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ASYMPTOTIC TRANSITION FROM COSSERAT ROD TO STRING MODELS

FOR CURVED VISCOUS INERTIAL JETS

WALTER ARNE, NICOLE MARHEINEKE, AND RAIMUND WEGENER

Abstract. This work deals with the modeling and simulation of slender viscous jets exposed
to gravity and rotation, as they occur in rotational spinning processes. In terms of slender-
body theory we show the asymptotic reduction of a viscous Cosserat rod to a string system for
vanishing slenderness parameter. We propose two string models, i.e. inertial and viscous-inertial
string models, that differ in the closure conditions and hence yield a boundary value problem and
an interface problem, respectively. We investigate the existence regimes of the string models in
the four-parametric space of Froude, Rossby, Reynolds numbers and jet length. The convergence
regimes where the respective string solution is the asymptotic limit to the rod turn out to be
disjoint and to cover nearly the whole parameter space. We explore the transition hyperplane and
derive analytically low and high Reynolds number limits. Numerical studies of the stationary jet
behavior for different parameter ranges complete the work.

Keywords. Rotational spinning processes; inertial and viscous-inertial fiber regimes; asymptotic
limits; slender-body theory; boundary value problems

AMS-Classification. 65L10, 76-xx, 41A60

1. Introduction

The rotational spinning of viscous jets is of interest in many industrial applications, including
drawing, tapering and spinning of glass and polymer fibers [14, 19], pellet manufacturing [6, 18] or
jet ink design. In a rotational spinning process, a liquid jet leaves a small spinning nozzle located
on the curved face of a circular cylindrical drum that rotates about its symmetry axis (figure 1.1).
The extruded jet grows and moves due to viscous friction, surface tension, gravity and aerodynamic
forces. In the terminology of Antman [1], there are two classes of asymptotic one-dimensional models
for such a jet, i.e. string and rod models. Whereas the string models consist of balance equations
for mass and linear momentum, the more complex rod models contain also an angular momentum
balance, [9, 24].

A string model for the jet dynamics was derived in a slender-body asymptotics from the three-
dimensional free boundary value problem given by the incompressible Navier-Stokes equations in
[16]. Accounting for inner viscous transport, surface tension and placing no restrictions on either the
motion or the shape of the jet’s center-line, it generalizes the previously developed string models
for straight [4, 7, 8] and curved [5, 17, 23] center-lines. However, the applicability of the string
model is restricted to certain parameter ranges. Neglecting surface tension and gravity, already in a
stationary, rotational 2d scenario of a spun fiber jet of length ℓ = 1 (wrt. to the drum radius) with

stress-free end, no ”physically relevant” solutions exist in the inviscid limit for ReRb2 < 1, as shown
in [10]. Numerical experiments in [2] specify this region to be ReRb2 < c, c ≈ 1.5. The restriction
results from a non-removable singularity due to the deduced boundary conditions prescribing the
jet tangent at the nozzle.

A rod model that allows for stretching, bending and twisting was proposed and analyzed by Ribe
et. al. [20, 21] for the coiling of a viscous jet falling on a rigid substrate. Based on these studies
and embedded in the special Cosserat theory a modified incompressible rod model for rotational
spinning was developed in [2]. For the rotational 2d scenario it allows for simulations in the whole
(Re,Rb)-range and shows its superiority to the string model. These observations correspond to
studies on a fluid-mechanical ”sewing machine”, i.e. gravitational 2d scenario of a jet lay-down onto
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Figure 1.1. Rotational fiber spinning process, left: photo by industrial partner,
right: sketch of set-up.

a moving belt, [3, 22]. However, by containing the slenderness parameter ǫ explicitely in the angular
momentum balance, the rod model is no asymptotic model of zeroth order and requires a careful
numerical treatment in case of small ǫ.

An interesting approach that circumvents the introduction of an higher order model but over-
comes the thitherto limitations of the strings is based on the modification of the boundary conditions
in the string model. For the stationary gravitational 2d scenario of the jet lay-down, Hlod et. al.
[11, 12] distinguished between different parameter ranges with associated characteristic jet behav-
ior, the so-called inertial, viscous-inertial and viscous regimes, that they successfully investigated
by help of the string equations supplemented with appropriately adapted closure conditions.

In this paper, we transfer their idea to the rotational spinning of a jet with stress-free end and
propose two string models that differ exclusively in the closure condition for the jet tangent. The
inertial string model Si is the classical one of [16], whereas in the viscous-inertial string model Svi

the boundary condition for the jet tangent is omitted in favor of an interface condition that avoids
the occurrence of the singularity and ensures the regularity of the string quantities. The goal of
this paper is the comparison of both string models to the rod model for viscous jets exposed to
gravity and rotation. We are interested in the compatibility and applicability/validity of Si, Svi

as asymptotic limit models to the rod for vanishing slenderness parameter. We will show that
their rod-to-string convergence regimes are disjoint and cover nearly the whole four-parametric
space given by Froude Fr, Rossby Rb, Reynolds Re numbers and jet length ℓ. The low Reynolds
number range deserves special attention. When exploring the transition hyperplane between the
regimes, we will also derive the inviscid limit for the rotational 2d scenario analytically. It is
Re Rb2 = 3/(2 mini|λi|3) ≈ 1.4 with λi root of the Airy Prime function. By the way, this result
answers the thitherto numerical-based discussions in literature. Extending [2, 12] to 3d, the paper
sets the model-framework for the simulation of industrial rotational spinning processes.

This paper is structured as follows. In section 2 we start from the incompressible viscous rod
model [2]. We show its asymptotic reduction to a string system in the slenderness limit and introduce
the inertial and viscous-inertial string models. They yield a boundary value problem and an interface
problem, respectively, which we solve numerically by help of a Runge-Kutta collocation method
with integrated Newton method. We investigate the string models analytically and numerically
with respect to existence, compatibility and applicability/validity of their solutions as asymptotic
limit solutions to the rod. Therefore, we focus first on the special gravitational and rotational 2d
scenarios in sections 3 and 4, respectively, before we conclude with the general 3d set-up of a viscous
jet in a rotational spinning process exposed to gravity and rotation in section 5.

