of lines, Time integration.
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1 Introduction

Rod models are a classical subject of mechanics with numerous applications in engineering. Never-
theless, the dynamical analysis of fully nonlinear beams and rods in 3D is even today a challenging
problem, both from the viewpoint of modeling and from the viewpoint of the efficient numerical
solution of the resulting model equations [14, 21, 23, 36, 38, 39]. In the present paper, we combine
an objective/frame-indifferent geometrically exact space discretisation of Kirchhoff and Cosserat
rods with standard methods for the time integration of the equations of motion for constrained
mechanical systems [4, 17, 22].
Following the method of lines, the equations of motion for Kirchhoff rods and Cosserat rods
are discretised first in space by finite differences on a staggered grid [27]. The rotations are
parametrised by unit quaternions resulting in constraints to guarantee the normalisation of the
quaternions. In the Kirchhoff model, additional constraints result from the inhibition of shearing
effects. In a hierarchy of rod models, the inextensible Kirchhoff model is the physically most
simple one but results in even more complex constraints than in the case of extensible Kirchhoff
rods. On the other hand, the consideration of shearing effects in the Cosserat model introduces
very stiff potential forces in the semi-discretised system.
This work was motivated by the need for real-time capable simulation methods for deformable
cables, tubes and hoses in industrial applications. Exploiting the specific structure of the model
equations, the numerical effort can be reduced by several orders of magnitude in all three nonlinear
rod models. In the semi-discretised system, the nonlinear deformation of the rod is described by
the Cartesian coordinates x = x(s, t) of its centerline and the corresponding orthonormal frame
field that is defined by quaternions p = p(s, t) of unit length ‖p(s, t)‖ = 1. It is well known
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from multibody dynamics [36] that such absolute coordinates result in rather large differential-
algebraic systems with sparse mass and constraint matrices. The sparsity pattern is in general
determined by the topology of a multibody system [17]. For rod like structures, mass and constraint
matrices have band structure and the use of structure exploiting versions of Gaussian elimination
is straightforward [19].
Because of the constraints, the semi-discretised system forms a differential-algebraic equation
(DAE) of index 3. Differentiating the constraints twice, the analytically equivalent index-1 for-
mulation of the model equations is obtained, which may be solved by any solver for ordinary
differential equations (ODEs). The well known drift-off effect is avoided by projection steps that
require a small extra effort during time integration [22]. Numerical tests with many standard
ODE solvers illustrate the strong stepsize restrictions for explicit solvers resulting from the shear
stiffness in the Cosserat model.
On the other hand, the Cosserat model allows a very efficient implementation of the index-2
formulation of the model equations [22]. The constraints in the index-2 formulation are linear
w. r. t. the velocities. Because of the very simple structure of the constraints in the quaternionic
Cosserat model, the null space of the constraint matrix is given explicitly and the Lagrangian
multipliers may be eliminated by a null space method [17]. Recently, this solution technique that
combines redundant position coordinates with a (smaller) set of independent velocity coordinates
found new interest in multibody dynamics [8]. In numerical tests with implicit and linearly implicit
ODE/DAE solvers, the null space approach was clearly superior to the time integration of the
index-1 formulation. The drift-off effect was again avoided by projection steps or, alternatively,
by Baumgarte stabilisation that gave promising results in the application to semi-discretised stiff
Cosserat rods.
We distinguish three basic types of classical rod models. In hierarchical descending order, these
are the Cosserat, the extensible Kirchhoff and the inextensible Kirchhoff model [1, 2, 3, 9,
13, 14, 21, 23, 24, 25, 26, 27, 28, 32, 38, 39]. Table 1 presents a short overview, including numerical
problems in time integration to be discussed in this article.
In section 2, we shortly introduce these three basic classical models in the continuum, where we
concentrate on the kinematics — especially kinematic restrictions for the Kirchhoff models —, the
strain measures and the internal energies. For the method of lines, in section 3, we summarise
a recently introduced new spatial discretisation approach, which is based on geometric finite
differences on a staggered grid [26, 27]. Our ansatz generalises a discrete differential geometric
approach in [7, 10], where inextensible Kirchhoff rods have been examined. The formulation is
appropriate for multibody dynamics, i. e. classical Lagrangian mechanics on manifolds. In section
4, we discuss several numerical topics, which are contained in the lower part of Table 1. All
these topics are of importance for a proper and efficient numerical treatment, especially the time
integration of the spatially discrete models. Throughout this article, we use absolute coordinate
formulation. In addition, we expose and discuss an appropriate null space coordinate formulation
for the Cosserat model in section 4.

2 Smooth geometrically exact rods

The Cosserat and Kirchhoff rod models [1, 2, 3, 28, 38, 39] are established for the geometrically
exact simulation of deformable slender one dimensional elastic structures (e. g. cables, helicopter
or wind turbine rotor blades, steel strings), both statically and dynamically. A Cosserat rod can
be considered as the geometrically nonlinear generalisation of a linear Timoshenko-Reissner beam.
Likewise, a Kirchhoff rod is a geometrically nonlinear generalisation of a linear Euler-Bernoulli
beam. The latter beam models are classical in structural mechanics [13].
In contrast to a Kirchhoff rod, a Cosserat rod allows to model not only bending (= flexure), torsion
(= twist) and extension (= dilation), but as well shearing. We subdivide the class of Kirchhoff rod
models into two subclasses, which are the extensible (where dilation is allowed) and inextensible
Kirchhoff (where dilation is forbidden) models. For all these three basic classical models, the overall
deformation as response to external loads, i. e. translations, rotations, forces or moments, may
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Extensible Inextensible

COSSERAT KIRCHHOFF KIRCHHOFF

physical DOF S (2×), E, B (2×), T E, B (2×), T B (2×), T
6 4 3

Translations x, ẋ 3, 3 3, 3 3, 3

Rotations p, ṗ 4, 4 4, 4 4, 4

Lagrange multipliers λ 1 3 4

Total number of unknowns 15 17 18

Kinematic singularities no no yes

Handling of the cheap expensive expensive
mass-constraint matrix

Constraint stabilisation explicitly iteratively iteratively

Numerical stiffness highly stiff stiff non-stiff
(for soft materials)

Table 1: The kinematic DOF of the smooth classical rod models and related numerical issues in
time integration. (Here S = shearing, E = extension, B = bending, T = torsion.)

become large, although locally the stresses and strains are assumed to remain small. We remark
that these rod models serve as kinematic ‘skeletons’ for the full three dimensional elastic problem.
The reconstruction of the three dimensional displacement, stress and strain distributions can be
conveniently carried out in a postprocessing by the use of ‘warping functions’ [15, 21, 28].
In this section, we describe the basic equations in terms of energies for the smooth Cosserat and
Kirchhoff rods, where we parametrise the rotatory degrees of freedom directly with quaternions.
Unit quaternions in the subgroup S

3 = ∂BH
1 (0) = {p ∈ H : ‖p‖2 = 1} ⊂ H are an appropriate

way to describe (non-commutative spatial) rotations in SO(3) = {Q ∈ R3×3 : QQ⊤ = Q⊤Q =
I, detQ = 1}. This is analogous to unit complex numbers in the subgroup S1 = ∂BC

1 (0) = {z ∈ C :
‖z‖2 = 1} ⊂ C, which describe (commutative plane) rotations in SO(2) = {Q ∈ R2×2 : QQ⊤ =
Q⊤Q = I, detQ = 1}. We do not consider other possibilities, such as Rodriguez parameters,
rotation vectors, Euler or Cardan angles [11, 17, 34]. All of them have their pros and cons. So as a
pro, which in our opinion is the most important one, gimbal locking can be avoided by the use of
quaternions. A con is that they must be kept at unit length, which leads to kinematic constraints
and DAEs in any case. (But we will see that this is actually not a severe drawback.)
Our starting point for the continuous rod models is the exposition in [3, 38, 39]. For the consti-
tutive material behaviour, we choose a simple linear viscoelastic one that is called ‘viscoelastic
of complexity one’ in [1, 2, 3]. The elastic parameters can be straightforwardly deduced from
material and geometric ones [28, 39]. Concerning the damping model, we note that it is macros-
copic and phenomenological, it comprises not only pure material damping, but also miscellaneous
damping mechanisms. We assume both the elastic and viscoelastic parts as diagonal and pos-
itive definite. The generalisation to non-diagonal, symmetric and positive definite constitutive
Hookean-like tensors or to nonlinear hyperelastic materials is straightforward and does not cause
any harm in principle. We concentrate on the description of the internal potential, dissipative and
kinetic energies, as these will be the basis for the discrete model later.

