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Abstract

In this article, we summarise the rotation-free and quaternionic parametrisation of a rigid
body. We derive and explain the close interrelations between both parametrisations. The
internal constraints due to the redundancies in the parametrisations, which lead to DAEs,
are handled with the null space technique. We treat both single rigid bodies and general
multibody systems with joints, which lead to external joint constraints. Several numerical ex-
amples compare both formalisms to the index reduced versions of the corresponding standard
formulations.
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1 Introduction

Recently, both rotation-free [6, 7, 8] and quaternionic parametrisation of rotations [9, 10, 19,
20, 21, 24, 26, 32, 34, 38] found new attraction. The reason is that there exists no singularity-
free parametrisation of the three-dimensional rotation group SO(3) with three variables [41]. In
contrast to the rotation-free parametrisation method, which uses nine variables, the quaternionic
parametrisation uses only four and is thus minimal among all singularity-free possibilities [5].
However, the presence of redundant variables leads to internal constraints, resulting in DAEs in
any case, not ODEs. One of several instruments [4, 27] to overcome these redundancies partially
is the null space method [6, 7, 8, 12, 25], keeping all the redundant variables for rigid bodies
(nine resp. four) on position level, but using a minimal number of variables (three) on velocity
level. In this article, we compare both parametrisations for rigid bodies, both in index-0 absolute
coordinate and null space coordinate formulation.
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There are close interconnections between both parametrisations and both formulations. It is the
aim of this paper to clarify these relations and to compare the respective methods. As a result, a
procedure is developed that allows a systematic construction of quaternionic null space matrices
for multibody systems including joints. From the analytical point of view all those methods are
clearly equivalent. But numerically, these methods differ significantly, which is illustrated by three
elementary examples.
As we will see, the null space formulations are superior to the absolute index-0 formulations.
One reason for that is that the constraints are satisfied exactly on velocity level, not on acceler-
ation level. Further, the quaternionic parametrisation is superior to the rotation-free parametri-
sation due to its smaller number of primary unknowns. Concerning accuracy and numerical
task, the quaternionic null space method turns out to be competitive to the mostly preferred
three-dimensional minimal parametrisation with Euler angles — and, in contrast — is free of
singularities.
Any parametrisation of SO(3) does have their pros and cons. One has to make compromises in
any case. So as a pro for a higher dimensional — i. e. more than three — parametrisation of
SO(3), gimbal locking can be avoided, which is clearly the decisive pro. A con is that such a
parametrisation inevitably leads to internal kinematic constraints and DAEs — even if there are
no joints in the multibody model: In rotation-free parametrisation, each director must be kept
on unit length, and the directors must be kept pairwise orthogonal. This leads to six internal
constraints. In quaternionic parametrisation, the quaternion must be of unit norm, leading to
just one internal constraint. A beautiful advantage of the rotation-free method is that mechanical
joints can be incorporated very easily [7].

The topics and the structure of this article

In Section 2, we summarise the idea of null space coordinates in general, for classical Lagrangian
mechanical systems with holonomic constraints.
In Sections 3 resp. 4, we summarise the rotation-free resp. quaternionic parametrisation for single
rigid bodies, where we as well expose appropriate null space matrices [7, 25] for the respective
cases. We do so, since we want the paper to be self-contained and since, for the rotation-free
case in Section 3, we choose slightly different null space matrices than the ones presented in [7]
for several reasons to be explained. It will turn out in Section 4 that — for the quaternionic
parametrisation — a well-known formulation is obtained, which can be found already in the
literature [12, 30, 34] before. However, its derivation from the viewpoint of the systematic and
general null space methodology is new.
The close interconnection between the rotation-free and quaternionic descriptions — each both
in standard absolute and null space coordinate formulations — is analysed in Section 5. Here,
the key tool is the Moore-Penrose pseudoinverse of the differential of the classical Euler map, for
which we give an explicit analytical expression in closed form. It provides the basis to obtain
suitable quaternionic null space matrices for multibody systems that are built up with internal
and external joint constraints in rotation-free form. Especially, all the standard joints (‘lower
kinematic pairs’) in [7] can be transformed into quaternionic description.
Section 6 is concerned about the projection technique in order to stabilise the drift-off effect
for all our four formulations of single rigid bodies, i. e. {rotation-free, quaternionic} × {absolute,
null space}. Here, especially for the rotation-free descriptions, we propose an explicit projection
method, which in turn is based on quaternions and the algorithm of Spurrier and Klumpp [24, 37,
38].
Section 7 exposes three elementary comparative examples, computed with standard time inte-
gration methods such as DoPri5 (Ode45 in Matlab), Radau5 or Dassl/Daspk (Ode15s in
Matlab). Here, typical differences — in view of numerical accuracy and performance — between
the formulations become illustrative. Where possible, we additionally compare the results to the
classical parametrisation with Euler angles.
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Let us remark as well, what we not discuss in this article. In contrast to [6, 7, 8], we do not deal
with the discrete mechanics approach, but treat the time t continuously. This is, we consider, what
is called the continuous null space method in [7]. Especially, time integration is not performed
by variational integrators, but with classical standard solution techniques such as Runge-Kutta or
BDF methods. We do so, since these solvers — due to their high accuracy and robustness — are
well-established in nowadays multibody dynamics packages such as VirtualLab, Adams or Sim-

Pack. Our aim is not to have invariants — e. g. the total energy or the linear/angular momentum
— exactly conserved. If the reader is interested in such conserving methods for quaternionic rigid
bodies, we refer to [9]. Likewise, we do not apply the local reparametrisation technique in [7].

2 The null space technique in multibody dynamics

We consider a general Lagrangian mechanical system, described by a set ofNq ≥ 1 generalised
coordinates q ∈ RNq , subjected to Nλ ≥ 0 holonomic constraints of the form g(q, t) = 0 ∈ RNλ .
With the generalised velocities v = q̇ ∈ RNq , the Lagrange multipliers λ ∈ RNλ , the mass matrix
M(q) ∈ RNq×Nq , the potential energy V = V (q, t), the kinetic energy T = T (q, v, t) = 1

2
v⊤M(q)v,

the Lagrangian function L = L(q, v, t) = T (q, v, t) − V (q, t) − g(q, t)⊤λ and prescribed exterior

forces φ(q, v, t) ∈ RNq , the variational principle δ
∫ T

0
L dt+

∫ T

0
φ δq dt yields the well-known classical

Euler-Lagrange equations [2, 19, 30] of the first kind,







q̇ = v
M(q)v̇ = ψ(q, v, t) − G(q, t)⊤λ

0 = g(q, t)
. (1)

with the generalised forces

ψ(q, v, t) = φ(q, v, t) −∇qV (q, t)⊤ +
1

2
∇q

(

v⊤M(q)v
)⊤ −∇q(M(q)v)v ∈ R

Nq . (2)

We assume the Grübler condition that the rank rkG(q, t)⊤ = Nλ of the constraint gradient
G(q, t) = ∇qg(q, t) ∈ RNλ×Nq is maximal, excluding singular — especially redundant — con-
straints. We further assume the mass matrix to be positive semi-definite and symmetric. Under
these assumptions, (1) is known to be a system of differential algebraic equations of index 3, see
[2, 19]. It is also well known that the numerical solution an index-3 system involves difficulties
such as poor convergence of Newton’s method in the corrector iterations [2, 12, 13, 19, 27]. Thus,
we reduce the index twice, where we differentiate the algebraic constraint equation with respect
to time. We receive the index-2







q̇ = v
M(q)v̇ = ψ(q, v, t) − G(q, t)⊤λ

0 = G(q, t)v + gI(q, t)
(3)

and the index-1 system





I 0 0
0 M(q) G(q, t)⊤

0 G(q, t) 0









q̇
v̇
λ



 =





v
ψ(q, v, t)

−gII(q, v, t)



 . (4)

In these two lower index systems, all the right-hand-side terms that emerge from time differenti-
ation of g(q, t) are collected in the functions

gI(q, t) =
∂g

∂t
(q, t), gII(q, v, t) =

∂2g

∂q2
(q, t)[v, v] + 2

∂G
∂t

(q, t)v +
∂2g

∂t2
(q, t). (5)

With these functions, the constraints on the level of position, velocity and acceleration are written
g = 0, ġ = Gq̇ + gI = 0 and g̈ = Gq̈ + gII = 0, respectively. Solving (4) for (q̇, v̇, λ), where we
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formally write





q̇
v̇
λ



 =





I 0 0
0 M(q) G(q, t)⊤

0 G(q, t) 0





−1 



v
ψ(q, v, t)

−gII(q, v, t)



 , (6)

and discarding the equations for the Lagrange multipliers λ, we receive an ODE (q̇, v̇) = Ψ(q, v, t)
for the 2Nq unknowns (q, v). We refer to (61,2) as the index-0 subsystem, corresponding to (1).
It can be solved numerically by any standard method for ODEs, where the λ’s are obtained in a
postprocessing from (63).
The presence of the d’Alembert’s constraint forces G(q, t)⊤λ usually cause the above systems to
be bad or even ill conditioned. In that case, the constraints — and its partial derivatives — must
be scaled in an appropriate fashion [3].

We summarise the elegant idea of null space coordinates [4, 6, 7, 8, 12, 27]. It is some kind of
compromise between absolute — redundant — and minimal coordinate formulations. On position
level, we keep the coordinates q ∈ RNq — not minimal —, but on velocity level, instead of v ∈ RNq ,
a minimal number of unknown velocities ν ∈ RNDOF is chosen.

NDOF = dimq{q ∈ R
Nq : g(q, t) = 0} = dimq nullG(q, t) = Nq −Nλ ≥ 0

is the number of mechanical degrees of freedom of the system, that is, the dimension of the
constraint manifold. The minimal unknowns ν = (ν1, . . . , νNDOF

) are the coefficients of the
tangential part of the velocity v in the expansion w. r. t. an appropriate basis of the current
tangential space at q. They are usually called ‘independent quasi-velocities’, ‘generalised speeds’
or ‘kinematic characteristics’, see [7, 27]. Note that in contrast to the current constraint manifold
{q ∈ RNq : g(q, t) = 0} at t, the current tangential space nullG(q, t) = {ξ ∈ RNq : G(q, t)ξ = 0}
at (q, t) is a linear space. The constellation for holonomic, scleronomic constraints is depicted in
Figure 1. Starting with the Lagrangian system (1), we expand the tangential component of v with
respect to a basis

T (q, t) =
(

τ1(q, t) . . . τNDOF(q, t)
)

∈ R
Nq×NDOF (7)

of the current tangential space,

v = q̇ =

NDOF
∑

n=1

νnτ
n(q, t) − G(q, t)⊤

(

G(q, t)G(q, t)⊤
)−1 ∂g

∂t
(q, t) = T (q, t)ν − r(q, t). (8)

Here

r(q, t) = G(q, t)♮ ∂g

∂t
(q, t), G(q, t)♮ = G(q, t)⊤

(

G(q, t)G(q, t)⊤
)−1

,

and G(q, t)♮ is the Moore-Penrose pseudoinverse [39] of G(q, t). The inverse of G(q, t)G(q, t)⊤ exists
because of nullG(q, t)G(q, t)⊤ = nullG(q, t)⊤ = {0}. Now, since

nullG(q, t) = im T (q, t) (9)

by construction, T (q, t) is called a ‘null space matrix’ for G(q, t), and the constraint on the level
of velocity is satisfied exactly,

ġ = Gq̇ +
∂g

∂t
= G

(

T ν − G⊤
(

GG⊤
)−1 ∂g

∂t

)

+
∂g

∂t
≡ 0. (10)

Especially, we have rk T (q, t) = NDOF, this is, the rank of T (q, t) is maximal. The constraint
forces G(q, t)⊤λ are eliminated, if we multiply the dynamical equations (12) with T (q, t)⊤ from
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Figure 1: Constraint manifold {q ∈ RNq : g(q) = 0 ∈ RNλ} and tangential space nullG(q) = {v ∈
RNq : G(q)v = 0 ∈ RNλ} at q for holonomic, scleronomic constraints g(q) = 0.

the left. We receive the null space coordinate formulation











q̇ = T (q, t)ν − r(q, t)

T (q, t)⊤M(q)T (q, t)ν̇ = T (q, t)⊤
(

ψ(q, q̇, t) + M(q)
(

ṙ(q, q̇, t) − Ṫ (q, q̇, t)ν
)

)

0 = g(q, t)

. (11)

(111) consists of Nq equations — as for absolute coordinates. (112) has NDOF equations — as
for minimal/relative coordinates. This is exactly the number NDOF of degrees of freedom that
are present in the physical model. In addition, we have Nλ equations in (113). Consequently,
for Nλ ≥ 1, system (11) is overdetermined. System (111,2) yields an ODE (q̇, ν̇) = Ψ(q, ν, t) of
dimension Nq +NDOF for the unknown (q, ν) with the solution invariant (113), see [12, 14].

