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Introduction

The study of algebroid singularities lies on the cross-saadmany different areas of
mathematics. Initially, during the nineteenth and earlgrtieth century, algebraic ge-
ometers worked on plane curve singularities. Since thel@&ds, new methods in
singularity theory have been rapidly developed. One of tileldmental results is the
fibration theorem of Milnor [Mil68]. It deals with hypersade singularities related
to functions of several complex variables. This book hastedremely influential
and since then the development of the theory over the @letd complex numbers is
ongoing. Besides, the interaction between the differenthous makes the study of
hypersurface singularities particularly fruitful.

Nevertheless, it was soon observed that these methodstdamoarried offhand in the
case of positive characteristic. For example, purely togichl reasoning cannot be
used here since fields of positive characteristic have dwyrivial valuation.
Moreover, unlike the complex case, a systematic developofem general theory of
hypersurface singularities in the context of algebrajozitbsed fields of arbitrary char-
acteristic is scarce in the literature. To the knowledgéefduthor, the first extensive
development on curve singularities in positive charastierhas been worked out in
[Cam80]. It is well-known that the Puiseux theorem does mdd Im finite character-
istic. In his book Campillo used an algebraic reasoning hitgdia curve singularity
as a local ring® of Krull dimension1. Moreover, he considered the completion
in them-adic sense, and showed the existence of a parametrizétiothermore, he
established that the Hamburger-Noether expansion is tret effective replacement
for the Puiseux theorem. Furthermore, he introduces thiv@guace relation of equi-
singularity in finite characteristic (cf. also [CGLO7]).

A further central topic in singularity theory is the classdfiion of hypersurface singu-
larities. In the early 1970’s Arnold introduced the notidnneodality and developed
the classification ove€ with respect to right equivalence [Arn72]. First singuari
ties of modality0 are then classified. These are mostly known as simplé o -
singularites. Also Arnold and especially Brieskorn [Brigstablished the coincidence
of this classification with that of simple Lie Groups. In safgent papers Arnold clas-
sified singularities of modality [Arn73] and2 [Arn75]. In [AGV85], the reader is
refered to a complete list of normal forms of simple, unimladand bimodular singu-
larities. Types of singularities of modaliyhave been discussed by Wall in [Wal99b].
In [Sch90], unimodular plane curve singularities are éfeessfor contact equivalence.
In positive characteristic, a complete list of simple silagities for contact equivalence
(~) is presented in [Grk90]. The consideration ©ffor the classification in finite
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characteristic was motivated by the intention to keep somaéogy with the results es-
tablished in characteristic zero. To illustrate this, letonsider the following example
given in [GrK90]. Ifchar(K') = 5, thenEg is not simple for right equivalence but it is
simple for contact equivalence.

In[Hol98] and [Bou02] follow the classifications Gf-singularities andl’ -singularities
from Schappert’s list, in arbitrary characteristic for fivet class, and irhar(K) # 2
for the last one.

The goal of this dissertation is to give a systematic treatroé hypersurface singu-
larities in arbitrary characteristic which provides theessary tools, theoretically and
computationally, for the purpose of classification.

Throughout this work/” denotes an algebraically closed field of arbitrary charaste
tic. We consider the ring([[z]] := K[[z1, ..., zy]] of formal power series.
Following Campillo in [Cam80], we define a hypersurface siagty as a localk -
algebra of the fornR; := K[[z]]/(f) wheref € m C K[[z]] andm is the maximal
ideal of K[[x]]. We should mention that in characteristic zero, isolategehyurface
singularities are mostly known as those having finite Milnamber. This definition
has to be modified in arbitrary characteristic since the bdtilmumber is not an invari-
ant for contact equivalence in positive characteristic.

Hence, in arbitrary characteristic, we define isolated hsyace singularitie®? ; as
those for whichr(f) < oo holds, where- denotes the Tjurina number.

Our approach to deal with the subject of our work relies nyaam the methods devel-
oped among others in [Arn74], [AGV85], [GLS06], [GrK90], fii73] and [Wal99a]
for the study of invariants of hypersurface singularitiésl @omputation of normal
forms overC. We shall discuss thoroughly how these results have to béfiedah
the context of positive characteristic with the concernegefk some analogy with the
characteric zero case. Also, we shall widely use the netatdaborated in [Wal99a].

Analogous to the notion of semiquasihomogenéiy) H) considered by Arnold in
his important paper [Arn74], we consider finite set of wesght C Z” and their re-
lated valuationsy, and we formalize Arnold’s discussion by introducing theiowbf
semipiecewise-homogeneity. More precisely, we saythati[[x]] is semipiecewise-
homogeneousandwewrit§ PH) if f = fp+ f1 wherefp is piecewise-homogeneous
(PH) with respecttd¥V, 7(fp) < oo andvw (f1) > vw (fp)-

In the particular case wherg = fr is the truncation off with respect to its New-
ton polytopd”, Kouchnirenko in [Kou73] looked for conditions which wouidply the
finiteness ofu(f). He introduced an important geometrical feature of the Idevpbly-
tope which he called the Newton numhey (f) and established that( ) > un(f).
Furthermore, if a certain condition of non-degeneracy $ioldeny( f) is finite. His
main results in positive characteristic though, are shomly for the cases where the
Newton polytope meets all coordinate subspaces. One ottiteat results in this case
is thatu(f) = pun (f) provided that a condition of non-degeneracy holds.

In his paper [Wal99a], Wall did slightly modify the notion Bfewton polytope allow-
ing all its facets to be extended to meet all coordinate satesqa He introduced the
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notion ofstrict non-degeneraayith respect to the so-called-polytopesand he called
this NPN D* . This condition of non-degeneracy turns out to be an apfatgone.
Indeed, on the one hand, Wall showed that any semiquasihemeogs hypersurface
singularity is strictly non-degenerate with respect to sarapolytope. On the other
hand, he asserted that this condition implies the finiteaEdse Milnor number.
Following Wall's proof ove(C fairly closely, we show that the conditiad P N D* does
also make sense in finite characteristic. Indeed, also snctie, iff is N PN D* with
respect to some polytof®, theny(f) < co whichyieldsr(f) < oo and therefore?
is isolated. Moreover, we establish the following resultldey with (SQH), where
femiscalled(SQH), if f = fa + f1 wherefa is quasihomogeneous( fa) < co
and the weighted order ¢f is strictly bigger than that ofa .

Proposition 2.3.23. Letf € m3 C K|[[z]] be (SQH) with principal partfa hav-
ing weighted degreé € Z~. Then, the following are equivalent

1. fis NPN D" with respect to somé'-polytopeP of R” ,
2. u(fa) isfinite,
3. char(K) does not dividel.

Furthermore, we show in this case thdif) = u(fa) (cf. Proposition 2.1.41).

Also, overC, it is well-known that for reduced elemenfse K|[[z,y]], the invari-
antsu(f), the delta invariand( f) of f and the number of irreducible factar§f) of f
are closely related. More precisely

u(f) =20(f) = r(f) + 1. 1)

In positive characteristic though, it turns out that (1)aksé.
Nevertheless, using the results established in [BePOBLTR] and [Wal99a], we show
that (1) holds whenevef is non-degenerate with respect to sofiv@olytopeP.

In characteristic zero yet, it is widely accepted that (Upkan the same way as over
C. However, we are not aware of any proof of it in the literature

Using the Lefschetz principle, we give a proof of this clamcharacteristic zero (cf.
Proposition 5.3.2). Also, we transfer the following knoveasults about the invariants
wandr overC to algebraically closed fields of characteristic zero.

Let K be an algebraically closed field such thatr(K) = 0 and letf € K[[z]].
Then, we have

o u(f) < oo, ifand onlyif, 7(f) < cc.

e Arnold’s statement oSQ H ) hypersurface singularities:
If fis (SQH) with principal partfa, thenu(f) = u(fa).

e The Milnor number is an invariant for contact equivalence:
Forg € K[[z]], if f~ g, thenu(f) = u(g).
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A further fundamental invariant for hypersurface singitils is the determinacy.

In this thesis, we give an extensive development of deteaayifor both right and con-
tact equivalences.

Itis established ovet that each isolated hypersurface singularity is finitehed®ined
(that is, it has a polynomial normal form) and the conversesddso hold.

In this work, we show the same claim in arbitrary charactier{sf. Corollary 3.1.22).
Nevertheless, we should notice that the bounds of deteayiwaich are established
over C have to be modified in the context of positive characteristic[GrK90], it
is stated that eacli € m? having finite Tjurina number(f) is 27(f)-contact deter-
mined. In this thesis though, we establish the followingiéimieterminacy theorem in
arbitrary characteristic.

Theorem3.1.15. Letf € m? C K|[[z1,...,,]] such that, > 2.
1. fisright (2k — ord(f) + 2)-determined if

m* C (/).
2. fiscontact(2k — ord(f) + 2)-determined if
mF C t5(f).

wherej(f) = (fuy, - .- fz, ) is the Jacobian ideal gfandt;i(f) = (f) + j(f) is the
Tjurina ideal off.

To deal with normal forms in arbitrary characteristic, wde the methods devel-
oped ovelC by Arnold and discussed by Wall in his paper [Wal99a]. Ndweldss, we
should notice that the restrictions imposed by Arnold imeof condition(A) and by
Wall in terms of conditionV PN D* do not apply to all the cases related to the classi-
fication in finite characteristic.

In this thesis, we formalize this development by elabotatiew objects and impos-
ing new conditions which are weaker thaa) and N PN D* but yet provide a more
general setting for the theory in arbitrary characteris#ddso we should notice that
the results about normal forms which are established invibik yield very often an
improvement of the so far introduced bounds in finite chaastic.

Our approach is the following:

Considering a finite set of weighld” C Z” , this gives rise to a filtration of ideals
(Fa) gez.., Of K|[z]] whereFy := {g € K[[z]] : vw(g) > d}.

In addition, we associate to each lodétalgebrak [[x]]/I, wherel C K[[x]] is an
ideal, a graded(-algebra

gro (K[[]] /1) == @dZOFZd/(F>d + (F>a N1)).

Besides, we observe that/Jifs a zero-dimensional ideal, then,, (K[[x]]/I) surjects
onto K [[x]]/I as K-vector spaces and algom i (gr,,, (K|[[z]]/I)) is finite.

For our subsequent discussion, we reformulate Arnold’slitimm (A) as follows:

Let f € K[x] be(PH) oftype(W ; d). We say thaf is (A) with respect td¥ if for
any non zerg € j(f) there exists a derivatiahsuch that
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(A1) vw(9) = vw(§) + vw (f) and

(A2) vw (g —&f) > vw(g).

In other words, we say thdtis (A) with respect td¥ if any non zerqy € j(f) satis-
fies conditiong A1) and(A2) with respect tof andW.

The key idea of Arnold for the computation of normal formsasconsider for each
d, arising in the filtration( ;) ;, all monomialsM € K [x] such thatw (M) = d and
which are independent modulo termshk; satisfying(A1) and(A2) with respect to
fandW.

In arbitrary characteristic, we elaborate in analogy todition (A) a new condition,
which we call(AC):

Let f € K[x] be (PH) of type (W ; d). We say thatf is (AC') with respect toW
if for any non zerog € tj(f) there exist a formal power seriés € K[[z]] and a
derivation{ € Dery (K |[[z]]) such that

(AC1) vw (g9) = min{vw (bo) + vw (f); vw (€) + vw (f)} and

(AC2) vw (g —bof —&f) > vw (9)-

Hence,f is (AC) with respect toW if any non zerog € tj(f) satisfies conditions
(AC1T) and(AC?2) with respect tof andW'.

We should mention thatA) is related to right equivalence whileAC) is related to
contact equivalence (therefore the letter GAC")).

We should notice that each quasihomogeneous polynomillregipect to a weight
w € 27 is both(A) and(AC) with respect to{w}.

On the other hand, we formalize Arnold’s key idea as follows:
For a positive integed, we consider the following ideals iR [[x]]

J2(f.d) == (g€ j(f): vw(g)=d and g is (A1) with respecttof andW),

tjAC(f,d) == (g € tj(f) : vw(g) =d and g is (AC1) with respecttof andW),

and the graded -algebras

griy, (My) := @D F>a/ (3, (f,d) + Fsa)

d>0

and

gral (Ty) := @ Foa/ (Lo (f,d) + Fsa).
a>0
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We should also mention thgt*fv (My) andgr‘j‘vc(Tf) respectively may have infinite
dimension ad{-vector spaces even thoughif) < co andr(f) < oo respectively.

Moreover(A) and(AC) are charcterized via these new objects as follows:

Proposition 3.2.9. Letf € K[x| be(PH) of type(W ; d).

1. If u(f) < oo, thenf is (A) with respect tdW, if and only if, gr“j‘v (My) = My
asK-vector spaces, i.&img (gri (My)) = p(f)

2. If 7(f) < oo, thenf is (AC) with respect td¥V, if and only if, gré/c(Tf) =Ty
asK-vector spaces, i.&img (griC(Ty)) = 7(f).

In [Wal99a], Wall observed that the conditidd ) imposed by Arnold for the compu-
tation of normal forms is on the one hand restrictive sinciés not apply to all cases
and on the other hand not necessary for the proof of the maiiritse

Based on these observations, we elaborate new conditidrishwe call(AA4) and
(AAC). Let f € K[x] be(PH) of type(W ; d).

1. We say thatf is almost (4) and we writef is (AA) with respect toW, if
dimg (gra (My)) < oc.
2. We say thaff is almost (AC') and we writef is (AAC) with respect toW, if
dimg (grac(Ty)) < occ.
Furthermore, we call & -basis ofgr‘j‘v (My) (resp.gr‘j‘vC (Ty)) consisting of monomi-
als aregular basisof My (resp.T).

Itis clear that( AA) and(AAC) are weaker thafd) and(AC), respectively. Also, it
turns out that both of these new conditions enclose Walfgld®on N PN D™.

With these tools at our disposal, we get the following ressatiout normal forms:

Theorem3.3.2. Letf € m C K{[z]] be such that(f) is finite and leW C Z” be a
finite set of weights corresponding to the Newton polytbps f.
Further, let{eq : a € A} be aK-basis ofgr::° (T}, ) consisting of monomials. Then,

c
f ~ fF + Z Caeaa
aEA*

where
A*is afinite subseto{a €A vw(eq) > vW(f)}

and the coefficients, € K are suitable.

Clearly, for allac € A*, the monomialg,, have total degrees which are smaller than
the degree of contact determinacyjof
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In Theorem 3.3.4, we give a similar statement for right egigrce.

If (AAC) holds, then we get the following result on normal forms initasloy charac-
teristic.

Theorem 3.3.6. Letf € m C K|[[x]] be (SPH) with respect to aC-polytope P
and letW C Z”  be afinite set of weights correspondingf® If fp is (AAC) with
respect taP and{ea o€ A} is a regular basis dfy,, then f is finitely contact
determinedand
f ~ fp + Z CaCa;
acA*
where
A C {a eA: Uw(ea) > Uw(f — fp)}

and the coefficients, € K are suitable.
Theorem 3.3.14 establishes the same for right equivalence wherigwy holds.

Altogether, this yields interesting results on bounds @édainacy in arbitrary charac-
teristic.

Theorem 3.3.18. Letf € m C K|[[z]] be (SPH) such thatfp is (AAC) with re-
spect toP. Further, letW C ZZ be a finite set of weights correspondingfoand
let{eq : o € A} be aK-basis ofyri(Ty,, ) consisting of monomials.

Thenf is k-contact determined if* ™! C F. p where

D := max{vw(fp) , maz {vw(eq) : a € A} }
In the particular case whe(elC') holds we have

Corollary 3.3.21 Letf € m C K]J[z]] be (SPH) such thatfp is (AC) with re-
spect toP. Further letW C ZZ, be a finite set of weights correspondingfoand let
d = vw (f). If D andk are positive integers such that*t! ¢ F~p C tj(fp) N Fsq,
thenf is k-contact determined.

Similar statements for right equivalence are given in TheoB.3.20 and Corollary
3.3.25. In the last part of Chapter 3, we shall give exampespplication of these
results.

In the final part of this work, we discuss the so far presenésdlts from the com-
putational viewpoint. In chapter 4, we shall present altpons which we implementes
in the computer algebra systerN& ULAR. We use this to obtain explicit regular bases
and normal forms for right and for contact equivalence. €lze two key observations
for our algorithms. Given a finite set of weigh® C Z” , we notice:

1. the related valuationy, to W does not give rise to an admissible degree order-
ing in the sense of standard bases. For this reason, theéayadour computa-
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tions, is to perform separate calculations for the differegights of W and then
fit them together.

2. If I C K[[z]] is an ideal, then we establish in Proposition 2.1.50 that

9T @K JInw (1),

d>0

wherelnw (I) is the initial ideal ofl with respect tdW.
This observation is of essential use for our algorithms wé@mnputing regular
bases.

Organization of the material

In Chapter 1, we introduce the background on isolated hypfarse singularities, equiv-
alence relations and invariants needed for our work.

Chapter 2 is the first main part of this dissertation. In tHisuter, we formalize
the notions of semipiecewise-homogeneous hypersurfagelsirities and piecewise-
homogeneous grading and present related results whicleaded for the subsequent
chapters. In the second part, we discuss thoroughly noaraggcy in arbitrary char-
acteristic.

Chapter 3 is devoted to determinacy and normal forms of tsdlaypersurface sin-
gularities. In the first part, we give finite determinacy theas in arbitrary charac-
teristic with respect to right and to contact equivalencartttermore, we show that
"isolated” and finite determinacy properties are equivalémthe second part, we for-
malize Arnold’s key ideas in [Arn74] for the computation afrmal forms and define
the conditiong AA) and (AAC). We thoroughly discuss these conditions as well as
some related results for cases occuring in Schappert&sfigirmal forms. The last part
of Chapter 3 is devoted to the study of normal forms in the garsetting of isolated
hypersurface singularities imposing neither conditidn nor conditionNV PN D*. Fi-
nally, we discuss the cases whéreAd) and(AAC) hold and present the related results
on normal forms and bounds of determinacy in this case.

In Chapter 4, we present algorithms which we implementimc®LAR for the pur-
pose of explicit computation of regular bases and hormahgor

In Chapter 5, we transfer some classical results on invariawverC to algebraically
closed fields of characteristic zero known as Lefschetzjpie.

For the convenience of the reader, we review in appendix Aesasults from field the-
ory which are needed in Chapter 5 and finally in appendix B, i@sgnt our 8IGULAR
library gradalg.lib where the algorithms presented in Chapter 4 are implemented
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Chapter 1

Preliminaries

The first chapter is an overview of the main objects of interethis dissertation.
After some notation is fixed, we define isolated hypersuréaugularities in the general
context of arbitrary characteristic and discuss relatsdlts.

Afterwards, we overview briefly right and contact equivalerand then we deal with
the mostly relevant invariants for this work.

The last part is devoted to algebroid plane curve singigarit

We introduce the parametrization equivalence and show hnig closely related to
contact equivalence.

1.1 Notations

Throughout this whole thesis we shall use the following @artions and notations.
We deal with fieldsi( of arbitrary characteristip > 0 and we assume in general, un-
less otherwise stated, the fields to be algebraically closed

We denote byZ-.( the set of strictly positive integers, thatis\ {0}.
Forn € Z-o, we denote byR” ' (resp. R” ), the positive (resp. the strictly posi-

tive) orthant.
Onthe other hand, it = (a4, ..., ay), 8= (b1, .., 0,) € R™, then we write

(@, B) = aiBi
i=1
for the scalar product ak andg.

Forasubsef C {1,...,n}, we write
Rl ={zecR":2;,=0if i ¢TI},

and similarly forR*!, C’ andC*’.



1.1 Notations 2

We write K[x]| := K|x1,...,x,] for the ring of polynomials ovei, havingn
variables, and we denote By on (K [x]) its semigroup of monomials.
Also, fora = (ai,...,a,) € Z">0,we denote the monomial® - - -z by x.

Moreover the positive integée| = a; +. .. + o, is called the total degrge af and
is denoted byleg(z®).

We write K [[x]] := K[[z1, ..., zy]] for the local ring of formal power series ovéf,
havingn variables and we denote hyits maximal ideal.

Let f = Z aqx® € K[[z]] be a formal power seies.

an’;U

Thesupportof f is the set

supp(f) :== {a DA # 0}.

Furthermore, the order gfis

ord(f) == inf{|a|: o € supp(f)}.

of
617', -

Fori=1,...,n, wewrite f,, :=

We denote byDer, (K[[x]]) the space of -derivations onK[[x]]. Furthermore, we

observe thaDer, (K[[x]]) is isomorphic to theK[[m]]-moduIeXn: K[[x]] Oy, -

Let¢ = Y g0, € Der, (K[[a]]), whereg; € K[[a]], fori = 1,...,n, and let
1=1
f € K[[x]]. Then we write

gf = Zgifm'

We denote by [[x]]* for the group of units of{[[x]] (i.e formal power series with non
zero constant terms) amthu¢( K[[x]]) denotes the group of automorphisms defined on
K{[=]].

If A C R", thenConv(A) denotes the convex hull of.

If E is an arbitrary finite set, then we denote tfy) the number of elements df,
which is also the cardinality of.



3 1 Preliminaries

1.2 Hypersurface Singularities

1.2.1 Preliminary Concepts

Following Campillo in [Cam80], we shall give an algebraidid&ion of singularities.

Definition 1.2.1. An (algebroid) singularity is a local K -algebraR which is isomor-
phic to K'[[z]]/I, wherel is a proper ideal of [[x]].

If I = (f), with f € m~ {0} is a formal power series, theRi is called an &lgebroid)
hypersurface singularity .

Let I C m be a proper ideal i [[x]] and letR = K[[z]]/I. If we consider the affine
schemeSpec(R), we see that it has only one closed pamwhich corresponds to the
unique maximal ideah in the local algebra&. Investigating the local properties of the
closed point in the affine scheme is the same as studying the localis&tipmhich

is just isomorphic taR.

Definition 1.2.2. Let f € (z, y) be a non-zero element &f[[z, y]]. Then the hyper-
surface singularity?; = K[[z,y]]/(f) is called plane curve singularity.

Definition 1.2.3. Let f € m \ {0} be a formal power series.

1. Theideal
](f) = <f115"'af96n> - K[[.’BH

is called theJacobian ideal or theMilnor ideal of f, and
ti(f) = (f) +i(f) € K[z]]
is called theTjurina ideal of f.
2. TheK-algebras
My = K[[z]]/i(f), Ty := K[[=]]/ti(f)
are called theMilnor andTjurina algebra of f, respectively.
3. The numbers
u(f) = dimg (My),  7(f) = dimg (T})
are called theMilnor andTjurina numbers of f, respectively .

The Milnor and the Tjurina algebras and, in particular, tld@nension play an impor-
tant role in the sudy of isolated hypersurface singulariéie we shall see later in this
chapter.

Remark 1.2.4. Let f € m C K{[z]] be a non-zero element. It is straightforward from
Definition 1.2.3 that, ifu(f) is finite, thenr(f) is also finite too.

If K = C, itis well-known thau(f) < oo & 7(f) < oo (cf. [GLS06, lemma 2.3]).
Also, this claim is widely accepted in characteristic zenol ave shall give a proof of it
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in Proposition 5.2.1 of the last chapter of this work. In fingharacteristic though, the
latter claim does not hold in general as the following exagrgiiows.

Letchar(K) =5, and letf = 2° + y* € K[[z,y]] be an equation of typ#/;,. Using
the computer algebra systeBINGULAR, we obtainr(f) = 15 while u(f) = oc.

In the following, we briefly review the notions of right andrtact equivalence.
Definition 1.2.5. Let f, g € m C K[[z]].

1. f is calledright equivalent to g, f~g, if there exists an automorphisg of
K|[[z]] such thaly = o(f).

2. f is calledcontact equivalentto g, f~g, if there exists an automorphismof
K[[x]] and a unitu € K[[x]]* such thaty = u - ©(f).

Itis straightforward from the above definition that the tighd the contact equivalence
are equivalence relations on the set of formal power series.

Remark 1.2.6. It is clear, thatf~g implies f~g. However, it is well-known, that the
converse does not hold even though the characteristic & zer

In the subsequent parts of this work, we should very oftenemsae of the following
lemma.

Lemma 1.2.7. Let f,g € m C K]|[z]]. Furthermore, letp € Aut(K|[x]]) be an
automorphism of{[[z]] and letu € (K[[x]])* be a unit. Then

L. j(e(f) = (i (f))-
2. (uf) +j(uf) = (f) +j(f), or shortlyt;(uf) = tj(f)
3. fAgimplies thatM; =~ M, andT; = T, as K -algebras.
In particular, u(f) = u(g) andr(f) = 7(g).
4. f<gimplies thatT; = T, and hence (f) = 7(g).
Proof. 1. Ifh; = ¢(x;),i=1,...,n, then we can write for all

h; = (Z(hmj mod m)z;) +g; where g; € m?.
j=1

Hence forevery =1,...,n, hiz, = (hiz, Mmod m) + g; 4,
On the other hand, we have

((Sp(f))wlv R (Sp(f))wn) = (‘p(fﬂcl)v ) (p(fwn)) : J(gp), where
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It follows then from the above equation thdto(f)) C ¢(5(f)).

Besides, we have that for a matdx= (a; ;)1<:,j<n € K[[z]]"*™ the following
holds: A is invertible in K'[[z]]™*", if and only if, the matrix(a; ; mod m), ;
is invertible in K™*™. As ¢ is an automorphism of[[x]], it follows that the
jacobian matrix ofp, which is ((h; ., mod m)); ;, is invertible in K™*™ and
consequently/(y) is invertible in K [[x]]™*™.

Thereforep(j(f)) C jle(f))-
Hencej(p(f)) = (i (f)) and

(e() +3(e(f) = (PN + () = e(f) +5(F))-

2. By the product rule we have. f) + j(uf) = (f) + j(f)-

3. and4. follow immediately froml. and2.
O

Remark 1.2.8. Given f € K|[z]], ¢ € Aut(K][[x]]) andu € (K[[z]])*, it follows
clearly from the first two assertions of Lemma 1.2.7 that

tj(ue(f)) = @(ti(f))-

1.2.2 Isolated Hypersurface Singularities
In the sequel, we deal with the "isolated” property in adoijrcharacteristic.
Definition 1.2.9. Let f € m and letR; = K{[x]]/(f).

1. 0is called anisolated singularity of f, if there exists & > 0 such that

m* C j(f).

2. Ry is called anisolated hypersurface singularity, if there exists & > 0 such
that

m* C ti(f).

Lemma1.2.10.Letf € mandletR; = K[[z]]/(f). Thenis an isolated singularity
of f (resp. Ry is an isolated hypersurface singularity) if and only:iff) < oo ( resp.

7(f) < o9).

Proof. The proof is straightforward from Definition 1.2.9. O

Proposition 1.2.11.Let f € m ~ {0} C K[[z1,...,z,]] andletR; = K{[x]]/(f).
1. If Ry is an isolated hypersurface singularity singularity, thep is reduced.

2. Ifn = 2, thenR; is an isolated singularity, if and only if?; is reduced.
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Remark 1.2.12. We should mention, that the claim of Proposition 1.2.11 diss
hold if we generally admit K to be perfect field (cf. the proof of Lemma 1.2.13).
If K is not perfect though, then it is not true in general that aweed plane curve
singularity is isolated. For example, |éf = F1(t) be the field of rational functions
overF,. K is not perfect andf = 22 + ty? € (z, y) C K[[z,y]] is reduced but(f)

is infinite.

The proof of Proposition 1.2.11 uses the subsequent two Esnm
Lemma 1.2.13.Let K be a perfect field and let € m © K[z, ..., z,]].
1. If char(K) =p > 0, then

J(f) C (f) < there exists a unitu € K|[x]|*
suchthatuf € K[[z:?,...,z,"]].

2. If char(K) = 0, thenj(f) C (f) & f=0.

Proof. Let f € m C K|[[x]]. We write K [[']] := K[[z1,...,Zn1]]
We show in the following that we can, witout loss of geneyalgssume thaf is a
Weierstrass polynomial. Indeed, the Weierstrass prepartiteorem asserts the exis-
tence ofp € Aut(K[[x]]) andu € K[[x]]" anday, ..., a, € K[[x']] for some integer
b > 0 such that

f=u-o@,’ +az,  +.. +ap). (1.1)

If g =x,° + a12,°~ ' + ... + ap, we claim that
* jlg) C{g) = j(f) C (f)and
e if char(K) = p > 0, then the following are equivalent

(1) ui.g € K[[z1?,...,2,7]] for some unitu; € K[[z]]".
(2) ua.f € K[[z1?,...,x,P]] for some unituy € K[[z]]".

Indeed, since is an automorphism, Lemma 1.2.7 yields

ig) Clg) & (9)+ilg) = (9)
& o((g) +3(9) = »({9)
& (p(9) +i(e(9) = (v(9))
& (u-9(g) +i(u-9(g) = (u-¢(9))
s (f)+i(f) =
< J(f) c(f)

Letu; € K|[z]]" be suchthat; - g € K[[z:?,...,2,”]]. Hence, sinceX is perfect
(i.e K? = K), there existss € K[[z]] such thatu; - g = h?. Thus,u™" - p(uq) -
[ € K[[z1?,...,z,7]] follows by (1.1). Moreover ! - p(u;) is obviously a unit.
Conversely, if there exists a unit such thats - f € K[[z1?,...,z,?]], then we show
in the same way that; - g € K[[z17,...,z,7]].
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Therefore, we can assume without loss of generality fhatg.
Now, we suppose thag{ f) C (f). Then, there exisji, ..., g, € K[[z]] such that

alymixnbfl—i—...—i—ab_,zi =fe,=9f, i=1...,n—1.
and
bxnb_l + ...+ ap-1,2, = fmn = gnf-

Hence, considering far=1,...,n thex,-degrees, showseg,. (f.,) > bonthe one
hand andleg,, (fz;,) < b — 1 on the other hand. Thug,, = 0 clearly follows and
thereforen; ,, = Oforalli =1,...,n—1andj = 1,...,b. If char(K) =p > 0,

this yieldsa; € K{[z1?,...,2! _,]] for all j and sof € K[[z1?,...,20_|]|[zn]. As
alsof,, = 0,we obtainf € K|[[z1?,...,22_]|[z.?] C K[[z:?,...,2P]].

In characteristi®) however,f,., = 0 for all i implies thatf = 0 sincef € m.
Conversely, iff € K[[x1?,...,22]] andchar(K) = p, then it follows clearly, that
fz; =0foralli=1,...,n,and hence the inclusigi{ f) C (f) obviously follows.
Now letchar(K) = 0, and f=0. Itis then trivial thaj(f) C (f). O

Lemma 1.2.14.Let f € m C K][[z1,...,2,]] be such thaff # 0 and f is reduced.
Furthermore, letR be its associated hypersurface singularity. Then

dim(Ty) < dim(R).

Proof. We have in generalim (T) < dim(R).

We take firstf irreducible and suppose théim (1) = dim(R). Butthis is equivalent
toj(f) C (f) which is a contradiction to the assumptighis reduced angf # 0, (cf.
Lemma 1.2.13). Thereforém (Ty) < dim(R).

Nowletf = u- f1 - -- f,. be the decomposition ¢finto irreducible components, where
u € K[[z]]* andf; € K[[x]] is irreducible forali = 1,...n,. As f is reduced, then
it follows that (f;) # (f;) for all i # j. Moreover we have

Spec(Ty) = U Spec(Ty,) U U Spec N (Spec(R;))

where for alli, R; is the associated hypersurface singularity;to
As for all ¢, f; is irreducible, it follows then from the above that

dim(Spec(Ty,)) < dim(Spec(R;)) < dim(Spec(R)).
On the other hand, we have for a4 7,
dim(Spec(R;) N Spec(R;)) < dim(Spec(R;)),

i.edim(K|[[x]]/{fi, f;)) < dim(R;), for otherwise that meand;, f;) C (f:), which
implies thatf; divides f;. But this is a contradiction tgcd(f;, f;) = 1 since both of
them are irreducible anf} # f;.

Thereforedim(Spec(R;)) N Spec(R;)) < dim(Spec(R;)) < dim(Spec(R)).
Hencedim(Ty) < dim(R). O
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With these tools at our disposal, we give in the following gireof of Proposition
1.2.11.

Proof. 1. Suppose thaf is not reduced, which means that we can wiite- ¢"h
for someg andh € K{[x]] and some integer > 2.
Therefore g divided,, forall 1 < i < n. Hence(f) + j(f) C {(g). Then, it
follows thatdim g (Ty) > dim g (K[[x]]/(g))-
As g is a nonzero element of the integral domaéif{x]], it is therefore a nonze-
rodivisor in K [[x]]. Thus, by the Krull's principal ideal theorem, we have
dimg (K[[x]]/{9)) = n —1 > 1, which leads talimx (Ty) > 1 and conse-
quentlyr(f) = oo, which means thaR is not an isolated singularity.

2. Here, itis enough to show that a reduced plane curve snigis isolated. Sup-
posef is reduced, then it follows by lemma 1.1.14 that(T) < dim(R) = 1.
Thereforadim(Ty) = 0 and hence (f) < co. ThusR is isolated.

O

In the following, we reformulate the well-knoweurve selection lemmain arbitrary
characteristic.

Lemma 1.2.15. (The curve selection lemma)

Let K be an algebraically closed field of arbitrary characterstiFurther, let/ be a
proper ideal ofK[[x]] and letR = K [[x]]/I be the corresponding algebroid singular-
ity. If dim(R) > 1, then there exists a reducedrve singularity R such that

R—R.
Furthermore, there exists A -algebra homomorphism
¢ Kl[z]] — K[[t]]
x; — x;(t)
such thatl C Ker(¢).

Proof. LetI C K[[x]] be a proper ideal and lét = K[[z]]/I such thadim(R) > 1.
AsT c /T and hence? — K|[z]]/v/I, we can assume without loss of generality that
the algebroid singularity is reduced.

Letp D I be aminimal primeideal belongingfaand letd := dim(R) = dim(K|[z]]/p).
Further, letf € KJ[z]] and f € p. Then, it is clear thaf is a non zerodivisor in
K|[[x]]/p and it follows by the Krull's principal ideal theorem that

dim(K[[z]l/p+(f)) =d - 1.
On the other hand, we have
R — K[[=]]/p » K[[z]]/p + (f).

This shows thaf? surjects onto a ring where the dimension dropsl byn this way,
we can show after finitely many steps tHaisurjects onto a ring?’ of dimension.
Moreover, we have

R—+R — R

Fr
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Now, if we consider the normalization of an arbitrary irrethie component of the
curveR:‘ed, we get clearly a non zer& -algebra homomorphism
¢ Kl[z]] — K[[t]

X; — Iy (t)

with I C Ker(¢).

Invariants of hypersurface singularities

Let f € m be non-zero irK[[x]]. Considering an equivalence relatifon K [[x]], we
call (numericaljnvariant of f with respect t&, a number which depends only on the
orbit of f with respect t&€. Moreover, observing that for non-zefog € m, we have

K([=])/(f) = K[[z])/{9) <= f~g, (1.2)

we define as follows the invariants of hypersurface singfigarin arbitrary character-
istic.
Definition 1.2.16. Let f € m C K[[z]] be such thaf # 0 and letR; = K[[x]]/(f).

We call invariant of the hypersurface singularf®y any numerical invariant of with
respect to contact equivalence.

It is straightforward from (1.2) that Definition 1.2.16 malksense.

In this subsection, we present briefly some invariants whighrelevant for our de-
velopment.

Let f € m C K[[z]] be such thaif # 0 and letR; = K[[z]]/(f). Itis straight-
forward from Lemma 1.2.7 that( f) is an invariant off.

Neverthelessyu(f) is not an invariant in finite characteristic as the followgample
due to [GrK90] shows.

Example 1.2.17.Letchar(K) = p > 0 and letf = 2P + y?*! € K[[x,y]]. Then,
w(f) = oo while u((1 + ) - f) is finite. Hencep(f) is not an invariant of the plane
curve singularityR .

If K = C though, it is established that, f, g € C[[x]] and f ~ g, thenu(f) = u(g).
In the last chapter of this work, we shall present a proof ixf ¢faim over algebraically
closed fields of characteristic zero (cf. Proposition 5.3.1

Further invariants of isolated hypersurface singulasitiethe formR, where
f e m\ {0} are given by
m(f) = max{ke€Z: femr},
5(f) := dimg(Rs/Ry), whereRy is the normalization oR;.
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m(f) is mostly known as the multiplicity of andd(f) as the delta invariant of.
Besides, it is well-known, that the number of irreducibletéas of f is an invariant.
This is is usually denoted by( f) and also called the number of branches of the hyper-
surface singularity? .

Remark 1.2.18. For plane curve singularities over, it is established that

n(f) = 25(f) = r(f) + 1.

In Chapter 5 of the present work, we shall show the same claithe more general
context of characteristic zero (cf. Proposition 5.3.2).fimte characteristic though,
this claim is false. Indeed, Letar(K) =p > 0andletf = (1 +z) - (2P +y?*!) as
in Example 1.2.17. Itis not difficult to see thatf) = p? andd(f) = @ Clealy
fisirreducible. Henc&d(f) — r(f) + 1 = p(p — 1) # p(f).

However, we shall show in the last section of Chapter 2, thdeuna certain condition
of non-degeneracy the above formula for the Milnor numbegsdalso hold in finite
characteristic.