We start with the kinematics for the Cosserat model, which is the most general one in the hierarchy.
The Kirchhoff models are special cases with kinematic restrictions. A Cosserat rod is completely
determined by its centerline of mass centroids

x : [0, L]× [0, T ] → R
3, (s, t) 7→ x(s, t)

and its unit quaternion field

p : [0, L]× [0, T ] → S
3 = ∂BH

1 (0) →֒ H, (s, t) 7→ p(s, t).



4 Numerical aspects in the dynamic simulation of geometrically exact rods

The quaternion field uniquely determines its orthonormal frame field

Λ ◦ p : [0, L] × [0, T ]
p

−→ S
3 = ∂BH

1 (0)
Λ

−→ SO(3), (s, t) 7→ Λ
(

p(s, t)
)

by composition with the Euler map (1). Any point of the deformed rod in space s ∈ [0, L] and time
t ∈ [0, T ] is addressed by the map A(s) ∋ ξ 7→ x(s, t)+ ξ1d

1(p(s, t))+ ξ2d
2(p(s, t)). The parameter

s ∈ [0, L] is the arc length of the undeformed rod centerline, L > 0 is the total undeformed
arc length and A(s) ⊂ R2 for s ∈ [0, L] is a bounded, connected coordinate domain for the
coordinates ξ = (ξ1, ξ2) ∈ A(s) in the cross section, which is assumed rigid and plane throughout
the deformation. In the terminology of classical differential geometry, the object (x(·, t), (Λ◦p)(·, t))
constitutes a so-called smooth ‘framed curve’ [12]. For a quaternion p = p0 + p̂ = ℜ(p) + ℑ(p) =
(p0 | p1, p2, p3)

⊤ ∈ H, the frame Λ(p) is given via the Euler map

Λ : H → RSO(3), p 7→
(

d1(p) d2(p) d3(p)
)

= (2p2
0 − ‖p‖2)I + 2p̂⊗ p̂+ 2p0E(p̂) (1)

with the alternating skew tensor E : R3 = ℑ(H) → so(3), which identifies skew tensors in so(3)
with their corresponding axial vectors in R3 via E(u)w = u × w for u, w ∈ R3. We write
u ≃ E(u) for u ∈ R3. The directors d1(p) and d2(p) span the rigid cross section of the rod. The
third director d3(p) is always normal to the cross section and is kept close to the tangent ∂sx
of the centerline by shearing. Via Λ, the unit sphere S

3 covers SO(3) exactly two times, the
correspondence Λ : S3/{±1} → SO(3) is one-to-one and onto [16, 20]. Stretched rotation can be
expressed via quaternions as Λ(p)w = pwp̄ (forward) and Λ(p)⊤w = p̄wp (backward) for p ∈ H

and w ∈ ℑ(H) = R3, especially dl(p) = pelp̄ = Λ(p)el for each of the space fixed Euclidean base
vectors e1 = i, e2 = j and e3 = k of ℑ(H) = R3. Recall that the quaternion product is defined by

pq = p0q0 − 〈p̂, q̂〉 + p0q̂ + q0p̂+ p̂× q̂ for p, q ∈ H, (2)

where 〈·, ·〉 is the inner product in H and ·×· the outer product in R3. It is convenient and common
use to identify ℑ(H) = R

3, this means, ordinary Euclidean vectors are considered as quaternions
with vanishing real parts. We use the symbols p0 = ℜ(p) resp. p̂ = ℑ(p) = (p1, p2, p3)

⊤ to denote
the real resp. the imaginary (=vector) part and p̄ = p0− p̂ to denote the conjugate of a quaternion
p ∈ H. Note that p̄ = ‖p‖2p−1, where p−1 stands for the multiplicative inverse of p. Thus unit
quaternions yield pure rotations without stretching. For more details on the Hamilton quaternion
division algebra/skew field, we refer to [16, 20].
In each point along its centerline, a Cosserat rod possesses six degrees of freedom, three trans-
latory and three rotatory ones. These equivalently correspond to the bending (2×), torsion,
shearing (2×) and extensional degrees of freedom. An extensible Kirchhoff rod additionally
satisfies the shearing constraints Γ1 = 〈d1(p), ∂sx〉 = 0, Γ2 = 〈d2(p), ∂sx〉 = 0. The cross sec-
tions must always stay orthogonal to the centerline tangent. We have four physical degrees of
freedom, namely bending (2×), torsion and extension. An inextensible Kirchhoff rod addi-
tionally satisfies ‖∂sx‖ = 1, this means that the rod remains parametrised by arc length all the
time during deformation. Then the centerline tangent ∂sx equals d3. This is obviously equivalent
to Γ1 = Γ2 = 0 and Γ3 = 〈d3(p), ∂sx〉 − 1 = 0. The total number of remaining physical degrees
of freedom is equal to three. This is, the inextensible Kirchhoff rod is a pure bending (2×) and
torsion rod. For all models, we tacitly assume that the centerline remains regular, i. e. ∂sx 6= 0,
throughout deformation.

We continue with the internal energies. The total internal potential V = VSE +VBT is additively
decomposed into shearing and extensional energy VSE and bending and torsion energy VBT. Firstly,

VSE =
1

2

∫ L

0

Γ⊤CSEΓds, CSE =









0
GA1

GA2

EA









, Γ = p̄(∂sx)p− k. (3)

Γ = ℑ(Γ) is the material strain vector. Γ1 resp. Γ2 are the strains that measure shearing in d1-
resp. d2-direction, Γ3 is the strain measuring extension in d3-direction. In components, we have
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Γ1 = 〈d1(p), ∂sx〉, Γ2 = 〈d2(p), ∂sx〉, Γ3 = 〈d3(p), ∂sx〉 − 1. Note that shearing and extension are
not decoupled in the Cosserat model. E = E(s) > 0 denotes Young’s modulus and G = G(s) > 0
the shear modulus of the material, A = A(s) =

∫∫

A(s)
d(ξ1, ξ2) is the area of the rigid cross section,

A1 = κ1A and A2 = κ2A denote effective cross section areas with some dimensionless Timoshenko
shear correction factors κ1(s), κ2(s) > 0, see [13]. Secondly,

VBT =
1

2

∫ L

0

K⊤CBTK ds, CBT =









0
EI1

EI2
GJ









, K = 2p̄ ∂sp. (4)

K = ℑ(K) ≃ E(K) is the material curvature vector, sometimes referred to as the ‘Darboux’ vector
[1, 3, 12]. K1 resp. K2 are the curvatures corresponding to bending around the d1- resp. d2-axis,
K3 is the curvature corresponding to torsion around the d3-axis. I1 = I1(s) =

∫∫

A(s)
ξ22 d(ξ1, ξ2)

and I2 = I2(s) =
∫∫

A(s)
ξ21 d(ξ1, ξ2) are the geometric moments of inertia of the rigid cross section.

J = J(s) = I3(s) =
∫∫

A(s)
(ξ21 + ξ22) d(ξ1, ξ2) = I1(s) + I2(s) denotes its polar geometric moment.

