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Abstract

We present some optimality results for robust Kalman filtering.
To this end, we introduce the general setup of state space models which will not be limited to a
Euclidean or time-discrete framework. We pose the problem of state reconstruction and repeat
the classical existing algorithms in this context. We then extend the ideal-model setup allowing for
outliers which in this context may be system-endogenous or -exogenous, inducing the somewhat
conflicting goals of tracking and attenuation.
In quite a general framework, we solve corresponding minimax MSE-problems for both types of
outliers separately, resulting in saddle-points consisting of an optimally-robust procedure and a
corresponding least favorable outlier situation.
Still insisting on recursivity, we obtain an operational solution, the rLS filter and variants of it.
Exactly robust-optimal filters would need knowledge of certain hard-to-compute conditional means
in the ideal model; things would be much easier if these conditional means were linear. Hence, it
is important to quantify the deviation of the exact conditional mean from linearity. We obtain a
somewhat surprising characterization of linearity for the conditional expectation in this setting.
Combining both optimal filter types (for system-endogenous and -exogenous situation) we come
up with a delayed hybrid filter which is able to treat both types of outliers simultaneously.
Keywords: robustness, Kalman Filter, innovation outlier, additive outlier



Introduction

1 Introduction

State space models are an extremely flexible model class for dynamic phenomena, and even more
so if we understand them to also comprise discrete state spaces as used in Hidden Markov Models.

Their applications range from Engineering Sciences, with Aeronautics, Electrical Engineering, speech
recognition, over automatic monitoring/surveillance systems with important applications in inten-
sive care medicine, to Genetics, with applications in gene sequencing, evolutional biology, and to
Environmetrics and Geo-Statistics, with applications e.g. in hydrology and over to econometrics and
finance with applications in prediction of stock prices, option pricing and portfolio optimization.

A survey on applications in econometrics is given in Harvey (1987), for the other domains a short
search on the web will produce an abundance of references.

A comprehensive overview of the mathematical methods used in this subject may be found in Chen
(1996).

Historically, after pioneering work by Kolmogorov (1941a,b), Wiener (1949), still limited to station-
ary situations, in two seminal papers, Kalman (1960) and Kalman and Bucy (1961), achieved a
breakthrough, finding recursive, orthogonally optimal procedures which also covered non station-
ary situations, now known as Kalman filter (in the time-discrete setting) and Kalman-Bucy filter (in
the continuous-time setting).

1.1 Review of the literature on Robust Kalman filtering

Soon in the history of Robust Statistics people became aware of the robustness problem inherent
to Kalman filtering, with first (non-verified) hits on a quick search for “robust Kalman filter” on
scholar.google.com as early 1962 and 1967, i.e.; the former even before the seminal Huber
(1964) paper, often referred to as birthday of Robust Statistics.

In the meantime there is an ever growing amount of literature on this topic —Kassam and Poor
(1985) have already compiled as many as 209 references to that subject in 1985. . . Excellent surveys
are given in Ershov and Lipster (1978), Kassam and Poor (1985), Stockinger and Dutter (1987),
Martin and Raftery (1987), Schick and Mitter (1994), Künsch (2001).

On the other hand, the mere notion of robustness itself is not understood unanimously in the liter-
ature. The notion that we will use in this paper will focus qualitatively on bounded risk on neigh-
borhoods about an ideal model as specified in subsection 2.2, which in Problems (3.16), (3.17)
will be made quantitative optimizing corresponding risks.

We also emphasize that working with “small” neighborhoods, the minimax formulation of Prob-
lem (3.16) will not result in overly pessimistic procedures, or to take up a formulation by C. Rogers,
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contrary to other minimax settings, you will leave the house —even in the presence of ubiquitous
dangers, simply because you only look at “realistic” dangers lying “close” to your intended way.

The litmus test for our notion of robustness in this context will be whether a corresponding filter will
be bounded in the observations, as otherwise the respective risk will be unbounded on an arbitrarily
small neighborhood.

This qualitative notion of robustness should be compared to “Qualitative Robustness” as introduced
by Hampel (1968), referring to equicontinuity of the distributions of procedure in weak topology
with respect to the sample size; our notion is also related, but not identical to a positive breakdown
point for the procedure on this neighborhood: Not identical, because there is no asymptotics in-
volved and the sample size is 1! Hence, if we defined breakdown point as the infimal radius r such
that the procedure becomes unbounded on the respective neighborhood, our procedures would at-
tain breakdown points arbitrarily close to 1, which is not in the spirit of Hampel’s original definition,
confer Hampel (1968).

In the sequel, we present some of the existing approaches (and distinguish them from ours), and
review certain ideas which we will exemplify with corresponding references.

Control Theory has found its own way to robustness, somewhat different from the notion used
in statistics; instead of formulating deviations from distributional assumptions, this approach rather
only allows for bounded controls —c.f. H∞/H2— in order to cope with an incompletely specified
transfer function. Survey articles are Başar and Bernhard (1991) and Rotea and Khargonekar (1995).

Other authors rather understand robustness as stability w.r.t. disturbances in the parameters,
cf. Chen and Patton (1996). Judged from our perspective of Robustness, this is awkward: For
instance only changing the parameters of a normal distribution will not lead us out of the class of
linear filters, hence w.r.t. the unboundedness of linear filters, the robustness problem persists— in
general, parametric neighborhoods are simply too small to lead to robust procedures.

Early approaches considered hard rejection schemes, cf. Meyr and Spies (1984) which however
from the point of view of Theorem 3.3 are clearly suboptimal.

A large stream of articles replaces normality assumptions by corresponding fat-tailed distribu-
tions, notably t-distributions, cf. Meinhold and Singpurwalla (1989) but also ranges from Bayesian
approaches such as West (1981, 1984, 1985), and also covers posterior-mode approaches by
Fahrmeir and Kaufmann (1991), Fahrmeir and Künstler (1999).
The replacement of the ideal / central distribution could be seen as somewhat heuristical, replacing
only one distribution (the Gaussian one) by another one. Still, the resulting filters are highly robust,
as they yield bounded (even redescending) filters. Theorem 3.3 indicates however, that these dis-
tributions might lead to overly pessimistic procedures, if the majority of the data is nearly normally
distributed; the argument of course also applies if the majority stems from another non-t- central
distribution.
Another set of papers starting with Alspach and Sorenson (1972), works with mixtures, notably of
normal distributions, in this case giving the so-called Gaussian sum filters. Originally designed to
cover non-Gaussian resp. nonlinear situations, this idea has also been applied to tackle robustness
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issues in Ershov (1978), Ershov and Lipster (1978), Kitagawa (1987), Peña and Guttman (1988) As
one may easily show in case of Gaussian mixtures however, the resulting filters are not bounded,
hence not robust in our sense.

Analogy of the state space model to linear regression models as noted by Duncan and Horn
(1972) has led to approaches where people apply robust regression techniques to the filtering prob-
lem, confer Boncelet and Dickinson (1983, 1987), Boncelet (1985), Cipra and Romera (1991). The
same approach led to the rIC, mIC filter initiated by H. Rieder and worked out in Ruckdeschel (2001,
ch. 3,4). Admittedly, the asymptotics under which the corresponding robust regression estimators
are derived is not available in our context; nevertheless these procedures compete well with other
robustification approaches, compare Ruckdeschel (2001, ch. 5).

Although not bound to the structure of an SSM, the application of non-parametric median-type
filters has a long success story, in particular for signal extraction, starting with the 3R-smoother
of Tukey (1977) —a running median— and much improved upon by the Dortmund group, using
several variants of repeated medians, confer Fried et al. (2006), Fried et al. (2007), and Schettlinger
et al. (2006), in particular with applications in intensive care medicine, confer Fried et al. (2000).
These filters however do not use the state space model character of the data and have certain
weaknesses in higher dimensions, where corresponding medians are more difficult to define and
even harder to implement if you want to go beyond coordinate-wise application of the repeated
medians; see Fried et al. (2002), though.

With the ever becoming faster computers, and with the refined sampling techniques meanwhile
available, the use of many filters running in parallel has become increasingly attractive. Some
approaches in this setting do not use sampling but try to adaptively select the “optimal” filter
in each time step t among a set Nt filters considered at this time, confer, e.g. Pupeikis (1998). As
to operability of these filters, particular care must be spent on Nt, confer in this respect the filters
proposed by Schick (1989) and Birmiwal and Shen (1993). Sampling Techniques in our context
are very promising as they allow to assess not only single aspects like posterior mean or posterior
mode of our filters but also the whole posterior distribution. Some of these techniques proceed
non-recursively, using Markov Chain Monte Carlo or the Gibbs Sampler as in Carlin et al. (1992)
and in Carter and Kohn (1994, 1996), while the Particle Filter approach is recursive; in particular the
Particle Filter, compare Frühwirth-Schnatter (1994), Godsill and Rayner (1998), Hürzeler and Künsch
(1998), Hürzeler (1998), Künsch (2005), seems promising to get hand on exact ideal posterior mean
needed in Theorem 3.3. [MORE COMMENTS]

Nearest to our approach are several articles concerned with minimax robustness in various spec-
ifications. We do not discuss parametric minimax approaches here. References may be found in
Ruckdeschel (2001, Sec. 1.5).
In the frequency domain there are papers by Kassam and Lim (1977), Franke and Poor (1984) and
Franke (1985). One disadvantage of this approach is that you have to impose a uniform bound on
the variance as a bound for the corresponding mass of the spectral measures in a neighborhood.
According to the theory of Wiener and Kolmogorov, the optimal filters found in this context are
bound to be linear, hence not robust in our sense.
In the time domain, the filter by Masreliez and Martin (1977), later termed ACM filter in Martin
(1979), appeals to a minimax robustness which uses the asymptotic variance and hence builds up
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on Huber (1964, 1981)1. This is somewhat problematic as the asymptotics in this non-stationary
setting will never “kick in”. We will instead use the SO-approach already used by Birmiwal and Shen
(1993) and Birmiwal and Papantoni-Kazakos (1994), who obtain similar results as ours although in
a more restricted setting and who, when passing back from the “one-step-solution” to the dynamic
model setting, proceed differently.

1.2 Organization of the rest of the paper

In section 2 we present the general setting, introducing the necessary notation. Passing from the
most simple, linear, time-discrete Euclidean state space model over to more general Hidden Markov
Models and Dynamic Bayesian Models, we also introduce a continuous-time setup as it is relevant
for Mathematical Finance, and finally even allow for user-specified controls. All these increasingly
more complicated models presented in subsection 2.1 are covered by the optimality results we
present, as long as mean squared error makes for a reasonable risk. In subsection 2.2, we then
present different types of outlier models relevant for this setting and discuss their implications. After
an introductory example in subsection 2.3 introducing our reference model, we finally review the
classical Kalman filter with its optimality among all linear filters in subsection 2.4, as this (recursive)
property will be the starting point for our robustification.