System formulation (11) in null space coordinates has the following not insignificant advantages
compared to the absolute coordinate index-3, -2, -1 resp. -0 formulations (1), (3), (4) resp. (61,2).

(i) The constraint is satisfied exactly on the level of velocity.

(ii) The constraint forces G(q, t)⊤λ are eliminated exactly.

(iii) The number of unknowns and equations is reduced from 2Nq+Nλ for (q, v, λ) toNq+NDOF =
2Nq −Nλ for (q, ν). This is minimal on the level of velocity.

(iv) The reduced mass matrix T (q, t)⊤M(q)T (q, t) is of minimal possible size NDOF×NDOF and
thus smaller than M(q) itself, which is Nq ×Nq.

(v) The condition of the system, which is usually bad/ill by the presence of the constraint forces
G(q, t)⊤λ, is improved [7, 36].

The null space coordinate method is equivalent to the solution of the index-2 version (3) in ODE
form [12]. If one is interested in the Lagrange multipliers λ, they can be obtained from (q, ν)
in a convenient postprocessing [27]. If an appropriate null space matrix T (q, t) is not available
analytically, it can be computed numerically during time integration of (11), see [27] and the
references cited therein. Throughout this paper, we prefer the letters T to denote null space
matrices and τn to denote their columns, because the vectors τn span the current tangential
space.
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Remark 2.1 (Inversion of the mass-constraint matrix) For explicit solvers, which can only
handle systems of the form

Iu̇ = f(t, u) with identity ‘mass’ I (e. g. DoPri5, DoP853, Odex), (12)

system (4) must be solved for (q̇, v̇, λ), so that one can choose u = (q, v) in (12), e. g. by Gaussian
LU factorisation [15]. In that sense, (6) should be understood. In order to avoid this decomposition
step, one is restricted to solvers that may handle linearly implicit systems

Au̇ = f(t, u) with constant ‘mass’ A (e. g. Radau5, Seulex) (13)

or

A(t, u)u̇ = f(t, u) with state dependent ‘mass’ A(t, u) (e. g. Dassl/Daspk). (14)

Solvers for (14) do not eliminate the Lagrange multipliers λ in (4). They solve the full index-
1 problem with u = (q, v, λ). For solvers that may handle linearly implicit systems (13), the
accelerations w = v̇ must be introduced as additional primary unknowns. One has to solve an
augmented index-1 problem with u = (q, v, w, λ) with appropriate rescaling in the local error
estimator [17, 19]. Clearly, these remarks do apply similarly, if we want to solve (111,2). �

3 Rotation-free parametrisation of a rigid body

In this section, we shortly summarise the so-called ‘rotation-free’ parametrisation for a single rigid
body — or SO(3) —, including an appropriate choice for a null space matrix [6, 7, 8] to eliminate
the internal constraints. By ‘single’ we mean that the body may be connected to force elements,
but not to joints. The idea of rotation-free parametrisation is to keep the nine components dn

m of
a frame R = (d1 | d2 | d3) = (dn

m)n,m=1,2,3 in

SO(3) = {R ∈ R
3×3 : RR⊤ = R⊤R = I, detR = 1}

as the primary unknowns and to enforce orthonormality with six internal constraints. This is
highly redundant, but the governing equations remain very simple.

Let (e1 | e2 | e3) denote the global absolute coordinate system, i. e. the standard basis of the absolute
Euclidean space R3. The orientation of a rigid body is completely determined by a proper
orthonormal, body fixed coordinate system R = (d1 | d2 | d3) : [0, T ] → SO(3) at the center of
mass. We assume that its directors d1 = Re1, d2 = Re2, d3 = Re3 coincide with the principal axes
of inertia, so that the moment of inertia tensor becomes diagonal. The situation for the special
case of a symmetric gyro top is depicted in Figure 2. The components Ωn of the spatial angular
velocity vector ω = Ω1d

1 + Ω2d
2 + Ω3d

3 = ω1e
1 + ω2e

2 + ω3e
3 w. r. t. the body fixed coordinate

system R = (d1 | d2 | d3) are given by Ω ≃ E(Ω) = R⊤Ṙ, where

E : R
3 → so(3), u 7→ E(u) =





0 −u3 +u2

+u3 0 −u1

−u2 +u1 0



 , E(u)w = u× w for w ∈ R
3

identifies skew tensors in so(3) = {U ∈ R3×3 : U + U⊤ = 0} with their corresponding axial
vectors in R3, see [7, 26, 34]. We write u ≃ E(u) for u ∈ R3 in shorthand. We refer to Ω =
Ω1e

1 +Ω2e
2 +Ω3e

3 = R−1ω as the material angular velocity vector. Likewise, the components ωn

of ω w. r. t. (e1 | e2 | e3) are obtained from the relation ω ≃ E(ω) = ṘR⊤. From E(Ω) = R⊤Ṙ and
the skew symmetry of E(Ω) we find the three components Ωn of Ω to be

Ω1 = 〈d3, ḋ2〉 = −〈d2, ḋ3〉, Ω2 = 〈d1, ḋ3〉 = −〈d3, ḋ1〉, Ω3 = 〈d2, ḋ1〉 = −〈d1, ḋ2〉, (15)

where 〈u,w〉 =
∑

n unwn denotes the standard inner (scalar) product for u, w ∈ RN . In contrast
to the numbers ωn, the numbers Ωn are objective — or frame indifferent. This is, the Ωn remain
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L

d1

d2

d3

e1

e2

e3

g

θ2

Figure 2: Heavy symmetric gyro top. (I1, I2 ≫ I3 > 0.)

unchanged by superimposed rotations [25, 26]. The rotatory kinetic energy T of the body can be
expressed as

T =
1

2

(

I1Ω
2
1 + I2Ω

2
2 + I3Ω

2
3

)

=
1

2
Ω⊤

IΩ, I =





I1
I2

I3



 . (16)

where I1, I2, I3 > 0 denote the principal moments of inertia, i. e. the moments of inertia of the
rigid body with respect to the principal axes d1, d2, d3.

Let us introduce the rotation-free parametrisation for our rigid body. Noting that 2T = E1(Ω
2
2+

Ω2
3)+E2(Ω

2
3+Ω2

1)+E3(Ω
2
1+Ω2

2), the rotatory energy of the rigid body can equivalently be rewritten
as

T =
1

2

(

E1‖ḋ1‖2 + E2‖ḋ2‖2 + E3‖ḋ3‖2
)

=
1

2
ḋ⊤Mdḋ (17)

in terms of the director velocities ḋ1, ḋ2, ḋ3 and the rotation-free mass matrix

Md =





E1I
E2I

E3I



 ∈ R
9×9.

Here

E1 =
1

2
(I2 + I3 − I1), E2 =

1

2
(I3 + I1 − I2), E3 =

1

2
(I1 + I2 − I3) (18)

denote the principal values of the Euler tensor of the rigid body [7] and ‖w‖2 =
∑

w2
n is the

standard Euclidean norm for w ∈ R
N . We now parametrise R = R(d) = (d1 | d2 | d3) = (dn

m)
directly with the nine components

d =
(

d1
1 d1

2 d1
3 d2

1 d2
2 d2

3 d3
1 d3

2 d3
3

)⊤
=

(

(d1)⊤ (d2)⊤ (d3)⊤
)⊤

: [0, T ] → R
9,

of the directors d1, d2, d3 : [0, T ] → R3 themselves. (So, at first glance, the terminology ‘rotation-
free’ may be slightly misleading.) Then, three constraints of unity and three constraints of pairwise
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orthogonality, in total

gd(d) =

















(

(d1
1)

2 + (d2
1)

2 + (d3
1)

2 − 1
)

/2
(

(d1
2)

2 + (d2
2)

2 + (d3
2)

2 − 1
)

/2
(

(d1
3)

2 + (d2
3)

2 + (d3
3)

2 − 1
)

/2

d1
1d

1
2 + d2

1d
2
2 + d3

1d
3
2

d1
3d

1
1 + d2

3d
2
1 + d3

3d
3
1

d1
2d

1
3 + d2

2d
2
3 + d3

2d
3
3

















=

















(

‖d1‖2 − 1
)

/2
(

‖d2‖2 − 1
)

/2
(

‖d3‖2 − 1
)

/2
〈d1, d2〉
〈d3, d1〉
〈d2, d3〉

















∈ R
6, (19)

are required, so that R stays in SO(3). This corresponds to the trivial embedding of the manifold
SO(3) as a submanifold in R

9, and we write d ∼ R = R(d) in shorthand. In (19), we express the
conditions of orthonormality w. r. t. the rows d1, d2, d3 of R, which is the dual basis of d1, d2,
d3, satisfying 〈dn, dm〉 = 〈dm, d

n〉 = δn
m with the Kronecker delta δn

m. The constraint gradient for
(19) is

Gd(d) = ∇dgd(d) =

















d1
1 d2

1 d3
1

d1
2 d2

2 d3
2

d1
3 d2

3 d3
3

d1
2 d1

1 d2
2 d2

1 d3
2 d3

1

d1
3 d1

1 d2
3 d2

1 d3
3 d3

1

d1
3 d1

2 d2
3 d2

2 d3
3 d3

2

















∈ R
6×9. (20)

with rkGd(d) = 6 for d 6= 0. Letting q = d, v = vd, λ = λd in (1), with the kinetic energy T from
(17) we arrive at the following index-3 system for a single rigid body,







ḋ = vd

Mdv̇d = ψd −Gd(d)
⊤λd

0 = gd(d)
, (21)

where

ψd = φd −∇dV (d, t)⊤, (22)

Nq = 9, Nλ = 6 and NDOF = 3. Here φd ∈ R9 denote rotation-free exterior moments, and the
scalar potential energy function V is expressed as a function of d. The corresponding index-1
system is





ḋ
v̇d

λd



 =





I 0 0
0 Md Gd(d)

⊤

0 Gd(d) 0





−1 



vd

ψd

−gII(d, vd)



 (23)

with the constraint acceleration vector

gII(d, vd) =
∂2g

∂d2
[vd, vd] =

(

‖ḋ1‖2 ‖ḋ2‖2 ‖ḋ3‖2 2〈ḋ1, ḋ2〉 2〈ḋ3, ḋ1〉 2〈ḋ2, ḋ3〉
)⊤

.

According to our knowledge, there exists no explicit and cheap algebraic, closed-form expression
to solve system (23) for (ḋ, v̇d, λd). Consequently, in actual computations, we use the standard
LU decomposition method to perform that step.

In order to apply the general null space methodology of the preceding section, we choose the
following expansion for the rotation-free absolute velocity

vd = ḋ =

3
∑

n=1

νnτ
n
d (d) = Td(d)ν = ( τ1

d (d) τ2
d (d) τ3

d (d) )
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in (8) with NDOF = 3 and

Td(d) =





























−d3
1 d2

1

−d3
2 d2

2

−d3
3 d2

3

d3
1 −d1

1

d3
2 −d1

2

d3
3 −d1

3

−d2
1 d1

1

−d2
2 d1

2

−d2
3 d1

3





























=







−d3 d2

d3 −d1

−d2 d1






∈ R

9×3. (24)

If we ‘overload’ the symbol E for that case, this matrix can conveniently be written Td(d) =
E(d) in shorthand. It is straightforwardly verified that imTd(d) = nullGd(d), especially that
rkTd(d) = dimnullGd(d) = 3 = NDOF. We receive the following null space form for the rotation-
free parametrisation of a rigid body.

Lemma 3.1 (Rotation-free null space formulation for rigid bodies) The null space for-
malism, applied to the index-3 system (21) with expansion (24), yields ν = Ω and the following
special form of (11),







ḋ = Td(d)Ω

IΩ̇ = µ− Ω × IΩ, µ = Td(d)
⊤ψd

0 = gd(d)

, (25)

where I as in (16) and ψd as in (22).

Proof: With the aid of (18) is is seen that Td(d)
⊤MdTd(d) = I. Due to (15), we find ν = Ω. It

is straightforwardly computed that

T⊤

d MdṪdΩ =





(E3 − E2)Ω3Ω2

(E1 − E3)Ω1Ω3

(E2 − E1)Ω2Ω1



 = Ω × IΩ,

which follows from the inverse relationships I1 = E2 + E3, I2 = E3 + E1, I3 = E1 + E2 of (18).
As the system is scleronomic, it follows that r = ṙ ≡ 0 in (11). �

It is worth mentioning that (252) consist the well-known Newton-Euler equations for the material
angular velocity of a rigid body. The vector µ = µ1e

1 +µ2e
2 +µ3e

3 = R(d)−1(µ1d
1 +µ2d

2 +µ3d
3)

contains the components µn of the applied moments with respect to the body fixed coordinate
system (d1 | d2 | d3).

