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Abstract

We study global and local robustness properties of several estimators for shape and scale in a gener-
alized Pareto model. The estimators considered in this paper cover maximum likelihood estimators,
skipped maximum likelihood estimators, moment-based estimators, Cramér-von-Mises Minimum
Distance estimators, and, as a special case of quantile-based estimators, Pickands Estimator as well
as variants of the latter tuned for higher finite sample breakdown point (FSBP), and lower variance.

We further consider an estimator matching population median and median of absolute deviations
to the empirical ones (MedMad); again, in order to improve its FSBP, we propose a variant using a
suitable asymmetric Mad as constituent, and which may be tuned to achieve an expected FSBP of
34%.

These estimators are compared to one-step estimators distinguished as optimal in the shrinking
neighborhood setting, i.e., the most bias-robust estimator minimizing the maximal (asymptotic)
bias and the estimator minimizing the maximal (asymptotic) MSE. For each of these estimators, we
determine the FSBP, the influence function, as well as statistical accuracy measured by asymptotic
bias, variance, and mean squared error—all evaluated uniformly on shrinking convex contamina-
tion neighborhoods. Finally, we check these asymptotic theoretical findings against finite sample
behavior by an extensive simulation study.

Keywords: global robustness, local robustness, finite sample breakdown point, generalized Pareto
distribution
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1 Introduction

The topic of this paper is robust parameter estimation in generalized Pareto distributions (GPDs).
These arise naturally in many situations where one is interested in the behavior of extreme events
which is motivated by the Pickands-Balkema-de Haan extreme value theorem (PBHT), compare
Balkema and de Haan (1974), Pickands (1975).

The application we have in mind is the calculation of the regulatory capital as required by Basel II
(2006) for a bank to cover operational risk, by definition “the risk of direct or indirect loss resulting
from inadequate or failed internal processes, people and systems or from external events”. In
quantifying this risk, usually the tail behavior of the underlying distribution as expressed by tail
quantiles (e.g., VaR) or truncated moments (CVaR) is crucial. Estimating these population quantiles
by their empirical counterparts apparently is drastically prone to outliers: For the 99.9% quantile
as typically used in this context, Basel II (2006), for 5000 observations, five irreproducible, extra-
ordinarily large observations suffice to render this procedure completely meaningless. This is where
extreme value theory enters, suggesting to estimate these quantiles parameterically using, e.g.,
GPDs, see e.g. Neslehova et al. (2006).This per se is no remedy, however. Maximum Likelihood
Estimators (MLEs), optimal in this parametric context, still attribute unbounded influence to some
exposed observations. For the GPD, this unboundedness is induced by the shape parameter which
decides upon the tail behavior of the distribution. Thus, in our example, five outliers will still
invalidate our estimation.

Robust Statistics in contrast offers procedures bounding the influence of single observations, so
provides reliable inference in the presence of moderate deviations of the underlying model assump-
tions, respectively the mechanisms underlying the PBHT. Admittedly, this comes at the price of some
efficiency loss in the ideal model, which in practice may also be a problem.
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Introduction

In this article, we pick up certain estimators proposed as robust alternatives to MLEs and moment-
based estimators in the literature. We examine their behavior in ideal and non-ideal situations as
to their robustness and efficiency properties; based on these properties we give some indications
on how to improve these estimators, and introduce some new ones with even better robustness
properties.

Literature Estimating the three-parameter GPD has been a challenging problem for statisticians
for many years, and many approaches to fit the GPD to real data have been proposed.

The MLE for the GPD is very popular for practitioners, as justified by its asymptotic optimality in
terms of efficiency at the smooth model in the sense of the asymptotic Cramér Rao bound (which is
restricted to asymptotically linear estimators, though). This estimator has been studied in detail by
Smith (1987). For finite sample sizes, this optimality may not yet hold: Hosking & Wallis (1987) al-
ready note that the MLE in this case turns out to be inefficient even for large sample sizes compared
against moment-based estimators.

To stabilize this procedure, Cope et al. (2009) propose skipping some extremal data peaks, thereby
reducing the influence of extreme values. Grossly speaking this amounts to using a Skipped Max-
imum Likelihood Estimators (SMLE). Close to this is the weighted likelihood method proposed in
Dupuis and Morgenthaler (2002).

Following the general lines to obtain optimally-robust estimators, Dupuis (1998) and Dupuis and
Field (1998) recommend an Optimal Bias-Robust Estimator (OBRE). It is defined as the solution of
a “Lemma 5 problem” (alluding to Lemma 5 of Hampel (1968)), i.e.; to a given bound on the
bias in the neighborhood (more specifically, a bound b on the gross error sensitivity GES as defined
in (1.20)) of the influence function, minimize the trace of the variance (cf. (Hampel et al., 1986,
2.4 Thm. 1)).

Generalizing He and Fung (1997), Peng and Welsch (2001) propose a method of median estimator
which is based on solving the implicit equations matching the population medians of the coordi-
nates of the scores function to the data; it is shown that this estimator is related to but not identical
to the MBRE estimator we introduce later; one might hope that, as in the Weibull setting of He and
Fung (1997), the asymptotic breakdown point of this procedure would be 50%, but no such result
is derived in the cited reference.

All methods so far involve solving implicit equations, hence depend on suitable initializations. This is
not true for the Elementary Percentile Method (EPM) introduced by Castillo and Hadi (1997) which
applies quantile-based estimators to produce

√
n-consistent estimators, and as special case gives

Pickands estimator (PE), Pickands (1975). Compared to the other methods, EPM estimators also
may be computed much faster.

The approach by Brazauskas & Serfling (2000) uses a different parametrization of the GPD, i.e., if ob-
servations Xi

i.i.d.∼ GPD(β, ξ) in our notation, they instead consider observations Yi = Xi + β/ξ and
parametrize their model by α = ξ−1 and σ = β/ξ. In their setting, L(log(Yi)) = L(log(β/ξ)+E/ξ),
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E ∼ Exp(1), so they can transform the problem to a location-scale problem for the exponential
distribution. In our setting though, their procedures are not directly applicable, as β/ξ is unknown.

For shape parameter ξ ≤ 0.5, second moments exist, and then moment-based methods such as the
Method of Moments and the Method of Probability Weighted Moments (MPWM), Hosking & Wallis
(1987) can be applied, and, for finite sample size, in the ideal model, behave quite competitive.

Juárez and Schucany (2004), Juárez (2003) apply a Minimum Density Power Divergence (distance)
Estimator (MDPDE). An additional tuning parameter allows for defining the distance between the
empirical and theoretical distributions one has to minimize in order to find the estimates.

We do not consider MPWM and MDPDE estimators in this paper, though.

None of the mentioned approaches gives a cure-all procedure: Depending on the loss function and
on how large the deviation from the ideal model may be, the ranking among the alternatives may
vary.

Estimators considered in this paper (for actual definitions see section 2):
• the Maximum Likelihood Estimator (MLE)
• the Skipped Maximum Likelihood Estimator (SMLE)
• the classical (first and second) moment-based estimator (MME)
• the Cramér-von-Mises Minimum Distance estimator (MDE)
• Pickands Estimator (PE) as a special case of quantile-based estimators
• variants of PE to achieve lower variance (PicM), resp. maximal breakdown point (among PE-type

estimators): (PE*)
• the Method-of-Median estimator of Peng and Welsch (2001) (MMed)
• an estimator based on median and median of absolute deviations (Mad), (MedMad)
• a variant of MedMad (kMedMad) based on a suitably asymmetric Mad to achieve a high break-

down point and, at the same time close-to-optimal MSE behavior on neighborhoods
• the optimally-bias-robust estimator minimizing the maximal bias (MBRE)
• the estimator minimizing the maximal MSE (OMSE)
All of these estimators are asymptotically linear, hence asymptotically normal.

We have selected the procedures for the following reasons: MLE, MBRE, OMSE are optimal in certain
settings, so serve as benchmarks. Pickands-type estimators, MMed, MedMad, and kMedMad are
candidates for (robust) initialization estimators. MME is an example for a procedure even less robust
than MLE, and SMLE, MDE have already been used in our application, hence are competitors.

We compare these estimators as to standard local and global robustness quantities as well as by
efficiencies in the ideal model and on suitable neighborhoods.

Structure of the paper In section 1.1, we outline the generalized Pareto distribution and, for the
deviations from this model, we define contamination neighborhoods, known as Gross Error Model.
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To cope with these model deviations, in section 1.2, we recall global (finite sample breakdown point)
and local (influence function) robustness criteria for estimators, together with efficiency measures
such as asymptotical bias, variance, and mean squared error (MSE). In this context, we introduce
the new concept of an expected finite sample breakdown point in Definition 1.6. Subsequently,
section 2 describes the properties of the above-mentioned estimators: We analytically calculate
the influence functions and asymptotic measures for MLE, SMLE, MME, PE, PE*, PicM, MedMad,
kMedMad, and MDE, and, numerically, for MMed, MBRE, and OMSE estimators.

As already noted, MLE, MME, MDE, MMed, and PE have already been studied and their influence
functions, asymptotic variances determined by other authors. We hence only cite the corresponding
expressions, correcting some errors in the references. In addition to the cited literature, we introduce
a new variant of Pickands estimator, PicM, which achieves a good compromise of variance and
robustness. Also we contribute the MedMad estimator and its variant kMedMad, both of which, to
our knowledge, are novel. Finally, in the context of Pareto distributions MBRE and OMSE have not
yet been compared to the cited estimators as to their asymptotic variances, and maximal MSEs.

The main contribution of this paper is a synopsis section 3 where in tables and graphics we sum-
marize our findings at a reference parameter setting. A simulation study in section 4 checks for the
validity of the theoretical concepts, so far all based on asymptotics, i.e., for sample size n tending
to infinity. In contrast to other approaches, for realistic comparisons, we allow for estimator-specific
contamination such that each estimator has to prove its usefulness in its individual worst contami-
nation situation. This is particularly important for estimators with redescending influence function,
where drastically large observations will not be the worst situation to produce bias. The conclusions
from our findings are summarized in section 5.

1.1 Model Setting

Generalized Pareto Distribution The three-parameter generalized Pareto distribution (GPD) is
given by its c.d.f. and density

Fθ(x) = 1−
(

1 + ξ
x− µ

β

)− 1
ξ

, fθ(x) =
1
β

(
1 + ξ

x− µ

β

)− 1
ξ
−1

,

x ≥ µ (ξ ≥ 0), µ < x ≤ µ− β

ξ
(ξ < 0) (1.1)

for parameters µ (location), β > 0 (scale) and ξ (shape). Special cases of GPDs are the uniform
(ξ = −1), the exponential (ξ = 0, µ = 0), and Pareto (ξ > 0, β = 1) distributions. According to our
application, we limit ourselves to the case ξ > 0 here. Note that for the quantile function of a GPD
the following relation holds:

f(F−1(α)) = β−1(1− α)1+ξ (1.2)

GPD is a good candidate for modeling the distributional tails from the threshold point µ on as mo-
tivated by the Pickands-Balkema-de Haan extreme value theorem, compare Balkema and de Haan
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(1974), Pickands (1975), which states that for distributions in the maximal attraction domain of the
Fréchet distribution with parameter ξ, the (suitably standardized and centered) exceedances over a
high threshold are asymptotically distributed according to a GPD with shape parameter ξ; we will
not use this argument in this paper, though.

Unfortunately, estimating the location parameter µ induces non-smoothness into the model: It can
be shown that the corresponding model including µ is not L2-differentiable (compare (van der
Vaart, 1998, last paragraph, p. 129) and Horbenko & Ruckdeschel (2010)) which can be under-
stood heuristically, as we do not see observations smaller than µ, and hence, similar to estimating
parameter θ in uniform(0, θ), the minimal observation (with non-CLT-asymptotics) will be sufficient
for estimating µ.

In applications, data for fitting the GPD is obtained in a two-step procedure: As the GPD is only
used to fit the tail of the data, in a first step, the threshold µ is determined (“estimated”)1. This is
by no means trivial: According to theory, the threshold point should be set high enough to fit the
tail of the distribution with GPD, but should also be low enough to leave us a sufficient amount of
data beyond that threshold for the estimation of the other parameters, i.e. shape ξ and scale β. For
given threshold µ then, in a second step, the reduced model (only in (ξ, β)) is fitted.
In practice the first step amounts to looking for “flat” regions in a corresponding threshold plot: a
plot of the function µ→ θ̂(µ) with θ̂(µ) being an estimator depending on the threshold µ (Baud et
al., 2002).

For this article, we limit ourselves to the second step, assuming the location parameter µ to be
known and equal to zero. For all graphics and numerical and simulational evaluations we use the
reference parameter values β = 1 and ξ = 0.7.

After this reduction, the model is smooth, i.e. L2-differentiable (compare (Witting, 1985, Satz 1.194),
(van der Vaart, 1998, Definition (5.38))), as the density fθ is differentiable in θ and the corresponding
Fisher information is finite and continuous in θ, with L2-derivative

Λθ(z) =
(

1
ξ2

log(1 + ξz)− ξ + 1
ξ

z

1 + ξz
;− 1

β
+
ξ + 1
β

z

1 + ξz

)τ
, z =

x− µ

β
(1.3)

For integrations it turns out useful to introduce

v−ξ = 1 + ξz (1.4)

and Λθ(z) =: Λ̃θ(v(z)) defined as

Λ̃θ(v) =
(
−1
ξ

log(v)− ξ + 1
ξ2

(1− vξ);− 1
β

+
ξ + 1
βξ

(1− vξ)
)τ

(1.5)

Up to transformation v 7→ 1 − v, this is just the quantile transformation, i.e., the distribution of
Λθ(

X−µ
β ) for X ∼ GPD is just the distribution of Λ̃θ(V ) for V ∼ unif(0, 1).

1This is, according to S. Resnick the “black art” of extreme value statistics.
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Using this quantile-type transformation, we easily obtain the Fisher information matrix Iθ ∈ R2×2

as

Iθ =
1

(2ξ + 1)(ξ + 1)

(
2 β−1

β−1 β−2(ξ + 1)

)
(1.6)

We note that I is positive definite for our parameter range, hence the model is (locally) identifiable.

The reduced model enjoys a certain invariance: with an included scale component, it remains in-
variant under scale transformations sβ(x) = βx of the observations. Using matrix

dβ = diag(1, β) (1.7)

this invariance is reflected by a corresponding notion of equivariance of estimators, i.e., an estimator
S for θ = (ξ, β) is called (scale)-equivariant if

S(βx1, . . . , βxn) = dβS(x1, . . . , xn) (1.8)

In terms of the L2 derivative, this invariance is reflected by

Λ(ξ,β)(z) = d−1
β Λ(ξ,1)(z) (1.9)

To preserve this invariance when determining the “length” of a parameter, Robust Statistics has
used norms for the parameter space based on the Fisher information or on the respective asymptotic
covariance matrix—see (Hampel et al., 1986, 4.2 Def.’s 3 and 4) giving so-called information—resp.
self-standardized influence functions. Instead we propose a simpler invariant norm, based on dβ:
For given parameter β, we use the weighted norm

nβ(x, y) = ‖d−1
β (x, y)‖ =

√
x2 + y2/β2 (1.10)

which also has the advantage that for large scale β the corresponding scale component of the
estimator does not obtain an overly high weight.