If the cross section is symmetric, we have I = I1 = I2 and J = I3 = 2I. In (4), it is assumed that
precurvature vanishes identically, i. e. the rod is straight in its undeformed configuration. This
just simplifies the exposition. For the handling of precurvature, see [26, 27, 38]. We remark that
the choice of quadratic potentials VSE resp. VBT in the strain measures Γ resp. K is based on the
presumption that locally the stresses and strains remain small [28, 38].
For the dissipative potential, we follow [1, 2, 3] and choose friction forces resp. moments that are
proportional to the strain resp. curvature rates. In the terminology of [3], this is a ‘viscoelastic
model of complexity one’. The contributions to the internal dissipative potential D = DSE +
DBT are

DSE =
1

2

∫ L

0

Γ̇⊤DSEΓ̇ds, DBT =
1

2

∫ L

0

K̇⊤DBTK̇ds (5)

with the material strain rate Γ̇ = ∂tΓ and the material curvature rate K̇ = ∂tK. We assume the
constitutive matrices DSE and DBT as diagonal and positive definite.
The total kinetic energy T = TT + TR decomposes into two parts, the translatory TT and the
rotatory TR one,

TT =
1

2

∫ L

0

̺A‖ẋ‖2ds, TR =
1

2

∫ L

0

̺Ω⊤IΩ ds, I =









0
I1

I2
J









, Ω = 2p̄∂tp. (6)

Ω = ℑ(Ω) is the material angular velocity vector, or the ‘vorticity’ vector in [38, 39], ̺ = ̺(s) > 0
is the material density, I1, I2 and J = I3 are as above, and we identify Ω ≃ E(Ω). A short
computation with the p dependent 4 × 4 quaternion mass matrix

µ(p) = 4Q(p)IQ(p)⊤, Q(p) =









p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0









=
(

p F (p)
)

∈ RSO(H) (7)

shows that the rotatory kinetic energy can be rewritten as TR = 1
2

∫ T

0
̺ṗ⊤µ(p)ṗ ds. Details

are carried out in [26, 34]. The quaternion mass matrix µ(p) satisfies the symmetry property
µ(−p) = µ(p), which is a consequence of the fact that both p and −p describe the same rota-
tion Λ(p) = Λ(−p). Kernel and image of µ(p) are given by kerµ(p) = Rp and imµ(p) = {p}⊥.
Consequently, we have rkµ(p) = 3. Interestingly and useful later, the columns of Q(p) are the
eigenvectors of µ(p) to the eigenvalues 0, 4I1, 4I2 and 4J . µ(p) is positive semi-definite with its
one singular dimension in radial direction.
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For the Cosserat model, the internal conservative elastic forces FΓ and moments MK are de-
rived from the potential energy as FΓ = CSEΓ and MK = CBTK. Similarly, the internal dis-

sipative damping forces F Γ̇ and moments M K̇ can be derived from the dissipation potential as

F Γ̇ = DSEΓ̇ and M K̇ = DBTK̇. The total internal forces and moments are then F = FΓ+F Γ̇ resp.

M = MK + M K̇ . For the Kirchhoff model, things are essentially different. Here the internal
forces F — in contrast to the moments M — are not determined constitutively, since they are of
reactive nature due to the presence of internal constraints [1, 3, 30]. For the inextensible model
for example, where all the components of the strain vector Γ must vanish, these constraint forces
must be of the form F = (∇x,pΓ)⊤λ with appropriate Lagrange multipliers. This is a consequence
of d’Alembert’s principle.

In [38], averaging the normal Piola-Kirchhoff tractions and corresponding torques over the cross
section of the deformed rod, for given exterior material force densities F̂ = F̂ (t) (per length)
and given exterior material moment densities M̂ = M̂(t) (per length), it was shown that the rod
must satisfy the following system of nonlinear hyperbolic partial differential equations, called the
dynamical balance equations for geometrically exact rods,

{

̺A ẍ = ∂sf + f̂
̺
(

iω̇ + ω × iω
)

= ∂sm+ ∂sx× f + m̂
(s, t) ∈ [0, L]× [0, T ]. (8)

Here the spatial quantities ω = ΛΩ, i = ΛIΛ⊤, f = ΛF , f̂ = ΛF̂ , m = ΛM and m̂ = ΛM̂
are obtained from the corresponding material ones by the push forward operation Λ(p)· = p · p̄ :
ℑ(H) → ℑ(H). An equivalent formulation of (8) in ‘quaternion language’, derived in an alternative
fashion, can be found in [26, 27]. By the quaternionic parametrisation of rotations, which involves
the constraint of unit length in any case, (8) becomes a partial differential-algebraic equation.

The result of the following Lemma is of utmost importance. Of course, it is well known [6] — and
most probably due to Euler. However, we give a very short and compact proof for the reader’s
convenience.

Lemma 2.1 (Differential equations for K and Ω) The equations K = 2p̄∂sp in S3 and K ≃
E(K) = Λ⊤∂sΛ in SO(3) for the curvature K, and the equations Ω = 2p̄ ∂tp in S3 and Ω ≃ E(Ω) =
Λ⊤∂tΛ in SO(3) for the angular velocity Ω are equivalent. Here Λ = Λ ◦ p.

Proof: We prove the equivalence for Ω. For an arbitrary, but fixed, vector w ∈ ℑ(H), we compute
with (2) and the fact that w̄ = −w for ŵ = w,

E(2p̄ṗ)w = 2p̄ṗ× w = 2ℑ
(

p̄ṗ× w − 〈p̄ṗ, w〉
)

= 2ℑ(p̄ṗw) = p̄ṗw − p̄ṗw = p̄ṗw + p̄ṗw̄

= p̄ṗw + w ˙̄pp = p̄(ṗwp̄+ pw ˙̄p)p = p̄∂t(pwp̄)p = p̄∂t(Λw)p = p̄(Λ̇w)p = Λ⊤Λ̇w

where ˙ = ∂t. Now, if Λ⊤Λ̇ = E(Ω), it follows that Ω = 2p̄ṗ, as w can be chosen arbitrarily. �

The reader should note that, interestingly, the situation for K and Ω is always completely sym-
metric/analogous, if we look at them in two dimensions (s, t) ∈ [0, L] × [0, T ]. The curvature K
is so-to-say the ‘angular velocity of p along the space dimension s’. By the use of the horizontal
method of lines for the discrete model, evolution K = 2p̄ ∂sp forms the basis for spatial discretisa-
tion, whereas evolution Ω = 2p̄ ∂tp is solved ‘continuously’ in time. The following Lemma states
that the three classical rod models are objective (or frame-indifferent), which means that Γ, K
and Ω are invariant w. r. t. superimposed rigid body motions (translations and rotations), which
is essential for ‘geometrical exactness’. We will see below that our discrete versions as well enjoy
this property.

Lemma 2.2 (Objectivity) The material angular velocity Ω = 2p̄∂tp, the material curvature
K = 2p̄∂sp and the material strain Γ = p̄(∂sx)p− k are objective.
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Proof: Examining translations is obvious. If we superimpose a constant rotation π ∈ S3, the
associated material curvature K∗, which is obtained by replacing p(s, t) by πp(s, t), becomes
K∗ = 2(πp)∂s(πp) = 2p̄π̄π∂sp = 2p̄∂sp = K, since π̄π = ‖π‖2 = 1. The components of the
forward rotated tangents w. r. t. the global basis (e1, e2, e3) = (i, j, k) are given by ∂s(πx(s, t)π̄).
Thus, the associated material strain Γ∗, which is obtained after rotation by π, satisfies Γ∗ =
πp(π∂sxπ̄)(πp) − k = p̄π̄π∂sxπ̄πp− k = Γ. �

3 Discrete geometrically exact rods

In this section, we present our discrete rod versions, based on a staggered grid finite difference
discretisation. An obvious advantage of this staggered approach is that for the discrete strain
vector Γn−1/2, no interpolation is needed, yielding a slim three point formula. Shear locking
can be avoided thus easily. Further, a staggered grid discretisation approach is much closer to
the geometry of the framed curve: From a discrete differential geometric point of view, discrete
curvature Kn must be situated on the vertices. These rod models are ‘discrete framed curves’
[7, 10, 27].