Again, let us look at the general null space benefits (i), ..., (v) from Section 2 and let us give some
additional remarks for our special case here.

(ii) The six internal constraint forces Gd(d)
⊤λd, which are eliminated by the proposed null

space technique, are somewhat artificial. They do not have any physical meaning and —
consequently — are of no interest.

(iii) The number of unknowns is minimal on the level of velocity, still redundant on the level
of position. But the parametrisation is still singularity-free — compared to any three-
dimensional — e. g. ‘vectorial’ [5] or Euler/Cardan angle [10] — parametrisation of SO(3),
which necessarily must have singularities [41].

(iv) The reduced 3×3 mass matrix Td(d)
⊤MdTd(d) = I is as well diagonal and state-independent,

similarly to Md itself.
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null space null space absolute absolute Euler
quaternionic rotation-free quaternionic rotation-free angles

(421,2) (251,2) (401,2) (231,2) (661,2)

unknowns p, Ω d, Ω p, ṗ (λp) d, ḋ (λd) θ, Ω
7 12 8 (+1) 18 (+6) 6

+ 5 0 17 16 2
− 7 12 4 1 5
∗ 18 24 24 10 14
/ 6 3 3 0 5
2 0 0 4 9 0

sin 0 0 0 0 2
cos 0 0 0 0 2

LU decomp. 0 0 0 15 × 15 0

Table 1: Operation counts for the right-hand sides of (q̇, v̇) = Ψ(q, v, t) (absolute coordinates,
index-0) resp. (q̇, Ω̇) = Ψ(q,Ω, t) (null space coordinates) in ODE form.

(v) The problem of probable bad condition in the systems (21) or (23) is resolved completely.
This is, because the Skeel condition of the diagonal matrix I equals one.

In addition, we have the following benefit, which is lucky here.

(vi) The right-hand side of (25) in ODE form is cheaper than the right-hand side of (23) in ODE
form, see Table 1. The same holds as well for the right-hand side Jacobian.

All these benefits lead to an improvement of automatic stepsize selection for all the time integrators
that we have tested. These are Ode15s, Ode45, Ode23 from the Matlab ODE suite [35],
DoPri5, DoP853, Odex, Radau5, Dassl/Daspk and Seulex [17, 18, 19, 28, 29]. The reason
is that the error estimator in a solver does not have to control as many redundant unknowns.
(And, usually, errors in the velocities are more crucial and lead to more time step rejections than
errors in the positions.) In fact, these benefits lead to improved accuracy — especially improved
energetic behaviour —, as we shall see in our numerical test problems in Section 7.

4 Quaternionic parametrisation of a rigid body

In contrast to the rotation-free method, the quaternionic parametrisation of rotations is
much older. Euler knew them already before Hamilton found his quaternion algebra H, see [11,
16, 22]. This is why quaternions are frequently referred to as ‘Euler parameters’. Unit quaternions
in the subgroup

S
3 = {p ∈ H : ‖p‖2 = 1} ⊂ H,

the three-dimensional unit sphere, are an appropriate way to describe — non-commutative spatial
— rotations in SO(3). This is analogous to unit complex numbers in the subgroup S

1 = {z ∈
C : ‖z‖2 = 1} ⊂ C, the complex unit circle, which describe — commutative plane — rotations in
SO(2) = {R ∈ R2×2 : RR⊤ = R⊤R = I, detR = 1}. With a general quaternion

p = p0 + p1i+ p2j + p3k = p0 + p̂ = ℜ(p) + ℑ(p) = (p0 | p1, p2, p3)
⊤ : [0, T ] → H

a radially stretched frame R = (d1 | d2 | d3) = R ◦ p : [0, T ]
p−→ H

R−→ RSO(3) is obtained by
composition with the Euler map

R : H → RSO(3), p 7→
(

2p2
0 − ‖p‖2

)

I + 2p̂⊗ p̂+ 2p0E(p̂), (26)
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where u ⊗ w = uw⊤ denotes the standard dyadic product for u, w ∈ RN . In components, the
three directors are

d1 = ϕ1(p) =





p2
0 + p2

1 − p2
2 − p2

3

2(p1p2 + p0p3)
2(p1p3 − p0p2)



 , d2 = ϕ2(p) =





2(p1p2 − p0p3)
p2
0 − p2

1 + p2
2 − p2

3

2(p2p3 + p0p1)



 , (27)

and

d3 = ϕ3(p) =





2(p1p3 + p0p2)
2(p2p3 − p0p1)
p2
0 − p2

1 − p2
2 + p2

3



 . (28)

Homogeneity R(ηp) = η2R(p) holds for each quaternion p ∈ H and scalar η ∈ R. This property
makes R sensitive with respect to radial stretching of p. Especially, R maps the unit sphere
S3 into SO(3), that is, unit quaternions yield pure rotations that are not stretched. It holds
R(−p) = R(p), which implies that p and its antipode −p describe the same rotation. It is well
known that for each stretched rotation R in RSO(3) there exist exactly two quaternions ±p —
necessarily antipodes — that produce R = R(±p). Via R, the unit sphere S3 covers SO(3) exactly
two times, the correspondence R : S3/{±1} → SO(3) is one-to-one and onto [11, 16, 22]. This
is, the quaternionic unit sphere S

3 modulo antipodals is exactly SO(3). Stretched rotation of a
vector w ∈ ℑ(H) = R3 is expressed via quaternions as

R(p)w = pwp̄ (forward) and R(p)⊤w = p̄wp (backward) (29)

for p ∈ H. Especially dn(p) = penp̄ = R(p)en for each of the spatially fixed global Euclidean base
vectors (e1 | e2 | e3) of ℑ(H) = R3, which are classically denoted by the letters e1 = i, e2 = j and
e3 = k. For a quaternion p ∈ S3 \ {±1}, we can write p = cos(α/2) + sin(α/2)π with a unique
purely imaginary unit quaternion π ∈ ℑ(H) ∩ S3 and a unique angle 0 < α < 2π. So in Euclidean
space, R(p)w = cos(α)w + sin(α)π × w + (1 − cos(α))〈π,w〉π for w ∈ ℑ(H) = R3 is exactly the
rotation of w about the axis Rπ with the angle α, see [16, 11]. Recall that the quaternion product
is defined by

pq = p0q0 − 〈p̂, q̂〉 + p0q̂ + q0p̂+ p̂× q̂
= Q(p)q

, Q(p) =









p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0









(30)

for p, q ∈ H, where 〈·, ·〉 is the inner (scalar) product in H and ·× · the outer (cross) product in R
3.

It is convenient and common use to identify ℑ(H) = R3, this means, ordinary Euclidean vectors are

treated as quaternions with vanishing real parts. Especially, 〈p, q〉 =
∑3

n=0 pnqn for p, q ∈ H and

〈p, q〉 =
∑3

n=1 pnqn for p, q ∈ ℑ(H). We use the symbols p0 = ℜ(p) resp. p̂ = ℑ(p) = (p1, p2, p3)
⊤

to denote the real resp. the imaginary (= vector) part and p̄ = p0 − p̂ to denote the conjugate of
a quaternion p ∈ H. Note that p̄ = ‖p‖2p−1, where p−1 stands for the multiplicative inverse of p.
In components, (30) is

pq = p0q0 − (p1q1 + p2q2 + p3q3)
+(p0q1 + p1q0 + p2q3 − p3q2)i + (p0q2 + p2q0 + p3q1 − p1q3)j + (p0q3 + p3q0 + p1q2 − p2q1)k.

For more details on the Hamilton quaternion division algebra (= skew field), we refer to [11, 16, 22].
The situation is depicted in the commutative diagram in Figure 3. For further details concern-
ing the Lie group/algebra structures and their interconnections, see [9, 32, 40]. Note that from
differential geometry it is known that the quaternion unit sphere S3 is completely isotropic — or
‘fair’ —, in the sense that no special direction is preferred. This makes S3 highly attractive for
the interpolation of rotations [31].

The result of the following Lemma, which relates unit quaternions to the angular velocity of a
moving frame — e. g. a rigid body —, is of utmost importance. Of course, it is well known [5]
— and most probably due to Euler. However, we give a very short and compact proof for the
reader’s convenience.
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ṗ ∈ R
3
≃ ℑ(H) so(3) ∋ Ṙ

∂R = E

E
−1

-�

exp
S3 expSO(3)

? ?
R -p ∈ S

3 SO(3) ∋ R

? ?
R -R S

3 = H R SO(3)

Figure 3: Mappings between the involved manifolds — and their tangential spaces.

Lemma 4.1 (Differential equations for Ω and ω) For the angular velocity in terms of unit
quaternions p and proper orthonormal frames R, we have the following equivalences.

1. The differential equations Ω = 2p̄ṗ in S3 and Ω ≃ E(Ω) = R⊤Ṙ in SO(3) for the material
angular velocity vector Ω are equivalent.

2. The differential equations ω = 2ṗp̄ in S
3 and ω ≃ E(ω) = ṘR⊤ in SO(3) for the spatial

angular velocity vector ω are equivalent.

Proof: We prove the first assertion. For an arbitrary, but fixed, vector w ∈ ℑ(H), we compute
with (30) and the fact that w̄ = −w for ŵ = w,

E(2p̄ṗ)w = 2p̄ṗ× w = 2ℑ
(

p̄ṗ× w − 〈p̄ṗ, w〉
)

= 2ℑ(p̄ṗw) = p̄ṗw − p̄ṗw = p̄ṗw + p̄ṗw̄

= p̄ṗw + w ˙̄pp = p̄(ṗwp̄+ pw ˙̄p)p = p̄
d

dt
(pwp̄)p = p̄

d

dt
(Rw)p = p̄(Ṙw)p = R⊤Ṙw.

due to (29). Now, if R⊤Ṙ = E(Ω), it follows that Ω = 2p̄ṗ, as w can be chosen arbitrarily. The
second assertion can be proven similarly. �

The reader should note that Ω0 = ℜ(Ω) = ℜ(p̄ṗ) = 〈p, ṗ〉 = 0 directly follows from the condition
‖p‖2 = 1 through time differentiation.

Let us return to our rigid body. A short computation with Ω = 2p̄ṗ and the p-dependent
quaternion mass matrix

Mp(p) = 4Q(p)IQ(p)⊤ ∈ R
4×4, (31)

shows that the rotatory kinetic energy of the body can be rewritten as 2T = I0Ω
2
0 + I1Ω

2
1 + I2Ω

2
2 +

I3Ω
2
3, or

T =
1

2
ṗ⊤Mp(p)ṗ, I =









I0
I1

I2
I3









. (32)

Here I0 ≥ 0 denotes any arbitrary — since fictive — non-negative zeroth ‘radial moment of
inertia’. The choice of I0 does not play any role, since Ω0 = ℜ(Ω) = 〈p, ṗ〉 = 0. Some authors
set I0 to a positive number, so that Mp(p) becomes positive definite, e. g. I0 = 1

2
(I1 + I2 + I3) =

1
2

trace(I) in [9]. Throughout this article, we set I0 = 0, so that Mp(p) is cheaper to evaluate
in numerical computations. Mp(p) satisfies the symmetry property Mp(−p) = Mp(p), which is a
consequence of the fact that both p and −p describe the same rotation R(p) = R(−p). Kernel
resp. image of Mp(p) are given by nullMp(p) = Rp resp. imMp(p) = {p}⊥. This is, Mp(p) is
positive semi-definite with its one singular dimension in radial direction. Consequently, we have
rkMp(p) = 3. Interestingly and useful later, the columns of the quaternion matrix Q(p) in (30)
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are the eigenvectors of Mp(p) to the eigenvalues 0, 4I1, 4I2 and 4I3. The mass skew derivative

in (2) admits the closed-form expression 1
2
∇p

(

ṗ⊤Mp(p)ṗ
)⊤ −∇p

(

Mp(p)ṗ
)

ṗ = 8Q(ṗ)IQ(ṗ)⊤p, so
that the generalised quaternionic forces in (2) become

ψp = φp −∇pV (p, t)⊤ + 8Q(ṗ)IQ(ṗ)⊤p, (33)

if we express the potential energy V as a function of p. Letting q = p, v = vp, λ = λp in (1) with
the kinetic energy T from (32), together with the spherical internal constraint

gp(p) =
1

2

(

‖p‖2 − 1
)

, (34)

we receive the quaternionic index-3 description for the rigid body,










ṗ = vp

Mp(p)v̇p = ψp − λpp

0 =
1

2

(

‖p‖2 − 1
)

(35)

where
Gp(p) = ∇pgp(p) = p⊤ =

(

p0 p1 p2 p3

)

∈ R
1×4. (36)

is of rank rkGp(p) = 1 for p 6= 0. The constraints on position, velocity and acceleration level
are written 2gp = ‖p‖2 − 1 = 0, ġp = 〈p, ṗ〉 = 0, g̈p = 〈p, p̈〉 + ‖ṗ‖2 = 0, respectively. With the
constraint acceleration gII(p, vp, t) = ‖vp‖2, we receive the index-1 system







ṗ = vp

Mp(p)v̇p = ψp − λpp
〈p, v̇p〉 = −‖vp‖2

. (37)

Here Nq = 4, Nλ = 1 and NDOF = 3. The ψp ∈ H are sometimes called ‘quaternionic moments’
[34]. The rotatory quaternionic mass-constraint matrix in (37) and has the form

(

Mp(p) Gp(p)
⊤

Gp(p) 0

)

=

(

Mp(p) p

p⊤ 0

)

∈ R
5×5. (38)

The inverse of (38) exists, iff p 6= 0, and has the same form as (38), where Mp(p) is replaced by
the tangential inverse quaternion mass

M ♯
p(p) =

1

4‖p‖4
Q(p)I♯Q(p)⊤, I♯ =









0

I−1
1

I−1
2

I−1
3









.