Remark 1.1. For the shape parameter there is no obvious such invariance, except for the quantile transformation, of course, i.e.,
the transformation

g(θ, θ′;x) = F−1
θ′ ◦ Fθ(x) =

ˆ
(1 + ξx/β)ξ′/ξ − 1

˜
β′/ξ′ (1.11)

transforming an Fθ-distributed observation X into an Fθ′ -distributed one. The only values of x which stay invariant under arbitrary
g(θ, θ′; · ) are {0,∞}, as in the pure scale case. However, with this group, we do not see any form of reasonable equivariance.

Gross Error Model Instead of working with ideal distributions, in Robust Statistics, for some
given size or radius ε > 0, one defines suitable distributional neighborhoods about this ideal model.
In this paper, we limit ourselves to the Gross Error Model, i.e.; as neighborhoods, we use the set of
all distributions F re representable as:

F re = (1− ε)F id + εF di (1.12)
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where F id is the underlying ideal distribution and F di some arbitrary, unknown, and uncontrollable
contaminating distribution. In the shrinking neighborhood approach as developed (a.o.) in Huber-
Carol (1970), Rieder (1978), Bickel (1981), and Rieder (1994), in order to balance bias and variance
(of different scaling otherwise) one lets the radius of these neighborhoods shrink with growing
sample size n, i.e.,

ε = rn = r/
√
n (1.13)

(and the contamination G may as well vary in n).

In reality one rarely knows ε or r. Objective criteria for the choice of this radius (fixed or shrinking)
for specifying a procedure in situations where one has no or only limited knowledge of the “true”
radius are given in the Minimax method of Rieder et al. (2008). For our numerical and simulational
evaluations, we use a starting radius r = 0.5.

Remark 1.2. Starting radius r = 0.5 actually almost is the minimax radius in the situation where we have no knowledge at all
about the radius, which for our reference parameter θ = (ξ = 0.7, β = 1) would be 0.486, leading to a maximin efficiency of 0.683,
i.e. using the corresponding radius minimax procedure, (with a clipping of b = 4.436) the performance of this procedure would never be
worse than 1.464 times the maximal asymptotic mean squared error asMSE (see below) of the optimal procedure knowing the radius.
The minimal efficiency of the OMSE to radius r = 0.5 is in fact only 0.678 (achieved when used for unknown radius r = 0), so very close
to optimal.

1.2 Robustness

The robustness concepts used in this paper may be distinguished into local (measuring the influence
of a single observation, for infinitesimally small deviations) and global ones (measuring the effect
of massive deviations). The most important local robustness concept is the influence function (IF),
while for the global concepts we recur to the breakdown point.

Influence Function Defining the estimator via a functional T evaluated at the empirical distribu-
tion, one can specify the infinitesimal influence of the individual observations on the estimator: The
IF is the functional derivative of the estimator with respect to the distribution. Historically, in Hampel
(1968) this is defined as the Gâteaux derivative in the direction of a Dirac measure δx (provided the
limit exists): For Fε = (1 − ε)F + εδx and F the underlying distribution, the influence function (IF)
of the estimator T at x then is

IF(x;T, F ) = lim
ε→0

T (Fε)− T (F )
ε

(1.14)

This definition however is too weak to support the chain rule which ought to be a minimal require-
ment for many applications. Thus, in fact stronger concepts like Hadamard or Bouligand derivatives
are needed (for the use of the latter in this context, see, e.g. Christmann and Van Messem (2008)),
and fortunately corresponding results can be read off from Fernholz (1979), (Rieder, 1994, chap. 1)
for our estimators.

Using the (finite-dimensional) Delta method, in our context, everything can be reduced to the ques-
tion of differentiability of the likelihood (MLE, SMLE), of quantiles (PE, PE*, PicM, MMed, MedMad,
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kMedMad), and of the cumulative distribution function (MDE), all settled in the cited references,
while the results on one-step estimators of (Rieder, 1994, Chap. 6) suffice to show that MBRE and
OMSE do have an influence curve.

According to Kohl et al. (2010), we would like to point out though, that the interpretation as the
infinitesimal influence of a single observation for the estimator can also be obtained in a concep-
tionally simpler way, bypassing derivative notions: Assuming an L2-differentiable model, one only
checks that the estimator Sn has an expansion in the observations Xi as

Sn = θ′ +
1
n

n∑
i=1

ψθ(Xi)− Eθ′ [ψθ] +Rn,
√
n |Rn|

n→∞−→ 0 Pnθ′-stoch. (1.15)

where the influence function IFθ of Sn is just ψθ − Eθ[ψθ] for some function ψθ ∈ L2(Pθ), and
(1.15) holds for all θ′ s.t. |θ′− θ| = O(n−1/2). An estimator with (1.15) is called asymptotically linear
or ALE.

We already note that all estimators considered in this paper are ALEs.

In Rieder (1994), contrary to other references, one imposes two side conditions for an IF ψ: one
works in the setup of L2-differentiable models and requires that Eψ = 0 and EψΛτ = Ik; this may
be motivated by the following lemma in the spirit of (Rieder, 1994, Lemma 4.2.18):

Lemma 1.3. For Θ ⊂ Rk an open parameter domain, let P = {Pθ, θ ∈ Θ} a parametric model.
Assume P is L2-differentiable in θ with L2-derivative Λθ, and assume that

sup
θ′

Eθ′ |ψθ|2 <∞ (1.16)

for all θ′ s.t. |θ′ − θ| = O(n−1/2). Then (1.15) entails

Eθ ψθΛτθ = Ik (1.17)

On the other hand, (1.15) for θ′ = θ and (1.17) imply (1.15) for all θ′ s.t. |θ′ − θ| = O(n−1/2).

It is thus no restriction to require for any influence function ψθ arising in (1.15) that

Eθ ψθ = 0, Eθ ψθΛτθ = Ik (1.18)

In the shrinking neighborhood approach, except for well-definedness and its breakdown point, all
asymptotic properties of an ALE (if well initialized) may be read off from its IF:
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Asymptotic Variance The asymptotic (co)variance matrix ASV of an ALE Sn may be determined
as

asVar(Sn) =
∫
ψθψ

τ
θ dFθ (1.19)

(compare (Rieder, 1994, Rem. 4.2.17(b))). Remarkably, for suitably constructed ALEs, this ASV stays
constant on the shrinking neighborhood (compare (Rieder, 1994, chap. 6)).

Asymptotic Bias The gross error sensitivity GES (compare (Hampel et al., 1986, Chapter 2.1c)) is
a measure for the maximal asymptotic bias of the estimator under infinitesimal contamination:

GES := sup
x
|ψθ(x)| (1.20)

It may be shown (cf. (Rieder, 1994, Lemma 5.3.3)), that in the shrinking neighborhood setup, the√
n-standardized, maximal asymptotic bias of an ALE Sn in the gross error model (1.12), (1.13) is

just
asBias(Sn) = rGES = r sup

x
|ψθ(x)| (1.21)

Asymptotic MSE As a consequence of the preceding two paragraphs, the (maximal, standard-
ized) asymptotic mean squared error (MSE) attainable in the gross error model (1.12), (1.13) with
starting radius r can be calculated as

asMSE(Sn) = r2 GES2 + tr asVar(Sn) (1.22)

Suitable constructions (compare (Rieder, 1994, chap. 6)) and/or uniform integrability considerations
for the starting estimator (compare Ruckdeschel (2010a)) allow to interchange quantors such that
asMSE also is the standardized asymptotic maximal MSE.

Remark 1.4. Using these minimax criteria asMSE, asBias defined on whole neighborhoods for defining optimally robust estima-
tors (OMSE, MBRE), we deviate from wide-spread use in Robust Statistics to use estimators with high breakdown point (see below) which
are then in a reweighting step tuned to achieve a high efficiency (say 95%) in the ideal model: We do so, simply because you cannot
quantify the protection against bias you may achieve for this “insurance premium” (i.e.; the 5% efficiency loss) as this protection will vary
from model to model, and in our non-invariant case even from parameter value to parameter value. This is not to say that we do not
care about efficiency in the ideal model, and OMSE will prove best among the considered robust estimators in this criterion as well, but
our estimators are not tuned for this, it is achieved only as a welcome side-effect. For the record: The OBRE tuned for 95% efficiency in
the ideal model at ξ = 0.7 may drop down to 14% efficiency for sufficiently large radius, while OMSE never drops below 68% no matter
what radius.

Finite Sample Breakdown Point The asymptotic (functional) breakdown point (ABP) introduced
in Hampel (1968) gives the smallest radius ε at which the maximal bias of the functional on a
neighborhood of this radius produces a singularity. In this paper, though, we will focus on its finite
sample counterpart, the finite sample breakdown point FSBP, Donoho and Huber (1983):

11
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Definition 1.5 ((Hampel et al., 1986, p.98)). The finite sample breakdown point (FSBP) ε∗n of the
estimator Tn at the sample (x1, ..., xn) is given by

ε∗n(Tn;x1, ..., xn) :=
1
n

max{m; max
i1,...,im

sup
y1,...,ym

|Tn(z1, ..., zn)| <∞}, (1.23)

where the sample (z1, ..., zn) is obtained from the sample (x1, ..., xn) by replacing the m data points
xi1 , ..., xim by arbitrary values y1, ..., ym.

As argued by Davies and Gather (2005), a certain equivariance of the considered estimator under a
suitable group of transformations is required to obtain meaningful upper bounds for the breakdown
point. As indicated, in the GPD model, we canonically only have scale invariance, hence we should
require our estimators to be scale equivariant, which is in fact true for all considered estimators in
this paper, at least asymptotically. We do not use the more comprehensive (and exhaustive) group
G of transformations g(θ′, θ;x) from (1.11), under which we also cover shape parameter ξ, as this
would not lead to a meaningful notion of equivariance. Nevertheless we note that (Davies and
Gather, 2005, Thm. 3.2) implies that with n0 = #{xi = 0} in the original sample,

ε∗n ≤ bn− n0 + 1
2

c/n (1.24)

among all equivariant estimators, where equivariance may both be scale equivariance, or equivari-
ance under the group induced by G.

For deciding upon which procedure to take before having made observations, in particular for
ranking procedures in a simulation study, the FSBP from Definition 1.5 has some drawbacks: It is
deliberately probability-free and based on an actual sample (x1, ..., xn), which we assume from the
ideal situation for the moment. Hence its value depends on the configuration of this sample. This is
desirable when checking safety of a procedure at an actual data set, but also entails that for some
of the considered estimators in this paper, a generally valid value for FSBP does not exist, and the
only possible lower bound will be 1/n. To get rid of the dependence on possibly highly improbable
sample configurations, but still preserving the aspect of a finite sample, we propose an expected
FSBP:

Definition 1.6 (EFSBP). For an estimator Tn with FSBP ε∗n = ε∗n(T ;X1, ..., Xn), which is assumed
measurable, we define the expected FSBP or EFSBP as

ε̄∗n(Tn) := E ε∗n(Tn;X1, ..., Xn) (1.25)

where expectation is evaluated in the ideal model.

At some places, if existent, we also consider the limit

ε̄∗(T ) := lim
n→∞

ε̄∗n(Tn) (1.26)

and which, for brevity, we also call EFSBP where clear from the context.

12
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Weighted by their (ideal) occurrence probability, by this definition, improbable sample configura-
tions of the ideal sample—before adding arbtirary contamination by replacement—are smoothed
out; we still cannot exclude these configurations, but, usually, by corresponding Chebyshev-type
inequalities, for growing sample size n, these will occur with decreasing probability, and ε∗n will
concentrate about ε̄∗. Hence, in practice, without extra knowledge, the user can rely on being
protected against up to ε̄∗n(T )n outliers.
By averaging, EFSBP is closer again to the functional breakdown point of Hampel (1968), while still
keeping the finite sample aspect of FSBP. By dominated convergence though, the limit of EFSBP will
coincide with the ABP whenever the FSBP converges to the ABP.

Remark 1.7. Small values of ε∗n for particular samples are not particular for GPD: In the one-dimensional normal scale model, we
can already have FSBP of 0 for the median of absolute deviations Mad, if all original xi are 0. This event (and similarly extraneous sample
configurations) however occurs with probability 0, while in our case these samples can occur with small but positive ideal probability.

In this paper, EFSBP turns out useful in the context of the Pickands and MedMad-type estimators
(see subsections 2.5 and 2.7 for details): In both situations, breakdown can occur if we move all
observations lying in the interval În = (a1q̂1,n, a2q̂2,n) for 0 6= ai ∈ R and q̂i,n suitable empirical
quantiles outside În. Now the number N̂n of observations from the ideal sample lying in În is
random, hence the FSBP = N̂n/n varies according this number, and we even have a positive,
although very small probability p0 := PX(N̂n = 0) > 0 for breakdown already in the ideal model,
i.e.; ε∗n = 0, where PX the ideal distribution.

To get hand on actual values of EFSBP and p0, we have the following

Proposition 1.8. Consider N̂0
n, N̂ ′

n, N̂ ′′
n as defined in (2.47), (2.81), (2.82) and write F̄ for 1 − F .

Then

(a) setting i1 = bn/2c, i2 = d3n/4e, and abbreviating 2F−1(u) by q2, we obtain for l ∈ {0, . . . , i2 −
i1 − 1}

P (N̂0
n = l) = n

∫ 1

0

(
n−1

i1−1,i2−i1−l−1

)
ui1−1

(
F (q2)− u

)i2−i1−l−1
F̄ (q2)n−i2+l+1 du (1.27)

(b) using the upper median and abbreviating (k+1)F−1(u) by qk, we obtain for l ∈ {0, . . . , n/2−1}

P (N̂ ′
n = l) = n

∫ 1

0

(
n−1
n/2,l

)
un/2

(
F (qk)− u

)l
F̄ (qk)n/2−1−l du (1.28)

(c) writing q+ for (1 + kq̌k)F−1(u) and q− for (1− q̌k)F−1(u), we obtain for l ∈ {0, . . . , n/2− 1}

P (N̂ ′′
n = n/2− l) = n

l∑
l2=0

(
n−1

n/2−l2−1,l2,l−l2

) ∫ 1

0
F (q−)n/2−l2−1

(
u− F (q−)

)l2 ×
×
(
F (q+)− u

)l−l2(1− F (q+)
)n/2+l2−l du (1.29)

13
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By means of this proposition, in Table 1, we determine ε̄∗n for PE, PE*, MedMad, and kMedMad
(k = 10); apparently it is quickly converging in n, so ε̄∗ gives indeed a useful bound on average.

estimator n = 40 n = 100 n = 1000 n = ∞
PE 9.48% 7.61% 6.53% 6.42%
PE* 8.98% 6.85% 7.07% 7.02%

MedMad 20.41% 19.32% 18.66% 18.58%
kMedMad 29.16% 30.28% 30.94% 31.02%

Table 1ε̄∗n for PE, PE*, MedMad, and kMedMad (k = 10)

Again by Proposition 1.8, in Table 2, we determine p0 for same settings.

estimator n = 40 n = 100 n = 1000

PE 7.0e−02 1.3e−03 1.6e−029
PE* 5.4e−02 6.9e−04 2.6e−032

MedMad 2.7e−04 1.2e−09 5.1e−090
kMedMad 3.3e−06 6.3e−14 2.7e−126

Table 2p0 for PE, PE*, MedMad, and kMedMad (k = 10)

But, by corresponding CLT arguments, the empirical quantiles coincide with the population ones qi
up to O(n−1/2+δ/2)—except for an event with probability O(exp(−2nδ)) (Hoeffding); hence setting
I = (a1q1, a2q2), EFSBP in this context will just be PX(I) + O(n−1/2+δ/2), and in the limit PX(I).