This robustification, the rLS filter, is introduced in section 3. After its definition in subsection 3.1,
extending a corresponding result from Ruckdeschel (2001, ch. 8), we preliminarily drop all the
dynamics of our model in subsection 3.2 and reduce it to a “Bayesian” type model. In this setting,
we are able to show our central result, Theorem 3.3, which yields minimax-optimal solutions on
SO neighborhoods in this quite general framework. Translating this result back into our dynamic
model context is crucial and follows in subsection 3.3. In this setting, we disprove normality of
our filter in Proposition 3.5 and characterize linearity of the corresponding ideal conditional mean
in Proposition 3.7. With these results optimality of our rLS filter seems out of reach. Extending
the SO neighborhoods a little, however, as done in subsection 3.4, we nevertheless obtain a certain
optimality for the rLS in Theorem 3.11 and Proposition 3.12. Finally, as to efficiency in computational
aspects we briefly mention stationarity properties of the rLS in subsection 3.5.

Sections 4 and 5 contain recent results extending the setup of Ruckdeschel (2001, ch. 8) to the
IO situation and situations where both IO’s and AO’s are present. The key idea is to specialize our
“Bayesian” model from subsection 3.2 to the additive model Y = X + ε and to use the symmetry
of X and ε present in this model: We achieve a translation of the optimality result of Theorem 3.3
to a situation with system-endogenous outliers where tracking is the main goal. Section 5 then
presents a delayed hybrid filter which switches between AO- and IO-robust behavior according to
the history of window length w of the discrepancies of predicted and realized observations, hence
giving a filter that is simultaneously AO- and IO-robust.

Section 6 illustrates our findings with simulations at which we evaluate the classical Kalman filter,
the rLS variants rLS.AO from section 3, rLS.IO from Section 4, and rLS.IOAO from section 5 to-
gether with the competitors ACM from Masreliez and Martin (1977) and hybrPRMH from Fried and

1The latter reference compiles some generalization of the former, which were already available to Martin and Masreliez.
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Schettlinger (2008), resp. Fried et al. (2006).

Section 7 sketches open ends and starting points for further research, and section 8 describes the
state of affairs as to an implementation of our proposals to an R package.

The proofs to the assertions made in sections 3–4 are compiled in section 9.

Finally, in section 10 we summarize the findings of this article.

2 General setup

2.1 Ideal model

To fix ideas, let us start with some definitions and assumptions. We are working in the context of
state space models (SSM’s) as to be found in many textbooks, confer Anderson and Moore (1979),
Harvey (1991), Hamilton (1993), and Durbin and Koopman (2001).

Time Discrete, linear Euclidean Setup: The most prominent setting in this context is the linear,
time–discrete, Euclidean Setup where the unobservable p-dimensional state Xt evolves according
to a possibly time-inhomogeneous VAR(1) model with innovations vt and transition matrices Ft.

Xt = FtXt−1 + vt (2.1)

The statistician observes a q-dimensional linear transformation Yt ofXt where we incur an additional
observation error εt,

Yt = ZtXt + εt (2.2)

In the ideal model we work in a Gaussian context, that is we assume

vt
indep.∼ Np(0, Qt), (2.3)

εt
indep.∼ Nq(0, Vt), (2.4)

X0 ∼ Np(a0, Q0), (2.5)
{vt}, {εt}, X0 indep. as processes (2.6)

As usual, normality assumptions may be relaxed to working only with specified first and second
moments, if we restrict ourselves to linear unbiased procedures as in the Gauss-Markov setting.
For this paper, we assume the hyper–parameters Ft, Zt, Qt, Vt, a0 to be known.
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Time Discrete, Hidden Markov Models: Our results will in parts be valid in an even more
general time-discrete setting which also covers Hidden Markov Models: we start with

P (X0 ∈ A) =

∫
A
pX0

0 (x)µ0(dx) (2.7)

and assume that the unobservable state evolves according to a Markov transition:

P (Xt ∈ A|Xt−1 = xt−1, . . . , X0 = x0) = P (Xt ∈ A|Xt−1 = xt−1) =

=
∫
A p

Xt|Xt−1=xt−1

t (x)µt(dx), (2.8)

Again we only have a transformation Yt of Xt available which in this case is distributed according
to

P (Yt ∈ B|Xt = xt) =

∫
B
q
Yt|Xt=xt
t (y) νt(dy) (2.9)

In this setting, we assume known (and existing) [conditional] densities pX0
0 ,

p
Xt|Xt−1=xt−1

t , qYt|Xt=xtt .

Somewhere in-between the model formulation of this paragraph and the Euclidean SSM you may
range the dynamic (generalized) linear models as discussed in West et al. (1985) and West and
Harrison (1989). These are also covered by Theorem 3.3 as soon as in the state space a squared
error makes sense.

Continuous setting: In applications of Mathematical Finance we also need to cover continuous
time settings as given by an unobservable state evolving according to an SDE

dXt = f(t,Xt) dt+ q(t,Xt) dWt (2.10)

and where for consistency, we observe Yt according to

dYt = z(t,Xt) dt+ v(t) dW ′t , Y0 = 0 (2.11)

ForX0 we assume (2.7), whileWt, W ′t , are independent Wiener processes, and f , q, z, v are suitably
measurable, known functions.

This formulation with a time-continuous observation process as in (2.11) may be found in Tang
(1998) and James (2005).

More often, however, observations will be made discretely, so that a formulation like the one of
Nielsen et al. (2000) and Singer (2002) is more adequate, i.e.; for discrete times t1 < . . . < tN we
have observations

Ytk = ztk(Xtk) + εtk (2.12)

In this context, a straightforward approach linearizes the corresponding functions f and z to give
the (continuous-discrete) Extended Kalman Filter (EKF), or, improved to second order moment fitting
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in the second order nonlinear filter (SNF) introduced in Jazwinski (1970), also confer Singer (2002,
sec. 4.3.1). After this linearization we are again in the context of a (time-inhomogeneous) linear
SSM, hence the methodology we develop in the sequel applies to this setting as well.

More recently, approaches to improve on this simple linearization have been introduced, notably the
unscented Kalman filter (UKF) (Julier et al., 2000) and Hermite expansions as in Aït-Sahalia (2002).
We do not cover them here, though. For a survey of these methods, confer Singer (2002, sec. 4.3).
For techniques to deal with non-linear time-discrete situations, see Tanizaki (1996).

Control: Going one more step ahead, to cover applications such as optimal portfolio selection,
we may allow for controls Ut to be set or determined by the statistician, and which are fed back in
the state equations. In the context of the continuous time model from (2.10) and (2.12), this is also
known as SDEX, confer Nielsen et al. (2000).
In this setting, the controls Ut are assumed measurable w.r.t. σ(Ys|s < t) or usually even measurable
w.r.t. σ(Yt−).
To integrate these controls into our setting, we just have to generalize functions f , z, q and densities
p
· | ·
t , q · | ·t to f = f(t,Xt, Ut) (and z,q likewise) and modify p · | ·t = p

Xt|Xt−1=xt−1,Ut−1=ut−1

t (x), and
q
· | ·
t = q

Yt|Xt=xt,Ut−1=ut−1

t (y).
For the application of stochastic control to portfolio optimization, confer Korn (1997).

2.2 Deviations from the ideal model

As usual with Robust Statistics we do not confine ourselves to ideal model assumptions but rather
allow for (small) deviations from these assumptions, most prominently generated by outliers.

In our notation, sub/superscript id denotes the ideal setting, di the distorting (contaminating) situ-
ation, re the realistic, contaminated situation.

Contrary to the independent setting, outlier may occur in quite different manors: Following the
terminology of Fox (1972), we distinguish innovation outliers (or IO’s) and additive outliers (or AO’s).
Historically, AO’s denote gross errors affecting the observation errors, i.e.,

AO :: εret ∼ (1− rAO)L(εidt ) + rAOL(εdit ) (2.13)

where L(εdit ) is arbitrary, unknown and uncontrollable and 0 ≤ rAO ≤ 1 is the AO-contamination
radius, i.e.; the probability for an AO.

IO’s on the other hand are usually defined as outliers which affect the innovations,

IO :: vre
t ∼ (1− rIO)L(vid

t ) + rIOL(vdi
t ) (2.14)
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where again L(vdi
t ) is arbitrary, unknown and uncontrollable and 0 ≤ rIO ≤ 1 is the corresponding

IO-contamination radius.

We stick to this distinction for consistency with the literature, although we will rather use these
terms in the following sense: IO’s denote endogenous outliers affecting the state equation in gen-
eral, hence distorting several subsequent states. This also covers level shifts or linear trends; if
|Ft| < 1 these are not included in the classical definition, as then IO’s would then decay geometri-
cally in t. We also extend the meaning of AO’s to denote general exogenous outliers which enter
the observation equation only and thus only cause distortions at single time points. This also covers
substitutive outliers or SO’s defined as

SO :: Y re
t ∼ (1− rSO)L(Y id

t ) + rSOL(Y di
t ) (2.15)

where again L(Y di
t ) is arbitrary, unknown and uncontrollable and 0 ≤ rSO ≤ 1 is the corresponding

SO-contamination radius.

Apparently, the SO-ball of radius r consisting of all L(Y re
t ) according to (2.15) contains the corre-

sponding AO-ball of the same radius when Y re
t = ZtXt + εret . However, for technical reasons, we

make the additional assumption that

Y id
t , Y

di
t stochastically independent (2.16)

and then the “contains”-relation no longer holds.

The more general definition of AO’s and IO’s in the sequel will be labeled “wide-sense” to distin-
guish it from the “narrow-sense” definitions (2.13) and (2.14).

Remark 2.1. Whether (narrow-sense) AO’s or SO’s are better suited to capture model deviations
will depend on the actual application; seen from mathematical operability, clearly SO’s are easier to
treat, compare Remark 3.4(b). They will also lead to different least favorable situations, compare
Remark 3.4(d).

Different and competing goals are induced by endogenous and exogenous outliers: In the
presence of (wide-sense) AO’s we would like to attenuate their effect to avoid “false alarms”, while
when there are (wide-sense) IO’s the usual goal in online applications would be tracking, i.e.; detect
structural changes as fast as possible and/or react on the changed situation.

Obviously we are faced with an identification problem here:
Immediately after a suspicious observation we cannot tell (wide-sense) AO’s from (wide-sense) IO’s.
Such a simultaneous treatment will only be possible with a certain delay —see section 5.

In other, more off-line situations, such as spectral analysis of low flow estimation or inter-individual
heart frequency spectra, one would like to recover the situation without structural changes and
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hence a cleaning from both (wide-sense) IO’s and AO’s is required; after this cleaning the powerful
instruments of spectral analysis will be available; for this and other issues in robust density estima-
tion, confer Kleiner et al. (1979) and Spangl (2008). We will not pursue this goal in this paper,
however.