Figure 1: Our discrete differential geometric rod models

Where can this work be situated within the state of the art rod models? The standard approach
to handle flexible objects in multibody dynamics simulations [33, 36], which is as well supported
by commercial software packages such as SimPack, Adams or VirtualLab, represents flexible
structures by vibrational modes, e. g. of Craig and Bampton type [13], that are obtained from
numerical modal analysis within the range of linear elasticity. Such methods are suitable and
accurate to represent oscillatory response that results from linear response of the flexible structure.
Unlike that, our approach is not of modal kind. Each discretised model can be interpreted as a
multibody system. So, for example, the inextensible Kirchhoff rod is simply a chain of rigid
cylinders connected with bushings that are consistently derived from the continuum equations.
But our discretisation approach stands in contrast to the usual way in computational continuum
mechanics, where the finite element (FE) approach is favored [9, 11, 14, 21, 23, 38, 39]. The
reason for that is, that the main focus in FE is accuracy, not computational efficiency. A very
hard problem in geometrically nonlinear FE is the proper interpolation of finite rotations such
that objectivity of the strain measures is maintained [14, 31]. (Rigid body motions must not cause
additional strains.) This yields extremely technical and sophisticated models with expensive right
hand side functions and Jacobians. Our discretisation is motivated from a discrete differential
geometric viewpoint. It is much simpler and the objectivity of the smooth models, see Lemma
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2.2, is easily maintained.
We use the horizontal method of lines and start first with the discretisation in space. We subdivide
the arc length interval [0, L] into N segments [sn−1, sn] with the vertices 0 = s0 < s1 < . . . <
sN−1 < sN = L. Together with the midpoints sn−1/2 = (sn−1 + sn)/2, we have the staggered grid
0 = s0 < s1/2 < s1 < . . . < sN−1 < sN−1/2 < sN = L. The situation is depicted in Figure 1.
Now we let the discrete translatory degrees of freedom xn : [0, T ] → R3, i. e. the cross section
centroids, live on the vertices, x0(·) ≈ x(s0, ·), . . ., xN (·) ≈ x(sN , ·), and the discrete rotatory
degrees of freedom pn−1/2 : [0, T ] → H, i. e. the quaternions specifying the frame orientations,
on the segment midpoints, p1/2(·) ≈ p(s1/2, ·), . . ., pN−1/2(·) ≈ p(sN−1/2, ·). The corresponding

frames Λ(pn−1/2) and the directors dl(pn−1/2) live as well on the midpoints. In order to apply
clamped boundary rotations properly, virtual ghost quaternions can be introduced, which is a
standard technique [27, 29]. Further, we have to introduce discrete Lagrange multipliers λn−1/2 :
[0, T ] → Rnλ , situated as well on the midpoints, λ1/2(·) ≈ λ(s1/2, ·), . . ., λN−1/2(·) ≈ λ(sN−1/2, ·).
The current constraint manifold at time t ∈ [0, T ] is {q ∈ RNq : g(q, t) = 0}, where, for the
Cosserat model

g = g(q, t) =

(

1

2

(

‖pn− 1

2

‖2 − 1
)

)

n=1,...,N

, nλ = 1,

for the extensible Kirchhoff model

g = g(q, t) =









1

2

(

‖pn− 1

2

‖2 − 1
)

Γ1
n− 1

2

(xn−1, pn− 1

2

, xn, t)

Γ2
n− 1

2

(xn−1, pn− 1

2

, xn, t)









n=1,...,N

, nλ = 3,

for the inextensible Kirchhoff model

g = g(q, t) =













1

2

(

‖pn− 1

2

‖2 − 1
)

Γ1
n− 1

2

(xn−1, pn− 1

2

, xn, t)

Γ2
n− 1

2

(xn−1, pn− 1

2

, xn, t)

Γ3
n− 1

2

(xn−1, pn− 1

2

, xn, t)













n=1,...,N

, nλ = 4.

The discrete strains Γl
n−1/2 = Γl

n−1/2(xn−1, pn−1/2, xn) are explained in (10). In the sequel,
we discretise the continuous internal Cosserat energy integrals V , T and D by the use of either
midpoint or trapezoidal quadrature, depending on where which quantity is ‘at home’. Then, with
q = (x, p) ∈ RNq , v = q̇ ∈ RNq , λ ∈ RNλ , the discrete potential energy V = V(q, t), the discrete
kinetic energy T = T (q, v, t) = 1

2v
⊤M(q)v, the discrete dissipative potential D = D(q, v, t), the

Lagrangian function L = L(q, v, t) = T (q, v, t) − V(q, t) − g(q, t)⊤λ and prescribed exterior forces

φ(t) ∈ RNq , the variational principle δ
∫ T

0 Ldt+
∫ T

0 (φ−∂vD)δq dt yields a Lagrangian mechanical
system [4, 22] with holonomic constraints as Euler-Lagrange equations,







q̇ = v
M(q)v̇ = ψ(q, v, t) − G(q, t)⊤λ

0 = g(q, t)
. (9)

Here the right hand side forces are given by ψ(q, v, t) = φ(t)−∂qV−∂vD+∂qT −∂q(Mv)v ∈ RNq ,
the constraint gradient is G(q, t) = ∇qg(q, t) ∈ RNλ×Nq and the mass matrix M(q) ∈ RNq×Nq is
positive semi-definite and symmetric. If no boundary values are prescribed, we have q, v ∈ RNq ,
λ ∈ RNλ , where Nq = (N + 1)nx + Nnp, Nλ = Nnλ nx = 3, np = 4, nλ as above and N is the
number of rod segments.
Before we start with the discrete energies, we give some comments about notation. We conse-
quently use the notation ·n for quantities on the vertices sn; here n always ranges from 0 to N .
We use the notation ·n−1/2 for quantities that are situated on the midpoints sn−1/2; here n always
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ranges from 1 to N . The weight factors for the midpoint rule are the segment lengths, denoted by
∆sn−1/2 = sn − sn−1. Likewise, the weights for the trapezoidal rule are the lengths of the bucked
segments 2δs0 = ∆s1/2, 2δsn = ∆sn−1/2 + ∆sn+1/2 and 2δsN = ∆sN−1/2. See Figure 1.
We start with the discrete version of the potential energies. We plug the discrete material strains
Γn−1/2 on the segment midpoints, with a simple central difference for the discrete tangents. The
potential extensional and shearing energy (3) is approximated with the midpoint rule,

VSE =
1

2

N
∑

n=1

Γ⊤

n− 1

2

CSEΓn− 1

2

∆sn− 1

2

, Γn− 1

2

= p̄n− 1

2

∆xn− 1

2

∆sn− 1

2

pn− 1

2

− k, (10)

where ∆xn−1/2 = xn −xn−1. The discrete strain Γn−1/2 locally depends on xn−1, xn and pn−1/2,
no interpolation is necessary, shear locking is avoided. It is not hard to show that this special
choice for the discrete material strain is objective. The proof is analogous to the continuous case,
see Lemma 2.2. We plug the discrete curvaturesKn on the vertices and, consequently, approximate
the potential bending and torsion energy (4) with the trapezoidal rule

VBT =
1

2

N
∑

n=0

K⊤
n CBTKnδsn, Kn = Kn

(

δsn, pn− 1

2

, pn+ 1

2

)

, (11)

where the discrete material curvatures Kn depend on pn−1/2 and pn+1/2. The choice of a discrete
curvature measure is by no means unique. We propose several choices from literature [6, 7, 10, 24,
27, 32, 40], which can be expressed in terms of the material unit axis un and the material angle
ϕn of difference rotation. Typical examples are

Kn =
κ

δsn
sin

(ϕn

κ

)

un, Kn =
κ

δsn
tan

(ϕn

κ

)

un or Kn =
1

δsn
ϕnun. (12)