To illustrate the quantity of the O(n−1/2+δ/2)-term, using the actual distribution of N̂n given in
Proposition 1.8 in Table 3 we determine the p1-quantile of ε∗n for p1 = 0.9510−4

, i.e.; the minimal
number q1, such that with probability 0.95 we will not see realizations with ε∗n < q1 in 10000 runs
of sample size n; note that the minimal number of ε∗n is 1/n which explains the decrease in n for PE
and PE* between n = 40 and n = 100.

estimator n = 40 n = 100 n = 1000 n = ∞
PE 2.50% 1.00% 1.30% 6.42%

PE* 2.50% 1.00% 2.60% 7.02%
MedMad 2.50% 5.00% 13.60% 18.58%
kMedMad 5.00% 15.00% 26.20% 31.02%

Table 3q1 for PE, PE*, MedMad, and kMedMad (k = 10)

1.3 Computational and Numerical Aspects

So far, we have just set the statistical framework; for an estimator to be useful in practice though,
computational and numerical aspects deserve attention. In this respect, our estimator can be clas-
sified into four classes:
The first group comprises estimators which have closed-form representations and hence can be
computed non-iteratively (after possibly sorting the observations, which is well known to be feasi-
ble in O(n log(n)) in time). In this paper this group covers PE, PE*, PicM, MME. As to computation

14
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time, their evaluation is by magnitudes faster than the other groups, which makes them attractive
for batch uses.

MLE, SMLE, and MDE are M-estimators, i.e.; obtained by optimizing a corresponding criterion func-
tion, which are solved iteratively by using R function optim and hence need a suitable initialization
to find the “right” local optimum.

MMed, MedMad and kMedMad are zeros of corresponding (systems of) equations, hence Z-estimators.
In fact we may reduce the systems to two (computationally independent) one-dimensional equa-
tions (one for determining the population Λ-Median respectively the population (k)Mad, one for
solving for parameter ξ), hence in each case may use R function uniroot where the search interval
for the (k)MedMad in case of the GPD is canonically [0,m], m the population median.

Finally, MBRE and OMSE are one-step constructions, hence depend on a suitably chosen starting
estimator. Once this starting estimate is found and the respective influence function at the starting
estimate determined, computation of MBRE and OMSE is extremely fast, just involving a mean. The
computation of the influence function at the starting estimate is not trivial, however, and to speed
this up, on page 35, we present Algorithm 2.7.

As to computations, we make use of R, R Development Core Team (2009), and addon-packages
ROptEst, Kohl and Ruckdeschel (2009), POT, Ribatet (2009), available on cran.r-project.org.

2 Estimators

In this section, for the listed estimators, we consider influence function and breakdown point and
compare them as to asVar, asBias and asMSE.

2.1 Maximum Likelihood Estimator

The maximum likelihood estimator is the maximizer (in θ) of the (product-log-) likelihood ln(θ;X1, . . . , Xn)
of our model

ln(θ;X1, . . . , Xn) =
n∑
i=1

lθ(Xi), lθ(x) = log fθ(x) (2.1)

For the GPD, this maximizer has no closed-form solutions and has to be determined numerically,
using a suitable initialization; in our simulation study, we use the Hybr estimator with k = 10 as
defined in subsection 2.7.2.
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IF We have already seen that our model is continuously L2-differentiable with L2 derivative Λθ
from (1.3) and positive definite Fisher information Iθ from (1.6). The likelihood in addition is even
pointwise smooth, so that for any allowed θ and for any θ1, θ2 in a neighborhood of θ

|lθ1(x)− lθ2(x)| ≤ Λθ(x)|θ1 − θ2| (2.2)

Thus by (van der Vaart, 1998, Thm. 5.39) (a suitably initialized version of) the MLE is an ALE with
influence function

IFθ(z;MLE, F ) = I−1
θ Λθ(z) (2.3)

In the sequel, we call any estimator attaining this IF MLE; in particular, such a variant θ′MLE;n may
be achieved with a one-step construction

θ′MLE;n = θ(0)
n +

1
n

n∑
i=1

IF
θ
(0)
n

(z(Xi);MLE, F ) (2.4)

for a starting estimator θ(0)
n which is at least n1/4+0 consistent, but may be chosen such that it is

uniformly integrable in n; for details, c.f. Ruckdeschel (2010a). In particular, MLE attains the smallest
asymptotic variance among all ALEs according to the Asymptotic Minimax Theorem, (Rieder, 1994,
Thm. 3.3.8). Using the quantile-type representation (1.5), we obtain

ψ̃(v) = I−1
θ Λ̃θ(v) =

ξ + 1
ξ2

( −(ξ2 + ξ) log(v) + (2ξ2 + 3ξ + 1)vξ − (ξ2 + 3ξ + 1)
ξ log(v)− (2ξ2 + 3ξ + 1)vξ + (3ξ + 1)

)
(2.5)

As to invariance/equivariance, we note that

IF(ξ,β)(x;MLE, F ) = dβ IF(ξ,1)(x/β;MLE, F ) (2.6)

This invariance translates into at least asymptotic equivariance of the one-step construction (2.4).

ASV The asymptotic covariance matrix of the maximum likelihood estimators is equal to the in-
verse of the Fisher information function:

Iθ−1 = (1 + ξ)
(
ξ + 1 −β
−β 2β2

)
(2.7)

ASB As (I−1
θ )1,1, (I−1

θ )2,1 6= 0, both components of the influence curve are unbounded (although
only growing in absolute value at rate log(x)). Hence, for any neighborhood of positive radius, we
can induce arbitrarily large bias, so MLE is not robust.

FSBP By standard arguments, MLE is shown to have a FSBP of 1/n, i.e.; arbitrarily close to 0 for
large n: By replacing just one observation by some sufficiently large value, the log-term present in
the shape component of the sum of the scores function Λξ evaluated at the contaminated sample
gets so large that only a huge value of ξ can pull back the equation to zero. One has to admit,
though, that one only can approximate this breakdown for finite samples and finite contamination
with really large contaminations ∼ 1010.
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2.2 Skipped Maximum Likelihood Estimators

Skipped Maximum Likelihood Estimators (SMLE) as proposed in Cope et al. (2009) are ordinary
MLE, skipping the largest k observations. This has to be distinguished from the better investi-
gated trimmed/weighted MLE Field and Smith (1994), Hadi and Luceño (1997), Vandev and Neykov
(1998), Müller and Neykov (2001) where trimming/weighting is done according to the size (in ab-
solute value) of the log-likelihood.
In general these concepts fall apart as they refer to different orderings; in our situation though they
coincide due to the monotonicity of the likelihood in the observations.

As this skipping is not done symmetrically, it induces a non-vanishing bias Bn = Bn,θ already present
in the ideal model. To cope with such biases three strategies can be used—the first two already
considered in detail in (Dupuis and Morgenthaler, 2002, Section 2.2): (1) correcting the criterion
function for the skipped summands, (2) correcting the estimator for the (deterministic) bias Bn, and
(3) not correcting for the bias at all, but, conformal to our shrinking neighborhood setting, to let the
skipping proportion α shrink at the same rate. Strategy (3) essentially models the common practice
where α is often chosen small, and the bias correction is omitted. We only pursue strategy (3) in
the sequel, and set α = αn = r′/

√
n for some r′ larger than the actual r. This way indeed bias

becomes asymptotically negligible:

Lemma 2.1. Consider SMLE with skipping rate αn. Then, in our ideal GPD model, the bias Bn of
SMLE is bounded in n from above by c̄ lim supαn log(n) for some constant c̄ <∞.
Whenever, for some β ∈ (0, 1], lim infn αnnβ > 0, then also lim infn nβBn ≥ c lim infn nβαn log(n)
for some c > 0. If 0 < α = lim infn αn < α0 for α0 = exp(−3 − 1/ξ), then lim infnBn ≥
c′α(− log(α)) for some c′ > 0.

In view of Ruckdeschel (2010a), for αn = r′/
√
n, this makes for an admissible starting estimator.

Yet, for higher FSBPs, we need to correct for the then considerable bias. Obviously this can cope
with αnn outliers.

IF As we have seen, by skipping, SMLE in fact does not estimate θ but d(θ) = θ + Bθ, Bθ the
bias already present in the ideal model. So to determine the IF for this estimator, we only compute
the influence function for the functional estimating d(θ). To this end, we may use the underlying
order statistics of the Xi and obtain the IF of SMLE just as the IF of the L-estimate to the following
functional:

T (F ) =
1

1− α

∫ 1−α

0
Λθ(F−1(s))ds (2.8)
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The influence function, referring to (Huber, 1981, Chapter 3.3), is analogous to the influence func-
tion of the trimmed mean:

IFθ(z; SMLE, F ) = Iθ−1

{ 1
1−α [Λθ(z)−W (F )], 0 ≤ x ≤ F−1(1− α)

1
1−α [Λθ(F−1(1− α))−W (F )], x > F−1(1− α)

(2.9)

W (F ) = (1− α) SMLE(F ) + αΛθ(F−1(1− α)) (2.10)

It enjoys the same equivariance as the MLE, i.e.

IF(ξ,β)(x; SMLE, F ) = dβ IF(ξ,1)(x/β; SMLE, F ) (2.11)

ASV Analytic terms of the asymptotic covariance of the SMLE are not available; instead we only
include numerical values in the tables in section 3.

ASB As a consequence of Lemma 2.1, for a shrinking rate αn = r′/
√
n, asymptotic bias of SMLE

is finite, but standardized by
√
n is of order log(n), hence asymptotically infinite. As follows from

boundedness of the IF (locally uniform in θ), the extra bias induced by contamination is of unstan-
dardized order O(n−1/2), hence eventually dominated by Bn. Again we skip analytic terms and only
include numerical values in the tables in the end.

FSBP In our shrinking setting the proportion of the skipped data tends to 0, hence it is this propor-
tion which delivers the active bound for the breakdown point: Just replace dαnne+ 1 observations
by something very large and argue as for the MLE to show that FSBP=αn.

2.3 Classical (first and second) moment-based estimator

Due to the fat tails of the GPD for sufficiently large scale parameter ξ, the rth moments of the GPD
only exist for ξ < 1/r. Hence moment-based estimators only have a restricted application range.
This is especially true in case of operational risk, where infinite mean models usually occur (ξ > 1)
Neslehova et al. (2006).

In case of the GPD a classical moment-based estimator MME may be computed from empirical first
and second moment. The first two theoretical moments of GPD are respectively:

m1 =
β

1− ξ
, m2 =

2β2

(1− ξ)(1− 2ξ)
(2.12)

Hence moment-based estimators for ξ < 0.5 (finite second moment) can explicitely be defined as

ξ̂ =
1
2

(
m2 − 2m1

2

m2 −m1
2

)
, β̂ =

1
2

(
m1m2

m2 −m1
2

)
, (2.13)
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Let D be a Jacobian matrix with elements d1,1, d1,2, d2,1, and d2,2, which we obtain as

d11 =
dξ̂

dm1
=

2(ξ − 1)2(2ξ − 1)
β

, d12 =
dξ̂

dm2
=

(2ξ − 1)2(ξ − 1)2

2β2
, (2.14)

d21 =
dβ̂

dm1
= (4ξ − 3)(ξ − 1), d22 =

dβ̂

dm2
=

(2ξ − 1)2(ξ − 1)
2β

. (2.15)

IF The influence functions of the moments are simply

IF(x;m1, F ) = x−m1, IF(x;m2, F ) = x2 −m2 (2.16)

By the delta method, hence the influence function of this moment-based estimator is

IF(x;MME, F ) = D
(
IF(x;m1, F ), IF(x;m2, F )

)τ (2.17)

It enjoys the same equivariance as the MLE, i.e.

IF(ξ,β)(x;MME, F ) = dβ IF(ξ,1)(x/β;MME, F ) (2.18)

ASB Both coordinates of the influence function of MME are parabolas in x, hence unbounded, so
the asymptotic bias is infinite.

ASV Asymptotic normality requires ξ < 0.25 (finite fourth moment). The asymptotic variance of
the moment-based estimators then is V = DΣDT where Σ is a covariance matrix of m1 and m2

with elements

σ11 =
β2

(1− ξ)2(1− 2ξ)
, σ12 =

4β3

(1− ξ)2(1− 2ξ)(1− 3ξ)
,

σ22 =
4β4(5− 11ξ)

(1− ξ)2(1− 2ξ)2(1− 3ξ)(1− 4ξ)
(2.19)

Combining these, we obtain:

asVar(MME) =
(1− ξ)2

(1− 4 ξ) (1− 3 ξ)

(
V1,1, V1,2

V1,2, V2,2

)
(2.20)

for

V1,1 = (1− 2 ξ)(1− ξ + 1 + 6 ξ2), V1,2 = −β (1− 4 ξ + 12 ξ2),

V2,2 = 2
β2(1− 7 ξ + 18 ξ2 − 12 ξ3)

1− 2 ξ
(2.21)
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FSBP Letting one replaced observation x0 tend to ∞, for the empirical moments m̂1 and m̂2 we
get m̂1/x0 → 1, m̂2/x

2
0 → 1, hence, as the corresponding denominator by Cauchy-Schwartz never

becomes negative, ξ̂ → −∞, which shows that the FSBP of MME is 1/n.

2.4 Cramér-von-Mises Minimum Distance Estimators

General minimum distance estimators are defined as minimizers of a suitable distance between the
theoretical F and empirical distribution F̂n. Optimization of this distance in general has to be done
numerically and hence, as for MLE and SMLE, depends on a suitable initialization. We use Cramér-
von-Mises distance defined for cumulative distribution functions (c.d.f.’s) F , G and some σ-finite
measure ν on Bk as

dCvM(F,G)2 =
∫

(F (x)−G(x))2 ν(dx) (2.22)

i.e., by MDE we denote
MDE = argmin

θ
dCvM(F̂n, Fθ) (2.23)

In this paper, we use ν = Pθ; another setting common in the literature uses the empirical, ν = P̂n.
As initialization we again use Hybr from subsection 2.7.2. MDE is known to have good global
robustness properties: it is asymptotically linear ((Rieder, 1994, Remark 6.3.9(a))) with bounded
IF—bounded by Eθ |J −1

θ ∆θ|2 ((Rieder, 1994, 4.2 eq. (55)))—and, according to Donoho and Liu
(1988a), upto a factor 2 achieves the smallest sensitivity to contamination among Fisher-consistent2

estimators.

Remark 2.2. Another possible distance with the same property would be Kolmogorov distance dκ(F,G) = supx |F (x)−G(x)|.
As shown in Donoho and Liu (1988b), however, the corresponding minimum distance estimator has a non-stable variance on arbitrarily
small neighborhoods; in addition, it is not asymptotically linear; hence, in this paper, we have not considered it more closely.

