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Laser-induced thermotherapy (LITT) is an established minimally invasive percutaneous
technique of tumor ablation. Nevertheless, there is a need to predict the effect of laser

applications and optimizing irradiation planning in LITT. Optical attributes (absorption,

scattering) change due to thermal denaturation. The work presents the possibility to
identify these temperature dependent parameters from given temperature measurements

via an optimal control problem. The solvability of the optimal control problem is analyzed

and results of successful implementations are shown.
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1. Introduction

Laser Interstitial Thermo Therapy (LITT) is a well established minimally invasive

method for cancer treatment, especially for irresectable liver tumors.6

An applicator device consisting of an optical laser fiber surrounded by water

cooling is placed into the tumor tissue. The absorbed fraction of the laser light

leads to a rise of the tissue temperature. For temperatures above 60◦C coagulation

starts due to protein denaturation leading to the destruction of tumor tissue. The
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optimal and safe clinical implementation of this technique depends critically on

the precise knowledge of light distribution within the laser-treated tissue and its

variation during thermal tissue denaturation.

The cancer treatment is guided by magnetic resonance imaging (MRI). Based on

temperature-sensitive magnetic resonance parameters such as proton resonance fre-

quency it is feasible to monitor the tissue temperature during the cancer treatment.6

On the other hand, mathematical simulation may be used to predict the effects of

the interstitial laser treatment and to optimize the irradiation planning in LITT.

For that the knowledge about optical properties, like absorption or scattering, and

their variations due to thermal denaturation, is indispensable. Combining both MR

thermometry and mathematical simulation is a promising procedure to identify

temperature depended tissue parameters and to optimize the cancer treatment.

For the mathematical modeling of radiative heat transfer in biological tissue

the heat transfer equation has to be coupled with the radiative transfer equa-

tion. Because of the high dimensionality of the latter problem, the simpler SP1-

approximation is used instead of the full radiative transfer equation. A justification

to this simplification for radiative transfer in biological tissues can be found in

Ref. 1.

1.1. Mathematical Problem Description

Let I ⊂ R be a bounded time interval and Ω ⊂ Rn be a bounded domain. Consider

the SP1-approximation to the radiative heat transfer equations given by the system

−∇ ·
(

1

3β(d, T )
∇ρ
)

+ µ(d, T )ρ = 0, (1.1a)

cp∂tT −∇ · (κ∇T ) + b(T − Tb)− µ(d, T )ρ = 0, in Q := I × Ω, (1.1b)

with boundary conditions

1

3β(d, T )
∂nρ+ γρ = γρ∂ , (1.1c)

κ ∂nT + αT = αT∂ , on Σ := I × ∂Ω, (1.1d)

supplemented with an initial condition

T (0, x) = T0(x) for all x ∈ Ω, (1.1e)

where ρ∂ [Wmm−2] and T∂ [K] denote the incident radiation and temperature at the

boundary respectively, Tb[K] the blood temperature, β[mm−1], µ[mm−1], γ are opti-

cal parameters with β and µ depending on the temperature dependent rate constant

d and temperature T [K], and cp[Jmm−3K−1], κ[Wmm−1K−1], b[Wmm−3K−1],

α[Wmm−2] are thermal parameters. In general, the rate constant d models the

denaturation of optical parameters due to temperature and may vary between dif-

ferent tissues. Throughout Sec. 2-4 we will for simplicity assume that cp = 1.
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The task at hand is to identify the rate constant d for given temperature mea-

surements Tm[K] and common rate constant dc. We consider the parameter iden-

tification problem as an optimal control problem, where we minimize a given cost

functional J with the rate constant d being the control and the temperature T being

the state, i.e

min J(d, T ) w.r.t. (d, T, ρ) subject to system (1.1). (1.2)

In this paper we provide an analysis for this approach. In Sec. 2 we study the

state system, show the unique solvability of the state system and derive a priori

estimates, which we will require in the following sections. We further show the

unique solvability of the linearized state system along with its adjoint equations in

Sec. 3. We then prove the existence of an optimal control d and derive regularity

results for the control to state map in Sec. 4, which is essential for the introduction

of the reduced cost functional. Sec. 5 will be devoted to examples and numerical

implementations. Concluding remarks are given in Sec. 6.

1.2. Notation

For a domain Ω ⊂ Rn with Lipschitz-boundary ∂Ω, we denote the Lebesgue spaces

with Lp(Ω) and the Sobolev spaces with W k
p (Ω) (k ∈ N, p ∈ [1,∞]) and its norm by

‖·‖Lp(Ω) and ‖·‖Wk
p (Ω), respectively. We denote by p′ the dual for p, i.e. 1/p′+1/p = 1

such that Lp
∗ ∼= Lp′ . In the special case p = 2 we use Hk(Ω) to denote W k

2 (Ω).

Further, let D(Ω) = C∞0 (Ω) be the set of test functions and Hk
0 (Ω) be the closure

of D(Ω) with respect to the Hk(Ω)-norm. Its dual space Hk
0 (Ω)∗ is denoted by

H−k(Ω). The duality pairing of a Banach space X with its dual X∗ is given by

〈·, ·〉X∗,X ; if the spaces involved are clear, we simply write 〈·, ·〉. For a Hilbert space

H, its inner product is denoted by (·, ·)H ; if H is clear we simply write (·, ·). We

also denote (·, ·)∂ to be the scalar product on the Hilbert space H∂ of functions on

the boundary ∂Ω.

Moreover, for a bounded interval I and Banach space B, we define the Lebesgue-

Bochner space Lp(I;B) with p ∈ [1,∞] consisting of all measurable functions

f : I → B for which the norm

‖f‖Lp(I;B) =
(∫

I

‖f(t)‖pB dt
) 1
p

, p ∈ [1,∞),

‖f‖L∞(I;B) = sup
t∈I
‖f(t)‖B , p =∞

is finite. Further, we define the Sobolev-Bochner space W k
p (I;B) with m ∈ N and

p ∈ [1,∞] consisting of all weakly absolutely continuous functions f : I → B such

that f is m-times weakly differentiable, and ∂kt f ∈ LP (I;B) for all k ≤ m (for

details see Ref. 15). For m = 1, we just write ḟ = ∂tf .
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For notational convenience we denote

Q = I × Ω, Σ = I × ∂Ω,

Vp,r = Lr(I;W 1
p (Ω)), W = V2,2 ∩W 1

2 (I;H−1(Ω)),

Xp,r = Vp,r ×W, Z = V2,2 × V2,2 × L2(Ω),

Note that for a bounded domain Ω, we have that the embedding Xp,r ↪→ Xq,s is

continuous and dense for all 1 ≤ q ≤ p and 1 ≤ s ≤ r.
Throughout this paper we will use the notations

ū = ess sup
x∈Ω

u(x) <∞ and
¯
u = ess inf

x∈Ω
u(x) > −∞,

when either exists. Unless otherwise stated, κ, b ∈ L∞,>0(Q) and γ, α ∈ L∞,≥0(Σ),

where

L∞,>0 (≥0)(D) = {u ∈ L∞(D) |
¯
u > 0 (

¯
u ≥ 0)}

for D = Q,Σ. We make the following assumption

(A1) Let Ω ⊂ Rn, n = 2, 3 be a bounded domain with C0,1-boundary ∂Ω and

I = (0, t∗), t∗ <∞.

2. The State System

2.1. Nonlinearity

We begin by discussing the nonlinearities in the system by means of Nemytskij

operators. Known facts regarding Nemytskij operators and their properties can be

found in Sec. 4.2 of Ref. 7, Sec. 5.2 of Ref. 18 and Ref. 8. We refer to Ref. 12 for an

extensive study on nonlinear operators.

Theorem 2.1. Assume (A1). Further, let U ⊂ C1
b (R) and K ⊂ L∞(Q) be open

subsets. We define the operator ϕ : U × K → L∞(Q), as follows:

ϕ(d, u) = ϕ0 + ϕ1

(∫ ·
0

d(u)(τ) dτ

)
,

where ϕ0 ∈ L∞(Ω) and ϕ1 ∈ C1
b,loc(R). Then, the operator ϕ is well-defined and

continuously Fréchet differentiable with

Dϕ(d, u) (vd, vu) = ϕ′1

(∫ ·
0

d(u)(s) ds

)∫ ·
0

(vd(u) + d′(u) vu) (τ) dτ,

for (d, u), (vd, vu) ∈ U × K.