This is
(

Mp(p) Gp(p)
⊤

Gp(p) 0

)−1

=

(

M ♯
p(p) Gp(p)

⊤

Gp(p) 0

)

. (39)

M ♯
p(p) satisfies the property Mp(p)M

♯
p(p) = M ♯

p(p)Mp(p) = I −p⊗p for p ∈ S3, which justifies the

nomenclature ‘tangential inverse’, since M ♯
p(p)Mp(p)π = Mp(p)M

♯
p(p)π = π−(p⊗p)π = π−〈p, π〉p

for p ∈ S
3 and π ∈ H. Left-multiplication of (37) with (39) gives







ṗ = vp

v̇p = M ♯
p(p)ψp − ‖vp‖2p

λp = 〈p, ψp〉
. (40)

It follows that only the tangential component M ♯
p(p)ψ

p of ψp is physically relevant. The radial
part of the acceleration, which is needed to keep the quaternion on its spherical orbit, is equal to
−‖vp‖2p.
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Note that on S3, the structures of (38) and its inverse (39) are completely identical. Thus, the nu-
merical complexities of (37) and its inverted version (40) are the same. Further details concerning
these topics are carried out in [9, 26, 34].

Let us apply the general null space framework of Section 2. The tangential space nullGp(p) =
{p}⊥ = {π ∈ H : 〈p, π〉 = 0} of S3 at p has dimension NDOF = 3. An adequate expansion for the
tangential quaternionic absolute velocity

vp = ṗ =

3
∑

n=1

νnτ
n
p (p)

in (8) is

vp = Tp(p)ν =
(

τ1
p (p) τ2

p (p) τ3
p (p)

)

ν, Tp(p) =
1

2









−p1 −p2 −p3

p0 −p3 p2

p3 p0 −p1

−p2 p1 p0









∈ R
4×3. (41)

The matrix Tp(p) consists of the last three columns of Q(p) in (30). Its rank is equal to 3 and
satisfies imTp(p) = nullGp(p), as required. Then we receive the following quaternionic null space
formulation for a rigid body.

Lemma 4.2 (Quaternionic null space formulation for rigid bodies) The null space tech-
nique, applied to the index-3 system (35) with expansion (41), yields ν = Ω and the following
special form of (11),























ṗ =
1

2
pΩ

IΩ̇ = µ− Ω × IΩ, µ =
1

2
ℑ(p̄ψp) + Ω × IΩ

0 =
1

2

(

‖p‖2 − 1
)

(42)

where I as in (16) and ψp as in (33).

Proof: Firstly, the tangential vectors τn
p (p) are eigenvectors of Mp(p) with the corresponding

eigenvalues 4In for n = 1, 2, 3. Since nullMp(p) = Rp and Q(p) ∈ ‖p‖SO(H) — which yields that
the system (p, τ1

p (p), τ2
p (p), τ3

p (p)) is an orthonormal one on S3 — we receive Tp(p)
⊤Mp(p)Tp(p) =

I. Secondly, the following general identities from quaternionic calculus

Tp(p)w =
1

2
pw, Tp(p)

⊤π =
1

2
ℑ(p̄π) for w ∈ ℑ(H), π ∈ H, (43)

which can be derived directly from (30), immediately yield Tp(p)ν = 1
2
pν and Tp(p)

⊤ψp =
1
2
ℑ(p̄ψp). Therefore, especially ν = Ω due to Lemma 4.1. Thirdly, since the system is sclero-

nomic, i. e. ∂g/∂t ≡ 0, it follows that r = ṙ ≡ 0. Finally, from the cyclic relations

∂τ1
p

∂p
τ2
p (p) = −τ3

p (p),
∂τ2

p

∂p
τ3
p (p) = −τ1

p (p),
∂τ3

p

∂p
τ1
p (p) = −τ2

p (p)

and
∂τn

p

∂p
τn
p (p) = −p, n = 1, 2, 3, Ṫp =

∂

∂p

(

τ1
p (p)|τ2

p (p)|τ3
p (p)

)

Tp(p)ν

it follows that the term Tp(p)
⊤Mp(p)Ṫp(p)ν ≡ 0 vanishes. This can as well be seen from v̇p =

1
2
pν̇ − ‖vp‖2p, where the radial part is annihilated by Mp(p). �
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As for the rotation-free case, (422) are precisely the classical Newton-Euler equations. But in con-
trast to (252), the reader should observe that the term Ω×IΩ is already included as a summand in
ψp. It corresponds to the mass skew derivative in (33) according to 8Tp(p)

⊤Q(ṗ)⊤IQ(ṗ)p = Ω×IΩ,
since Ω = 2p̄ṗ, see Lemma 4.1 and [26, 34].

The above lemma yields that the null space technique, applied to the quaternionic rotatory formu-
lation, yields a well known mixed formulation for rigid bodies, which uses the variables (p,Ω) as
the primary unknowns [12, 30, 34]. We think, it is an interesting insight that this classical mixed
formulation can be embedded into the systematic and general null space coordinate framework.

Let us comment on practical aspects for numerical implementations. The reader should observe
that, intrinsically in both the rotation-free and the quaternionic parametrisations of SO(3), there
are many skew symmetries. The exploitation of these is one reason, why the right-hand side of
the models can be implemented with extremely few elementary arithmetic operations, see Table
1. Another benefit of both parametrisations is that they comprise linear and quadratic — instead
of higher algebraic (e. g. roots) or transcendent (e. g. trigonometric) — expressions. So there is no
vast blow-up for the Jacobians, Hessians or higher order partial derivatives.

The six benefits (i), ..., (vi) of the preceding sections do as well apply analogously to the quater-
nionic null space description presented here.

Remark 4.3 (Minimality) It is proven in [41] that any singularity-free parametrisation of the
three-dimensional manifold SO(3) necessarily must be four-dimensional. Therein, it was as well
shown that no four-dimensional parametrisation can be one-to-one. (Quaternions yield a two-to-
one correspondence, as we have seen.) For a one-to-one correspondence, at least five parameters
are needed, a funny, but awkward example being given in [41]. In practice, the fact that the
quaternionic parametrisation (26) is ‘twice onto’ is irrelevant. �

Remark 4.4 (Relative coordinates) If one uses relative coordinates to set up a multibody
model, where the relative angles between two neighbouring rigid bodies cannot exceed π, it is pos-
sible to choose just the three components of the imaginary part ℑ(p) = (p1, p2, p3)

⊤ of the relative
— quotient — quaternion p as the primary unknowns, simply by letting p0 =

√

1 − p2
1 − p2

2 − p2
3.

In that case, working on the quaternionic ‘northern hemisphere’ {p ∈ S3 : p0 = ℜ(p) > 0} is as
minimal as working with relative angles. One receives an ODE instead of a DAE — with the
drawback of a full mass matrix. �

Remark 4.5 (Plane rotations) For plane and commutative rotations in SO(2), e. g. for d1 = i
and Ω = Ω1i, the quaternion p simply reduces to a complex number p = p0+p1i (with p2 = p3 = 0),
subjected to the constraint ‖p‖2 = p2

0 + p2
1 = 1. Applying the null space technique in the same

way as presented before, we have two absolute coordinates q = (p0, p1) for the position and one
independent quasi-velocity ν = Ω1 for the velocity. This is Nq = 2, Nλ = 1 and NDOF = 1.
In the plane case, the null space method does not make sense in practice, as the manifold SO(2)
can be parametrised in a singularity-free manner, using just one generalised position coordinate
α. Letting, p0 = cos(α/2), p1 = sin(α/2), we receive d2 = (p2

0−p2
1)j+2p0p1k = cos(α)j+sin(α)k,

d3 = −2p0p1j + (p2
0 − p2

1)k = − sin(α)j + cos(α)k and d3 = id2 = −d2i. �

Remark 4.6 (Material vs. spatial angular velocity) The reader might ask, why we con-
strain the columns dn of R⊤ = (d1 | d2 | d3) in gd(d) in (19), not the columns dn of R = (d1 | d2 | d3)
itself. If we chose the directors dn of R, i. e.

g⋆
d(d) =

















(

(d1
1)

2 + (d1
2)

2 + (d1
3)

2 − 1
)

/2
(

(d2
1)

2 + (d2
2)

2 + (d2
3)

2 − 1
)

/2
(

(d3
1)

2 + (d3
2)

2 + (d3
3)

2 − 1
)

/2

d1
1d

2
1 + d1

2d
2
2 + d1

3d
2
3

d3
1d

1
1 + d3

2d
1
2 + d3

3d
1
3

d2
1d

3
1 + d2

2d
3
2 + d2

3d
3
3

















=

















(

‖d1‖2 − 1
)

/2
(

‖d2‖2 − 1
)

/2
(

‖d3‖2 − 1
)

/2

〈d1, d2〉
〈d3, d1〉
〈d2, d3〉

















∈ R
6 (44)



16 comparison of quaternionic and rotation-free null space formalisms

with the gradient

G⋆
d(d) = ∇dg

⋆
d(d) =

















d1
1 d1

2 d1
3

d2
1 d2

2 d2
3

d3
1 d3

2 d3
3

d2
1 d2

2 d2
3 d1

1 d1
2 d1

3

d3
1 d3

2 d3
3 d1

1 d1
2 d1

3

d3
1 d3

2 d3
3 d2

1 d2
2 d2

3

















=

















(d1)⊤

(d2)⊤

(d3)⊤

(d2)⊤ (d1)⊤

(d3)⊤ (d1)⊤

(d3)⊤ (d2)⊤

















the matrix

T ⋆
d (d) =





























d1
3 −d1

2

−d1
3 d1

1

d1
2 −d1

1

d2
3 −d2

2

−d2
3 d2

1

d2
2 −d2

1

d3
3 −d3

2

−d3
3 d3

1

d3
2 −d3

1





























=







−E(d1)

−E(d2)

−E(d3)






∈ R

9×3 (45)

would serve as a null space matrix, since nullG⋆
d(d) = imT ⋆

d (d), rkT ⋆
d (d) = 3. But, similarly as

in Lemma 3.1, one sees that we obtain ν = ω instead of ν = Ω. Recall that ω = RΩ =
∑

n ωne
n

contains the components of the angular velocity w. r. t. the globally fixed basis (e1 | e2 | e3). So,
choosing the columns does not lead to a constant, diagonal mass in (252). In fact, we have
ḋ = Td(d)Ω = T ⋆

d (d)ω = T ⋆
d (d)RΩ. Therefore, constraining the columns leads to a more expensive

right-hand side function, if the material angular velocity Ω is used as the primary unknown in
simulations. Likewise, for the quaternionic parametrisation of the rigid body, choosing

T ⋆
p (p) =

1

2









−p1 −p2 −p3

p0 p3 −p2

−p3 p0 p1

p2 −p1 p0









∈ R
4×3, (46)

which as well satisfies the required property nullGp(p) = imT ⋆
p (p), leads to ν = ω and ṗ = 1

2
ωp

instead of ṗ = 1
2
pΩ in (421). Here as well, it holds that ṗ = Tp(p)Ω = T ⋆

p (p)ω, see Lemma 4.1,

and the reduced mass matrix T ⋆
p (p)⊤Mp(p)T

⋆
p (p) is state-dependent. �

There is another important reason, why to choose Td(d) and not T ⋆
d (d) as a null space matrix.

Namely, the differential of R maps the tangential vectors (τ1
p , τ

2
p , τ

3
p ) at p onto the tangential

vectors (τ1
d , τ

2
d , τ

3
d ) at d ∼ R(d) = R(p). This is explained now in the coming section.