IF For the influence function of MDE, we follow (Rieder, 1994, Example 4.2.15, Theorem 6.3.8)
and obtain

IF(x;MDE, F ) = J −1
θ

(
−
∫ x

0
∆θ(y)F (dy) +

∫ ∞

0
(1− F (y))∆θ(y)F (dy)

)
=: Jθ−1(ϕ̃ξ(x), ϕ̃β(x)) (2.24)

where ∆θ is CvM derivative and Jθ is the CvM Fisher information as defined, e.g. in (Rieder, 1994,
Definition 2.3.11)): The CvM derivative for GPD is obtained as derivative of the c.d.f. w.r.t. the
parameters: ∆θ = (∆ξ,∆β)T with

∆ξ(z) = − 1
ξ2

(1 + ξz)−
1
ξ log (1 + ξz) +

z

ξ
(1 + ξz)−

1
ξ
−1 (2.25)

∆β(z) = − z
β

(1 + ξz)−
1
ξ
−1 (2.26)

2Recall that an estimator T is Fisher-consistent if T (Fθ) = θ for all parameter values θ; Fisher-consistency of CvM-MDE in turn is implied by local identifiability (i.e.; regular Fisher
information) and L2-differentiability of the model (compare (Rieder, 1994, Lem. 6.3.3))
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and the CvM Fisher information is obtained as Jθ =
∫

∆θ∆T
θ dF , the inverse of which in case of the

GPD model is:

Jθ−1 = 3(ξ + 3)2
(

18(ξ+3)
(2ξ+9) −3β
−3β 2β2

)
(2.27)

Hence, using again v−ξ(z) = 1 + ξz as in (1.5),

ϕ̃ξ(v(z)) =
19 + 5ξ

36(3 + ξ)(2 + ξ)
+

1
ξ
v2 log(v) +

2− ξ

4ξ2
v2 − 1

ξ2(2 + ξ)
v2+ξ (2.28)

ϕ̃β(v(z)) =
5 + ξ

6(3 + ξ)(2 + ξ)β
− 1

2ξβ
v2 +

1
ξβ(2 + ξ)

v2+ξ (2.29)

Apparently the same invariance/equivariance as for MLE, SMLE, and MME is present here as well.

Remark 2.3. The fact that MDE is asymptotically linear with the IF just given allows for an alternative to the numerical minimization
of the distance: As indicated in case of the MLE in (2.1), we could instead use a corresponding one-step construction built up on a suitable
starting estimator. Asymptotically both variants will be indistinguishable.

ASV The asymptotic covariance of the CvM minimum distance estimators can be found analyti-
cally or numerically. Analytic terms are rational functions in ξ and β; for the interested reader we
have MAPLE scripts to determine it. The actual analytic terms are as follows3:

asVar(MDE) =
(3 + ξ)2

125 (5 + 2 ξ) (5 + ξ)2

(
V1,1, V1,2

V1,2, V2,2

)
(2.30)

for

V1,1 = 81
(
16 ξ5 + 272 ξ4 + 1694 ξ3 + 4853 ξ2 + 7276 ξ + 6245

)
(2 ξ + 9)−2, (2.31)

V1,2 = − 9β
(
4 ξ4 + 86 ξ3 + 648 ξ2 + 2623 ξ + 4535

)
(2 ξ + 9)−1, (2.32)

V2,2 = β2
(
26 ξ3 + 601 ξ2 + 3154 ξ + 5255

)
(2.33)

ASB The IF of the CvM MDE is known to be bounded Rieder (1994), so ASB is finite. For our
reference parameter value, we have determined it numerically in Table 6.

FSBP Due to the lack of invariance in the GP situation, (Donoho and Liu, 1988a, Propositions 4.1
and 6.4) only provide bounds for the FSBP, telling us that its FSBP must be no smaller than 1/2 the
FSBP of the (FSBP)-optimal procedure.

3The expressions given in Linde (2007) obviously contain an error in the first paragraph of page 150: only involving linear and square terms of expressions with exponent −2/ξ,
expressions with an exponent of−3/ξ cannot arise; this error then is propagated until the final expressions of asVar in the cited reference.
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As MDE is a minimum of the smooth CvM distance, it has to fulfill the first order condition for the
corresponding M-equation, i.e., for Vi = (1 + ξ

βXi)−1/ξ,∑
i

ξϕ̃ξ(Vi; ξ̂) = 0,
∑
i

βϕ̃β(Vi; ξ̂) = 0 (2.34)

where we multiply the equations by ξ and β respectively, to avoid singularities in ξ = 0, β = 0. Now
by placing m observations on the respective suprema/infima of the coordinates of ϕ̃, we see that
we can no longer pull back the sum to 0 (not even if all remaining ideal observations were placed
at the respective infimum/supremum), once m supv supξ ϕ� > −(n − m) infv infξ ϕ�, respectively
m infv infξ ϕ� < −(n−m) supv supξ ϕ�, so that

ε∗n ≤ min
{ − infv infξ ϕ�

supv supξ ϕ� − infv infξ ϕ�

,
supv supξ ϕ�

supv supξ ϕ� − infv infξ ϕ�

, � = ξ, β
}

(2.35)

Except for the optimization in ξ, this nothing but the formula given in (Huber, 1981, Chap. 3,
eqs. (2.39) and (2.40)), although, to make the inequality in (2.35) an equality, we would need to
show that we cannot produce a breakdown with less than this bound, which we do not see how
to. Evaluating bound (2.35) numerically, this gives a value of 4/9 .= 36.37%, which is achieved for
v = 0 (and ξ → 0) or, equivalently, letting the m replacing observations tend to ∞.

To see how realistic this value is, we determine the FSBP empirically by simulations: On each of
M = 100 samples of size n = 1000 observations from a GPD with ξ = 0.7, β = 1, we have replaced
m observations, for m = 1, . . . , 400 by 1010 and subsequently evaluated MDE. In Figure 1, we
produce an empirical max-bias-curve, plottingm/1000 against the corresponding empirical bias. We
see that there is an extremal steep increase at about 0.354, so we conjecture that (E)FSBP should be
approximately equal to this value; however, we should note that MDE needs an initialization, which,
too, must not be broken down, and that, so far, we have not found any possible initialization with
(E)FSBP larger than 0.346.

2.5 Pickands Estimator and PE-type Estimators

Estimators based on the empirical quantiles of GPD are described in the Elementary Percentile
Method (EPM) by Castillo and Hadi (1997). Pickands estimator (PE), a special case of EPM, is based
on the empirical 50% and 75% quantiles M2 and M4 respectively, and has first been proposed by
Pickands (1975). Pickands estimators for ξ and β is defined as

ξ̂ =
1

log(2)
log

M4 −M2

M2
, β̂ = ξ̂

M2
2

M4 − 2M2
(2.36)

Looking more closely at the construction of PE, we note that this technique is not limited to 50% and
75% quantiles. More specifically, let a > 1 and consider the emprical αi-quantiles for α1 = 1− 1/a
and α2 = 1 − 1/a2 denoted for the ease of comparison with the original PE by M2(a), M4(a),
respectively. Then PE is obtained for a = 2, and as theoretical quantiles we obtain M \

2(a) =
β
ξ (a

ξ − 1), M \
4(a) = β

ξ (a
2ξ − 1), and the (generalized) PE denoted by PE(a) for ξ and β is

ξ̂ =
1

log a
log

M4(a)−M2(a)
M2(a)

, β̂ = ξ̂
M2(a)

2

M4(a)− 2M2(a)
(2.37)
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Figure 1Empirical Bias for FSBP of MDE CvM

Apparently for any a > 1, PE(a) enjoys the corresponding equivariance as MLE, SMLE, MME, and
MDE.

IF The influence function of linear combinations TL of the quantile functionals F−1(αi) = Ti(F )
for probabilities αi and weights hi, i = 1, ..., k may be read off from (Rieder, 1994, Chapter 1.5)
and gives

IF(x;TL, F ) =
k∑
i=1

hi
αi − I(x ≤ F−1(αi))

f(F−1(αi))
(2.38)

Using the ∆-method, the influence functions of PE(a) hence is

IFξ(x; PE(a), F ) =
2∑
i=1

hξ,i(a)
αi(a)− I(x ≤M2i(a))

f(M2i(a))
, (2.39)

IFβ(x; PE(a), F ) =
2∑
i=1

hβ,i(a)
αi(a)− I(x ≤M2i(a))

f(M2i(a))
(2.40)

with weights

hξ,1(a) = − 1
log(a)

M4

M2(M4 −M2)
, hξ,2(a) =

1
log(a)

1
M4 −M2

(2.41)

hβ,1(a) = hξ,1(a)
(M2)2

M4 − 2M2
+

1
log(a)

2M2(M4 −M2)
(M4 − 2M2)2

log
M4 −M2

M2
(2.42)

hβ,2(a) = hξ,2(a)
(M2)2

M4 − 2M2
− 1

log(a)
(M2)2

(M4 − 2M2)2
log

M4 −M2

M2
(2.43)
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where M2i = M2i(a), i = 1, 2. Apparently we have again equivariance,

IF(ξ,β)(x; PE(a), F ) = dβ IF(ξ,1)(x/β; PE(a), F ) (2.44)

ASV Abbreviating αi(a) by αi and 1− αi by ᾱi, the asymptotic covariance for PE(a) is

asVar(PE(a)) = D(a)TΣ(a)D(a), (2.45)

Σ(a) = β2

(
α1ᾱ

−1−2ξ
1 α1ᾱ

−1−ξ
1 ᾱ−ξ2

α1ᾱ
−1−ξ
1 ᾱ−ξ2 α2ᾱ

−1−2ξ
2

)
, D(a) =

(
hξ,1(a) hξ,2(a)
hβ,1(a) hβ,2(a)

)
(2.46)

ASB The IF of PE(a) is bounded, so the ASB is also finite; it is computed numerically for the
reference parameter value.

FSBP Apparently, we can render the scale estimator arbitrarily large for M4(a) sufficiently large,
so ε∗n < 1 − α2(a) = 1/a2; also, if µ = 0, M2(a) = 0 + 0 has the same effect, so in this case,
ε∗n < α1(a) = 1−1/a. No matter the value of µ, the denominator of β̂, M4(a)−2M2(a) may cause
problems, yielding negative β̂, once M4(a) ≤ 2M2(a), which certainly happens if, in an ideally
distributed sample, we replace all observations Xi, 2M2(a) ≤ Xi ≤M4(a) by M2(a), so

nε∗n ≤ N̂0
n := #{Xi

∣∣ 2M2(a) ≤ Xi ≤M4(a)} (2.47)

As for the respective population quantiles, we clearly have M \
4(a) > 2M \

2(a) so by the strong law
of large numbers, in the ideal situation it holds that M4(a) > 2M2(a) eventually in n almost surely.
Hence, by the Hoeffding inequality for quantiles, up to an event of exponentially small probability,
ε∗n = πξ + OPn

θ
(n−1/2+δ), where

πξ = Pθ(2M
\
2 < X1 ≤M \

4) = (2ξ+1 − 1)−1/ξ − 1/4 (2.48)

and we obtain
ε̄∗ = ε̄∗(a) = min{πξ(a), 1/a2} (2.49)

2.5.1 PE-type estimator tuned for high EFSBP

If we want to tune for maximal EFSBP within the class of PE(a) estimators, we have to maximize
ε∗n(a) for a > 1, which can be done numerically, and in case of our reference parameter ξ = 0.7
gives a∗ = 2.658 with a EFSBP of 7.02%; for the sequel, denote this estimator by PE*; also note that
for the classical PE, we obtain ε̄∗(a = 2) .= 6.42%; for the figures for ε̄∗n, for n = 40, 100, 1000 see
Table 1.
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2.5.2 PE-type estimator tuned for low(er) variance

Although easy to compute and with acceptable robustness properties, for finite sample sizes, both
PE, and, a little better, PE* come with high asymptotic covariances. To improve upon this, we
introduce a PE-type estimator PicM by averaging variants PE(a) for different values of a, i.e., PicM
is the arithmetic mean of PE(aj ) for aj , j = 1, . . . , 15 equally spaced in (2, 2.5). This approach is
similar to EPM, but in addition tries to find a tradeoff between FSBP and variance.

IF PicM is just an exact linear combination of Pickands-type estimators, so

IF(x; PicM, F ) =
1
15

15∑
j=1

IFξ(x; PE(aj), F ) (2.50)

ASV Denote H ∈ R2×30 the matrix filled with row hξ,i(aj), and row hβ,i(aj), each for i = 1, 2,
j = 1, . . . , 15, and Σ the common covariance matrix of all quantiles M2i(aj) with entry (i1, j1; i2, j2)
given by

Σi1,j1;i2,j2 =
min

(
αi1(aj1), αi2(aj2)

)
(1−max(αi1(aj1), αi2(aj2)))

f(M2i1(aj1))f(M2i2(aj2))
(2.51)

Then the asymptotic covariance is V = HΣHτ .

ASB Again, the IF of PicM is bounded, so the ASB is also finite; it is computed numerically for our
reference parameter in Table 6.

FSBP From the discussion of the general EFSBP for PE(a), it is clear that the breakdown point of this
estimator cannot be better than the worst of all its components, being the classical PE in our case;
on the other hand, at least one of the constituents has to break down for a breakdown of PicM,
and for this we have to replace πξ(ai)n observations, which is easiest for PE, hence ε̄∗ = 6.42%.
Notice, though that the variance of PicM is smaller than that of PE due to averaging.

2.6 Method of Median Estimator

The Method of Median estimator of Peng and Welsch (2001) consists in fitting the (population)
medians of the the two coordinates of the scores function Λθ against the corresponding sample
medians, i.e.; we have to solve the system of equations

Median(Xi)/β = F−1
1,ξ (1/2) = (2ξ − 1)/ξ =: mξ (2.52)

Median

(
log(1 + ξ

βXi)

β2
− (1 + ξ)Xi

βξ + ξ2Xi

)
= z(ξ) (2.53)
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where z(ξ) is the population median of the second (shape) coordinate of Λ1,ξ(X) forX ∼ GPD(1, ξ)
As we can solve the first equation for β and plug in the corresponding expression in ξ into the sec-
ond equation, we obtain a one-dimensional root-finding problem to be solved, e.g. in R by uniroot.
In the same sense as the estimators considered so far, the MMed is equivariant.

IF The influence function of MMed is then a linear combination of the influence function of the
median of the Xi which we already have used in the PE, and the influence function of the median
of Λ1,ξ;2(X). Now, as can be seen when plotting the function x 7→ Λ1,ξ;2(x), for ξ = 0.7, the level
set Λ1,ξ;2(X) ≤ z(ξ) is of form [q1(ξ), q2(ξ)], so that

IF(x; Λ-Med, F ) =
I(q1 ≤ x ≤ q2)− 1/2
fθ(q2)/l2 − fθ(q1)/l1

(2.54)

where

li :=
∂

∂x
Λ1,ξ;2(qi) (2.55)

More precisely, for ξ = 0.7, we obtain q1
.= 0.3457 and q2

.= 2.5449. In analogy to the Pickands-type
estimators we could now determine a corresponding Jacobian D in closed form such that

IF(x;MMed, F ) = D(IF(x;Median, F ), IF(x; Λ-Med, F ))τ (2.56)

but in our context it is easier to determine D̃ numerically by

D̃−1 = Eθ ηθΛτθ for ηθ(x) =
(
I(x ≤ mξ)− 1/2, I(q1 ≤ x ≤ q2)− 1/2

)τ
(2.57)

and then to write
IF(x;MMed, F ) = D̃ηθ (2.58)

Corresponding analytic terms may be found in (Peng and Welsch , 2001, p. 60).

ASV Similarly, we obtain

asVar(MMed) = D̃Σ(a)D̃τ , Σ(a) =
1
4

(
1 c
c 1

)
, c = 1− 4F (q1) (2.59)

ASB The IF of MMed is bounded, so the ASB is also finite; it is computed numerically for the
special cases looked at in detail.

FSBP The authors did not succeed to find an analytic value for neither the asymptotic nor the finite
sample breakdown point. 50% by equivariance is an upper bound, though; the high frequency
of failures in the simulation study for small sample sizes however indicates that FSBP should be
considerably smaller; a similar study for the empirical maxBias as the one for MDE gives that for
sample size n = 40, from a rate of outliers of ε = 42.5% on, for n = 100 from ε = 35.0%, for
n = 1000 from ε = 25.1%, and for n = 10000 from ε = 20.1% on, we have but failures in solving
for MMed. So we conjecture that the asymptotic breakdown point ε∗ ≤ 20%.
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2.7 MedMad Estimator

Empirical median (m̂) and median of absolute deviations (M̂ ) are well known for their high break-
down point, jointly achieving the highest possible breakdown point of 0.5 among all affine equiv-
ariant estimators at symmetric, continuous distributions on the real line.