In arbitrary characteristic yet, we have more generally feduced non-zero

f € K[z, y]] that

u(f) =z 20(f) —r(f) +1
(cf. [Del73] and [MHWOL1]).

In Chapter 3 of the present work, we shall discuss thorouglfilyther invariant which
is the degree of contact determinacy.

1.3 P-Action on Plane Curve Singularties

In this section, we introduce a further fundamental eqeivet relation, the parametriza-
tion equivalence, which is of big use in the classificatiominodal plane curve sin-
gularities that are defined via their parametrizations.[{¢6198] and [Bou02]).

Remark 1.3.1. Let K be an algebraically closed field of charactristic zero. Fet-
more, letf € (z,y) C K|[z,y]] be such thaf # 0 and f is reduced. It is established
in [Cam80], that the plane curve singularify = K{[z, y]]/(f) has a parametrization.

1. If f isirreducible, then a parametrization @f is given by a map
v s Klw.y]) — K[[]
x — x(t)
y—y(t)
such thatKer(y) = (f), and the induced map
R — K[

is the normalization map.
More preciselyy) satisfies the following factorization property:
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If ' : K[[z,y]] — K][t]] is another parametrization aR, thent’ factors in
a unique way throughp, that is there exists an isomorphism
¢ : K[[t]] — K][t]] making the following diagram commutative:

2. If f decomposes into several branches, then a parametrizatidhi® given by
a set of parametrizations of the branches.
More precisely, iff = f1 ... fs is the decomposition gfinto irreducible factors,
thenR = @;_, K|[[t;]] is the normalization of2 and a parametrization) of R
can be represented as a matrix of the form:

z(t1) y(t1)

x(ts) y(ts)
where fori = 1,...,s, («(t;) |y(t;) ) represents a parametrization of tfith
branch.

Let R be a reduced plane curve singularity andiet= @;_, K|[[t;]] be the normal-
ization of R.
ConsideringR as ak -algebra, leth € Autx (R), then we can writep = (¢1, . .., ds),
where

(1,1 05) € Auti (K[[ta]]) X ... x Autc(K][[t,]])-

More precisely, for all < i < s, we have

¢i . K[[ti]] — K][[t:]
j=1
where for allj > 1, ¢;; € K andg;; # 0.

Definition 1.3.2. Let R be a reduced plane curve singularity andfet= @;_, K [[t;]]
be the normalization of the local ring.

1. Reparametrization of the branches:
z(t1) y(t1)

Lety = € R?, wherefori=1,...,s,

(2(t:) | y(t:)) = (Z aijt] | _sz-jﬂ) -
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Letop = (¢1,...,¢s) € Autg R, suchthatfor = 1,...,s,
¢i + K([t:]] — K[[t:]]

i .
b — Z ijt]
=1

with ¢i1 # 0. Then,

(@i(x(t:)) | 9i(y(t:))) = (Z aig(¢i(t)’ | Y bij(¢i(ti))'j)
Jj=1 Jj=1
is called areparametrization of the ith branch of « , and the element

o1(x(t1)) | ¢1(y(t1))

porh = € R?

bu(e(ts) | duly(t)

is called areparametrization of .

2. Coordinate change:

z(t1) y(t1)

Lety = : = (2(t) |y(t)) € R?, and® € Autx (K|[z,y]]).
a(t) oyt

We can write

d: K[z, — K[z, vy]]
x+— Ax + By + o(2)
y+— Cz + Dy + 0(2)

A C
such that, de<B D) #0.

We define
Yod:= (Ax(t) + By(t) + o(2) | Cx(t) + Dy(t) + o(2)).

3. Lety andvy’ € R%. Then,y is said to beparametrization equivalent to v,

R4, if there exists a reparametrization), and a coordinate chang® as
above, such that the following diagram commutes:
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4. LetP := Autk(R) x Autk(K]|[z,y]]), endowed with the multiplication:
(¢',2")(¢, @) = (¢' 0 ), @ 0 D).

P is called theparametrization group .

A group action ofP on R? is defined as follows:
P x R? — R?
(¢, @), 4) = potpod

Note that, ify) andq)’ are given elements iRR?, then

Y~ = € PY,
p
whereP1) denotes the orbit of under the above group action.

Definition 1.3.3. Letk € Zso, andR? = @;_, K|[t:]].

1. We defing?2 := (R/((t1,...,t))" )2

z(t1) y(t1)
2. Letyy = | : € R2.
CC(tS) (tS)
ja(t) | iFy(t)
We define);, = : :
sz(tS) jky(ts)

where fori =1,...,s,
Fa(t) = z(t;) mod (t;)*!, and

Fy(ts) = y(t:) mod (t;)* .

3. Letp = (¢1,...,¢s) € Autg(R).
We deflnegbk = (¢1,;€, Ceey ¢s,k)7
where fori=1,...,s
bi = ¢ mod (t;)F

(Recall thatAut i (K[[t;]]) = (t:).)

4. We defin®@y, := {(d, ®1) 1 (¢,) € P}.

Hence, we get a group action induced by the action of the gfoap R?, as follows:

'PkXRz—MRz

(1, Pr), V) — (P o9 o P)g.
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Definition 1.3.4. Let f,g € K]|[z,y]] be two plane curve singularities, having the

same number of branches

One says that fiparametrization equivalent to g, f ~ g, if there exist a parametriza-
p

tion ¢ of f, and a parametrization’ of g, such that) ~ '
p

Lemma 1.3.5. (Lifting lemma )
Let¢ be a morphism o -algebras,

¢: K[[:cl,...,xn]]/l—>K[[yl,...,ym]]/J,

wherel and.J are ideals ofK [[z1, . .., z,]] and of K[[y1, . . . , ym]] respectively.
If n = m and¢ is an isomorphism, then there exists a lifting

b: Kl[z1,...,2n]] — Kl[[y1,- - ym]]

of ¢ which is an isomorphism. 3
If n > m, and¢ is surjective, then there exists a liftingof ¢ which is surjective too.
(See [GLSO06]).

Lemma 1.3.6.Let f, g € K[[z, y]] be two given plane curve singularities. Then
frge= Ry

Proof. First, suppose that X ¢g. Then, f andg have the same number of branches
thereforef andg have the same normalization ridty= P;_, K [[t;]].

Moreover, there exist parametrizatiopsandy’ of Ry and R, respectively, such that
¥ X ¢’, which implies the existence gf € Autx (R) and

¢ € Autk (K[[z,y]]), such that the following diagram commutes:

Kllz,y] —~ R
@l ltb
K.y —> R

Besides, aser(¢) = (f), we havep o ¢(f) = 0.

On the other handy o ¢ = ¢’ o @, hencey’ o ®(f) = 0 which implies thai®(f) €
ker(4/) = (g). Thus,(B(f)) C (g).

Similarly, we show tha®~1(g) € (f), thatis(g) C (®(f)).

Hence,(®(f)) = (g), and thenf ~ g.

Conversely, suppose thit< ¢, then in particular, there exists an isomorphisniof
algebras? : K{[z,y]]/{f) — K][[z,y]]/{g). Hence, the local rings related to the
singularitiesf andg respectively have isomorphic normalization rings.
Furthermore, by the lifting lemma, there exists an isomismphb € Aut i (K [[z, y]])
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such that the following diagram commutes:

Kl[a, y)) — K|[z,y]]/(/)

g |
Kz, y)) —= Kl )/ {9)

It can easily be checked that the following diagram also coiest

=

| L

K[z, y]l —= K[z, y]l/(9) 7=

n

-

Kz, ]| = Kz, 9]l /()

=

Moreover, by definition of a parametrization of a plane cisivgularity; we have
¥ :=mn1 o s1 IS a parametrization ak ¢, and
Y’ 1= ngy o 54 is @ parametrization aR,.
Hence, the last commutative diagram is equivalent to thethet f 2 g.
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Chapter 2

C-Polytopes and
Non-Degeneracy

The first examples arising in the classification of hypemefsingularities belong to
the semiquasihomogeneodksiss whose elements are represented by equations of the
form f = fa + h € K[[z]] whereA is an(n — 1)-dimensional face of thélewton
polytopeof f, fa is aquasihomogeneoymlynomial having finite Tjurina number and
all elements okupp(h) lie strictly aboveA.

For the purpose of computation of normal forms and motivaiethe classification,
the investigation of this particular class giving riseqioasihomogeneottrations of
K|[[x]] plays the central role in the important paper [Arn74] of AchdHowever, it was
already noticed in that paper that it is often useful to coeigpiecewise-homogeneous
filtrations in which the role of\ is played by the Newton polytope and where a finite
set of weights has to be considered.

The theory of these was rapidly developed, culminating ewtlork [Kou76]. Kouch-
nirenko considered an arbitrary subddte N, looked for conditions for the existence
of f € K[[z]] suchthasupp(f) C M andu(f) < oo and found out the minimal value
of the Milnor number in case that such #irexists. His answer was given in terms of
certain geometrical features of the Newton polytope wisatelated to the set1. He
introduced the notion afon-degeneraciy arbitrary characteristic. His main results in
positive characteristic though, are proved only for thesaghere the Newton polytope
meets all coordinate subspaces. Of course, these casesidolnde all semiquasiho-
mogeneous ones.

In his paper [Wal99a] about Newton polytopes and non-degeyeverC, Wall did
slightly modify the notion of Newton polytope allowing itadets to be extended out
to meet all coordinate subspaces. So he introduced themaftgirict non-degeneracy
with respect to the so called-polytopes This condition of non-degeneracy turns out
to be an appropriate one. Indeed, on one hand, Wall show¢dalyasemiquasiho-
mogeneous hypersurface singularity is strictly non-degste with respect to some
C-polytope. On the other hand, he asserted that this conditiplies the finiteness of
the Milnor number. The results that we present in the lagt@eof the present chapter
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shows that strict non-degeneracy does also make senseifivgpobaracteristic.

Our attempt in this chapter is to give an explicit developtierarbitrary character-
istic of these notions which are crucial for the subsequbapters. Throughout this
chapter, we shall use widely the notation elaborated by IWgal99a]. The chapter
is organized as follows. Section 2.1 is devoted to the stiidpjects and notions which
are closely related t@’-polytopes. In part 2.1.1, we briefly review the definitioris o
Newton polytopes;’-polytopes and Newton number. Moreover, we explain the one t
one correspondence between finite sets of weightsapdlytopes.

Although the notion of semipiecewise-homogeneity is meaefjeneralization of that
one of semiquasihomogeneity, it was not explicitly defimethe literature. It deserves
a closer look for it provides a more systematical and efficilvelopment of the the-
ory. In part 2.1.2, we start by defining the piecewise-homeges order of a formal
power series. Afterwards semipiecewise-homogeneoussygace singularities are
introduced. These can be represented by equations of tmeffet fp + h € K[[x]],
where fp is a piecewise-homogeneous polynomial with respect €& @olytope P,
7(fp) is finite and any element afupp(h) lies strictly aboveP. We notice that the
conditionT(fp) < o is to the case of arbitrary characteristic as the condjtiofp )

to the case of characteristic zero. In both cases the pahpiart of the (hypersur-
face) singularity is isolated. The semiquasihomogeneass overC is thoroughly
discussed in the literature. It is well-known, amongst cththat a semiquasihomoge-
neous hypersurface singularity is isolated, besides ithmsame Milnor number as its
principal part. In positive characteristic, we show thas ttesult remains true, if and
only if, the characteristic does not divide the weightedrde@f the principal parfa.

In subsection 2.1.3, we describe how finite sets of weight&ngive rise to a piecewise-
homogeneous grading of algebroid singularifi€gz]] /I, wherel is a proper ideal of
K|[x]]. Afterwards, we study their associated gradédhlgebras and show that these
are finite dimensionak -vector spaces in the case of zero dimensional ideals.
Although we do not make essential use of toric varieties is dissertation, for com-
pleteness and to supplement the pictur&epolytopes, we present in part 2.1.4 the
relation between these two notions.

In section 2.2, we deal with piecewise-homogeneous ordete®setDer k (K [[xz]])

of derivations and their properties. This notion was intraed by Arnold in [Arn74]
overC as a tool for the computation of normal forms and hence forpilnigose of
classification. We discuss this in detail in the more gensgting of arbitrary charac-
teristic.

The last section 2.3 is devoted to the notion of non-degenel&e start by recalling
the definitions and the main results which are related to tiredegeneracy elabo-
rated by Kouchnirenko in [Kou76]. Afterwards, we presenaibitrary characteristic
Wall's notion of strict non-degeneracy ov€r Based on the observations of Wall, we
compare the two notions. Also, we notice that the main rgealted by Wall overC

in [Wal99a] remains true in positive characteristic, nantaht strict non-degeneracy
implies finite Milnor number and finally we show that any sea@igihomogeneous hy-
persurface singularity for which the characteristic dogtsdivide the weighted degree
of its associated principal part is strictly non-degeresrat
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Throughout the present chapt&r denotes an algebraically closed field of arbitrary
chracteristic. Further, fof € K[[x]], we denote byR; := K{[z]]/(f) the associated
hypersurface singularity té.

2.1 (C-Polytopes and Piecewise-Homogeneous Graded
Algebroid Singularities

2.1.1 C-Polytopes and Newton Polytopes

We recall the definitions of &'-polytope, Newton diagram and Newton polytope of a
formal power series and introduce some notations.

Definition 2.1.1. A C-polytopeis a polytopeP C R” such that
1. each ray through the origin iR” meetsP in just one point, and
2. the region inR” 'lying aboveP (i.e not containing)) is convex.

Remark 2.1.2. We would like to observe that@-polytope divides the positive orthant
in 2 connected components where actually the one not cangpzero is even convex.

Notation 2.1.3. Let P be aC-polytope. For each facé of P, we set
Ij:={i, 1<i<n:z;=0 on §}
and s denotes the complement&fin {1,...,n}.
Definition 2.1.4. Let P C RZ, be aC-polytope
1. Atop-dimensional (i.én — 1)-dimensional) facé\ of P is called afacet

2. We call a face of P inner faceif it lies in no proper coordinate subspace, that
is if no coordinater; vanishes identically on (i.e I; = ().

Example 2.1.5. In the following figure, the union of the thick lines repretsarC-
polytope in the plane.

\

N

C-polytope

This C-polytope ha3 facets which are the three line segments that compose i2and
further inner faces which are thizvertices of the”'-polytope not lying on the coordi-
nate axes.
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Definition 2.1.6. 1. Letf € K[[z]]. Then, we call the set
T (f) = conv(supp(f) + R”,)

the Newton diagram of f and the boundary of ;. (f) is called theNewton
boundary of f.

The union of the compact faces of the boundarl off) is called theNewton
polytopeI'(f) of f.

Further, we denote the cone joining the origin and the Nevgtolytopel'(f) by
T (f).

2. A formal power serie§ € K|[[x]] is called convenient (CO) if its Newton
polytopel'(f) meets all the coordinate subspaces, i.e none of the elemagnts
i=1,...n,dividesf.

Example 2.1.7.Let f = z(y* + 2y + 2%y? — 23y? + 29).

T (f) L'(f) r_(f)

In particular, f is not convenient and the Newton polytopéf) has two facets, with
slopes—1 and—3.

Remark 2.1.8. We observe that the Newton polytdig) of a convenient power series
f € K[[x]] is aC-polytope. Moreover, it is easy to notice thB( f) is not an invariant
of the orbit off under theR-action or thelC-action.

In the sequel, we shall often use the following notation.

Notation2.1.9.Letf =3_  aaz®™ € K[[z]].
*€2>0

For a non empty subset C R”, we writef, = _

VA
A
>

aqr™ and we seff, = 0.

OLEAF]ZEO
Definition 2.1.10. Let P be a compact polytope iR” and letf € K[[z1,.. ., ,]].
1. We define thBlewton number of P as

n—1
VN (P) :=n!V,(P)+ Y (=1)"(n =)V, (P) + (-1)",
r=1
whereV,,(P) is the euclidiam-dimensional volume of the polytog&and, for
g=1,...,n—1, V,(P) denotes the sum of the euclidigilimensional volumes
of the intersection oP with the coordinate subspaces of dimensjon
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2. We define the Newton numbey(f) of f as follows:
(@) If fis (CO), we have
un (f) =V (T-(f)),

(b) otherwise, we set

fm = f+zxzm
i=1

and we take

pn(f) = Sté%uzv(fm) € NU {o0}.

Example 2.1.11.We considelf = y* + 23y + 27 € K]|[z,y]]. Clearly f is (CO).
For ¢ € {1, 2}, we denote for shofi, := V,(I"_(f)). Then,

pn(f)=2V2 = Vi +1,

withVy = 32 +3.24 42 =13andV; =4+ 7 = 11.
Henceun(f) = 16.

In particular, we notice in this example thatf) = 16 = unx(f). Indeed, in his paper
[Kou76], Kouchnirenko shows that in arbitrary characteits the Milnor number and
the Newton number coincide for any non-degenerate hypcisingularity. This
notion of non-degeneracy shall be defined in Section 2.3sgbtbsent chapter.

Remark 2.1.12. 1. For f € K|[[x]], Kouchnirenko shows in [Kou76, Theorem I]
that the Milnor number and the Newton number satisfy in galrtee following
relation

u(f) = pn(f)-

2. ltis clear from Definition 2.1.10 that the Newton numbea @abnvenient power
series is finite. For the non-convenient ones, we have thenfinlg result given
by Kouchnirenko in his paper [Kou76].

Let f € K[[z1,...,,]] be non-convenient and lete Z-o with 1 < ¢ < n,
such that
R M osupp(f) =0 for i e {1,...,q}, and
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R N supp(f) #0 for ie {g+1,...,n}.
Further, asl'(f) is compactirR” , we setd(f) = max |r|.

rel(f)
If dim(T(f)) =n—1,then

i=1

pn(f) =00 <= N (f + Zwid(f)n+1> > (d(f) = 1"

Example 2.1.13.Let f = y° + 23y? € K][[z,y]]. We notice thatf is not (CO).
Moreover, form, m’ € Z~q such thatm > m’, we haveun (f,) > un(fm). Hence,
we can write

pn(f) = sup pn(fm) = sup pn(fm)-

meN m>9
Thus form > 9, we get
/L(f) 2 ,LLN( m)
= 23 +22)-5-m+1
= 114+m
This shows thatiy (f) = .
5 \
27T
3 m

Lemma 2.1.14.Let f € m? C K[[z,y]] be reduced. Then

un(f) = Vn(T-(f)).

Proof. We denote the facets &f( f) by A;,1 <1 < k, listed in order with decreasing
slopes. We denote the lattice points at the endApby (a;—1,8;—1) and («a;, 5;),
i=1,...,k sothatvg > a3 > --- > oy while (8;), is increasing. Iff is (CO), then
the claim follows clearly from Definition 2.1.10, otherwigsalivides f or y dividesf.
Without loss of generality, we can assume thalivides f.

Furthermore, we notice that the function

N — Z>0
m = N (fm)

is increasing.
If T'(f) intersects the—axis, that isyy # 0 andjy, = 0, then, asf is reduced, we have
necessarily thaty, = 1.
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Hence, we can write
fr = coz® + iz yP 4+ - 4 cpayPr,
where the coefficients, ¢ K,0 < i < k. Thus, form € N, we have
fm=f+y™

and, sincef,,, is (CO), we have by definitiomy (f) = V(L= (fm))-
Form large enough, we get clearly

pn(fm) = VN(T-(fm))
VN(T-(f)+2 (%) -m
= Vn(I-(f))

Finally, if I'( f) does not intersect the-axis, then we havg, = 1 anday, = 1, since
f is reduced. Hence, we have

fr = cor™y + crz®y” 4o 4 ey

ag Qo m

Thusf,, = f+ 2™ +y™, m € N.
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Form large enough, we get

pn(fm) = VNI _(fm))
= Un(T-(f)+2(
= Vn(T-(f))-

This proves the claim. O

SIE

+3) ~ (m+m)

In the following, we would like to describe the correspontebetweerC-polytopes
of R” and finite sets of weights.

Let W = {w = (wy,...,w,) € R” } be afinite set inR” . Then, W gives rise
to a finite set
Lw ={p={(w,):R" >R | we W},

of linear functions given by
Aw(a) = <’LU7a> = Zwiai,

with @ = (o, ..., a,) € R" andw = (w1, ..., w,).

Notation 2.1.15. If W is a finite set of weights anfly is its associated set of linear
functions, then we define the functidy, : R* — R by

Aw (@) := min {\w(a)}.

weWw

Definition 2.1.16. 1. Afinite seW C R” is called a finite set ofveights

2. A non-empty finite set of weight¥ is calledirredundant if for any proper
subsefWV’ ¢ W, we have\y < Apy.

Throughout the whole chapter, we consider only irreduntiait¢ setsW of weights.
On the other hand, we would like to mention that the weightsshall consider in
practice lie inQ” .

Remark 2.1.17. We should notice that there is a one to one correspondeneebat
C-polytopes and irredundant finite sets of weights. This eadéscribed as follows:

1. LetW be an irredundant finite set of weights.
Then,W defines aC-polytope Pw = {a € R”? : Aw(a) = 1}.
We can write B
Py = U A'wa

weW
whereA,, := {a € R? : Aw(a) = A\y(a) = 1}. These are the facets of

the polytopePw . Indeed, sincd¥ is irredundant, each facet is non-empty and
(n — 1)-dimensional.
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2. Conversely, &'-polytope P gives naturally rise to a finite s8% p C R”  of
weights. Indeed, if we consider the collection of the facetsf P, then we can
associate to it the following finite set of linear functions

Lp={),: A\ (ax)=1, forall a € A, AfacetofP}.
In this way, we obtain a finite set of weights
Wp={wa €eR” : Aa=(wa,.), AfacetofP},

for which we have clearly thaPw ., = P.

2.1.2 Semipiecewise-Homogeneous Hypersurface Singutas
Definition 2.1.18. LetW C Q7 be a finite set of weights.
1. Leta € ZZO. We call the positive rational number
W-degz®) := Aw ()
thepiecewise-homogeneous degree the W-degreeof the monomiak®.
2. Letf € K[[z]]. Then,
W-ord(f) == vw () = min{Aw(a) : a € supp(f)}

is called thepiecewise-homogeneous order the W -order of f.
We setvy (0) = oo.

Notation 2.1.19.1f W contains only one weight € R” , then we denotey := vy,.

Remark 2.1.20. LetW C Q" be a finite set of weights.
1. We have clearly by Definition 2.1.18 that

ow () = min {vu(f)}.

we

2. Fori=1,...,n,ifwe set

ei= (in)icpen= O ... 0, 1, 0 ... 0)
whered; ;, is the Kronecker symbol, then we have
Aw (€:) = min {Aw(ei)} = min {wi}.
Remark 2.1.21. Let f, g € K[[z]]. It follows clearly from Definition 2.1.18 that

1. ow (f +9) > min{ow (f), vw(9)}.
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2. vw(fg) > vw (f) + vw (g) and the equality does always holdi{W) = 1.

If 4(W) > 2 however, then itis of interest to notice that the equalitiledf and only if
the W-order can be reduced to a-order for some weightv € W. This is precisely
the statement of the next lemma.

Lemma2.1.22.Let f, g € K[[z]] and letW C Q" be a finite set of weights. Then,
vw (fg) = vw (f)+vw (g), ifand only if, for somev € W we haverw (f) = v (f)
andvw (g) = vw(9g)-

Proof. Letw, w’ andw” be weights inW so that
vw (f9) = vw(fg), vw(f) = vw (f) and vw (g) = v, (9)-
Hence, we have clearly that
vw (fg) =vw(f) +vw(9) = vw(f9) = vw (f) + vy (9)

= Vw(f) +vw(g) = vur (f) + vy (9)
= Vu(f) = vw (f) = vy (9) — vuw(9).

ASO < Vo (f) = v (f) = v, (9) — vw(g) < 0, then it follows clearly that., (f) =
vy (f) @andu,, (g) = v (g). This shows the lemma. O

Definition 2.1.23. LetW C Q7 be afinite set of weights.

1. A polynomialf = Zaem anx® € K|[x] is calledpiecewise-homogeneous
“>0

(PH) of type(W ; d) if

W-degz®) =d, forall a € supp(f).
d is called thepiecewise degreer the W-degree off.

2. If the setW has only one weight, then we call a piecewise-homogenedys po
nomial f of type(W ; d) quasihomogeneousr (QH).

Remark 2.1.24. 1. Itis clear that anyQH ) polynomial is(PH).

2. Obviously a quasihomogeneau3H ) polynomial of typgw ; d), wherew =
(w1,...,w,) € Q" isalso(QH) of type(w, 1) forw = (<3,..., ).

Example 2.1.25.The polynomiaf = zy* +23y? + 25y +y° +28 € K[z, y]is (PH)
of type(W ; 1) where

W Lo (23 i (12 s (1 1Y o (L1
=qwL = 878 ; W2 = 777 ; W3 = 575 ; Wye = 376 .

The polynomialf = 23 + zy® + 22 € K|x,y,2] is (QH) of type(w; 1) where
w= (b4
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y zZ

RaNuN .

8 x

F=oyt 4+ 2392 + 2%y + o8 + a® S
I'(f) = Pw L(f) # Pw

Remark 2.1.26. Let f be a(PH) polynomial. We observe that in general, there exist
infinitely manyC'-polytopesP of R” ' such that the polynomiglp is equal tof as the
next Example 2.1.27 shows.

Example 2.1.27.Let f = 2™ + 2"y + y*2 € K[[z,y]] such thatry > r; and
s2 > sy andrgsy + sar1 < ross. Obviouslyf is a convenienfPH) polynomial
of type(W ; 1) whereW is the set of two weights arising from the two facets of the
Newton polygom of f (cf. Remark 2.1.17).
Further, we denote by; the facet o' meeting ther-axis and byo, the other facet.
Moreover, we denoté, the extension of, to thez-axis and we consider the set of
points

C:={M=(r,s) ERQZD : (r,8) €62 and 0 < s < s1}.

Obviously the sef is infinite.

On the other hand, foM = (r,s) € C, we consider respectively the edgg), with
end pointgro, 0), (r, s)and the edge- 5 with end pointgr, s), (0, s2).

Now, letPy; = 01,3 U 02, ar. It is clear that

1. Py is aC-polytope ofR? .
2. No point ofsupp(f) lies belowP ;.

3. fis (PH) of type(W, ;1) whereW , is the set of two weights arising
from P,.

S2

s1

NSNO 1

~
Ga| Q™
x

1 To

Definition 2.1.28. A hypersurface singularity is called
piecewise-homogeneouws (P H) if there exists a piecewise-homogeneous polynomial
f € K[z] suchthatk = R;.
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In the following, we deal with some examples(@ H) hypersurface singularities.

Example 2.1.29.Let g = y* + xy* + 23y + 2%y? + 27 + 2%, The associated
hypersurface singularity, is (PH). Indeed, letf = y* + 23y? + z7. We havef is
(PH) of type(W ; 1), whereW = {w; = (1, 2), w2 = (3, 1)}. Onthe other hand,
we havegy = (1 +z)f.

Henceg ~ f and thereforeR?, = R obviously follows.

Example 2.1.30.Let f = y* + 22y3 + 2%y? + 27 and letR; = K[[z]]/(f) be the
hypersurface singularity associated fo

o If char(K) # 3, then we claim thaRy is (PH).

Indeed, we can show later in Example 3.3.9) that
f~y* + 23y? + 27, On the other hand, the latter polynomial (®H) as Example
2.1.29 shows. Therefoi; is (PH) by Definition 2.1.28.

¢ We show however, th&t; is not (PH) whenevethar(K) = 3.

Indeed, we show in the following that there is (#8H ) polynomial which is contact
equivalent tof.

Letu € K[[z]]" be a unitinK|[[z]] and lety € Aut(K[[z]]) be an automorphism of
K]{[x]]. Then, we can write

u=e+h and ¢: x+— axr+by+hy, y— cxr+dy+ hs,
where
1. ee K\ {0},
2. hem,
3. a,b,candd € K such thatad — bc # 0 and
4. hy andhs are inm?2.

On the other hand, we can show usiBgUGULAR, that any monomial having ¥ -
degree strictly bigger than3/12 lies in the idealtj(f). Thus, in particular the ideal
m? is a subset of. Hence, according to Corollar$.4.? of the next chapter, for any
g € K[[x]] such thatf — g € m®, we havef ~ g.

Then, we can write

wp(f) ~(ctat + Aday + dPexy® + diy?) + Fala® + d?vPy° + h,
whereh is inm® ¢ K[[x]].
e Suppose that # 0 andd # 0. Thenup(f) = g+ g1, whereg is a homogeneous

polynomial of degreé andg; is a nonzero polynomial im® \ {0}.
We see clearly that in this case the polynonyak; g1 is not(PH).
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e Now suppose that = 0. Then, it follows from the conditioid — bc # 0, that
a # 0 andd # 0. Furthermore, we have that

we(f) = d*y* + a®d®23y? + a"z” + g1, such that
g1 = a’d>z%y3 —abd3xy* + (A6 +b2d?)y® — adxy>hy —bd3y*hy +aSbay+
baxy® +b7y" + d®y3h? + dh3y.
The polynomiay := d*y* + a*d*z3y* +a"2" is (PH) of degreel (c.f Example
2.1.29) and the polynomia, is not zero as it has the nonzero tettd3z2y3.

Besides, the piecewise degreegofis strictly greater than 1 and therefore the
polynomialg + g1 is not(PH).

e The casel = 0 is analogous to the case= 0.

So, the claim clearly follows.

D
2 7
Newton polygone of
f — y4 +13y2 +:E7

In the following remark, we would like to formulate in arlafly characteristic some
known facts about quasihomogeneous hypersurface siitipgar

Remark 2.1.31. 1. Letchar(K) be arbitrary and letf € K[x] be(QH) of type
(w; d) wherew = (wy,...,w,) € R” . Thenf satisfies obviously thEuler
relation .

df = Zwlxzfmm in K[.’I)],
i=1
and the relation

fEUrmy, .t a,) =t f (21, ., x,) In Kz, t].

2. It is easy to notice that, ifhar(K) does not divide the degreé of quasi-
homogeneity, then it follows from the Euler relation thjate j(f) and thus
T(f) = u(f).

On the other hand, it has been established in a theorem of 0 &=i71] that
for f € C{x} having finite Milnor number, the converse does also hold. éMor
precisely, letf € C{x} be such tha is an isolated singularity of. Then

Ry is (QH) <= p(f) = 7(f).
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Using the particular relations fulfilled by @ H) polynomial f € KJ[x] quoted in
the first part of Remark 2.1.31, we present in the sequel soiperitant properties of
(QH) hypersurface singularities.

Lemma2.1.32.Letf € K[x] be(QH) oftype(w ; d) and letg € K[[x]] be arbitrary.
If char(K) does not dividel, then

frgefrg

Proof. The proofrepeats the same arguments used in [GLS06, 2epBaing the field
of complex number€ by an algebraically closed field such thaur(K) 1 d. O

Lemma 2.1.33.Letw = (wy,...,w,) € 7", such thatged(ws,...,w,) = 1 and
letd € Z~o. Further, letf € m3 C K[[z]] be(QH) of type(w , d) such thatr(f) is
finite. Then the following are equivalent

(1) char(k)td

(2) p(f) isfinite.

Proof. If char(K') does not dividel, then it follows clearly from the Euler’s relation
thatf € j(f) (cf. Remark 2.1.31) and henggf) = 7(f) < oo.

To show the implicatior{2) = (1), we suppose thathar(K) dividesd. Hence the
Euler relation reads

wlxlfml +...+ wnxnfwn =0.

As ged(wy, ..., wy) = 1, we can suppose for example théur(K) t w,. Thus, we
can write w w
1 n—1
xnfacn:__fm1 e T fiinfl'
W, W,

On the other hand it is easy to see thats not zero inK [[x]]/(fz,, - - -, fx,, ). INdeed,
otherwise we would have,, € (f.,,..., fz,) C m? which is impossible.

Hencef,, isazerodivisorinK|[[x]]/{fs,,---, fx,). Thereforethe sequenge,, ..., fz,
is not regular in the Cohen-Macaulay rit\[[x]]. Then it follows thaidim (M) > 1,
whereM s is the Milnor algebra associated fo(cf. [GLS06, B.8.3]). But this contra-
dictsu(f) < co. Hencechar(K) 1 d. O

Remark 2.1.34. Let f be a(QH) of type(w ; d) wherew € ZZ, andd € Z-o. We
should notice that in arbitrary characteristic, the paftiderivations off are either0
or non-zero(@Q H) polynomials. More precisely, far=1,...,n, we have

fo, =00r f;, is (QH) of type(w; d — w;).
So we get the following lemma:

Lemma 2.1.35.Let f € m be a(QH) polynomial. Ifu(f) is finite, then

{re K™ fo(r)=...= fo(r) = 0} = {0}.
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Proof. Letw = (wy, .., wy) € Z2, be the weight associated foand let

N={reK": fo(r)=...= f, (r) =0}
We suppose that there exists= (r1,...,7,) € N such that # 0. Then for any
t € K, we have clearlyt**rq,...,t*r,) € N.

Further let! be the ideal associated to the set of points
{(t“ry, ..., t9ry)) s t € K}

ObviouslyI > j(f) anddim(K|[[z]])/I = 1, this yieldsdim (M) > 1 which contra-
dictsp(f) < oo. O

Remark 2.1.36.Let P C R” be aC-polytope. Letf = > aqr™ € K[[x]] be such

«
that the truncationfp = Y. aqz®™ # 0. Then, it follows clearly that
acP

fp isa (PH) polynomial of type(W ; 1),

whereW is the finite set of weights associatedfo(cf. Remark 2.1.17). If we have
further that no point okupp(f) lies belowP, then we can write

f=fp+fi, withvw (f1) > 1.
Furthermore,fp is called theprincipal part of f.
Definition 2.1.37. Let f € m C K[[x]].

1. We callf semipiecewise-homogeneous (SPH) if there exists aC-polytope
P inR? such that no point ofupp(f) lies belowP and the(P H ) polynomial
fp has afinite Tjurina number.

2. Aformal power serieg € K[[x]] is calledsemiquasihomogeneou§SQH) if
there is a faceA of I'(f) of dimensiom — 1 such that thé @ H) truncation fa
has finite Tjurina number. This facd is then uniquely determined anf is
called the principal part off.

3. A hypersurface singularity is callestmipiecewise-homogeneoygesp. semi-
quasihomogeneousor (SPH) (resp. (SQH)) if there exists § SPH) (resp.
(SQH)) power seriesf such thatR = Ry.

Obviously, any(SQ H) hypersurface singularity isSPH) too. One has only to con-
sider the extension of the fack to the coordinate hypersurfaces to getgolytope
inR” .

Remark 2.1.38. Let f € K|[[x]] be (SQH) and let fao be the principal part off.
Considering the weight vector associated to the fasgtve observe easily that is
a (QH)-polynomial of typdw ; d) whered € Z~. Moreover, we can write

[ =/fa+g, with 7(fa) < oo and vy(g) > d.
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In chapter 3 of the present dissertation, Corollary 3.3st8dishes the following.
Lemma 2.1.39. Any semiquasihomogeneous hypersurface singularity lestesh
Proof. cf. Corollory 3.3.13. O

The investigation of SQ H) singularities over the field of complex numbé&lays
a central role in the important paper [Arn74] of Arnold whéie shows for example
that a(SQH) hypersurface singularity has the same Milnor number assiée@ated
principal part. Of course, we would like to investigate inhfar this remains true in
arbitrary characteristic.

The following example however shows that this property dagsiold in general when
char(K) > 0.

Example 2.1.40.Letchar(K) = 7 and letf = 27 + 2%y + y* € K]|[z,y]]. Further,
let A be the line segment with end poirits0) and(0,4). It is clear thatf is (SQH)
of principal part fa = 27 + y* (note thatfx is reduced and hencg(fa) < cc). On
the other hand(fa) is infinite whilep(f) = 21 < oco.

We notice that in this examplehar(K) = 7 divides the weighted degree £ which
is 28.

Proposition 2.1.41. Let K be an algebraically closed field of arbitrary charactersic
and letw = (wi,...,w,) € Z7 . Further, letf € K{[z]] be (SQH) with principal
part fa of type(w; d), d € Z~o. If u(fa) is finite, thenu(f) = u(fa).

Proof. Throughoutthe whole proof, we use the following notation:
K|(y,t]] := K|[y1,- - -, Yn,t]] and K[z, t]] := K[[z1,. .., Zn, t]].

We can writef = fa + g, whereg € K[[z]] andv,,(g) > d.

Further, we assume(fa) < oo and we set

o o= K00

€ K[z, t]].

Thusf(x,t) = fa(x) + t™g(x,t), m > 1. Hence, we can write

fwi (@,t) = faa,(x) + 1" g, () € K[z, t]]. (2.1)
We consider the followind(-algebra homomorphism
o: Ky tl] — K,
t — 1

Clearly, it follows from(2.1) that

dimg (K@, t]/{fe, (@, 1), ..., fo, (@, 1) 1) = dimx (K[[z]]/§(fa)) = u(f?z)-z)
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Thus, asu(fa) is finite, we see that the morphisinis quasifinite and even finite (cf.
[GLS06, 1.13)).