Here κ ∈ N denotes any natural number. The first two curvatures correspond to vectorial
parametrisations with the sine resp. tangent generator family in [6]. The third curvature choice
can be considered as the limit case for κ → ∞ [32]. They all satisfy Kn = O(ϕn/δsn) for |ϕn| ≪ 1.
We briefly sketch the simplest choice in (12), namely the one that corresponds to the sine generator
family for κ = 2, already proposed in [40]. That curvature, Kn = 2 sin(ϕn/2)un, is obtained with
a simple secant interpolation pn = (pn−1/2 + pn+1/2)/2 and a simple finite central difference
δpn = pn+1/2−pn−1/2 as Kn = 2p̄nδpn/δsn. Objectivity for that discrete curvature can be proven
in the same way as in the smooth case, see Lemma 2.2. Unfortunately, this ‘naive’ approach suffers
from poor stability properties [27].
The details for the more sophisticated curvatures in (12) are special topics of elastostatics for rods
and go beyond the scope of the present paper. The basic difficulty for a proper discrete curvature
definition is to interpolate rotations in a proper, objective way at acceptable numerical costs. For
thorough discussions on that topic, we refer to [31]. Approaches that use Cayley transformation
instead of interpolation are as well possible [24]. For each of the proposed curvatures in (12), it is
possible to show that they are objective/frame-indifferent. The underlying differential geometric
reason is that the quaternion unit sphere S3 is completely isotropic — or ‘fair’ —, in the sense
that no special direction is preferred [16, 20].
The discretisation of the dissipative potential must be be consistent with the discretisation of
the potential energies. We let

DSE =
1

2

N
∑

n=1

Γ̇⊤

n− 1

2

DSEΓ̇n− 1

2

∆sn− 1

2

, DBT =
1

2

N
∑

n=0

K̇⊤
n DBTK̇nδsn,

with the discrete material strain rates Γ̇n−1/2 = Γ̇n−1/2(xn−1, xn, pn−1/2, ẋn−1, ẋn, ṗn−1/2) and

the discrete material curvature rates K̇n = K̇n(pn−1/2, pn+1/2, ṗn−1/2, ṗn+1/2).
As the primary unknowns are ordered in alternating fashion, we discretise the kinetic energy
summands in (6) by the trapezoidal rule and the midpoint rule

TT =
1

2

N
∑

n=0

̺nAn‖ẋn‖
2δsn, TR =

1

2

N
∑

n=1

̺n− 1

2

ṗ⊤n− 1

2

µ(pn− 1

2

)ṗn− 1

2

∆sn− 1

2

. (13)
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That way, we lump the translatory masses to the vertices and the rotatory quaternion masses to
the midpoints. The discrete material angular velocities Ωn−1/2 = 2p̄n−1/2ṗn−1/2 as well belong
to the midpoints. The mass matrix M(q) of the system is block diagonal with alternating 3 × 3
(translatory, diagonal and constant) and 4×4 (rotatory, full and position-dependent) blocks. Each
summand in (13) can be interpreted as the rotatory energy of a rigid body with physical moments
of inertia equal to I1 = ̺∆sI1, I2 = ̺∆sI2 and I3 = ̺∆sI3, which are the physical moments of
inertia of discs with vanishing thickness [27, 34].

It can be seen that in the equidistant case, the discretisation is of second order, which is illustrated
by the numerical test results in Figure 2. The asymptotic slopes of the maximum errors in the
double logarithmic plot equal two. Positions, velocities and accelerations do converge quadratically,
provided that the problem has a smooth solution and that the initial and boundary data are
provided consistently. This is not surprising, since — in the equidistant case — both the midpoint
and the trapezoidal rule (for the discrete energies) are of second order, and the finite differences
(for the discrete strain measures), which are in fact central differences, are of second order, too.

Figure 2: Quadratic convergence for N → ∞ of the discretisation schemes in the equidistant case.
The plot displays the results for a swinging — at one end translatory fixed — damped rubber
Cosserat rod in formulation (14) with projection to avoid the drift-off effect. This is Test 1 in [27]
and a standard beam/rod benchmark [35].

The reader should observe that, intrinsically in the model, there are many skew symmetries due
to the quaternions. The exploitation of these is one reason, why the right hand side of the models
can be implemented with extremely few elementary arithmetic operations, see Table 2. Another
benefit of quaternions is that they comprise quadratic instead of trigonometric expressions, see
(1). So there is no vast blow-up for the Jacobians or Hessians.

Tests versus detailed finite element solutions have been presented in [27], where as well the per-
formance of the model has been demonstrated. It can be shown that the approach is a consistent
discretisation to the smooth balance equations (8), see [26, 27]. Yet, formal proofs of stability and
convergence are still open questions.
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OPS sine generator sine generator tangent generator tangent generator limit case
κ = 2 κ = 4 κ = 2 κ = 4 κ → ∞

+ 174N+34 +10N+10 +11N+10 +11N+11 +37N+37
− 111N+36 +15N+15 +15N+15 +27N+27 +03N+03
∗ 289N+90 +39N+39 +40N+39 +36N+36 +72N+72
/ 3N+03 +30N+30 +30N+30 +31N+31 +03N+03
2 4N+00 +00N+00 +00N+00 +00N+00 +01N+01
√

0N+00 +00N+00 +00N+00 +01N+01 +01N+01

arccos 0N+00 +00N+00 +00N+00 +00N+00 +01N+01

Table 2: Operation counts for the Cosserat right hand side Φ for different curvature types in
absolute coordinates and ODE form (q̇, v̇) = Φ(q, v, t). (The Jacobian ∂Φ/∂(q, v) is about twelve
times as expensive. For the Kirchhoff models, these counts are similar.)

4 Numerical problems in time integration

In this section, we discuss several topics that are important for proper, efficient time integration
of the semi-discrete system (9). The exposition in this section relies on the discrete differential
geometric model presented before. System (9) is known to be a differential algebraic equation of
index 3, see [4, 22]. It is also well known that the numerical solution of the index-3 system involves
difficulties such as poor convergence of Newton’s method [4, 17, 22]. Thus, we reduce the index
to 1, yielding





I 0 0
0 M(q) G(q, t)⊤

0 G(q, t) 0









q̇
v̇
λ



 =





v
ψ(q, v, t)

−gII(q, v, t)



 . (14)

Here all the right hand side terms that emerge from time differentiation are collected in the function
gII(q, v, t) = ∂2

qqg(q, t)[v, v] + 2∂tG(q, t)v + ∂2
ttg(q, t). Solving (14) for (q̇, v̇, λ) and discarding the

equation for the Lagrange multipliers, we receive an ODE u̇ = Φ(u, t) for the unknowns u = (q, v).

The following Null Space Coordinate Formulation is an interesting alternative, which is
especially simple and will turn out — at least for Cosserat rods — to be superior to (14). The
adaptation of this technique to the Kirchhoff models seems promising, but is an open topic.
We summarise the simple and elegant idea of null space coordinates [8, 17]. It is some kind
of compromise between absolute and relative (minimal) coordinate formulations. On position
level, we keep the absolute coordinates q ∈ RNq (not minimal), but on velocity level, instead on
v ∈ RNq , a minimal number of unknowns ν ∈ RNDOF , where NDOF = Nq − Nλ ≥ 0, is chosen.
These minimal unknowns ν = (ν1, . . . , νNDOF

) are the coefficients of the tangential part of the
velocity v in the expansion w. r. t an appropriate basis of the current tangential space at q. Note
that in contrast to the current manifold {q ∈ R

Nq : g(q, t) = 0}, the current tangential space
kerG(q, t) = {ξ ∈ RNq : G(q, t)ξ = 0} is a linear space.