5 Connection between rotation-free and quaternionic for-

malisms

In the preceding Sections 3 and 4, we have derived the quaternionic and rotation-free null space
formulations for single rigid bodies more or less ‘bottom-up’. In this section, we will explain, how
to derive the quaternionic null space formulation (42) for the rigid body from the rotation-free
formulation (25). The idea is simply to ‘pull back’ the constraint gd, its gradient Gd and the
corresponding null space matrix Td. Clearly, the mapping that links both descriptions is the Euler
map (26). Pulling back the tangential vectors is done with the Moore-Penrose pseudoinverse of
its differential, for which we present a simple analytic expression in closed form.
The pull back procedure is universal and can be applied to any multibody system that is built
up of the elementary joints and null space matrices presented in [7]. The quaternionic null space
formalism, which is obtained that way, yields an interesting alternative to the state-of-the-art
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ṗ ∈ H im Dϕ(p) ⊂ R
9
∋ ḋ

Dϕ

Dϕ♮

-�

? ?ϕ -

ϕ♮

�p ∈ H ϕ(p) ⊂ R
9
∋ d

6 6

R -R S
3 = H R SO(3)

Figure 4: Mappings between the embeddings of the involved manifolds — and their embedded
tangential spaces.

modeling philosophies in multibody dynamics, which use Euler angles for the parametrisation
of SO(3) and absolute coordinates (‘Adams-like’) or relative coordinates in connection with an
O(N)-multibody formalism (‘SimPack-like’).

First, let us start with a single rigid body. We consider the rotation-free system (21) in general,
where gd(d) ∈ R6 comprises the six internal constraints of orthonormality in (19). Let Td(d) =
E(d) ∈ R9×3 denote the null space matrix (24) for the constraint gradient Gd(d) ∈ R6×9 in (20),
so that ḋ = Td(d)ν with ν = Ω ∈ R3 and Gd(d)Td(d) ≡ 0. Now, we let

d =







d1

d2

d3






=





























p2
0 + p2

1 − p2
2 − p2

3

2(p1p2 + p0p3)
2(p1p3 − p0p2)
2(p1p2 − p0p3)
p2
0 − p2

1 + p2
2 − p2

3

2(p2p3 + p0p1)
2(p1p3 + p0p2)
2(p2p3 − p0p1)
p2
0 − p2

1 − p2
2 + p2

3





























=







ϕ1(p)

ϕ2(p)

ϕ3(p)






= ϕ(p) ∈ R

9, (47)

where ϕ : H → R9 is the vertically concatenated version of the Euler map R, see (27) and (28).
The director velocity becomes

ḋ = Dϕ(p)ṗ, Dϕ(p) = ∇pϕ(p) = 2





























p0 p1 −p2 −p3

p3 p2 p1 p0

−p2 p3 −p0 p1

−p3 p2 p1 −p0

p0 −p1 p2 −p3

p1 p0 p3 p2

p2 p3 p0 p1

−p1 −p0 p3 p2

p0 −p1 −p2 p3





























∈ R
9×4 (48)

where Dϕ(p) denotes the differential of the Euler map ϕ at p. We want to derive an appropriate
null space matrix Tp(p) ∈ R

4×3 for the quaternion p such that ṗ = Tp(p)ν with the same ν = Ω
and G∗

p(p)Tp(p) ≡ 0 for the gradient G∗
p(p) = ∇pg

∗(p) ∈ R6×4 of the constraint

g∗p(p) = gd(ϕ(p)) =
1

2

(

‖p‖2 − 1
)(

‖p‖2 + 1
) (

1 1 1 0 0 0
)⊤ ∈ R

6, (49)

which is induced by the constraint gd for the directors d via ‘pull back’. Note that the constraints
g∗p are highly redundant: If — and only if — the one unity condition gp(p) = 0 from (34) is
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satisfied, the six constraints g∗p(p) = 0 in (49) are fulfilled. That is why we impose an asterisk ‘∗’
to distinguish from gp. Now, left-multiplication with Dϕ(p)⊤ in ḋ = Dϕ(p)ṗ = Td(ϕ(p))ν yields
Dϕ(p)⊤Dϕ(p)ṗ = Dϕ(p)⊤Td(ϕ(p))ν. Since the rank of the 4 × 4 matrix Dϕ(p)⊤Dϕ(p) is full,
except for the degenerate singularity p = 0, we can solve this relation for ṗ via

ṗ = Dϕ(p)♮ḋ (50)

yielding ṗ = Dϕ(p)♮Td(ϕ(p))ν. Here Dϕ(p)♮ = (Dϕ(p)⊤Dϕ(p))−1Dϕ(p)⊤ ∈ R4×9 denotes the
Moore-Penrose inverse [39] of Dϕ(p). The next Lemma gives an explicit algebraic expression for
Dϕ(p)♮. The matrix

Tp(p) =
(

Dϕ(p)⊤Dϕ(p)
)−1

Dϕ(p)⊤Td(ϕ(p)) = Dϕ(p)♮Td(ϕ(p)) ∈ R
4×3 (51)

is now a good candidate for a quaternionic null space matrix. But we have to convince ourselves
that (51) in fact annihilates G∗

p(p). By the chain rule, we find

G∗

p(p) = ∇pg
∗

p(p) = Gd(ϕ(p))Dϕ(p) = 2‖p‖2
(

p p p 0 0 0
)⊤ ∈ R

6×4,

its rank being rkG∗
p(p) = 1 for p 6= 0 by reason of the redundancies, which we have just explained.

We have to show that G∗
p(p)Tp(p) = Gd(ϕ(p))Dϕ(p)Dϕ(p)♮Td(ϕ(p)) ≡ 0 vanishes. Now if the

condition
im Td(ϕ(p)) ⊆ imDϕ(p), (52)

holds, this is in fact the case, since the mapping Dϕ(p)Dϕ(p)♮·, restricted to imDϕ(p), is known
to be exactly the orthogonal projection onto imDϕ(p), see [39]. Here, Dϕ(p)Dϕ(p)♮ reduces to
the identity mapping, this is Dϕ(p)Dϕ(p)♮w = w for each w ∈ imDϕ(p).
We have the beautiful property that the quaternionic tangential vectors τn

p (p) are mapped to the
corresponding rotation-free ones τn

d (ϕ(p)) by the Euler differential and vice versa,

Dϕ(p)τn
p (p) = τn

d

(

ϕ(p)
)

, τn
p (p) = Dϕ(p)♮τn

d

(

ϕ(p)
)

, n = 1, 2, 3 (53)

The fact that radial stretching of the normal p yields a corresponding radial stretching of the
image d = ϕ(p) becomes manifest in

Dϕ(p)p = ϕ(p), p = Dϕ(p)♮ϕ(p). (54)

The frame Q(p) = (p ‖ τp
1 (p) | τp

2 (p) | τp
3 (p)) ∈ RSO(H) yields a proper orthonormal basis for H,

which is separated into the orthogonal complements Rp and Tp(p) = (τ1
p (p) | τ2

p (p) | τ3
p (p)), the

former spanning the radial normal direction Rp = Gp(p)
⊤R, the latter spanning the tangential

space nullGp(p) = {π ∈ H : 〈p, π〉 = 0} of ‖p‖ S
3 at p. The image of Q(p) under the Euler

differential Dϕ(p) is the rotation-free frame Dϕ(p)Q(p) = (d ‖ τ1
d (d) | τ2

d (d) | τ3
d (d)) with d = ϕ(p).

Here in fact, we have the desired property (52), since

imTd(d) =
{

τ1
d (d), τ2

d (d), τ3
d (d)

}

⊂
{

d, τ1
d (d), τ2

d (d), τ3
d (d)

}

= imDϕ(p), d = ϕ(p),

due to the fundamental relationships (53) and (54). Having all this in mind, it is now straightfor-
ward to see that the explained general procedure yields exactly system (42) with ν = Ω and Tp(p)
as in (41).

Lemma 5.1 (Moore-Penrose inverse of the Euler differential) The Moore-Penrose pseu-
doinverse of the differential of the Euler map Dϕ(p) from (48) admits the closed-form expression

Dϕ(p)♮ =
1

4‖p‖2

(

1

2
I − 1

6‖p‖2
p⊗ p

)

Dϕ(p)⊤ (55)

for p 6= 0.
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Proof: A straightforward computation yields

Dϕ(p)⊤Dϕ(p) = 4
(

2‖p‖2I + p⊗ p
)

(56)

with rank equal to four, iff p 6= 0. The inverse of (56) is precisely the matrix in front of Dϕ(p)⊤

in (55). This is not hard to verify with (p ⊗ p)2 = ‖p‖2p ⊗ p for p ∈ H, which follows from the
general identity (x⊗ y)(u⊗ v) = 〈u, y〉(x⊗ v) for u, v, x, y ∈ RN from vector/tensor calculus. �

We are now ready to transform a general multibody system, given in rotation-free null space
parametrisation. Let us assume that we have such a multibody system, consisting of L ≥ 1 rigid
bodies, each body parametrised by (xl, dl) ∈ R12, this is by three translations xl ∈ R3 and nine
‘rotation-free’ rotations dl ∈ R9. So the vector of primary unknowns is

qd =















x1

d1

...
xL

dL















∈ R
Nq , Nqd

= (3 + 9)L = 12L.

We denote the translatory masses by m1, ..., mL and the principal values of the Euler tensors by
(E1

1 , E
1
2 , E

1
3), ..., (EL

1 , E
L
2 , E

L
3 ). So, the diagonal and state-independent rotation-free mass matrix

becomes

Md =















m1I
Md(E

1
1 , E

1
2 , E

1
3)

. . .

mLI
Md(E

L
1 , E

L
2 , E

L
3 )















∈ R
12L×12L.

The constraints

gd(qd, t) =











gd(d1)
...

gd(dL)

gext(qd, t)











∈ R
Nλd (57)

in the system comprise both the 6L scleronomic internal constraints of orthonormality for each dl

in (19) and N ext
λ ≥ 0 external constraints caused by mechanical joints [7]. So, the total number

of — internal artificial and external joint — constraints is Nλd
= 6L + N ext

λ . Consequently, the
number of mechanical degrees of freedom in the system isNDOF = Nqd

−Nλd
= 12L−(6L+N ext

λ ) =
6L−N ext

λ . The index-3 system reads







q̇d = vd

Mdv̇d = ψd(qd, vd, t) − Gd(qd, t)
⊤λd

0 = gd(qd, t)
, (58)

where

Gd(qd, t) = ∇qd
g(qd, t) =











0 Gd(d1)
. . .

0 Gd(dL)

Gext
d (qd, t)











∈ R
Nλd

×Nqd

If we let dl = ϕ(pl) with pl ∈ H for each l = 1, . . . , L, each rigid body is parametrised by
quaternions. Simply pulling back the rotation-free constraints leads to redundancies, as we have
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seen. Therefore, we pull back only the external joint constraints and replace each of the six
constraint functions gd in (57) by the one constraint function gp from (34),

gp(qp, t) =











gp(p1)
...

gp(pL)

gext
(

Φ(p), t
)











∈ R
Nλp , Nλp

= L+N ext
λ .

Clearly, the net number of degrees of freedom NDOF = Nqp
−Nλ = 7L− (L+N ext

λ ) = 6L−N ext
λ

in the system, which is the dimension of the constraint manifold, remains unchanged. This yields
a smaller set of primary translatory and rotatory quaternionic unknowns

qp =















x1

p1

...
xL

pL















∈ R
Np , Nqp

= (3 + 4)L = 7L, such that qd = Φ(qp) =















x1

ϕ(p1)
...
xL

ϕ(pL)















.

The absolute translational and rotatory quaternionic velocities transform — component by com-
ponent — according to the chain rule,

q̇d = Uq̇p, U(p1, . . . , pL) = ∇qp
Φ(qp) =















I
Dϕ(p1)

. . .

I
Dϕ(pL)















∈ R
12L×7L.

Time differentiation yields the accelerations q̈p = Uq̈p + U̇ q̇p, and the system (58) is transformed
into the quaternionic index-3 system







q̇p = vp

U(qp)
⊤MdU(qp)v̇p = U(qp)

⊤
(

ψd(qp, vp, t
)

−MdU̇(qp, vp, t)vp

)

− Gp(qp, t)
⊤λp

0 = gp(qp, t)
(59)

where the rotation-free constraint gradient transforms into the quaternionic constraint gradient
as well according to the chain rule,

Gp(qp, t) = ∇qp
gp(qp, t) =











0 Gp(p1)
. . .

0 Gp(pL)

Gext
d

(

Φ(qp), t
)

U(p1, . . . , pL)











∈ R
Nλp×Nqp .