2. Viscous Cosserat rod and string models

2.1. Rod and its string limit. A fiber jet is a slender long body, i.e. a rod in three-dimensional
continuum mechanics. Due to its slender geometry the dynamics of the jet can be reduced to
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an one-dimensional description by averaging the underlying balance laws over its cross-sections.
This procedure is based on the assumption that the displacement field in each cross-section can be
expressed in terms of a finite number of vector- and tensor-valued quantities. The most relevant
case is the special Cosserat rod theory that consists of only two constitutive elements in the three-
dimensional Euclidean space E

3, a curve r : Q → E
3 specifying the position and an orthonormal

director triad {d1,d2,d3} : Q → E
3 characterizing the orientation of the cross-sections. In Q =

{(s, t) ∈ R
2 | s ∈ [sa(t), sb(t)], t > 0}, s denotes the arc-length parameter and t the time. For details

on Cosserat theory we refer to [1].
In this paper we apply the special Cosserat rod theory to curved viscous inertial fiber jets in

rotational spinning processes, extending the two-dimensional considerations of [2] to 3d. Further-
more, we investigate the asymptotic transition of the rod to simplified string models. In rotational
spinning processes, a viscous liquid jet leaves a small spinning nozzle located on the curved face of
a circular cylindrical drum that rotates about its symmetry axis, cf. figure 1.1. The extruded liquid
jet grows and moves due to viscous friction, surface tension, gravity and aerodynamic drag. We are
interested in the bending behavior of the jet at the nozzle in dependence on fiber viscosity, rota-
tional frequency of the drum and gravity. Therefore, we consider a spun fiber jet of certain length
with stress-free end. At the nozzle, velocity, cross-sectional area, direction and curvature of the jet
are prescribed. To focus on stationary situations, we choose a coordinate system rotating with the
drum. This makes the position of the nozzle and the direction of the inflow time-independent, but
introduces fictitious rotational body forces due to inertia. To understand the principles of bending,
we neglect here surface tension, temperature effects and aerodynamic forces for simplicity.

We use the incompressible viscous Cosserat rod model of [2] that was derived for fiber jets in
rotational spinning processes on the basis of the work on viscous rope coiling by Ribe [20, 21].
Using the terminology of [2], we introduce the rotating outer basis {a1(t),a2(t),a3(t)} satisfying
∂tai = Ω×ai, i = 1, 2, 3, where Ω is the angular frequency of the rotating device. We have Ω = Ωa1,
and gravity acts in the opposite direction g = −ρAga1, see figure 1.1. To an arbitrary vector field

x =
∑3

i=1 x̆iai =
∑3

i=1 xidi ∈ E
3, we indicate the coordinate tupels corresponding to the outer

basis and the director basis by x̆ = (x̆1, x̆2, x̆3) ∈ R
3 and x = (x1, x2, x3) ∈ R

3, respectively. The
director basis can be transformed into the rotating outer basis by the tensor-valued rotation R, i.e.
R = ai⊗di = Rijai⊗aj ∈ E

3⊗E
3 with associated orthogonal matrix R = (Rij) = (di ·aj) ∈ SO(3).

For the coordinates, x = R· x̆ holds. The cross-product x×R is defined as mapping (x×R) : R
3 → R

3,
y 7→ x×(R·y). Moreover, canonical basis vectors in R

3 are denoted by ei, i = 1, 2, 3, e.g. e1 = (1, 0, 0).
Then, the Cosserat rod model stated in the director basis has the following arc-length parameterized
(Eulerian) description

R · ∂tr̆ = v − ue3 (2.1)

∂tR = −(ω − uκ) × R

R · ∂sr̆ = e3

∂sR = −κ× R

∂tA+ ∂s(uA) = 0

ρ∂t(Av) + ρ∂s(uAv) = ∂sn + κ× n + ρAv × ω − 2ρA(R · Ω̆) × v − ρAR · (Ω̆ × (Ω̆ × r̆)) + R · f̆
ρ∂t(J · ω) + ρ∂s(uJ · ω) = ∂sm + κ× m + e3 × n + (ρJ · (ω + R · Ω̆)) × (ω + R · Ω̆)

+ ρJ · (ω × R · Ω̆) + ρJ · R · Ω̆ ∂su

with

J = Idiag(1, 1, 2), n3 = 3µA∂su, m = 3µIdiag(1, 1, 2/3) · (∂sω + κ× ω), I = A2/4π.

The rod system (2.1) consists of four kinematic and three dynamic equations, i.e. balance laws for
mass (cross-section A), linear and angular momentum. The jet velocity v and angular speed ω
of (2.1) are adapted with respect to the rotating frequency of the device. Due to the chosen arc-
length parameterization the intrinsic scalar-valued velocity u can be viewed as Lagrange multiplier
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to the constraint τ = e3 for the jet tangent which is incorporated in the system. The jet curvature
is denoted by κ. The geometrical model for the angular momentum line density preserves the
incompressibility of the jet: when stretching the three-dimensional body the cross-sections A shrink.
Note that the definition of the matrix-valued moment of inertia J assumes circular cross-sections and
the mass density ρ is considered to be constant. The constitutive laws for contact force n and couple
m are combined with the modified Kirchhoff constraint allowing for stretching. Hence, the normal
force components n1, n2 act as Lagrange multipliers, whereas the tangential force component n3

and the contact couple m are specified by a material law being linear in the strain rate variables with
dynamic viscosity µ, compare also with [20, 21]. External loads rise from gravity ğ = −ρAge1 with
gravitational acceleration g. Moreover, due to the choice of the rotating outer basis, artificial Coriolis
and centrifugal forces and associated couples are contained in the linear and angular momentum
equations, respectively. Note that here Ω̆ = Ωe1 holds.