Moreover, it follows from(2.2) that dim(K[[x,t)]/(fe, (1), ..., fa, (z,t), 1)) is
zero. Then we can write obviously

dim(K [z, 1]]) = dim(K [y, t]]) + dim(K[[z, 8]}/ (fu, (@, 1), ..., fo, (@,1), D).

Besides, fork [[x, t]] is Cohen-Macaulay, it follows from [Eis96, 18.16] thhis flat.
Altogether, and using the Nakayama lemma, we obtain&Hat, t]] is a freeK [[y, t]]-
module of ranku(fa). Hence

K[z, t]j©xqy,q Ky 1)/ () = Kllz. )/ (o (@, 0), ..., fo, (1))

is a freeK [[t]]-module of ranku(fa ). Over the field of fraction#(((¢)), we consider
the morphism

e K(O)[=l] — K(@)[[]]
;o Yy, i=1

t — .

NN

It is straightforward thap is an isomorphism of local algebras andAr{(¢))[[x]], we
have

fl@t) = el f(2).

Writing K’ for K((t)), we have cleary

(f(@, ) oy = (O (@) 50y
Sinceyp is an isomorphism, we have by Lemma 1.2.7
JNE (=] = (e () K [[2] = (i () K'[2])-

Due to the above, we get

Klfa, 1]}/ {for (@,8), ., fo, (@, ) @ K ((£)

1R 1R
alal
ENE)
= <<
SU6
= <
==
Clat

8

is a K'-vector space of finite dimensiq{ fa ).
Finally, it follows by Theorem 5.1.7 that

dimg (K[[2]]/§(f)) = dimg (K'[[2]]/§ () K'[[2]) = p(fa)-
O

If char(K) = 0, we shall give an alternative proof of Proposition 2.1.4Chmapter 5
using Lefschetz principle (cf. Proposition 5.2.2).
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2.1.3 Piecewise-Homogeneous Grading of Algebroid Singuites

In the first part of the present section, we shall show lityolytopes (or equivalently
finite sets of weights) give rise to particular filtrationsabgebroid singularities. These
are the so calleghiecewisefiltrations and generalize the well-known quasihomoge-
neous filtrations which are induced by only one weight. Aftet, we shall deal with
the main properties of the associated grafiedlgebras.

Lemma2.1.42.LetW C Z"  be afinite set of weights and létc N. Then the sets
Fog:={g e K[[z]] : vwl(g) = d},

and
Fug:={g € K[[z]] : vw(g) >d}.

are ideals ofK[[x]]. Moreover, we have
1. on = K[[EL‘]] andF>0 =m,
2. F., C FsqandF,, C F>4foranyd > dand

3. foranyd €N, we havel>qFs v C IS gy -
Proof. The proof is obvious. O

Remark 2.1.43. 1. For anyd € N, it is easy to see that th&-linear spaces
K|[z]]/ F>q and K[[x]]/ F~4 are finite dimensional.

2. We observe clearly from Lemma 2.1.42 that the idéals d € N, give rise to a
decreasing filtration

FZQDlej...DFZdD...

of K[[x]]. On the other hand, if is a proper ideal ofK’[[x]], then we see clearly
that

(Fso+D)/ID(Fs1+1)/ID>...D (Fsq+1)/ID ...
is the induced quotient filtration on the algebroid singuthad<[[x]] /1.

Definition 2.1.44. Let W C Q7 be a finite set of weights and IétC K[[z]] be a
proper ideal. We call the decreasing filtration

(Fso+D)/ID (Fs1+1)/ID>...D (Fsq+1)/ID ...

where ford € N, F54 := {g € K[[z]] : vw(g) > d} thepiecewise-homogeneous
filtration or W -filtration of the algebroid singularitys[[x]]/I.
Further, the ideal§ F>4 + I)/1, d € N, are called théW -ideals of K [[x]]/I.
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In the following, we shall study the associated grading toverg piecewise filtra-
tion of an algebroid singularity. Next, we consider the atsed gradedy-algebra
grw (K[[z]]/I), namely

grw (K[[)/1) := D grw . a(K ]}/ 1),

deN

where
grw a(K[[z]]/]) == F>a/(Fsa + (F>a N 1)).

Remark 2.1.45. We observe that the monomials of tiealgebragr,,, (K[x]]) are of
the form

0o = 2% + Foy (o) € Forw(a)/Foaw (@)

thatisd,, is the residue class of the monomigtt of K'[[x]] modulo the ideaF 5 , (a)-
Considering Remark 2.1.21 and Lemma 2.1.22, the multipdicaon gr, (K [[z]] is
defined as follows:

doitas 5 ITforsomew € W, Aw (a1) = A (1)
andAw((Xz) = /\w(az),

0 , otherwise.

Following [GrP02, 5.5.10], we define the initial ideal bhssociated taV .
Definition 2.1.46. Let W be a finite set of weights.
1. Forf =" aax™ € K[[x]] such thatl := vw (f), we call

Inw (f) = Z P

W —deg(a)=d
theinitial form of f with respect taV'.
2. LetI C K|[[x]] be anideal. The ideal
Inw (I) := (Inw (f) : f € I\{0}) C K[z]
is called theinitial ideal of I with respect toV .

Notation 2.1.47. If W contains only one weight, then fgr € K[[xz]], we denote
Inw (f) := In(f).

Remark 2.1.48. 1. Inw (f)isa(PH) polynomial of typéW , vw (f)).

2. ltis of interest to note that in generdhw (fg) # Inw (f)Inw(g) while the
equality holds when the s& contains only one weight.
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Example 2.1.49.Let W = {(1,2),(3,1)}. We considerf = z° + zy* + y° and
g = x" +y". Itis clear thatf is (PH) of type(W ; 5) and g is is (PH) of type
(W ; 7). Moreoverf = Inw (f) andg = Inw (g). ButInw (fg) = ' + 25y +
zy® +y'? # Inw (f)Inw(9).

Proposition 2.1.50.Let] C K{[x]] be an ideal and leW be a finite set of weights in
ZZ,. Then

grw (K[[@]]/T) = DK,/ Inw (I),
d>0

as K -vector spaces.

Proof. Letd € Z~, we define the following twd{-vector spces:
Klz], := (x* : vw(x*) =d) andInw (1), := Inw () N K[z],.
Cleary, we have([x], = F>q/Fs 4.

Hence, we can consider the canonigalinear surjection

va: Klz|, — Fsa/(Fsa+ (F>aN1))
f - f

In the following, we show thalnw (I), = Ker(pq). First, letf € I be such that
vw (f) = d. Thus, we can writg = Inw (f) + g, with g € F. .

Hence,f — g € F.q + (F>q N I) and thereforeps(Inw (f)) = 0. This yields
Inw(I), C Ker(pq). On the other hand, lef € K|z], be such thaip,(f) = 0.
Thenf € Fsq +(F>qNI), thatis there exigf € F~ 4 andh € F>qgNIwith f = g+h.
But f € K[x],andg € F.qYyieldto f = Inw (h) € Inw(I), and thus the inclusion
Inw(I), D Ker(pq) follows.

So, is an isomorphism of{ -vector spaces. Hence, we have

Klz];/Inw (1), = F>a/(Fsa+ (F>a N 1))

and the K-vector space isomorphism

P,/ Tnw (1), = gry, (K[[=])/1)
d>0

clearly follows.
O

Using the computer algebra systemNSULAR, the computation of the initial ideal is
almost immediate if we deal with only one weight as the follmgdemma shows.

Lemma2.1.51.Let] C mbe anideal, and let letv C Z” . Further, let{f1,..., fs}
be a standard basis af with respect to a local weighted ordering associatedu«to
Then

In(D) = (In(f1), .., In(f)).
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Proof. The proof that we shall give is similar to the one given in [G2P5.5.11].
Letf € I. For{f1,..., fs} is a standard basis of | with respect tasalocal weighted
ordering, there exist a unit € K[[z]]" andg, ..., gs € K[[z]] such that

uf =3 gifi and vy (In(uf)) < vu(In(g:fi)).

i=1

for all 7. Now, let
N ={1<i<s:vu,{In(uf)) =vw(In(g:fi))}.
Finally Remark 2.1.21 yields

In(f) = 3" In(g)In(f).

iEN
g

Remark 2.1.52. In general, Lemma 2.1.51 fails when the finite set of weidhts
contains more than one element, for it is not possible totroosa monomial ordering
which is compatible with the piecewise ordering . Indeed, let for exampl®/ =
{(1,2), (3,1)}. Althoughvw (zy?) = 5 > vw (z*) = 4, we havevw (y* - 2y?) =
7 <wvw(y?-azt) =8.

Inthe last part of this subsection, we shall investigatedgivise-homogeneous) graded
algebroid singularities associated to zero dimensioreal&lof K [[x])

Proposition 2.1.53.LetW C Z”  be a finite set of weights and létC K/[[z]| be
a proper ideal ofK [[x]]. If dim g (K[[z]]/I) is finite, therdim g (gr,, (K[[z]]/I)) is
also finite.

Proof. K[[x]]/I is a finite dimensional vector space means that the Krull dsion
of the K -algebraK [[x]] /1 is zero. Hence, there existsc Z-., such thatm* C I and
thus there is @, such thatf’> g C F>4, C m* C I for anyd > dy. But then

(INF>q) + Foqg=F>q

for d > dy, and hence

do

9rw (K[[a]]/T) = @ Foa/(Fsa+ (F>a N D).
d=0

It thus suffices to see that eagh 4/ (F~.q + (F>4N 1)) has finite dimension. However,
there is an integern such tham™ C F. 4 C (F>q4N1I) + F.q4, so that the dimension
is bounded bylim i (F>4/m™) which is clearly finite. O

Corollary 2.1.54. LetW C Z”  be a finite set of weights and IétC K[[z]] be a
proper ideal of K[[x]]. If dim gk (K|[2]]/I) is finite, then there exists an epimorphism
of K-vector spaces

97w (K[[2]]/I) - K[=]]/1.
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Proof. By Proposition 2.1.53, we know thdim k (gr,,, (K[[x]]/I)) is finite. Hence,
we can write the gradeH -algebra as a finite sum

éde/(f’Ed + (Fza N 1))
d=0

Ford € Z_,, itis clear that the monomials &% -degree precisely generate the
K-spacef’>/F~4. Thus, theirimages iff> 4/ (F~q+ F>4N1I) span this linear space.
Hence, a set of monomiafs,, : « € A} isabasis ofyr, (K[[x]]/I) if for each value
d of vy lying between) andm, thosee,, of W-degree precisely are independant
modulo the ideaF\ ; + F>4 N I.

Let B = {eq : a € A} be abasis ofr,,, (K|[z]]/I) consisting of monomials.
We claim that the sefeq mod(I) : e € B} span the linear spadé|[z]]/I.

Indeed, lety € K|[[z]] such thatvw (g) = d. We writeg = g4 + g~4 Whereg, is
(PH) of W-degree equal td andg~.4 € F~g4.
Let {en : @ € Ay} be the subset of monomials Bfof W -degree precisely. Then,
we can write

ga= Y Cata+h+h,

aclNg

where the coefficients, are inK, h € F>;N I andh; € Fsq.
Therefore, it follows clearly that

g mod(I) = Z Co(€aq mod(I)) + hy mod(I).

acAg

If we denoted; = vw (h1), then we have clearly; > d and using the same consider-
ations as fog, leads to

gmod(I) = Z ca(eq mod(I)) + hy mod(I),

acElNg UAdl

where{en : a € Ay} is the subset of monomials & with W-degree precisely
dq andhse € Fyg4,. As the ideall is zero dimensional, we see clearly that the claim
follows after finitely many iterations. O

Remark 2.1.55.LetW C Z"  be a finite set of weights and Igte m C K[[z]]. We
considerM := K[[z]]/j(f) andT; := K[[x]]/I the Milnor algebra and the Tjurina
algebra of f respectively. Hence, ji(f) < oo (resp. 7(f) < o0), then it follows by
Proposition 2.1.53

p(f) < dimg(grw (My)) < oo,

(resp. 7(f) < dimg (grw (Ty)) < 00).
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2.1.4 Toric Varieties andC-polytopes

In the last part of the present section, we shall discuss hevasgociate to ang-
polytope a toric variety.

Let K be an algebraically closed field of positive characteristic

We write K* for the setK \ {0}.

We denote the ring of Laurent polynomial§[zy, 11, z2, 2271, ..., 2, 2, Y] by
K[z, z71].

Furthermore, we consider the algebraic torus

(K*)" := Spec(K[z,z"']).

Definition 2.1.56. A toric variety is anirreducible algebraic variety over K equipped
with an action of an algebraic torud*)"™ having an open dense orbit.

For the sequel, leP> C R” | be aC-polytope and let
W .= Wp ={wa: A facetof P}

be the finite set of weights associatedRo(cf. Remark 2.1.17). Furthermore, let
Lp ={A\a: Afacetof P} be the set of linear functions associated?o
Following Wall in [Wal99a], we shall use the following naita:

Notation 2.1.57. For any faceA of P,
1. we writeP[A] for the cone oven (with baseD),

2. we denote
Rp = {f € K[z] : supp(f) C P[A]}

for the ring spanned by the monomials which correspond tdettiee points of
P[A], and finally

3. we writeMa for the semigrougi{on(R) of monomials inRa
Remark 2.1.58. Let« be a lattice pointiriZ? . Then, it is easy to notice that
% € Ma = vw (%) = va(x®) <= Iw () = da ().

We summarize the main properties of the riig in the following proposition due to
Kouchnirenko.

Proposition 2.1.59. Let P be aC-polytope inR”  and letA be any face of?. Then,
1. Ra is a graded Cohen-Macaulay ring.

2. Any inclusiony C A of faces ofP induces an epimorphism

A5t Ra — Rs.

Proof. See [Kou76]. O
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Remark 2.1.60. Let P be aC-polytope inR”  and letW := W p be the finite set of
weights associated tP. Further, letA be a facet ofP.

1. If we denote byR the gradedK-algebragrw (K|[x]]), then it is clear that we
can identify the ringRa with a subring ofR. Moreover, the grading o is
induced by the one aR. More precisely, it is induced by the linear function
Aa € Lp. Hence, for any inclusion C A, we see easily that the grading on
R; is induced by the restriction ofx on the coneP[d].

2. Let
Ja = K 5o CR,
4 @aww

whered, = x + I 5, () IS the residue class of the monomigt modulo the
ideal F', 5, («)- Itis easy to see thafa is an ideal ofR. Furthermore, we have
obviously that

RA & R/JA

Hence, we have clearly an epimorphismfofalgebras
A : R — RA.

On the other handR is clearly isomorphic to the polynomial ring [x] for
it is generated by monomials. Then, it follows thi&t is a finitely generated
K-algebra.

3. For any inclusiony C A of faces and with the notations of Proposition 2.1.59,
we have
s = TASOCTA-

Before giving the main proposition of this subsection, kefin some notations follow-
ing Wall in [Wal99a].

Notation 2.1.61. Let P be aC-polytope and le\ be any face of?, then we write
Ta := Spec(Ra)
for the affine spectrum associatedRq, .

Proposition 2.1.62.Let P be aC-polytope inR” and letA be a face of?. Then, the
affine spectruna := Spec(Ra) of R is a toric variety. Furthermore(K*)™ acts
onTa with one orbit corresponding to each face/f

Proof. For the proof, we use the analogy that exists with the wetivkm case where
(K = C) and we quote for example [GKZ94] and [Wal99a].

Let P be aC-polytope inR”  and letA be a face ofP. Further, letW := W p be
the finite set of weights associatedib

Clearly, we can consideRa as a subring ofK[z1, 217 %, ..., 2, 2,7 1]. Then, it
follows that the image of the associated nf{&g )" — T is dense ifl'a.

On the other hand, each poinbf T'A corresponds to a ring homomorphism

(;55: RA—>K



41 2 C-Polytopes and Non-Degeneracy

Hence, we have clearly the following action(@*)" onTx.

XA (K*)RXTA — TA
(m, & = xaw§:=p-§

where foru = (u1, ..., 1), the pointu - £ corresponds to the ring homomorphism
p-¢c: Ra — K defined by

(- de)(f(z1y-yxn)) = f(az1, .-+, nZn), f € Ra.

On the other hand, we have by Proposition 2.1.59 that anysiaho C A of faces
induces an epimorphisfin — Rs and therefore an inclusiofiy <— Ta. Thus the
subset ofl'a given by

Un:=Ta\ U{T5 : 0 is aproper face ofA}

is open inTa.

Besides[/a can be characterized as follows:

& € Up, ifand only if, ¢ defines a homomorphism from the semigroup of monomials
Ma to K*.

For a proof of this intermediate result we refer to [Wal99ale the arguments used
there are independent of the characteristic.

Furthermore, iff € Ua, then it turns out that the corresponding homomorphigm

is induced by evaluating on a point € (K*)". Indeed,¢: can be extended (non-
uniquely) to a homomorphiszﬁf : Z™ — K*. Moreover letr¢ be the point of K*)"

with corrdinates

rei = 0(€;),

where fori = 1,...,n,

Thus, we see easily that for any monomial= x € Ma, we have
de(x™) = 1.

Then, it follows that there is a surjective homomorphism
(K*)" = Ua,

and thereford/ A is dense ifl'a.
Finally, we shall show thal/a corresponds to one orbit of the actigi.
Leté € Ua, we denote by), the orbit of the point under the actiory s, that is

Oci={p-dc: me (K)"}.

Further, letr¢ be the a point of K*)" corresponding to the homomorphigm Hence,
by definition of the actionya and the characterization @t via r¢, we have for any
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monomialex® € Ma

pode(x®) = ¢ge(px)

= (pre)”.

Hence, the homomorphisp - ¢, takes its values id* and therefore it corresponds
to a point ofUx. This shows the inclusion

Og C Ua.

Conversely, let’ be an arbitrary point dfa. Then, the corresponding homomorphism
¢¢ is induced by evaluating on a poing: € (K*)". Further, letu, o := rere ! €
(K*)™ and letz™ € Ma be a monomial. Then, we have

ge (%) = T
= Hgyg/rga
= Peg o Pe(x).

Hence{’ € O¢ and thereforé/a C O.
Thus,Ua = O¢ and similarly each face ol corresponds to one orbit of the action

XA-
O

Corollary 2.1.63. Let P be aC-polytope inR” | such that the associated set of weights
Wp is a subset of)” and letA be a face ofP. Then, the projective spectrum
Proj(Ra) of the graded ringR 4 is a toric variety.

Proof. Let P be aC-polytope inR” ' and letA be a face ofP. Further, let\ be the
linear function ofL p associated td\ with Ax = (wa , -) andwa = (w1, ..., wy) €
Q7,. Then, itis a well-known fact thaProj(Ra) can be considered as the quotient
by K* (with action induced by A) of the toric varietyl'a. See [Wal99a].
More precisely, letV € Z- be such thalVwa € Z” . On the other hand, we recall
that in the proof of Theorem 2.1.62, we associate to any goétI'’a a morphism of
rings

¢5 : RA — K

and we define an actiopa of (K*)" onTxa. Then, we get an action @&* on T as
follows:

K*XTA — TA
(t 5 5) — XA((thla---athn)v(bf)'

Moreover, we have
Proj(Ra) 2 Ta/K*.

Thus, the claim follows. O
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2.2 (C-Polytopes and derivations

In the following, we define the filtred order of H-derivation with respect to a finite
setW of weights.

For this purpose, we associate to any derivation of the teffd,,, then-tuplea — ¢;
of "  obtained fromx by decreasing the coordinaig by 1.

Definition 2.2.1. 1. Let{ = gd,, wherei € {1,...,n} andg € K[[z]].
W-ord(€) := vw (§) := min{w(a —€;): « € supp(g)}
is called the piecewise-homogeneous order orfieorder of¢.

2. More generally, we define tl#& -order of a derivatior¢ = ZL 9i0., as fol-
lows
W-ord(§) := vw (§) := min{ow (¢:0x,) : 1< i<n}.

We sefW-ord(0) := oco.

Remark 2.2.2. Let¢ = 2"  ¢,0., € Derx(K[[x]]) and letW be a finite set of
weights. Then, fof =1,...,n, we have

ow (9:) > vw (§) + Aw (€i).

Indeed, fori, 1 < i < n, leta € supp(g;). As the functiona,,, w € W, are linear,
then we can write
Aw(a) = /\w(a — Ei) + )\w(ei).

Hence by Definition oky,, we have
A (@) > Aw (e —€;) + Aw (e;) and so
Aw(a) > Aw(a — Ei) + Aw(ez)
Thus,ww (g:) > vw (§) +vw (€;) follows obviously from Definitions 2.1.18 and 2.2.1.

Lemma 2.2.3.Let f € K[[z]] and{ € Derg (K[[x]]). Further, letW be a finite set
of weights. Then,

vw (§f) = vw (&) +ow (f).

Before starting the proof, we would like to mention that atscharacteristic zero, the
equality does not necessarily hold as the following exaraptavs.

Example 2.2.4.Letchar(K) =0 and letW = {(3, 2), (3, 1)}-
Further,let§ = 29, € Derg (K[[z,y]]) and letf = y.
Obviously¢ f = = and hencerw (¢ f) = vw (z) = 1.

Clearly, we haverw (f) = vw(y) = ;. On the other hand, we associateo the
point (1, —1) and thus we havey, (¢) = —1. Hence,

3

> o = () + vw(f).

=

ow (§f) =



2.2 C-Polytopes and derivations 44

Now, we give the proof of Lemma 2.2.3.

Proof. Let f € K[[z]] and let{ € Derk (K|[x]]).

First, we suppose thatis of the form¢ = ¢d,,,, wherei € {1,...,n} andg € K[[z]].
Hence{ f = gf., and we observe that jf,, = 0, then the lemma is trivial as we have
vw (0) = oc.

We assumg,, # 0, then we have

supp(§f) S{B+a—e: B € supp(g)anda € supp(f)}-

Hence, by Definition 2.1.18, we have

vw(Ef) = vwl(gfe)
> min{Aw (8+a—€): € supp(g)anda € supp(f)}

On the other hand, we have for all € W
N(B+a—e) = N(B—e)+ (o)
> Aw (B —e)+ Aw(a).

Thus,
Aw(ﬂ + o — Ei) > Aw(ﬂ — Ei) + Aw(a)

This leads to

ow (§f)

Y

min{w (8 — &)+ Aw(a) : B € supp(g) anda € supp(f)}
= ww(&) +ow(f)

Now, suppos€ is of the form& = > | ¢;0,,.
It follows by Definitions 2.1.18 and 2.2.1, that

1. vw(§) = min{ow(9:0,,) : i=1,...,n}.
2. vw (&f) = min{ow (9i f+;,) : i=1,...n}.

Moreover, it follows from the first part of our proof that fonyi, 1 < i < n, we have

ow (9ifz,) = vwl(9:0,,) +vw(f)
> ww (&) +ow(f).
Hencepw (£f) > vw (€) + vw (f) follows clearly. O

Following Arnold [Arn74 6.6], we give in the final part of thedt section a technical
lemma which we need later for the proof of our central theoatmut normal forms.
For this purpose, let aga® be a finite set of weights.

Lemma 2.2.5. Let f € m? be a formal power series and let € Aut(K|[[z]]) be an
automorphism of the form : z; — xz; +g;, i =1,...n, such that

vw (9:) > vw (24),



45 2 C-Polytopes and Non-Degeneracy

forall i = 1,...,n. Further, letW be a finite set of weights. Then,
o(f)=f+E&f+ R,
where¢ = Y7 | 9,0,, € Derg (K[[z]]) andR € K|[z]] satisfies
vw (R) > vw () +ow (f).

Proof. We consider a finite set of weigh#/. Further, letf € m? and lety €
Aut(K|[x]]) be defined by

p: x;—x+gi, it =1,...n,suchthavw (g;) > vw(x;) foralli=1,...,n

We can assume by linearity of and the linearity of the action of a derivation on
the set of power series thgtis a monomial inK [[x]] and we writef = =<, where
a=(ai,...,a,) € Z7 . Thus, we have

o(f) = (@1 +9)"" . (Tn 4+ gn)™"

By developing the right hand side of the equation, we obtain

o(f) = =%+ Zakgkxlo‘l . ..xkak’l xSt

||
(&3] (077 m m a1 —m Qp —Mm
E < >< )gl Looign T gt
mi my

|m|=2

= [+¢&f+R,
where¢ = " | 9;0,, € Derg (K[[z]]) and
R = Zli‘\ 2 (041) t (;Z)glml .. .gnm"ilfal m xan*m".

If R =0, then the claim of Lemma 2.2.5 follows obwously
If R # 0, we denote for anyn € Z” suchthak <| m [<| a|,

a1 (679 _ _
Ry = g1 g Ty T
mi mMn

Moreover, forh € K|[x]] and for anyw € W, we writewv,, (h) for the weighted order
of h with respect to the weight. We have clearly from Definition 2.1.18

vw (h) = min{vy(h): we W
On the other hand, using Remark 2.2.2, we get forany W

<Z MV (g3)) + Aw (00 — m)

i=1

<Z i (020 (€) + Meal€))) + Ao (@2 — m>

| m | v (€ —l—z:mZ (€) + Aw(ax — m).

Vo (Rom)

Y

Y
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Clearly,\yy(x —m) = ZL (c; —my;) A (€;) Tollows by linearity of the function\,, .
Therefore, we have

Vo (Rom)

Y]

[m [ 0 (€) + D aidu(e)

| m | v (§) + )\w(a)

Then, it follows that

ow (Bm) 2| m [ ow (§) + vw (f).

As| m |> 2, we obtain then

ow (Bm) > vw (§) + vw ().
On the other hand, by Remark 2.1.21 we have that,
vw (R) > min{ow (Rm) : 2 < m |<] al}.

Hence, the claimw (R) > vw (§) + vw (f) clearly follows. O

2.3 Non-Degenerate Hypersurface Singularities

In this section, we give the definitions of non-degeneradesk are essentially stan-
dard, and were established amongst others in [Arn74] and{Bp

We recall thatK is an algebraically closed field of arbitrary characteristi

First, we shall fix some necassary notations for the sequel.

Forasubsef C {1,...,n}, we recall that
R ={zeR": a;=0if i¢I}=(){z;=0}.
igl
Hence, we have obviously:

e RY = {0} and

Similarly, we define
Kl ={reK":r=01if igI}.

Notation 2.3.1. If f € K[[z]] and¢ is a face of aC-polytope, then we writgs .,
(1 < i < n) for the partial derivations of the power serigs.

In the following, we shall generalize Wall's definition of malegeneracy for arbitrary
characteristic. But before going into the details, we wdildglto notice that in [Kou76]
Kouchnirenko defines non-degeneracy only with respebiewton polytopesf con-
venienthypersurface singularities, while in [Wal99a], non-degrawy is defined in the
more general setting of arbitra€y-polytopes.
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Definition 2.3.2. Let f € K[[z]] and letP be aC-polytope such thatupp(f) has no
point belowP. Furthermore, lety be any face ofP.

1. We say thaf is non-degenerateor f satisfieg N D1) with respect ta) if

{reK": fsu(r)=...=fsz.(r) =0y C | J {z:=0}.

1<i<n
That is, there is no common zero of the,,, 1 < ¢ < n, in the open torug™*".

2. fiscalled(IND1) with respect taP if f is (INVD1) with respect to each face of
P.

3. If fis (CO) and moreover the conditiofiV D1) holds for each face of the New-
ton polytopel’(f), then we say thaf is N PN D (non-degenerate with respect
to the Newton polytope).

4. A hypersurface singulariti is called(N D1) with respect ta) (resp. N PN D)
if there existsf € K{[x]] such thatf is (IVD1) with respect td) (resp. N PN D)
and moreovel?; = R.

Remark 2.3.3. Let f € K[[z]] and letP be aC-polytope such thatupp(f) has no
point belowP. It is of interest to notice that from Definition 2.3.2, we balearly that
fis (N D1) with respect to a facé of P (resp. with respect td), if and only if, fp
is (N D1) with respect taj (resp. with respect td).

Example 2.3.4. Let char(K) = 0 and we consider thel;-singularity given by the
equationf = y? + xz + 22 € K|[[z,y,2]]. Further, we consider th€-polytope P
in R? which is the triangle with the vertices of coordinates0,0), (0,2,0) and
(0,0,2).

We observe that all points efipp( f) lie on P. On the other handP has the following
inner faces:

e The facet of the triangle wich is the whdlepolytopeP.
e The line segmenk; = [(2,0,0), (0,2,0)].
e The line segmenh, = [(0,2,0), (0,0, 2)].
e Theline segmenk; = [(2,0,0), (0,0, 2)].
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We show in the following, that; satisfie§ N D1) at any inner face ofP. Indeed, we
have

o fp=y’+x2+2% fp,=2 fpy,=2yandfp . =z + 22. It follows clearly
that (0, 0, 0) is the unique common zero of the functigis,, fp, and fp ..

e fa, = y* and hence, we see that any common zero of the funcfions, fa, 4
and fa, . lies on the coordinate hyperplade = 0}.

o fa, = y*+ 22 Thus, we havga, , = 0, fa,, = 2y and fa, . = 2z. Then,
it follows that any common zero of these functions lies ornirtteesection of the
coordinate hyperplane§y = 0} and{z = 0}.

e fn, = 22 + xz and as the above, we show that any singular point of this trun-
cation lieson{x = 0} N {z = 0}.

Then, it follows from Definition 2.3.2 thalv D1) holds at each inner face d?. How-
ever, if we consider th@-dimensional facé = {(2, 0, 0)} of P belonging to the:-axis,
we havefs = 0 and thus the propertyN D1) fails at this face.

Nevertheless, if we consider the triangle with verticed), 1), (0, 2,0) and (0, 0, 2),
we see easily that it represents the Newton polyio@® and moreove(N D1) holds
at any face of this compact polytope (which is naf'golytope). Neverthelesg, is
Not NPND asf is not(CO).

Lemma 2.3.5. Let f € m3 C K|[[z]] be (SQH) with principal part fo having
weighted degred. If char(K) does not devidd, then the hypersurface singularity
Ry = K|[x]]/{f) is (N D1) with respect taA.

Proof. By definition of semiquasihomogeneity, we hamgfa) < oco. Moreover, as
char(K) t d, it follows by Lemma 2.1.33 thai(fa) < co. Hence, by Lemma 2.1.35

{’P e K": fA,ml(T) =...= fAJn = 0} = {0}
Therefore f is (IVD1) with respect taA and soRy is also. O

Remark 2.3.6. Let f € m3 C K|[z] be (QH) of weighted degreé and moreover
(CO). If char(K) does not dividel, attention should be drawn to the following:

The above Lemma 2.3.5 asserts only tfids (N D1) with respect to thén — 1)-
dimensional face df (f). To claim thatf is N PN D, we should show thatis (N D1)
with respect to each fac& of I'(f). The following example shows, that this is not
necessarily the case.

Example 2.3.7.Let char(K) = 0 and letq € Z-o be such thay > 2. Further-
more, letg = (v + y)? + 29712 + 29 € K|x,y,2]. Clearly g is homogeneous of
degreeg and7(g) is finite. Moreover, letP € Rio be the convex hull of the points
{(¢,0,0),(0,¢,0),(0,0,q)}. Itis easy to see thaP = I'(g). LetA be the face of
P which is the line segment of the, y)-hyperplane having the end points of coor-
dinates(q,0,0) and (0, ¢, 0). We consider the truncatiogn = (x + y)?. We have
gae =9gay =q(z+y)9 ' andga . = 0. Thus

{re K": ga.(r) =gay(r) =ga.(r) =0} C{z+y=0}.
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So for example the poirit, —1,1) is a common zero of the partial derivationsgf
and therefore, g does not satisfy conditigi D1) at the faceA. We observe however
that g satisfieg N D1) at the unique facet df(g).

Remark 2.3.8. We would like to mention that the prope(ty¥ D1) is in general pre-
served neither undeR-actions nor undekC-actions. Indeed, lgj = (x + y)? + z2 +
z2 € K[[z,y, z]]. LetA be the line segment with the end poi(2s0, 0) and (0, 2, 0).
In Example 2.3.7 we showed thgis not(N D1) with respect ta\. On the other hand,
if we consider the followind<-automorphism ot [[x, y, z]]

¢:IHx7yHI+yasza

then we see easily that= ¢(f), wheref = y? + xz + 22 € K[|z, v, z]]. In Example
2.3.4 though, we showed thAis (N D1) with respect taA.

In his paper [Kou76] about Newton polytopes and Milnor numsb&ouchnirenko es-
tablishes the following important property resulting fromn-degeneracy.

Proposition 2.3.9. Let K be an algebraically closed field of arbitrary characterésti
and letf € K[z]]. If fis NPND, thenf has a finite Milnor number. Moreover,

u(f) = pn(f)-
Proof. See [Kou76]. O

Remark 2.3.10. Example 2.3.7 shows that the converse of Proposition Z36titrue
in general. Indeed, fog > 2, the homogeneous polynomigk (x + y)? + 27712 +

2% € K]|[z,y, #]] has finite Milnor number but is naV PN D since it is not(N.D1)

with respect to a face df(g).

In characteristic zero however, Kouchnirenko shows thatthtement of Proposition
2.3.9 does also hold for non-degenerate elements wich dreemessary convenient
(CO).

Proposition 2.3.11. Let K be an algebraically closed field of characteristic zero and
let f € K[[z]]. If f satisfies(ND1) at each face of the Newton polytopéf), then

u(f) is finite andu(f) = v (f).
Proof. See [Kou76]. O

In his paper [Wall99a] on Newton polytopes and non-degaryeid/all manages to
establish on the field a condition of non-degeneracy which includes the case of
all semiquasihomogeneous hypersurface singularitiesadmde the principal results
proved in [Kou76] still hold. Wall calls this conditiostrict non-degeneracy In the
following, we formulater Wall’s definition in arbitrary chacteristic.

Definition 2.3.12. Let f € K]{[z]] and let§ be any face of aC-polytopeP such
that no point ofsupp(f) lies belowP. Further, for anyr = (r1,...,7,) € K", let

I.:={i: r #0}.

1. We say thaf is strictly non-degenerateor f satisfies(IND2) at ¢ if, for any
common zerer of the functionsfs ., (1 < i < n), we havel N RI* = ().
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2. We say thaf satisfiesV PN D* with respect taP if f satisfieq V. D2) for every
inner face ofP.

3. A hypersurface singulariti? is called(N D2) with respect t@) (resp. NPN D*
with respect taP) if there is f € K[[x]] such thatf satisfieg N.D2) at ¢ (resp.
f satisfiesNV PN D* with respect taP ) and moreoveR; = R.

Remark 2.3.13. 1. First, we would like to mention that according to the lemma
1.1 in [Wal99a], if (ND2) holds at anyinner face then it also holds for any
face of theC'-polytope. Indeed, this lemma establishes that for any facka
C-polytope P, there exists an inner facgé of P with & N R’ = § (for the
notations, we refer to 2.1.3). Therefore, for any subiset {1,...,n}, we see
clearly that the conditiom N R’ = () for anyinner face of P implies the same
condition for any face oP.

2. If the condition(N.D2) holds for an inner face, then we should have neces-
sarily that f5 # 0. Otherwise, any € (K \ {0})" is a common zero ofs .,
1 <i < n. AsR» = R", we have thereforé N R~ £ () wich contradicts the
condition(ND2) atd.

The following lemma helps understanding conditigviD2).

Lemma 2.3.14.Let f € m C K[[x]] and letd be a face of aC-polytopeP such that
no point ofsupp( f) lies belowP. Furthermore, letr € K™ be a common zero ¢f ,;,,

1 <4 < n. If fis (ND2) with respect taj, thenfs vanishes identically o /= and
thereforef;s ,,, 1 < i < n, do so too.

Proof. Letr € K™ be a common zero of; ,,, 1 < ¢ < n. Throughout this proof, we

denotel := I,.. If we write f = > aqxr®, thenwe gefs = > aqz™.
acsupp(f) aecs

On the other hand, asN R! = (), then it follows that for anyx = (a1,...,a,) €6

there exists ¢ I such that; dividesz®. Indeed, sincex € J, thena ¢ R. Hence,

there exists ¢ I such thaky; # 0 and thus we get; | .

Now lets = (s1,...,s,) € K, thatiss; = 0 foralli ¢ I. Then, for anya € §, we

have clearlys® = 0 and thereforgs(s) = 0. This means thafs vanishes identically

on KT and obviously all derivations of; too. O

Here, we notice thak! is a union of torus. Of course, € K and Lemma 2.3.14
asserts that conditiofiv D2) implies that- is not an isolated singularity gf (see Def-
inition 1.2.9).

The next lemma compares conditiohi D2) to condition(N D1).

Lemma 2.3.15.Let f € K[[z]] and letP C R” be aC-polytope. Further, let be
anyinner face of P. If f satisfieg N D2) at ¢ then f satisfies als§ N D1) at .

Proof. Let f € K[[z]] and letd be aninner face of aC-polytopeP C R” . On the
other hand, let = (ry,...,r,) be acommon zerotothg ., 1 <i <n.
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We assuméN D2) holds aty and we suppose that # 0 foralli = 1, ..., n, which
meansf does not satisfy/N D1) with respect ta.
Hence, if we denoté = {i : r; # 0}, then we haviR! = R™ and

0=6NR'=6NR" =4

which is impossible. Thereforgis (N D1) with respect ta.
([l

The converse of Lemma 2.3.15 is not true in general as thedolg example shows

Example 2.3.16.In char(K) = 0, we consider the isolated plane curve singularity of
equationf = 2® + 2%y + y*. LetA be the line segment joining the poirits 0) and
(0,3). ObviouslyA is a C-polytope and moreover no point eipp(f) lies belowP.