Hence it is plausible to define an estimator for ξ and β, matching m̂ and M̂ against their popula-
tion counterparts m and M within the GPD model. Now it turns out that the mapping (ξ, β) 7→
(m,M)(Fθ) is indeed a Diffeomorphism, hence we can solve the implicit equations for ξ, β to obtain
the MedMad estimator.

The first equation is for the median of the GPD, which is m = m(ξ, β) = F−1(0.5) = β(2ξ − 1)/ξ.
The second equation is for the respective Mad, which has to be solved numerically as unique root
M of fm,ξ,β(M) for

fm,ξ,β(M) = −
(

1 + ξ
M +m

β

)− 1
ξ

+
(

1 + ξ
(−M +m)+

β

)− 1
ξ

− 1
2

(2.60)

Note that fm,ξ,β(M) > 0 for M > m, hence the population Mad M(ξ, β) in the GPD must always
be smaller than its median, or M(ξ, β)/m(ξ, β) ≤ 1.

Now, as generally true for scale estimators, Mad M(ξ, β) = βM(ξ, 1), and the empirical Mad M̂ is
scale-equivariant, i.e., M̂(βx1, . . . βxn) = βM̂(x1, . . . xn).

The same relations hold for the median, too; hence both the quotient q(ξ) := M(ξ, β)/m(ξ, β) and
and its empirical counter part q̂n are scale-free; so we have reduced the problem to β = 1.

Plotting the function ξ 7→ q(ξ), we see that there is a second restriction of the same sort as that
q(ξ) < 1, induced by the fact that for all ξ > 0,

q(ξ) ≥ lim
ξ→0

q(ξ) =: q̌ (2.61)

This function is plotted in Figure 2.

Hence matching q̂n against q(ξ) amounts to finding a zero ξ̂n of G(ξ) = q(ξ) − q̂n in the interval
(q̌; 1) which can easily be solved with a standard univariate root-finding tool like uniroot in R.

A corresponding estimator for β is then simply given by

β̂n = m̂/m(ξ̂n, 1) (2.62)

so by construction MedMad is equivariant in the sense of (1.8).
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Figure 2Function ξ 7→ q(ξ) =: qk=1(ξ)

IF The implicit function of the two equations we have to solve in order to find the MedMad
estimates is defined as follows:

G ((ξ, β); (M,m)) = {G(1), G(2)}τ =

{
fm,ξ,β(M)
β 2ξ−1

ξ −m

}
(2.63)

By the implicit function theorem, we obtain the following matrix D to be used in the Delta method:

D = −
(

∂G

∂(ξ, β)

)−1 ∂G

∂(M,m)
(2.64)

Then the influence function of MedMad estimator is

IF(x;MedMad, F ) = D(IF(x;Mad, F ), IF(x;Median, F ))τ (2.65)

where the influence functions of median and Mad can be found in (Rieder, 1994, Chapter 1.5):

IF(x;m,F ) =
1
2 − I(x ≤ m)

f(m)
(2.66)

IF(x;M,F ) =
1
2 − I(|x−m| ≤M)

f(m+M)− f(m−M)
+
f(m+M)− f(m−M)
f(m+M) + f(m−M)

I(x ≤ m)− 1
2

f(m)
(2.67)

while for the entries of D, abbreviating

v+ :=
(

1 + ξ
M +m

β

)− 1
ξ

, v− :=
(

1 + ξ
−M +m

β

)− 1
ξ

(2.68)
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we note that

∂G(1)

∂ξ
= −v

(
vξ − 1
ξ2

− 1
ξ

log(v)
) ∣∣∣∣∣

v+

v=v−

,
∂G(1)

∂β
=

v

ξβ2
(vξ − 1)

∣∣∣∣∣
v+

v=v−

, (2.69)

∂G(1)

∂M
=

1
β

(vξ+1
+ + vξ+1

− ),
∂G(1)

∂m
=
vξ+1

β

∣∣∣∣∣
v+

v=v−

(2.70)

∂G(2)

∂ξ
=
β

ξ

(
2ξ log(2)− 2ξ − 1

ξ

)
,

∂G(2)

∂β
=

2ξ − 1
ξ

,

∂G(2)

∂M
= 0,

∂G(2)

∂m
= −1 (2.71)

Again, we have equivariance,

IF(ξ,β)(x;MedMad, F ) = dβ IF(ξ,1)(x/β;MedMad, F ) (2.72)

ASV The asymptotic covariance of the MedMad estimator is

asVar(T ) = DTΣD, Σ =
(
σ11 σ12

σ21 σ22

)
(2.73)

Σ is covariance of the joint distribution of median and Mad with elements Serfling and Mazumder
(2009):

a = f(m−M) + f(m+M), b = f(m−M)− f(m+M), (2.74)

c = f(m−M) + f(m+M), d = b2 + 4(1− a)bf(m), (2.75)

σ11 = (4f(m))−2, σ12 = σ21 = (4f(m)c)−1

(
1− 4F (m−M) +

b

f(m)

)
,

σ22 =
f(m)2

4c2(f(m)2 + d)
(2.76)

ASB The IF of the MedMad estimator is bounded, so the asymptotic bias is finite.

FSBP The FSBP of 50% of the median obviously is an upper bound, implying that you could at
least drive one of the parameters β and ξ to ∞. However, similarly to the Weibull case of Boudt et
al. (2010), breakdown is not only entailed by moving mass to 0 or ∞, and the actual breakdown
point of MedMad is smaller:

As we have seen, within the GPD model, can no longer be solved, once the quotient q̂n no longer
falls into [q̌, 1); which could be achieved by either moving all observations m̂ < Xi ≤ m̂+ M̂ to 2m̂
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(entailing q̂n > 1) or by moving observations to the interval [(1− q̌)m̂, (q̌+1)m̂] up to the point that
it contains n/2 observations (entailing q̂n < q̌) . It turns out that the first alternative amounts to
moving less observations. On first glance, this would make for a “definition breakdown”, but if we
move the observations to 2m̂− 0, we obtain as estimator β̂ = 0+ 0 and ξ̂ = ∞, hence a breakdown
in the original sense.

Thus, upto remainder terms of order O(n−1/2), the EFSBP of MedMad is just

ε̄∗ = ε̄∗(ξ) = 1/2− (2ξ+1 − 1)−1/ξ (2.77)

which for our reference parameter ξ = 0.7 is 18.58%; for the figures for ε̄∗n, for n = 40, 100, 1000
see Table 1. Hence contrary to Boudt et al. (2010), not only is our FSBP varying from sample to
sample, but also the EFSBP depends on ξ.

2.7.1 kMedMad

The value ε̄∗ = 18.58% is disappointingly small, in particular if we account for the potential down-
ward correction by the O(n−1/2) term. It is a consequence of the asymmetry present in GPD. A
remedy could be to define asymmetric scale estimators about the median as follows: For a distribu-
tion F on R with median m let us define for k > 0

kMad(F, k) := inf
{
t > 0

∣∣F (m+ kt)− F (m− t) ≥ 1/2
}

(2.78)

where k in our case is chosen to be a suitable number larger than 1. Up to this modification, we
may proceed as in the preceding section, i.e.; match the empirical median and kMad by the model
counterparts and define the matching parameter as estimator.

IF The resulting estimator is again an ALE with IF just analogous to the one of MedMad. We only
give the necessary substitutions here: In (2.67), the first indicator becomes I(−M ≤ x−m ≤ kM),
and we have to substitute expressions m+M by m+kM in (2.68). By the chain rule, an extra factor
k appears in the denominator f(m+M)+f(m−M) of (2.67) (which gets kf(m+kM)+f(m−M)),
the same in c in (2.75), and the first summand of ∂G(1)/∂M in (2.70) is multiplied by k.

ASB The IF of the kMedMad estimator again is bounded, so the asymptotic bias is finite.

FSBP With respect to the MedMad estimator, for k > 1, we achieve higher breakdown points:
Paralleling the case of the MedMad, the quotient q̂k;n = kMad/m̂ for a GPD must lie in the interval

I(k) =
[
q̌k; 1

)
, q̌k = lim

ξ→0
qk(ξ) (2.79)

for qk(ξ) = Mk(ξ, 1)/m(ξ, 1).
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Figure 3Function ξ 7→ qk=10(ξ)

This function is plotted in Figure 3 for k = 10.

So again two strategies can be used to produce a breakdown, i.e. either to move all observations
from the right part of the interval about the median containing 50% of the observations to the
maximal attainable point of (k + 1)m̂, which obviously for k > 1 is much harder than for k = 1, or
to move additional observations into the interval [(1 − q̌(k))m̂, (kq̌(k) + 1)m̂] until it contains n/2
observations. The actual FSBP is then given by the alternative needing to move less observations.
More precisely

ε̄∗n = min(N̂ ′
n, N̂

′′
n)/n, (2.80)

N̂ ′
n = #{Xi |m̂ < Xi ≤ (k + 1)m̂ }, (2.81)

N̂ ′′
n = dn/2e −#{Xi | (1− q̌k)m̂ ≤ Xi ≤ (kq̌k + 1)m̂} (2.82)

Hence, by the usual LLN arguments,

ε̄∗ = min
(
Fθ((k + 1)m)− 1/2, Fθ

(
(kq̌k + 1)m

)
− Fθ

(
(1− q̌k)m

)
− 1/2

)
(2.83)

As to the choice of k, it turns out that a value of k = 10 gives reasonable values of EFSBP, asVar,
asBias for a wide range of parameters ξ, as documented in Table 4. In the sequel this will be our
reference value for k; for the figures for ε̄∗n, for n = 40, 100, 1000 see Table 1.

Optimizing within the class of kMedMad estimators, i.e. for varying k, with respect to the other
robustness criteria for ξ = 0.7, we obtain Table 5, the entries of which should be compared to those
of Table 6.
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ξ GES tr asVar asMSE ABP
0.01 4.09 12.08 16.26 0.249
0.10 3.83 10.90 14.58 0.259
0.70 4.38 12.80 17.60 0.310
1.50 5.85 19.50 28.06 0.355
4.00 10.58 52.90 80.90 0.221

Table 4Robustness properties of kMedMad for k = 10 and several shape parameters compared to corresponding optimal values, i.e., MBRE

(GES), MLE (tr asVar), OMSE (asMSE), kMedMad(kABP), kABP = argmaxk ABP(kMedMad(k)) (ABP)

criterion k GES tr asVar asMSE ABP
(MedMad) 1.00 8.64 29.55 48.22 0.186
(k = 10) 10.00 4.38 12.80 17.60 0.310
GES 5.47 3.81 14.50 18.13 0.328
asVar 52.77 7.21 11.31 24.32 0.259
asMSE 9.18 4.29 12.99 17.59 0.313
ABP 3.23 4.61 16.98 22.30 0.342

Table 5Robustness properties of kMedMad for ξ = 0.7 and several distinguished values of k

Remark 2.4. We should admit though, that, for given k, eventually in n, ξ 7→ E(ξ,β)[ε
∗
n(kMedMad(k))] is decreasing s.t.

lim
ξ→∞

E(ξ,β)[ε
∗
n(kMedMad(k))] = 0 (2.84)

At the same time, eventually in n, ξ 7→ E(ξ,β)[ε
∗
n(PE∗)] is increasing with

lim
ξ→∞

E(ξ,β)[ε
∗
n(PE∗)] = 1/4 (2.85)

In particular, for k = 10, for ξ ≥ 4.964, PE* has a better EFSBP / ABP, in this case ε̄∗(PE∗) ≥ 19.0%. On the other hand, eventually
in n, the EFSBP of kMedMad for the optimal k = k(ξ) never drops below 32.1% for ξ ∈ (0, 10] and below 25% for ξ ∈ (0, 437], and
achieves 39.9% for ξ = 7.20.

2.7.2 Hybrid Estimator

Still, for small sample sizes we encounter failures to solve the corresponding equations for kMedMad
for k = 10—8% for n = 40 and 2.3% for n = 100, compare Tables 8 and 9. To lower this failure rate
also in these cases, a hybrid estimator Hybr is used, that by default returns kMedMad for k = 10,
and by failure—tries out several values for k in a loop and returns the first estimator not failing.
More specifically, we start at k = 3.23 (producing maximal ABP), and then at each iteration multiply
k by 3, and try out at most 20 k-values. This leads to failure rates of 2.3% for n = 40 and 0.0% for
n = 100. As asymptotically, Hybr will coincide with kMedMad, k = 10, its asymptotic properties
IF, tr asVar, asBias are those of kMedMad, k = 10. In each case (default or failure) we have
equivariance.
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2.8 Maximally bias-robust Estimator: MBRE

If we only look at bias and want to obtain the procedure achieving minimax bias on the convex
contamination neighborhoods, we obtain the MBRE estimator; in the terminology of Hampel et al.
(1986) this is the most B-robust estimator. In our smooth situation, MBRE can also be obtained as
a limit within the class of OBRE-estimators, letting bias bound b tend to its minimum, the minimax
bias ωmin

c (see below).

Note however that contrary to Dupuis (1998), Dupuis and Field (1998) who use the Euclidean norm
in the weighting function, we use the non-Euclidean norm nβ from (1.10) to achieve the discussed
invariance.

Its optimality is determined solely by its IF ψ̄ the determining equations of which are given below.
To this optimal IF, we have to find an ALE with ψ̄ as influence function. This may be achieved in
several ways (see (Rieder, 1994, chap. 6); in the literature most often M-estimators are used; we
use a one-step construction, i.e. to a suitably consistent starting estimator θ(0)

n (Hybr in our case),
the corresponding ALE is defined as

MBRE = θ(0)
n +

1
n

n∑
i=1

ψ̄
θ
(0)
n

(Xi) (2.86)

Minimizing asBias among all ALEs, we may read off the general solution from (Rieder, 1994,
Thm. 5.5.1(b)), the minimal gross error sensitivity is given by

ωmin
c = max

{
tr d−1

β Ad−1
β

/
Enβ(AΛ− a), a ∈ R2, 0 6= A ∈ R2×2

}
(2.87)

and IF ψ̄,
ψ̄ = ωmin

c (AΛ− a)/nβ(AΛ− a) (2.88)

(the event {AΛ−a = 0} carries probability 0). Apparently, (2.88) only determines expression AΛ−a
up to a positive scalar multiple. For the values below, we have standardized this expression such
that A1,1 = 1. There are no closed form expressions for A, a, and ωmin

c , though. Corresponding
algorithms to determine A, a, and ωmin

c are implemented to R within the ROptEst package Kohl and
Ruckdeschel (2009) available on CRAN.

Remark 2.5. Although the algorithms are implemented for general L2-differentiable models there, particular algorithms and tech-
niques are needed for the computation of the expectations under GPD (with its heavy tails)—essentially we integrate after a logarithmic
substitution.