2.3 Example: Steady State Model

Our running example will be a one-dimensional steady state model with hyper-parameters

p = q = 1, Ft = Zt = 1, in the ideal model: vt, εt
i.i.d.∼ N (0, 1) (2.17)

In Figure 1, we display a typical realization of an SSM in model (2.17), where outliers are generated
according to rIO = rAO = 0.1, vdi

t , ε
di
t

i.i.d.∼ N (10, 0.1).

1-dim steady state - ideal

0 50 100

X

-2
0

-1
5

-1
0

-5
0

Y

1-dim steady state under AO

0 50 100

X

-2
0

-1
5

-1
0

-5
0

5

Y

1-dim steady state - ideal

0 50 100

X

-5
0

5
10

Y

1-dim steady state - under IO

0 50 100

X

0
20

40
60

Y

Figure 1:Model (2.17) in the ideal model and under (narrow-sense) AO’s and IO’s; while AO’s only affect single observations, under IO’s

we never return to the original level. Instances of outliers are marked with red circles.

2.4 Classical Method: Kalman–Filter

Filter Problem The most important problem in SSM formulation is to somehow reconstruct the
unobservable states Xt based on the observations Yt. For abbreviation let us denote

Y1:t = (Y1, . . . , Yt), Y1:0 := ∅ (2.18)

Then using mean squared error (MSE) risk, the reconstruction problem becomes

E
∣∣Xt − ft(Y1:s)

∣∣2 = minft (2.19)
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Depending on the horizon s of the observations used to reconstruct Xt, we speak of a prediction
problem for s < t, of a filtering problem if s = t and of a smoothing problem if s > t. In the sequel
we will confine ourselves to the filtering problem.

Kalman–Filter It is well-known that the general solution to (2.19) is the corresponding condi-
tional expectation E[Xt|Y1:s]. Except for the Gaussian case, this exact conditional expectation how-
ever is rather expensive to to compute. Hence similar to the Gauss-Markov setting it is a natural
restriction to confine oneself to linear filters. In this context, the seminal work of Kalman (1960)
(discrete-time setting) and Kalman and Bucy (1961) (continuous-time setting) introduced a recursive
scheme to compute this optimal linear filter:

Initialization: X0|0 = a0, Σ0|0 = Q0 (2.20)

Prediction: Xt|t−1 = FtXt−1|t−1, Σt|t−1 = FtΣt−1|t−1F
τ
t +Qt (2.21)

Correction: Xt|t = Xt|t−1 +M0
t ∆Yt, ∆Yt = Yt − Ztxt|t−1,

M0
t = Σt|t−1Z

τ
t ∆−1

t , Σt|t = (Ip −M0
t Zt)Σt|t−1,

∆t = ZtΣt|t−1Z
τ
t + Vt (2.22)

where Σt|t = Cov(Xt −Xt|t), Σt|t−1 = Cov(Xt −Xt|t−1), and M0
t is the so-called Kalman gain.

Using orthogonality of {∆Yt}t we may setup similar recursions for the corresponding best linear
smoother; see, e.g. Anderson and Moore (1979), Durbin and Koopman (2001).

Optimality of the Kalman–Filter To see that the (classical) Kalman filter solves problem (2.19)
(for s = t) among all linear filters, let us write

lin(X) := closed linear space generated by X (2.23)
oP(·|X) := orthogonal projection onto lin(X) (2.24)

and define (recursively)
∆Yt = Yt − oP(Yt|Y1:t−1) (2.25)

Hence the ∆Yt are mutually orthogonal and

Xt|t−1 = oP(Xt|Y1:t−1) = Ft oP(Xt−1|Y1:t−1) = FtXt−1|t−1 (2.26)
Xt|t = oP(Xt|Y1:t) = oP(Xt|Y1:t−1) + oP(Xt|∆Yt) =

= Xt|t−1 + oP(Xt −Xt|t−1|∆Yt) = Xt|t−1 +M0
t ∆Yt (2.27)

For later purposes, we also introduce a symbol for the prediction error

∆Xt = Xt −Xt|t−1. (2.28)

Similar to the Gauss-Markov Theorem, under normality, i.e.; assuming (2.3), (2.4), (2.5), this op-
timality extends as follows: Xt|t[−1] = E[Xt|Y1:t[−1]], i.e. the Kalman filter is optimal among all
Y1:t[−1]-measurable filters. It also is the posterior mode of L(Xt|Y1:t) and Xt|t can also be seen to
be the ML estimator for a regression model with random parameter; for the last property, compare
Duncan and Horn (1972).
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The rLS as optimally robust filter

Features of the Kalman–Filter The Kalman filter stands out for its easy and understandable
structure:
We have an initialization, a prediction, and a correction step, all steps are linear, hence easy evalu-
able and interpretable. Due to the strict recursivity / Markovian structure of the state equation, all
information from the past useful for the future may be captured in the value of Xt|t−1, so there is
only very limited memory needed.
From a Robustness point of view, this linearity at the same time is a weakness of this filter — y
enters unbounded into the correction step which hence is prone to outliers.
A good robustification of this approach would try to retain as much as possible from these positive
properties of the Kalman filter while revising the unboundedness in the correction step.

3 The rLS as optimally robust filter

3.1 Definition

robustifying recursive Least Squares: rLS In a first step we limit ourselves to (wide-sense) AO’s.
Notationally, where clear from the context, we suppress the time index t.

As no (new) observations enter the initialization and prediction steps, these steps may be left un-
changed. In the correction step, we will have to modify the orthogonal projection oP(∆X|∆Y )
present in (2.27). Suggested by H. Rieder and worked out in Ruckdeschel (2001, ch. 2), the follow-
ing robustification of the correction step is straightforward: Instead of M0∆Y we use a Huberiza-
tion of this correction

Hb(M
0∆Y ) = M0∆Y min{1, b/

∣∣M0∆Y
∣∣} (3.1)

for some suitably chosen clipping height b. Apparently, this proposal removes the unboundedness
problem of the classical Kalman filter while still remaining reasonably simple, in particular this mod-
ification is non iterative, hence especially useful for online-purposes.
However it should be noted that, departing from the Kalman filter and at the same time insisting
on strict recursivity, we possibly exclude “better” non-recursive procedures, compare Remark 3.6.
These procedures on the other hand would be much more expensive to compute.

Remark 3.1.
∣∣ · ∣∣ in expression

∣∣M0∆Y
∣∣ denotes the Euclidean norm of Rq; instead, however you

could also use other norms like a Mahalanobis type norm. With respect to Theorem 3.3, optimality
is preserved when instead of the Euclidean norm used in the MSE, you use the corresponding
alternative norm.

11



The rLS as optimally robust filter

Choice of the clipping height b As to the choice of the clipping height b, we make the simpli-
fying assumption that the conditional expectation Eid[∆X|∆Y ] is linear, which will turn out to only
be approximately right. In this setting, we have two proposals:

The first one is an Anscombe insurance criterium. To given “insurance premium” δ to be paid
in terms of loss of efficiency in the ideal model compared to the optimal procedure in this (ideal)
setting, i.e.; the classical Kalman filter, we choose b = b(δ) such that

Eid

∣∣∆X −Hb(M
0∆Y )

∣∣2 !
= (1 + δ) Eid

∣∣∆X −M0∆Y
∣∣2 (3.2)

The other possibility will become clearer in the next section: To a given size of the (SO-) neighbor-
hood USO(r) specified by a radius r ∈ [0, 1], we determine b = b(r) such that

(1− r) Eid(|M0∆Y | − b)+
!

= rb (3.3)

If this radius is unknown, we could follow the idea worked out in Rieder et al. (2008), that is,
distinguish a least favorable radius r0 defined in the following expressions

r0 = argmins∈[0,1]ρ0(s), ρ0(s) = max
r∈[0,1]

ρ(r, s), (3.4)

ρ(r, s) =
maxUSO(r) MSE(rLS(b(s)))

maxUSO(r) MSE(rLS(b(r)))
(3.5)

and use the corresponding b(r0).

If we have limited knowledge about r, say r ∈ [rl, ru], 0 < rl < ru < 1, we would restrict the
variation range of s and r in the respective optimization problems correspondingly.

To this end, define

Ar = Eid

[
tr Covid[∆X|∆Y id] + (|M0∆Y id| − b(r))2

+

]
(3.6)

Br = Eid

[
|M0∆Y id|2 − (|M0∆Y id| − b(r))2

+

]
+ b(r)2 (3.7)

Then we can show the following variant of Kohl (2005, Lemma 2.2.3):

Lemma 3.2. In equations (3.4) and (3.5), let r, s vary in [rl, ru] with 0 ≤ rl < ru ≤ 1. Then

ρ0(r) = max{Ar/Arl , Br/Bru} (3.8)

and there exists some r̃0 ∈ [rl, ru] such that

Ar̃0/Arl = Br̃0/Bru (3.9)

and it holds
min

r∈[rl,ru]
ρ0(r) = ρ0(r̃0), i.e.; r0 = r̃0 (3.10)

Moreover, if ru = 1, r0 = ru.

12



The rLS as optimally robust filter

In particular, the last equality shows that one should restrict ru to be strictly smaller than 1 to get a
sensible procedure.

3.2 (One-Step)-Optimality of the rLS

The seemingly ad-hoc robustification proposed in the rLS filter has some remarkable optimality
property, though. To see this, let us first forget about the time structure and instead consider the
following simplified, but general “Bayesian” model:

We have an unobservable but interesting signal X ∼ PX(dx), where for technical reasons we as-
sume that in the ideal model E |X|2 <∞.
Instead of X we rather observe a random variable Y of which we know the ideal transition proba-
bilities; more specifically, we assume that these transition probabilities are dominated, again in the
ideal model, hence have densities w.r.t. some measure µ,

P Y |X=x(dy) = π(y, x)µ(dy) (3.11)

Our approach relies on the MSE — so we assume that the range of X be such that MSE makes
sense, — which essentially amounts to saying that the range of X be a subset of some Hilbert
space.

As (wide-sense) AO model, we consider an SO outlier model, i.e.;

Y re = (1− U)Y id + UY di, U ∼ Bin(1, r) (3.12)

for U independent of (X,Y id, Y di) and some distorting random variable Y di for which, in a slight
variation of condition (2.16) we assume

Y di, X independent (3.13)

and the law of which is arbitrary, unknown and uncontrollable. As a first step consider the set
∂USO(r) defined as

∂USO(r) =
{
L(X,Y re) |Y re acc. to (3.12) and (3.13)

}
(3.14)

Because of condition (3.13), in the sequel we refer to the random variables Y re and Y di instead of
their respective (marginal) distributions only, while in the common gross error model, reference to
the respective distributions would suffice. Condition (3.13) also entails that in general, contrary to
the gross error model, L(X,Y id) is not element of ∂USO(r), i.e.; not representable itself as some
L(X,Y re) in this neighborhood.