On the other hand, we have

fa=a%+2%, fa.=32>+22y, and fa, = 2>
Hence a common zero i) , and fa ,, must lie on thg-axis and thusf is (N D1) at

A. However, the point = (0, 1) is a common zero ofa , and fa , whileANR" =
AN ({0} x R) ={(0,3)} # 0. This shows thaf is not(N D2) at A.

s

3

Nevertheless, in the special case where the inner facej@rdifrom the coordinate
subspaces, we show that conditiddséD2) and(N D1) are equivalent (cf. [Wal99a]).
We formulate this in the next lemma.

Lemma 2.3.17.Let f € K[[z]] and letP C R” be aC-polytope. Then, for a face
disjoint from the coordinate subspaces, conditioisD1) and (N D2) coincide.

Proof. Let P ba aC-polytope inR” and lets be a face ofP that is disjoint from
the coordinate subspaces, that Ies in (R \ 0)". Hence the implicatiofN D2) —-

(N D1) follows from Lemma 2.3.15 as in particuléis an inner face oP.

Conversely, leff be a power series ik [[x]] and letr be a common zero of the equa-
tions fs 4,, 1 < i < n. We suppose that satisfies the conditiov D1) with respect
to P. Then, it follows that the set = {i : r; # 0} is strictly contained in the set
of all indices{1,...,n} and henceR! is contained in the complement @R \ 0)".
Therefore, by assumption @i we have thas N R! = () and so the conditiofV D2)
follows. O
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Lemma 2.3.18.Let f € K[[z]] and let” C R” ba aC-polytope. Further, let
0 ={a = (ai,...,a,) € Z"} be an innet-dimensional face oP. Then,f satisfies
(ND2) at ¢, if and only if,a € supp(f) and moreoverhar(K) does not divide
ged(ay, ... ap).

Proof. Leta = (a1, ...,a,) € K™ andletd = {a} be an inner vertex aP.

Hence, we have clearlf = ¢ - %, wherec € K, besidesi; # 0foralli =1,...,n
(see Definition 2.1.4). If is (N D2) atd, then it follows by Remark 2.3.13 th#f # 0
and hencex € supp(f). On the other hand, if we suppose thétr(K) divides
gcd(aq, . .., ay), then all partial derivations ofs would be zero.

Hence, in particularr = (r1,...,7,) € K", withr; = 1foralli = 1,...,n,is
a common zero offs,,, 1 < i < n, which yieldsé N R* = § # (. Thus, the
contradiction to the conditiotV D2) at § follows.

Conversely, ifa € supp(f) andchar(K) does not divide thgcd of the coordinates
of a, we see thafs; # 0 and moreover, ifr = (rq,...,r,) iSa common zeroe of the
partial derivations offs, thenr; = 0 for soomej € {1,...,n}. There again, if we
suppose N RI* = (), then we get;; = 0 which is impossible. Thereforg,is (N D2)
até. O

In [Wal99a, 1.2], Wall establishes that over the fi€ldthe N PN D* property implies
the "isolated” property. The following proposition showst Wall's statement holds
in arbitrary characteristic too.

Proposition 2.3.19.1f f € K|[x]] satisfiesNV PN D* for someC-polytopeP, then the
origin is an isolated singularity of, that isu(f) is finite.
Moreoveru(f) = Vy(T_(f)).

Proof. The proof that we give in the following is an adaptation toitaalny character-
istic of the one given by Wall in [Wal99a].

Let f € K[[z]] and letP C R” be aC-polytope such thaf is N PN D* with respect
to P. We claim that, the set

is not empty.
Otherwise, it follows that any point = (r1,...,r,) € K™ with r, = 1, for all
i = 1,...,n,is a common zero of the functiorfs,, 1 < i < n. Thus, for the set

I, = {i: r; # 0}, we haveR’» = R". Then, it is clear that for any inner fadeof P,

d N R = () which is a contradiction t&v PN D* for f with respect taP.

Moreover, for any inner facé of P, we notice thaffs # 0 (cf. Remark 2.3.13).

We suppose thdt is not an isolated singular point ¢t Hencedim (M) > 1 and it
follows by thecurve selection lemma(cf. Lemma 1.2.15) that there exists a reduced
irreducible curve([[x]]/J, whereJ is a proper ideal, such that

My — Kl[z]]/J.

Let ) /
I={i:z;eJ} andI={1,...,n}\T.
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We havel # ), otherwisel' = {1,...,n} which impliesm c .J against the assump-
tion dim(K[[z]]/J) = 1. Thus, we havg0} C R’.
On the other hand, aB is aC-polytope, we have necessarily that

n I
R", > PNR! #0.

Moreover, it follows by the curve selection lemma that thexists ak -algebra homo-
morphism
¥, Kl]] — KI[t]],

such thayi(f) C Ker(y).
More precisely, for any € I, the existsn; € Z-, andb; € K \ {0}, such that
Y(x;) = bit™ + higher terms
We consider o? N R’ the minimum of the linear functiok defined orR™ by
)\(a) = Z m;ay;,
iel
and we write
vV =mingeprriA(a).

Let § be the face ofP N R! along which the value is attained.
We recall that

I ={i:x;=0o0nd} and Iy = {1,...,n} \ L.

)

We have
I'={i:z;=00onR} c {i:z;=0o0nd}=1.

Indeed, the inclusion follows becau$e R.. Hence s C I.
Moreover, we know by [Wal99a, Lemma 1.1] that we can choosieaer faced’ of
P such that

§ NRE = 4. (2.3)

We define an algebroid curve singulari®y by the parametrization
Yoo Kl[z]] — K[[t]

given by
Yo(x;) = bit™ if i€ Iy and ¢o(x;) =0 otherwise

As no point ofsupp( f) lies belowP, then we have clearly that
P(f) = at” + higher terms
wherea € K. Similarly, we have for any € A,

U(fz,) = cit””™ + higherterms where ¢; € K. (2.4)
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And we get
Yol fsw,) = cit”™™. (2.5)
On the other hand, we hayéf) C Ker(i) by the curve selection lemma, so it follows
in particular that in equatio(2.9), ¢; = 0, for all i € A. Hence, we have obviously by
equation(2.10)
J(fs) € Ker(vo).

Lett € K\ {0} andletr = (r,...,r,) € K™ be such that
r; = bt™ if i€ ly and r; =0 otherwise
then we have clearly that, for=1,...,n, fs5 5, (r) = 0. On the other hand, we have
I, ={i:r # 0} = Is.
Hence, it follows from(2.8) that
§ NR =5 NRY =6 # 0.

But this contradict§ N D2) for & and thus the claim(f) < oo follows.

Finally, the claimu(f) = Vn(T'-(f)) shall be shown at the end of Section 3.1 of
the next Chapter 3 as a corollary of Proposition 2.3.9 ancbiidra 3.1.15 on finite
determinacy in arbitrary characteristic. O

Corollary 2.3.20. Let f € K][[z]] and letR = R; be the hypersurface singularity
associated tgf. If R is N PN D* with respect to some polytod®, thenR is isolated.

Proof. For f € K[[x]], we know thatr(f) < u(f). Thus, Corollary 2.3.20 is a trivial
consequence from Definition 2.3.12 and Proposition 2.3.19. O

Remark 2.3.21. The converse of Proposition 2.3.19 does not hold in genesdaha
following example shows.

Example 2.3.22.The converse of Proposition 2.3.19 does not hold in genesdha
following example shows. Lebar(K) = 2, and letf = 2% + 2%y + y3 € K]|[z,y]].

We haveu(f) = 13, moreover we can see easily thais (SQH) of principal part

fa = 2% + y® which is a(QH) polynomial of typg((1,2); 6). Aschar(K) = 2
divides the degree of quasihomogeneily the subsequent Proposition 2.3.23 asserts
that there is naC-polytopeP C Ri(} with respect to whiclf is NPND*.

D
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Proposition 2.3.23.Let f € m3 C K|[[z]] be (SQH) with principal part fo having
weighted degreé € Z~ . Then, the following are equivalent

1. fis NPN D" with respect to somé€-polytopeP of R” ,

2. u(fa) isfinite,
3. char(K) does not divide!.

Proof. The implication(1) = (2) follows by Proposition 2.3.19 becaugg does also
satisfy N PN D* with respect taP.

(2) < (3) follows by Lemma 2.1.33.

It remains only to show the implicatiqi2) = (1). To do so, we consider the extension
of the facetA to the coordinate hypersurfaces which we denoté\bylt is clear that

A is aC-polytope inR” .Furthermore it has a unique inner face, which is itself, and
the associated truncatigfx is equal tofa. On the other hand, we have from Lemma
2.1.35, thab is the unique common zero ¢h .., ¢ = 1,...,n. Hence, the associated
setR! is equal to{0}. Moreover, we claim thab ¢ A. Indeed, if we assume the
contrary, then we have necessarily that the{getc R" : « € supp(fa)} C R”,
where/J is strictly contained in{1,...,n}.

This means that there existsl < ¢ < n, such that the polynomiglx does not depend
on the indeterminate;. Thereforefa ., = 0 but this is a contradiction ta(fa) < co.
Thus, we have obviously tha&tNR! = () which shows thaf is N PN D* with respect

to A. O

In [Wal99a], Wall deals in part with complex plane curvediflihg N PN D* with
respect to &-polytopeP and considers how? compares with the Newton polytope.
He comes to the conclusion that for redug@ane curve singularities there is always
a way to make the conditioV PN D* satisfied. Moreover, after investigating Wall's
observations, we observe easily and without any need tbduproofs that his conclu-
sions hold also in characteristic zero. We summarize trsgifations in the following
two lemmas.

Lemma 2.3.24.Letchar(K) = 0 and letf € K|[z,y]] be reduced. LeP C R? be
a C-polytope. Further, let be an inner vertex o and letA be an inner edge aP
with end pointga, b) and(c, d). Then, we have

1. f satisfieS ND2) atd , if and only if,¢ is a vertex of’(f).

2. If A is disjoint from the coordinate axes (i(e, b) and (c, d) are inner vertices
of P), thenf satisfie{ N D2) at A, if and only if, A is an edge of'(f).

3. If one end ofA - say (a,b)- is an inner vertex , and the other - (c,d) - lieslom t
x-axis (i.ed = 0), thenf satisfies ND2) at A, if and only if, A is an edge of
I'(f) or there is a poin{(¢, d) of I'(f) on A with d = 1 and so the line segment
[(a,b), (¢, 1)] is an edge of'(f).

Inverting the roles of andd, we have the same statement if the péint!) lies
on they-axis.
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4. If each end point oA lies on a coordinate axis, thefisatisfies N D2) at A, if
and only if, f is semiquasihomogeneol&Q H).

Proof. cf. [Wal99a]. O

Remark 2.3.25. First, we observe that the first statement of Lemma 2.3.24bean
considered as a corollary of Lemma 2.3.18 in characterizéim. Moreover, we note
that Lemma 2.3.24 establishes that &6¥) H ) bivariate power series in characteristic
zero isN PN D* with respect to its Newton polytope.

Lemma 2.3.26.Let char(K) = 0 and letf € K[[z,y]] be reduced. Then there is a
C-polytopeP C Rio with respect to whiclf satisfiesV PN D*. Moreover if the term
xy does not appear irf, thenP can be uniguely determined by a minimal set of linear
functions);.

Proof. cf. [Wal99a]. O

Remark 2.3.27. Example 2.3.22 shows that the claim of Lemma 2.3.26 doesofwt h
in arbitrary characteristic.

In the last part of this chapter, we shall investigate in dirdharacteristic, how non-
degeneracy affects the well-known formula

u(f) =20(f) —r(f) +1

for reduced plane curve singularities o¥@mand which is in general not true in finite
characteristic (cf. Remark 1.2.18).

For this purpose, we should present in the following the @@ dof non-degeneracy
introduced in [BePO0O].

Definition 2.3.28. Let f € m? C K][[z,y]] and letI" be the Newton polytope ¢t
After Beelen und Pellikaary, is non-degenerate in the weak se(#éN D), if

1. fis(CO) and

2. for every line segmentof I
{reK": f5(r) = fsa(r) = fs4(r) =0} C {& =0} U {y =0}.

Lemma 2.3.29.Let f € m? C K|[[z,y]] be(CO). Furthermore, lef” be the Newton
polytope off and let be a line segment df.

1. If fis (N D1) with respect taj, thenf is (W N D) with respect td too.
2. If fis (N D2) with respect toj, thenf is (W N D) with respect td too.

Proof. The first assertion is straightforward from Definition 2.arid 2.3.28. Hence,
the second assertion follows clearly by Lemma 2.3.15. O

Let f € m, we recall thatux(f) denotes the Milnor number of (cf. Definition
2.1.10). The following claim is due to [BeP0O]
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Theorem 2.3.30.Let f € m? C K[|z, y]] be(CO). If is non-degenearte in the weak
sense, then

un(f) =20(f) =r(f) +1,

whered(f) is the delta invariant off andr(f) is the number of irreducible factors of

f
Proof. cf. [Bep00, 3.11 and 3.17] O
Corollary 2.3.31. Let f € m? C K[[z,y]] be NPN D, then
u(f) = 28(f) = r(f) + 1.
Proof. The claim is straightforward from Proposition 2.3.9 and digen 2.3.30. O
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Chapter 3

Finite Determinacy and Normal
Forms

This chapter deals with the main results related to detexayirand computation of
normal forms in arbitrary characteristic.

In the first part, we recall the notions of jets and finite deieacy for right and for
contact equivalence. Moreover, we show that the well-kntvaorem about finite
determinacy ovet€ (cf. [GLS06, 2.23]) does also hold in characteristic zerdte A
wards, we formulate a new theorem on finite determinacy iitrarly characteristic.
Moreover, as it is the case ovEr we show that the properties "isolated” and "finitely
determined” for hyersurface singularities are also edeivan arbitrary characteristic.
For the purpose of providing a general setting to the contimutaf normal forms in fi-
nite characteristic, we formalize Arnold and Wall methodsrd in the second section
of the present chapter. Also, we introduce new objects amddtate the new condi-
tions(AA) and(AAC) and show that they are weaker than those imposed by Arnold
and Wall for their development of the theory.

With these preparations made, we formulate in the last@®otirr results about normal
forms and bounds of determinacy in arbitrary characteristi

Throughout the present chapt&r denotes an algebraically closed field of arbitrary
chracteristic.

3.1 Finite Determinacy of Isolated Hypersurface Sin-
gularities

We review briefly the definitions of jets and finite determinac

Definition 3.1.1. Let f € K[[x]] andk be a positive integer. Then

%) :=image off in K[[z]]/m**! denotes thé-jet of f and we write
J*) .= K[[x]]/mF+! for the K -vector space of alt-jets.

59
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Definition 3.1.2. 1. f € K|[[z]] is calledcontact k-determined (resp. right k-
determined) if for eachg € K|[z]] with f*) = ¢(*) we havef~g (resp. f~g).
We say then thaf is determined by it&-jet up to contact (resp. right) equiva-
lence.

2. [ € K][z]] is calledfinitely contact determined (respfinitely right deter-
mined) if f is contact (resp. rightk-determined for some positive integer

3. The minimal suclt is calledthe degree of contact determinacyresp. the
degree of right determinacy) of f.

Proposition 3.1.3. The degree of contact (resp. right) determinacy is an irasarof
the KC-orbit (resp.R-orbit).

Proof. The proof is straightforward from the above Definition 3.1.2 O

We recall that a hypersurface singularity is a lokaklgebra of the form
Ry = K[[z]]/(f) where f € m C K[[x]].

In the next definition of finitely determined hypersurfaaegsilarities, the choice of the
contact equivalence is motivated by the following obseéovat
For f, g € m, we haveR; = R, ifand only if, f ~ g.

Definition 3.1.4. Let f € m C K[[x]] and letk € Z-,. The hypersurface singularity
Ry is calledfinitely k-determinedif f is finitely contact k-determined. The minimal
suchk is called thedegree of determinacyof R .

We would like to mention that in the above definitions, we d¢desthe total degree
on K[[z]]. Now, considering a finite set of weights, we introduce inftiilowing the
notion of piecewise finite determinacy

Definition 3.1.5. LetW C Q7 be a finite set of weights and I¢tc K[[x]]. Further,
letd € Qso. ThenfW:9 .= image off in K|[[x]]/F-q is called the(W , d)-jet
of f (or the piecewise-homogeneoug-jet of f with respect to W) and we write
JW.d) .— K[[z]]/ Fs4 for the K -vector space of alW , d)-jets.

Definition 3.1.6. LetW C QZ be afinite set of weights.

1. f € K|[[x]] is called contact piecewised-determined (resp. right piecewise
d-determined) with respect toW if for eachg € K |[[z]] with f(W:d) = g(W.d)
we havef ~ g (resp. f ~ g).

2. f € K][z]] is calledfinitely contact piecewise determined(resp. finitely
right piecewise determined if f is contact (resp. right) piecewisgV , d)-
determined for some finite set of weights C Q7 and somel € Q_,,.

3. The minimal sucll is calledthe piecewise-homogeneous degree of contact
determinacy (resp.the piecewise-homogeneous degree of right determingcy
of f with respect toV .
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Definition 3.1.7. Let f € m C K[[z]]. Further, letW C Q  be a finite set of
weights and letl € Q_,. We call the hypersurface singularify; finitely piecewise

d-determined with respect toW if f is finitely contact piecewisal-determined with
respect toW. The minimal suckl is called the degree of piecewise determinaci gf
with respect tdV.

The following observation on zero-dimensional ideals is/weseful for the sequel.

Lemma 3.1.8. Let I be a proper ideal inK [[x]] and letk be a positive integer. Then
mPCcl = mFcl+mh

Proof. The implication & ) is obvious.
The converse<) follows by applying Nakayama’s lemma to the idéal ', I) /I of
K|[[x]]/I. O

Remark 3.1.9. The filtred version of Lemma 3.1.8 is wrong. In other wordsyef
consider the filtration of{[[x]] associated to a given finite set of weights anfig a
proper ideal ofK'[[z]], then

deCI+F>d75>FZdCI.

For example, lethar(K) = 3 and letf = 27 + 23y + y* € K[[z,y]]. We consider
the idealt;(f) and the finite set of weigh#®” := {(1/7, 2/7), (1/6, 1/4)} C Q2.
Using theSINGULAR functiongrideal from the librarygradalg.lib, we compute

Fsy = (27, 2%y, 2®°, 2%%, y*).

Again usingSINGULAR, we show that:”, z3y?, y* € tj(f). On the other hand, we
havevw (2%y3) = vw (z%y) = 13/12 > 1, thusz?y® andx®y are in F. ;. Altogether,
we see thaf>; C tj(f) + F~1. Nevertheles$ ¢ tj(f) asz®y & tj(f).

In (analytic) singularity theory over the field of complex numbers, it is established
that any isolated (analytic) hypersurface singularityight as well as contact finite
determined. This is for example the statement of Thed@®in [GLS06] where the
proof uses mainly the so callédfinitesimal characterization of local trivialityNev-
ertheless, we observe that the arguments used by the airtfGisS06] for the proofs
show actually that all these statements hold also over edgily closed fields of char-
acteristic zero. Indeed, we need only to prove the follovdlagm about the existence
and uniqueness of solutions of ordinary differential eguretin characteristic zero.

Lemma 3.1.10. Let R be a commutative ring of characteristic zero.

1. LetG = (91,...,9n) € R[[z,t]]" = R[[z1,..., 25, t]]".

For a givena = (ay, ..., a,) € (z)", the differential equation
Y G o
E(m’t) = G(Y(x,t),t) withinitial condition Y (x,0) = a

has a unique solution.
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2. Letu € RJ[[t]]. Fora givena € R, the differential equation

Ay _
ot

has a unique solutiop € R|[[¢]] withy(0) = a.
Proof. Let R be a commutative ring such thdtar(R) = 0.

1. To show the first claim, we use induction@n
Forn =1, letg € R[[z,t]] and leta € (x). We consider the ordinary differential
equation

0

(1) = g(y(a,),) (3.1)

with initial conditiony(z, 0) = a.

We writeg = > b2tk andy = > ¢;(z)t'. Comparing both sides of
j,k>0 i>0

the equation (3.1), we show that this differential equakias a unique solution.

Indeed, the conditiop(x, 0) = a yieldscy(x) = a. On the other hand, equation

(3.1) is equivalent to
S+ Dein@t = glylab),1)
i>0
= Z bj7kdl($)tk+l
7,k,1>0

where

di(x)= > e (@)oo @)

’LlJrJrZ]:l

Hence, sincehar(R) = 0, we get fori > 0

Ci+1=(ii1)' (Z bik Y Cn(x)'---'cz'j(ff)) (3.2)

k=i detig=l

Clearly, the recursive formula (3.2) determines uniquidycoefficients ofy.
LetG = (g1,...,9n) € R[[x,t]]" = R[[z1, ..., 70, t]]".

For a givena = (a1, ..., a,) € (x)", we consider the differential equation
D le) =G @n.n. Yo =-a (3.3)

We denoteR’ := R[[z,]] andR'[[x’, t]] = R[[xx]][[x1,- - ., Tn-1,t]]. Writing

e G'=(g1,...,gn-1) € R'[[z',t]" " and

° al = (ala .. .,an_l) € <wl>n71 - R/[[m/]]nil’



63 3 Finite Determinacy and Normal Forms

the induction hypothesis yields that the differential étpra

ayl ’ ! ! ! ! / !
(@) = G (Y@@ 0.1, Y(@.0)=a (3.4)
has a unique solutiofi’ = (yy,...,yn_1) € R'[[«',t]""" = Rz, #]]" "
On the other hand, we observe tti{x, t]] = R[[x]][[xx,]]. Hence, if we set
9= gn(y1,-..,Yn—1,n,t), we see easily that the existence and the unicity in
R[[z"]][[z~, t]] of the solution of the ordinary differential equation
0
S (@nst) = g(p(@n ) 1), (@a,0) = an (3.5)

follow again by the induction hypothesis. Finally, igt(x, t) = ¢(z,, t). Alto-
gether, we get that’ = (y1,...,y,) € R[[z,t]]" is the unique solution of the
differential equation (3.3).

2. Letu € R[[t]]. For agiveru € R, we see easily that the differential equation

oy B
o =y y0)=a (3.6)

can be considered as an equation of the form (3.3), where 0. Indeed, it
suffices to take7 (Y (t)) = v - Y (¢).

O

In the following we give the fundamental theorem on infinitesl characterization of
local triviality in characteristic zero.

Theorem 3.1.11. (Infinitesimal characterization of local tiviality). Let K be a
field of characteristic zero. Further, 16t € (z1,...,z,) C K|[x1, ..., 2, ]] and let
b > 0, c > 0 beintegers.

1. The following are equivalent

(@) 2 € (wr,ymn) (95, )+ (e wa) (F),
(b) There exist® = (¢1,...,¢,) € K|[z,t]]", u € K[[z,]] satisfying
i. u(z,0)=1,

i. w(z,t) —1€ (x,...,2,)" - K[z, 1],

iii. (bl(iL‘,O) = Xy, 1= 1, ey,

V. bi(@,t) — 2 € (21, o)’ - Kt i=1,....m,
V. u(@,t) - F((@,t),t) = F(z,0),

b

2. Moreover, the condition

8_F€<x x>b. 8_F 8_F
ot Lo m Ox1 " Oz,

is equivalent tdl.(b) withu = 1.
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Proof. Using the claim of Lemma 3.1.10 which holds in characterigéro, we no-
tice that the arguments used in the proof of [Theorem 2.225@&l of infinitesimal
characterization of local triviality ove show in the same way the claim of Theorem
3.1.11. O

At the end of the present section, we shall give a charaeti#iz of finitely determined
hypersurface singularities. For this task, the followifigervation is crucial.

Remark 3.1.12. Actually, the proof given in [GLS06, Theorem 2.22] shows the
implication(b) = (a) of Theorem 3.1.11 holds even in positive characteristic.

The finite determinacy theorem, asserting that isolateceigpface singularies are
finitely determined, follows in characteristic zero fromektem 3.1.11 and Lemma
3.1.8.

Theorem 3.1.13. ( Finite determinacy theorem in charactestic zero).
Letf € m € K|[[z]] and letchar(K) = 0.

1. fisright k-determined if

whH cm? . (). (3.7)

2. fiscontactk-determined if

m* cm?® - (f) +m- (). (3.8)

Proof. cf. [GLS06, Theorem 2.23] O

Remark 3.1.14. Theorem 3.1.13 does not hold in finite characteristic asdfiewing
example shows: Lethar(K) = 2 and letf = 3? + x3y. Using SINGULAR, we
show thatr(f) = 5, henceR; is an isolated plane curve singularity. Further, we
write I for the idealm(f) + m2j(f). We haven® C I. Neverthelessf is not contact
4-determined as it would follow from Theorem 3.1.13. Othsewive would have for
examplef ~ f+z° but this is impossible sincghas two irreducible components while
f + 2® has only one.

In the sequel, we assume the fié{dto have an arbitrary characteristic.

Theorem 3.1.15. (Finite determinacy theorem in arbitrary daracteristic).
Letf € m? C K|[z1,...,x,]] suchthat, > 2.

1. fisright (2k — ord(f) + 2)-determined if
m* C (/). (3.9)
2. fiscontact(2k — ord(f) + 2)-determined if

m* C tj(f). (3.10)
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Proof. We start by giving the proof of the second assertion of thert® concerning
the contact determinacy. Lgt € K|[[x]] be such thabrd(f) > 2 and letk € Zs,
be such thatm® C tj(f). We denotes := ord(f) and, for alli, 1 < i < n, r; :=

ord(fa,)-

It follows from (3.10) thatr(f) < oo. Hence the sefi : f,, # 0} is not empty
sincen > 2. Moreover, it is clear that; > s — 1, forall1 < 7 < n. Thus, it
follows from (3.10) thatn®* C m® +m®~! C m*~!. Thereforek > s — 1 follows.
Throughout this proof, we denof€ := 2k — s + 2 and we considey € K[[x]] such
thatg— f € m¥*1. We show in the following thaj~ f. For this purpose, we construct
inductively sequences

o (up)p>1 C K[[z]]",
* (¢p)p>1 C Aut(K[[z]]) and

e (fp)p>0 C K[[z]], such thatf, = f and for allp > 1, we have

@) fp = uppp(fp-1),
(b) fp~ fand
©) g— fp € mVHPHL
In the following, we describe the first step of our constreti First of all, it easy to

noticethatv +1=2k—s+3>k+s—1—s+3 = k+ 2. On the other hand,
asm™V ! = mNFH1=Fmk then it follows from (3.10) thath V1 ¢ mN+1=F¢5(f), and

thus we can write
g—Ff= > bWfe + bV
1<i<n
with b)) € mN+1=F foralli =0,...,n.
Moreover, we havéV +1—k = k—(s—1)+2 > 2. Therefore, if we set; := 1+b,
then we see clearly that is a unit in K[[x]]. Besides,

p1: Klz]] — K]
z; —  x;+ bW fori=1,....,n

i

is a K-algebra automorphism afi [[x]] and

er(H)=F+ > b fo +hy, with hy € mV+2,

1<i<n

Indeed »; has the following form:

_ e e W e W
hi = E E iy ooigTiy e Ty bil Tipy e Tiy bit Tiyq e X, +HY,

1<I<t<s 1< <...<ig<n

where the coefficients;, .. ;. € K andord(H,) > ord(h,). Clearly, we have

.....

; e o M ()
ord(hy) > 1912?‘121_6”07%(%17,,,,13 Tiy - by x;,)
> 2AN+1—Fk)+(s—2)

= N+2
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Now let f1 := u1¢1 (f). We have

fio= (140 <f+zb§”fm+h1>
i=1
= g+2n:bgl>bfl)fmi + (1) ha.
=1

On the other hand, we have foralk=1,...,n

orddVbW f,) > 2N +1-k)+r
2QIN+1—-k)+s—1

= N+24+(N—-2k+s—1)
= N+3.

Y

Hencef,~f andg — f1 € mMN*2, Altogether yields
(@) ord(f1) = ord(f) = sand
(b) m* C tj(f1) sincetj(f1) = ¢1(tj(f)) follows by Lemma 1.2.7).

In this way, we getf; € K[[x]] having the same properties Asind moreovey — f;
lies in a higher power of the maximal ideal asg — f. Proceeding recursively we
construct the sequences,) -, (¥p),~, and(fy) , as required. Now itis clear that
the sequenceéf,) ., converges tg in the m-adic topology ofK [[]] since for any
positive integetM > 1, there exists by our construction an integéf > 1 such that
g — f, € mMforall p > M'. Hence the claing ~ f clearly follows.

Finally to show the first assertion of the theorem, we asstiatet® C j(f). Similarly,
we construct sequences
* (pp)p>1 C Aut(K[[2]]) and
e (fp)p>0 C K[[x]], such thatfy = f and for allp > 1, we have
@ fr= ‘Pp(fp*l)v

(b) f,~ f and
(©) g— fp € mVFPHL

Observing again thah V1 = mV+1=Fmk ¢ mN+1-F;(f), then we can write
g—f= > bvWf,
1<i<n

with b € mN+1=k foralli = 1,...,n. Hence, arguing in the same way as in the
first part of our proof shows that

e1: K] — K]
T xi—l—bfl) for i=1,....,n
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is a K- algebra automorphism ok [[x]] and

pr(f)=f+ D 0Wf A,

1<i<n

with h; € m¥ 2, Thus settingf; := ¢1(f) shows thay — f; = —h; € m¥V+2,
Proceeding recursively as in the proof of the second aesesfithe theorem, we con-
struct the sequencés,,),>1 and(f,),>0 such that the latter converges gan the

m-adic topology. Thug ~ f clearly follows. O

Remark 3.1.16. If char(K) = 0, we notice that the bound for determinacy given in
Theorem 3.1.15 is in general higher than the one providedispoiem 3.1.13. Indeed,
(3.10) implies thatm*+2 C m?2j(f) + m(f). Hence, it follows by Theorem 3.1.13 that
fisk+ 1-determined. Instead, Theorem 3.1.15 asserts thaRk — s + 2-determined
and2k — s +2 > k + 1 follows ask > s — 1.

From the viewpoint of calculations, there is a handy way tmpote the smallest bound
of determinacy that one can obtain from Theorem 3.1.15. Tsodwe need to compute
the smallest positive integérfor which condition(3.9) or (3.10) holds. Using $\-
GULAR this computation can be accomplished by the functityhcorner of an ideal
(in our case the Milnor or the Tjurina ideal) when a local @gegordering is predefined.
The output is a monomial and the intedeis then the total degree of this monomial
added tal. For more details, we refer to [GrP02].

We attempt in the following to compare the bound of detercyrthat we get from
Theorem 3.1.15, and other well-known bounds of determimappsitive characteris-
tic. For this purpose, we make first the following observatio

Proposition 3.1.17.Let f € m? C K[[z]].
1. If u(f) < oo, thenj(f) D mr(),
2. If7(f) < oo, thentj(f) > m7(f),

Proof. The assertions of Proposition 3.1.17 can both be proveeisame way. There-
fore and for the reason of size, we only show the second assert

By assumption?’; is a finite dimensionak’-vector space of dimensior(f). We set
7:=7(f)andl := tj(f). Furthermore, fos € Z_, let

>0
M= (m® 4+ 1)/,

be the image ofn® in 7. It is clear that for any, m® is a finite dimensionalk’-vector
subspace df';. We claim that for alll < s < 7, we havedimg (m®) <7 —s.

We argue by induction os.

Fors = 1, asm is the maximal ideal of the locak'-algebraT, we have then
dimg (Ty/m) =1 and thereforéimg (m) = 7 — 1.

Now, lets be such that < s < 7 and we suppose thdim g (m*) < 7 — s. We have
to consider the following two possibilities:
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e m*t1 = m*. Then, it follows by Nakayama’s lemma that = 0 and hence
m’” Cm® C I
e m*t! is a proper subspace @f*. Thus,dimy(m**t!) < dimg(m®) — 1 <
T—(s+1).
Therefore, we havéim g (m”™) = 0 and hencen™ C 1. O

In [GrK90], the authors established the following boundgleferminacy in positive
characteristic.

Theorem 3.1.18.Letchar(K) > 0 and letf € K[[z]].
1. If u(f) < oo, thenf is right 2u( f)-determined.
2. If 7(f) < o0, thenf is contact27( f)-determined.
Proof. See [GrK90]. O

Remark 3.1.19. It turns out that the bounds given in Theorem 3.1.15 are iregan
better than those given by Theorem 3.1.18. Indeed;, letm? C K[[z]] be such that
7(f) < oo. Then, it follows from Proposition 3.1.17 thaf C ¢j(f). Hence, if we
consider the smallest positive integesuch thatm® c ¢j(f), we have clearly

27(f) > 2k > 2k — (ord(f) — 2).
Similarly, we notice that the same claim holds for the bowfd&gyht determinacy.

Example 3.1.20.Letchar(K) = 23 and letf = y® + 28y* + 2%* € K[|z, y]]. Using
SINGULAR, we getr(f) = 105 andm?> C ¢j(f). While Theorem 3.1.18 asserts that
210 is a bound of contact determinacy ff we obtain from Theorem 3.1.15 thAts
contact44-determined.

It is established ovet that isolated hypersurface singularities are finitely deiteed
and the converse does also hold ([GLS06, Corollary 2.39 [&st part of the present
section is devoted to the study of this claim in positive elegeristic. It is straight-
forward from Theorems 3.1.15 and 3.1.18 that in arbitrarabteristic, any isolated
hypersurface singularity (resp. agfye K|[[z]] for which 0 is an isolated singular-
ity) is finitely contact (resp. right) determined. The fallmg proposition asserts that,
conversely, the claim does also hold.

Theorem 3.1.21.Let f € m C K[[x]].
1. If f is right k-determined, them - j(f) D m**1,
2. If f is contactk-determined, them - j(f) + (f) D mF+1.

Proof. We show only the second assertion of the theorem as the fiestambe proved
in the same way.

Let f € m be contack-determined, and létc Z_ be such that > k + 1.

Let ) be thel-jet of f. Furthermore, lefC(Y) be thel-jet of the contact grouj.
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Throughout this proof we shall writg for the algebraic groufg®.
Considering the regular algebraic action, where by abusetattionu, ® andh denote
k-jets and their representations at the same time,

Yy GxJO —  JO
(u, d),h) — (u,d)-h:=(u-¢(h)"

of G on the smooth variety ), Luna’s slices theorem yields the existencdifl of a
slice S to the orbitG f(!) at the pointf") under the action; (cf. [Sl080, 5.1 Lemma
1]). This means by definition that

1. fO e Sand
2. the morphism

v, GxS — JU
(u,9),h) — (u,0)-h

is smooth, which is equivalent 1o, is flat and all fibres are smooth (cf. [Har77,
Theorem 10.2]).

Letg € mF*+1, we shall show in the following that € m? - j(f) +m - (f). First we
notice that, ag is k-determinedf® +t¢®) e G f follows obviously for anyt € K.
HenceL = {f® +tgV) : t € K} isalineinGf" andy (L) is smooth inG x S.
Moreovery; 1 (L) C G x {fV}. Indeed, let(u, ¢),h) € ¥;1(L) C G x S, then
(u, ¢)-h € L ¢ Gf". Hence, forG is a group, we get € G ). Altogether, we
geth e GfO NS ={f0},
Furthermore, we have obviously; ! (")) = G;» x {f} whereGq is the sta-
bilizer of f(). On the other hand, ag_'(L) is smooth, then we can write it as a
product

’L/JSTI(L) = Gf(z) x L.

Thus, it follows that the morphism_ ! (L) — L is smooth. Moreover, we see clearly
that((1, id), fV) € 171 (L). Then by the curve selection lemma there exists a smooth
locally closed varietyl” in G of dimensionl and such thatl, id) € T. Besides, the
morphismT' x {f()} — L is smooth and locally an isomorphism. Thus, for any
t € K, there exists locally a unique:; , ¢;) € T such thatu; - ¢, (fV) = fO +tg®.
Moreover(ug , ¢o) = (1, id) holds.

Recall that each automorphistrof K [[z]] is uniquely represented by a tuple
(¢1,...,0n) € K[[z]]™ of power series such that

$;(0)=0 foralli=1,...,n

and

9¢i )
det 0 0.
¢ (8%'( ) i,j=1,....,n 7

.....
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Since the operation

n: G— G:(u,¢)— (Qbil(uil)v‘bil)

of taking inverses is a self-inverse morphism of the algieleoupG, its restriction to
T

T — G: (ut,dr) — ((bt_l(ut_l)v(bt_l)

is an isomorphism frorfi” onto its image, both of which are smooth curves&:in
In particular, parametrizing the image there are poweesere K|[z, t]] and
¢ = (¢1,.-.,¢n) € K[z,t]]” such that

o u(z,t) =¢; ' (u; ' (2)) and

o ¢i(x,t) = ¢y H(axy)fori=1,...,n.
Sinceuy = 1 andgg = idg|[,)» We have

o u(z,0) = ¢y (ug'(z)) = ¢y ' (1) =1and

o ¢i(x,0) = ¢y (x;) = x; fori=1,...,n.
Altogether withF®) = f() 4 ¢. ¢ and

- g (FO) = fO 1. g0
yields
F(z,0) = fD = ¢ (u ') - ¢ (F') = u(z,t) - FO (¢(x,1),1).