Proof. Let (d, u) ∈ U × K. Since d ∈ C1
b (R) we have d(u) ∈ L∞(Q) for all u ∈ K

by Theorem 1 of Ref. 8 and thus∫ ·
0

d(u)(τ) dτ ∈W 1
∞(I;L∞(Ω))
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by the definition of Bochner-Sobolev spaces. Note that the embedding

W 1
∞(I;L∞(Ω)) ↪→ L∞(Q) is continuous. Using the same arguments as above we

conclude the first assertion. The Fréchet differentiability follows by applying the

chain rule.

Example 2.1. Let U = H2(R) and K = L∞(Q). Define ϕ : U × K → L∞(Q) by

ϕ(d, u) = b− (b− a) exp

(
−
∫ ·

0

d(u)(τ) dτ

)
,

with constants a, b > 0.

Clearly exp ∈ C1
b,loc(R). Due to standard embedding theorems, H2(R) ↪→ C1

b (R).

Thus, ϕ is well-defined and continuously Fréchet differentiable on U × K by Theo-

rem 2.1 with

∂1ϕ(d, u) vd = (b− a) exp

(
−
∫ ·

0

d(u)(s) ds

)∫ ·
0

vd(u)(τ) dτ,

∂2ϕ(d, u) vu = (b− a) exp

(
−
∫ ·

0

d(u)(s) ds

)∫ ·
0

(d′(u) vu) (τ) dτ,

for (d, u), (vd, vu) ∈ U × K.

Remark 2.1. Most of our effort is intended to solve problems with ϕ as defined in

the example above. Observe that in the case of non-negative d, i.e., d ∈ U = {d ∈
H2(R) | d ≥ 0},

ϕ(U × K)(t, x) ∈ [min{a, b},max{a, b}] for a.e. (t, x) ∈ Q,

which shows that ϕ(U × K) is uniformly bounded in L∞,>0(Q).

We make the following assumption on β and µ:

(A2) β and µ are of type ϕ as defined in Theorem 2.1 and are uniformly bounded

in L∞,>0(Q) for all (d, u) ∈ U × K.

2.2. Radiation Equation

Let d ∈ U be fixed throughout this section. Next, we deal with the radiation equation

−∇ ·
(

1

3βd(T )
∇ρ
)

+ µd(T )ρ = 0, in Q (2.1a)

with boundary condition

n · 1

3βd(T )
∇ρ+ γρ = γρ∂ , on Σ, (2.1b)

where βd(T ) = β(d, T ) and µd(T ) = µ(d, T ) are as in (A2).

For given T ∈ K, we consider the weak formulation of (2.1) given by

F1(ρ, T ) = f1 in V2,r′
∗, (2.2)
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where F1(·, T ) : V2,r → V2,r′
∗ is induced by the bilinear form

〈F1(ρ, T ), v〉 = (
1

3βd(T )
∇ρ,∇v) + (µd(T )ρ, v) + (γρ, v)∂ ,

with right hand side

〈f1, v〉 = (γρ∂ , v)∂ for all v ∈ V2,r′ .

From standard elliptic theory we directly get the following result.

Lemma 2.1. For an arbitrary but fixed T ∈ K there exists a unique solution ρ ∈
V2,r of (2.2) with

‖ρ‖V2,r
≤ 1

Hρ
γ‖ρ∂‖Lr(I;L2(∂Ω)),

where Hρ = min{1/(3βd), µ, γ}.

Remark 2.2. Notice that, due to the uniform boundedness of βd and µd, they do

not depend on T , which then implies the uniform boundedness for ρ in V2,r with

respect to T .

We further recall results obtained in Ref. 17 and especially refer to Theorem 3

of Ref. 17, which states as a corollary, the following: For f1 ∈ Lr(I;W 1
p′(Ω)

∗
) with

p ≥ n and sufficiently smooth boundary ∂Ω, the solution ρ ∈ V2,r for (2.2) enjoys

Vp,r-regularity, i.e. ρ ∈ Vp,r with n ≤ p ≤ p0 for some p0 < ∞ depending only on

β, β and Ω.

2.3. Heat Equation

Let w ∈ L∞(Q) and ρ ∈ Lr(Q) for some r ≥ 2. Now consider the system

∂tT −∇ · (κ∇T ) + b T = b Tb + µd(w)ρ, in Q (2.3a)

with boundary condition

κ ∂nT + αT = αT∂ , on Σ, (2.3b)

and initial condition T (0, x) = T0(x) for a.e. x ∈ Ω.

Similarly, the weak formulation of (2.3) can be written as

Ṫ + F2(T ) = f2(w, ρ) in V2,2
∗, (2.4)

with T (0) = T0 where F2 : V2,2 → V2,2
∗ is induced by the bilinear form

〈F2(T ), v〉 = (κ∇T,∇v) + (b T, v) + (αT, v)∂ ,

with right hand side

〈f2, v〉 = (b Tb + µd(w)ρ, v) + (αT∂ , v)∂ for all v ∈ V2,2.

Lemma 2.2. Assume (A1-A2) and let p ≥ n and r > 4. Then for ρ, Tb ∈
Lr(I;Lp(Ω)), T∂ ∈ Lr(I;Lp(∂Ω)) and T0 ∈ L∞(Ω), there exists a unique solution



July 9, 2010 16:53 WSPC/INSTRUCTION FILE Main

Identification of Temperature Dependent Parameters in Radiative Heat Transfer 7

T ∈ W ∩ L∞(Q) for (2.4). Moreover, there exists a constant c∞ > 0, independent

of ρ, Tb, T∂ , T0, such that

‖T‖W + ‖T‖L∞(Q) ≤
c∞
(
‖T0‖L∞(Ω) + ‖ρ‖Lr(I;Lp(Ω)) + ‖Tb‖Lr(I;Lp(Ω)) + ‖T∂‖Lr(I;Lp(∂Ω))

)
. (2.5)

Proof. From the standard theory for linear parabolic equations,14 we obtain a

unique solution T ∈ W to problem (2.4) for f2 ∈ W∗ and T0 ∈ L2(Ω). Consider the

weak formulation

−(u1, ∂tv)− (κ∇u1,∇v) + (b u1, v) + (αu1, v)∂ = (T0, v),

for all v ∈W 1
2 (I;H1(Ω)) with v(T ) = 0. Similarly we obtain a solution u1 ∈ W and

further u1 ∈ L∞(Q) by maximum principle.14 The difference between (2.4) and the

above equation yields

−(u2, ∂tv)− (κ∇u2,∇v) + (b u2, v) + (αu2, v)∂ = (b Tb + µd(w)ρ, v) + (αT∂ , v)∂ ,

for all v ∈W 1
2 (I;H1(Ω)) with v(T ) = 0, where u2 = T−u1. By introducing Sobolev-

Morrey spaces and applying methods discussed by Griepentrog in Ref 10 and Ref 9,

we obtain with the prescribed right hand sides a solution u2 ∈ C(I; C0,α(Ω)) ∩
C0,α2 (I; C(Ω)) for some α = α(p, r) > 0. In particular, u2 ∈ L∞(Q) and thus T =

u1 + u2 ∈ L∞ as desired. The asserted estimate is then obtained as a result of the

triangle inequality and of the estimates for u1 and u2 respectively.

Remark 2.3. Observe that the constant c∞ given in Lemma 2.2 does not depend

on w ∈ L∞(Q) in any way due to (A2), which infers the uniform boundedness of

T with respect to w.