In our model, we obtain

A = AMBRE =
(

1.000 −0.183
−0.183 0.224

)
, a = aMBRE = (−0.179, 0.000),

ωmin
c = 3.665 (2.89)
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The use of norm nβ enforces invariance/equivariance,

ψ̄(ξ,β)(x) = dβψ̄(ξ,1)(x/β) (2.90)

or, suppressing subscript MBRE, with

Y(ξ,β) = A(ξ,β)Λ(ξ,β)(x/β)− a(ξ,β) (2.91)

A(ξ,β) = dβ A(ξ,1) dβ, a(ξ,β) = dβ a(ξ,1), nβ(Y(ξ,β)) = n1(Y(ξ,1)),

and ωmin
c (ξ, β) = ωmin

c (ξ, 1) (2.92)

2.9 Estimator minimizing maximal MSE: OMSE

To get an estimator minimizing maximal MSE on neighborhoods (OMSE), we proceed similarly as
in the case of the MBRE: We only determine the IF ψ̂ of the corresponding optimal procedure and
then use a one-step construction (with Hybr as starting estimator) to define an ALE with this IF as

OMSE = θ(0)
n +

1
n

n∑
i=1

ψ̂
θ
(0)
n

(Xi) (2.93)

Again as starting estimator θ(0)
n we use Hybr. In the general L2 differentiable setting, the form of

ψ̂ may be read off from (Rieder, 1994, Thm. 5.5.7):

ψ̂ = Y min{1, b/nβ(Y )}, Y = AΛ− a (2.94)

where A ∈ R2×2 and a ∈ R2 are such that ψ̂ is an IF, i.e., (1.18) holds, and b is such that

r2b = E(|Y | − b)+ (2.95)

Again, there are no closed form expressions for A, a, and b, but corresponding algorithms to
determine A, a, and b are implemented to R within the ROptEst package available on CRAN. In our
model, we obtain

A = AOMSE =
(

10.258 −2.894
−2.894 3.869

)
, a = aOMSE = (−1.076, 0.121),

bOMSE = 4.401 (2.96)

As for MBRE, the use of norm nβ enforces invariance/equivariance,

ψ̂(ξ,β)(x) = dβψ̂(ξ,1)(x/β) (2.97)

or again, (without the expression ωmin
c and after suppressing OMSE), corresponding equations (2.91)

and (2.92) together with
b(ξ,β) = b(ξ,1) (2.98)
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Remark 2.6. In fact, compare (Rieder, 1994, Thm. 5.5.7), OMSE also solves the “Lemma 5 problem” for bias bound its own GES,
hence it is a particular OBRE in the terminology of Dupuis (1998), Dupuis and Field (1998).

The cited references, though, do not pursue the goal to find the MSE-optimal bias bound, and in this sense our OMSE will in general
beat their OBRE (w.r.t. MSE at our radius r, of course).

On the other hand, for given bias bound b, (2.95) may be divided by b, and hence gives a radius r(b) for which a given OBRE is
MSE-optimal; in this sense, bias bound b and radius r are equivalent parametrizations of the degree of robustness required for the
solution.

Computational Aspects Due to the lack of (complete) invariance, solving for equations (2.94)
and (2.95) can be quite slow: for any new found starting estimate θ(0)

n the solution has to be com-
puted anew. Of course, we can reduce the problem by dimension due to scale invariance, i.e.; we
only would need to know the influence curves for “all” values ξ > 0. To speed up things, especially
for our simulation study, we thus have used the following approximative approach, already realized
in M. Kohl’s R package RobLox for the Gaussian one-dimensional location and scale model4, Kohl
(2009):

Algorithm 2.7 (Lagrange multipliers by interpolation). In an offline phase, for a grid of size
M , say M = 200, values of ξ, giving parameter values θi = (ξi, 1) and—in our case—to given
radius r = 0.5, we determine the optimal IF’s ψ̂θi

, solving equations (2.94) and (2.95) for each θi;
for each of these, we suitably store the respective Lagrange multipliers A, a, and b, denoted by Ai,
ai, bi. In the actual evaluation of OMSE at a given data set, for given starting estimate θ(0)

n , we
reduce the problem by invariance and pass over to parameter value θ′ = (ξ(0)n , 1). For this value,
we find values A\, a\, and b\ by simple inter-/extrapolation for the stored grid values Ai, ai, bi. This
gives us Y \ = A\Λθ′ − a\, and w\ = min

(
1, b\/nβ(Y \)

)
. So far, Y \w\ would not make for an IF at

θ′; thus, similarly to (Rieder, 1994, Rem. 5.5.2), we generate an approximating IF ψ] by defining

z] = Eθ′ [Λθ′w\]/Eθ′ [w\], A] =
{

Eθ′ [(Λθ′ − z])(Λθ′ − z])τw\]
}−1

, (2.99)

a] = A]z], and Y ] = A]Λθ′ −a], and set ψ] = ψ]w\. By construction Eθ′ ψ] = 0 and Eθ′ ψ]Λτθ′ = I2,
so ψ] is indeed an IF at θ′.

The solution produced in this algorithm will in general not (yet) solve (2.94) and (2.95), though,
i.e. A\ 6= A], a\ 6= a], and equality will not hold in (2.95), but if the grid is dense enough, due
to the smoothness of our model, we will have approximate equality in all these equations. This
smoothness can be seen in Figure 4.

We have checked the accuracy in terms of efficiency loss w.r.t. the actual optimal IF in terms of
relative asMSE: At the true parameter ξ = 1, we achieve 99.3% efficiency for OMSE and 99.0% for
MBRE, while at ξ = 0.1, ξ = 1.3 we never drop below 99% efficiency.

4Due to the affine equivariance of the estimators in the location and scale setting, interpolation in package RobLox is done only for varying radius r.
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The main advantage of Algorithm 2.7 is speed: While solving equations (2.94) and (2.95) will take
about 15sec per ξ-value (hence per estimator evaluation), with the interpolation technique we can
now produce 1000 evaluations in 120sec5 (where most of the time is now consumed by producing
the starting estimate, Hybr).

It also turns out that, up to accuracy 10−3, we may even skip the recentering and restandardizing
for IF, hence skipping five one-dimensional integrations, and instead directly work with Y \w\. This
gives an extra performance gain of factor 5− 10, so all in all we may achieve a speed-up of around
factor 1000. In our simulations study, however, we observed that for small samples, i.e., n = 40,
without the recentering and restandardizing for IF, we can only achieve about 90% efficiency.

Remark 2.8. Algorithm 2.7 applies to all ALEs which enjoy the partial (β-) invariance used here, and which involve solving for
corresponding equations / finding minima, and where we may employ estimators constructed as one-step-estimators; this holds in
particular for MBRE where we may allow for different pairs (A, a) in the nominator and denominator of the optimal term in (2.88).

Similar constructions could be used to store solutions for the implicit equations for MMed and (k)MedMad on a grid of ξ-values, and
then for evaluation of the estimator use again inter-/extrapolation; we have done so for MMed, but not (yet) for (k)MedMad (and Hybr),
where timings as for MMed should be in reach by this technique.

3 Synopsis of the Theoretical Properties

In a condensed form, in Table 6, we summarize our findings so far, evaluating criteria finite sample
breakdown point FSBP (where possible), asBias = rGES, trace of the asymptotic variance asVar,
and maximal asymptotic MSE on the neighborhood asMSE. tr asVar and asMSE are evaluated on
a quadratic scale, asBias on a linear scale; to give non-degenerate limits (in the shrinking neighbor-
hood setting) and to be able to compare the results for different sample sizes n, these figures are
standardized by the n (respectively

√
n for the bias).

For FSBP, we evaluate terms at sample size n = 1000, which is relevant for MLE, SMLE (due to
shrinking skipping rate of r′ = 0.7, or αn = 2.2%).
We also determine efficiencies in the ideal model and under contamination of radius 0.5 denoted
by eff.id and eff.re, respectively, as well as the respective ranks. In addition, for the situation
where r is unknown, we also compute the least favorable efficiency of each (fixed) estimator (i.e.;
we still use r = 0.5 for OMSE, although this is probably false) w.r.t. the most efficient procedure
knowing the radius, denoted by eff.ru and again report the respective ranks (for this notion, cf.
Rieder et al. (2008)). These efficiencies may be read as the relative amount of observations, the
optimal procedure (MLE in the ideal setting, OMSE for r = 0.5 under contamination, and OMSE

5Times measured on a recent Dual Core Laptop.
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for least favorable actual radius) would need to achieve the same accuracy as the estimator under
consideration. Paralleling Kohl (2005, Lemma 2.2.3), we see that for all considered estimators Sn

eff.ru(Sn) = min
(
eff.id(Sn),GES2(MBRE)/GES2(Sn)

)
(3.1)

Thus the least favorable (unknown) radius is either r = 0 or r = ∞—to be precise, for all estimators
but kMedMad and MBRE, it is r = ∞.

Finally, we document the ranges of least favorable x-values xl.f., at which the considered IFs take
their maximum in nβ-norm. Infinitesimally, these are the most vulnerable points of the correspond-
ing estimators, as contamination placing mass therein will render bias maximal. The value ∞ ap-
pearing here is to be taken as a limit; in all considered situations, a value of 1010 will suffice to
produce a (nearly) maximal bias. On the other hand, the Pickands-type estimators PE, PE*, and
PicM, as well as MMed and the original MedMad estimator are most harmfully contaminated by
placing extra mass at smallish values of, say, about x = 1.5 (for β = 1).

The classical PE estimator as well as MedMad are improved in all categories by their generalizations
PE* and kMedMad (i.e.; with k = 10), so should be replaced by them. Among the explicit estima-
tors, both PE* and PicM can achieve convincing values of asMSE (with slight advantages for PicM in
the ideal model)—although both at the cost of a breakdown point of only 6%− 7%. The results for
SMLE have to be read with care: asBias and asMSE do not account for the bias Bn already present
in the ideal model, but only for the extra bias induced by contamination. As shown in Lemma 2.1,
Bn is of exact unstandardized order O(log(n)/

√
n), hence consequently, asBias and asMSE should

both be∞, and the efficiencies in ideal and contaminated situation would both be 0. At sample size
n = 1000, though, asBias and asMSE are finite: According to approximation (6.2), Bn at n = 1000
is 0.17 (unstandardized), respectively, multiplied by

√
n, 5.38, while the entry of 3.75 in Table 6 is

just r sup | IF |. and is at large due to an underestimation of ξ by 0.17.

As already noted, MLE achieves smallest tr asVar, hence cannot be beaten in the ideal model,
but at the price of a minimal FSBP and an infinite gross error sensitivity, so one (extremely large)
observation at any sample size suffices to render MSE arbitrarily large.
Although not explicit, kMedMad gives very acceptable results in both asMSE and (E)FSBP; contrary
to MDE, MLE, SMLE, MBRE, and OMSE it does not rely on a starting estimator though, as we only
have to find zeros by univariate algorithms in canonically given search intervals.
The best breakdown behavior so far has been achieved by Hybr, with ε∗ ≈ 1/3 for a reasonable
range of parameter values. If we believe in our conjectured FSBP of 35%, MDE shares this reliability
with Hybr, but contrary to the former needs a reliable starting value for the optimization (which in
fact can be given by Hybr). As to computation, it is quite fast though.
MBRE and OMSE are constructed as one-step estimators, so using a starting estimator with a high
FSBP like Hybr, they inherit this property while, consistently to the theory, at the same time MBRE
achieves lowest gross error sensitivity (unstandardized by n of order 0.1 at n = 1000), and OMSE is
best according to asMSE; admittedly, though, MDE comes quite close in both efficiency and FSBP.

With respect to least favorable efficiency eff.ru, OMSE for r = 0.5 is best among all considered
estimators and guarantees an efficiency of 0.68 over all radii. MDE, kMedMad/Hybr, and MBRE also
give acceptable least favorable efficiencies, never dropping considerably below 0.5, while all other
estimators are not so convincing.
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estimator asBias tr asVar asMSE eff.id rk.id eff.re rk.re eff.ru rk.ru xl.f. ε̄∗1000

MLE ∞ 6.29 ∞ 1.00 1 0.00 11 0.00 11 ∞ 0.00
PE 4.08 24.24 40.87 0.26 10 0.35 9 0.20 8 [0.89; 2.34] 0.06
PE* 3.59 18.23 31.08 0.34 9 0.45 7 0.26 6 [1.41; 4.18] 0.07
PicM 3.78 17.35 31.64 0.36 8 0.45 8 0.24 7 [1.41; 2.34] 0.06

MMed 2.62 17.45 24.32 0.36 7 0.58 6 0.32 5 [0.00; 0.34] ∪ [0.90; 2.54]0.25?

MedMad 4.32 29.55 48.22 0.21 11 0.29 10 0.18 9 [0.00; 0.18] ∪ [0.90; 1.60]0.19
kMedMad 2.19 12.80 17.60 0.49 5 0.80 4 0.49 3 [0.54; 0.89] ∪ [4.42;∞) 0.31

SMLE 3.75 7.03 21.08 0.90 2 0.67 5 0.03 10 [20.67;∞) 0.02
MDE 2.45 9.76 15.74 0.64 4 0.90 2 0.56 2 {0,∞} 0.35?

MBRE 1.84 13.44 16.80 0.47 6 0.84 3 0.47 4 [0.00;∞) 0.35∗

OMSE 2.20 9.73 14.13 0.64 3 1.00 1 0.68 1 [0.00; 0.07] ∪ [5.92;∞) 0.35∗

Table 6Comparison of the asymptotic robustness properties of the estimators
∗: inherited from starting estimator Hybr; ?: conjectured.

In Figures 5(a) and (b), we display the influence curves (ICs) of the considered estimator. All con-
sidered ICs ψθ share the invariance property that ψ(ξ,β)(x) = dβψ(ξ,1)(x/β). For completeness, we
also include MME, although it is not available for our reference parameter value (ξ = 0.7, β = 1);
to this end, we use (ξ = 0.2, β = 1) in this case; as is clear from (2.16), the ICs here are linear
combinations of a linear function and a parabola, hence again parabolas and thus—compared to
MLE—drastically unbounded.

All ICs to robust estimators for scale are redescenders, while those for shape are bounded and strictly
positive for large enough x. All curves displayed in Figure 5(b) only take finitely many values—
3 in case of PE and PE*, 4 for MMed, MedMad and kMedmad, and 31 for PicM—which makes
integration quite easy.

Intuitively, based on optimality within L2(Pθ), in order to achieve high efficiency (in the ideal or
contaminated situation), the IF should be as close as possible in L2-sense to the optimal one (for
the ideal or contaminated situation, respectively). So, on first glance, it is astonishing, that kMed-
Mad achieves a reasonable efficiency in the contaminated situation, although its corresponding
curves look quite different from the optimal ones of OMSE; but, of course, the difference occurs
predominantly in regions of low Fθ-probability.

In order to show that the choice of ξ = 0.7 gives “typical” results concerning the obtainable
efficiencies, i.e. that the conclusions we just have drawn as to the ranking of the procedures remain
valid for other parameter values, we have produced Figure 6 which also considers our estimators at
r = 0.25 and r = 1.0 (without changing OMSE to this new r, though). Note that due to the scale
invariance we do not need to consider other parameter values for β. From this figure we may in
particular read off the minimal value for the efficiencies as extracted in Table 7.
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estimator MLE PE PE* PicM MMed MedMad kMedMad SMLE MDE MBRE OMSE
minξ eff.id 1.00 0.16 0.26 0.24 0.07 0.14 0.40 0.00 0.45 0.41 0.58
minξ eff.re 0.00 0.24 0.38 0.33 0.12 0.23 0.78 0.00 0.69 0.78 1.00
minξ eff.ru 0.00 0.15 0.22 0.18 0.07 0.14 0.40 0.00 0.43 0.41 0.58

Table 7Minimal efficiencies for ξ ∈ [0, 2] in the ideal model and for contamination of known and unknown radius

4 Simulation Study

In order to assess the finite sample properties of our estimators, we have done an extensive simula-
tion study.