Applying the der|vat|o > to both sides of the equation we get

ou
0 = (1) FO(¢(x,1),1)

n 0] . 0]
+u(x,t) - <Z a;;i (¢p(z,t),t) - %«? (x,t) + a%(gb(x,t),t)) .

=1

Evaluating the right hand side for= 0 and applying the above relations fofx, 0)
andg;(x,0) we get

8u afh  ag i )
0= 6t Z Ox; t 00 +97,
or equivalently
5)u af® 6(;5
0 = l) _ L (
9=yl Z oo o =0

Moreover, we have

ou
% 2.0) € Kla]
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and 5
;;i (2,0) € (z1,...,2n)
fori =1,...,n, since then it follows that

g€ (f)+m-j(f) +m*!
forany! > k + 1. Hence in particular
g€ (f)+m-j(f)+m"
Thus the claimm**! c m - j(f) + (f) follows by Lemma 3.1.8. O

Whith these preparation made, we give in the following a abi@rization of finite
determinacy.

Corollary 3.1.22. Let K be an algebraically closed field of arbitrary charactercsti
Let f € K[[z]] and letR; be the local ring of the hypersurface singularity defined by
f. Then,

1. 0is an isolated singularity of, if and only if, f is right finitely determined.
2. Ry isisolated, if and only if R is finitely determined.

Proof. In both assertions of Corollary 3.1.22, tifigart is straightforward from Theo-
rem 3.1.21 while thenly if part follows obviously from Theorem 3.1.15. O

At the end of this first section, we give the proof of the secolaiim of Proposition
2.3.19.

Proof. of Proposition 2.3.19 (the sequélt f € K[[z]]. We suppose thaf satis-
fies NPND* with respect to som€'-polytope P. We have to show that(f) =
Vn(T—(f)). This claim was established and proved by Wall oZen [Wal99a, 1.5].
It turns out that his arguments show also the claim in anyitcharacteristic. Hence,
to avoid repetition, we present shortly Wall's idea for theqf: As f is NPND*,
the first part of Proposition 2.3.19 asserts théf) is finite and Corollary 3.1.22 es-
tablishes thaf is right finitely determined. On the other hand, supposeftiradome
¢, 1 < g < n, ['(y intersects they;-axis forqg < i < n but notforl < i < q.

We choosemny, ma,...,mq € Z~¢ such thatm; is greater than the degree of de-

terminacy andng < ... < my. We setm = (mq,...,my) € Z‘;O and we write

fm = f+ 3 ;™. Clearly f,,, ~ f and therefore:(f) = u(fm) follows. Wall
1<i<q

shows that the convenient power serfgsis N PN D. Hence, Proposition 2.3.9 yields
w(fm) = VN(T=(fm)). On the other hand, the map — Vy(I'_(f,.)) is affine in
eachm; separately. Moreover, it follows from Remark 2.1.12 thatdt m we have
VN(=(fm)) < p(fm). Thus, form; large enoughVy (T'—(fm)) < p(f) and so
Vn ('~ (fm)) is constant forn; >> 0. HenceVy (I'_(fn,)) is identically constant.
Finally taking eachn; = 0, we getVx (T (f)) which completes the proof. O
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3.2 (AA)and (AAC)-Hypersurface Singularities

For the purpose of computation of normal forms olZexith respect to the right equiv-
alence, Arnold introduced in [Arn74, 9.2] a condition that ¢alled(A). In the first
part of this section, we review briefly this condition andrtheformulate it to a new
condition which is compatible in arbitrary characteristith the contact equivalence.
For the sequel, leV C Z  be an irredundant finite set of weights and Retoe its
associated’-polytope (cf. Remark 2.1.17).

Definition 3.2.1. Let f € K[x] be (PH) of type(W ; d). We say thaff is (A) with
respect toW or f is (A) with respect taP if for any non zerg; € j(f) there exists a
derivation¢ such that

(A1) vw (9) = vw (§) + vw (f) and

(A2) vw (g9 — £f) > vw (g).

In other words, we say thatis (A) with respect toW (or equivalently with respect
to P) if any non zerog € j(f) satisfies conditionA1) and(A2) with respect tof
andW (or equivalently with respect t6 and P).

We adapt in the following the conditiof¥) to arbitrary characteristic and we denote
it (AC) where the added letter refers to the contact equivalence relation.

Definition 3.2.2. Let f € K[z] be(PH) of type(W ; d). We say thaf is (AC) with
respect toW or f is (AC) with respect taP if for any non zergy € tj(f) there exist
a formal power series, € K[[x]] and a derivatiort € Derg (K [[x]]) such that

(AC1) vw (g) = min{vw (bo) + vw (f); vw (§) +vw (f)} and

(AC2) vw (g —bof — £f) > vw (9)-

Hence,f is (AC) with respect td¥ (equivalentlyP) if any non zerqy € ¢j(f) sat-
isfies conditiong AC'1) and(AC2) with respect tof andW (equivalentlyf and P).

We use for the following lemma Notation 2.1.57.

Lemma 3.2.3. Let f € K[x] be (PH) of type(W ; d) and letP be theC-polytope
associated td¥V . Further, letA be a face ofP and letz® € Ra.

1. Ifx> € Ra Nj(f)is (Al) and (A2) with respect tof and W, then for any
B € P|A] the monomial->+# satisfies alsd A1) and (A2) with respect tof
andW.

2. Ifx> € Rantj(f)is (AC1) and(AC2) with respect tof and W, then for any
B € P[A] the monomiak>+# satisfies als§ AC1) and (AC?2) with respect to
fandW.,
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Proof. The claims of Lemma 3.2.3 can be both proved in the same waycétfer the
reason of size we show only the second claim.

To do so, we suppose that € Ra Ntj(f) and besides conditior{siC1) and(AC2)
hold with respect tg andW. Moreover, for3 € P[A], Remark 2.1.58 yields

o vy (%) = va(x®),
o v (2P) = va(2P),
o 2278 € RA and thereforeyy, (z2+P) = va (z2FP).

On the other hand there exi§te Dery (K([x]]) andby andh € K[[z]] such that
x® =bof +&f + h with

(ACL) vw () = min{ow (bo) + vw (f); vw (§) + vw (f)} and
(AC2) vw (h) > vw (z%).

Thus we can write
&P = (a:ﬁbo)f + (xﬁf)f + 2Ph.

Moreover, az® is (AC2) with respect tof andW, and using Lemma 2.1.22 we get
ow (2Ph) > v (z>1P) (3.11)
Indeed

vw (2Ph) > vw (2P) + vw (h)
> ow (2P) +ow (2%)
= va(@®) +va(e?)

(a°FP)

a+5)

vA
= wwl(x
Furthermore, since® is (AC1) with respect tof and W, we can suppose without

loss of generality thaty (z*) = vw (bo) + vw (f)-

We claim that eitheow (£f) = vw (§) + vw (f) orvw (bo f) = vw (bo) + vw (f)
holds. Indeedwyy (h) > vw () yields

vw(x®) > min{ow (bof); vw (Ef)}
> min{vw (bo) +ow (f); vw (&) +vw (f)}
= ww(bo) +vw(f) = vw (%)

Then, it follows thaww (%) = min{vw (bo f) ; vw (£f)}.
o If mm{vw(bof) ; Uw(ff)} = "w (bof), then we get

vw (bo) + vw (f) = vw (%) = vw (bo f).
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o If min{ow (bof); vw (&f)} = vw (£f), thatis

vw(Ef) = vw(@®)
vw (bo) + vw (f)
< ow(§) +ovw (f)

Nevertheless, Lemma 2.2.3 asses(€) + vw (f) < vw (£ f). Hence, we get
ow (Ef) = vw (§) +ow (f).

And so the claim follows. Using this we show in the followirgatz>*+# is (AC1)
with respect tof andW'.

@) fow(bof) = vw (bo)+vw (f) = vw (z®), thenit follows from Lemma 2.1.22
thatvw (f) = va(f) andvw (bg) = va (bo). Therefore

OB = ow (@) +ow(z

= ww(bo) +vw (f) +vw (2”)
= wa(bo) +va(f) +va(a?)
= wa(@® - bo) +va(f)

= ww(z?  bo) +ow ().

vw (z ﬁ)

(b) If vw (&f) = vw (&) + vw (f) = vw (z2), then we show as for the above that
ow (2°7P) = ow (2P€) + vw (f).

Thereforer®+# is (AC1) with respect tof andW . Moreover, it follows clearly from
(3.11) that the conditioQAC2) holds which terminates the proof.

O

Proposition 3.2.4. Let f € K[z]| be (QH) of type(w; d), w € Z" andd € Z_,,.
Thenf is (A) and (AC) with respect to{w}.

Proof. Let f € K[z] be a quasihomogeneous polynomial of type; d), w € Z7
andd € Z_,. We writew = (wy, ..., w,) andl = tj(f).
For anyi = 1,...,n, we have clearly that

f., iseither0 ora (QH) polynomial of type (w; d — w;).

Forg € I, we show in the following the existence of power setigandg, € K|[x]]
and a derivatiog such that

g=bof +&f +
satisfying

e (AC1) :v(g) := w-ord(g) = min{v(by) + v(f); v(§) + v(f)} and
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o (AC2):v(g —bof —&f) > v(g).

To do so, we considerthe set= {i: 1 <i<n and f, # 0}.

We notice that the s&f may be empty whenhar(K) > 0.

For the sequel, we denote the $et {0} by Z, andf by f, .

Asg € I, then we can writg = Ziezo hif, ,where theh; are power series i [[z]].

Fori € 7y, we denotel; := v(h;).
Hence, fori € 7, we can write

hi = h + >

i )

Wherehgl) € K[z]is a(QH) polynomial ofw-degree equal td;, and
h? € K[[z]] is such that(h?) > d,. Hence

9= Z hfl)fry + ZhSQ)fry

i€Zg i€Tp

We setw, := 0 and we observe that the polynomiézlfs”fri, 1 € Iy, are(QH) of
degreel; + d — w;. Thus we have obviously for alle Z,

o(hVf, )=o) +u(f, ) =d; +d—w;.
On the other hand, we have for ahy 7,

ok f, ) = oh®)+u(f,)
> di+d—w;
v(h§1>fzi).

Then, it follows clearly that

Y

v(g) min {v(hfl)fwi) RS IO}

min{d; +d —w; : i € Ip}

Now,letiy € Zp such thatnin{d; +d — w; : i € Iy} = di, +d — wj,.

e If v(g) = d;, + d — w;,, then the claim of the Proposition 3.2.4 follows clearly
by takingby = h(V, & = 3> hMa,., g1 = Yz, h?f, and besides by
showing thatw(§) = min {d; —w; : i € Z}. To do so we consider the linear
function\: R® — R associated ta and defined by

AMa) = (w,a) = Zwiai,
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with o = (a1, . .., @) € R™. On the other hand, Definition 2.2.1 yields
v() = mm{v (1)6 : ZEI}
= mzn{mzn{/\ —€): ac€ supp(hfl))} NS I}
= mzn{mm{/\(a) D€ supp(h(l))} Ae): i€ I}
= min v(hfl)) —Me): i€ I}
di —w

= min{d;—w;: 1€T}.

e If v(g) > d;, + d — w;, however, there exists a subgét) of Z, containingio
such that

1. di +d—w; = d;y +d —w;, foralli € Z(V and
2.3 D f, =o0.

iez(M

Hence, we have

g= > KV +> n®rf

i€IO\I(()]) i€Zo

Now we have to consider two cases:

(@) IfZo \ M) # 0, then we get
v(g) zmin{di—i—d—wi: ieZO\I(El)}.

If the equality holds, then the claim follows.
If not, then we use the same considerations as in the aboetde g.

(b) 1f Zo \ IV = 0, theng has the form
i€

In this case we decompose the power sehz@é i € Iy, into their(QH)
parts as we did for the power series i € Z;.

Thus, using again the method that we followed in the caseevierequality between
the weighted orders does not hold, we show that after finitedyy iterations there
exists a subsef* of 7, such that

g=>_bif, +a,
i€I(’;
where

1. foralli € Z*, b; is a(QH) polynomial,
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2. v(g) = min {v(blfﬁ) t1€ Z;‘} = min {v(bi) +u(f,,): i€ Z;‘} and

3. v(g1) > v(g).
Hence, the claim follows by setting
£= > b,
i€ZFN\{0}

Altogether, it yieldsf is (AC') with respect to{w}. Finally, we should notice that the
so far used arguments in the present proof show in the samehagy is (A) with
respect to{w}. Hence in order to avoid repetition, we decide to omit theopad the
last claim. O

Considering 8 PH) polynomial f, we discuss in the following how conditiaf)
(resp.(AQ)) is related to the piecewise-homogeneous grading ofdredgebrasi/;
(resp.T). For this purpose we consider:

Notation 3.2.5. Let f € K[x] be(PH) of type(W ; d).
1. We write
j‘f, (f) :={g€j(f): gis (A1) with respecttof, W)
and

tjAC(f) = (g € tj(f) : g is (AC1) withrespecttof, W).

2. Ford € N, we write
j“;‘,(f, d):={(g€j(f): vw(g)=d and g is (A1) with respecttof, W)
and

t52°(f.d) == (g € tj(f): vw(g) =d and g is (AC1) with respecttof, W).

3. We denote
griy (My) = @D Fsa/ (3 (f,d) + Fsa),

d>0

and
gral (Tr) = €D Foa/(tifC (f.d) + Fsa).
d>0

Refering to Definition 2.1.44, we should mention thaf,, (M) (resp. grac (Ty)) is
a K-algebra in the same way gs,, (My) (resp. gr,, (Tf)). Nevertheless, it is of
interest to notice the following.
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Remark 3.2.6. If u(f) < oo (resp. 7(f) < o0), then Proposition 2.1.53 estab-
lishes thatgr,, (My) (resp. gr,, (T¢)) has finite dimension a& -vector space. For
gra (My) (resp. griaC(Ty)) yet, the dimension can be infinite as Example 3.2.16
shows.

Furthermore, it is not difficult to establish the followinglations between the so far
definedK -algebras.

Lemma 3.2.7. Let f € K[x] be (PH) of type(W ; d). Then, there exist canonical
epimorphisms of{-vector spaces

griy (My) = groS(Ty) s gr, (My) = gry, (My) , gro©(Tr) = gry, (Ty).
If moreoverf is (A) (resp. (AC)) with respect toW, thengr? (My) = gr,, (Mjy)
(resp. ngVC(Tf) = gr,, (Ty) ) as K-vector spaces.
Proof. The claim of lemma 3.2.7 is straightforward from Definitiod 24 and Nota-

tion 3.2.5. This is why we choose to omit the proof. O

For the sequel, we conside(& H) polynomial f such thafu(f) < oo (resp.7(f) <
00). The emphasis is put on the relations between the Milngp(r&jurina) algebra of
f and their associated piecewise-homogeneous gradings.

Lemma 3.2.8.Let f € K[z] be(PH) of type(W ; d).

1. If7(f) < oo, then
gy (Ty) = gry, (Ty) — Tt

2. If u(f) < oo, then
griy (My) = gry, (My) — My,

Proof. The claim is straightforward from Corollary 2.1.54 and Lean@&2.7. O

From the computational point of view, the following progasi is crucial for it pro-
vides a characterization of conditioqd) and (AC") by means of finite dimensional
K-vector spaces.

Proposition 3.2.9. Let f € K[z] be(PH) of type(W ; d).

1. If u(f) < oo, thenf is (A) with respect toW, if and only if,gr?} (M) = M;
as K-vector spaces, i.8img (gri (My)) = p(f)

2. If7(f) < oo, thenf is (AC) with respect td¥, if and only if,gr‘j‘vc(Tf) =Ty
as K-vector spaces, i.éimg (griC(Ty)) = 7(f).

Proof. In the following we only show the second assertion of projmsi3.2.9 as the
first one can be proved in the same way. Hence, we considecavgige-homogeneous
polynomial f € K[z] such thatr(f) < oco. We denotel; := ¢j(f) and]ff =
t52C(f,d). Moreover, le3 = {eq, e € A} be abasis of th&-vector spaceri® (Ty)
consisting of monomials ok [[x]].
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As gr‘f‘vc (Ty) — grw (Ty) — Ty follows by Lemma 3.2.8, thel8 projects to a gener-

ating system of’;. Namely, the sefe, mod(Is), o € A} is a generating system of
T. First, we suppose thgtsatisfies the conditiofAC') and we show that the system
{eamod(I;),a € A} is linearly independant if’;. Indeed, considering a relation
ZaeA catamod (I7) =0, where fora € A, ¢ € K, means that

anea € Iy. (3.12)

acA

If the leastW-degree of a monomial occuring in the relation (3.12) withn re@ro
coefficientisd € Z-, then we have

vw (Z caea> =d.

ach

Hence,
Z Cala € de N If.
aEAN

Moreover, using Notation 3.2.5, conditi¢dC'2) yields

anea S I}‘:‘f + FSq.

acA

Hence, in theK-spaceFZd/(ijf + F.,), we have}  _ caea = 0. Thus, the set
{ea : a € A} is dependant in th&-spaceF”, ,/(I/'¢ + F._,) against the choice of
thee, and so the claim follows.

Now, we suppose that the surjectigqf/c (Tt) — Ty is an isomorphism of{-linear
spaces. Hence, the spt, mod(I;) : « € A} is a basis of the linear spadg.
For the sequel we considere K{[x]] such thatvw (g) = d. Hence, we can write
g = ga + g=q Whereg, is (PH) of type (W ; d) andvw (g~q4) > d. We denote

A, = {a €A: W-dedeq) = d} andA _,, = {a € A: W-dedeq) > d}.
Hence, we can write
gmod (Iy) = Z caeamod (Iy) + Z caeamod (Iy). (3.13)
*E€h(a) *E€A>a)

On the other hand, we have

gi— Y cata €177+ Foy. (3.14)

ah (g

Now we assumg < Iy. As {ea modl;) : a € A} is a basis off’, then it follows

in particular from(3.13) that all the coefficients,, o € Ay, are0. Thus,(3.14)
becomes
ga € 'Y + Faq.

Thereforeg € I;“dc + F- 4 and so the claim follows. O
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Although the central result of Arnold in [Arn74, 9.5] on noahforms supposes that
the condition(A) holds, Wall observed in his paper [Wal99a] that this condiis not
necessary. We shall reformulate Wall's discussion in thd section of the present
chapter and give an explicit development about the comipuataf normal forms. For
this purpose, it deserves to elaborate the following nevditamms.

Definition 3.2.10. Let f € K[x] be (PH) of type(W ; d). We say thaff is almost
(A) and we writef is (AA) (resp. f is almost (AC) and we writef is (AAC')) with
respect toW if dim (grd (My) < oo (resp.dimg (gri°(Ty)) < cc. Furthermore,
we call aK-basis ofgr? (My) (resp. gr°(Ty)) consisting of monomials eegular
basisof My (resp.T%).

Notation 3.2.11. If f is (AA) (resp. (AAC)) with respect toW and if P is theC-
polytope associated 47, then we say also thatis (4AA) (resp.(AAC)) with respect
to P.

Lemma 3.2.12.Let f € K[x] be(PH) of type(W ; d). If f is (AA) with respect to
W thenf is (AAC) with respect tdV .

Proof. It follows from Lemma 3.2.7 thatlimg (graC (Ty)) < dimg(griy (My))
which shows obviously the claim. O

Remark 3.2.13. Let f € K[z] be(PH) of type(W ; d). The following observations
are straightforward from Proposition 3.2.9:

1. If u(f) < oo andf is (A) with respect toW then f is also(AA) with respect
to W.

2. If 7(f) < oo and f is (AC) with respect toW then f is also (AAC) with
respect tow.

Proposition 3.2.14. Let char(K) = 0 and letf = z® + A\z?y® + y* € K|[z,y]],
whereX # 0,a > 4andb > 5. If u(f) < oo (resp.7(f) < o0), thenf is (A) (resp.
(AC)) with respect td’(f). Furthermore, there exists a regular basisidf; (resp. of
T) consisting of monomials lying strictly beldw f).

Proof. Let char(K) = 0 and letf = 2 + \z?y? + y* € K[[x,y]], whereX # 0,

a > 4 andb > 5. Without loss of generality, we can suppose that a. We write

a = da’ andb = db’ whered = gcd(a,b). Clearly f is (PH) of type (W ; d) where
W ={@2V,(a—2)-V), (b—2)-d',2d")} andd = 2da’V’.

Arnold established that is (A) with respect ta'(f) and showed the existence of a
regular basis ofi/; such that any monomial in it lies strictly beldw f). For the proof
of this claim we refer to [Arn74, 9.8 and 9.9].

For the sequel, we assuméf) < oo and we show thaf is (AC). We have

fo = ax® 1 + 2 x9? | fy= 222y + by’ L.
So, it is not difficult to see that the set of monomials

B: {17‘/1;7"'7$a_1’y7wy7y2""7yb_1}
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is a K-vector space basis ®%. Thus7(f) = a + .
Moreover, we claim that the monomialg?, =2y, 22y?, z® andy?® fulfill conditions
(AC1) and(AC?2) with respect tof andW. Indeed, we can write

(1) zy? = & f + by Whereg; = 550, andhy = —55az® 1.

(2) 2%y = & f + hy Wherel, = 550, andhy = — 55 by* 1

() z%y? = a1 f + & f, wherea; is a non zero constant aggl = axzd, + asyd,
with alsoa, ag € K \ {0}.
(4) 2 =01 f + & f , wherey = B2, + B3y, andp; € K\ {0} forl1 <i < 3.
(5) y° =nf +&f , wheres = 220, + v3yd, andy; € K \ {0} for1 <i < 3.
On the other hand, we have

1) vw(zy®) = /(b +2) andow (&) = —(b — 2)a’. Thus, we get clearly
vw (2y?) = vw (&) + vw (f). Moreover

vw (hy) =20 (a — 1) = vw (zy?) + (V' (a — 2) — 2d’) > vw (zy?).
Therefore the claim follows fary?.
(2) Inthe same way?y satisfieg AC'1) and(AC?2) with respect tof andW .

(3) Obviouslyvy (£3) = 0 andvw (22y?) = vw (f). This implies clearly the claim
for x2y2. Besides we see easily in the same way tifaandy® satisfy (AC1)
and(AC?2) with respect tof andW'.

In the following, we denote by\; the line segment of (f) with end points(a, 0)
and(2,2) and we writeA, for the line segment of with end poin(g8, 2) and (0, b).
Besides, let; » = {(2,2)}. Itis evident thatA;, A, andd, o are faces of’(f).
Moreover,z¢~1, 22y andz?y? are in the cone’[A,]. Thus, ase™ € P[A,] for any
n € N, then it follows from Lemma 3.2.3 that any monomial in the set

{x2+"y, z2Ty? vt pe N}

is (AC1) and(AC?2) with respect tof andW. In the same way, sincey?, x?y* and
y?in P[A], it follows from Lemma 3.2.3 that any monomial in

{xy2-ﬁ-n7 x2y2+n7 yb+n ‘e N}

is (AC1) and(AC2) with respect tof andW.

Altogether, this shows thatimx (g} (Ty)) < oo and aregular basis ofI’; is con-
tained in the seB. Thereforedim (griac (Ty)) < #(B) = 7(f). However, Lemma
3.2.8 states thatim g (gr:i°(Ty)) > 7(f). Hence the clainy is (AC) follows from
Propsition 3.2.9. Finally, it is easy to see that all mondsiia 55 lie strictly above
I'(f). This terminates the proof.
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Ao

2 a

Regular basis of
f=a"+xa?y® +4°

In arbitrary characteristic, the following claim genezak Proposition 3.2.14.

Proposition 3.2.15. Let char(K) # 2 and letf = 2% + Az2y® + y* € K[[z,y]],
whereX # 0,a > 4 andb > 5. If u(f) < oo (resp.7(f) < o0), thenf is (AC) with
respect td(f). Furthermore, there exists a regular basisigflying belowI'( f).

Proof. The proof repeats the so far used arguments in the one of §itigmo3.2.14.
Hence for the reason of size we discuss shortly the followases:

(i) If char(K) t a, char(K){bandchar(K) tab—2-(a+b), we observe thaf,
and f, are equal to the respective partial derivativeg ah characteristic zero.
Thus, the proof of Proposition 3.2.14 shows in the same wayctaim of the
present proposition.

(i) If char(K) {a,char(K)1b, butchar(K) | ab—2- (a+ b), then we can see in
this case that® ¢ ¢j(f) anddimg (gri°(Ty)) = 7(f) =a + b+ 1.

(iii) If char(K) | a andchar(K) 1 b, then we have
fe=2Xxy?, f, =22y + by .

Nevertheless, in this case also, it is not difficult to seé the monomialscy?,
22y, 2%y, x* andy® do fulfill conditions (AC1) and(AC?2) with respect tof
andW and the claim follows in the same way as in the above.

(iv) The claim in the casehar(K) | b andchar(K) 1 a can be easily derived from
the caséiiz).

(v) If char(K) | a andchar(K) | b, then
fo = 2X\zy? | fy= 2022y,

Arguing as in the proof of Proposition 3.2.14, we can show (@) = a+b+1
and the set

B: {171:7"'7xa_l7y7xy7y27""yb}

is at the same time A -vector space basis and a regular basig,0fThis shows
the claim.

O
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We should mention that the claim of Proposition 3.2.15 is émeyal not true when
char(K) = 2.

Example 3.2.16.Let char(K) = 2 and letf = 2° + 2%y? + y* € K|[z,y]]. fis
(PH) of type(W , d), whereW = {(4,6); (5,5)} andd = 20. USing SINGULAR,
we can compute(f) = 16 and show thatz, y)" C #j(f). However, we claim
that f is not evenAAC). Indeed, letn € Z~( be such that: > 2, then obviously
y*" c m” C tj(f). On the other hand, we show in the following thdt does not
satisfy(AC2) with respect tof and W.

We havef, = z* and f, = 0, then we can writg/*" as

y4n — y4n—4f + (Iy4n—4)azf + I2y4n—2'

Besides, setting = (zy*"*)d,, we haverw (y*") = 20n = vy (y*" ) + vw (f)
andvw (¢) = 20n — 20. Thus, clearlyow (¥*") = v (€) + vw (f). Nevertheless,
vw (Y — A — £ F) = vw (22y*"~2) = 20n and this shows that is not(AC2).
Hence the infinite se{y‘*" in > 2} is contained in aK -basis of the vector space
grac(Ty) and so the claim thaf is not(AAC) clearly follows.

In [Wal99a], Wall established ovef that if f € K][x]] is NPND* with respect
to someC-polytope P, then fp is (AA) with respect taP. To show this claim, Wall
presented a pure algebraic proof based on the observafionsiochnirenko in [Kou76,
4,6] and which is independant of the characteristic. Thwegthe same claim does hold
in arbitrary characteristic.

Proposition 3.2.17. Let f € K[[z]] such thatchar(K) > 0. If f satisfiesNPND*
with respect to somé€'-polytopeP, thenfp is (AA) and (AAC) with respect taP.

Proof. See [Wall99a, 2.2 and 2.3] for a proof of the claim tlfiatis (AA) with respect
to P. Finally, fp is (AAC) with respect taP follows from Lemma 3.2.12. O

Corollary 3.2.18. Let f € m3 be (SQH) with principal part fo having weighted
degreed € Z-q. If char(K) does not dividel, then f is (AA) and (AAC) with
respect to its Newton polytope.

Proof. The proof is straightforward from Proposition 2.3.23 andgesition 3.2.17.
O

The next proposition was motivated by the following obsgores: In the classification
of simple and unimodal plane curve singularities, the caggish mostly occur are
those of elements ok [[x, y]] which are(SQH) or (SPH) with respect to 2-facet
Newton polytope (see for example [AGV85], [Sch90], [GrKoMrG98]). Moreover,
as we shall see in the next section, the computation of refakes provides an impor-
tant tool to the computation of normal forms.

Proposition 3.2.19.Let f = 2% + \z°y? + y* € K[[z,y]] be reduced such that
A€ K\ {0},a> ¢ b>dandad + bc < ab. Thenf is (AAC) with respect td’(f),
if and only if, there existé € Z- such that any monomial of total degrge (c + d)
satisfie AC'1) and (AC2) with respect tof andT'(f).
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Proof. Throughout this proof, we denote := I'(f), A; = [(a,0), (¢, d)] and more-
overA; = [(¢,d), (0,b)]. ClearlyA; andA, are the two facets df. Furthermore, let
W = {w;; wp} C Z2 wherew; = bc- (d; a — ¢) andwy = ad - (b—d; ¢). It
is easy to see thgtis (P H) with respect td¥ of degreezbcd. Moreover we say for
short that a monomial iISBAC'1) and(AC?2) if it satisfies these conditions with respect
to f andW. Furthermore, we writdeg(M) for the total degree of a monomiad.

If fis (AAC) with respect tol', that isdim (g7l (Ty)) < oo, then there exists
N € Z-o such that any monomial im” is (AC1) and(AC?2). We setk the smallest
positive integer such that- (c + d) > N.

Conversely, we suppose that there exists Z-, such that any monomial®y” with
a+B=k-(c+d)is(AC1) and(AC?2). We claim that any monomial im* (¢+4) js
also(AC1) and(AC?2). Indeed, we considerc N and

Bi = {M € Mon(KI[a]]) : (k+i): (c+d) < deg(M)) < (k+i+1)-(c+d)},

and we show by induction that any monomidl € B;, i € N, is (AC1) and(AC2).

S

(& a

= 2%+ Ayl + o0
is (AAC)

For this purpose we consider the following triangIeR@O:
(1) T has the verticef), 0), (¢, 0) and(c, d).

(2) T has the vertice, 0), (d,0) and(c, d).
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(8) T; has the vertice$(k + i) - c,(k+14) - d), (k+i+1)-¢ (k+1)-d) and
(k+i+1)-c,(k+i+1)-d).

(4) T; has the vertice$(k + i) - ¢, (k +14) - d), (k +i) - ¢,(k+i+1)-d) and
(k+i+1)-¢(k+i+1)-d).

Let M be a monomial such thdtg(M) = k- (c+ d). We have by assumption thaf
is (AC1) and(AC2). Hence, it follows by Lemma 3.2.3 that

1. if M € P[A4], thenforanyr € N, 2" M is (AC1) and(AC2) follows,
2. if M € P[Ay], then for anyr € N, we havey” M is (AC1) and(AC?2).

Thus, in order to prove the claim for= 0 and based on these observations, it is enough
to show that any monomial having its supporffign(resp. inTy) is (AC1) and(AC?2).
Nevertheless, such monomials can be written as the profluétg*® and a monomial
having its support either of C P[A;] or T C P[As).

On the other hand*y*? € P[A;] N P[A,]. Hence, it follows from Lemma 3.2.3 that
the lattice points of, and T} correspond to monomials which ar¢C1) and(AC?2).
Hence again by Lemma 3.2.3, we deduce that any monahiialor which it holds
k-(c+d) <deg(M)<(k+1)-(c+d),is(AC1) and(AC2).

The induction step = i+1 can be proved in the same way by considering the triangles
T, T;, T andT.

Altogether, this shows that any monomidl such thatleg(M) > k- (c+d) is (AC1)
and(AC?2). Consequentlyr/©(Ty) is finite dimensional a% -vector space and this
terminates the proof. O

Example 3.2.20.Letchar(K) = 3 and we consider a plane curve singularity of type
Ej5 5 corresponding to the equatioh= z'2 + 23y? + y3 € K[[z,y]]. Furthermore,
letWw = {(6; 27), (8;24)} and letd = 72. Clearly, f is reduced and’ is (PH) of
type{W ; d}. Using in SINGULAR the functionisAC from the library gradalg.lib
(cf. Algorithm 4.3.4 in Chapter 4), we show that any monorofaiotal degreel5
satisfies both ofAC'1) and (AC?2) with respect tof and W. Thus Proposition 3.2.19
yields f is (AAC) with respect toW. Moreover, using the functioACgrbase from
gradalg.lib (cf. Algorithm 4.2.4 in Chapter 4) shows that

B={lx,. .. 2% yzy sy v oy’ *y, xy’, 2°y°, 2y}

is a K-basis of the vector spacg\°(Ty). Hencedimg (gri€(Ty)) = 22 while
7(f) = 21. Thereforef is not(AC).

For f € K|[[z,y]] arising in the same way as in Proposition 3.2.19, we notiaettie
same claim holds for the conditigal A).

Proposition 3.2.21. Let f = 2% + A\z°y? + y* € K][[z,y]] be reduced, such that
A€ K\ {0}, a>c b>dandad + be < ab. Thenf is (AA) with respect td’(f),

if and only if, there existé € Z- such that any monomial of total degrge (c + d)
satisfieg A1) and (A2) with respect tof andT'(f).
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Proof. In the same way as the proof of Proposition 3.2.19, this pi®also based
on Lemma 3.2.3. We need only to replace conditioAs’), (AC1) and (AC?2) by
conditions(A), (A1) and(A2) respectively. O

Example 3.2.22.Letchar(K) = 5. We consider the plane curve singularity of type
W1 1 of equationf = 27 + 23y? + y* € K|[z,y]]. Itis easy to notice that is (PH)

of type{W ; d} whereW = {(12;24), (14;21)} andd = 84. Using SINGULAR,
we show that any monomial of total degre@is (A1) and (A2) with respect tof
andW. Thusf is (AA) with respect toW follows by Proposition 3.2.21. Moreover,
dimg (grd (My)) = 16 andp(f) = 16. Hence, Proposition 3.2.9 yieldfsis (A) with
respect tow'.

3.3 Normal Forms of Isolated Hypersurface Singulari-
ties

Throughout this sectiok” denotes an algebraically closed field of arbitrary characte
istic.

Using the notions elaborated so far, we reformulate briefiynhain statement given by
Arnold in [Arn74] on the computation of normal forms over tiiwld C.

Theorem 3.3.1.Let f € m C C[[z]] be such thap(f) is finite and letW C Z”  be
a finite set of weights corresponding to the Newton polylopé f. Furthermore, let
{ea : a € A} be aK-basis ofM . consisting of monomials.

If the principal part fr of f satisfies conditiofA), then

f"{’fl“ + Z Cala;

acA*

where
A* C {a €A vw(eq) > UW(f)}

and the coefficients, € C are suitable.
Proof. cf. [Arn74, 9.5]. O

Nevertheless, as it was already observed by Wall in [Wal@8a]additional condition
(A) in Theorem 3.3.1 is not necessary for the proof and can betedréis we shall
see in the next result. Indeed, Arnold’s theorem can be maitated as follows for the
computation of normal forms with respect to the contactesjance:

Theorem 3.3.2.Let f € m C K/[z]] be such that(f) is finite and letW” C Z”  be
a finite set of weights corresponding to the Newton polylopéf.
Further, let{es : a € A} be aK-basis ofgr/\°(T'.) consisting of monomials. Then,

f’g’fl“ + Z Cala;

acA*
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where
A*is a finite subseto%a eN: vw(eq) > vw(f)}

and the coefficients, € K are suitable.

Proof. Let f € m be such that(f) is finite. We denote the Newton polytopeby P
and we writeW for a finite set of weights which is associatedRoin Z” . Clearly
fpisa(PH) polynomial with respect t?V. Letd := vw (f). Then, we can write

f=fp+fi, with ow(f1) > d.

Let {ea D a € A} be aK-basis ofgri©(Ty,) consisting of monomials and let

A= {a eN: vw(eq) > d}.
For the proof of Theorem 3.3.2, we construct inductively gussce of power series

(gq)quZD such that

® go= 1,
e g,~ f forall g and

e the sequencégq)q converges in then-adic topology to an element of the form
fP+> ca- Cala where the latter sum has finitely many terms.

We describe in the following the first step of our constructidve havef = fp + f1,
whered; := vw (f1) > d. Moreover, we can write

fr= 10 4 f B,
where
e f4)isa(PH) polynomial of type(W ; d;) and
o v (fOM) > d;.

For the sequel we denotg“ (fp, d;) by I;:C and we consider

N, ={aecl :vwlea)=di}.