Remark 1. The rotations R ∈ SO(3) can be parameterized, e.g. in Euler angles or unit quaternions
[15]. The last variant offers a very elegant way of formulating and computing the second and fourth
equations of (2.1). Define

R(q) =





q21 − q22 − q23 + q20 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) −q21 + q22 − q23 + q20 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) −q21 − q22 + q23 + q20



 , q = (q0, q1, q2, q3),

with ‖q‖ = 1, then we have ∂tq = A(ω − uκ) · q and ∂sq = A(κ) · q with skew-symmetric matrix

A(x) =
1

2









0 x1 x2 x3

−x1 0 x3 −x2

−x2 −x3 0 x1

−x3 x2 −x1 0









.

In view of a spun viscous fiber of certain length we transit to stationarity. Then, the mass flux
becomes constant, i.e. uA = Q/ρ = const. Moreover, the first two equations of (2.1) loose their
evolution character and yield instead explicit relations for the kinematic quantities, v = ue3 and
ω = uκ. Using the material laws, we formulate the stationary rod model in terms of first order
differential equations for r̆,R, κ, u, n,m. The system contains eight physical parameters, i.e. fiber
density ρ, viscosity µ, velocity U at the nozzle, diameter d and typical length L as well as drum
radius R, rotational frequency Ω and gravitational acceleration g. These induce five dimensionless
numbers characterizing the fiber spinning: Reynolds number Re = ρUR/µ as ratio between inertia
and viscosity, Rossby number Rb = U/(ΩR) as ratio between inertia and rotation, Froude number
Fr = U/

√
gR as ratio between inertia and gravity as well as ǫ = d/R and ℓ = L/R as length ratios

between fiber diameter, length respectively and drum radius. We choose the drum radius R as
macroscopic length scale in the scalings, since it is well known by the set-up. As for L, we consider
fiber lengths where the stresses are supposed to be vanished. For the subsequent investigations
we further introduce the ratio between gravity and viscosity B = Re/Fr2 and make the equations
dimensionless by help of the following reference values:

s0 = r0 = R, κ0 = R−1, u0 = U,

n0 = πµUd2/(4R) = πρU2R2ǫ2/(4Re), m0 = πµUd4/(16R2) = πρU2R3ǫ4/(16Re).

The last two scalings (for n0 and m0) are motivated by the material laws and the fact that the
mass flux is Q = πρUd2/4. Then, the dimensionless system for the stationary viscous rod R has
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the form

R · ∂sr̆ = e3 (2.2)

∂sR = −κ× R

∂sκ = −1

3
κn3 +

4

3
uP3/2 · m

∂su =
1

3
un3

∂sn = −κ× n + Reu

(

κ× e3 +
1

3
n3e3

)

+
2Re

Rb
(R · e1) × e3 +

Re

Rb2

1

u
R · (e1 × (e1 × r̆)) + B

1

u
R · e1

∂sm = −κ× m +
4

ǫ2
n × e3 +

Re

3

(

uP3 · m − 1

4
n3P2 · κ

)

− Re

4Rb

1

u
P2 ·

(

1

3
R · e1n3 + κ× R · e1

)

− Re

4

(

1

u2
P2 · (uκ+

1

Rb
R · e1)

)

×
(

uκ+
1

Rb
R · e1

)

with diagonal matrix Pk = diag(1, 1, k), k ∈ R. We supplement (2.2) with geometric and kinematic
boundary conditions at the nozzle s = 0 and stress-free dynamic boundary conditions at the fiber
length s = ℓ, i.e.,

r̆(0) = e2, R(0) = e1 ⊗ e1 − e2 ⊗ e3 + e3 ⊗ e2, κ(0) = 0, u(0) = 1, n(ℓ) = 0, m(ℓ) = 0.
(2.3)

The initialization R(0) prescribes the jet direction at the nozzle as (d1,d2,d3)(0) = (a1,−a3,a2).

Theorem 2 (Slenderness limit – transition to string). In the asymptotic limit of slenderness ǫ→ 0,
the equations for the viscous rod (2.2) reduce to a string model for jet curve, tangent, intrinsic
velocity and tangential stress (̆r, τ̆ , u,N = n3), i.e.,

∂sr̆ = τ̆ (2.4)
(

u− 1

Re
N

)

∂sτ̆ = − 2

Rb
e1 × τ̆ +

1

Rb2

1

u

3
∑

i=2

r̆i(ei − τ̆iτ̆) +
B

Re

1

u
(−e1 + τ̆1τ̆ ), ‖τ̆‖2 = 1

∂su =
1

3
uN

∂sN =
Re

3
uN − Re

Rb2

1

u

3
∑

i=2

r̆iei · τ̆ + B
1

u
e1 · τ̆

Proof. The derivation of the string system (2.4) is based on the rod equations (2.2) rewritten in the
outer basis. The respective transformation restores the thitherto incorporated Kirchhoff constraint,
so we have ‖τ̆‖2 = 1 in the Euclidian norm. As ǫ→ 0, the rod particularly becomes

∂sr̆ = τ̆ , ∂sR
⋆ = κ̆× R⋆

∂sκ̆ =
1

3
(n̆ · τ̆ )κ̆+

4

3
R⋆ · P3/2 · R · m̆, ∂su =

1

3
un̆ · τ̆

∂sn̆ = Reu

(

κ̆× τ̆ +
1

3
(n̆ · τ̆ )τ̆

)

+
2Re

Rb
e1 × τ̆ − Re

Rb2

1

u

3
∑

i=2

r̆iei + B
1

u
e1, n̆ × τ̆ = 0.