As corresponding (convex) neighborhood we define

USO(r) =
⋃

0≤s≤r
∂USO(s) (3.15)

hence the symbol “∂” in ∂USO, as the latter can be interpreted as the corresponding surface of this
ball. Of course, USO(r) contains L(X,Y id).
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The rLS as optimally robust filter

In the sequel where clear from the context we drop the superscript SO and the argument r.

With this setting we may formulate two typical robust optimization problems:

Minimax-SO problem Minimize the maximal MSE on an SO-neighborhood, i.e.; find a measur-
able reconstruction f0 for X s.t.

maxU Ere |X − f(Y re)|2 = minf ! (3.16)

Lemma5-SO problem Alluding to Hampel’s famous Lemma 5, confer Hampel (1968), minimize
the MSE in the ideal model but subject to a side condition on the bias to be fulfilled on the whole
neighborhood, i.e.; find a measurable reconstruction f0 for X s.t.

Eid |X − f(Y id)|2 = minf ! s.t. supU
∣∣Ere f(Y re)− EX

∣∣ ≤ b (3.17)

The solution to both problems can be summarized as

Theorem 3.3 (Minimax-SO, Lemma5-S0).

(1) In this situation, there is a saddle-point (f0, P
Y di

0 ) for Problem (3.16)

f0(y) := EX +D(y) min{1, ρ/
∣∣D(y)

∣∣} (3.18)

P Y
di

0 (dy) := 1−r
r (
∣∣D(y)

∣∣/ρ − 1)+ P Y
id

(dy) (3.19)

where ρ > 0 ensures that
∫
P Y

di

0 (dy) = 1 and

D(y) = Eid[X|Y = y]− EX (3.20)

(2) f0 from (3.18) also is the solution to Problem (3.17) for b = ρ/r.

(3) If Eid[X|Y ] is linear in Y , i.e.; Eid[X|Y ] = MY for some matrix M , then necessarily

M = M0 = Cov(X,Y ) VarY − (3.21)

— or in SSM formulation: M0 is just the classical Kalman gain and f0 the (one-step) rLS.

Identifications for the SSM context Our “Bayesian” Model (3.11) already covers one step in our
state space model context: we only have to identify X in model (3.11) with ∆Xt and π(y, x)µ(dy)
with N (Zt∆Xt, Vt)(dy).
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Figure 2:Densities of PY = PY
id

, P̂Y = PY
re

0 , P̃Y = PY
di

0 for PX = P ε = N (0, 1), r = 0.1; note the “thin” tails.

Example for SO-least favorable densities To illustrate the result of Theorem 3.3, we have
plotted the ideal density of P Y

id
, the (least favorable) contaminated density of P Y

re

0 , and the (least
favorable) contaminating density of P Y

di

0 in Figure 2.

Remark 3.4. (i) SO neighborhoods (without using this name) have already been used by Birmi-
wal and Shen (1993) and Birmiwal and Papantoni-Kazakos (1994), although in a somewhat
less general (one-dimensional) model and without recognizing the explicit connection to the
ideal conditional expectation.

(ii) The use of SO neighborhoods in this (finite sample) context allows for remarkably general
optimality results —remarkable, because explicit solutions to robust optimization problems
in a finite sample setting are rare. Usually one argues asymptotically instead. Important
exceptions are Huber (1968), Huber and Strassen (1973), and even there, in the former case
one uses a special (unusual) loss function and is limited to one dimension.

(iii) Although similar as to the model (you could interpret X as a random location parameter) and
type of result, the saddle-point differs from the one obtained in the one-dimensional location
model in Huber (1964). This becomes obvious when studying the tails of the least favorable
P Y

re

0 : while in the Gaussian model in the location setting the tails decay as ce−k|x| for some
c, k > 0, in our setting they decay as c′|x|e−x2/2 so appear even “less harmful” than in the
location case.

(iv) Attempts to solve corresponding robust optimization problems in a (narrow-sense) AO neigh-
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The rLS as optimally robust filter

borhood are much more difficult and only partial results in this context have been obtained
in Donoho (1978), Bickel (1981), and Bickel and Collins (1983); in particular one knows, that
in the setup of our example the corresponding least favorable P̃ ε = P ε

di

0 must be discrete
with only possible accumulation points ±∞. In addition, existence of a saddle-point may be
shown using abstract compactness and continuity arguments, but in order to obtain specific
solutions one has to recur to numeric approximation techniques as worked out in Ruckdeschel
(2001, sec. 8.3); in particular, one obtains redescending optimal filters; this redescending in
filtering context is not a problem as it is in robust estimation, because we do not iterate the
filter.

(v) The approach by Masreliez and Martin (1977) to translate the Huber (1964) minimax variance
result to this dynamic setting uses redescenders in the corresponding ACM filter, too.
It should be noted that the corresponding least-favorable (SO-)situation is not in the tails
but rather where the corresponding ψ function takes its maximum in absolute value. An SO
outlier could easily place contaminating mass on this maximum, while this is much harder if
not impossible to achieve in a (narrow-sense) AO situation. Hence in simulations where we
produce “large” outliers, the ACM filter tends to outperform the rLS filter, as these “large”
outliers are least favorable for the rLS but not for the ACM. The “inliers” producing the least
favorable situation for the ACM on the other hand will be much harder to detect on naïve
data inspection than “large” outliers, in particular in higher dimensions.

3.3 Back in the ∆X Model for t > 1

So far we have ignored the fact that our X in model (3.11) resp. ∆Xt in the state space model
context will stem from a past which has already used our robustified version of the Kalman filter.
In particular, the law of ∆Xt (even in the ideal model) is not straightforward and hence (ideal)
conditional expectation appearing in the optimal solution f0 in Theorem 3.3 in practice are not so
easily computable.

Approaches to go back — lots of “BUT’s” The issue to assess the law ∆Xt is common for any
(non-linear) robustification of the Kalman filter, and hence there already exist a couple of approaches
to deal with it:

Masreliez and Martin (1977) and Martin (1979) assume L(∆Xt) normal and propose using ro-
bust location estimators (with redescending ψ-function) as alternatives to the linear correction step.
Contradicting this assumption, we have the following proposition

Proposition 3.5. Whenever in one correction step in the ∆Xt past one has used a bounded cor-
rection step then {∆Xt} (as a process) cannot be normally distributed; this assertion cannot even
hold asymptotically, as long as for the clipping heights bt we can say

0 < lim inf
t

bt ≤ lim sup
t

bt <∞ (3.22)
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Schick (1989) and Schick and Mitter (1994) use Taylor-expansions for non-normal L(∆Xt); doing
so they end up with stochastic error terms but do not give an indication as to uniform integrability.
Hence it is not clear whether the approximation stays valid after integration. More importantly, at
time instance t, they come up with a bank of (at least t) Kalman–filters which is not very operational.

Birmiwal and Shen (1993) work with the exact L(∆Xt) and hence have to split up the integration
according to the the history of outlier occurrences which yields 2t different terms — which is not
very operational either.

Remark 3.6. One of the features of the ideal Gaussian model is that Eid[∆Xt|Y1:t] is Markovian in
the sense that Eid[∆Xt|Y1:t] = Eid[∆Xt|∆Yt] hence only depends on the one value of ∆Yt. When
using bounded correction steps, however, this property gets lost, hence the restriction to strictly
recursive procedures as is the rLS filter is a real restriction.

Theorem 3.3 does not make any normality assumptions, but in assertion (3), we have seen that the
rLS would result optimal once we can show that Eid[∆Xt|∆Yt] for ∆X stemming from an rLS past
is linear. This leads to the question:

When is Eid[∆X|∆Y ] linear?

As to this question we have (omitting time indices t)

Proposition 3.7. Assume
Lid(ε) = Nq(0, V ) (3.23)

Then Eid[∆X|∆Y ] is linear

⇐⇒ L(∆X) is normal (3.24)

⇐⇒ M3(e) := E
[(
eτ (∆X − E[∆X|∆Y ])

)3 ∣∣∣∆Y = y
]

= 0 ∀ e ∈ Rp (3.25)

Remark 3.8. (i) The first equivalence (together with Proposition 3.5) shows that, stemming
from an rLS-past, we will never be SO-optimal with the rLS except for the very first time
step.

(ii) Simulations however show that rLS gives very reasonable results. So in fact we could/should
be close to an ideal linear conditional expectation.

(iii) “Closeness” to linearity could be operationalized by the second derivative ∂2/∂y2 Eid[∆X|∆Y =
y], which in fact leads us to expression (3.25).
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(iv) The second equivalence (conditional unskewedness of ∆X) is somewhat surprising, as it
seems much weaker than normality of the prediction error.

A test for linearity In particle filter context where you simulate many stochstically independent
filters in parallel, Proposition 3.7 suggests the following test for linearity/normality:

Proposition 3.9. Let ∆X\
i , i = 1, . . . , n be an i.i.d. sample from L(∆Xt), the law of the prediction

errors of some filter at time t; let Σ = Cov(∆Xt), σ2 its maximal eigen value and e a corresponding
eigen vector (of norm 1); let Σ̂n, σ̂2

n, and ên the corresponding empirical counter parts (all assumed
consistent). Define the test statistic

Tn =
1

n

n∑
i=1

(êτn∆X\
i )

3 (3.26)

Then under normality of L(∆Xt),
√
nTn −→w N (0, 15σ6) (3.27)

and the test
I(|Tn| >

√
15/n σ̂3

nuα/2) (3.28)

for uα the upper α-quantile of N (0, 1) is asymptotically most powerful among all unbiased level-α-
tests for testing

H0 : sup
|e|=1

M3(e) = 0 vs. H1 : sup
|e|=1
|M3(e)| > 0 (3.29)

3.4 Way out: eSO-Neighborhoods

Another approach to explain the good empirical findings for the rLS is to once again extend the
original SO-neighborhoods. To this end, consider the following outlier model —the extended SO
or eSO–model: In this model, we also allow for model deviations in X, i.e.; we assume a realistic
(Xre, Y re) according to

(Xre, Y re) := (1− U)(X id, Y id) + U(Xdi, Y di) (3.30)

for X id ∼ PX
id

, Y id according to equation (3.11), Xdi ∼ PX
di

, Y di ∼ P Y
di

, U ∼ Bin(1, reSO),
where

U and (X id, Y id) independent as well as (mutually) U,Xdi, Y di (3.31)

and the joint law PX
id,Y id

and the radius r = reSO are known, while PX
di
, P Y

di
are arbitrary,

unknown and uncontrollable; however, we assume that

EdiX
di = EidX

id, Edi |Xdi|2 ≤ G (3.32)
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for some known 0 < G <∞, and accordingly define

U eSO(r) :=
⋃

0≤s≤r
∂U eSO(s), ∂U eSO(r) := { L(Xre, Y re) acc. to (3.30)–(3.32) } (3.33)

Remark 3.10. At first glance, moment condition (3.32) seems to be in conflict with the spirit of Ro-
bustness; however, this condition has not been introduced to induce a higher degree of robustness,
but rather to extend the applicability of Theorem 3.3.