4.1 Setup

For sample sizes n = 40, 100, 1000, we simulate data from both the ideal GPD with parameter values
µ = 0, ξ = 0.7, β = 1. As estimators, we consider the same estimators as in the preceding section,
and evaluate them at M = 10000 runs in the respective situation (ideal/contaminated and sample
size n = 40, 100, 1000). In addition to these, we compute OMSE and MBRE in two variants of
Algorithm 2.7, i.e., with IF–correction by recentering and restandardization (suffix w.c.) or without
this correction, (suffix n.c.).

The contaminated data stems from the (shrinking) Gross Error Model (1.12), (1.13) with starting
radius r = 0.5. For sample size n, this amounts to actual contamination sizes of rn=40 = 7.9%,
r100 = 5%, and r1000 = 1.6%. As contaminating data distribution, we use Gn,i = Dirac(1010),
except for estimators PE, PE*, PicM, MMed and MedMad, where we use G′

n,i = unif(1.42, 1.59) in
accordance with xl.f. from Table 6.

For the resulting estimates, we compute empirical Biasξ, Biasβ, nβ(Bias), Var, MSE. We also
document the frequency of failures, and the computation time. Based on empirical risk, i.e.; (stan-
dardized) MSE, we determine efficiencies w.r.t. the corresponding optimal risk.

For MMed and kMedMad it turns out that, for maximal MSE it is preferable to use Gn,i while G′
n,i

produces higher failure rates, so that in these two cases, for all entries except for the failure rate,
we use Gn,i, and for the NA’s we use G′

n,i.

4.2 Results

Due to space restrictions, we only present a subset of our tables and plots.

In Tables 8, 9, and 10, we summarize the results for sample sizes n = 40, 100, and 1000, respectively.
The first two columns show the sign of the bias in coordinate β and ξ, sβ, and sξ respectively; for
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values larger than 10 in absolute value we write “−−” or “++”, respectively, while for values
not significantly deviating from 0 (at empirical significance 95%) we write “.”. Values for |Bias|,
for variance, and for MSE (standardized by

√
n and n, respectively) all come with corresponding

CLT-based 95%-confidence intervals. Column “NA” gives the failure rate in the computation in
percent; basically, these are failures of MMed or kMedMad to solve for corresponding zeros, which
due to the use of Hybr as starting estimators is then propagated to MLE, SMLE, MDE, MBRE, and
OMSE. Column “time” gives the computation time in seconds on a recent dual core processor
for the M = 10000 evaluations of the estimator at sample size n, aggregating time for ideal and
contaminated situation. These timings, of course, are subject to future advances in both hardware
and OS, but the relative timings should remain relevant. For MLE, SMLE, MDE, MBRE, and OMSE we
do not include the time for evaluating the starting estimator (Hybr) but only write down the values
for the evaluations given the respective starting estimate. The row with the respective optimal
estimator is printed in bold face.

The simulation study confirms our findings of section 3; figures, at least for n = 1000, are—at
large—close to the ones of Table 6. This holds in particular for the ideal situation, and for the
efficiencies, where in the latter case we obtain reasonable approximations already for n = 100—at
the exception of SMLE and the PE-variants.

Remark 4.1. This is consistent to higher order asymptotics for the MSE as developed in Ruckdeschel (2010b): In both the ideal
situation, and, uniformly, on corresponding shrinking gross error neighborhoods, MSE allows asymptotic expansions of form

nMSE = A0 + rA1n
−1/2 +A2n

−1 + o(n−1) (4.1)

where termA0 is tr asVar in the ideal model and asMSE in the contaminated situation, andA1,A2 are terms depending on of functions
of type t 7→ Eθ[ψk

t η
l
t], k, l ∈ N, and their respective derivatives w.r.t. the parameter as well as t 7→ sup |ψt|, t 7→ sup |ηt|, where η is

the IF of the starting estimator. Hence, in particular the first correction term in the ideal situation (r = 0) is of order O(1/n), while in
the contaminated situation, it is of order O(1/

√
n).

Grossly speaking, the ranking given by asymptotics is valid already at sample size 40—as predicted
by asymptotic theory, OMSE in its interpolated and IF-corrected variant OMSEw.c. at significance
95% is the best estimator among the considered ones as to MSE, although, especially for small
sample sizes, MDE, MBREw.c., and Hybr come quite close as to efficiency in the contaminated
situation.

Using Hybr as starting estimator, the number of failures can be kept low already at n = 40—less than
1% in the ideal model and about 3% under contamination. This cannot be said for MMed, MedMad,
and kMedMad, which suffer from up to 33% failure rate at this sample size under contamination.
So Hybr is a real improvement.

For small sample sizes IF-correction pays off significantly in terms of MSE—variant OMSEn.c. with-
out this correction at sample size 40 looses 11% in efficiency w.r.t. OMSEw.c. in the contaminated
model.

Curiously, at n = 1000, the bias Bn of SMLE present in the ideal situation is decreased by con-
tamination, to the effect that here our asymptotic value asMSEre (21.39) is astonishingly accurate
as approximation for MSEre (again 21.39). Still, according to the empirical values, one would not
recommend SMLE (at least not without a bias correction).
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Among the optimal procedures, there is a distinction between cases n = 40, 100 and n = 1000. In
the first case, evaluating the corresponding integrals needed for the correction for IF in OMSEw.c.
are most expensive, taking about twice the time of the competitors. At sample size 40 a compromise
would use MBREw.c. with approximately the same efficiency (under contamination) and needing
about half the time, while at sample size 100, one could also use OMSEn.c. which only takes 1/10 of
the time while loosing only 4% in efficiency (under contamination). At sample size 1000, OMSEn.c.
even beats OMSEw.c. slightly, consuming only less than 1/5 of the computation time. At this sample
size, though, this effect is dominated by the time needed for kMedMad: Used as starting estimator
for OMSEn.c., we spend roughly 90% of the time computing Hybr. Still, this is not this bad: on
average we need about .07 seconds for computing one estimator at n = 1000; for comparison: this
time decreases to .016 seconds for n = 100 and .014 seconds for n = 40.

The results for sample sizes n = 40, 100, 1000 are graphically displayed in boxplots in Figures 7(a)–
9(b), respectively. In Figure 7(a), the underestimation of shape parameter ξ by SMLE in the ideal
situation stands out; all other estimators in the ideal model are bias-free at large, while MedMad,
PE, and MBRE.nc are somewhat less precise; under contamination, as illustrated in Figure 7(b), all
estimators are affected, producing bias, most prominently in coordinate ξ. As expected, this effect
is most pronounced for MLE which is completely driven away, while the other estimators, at least
in their medians stay near the true parameter value. The transition to n = 100, and even more so
to n = 1000, most strikingly increases accuracy for all estimators, as we would expect. The bias of
SMLE in the ideal model gets smaller, but remains visible, while differences between competitors
OMSE.wc, MDE, kMedMad, and OMSE.nc, MBRE.[n/w]c, are harder to spot at the uniform scale,
which is why we include enlarged Figures 10(a)–11(b); in these we see that under contamination,
there is underestimation of ξ by the PE-type, MMed, and SMLE estimators resp. overestimation by
the remaining estimators, while β is overestimated by the PE-type, MMed, MedMad, and (less so)
SMLE, and underestimated by MLE, the remaining estimates for β stay largely unbiased even under
contamination.

5 Conclusion

We have compared MLE, SMLE, MDE CvM, PE, PE*, PicM, MMed, MedMad, kMedMad, Hybr, MME,
and the optimally robust MBRE and OMSE as estimators for scale and shape parameters ξ and β of
the generalized Pareto distribution on the ideal and contaminated data in terms of local and global
robustness properties.

Asymptotic theory and empirical simulations show that as to global reliability, Hybr, kMedMad,
MDE, MBRE, and OMSE estimators can withstand relatively high rates of outliers as expressed by
a high (E)FSBP of roughly 1/3. Much less so, but still with considerably positive values of (E)FSBP,

41



Conclusion

we have MedMad, and even less, PE*, PE, and PicM. SMLE in the variant without bias correction as
used in this paper, but with shrinking skipping rate, and MLE, and MME all have minimal FSBP of
1/n, hence should be avoided.

High failure rates for MMed, MedMad, and kMedMad at small sample sizes, in particular under
contamination makes their use prohibitive.

Looking at the infinitesimal effects of one observation on the estimator, as expressed through the
influence function, we see that, except for MLE and MME, all estimators have bounded IFs, so
finite GES. As visible in Figure 3, the estimators do differ though in how they use the information
present in an observation.

This is reflected in different asymptotic risks, as well as (simulated) finite sample risks: Overall, we
can recommend estimator OMSE with Hybr as starting estimator; it has achieved best risk in the
simulations, may be computed fast, is efficient (100%) for contamination of known radius and for
parameter value ξ ∈ [0, 2] never drops below 58% efficiency in the ideal model and for contamina-
tion of unknown radius.

To be fair, one has to say, that MBRE, and MDE come quite close to OMSE, for parameter value
ξ ∈ [0, 2] never falling below 78%, resp. 69% efficiency under contamination and similarly in the
ideal model (MDE 45% and MBRE 41%) and under contamination of unknown radius (43% resp.
41%).

Among the (almost) explicit estimators, clearly kMedMad (resp. Hybr) stands out and comes closest
to the aforementioned group—minimal efficiency ξ ∈ [0, 2] not below 78% for contamination of
known radius and 40% in the ideal setting resp. for contamination of unknown radius.

MedMad, and even more so, the Pickand variants PE, PE*, and PicM are also robust, but not
really advisably due to their low breakdown points, and, additionally, due to their non-convincing
efficiencies; the only reason for using PE, PE*, (and less so PicM) is their ease of computation, which
should not be so decisive, though.

Still, they beat the popular SMLE without bias correction, which does provide some, but much too
little protection against outliers.

Worst, of course, as to robustness aspects are MLE and MME, where the latter in addition has a
limited application range.
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6 Proofs

PROOF TO LEMMA 1.3: Assume without loss that
√
n(θ′ − θ) → h; then by L2-differentiability

together with (1.16)
Eθ′ [ψθ] = Eθ[ψθ] + Eθ[ψθΛτθ ]h/

√
n+ o(n−1/2) (6.1)

so under Pnθ′ , for R′n the remainder of (1.15) for θ′ = θ we obtain

√
n (Sn − θ)− h−Rn

(1.15)=
1√
n

n∑
i=1

(ψθ(Xi)− Eθ′ [ψθ]) =

=
1√
n

n∑
i=1

(ψθ(Xi)− Eθ[ψθ])− Eθ[ψθΛτθ ]h+ o(1) =

=
√
n (Sn − θ)− Eθ[ψθΛτθ ]h−R′n + o(1)

Again by L2-differentiability, all Pnθ′ for |θ′ − θ| = O(n−1/2) are mutually contiguous, so
√
nRn,√

nR′n both converge to 0 stochastically under both Pnθ′ and Pnθ , so necessarily (1.17) holds. This
also shows the second assertion. ////

PROOF TO PROPOSITION 1.8: We start with the fact that for Xi
i.i.d.∼ F with Lebesgue density f , the

joint c.d.f. of the order statistics X[i1:n], X[i2:n] for 1 ≤ i1 < i2 ≤ n for s ≤ t can be written as

G(s, t) = n

∫ s

−∞
f(s)

(
n−1
i1−1

)
F (s)i1−1

n−i1∑
k2=i2−i1

(
n−i1
k2

)(
F (t)− F (s)

)k2F̄ (t)n−i1−k2 ds

Hence

P (N̂ ′
n ≥ l)=P (X[(n/2+l+1):n] ≤ (k + 1)X[(n/2+1):n]) =

= n

∫ 1

0

(
n−1
n/2

)
un/2

n/2−1∑
k2=l

(n/2−1
k2

)(
F (qk)− u

)k2F̄ (qk)n/2−1−k2 du

and (1.28) follows by taking differences. Cases (1.27) and (1.29) follow similarly. ////

PROOF TO LEMMA 2.1: We first note that α0 < x0, the positive zero of x 7→ log(1 − x) + x + x2

(x0
.= 0.6837). By the asymptotic linearity of the MLE, if we use a suitable (uniformly integrable)

initialization, the bias of the SMLE has the asymptotic representation

Bn = nβ(E(SMLE)− θ) = nβ(
1
n

αnn∑
k=1

E IF(ξ,β)(z(X(n+1−k:n)));MLE, F )) =

=
(
(
1
n
|
αnn∑
k=1

E ψ̃ξ(V(k:n))|2 + (
1
n
|
αnn∑
k=1

E ψ̃β(V(k:n))|2/β2
)1/2

(6.2)
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for X(k:n), V(k:n) the respective kth order statistic. Using (2.5), we see that for v ranging in (0, 1),
the coordinates of the IF of MLE may each be written as a log(v) + f(v), a 6= 0, and f bounded on
this range. Hence the dominating term is log(v), so we have to check the behavior of |E log(Bk,n)|
for Bk,n ∼ Beta(k, n− k+ 1), k = 1, . . . , αnn. To this end, note that by the power series expansion
of log(1 − x), for any L > 0 and any x ∈ (0, 1], − log(x) ≥

∑L
l=1(1 − x)l/l, while for 0 ≤ x < x0,

log(1 − x) ≥ −x − x2. We further observe that (for n > k), as 1 − Bk,n ∼ Beta(n − k + 1, k),
E(1 − Bk,n)l =

∏l
j=1

n+j−k
n+j , and that for any decreasing suitably integrable function f(x) with

antiderivative F (x),
∑n

j=1 f(j) ≤
∫ n
0 f(x) dx = F (n) − F (0). Hence, using 1 − x ≤ e−x for x ∈ R

we obtain

|E log(Bk,n)| ≥
L∑
l=1

E(1−Bk,n)l/l ≥
L∑
l=1

1
l

l∏
j=1

n+j−k
n+j =

=
L∑
l=1

1
l exp

( l∑
j=1

log(1− k
n+j )

)
≥

L∑
l=1

1
l exp

(
−

l∑
j=1

k
n+j + k2

(n+j)2

)
≥

≥
L∑
l=1

1
l exp

(
− k log(n+l

n )− k2l
(n+l)n

)
=

L∑
l=1

1
l (1−

l
n+l )

k exp(− k2l
(n+l)n) ≥

≥
L∑
l=1

1
l (1−

L
n+L)k exp(− k2L

(n+L)n) ≥ log(L)(1− L
n+L)k exp(− k2L

(n+L)n)

Plugging in L = d 1
αn
e, we obtain, eventually in n,

Ek,n := |E log(Bk,n)| ≥ − log(αn) exp(−1− αn)

On the other hand, for d1,n the densitiy of Beta(1, n), we split the integration range into [0, 1/n]
and [1/n, 1] and obtain

0 <

∫ 1

0
− log(x) d1,n(x) dx ≤ n(log(n) + 1)/n+ log(n) ≤ 3 log(n)

if n > 2. Now, for some d1, d2 ≥ 0

|E ψ̃ξ(Bk,n)| = (ξ+1)2

ξ Ek,n + d1 − ξ2+3ξ+1
ξ2+ξ

, |E ψ̃β(Bk,n)| = (ξ+1)
ξ Ek,n + d2 − (3− 1

ξ )

Hence, as ξ2+3ξ+1
ξ2+ξ

< 3 + ξ−1, for lim inf αn < α0 we obtain, eventually in n

0 ≤ (ξ+1)
√

(ξ+1)2+β−2

ξ αn(− log(αn/α0)) exp(−1− αn) ≤

≤ 1
n

αnn∑
k=1

ξ + 1
ξ

√
((ξ + 1)2 + β−2)