Decomposing the equation for the force into two parts ∂sn̆ = (∂sn̆ · τ̆)τ̆ − (∂sn̆× τ̆)× τ̆ , the first part
yields the differential equation for the tangential stress N = n̆ · τ̆ , i.e. ∂sN = ∂sn̆ · τ̆ , since n̆ ·∂sτ̆ = 0
due to ‖τ̆‖2 = 1. For the second part, ∂sn̆× τ̆ = ∂sτ̆ × n̆ holds since ∂s(n̆× τ̆ ) = 0, which results in
a relation for the jet tangent

(Reu−N)∂sτ̆ × τ̆ = −
(

2Re

Rb
e1 × τ̆ − Re

Rb2

1

u

3
∑

i=2

r̆iei + B
1

u
e1

)

× τ̆

applying ∂sτ̆ = ∂sR
⋆ · e3. Thus, the final equation of system (2.4) follows from taking the vector

product of τ̆ and the equation above. �
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Corollary 3. In the slenderness limit ǫ → 0 the equations for the quantities expressing angular
momentum effects decouple from the string model. They are

n̆ = Nτ̆, κ̆ = ∂sτ̆ × τ̆ , ∂sR
⋆ = κ̆× R⋆, m̆ =

3

4
R⋆ · P2/3 · R ·

(

∂sκ̆− 1

3
Nκ̆

)

.

Remark 4. In case of instationarity the slenderness limit of (2.1) can be computed analogously.
It results in the instationary string model of [17], where it has been derived systematically from the
three-dimensional Navier-Stokes equations using asymptotic analysis. Note that the instationary
and stationary string models are consistent to each other.

2.2. Inertial and viscous-inertial strings. The function

q(s) =

(

u− 1

Re
N

)

(s), q(s) = q(s; Re,Rb,Fr, ℓ, ǫ), (2.5)

that depends parametrically on the characteristic numbers as all other quantities, crucially affects
the string system (2.4). The term appears explicitely as factor of ∂sτ̆ and requires a special consid-
eration of the limit model in view of boundary conditions, solvability and approximation quality.
In [10] q is interpreted as sum of inertial and viscous energies. Assuming the fiber string to satisfy
∂s‖(0, r̆2, r̆3)‖2 > 0 and ∂sr̆1 < 0 in (2.4) as consequence of acting rotational and gravitational
forces, then q is monotonically increasing on [0, ℓ], moreover q(ℓ) > 0 since u > 0. Thus, two cases
can be distinguished, i.e. q(0) > 0 and q(0) ≤ 0, specifying two different fiber string regimes, the
inertial and the viscous-inertial strings, respectively. Note that the monotonicity of q is no property
of the fiber rod where N = n3 (2.2). In view of q, we introduce two string models on basis of (2.4)
that differ in the closure conditions.

Definition 5 (Inertial and viscous-inertial strings).

• The inertial string model Si is a boundary value problem where the string equations (2.4)
are supplemented with the rod-associated boundary conditions

r̆(0) = e2, u(0) = 1, N(ℓ) = 0, τ̆ (0) = e2.

• The viscous-inertial string model Svi is a interface problem (at the transition point s⋆) where
the string equations (2.4) are supplemented with

r̆(0) = e2, u(0) = 1, N(ℓ) = 0, q(s⋆) = 0, p(s⋆) = 0, s⋆ ∈ [0, ℓ[.

Here, the quantity p represents the right-hand side of the τ̆ -balance in (2.4), i.e.

p = − 2

Rb
e1 × τ̆ +

1

Rb2

1

u

3
∑

i=2

r̆i(ei − τ̆iτ̆ ) +
B

Re

1

u
(−e1 + τ̆1τ̆ ).

Remark 6. In the viscous-inertial string model Svi the a priori unknown transition point s⋆ ∈ [0, ℓ[
is implicitly given by q(s⋆) = 0. To ensure the continuity of the string quantities and to avoid the
occurrence of a singularity in s⋆, not only p(s⋆) has to vanish, but also the ratio (p/q)(s⋆) has to
be finite for each component. This requirement is consistently fulfilled in the interface problem for
almost all parameters as a lengthy technical computation based on several applications of the rule
of L’Hospital shows. Note that the analytically computed expression for the ratio is important for
solving Svi since only its incorporation makes the numerical treatment possible, see the subsequent
case studies.

According to our work [2] on fiber jets of length ℓ = 1 in a rotational 2d spinning scenario, the
string model Si with the boundary conditions inherited by the rod model R (2.3) is well-posed in the
parameter regime where q(0) > 0 holds. The numerical simulations of the boundary value problem
are robust. Moreover, the results of Si and R show good qualitative agreement, in particular the
string solutions turn out to be the asymptotic limit of the rod solutions as ǫ→ 0. But, if q(0) → 0,
the string solutions in τ̆ rise boundary layers at the nozzle that finally cause the break-down of
numerics. The reason lies in a non-removable singularity since p(0) 6= 0. The inertial string model
fails analytically. Moreover, it admits no solution for q(0) ≤ 0, as the non-existence result for the
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Figure 2.1. General 3d rotational spinning set-up and the special gravitational
and rotational 2d scenarios.

rotational 2d scenario in [10] shows. The more complex rod model in contrast allows for angular
momentum effects and resolves the strong curvature changes at the nozzle by help of a boundary
layer. It is applicable without any restrictions. The ability to handle all parameter ranges of
practical interest in simulation and optimization makes the rod model obviously superior to the
string approach. These observations correspond to previous studies on fluid-mechanical sewing
machines investigating jet lay-down onto a moving belt, [3, 22]. However, for such a gravitational
2d scenario of a jet falling down onto a belt, Hlod et al. [11, 12, 13] motivated the modification of
the boundary conditions for the stationary string in the parameter regime where q(0) ≤ 0 holds
by an argument about the characteristics in the instationary problem. Omitting the condition for
the exit angle at the nozzle made the studies of the viscous-inertial-dominated jet lay-down via the
string equations possible. Thereby, boundary layers are cut off. Following this heuristic approach,
we introduce the viscous-inertial string model Svi in definition 5 where the physical boundary
condition for the jet direction at the nozzle τ̆(0) is replaced by an interface condition ensuring the
continuity of the string quantities in the transition point s⋆ that is characterized by q(s⋆) = 0.

The compatibility of the two proposed string models Si, Svi, their applicability and validity in
the respective parameter regimes as asymptotic simplification of the rod model R are the topic of
this paper. Therefore, we deal with the following questions

• In which parameter regime does each string model have solutions? Regime of existence
• In which parameter regime is the respective string model the asymptotic limit model to the

rod as ǫ→ 0? Regime of rod-to-string convergence
• Are the regimes of existence and of rod-to-string convergence equal?
• Are the regimes of convergence of both string models disjoint, and does their union cover

the whole parameter space?