Theorem 3.11 (minimax-eSO). The pair (f0, P
Y di

0 ), optimal in the Minimax-SO-problem to radius

rSO = r from Theorem 3.3, extended to
(
f0, P

Y di

0 ⊗ PXdi

0

)
for any PX

di

0 such that Edi |Xdi|2 = G,

remains a saddle-point in the corresponding Minimax-Problem on the eSO-neighborhood U eSO to
the same radius r —no matter what bound G in equation (3.32) holds. The minimax risk depends
on G, though.

Consequences of Theorem 3.11 In the Gaussian setup, i.e.; we assume (2.3), (2.4), and (2.5),
we no longer regard the (SO–) saddle-point solution to an U(r)-neighborhood around L(∆X)
stemming from an rLS-past, but use Theorem 3.11 as follows:

Proposition 3.12. Assume that for each time t there is a (fictive) random variable ∆XN ∼ Np(0,Σ)
such that ∆XrLS

t stemming from an rLS-past can be considered an Xdi in the corresponding eSO-
neighborhood around ∆XN with radius r.

Then, in this setup the rLS is exactly minimax for each time t

Remark 3.13. (i) Proposition 3.12 gives an explanation for the good empirical results obtained
with the rLS filter, compare [BSPANGL-REF].

(ii) The existence of ∆XN ∼ Np(0,Σ) in a general setting is not yet proved. To this end one has
to show moment condition (3.32) and that

supλ
(

log p∆XNt − log p∆Xt
)
≥ log(1− r) (3.34)

where p∆XNt , p∆Xt are the corresponding Lebesgue densities and supλ is the corresponding
essential supremum w.r.t. Lebesgue measure in the respective dimension. Moment condi-
tion (3.32) is not hard to fulfill — we only need to check that Eid ∆Xt = 0, which for the rLS
follows from symmetry of the distributions in the ideal model, and that the second moment
is bounded — which also clearly holds. So (3.34) is the more difficult point to show.
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(iii) As to the choice of the covariance Σ for ∆XNt two candidates suggest themselves: Σ =
Cov ∆XrLS

t and Σ = Σt|t−1 from the classical Kalman filter. While the former takes up the
actual error covariances, the latter is much easier to compute. In our numerical examples in
Ruckdeschel (2001), we could not find any significant advantages for the former in terms of
precision and hence propose the latter for computational reasons.

(iv) For p = 1, condition (3.34) could be checked numerically in a number of models, confer
Ruckdeschel (2001, Table 8.1)

(v) For p > 1, particle filter techniques should be helpful.

3.5 Stationarity Aspects

One can show that in a time invariant (linear, time discrete, Euclidean) state space model (i.e.,
hyper-parameters Ft, Zt, Qt and Vt are constant in t), whenever the corresponding Kalman filter
gets asymptotically stationary, the same also goes for the rLS when we use a sufficiently small time-
invariant insurance premium δ in (3.2) or a sufficiently small time-invariant radius in (3.3); confer
Ruckdeschel (2001, chap. 7).
Asymptotic stationarity for the Kalman filter holds whenever the state space model is completely
detectable in the sense of Anderson and Moore (1979).
This stationarity is in particular useful as then also the Kalman-gains M0

t converge in t as well as the
error covariances Σt|t[−1], and hence also the corresponding determining equations (3.2) and (3.3)
for the clipping height b of the rLS; i.e.; as this convergence is geometrically fast, we only need to
calculate b for a small number of t’s (until M0

t , Σt|t[−1] “stabilize”), which, if the hyper-parameters
are known, can be done offline, before having made any observation.

4 IO-optimality

So far we have only considered (wide-sense) AO-Robustness. In the presence of IO’s, we have
already noted that instead of attenuating (the influence of) a dubious observation we would rather
want to follow an IO outlier as fast as possible. In this context, it is well-known that the Kalman
filter tends to be too inert and that we need a faster tracking filter. To do so, let us go back to
our “Bayesian” model (3.11) but now assume an additive structure, i.e.; we specify the transition
densities π(y, x) to come from an observation Y which is built up as

Y = X + ε (4.1)
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Equation (4.1) reveals a remarkable symmetry of X and ε which we are going to exploit now:
Apparently

E[X|Y ] = Y − E[ε|Y ] (4.2)

This is helpful if we are now assuming that ε will always be ideally distributed, and instead the
states Xt get corrupted. To this end, we retain the SO-model from the preceding sections, i.e.,
Y id will be replaced from time to time by Y di. Contrary to the AO formulation however, we now
assume that this replacement by Y di reflects a corresponding change in X, as we now want to track
the distorted signal. As a consequence this gives the following IO-version of the minimax problem
(where the only visible difference is the superscript re for X).

maxU Ere |Xre − f(Y re)|2 = minf ! (4.3)

But, using Xre = Y re − ε, and setting f̃(y) = y − f(y) we obtain the equivalent formulation

maxU Ere |ε− f̃(Y re)|2 = minf̃ ! (4.4)

and we are back in the situation of subsection (3.2) with the respective rôles of X and ε inter-
changed. That is; the corresponding theorems translate word by word and give

Theorem 4.1 (Minimax-IO).

(1)’ In this situation, there is a saddle-point (f1, P
Y di

1 ) for Problem (4.3)

f1(y) := y − D̃(y) min{1, ρ̃/
∣∣D̃(y)

∣∣} (4.5)

P Y
di

1 (dy) := 1−r
r (
∣∣D̃(y)

∣∣/ρ̃ − 1)+ P Y
id

(dy) (4.6)

where ρ̃ > 0 ensures that
∫
P Y

di

1 (dy) = 1 and

D̃(y) = y − Eid[X|Y = y] (4.7)

(3)’ If Eid[X|Y ] is linear in Y , i.e.; Eid[X|Y ] = MY for some matrix M , then necessarily

M = M0 = Cov(X,Y ) VarY − (4.8)

—or in the SSM formulation: M0 is just the classical Kalman gain and f1 the (one-step) rLS.IO
defined below.

Note that contrary to Theorem 3.3 where EX need not be 0, here E ε = 0, which simplifies the
definition of D̃ in (4.7).

rLS.IO: In analogy to the definition of the rLS in equation (3.1), we set up an IO-robust version of
the rLS as follows: We retain the initialization and prediction step of the classical Kalman filter and,
assuming Zt invertible for the moment, replace the correction step by

Xt|t = Xt|t−1 + Z−1
t [∆Yt −Hb

(
(Iq − ZtM0

t )∆Yt

)
] (4.9)
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and IO’s

where the same arguments for the choice of the norm and the clipping height apply as for the
AO-robust version of the rLS.

To better distinguish (wide-sense) IO- and AO-robust filters, let us call the IO-robust version rLS.IO
and (for distinction) the AO-robust filter rLS.AO in the sequel.

Invertibility problem Back in the (linear, discrete-time, Euclidean) state space model the ap-
proach just described faces the problem that in general matrix Zt will not be invertible, so we
cannot reconstruct X injectively from Y and ε.
Under a certain full-rank condition, this problem can be solved by passing to corresponding rLS-type
smoothers. The assumption we need is a version of complete constructibility, confer Anderson and
Moore (1979, Appendix), adopted to the time-inhomogeneous case which reads:

Denoting the product Ft+pFt+p−1 · . . . · Ft by Ft+p:t we assume that for each t, Ft+p−1:t(Rp) is
contained in [Zτt , F

τ
t Z

τ
t+1, F

τ
t+1:tZ

τ
t+2, . . . , F

τ
t+p−1:tZ

τ
t+p−1](Rq). Details will be given in a subsequent

paper.

Remark 4.2. (i) It is worth noting that also our IO-robust version is a filter, hence does not use
information of observations made after the state to reconstruct; rLS.IO is strictly recursive and
non iterative, hence well-suited for online applications.

(ii) An alias to rLS.IO could be “hysteric filter” as it completely hysterically follows any changes in
the Y ’s.

5 Simultaneous Treatment of AO’s and IO’s

As already mentioned, simultaneous treatment of (wide-sense) AO’s and IO’s is only possible with a
certain delay. With this delay, we can base our decision of whether there was an AO or an IO on
the size of subsequent |∆Yt|’s — if there was an AO this should result in only one “large” |∆Yt| in
a row, while in case of an IO there should be a whole sequence of |∆Yt|’s. So a hybrid filter (called
rLS.IOAO for simplicity) could be designed as follows:

To a given delay window width w, we run in parallel rLS.AO and rLS.IO (but only store the last w
values of rLS.IO). By default we return the rLS.AO values. Whenever there is a run of w “large”
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|∆Y rLS.AO
t |’s we replace the last w filter values by the corresponding rLS.IO values and use these

ones to continue with the rLS.AO.

In the ideal (Gaussian) model, the ∆Yt’s should be independent, so a reasonable decision on
whether a sequence of |∆Y rLS.AO

t |’s is “large” could be based on corresponding quantiles of |∆Yt| in
the ideal model. Relaxing this condition a little, we already switch to rLS.IO when a high percentage
h (default: 80% of the last w instances of |∆Y rLS.AO

t |) are larger than this given quantile.

This leaves us to determine several tuning parameters: window-width w (proposal: 5 seems to be
a good value, but thorough testing still remains to be done), the clipping heights for rLS.IO and
rLS.AO (proposal: according to (versions of) (3.2) or (3.3)), the percentage h, and the corresponding
quantile (default 99%) assuming that ∆Yt ∼ N(0,∆t).

Remark 5.1. (i) Note that although the decision whether we issue the rLS.IO or the rLS.AO val-
ues is made w observations after the state to be reconstructed, we still only use filters, hence
the information of Yt+j , j = 1, . . . , w − 1 is not used to improve the reconstruction so far, as
this would involve corresponding (yet-to-be-robustified) smoothers. Once the corresponding
work on robust smoothing will be done (see section 7), we could surely use this additional
information.

(ii) As noted in the corresponding discussion in subsection 3.5, in general ∆t will usually converge
in t exponentially fast, so these tuning parameters will only have to be determined for a small
number of time instances t. In fact, setting them time-invariant will already do a reasonable
job.