2.4. State Vectors

Now we are ready to prove the existence and uniqueness for the radiative heat

transfer problem (1.1). We begin by writing the system in its weak formulation

given by

Ed(ρ, T ) = 0 in Z∗, (2.6)

where Ed : X → Z∗ is a continuous map induced by

〈Ed,1(ρ, T ), v1〉 = (
1

3βd(T )
∇ρ,∇v1) + (µd(T )ρ, v1) + (γ(ρ− ρ∂), v1)∂ ,

〈Ed,2(ρ, T ), v2〉 = 〈Ṫ, v2〉+ (κ∇T,∇v2) + (b(T − Tb)− µd(T )ρ, v2)

+ (α(T − T∂), v2)∂ ,

〈Ed,3(ρ, T ), v3〉 = 〈T (0)− T0, v3〉,

for all v = (v1, v2, v3)T ∈ Z.
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Theorem 2.2. Assume (A1-A2) and let p ≥ n and r > 4. Then for ρ∂ ∈
Lr(I;L2(∂Ω)), Tb ∈ Lr(I;Lp(Ω)), T∂ ∈ Lr(I;Lp(∂Ω)) and T0 ∈ L∞(Ω), there

exists (ρ, T ) ∈ V2,r ×K fulfilling (2.6), where K :=W ∩ L∞(Q).

Proof. The outline of the proof is as follows: We start by freezing the nonlinearity

and consider an auxiliary problem. We then define, with the help of the auxiliary

problem, a compact fixed point mapping and later show uniform boundedness for

the fixed points of the map. We then make use of the Leray-Schauder theorem (cf.

Theorem 11.6 of Ref. 4) to conclude the theorem.

Let w ∈ L2(Q) and σ ∈ [0, 1] be given. Consider the auxiliary problem: Find

(ρ, T ) ∈ V2,r ×W such that

F1(ρ, [w]k) = σf1 in V2,r′
∗ (2.7a)

Ṫ + F2(T ) = σf2([w]k, ρ) in V2,2
∗ (2.7b)

with T (0) = σT0 in L∞(Ω) is fulfilled. Here, [·]k : L2(Q) → L2(Q) denotes the

cut-function

[w]k =


k, w > k

w, −k ≤ w ≤ k
−k, w < −k

,

for any k > 0.

Note that in the auxiliary problem the two equations decouple. For a given

w ∈ L2(Q), we have a unique solution ρ ∈ V2,r of the first equation in (2.7) due

to Lemma 2.1. Inserting this into the second one gives the existence of a unique

T ∈ W as discussed in Lemma 2.2.

Since solution operators are continuous and chains of continuous operators are

continuous, this introduces a continuous fixed point mapping

H : L2(Q)× [0, 1]→ L2(Q),

(w, σ) 7→ T,

which is well-defined and compact since W ↪→ L2(Q) is compact due to Aubin’s

Lemma. Also, H(w, 0) = 0 for all w ∈ L2(Q). All that is left to show is the uniform

boundedness for fixed points.

Now let T ∈ L2(Q) be a fixed point of H(·, σ). Since ρ ∈ V2,r ↪→ Lr(I;Lp(Ω)),

the requirements of Lemma 2.2 are fulfilled and we have T ∈ K for all σ ∈ [0, 1]

with estimate (2.5) being independent of σ. We recall Remark 2.3 stating that T

is uniformly bounded with respect to [w]k. Thus we may increase k until [T ]k = T

without effecting the estimate above yielding

‖T‖L2(Q) ≤ ‖T‖W + ‖T‖L∞(Q) ≤M(ρ∂ , T0, Tb, T∂) <∞.

Applying the Leray-Schauder theorem concludes the proof of existence for T ∈ K
and hence also for ρ ∈ V2,r, i.e., (ρ, T ) ∈ V2,r ×K.
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Theorem 2.3. Assume (A1-A2). The solution (ρ, T ) ∈ Vp,r × K, p > 2, of (2.6)

is unique.

Proof. Let (ρ1, T1), (ρ2, T2) ∈ Vp,r×K be two solutions of (2.6). Then the difference

(ρ̂, T̂ ) = (ρ1 − ρ2, T1 − T2) ∈ Vp,r ×K solves

Êd(ρ̂, T̂ ) = 0 in Z∗ (2.8)

with initial condition T̂0 = 0 in L∞(Ω), where Ê is given by

〈Êd,1(ρ̂, T̂ ), v1〉 = (
1

3βd(T1)
∇ρ̂+

(
1

3βd(T1)
− 1

3βd(T2)

)
∇ρ2,∇v1)

+ (µd(T1)ρ̂+ (µd(T1)− µd(T2)) ρ2, v1) + (γρ̂, v1)∂ , (2.9a)

〈Êd,2(ρ̂, T̂ ), v2〉 = 〈 ˙̂
T, v2〉+ (κ∇T̂,∇v2) + (bT̂ − µd(T1)ρ̂, v2)

− ((µd(T1)− µd(T2)) ρ2, v2) + (αT̂, v2)∂ , (2.9b)

〈Êd,3(ρ̂, T̂ ), v3〉 = 〈T̂0, v3〉. (2.9c)

Testing (2.9a) with ρ̂(t) and applying Hölder’s and Young’s inequalities, we get

‖ρ̂(t)‖2H1(Ω) ≤ c1
(
‖∇ρ2(t)‖2Lp(Ω)‖

1

3βd(T2)
(t)− 1

3βd(T1)
(t)‖2Lq(Ω)

+ ‖ρ2(t)‖2Lp(Ω)‖µd(T2)(t)− µd(T1)(t)‖2Lq(Ω)

)
, (2.10)

for a.e t ∈ I with constant c1 > 0 and q = 2p/(p− 2). Similarly we test (2.9b) with

T̂ (t) and apply Hölder’s and Young’s inequalities yielding for a.e. t ∈ I

∂t‖T̂ (t)‖2L2(Ω) + c2‖T̂ (t)‖2H1(Ω) ≤

c3

(
‖ρ̂(t)‖2L2(Ω) + ‖ρ2(t)‖2Lp(Ω)‖µd(T2)(t)− µd(T1)(t)‖2Lq(Ω)

)
,

with constants c2, c3 > 0. Due to the continuous embedding W 1
p (Ω) ↪→ L2(Ω) and

inequality (2.10) we further obtain

∂t‖T̂ (t)‖2L2(Ω) ≤ c4‖ρ2(t)‖2W 1
p (Ω)

(
‖ 1

3βd(T2)
(t)− 1

3βd(T1)
(t)‖2Lq(Ω)

+ ‖µd(T2)(t)− µd(T1)(t)‖2Lq(Ω)

)
,

with constant c4 > 0.

Since T1, T2 ∈ L∞(Q), there exists an M > 0 with max{T 1, T 2} ≤ M . Fur-

thermore, (·)−1 : R>0 → R, βd and µd are locally Lipschitz-continuous. So we have

constants L1(M), L2(M) > 0 such that

‖ 1

3βd(T2)
(t)− 1

3βd(T1)
(t)‖Lq(Ω) ≤ L1(M)‖T̂ (t)‖Lq(Ω),

‖µd(T2)(t)− µd(T1)(t)‖Lq(Ω) ≤ L2(M)‖T̂ (t)‖Lq(Ω),

thus implying

∂t‖T̂ (t)‖2L2(Ω) ≤ c4 L(M)‖ρ2(t)‖2W 1
p (Ω)‖T̂ (t)‖2Lq(Ω),
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for a.e. t ∈ I with L(M) = max{L1(M), L2(M)}. For the right hand side, we further

have, due to interpolation inequalities, the bound

‖T̂ (t)‖Lq(Ω) ≤ ‖T̂ (t)‖1−θLq∗ (Ω)‖T̂ (t)‖θL2(Ω) ≤ |Ω|
1−θ
q∗ ‖T̂ (t)‖1−θL∞(Ω)‖T̂ (t)‖θL2(Ω),

for all q∗ > q and θ ∈ (0, 1) with 1/q = θ/2 + (1− θ)/q∗. Altogether we get

∂t‖T̂ (t)‖2L2(Ω) ≤ c5‖ρ2(t)‖2W 1
p (Ω)‖T̂ (t)‖2θL2(Ω),

for some c5 > 0, which is equivalent to a nonlinear integral inequality of Gronwall-

Bellman-Bihari type,11 given by

‖T̂ (t)‖2L2(Ω) ≤ ‖T̂0‖2L2(Ω) + c5

∫ t

0

‖ρ2(τ)‖2W 1
p (Ω)Φ

(
‖T̂ (τ)‖2L2(Ω)

)
dτ,

with Φ(x) = xθ and ‖T̂0‖2L2(Ω) = 0. Applying Theorem 3.2 of Ref. 11 to the above

inequality, we obtain ‖T̂ (t)‖2L2(Ω) = 0 for a.e. t ∈ I and hence T̂ = 0 as well as

ρ̂ = 0 a.e. in Q, which concludes the assertion.