Of courseA’ , can be empty in the case where all monomials of piecewisesgemeous
degreel; satisfy(AC1) and(AC2) with respect tofp andW. If not, then
{ea: @ € A'(l)} is a basis of thé(-vector spacd’,, /(F., +(F,, N I;‘ic)). So
we can write

F= 3" caea + bV fp+ i fp+

’
aehy

where

e cq € Kforallaoe A, .
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o b € K[z]] andé; = 3" b0, € Derg (K [[z]]) satisfy

i=1

di = min{ow (bV) +d, vw (&1) + d}.
e Finally by € K[[z]] is such thabw (h1) > ds.
Moreover, foruw (b)) > di — d > 0, we get
bV e m, (3.15)
On the other hand, for all < i < n, Remark 2.2.2 yields
UW(bgl)) > ow (&) + Aw (&),
where
= (0 ... 0, 1, 0 ... 0).
Asvw (&) > diy — d > 0, then it follows foralli = 1,. .., n, that
vw (B > Aw (1) (3.16)
Furthermore, we claim that th€-algebra morphisnp; defined by

01 K[[z1,...,2,])] — Kllz1,...,25]]

;o ox— bW

7

is a K-automorphism o [[x]].
To show the claim, we can suppose without loss of generdlity permutation of the
indeterminates, ..., z, that

/\W(El) 2 Aw(eg) Z e 2 /\W(En)

Using this together with the relation (3.16) shows tbﬁéi € m2. Furthermore, for all
i=2,...,n, we get

i—1
b)) mod (m?) =" a; i,
=1

where the coefficients;; € K. Hence, we can write the Jacobian matyiky; ) as
follows

1 —a21 —as3; —Qp,1
0 1 —as2 —an2
0 1
0
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Obviously, we haveet(J(¢1)) = 1. Thereforep, € Aut(K[[x]]). Moreover,

e1(f) = e(fp+f1)
= oi(fp) + o1 (f) + o (fEH)
= oi(fp)+ o1 (S + Ry

with Ry = @1 (fC)) € Fuy, for f>4) € Py, andyy € Aut(K([[z]]).
By Lemma 2.2.5, we can write

el(f) = fp—&fp+ 9 —&f @ + R +R,
= 1+t fp+ > catat (b — &I+ R)
aen ()

wherevyy (R,) > min{ow (&1) +vw (fp) , vw (&1) + vw (f9))} > dy.
Again by Remark 2.1.19, we have

ow (&) + ow (f1))

>
> (dy—d)+dy
> d.

ow (&)

Hence, we can write
p1(f) = 1+ fp+ Y caca+ R, with vw(R) >di.  (3.17)

aen’ (g

Besides, it follows by (3.15) that the power serjést bgl)) is a unit in K [[«]]. Thus,
multiplying both left and right hand side of the equatiorl@.by (1 + ()~ leads
to the equation

A+ o) =fp+ D Cata+ fo, and vw(f2) > di.

aEA'(l)
We setg; = (1 + b{)~1p;(f). Obviously, we haveg, ~ f and

g=fp+ D Cata+tfr, With vw(f2)>dy > d. (3.18)

aEA/(l)
Note that ifA/1 = (), then the equation (3.18) changes to

g1 = fP + fz, with ’Uw(fg) > dl > d. (319)

Proceeding recursively, we construct the sequefigg)},. On the other hand, as
7(f) is finite, then it follows by Theorem 3.1.15 thats finitely contact determined.
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Hence, there exists a finite subget of A" such that the sequen¢g, ),>o converges
tofp + ZaeA* Cate iN them-adic topology. Thus, the claim

f’EJfP'i' anea

aeA*

clearly follows.
O

We recall that, ifM € Mon(K[[z]]) is a monomial inK [[x]], thendeg(M) denotes
the total degree oM. If we devote a closer look to the proof of Theorem 3.3.2, then
we can easily see that it actually shows the following claim.

Theorem 3.3.3.Let f € m C K[[z]] and letk € Z-, be such that* C tj(f).
Further, letW C Z”  be a finite set of weights corresponding to the Newton pogytop
I of f and let let{eq : a € A} be aK-basis ofgrii“(T,.) consisting of monomials.
Then,

f ~ Jr + Z Cala;

ea€E(f)

where
E(f) C {M € Mon(K|[x]]) : deg(M) < 2k—ord(f)+2, vw (M) > Uw(f—fr‘)}

and the coefficients, € K are suitable.

Proof. cf. proof of Theorem 3.3.2. O

Obviously, the se€(f) which is defined in Theorem 3.3.3 is finite. Moreover, we
can in the same way reformulate Arnold’s theorem in arbjtcdraracteristic for right
equivalence.

Theorem 3.3.4.Let f € m C K]|[z]] and letk € Z-., be such tham* C j(f).
Further, letW C Z7  be a finite set of weights corresponding to the Newton pogytop

I of f and let let{eq : o € A} be aK-basis ofgr? (M) consisting of monomials.
Then,

f ~ Jr + Z Cala;

ea€E(S)

where
£(f) < {M € Mon(K[al]) : deg(M) < 2k—ord(f)+2 , vw (M) > vw (ffr)}

and the coefficients, € K are suitable.

Proof. The arguments used in the proof of Theorem 3.3.2 show in time seay the
claim of Theorem 3.3.4. Thus, we decide here for the reasaizefto omit the proof.
O
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Example 3.3.5.Letchar(K) = 2and letf = z2y? +y* +a° +2%y7 + 239" +2%y* +
2% € K[[z,y]]. USiNngSINGULAR, we getr(f) = 16 andm” C tj(f). On the other
hand, it is easy to see that the set of weiditffs= {(4,6) ; (5,5)} corresponds to the
Newton polytopé& of f and moreoverfr = 22y + y* + 5. In Example 3.2.16, we
have shown that theP i) polynomial fr does not satisfyA) with respect td" since
it is not even(AA) with respect td". HencegriA®(Ty,.) has an infinite dimension as
a K-vector space. Moreover, let

E(f) ={M € Mon(K[[]]) : deg(M) < 12andvw (M) > 60}.

Using the functiomACgrbase from the librarygradalg.lib in SINGULAR, we obtain
the set{zy'!, y'?} as intersection of the sé¥(f) and aK-basis ofgra (Ty,.) con-
sisting of monomials. Thus, the claim

a2y +yt + 25 + cray't + coyt? for someey, ¢y € K
follows clearly by Theorem 3.3.3.

In the last part of the present chapter we shall investideeetfect of the conditions
(AA) and(AAC) on the computations of normal forms and bounds of deterrginac
As it should be expected, it turns out that these conditio@srere suited for compu-
tations.

Before going into the details, we recall that an elemgnt K[[z]] is called semi-
-piecewise-homogeneous, if there existS-polytope P in R” ~such that no point of
supp(f) lies belowP and moreover the piecewise-homogeneous polynofgidlas a
finite Tjurina number (cf. Definition 2.1.37).

Theorem 3.3.6.Let f € m C K[[x]] be(SPH) with respect to aC-polytopeP and
let W C Z"  be a finite set of weights corresponding® If fp is (AAC) with

respect taP and {ea o€ A} is a regular basis of't,,, thenf is finitely contact
determinedand

fRfp+ ) cata

aEN*
where
A" C {a €N vw(ea) > ow(f — fp)}
and the coefficients, € K are suitable.

Remark 3.3.7. We should observe that the set of indide'sin Theorem 3.3.6 can be
empty. Indeed, if we suppose for example that all pointesponditiong taupp(eq ),
a € A, lie belowP, then it is obvious thah* = (. In this case we havg~ fp.

We give in the following a proof of Theorem 3.3.6.

Proof. Let f € m C K][[z]] be (SPH) with respect to aC-polytope P. Definition
2.1.37 states that the principal pgip has a finite Tjurina number. Moreover, the
assumptionfp is (AAC) with respect toP means by definition that th&-algebra
graC(Ty,) has a finite dimension aski-vector space. On the other hand, Mét=
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{a eN: vwleq) > Uw(f—fp)}. Hence, following in the same way the arguments

used in the constructive proof of Theorem 3.3.2, we show tistence of a sequence
{94}, such that

(1) g4~ fforallg > 0and
(2) forallN € Z

md~, forallg > N.

there existgy andc, € K suchthay, — fp — > cata €
acN

>0

Therefore the sequen({gq}q convergestofp + Y. cqeq in them-adic topology
acA*

of K[[x]]. Hence, forA* = {a EN:co # 0} the claim

f ~ fp+ Z Cala, (3.20)

acA*

clearly follows. We still have to show thdttis finitely contact determined.
Letd = vw (f) = vw (fp) and if A* #£ 0, letd’ = maz {vw (eq) : @ € A*}. More-
over, if A* # ), we setD = max{d, d'}, otherwise we takd> = d. Furthermore,
let & be a positive integer such that**! ¢ F.p and leth € m**!. Considering
g = [+ h, we see clearly thaf is (SPH) with respect toP and fp is its principle
part. Besides, asy (h) > D > vw (eq), forall a € A*, it follows that the decompo-
sition of the piecewise-homogeneous parté @f the K-basis{e,, : @ € A} does not
change the coefficients, in the relation (3.20). Thus using the same arguments as so
far, we show that

g ~ fp + Z Cafa-

aEA*
Thatisf + h~ f. Hencef is k-determined and this terminates the proof. O

Example 3.3.8. Let char(K) = 3. We recall that any plane curve singularity of
type E3 3 can be associated to @SPH) element ofK [z, y]] having the principal
part fo = x'2 + 23y + y3. Obviously,f; is (PH) of type{W ; d} whereW =
{(6; 27), (8; 24)} andd = 72. Moreover, we have shown in Example 3.2.20 tfads

(AAC) with respect tdW. Hence, it follows from Theorem 3.3.6 that afly ;-plane
curve singularity is finitely contact determined. On thessthand, using irSINGULAR
the functionACgrbase from the librarygradalg.lib, we obtain all monomials in &’ -
vector space basis gf\° (T'y) havingW -degree bigger thaii2. These arery?, z%y?
andz?y*. Hence, Theorem 3.3.6 asserts that any equatienK [[x]] corresponding
to a plane curve singularity of typgs 5 has the following normal form

f~fo+ azy’® + ey’ + esa’y?,
for somecy, ¢, c3 € K.

Example 3.3.9. We consider in the following a plane curve singularity ofey; ;
corresponding to an equation € K|[[z,y]] such thatg is (SPH) of principal part
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f=a"+2%? +y* € K[[z,y]]. LetW = {w; = (12,24) , wp = (14,21)} C Z2 .
Clearly f is (PH) of type(W ; d) whered = 84. Hence, we can writg = f + ¢1
with vw (g1) > 84. In the following, we shall compute a normal formgah arbitrary
characteristic.

1)

(2)

3)

(4)

If char(K) # 2 andchar(K) # 3 andchar(K) # 7, then it is not difficult
to see thatf is NPND*. Hencef is (AAC) with respect toW follows by
Proposition 3.2.17 and therefore there exists a fidifebasis 53 of gTé/c(Tf)
consisting of monomials. Moreover, we notice that in thiseck and f, have
respectively the same support as whémr(K) = 0. Thus we can assume
without loss of generality thathar(K) = 0. On the other hand, it is easy to see
that all the lattice points on the Newton polytopefatorrespond to monomials
which satisfy(AC1) and (AC2) with respect tof and W. Moreover, Lemma
3.2.3 asserts that any monomi&l for which vy (M) > 84 holds, is(AC1)
and (AC?2). Therefore no element of the ba#ishave al-order bigger than
84. Then it follows by Theorem 3.3.6 that. f.

If char(K) = 7, then we can easily show, that in this case the same claims as
those ofchar(K) = 0 do also hold, especially we haye® f. So for the reason
of size we decide not to go into the detalils.

If char(K') = 3, then we can show in the same way as in Example 3.2.1¢ that
is not(AAC). Thusdim (grii© (Ty)) is infinite. On the other hand, usirgN-
GULAR we getm” C tj(f). Hence Theorem 3.1.15 yieldsis 12-determined.
On the other hand, the functioACgrbase of the library gradalg.lib provides

all monomials in aK-basis ofgerC(Tf) having total degree smaller that?
andW-degree bigger thag4. These monomials arey?, x2y>, 2y* andz?y®.
Then, it follows by Theorem 3.3.6 that

g~ f+ eyt + ery’ + ea’yt + cr®y’

for somec; € K, 1 < i < 4. Nevertheless, if we consider the parametrization
equivalence® which is equivalent té- (cf. Definition 1.3.4 and Lemma 1.3.6),
it is established in [Bou02], that in characteristi; g ~ f + ax?y> for some

a €K

If char(K) = 2, then we have as in the latter case thfais not(AA). Again,
USiNng SINGULAR, we show thatn!® C ¢j(f) and moreover the monomiats,
8 <i < z'®anda’y, 6 < j < 17 andxy?* are those monomials of & -basis of
gr;j‘VC(Tf) having total degree smaller or equa® and W-degree bigger than

84. Using the same arguments as in the above weygef + axSy for some
a € K\ {0}.
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The following corollary shows thdtA AC) is an appropriate condition.

Corollary 3.3.10. Let f € m C K[[x]] be(SPH) with respect to a-polytopeP. If
the principal partfp of f satisfies the conditiofpA AC') with respect taP, thenf has
a finite Tjurina number. That is the hypersurface singulafily is isolated.

Proof. The proof is straightforward from Theorem 3.3.6 and Corgl&a1.22. O

Remark 3.3.11. (1) Corollary 3.3.10 states that@ P H) power serieg € K[[x]]
having a principal partfp which satisfie AAC) with respect to the corre-
spondingC-polytopeP has a finite Tjurina number. In other words, the finite-
ness ofr(fp) implies under the conditiopd AC) the finiteness of (/). Never-
theless, it should be noticed, that in this cas¢) < 7(fp).

(2) In general, as the following example shows, it is not theg (SPH) elements
of K[[z]] have finite Tjurina number.

Example 3.3.12.Letchar(K) = 2 and letf = x2y? + y* + 2° + 2%y? € K[[z,]].
Clearly f is (SPH) and fy = 2%y%+y* +2° is its principal part. We have(f;) = 16
while7(f) is infinite. Furthermore we should notice thtis not(AAC") with respect
to its Newton polytope (cf. Example 3.2.16).

In the particular case dfSQ H) elements though, we obtain the following interesting
result.

Corollary 3.3.13. Let f € m C K[[z]] be(SQH). Thenf has afinite Tjurina number,
that is the hypersurface singularify; is isolated.

Proof. Let f € m C K[[z]] be (SQH) with principal partfa. By Definition 2.1.37,
we have thaffa is (QH) and7(fa) < co. Moreover, it is established in Proposition
3.2.4 thatfa is (AC) with respect to its Newton polytope. Thus the claim clearly
follows by Corollary 3.3.10 O

We should mention the analogy with Proposition 2.1.41 whiehls with the Milnor
number. Nevertheless, attention should be drawn to thetfatthilep(f) = u(fa),
the equality does not in general hold for the Tjurina numb€y9 andr(fa).

Going back to the general case (PH) hypersurface singularities, we formulate
in the following a result on normal forms in relation with thendition(AA). In the
same way as fofAAC), the following theorem shows th&a¥ A) is an appropriate
condition since it implies the finiteness of the Milnor numbe



95 3 Finite Determinacy and Normal Forms

Theorem 3.3.14.Let f € m C K[[z]] be(SPH) with respect to a-polytopeP and
let W C Z”  be a finite set of weights correspondingRo If 1(fp) < oo and fp is
(AA) with respect taP and moreovef e, : o € A} is a regular basis of\/y,,, then
f isfinitely right determined and

foP'i' Z CaCa;

acA*

where
A C {a €N vw(ea) > ow(f — fp)}
and the coefficients, € K are suitable.

Proof. we decide to omit the proof since it is an exact repetitionhef arguments of
the proof of Theorem 3.3.6. O

Remark 3.3.15.Let f € m C K[[z]] be(SPH) with respect to &-polytopeP. Ifthe
principal part fp has a finite Milnor number and i64) or fp is (AC)) with respect
to its Newton polytope, then using Proposition 3.2.9, wereptace in Theorem 3.3.14
(resp. Theorem 3.3.6) A -basis of the vector spage:} (My,,) (resp.gra (Ty,)) by

a K-basis of the vector spadd s, (resp.Ty,).

Example 3.3.16.Letchar(K) # 2 and letf € K[[z, y]] be an equation correspond-
ing to a plane curve singularity of tygg, ,, that is f is (SPH) of principal part
fo = @ + Az®y® +y?, whereX # 0 and ; + ¢ < 3. Then, Proposition 3.2.15 and

Theorem 3.3.6 yield ~ f,.

Example 3.3.17.Letchar(K) = 2 and letf € K|[[z,y, z]] be associated to a hyper-
surface singularity of typ@1, thatis f is (SQ H) of principal part fo = 22z+y3+2%.
Clearly, fo is (QH) of type(W = {(9,8,6)}; 24).

Using SINGULAR, we show that(fy) = 16 and we get the following basi$ of the
K-vector spacd’y, consisting of monomials:

B= {1,:10,y,xy,z,xz,yz,xyz,zg,ng,yZQ,xyzg,z ,xz3,yz3,xyz3}.

On the other hand, we see clearly that the four monomigle?, 223, y23 andzyz>
haveW -degree bigger tha@4. Therefore in characteristig, we have

3

f ~oxlz 4+ y3 + 2%+ clxy22 + czzvzg + 03y23 + 04:Cy23,

for somecy, ¢o, c3 andey € K.

On the other hand, we observe thai (zy2®) = 35 is the biggestV -degree of the
monomials in5. Furthermore, the functiodeg H C from the librarygradalg.lib deliv-
ers the smallest positive integeisuch thatm®*+1 c F. 3. It turns out thatc = 5 and
therefore it follows from Theorem 3.3.6 thAtind hencef, are 5-determined. More-
over, it is of interest to observe that this bound of deteamyjnis more suited for the
effective computations as the one obtained by TheorenB3.Ihdeed, am® C tj(fo),
Theorem 3.1.15 asserts thatis 12 — 3 + 2 = 11-determined.

Based on these observations and arguing as in the proof ofr&ime3.3.6, we attempt
in the last part of the present chapter to give explicit bausfteterminacy in the case
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of (SPH) hypersurface singularities.

For the sequel, we consid¢re m C K[[z]] which is (SPH) with respect to aC-
polytopeP.

Theorem 3.3.18.Let f € m C K[[z]] be(SPH) such thatfp is (AAC) with respect
to P. Further, letW C ZZ, be a finite set of weights correspondingfand let
{ea : @ € A} be aK-basis ofgr:iC (T}, ) consisting of monomials.

Thenf is k-contact determined ih*+! c F. p where

D = max{vw(fp) , mazr {vw(eq) : a € A} }

Proof. To avoid repetition, we simply refer to the last part of thegdrof Theorem
3.3.6. O

Example 3.3.19. Let char(K) = 23 and letf = 2% + 28%* + 4% € K[[z,y]].
Clearly f is (PH) of type{W ; d} whereW = {(16; 60), (23; 46)} andd = 368.
On the other handz(f) = 105. Moreover, it is not difficult to see thdtis NPND*.
Therefore, by Proposition 3.2.17, is (AAC) with respect to its Newton polytope.
Hencedim g (gr/i¢ (Ty)) is finite.

Furthermore, using the functioAC grbase from the librarygradalg.lib, we get

dimg (grac(Ty)) = 123 and aK-basisB = {es : a € A} of the vector space
grac (Ty) consisting of monomials such that

max{vw(ea) D ea €BN F>368} = 598.

Moreover with the functiodegHC from gradalg.lib, we getm3® C F.s95. Hence,
by Theorem 3.3.18f is 37-contact determined. Finally, refering to Example 3.1.20,
it is of interest to notice that this bound of determinacy iscmsmaller than the one
obtained by Theorem 3.1.18 (cf. also [GrK90]) and Theorein1h respectively.

Inthe same way as in Theorem 3.3.18, we establish the fallpfoir right-determinacy.

Theorem 3.3.20.Let f € m C K[[z]] be (SPH) such thatu(fp) is finite andfp is
(AA) with respect taP. Further letW C ZZ, be afinite set of weights corresponding
to P and let{e, : a € A} be aK-basis ofyr: (My,,) consisting of monomials.
Thenf is k-right determined ifn**! C F. p where

D = max{vw(fp) , mazr {vw(eq) : a € A} }

Proof. cf. the proof of Theorem 3.3.6. O

In the particular case where conditiodC') (resp. (A)) holds, we can reformulate
Theorem 3.3.18 (resp. Theorem 3.3.20) as follows.

Corollary 3.3.21. Let f € m C K[[z]] be(SPH) such thatfp is (AC) with respect
to P. Further letW C ZZ, be a finite set of weights corresponding®and let
d = vw (f). If D andk are positive integers such that* ™! C F~.p C tj(fp) N Fsa,

thenf is k-contact determined.
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Proof. Let f € m C K][[z]] be (SPH) such thatfp is (AC) with respect toP.
Hencedimg (gr2¢(Ty,) < oco. Further letW C ZZ, be a finite set of weights
corresponding t? and let5 := {e, : o € A} be aK-basis ofgr? (T, ) consisting
of monomials. On the other hand, settihg= vw (f) = vw (fp), we consideiD and
k € Z_, such that

Fop Ctj(fp) N Fod (3.21)

and
mk+1 C FzD (322)

First of all, we notice that itV = max {vw (eq) : @ € A}, thenN < D. Otherwise,
leta € A be such thatw (eq) = N, thene, € F>ny C F>p C tj(f). For fpis

(AC) with respect td¥V, thene,, would satisfy(AC1) and(AC2) with respect tdV

and therefore, = 0in gr‘j‘vc(Tfp) against the choice d. HenceN < D. Besides
d < D follows clearly from the relation (3.21). Hence, if we write

D' = max{vw(fp) , max {vw (eq) : o € A} }a

thenD > D’ clearly follows.
Altogether with the relation (3.22) shows that*! ¢ F. .. Hence,f is k-contact
determined by Theorem 3.3.18. O

Example 3.3.22.We consider a hypersurface singularity of tyBg corresponding to
an equationf € K|[x,y, z]]. Thatis,f is (SQH) of principal partfo = 2*+xy3+22.
Clearly fo is (QH) of type{w = (6, 4, 9); 18}. Hence, by Proposition 3.2.4 is
(AC) with respect to its Newton polytope. We show in the followlirag the degree of
contact determinacy df; is 4 whenchar(K) # 2 and5 whenchar(K) = 2.
Observing thaR and3 divide the weighted degrae of f,, we consider the following
cases:

(1) Casechar(K) # 2 andchar(K) # 3. USINngSINGULAR, we getr(fy) = 7and
moreover the se = {1,x,y,xy,y2,y3,y4} is a K-basis of7’s, (cf. Remark
3.3.15). We notice that the weighted degree of any monomiais smaller than
18. Moreover, it is easy to see that19 C ¢j(fo) N F>1s. On the other hand,
using the functionleg HC' from the library gradalg.lib, we getm® C Fsqg.
Altogether, this yields by Corollary 3.3.21 thatis 4-determined. Clearly is
not 3-determined, since for example we would hgve f — zy* but the latter
has an infinite Tjurina number. Thdss the degree of determinacy ff

(2) Casechar(K) = 3. Using in the same wa8INGULAR, we show that
Fso1 C tj(fo) N Fs13 and moreovem® C Fso;.
Thus, Corollary 3.3.21 asserts thgtis 5-determined. Nevertheless, we have

B= {1,x,x2,y, zy, 22y, y2, 2y?, :C2y2} is a K -basis ofl's,. Moreoverz?y? is

the only monomial if8 having weighted degree bigger tha® anduv,, (z%y?) =
20. Hence, by Theorem 3.3.6, we have

f~fo+ cx®y?,ceK.
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On the other hand, considering the set of monomials of tedgteks, it is easy
to see that the weighted degree of all of themuis bigger than20. Hence,
if M € Mon(K[[x,y, z]]) such thatdeg(M) = 5 and M # y°, then Theorem
3.3.6 asserts that for any € K, fo + ca®y?> + bM ~ fo + ca?y? < f.
Moreover, we can writg® = ¢ fo whereé = y20,. Clearyv, (y°) = vew(§) +
vw (fo) and therefore® = 0 in gr°(Ty,). Thusforany: € K, f + ay® ~ f.
Altogether yielddl is the degree of determinacy ff

(3) Casechar(K) = 2. UsingSINGULAR, we show that(f,) = 14 and moreover
m’ C Fso6 C tj(fo) N Fs1s. Hence,f is 6-determined follows by Corollary
3.3.21. Moreover, the set

B:= {Lw,y,:vy,yz,y?’,y‘*,z,wz,yz,wyz,yzz,y3z,y42}

is a K-basis ofTy,. Clearly, BN Fs1s = {y%z,y%2} and25 = vw (y*2) >
vw (y32) = 21. On the other hand all monomial®/ of total degrees but y/°
have weighted degree bigger thah. Thus, by Theorem 3.3.6, + M ~ f.
Moreovery® = £ fo where€ = 430, SiNCeV, (¥°) = v (€) + e (fo), y® =0

in gr4¢(Ty,) and Theorem 3.3.6 yields+ ay® ~ f forall a € K. Altogether,
we obtainf is 5-determined. However, sineé f, +y*z) = 12 # 7(fo), thenf

is not4-determined. This shows that thas the degree of contact determinacy

of f.

Finally, it is of interest to notice that ifhar(K) # 2 andchar(K) # 3, then Lemma
2.1.32yields for aly € K[[x]], f ~ g, if and only if f ~ g. Thus due to the above, we
see that in this case also, the degree of right determina@angthypersurface singu-
larity of type E7 is 4. If char(K) = 2 or char(K) = 3 though, Lemma 2.1.33 asserts
that u( fo) is infinite.

In some cases we can even give explicitly the degree of dataoyas the following
result shows. First we recall thgt € K{[z]] is called convenient ofCO), if its
Newton polytope meets all coordinate subspaces (cf. Diefin.1.6).

Corollary 3.3.23. Let f € m C K[[z]] be (SPH) such thatfp satisfies( AC) with
respect toP. Further, letW C ZZ, be a finite set of weights corresponding ko
and letd := vw (fp). If fpis (CO)andF-4 C tj(fp), thenf is deg(fp)-contact
determined wherdeg( fp) is the total degree of p. If moreover for any proper subset
A of supp(fp), the truncationfp), has an infinite Tjurina number, thefeg(fp) is
thedegreeof contact determinacy of.

Proof. Let f € m C K[[x]] be(SPH) such thatfp satisfies AC) with respect taP.
Moreover letW = {w; : j € J} C ZZ, be a finite set of weights corresponding to
P and letd := vw (fp). We write N = deg(fp) for the total degree ofp.

We suppose in the following thdte is (CO) andF~,4 C tj(fp) and we claim that
mNtt C Foy C tj(f) N Fsq. Nevertheless, the inclusidi. 4 C tj(f) N Fs 4 follows
clearly for F~y C tj(fp). On the other hand, lek = (a3,...,a,) € Z"  such



99 3 Finite Determinacy and Normal Forms

thatz® € m~N+1, We show in the following thatyw () > d. For this purpose, we
consider thex-tuples

wherei = 1,...,n. As fp is (CO), then there exist8 = (/41,...,3,) € ZZ, such
thatgs; - €; € supp(fp) forall 1 < i < n. Without loss of generality, we can suppose
that3; = deg(fp) = N. On the other hand, a& is (PH) of W-degreel, we can
write fori = 2,...,n,

i ; G — 3. . ; M) —
B (Tez?{wl }) Bi (Tg}l{w }) d.
For all4, sinces; > (3;, it follows that

mzn{w }<mzn{w Y.

JjeJ

Altogether, this yields foy € J

S wia
=1

v

Z% (minfwy)
(mipu) - (3 )

=1

(N+1) (mln{w })

jeJ
= (B1+1) (mzn{w(J)})

- d (4)
+7}”L€Zy{w1 }

Y

Y

> d.

Thus the claim follows. On the other hand, Corollary 3.3.8ds f is N-contact

determined.

For the last part of the proof, we suppose that for any subsdtsupp(fp), we have

7((fp),) = o0, then it is easy to see thtcannot be i — 1)-determined. Otherwise
f~fp— x?l would follow which is impaossible since(f) < co by Corollary 3.3.10

while 7(fp — 2”') = oo by assumption. Henc& = deg(fp) is the degree of
determinacy off. O

Example 3.3.24.Let char(K) # 2 and letf € K[[z,y]], as in Example 3.3.16 be
associated to &, ,-plane curve singularity. Further, lefy = 2P + Az%y? + 29 be
the principal part of f, whereX # 0 and% + % < 4. Clearly fy is (CO). On the
other hand, writingd for the piecewise-homogeneous degre¢,dProposition 3.2.15
asserts thaf is (AC) with respect to its Newton polytope and moreakiel; C ¢;(f).
Hence, by Corollary 3.3.23, we obtain that the positivegeteleg(fy) = max{p, ¢}
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is a bound of contact determinacy 6f Without loss of generality, we can assume
p = deg(fo). We observe that actually is the degree of contact determinacy of
f. Indeed, if we supposgis (p — 1)-determined, therf ~ f, — = would follow.
Nevertheless, sincé — x? is not reduced, this yields(f, — 27) = oo whence a
contradiction.

Corollary 3.3.25. Let f € m C K|[[x]] be (SPH) such thatu(fp) is finite and
moreoverfp is (A) with respect taP. Further letW C ZZ, be a finite set of weights
corresponding taP and letd = vw (f). If D and k are positive integers such that
mktl C Fup C j(fp) N Fsq, thenf is k-right determined.

Proof. The arguments used in the proof of Corollary 3.3.21 showénstime way the
claim. Hence we decide to omit the proof here for the reasaizet O

In the particular case ofCO) elements, we get for right degree of determinacy a
similar result as in Corollary 3.3.23.

Corollary 3.3.26. Let f € m C K|[[x]] be (SPH) such thatu(fp) is finite and
moreoverfp is (A) with respect toP. Further letd = vw (f). If fp is (CO)
and F-4 C j(fp), then thenf is deg(fp)-contact determined. If moreover for any
proper subseA of supp(fp), the truncation fp) , has an infinite Milnor number, then
deg(fp) is thedegreeof right determinacy of.

Proof. cf. proof of Corollary 3.3.23. O



Chapter 4

Implementation in SINGULAR

In the present chapter we discuss the methods used in the &hégpters 2 and 3
from the computational point of view. For this purpose, walkpresent algorithms
which we implement in the computer algebra systemGLAR under the library
gradalg.lib (cf. Appendix B).

First, we show how to compute the ideals of a filtratidn),_, of K[z1,...,z,]]

Z>
which is related to a finite set of weight® C Z7 . -
Afterwards, we present algorithms for the computation gltar bases up to a given

degree.

Throughout this chapteWy” denotes a finite set of weights containedih .

4.1 Basic Tools.

In this section, we shall present the basic algorithms whietused for the implemen-
tation of the main procedures of the librayyadalg.lib in SINGULAR.

LetW C Z” , the first algorithm computes the piecewise-homogeneaies ofy ( f)

of a polynomialf € K|[x] (cf. Definition 2.1.18). We recall that if the s&¥ contains
only one weightw, then considering in SIGULAR a local weighted degree ordering
with respect taw, the functionord computes,, (f). For details, we refer to [GrP02]
and [GPSO06].

Algorithm 4.1.1. (PIECEWISEEHOMOGENEOUS ORDER OF A POLYNOMIA]

Input: A polynomial f € K[z] and afinite set of weight®” C Z” .
Output: vw (f).
procedure grord(f, W)
choosew ¢ W
W =W\ {w}
N =vw(f)
tmpord =0

101
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forall w € W do
tmpord = vy, (f)
if tmpord < N then

N = tmpord

end if

end for

return N

end procedure

Proof. SinceW is a finite set, the algorithm terminates. Correctnessyidlobviously
from Definition 2.1.18. O

Algorithm 4.1.2. (PIECEWISEHOMOGENEOUS ORDER OF A MONOMIAL DERIVATION

Input: A monomialM € K[z, ...,x,], afinite set of weight®% = {w, ..., ws}
and a positive integersuch thatl < i < n.
Output: vy (M0,,).
procedure Dergrord(M, W , 1)
choosew ¢ W
W =W\ {w}
N = vy (M) — wli]
tmpord =0
forall w € W do
tmpord = vy (M) — wli]
if tmpord < N then
N = tmpord
end if
end for
return N
end procedure

Proof. Correctness of the algorithm follows from Definition 2.2ridaermination fol-
lows since the séV is finite. O

The next algorithm computes the initial form of a polynomiath respect to a finite
set of weightsW (cf. Definition 2.1.46). Moreover, we recall that inN&ULAR, the
functionsleadcoe f andleadmonom( f) compute respectively the leading coefficient
and the leading monomial of a polynomial with respect to &gisnonomial ordering
(cf. [GrP02] and [GPS06]).

Algorithm 4.1.3. (PIECEWISEEHOMOGENEOQUS INITIAL FORM OF A POLYNOMIAL)

Input: A polynomial f € K[z] and a finite seW C Z” .
Output: Inw (f).
procedure griead(f, W)
M=0
tmplead = 0
N =wvw(f)
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while f # 0 do
M = leadcoef(f) x leadmonom(f)
f=f-M

if vww (M) = N then
tmplead = tmplead + M
end if
end while
return tmplead
end procedure

Proof. To see termination, note thgthas finitely many monomials. Correctness fol-
lows clearly from Definition 2.1.46. O

For the next algorithm, we refer to Definition 3.1.5.

Algorithm 4.1.4. (PIECEWISEEHOMOGENEOUS JET OF A POLYNOMIAL

Input: A polynomial f € K[z], a finite seW¥ C Z”  and a positive integef.
Output: f(W.d),
procedure pwjet(f, W, d)
iflmv([nu/(f» > d then
return 0
end if
g=20
tmpjet =0
while f # 0do
g=1Inw(f)
f=r—-g
if vw (g) < dthen
tmpjet = tmpjet + g
end if
end while
return tmpjet
end procedure

Proof. The termination follows ag has finitely many monomials.
Denotingf = > aqz™ andA* = {a € supp(f) : vw(x®) < d}, the correctness

follows from

FWed) — Z aar™.

acA*
O

Remark 4.1.5. For f € K|x], we recall thatdeg(f) denotes the total degree of the
polynomial f. On the other hand, considering a monomial orderingand a zero-
dimensionalideal C Klxz]., we explain in the following the use of SOSIBIGULAR
functions which are relevant for the sequel.
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e std(I) computes a standard basis of the idéatith respect to>.
¢ If the generators of are a standard basis , then

— highcorner(I) returns the smallest monomial not containedin

— kbase(I) computes & -vector space basis (consisting of monic monomi-
als) of K[x]_ /1.

— reduce(f,I) return0, ifand only if, f € I.
Algorithm 4.1.6. (kspan(I))

Input: A local degree ordering and a zero-dimensional ideAlc K[x]. .
Output: The maximal set (consisting of monic monomials) which gatesthe quo-
tient ring K [x] /I as K -vector space.
procedure kspan(I)
J = std(I)
kis deg(highcorner(I)) + 1
mk = std(mk)
B = kbase(mF)
tmp =0
for all monomialsM € B do
if reduce(M, J) # 0 then
tmp = tmp, {M}
end if
end for
return tmp
end procedure

Proof. Let z* = highcorner(I) and letM € Mon(K|z]) such thatdeg(M) >
deg(x®). Since> is a local degree ordering, théd < . HenceM ¢ I follows by
definition of the highcorner of (cf. [GrP02, 1.7.11]). Setting = deg(x*) + 1 yields

(z)* c I. Furthermore the set
B := kbase({z)") = {M € Mon(K[z]) : deg(M) < k}

is a K-vector space basis dt’[m]>/<cc>k. Obviously the seB is finite which shows
the finiteness of the algorithm. Moreover, if we considerftil®wing epimorphism of
K-vector spaces

Kzl /(@) =, KM — K./
M —  Mmod(I)
then it is not difficult to see that the séf/ mod(I) : M ¢ I} is a maximal gener-

ating system of the vector spaégx]. /1. Therefore the correctness of the algorithm
follows. O
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Algorithm4.1.7. (PIECEWISEHOMOGENEOUS ORDER OF APOWER OF (X1, . .., Zn))

Input: A local degree ordering, a positive integeNV and a finite seW C Z” .

Output: The biggest positive integérsuch thatF>; D (z1, ..., xn)N.
procedure degHCS((N, W))
J = std(m®)
chooseM € J
D= (.74 (M)
J = J\{M}
Dtmp =0
for all monomialsM € J do
Dtmp = vw (M)
if Dtmp < D then
D = Dtmp
end if
end for
return D
end procedure

Proof. The finiteness follows sincé& [x]. is Noetherian. To show the correctness,
note that/ = {M € Mon(K|z]) : deg(M) = N} is a standard basis dfe)" .
Moreover, if f € (x)" , then there exist8/ € .J such thatM divides f. Hence, we
canwitef = M - g, whereg € K[x]_ . On the other hand, Remark 2.1.21 yields

ow (f) = vw (9) + vw (M) = vow (M) > min{M : M € J}.
This shows the correctness. O

Algorithm 4.1.8. (TOTAL DEGREE OFhighcorner(F>n))

Input: A local degree ordering, a positive integerV' and a finite seW C Z7 .
Output: The total degree diighcorner(F>n).
procedure deg HC((N, W))
k=1
D =min{l: m C F>;}
while D < N do
forall £ >2do
D =min{l: m* C F>;}
end for
end while
return £ —1
end procedure

Proof. It follows clearly by the definition of the idedt  that the K-vector space
Klx]. /F> N has finite dimension and this shows the finiteness of the igihgor For
the correctness, we notice that

(@) C Foy <= N =min{l: m* c Fs},
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and this latter condition is checked inductively startingkb= 1. Thus, the first,
for which this condition is fulfilled, is obviously the smeditk where(:p)’C C F>n.
Moreover, arguing in the same way as in the proof of Algorithth 6, we see that— 1
is the total degree of the highcorner of a standard basis. af. O

Algorithm 4.1.9. (W -IDEAL)

Input: A local degree ordering, a positive integeN and a finite seW of weights.
Output: A standard basis of thB/-ideal £ .
procedure grideal((N, W))
k =degHC(N,W)
I = std({z)™)
J = kbase(I)
tmp =1
forall M € Jdo
if vww (M) > N then
tmp = tmp + (M)
end if
end for
return std(tmp)
end procedure

Proof. Let k = degHC(N, W), then Algorithm 4.1.8 yieldgz)" ™" F>n. Fur-
thermore, it is easy to see that the det= {M € Mon(K|[z]) : deg(M) < k}is a
representative of & -vector space basis df[x]_ /{x)*™. To see the correctness of
the algorithm, we write

Slz{MEJZ ’Uw(M)ZN}
and
Sy = {a* € Mon(K[z]) : |a| = k + 1 andz* has no divisor inS; }.