Starting with the Lagrangian system (9), we expand the tangential component of v with respect
to a basis φ1(q, t), ..., φNDOF(q, t) ∈ RNq of the tangential space of the current constraint manifold,

v = q̇ =

NDOF
∑

l=1

νlφ
l(q, t) − G(q, t)⊤

(

G(q, t)G(q, t)⊤
)−1

∂tg(q, t) =: F(q, t)ν − ϕ(q, t) (15)

We assume the Grübler condition that rkG⊤ = Nλ is maximal, excluding singular (especially
redundant) constraints. Since kerG(q, t) = imF(q, t), the constraint on the level of velocity is
satisfied exactly,

ġ = Gq̇ + ∂tg = G
(

Fν − G⊤(GG⊤)−1∂tg
)

+ ∂tg ≡ 0. (16)

Now, the constraint forces G(q, t)⊤λ are eliminated, if we multiply the dynamical equations of (9)
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with F(q, t)⊤ from the left. We receive the null space coordinate formulation











q̇ = F(q, t)ν − ϕ(q, t)

F(q, t)⊤M(q)F(q, t)ν̇ = F(q, t)⊤
(

ψ(q, q̇, t) + M(q)
(

ϕ̇(q, q̇, t) − Ḟ(q, q̇, t)ν
)

)

0 = g(q, t)

. (17)

The first line consists of Nq equations (as for absolute coordinates), the second line of NDOF equa-
tions (as for relative coordinates). The latter is minimal, because it contains exactly as many
equations as are present in the physical model, namely NDOF = dim{q ∈ RNq : g(q, t) = 0} =
dimkerG(q, t) = rkF(q, t). System (17) is overdetermined, as we have Nq unknowns q and NDOF

unknowns ν. System (171,2) yields an ODE (q̇, ν̇) = Ψ(q, ν, t) of dimension Nq + NDOF with the
solution invariant (173), see [18]. The null space coordinate method is equivalent to solving the
corresponding index-2 version of (9) in ODE form, see [17]. �

We now start discussing numerical problems in time integration, which are summarised in the
lower part of Table 1.

(a) Kinematic singularities. Unfortunately, the inextensible Kirchhoff model, which is a
pure bending and torsion rod, contains kinematic singularities. A singularity is obviously given,
if such a rod is straight, not predeformed, but clamped at the boundaries: Traction at both ends
is forbidden, pressure on both sides results in instantaneous buckling. (Not to mention that the
critical Eulerian buckling loads can be predicted precisely.) The existence of such singularities
does not depend on the special discretisation or coordinate formulation, it is an intrinsic property
already of the smooth model. (In terms of (9), these singularities manifest themselves in the fact
that G(q, t)⊤ is not of full rank Nλ, i. e. the Grübler condition is not satisfied.) So unfortunately,
for industrial applications as the modeling of deformable cables, where only bending and torsion
phenomena are of interest, the use of the inextensible Kirchhoff model, which — as we will see —
does not behave numerically stiff and allows the largest time stepsizes, makes additional tedious
handling of such singular configurations necessary.

(b) Handling of the mass- and constraint matrices. In the Cosserat model, translatory
and rotatory parts in (14) decouple. For each centroid xn with mass ̺nAnδsn, the translatory
mass-matrix block is given by a 3 × 3 diagonal, constant, state independent block ̺nAnδsnI.
For the rotatory part, we fix a segment ∆s = ∆sn−1/2, ̺ = ̺n−1/2 and its quaternion p =
pn−1/2. The constraints on position, velocity and acceleration level are written 2g = ‖p‖2− 1 = 0,
ġ = G(p)ṗ = 〈p, ṗ〉 = 0 and g̈ = G(p)p̈ + ∂2

ppg(p)[ṗ, ṗ] = 〈p, p̈〉 + ‖ṗ‖2 = 0 respectively, where

G(p) = ∇pg(p) = p⊤. Thus, each rotatory quaternionic mass-constraint block is 5× 5 and has the
form

(

M(p) G(p)⊤

G(p) 0

)

=

(

M(p) p

p⊤ 0

)

, M(p) = ̺∆sµ(p) (18)

with the singular quaternion mass µ(p) from (7). The inverse of (18) exists, iff p 6= 0, and has
exactly the same form as (18), where M(p) is replaced by M(p)♯ = 1

̺∆sµ
♯(p) with the tangential

inverse quaternion mass µ♯(p) = 1
4Q(p)I♯Q(p)⊤, I♯ = diag(0 | 1/I1, 1/I2, 1/J), which satisfies the

property µ(p)µ♯(p) = µ♯(p)µ(p) = I−p⊗p for p ∈ S3, which justifies the nomenclature ‘tangential
inverse’, as µ♯(p)µ(p)π = µ(p)µ(p)♯π = π − (p ⊗ p)π = π − 〈p, π〉p for π ∈ H, see [26]. Thus, the
structures of (18) and its inverse are completely identical, inversion can be performed at exactly
the same numerical complexity [27, 34]. Especially, the inverse of the mass-constraint matrix in
(14) is as well block diagonal. Note that for ill-conditioned problems — for example, if the rod is
very thin —, the constraints must be scaled appropriately [5, 27].

The situation gets even better, if we apply the aforementioned null space technique to the quater-
nionic rotatory part. For the special case of Cosserat rods, a decoupled quaternionic rotatory
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block part in index-3 resp. index-1 absolute formulation is given by











ṗ = v
M(p)v̇ = ψp − λp

0 =
1

2

(

‖p‖2 − 1
)

, resp.







ṗ = v
M(p)v̇ = ψp − λp
〈p, v̇〉 = −‖v‖2

. (19)

(The reader might equivalently think of the Euler equations for a rigid body.) Here Nq = np = 4,
Nλ = nλ = 1. ψp ∈ H denotes the quaternionic moments acting on p, of which only the tangential
component is physically relevant, as multiplication with the radially singular M(p)♯ shows, giving
v̇ = M(p)♯ψp − ‖v‖2p. The tangential space kerG(p) = {p}⊥ = {π ∈ H : 〈p, π〉 = 0} of S3 at p
has dimension NDOF = 3. An adequate expansion for v = ṗ in (15) is

v =
3

∑

l=1

νlφ
l(p) = F (p)ν, φ1(p) =









−p1

p0

p3

−p2









, φ2(p) =









−p2

−p3

p0

p1









, φ3(p) =









−p3

p2

−p1

p0









. (20)

with the 4×3 null space matrix F(p, t) = F (p) from (7). Then we receive the following quaternionic
null space formulation for Cosserat rods (or rigid bodies).

Lemma 4.1 (Quaternionic Null Space) The null space formalism, applied to the index-3 prob-
lem (191) with expansion (20), yields the following special form of (17),











ṗ = pν
4Iν̇ = ℑ(p̄ψp)

0 =
1

2

(

‖p‖2 − 1
)

I =





I1

I2

I3



 . (21)

Proof: Firstly, the tangential vectors φl(p) are eigenvectors of M(p) with the corresponding
eigenvalues 4Il = 4̺∆sIl for l = 1, 2, 3. Since kerM(p) = Rp and Q(p) ∈ ‖p‖SO(H) —
which yields that the system (p, φ1(p), φ2(p), φ3(p)) is an orthonormal one on S3 — we receive
F (p)⊤M(p)F (p) = 4I. Secondly, the following general identities from quaternionic calculus

F (p)w = pw, F (p)⊤π = ℑ(p̄π) for w ∈ ℑ(H), π ∈ H (22)

immediately yield F (p)ν = pν and F (p)⊤ψp = ℑ(p̄ψp). Thirdly, since the system is sclero-
nomic, i. e. ∂tg ≡ 0, it follows that ϕ = ϕ̇ ≡ 0. Finally, from the relations (∂pφ

1)φ2(p) =
−φ3(p), (∂pφ

2)φ3(p) = −φ1(p), (∂pφ
3)φ1(p) = −φ2(p), (∂pφ

l)φl(p) = −p for l = 1, 2, 3 and

Ḟ = ∂p(φ
1(p)|φ2(p)|φ3(p))F (p)ν, it follows that the term F⊤MḞν ≡ 0 vanishes. �

In fact, with (222) and Lemma 2.1 it is easy to see that Ω = 2ν, so that the null space technique,
applied to the quaternionic rotatory formulation, yields a well known mixed formulation for rigid
bodies in [17, 34], which uses (p,Ω) as the primary unknowns. (The reader should note that the
term Ω×IΩ in the Euler equations, which corresponds to the mass skew derivative 1

2∂p(v
⊤Mv)−

∂p(Mv)v, is included in ψp, see [26].) We think, it is an interesting insight that this classical mixed
formulation can be embedded into the systematic and general null space coordinate framework.
The null space formulation (21) for the Cosserat rod (or a rigid body) has several decisive advan-
tages compared to the full absolute coordinate formulation (19).