Suppose now that we have an appropriate rotation-free null space matrix Td(qd, t) ∈ RNq×NDOF for
the constraint gradient Gd(qd, t) = ∇qg(qd, t) ∈ R

Nλ×Nqd such that q̇d = Td(x1, d1, . . . , xL, dL, t)ν
with some independent quasi-velocities ν ∈ RNDOF , so that the general machinery of section 2
yields the following null space form of (58),







q̇d = Td(qd, t)ν

Td(qd, t)
⊤MdTd(qd, t)ν̇ = Td(qd, t)

⊤
(

ψd(qd, q̇d, t) −MdṪd(qd, q̇d, t)ν
)

0 = gd(qd, t)
. (60)

From ḋl = Dϕ(pl)ṗl, we have ṗl = Dϕ(pl)
♮ḋl as in (50) for each of the rigid bodies, so q̇p = U ♮q̇d
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Joint Number external Mechanical rotation-free quaternionic
constraints DOF (Nqd

= 24) (Nqp
= 14)

N ext
λ NDOF Nλ Nλ

Planar 3 9 15 5
Spherical 3 9 15 5
Cylindrical 4 8 16 6
Prismatic 5 7 17 7
Revolute 5 7 17 7

Table 2: Lower kinematic joints/pairs (L = 2) from [7].

with the Moore-Penrose pseudoinverse

U ♮(p1, . . . , pL) =















I
Dϕ(p1)

♮

. . .

I
Dϕ(pL)♮















∈ R
7L×12L

of U(p1, . . . , pL). With the same ν ∈ RNDOF , the translatory ẋl and quaternionic rotatory veloc-
ities ṗl can be expressed as q̇p = Tp(x1, p1, . . . , xL, pL, t)ν with the pulled-back quaternionic null
space matrix

Tp(x1, p1, . . . , xL, pL, t) = U ♮(p1, . . . , pL)Td

(

x1, ϕ(p1), . . . , xL, ϕ(pL), t
)

.

By construction, Tp(qp, t) satisfies Gp(qp, t)Tp(qp, t) ≡ 0, as desired. The system (60) is transformed
to the much smaller system







q̇p = Tp(qp, t)ν

Td(qd, t)
⊤MdTd(qd, t)ν̇ = Td(qd, t)

⊤
(

ψd(qd, q̇d, t
)

−MdṪd(qd, q̇d, t)ν
)

, qd = Φ(qp)
0 = gp(qp, t)

(61)

without further ado. Here the independent quasi-velocities ν are precisely the same as in the
rotation-free system (60).

Especially for L = 2, for the five elementary joints ‘revolute pair’, ‘prismatic pair’, ‘cylindrical
pair’, ‘spherical pair’ and ‘planar pair’ that are presented in [7] and listed in Table 2 — the so-called
‘lower kinematic pairs’ — appropriate quaternionic null space matrices can be obtained.

In Example C in Section 7, we test the proposed procedure for the two-body-linkage ‘spherical
joint’ of Figure 5. It works fine. Clearly, the proposed quaternionic null space matrices might not
be optimal from the algebraic and numerical point of view. The derivation of optimal quaternionic
null space matrices deserves to be studied and is therefore the topic of further research.

Remark 5.2 (Material vs. spatial angular velocity) The relationships (53) for the tangen-
tial vectors analogously hold for the column vectors of the null space matrices T ⋆

d (d) and T ⋆
p (p) in

(45) and (46). �

Remark 5.3 (The zeroth moment of inertia) The reduced mass Dϕ(p)⊤MdDϕ(p) for a sin-
gle rigid body in (59), equals Mp(p) in (31) with the ‘zeroth’ moment of inertia equal to I0 =
1
2
(I1 + I2 + I3), as it is recommended in [9]. �
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e1

e2

e3

body 1
d1
1

d2
1

d3
1

body 2

d1
2

d2
2

d3
2

̺1

̺2

x1

x2

spherical joint

spherical

joint

Figure 5: Two rigid bodies, connected with a spherical joint.

Figure 6: Drift-off in position g and velocity ġ. (For Example A, computed with Radau5 and
AbsTol = RelTol = 1.0e− 9.)
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6 Stabilisation of the drift-off by projection

Let us inspect in this section, how to avoid the drift-off effect. It is well known that in (4), where the
constraint is imposed on acceleration level, the position q (resp. the velocity v) drifts quadratically
(resp. linearly) from the constraint manifold [2, 4, 12, 19, 27]. In null space coordinate description
(11), the drift-off is only linear like it is in index-2 formulation (3). See as well the illustration
in Figure 6. In general, subsequent (orthogonal) projection of the position q⋆ and (tangential)
projection of the velocity v⋆ can be applied. In this section, we describe how to do this for
the four descriptions (25), (42), (40) and (23). In rotation-free rigid body parametrisation, the
standard way to project the position q⋆ = d⋆ involves the iterative solution of a system of nonlinear
equations. Here we present an explicit fast alternative. In quaternionic parametrisation the
projection of position q⋆ = p⋆ is trivial and explicit.
In this section, we do not consider other stabilisation techniques such as the Baumgarte or the
Gear-Gupta-Leimkuhler method [4, 12, 19]. (The Baumgarte method usually introduces artificial
stiffness into the model. The Gear-Gupta-Leimkuhler method, applied to system (1) leads to an
index-2 DAE. In turn, if the null space method is applied to the latter, an index-1 DAE — but no
ODE — is obtained.) Note that easy and efficient implementations of the projection method are
restricted to one step integration methods. For higher order BDF or NDF methods, non-trivial
modifications in the core solver, e. g. Dassl/Daspk of Petzold and Hindmarsh [19, 29] or the
Matlab solver Ode15s of Shampine and Reichelt [35], are necessary [2].

In the general index-1 formalism (4) — or in general index-0 ODE form (61,2) —, it is
common sense to project the drifted-off solution q⋆ and v⋆ back with respect to the pseudo — or
‘semi’ — metric 〈M(q) ·, ·〉 = ·⊤M(q) · on RNq that is induced by the positive, semi-definite mass
matrix M(q). The requirements of orthogonality — i. e. locally minimal distance to the current
constraint manifold — resp. tangentiality lead to the systems

(P)

{

M(q)(q − q⋆) + G(q, t)⊤χ = 0
g(q, t) = 0

(V)

{ M(q)(v − v⋆) + G(q, t)⊤η = 0

G(q, t)v +
∂g

∂t
(q, t) = 0

, (62)

where η, χ ∈ RNλ denote additional Lagrange multipliers [19, 28]. These systems must be solved
consecutively for (q, χ) and (v, η).
The first system (62, P) is nonlinear and must therefore usually be solved in an iterative fashion.
Typically, a few iterations with a Newton or a simplified Newton method are sufficient, if the
projection is applied after each accepted time integration step. Here, the Jacobian, which equals
the mass-constraint submatrix in (4), for the simplified Newton method is kept constant during
iteration. The second system (62, V) is linear and can be solved in one step. Since the general
null space framework (11) is equivalent to index-2 description (3) with the constraint satisfied
on the level of velocity, projection (62, V) is dispensable.

Not that in the same way, at the very beginning of the dynamical simulation for t = 0, consistent
initial values can be obtained from inconsistent ones.

Let us first have a look at the quaternionic index-0/1 formulation for the single rigid body
(40), where q = p, v = vp = ṗ. Here, subsequent projection

(P) p =
1

‖p⋆‖p
⋆, (V) ṗ = ṗ⋆ −

〈

p, ṗ⋆
〉

p (63)

is especially cheap, and no iterative procedure is required. In the next Lemma, we see that (63)
is embedded into the general framework (62). Clearly from the the spherical geometry of S3,
p = p⋆/‖p⋆‖ yields in fact the point of minimal distance of p⋆ to S3.

Lemma 6.1 (Quaternionic projection) For q = p, q⋆ = p⋆, v = vp = ṗ, v⋆ = v⋆
p = ṗ⋆,

M = Mp(p) from (31), g = gp(p) from (34) and G = Gp from (36), the solution of (62) is given
by p, ṗ in (63) and χ = η = 0.
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Proof: Clearly, the constraint equations gp(p) = 0 and Gp(p)ṗ = 0 in (63) are satisfied. Since
p − p⋆ ∈ nullMp(p) = Rp, one sees that Mp(p)(p − p⋆) = 0, and (62, P) is satisfied with χ = 0.
Since ṗ− ṗ⋆ is in direction of p, we have Mp(p)(ṗ− ṗ⋆) = 0. Thus, (62, V) is satisfied with η = 0. �

It is known that stabilisation of velocity is much more crucial than stabilisation of position [1, 19].
The projection and the Baumgarte stabilisation methods have in common that they may dissipate
energy. Considering the projection technique, it is usually the projection of velocity that is the
dominant energy consuming process.
We point out that for the quaternionic rigid body and both formulations (40) and (42) the pro-
jection of velocity in (63, V) does not consume kinetic energy. In formulation (40), we have
(ṗ⋆)⊤Mp(p)ṗ

⋆ = ṗ⊤Mp(p)ṗ, because of nullMp(p) = Rp. In formulation (63), the velocity
ṗ = Tp(p)Ω — by construction — always is — up to round-off errors — perfectly tangential
to S3 and there is no need to project it. However, the projection of position (63, P) in fact does
affect the rotatory kinetic energy in both directions. Let T ⋆ = 1

2
(ṗ⋆)⊤M(p⋆)ṗ⋆, T = 1

2
ṗ⊤Mp(p)ṗ

and δT = T − T ⋆ the defect caused by projection. (We have just seen that 2T = (ṗ⋆)⊤Mp(p)ṗ
⋆.)

Now if the quaternion has drifted to the outside of S
3, i. e. ‖p⋆‖ > ‖p‖ = 1, then δT < 0. If it

has drifted to the inside of S3, i. e. ‖p⋆‖ < ‖p‖ = 1, then δT > 0. Note that the mass is radially
sensitive, so that ‖p⋆‖2Mp(p) = M(p⋆).
Now in null space formulation (42) — and in general — the drift-off in p is only linear — not
quadratic — in the long run, see Figure 6. And it is usually much smaller in each time step
than in formulation (40). That is one reason, why the null space coordinate formulation enjoys
a better energetic behaviour. Figure 10 displays the total energy of the gyro top example, which
is Example A in Section 7, along the simulated time interval [0, T ], computed with DoPri5. It
clearly demonstrates that formulation (42) is superior to (40). In null space coordinates, even for
coarse integrator tolerances, sufficiently good energy conservation is obtained in practice.

For the rotation-free description (23) for a rigid body, (25), where q = d, v = vd = ḋ, things
are more difficult. There are several possibilities to receive an orthonormal frame d ∼ R from a
drifted-off one d⋆ ∼ R⋆. Using the standard method and solving (621) with M = Md for (d, χ)
is iterative and, consequently, expensive. We propose the following projection algorithm, which is
explicit and does not need any iterative procedure. In turn, it relies on the established method of
Spurrier and Klumpp, how to extract a quaternion out of a ‘direction-cosine’ matrix. We give a
compact and short exposition below.

Explicit projection algorithm for a rotation-free rigid body

Let d⋆ ∼ R(d⋆) resp. ḋ⋆ ∼ Ṙ(d⋆, ḋ⋆) denote a given drifted-off rotation-free position resp. velocity.
Then the solution d ∼ R(d) and ḋ ∼ Ṙ(d, ḋ) of the following algorithm satisfy gd(d) = 0 and
Gd(d)ḋ = 0. That is, R(d) is in SO(3) and Ṙ(d, ḋ) is tangential to SO(3) at d. The algorithm
reads as follows.

(P) Projection of position.

(a) Extract a quaternionic position p⋆ from d⋆ with the Spurrier/Klumpp algorithm p⋆ ∈
ϕ♮(d⋆), see below.

(b) Normalise p = p⋆/‖p⋆‖ as in (63).

(c) Set d = ϕ(p) as in (47).

(V) Projection of velocity.

(a) Extract a quaternionic velocity ṗ⋆ from d and ḋ⋆ via ṗ⋆ = Dϕ(p)♮ḋ⋆ as in (50).

(b) Tangentialise ṗ = ṗ⋆ − 〈p, ṗ⋆〉p as in (63).

(c) Set ḋ = Dϕ(p)ṗ as in (48).
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Note that the Spurrier-Klumpp algorithm works in a neighbourhood of SO(3). That is, it works
as well, if frame d⋆ ∼ R⋆ is just ‘almost’ orthonormal. Steps (a) in the proposed algorithm corre-
spond to ‘pull back’ operations, steps (c) correspond to ‘push forward’ operations in the diagram
of Figure 4.