Being interested in the four-parametric space (Re,Rb,Fr, ℓ) for the general 3d spinning set-up as
ǫ→ 0, we start with the asymptotic and numerical investigation of the special cases of gravitational
and rotational 2d scenarios in sections 3 and 4 (cf. figure 2.1). These results will facilitate the
treatment of the curved viscous fiber under both effects, gravity and rotation, in section 5. In
particular, we explore characteristic hyperplanes associated to the problem, like e.g. the transition
hyperplane separating inertial and viscous-inertial jet behavior.

Definition 7 (Transition hyperplane). The transition between inertial and viscous-inertial jet be-
havior as ǫ → 0 is described by a hyperplane in the (Re,Rb,Fr, ℓ)-space which is implicitly given
by

q(0; Re,Rb,Fr, ℓ, ǫ) = 0

with q of (2.5) model-dependent.
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Remark 8. The parameterization of the jet tangent τ̆ = χ(α, β) in terms of two angles α ∈ [−π, π[,
β ∈ [π/2, π] that eases the numerical treatment of ‖τ̆‖2 = 1 involves the following formulation of
the string equations (2.4)

∂s r̆ = χ(α, β) = (cosβ, cosα sinβ, sinα sinβ) (2.6)

q ∂sα = pα = − 2

Rb
+

1

Rb2

1

u sinβ
(r̆2, r̆3) · χ⊥(α)

q ∂sβ = pβ =
1

Rb2

cosβ

u
(r̆2, r̆3) · χ(α) +

B

Re

sinβ

u

∂su =
1

3
uN

∂sN =
Re

3
uN − Re

Rb2

sinβ

u
(r̆2, r̆3) · χ(α) + B

cosβ

u

with χ(α) = (cosα, sinα) and its perpendicular vector χ⊥(α) = (− sinα, cosα). The tangent-
associated boundary and interface conditions are (α, β)(0) = (0, π/2) for Si as well as q(s⋆) = 0
and (pα, pβ)(s⋆) = (0, 0) for Svi.

2.3. Numerical treatment. For the numerical treatment of the boundary value problems, systems
of non-linear equations are set up via a Runge-Kutta collocation method and solved by a Newton
method. The Runge-Kutta collocation method is an integration scheme of fourth order for boundary
value problems that is a standard approach implemented in MATLAB 7.4 (routine bvp4c.m). The
convergence of the Newton method depends crucially on the initial guess that we will present for
the subsequent scenarios. To improve the computational performance of the Newton method we
adapt the initial guess iteratively by solving a sequence of boundary value problems with slightly
changed parameters, i.e. continuation method. For numerical details we refer to [2].

Obviously, R and Si are boundary value problems, but also Svi can be reformulated in terms of
a boundary value problem on the interval [0, ℓ]. For every string quantity y we therefore introduce
two functions yL , yR representing y to the left and right from the transition point s⋆,

yL(s) = y
(

s⋆(1 − s

ℓ
)
)

, yR(s) = y

(

s⋆ + s(1 − s⋆

ℓ
)

)

, s ∈ [0, ℓ].

Hence, we get the double number of differential equations

∂syL(s) = −s
⋆

ℓ
∂σy

(

s⋆(1 − s

ℓ
)
)

∂syR(s) =

(

1 − s⋆

ℓ

)

∂σy

(

s⋆ + s(1 − s⋆

ℓ
)

)

coupled via yL(0) = yR(0). To yL(ℓ) = y(0) or yR(ℓ) = y(ℓ) respectively, the rewritten interface
conditions qR(0) = 0, pR(0) = 0 close the resulting boundary value problem.

Moreover, the determination of characteristic hyperplanes in the parameter space is reduced
to solving boundary value problems. By introducing an additional boundary condition a degree of
freedom is obtained that we use to treat one of the dimensionless numbers {Re,Rb,Fr} as unknown.
The length ratios are thereby handled in a parametric way. Take for example the computation of the
transition hyperplane via the string models. For Si, we introduce q(0) = δ with a small perturbation
δ → 0, δ > 0. For Svi, in contrast, we have q(s⋆ = 0) = 0. Since this fixes the transition point s⋆,
we win directly the desired degree of freedom.

3. Case study: gravitational 2d scenario

The gravitational 2d scenario focuses on viscous and gravitational effects on the fiber dynamics,
neglecting rotation (Rb → ∞). The fiber jet stays in the a1-a2-plane, see figure 2.1. With d2⊥g

and d2 = a3, the rotation R is prescribed by a single angle β ∈ [π/2, π]. The contact force acts
in the d1-d3-plane, curvature and contact couple are oriented in d2-direction. Thus we abbreviate



ASYMPTOTIC TRANSITION FROM VISCOUS COSSERAT ROD TO STRING MODELS 9

κ = −κ2, m = −m2 and r̆1,2 = (r̆1, r̆2). Then, the rod model (2.2) becomes

∂sr̆1,2 = χ(β) r̆1,2(0) = (0, 1) (3.1)

∂sβ = κ β(0) =
π

2

∂sκ = −1

3
κn3 +

4

3
um κ(0) = 0

∂su =
1

3
un3 u(0) = 1

∂sn1 = κn3 − Reκu+ B
sinβ

u
n1(ℓ) = 0

∂sn3 = −κn1 +
Re

3
un3 + B

cosβ

u
n3(ℓ) = 0

∂sm =
4

ǫ2
n1 +

Re

3
(um− 1

4
κn3) m(ℓ) = 0,

and the string models (2.6) simplify to

∂sr̆1,2 = χ(β) r̆1,2(0) = (0, 1) (3.2)

q∂sβ = pβ =
B

Re

sinβ

u
, q = u− 1

Re
N β(0) =

π

2
for Si, q(s⋆) = pβ(s⋆) = 0 for Svi

∂su =
1

3
uN u(0) = 1

∂sN =
Re

3
uN + B

cosβ

u
N(ℓ) = 0.