Remark 2.4. Observe that in Theorem 2.3, we required that ρ(t) ∈ W 1
p (Ω) with

p > 2. This may be obtained by providing sufficiently smooth data and sufficiently

smooth boundary ∂Ω as discussed in Remark 2.2.

We conclude this section by making the following assumption:

(A3) Let p ≥ n and r > 4. We assume ρ∂ ∈ Lr(I;Lp(∂Ω)), Tb ∈ Lr(I;Lp(Ω)),

T∂ ∈ Lr(I;Lp(∂Ω)) and T0 ∈ L∞(Ω). We further assume that p0 ≥ 3 in

Remark 2.2.

Theorem 2.4. Under assumptions (A1-A3), we obtain a unique state y = (ρ, T ) ∈
X for any given d ∈ U , where X := Vp0,r ×K, fulfilling the estimate

‖y‖X ≤ cχ
(
‖T0‖L∞(Ω) + ‖ρ∂‖Lr(I;Lp(∂Ω)) + ‖Tb‖Lr(I;Lp(Ω)) + ‖T∂‖Lr(I;Lp(∂Ω))

)
.

3. The Linearized Equation and its Adjoint

3.1. Linear State Vectors

As in Sec. 2 we let d ∈ U be fixed but arbitrary throughout this section. Due to the

continuous F-differentiability of βd and µd on K we can consider the linearization

of the nonlinear SP1-system (2.6), given by

DEd(y)[v] = g in Z∗, (3.1)

for y, v ∈ X , where DEd : X → L(X ;Z∗) is continuous and g = (gρ, gT , g0) ∈ Z∗.
Due to density argument of the embedding X ↪→ X2,2, we may extend the derivative



July 9, 2010 16:53 WSPC/INSTRUCTION FILE Main

Identification of Temperature Dependent Parameters in Radiative Heat Transfer 11

at each state y = (yρ, yT ) ∈ X to a linear operator Ay ∈ L(X2,2;Z∗), given by

〈Ay,1 v, w1〉 = (
1

3βd(yT )
∇vρ,∇w1) + (µd(yT ) vρ, w1) + (γvρ, w1)∂

− (
1

3β2
d(yT )

∂2βd(yT )[vT ]∇yρ,∇w1) + (∂2µd(yT )[vT ] yρ, w1), (3.2a)

〈Ay,2 v, w2〉 = 〈v̇T , w2〉+ (κ∇vT ,∇w2) + (b vT − ∂2µd(yT )[vT ] yρ, w2)

+ (αvT , w2)∂ − (µd(yT ) vρ, w2), (3.2b)

〈Ay,3 v, w3〉 = (vT (0), w3), (3.2c)

for all v = (vρ, vT ) ∈ X2,2, w ∈ Z. Note that we identified ∂2βd(yT ) and ∂2µd(yT ) in

L(K;L2(Q)) with their extensions in L(L2(Q)) respectively, which are well defined

since K is dense in L2(Q).

Theorem 3.1. Assume (A1-A3). Let y = (yρ, yT ) ∈ X and g = (gρ, gT , g0) ∈ Z∗.
Then the problem: Find v = (vρ, vT ) ∈ X2,2 such that

Ay v = g in Z∗, (3.3)

where Ay : X2,2 → Z∗ as defined in (3.2), has a unique solution.

Moreover, Ay ∈ L(X2,2;Z∗) is a homeomorphism.

Proof. For the two last terms in (3.2a) we have the following bounds

|( 1

3β2
d(yT )

∂2βd(yT )[vT ]∇yρ,∇w1)| ≤ 1

3βd
2 ‖∂2βd(yT )[vT ]∇yρ‖L2(Q)‖∇w1‖L2(Q),

with

‖∂2βd(yT )[vT ]∇yρ‖L2(Q) ≤ ‖∇yρ‖L2(I;L3(Ω))‖∂2βd(yT )[vT ]‖L∞(I;L6(Ω))

≤ c′β‖yρ‖V3,2
‖vT ‖L2(I;L6(Ω)) ≤ cβ‖yρ‖V3,2

‖vT ‖V2,2
,

as given in Theorem 2.1. Similarly, we obtain

|(∂2µd(yT )[vT ] yρ, w1)| ≤ c′µ‖yρ‖L2(I;L3(Ω))‖vT ‖L2(I;L6(Ω))‖w1‖L2(Q)

≤ cµ‖yρ‖V3,2
‖vT ‖V2,2

‖w1‖L2(Q).

Suppose that vT ∈ V2,2 is given. Consider the problem: For gρ ∈ V2,2
∗, find

vρ ∈ V2,2 such that

aρ(vρ, w1) = (
1

3β2
d(yT )

∂2βd(yT )[vT ]∇yρ,∇w1)− (∂2µd(yT )[vT ] yρ, w1) + 〈gρ, w1〉,

where aρ is the continuous bilinear form given by

aρ(vρ, w1) = (
1

3βd(yT )
∇vρ,∇w1) + (µd(yT )vρ, w1) + (γvρ, w1)∂ ,

which is clearly coercive in V2,2 since

aρ(vρ, vρ) ≥
1

3βd
‖∇vρ‖2L2(Q) + µd‖vρ‖2L2(Q) + γ‖vρ‖2L2(Σ) ≥ cρ‖vρ‖

2
V2,2

,
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with cρ = min{(3βd)−1, µd, γ}. Thus by Lax-Milgram, we obtain a unique solution

vρ ∈ V2,2 with the bound

‖vρ‖V2,2
≤ 1

cρ

(
(cβ + cµ)‖yρ‖V3,2

‖vT ‖V2,2
+ ‖gρ‖V2,2

∗

)
. (3.4)

Now define the bilinear form aT as follows.

aT (vT , w2) = (κ∇vT ,∇w2) + (b vT , w2) + (α vT , w2)∂

− (∂2µd(yT )[vT ] yρ + µd(yT ) vρ,1, w2),

where

vρ,1 = vρ,1[
1

3β2
d(yT )

∂2βd(yT )[vT ]∇yρ − ∂2µd(yT )[vT ] yρ] and vρ,2 = vρ,2[gρ],

which is well-defined due to linearity. Clearly aT is continuous on V2,2 × V2,2.

We claim that aT is weakly coercive in V2,2 ↪→ L2(Q), i.e. it fulfills a G̊arding

inequality.13 Indeed, by applying Hölder’s and Young’s inequalities together with

the bounds derived so far, we obtain for ε > 0:

aT (vT , vT ) ≥ κ‖∇vT ‖2L2(Q) + b‖vT ‖2L2(Q) + α‖vT ‖2L2(Σ)

− cµ‖yρ‖V3,2‖vT ‖V2,2‖vT ‖L2(Q) − µd‖vρ,1‖L2(Q)‖vT ‖L2(Q)

≥ λ1‖vT ‖2V2,2
− λ2‖vT ‖2L2(Q)

where

λ1 = cT −
ε

2

(
c2µ +

µ̄2
d

c2ρ
(cβ + cµ)2

)
‖yρ‖2V3,2

and λ2 =
1

ε
− b,

with cT = min{κ, α}. With an appropriate ε > 0 such that λ1 > 0, we finally obtain,

aT (vT , vT ) + λ2‖vT ‖2L2(Q) ≥ λ1‖vT ‖2V2,2
, (3.5)

which affirms our claim.

Now consider the auxiliary problem: Find vT ∈ W such that

〈v̇T , w〉+ aT (vT , w) = 〈µd(yT )vρ,2 + gT , w〉 for all w ∈ V2,2, (3.6)

with initial condition vT (0) = g0 ∈ L2(Ω).