(
Ek,n − 3− 1/ξ

)2 ≤
≤

(
{ 1
n

αnn∑
k=1

E ψ̃ξ(Bk,n)}2 + { 1
n

αnn∑
k=1

E ψ̃β(Bk,n)}2/β2
)1/2

= Bn
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and lim inf Bn > 0 if lim inf αn > 0, resp. lim inf nβBn > cnβαn log(n) if lim inf nβαn > 0. On the
other hand, eventually in n (as the other summand terms of ψ̃ are bounded in n)

Bn ≤ 4
(ξ + 1)

√
(ξ + 1)2 + 1/β2

ξ2
αn log(n)
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(a) Lagrange multipliers of MBRE at β = 1 (due to invariance) as functions in ξ
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(b) Lagrange multipliers of OMSE at β = 1 (due to invariance) as functions in ξ

Figure 4Lagrange multipliers of MBRE, OMSE

at β = 1 (due to invariance) as functions in ξ: We see that we may easily interpolate between the grid points (depicted as circles) and

lay corresponding smoothing splines (red curves; with R function smooth.spline for parameter df=4) through them.
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Figure 5Influence Functions

of MLE, SMLE (with ≈ 0.7 ·
√
n skipped value), MME (for ξ = 0.2), MDE CvM, MBRE, OMSE, PE, PicM, PE*, MMed, MedMad, kMedMad

estimators for scale β (black) and shape ξ (red) of the generalized Pareto distribution
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Figure 6Efficiencies for varying shape

of MLE, SMLE (with ≈ 0.7 ·
√
n skipped value), MDE CvM, MBRE, OMSE, PE, MMed, kMedMad estimators for scale β = 1 and varying

shape ξ.
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ideal situation:

estimator sβ sξ |Bias| Var MSE eff rank NA time
MLE + − 0.55 ±0.05 7.41 ±0.21 7.72 ±0.21 1.00 1 3.60 113

PE + . 0.85 ±0.27 19.30 ±1.54 20.01 ±1.67 0.39 10 0.00 13
PE* + − 0.91 ±0.25 16.09 ±1.29 16.92 ±1.37 0.46 9 0.00 13
PicM + − 0.90 ±0.25 15.74 ±1.36 16.56 ±1.49 0.47 8 0.00 190

MMed . + 8.91 ±1.98 1.02 e5 ±2423.14 1.02 e5 ±2458.24 0.00 14 10.44 168
MedMad − + 1.32 ±0.10 24.77 ±1.30 26.52 ±1.39 0.29 12 21.42 150
kMedMad + − 0.47 ±0.07 11.55 ±0.30 11.78 ±0.29 0.66 4 8.08 197

Hybr + − 0.71 ±0.07 11.96 ±0.31 12.46 ±0.30 0.62 6 0.79 223
SMLE + − 4.70 ±0.06 9.49 ±0.30 31.62 ±0.47 0.24 13 0.79 75
MDE + − 0.40 ±0.06 10.56 ±0.27 10.72 ±0.25 0.72 3 0.79 384

MBRE.wc + − 0.49 ±0.08 15.68 ±0.46 15.92 ±0.44 0.48 7 0.79 302
OMSE.wc + − 0.26 ±0.06 9.62 ±0.23 9.68 ±0.22 0.80 2 0.79 600
MBRE.nc + − 0.80 ±0.09 19.39 ±0.53 20.03 ±0.52 0.39 11 0.79 38
OMSE.nc + − 0.95 ±0.07 11.36 ±0.34 12.25 ±0.33 0.63 5 0.79 41

contaminated situation:

estimator sβ sξ |Bias| Var MSE eff rank NA
MLE + ++ 394.12 ±22.92 1.37 e7 ±1.20 e6 1.52 e7 ±1.37 e6 0.00 14 3.61
PE + + 2.32 ±0.49 62.25 ±67.90 67.64 ±69.35 0.39 9 0.00
PE* − ++ 14.77 ±2.37 1456.35 ±256.97 1674.41 ±325.54 0.02 11 0.00
PicM + + 4.17 ±0.82 176.51 ±84.36 193.90 ±90.11 0.14 10 0.00

MMed + + 5.13 ±1.17 3563.54 ±1442.56 3589.87 ±1454.42 0.01 12 23.11
MedMad + + 1.01 ±0.10 23.58 ±1.46 24.61 ±1.44 0.89 6 33.08
kMedMad + + 2.32 ±0.09 18.82 ±0.49 24.21 ±0.67 0.91 5 19.10

Hybr + + 2.23 ±0.09 19.23 ±0.50 24.21 ±0.67 0.91 4 3.03
SMLE + + 7.44 ±3.10 2.51 e5 ±1.52 e5 2.52 e5 ±1.52 e5 0.00 13 3.61
MDE + + 2.64 ±0.08 16.19 ±0.43 23.15 ±0.59 0.95 2 3.61

MBRE.wc − + 1.77 ±0.09 20.06 ±0.59 23.19 ±0.63 0.95 3 3.03
OMSE.wc − + 2.75 ±0.07 14.39 ±0.42 21.93 ±0.61 1.00 1 3.03
MBRE.nc . + 1.29 ±0.10 23.67 ±0.66 25.34 ±0.59 0.87 8 3.03
OMSE.nc + + 2.34 ±0.09 19.53 ±0.63 25.02 ±0.76 0.88 7 3.03

Table 8Comparison of the empirical robustness properties of the estimators at n = 40
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ideal situation:

estimator sβ sξ |Bias| Var MSE eff rank NA time
MLE + − 0.35 ±0.05 6.76 ±0.16 6.88 ±0.15 1.00 1 0.14 114

PE + − 0.74 ±0.30 23.25 ±1.76 23.79 ±1.59 0.29 11 0.00 13
PE* + − 0.88 ±0.27 19.41 ±1.58 20.18 ±1.49 0.34 10 0.00 13
PicM + − 0.76 ±0.27 18.46 ±1.45 19.05 ±1.31 0.36 9 0.00 194

MMed + + 5.79 ±2.06 1.10 e5 ±4026.05 1.11 e5 ±4049.78 0.00 14 1.81 186
MedMad + + 0.51 ±0.10 26.73 ±0.74 26.99 ±0.72 0.26 12 6.83 184
kMedMad + − 0.59 ±0.07 12.86 ±0.29 13.21 ±0.27 0.52 5 0.63 228

Hybr + − 0.62 ±0.07 13.02 ±0.29 13.41 ±0.27 0.51 6 0.00 238
SMLE + − 5.14 ±0.06 8.08 ±0.21 34.51 ±0.42 0.20 13 0.00 93
MDE + − 0.28 ±0.06 10.18 ±0.24 10.26 ±0.21 0.67 3 0.00 346

MBRE.wc + − 0.36 ±0.07 14.17 ±0.33 14.30 ±0.32 0.48 7 0.00 295
OMSE.wc + − 0.19 ±0.06 9.44 ±0.21 9.47 ±0.20 0.73 2 0.00 623
MBRE.nc + − 0.63 ±0.08 18.19 ±0.43 18.58 ±0.41 0.37 8 0.00 41
OMSE.nc + − 0.75 ±0.06 10.68 ±0.28 11.25 ±0.26 0.61 4 0.00 44

contaminated situation:

estimator sβ sξ |Bias| Var MSE eff rank NA
MLE − ++ 44.16 ±4.82 6.06 e5 ±2.56 e5 6.25 e5 ±2.58 e5 0.00 14 0.14
PE + − 3.73 ±0.28 20.74 ±1.49 34.66 ±2.01 0.50 10 0.00

PE* + − 4.07 ±0.28 21.08 ±1.62 37.64 ±2.44 0.46 11 0.00
PicM + − 2.84 ±0.24 15.27 ±1.10 23.35 ±1.30 0.75 8 0.00

MMed + + 3.65 ±1.16 3520.58 ±2275.69 3533.92 ±2283.99 0.00 13 6.25
MedMad + − 2.02 ±0.10 26.34 ±0.82 30.42 ±0.68 0.57 9 20.80
kMedMad + + 2.11 ±0.08 16.12 ±0.38 20.58 ±0.49 0.85 5 3.71

Hybr + + 2.10 ±0.08 16.21 ±0.38 20.64 ±0.49 0.84 6 0.00
SMLE + − 0.73 ±0.19 95.38 ±85.59 95.92 ±85.39 0.18 12 0.14
MDE + + 2.49 ±0.07 13.34 ±0.32 19.55 ±0.43 0.89 4 0.14

MBRE.wc − + 1.75 ±0.08 16.49 ±0.39 19.55 ±0.44 0.89 3 0.00
OMSE.wc − + 2.43 ±0.07 11.52 ±0.28 17.41 ±0.39 1.00 1 0.28
MBRE.nc + + 1.54 ±0.09 20.15 ±0.48 22.54 ±0.47 0.77 7 0.00
OMSE.nc − + 2.04 ±0.07 14.19 ±0.38 18.33 ±0.43 0.95 2 0.00

Table 9Comparison of the empirical robustness properties of the estimators at n = 100
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ideal situation:

estimator sβ sξ |Bias| Var MSE eff rank NA time
MLE + − 0.08 ±0.05 6.32 ±0.14 6.32 ±0.12 1.00 1 0.00 396

PE + . 0.35 ±0.30 24.16 ±1.78 24.29 ±1.47 0.26 12 0.00 15
PE* + . 0.30 ±0.26 17.83 ±1.42 17.92 ±1.14 0.35 10 0.00 15
PicM + − 0.34 ±0.26 17.16 ±1.31 17.27 ±1.07 0.37 9 0.00 207

MMed + . 0.08 ±0.09 20.14 ±0.50 20.15 ±0.43 0.31 11 0.00 260
MedMad + . 0.11 ±0.11 30.16 ±0.76 30.17 ±0.67 0.21 13 0.00 877
kMedMad + − 0.16 ±0.07 12.90 ±0.29 12.93 ±0.26 0.49 5 0.00 1114

Hybr + − 0.16 ±0.07 12.90 ±0.29 12.93 ±0.26 0.49 5 0.00 1125
SMLE + − 7.66 ±0.05 7.11 ±0.16 65.72 ±0.55 0.10 14 0.00 333
MDE + . 0.07 ±0.06 9.82 ±0.23 9.83 ±0.20 0.64 3 0.00 564

MBRE.wc + . 0.08 ±0.07 13.44 ±0.29 13.45 ±0.27 0.47 7 0.00 382
OMSE.wc . . 0.03 ±0.06 9.34 ±0.21 9.34 ±0.19 0.68 2 0.00 743
MBRE.nc + . 0.16 ±0.08 17.09 ±0.38 17.12 ±0.34 0.37 8 0.00 130
OMSE.nc + − 0.23 ±0.06 9.81 ±0.23 9.86 ±0.20 0.64 4 0.00 127

contaminated situation:

estimator sβ sξ |Bias| Var MSE eff rank NA
MLE − ++ 32.30 ±0.12 35.96 ±0.97 1079.56 ±7.13 0.01 14 0.00
PE + − 4.44 ±0.31 25.54 ±1.91 45.28 ±2.50 0.33 12 0.00

PE* + − 3.96 ±0.28 19.96 ±1.54 35.64 ±2.01 0.42 11 0.00
PicM + − 2.97 ±0.26 17.30 ±1.33 26.13 ±1.50 0.57 9 0.00

MMed + − 2.81 ±0.09 19.94 ±0.48 27.81 ±0.53 0.53 10 0.00
MedMad + − 3.97 ±0.11 31.28 ±0.81 47.07 ±0.91 0.32 13 0.00
kMedMad + + 2.16 ±0.07 13.61 ±0.31 18.28 ±0.38 0.81 5 0.00

Hybr + + 2.16 ±0.07 13.61 ±0.31 18.28 ±0.38 0.81 5 0.00
SMLE + − 3.00 ±0.07 12.36 ±0.61 21.39 ±0.45 0.69 8 0.00
MDE + + 2.42 ±0.06 10.68 ±0.25 16.51 ±0.33 0.90 3 0.00

MBRE.wc − + 1.82 ±0.07 14.08 ±0.31 17.40 ±0.37 0.85 4 0.00
OMSE.wc − + 2.27 ±0.06 9.80 ±0.22 14.96 ±0.30 0.99 2 0.00
MBRE.nc − + 1.82 ±0.08 17.66 ±0.39 20.97 ±0.42 0.71 7 0.00

OMSE.nc − + 2.08 ±0.06 10.54 ±0.25 14.85 ±0.30 1.00 1 0.00

Table 10Comparison of the empirical robustness properties of the estimators at n = 1000
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(a) no contamination, 40 sample size
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(b) 7.9 % contamination, 40 sample size

Figure 7Boxplots

for MLE, PE, PE*, PicM, MMed, MedMad, kMedMad, Hybr, SMLE (with ≈ 0.7 ·
√
n skipped values), MDE, MBRE.wc, OMSE.wc, MBRE.nc,

and OMSE.nc estimators for shape ξ and scale β of the generalized Pareto distribution on the ideal (above) and contaminated data

(below), (a), (b), number of simulations: 10000
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(a) no contamination, 100 sample size
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(b) 5 % contamination, 100 sample size

Figure 8Boxplots—same scale as for n = 40

for MLE, PE, PE*, PicM, MMed, MedMad, kMedMad, Hybr, SMLE (with ≈ 0.7 ·
√
n skipped values), MDE, MBRE.wc, OMSE.wc, MBRE.nc,

and OMSE.nc estimators for shape ξ and scale β of the generalized Pareto distribution on the ideal (above) and contaminated data

(below), (a), (b), number of simulations: 10000; note the effect of increased sample size as to accuracy.
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(b) 1.6 % contamination, 1000 sample size

Figure 9Boxplots—same scale as for n = 40

for MLE, PE, PE*, PicM, MMed, MedMad, kMedMad, Hybr, SMLE (with ≈ 0.7 ·
√
n skipped values), MDE, MBRE.wc, OMSE.wc, MBRE.nc,

and OMSE.nc estimators for shape ξ and scale β of the generalized Pareto distribution on the ideal (above) and contaminated data

(below), (a), (b), number of simulations: 10000; note the effect of increased sample size as to accuracy.

55



REFERENCES

●

●●

●
●
●

●

●

●
●

●
●

●

●●●●
●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●●
●

●

●
●

●

●●

●

●●
●

●●

●
●

●
●

●●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●
●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●●

●

●

●●
●

●●

●

●

●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●●

●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●
●●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●●●

●
●●

●

●

●
●
●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●

●●

●

●
●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●
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0.0

0.5

1.0
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0.0

0.5

1.0

1.5

2.0

ξ

(a) no contamination, 100 sample size
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Figure 10Boxplots (enlarged for better distinction)

for MLE, PE, PE*, PicM, MMed, MedMad, kMedMad, Hybr, SMLE (with ≈ 0.7 ·
√
n skipped values), MDE, MBRE.wc, OMSE.wc, MBRE.nc,

and OMSE.nc estimators for shape ξ and scale β of the generalized Pareto distribution on the ideal (above) and contaminated data

(below), (a), (b), number of simulations: 10000
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(a) no contamination, 1000 sample size
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Figure 11Boxplots (enlarged to for better distinction)

for MLE, PE, PE*, PicM, MMed, MedMad, kMedMad, Hybr, SMLE (with ≈ 0.7 ·
√
n skipped values), MDE, MBRE.wc, OMSE.wc, MBRE.nc,

and OMSE.nc estimators for shape ξ and scale β of the generalized Pareto distribution on the ideal (above) and contaminated data

(below), (a), (b), number of simulations: 10000
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