(i) The reduced 3× 3 mass matrix F (p)⊤M(p)F (p) = 4I is diagonal and state-independent, in
contrast to M(p) itself, which is 4 × 4, full and depends on the quaternion position p.

(ii) The constraint is satisfied exactly on velocity level, ġ = G(p)F (p)ν ≡ 0.

(iii) The radial constraint forces G(p)⊤λ = λp, which do not have any physical meaning and
which are of no interest, are eliminated exactly.
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Figure 3: Accuracy and Numerical Task. (Absolute formulation (q̇, v̇) = Φ(q, v, t) vs. null space
formulation (q̇, ν̇) = Ψ(q, ν, t) for the Cosserat rod with the solver Radau5 and T = 10s.)

(iv) The number of unknowns is reduced from eight for (p, v) to seven for (p, ν). This is mini-
mal on velocity level, but still singularity free — compared to any three-dimensional — or
‘vectorial’ [6] — parametrisation of SO(3), which necessarily must have singularities.

(v) The problem of ill-conditioning vanishes, since the Skeel condition of I equals one.

(vi) The total number of operations in Table 2 for Φ is further reduced. This yields a cheaper
net right hand side function Ψ (and Jacobian) with OPS(Ψ) ≤ 13

14OPS(Φ).

Advantage (ii) as well leads to a significantly improved energetic behaviour, as we shall see below.
Benefit (iv) leads to an improvement of stepsize selection for all the solvers we have tested. These
are the Ode15s, Ode45, Ode23 from the Matlab ODE suite [37], DoPri5, DoP853, Rodas,
Seulex, Radau5 and Dassl [22]. In fact, it leads to improved accuracy, see Figure 3 for the
implicit method Radau5 and the same test setup as in Figure 2. The Jacobians for implicit time
integration become slightly ‘lopsided’, as originally 4 × 4 blocks become 3 × 3, 3 × 4 or 4 × 3, see
Figure 4 (d). Block banded Gaussian elimination can be appropriately adapted [19].
For the Kirchhoff model, the constraints have a substantially more complex structure. Here
the constraint gradient G(q, t) depends on all positions q and the time t (if boundary values are
prescribed). So does the mass-constraint matrix on the left-hand side in (14). But the latter is
still sparse and banded with upper and lower bandwidths m = 9 (in the extensible case) resp.
m = 10 (in the inextensible case) for the discrete versions, see Figure 4 (a). Figure 4 (b) nicely
demonstrates how the sparsity pattern is destroyed by inversion.
Now for explicit solvers, which can only handle systems of the form

Iu̇ = f(t, u) with identity ‘mass’ I (e. g. DoPri5), (23)

system (14) must be solved for (q̇, v̇, λ), so that one can choose u = (q, v) in (23). Banded
Gaussian LU factorisation [19] is appropriate with complexity O(m2N). In order to avoid this
decomposition step, one is restricted to solvers, that may handle linearly implicit systems

Au̇ = f(t, u) with constant ‘mass’ A (e. g. Radau5) (24)

or
A(t, u)u̇ = f(t, u) with state dependent ‘mass’ A(t, u) (e. g. Dassl). (25)
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(a) (b)

(c) (d)

Figure 4: (a) The mass-constraint matrix for an inextensible Kirchhoff rod. (b) Its Inverse. (c)
The Jacobian ∂(q̇, v̇)/∂(q, v) for a Cosserat rod in absolute coordinates (q̇, v̇) = Φ(q, v, t). (d) The
Jacobian ∂(q̇, ν̇)/∂(q, ν) for a Cosserat rod in null space coordinates (q̇, ν̇) = Ψ(q, ν, t).

Solvers for (25) do not eliminate the Lagrange multipliers λ in (14). They solve the full index-
1 problem with u = (q, v, λ). For solvers that may handle linearly implicit systems (24), the
accelerations w = v̇ must be introduced as additional primary unknowns. Again, one has to solve
the index-1 problem with u = (q, v, w, λ) with appropriate rescaling in the error estimator [22].
The drawback for use of numerical solution techniques of type (24) or (25) is that these methods
are implicit, which in turn, makes the effective evaluation of the Jacobian ∂f/∂u necessary.

Summarising, in contrast to the Kirchhoff models, the Cosserat model may be combined with any
standard solver, the inverse of the mass-constraint (resp. mass) matrix in absolute (resp. null
space) coordinates may be evaluated efficiently, as it is sparse and cheap.

(c) Constraint stabilisation. Let us continue with the question, how to avoid the drift-off
effect. It is well known that in (14), where the constraint is imposed on acceleration level, the
position q (resp. the velocity v) drifts quadratically (resp. linearly) from the constraint manifold
[4, 17, 22]. For the two Kirchhoff models, subsequent (orthogonal) projection of the position
q⋆ and (tangential) projection of the velocity v⋆ with respect to the pseudo (or ‘semi’) metric
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Figure 5: Accumulated rotatory energy defect caused by projection. (Absolute vs. null space
coordinate formulation for a swinging Cosserat rubber rod, computed with Radau5.)

〈M(q)·, ·〉 = ·⊤M(q)· can be applied [22]. This leads to the systems

{

M(q)(q − q⋆) + G(q, t)⊤τ = 0
g(q, t) = 0

and

{

M(q)(v − v⋆) + G(q, t)⊤η = 0
G(q, t)v + ∂tg(q, t) = 0

, (26)

which must be solved consecutively for (q, τ) and (v, η), where η, τ ∈ RNλ denote additional
Lagrange multipliers [22]. The first system (261) is nonlinear and must therefore be solved iter-
atively. Typically, two or three iterations with a simplified Newton method are sufficient, if the
projection is applied after each accepted time integration step. The Jacobian for the simplified
Newton method is kept constant during iteration. It equals the mass-constraint matrix with the
structure displayed in Figure 4 (a). The second system (262) is linear and can be solved in one
step. Note that in the same way, at the very beginning of the dynamical simulation for t = 0,
consistent initial values can be obtained from inconsistent ones.
For the Cosserat model, things are much easier, since translatory and rotatory parts decouple.
Here, for the quaternionic rotatory part, subsequent projection

p =
1

‖p⋆‖
p⋆ (of position) and v = v⋆ −

〈

p, v⋆
〉

p (of velocity) (27)

is especially cheap, and no iterative procedure is required. Since kerM(p) = Rp, one sees that (27)
is embedded into the general framework (26) with η = τ = 0. Easy and efficient implementations
of the projection method, however, are restricted to one step integration methods. For higher order
BDF/NDF methods, non-trivial modifications in the core solver, e. g. Dassl [22] or Ode15s [37],
are necessary [4].
Another stabilisation technique — already on the model level — is the Baumgarte method [22],
where the linear combination g̈+2rġ+ω2g = 0 with parameters ω, r > 0 is imposed as constraint
instead of g = 0, ġ = 0 or g̈ = 0. It is well known that the Baumgarte method may introduce
additional artificial stiffness into the system [22]. The Cosserat model already is (and behaves
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Figure 6: DoPri5 stepsizes for undamped rubber rods. (AbsTol= RelTol= 1.0e−3)

numerically) very stiff, as we will see. So here, Baumgarte stabilisation works surprisingly good,
since ω and r can be chosen sufficiently large without effectively increasing the stiffness of the
model [27]. For the Kirchhoff models, which are not as stiff, the Baumgarte method cannot be
recommended, as the solver performance is strongly decreased, if the Baumgarte parameters are
tightened, i. e. for ω, r ≫ 1.