The algorithm of Spurrier and Klumpp

We summarise in short the algorithm of Spurrier and Klumpp, which extracts a quaternion
and/or its antipode p = ±(p0 + ip1 + jp2 + kp3) = ±(p0 | p1, p2, p3)

⊤ ∈ H out of a frame
d ∼ R(d) = (dn

m)n,m=1,2,3 in a neighbourhood of SO(3). We expose the algorithm as in [37]
in a compact fashion. See as well the original articles [24, 38]. The algorithm reads as follows.

Firstly, let d0
0 = trace(R) = d1

1 + d2
2 + d3

3 for abbreviation. Secondly, choose n ∈ {0, 1, 2, 3} such
that dn

n = max
{

d0
0, d

1
1, d

2
2, d

3
3

}

. Thirdly, depending on the value of n, distinguish the following
four cases, how to define p from d ∼ R(d).

• If n = 0, let

p0 = ±
√

1 + d0
0

2
, p1 =

d2
3 − d3

2

4p0

, p2 =
d3
1 − d1

3

4p0

, p3 =
d1
2 − d2

1

4p0

.

• If n = 1, let

p1 = ±
√

d1
1

2
+

1 − d0
0

4
, p0 =

d2
3 − d3

2

4p1

, p2 =
d1
2 − d2

1

4p1

, p3 =
d1
3 − d3

1

4p1

.

• If n = 2, let

p2 = ±
√

d2
2

2
+

1 − d0
0

4
, p0 =

d3
1 − d1

3

4p2

, p1 =
d2
1 − d1

2

4p2

, p3 =
d2
3 − d3

2

4p2

.

• If n = 3, let

p3 = ±
√

d3
3

2
+

1 − d0
0

4
, p0 =

d1
2 − d2

1

4p3

, p1 =
d3
1 − d1

3

4p3

, p2 =
d3
2 − d2

3

4p3

.

We write ϕ♮(d) = {±p} for the two-valued solution of the algorithm in shorthand. The sign ‘±’ is
not determined uniquely, since the Euler mapping R : H → RSO(3) is twice onto. Note, however,
that the sign actually does not affect the result of the proposed projection algorithm.

Lemma 6.2 (Rotation-free projection) Position q = d and velocity v = ḋ of the preceding
algorithm solve the two systems in (62) with mass equal to identity. That is

{

d+Gd(d)
⊤χ = d⋆

gd(d) = 0
and

{

ḋ+Gd(d)
⊤η = ḋ⋆

Gd(d)ḋ = 0
, (64)

and appropriate χ and η in R6.

Proof: Firstly, the constraint equations gd(d) = 0 and Gd(d)ḋ = 0 in (64) are satisfied by
construction. Secondly, taking a close look at the Spurrier-Klumpp algorithm, it is seen that
d+Gd(d)

⊤χ = d⋆ is satisfied with appropriate χ, depending on d⋆. Using (P) (a), ..., (c) yields χ =
Gd(ϕ(p))♮(‖p⋆‖2d⋆−ϕ(p)) with the Moore-Penrose pseudoinverseGd(d)

♮ = (Gd(d)Gd(d)⊤)−1Gd(d)
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of Gd(d). Note that null(Gd(d)Gd(d)⊤) = nullGd(d)
⊤ = {0} for d 6= 0. Carrying out the lengthy

details with

Gd(d)Gd(d)
⊤=

















‖d1‖2 〈d1, d2〉 〈d3, d1〉
‖d2‖2 〈d1, d2〉 〈d2, d3〉

‖d3‖2 〈d3, d1〉 〈d2, d3〉
〈d1, d2〉 〈d1, d2〉 ‖d1‖2 + ‖d2‖2 〈d2, d3〉 〈d3, d1〉
〈d3, d1〉 〈d3, d1〉 〈d2, d3〉 ‖d3‖2 + ‖d1‖2 〈d1, d2〉

〈d2, d3〉 〈d2, d3〉 〈d3, d1〉 〈d1, d2〉 ‖d2‖2 + ‖d3‖2

















from (20) is left to the reader. Thirdly, letting (V) (a), ..., (c) into ḋ + Gd(d)
⊤η = ḋ⋆ and left-

multiplying with Dϕ(p)⊤ yields 〈p, ṗ⋆〉Dϕ(p)⊤Dϕ(p)p = Dϕ(p)⊤Gd(ϕ(p))⊤η, which must be ful-
filled with a certain η. Now, Dϕ(p)⊤Gd(ϕ(p))⊤ = 2

(

p p p 0 0 0
)

and Dϕ(p)⊤Dϕ(p)p =
12p, which follows from (56) for ‖p‖2 = 1. Therefore, η can be chosen proportional to 6〈p, ṗ⋆〉. �

The recommended projection method is of purely geometric kind, as we do not weight with the
physical mass — i. e. M = I. The physical moments of inertia do not play any role. It behaves
isotropic (or ‘fair’) in all the three spatial dimensions. Our numerical experiments indicate that
it does not deteriorate the numerical accuracy significantly, compared to the case, if we solve (62)
with M = Md. The benefit of the proposed method is that it is explicit and faster.

Before finishing this section, we comment on two alternative projection methods for rotation-free
rigid bodies.

Remark 6.3 (Alternative rotation-free projection methods) (a) At first, one might think
for example of the Gram-Schmidt algorithm or a similar orthonormalisation technique [39] to
obtain a d ∼ R from d⋆ ∼ R⋆. Unfortunately, this method crucially depend on the order, in
which the vectors are orthonormalised sequentially. Thus, it cannot be isotropic in all the spatial
dimensions.
(b) Another method would be to use the Lie group structure of SO(3) with Lie algebra so(3).
One takes the matrix logarithm γ⋆ = logR⋆ to receive an ‘almost’ skew symmetric γ⋆. Then one
skew-symmetrises γ = 1

2
(γ⋆− (γ⋆)⊤) ∈ so(3) and sets d ∼ R = eγ ∈ SO(3). The matrix logarithm

exists in a neighbourhood of SO(3) and eγ can be computed with the Euler-Rodriguez formula,
which gives a closed form expression for the matrix exponential of a skew symmetric 3× 3 matrix,

eγ =
∞
∑

n=0

1

n!
γn = I +

sin ‖γ‖
‖γ‖ γ +

1 − cos ‖γ‖
‖γ‖2

γ2, ‖γ‖ =
√

γ2
1 + γ2

2 + γ2
3 , γ ∈ so(3),

see [10, 32, 40]. However, we do not recommend this method, as the computation of the matrix
logarithm is expensive and the overall method is not isotropic. �

7 Numerical examples

In this last section, we compare the four descriptions (421,2), (251,2), (401,2) and (231,2) for single
rigid bodies of Sections 3 and 4 at two standard examples, which can be found in literature
[7, 9, 23]. In addition to these descriptions, we use as well a parametrisation with classical Euler
angles. The examples are chosen such that the solutions keep away from the dangerous gimbal
locking configurations. We do not consider other three-parametric possibilities, such as Rodriguez
parameters, rotation vectors, Cardan angles [10, 12, 34] or ‘vectorial parametrisations’ [5]. We
test those formulations in connection with the standard time integrators listed in Table 3.
In a third example, we inspect formulations (60), (61) and the index-0 versions of (58), (59) of
Section 5 for a simple mechanism with nine degrees of freedom, consisting of two rigid bodies,
connected with a spherical joint and attached with a linear translational bushing element.
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DoPri5 DoP853 Odex Radau5 Dassl/Daspk Seulex

explicit explicit explicit implicit implicit implicit
Runge-Kutta Runge-Kutta extrapolation Runge-Kutta BDF extrapolation

method method method method method method
[18] [18] [18] [17, 19, 28] [19, 29] [19]

(Ode45 [35]) (Ode15s [35])

Table 3: Collection of explicit and implicit time integrators (with Matlab ‘equivalents’).

In our experiments we measure the achieved absolute accuracy and the numerical costs. We
measure the numerical costs in the number of right-hand side function evaluations that the re-
spective solvers need to evaluate. In Examples A and B, each such evaluation needs the number
of elementary operations that are listed in Table 1.
The accuracy is measured by the absolute error in the — translational and rotatory — positions
and — translational and angular — velocities at the end of the simulation t = T with respect to
a numerical benchmark solution that is computed with highly stringent integrator tolerance.
We further investigate typical stepsize histories and the energetic behaviour for each of respective
model formulations.

Euler angles Before starting, let us first summarise the use of Euler angles θ = (θ1, θ2, θ3)
⊤ for

the rigid bodies in Examples A and B. We apply them in the standard convention ‘Z−X∗ −Z∗∗’
or ‘3-1-3’, see [23, 34]. That is, the rotation

R = R(θ) =





cos θ1 − sin θ1
sin θ1 cos θ1

1









1
cos θ2 − sin θ2
sin θ2 cos θ2









cos θ3 − sin θ3
sin θ3 cos θ3

1





is multiplicatively decomposed into an elementary rotation by θ1 about the ‘Z-axis’ e3, an ele-
mentary rotation by θ about the new ‘X∗-axis’ and an elementary rotation by θ3 about the new
‘Z∗∗-axis’. From E(Ω) = R⊤Ṙ, we have that

Ω =





Ω1

Ω2

Ω3



 =





sin θ3 sin θ2 cos θ3 0
cos θ3 sin θ2 − sin θ3 0

cos θ2 0 1









θ̇1
θ̇2
θ̇3



 (65)

yielding the system
{

θ̇ = Tθ(θ)Ω

IΩ̇ = µ− Ω × IΩ, µ = Tθ(θ)
⊤ψθ . (66)

Here

Tθ(θ) =













sin θ3
sin θ2

cos θ3
sin θ2

0

cos θ3 − sin θ3 0

−cos θ2 sin θ3
sin θ2

−cos θ2 cos θ3
sin θ2

1













is the inverse of the matrix in (65) and can be interpreted as a null space matrix for the gradient of
the empty constraint. The moment ψθ is obtained from ψθ = φθ −∇θV (θ, t)⊤. In this convention,
the gimbal locking singularities are characterised by θ2 = . . . ,−2π,−π, 0, π, 2π, . . ., where θ1 and
θ3 are not uniquely undetermined.

Example A In this Example, we study the nutation and precession of a heavy gyro top with
I1, I2 ≫ I3 > 0, similarly to Example 5.2 in [9] or Example 5.1 in [7]. We consider a slightly
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d1

d2

d3

d2

d1

d3

Figure 7: The tennis racket problem. Free rotations about the axes d2 and d3 are stable. Free
rotation about axis d1 is unstable. (0 < I2 < I1 < I3.)

unsymmetrical one, where we set I1 = 50.0 kgm2, I2 = 42.0 kgm2 and I3 = 10.0 kgm2. This
corresponds to the principal values E1 = 1.0 kgm2, E2 = 9.0 kgm2 and E3 = 41.0 kgm2 of the
Euler tensor due to (18). For the initial positions, we choose θ1(0) = 0, θ2(0) = π

3
and θ3(0) = 0

in terms of Euler angles. This corresponds to

p(0) = cos

(

θ2(0)

2

)

+ sin

(

θ2(0)

2

)

i =









1
2

√
3

1
2

0
0









, R(0) = R(p(0)) =





1 0 0

0 1
2

− 1
2

√
3

0 1
2

√
3 1

2





in quaternionic and rotation-free description, respectively. As initial angular velocity we choose
Ω(0) = (0, 0, 20 s−1)⊤. The potential energy V for the top and the resulting exterior conservative
moments ψ· in (22), (33) can be expressed as [9, 7]

V = mgL〈d3, e3〉, ψd = −mgLe3, ψp ∼ Dϕ(p)⊤ψd = −2mgL









p0

−p1

−p2

p3









.

We set mL = 11.09 kgm and g = 9.81 ms−2 for the gravitational acceleration. We set φ· ≡ 0 for
the exterior moments in (22), (33), especially we exclude any dissipative mechanisms.
Figure 11 displays the solution of the problem, where clearly nutation and precession become
visible. Figures 13 resp. 14 display the absolute accuracies of the various solvers against the
numerical task they needed. In our testing, we included the implicit solvers Radau5 and Ode15s,
which is the Matlab BDF-counterpart of Dassl/Daspk, because these methods are standard in
nowadays commercial multibody software packages, even though they are not the ideal choice for
that scenario here, since it is a non-stiff problem.

Example B This is the tennis racket problem 11–5 in [23], which considers the free rotation
of a rigid body around the principal axis d1, which has the medial moment of inertia I1, this is
0 < I2 < I1 < I3. This motion is clearly unstable.
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Figure 8: Typical DoPri5 stepsizes for Example A.

Figure 9: Typical DoPri5 stepsizes for Example B.
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Figure 10: The numerical solution for the total energy in Example A, computed with DoPri5

and Ω(0) = (0, 0, 500 s−1)⊤.