Since aT : V2,2×V2,2 → R is continuous and weakly coercive in V2,2 ↪→ L2(Q) as

shown in (3.5), standard theory for linear parabolic equations gives us the existence

and uniqueness of a solution vT ∈ W fulfilling (3.6) (cf. Sec. 11.1 of Ref 13), with

a constant c2(yρ) > 0 depending on yρ ∈ Vp0,r, the bound

‖vT ‖V2,2 ≤ c2(yρ)
(
‖v0‖L2(Ω) + ‖gρ‖V2,2

∗ + ‖gT ‖V2,2
∗
)

= c2(yρ)‖g‖Z∗ ,

which further yields for vρ ∈ V2,2 its existence, uniqueness and the bound

‖vρ‖V2,2
≤ 1

cρ

(
c3(yρ)‖g‖Z∗ + ‖gρ‖V2,2

∗
)
≤ c4(yρ)‖g‖Z∗ ,
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with constants c3(yρ), c4(yρ) > 0, according to (3.4). Since v̇T ∈ V2,2
∗ fulfills (3.6),

we have also the bound

‖v̇T ‖V2,2
∗ ≤ c5(yρ)‖g‖Z∗ ,

with a constant c5(yρ) > 0, which yields altogether the assertion.

Lemma 3.1. Assume (A1-A3). Let y ∈ X and (gρ, gT , g0) ∈ Y be given, where

Y := Lr(I;W 1
p′(Ω)

∗
)× Lr(I;Lp(Ω))× L∞(Ω),

for p ≥ n and r > 4. Then the unique solution v = (vρ, vT ) ∈ X2,2 of (3.3) is in

fact in X .

Proof. We start with considering the auxiliary problem given in (3.6). Notice that

vρ,2 ∈ Vp0,r since gρ ∈ Lr(I;W 1
p′(Ω)

∗
). Define ṽT = vT e

−λ2t, with λ2 as given in

(3.5). Due to the linearity of aT , (3.6) then becomes

〈 ˙̃vT , w〉+ aT,λ2
(ṽT , w) = 〈

(
µd(yT ) vρ,2 + gT

)
e−λ2t, w〉, (3.7)

for all w ∈ V2,2, where aT,λ2 : V2,2 × V2,2 → R is the bilinear form

aT,λ2(w1, w2) = aT (w1, w2) + λ2(w1, w2) for all (w1, w2) ∈ V2,2 × V2,2.

Following the arguments made in Lemma 2.2 for ṽT with g0 ∈ L∞(Ω), we conclude

that ṽT ∈ L∞(Q) and thus also vT = ṽT e
λ2t ∈ L∞(Q).

Notice that since vT ∈ L∞(Q), the right hand side to the problem

aρ(vρ,1, w) = (
1

3β2
d(yT )

∂2βd(yT )[vT ]∇yρ,∇w)− (∂2µd(yT )[vT ] yρ, w),

for all w ∈ V2,2 with yρ ∈ Vp0,r is indeed in Lr(I;W 1
p′(Ω)

∗
), thus implying that

vρ,1 ∈ Vp0,r and consequently vρ = vρ,1 +vρ,2 ∈ Vp0,r. Altogether we have (vρ, vT ) ∈
X as claimed.

3.2. Adjoint State Vectors

Next we study the adjoint operator.

Theorem 3.2. Assume (A1-A3). Let y = (yρ, yT ) ∈ X and h = (hρ, hT ) ∈ X2,2
∗.

Then the problem: Find ξ = (ξρ, ξT , ξ0) ∈ Z such that

A∗y ξ = h in X2,2
∗,

where A∗y : Z → X2,2
∗ is the adjoint operator to Ay, has a unique solution.

Furthermore, if h ∈ V2,2
∗ × V2,2

∗, then we have that (ξρ, ξT ) ∈ X2,2, and ξ can

be characterized as the variational solution of

−∇ ·
(

1

3βd(yT )
∇ξρ

)
+ µd(ξρ − ξT ) = hρ, (3.8a)

−∂tξT −∇ · (κ∇ξT ) + b ξT − ∂2βd(yT )∗[
1

3β2
d(yT )

∇yρ · ∇ξρ]

+ ∂2µd(yT )∗[yρ ξρ − yρ ξT ] = hT in Q, (3.8b)
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with boundary conditions

1

3βd(yT )
∂nξρ + γξρ = 0, (3.8c)

κ ∂nξT + αξT = 0 on Σ, (3.8d)

with initial and terminal conditions ξT (0) = ξ0 and ξT (t∗) = 0 in L2(Ω) respectively.

Proof. We start by giving a formal representation of the adjoint, i.e.

〈v,A∗y ξ〉 =

= (∇vρ,
1

3βd(yT )
∇ξρ) + (vρ, µd(yT )(ξρ − ξT )) + (vρ, γξρ)∂

+ (vT (0), ξ0) + 〈v̇T , ξT 〉+ (∇vT , κ∇ξT ) + (vT , b ξT ) + (vT , α ξT )∂

− (vT , ∂2βd(yT )∗[
1

3β2
d(yT )

∇yρ · ∇ξρ]) + (vT , ∂2µd(yT )∗[yρ ξρ − yρ ξT ])

= (
1

3βd(yT )
∇vρ −

1

3β2
d(yT )

∂2βd(yT )[vT ]∇yρ,∇ξρ) + (µd(yT )vρ, ξρ)

+ (∂2µd(yT )[vT ] yρ, ξρ)− (∂2µd(yT )[vT ] yρ, ξT ) + (γvρ, ξρ)∂ + (vT (0), ξ0)

+ 〈v̇T , ξT 〉+ (κ∇vT ,∇ξT ) + (b vT , ξT )− (µd(yT ) vρ, ξT ) + (α vT , ξT )∂

= 〈Ay v, ξ〉.

Due standard results from functional analysis we obtain the continuous invertibility

of the adjoint operator A∗y ∈ L(Z;X2,2
∗), i.e. A−∗y ∈ L(X2,2

∗;Z). Moreover, we have

the bound

‖ξ‖Z ≤ ‖A−∗y ‖L(X2,2
∗;Z)‖h‖X2,2

∗ .

Now let h ∈ V2,2
∗ × V2,2

∗ and ξ̇T denote the distributional time derivative of ξT ∈
V2,2. Notice that the function

t 7→ B(t) :=
(
∇ · (κ∇ξT )− b ξT + ∂2βd(yT )∗[

1

3β2
d(yT )

∇yρ · ∇ξρ]

− ∂2µd(yT )∗[yρ ξρ − yρ ξT ] + hT

)
(t)

is in V2,2
∗. Then∫

I

〈−ξ̇T (t), v〉ϕ(t) dt =

∫
I

(B(t), v)ϕ′(t) dt, for all v ∈ V2,2, ϕ ∈ C∞0 (I;R),

which by definition implies that ξ̇T ∈ V2,2
∗. Due to the bound above, we obtain

ξ ∈ X2,2 ×L2(Ω). From the embedding W ↪→ C(I;L2(Ω)) we obtain the initial and

terminal conditions ξT (0) = ξ0 and ξT (t∗) = 0 in L2(Ω) respectively.
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4. Existence of an Optimal Control

In this section we make the following assumption regarding the cost functional of

the optimal control problem.

(A4) Let U = H2(R) and J : U × X → R denote a cost functional which is

assumed to be twice continuously F-differentiable with locally Lipschitz

continuous second derivatives. Further, let J be of separated type, i.e.,

J(d, y) = J1(y) + J2(d) and radially unbounded with respect to d for every

y, bounded from below and weakly lower semi-continuous.