Remark 9. In contrast to Si, the string equations equipped with the interface conditions allow for
solutions to all parameter tupels (Re,B, ℓ), i.e.,

r̆1,2(s) = (−s, 1), β ≡ π, ∂su =
1

3
uN, u(0) = 1, ∂sN =

Re

3
uN − B

1

u
, N(ℓ) = 0

being independent of s⋆. However, note that only the solutions with s⋆ ∈ [0, ℓ[, where s⋆ is the root
of (u−N/Re)(s⋆) = q(s⋆) = 0, present the fiber behavior corresponding to the viscous-inertial string
model Svi. The other solutions are meaningless, see also discussion on rod-to-string convergence in
section 3.2.

Remark 10. For the numerical treatment the inviscid jet (free fall) is used as initial guess for the
string models (3.2). The string solution for respective values (Re,B, ℓ) serves then as initialization
(̆r1,2, β, u,N = n3) of the rod model (3.1), which is supplemented with

n1 ≡ 0, κ =
B

Re

sinβ

u

/(

u− 1

Re
n3

)

, m ≡ 0.

3.1. Existence regimes and transition hyperplane.

Theorem 11 (String-transition surface and its limits in (Re,Fr, ℓ)-space). Let q : [0, ℓ] → R
+
0 be a

composition of the Airy functions Ai, Bi and their derivatives Ai′, Bi′,

q(s) = −
(

12

P

)1/3
Ai′(ϕ(s))Bi′(ϕ(0)) − Bi′(ϕ(s))Ai′(ϕ(0))

Ai(ϕ(s))Bi′(ϕ(0)) − Bi(ϕ(s))Ai′(ϕ(0))
, ϕ(s) =

(

3

2P

)1/3(
Re

3
s− 1

)

.

Then, the transition surface of Svi in the gravitational 2d scenario is determined by the parameter
tupels (Re,Fr, ℓ) solving

q3(ℓ) +
6

P

(

1 − Re

3
ℓ

)

q(ℓ) − 6

P
= 0, P = Re Fr2.
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Its asymptotic limits are

P = Re Fr2 =
3

2 mini|λi|3
≈ 1.4, Ai′(λi) = 0 for Re → ∞

Fr =
√
ℓ for Re → 0.

Moreover, the fiber behavior on the transition surface is given by

r̆1,2(s) = (−s, 1), β ≡ π, u(s) =

(

P

6
q2(s) − Re

3
s+ 1

)−1

, N(s) = Re(u− q)(s).

Proof. Proceeding from Svi (3.2) with s⋆ = 0, the interface conditions yield initial conditions for exit
angle and stress, i.e., β(0) = π and N(0) = Re. The initial value problem has a unique solution for
given (Re,Fr) because of the Lipschitz continuity of the right-hand side. This solution is equivalent
to the one of a vertically ejected and falling fiber jet r̆1,2(s) = (−s, 1), β ≡ π (cf. remark 9) with

∂su =
Re

3
u(u− q), u(0) = 1, ∂sq =

1

Fr2
1

u
, q(0) = 0. (3.3)

The additional final condition q(ℓ) = u(ℓ) particularly determines the transition surface. Its ana-
lytical description is based on the relation

∂s

(

u−1 − P

6
q2
)

= −Re

3

u(0)=1, q(0)=0
=⇒ u−1(s) =

P

6
q2(s) − Re

3
s+ 1, P = Re Fr2 (3.4)

between u and q which reduces system (3.3) to a single differential equation for q, i.e.,

∂sq =
Re

6
q2 − Re

3Fr2
s+

1

Fr2
, q(0) = 0.

Set c1 = Re/6, c2 = −Re/(3Fr2), c3 = 1/Fr2 and introduce a = −c1c2 and b = c1c3, then the
transformations q = −∂sw̃/(c1w̃) and w(x) = w̃(a−1/3x) yield the second order equation

∂xxw − ψ(x)w = 0, ψ(x) = x− a−1/3b,

whose solution is a superposition of the Airy functions Ai, Bi with integration constants k1, k2

w(x) = k1Ai(ψ(x)) + k2Bi(ψ(x)).

Back-transformation and use of q(0) = 0 yield the analytical expression of q (in dependence on
the parameters) that is stated in the theorem. The respective cubic equation for the function
value q(ℓ) comes from the final condition q(ℓ) = u(ℓ), when inserting it in (3.4). Apart from two
complex solutions it has one real positive solution by help of which the transition surface in the
(Re,Fr, ℓ)-space is determined.

For the asymptotic limit Re → ∞, we define q̃(x) = q(x/Re). Introducing q̃(Re ℓ) =
√

Re v for
the end value, we obtain

v3 +

(

6

ReP
− 2ℓ

P

)

v − 6

Re3/2P
= 0.

As Re → ∞, this cubic equation has the solutions v ∈ {0,±
√

2ℓ/P} for all 0 < P, ℓ < ∞. The

positive solution v =
√

2ℓ/P is the physically relevant one coming from the branch of real positive
solutions. It implies q̃(Re ℓ) → +∞ as Re → ∞ for all finite P, ℓ > 0. The analytical Airy-based
formulation of q̃ approaches this limit in case of a respectively computed parameter P. Studying
the behavior of the Airy functions, we obtain for x→ ∞

q̃(x) < 0, if Ai′(ϕ(0)) 6= 0, q̃(x) → ∞, if Ai′(ϕ(0)) = 0, with ϕ(0) = −
(

3

2P

)1/3

.