6 Simulation Example: Steady State Model

Returning to our reference example, model (2.17), let us see how classical Kalman filter, rLS.AO,
rLS.IO, and rLS.IOAO perform in this model and under (wide sense) AO’s and IO’s. More specifically,
we have generated (deterministic) (wide sense) AO’s in observations 10,15,23, and (wide-sense) IO’s
in observations 20–25 (a local linear trend) and 37–42 (level shift).

As competitors, we include the ACM filter by Martin (1979) as implemented by B. Spangl in R
package robKalman, and a variant hybrPRMH of robfilter, confer Fried and Schettlinger (2008) as
to its implementation and Fried et al. (2006) as to its definition, which is a non-parametric filter
fitting local levels and linear trends.
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The results are plotted in Figures 3–6, where in the plots, we confine ourselves to the rLS-variants,
which already makes for five curves to be plotted in one panel.

In the ideal situation, all filters perform well, with slight advantages for the classical Kalman filter
(which has smallest theoretical MSE), but closely followed (and in the prediction case slightly beaten)
by the rLS.IO.

In the IO situation, the “hysteric” rLS.IO filter performs best, beating the classical Kalman filter, and
both rLS.IOAO and hybrPRMH perform reasonably well, while the (wide-sense) AO-robust filters ACM
and rLS.AO are not able to track the IO at all (as they can only perform bounded correction steps)
and hence, like a hanging slope, only closely recover the changed situation.

In the AO situation, we have the complementary image; here ACM performs best (see also Re-
mark 6.1(a)), but rLS.AO only performs slightly weaker. rLS.IOAO is a little worse, and with a certain
gap, but still reasonably well follows hybrPRMH, while both classical Kalman filter and rLS.IO (the latter
even worse) perform drastically bad.

Finally, in the mixed IO and AO situation, hybrPRMH is by far the best solution, then followed with
a certain gap by the rLS.IOAO, while all other filters perform unacceptably bad. By construction,
rLS.IOAO assumes that at every time instance there only can be either an AO or an IO (both “wide-
sense”). Otherwise the corresponding MSE gets unbounded on every neighborhood U(r) for r >
0. Hence the AO in observation 23 really confuses rLS.IOAO completely: it has just switched to
“hysteric” IO behavior and hence faithfully follows the AO. hybrPRMH based on (repeated) medians
does not have this problem, as the median even stays stable under (almost) arbitrary substitutive
outliers, hence it is able to keep the local linear trend. Omitting observation 23 results in a much
better performance of rLS.IOAO, which then even beats hybrPRMH, confer Table 2.

Averaging over time in one realization of the state space model, we get the “ergodic” empirical
MSEs as displayed in Table 1

empirical MSE
Situation Type Kalman rLSIO rLSAO rLSIOAO ACM hybrPRMH

ideal filter 0.59 0.60 0.75 1.08 0.77 1.41
pred 1.69 1.67 1.96 2.26 2.01

IO filter 1.04 0.83 6.54 1.36 25.19 1.36
pred 5.28 4.71 12.17 5.42 32.16

AO filter 15.25 30.38 0.91 1.16 0.82 1.79
pred 15.15 29.68 2.00 2.25 2.05

IO&AO filter 17.00 30.52 12.89 7.78 28.76 1.53
pred 21.94 34.56 19.23 13.87 36.08

Table 1:“ergodic” estimates for the MSE of the variants of the rLS and the ACM and hybrPRMH in the situation described in the text; best

results are printed in bold face.
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Figure 3:rLS-filter variants in model (2.17) in the ideal model; in the panel below (note the different y-scale) both actual states (black)

and observations (red) are plotted.

Remark 6.1. (i) The fact that the ACM filter beats the rLS may be explained by the fact that the
contamination in this study clearly covers the worst-case behavior of the rLS but not of the
ACM filter, compare Remark 3.4(e), and also fails for hybrPRMH.

(ii) rLS.IOAO really has its advantages in higher dimensions where median-based filters are much
harder to define and get computationally very expensive. One might even think of com-
bining rLS.IOAO and hybrPRMH in these settings: first let rLS.IOAO do a preliminary, fast, and
dimension-independent cleaning, and then let hybrPRMH polish this result coordinate-wise.

(iii) It is still an open question whether we can improve on the rLS.IOAO behavior, using the state
space model

Zt = (1, t), Xt = (at, bt)
τ , Ft = I2, Qt = 0.1I2, Vt = 1 (6.1)

which (upto the specification of error/innovation variance) is essentially the model in the back-
ground of hybrPRMH. In this setting Zt is not invertible, but the model is completely con-
structible, so passing to smoothers might help.
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Figure 4:rLS-filter variants in model (2.17) with IO’s: a local linear trend at X20–X25 and a level shift for states X37–X42; the panel

below (note the different y-scale) is as in Figure 3.

7 Open ends with rLS

Open questions and possible extensions of our rLS-filters concern robust smoothing, where we
have already seen the need for in the IO context when Zt’s are not invertible. As the correspond-
ing Kalman Smoother is structurally very similar to the Kalman filter, a rLS-type robustification is
straightforward, and we expect the same type of optimality results to hold there.

Robustified Kalman smoothing is also key issue when we want to estimate the hyper-parameters
from the data. In the ideal model setup there is a path-breaking application of the EM-algorithm
by Shumway and Stoffer (1982) which has been improved upon by Durbin and Koopman (2001).
Alternatives to the EM-algorithm have been conceived by [Dempster???][NEykov???]

A robustification using the fact that for filtering the hyper parameters can be seen a nuisance param-
eters has been proposed in Ruckdeschel (2001, Section 10.5.8) but still needs to be implemented
to software.

In both the Shumway-Stoffer approach and the mentioned robustification, starting values for the
hyper-parameters are crucial to initialize the EM-algorithm. To this end robust multivariate autoco-
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Figure 5:rLS-filter variants in model (2.17) with AO’s in observations 10,15,23; the panel below (note the different y-scale) is as in

Figure 3.

variances would be extremely helpful.

Also there is a strong need to elaborate the connection to particle filters as they might help to get
hand on the exact conditional expectation, needed “desparately” for Theorem 3.3.

Extensions with names. . . 2

• robust smoothing (with Cezar Chirila (ITWM))
• robust EM-Algorithm to estimate unknown hyper parameters (extending Shumway/Stoffer[82])

(with Irina Ursachi (ITWM))
• interpretation as random coefficient regression

; other approach using robust regression (rIC, mIC)
(implementation: with Bernhard Spangl)

• connection to particle filters — theory and interface to DEBI
(with Carlos Prieto (Madrid) and Simon Godsill)

• simultaneous treatment (with delay) of IO’s and AO’s (with Carlos Prieto, Bernhard)

2will not be included in the end version; only for internal use. . .
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Figure 6:rLS-filter variants in model (2.17) with both IO’s as in Figure 4 and AO’s as in Figure 5; the panel below (note the different

y-scale) is as in Figure 3.

8 Implementation: R-package robKalman

In an ongoing project with Bernhard Spangl, BOKU, Vienna, and I. Ursachi and C. Chirila (both
ITWM), we are about to implement the rLS filter to R, see R Development Core Team (2009), more
specifically to an R-package robKalman, the development of which is done under r-forge project
https://r-forge.r-project.org/projects/robkalman/, see also R-Forge Administration and
Development Team (2008). Under this address you will also find a preliminary version available for
download. Details to the implementation will be discussed in Ruckdeschel and Spangl (2008).
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Proofs

empirical MSE —without obs. 23

Situation Type Kalm rLSIO rLSAO rLSIOAO ACM hybrPRMH

ideal filter 0.59 0.60 0.75 1.10 0.78 1.43
pred 1.71 1.69 1.99 2.29 2.03

IO filter 0.94 0.74 6.08 1.26 24.48 1.38
pred 5.59 4.98 12.05 5.73 31.66

AO filter 12.46 24.07 0.86 1.15 0.84 1.83
pred 12.18 23.05 1.94 2.25 2.10

IO&AO filter 13.28 24.21 11.58 1.31 27.93 1.56
pred 17.01 26.34 17.80 5.63 35.38

Table 2: results as in Table 1, but excluding the values for observation 23, where we had coincidence of (wide-sense) IO and AO, a

situation not covered in the design of rLS.IOAO.

9 Proofs

As we will use Theorem 3.3 to prove Lemma 3.2, we postpone the proof of the latter.
PROOF TO THEOREM 3.3:
(1) We start with solving max∂U minf [. . .]. To this end we note that the max min-Problem

amounts to solving min∂U Ere[
∣∣Ere[X|Y re]

∣∣2]. For fixed element P Y
di

assume w.l.o.g. that
µ� P Y

di
for µ from (3.11) — otherwise we replace µ by µ+ P Y

di
; this gives us a µ-density

q(y) of P Y
di

. Determining joint (real) law PX,Y
re

(dx, dy) as

P (X ∈ A, Y re ∈ B) =

∫
IA(x) IB(y)[(1− r)π(y, x) + rq(y)PX(dx)µ(dy) (9.1)

we deduce that µ(dy)-a.e.

Ere[X|Ŷ = y] =
rq(y) EX + (1− r)pY id

(y) Eid[X|Y ]

rq(y) + (1− r)pY id(y)
=: F (q) (9.2)

Hence we have to minimize F in M0 = {q ∈ L1(µ) | q ≥ 0,
∫
q dµ = 1}. To this end,

we note that F is convex on the non-void, convex set M = {q ∈ L1(µ) | q ≥ 0}, so we may
consider the Lagrangian

Lρ̃(q) := F (q) + ρ̃

∫
q dµ (9.3)

for some positive Lagrange multiplier ρ̃. Pointwise (in y) minimization of Lρ̃(q) on M gives us
the form

q̂s(y) = 1−r
r (
∣∣D(y)

∣∣/s − 1)+ pY (y) (9.4)

for some constant s = s(ρ̃) = (
∣∣EX∣∣2 + ρ̃/r)1/2.

Considering

H(s) =

∫
q̂s(y)µ(dy) (9.5)
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we note that the integrand is isotone and continuous in s ≥ 0, hence by monotone con-
vergence, H, too, is isotone and continuous. Now lims→∞H(s) = ∞, H(0) = 0, so by
continuity, there is some ρ ≥ 0 with H(ρ) = 1. On M0,

∫
q dµ = 1, but q̂ρ ∈ M0 and is

optimal on M ⊃ M0 hence it also minimizes F on M0. In particular, we get representation
(3.19) and note that the least favorable P Y

di

0 is dominated according to P Y
di

0 � P Y
id

.