Next, we want to give the precise mathematical statement of the optimal control

problem (1.2). We define the control/state pair (d, y = (yρ, yT )) ∈ U × X and the

nonlinear operator E : U × X → Z∗ as in (2.6). Now let J : U × X → R be a cost

functional that fulfills assumption (A4), the minimization problem (1.2) can then

be written as

min J(d, y) over (d, y) ∈ U × X subject to E(d, y) = 0 in Z∗. (4.1)

Example 4.1. Assume (A1). Let ε > 0 be arbitrary and {δε}ε>0 be a Dirac-

sequence. We define for each i the sequence {δεxi}ε>0 as follows

δεxi ∗ u =

∫
Ω

u(x) δεxi(x) dx =

∫
Ω

u(x) δε(xi − x) dx, (4.2)

for any u ∈ H1(Ω). Now let p ∈ (1,∞) and consider the cost functional Jε : U×X →
R given by

Jε(d, y) =
1

p

∑
i

‖
(
δεxi ∗ yT (·)

)
− Tm,i‖pLp(I) +

λ

2
‖d− dc‖2U , (4.3)

for finitely many given measurements Tm,i ∈ Lp(I) at points xi ∈ Ω, common

parameter dc ∈ U and some λ > 0. Notice that limε→0 δ
ε
xi = δxi in D(Ω)

∗
, where

δxi is the Dirac-distribution on xi given by δxi ∗ u = u(xi) for u ∈ H1(Ω). Due

to the embedding H1(Ω) → C(Ω̄) for n = 1, u(xi) exists and hence δxi ∈ H1(Ω)
∗
.

Since δεxi is also in H1(Ω)
∗

for all ε > 0, we have that limε→0 δ
ε
xi = δxi in H1(Ω)

∗

and thus

lim
ε→0

Jε(d, y) =
1

p

∑
i

‖yT (·)(xi)− Tm,i‖pLp(I) +
λ

2
‖d− dc‖2H2(R) =: J(d, y),

for (d, y) ∈ U × X , which easily follows from the continuity of norms.

Due to the lack of an embedding theorem for n = 2, 3 respectively, this conver-

gence fails. However, the membership of δεxi in H1(Ω)
∗

for all ε > 0 still holds and

so we may make use of Jε with arbitrarily small ε > 0.
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4.1. Existence of Minimizer

In this subsection we prove the existence of a minimizer. In general, uniqueness

does not hold since the set of solutions for E(d, y) = 0 in Z∗ may not be convex.

The existence however can easily be shown.

Theorem 4.1. Assume (A1-A4). Then there exists a (d∗, y∗) ∈ U ×X solving the

constraint minimization problem (4.1).

Proof. Let {(dk, yk)}k∈N ∈ U × X be a minimizing sequence such that

j = inf
(d,y)∈U×X

J(d, y) = lim inf
k∈N

J(dk, yk) and E(dk, yk) = 0 in Z∗,

for all k ∈ N, where j > −∞ by definition of J . The radial unboundedness of J

with respect to d implies that {dk}k∈N is bounded in U . Since U is reflexive there

exists a weakly convergent subsequence, denoted again by {dk}k∈N such that

dk ⇀ d∗ in U .

Since U is closed and convex, d∗ ∈ U . From (A2) and the uniform bounds with

respect to dk for the solutions of (2.6) obtained in Theorem 2.4, we conclude the

boundedness of {yk}k∈N in X . Similarly, we obtain a weakly convergent subsequence,

denoted again by {yk}k∈N such that

yk ⇀ y∗ in X .

Due to the weak lower semicontinuity of J , we have

J(d∗, y∗) ≤ lim inf
k∈N

J(dk, yk) = j,

which directly implies J(d∗, y∗) = j.

We are left to show that (d∗, y∗) fulfills the constraints, i.e. (d∗, y∗) solves (2.6).

Due to the standard compact embedding theorems for H2(R) ↪→ C1
b (R), we obtain

a strongly convergent subsequence, denoted again by {dk}k∈N such that

dk → d∗ in C1
b (R).

Similarly, standard compact embedding theorems imply the strong convergence

of a subsequence of {yT,k}k∈N, denoted again by {yT,k}k∈N in L2(Q), i.e.,

yT,k → yT,∗ in L2(Q).

Since d∗ ∈ C1
b (R), we further have that d∗ : L2(Q) → L2(Q) is continuous as a

Nemytskij operator.8 Thus, we have a strongly convergent sequence {d∗(yT,k)}k∈N
in L2(Q) and consequently a subsequence, denoted again by {d∗(yT,k)}k∈N such

that

d∗(yT,k)→ d∗(yT,∗) a.e. in Q.

Due to its uniform boundedness in L∞(Q) we have, by Lebesgue’s dominated con-

vergence theorem, that

d∗(yT,k)→ d∗(yT,∗) in L∞(Q),
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which yields together with Theorem 2.1

β(dk, yT,k)→ β(d∗, yT,∗) in L∞(Q),

µ(dk, yT,k)→ µ(d∗, yT,∗) in L∞(Q).

From the continuity of the function (·)−1 : R>0 → R and the uniform bounded-

ness of β(d, yT ) in L∞,>0(Q) we may pass to the limit in (2.6), thus concluding the

assertion.

4.2. Control-to-State Map and Derivatives

Let d ∈ U be fixed but arbitrary. Suppose E is given by (2.6) and fulfills the

requirements of Theorem 2.4, then we have the existence of a state y ∈ X . This

implicitly defines a control-to-state map d 7→ y(d). The main task in this section is

to study and analyze this mapping.

Theorem 4.2. Assume (A1-A3). Then the mapping d 7→ y(d) is continuously

F-differentiable as a mapping U → X and its derivative is given by

y′(d) = −DyE(d, y(d))−1DdE(d, y(d)). (4.4)

Proof. The idea (see also Ref. 3, 16) is to split the nonlinear operator E into its

linear part L acting on y, as well as its nonlinear part N and constant part f , i.e.,

E(d, y) = Ly +N(d, y)− f,

where L : X2,2 → Z∗, N : U × X → Y , as given in Lemma 3.1, and f ∈ Z∗ are

defined by

〈Ly,w〉 = (ε∇yρ,∇w1) + (ε yρ, w1) + (γ yρ, w1)∂ + (yT (0), w3)

+ 〈ẏT , w2〉+ (κ∇yT ,∇w2) + (b yT , w2) + (α yT , w2)∂ − (ε yρ, w2),

〈N(d, y), w〉 = (
( 1

3β(d, yT )
− ε
)
∇yρ,∇w1) + (

(
µ(d, yT )− ε

)
yρ, w1 − w2),

〈f, w〉 = (γ ρ∂ , w1)∂ + (b Tb, w2) + (αT∂ , w2)∂ + (T0, w3),

with 0 < ε < min{(1/3β̄),
¯
µ}.

By assumption (A3) and Theorem 2.4, we have L−1f ∈ X . Notice that Theo-

rem 2.4 also holds true for elements from Y , i.e. L−1 : Y → X . Define the operator

R : U × X → X by

R(d, y) = y + L−1N(d, y)− L−1f,

which is well-defined by the arguments above.

First, note that R is continuously F-differentiable. Indeed, N : U × X → Y is

continuously F-differentiable due to Theorem 2.1. Since the linear operator L−1 is

also continuously F-differentiable, we may apply the chain rule to affirm our claim.
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Next, we claim that DyR(d, y) : X → X is invertible for all (d, y) ∈ U × X , i.e.,

we have to show that for any g ∈ X there exists a unique u ∈ X such that

DyR(d, y)u = u+ L−1DyN(d, y)u = g in X .

By introducing v = u− g, we get

v + L−1DyN(d, y) (v + g) = 0 in X ,

which is equivalent to

Lv +DyN(d, y) v = −DyN(d, y) g in Z∗. (4.5)

Notice that the left hand side corresponds to the linearized system Ay given in Sec. 3.

Since the right hand side belongs to Y , Theorem 3.1 and Lemma 3.1 asserts the

existence and uniqueness of a v ∈ X solving (4.5); thus also a unique u = v+g ∈ X .

We then facilitate the implicit function theorem for R, which gives us the con-

tinuous F-differentiability of d 7→ y(d) and the equation

y′(d) = −DyR(d, y(d))−1DdR(d, y(d)).

Since E is equivalent to R by the fact that R = L−1E, the results obtained for R

are valid for E. Due to linearity of L we finally obtain

y′(d) = −Dy(L−1E)(d, y(d))−1Dd(L
−1E)(d, y(d))

= −DyE(d, y(d))−1DdE(d, y(d)),

which concludes the proof.