Hence, P is related to λi ∈ ker(Ai′), one of the many roots λi ∈] − ∞, 0[ of Ai′. In particular,
P = 3/(2mini|λi|3) ≈ 1.4 holds since all other roots would cause a discontinuous run of q, i.e.
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Figure 3.1. Accordance of the gravitational string-transition surfaces belonging
to Svi and Si, here for ℓ = 1. Svi-transition curve is plotted as blue solid line and
the corresponding Si-curves with perturbation δ, δ → 0, δ > 0 as red dashed ones.
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Figure 3.2. Gravitational string-transition curve in (Re,Fr)-space separating ex-
istence regimes of Svi and Si that lie below and above the curve, left: for different
lengths ℓ, right: for ℓ = 1 in comparison to respective rod quantities for varying
thickness ǫ ∈ {10−1, 10−2, 10−3} that are plotted as black dashed lines.

singularities would arise at finite x <∞

q̃(x) = −2|λi|
Ai′(λi + |λi|

3 x)

Ai(λi + |λi|
3 x)

→ ∞ for

{

x ∈ (0,∞)

∣

∣

∣

∣

(

λi +
|λi|
3
x

)

∈ ker(Ai)

}

.

The asymptotic limit Re → 0 follows directly from the considerations in section 3.3, thus the
proof is omitted here. �

According to theorem 11 the analytically prescribed transition surface belongs to the viscous-
inertial string model Svi, but it also coincides with the one of the inertial string model Si, as the
respective numerical computations of Si equipped with q(0) = δ, δ → 0, δ > 0 show, cf. figure 3.1.
Hence, the transition surface between the inertial and viscous-inertial jet behavior is coexistently
the border surface that separates the existence regimes of the two string models. Note that this
fact has motivated the names of the string models.

The gravitational string-transition surface is visualized as curves corresponding to different
lengths ℓ in the (Re,Fr)-space in figure 3.2. While the inviscid asymptote is independent of ℓ
(Re Fr2 = 3/(2 min|λi|3) with λi ∈ ker(Ai′)), the fiber length effects the viscous limit. The relation

Fr =
√
ℓ is particularly carried into the problem by the scaling with another macroscopic length in

view of the underlying 3d rotational spinning process. If only one length scale is relevant for the
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Figure 3.3. Rod-to-string convergence for moderate and high Reynolds numbers,
left: to Si, right: to Svi. L2(0, 1)-difference of the string-associated quantities
(̆r1,2, β, u,N = n3) for varying ǫ and B = Re/Fr2.

problem (as it is the case in a pure gravitational scenario), we have L/R = ℓ = 1 and the viscous
limit is certainly Fr = 1. The transition curves corresponding to shorter fibers (smaller ℓ) lie below
the ones of longer fibers (larger ℓ) which implies a bigger inertial jet regime. This effect is also
observed for thicker fibers (larger ǫ). We observe the convergence of the transition curves as ǫ→ 0.
This is physically taken for granted but important to mention since rod and string models are used
for the computation of the curves wrt. ǫ > 0 and ǫ = 0, respectively.

3.2. Global rod-to-string convergence. Apart from the analytical slenderness limit in theo-
rem 2, we can show the rod-to-string convergence of all string-associated quantities (̆r1,2, β, u,N =
n3) numerically. Thereby, the existence regimes of the two string models are also the regimes of con-
vergence where the respective string model is the asymptotic limit model to the rod. In figure 3.3
the L2(0, ℓ = 1)-difference between the string-associated quantities computed with R (3.1) and
Si, Svi (3.2) is exemplarily visualized for fixed moderate and high Reynolds numbers and varying
B = Re/Fr2 and ǫ. Considering (Re, ℓ) = (1, 1), the transition between the string regimes occurs at
B ≈ 1.4 (Fr ≈ 0.85, cf. figure 3.2). This point is clearly seen in the numerical analysis of conver-
gence. It separates not only the existence regimes, but also the applicability/validity ranges of the
string models. Whereas Si has no solution beyond this point, the interface string model allows for
solutions for all B according to remark 9. However, these differ in the location of s⋆. Note that only
the solutions with s⋆ ∈ [0, ℓ[ that arise for B > 1.4 (Fr < 0.85) belong to Svi. They prescribe the
viscous-inertial fiber behavior and are the asymptotic limits of the rod results as ǫ→ 0. The other
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Figure 3.4. Jet behavior in transition area for (Re, ℓ) = (1, 1) (cf. figure 3.3 a)),
left: trajectory r̆1,2, right: q. Quantities of Svi are marked with blue (+), of Si

with red (◦).

solutions with s⋆ < 0 that occur for parameter tupels belonging to the inertial regime, in contrast,
are meaningless from the physical point of view. This is clearly stressed by the big L2(0, ℓ)-error
between rod and string results, figure 3.3. To get an impression of the changing fiber behavior in
the transition area we refer to figure 3.4. On the transition curve the string-associated quantities
computed with Si and Svi match perfectly upto a boundary layer at the nozzle that arises because
of the different conditions on the exit angle.

3.3. Low Reynolds number limits. In case of highly viscous jets we have to deal with two small
parameters in the rod model (3.1), i.e. slenderness parameter ǫ and Reynolds number Re. We

introduce ζ = ǫ/
√

Re. Depending on the size of ζ, we obtain different limits: a string limit if ζ → 0,
a ǫ-independent viscosity limit if ζ → ∞ and a balanced limit for moderate ζ.

Expanding all quantities of R in a regular power series of Re, i.e. y = y(0) + Re y(1) + O(Re2),
we get for the force

∂s(n1, n3)
(0) = κ(0)(n3,−n1)

(0), (n1, n3)
(0)(ℓ) = (0, 0), =⇒ (n1, n3)

(0) ≡ (0, 0)

which can be directly concluded from its representation in the outer basis. This yields u(0) ≡ 1 and
consequently the following simplified system with the respective boundary conditions of (3.1)

∂sr̆
(0)
1,2 = χ(β(0)) ∂sm

(0) =
4

ζ2
n

(1)
1 (3.5)

∂sβ
(0) = κ(0) ∂sn

(1)
1 = (n

(1)
3 − 1)κ(0) +

1

Fr2
sinβ(0)

∂sκ
(0) =

4

3
m(0) ∂sn

(1)
3 = −n(1)

1 κ(0) +
1

Fr2
cosβ(0).