As next step we return to the minmax problem, i.e.; minf max∂U [. . .] and show that

max∂U minf [. . .] = minf max∂U [. . .] (9.6)

To this end we first obtain f0(y) as f0(y) = Ere[X|Y re = y] giving (3.18) and determine
Ere

∣∣X − f0(Y re)
∣∣2 for general q(y): Writing a sub/superscript re; q for the evaluation under

the corresponding situation generated by this q(y) we obtain that

MSEre; q[f0(Y re; q)] = (1− r) Eid

∣∣X − f0(Y id)
∣∣2 + r tr CovX +

+r Eq min(|D(Y di;,q)|2, ρ2) (9.7)

which achieves its maximum (in q) for any q that is concentrated on the set
{
|D(Y di;,q)| > ρ

}
,

which is true for q̂ρ. Hence for all contaminating densities q(y)

Ere; q

∣∣X − f0(Y re; q)
∣∣2 ≤ Ere; q̂ρ

∣∣X − f0(Y re; q̂ρ)
∣∣2 (9.8)

and max∂U minf [. . .] ≥ minf max∂U [. . .], so we have shown (9.6).

Finally, we pass over from ∂U to U . To this end, in this paragraph, we use fr, P Y
di

r to denote
the components of the saddle-point for ∂U(r), as well as ρ(r) for the corresponding Lagrange
multiplier and wr for the corresponding weight, i.e.

wr = wr(y) = min(1,
ρ(r)

|D(y)|
) (9.9)

Let R(f, P, r) be the MSE of procedure f at the SO model ∂U(r) with contaminating P Y
di

=

P . As can be seen from (3.19), ρ(r) is antitone in r; in particular, as P Y
di

r is concentrated on
{|D(Y )| ≥ ρ(r)} which for r ≤ s is a subset of {|D(Y )| ≥ ρ(s)},

R(fs, s, P
Y di

s ) = R(fs, s, P
Y di

r ) for r ≤ s

But for r < s and for arbitrary P Y
di

, using that

tr CovX = Eid

[
tr Covid[X|Y id] + |D(Y id)|2

]
(9.10)
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we obtain

R(fs, P, r) = (1− r) Eid

[
tr Covid[X|Y id] + (|D(Y id)| − ρ(s))2

+

]
+

+r tr CovX + r EP [min(|D(Y di)|, ρ(s))2] ≤

≤ (1− r) Eid

[
tr Covid[X|Y id] + (|D(Y id)| − ρ(s))2

+

]
+

+r tr CovX + r ρ(s)2 = R(fs, P
Y di

r , r) =

= Eid

[
tr Covid[X|Y id] + (|D(Y id)| − ρ(s))2

+

]
+

+r
{

Eid

[
|D(Y id)|2

(
1−

(
1− ws(Y id)

)2)]
+ ρ(s)2

}
<

< Eid

[
tr Covid[X|Y id] + (|D(Y id)| − ρ(s))2

+

]
+

+s
{

Eid

[
|D(Y id)|2

(
1−

(
1− ws(Y id)

)2)]
+ ρ(s)2

}
=

= R(fs, P
Y di

r , s) = R(fs, P
Y di

s , s) (9.11)

Hence the saddle-point extends to U(r), and we have shown (3). In particular the maximal
risk is never attained in the interior U(r) \ ∂U(r).
For later reference, we determine the minimax risk as

R(fr, P
Y di

r , r) = tr Cov(X)− (1− r) Eid

[
|D(Y id)|2wr(Y id)

]
(9.12)

(2) Denoting f̃(Y ) = f(Y )− EX, and X0 = X − EX, we may restate (3.17) as

Eid |X0 − f̃(Y )|2 = minf̃ ! s.t. supU
∣∣Ere f̃(Y re)

∣∣ ≤ b (9.13)

Upon noting that supU |Ere f̃ | = sup |f̃ | (follows just as in Rieder (1994, chap. 5)) and writing

Eid |X0 − f̃(Y )|2 = Eid

[
E[|X0 − f̃(Y )|2

∣∣∣Y ]
]
,

pointwise minimization of the inner expectation subject to
∣∣f̃(Y re)

∣∣ ≤ b gives the result.

(3) If Eid[X|Y ] is linear in Y , the corresponding optimal matrix M0 is just the respective Fourier
coefficient, i.e.; Cov(X,Y ) VarY − where A− stands for the Moore-Penrose inverse. In sub-
section 2.4 we have seen that the classical Kalman filter is optimal among all linear filters;
hence the corresponding Kalman gain M0 is then the optimal linear transformation in the
state space context.

////

Remark 9.1. (i) An alternative proof which follows Rieder (1994, Appendix B), showing exis-
tence of Lagrange multipliers in (1) by abstract compactness and continuity arguments is
given in Ruckdeschel (2001, pp.156–163).
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(ii) A similar proof to the one given here is given in Birmiwal and Shen (1993). However, they
invoke a minimax result by Ferguson (1967) which in our infinite dimensional setting is not
applicable. Also their setting is restricted to one dimension, and they assume Lebesgue den-
sities right away (without mentioning this). In particular, they do not realize the connection
to the exact conditional mean present in equation (3.20).

(iii) The fact that the solutions to Problems (3.16) and (3.17) coincide parallels the situation in the
estimation problem for a one-dimensional location parameter.

PROOF TO LEMMA 3.2: We start by showing that

ρ0(s) ≤ max{As/Arl , Bs/Bru} (9.14)

To this end, we use the fact that for 0 ≤ a, b, c, d

(a+ b)/(c+ d) ≤ max(a/c, b/d) (9.15)

Equation (3.3) shows that b(r) is (strictly) decreasing in r (for r > 0). Hence Ar is increasing in
r, and Br decreasing. One easily shows by dominated convergence that b(r), and hence Ar and
Br are continuous in r. Thus (3.9) follows from the intermediate value theorem. For ru = 1, one
argues letting rn ∈ [0, 1) tend to 1.

To show equality in (9.14), as in the proof of Kohl (2005, Lemma 2.2.3), we first show that for
r ≥ s, s fixed, ρ(r, s) is increasing and correspondingly, for r ≤ s, s fixed, decreasing, which will
entail equation (3.8): Let 0 ≤ s < r1 < r2 ≤ 1. Then by monotony of Ar, Br, (AsB

−1
s + r1)−1 ≥

(Ar1B
−1
r1 + r1)−1; multiplying this inequality with (r2 − r1), we get

(r2 − r1)Bs
As + r1Bs

≥ (r2 − r1)Br1
Ar1 + r1Br1

(9.16)

Now, due to optimality of Ar + rBr for radius r, so

0 ≤ (r2 − r1)Bs
As + r1Bs

− (r2 − r1)Br1 +Ar2 + r2Br2 −Ar1 − r2Br1
Ar1 + r1Br1

=

=
(r2 − r1)Bs
As + r1Bs

− Ar2 + r2Br2
Ar1 + r1Br1

+ 1

Multiplying with (As + r1Bs)/(Ar2 + r2Br2), we obtain indeed

0 ≤ As + r2Bs
Ar2 + r2Br2

− As + r1Bs
Ar1 + r1Br1

= ρ(r2, s)− ρ(r1, s)

and similarly for 0 ≥ s > r1 > r2 ≥ 1. Next, for equation (3.10), we show, that for r fixed, and
s ≥ r, ρ(r, s) is increasing and correspondingly, for s ≤ r, decreasing: Let 0 ≤ r < r1 < r2 ≤ 1

Ar2 + rBr2 −Ar1 + rBr1 =

= (r1 − r)(Br1 −Br2) +Ar2 + r1Br2 −Ar1 − r1Br1 ≥ 0 (9.17)
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and similarly for 0 ≥ r > r1 > r2 ≥ 1.

For the last assertion, we note that by (3.3), b(1) = 0, henceB1 = 0. Hence ρ0(s) = max
{
As/Arl , Bs/B1

}
is∞ for each s < 1, while for s = 1, we get ρ0(1) = max{A1/Arl , 1} = 1. ////

PROOF TO PROPOSITION 3.5: Recall that by the Cramér-Lévy Theorem (confer Feller (1971, Thm. 1,
p. 525)) the sum of two independent random variables has Gaussian distribution iff each summand
is Gaussian. This can easily be translated into a corresponding asymptotic statement, confer Ruck-
deschel (2001, Prop. A.2.4), i.e.; the sum of two independent random variables converges weakly
to a Gaussian distribution iff each summand converges weakly to a Gaussian distribution.

We first consider (for fixed t, omitted from notation where clear) the filter error,

∆̃X := Xt −Xt|t = ∆X −Hb(M
0∆Y ) (9.18)

where we assume ∆X, ε, and v normal. With

g := M0∆Y −Hb(M
0∆Y ) =

(∣∣M0∆Y
∣∣− b)

+
(9.19)

Then for the conditional law of ∆̃X given ∆Y we have

L(∆̃X|∆Y ) = Np(g, (Ip −M0Z)Σ) (9.20)

for Σ = Cov ∆X. Hence
L(∆̃X) = L(g) ∗ Np(0, (Ip −M0Z)Σ) (9.21)

which by Cramér-Lévy cannot be normal, as g is obviously not normal. Conseqently

∆Xt+1 = Ft+1∆̃Xt + vt+1 (9.22)

cannot be normal either. Hence starting with normal ∆Xt and εt, ∆Xt+1 cannot be normal. The
same assertion clearly holds if vt is not normal. As by (3.22), gt does neither converge to 0 nor to
M0∆Y , the asymptotic version of Cramér-Lévy also excludes asymptotic normality.

A similar assertion for the case that vt is normal but not both ∆Xt and εt are, seems plausible and
we conjecture that this is true; it may also be proven in particular cases, but in general, it is hard to
obtain due to the lack of independence of ∆X − g and ∆Y .

////

For the second equivalence in Proposition 3.7 we use the following lemma and a corollary of it:

Lemma 9.2. Let ε ∼ Nq(0, V ), X ∼ PX and for some measurable function h : range(X)→ Rq let
Y = h(x) + ε. Let g ∈ Ll1(PX), i.e., g : range(X)→ Rl measurable and EPX |g(X)| <∞. Then

∂

∂y
E[g(X)|Y = y] = Cov[g(x), h(x)|Y = y]V −1 (9.23)
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PROOF TO LEMMA 9.3: For simplicity, we only consider the case rkV = q; otherwise we may pass
to ε = Aε̃ for some ε̃ ∼ Nq̃(0, Ṽ ) with rk Ṽ = q̃ and use the generalized inverse V − instead of V −1

everywhere in the proof.