We show in the following thats = S; U S, is a standard basis df> . Clearly,

S C Fs>y N Mon(K|z]). On the other hand, let € F~y and letLM (g) be the
leading monomial of with respectta>. If LM (g) ¢ m*k*!, thatisdeg(LM (g)) < k,
then LM (g) € S; follows sincevw (LM (g)) > vw(g) > N. If we suppose that
LM(g) € m*+1, then there exists obviously a monomiett such thaja| = k and
x> | LM (g). Moreover if there existd/ € S; such thatM | =, thenM divides
alsoLM(g). If not, thenz™ € S, by construction. Altogether yields that there exists
a monomial inS such thatM | LM (g) and this shows the claim (cf. [GrP02, 1.6.1]).
The termination follows obviously, sinces y is zero-dimensional and moreover the
setJ is finite. O
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Let V be a positive integer. With thd/-ideal F~  at our disposal, we compute in
the following aK-basis of the vector spade|x]  := (z : vw (%) = N) .

Algorithm 4.1.10. (grlist)

Input: A local degree ordering, a positive integeV and a finite seW of weights.
Output: A K-vector space basis df[x] ,, (consisting of monomials).
procedure griist((N, W))
I = grideal(N,W)
tmp =0
for all monomialsM € I do
if vy (M)=N then
tmp = tmp U {M}
end if
end for
return tmp
end procedure

Proof. The terminationis straightforward, fé¢[z]  is Noetherian. On the other hand,
we notice that the séf = {x™ : vw (z*) = N} represents & -basis of the vector
spaceK|[x],. Moreover, by Algorithm 4.1.9, the idedl = grideal(N,W) is a
standard basis of y consisting of monomials. Let® < B, then there exists a
monomialM € I andg € K[z suchthaw® = M - g. Asow (M) < vw (M) +
vw(g) < vw(x®) = N < vw (M), it follows thatvw (g) = 0 and hencg = 1 for
M andx® are monic. Therefore

B={Mecl: vw(M)=N}.

This shows the correctness of the algorithm. O

4.2 K-bases ofyrs (M;) and gri¢(Ty)

Let W be afinite set of weights ii”  and letf € K[x]be(PH) of type(W ; d). We
have shown in Section 3.3 of this thesis that the computati@mormal form with re-
spect to~ (resp) for (SPH) hypersurface singularities havirfgas principal part is
closely related to the computation of&-vector space basis of the grad&dalgebras
gré, (My) (resp. gTé/c(Tf)). Nevertheless, in Remark 3.2.6, we have observed that
the dimension of these d§-vector spaces is in general infinite.

In the present section, we give algorithms to compute thmethds of a monomiak -
basis ofgr? (My) (resp.griC(Ty)) up to a given degree.

ForN € Z>q, we recall the ideal

j;‘;,(f, d):={g€j(f): vw(g)=d and g is (A1) with respecttof, andW)

and its initial ideallnw (52 (f,d)) with respect to# (cf Definition 2.1.46).
The following algorithm computes a generating sytem ofkh@ector space

Inw (jio (f.d) y = Inw (j5, (f,d) N K[x]y
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The idea of the algorithm is to perform separate calculation the different weights
w € W and then fit them together.

Algorithm 4.2.1. (Aideal)

Input: A local degree ordering-, a (PH) polynomial f € K|z1,...,x,] of type
(W; d) andN a positive integer.

Output: A set of K-generators of ny (j‘f, (f)) consisting of(PH) polynomials
of type(W ; N).
procedure Aideal(f, W, N)

I=j(f)
D=N-d

J = grlist(D,W)
L=0

forall i € {1,...,n} do
L=1L,(xifs,) J
end for
tmp=1,L
forall w e W do
tmpyw =0
forall i € {1,...,n} do
Quw,i = grlist(D + wli], W)
tMpPw,i =0
forall M € Q,; do
if vw (M0,,) = D then
tmpw,i = tmpw,i ) M
end if
end for
P’w,i = <f;vl> : tmpw,i
tMpPyy = tMPay, Pw,i

end for

tmp = tmp , tmp,
end for
spantmp =0

forall g € tmpdo
if vw (g) = N then
spantmp = spantmp, Inw (g)
end if
end for
return spantmp
end procedure

Proof. Let f € K[x] be(PH) of type(W , d) and letN be a positive integer. First,
we show the correctness dfideal. For this purpose, we consider the following finite
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dimensionalK -vector spaces:

n

V= @ (%204, : vw () =N —d)
i=1

forw e W
‘/2 = @K[w]Nfderi’
=1

Vaw = P Vorw,
weWw

Vo= @ (%0, : ™ € Vow anduw (£%0,,) = N —d)
i=1
and

V= @ (%0, : vw (£%0y,) = N — d) -
=1
We claim thatV” = V; + V4. Indeed,V; C V follows clearly from Definition 2.2.1
andV; is obviously contained ifY’. HenceV; 4+ V, C V. Conversely, leit®9,, € V
wherea € (ay,...,a,) € Z7 .

o If o; # 0, then we can writec®9,, = x"x;0,, with » = o — ¢;. Again using
Definition 2.2.1 shows thatyy (") = " z;0,, = N —d and sox" 2,0, € V}
follows.

e If a; = 0 and writing forw € W, w = (wy,...,w,), then Definition 2.2.1
yields
vw (%0s,;) = Min{Vy (%) —w; : w € W}.

Letw € W such thatw (£%0;,) = v (¥05,) = v (™) — w;. Hence, we
getvy(z®) = N — d + w; which impliesvw (z*) < N — d 4+ w;. On the
other hand, Remark 2.2.2 yieldgy (®) > vw (x®0y,) + w; = N — d + w;.

Altogether, this shows thaty (z*) = N — d + w;. Hencex® € V5, and so
x*0,, € V, clearly follows.

For the sequel, we denote
V(f) = Z <waf% : waaﬂﬂi € V)K[m]>
i=1

Letz f,, € V(f), thenitfollows by Lemma 2.2.3 thaty (x* f,) > vw (x*0,,)+
vw (f) = N. We claim that

Inw (jg, (£, N)) y = Inw (V(f)) N K] y.
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Indeed, letg € Inw (V(f)) N K[x],. Without loss of generality we can assume
g = Inw (z*f;,) wherex® f,,, € V(f) and moreovey is (PH) of type (W ; N).
Hence

ow (x%0z. f) = ow(@*fa,)
= vwl(g)
= N
= (N—-d)+d
= ow(@®d) + ow(f)

and the latter equality holds sine€*d,, € V. Thus,g € Inw (2 (f, N)) - Con-
vesely, letg € Inw (2 (f, N)) - Here again, we can assume that Inw ({f +h)
wherevw (g) = vw (&f) = vw(§) + vw (f) = N anduw (h) > N. Hence, we
haveg = Inw (£f). Moreover, asf is (PH), and writing the decomposition af
into its (PH) parts, we gey = Inw (Inw (§) f) wherelInw (§) is a(PH) derivation
such thabww ({) = N — d. This yields(¢) € V and thereforg) € Inw (V(f))y =
Inw (V(f))NK|x],. Altogether, this shows the correctness of the algorithimalfy
the termination is obvious since we are computing with adisét of weightd¥ and
finitely dimensionalK -vector spaces. O

Desposing ofdideal, we give in the following an algorithm to compute a genegtin
system of thel -vector spacénw (¢, N)) \ Where

tj“;‘lc(f, d):=(getj(f): vw(g)=d and g is (AC1) with respecttof andW).
Algorithm 4.2.2. (AC'ideal)

Input: A local degree ordering, a(PH) polynomialf € K[x] of type(W ; d) and
N a positive integer.
Output: A set of K-generators oInW(tj‘f,C(f))N consisting of PH) polynomials
of type(W ; N).
procedure ACideal(f, W, N)
I = grlist(N —d, W)
J=1-(f)
tmp =0
forall M € Jdo
tmp = tmp, Inw (M)
end for
spantmp = tmp, Aideal(f, W, N)
return spantmp
end procedure

Proof. The termination follows for the same reasons as for Algarith2.1. To see
correctness, we consider the idedb - f : b € K[:c]N_d>K and we claim that
>

(=]

Inw (t5a° () y = Inw (J) y + Inw (G2 (£)) -
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First, we should observe that, Ass (PH) of type (W ; d), then we have

vw (f) = vw(f) =dforallw e W.

Thus, Lemma 2.1.22 asserts thgg (b - f) = vw (b) + vw (f) forall b € K[x]~.
Hence the inclusiofinw (J) y + Inw (53 () y C Inw (ti3°(f))  follows clearly.
Conversely, ley € InW(tj;‘;,C(f))N. Then in the same way as in the proof of Algo-
rithm 4.2.1, we can writg = Inw (Inw (0)f) + Inw (Inw (&) f) with b € K[z],
and¢ € Derg (K[z]. ) such that

vw (9) = min {ow (Inw (b)) +ow (f) ; vw (Inw (§)) +vw (f)} .
This shows clearly the claim. O

Arguing similarly as in the proof of Proposition 2.1.50, wetg

K[z]y/Inw (i3, () y = Fon /(g (f, N) + Fo)

and
K]y /Inw (t55° () y = Fon /(tinC (f, N) + Fsn).

Considering these finitely dimensional vector spaces,ahefing two algorithms are
devoted for the computation @€ -bases consisting of monomials.

Algorithm 4.2.3. (Akbase)

Input: Alocal degree ordering, a(PH) polynomialf € K[x] of type(W ; d) and
N a positive integer.
Output: A basis of thel(-vector spacé™ v /(j2 (f, N)+ F- n) consisting of mono-
mials.
procedure Akbase(f, W, N)
I = std(Aideal(f, W,N))
J = grlist(N, L)
B=0
for all monomialsM € J do
if reduce(M,T) = M then
B=B,M
end if
end for
return B
end procedure

Proof. Termination of the algorithm is most easily seen since weeliiitely dimen-
sional vector spaces. For correctness, we denote thelidea(j;j, (f))y bylaand
we consider the epimorphism &f-vector spaces

Klz]y — Klz]y/1a.

Moreover.] = grlist(N,W) = {x* : o € A} is aK-basis ofK [x]y consisting of
monomials. Hence, the sBt= {x*mod(14) : * € J,andz™ ¢ 14} generatesthe
vector spaces [x]; /14. We denote\* the set of indices of the elementsBfand we
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claim thatB is linearly independant ié [x] \, /4. Indeed, we consider a zero linear

combination of the elements iB in K[x], /14, thatis a relationz cax™ = 0.
Then, there existg € I4 such thatz cax® = gin Kz|y. To;feAr*efore, we can
write g = Z box™. Thuscq = Oaler\*all a € A* clearly follows sinceJ is a K-
basis OfK[(?Bi/::. This implies thatB is a K -basis of the vector spad€[x],, /14 and
therefore shows the correctness of the algorithm. O

The following algorithm computes in the same waykabasis of the vector space
Fon/(tjaC (f,N) + Fsn).

Jw

Algorithm 4.2.4. (ACkbase)

Input: A local degree ordering, a(PH) polynomialf € K[x] of type(W ; d) and
N a positive integer.
Output: A basis of theK-vector spaceFs y/(tjA°(f,N) + F.y) consisting of
monomials.
procedure ACkbase(f, W, N)
I = std(ACideal(f,W,N))
J = grlist(N, L)
B=0
for all monomialsM € J do
if reduce(M,I) = M then
B=B,M
end if
end for
return B
end procedure

Proof. For the proof, we need only to replace the vector spbcﬁ/(j;; ()5 by

InW(tj;iC(f))N in the proof of Akbase and follow the same arguments. Hence, to
avoid repetition, we decide to omit the proof of Algorithn241 O

With these tools at our disposal, we can easily compute theetswof aK -basis of
gré, (My) andgr‘j‘vc(Tf) respectively, consisting of monomials up to a given degree.

Algorithm 4.2.5. (Agrbase)

Input: A local degree ordering, a(PH) polynomialf € K[x] of type(W ; d) and
N a positive integer.
Output: The elements in a monomial basis of thievector spacgr;“v (My) having a
total degree smaller or equal 16.
procedure Agrbase(f, W, N)
I = kbase(std({z)" ™))
B=0
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forall M € I do
if reduce(M, std(Aideal(f, W,vw (M)))) = M then
B=B, M
end if
end for
return B
end procedure

Proof. The proof is straightforward from the one dfbase. O

Algorithm 4.2.6. (ACgrbase)

Input: Alocal degree ordering, a(PH) polynomialf € K|[x] of type(W ; d) and
N a positive integer.
Output: The elements in a monomial basis of thevector spacgr‘f‘vc (Ty) having a
total degree smaller or equal 16.
procedure ACgrbase(f, W, N)
I = kbase(std((z)" ™))
B=0
forall M € I do
if reduce(M, std(ACideal(f, W ,ow (M)))) = M then
B=B, M
end if
end for
return B
end procedure

Proof. The proof is straightforward from the one ACkbase. O

4.3 Checking Conditions(AA) and (AAC)

The algorithms which we shall present in this last secti@raotivated by the charac-
terizations established in Proposition 3.2.21 and 3.2f£8mditions(AA) and(AAC)
respectively.

We consider a piecewise-homogeneous polynorfial K [x] of type (W ; d) and a
positive integerV.

Algorithm 4.3.1. (Aspan)

Input: Alocal degree ordering, a(PH) polynomialf € K[x] of type(W ; d) and
N a positive integer.
Output: The K-generators of nyy (j} (f)) 5 which belong toj(f) .
procedure Aspan(f, W, N)
I = Aideal(f,W,N)
J = std(j(f))
G=0
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forall g € Ido
if reduce(g,J) = 0then
G=G,g
end if
end for
return G
end procedure

Proof. Termination and correctness are straightforward from bove. O
Algorithm 4.3.2. (ACspan)

Input: A local degree ordering, a(PH) polynomialf € K[x] of type(W ; d) and
N a positive integer.
Output: The K-generators of nyy (tj;, (f)) , Which belong taj(f) .
procedure ACspan(f, W, N)
I = ACideal(f,W,N)
J = std(tj(f))
G=0
forall g € Ido
if reduce(g,J) = 0then
G=G,g
end if
end for
return G
end procedure

Proof. Termination and correctness are straightforward from Hove. O

With these tools at our disposal, we present in the followtimg algorithms which
check the conditiong4) and(AC) respectively for all monomials having a given total
degree.

Algorithm 4.3.3. (isA)

Input: A local degree ordering, a(PH) polynomialf € K[x] of type(W ; d) and
k a positive integer.
Output: 1 if all the monomials having total degréesatisfy(A) with respect tof and
W, 0 otherwise.
procedurez‘sA({, W k)
I =std({x)")
forall M € I do
if reduce(M, std(Aspan(f, W,vw (M)))) # 0then
return 0
end if
end for
return 1
end procedure
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Proof. Note that in the computer algebra system@&ULAR, a standard basis of the
ideal (z)* consists of all monomiald/ € Mon (K [x]) having total degredeg(M) =

k.

Termination follows obviously since conditiqa) is checked for only finitely many
elements. For Correctness, we notice thatibe Mon(K|[z]), we have

Mis(Al)and(A2) with respect tgf andW if and only if M € Aspan(f, W,vw (m)).

Indeed, this claim is straightforward from Definition 3.2dd the Algorithms 4.2.1
and 4.3.1. O

Algorithm 4.3.4. (isAC)

Input: A local degree ordering, a(PH) polynomialf € K[x] of type(W ; d) and
k a positive integer.
Output: 1 if all the monomials having total degréesatisfy (AC') with respect tof
andW, 0 otherwise.
procedureis AC(f, W, k)
I = std({z)")
forall M € I do
if reduce(M, std(ACspan(f, W ,vw (M)))) # 0then
return 0
end if
end for
return 1
end procedure

Proof. We decide to omit the proof since itis similar to the one ofékithm. 4.3.3 O
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Chapter 5

Some Applications of the
Lefschetz Principle

In the standard references about hypersurface singekritie main results are formu-
lated and proved essentially over the fi€lcbf complex numbers. In this chapter we
shall transfer theorems known f@rto arbitrary fields of characteristic zero known as
Lefschetz principleln this way, we shall give explicit proofs to widely accegptdaims
about hypersurface singularities in characteristic zero.

The first part of the present chapter deals with the tools egéar the proofs of the
main results. First we show that subfields generated by ebimsets in characteristic
zero are isomorphic to subfields©f After that, we formulate explicitly the Lefschetz
principle for the study cases occuring in this chapter. Witeds, we consider field
extensiongk’ C K and investigate the interrelation between algebroid dargies
over K’ and those oveK obtained by extension of scalars.

In the second part, we deal with isolated hypersurface sanigjes in characteristic
zero. We shall show that in this case, the finiteness of therguumber is equivalent
to the finiteness of the Milnor number. Furthermore, we shuat the Milnor number
of a semiquasihomogeneous singularity is equal to the Mitmmnber of its principal
part. Finally, we consider well-known properties of the it number which are in
general not true in positive characteristic and show theti@rcontext of characteristic
zero.

5.1 Preliminaries

5.1.1 Subfields Generated by Countable Sets in CharacteristZero

In this subsction, we consider an algebraically closed fi€lof characteristic zero and
we shall present in the next theorem an interesting proérsyubfields of ' which
are generated by a countable number of elements. This pydpans out to be a useful
tool to transfer theorems known f@rto arbitrary fields of characteristic

117



5.1 Preliminaries 118

Theorem 5.1.1. Let K be a field of characteristi®, and letA be a countable subset
of K. ThenQ(A) is Q-isomorphic to a subfield d.

Proof. We give here a constructive proof.

Writing Q(A) = U{Q(a1,...,an) : ai1,...,a, € A} where the union is over all
finite subsets of4, we show in the following, that the subfiel@(A) of K is Q-
isomorphic to a subfield(B) of C where B is a countable subsegfi}i of C. We
shall proceed in several steps.

First, we construct a countable subget= {&, : n > 1} as follows:

& eC/Q transcendental
&, €Q(&,...,8,-1)/Q transcendental

Let&; be an arbitrary transcendental elemen€giQ,

and forn > 2, let¢,, be a transcendent element®(¢y, ..., &,-1)/Q.

This construction is possible since there is an infinite amebuntable transcendence
basis forC/Q. Thus, for everyr > 2, the existence of,, is assured, for otherwise the
extensionC/Q(&y, . . -, &—1) would be algebraic an@(¢y, . . ., &,—1) would contain
atranscendence bagif the extensio©/Q, which would mean by definition that the
extensiorQ (&1, ..., &—1)/Q(S) is algebraic and therefof@(S) andQ (&1, . . ., &n—1)
would have the same cardinality. But this is of course faleeQ (&1, ...,&.—1) IS
countable whileQ(.S) is uncountable. Moreover, considering the above constmict
of the subseB, we notice that for all, &; is a transcendental element@fQ.

Now, letn,k > 1 and{«;,, ... ,ai(kﬂfl)} be an arbitrary finite subset of with n
elements.

We show by induction om, that the subfieldd(«,, ..., a;,,,_,,) of Q(A) is Q-
isomorphic to a subfield of.

Forn = 1, consider the fiel@(«;, ).

e If o, is transcendental ové€p, then we have
@(aik) = Q(SC) = @(glk)
In this case we takg;, = &;, .

o If o, is algebraic ovef) and P, := min(Q, «;, ), then it follows that

Q(eviy,) = Qla]/(Py(2)) = QI€i, )/ (Pi(&ir))

It is clear that, the field)[¢;, ]/ (Px(&:,)) is an algebraic extension ¢f and is
finitely generated by a zero @1, in C which we denote by;, .

Let K1) := Q(&;, ). In both case®)(«;, ) is Q-isomorphic to the subfield (V) of C.
Furthermore, we can show that, for evéry 1, we haveg;, ., is transcendental over
KW, Instead, we consider again both of the above cases:

In the first case wherg, := &;,, the claim follows by the construction of the subset
B. In the second case, we consider §esurjection

s: Q[&i,] — Ql&,]/(Pe(&)) = Q&)
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Suppose that there exists air 1 such that;, ., is algebraic oveQ(éik). Then there
exists a polynomiaP(z) € Q(&;, )[«] such thatP(&;,,,) = 0. Writing

P(x) = Z aprt = Z s(b)xt,

1<t<d 1<t<d

where for allt, a; € Q(éik) andb; € Q[&;, ], it turns out that the relation
0="P(,)= > sb)(&.)"
1<t<d

is an algebraic dependence relation betwgerand¢;, ,,. But this is impossible by
construction of the subsét.

Let nown > 2 and suppose tha®(w;,, ..., ai,,,_, ) iS Q-isomorphic to a sub-
field K=Y = Q(&,.- .-, &ig,n_0) Of Cand foralll > 1, we haveg;, ., , is
transcendental over ("1,

Let Ln—l = @(Ozik, A ,ai(k+n72)) andLn = @(Ozik, A ’ai(k+n—1))'

We haveQ C L,,—1 C L, C Q(4) andL,, = Lyp-1(®igy_1y)-

As in the above, we consider two cases:

o |f Qi1 is transcendental ovdr,,_ 1, then we have
Ln = L’n.fl(«r) = K(n_l)(gi(k+n,1))

In this case we takg; , . ., = &0 1)-

e If o, , isalgebraicovet, ,andP,
it follows that
L, = Ln—l[x]/<P(k+n71) (x» = K(n_l)[gi(k+n—1)]/<P(k+n—l) (gi(k+n—1))>

Itis clear that, the fieldc ("~ V[¢; . 1/(P,.. . (&) is an algebraic
extension ofK ("~1 and is finitely generated by a zeroBf, . _,, in Cwhich

we denote byf; ., .

:=min(L,—1, Qi) ), then

Let K(n) = f((nfl)(&(ﬂn,l) )
Altogether yieldsQ(c, , . .. , @i, _,,) is Q-isomorphic to the subfield ™ of C.
Moreover, proceeding as for the induction steg: 1, we haveforall > 1,&;, ... .,

is transcendental over ("),
With these preparations made, we define the follovi@amorphism of fields
¢: QA) —C
Qg = éz
T forall r € Q

Considering the countable sBt := {51—}, it follows clearly from the above, that is
aQ-isomorphism fromQ(A) onto the subfield)(B) of C. Hence, the claim follows.
O
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The Lefschetz principle

As we have already mentioned in the introduction of the presbkapter, we shall
bring answers in the general setting of algebraically addidds of characteristic zero
to problems on hypersurface singularities which are ajresadived in the case of the
field C.

The method we shall use for transfering results on hypeasargingularities over to
arbitrary algebraically closed fields of characteristimze called thd_efschetz princi-
ple and can be formulated as follows:

Let (P) be a problem over an algebraically closed fi&ldbf characteristi® such that
(P) can be formulated over a subfield of K which is isomorphic to a subfield of
C. If moreover, the answefA) of the problem(P) is in K and the problentP) is
solvable ove(C, then(P) is also solvable oveK and has the same answer af’in

Schematically, the Lefschetz principle can be describddlkmsvs:

(((P) overK’) A (K’ ~ K* C (C)) A\ ((A) in K) A ((P) solvable overc>
|l

((P) solvable overK)

In practice, for the problems dealt with in this chapter, shefield K" of K is of the
form Q(S) whereS is a countable subset &f. On the other hand, Theorem 5.1.1
establishes tha®(S) is isomorphic to a subfield ¢f.

Concretely, the method we shall follow to generalize knoesuits overC to arbitrary
algebraically closed fields of characteris@icconsists of three principal steps. We
consider an algebraically closed field of characteristic zero and a problem ovér
which is solvable ove€.

e First, we show that the given problem ovkErcan be formulated on a subfield
Q(S) of K whereS is a countable subset &f.

e Then, we show that the answer of the problem iQ{i5).

¢ Finally, we show that the problem which is initially solveldverC is also solv-
able overK and has the same answer a€’in

Throughout this chapter we shall often use the followingtioh:
Notation 5.1.2. Let f = >~ aqz® € K|[x]]. We write

Coeff(f) :={aa : o € supp(f)}.

5.1.2 Extension of Scalars
Let K’ C K be a field extension. We consider the polynomial rings

K'lz] .= K'[z1,...,2,] and K[z] := K|x1,...,%,]
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in finitely many variables. It is established that the latieg can be obtained from the
first one by extension of scalars. This is precisely formadan the next lemma.

Theorem 5.1.3.Let K’ C K be a field extension and IétC K'[x] be a proper ideal.
Then, there is a canonical isomorphism

(K'lz]/ o K—K|z]|/IK|z].
Proof. See [Bos00, 7.2, Satz 10] O

As the elements of polynomial algebras as well as those abteproduct algebras
can be represented as finite sums, we should notice thattm@iphisms in Theorem
5.1.3 are canonical. On the other hand, replacing polynlorinigs by power series
rings make these finitess arguments, as we may expect, noavaitable. Hence, in
order to generalize the statement of Theorem 5.1.3 to pogr@ssrings, we should
consider theeompletedtensor product.

Definition 5.1.4. Let K be a field and let A, m) and (B, n) be noetherian locaK-
algebras. We call théC-algebra
ARk B = lim(A/mP@x B/n?)
(p,9)

the completed tensor product dfand B over K.

Remark 5.1.5. 1. Itis shown in [Ser00] that the completed tensor proddigtx B
is naturally isomorphic ag(-algebra to the completion A® x B for the
(m®Kx B + A®kn)-adic topology.

2. Let K’ C K be a field extension anfl ¢ K'[[x]] be a proper ideal. If we
consider thek”-algebra(K'[[z]]/I)® k- K, we see easily that it has also/a-
algebra structure given by

A+ (gmod(I))®3 = (g mod(I))RAB,

for g € K'[[x]], A and§ in K. Besides, thig(-algebra is noetherian and local
with the maximal ideah := ({(x)/I)®x K.
If moreover we denote by the K-algebra(K'[[z]]/I)® k- K, then it follows by
the first part of this remark that

(K'[[2]]/ 1)@ r K = A,

whereA is the completion oft in them-adic topology.
Furthermore, we have

A= {(al,ag,...) € HA/mi :a; = a;modm® if j > z}
i=1

and A has a natural ring structure, given by component wise additind mul-
tiplication. On the other hand, we have manifestly

A/m' = (K'[[z])/(z) + ok K.
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Theorem 5.1.6.Let K’ C K be a field extension and Iét C K'[[x]] be a proper
ideal. Then, we have an isomorphismitfalgebras

(K'[[=]]/DEx K — K|[z]]/TK[[z]].

Proof. Let K’ C K be a field extension and IétC K'[[x]] be a proper ideal.

IK[[z]] denotes the ideal generated byn K[[x]]. Furthermore, leff be a formal
power series and let be a positive integer. Throughout this proof, we shall write
Jr(f) for the k-jet of f. Furthermore, fok > 1, we consider the following ideal of
K'[[]]:

Ji = <jk71(f), x%: feland|a|> k>K/[[:c”
and we claim thak”[[z]] /(I + (z)*) = K'[z]/J), asK-algebras. Indeed, let
¢: K'z]] — K'[[z]]/Jx

g = Jialg)mod(Jx)

Clearly, ¢ is a surjective homomorphism of local-algebras. On the other hand, let
g € Ker(¢). Hence there exisfi,..., fs € I andgi,...,gs € K'[[z]] such that

G () =Yg G () € @) 0 K'[[z]). Thus,j,_,(f — > g; - f;) = 0and
j=1 j=1

thereforef € I + (). Conversely, it is straightforward that+ (z)* c Ker(¢).

Thus, the claim follows. Afterwards, we show that

IK (2] = (G, (f), =% f € IK[[z]]and | o [> k) o0

We denote the ideal on the right hand sideﬁ;ﬁ/ and we notice that the inclusion
JiK[[z]] € JX is trivial. Conversely, letf = Zfigi € IK|[z]] with f; € T and

i=1
gi € Kl[z]l,i=1,....s.

Clearly, we have, _, (f) = Zj,H (f)._, (g:) mod((x)") which shows the claim.

=1
Altogether, this yields

K'l[2])/(I + (@) )0 K

RIR
A
8 8
~
=
®
X
=

Hence, we obtain

(K'[2]]/ e K = lim(K'[[2])/(I + (2)")0x K)
k

= Lim(K[[e])/(IK[[a]) + (x)"))
k

1R
=
&
=
=
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This terminates the proof. O
Theorem5.1.7.Let K’ C K be afield extension and Iétbe a proper ideal of{'[[z]].

1. There is an injectivéX -algebra homomorphism

(K'[[=])/Dex K — K[z]/IK|[]]. (5.1)

2. dimg:(K'[[x]]/1) is finite, if and only if,dimk (K[[x]]/IK[[x]]) is finite. In
this case, there is an isomorphismigfalgebras

(K'[[=]]/Dox K — K|[z]]/TK|[z]].
Furthermoredim g (K'[[x]]/I) = dimk (K[[x]]/IK[[x]]).

Proof. Let K’ C K be afield extension and Iétbe a proper ideal ok”'[[x]]. The first
assertion of Theorem 5.1.7 is an easy corollary of Theorémé5lndeed, we have only
to consider the injection o’ [[x]]/T)® k- K in its completion K'[[x]]/I)® - K and
notice that the latteK -algebra is isomorphic t& [[x]] /I K[[x]] by Theorem 5.1.6.

In the following, we show the equivalence

dimg (K'[[2]]/]) < 0o <= dimk (K[[z]]/IK[[z]]) < co.
If dimg (K'[[x]]/I) < oo, then there exists a positive intedesuch that
() c I

Thus,
(x)! ¢ IK|[z]]

follows clearly and thereforéim i (K [[x]] /I K [[x]]) < oco.

Conversely, we assum&m g (K|[[z]]/IK[[z]]) < oo. Hence, we have by (5.1) that
dimg ((K'[[z]]/ )@k K) < oo. If we suppose thadlim g (K'[[z]]/I) is infinite,
then there exists for any positive integéa surjection

K'[[z])/I — K'* = 0.
Thus, it follows by the right exactness of the tensor produat
(K'[[z])/D@r K — K.

Hencedim g ((K'[[x]]/I)®@Kk K) > d, foranyd € Z
dimension of the<-vector spacéK’([z]]/I) @k K.

against the finiteness of the

>0

For the sequel, we suppose thain i (K'[[2]]/1) is finite.
Then, there existd/ € Z_, such that<m>N C I. Thus we can write

K'll2]]/1 + (@) = K'[[«])/1
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forall i > N. Altogether, this yields
(K'[[=])/D@r K = (K'[[z]]/ oK K.
Hence,
Kl[a])/IK[z]] = (K'[[z]] /)@ x K (5.2)

follows by Theorem 5.1.6.

It remains to show thatim . (K'[[x]]/I) = dimk (K|[[z]]/IK[[z]]).

Letd := dimg/ (K'[[2]]/I) and letd;, := dim g (K[[x]]/IK[[z]]). It follows from
the isomorphism (5.2) thatim x ((K'[[z]]/ )@k K) = d;.

Moreover, tensoring bk the exact sequence &f’-vector spaces

0— K'[[z]]/T— K'* =0
yields an isomorphism oK -vector spaces
(K'[[))/Dox K = K,

which implies thatl; = d and this terminates the proof. O

5.2 Isolated Hypersurface Singularities in Characteris-
tic Zero

5.2.1 The Milnor and the Tjurina Numbers

The following proposition gives a characterization of &eld hypersurface singulari-
ties in characteristic zero.

Proposition 5.2.1. Let f € K[[z1,...,z,]] whereK is an algebraically closed field
andchar(K) = 0. Thenr(f) is finite, if and only ifu(f) is finite.

Proof. Let f € K[[z1,...,,]]. We recall that
7(f) = dimg (Ty) < p(f) = dimp(My),

whereTy and M are the Tjurina algebra and the Milnor algebra respectivilys
clear that ifu(f) is finite, thenr(f) is also finite.

Let A := {Coef f(f),Coef f(fz,),...,Coef f(fs.))}. Clearly,A has a countable
number of elements.

We setK’ := Q(A) andI = (f, fz,,-.., fz,) C K'[[x]]. It is easy to see that
IK[[z]] = tj(f). Furthermore adimg (K|[[z]]/tj(f)) = 7(f) is finite, then it fol-
lows by Theorem 5.1.7 thatim . (K'[[x]]/I) is also finite. On the other hand, by

Thorem 5.1.1, there exist a subfidilof C an an isomorphism

p: K — K.

Clearly, lifts to a K -algebra isomorphism

¢:  K'l[z] - K[=]].
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Moreover, it follows by Lemma 1.2.7 that( 1) = tj(6(f)) C K[[]].

Hence,K'[[z]]/I = K|[z]]/tj(¢(f)) which yieldsdim (K [[z]]/tj ((f)) is finite.
Considering the field extensidd ¢ C and using again Theorem 5.1.7, we get

dime (Cl[]]/t5(¢(f))Cl[z]]) < oo.

But this means that the Tjurina number &ff) is finite overC and therefore the
Milnor number must be also finite ovét, that is dimc(C[[z]]/j(o(f))C[[x]]) is
finite. Hence,dim z(K[[z]]/j(¢(f)K[[z]]) < oo follows by Theorem 5.1.7 and
dim g (K'[[x]]/7(f)K'[[x]]) follows as¢ is an isomorphism.

Also, Theorem 5.1.7 implies thaimx (K[[z]]/j(f)) is finite which means that the
Milnor number of f over K is finite. O

5.2.2 Semiquasihomogeneous Hypersurface Singularitias Char-
acteristic Zero

In the following, we would like to generalize to the chareistiéic zero an important
property of (SQH) power series which is established over the fi€ldf complex
numbers. First, we should recall that, in characteristio z& power series

f € K[[z1,...,z,]] is called(SQH) of principal partfa, if

1. fais (QH) of type(w; d) wherew is a weight inQ”  andd € Z,
2. f = fa + g, whereg € K[[z]] is such thav,,(g) > d and finally
3. u(fa) isfinite.

Proposition 5.2.2. Let K be an algebraically closed field of characteristic zero aeid |
f € K|[z]] be(SQH) with principal part fa. Thenu(f) = pu(fa) < oo.

Proof. Let f = fa + g wherefa is (QH) of type(w ; d) anduv,,(g) > d.
Let A:= {Coeff(f),Coeff(fs,)-..,Coef f(fz,)} andletK’ := Q(A). Theorem

5.1.1 establishes thdt” is isomorphic to a subfiel& of C. Hence, there exists an
isomorphismp : K’ — K which clearly lifts to an isomorphism dt’-algebras

¢: K'lz1,....z0)] — Klz1,..., 2]
a — ¢(a), ae K’

T, — x;, t=1,....n

It turns out thaty(f) is (SQH) in K [[z]] with principal part(fa ). Indeed, write

f= Z aaz® + Z aaz® = fa +g,

(w, a)y=d (w,ay>d

where the coefficients, € K'. Hence,

o= 3 elaa)e®+ Y plaa)a™ = o(fa) + (g).

(w,a)y=d (w,a)y>d
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Clearly ¢(fa) is (QH) of type (w; d). On the other hand, singg fa) < oo, then
we havedim k (K[[x]]/j(fa)K][[x]]) is also finite too. Thus, Theorem 5.1.7 yields
dimg (K'[[2]]/i(fa)K'[[x]]) < co. Moreover, since is an isomorphism, we obtain
that the dimension of th& -vector spaces [[z]]/j(#(fa)) K [[z]] is finite too. There-
fore, the claimp(f) is (SQH) in K[[x]] follows.

As K is a subfield ofC, then it is clear that(f) is (SQH) in C[[x]] with principal
parto(fa). Hence,

w(d(f)) = u(fa) over C (5.3)

Finally considering the field extension$ ¢ C and K’ C K, it follows by Theorem
5.1.7 and the fact that is an isomorphism that

dimg (K[[=]]/j(N)K([[x]]) = dimg (K'[[z]/;]

I
=
3

&
>

&8

~

In the same way, we have

dim (K([x]]/j(fa)K[z]) = dimg (K'[[x]}/]

Altogether with (5.3), this yields

dimg (K{[2]]/5(/)K[[=])) = dimr (K[[=]]/j(fa) K[[z]),

thatisu(f) = u(fa) overK. O

5.3 Milnor Number in Characteristic Zero
5.3.1 Milnor Number and K-Actions

In characteristic zero, the Milnor number is an invariandemthefC-action.

Proposition 5.3.1. Let K be an algebraically closed field of characteristic zero aeid |
f.g € K[[z]]. Then,

fRg= u(f) =ng).

Proof. Let f, g € K|[z]] and letu € K[[z]]" be a unitand) € Aut(K[[z]]) be an
automorphism, such thgt = u - 1 (f). If u = 1, then we havef ~ g and it is well
known thatu(f) = u(g) holds in arbitrary characteristic. Hence, to prove the teen
it is enough to show that for any unit we haveu(f) = u(u - f).