We choose the same parameters as in [23], I1 = 41.6 kgm2, I2 = 11.6 kgm2 and I3 = 50.0 kgm2,
which correspond to E1 = 10.0 kgm2, E2 = 40.0 kgm2 and E3 = 1.6 kgm2. Since we consider free
rotations, V ≡ const and φ· ≡ 0. Note that in this case, the Euler equations (252), (422) resp.
(662) resp. decouple from (251) (421) resp. (661), since the exterior moments µ vanish. Therefore,
Ω can be integrated without knowledge of the frame position R – and without any parametrisation
of the latter.

Note that the initial frame R(0) = (d1(0) | d2(0) | d3(0)) at t = 0 cannot be aligned in parallel
to the spatially fixed absolute coordinate system (e1 | e2 | e3), as this corresponds to a singular
configuration. But since we are free relative to the absolute space, we may choose θ1(0) = π/3,
θ2(0) = π/4, θ3(0) = π/2 as initial positions. That way, it is guaranteed that the solution keeps
away from the singularities with a sufficient safety distance.

Figure 12 displays the solution d(t), Ω(t) for Ω1(0) = 50 s−1 and a small disturbance Ω2(0) =
Ω3(0) = 1.0e−3s−1. So we can see what happens. At first, the free rotation about d1 seems to
be stable and Ω1 is almost constant. But almost suddenly at about t = 0.4 s, the body turns
over about π, that is, d1 snaps through to its antipode. Then, again, a period of seemingly
stable rotation begins and lasts until at about t = 1.2 s. Then, another sudden reversal occurs.
This turn-over repeats on and on and is almost periodic. (In some respects, this behaviour can
be compared to the pole reversal of the earth’s magnetic field.) The solution Ω(t) for the same
scenario and Ω1(0) = 50 s−1, Ω2(0) = Ω3(0) = 1.0s−1 is depicted and discussed in [23].

Figure 15 displays the achieved accuracy vs. the number of right-hand side function evaluations
for the explicit embedded Runge-Kutta integrator DoPri5.

Example C In this last example, we fetch up the methodology of Section 5 and consider a
simple mechanism qd = (x1, d1, x2, d2) ∈ R

Nqd , Nqd
= 24, with L = 2 bodies of masses m1, m2

and moments of inertia (I1
1 , I

1
2 , I

1
3 ), (I2

1 , I
2
2 , I

2
3 ), situated at (x1, d1), (x2, d2) ∈ R12. They are
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connected with a spherical joint

gext(qd) = x1 − x2 + ̺1 − ̺2 ∈ R
Next

λ , N ext
λ = 3, (67)

which restricts the relative motion to three DOF, see Figure 5. Here the spatial vectors ̺i =
ρi
1d

1
i + ρi

2d
2
i + ρi

3d
3
i for i = 1, 2, address the position of the joint relative to the respective centers

of mass x1, x2. Their material counterparts are ρi = ρi
1e

1 + ρi
2e

2 + ρi
3e

3 = R−1ρi. The system
has NDOF = 9 physical degrees of freedom in total, see Table 2. The constraints comprise both
12 internal gd(di) and 3 external joint constraints gext(qd),

g(qd) =





gd(d1)
gd(d2)
gext(qd)



 ∈ R
Nλd , Nλd

= 15.

In the sequel, we append the row and column sizes of the occurring identity resp. zero matrices in
the form In×m resp. 0n×m. The gradient Gext(qd) = ∇qd

gext(qd) of the external joint constraint
gext(qd) is

Gext =
(

−I3×3 −ρ1
1I3×3 −ρ2

1I3×3 −ρ3
1I3×3 I3×3 ρ1

2I3×3 ρ2
2I3×3 ρ3

2I3×3

)

∈ R
3×24.

An appropriate null space matrix for

Gd(qd) = ∇qd
g(qd) =





06×3 Gd(d1) 06×3 06×9

06×3 06×9 06×3 Gd(d2)

Gext(qd)



 ∈ R
15×24

can be obtained in a multiplicative fashion

Td(qd) =

( T int
1 (d1) 012×3

T int
2 (d2)T ext

2 (qd)

)

∈ R
24×9,

where

T int
i =

(

I3×3 03×3

09×3 Td(di)

)

∈ R
12×6, T ext

2 =

(

I3×3 −R(d1)E(ρ1) −R(d2)E(ρ2)
03×3 03×3 I3×3

)

∈ R
6×9

and Td(di) = E(di) ∈ R9×3 as in (24). Note that these matrices slightly differ from the ones
presented in [7]. This is due to the fact that we constrain the rows of the frame instead of its
columns, as explained in Remark 4.6. It is straightforward to see that

ν =
(

ẋ1,Ω
1,Ω2

)⊤
=

(

ẋ1
1, ẋ

2
1, ẋ

3
1, Ω1

1,Ω
1
2,Ω

1
3, Ω2

1,Ω
2
2,Ω

2
3

)⊤ ∈ R
NDOF , NDOF = 9. (68)

Here ẋ1 ∈ R3 contains the components of the translatory velocity ẋ1 = ẋ1
1e

1 + ẋ2
1e

2 + ẋ3
1e

3

of the first body w. r. t. the spatially fixed coordinate system (e1 | e2 | e3). The material vectors
Ω1 = Ω1

1e
1 + Ω1

2e
2 + Ω1

3e
3 resp. Ω2 = Ω2

1e
1 + Ω2

2e
2 + Ω2

3e
3 ∈ R

3 contain the components of the
spatial angular velocities ω1 = ω1

1d
1
1 + ω1

2d
2
1 + ω1

3d
3
1 resp. ω2 = ω2

1d
1
2 + Ω2

2d
2
2 + ω2

3d
3
2 ∈ R3 of the

first resp. second body w. r. t. the body fixed coordinate systems (d1
1 | d2

1 | d3
1) resp. (d1

2 | d2
2 | d3

2).
Transformation into the quaternionic world as explained in Section 5 yields a smaller system with
qp = (x1, p1, x2, p2) ∈ R

Nqp , such that qd = (x1, d1, x2, d2)
⊤ = Φ(qp) = (x1, ϕ(p1), x2, ϕ(p2))

⊤,
with Nqp

= 14 and the algebraic constraints

g(qp) =





gp(p1)
gp(p2)

gext(Φ(qp))



 ∈ Nλp
, Nλp

= 5.

Here we chose I1
1 = I2

1 = I1, I
1
2 = I2

2 = I2, I
1
3 = I2

3 = I3 as in Example B, m1 = 10 kg,
m2 = 20 kg, ρ1 = (1 m, 2 m,−3 m)⊤, ρ2 = (5 m,−6 m,−7 m)⊤. The initial positions were chosen
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as x1 = (0, 0, 0)⊤ and d1(0) = d2(0) ∼ R1(0) = R2(0) as in Example A. For the initial velocities, we
chose ẋ1 = (0, 0, 0)⊤, Ω1(0) = (3 s−1, 2 s−1, 1 s−1)⊤, Ω2(0) = (24 s−1, 15 s−1, 12 s−1)⊤. A consistent
initial position for x2 was obtained from x2 = x1 + ̺1 − ̺2, according to (67). Consistent initial
velocities ṗ1(0), ṗ2(0), ḋ1(0), ḋ2(0), and ẋ2(0) for the absolute formulations were obtained from
q̇d(0) = Td(qd(0))ν(0), q̇p(0) = Tp(qp(0))ν(0) with ν as in (68). We attached the mechanism with
a translatory linear bushing

V (qd) =
k

2
‖x1‖2, ψd = −∇qd

V ⊤ = −kx1

at the origin, where we choose the stiffness k = 1.0e4 kgm2 s−2. The solution of the problem is
highly nonlinear and almost chaotic, similar to the movement of a double pendulum. Figure 16
displays accuracy vs. right-hand side function evaluations for T = 4 s.

For each of the three examples and each single simulation, we set the absolute error tolerance
of the integrator, AbsTol, equal to the relative one, RelTol. We used the default integration
parameters for each solver and did not apply fine tuning. For Examples A and B, in the index-1
descriptions (23) and (40), we discarded the respective Lagrange multipliers during integration.
That is, we solved the index-0 subproblems (231,2), (401,2) and computed the Lagrange multipliers
in a postprocessing. We did the same in Example C, that is, we solved the index-0 versions of
(58) and (59), discarding the Lagrange multipliers. Let us discuss the results of our experimental
investigations.

In all examples, the null space descriptions are superior to the absolute index-0 descriptions. This
is the case, independent of the special time integration method, see Figures 13 and 14 for Example
A. The corresponding pictures for Examples B and C and our solver collection of Table 3 look
similar. This is, what we expect and obviously by reason of all the benefits (i), ..., (vi) that
have been listed and explained in Sections 3 and 4. In Examples A and B, it is seen that both
the quaternionic (421,2) and the rotation-free (251,2) null space formalisms are competitive to the
(minimal, three-dimensional) Euler parametrisation (66). In Example B — surprisingly — they
are even better.
In Example B, for rather large initial disturbances Ω2(0) = Ω3(0) = 0.1 s−1, the discrepancy
between the methods is small, see Figure 15 (a). For very small initial disturbances Ω2(0) =
Ω3(0) = 1.0e−5 s−1, which result in longer ‘constant’ plateaus in the solution, we can say that the
absolute index-0 formalisms completely fail, see Figure 15 (b). Even if the tennis racket problem
seems to be a very simple scenario, it is a good benchmark to check formalisms and time integration
codes.
Even though we do not couple the models with variational integration techniques as in [9, 7], both
null space formalisms (421,2), (251,2) display a much better energy conservation than formalisms
(401,2), (231,2), as is illustrated in Figure 10 for Example A and the integrator DoPri5. (Of
course, the total energy is never conserved exactly in these simulations.) We can give two reasons
for this. Firstly, this is due to the better achieved total accuracy in general. Secondly, in the null
space formulations, there is no need to project the velocity, which is a crucial step. Here gain,
from the energetic point of view, we can say that the absolute index-0 formulations fail for coarse
integrator tolerances.
In Examples A and B, the quaternionic null space method (421,2) behaves slightly better than
the rotation-free null space method (251,2). This behaviour is typical and is due to the fact that
we have a smaller number of unknowns in the model. The error estimator of the solvers has
to control only 7 instead of 12 unknowns. Likewise, the quaternionic absolute index-0 method
(401,2) with 8 unknowns behaves better than the rotation-free absolute index-0 method (231,2)
with 18 unknowns. The same holds for Example C accordingly with 48, 28, 33 and 23 unknowns
in systems (58), (59) and the index-0 versions of (60) and (61), respectively. This is, what one
expects a priori. A remedy is to use local reparametrisation techniques [6, 7, 8]. However, changing
charts for the manifold is a tedious task in practice [12, 19], since the right-hand side of a model
frequently changes.
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In Figures 8 resp. 9 for Examples A resp. B, it is seen that the magnitude of selected time steps
correlates more or less to the number of unknowns in the model. (Of course, smaller stepsizes do
not automatically mean a better accuracy.) This is, the Euler angle (66) and the two quaternionic
formalisms (421,2), (401,2) yield larger time steps than the two rotation-free formalisms (251,2),
(231,2). And here as well, the null space descriptions (251,2), (421,2) perform much better than the
corresponding index-0 descriptions (231,2), (401,2). The reason is that controlling velocities in the
error estimators is more crucial than controlling the positions. And on the level of velocity, the
null space methods are minimal. There is no physically redundant information contained therein.
Stepsize histories for different solvers — and/or Example C — look similar, with different, typical
patterns.
We observed that the discrepancies in accuracy and task between the presented formalisms be-
comes the larger, the larger we choose the magnitude of the initial linear and angular velocities,
i. e. the more energy — or dynamics — is contained in the respective systems.

Finishing, we want to remark that the authors have compared formalisms (421,2) and (401,2) at a
forth — more complex — example, which is a quaternionic, flexible, geometrically exact Cosserat
rod model [25]. The results therein are similar to the ones presented here. They as well confirm
the observations of this article that the null space technique definitively ought to be preferred, if
SO(3) is parametrised with more than three coordinates.

8 Conclusions

We have studied the rotation-free and quaternionic parametrisation for rigid bodies and revealed
analytical interrelations between both descriptions. We supplied appropriate null space matrices,
yielding a significant reduction of the numbers of unknowns on the level of velocity. Numerical
examples with standard time integration methods demonstrated that the null space coordinate
formulations are superior to the index-reduced versions of the standard absolute coordinate de-
scriptions, which are derived from the Euler-Lagrange equations of the first. We further gave a
general recipe, how to build up multibody models in quaternionic null space coordinates by the
pull back of rotation-free null space matrices with the aid of the Moore-Penrose pseudoinverse of
the differential of the Euler map.

Acknowledgements. I want to thank Martin Arnold, Pascal Jung, Sigrid Leyendecker and
Joachim Linn for many extensive and fruitful discussions.
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