Let pε be the Lebesgue density of ε and denote Λε(ε) := ∂
∂ε log pε(ε). Then, no matter wether ε is

Gaussian, it holds that

E[g(X)|Y = y] =

∫
g(x)pε(y − h(x))PX(dx)∫
pε(y − h(x))PX(dx)

Hence, if we may interchange differentiation and integration (which is the case if ε normal), we
obtain that

∂

∂y
E[g(X)|Y = y] = Cov[g(X),Λε(Y − h(X)) |Y = y]

But as ε ∼ Nq(0, V ), it holds that Λε(ε) = −V −1ε, which entails

Λε(y − h(X))− E[Λε(Y − h(X))|Y = y] = V −1(h(X)− E[h(X)|Y = y])

and thus (9.23) follows. ////

Corollary 9.3. In our linear time discrete, Euclidean state space model, ommiting indices t, assume
that rkV = q and let

U := V −1Z∆X, U0 := U − E[U |∆Y ], ∆X0 := ∆X − E[∆X|∆Y ] (9.24)

Then

∂

∂y
E[∆X|∆Y = y] = Cov(∆X,U |∆Y = y) (9.25)

∂2

∂yj∂yk
E[∆Xi|∆Y = y] = E(∆X0

i U
0
j U

0
k |∆Y = y) (9.26)

PROOF TO COROLLARY 9.3: During the proof we will omit ∆ in notation. Equation (9.25) is just
plugging in Lemma 9.2. We note that equivalently to (9.23) we could have written

∂

∂y
E[X|Y = y] = E[X(U0)τ |Y = y] = E[XU τ |Y = y]− E[X|Y = y] E[U |Y = y]τ

Hence applying Lemma 9.2 for g(X) = XiUj and g(X) = Uj to the last two terms we obtain

∂2

∂yj∂yk
E[Xi|Y = y] = E[XiUjU

0
k |Y = y]− EXi E[UjU

0
k |Y = y] =

= E[X0
i UjU

0
k |Y = y] = E[X0

i U
0
j U

0
k |Y = y]

////
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PROOF TO PROPOSITION 3.7: Equivalence (3.24):
If L(∆X) is normal, the random variables ∆X,∆Y are jointly normal, hence linearity of condi-
tional expectation is a well-known fact. If Eid[∆X|∆Y ] is linear, after substracting

∫
MZxpε(y −

Zx)PX(dx) from both sides, we may write the corresponding Radon-Nikodym equation for the
conditional expectation P Y (dy)-a.e. as

M

∫
(y − Zx)pε(y − Zx)PX(dx) = (Ip −MZ)

∫
xpε(y − Zx)PX(dx) (9.27)

Let us introduce qε(y) = ypε(y) and the signed measure QX(dx) = xP (dx); if we denote the
mapping h : Rq → R, y 7→ h(y) =

∫
f(y − Zx)G(dx) as f ∗Z G, (9.27) becomes

Mqε ∗Z PX = (Ip −MZ)pε ∗Z QX (9.28)

Passing over to the Fourier transforms (denoted with ·̂ ) for s ∈ Rp, t ∈ Rq

q̂X(s) =

∫
exp(isτx)QX(dx), p̂X(s) =

∫
exp(isτx)PX(dx)

q̂ε(t) =

∫
exp(itτy)qε(y) dy, p̂ε(t) =

∫
exp(itτy)pε(y) dy,

as usual convolution translates into products in Fourier space, in our case

f̂ ∗Z G(t) = f̂(t)Ĝ(Zτ t), t ∈ Rq (9.29)

and hence (9.28) in Fourier space is

Mq̂εp̂X(Zτ · ) = (Ip −MZ)p̂εq̂X(Zτ · ) (9.30)

Now we obtain for the derivatives (p̂X)′(s), (p̂ε)′(t) for s ∈ Rp and t ∈ Rq,

(p̂X)′(s) = i(q̂X)(s), (p̂ε)′(t) = i(q̂ε)(t) (9.31)

Assume Ip −MZ and V invertible —otherwise pass to the generalized inverses and to some ε̃ of
lower dimension as indicated in the proof to Corollary 9.3; then p̂ε(t) = exp(−tτV t/2) > 0 and
together with (9.31), this gives the linear differential equation

(p̂X)′(Zτ t) = −(Ip −MZ)−1MV tp̂X(Zτ t) (9.32)

Fixing any direction t0 such that Zτ t0 6= 0, this becomes an ODE

g′(s) = −tτ0Z(Ip −MZ)−1MV t0sg(s), g(0) = 1 (9.33)

which has a unique solution given by

g(s) = exp(−tτ0Z(Ip −MZ)−1MV t0s
2/2) (9.34)
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On the other hand we already know from the first part of the proof that PX(dx) = Np(0,Σ) solves
(9.32). Hence we have shown that only Np(0,Σ) leads to a linear conditional expectation.

Equivalence (3.25):
If Eid[∆X|∆Y ] is linear, by equivalence (3.24) ∆X and ∆Y are jointly normal with expectation 0,
so the conditional law of ∆X given ∆Y is again normal with expectation 0, hence in particular
symmetric so the assertion follows.
Now assume

E
[(
eτ (∆X − E[∆X|∆Y ])

)3 ∣∣∣∆Y ] = 0 ∀ e ∈ Rp (9.35)

Apparently, Eid[∆X|∆Y ] is linear iff

∂2/∂y∂yτ Eid[∆X|∆Y ] = 0.

But Corollary 9.3 gives (in the notation of (9.24))

∂2

∂yj∂yk
E[∆Xi|∆Y = y] = E(∆X0

i U
0
j U

0
k |∆Y = y) (9.36)

As E[∆X0|∆Y ] = 0, (9.35) also entails that E[∆X0
i ∆X0

j ∆X0
k |Y = y] = 0 for all i, j, k ∈ {1, . . . , p}.

But with Z̃ = ZV −1, the RHS of (9.36) is just

p∑
h,l=1

Z̃j,hZ̃k,l E(∆X0
i ∆X0

h∆X0
l |∆Y = y),

so the assertion follows. ////

PROOF TO THEOREM 3.11: We proceed as in Theorem 3.3, but note that in the eSO context (9.1)
becomes

P (X ∈ A, Y re ∈ B) = (1− r)
∫

IA(x) IB(y)π(y, x)PX
id

(dx) +

+r

∫
IA(x) IB(y)q(y)PX

di
(dx)µ(dy) (9.37)

and hence (9.2) becomes

Ere[X|Ŷ = y] =
rq(y) Edi[X

di] + (1− r)pY id
(y) Eid[X|Y ]

rq(y) + (1− r)pY id(y)
(9.38)

But by (3.32), the RHS of (9.38) is exactly F (q) from (9.2). Thus, we may jump to the proof of
Theorem 3.3 from this point on, replacing tr CovX by

G̃ := tr Cov
PX

di
0

Xdi = G− |EidX
id|2 (9.39)
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in equation (9.7). For passing from ∂U eSO to U eSO, let fr, P Y
di

r ⊗ PX
di

r be the components of
the saddle-point and R(f, P ⊗ Q, r) be the MSE of procedure f at the eSO model ∂U eSO(r) with
contaminating P Y

di ⊗ PXdi
= P ⊗Q. Instead of equation (9.10), we use

∆G := G̃− tr CovidX
id = G− Eid |X id|2 ≥ 0 (9.40)

G̃ = ∆G+ Eid

[
tr Covid[X|Y id] + |D(Y id)|2

]
(9.41)

and obtain

R(fs, P ⊗Q, r) = (1− r) Eid

[
tr Covid[X|Y id] + (|D(Y id)| − ρ(s))2

+

]
+

+r tr CovQX
di + r EP [min(|D(Y di)|, ρ(s))2] ≤

≤ (1− r) Eid

[
tr Covid[X|Y id] + (|D(Y id)| − ρ(s))2

+

]
+

+r G̃+ r ρ(s)2 = R(fs, P
Y di

r ⊗ PXdi

r , r) =

= Eid

[
tr Covid[X|Y id] + (|D(Y id)| − ρ(s))2

+

]
+

+r
{

∆G+ Eid

[
|D(Y id)|2

(
1−

(
1− ws(Y id)

)2)]
+ ρ(s)2

}
<

< Eid

[
tr Covid[X|Y id] + (|D(Y id)| − ρ(s))2

+

]
+

+s
{

∆G+ Eid

[
|D(Y id)|2

(
1−

(
1− ws(Y id)

)2)]
+ ρ(s)2

}
=

= R(fs, P
Y di

r ⊗ PXdi

r , s) = R(fs, P
Y di

s ⊗ PXdi

s , s) (9.42)

Hence the saddle-point extends to U eSO(r). For later reference, we determine the minimax risk as

R(fr, P
Y di

r ⊗ PXdi

r , r) = tr CovidX
id + r(G− Eid |X id|2)−

−(1− r) Eid

[
|D(Y id)|2wr(Y id)

]
(9.43)

////

PROOF TO PROPOSITION 3.9: UnderH0, due to Proposition 3.7, ∆X\
i

i.i.d.∼ Np(0,Σ). Hence eτ∆X\
i

i.i.d.∼
N (0, σ2). Thus by the Lindeberg-Lévy CLT,

1√
n

n∑
i=1

(eτ∆X\
i )

3 −→w N (0,E[(eτ∆Xt)
6])

But the sixth moment of N (0, σ2) is just 15σ6. Hence by the assumed consistency of ên for e,
Slutsky’s Lemma yields (3.27). Asymptotically, the testing problem is a test for a normal mean µ to
be 0 or not, which yields the corresponding optimality for the Gauss test given in (3.28). ////

PROOF TO PROPOSITION 3.12: Let us identify X ; ∆XN , Y ; ∆Y N := Z∆XN + ε, and set
P ε = Nq(0, V ), PX = Np(0,Σ), and let pε the corresponding Lebesgue density, then π(y, x) =
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pε(y − Zx).
Assertions (1) and (3) of Theorem 3.11 show that the eSO-optimal procedure f0 in our “Bayesian”
model of subsection 3.2 is just f0(y) = M0(y) min{1, ρ/

∣∣M0y
∣∣} with ρ according to (3.19) such

that
∫
dP Y

di

0 = 1 and M0 = ΣZτ (ZΣZτ + V )−1.
By assumption, ∆XrLS lies in the corresponding eSO-neighborhood U(r) about ∆XN so the value
of the saddle-point from equation (9.12) is also a bound for the MSE of XrLS

t|t on U(r). ////

Remark 9.4. One should mention, however, that due to assumption (2.16) resp. (3.13), members
of an SO-neighborhood U ′(r′) about L(∆XrLS,∆Y rLS) need not lie in an eSO neighborhood U(r+
r′) about L(∆XN ,∆Y N ).

10 Conclusion

In the extremely flexible class of dynamic models consisting in state space models we were able
to obtain optimality results for filtering. In this generality this is a novelty. We could show that
contrary to common prejudice a simultaneous treatment of (wide-sense) IO’s and AO’s is possible in
SSM’s—albeit with minor delay.
The filters that we propose are model based (in contrast to the non-parametric hybrPRMH) which
means that we need a higher degree of model specification in that we possibly have to estimate
the hyper-parameters, but which also could help to get more precise in ideal model.
Our filters are non-iterative, recursive, hence fast, and valid for for higher dimensions.
They are available in R in some devel versions and hopefully on CRAN soon.
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