Let A := {Coef f(u),Coef f(f), Coef f(fz,)1<;<n}- Clearly, A has a countable
number of elements. Hence, it follows by Theorem 5.1.1, tthafield
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K’ = Q(A) is isomorphic to a subfiel& of C. We cally this isomorphism and so we
get an isomorphism

6: Klr,...,e]] — Klz1,....2,]
a +— <p(a), ac K’
T, — x;, 1=1,....n
Obviously, by definition ofK’, we haveu - f € K'[[z]] and moreover, ag is an

isomorphism, it follows that(u) is a unit in K[[x]] and hence also a unit ifi[[x]].
Therefore, we have

dime(C[[z]]/5(6(f))Cl[2]]) = dime(Cl[2]]/j(¢(u) - o(f))Cll=]]).  (5.4)

First, we suppose that ovét, u(f) is finite, that isdimk (K|[x]])/j(f)K[[x]] is
finite. Then it follows by Theorem 5.1.7 and the fact thas an isomorphism that

dim (K([2]]/i(NK[l]]) = dim(K'[[2]]/5()K'[[2]])
= dimg (K[[]]/5(¢(f) K [=]])
= dimc(Cl[=]]/5(6(f))Cl[]])

< o0.
Hence, it follows by equation (5.4) that

dime(C[[z]]/§(¢(f))Cl[z]]) = dimc(C[l®]]/j(¢(u) - 6(f))Cl[x]) < oo.

Thus, using again Theorem 5.1.7 and the isomorplgisme get

dime(Cl[z]]/j(¢(u) - o()Cll2]]) = dimg(K[[x]]/(é(w) - o(£)K[]))
)
)

dimge (K'[[2]] /5 (uf)K'[[x]
= dimg(K[[]]/j(u- f)K ]

< Q.

Altogether, we get ovek’
u(f) = pu- f) < oo

Now, we assume(f) is infinite overK, i.e dimg (K[[z]])/j(f)K[[z]] = oc. Then,
it is straightforward from the above thatu - ) is also infinite over, for otherwise,
if u(u- f) < oo, then using the same arguments as so far, the gigm* - v - f) < oo
would follow against the assumption. Altogether, we obf&ifi) = u(u - f). O

5.3.2 Equivalent Definitions in Characteristic Zero

OverC, it is established that, if we fix the number of irreducibletéas of a reduced
f € Cl[[z,y]], then thes-invariant and the Milnor number of determine each other.
It turns out that this statement holds in the same way fortafgeally closed fields of
characteristic zero.
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Proposition 5.3.2. Let K be an algebraically closed field such théitar(K) = 0 and
let f € m C K][[z,y]] be reduced. Further, lef(f) be the delta invariant of and let
r(f) be the number of irreducible factors 6f Then

u(f) =20(f) —r(f) + 1. (5.5)

Proof. In the following, let K be an algebraically closed field of characteristiand
let f € m C K[[z,y]] be reduced having the following decomposition into irrablec
factors

f=u-fi.. . fr (5.6)
wherew is a unit in K[[z]] and, fori = 1,...,r, f; € m C K[[z]] is irreducible.
Hence, the number( f) of irreducible factors off is r.
Moreover, letd = {Coef f(u),...,Coef f(f1),...,Coef f(f.)} andletK’ = Q(A).
By Theorem 5.1.1K’ is isomorphic to a subfield of C. This field isomorphism
clearly yields an isomorphism frod”[[z]] onto K [[z]] which we shall denote by.
First, we writer’ for the number of irreducible factors ¢gfin K'[[x]]. The equal-
ity ' = r is straightforward from the decomposition (5.6) pin K[z, y]] and the
definition of the subfield<’ of K. Moreover, we writeR’ and R for the K’-algebra
K'[[2]]/{f) and for theK -algebraK [[x]]/{f) respectively.
Besides, the normalizations & andR shall be denote&’ and R respectively.
We haveR’ =~ @;_, K'[[t;]] andR = @;_, K[[t:]].
Thus, Theorem 5.1.7 yields the existence of an injediivalgebra homomorphism

R/®K/K — R.

On the other handR is a finitely generated-module and thex -vector space?/R
has a finite dimension which i ) by definition. In the same wayim g (R'/R’) is
finite. Hence, we can argue as in the proof of Theorem 5.1.2dock the isomorphism
of K-algebras

R'/R'®x K = R/R, (5.7)
and the equality
On the other hand, faf is an isomorphism, it follows clearly thatis also the number
of irreducible factors of(f) in K[[z,]] and moreoved( f) is equal to thé-invariant
of ¢(f) overk.
For the sequel, we writ& (resp.©) for the associated curve singularityg(f) over K

(resp. overC) and we denote by and® the normalizations oR and© respectively.
Before going into further details, we should notice thaiféas reduced ovef, then

it follows that the Milnor numbeg(f) = dimk (K[[z,y]]/7(f)) is finite. Hence, it
follows by Theorem 5.1.7 and the isomorphignthat the Milnor numbep(¢(f)) of
#(f) overC is also finite and we have(f) = u(¢(f)). Thereforep(f) is also reduced
in C[[z, y]] and hence thé-invariantd; of ¢(f) overC is finite. Thus, in the same way
as for (5.7) and (5.8), we deduce that= 6(¢(f)). Hence it follows by the above that
01 = 4(f). Moreover, if we denote by, the number of irreducible branches@ff)
overC, we see easily that < ;. Hence using the formula (5.5) ov&r we can write

u(f) = 25(f) = + 1.
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On the other hand as< r;, we get

p(f) <26(f) —r+1.

However, we have by Remark 1.2.18 thdtf) > 26(f) — r + 1. Thus the equality
(5.5) clearly holds. O
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Appendix A

Field Theory

In this appendix we review some classical results from fieébty.

The fields of rational numbers and complex numbers shall inotdd byQ and C
respectively.

K|[x1,...,x,] denotes the polynomial ring in variables andk (z1, ..., z,) is the
field of rational functions im variables.

If F C K arefields, therk is called dield extensionof F'. Throughout this appendix,
we will refer to the paitF’ C K as the field extensioA/ F.

If K and L are extension fields of', then a homomorphismd : K — L is an
F-homomorphism ifp(a) = a for all a € F. If ¢ is bijective, then it is called an
F-isomorphism.

A.1 Field extensions

We recall a few general results about field extensions.

Definition A.1.1. Let K be a field extension df. If A is a subset of<, then the ring
F[A] generated byF and A is the intersection of all subrings @ that containF and
A. The fieldF'(A) generated by and A is the intersection of all subfields &f that
containF and A. If A = {aq,...,a,} is finite, we will write F[A] = Flaq,...,a,)
andF(A) = F(aq,...,a,). If Aisfinite, we call the field"(A) a finitely generated
extension of".

Proposition A.1.2. Let K be a field extension df anday, . ..,a, € K.Then

Flai,...,ax) ={f(a1,...,an) : f € Fla1,...,2,]}

and
F(ay,...,a,) = {H 2 fog € Flzy, ... xn),9(a1,...,a,) 750},
soF(aq,...,a,) is the quotient field oF [aq, . . ., ay].

131
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Morandi, 1.1.9., [Lang]. O

For arbitrary subsetsl of K we can describe the fielé'(A) in terms of finite
subsets ofd. This description is often convenient for turning quessi@bout field
extensions into questions about finitely generated fieldresibns.

Proposition A.1.3. Let K be a field extension af' and let A be a subset ofC. If
a € F(A), thena € F(ay,...,ay,) forsomea, ..., a, € A. Therefore,

F(A) :U{F(ala"'aan):al7"'aan EAa}
where the union is over all finite subsetsf

Morandi 1.1.10., [Lang]. O

Definition A.1.4. (Algebraic and transcendental elements.
Let K be a field extension df.

1. Anelement € K isalgebraicover F if there is a non zero polynomidt(z) €
F[z] with P(a) = 0. If ais not algebraic ovel”, thena is said to berranscen-
dental over F'. If every element oK' is algebraic overF’, thenK is said to be
algebraic overF', and K/ F is called an algebraic extension.

2. The sefa € K : « is algebraic over F'} is calledthe algebraic closureof F
in K.

Definition A.1.5. If « is algebraic over a field”, the minimal polynomial of o over
F' is the monic polynomiaP(z) of least degree irF’[z] for which P(a) = 0; it is
denoted bynin(F, «).

Let us make some remarks concerning algebraic and transcttélements.

Remark A.1.6. Let K/F be a field extension and let € K.Then, we have the fol-
lowing:

1. If « is algebraic overF’, then the polynomiahin(F, «) is irreducible overF.
Furthermore,

Fla] = F(a) = Fla]/ (min(F, )

2. If « is transcendental oveF’, then it follows thatF'[a] =& F[z] and therefore
F(a) = F(x).

For the following remark, we refer to [Lang]

Remark A.1.7. If F'is a field which is not finite, then any algebraic extensiof'dfas
the same cardinality ag’. Hence, for example, the algebraic clos@é of Q in C is
countable.
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A.2 Transcendental extensions and transcendence bases

We recall some properties of field extensions that are neta#ic.

Definition A.2.1. (algebraically independent sets)

Let K/F be a field extension, and let,... ¢, € K. the set{t;,...,¢,} is al-
gebraically independentover F if f(t1,...,t,) # 0 for all non zero polynomials
f € Flxy,...,z,]. an arbitrary setS C K is algebraically independent ovér if
any finite subset of is algebraically independent ovét. If a set is not algebraically
independent oveF, then it is said to belgebraically dependentover F'.

Lemma A.2.2. Let K/F be a field extension. if,...,t¢, € K are algebraically

independent oveF', thenF[ty,...,t,] and Flxy,...,z,] are F-isomorphic rings,
and soF(ty,...,t,) andF(xy, ..., z,) are F-isomorphic fields.
Morandi 5.19.5. O

LemmaA.2.3. let K/ F be afield extension, and l&t, . . . , ¢, € K. then the following
statements are equivalent:

1. the sef{ty,...,t,} is algebraically independent ovéf.

2. For eachi, t; is transcendental oveF' (t1, ..., t;—1, tit1, - -, tn)-
3. For eachi, t; is transcendental oveF'(t1,...,t;—1).
Morandi 5.19.7. O

Definition A.2.4. (Transcendence basidf K is a field extension of’, a subsefS of
K is atranscendence basifor K/ F if

1. Sis algebraically independent ovét, and
2. K is algebraic overr'(S).

Note that} is a transcendence basis f@y F' if and only if K/ F' is algebraic.

The following theorem proves the existence of a transcetalbasis for any field ex-
tension.

Theorem A.2.5. Let K/ F be a field extension.
1. There exists a transcendence basisKotF'.

2. If T c K suchthat\/F(T) is algebraic, therf” contains a transcendence basis
for K/F.

3. If S C K is algebraicallly independent ovdr, thenS is contained in a tran-
scendence basis &f/ F.

4. If S ¢ T C K such thatS is algebraically independent ovét and K/ F(T) is
algebraic, then there is a transcendence bdsifor K/F with S ¢ B C T.
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Morandi 5.19.14. O

It turns out that, the size of a transcendence basis for ansixin K/ F' is unique.
Indeed,

Theorem A.2.6. Let K/ F be a field extension. 1§ andT are transcendence bases
for K/F, then|S| = |T.

Morandi 5.19.15. O
Therefore, the following definition makes sense:

Definition A.2.7. The transcendence degreeleg(K/F') of a field extensiod/ F’ is
the cardinality of any transcendence basigofF.

Example A.2.8. Consider the field extensid?/Q. SinceQ is countable and is un-
countable, the transcendence degre€af) must be infinite; it is in fact uncountable.



Appendix B

Singular Library "gradalg.lib”

version="$ld: gradalg.lib,v 1.33 2007/05/07 $";

cat egory="graded al gebras";

i nfo="

LI BRARY: gradalg.lib Piecew se-Honbgeneous G aded Al gebras

AUTHORS: Gert-Martin G euel gr euel @mat hemat i k. uni -kl . de

Yousr a Boubakr i yousr a@rat hemat i k. uni - kl . de
PROCEDURES:
grordS(f,w; wei ght ed order of a polynom al f
grord(f,W; (PH)-order of f
Dergrord(f,Wn); (PH)-order of a nonom al derivation
grlead(f,W; (PH)y-initial formof f
pw et (f, WN); (PH-jet of f
kspan(l); maxi mal set of generators of qring(l)
degHCS( N, W ; (PH) -order of naxideal (N)
degHC(W N) ; total deg of HC of N-th graded ideal
grideal (N, W; standard basis of the N-th graded ideal
grlist(N, W; monom al s with grord equal to N
Ai deal S(f,w, N); (QH)-poly of grordS = N and (A
AspanS(f,w, N); (QH)-poly in j(f) of grordS = N and (A

ACi deal S(f,w,N); (Q)-poly of grordS = N and (AC
ACspanS(f,w, N); (QH)-poly in tj(f) of grordS = N and (AQ
AkbaseS(f,w, N); N-th space K-basis of the w (A)-al gebra
ACkbaseS(f,w, N); N-th space K-basis of the w (AC) -al gebra
AgrbaseS(f,w,N); K-basis up to deg <= N of the w (A)-al gebra
ACgr baseS(f,w, N); K-basis up to deg <= N of the w (AC)-al gebra
Ai deal (f,WN); (PH)-poly of grord = N and (A)

Aspan(f, WN); (PH)y-poly in j(f) of grord = N and (A)

ACi deal (f, WN); (PH)-poly of grord = N and (AQ

135
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ACspan(f,WN); (PH)-poly in tj(f) of grord = N and (AQ
Akbase(f,WN); N-th space’s K-basis of the W(A)-al gebra
ACkbase(f,WN); N-th space’s K-basis of the W(AC)-al gebra
Agrbase(f,WN); K-basis up to deg <= N of the W(A)-al gebra
ACgrbase(f,WN); K-basis up to deg <= N of the W(AC)-al gebra
is_A(f,WN); 1if all monom als of deg = N are (A
is_AC(f,WN); 1if all monom als of deg = N are (AQ

LIB "sing.lib";
LI B "hnoether.lib";
LI B "ghrmodul i.lib";

proc grordS(poly f, intvec w)
"USAGE: grordS(f, w); f a polynomal, wa positive weight
RETURN: weighted order of f with respect to w

if (size(f)==1)
return(deg(f,w);

el se
def ol d = basering;
list rI =ringlist(old);

ri[3][1] =1list("ws", w;
def r =ring(rl);
setring r;

poly f = fetch(old, f);
return(ord(f));

proc grord(poly f, list L)

USAGE: grord(f, L); f a polynom al,
L afinitelist of weights
RETURN: (PH)-order of f with respect to the L

int s=size(l);

int N=grordS(f,L[1]);
int tnpord;

for (int i=2; i<=s; i++)

tmpord = grordS(f,L[i]);
if (tmpord < N)
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N = tnpord;

return(N);

proc Dergrord(poly f, list L, int n)

"USAGE: Dergrord(f, L,n); f a nmonomial, L a finite list of
weights, n a positive integer smaller than
t he nunber of variables of the basering

RETURN: (PH)-order of the derivation fxd (x n) wt to L

if (size(f) !'=1)
ERROR("t he given polynomial is no monom al!");

if (n > nvars(basering))

"Error: last input bigger than the nunmber of
variables in the basering!";
return(0);

int s=size(l);

int N=grordS(f,L[1])-L[2][n];
i nt tnpord;

for (int i=2; i<=s; i++)

tmpord = grordS(f,L[i])-L[i][n];
if (tnpord < N)
N = tnpord;

return(N);

proc grlead(poly f, list L)

USAGE: grlead(f, L); f a polynom al,
L afinitelist of weights
RETURN: (PH)-initial formof f with respect to L

poly m

pol y tnpl ead;

int N=grord(f,L);
while(f !'= 0)

m=l eadcoef (f) x| eadnonon(f) ;
f=f-m
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if (grord(mL)==N)
t npl ead= t npl ead+m

return(tnpl ead);

proc pwjet(poly f, list L, int N)

USAGE: pwet(f, L, N; f a polynom al
L afinite list of weights, N a positive integer
RETURN: (PH)-jet of f

if (grord(grlead(f,L),L) > N
return(0);

poly m

poly tnpjet;

while (f '=0)

m=gr | ead(f, L);
f=f-m

if (grord(mL) <= N)
tnpjet=tnmpjet + m
el se

return(tnpjet);

return(tnpjet);

R
proc kspan(ideal 1)

"USAGE: kspan(l); f polynomal, | idea

ASSUME: | is a zero-dinensional ideal, the nonom al ordering

is a local degree ordering
RETURN: the maxi mal set consisting of nmonic which generate
gring(l) as vector space

i f(attrib(basering, "global")==1)

"Error: monom al ordering is not local!";
return (0);

i deal J=std(l);
if (dim(J) !'= 0)

"Error: ideal not zero-dinensional!"
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return (0);

poly p = highcorner(J);

int D= deg(p, 1: nvars(basering)) +1;
i deal nD=nexi deal (D);

attrib(nD, "isSB", 1);

i deal K=kbase(nD);

i nt s=ncol s(K);

i deal tnp;

t np[ s] =0;

for (int i=1; i <=s; i++4)

if (reduce(K/i],J,1) '=0)
top[i]=K[i];

return(sinplify(tnp,2));

proc degHCS(int N, list L)

"USAGE: degHCS(N,L); N an integer,
L afinite list of weights

RETURN: (PH) - order of naxideal (N).

i deal MN=nexi deal (N);

i nt s=ncol s(MN);

int D=grord(M\[1],L);

i nt Dtnp;

for (int i=2; i<=s; i++)

Dt np=grord(WM\[i],L);
if (Dtnmp<D) D=Dt np;

return(D);

proc degHC(int N, list L)
"USAGE: degHC(N, L); N an integer,
L afinite list of weights
ASSUME: the nonomial ordering is a | ocal degree ordering
RETURN: the total degree of the highest corner of
the N-th graded i deal

int n=1;
int D= degHCS(1,L);
while (D < N
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n++:

D=degHCS(n, L) ;
return(n-1);

proc grideal (int N, list L)
"USAGE: grideal (N,L); N a positive integer,
L afinitelist of weights
ASSUME: the nonomial ordering is a | ocal degree ordering
RETURN: a standard basis of the N-th graded i deal

i nt d=degHC(N, L) ;

i deal Menaxi deal (d+1);

i deal |=kspan(M;

int s=size(l);

i deal tnmp=M

for (int j=1; j<=s; j++)

if (grord(I[j], L) >=N
tnp= tmp, I[j];

return(std(tnp));

proc grlist(int N, list L)
"USAGE: grlist(N,L); N a positive integer,
L afinitelist of weights
ASSUME: the nonomial ordering is a | ocal degree ordering
RETURN: the list of ninic nmonom als having (PH)-order = N

i deal |=grideal (N/L);

int s=ncols(l);

i deal tnp;

tp[ s] =0;

poly p;

for (int i=1; i <=s; i++)

p=I[i];
if(grord(p,L)==N)tnp[i]=p;

return(sinplify(tnp,2));
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proc Aideal S(poly f, intvec w, int N
"USAGE: Aideal S(f,w,N); f a (QH) polynomal with respect

tow, N a positive integer

ASSUME: the nonomial ordering is a | ocal degree ordering
RETURN: A set of K-generators of (QH)-polynom als of weighted

order N and fulfilling condition (A) for f and w

i deal J=jacob(f);

int s=size(w;

if (s !'= nvars(basering))
ERROR("wei ght not conpatible!");
[ist |=w

if ( fl=grlead(f,l))
ERROR( " pol ynoni al not quasi honbgeneous!");

i deal tnp=J;

ideal 1i,Ji;

int i;

for (i=1; i <=s; i++)

li=grlist(N-grord(f,l)+wi],!l);
Ji=li*J[i];
t np=t np, Ji ;

tnp=si nplify(tnp, 6);
int stnp=size(tnp);
if (stnmp !'= 0)

i deal spant np;
spant nmp[ st np] =0;
for (i=1; i<=stnp; i++)

if (grord(tnp[i],l)==N)
spantnp[i]=grlead(tnmp[i],!l);

return(sinmplify(spantnp, 2));

el se
return (ideal (0));
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"USAGE: AspanS(f,w,N); f a (QH) polynomal with respect to w,
N a positive integer

ASSUME: the nonomial ordering is a | ocal degree ordering

RETURN: A set of K-generators of (Q@H)-polynonials of weighted
order Nin j(f) which are (A) with respect to f and w

i deal J=jacob(f);
i deal J1=std(J);
int s=size(w;

if (s !'= nvars(basering))
ERROR("wei ght not conpatible!");
[ist |=w

if ( fl=grlead(f,!))
ERROR( " pol ynoni al not quasi honbpgeneous!");

i deal tnp=J;

ideal 1i,Ji;

poly fi;

int i;

for (i=1; i <=s; i++)

li=grlist(N-grord(f,l)+wi],!l);
Ji=li=J[i];
t np=t np, Ji ;

tnp=si nplify(tnp, 6);
int stnp=size(tnp);
if (stnmp !'=0)

i deal spant np;

spant nmp|[ st np] =0;
for (i=1; i<=stnp; i++)

if (grord(tnp[i],])==N)
fi=grlead(tnmp[i].,!l);
i f(reduce(fi,J1l)==0)

spantnp[i]=fi;

return(sinmplify(spantnp, 2));

el se
return (ideal (0));
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proc AC deal S(poly f, intvec w, int N)

"USAGE: ACideal S(f,w,N); f a (@) polynom al with respect
tow, N a positive integer

ASSUME: the nonomial ordering is a | ocal degree ordering

RETURN: A set of K-generators of (@) -polynom als of
wei ghted order N, and fulfilling condition (AC
with respect to f and w

[ist |=w

ideal l=grlist(N-grord(f,1),1);
i deal J=I=f;

int r=size(Jd);

if (r 1=0)

int i;

i deal tnp;

tnp[r]=0;

for (i=1; i <=7r1; i++)

tnp[i]=grlead(J[i],!l);

i deal spant np=t np, Ai deal S(f,w, N);// A spanS checks the
assunpti ons

return (sinplify(spantnp, 6));

el se
return(AspanS(f,w, N));

proc ACspanS(poly f, intvec w, int N)

"USAGE: ACspanS(f,w, N); f a (QH) polynom al with respect
tow, N a positive integer

ASSUME: the nonomial ordering is a | ocal degree ordering

RETURN: A set of K-generators of (@) -polynom als of
wei ghted order Nin tj(f) which are (AC) with
respect to f and w

[ist |=w

ideal l=grlist(N-grord(f,1),1);
i deal J=I=*f;

int r=size(J);

if (r 1=0)

int i;

i deal tnp;

tnp[r]=0;

for (i=1; i <=r; i++)
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top[i]=grlead(J[i],l);
i deal spant np=t np, AspanS(f,w, N);// A spanS checks the

assunpti ons

return (sinplify(spantnp, 6));

el se
return(AspanS(f,w, N));

proc AkbaseS(poly f, intvec w, int N)

USAGE:

ASSUME:
RETURN:

list |
i deal
i deal

int s=

if (s

i deal

L[s] =

for (

i f (
L[|

AkbaseS(f,w, N); f a (@) polynonial with respect
tow, N a positive integer

the monom al ordering is a | ocal degree ordering

a basis (consisting of nononmials) of the NNth vector
space of the w (A)-graded al gebra of j(f)

=W,

| =st d( Ai deal S(f,w, N));
J=grlist(N1);
size(J);

I=0)

L;
0
int i=1; i<=s; i++)

reduce(J[i],1)==J[i])
1=3[i1;

return(sinmplify(L,2));

el se

return(ideal (0));

proc ACkbaseS(poly f, intvec w, int N)

USAGE:

ASSUME:
RETURN:

list |
i deal

ACkbaseS(f,w,N); f a (QH) polynom al with respect
tow, N a positive integer

the monomi al ordering is a | ocal degree ordering

a basis (consisting of nononmials) of the NNth vector
space of the w (AC)-graded al gebra of tj(f)

=W
| =st d( ACi deal S(f,w, N));
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i deal J=grlist(N1);
int s=size(Jd);
if (s !=0)

i deal L;
L[ s] =0;
for (int i=1; i<=s; i++)

i f(reduce(Jd[i],1)==3[i])
LLiT=3[i];

return(simplify(L,2));

el se
return(ideal (0));

proc AgrbaseS(poly f, intvec w, int N)

"USAGE: AgrbaseS(f,w,N); f a (@) polynomal with respect
tow, N a positive integer

ASSUME: the nonomial ordering is a | ocal degree ordering

RETURN: a K-basis (consisting of nonom als having total
degree smaller or equal to N) of the w (A)-graded
al gebra of j(f)

[ist |=w
i nt D=i nvdegHCS( N+1, 1) ;
i deal tnp;

for (int i=0; i <=D; i++)
t np=t nmp, AkbaseS(f,w,i);

return(sinmplify(tnp,6));

proc ACgrbaseS(poly f, intvec w, int N)

"USAGE: ACgrbaseS(f,w,N; f a (QH) polynom al with respect
tow, N a positive integer

ASSUME: the nonomial ordering is a | ocal degree ordering

RETURN: a K-basis (consisting of nonom als having total
degree snmaller or equal to N) of the w (AC) -graded
al gebra of tj(f)

list |=w
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i nt D=i nvdegHCS( N+1, 1) ;
i deal tnp;
for (int i; i <=D; i++4)

t np=t np, ACkbaseS(f,w,i);

return(sinplify(tnp,6));

proc Aideal (poly f, list L, int N
"USAGE: Aideal (f,L,N; f a (PH) polynom al with respect
to afinitelist L of weights, N a positive integer
ASSUME: the nonomial ordering is a | ocal degree ordering
RETURN: a set of K-generators of (PH)-polynom als having
(PH)-order N, and fulfilling condition (A for f and L

i deal J=jacob(f);

if ( fl=grlead(f,L))
ERROR( " pol ynomi al not pi ecewi se honogeneous!");

int s=size(l);

if (s ==1)
intvec w=L[1];

return(AspanS(f,w, N));

int D=N-grord(f,L);

ideal Q Q;

i deal menaxi deal (1);

i deal P=grlist(D,1);

int snesize(m;

for (int I=1; I<=sm |++)

Q=n{l]*P«J[I];

EQQq;

i deal tmp=J, Q

ideal tmpi,tmpij,lij,Kij;
int si,sij, j,k;

for (int i=1; i <=s; i++)

si=size(L[i]);

if (si !'= nvars(basering))
ERROR( " wei ght not compatible!");
t npi =0;

for (j=1, j <= si; j++)

lij=grlist(D+L[i][j],L);
sij=size(lij);
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if (sij !=0)

tmpi j =0; tnpi j [sij]=0;
for (k=1; k <=sij; k++)

if (Dergrord(lij[k],L,j)==D)
tpi j [K]=1ij[k];

Kij=tnpij*J[j];
tnmpi =t npi , Ki j ;

t np=t np, t npi ;

t np=si npl i fy(tnp, 6);
i nt stnp=size(tnp);
if (stnmp !'= 0)

i deal spant np;

spant np[ st np] =0;
for (j=1; j<=stnp; j++)

if (grord(tnp[j],L)==N)
spantnp[j] =grlead(tnp[j],L);

return(sinmplify(spantnp, 2));

el se
return (ideal (0));

proc Aspan(poly f, list L, int N)
"USAGE: Aspan(f,L,N); f a (PH) polynom al with respect
to afinite list L of weights, N a positive integer
ASSUME: the nonomial ordering is a | ocal degree ordering
RETURN: a set of K-generators of (PH)-polynonials having
(PH)y-order Nin j(f), which are (A) with respect
tof and L

i deal J=jacob(f);
i deal Jil=std(J);
if ( fl=grlead(f,L))
ERROR( " pol ynom al not piecew se honpbgeneous!");
int s=size(l);
if (s ==1)
intvec w=L[1];
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return(AspanS(f,w, N));
int D=N-grord(f,L);
ideal Q 4Q;
i deal menaxi deal (1);
i deal P=grlist(D1);
int snesize(m;
for (int I=1; I<=sm |++)

Q=nfl]*P<J[I];
EQ a;
i deal tnmp=J, Q
ideal tmpi,tmpij,lij,Kij;
poly fj;
int si,sij, j,k;
for (int i=1; i <=s; i++)

si=size(L[i]);

if (si !'= nvars(basering))
ERROR( " wei ght not conmpatible!");
t npi =0;

for (j=1; j <= si; j++)

lij=grlist(D+L[i][j].L);
sij=size(lij);
if (sij !'=0)

tpi j =0; tnpij[sij]=0;
for (k=1; k <=sij; k++)

if (Dergrord(1ij[k],L,j)==D)
tpij[K]l=1ij[K];

Kij=tnmpij*J[j];
tnpi =tnpi, Kij;

t mp=t np, t npi ;
tmp=sinplify(tnp, 6);

i nt stnp=size(tnp);
if (stmp !'=0)

i deal spantnp

spant np[ st np] =0;
for (j=1; j<=stnp; j++)
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if (grord(tnp[j],L)==N)
fi=grlead(tnp[j].,L);
i f(reduce(fj,J1)==0)
spantmp[j ] =fj;

return(sinmplify(spantnp, 2));

el se
return (ideal (0));

proc AC deal (poly f, list L, int N)
"USAGE: ACideal (f,L,N); f a (PH) polynom al wth respect
toafinite list L of weights, N a positive integer
ASSUME: the nonomial ordering is a | ocal degree ordering
RETURN: a set of K-generators of (PH)-polynonials having
(PH)-order N and fulfilling (AC) with respect to
f and L

int s=size(l);

if (s ==1)

i ntvec w=L[1];
return(ACspanS(f,w, N));

ideal I=grlist(Ngrord(f,L),L);
i deal J=I=*f;

int j;

int r=size(Jd);

if (r 1=0)

i deal tnp;
tnp[r]=0;
for (j=1; j <=r; j++)
top[j]=grliead(J[j],L);
i deal spant np=t np, Aideal (f,L,N); //Ai deal checks
t he assunpti ons
return (sinplify(spantnp, 6));

el se
return (Aideal (f,L,N);

proc ACspan(poly f, list L, int N)
"USAGE: ACspan(f,L,N); f a (PH) polynom al with respect
toafinite list L of weights, N a positive integer



150

ASSUME: the nonomial ordering is a | ocal degree ordering

RETURN: a set of K-generators of (PH)-polynon als having
(PH)y-order Nin tj(f), which are (AC) with
respect to f and L

i deal H=f,jacob(f);
i deal K=std(H);
int s=size(l);
if (s ==1)
intvec w=L[1];
return( ACspanS(f,w, N));
ideal I=grlist(N-grord(f,L),L);
i deal J=I=*f;
int i;
int r=size(J);
if (r 1=0)

i deal tnp;

tnp[r] =0;

for (i=1; i <=r; i++)

if (reduce(grlead(J[i],L), K ==0)
tnp[i]=grlead(J[i],L);

i deal spantnp=t np, Aspan(f,L,N); //Aspan checks
t he assunptions
return (sinplify(spantnp, 6));

el se
return (Aspan(f,L,N));

proc Akbase(poly f, list L, int N)
"USAGE: Akbase(f,L,N); f a (PH) polynom al with respect
to afinite list L of weights, N a positive integer
ASSUME: the nonomial ordering is a | ocal degree ordering
RETURN: a basis (consisting of nonomials) of the N-th vector
space of the L-(A)-graded al gebra of j(f)

int n=size(l);
if (n==1)
intvec w=L[1];
return( AkbaseS(f,w, N));
i deal J=grlist(NL);
i deal P=Aideal (f,L,N);
i deal |=std(P);
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int s=size(Jd);

if (s!=0)
i deal Q
d s] =0;

for (int i=1; i<=s; i++)

i f(reduce(J[i],1)==3[i])
qi]=J[i];

return(simlify(Q2));

el se
return (ideal (0));

proc ACkbase(poly f, list L,

"USAGE: ACkbase(f,L,N); f a (PH) polynom al with respect
toafinite list L of weights, N a positive integer

ASSUME: the nonomial ordering is a | ocal degree ordering

RETURN: a basis (consisting of nonomials) of the N-th vector
space of the L-(AC)-graded algebra of tj(f)

int n=size(l);
if (n==1)
intvec w=L[1];
return( ACkbaseS(f,w, N));
i deal J=grlist(NL);
i deal P=ACi deal (f,L,N);
ideal I=std(P);
int s=size(Jd);
if (s!=0)

i deal Q
d s] =0;

for (int i=1; i<=s; i++)

i f(reduce(J[i],1)==3[i])
Qil=J[il;

return(simplify(Q2));

el se
return(ideal (0));



proc Agrbase(poly f, list L, int N)

"USAGE: AgrbaseS(f,L,N); f a (PH) polynomal with respect
toafinite list L of weights, N a positive integer

ASSUME: the nonomial ordering is a | ocal degree ordering

RETURN: a K-basis (consisting of nonomnials having total
degree smaller or equal to N) of the L-(A)-graded
al gebra of j(f)

i deal Menmaxi deal (N+1);
attrib(M"isSB", 1);

i deal |=kbase(M;

int s=size(l);

i deal tnp;

t np[ s] =0;

int ri;

i deal Ji, Pi;

for (int i=1; i <= s; i++)

ri=grord(I[i],L);

Ji =Ai deal (f,L,ri);

Pi =std(Ji);

if (reduce(l[i],Pi)==Ii])
top[i]=I[i];

return(sinplify(tnp,2));

proc ACgrbase(poly f, list L, int N

"USAGE: ACgrbase(f,L,N); f a (PH) polynomal with respect
toafinite list L of weights, N a positive integer

ASSUME: the nonomial ordering is a | ocal degree ordering

RETURN: a K-basis (consisting of nononials having total
degree smaller or equal to N) of the L-(AC)-graded
al gebra of tj(f)

i deal Menmaxi deal (N+1);
attrib(M"isSB", 1);

i deal |=kbase(M;

int s=size(l);

i deal tnp;
t np[ s] =0;
int ri;

i deal Ji, Pi;
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for (int i=1; i <= s; i++4)

ri= grord(I[i],L);

Ji =ACi deal (f,L,ri);

Pi =std(Ji);

if (reduce(l[i],Pi)==I[i])
top[i]=I[i];

return(sinplify(tnp,2));

proc isA(poly f, list L, int N

"USAGE: isA(f,L,N; f a (PH) polynom al with respect
toafinite list L of weights, N a positive integer

ASSUME: the nonomial ordering is a | ocal degree ordering

RETURN: 1 if each nonom al having total degree Nis (A wth
respect to f and L, O otherw se

i deal Menaxi deal (N);

int s=ncols(M;

int Ni;

i deal Ji;

for (int i=1; i <=s; i++4)

Ni =grord(Mi],L);
Ji =std(A _span(f,L,N));
if(reduce(Mi],Jdi,1)!=0) return(0);

return(l);

proc i sAC(poly f, list L, int N)
"USAGE: isAC(f,L,N); f a (PH) polynom al with respect
to afinite list L of weights, N a positive integer
ASSUME: the nonomial ordering is a | ocal degree ordering
RETURN: 1 if each nonom al having total degree Nis (AC) with
respect to f and L, O otherw se

i deal Menaxi deal (N);

int s=ncols(M;

int Ni;

i deal Ji, Ki;

for (int i=1; i <= s; i++4)



154

Ni =grord(Mi],L);

Ji =st d( AC span(f,L,Ni));
Ki =reduce(Mi],Ji, 1);

i f(Ki!'=0) return(0);

return(l);

proc |indeg NF(poly f, intvec wl, intvec w2)

"USAGE: |indeg NF(f,wl,w2); f a (PH) polynom al with respect
to a set of 2 weights wl and w2

ASSUME: the nonomial ordering is a | ocal degree ordering

RETURN: the | argest power, of the nmonomi al corresponding to
the inner vertex of the Newton pol ygon of f,
havi ng total degree |ower than the bound 2k-ord(f)+2
of determ nacy

i deal |=f,jacob(f);

i deal J=std(l);

list |1=wl,;

list |2=wz;

poly P=grlead(grlead(f,l1),12);

i nt k=deg(hi ghcorner(J), 1: nvars(basering))+1
i nt s=deg(lead(f), 1: nvars(basering));

int N=2xk-s+2;

i nt D=deg(P, 1: nvars(basering));

return(N D);

proc bd NF(poly f, intvec wl, intvec w2)

"USAGE: bd _NF(f,wl,w2); f a (PH) polynomal with respect
to a set of 2 weights wl and w2

ASSUME: the nonomial ordering is a | ocal degree ordering

RETURN: the bigget positive integer, |ower than the bound
2k-ord(f)+2 of determ nacy, for which all nononials
havi ng total degree equal to this nunber fulfill (ACQ
with respect to f and w1, w 2; and returns
2k-ord(f)+2 if such integer does not exi st

list |1=wl;
list |2=w2;
list L=wi, w2;

i deal |=f,jacob(f);
i deal J=std(l);
i nt k=deg(hi ghcorner(J), 1: nvars(basering)) +1
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int s=ord(f);

i nt B=2xk-s+2;

i nt Btnp;

int di=lindeg_NF(f,wl, w2);

poly P=grlead(grlead(f,l1),12);
i nt N=deg(P, 1: nvars(basering));
int i;

i ntvec tnp;

for (i=1;, i <= dl; i++)

if (is_AC(f,L,Nci)) return(Nxi);

return(B);
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