4.3. Reduced Optimal Control Problem

Let J : U × X → R be a cost functional fulfilling (A4). Due to the existence of

an F-differentiable control-to-state map d 7→ y(d) given by Theorem 4.2, we may

introduce the reduced optimal control problem, which reads as follows:

min Ĵ(d) over d ∈ U subject to Ê(d) = 0 in Z∗, (4.6)

where Ĵ(d) = J(d, y(d)) and Ê(d) = E(d, y(d)). Similarly, we set β̂(d) =

β(d,PT [y](d)) and µ̂(d) = µ(d,PT [y](d)), where PT is the canonical projection

from X into K.

Example 4.2. As an example, we consider the reduced optimal control for the cost

functional (4.3) given by

Ĵε(d) =
1

p

∑
i

‖
(
δεxi ∗ yT (d)(·)

)
− Tm,i‖pLp(Q) +

λ

2
‖d− dc‖2U , (4.7)

for any ε > 0 and p ∈ (0,∞). By definition of Dirac-sequences we have∫
Ω

δε(x) dx = 1 for all ε > 0.
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Thus, (4.7) can be rewritten as

Ĵε(d) =
1

p

∑
i

‖
(
yT (d)− Tm,i

)
δεxi‖

p
Lp(Q) +

λ

2
‖d− dc‖2U , (4.8)

where we used (4.2).

4.4. The First-Order Optimality Condition

Let J : U × X → R be a cost functional fulfilling (A4) and Ĵ its corresponding

reduced cost functional as in (4.6). The necessary first-order optimality condition

is given by

Ĵ ′(d) = 0.

Using the chain rule and applying (4.4) of Theorem 4.2 we obtain

Ĵ ′(d)[vd] = 〈DyJ(d, y(d)), y′(d)[vd]〉X∗,X + 〈DdJ(d, y(d)), vd〉U∗,U
= 〈DdE(d, y(d))∗[ξ] +DdJ(d, y(d)), vd〉U∗,U ,

for all vd ∈ U , where we introduced the adjoint variable

ξ = −DyE(d, y(d))−∗DyJ(d, y(d)) in Z.

Since the above equality holds for all vd ∈ U , we have

Ĵ ′(d) = DdÊ(d)∗[ξ] +DdJ(d, y(d)) in U∗.

From the representation of the derivative Ĵ ′ and the adjoint variable ξ ∈ Z, we

obtain the following theorem.

Theorem 4.3. Let J : U×X → R be a cost functional fulfilling (A4) and (d∗, y∗) ∈
U × X be a solution of the constrained minimization problem (4.1). Then there

exists a unique Lagrange multiplier ξ∗ ∈ Z, which together with the optimal solution

(d∗, y∗) satisfy the first-order optimality system

E(d∗, y∗) = 0 in Z∗,

DyÊ(d∗)
∗[ξ∗] +DyJ(d∗, y∗) = 0 in X2,2

∗,

DdÊ(d∗)
∗[ξ∗] +DdJ(d∗, y∗) = 0 in U∗.

Proof. Clearly DyÊ(d∗) = Ay∗ . Since DyJ(d∗, y∗) ∈ X2,2
∗, by Theorem 3.2 we

obtain a unique solution to the adjoint problem

A∗y∗ξ = DyJ(d∗, y∗) in X2,2
∗,

which is none other than the second equality; thus yielding the assertion.

As an example, we consider the reduced cost functional Ĵε as given in (4.8) and

give an explicit representation for its derivative Ĵ ′ε.
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Theorem 4.4. Let p ∈ (0,∞) and ε > 0 be sufficiently small such that the support

for each δεxi are disjoint. Then Ĵε, as defined in (4.8) is F-differentiable with

Ĵ ′ε(d) = ∂1β̂(d)∗[− 1

3β̂2(d)
∇yρ · ∇ξρ] + ∂1µ̂(d)∗[yρ

(
ξρ − ξT

)
] + λ(d− dc), (4.9)

in U∗ for all d ∈ U , where ξ = (ξρ, ξT , ξ0) ∈ Z is the solution to the adjoint problem

−A∗y(d) ξ = h in X2,2
∗,

with h = (0,
(
yT (d)− Tm,i

)
δε{xi}i) ∈ X2,2

∗ and δε{xi}i defined as in the proof.

Proof. The F-differentiability follows from the F-differentiability of norms and of

the control-to-state map d 7→ y(d) as given in Theorem 4.2. We define δε{xi}i simply

as the sum of all δεxi , i.e. δε{xi}i =
∑
i δ
ε
xi . Since the support for each δεxi are disjoint

by assumption, we have∑
i

(
yT (d)− Tm,i

)
δεxi =

(
yT (d)− Tm,i

)
δε{xi}i .

Using (4.4) of Theorem 4.2 and the above equality we get by formal computations

Ĵ ′ε(d)[vd] = 〈(
(
yT (d)− Tm,i

)
δε{xi}i)

p−1, y′T (d)[vd]〉Lq(Q), Lp(Q) + λ(d− dc, vd)U
= 〈DdÊ(d)∗[ξ] + λ(d− dc), vd〉U∗,U ,

for all vd ∈ U , where ξ = ξ(d) ∈ Z is the solution to the adjoint problem

−A∗y(d) ξ = h in X2,2
∗,

with h = (0, (
(
yT (d)− Tm,i

)
δε{xi}i)

p−1) ∈ X2,2
∗.

There is still to show the explicit representation of DdÊ(d)∗[ξ]. Differentiating

E with respect to d at the point (d, y) ∈ U × X gives

〈DdE(d, y)[vd], ξ〉 = (− 1

3β2(d, yT )
∂1β(d, yT )[vd]∇yρ,∇ξρ)

+ (∂1µ(d, yT )[vd] yρ, ξρ − ξT ), (4.10)

for vd ∈ U and ξ ∈ Z, where

∂1β(d, yT )[vd] = ϕ′β,1

(∫ ·
0

d(yT )(s) ds

)∫ ·
0

vd(yT )(τ) dτ, (4.11)

∂1µ(d, yT )[vd] = ϕ′µ,1

(∫ ·
0

d(yT )(s) ds

)∫ ·
0

vd(yT )(τ) dτ. (4.12)

Since U is a separable Hilbert space, it admits a countable orthonormal basis and

is therefore isometrically isomorphic to l2, via the map

iU : l2 → U ; {vk}k 7→
∑
k

vkek,
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for any given countable orthonormal basis {ek}k ⊂ U . Using this fact, we may

rewrite (4.11) with vd =
∑
k vd,kek as

∂1β(d, yT )[vd] = ϕ′β,1

(∫ ·
0

d(yT )(s) ds

)∑
k

∫ ·
0

vd,kek(yT )(τ) dτ.

By simple computations, a change of integrals with the above equation, and the

isometric isomorphism iU , we obtain for the first part of (4.10)

(− 1

3β2(d, yT )
∂1β(d, yT )[vd]∇yρ,∇ξρ)

=
∑
k

vd,kβ
∗
k [− 1

3β2(d, yT )
∇yρ · ∇ξρ]

= 〈{β∗k [− 1

3β2(d, yT )
∇yρ · ∇ξρ]}k, {vd,k}k〉l2∗, l2

= 〈
∑
k

β∗k [− 1

3β2(d, yT )
∇yρ · ∇ξρ]ek, vd〉U∗,U

= 〈∂1β(d, yT )∗[− 1

3β2(d, yT )
∇yρ · ∇ξρ], vd〉U∗,U ,

where

β∗k [w] = 〈ek(yT ),

∫ t∗

·
ϕ′β,1

(∫ τ

0

d(yT )(s) ds

)
w(τ) dτ〉L∞(Q), L1(Q),

for all w ∈ L1(Q) and k ∈ N. This holds analogously for (4.12) with

µ∗k[w] = 〈ek(yT ),

∫ t∗

·
ϕ′µ,1

(∫ τ

0

d(yT )(s) ds

)
w(τ) dτ〉L∞(Q), L1(Q),

for all w ∈ L1(Q) and k ∈ N. Altogether we obtain for (4.10)

〈DdÊ(d)∗[ξ], vd 〉 =

〈∂1β̂(d)∗[− 1

3β̂2(d)
∇yρ · ∇ξρ] + ∂1µ̂(d)∗[yρ

(
ξρ − ξT

)
], vd〉U∗,U ,

for all vd ∈ U and ξ ∈ Z with ∂1β̂(d)∗ and ∂1µ̂(d)∗ explicitly given by

∂1β̂(d)∗[w] =
∑
k

β∗k [w]ek and ∂1µ̂(d)∗[w] =
∑
k

µ∗k[w]ek,

respectively for a given countable orthonormal basis {ek}k ⊂ U .