It is known that stabilisation of velocity is more crucial than stabilisation of position [22]. The
projection and the Baumgarte stabilisation methods have in common that they may dissipate
energy. Considering the projection technique, it is usually the projection of velocity that is the
dominant energy consuming process. We point out that for the Cosserat model and both formu-
lations (192) and (21) the projection (272) does not consume kinetic energy. In formulation (192),
we have (v⋆)⊤M(p)v⋆ = v⊤M(p)v, because of kerM(p) = Rp. In formulation (272), the velocity
v = T (p)ν — by construction — always is — up to round-off errors — perfectly tangential to S3

and there is no need to project it. However, the projection of position (271) in fact does affect
the rotatory kinetic energy. Let T ⋆

R = 1
2 (v⋆)⊤M(p⋆)v⋆, TR = 1

2v
⊤M(p)v and δTR = T − T ⋆ the

defect caused by projection. (We have just seen that 2TR = (v⋆)⊤M(p)v⋆.) Now if the quaternion
has drifted to the outside of S3, i. e. ‖p⋆‖ > ‖p‖ = 1, then δTR < 0. If it has drifted to the
inside of S3, i. e. ‖p⋆‖ < ‖p‖ = 1, then δTR > 0. Note that the mass is radially sensitive, so that
‖p⋆‖2M(p) = M(p⋆). Now in null space formulation (21), the drift-off in p is only linear (not
quadratic) in the long run. And it is usually much smaller in each time step than in formula-
tion (192). That’s why the null space coordinate formulation enjoys a better energetic behaviour.
Figure 5 displays the numerical defect accumulation

∑

m δTm
R along the simulated time interval

[0, T ] for the same setup as in Figures 2 and 3, computed with Radau5. It clearly demonstrates
that formulation (21) is superior to formulation (192). In null space coordinates, even for coarse
integrator tolerances, sufficiently good energy conservation is obtained in practice.

All this, of course, applies as well to quaternionic rigid bodies. These observations give additional
good reasons — compared to those in [34], which are just concerning numerical right hand side
costs —, why the null space technique definitively ought to be preferred.
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(d) Numerical stiffness. The last topic in this paper is devoted to the crucial question of
numerical stiffness. Let us consider a smooth Cosserat rod. For simplicity, we assume a homoge-
neous rod with symmetric cross section, i. e. I := I1 = I2, κ := κ1 = κ2. In order to estimate the
stiffnesses for the DOF ‘shearing’, ‘extension’, ‘bending’ and ‘torsion’ in dynamics, this observation
is not sufficient. So we have to look at the frequencies contained in the model in the undamped
case. It is shown in [13] for linear Timoshenko beams — the linearised version of the Cosserat rod
— that the eigenfrequencies for ‘extension’, ‘bending’ and ‘torsion’ are of orders O(L−1

√

E/̺),

O(L−2
√

EI/̺A) and O(L−1
√

G/̺), respectively. From physical intuition, shearing should have
the highest frequencies. We show that this is the case, constructing a pure ‘shearing solution’ of
the linearised version of (8) with frequency O(

√

κGA/̺I). To that end, we make the separation
ansatz

x = x(s) = sk, p = p(t) = cos
θ(t)

2
+ j sin

θ(t)

2
, (s, t) ∈ [0, L] × [0, T ] (28)

with an unknown function θ = θ(t), t ∈ [0, T ]. That is, we fix the centerline in straight position
throughout the time interval [0, T ], and we assume a constant Euclidean shearing angle θ(t) along
the whole rod [0, L] at time t. Inserting (28) into (8), noting that F = CSEΓ and M = CBTK, we
receive the ordinary differential equation

θ̈ = −
κGA

̺I
sin θ cos θ ≈ −

κGA

̺I
θ for |θ| ≪ 1, (29)

its linearised version being the known linear oscillator equation. This yields the assertion, which
is confirmed by numerical experiments.
Figure 6 displays typical stepsizes in explicit time integration, which we use to measure stiffness
experimentally. It reveals, what we expect. The inextensible Kirchhoff model (low bending
and torsional frequencies) is solved with the largest stepsizes. The extensible Kirchhoff model
(additionally large extensional frequencies) is solved with medium stepsizes. The Cosserat model
(additionally extremely high shearing frequencies) is necessarily solved with extremely small step-
sizes by the explicit integrator. Note that the stiffness ratio between the extensible and inextensible
Kirchhoff models is small. The reason is that the torsional eigenfrequencies are just slightly smaller
than the extensional ones. Interestingly, the stepsizes for the Cosserat model do not depend on
N , similarly as the shearing frequency obtained from (29) does not depend on L.
We point out that the Cosserat model is very stiff even for soft materials, such as rubber. Figure
7 exposes the stepsize behaviour for several solvers and the damped swinging rubber Cosserat
rod from the same setup as in Figures 2, 3 and 5. Is demonstrates that explicit time integration
is disastrous: Since the Jacobian contains very large eigenvalues with similar magnitude as in
the undamped case, explicit solvers run on their stability limit, whereas implicit solution tech-
niques behave fine, if strong damping is imposed on shearing and extension. The time steps of
explicit solvers are nearly constant, whereas the stepsize patterns of implicit solvers nicely reflect
the solution. The Cosserat model cannot be solved (half-)explicitly in acceptable computational
time. Implicit time integration makes the efficient implementation of the analytical Jacobian
unavoidable. Figure 4 (c) displays the structure of the latter in absolute coordinate formulation
(q̇, v̇) = Φ(q, v, t). The partial Jacobians ∂v̇/∂q and ∂v̇/∂v are banded with upper and lower band-
width equal to m = 10. Block banded Gaussian LU factorisation [19] with complexity O(m2N)
is suitable for the treatment of the linear algebra involved in the corrector iterations.
Note that, since I = O(r4) and A = O(r2) for r → 0, where r > 0 is a typical cross section
radius or diameter, we have A/I = O(1/r2). In all the rubber rod examples in this article,
E = 5.0 · 106Nm−2, G = 1.67 · 106Nm−2, r = 5.0 · 10−3m, ̺ = 1.1 · 103kgm−3, L = 1.0m with
circular cross section, i. e. κ = 0.89, A = πr2, I = 1

4πr
4, so that the eigenfrequencies for extension,

bending, torsion and shearing are of orders 67.42s−1, 0.17s−1, 38.92s−1 and 14683s−1 respectively
in the undamped case. Here we have shearing oscillations with very high frequencies — and usually
very small amplitudes. If stiff components are not really necessary, one should eliminate them
from the model, of course.
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Figure 7: Time stepsizes of different solvers for a damped rubber Cosserat rod. (AbsTol= Rel-

Tol= 1.0e−3)

The question, which of the three classical rod models to choose, crucially depends on, what one
wants to know. If the effect of shear is of subordinate importance, the Cosserat is not at all
appropriate for high-performance or real-time computations, e. g. the simulation of cables.

5 Conclusions

The deformation of nonlinear rods was studied by geometrically exact models of increasing com-
plexity. The Cosserat model considers shearing effects that result in very stiff model equations
which can not be solved efficiently by (half-)explicit time integration methods. In the time in-
tegration by implicit methods, the efficiency is substantially improved exploiting the block band
structure of the Jacobian in the semi-discretised system and using the analytically given parametri-
sation of the null space of the constraint matrix for constraints resulting from the normalisation
of quaternions, which are used to parametrise the rotational degrees of freedom.

In the Kirchhoff model, the shearing effects are neglected and additional, more complex constraints
have to be considered at each midpoint of the spatial grid. The differential-algebraic model
equations are solved combining half-explicit integrators for the index-1 formulation with projection
steps to avoid the drift-off effect and exploiting again the sparsity structure of the mass and
constraint matrix. The additional negligence of rod extension in the inextensible Kirchhoff model
allows a further speed-up of time integration but may result in kinematic singularities.

Future work will focus on an optimal representation of the null space for the constraint matrix
in Kirchhoff models that would help to implement efficiently half-explicit methods for the index-2
formulation of the — non-stiff or mildly stiff — model equations.

Acknowledgements. We want to thank Joachim Linn (Fraunhofer ITWM Kaiserslautern) for
many extensive and fruitful discussions.
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