Remark 4.1. Note that the requirement for ε > 0 to be sufficiently small was not

necessary in the proof. It was only required to simplify the notations for computa-

tions.

5. Numerical Simulation and Optimization

In this section we present numerical results underlining the feasibility of our ap-

proach.
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5.1. Forward Simulation and Measurements Generation

To produce measurements for the identification of the temperature dependent rate

constant d, we consider an ex-vivo experiment,2 in which a porcine liver is exposed to

a 30mm×3mm (length×width) Nd:YAG laser fiber with water cooling kept at 298.15

K (25◦C). The treatment is conducted with a constant power of 28 W over a period

of 845 seconds (≈ 14 minutes). We assume that the porcine liver is homogeneous

and has an initial temperature of T0 = 298.15 K. This allows for a reduction of the

problem (due to radial symmetry) into a 2-dimensional problem given by

−∇ ·
(

1

3β(d, T )
∇ρ
)

+ µ(d, T )ρ = 0, (5.1a)

cp∂tT −∇ · (κ∇T )− µ(d, T )ρ = 0, (5.1b)

in Q, with boundary conditions

1

3β(d, T )
∂nρ+

1

2
(ρ− ρ∂) = 0, (5.1c)

κ ∂nT + α(T − T∂) = 0, (5.1d)

on Σ and initial condition

T (0, x)− T0 = 0 for a.e. x ∈ Ω, (5.1e)

(60,0)

∂Ω

(60,120)

Ω

(1.5,120)

Γw
Water cooling

(1.5,75)

Γl

Laser fiber and
water cooling

(0,45) (1.5,45)

(0,0)

(10,60)

(20,60)

where thermal parameters cp, κ are the product of density with specific heat capac-

ity, and heat conductivity respectively, as given in Table 1. The functions ρ∂ , T∂ , α

are defined as follows

ρ∂ =

{
28
π|Γl| on Γl

0 otherwise,
T∂ =

{
298.15 on Γw ∪ Γl

0 otherwise,
α =

{
1 · 106 on Γw ∪ Γl

0 otherwise.

Native Coagulated

µa[mm−1] 1.950 · 10−2 1.300 · 10−2

µs[mm−1] 4.350 30.590

g 9.310 · 10−1 9.165 · 10−1

cp[Jmm−3K−1] 1.040 · 10−6 × 3.640 · 103 1.040 · 10−6 × 3.640 · 103

κ[Wmm−1K−1] 5.180 · 10−4 5.180 · 10−4

A [s−1] 9.510 · 1048 9.510 · 1048

Ea[Jmol−1] 3.304 · 105 3.304 · 105

Table 1. Optical and Thermal Parameters for Measurements generation

Further, we define the temperature dependent optical parameters β and µ as
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follows

β(d, T ) = βc − (βc − βn) exp

(
−
∫ ·

0

d(T )(τ) dτ

)
,

µ(d, T ) = µa,c − (µa,c − µa,n) exp

(
−
∫ ·

0

d(T )(τ) dτ

)
,

with

βn = µa,n + (1− g)µs,n and βc = µa,c + (1− g)µs,c,

where µa,n, µa,c, µs,n, µs,c, g are constants denoting the natural absorption coef-

ficient, coagulated absorption coefficient, natural scattering coefficient, coagulated

scattering coefficient and the anisotropy factor respectively, as given in Table 1. For

simplicity, we consider an Ansatz for the temperature dependent rate constant d

given by the Arrhenius equation

d(yT ) = Ae−Ea/RyT , (5.2)

where A is the frequency factor and Ea the activation energy, which are as given in

Table 1, and R[Jmol−1K−1] the universal gas constant.

The solution of (5.1) was done semi-implicitly with 2019 triangular linear ele-

ments and a time step of 13 seconds. Measurements for identification were taken at

points x1 = (10, 60)[mm] and x2 = (20, 60)[mm].

5.2. Optimization Algorithm

Note that due to (5.2), the identification problem is reduced to identifying an opti-

mal pair u = (A,Ea) ∈ U ⊂ R2. Now consider the reduced cost functional

Ĵε(A,Ea) =
1

4

2∑
i=1

‖
(
δεxi ∗ (yT ◦ d)(A,Ea)(·)

)
− Tm,i‖4L4(I) +

λ

2
‖u− u0‖2U , (5.3)

for ε < min{ 1
2diam(Th) |Th ∈ Th}, where Th denotes the set of triangular elements.

The optimization was performed using a modified BFGS method for nonconvex

minimization5 with Armijo rule for the line search and stops as soon as the gradient

norm of the reduced cost functional is less than 10−3. The regularization parameter

λ was set to 10−5. An outline of the optimization algorithm is given as follows:

0. Choose initial point u0 = (A0, Ea,0), positive definite matrix B0, and nu-

merical constants σ ∈ (0, 1) and % ∈ (0, 1). Set k = 0.

1. Solve for ūk the system

Bkūk +∇Ĵε(uk) = 0 in U . (5.4)

2. Find the smallest non-negative integer j, say jk, satisfying

Ĵε(uk + %j ūk) ≤ Ĵε(uk) + σ%j∇Ĵε(uk) · ūk (5.5)

and let sk = %jk .
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3. Set uk+1 = uk + skūk for the next iterate.

4. Update Bk+1 using the formula

Bk+1 = Bk −
Bkpkp

T
kBk

pTkBkpk
+
qkq

T
k

qTk pk
, (5.6)

where pk = uk+1 − uk = skūk and

qk = rk + τk‖∇Ĵε(dk)‖pk,

with rk = ∇Ĵε(uk+1)−∇Ĵε(uk) and τk = 1 + max
{
− rTk pk
‖pk‖2 , 0

}
.

5. k = k + 1 and go to 1. while ‖ūk‖ > δ for some δ > 0.

Remark 5.1. Observe that an evaluation of the gradient ∇Ĵε(uk) in (5.4) and

(5.6) involves the following steps

1-1. Solve for yk the forward system

E(d(uk), yk) = 0 in Z∗.

1-2. Solve for ξk the adjoint system

DyE(d(uk), yk)∗ξk = −DyJ(uk, yk) in X2,2
∗.

1-3. Compute Ĵ ′ε(uk) ∈ U∗ as in Theorem 4.4 and identify ∇Ĵε(uk) ∈ U with

Ĵ ′ε(uk) via Riesz identification,

while an evaluation of the reduced cost functional Ĵε(uk) in (5.5) involves only the

steps

2-1. Solve for yk the forward system

E(d(uk), yk) = 0 in Z∗.

2-2. Compute Ĵε(uk) via (5.3).

Thus, by choosing appropriate numerical constants σ ∈ (0, 1) and % ∈ (0, 1), it is

possible to obtain sufficiently low complexity for the optimization problem.

The algorithm was initialized with d0 = (1.0 · 1050, 3.5 · 105) ∈ U where U = R2.

The initial state corresponding to d0 can be seen in Fig. 1.

The optimization was done for both exact measurements and noisy measure-

ments, as seen in Table 2. At first glance, one might think that the variations to

the optimal solutions are high. These variations are, however, relatively low when

scaled to the given problem. Furthermore, the optimized values are physical, i.e.

within the predicted intervals [1 · 1040, 1 · 10100] for A and [3 · 105, 6 · 105] for Ea.

Figure 2 and 3 show results of the optimization procedure under noiseless and

noisy measurement data respectively. Note that the results of their respective gradi-

ent norm and cost functional show fast convergence of the modified BFGS method

in obtaining optimal parameters (A∗, Ea,∗) ∈ U for both, with and without noise.

One also notices the lack of convergence to zero in the cost functional in the presence

of noise, which is as expected.
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Fig. 1. Initial state

Measurement Noise Optimized Value, dopt Optimal State

0% (5.554 · 1051, 3.474 · 105) Fig. 2

5% (1.375 · 1064, 4.283 · 105) Fig. 3

Table 2. Optimal Values
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