ζ → 0 – conform string limit. In the string limit, n
(1)
1 ≡ 0 holds in correspondence to theorem 2

which implies κ(0) = sinβ(0)/(Fr2(1 − n
(1)
3 )). The resulting string equations with N = n3 are

∂sr̆
(0)
1,2 = χ(β(0)), (1 −N (1)) ∂sβ

(0) =
1

Fr2
sinβ(0), ∂sN

(1) =
1

Fr2
cosβ(0),

(compare also (3.2), Re → 0). In Si they are supplemented with the rod-associated boundary
conditions. The release of the exit angle yields an explicit analytical limit solution for Svi, i.e.,

r̆
(0)
1,2(s) = (−s, 1), β(0) ≡ π, N (1)(s) =

1

Fr2
(ℓ− s),

which describes a straight, vertically ejected jet without any tangential inner forces in leading
order. In particular, Fr =

√
ℓ holds on the transition point where q(0)(0) = (u(0) − N (1))(0) = 0
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(see theorem 11, asymptotic limit for Re → 0). Note that the string solutions of Svi and Si match
here as well as for moderate and high Re numbers.

ζ → ∞ – ǫ-independent viscosity limit. In the viscosity limit of (3.5), m(0) ≡ 0 holds which implies
the following explicit analytical solution being independent of the slenderness parameter ǫ

r̆
(0)
1,2(s) = (0, s+ 1), β(0) ≡ π

2
, κ(0) ≡ 0, n

(1)
1 (s) = − 1

Fr2
(ℓ− s), n

(1)
3 ≡ 0

It describes a straight, horizontally ejected jet without any tangential inner forces in leading order.
This analytical result is perfectly confirmed by the numerical simulations.

4. Case study: rotational 2d scenario

The rotational 2d scenario focuses on viscous and rotational effects on the fiber dynamics, ne-
glecting gravity (Fr → ∞, B = 0). The fiber jet stays in the a2-a3-plane, see figure 2.1. With d1‖Ω
and d1 = a1, the rotation R is prescribed by a single angle α ∈ [−π, π[. The contact force acts
in the d2-d3-plane, curvature and contact couple are oriented in d1-direction. Thus we abbreviate
κ = κ1, m = m1 and r̆2,3 = (r̆2, r̆3). Then, the rod model (2.2) becomes

∂s r̆2,3 = χ(α) r̆2,3(0) = (1, 0) (4.1)

∂sα = κ α(0) = 0

∂sκ = −1

3
κn3 +

4

3
um κ(0) = 0

∂su =
1

3
un3 u(0) = 1

∂sn2 = κn3 − Reκu− 2Re

Rb
+

Re

Rb2

1

u
r̆2,3 · χ⊥(α) n2(ℓ) = 0

∂sn3 = −κn2 +
Re

3
un3 −

Re

Rb2

1

u
r̆2,3 · χ(α) n3(ℓ) = 0

∂sm =
4

ǫ2
n2 +

Re

3
(um− 1

4
κn3) −

Re

12Rb

n3

u
m(ℓ) = 0,

and the string models (2.6) simplify to

∂s r̆2,3 = χ(α) r̆2,3(0) = (1, 0) (4.2)

q∂sα = pα = − 2

Rb
+

1

Rb2

1

u
r̆2,3 · χ⊥(α) α(0) = 0 for Si, q(s⋆) = pα(s⋆) = 0 for Svi

q = u− 1

Re
N

∂su =
1

3
uN u(0) = 1

∂sN =
Re

3
uN − Re

Rb2

1

u
r̆2,3 · χ(α) N(ℓ) = 0.

Remark 12. For the numerical treatment the inviscid jet is used as initial guess for the string
models (4.2) motivated by the studies [2, 10]. The string solution for respective values (Re,Rb, ℓ)
serves then as initialization (̆r2,3, α, u,N = n3) of the rod model (4.1), which is supplemented with

n2 ≡ 0, κ =

(

1

Rb2

1

u
r̆2,3 · χ(α)⊥ − 2

Rb

)/(

u− 1

Re
n3

)

, m =
1

4

1

u
(3∂sκ+ κn3).

Concerning the interface in Svi,

∂sα(s⋆) = −Re Rb

3

u2

r̆2,3 · χ(α)
(s⋆)

holds at the transition point s⋆ according to the rule of L’Hospital. Consequently, the viscous-inertial
string model Svi looses its applicability if r̆2,3 · χ(α)(s⋆) = 0 since u > 0. This happens for example
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Figure 4.1. Transition surfaces belonging to the two string models, left: for ℓ =
0.5 < ℓ⋆, right: for ℓ = 1 > ℓ⋆. Svi-transition curve is plotted as blue solid line and
the corresponding Si-curves with perturbation δ, δ → 0, δ > 0 as red dashed ones.

on its transition hyperplane q(s⋆ = 0) = 0 for Rb = 0.5, ℓ > 1/
√

2, here r̆2,3(s
⋆ = 0) = (1, 0) and

α(s⋆ = 0) = −π/2, cf. figures 4.1 and 4.2.

4.1. Existence regimes, transition hyperplane and gap.

Theorem 13 (String-transition surface and its limits in (Re,Rb, ℓ)-space for small ℓ). The string-
transition surface in the rotational 2d scenario is determined by the parameter tupels (Re,Rb, ℓ)
that solve the string equations (4.2) supplemented with the following initial and final conditions

r̆2,3(0) = (1, 0), sinα(0) = −2Rb, u(0) = 1, N(0) = Re, N(ℓ) = 0.

Its asymptotic inviscid limit is

P = Re Rb2 =
3

2 mini|λi|3
≈ 1.4, Ai′(λi) = 0 as Re → ∞.

Its viscous limit is length-dependent and exists for ℓ ≤ ℓ⋆ = 1/
√

2,

Rb = ℓ

√

√

1

ℓ2
+ 2 − 3

2
as Re → 0.

Proof. Proceeding from Svi (4.2) with s⋆ = 0, the interface conditions yield the stated initial
conditions for exit angle and stress, i.e., sinα(0) = −2Rb and N(0) = Re. For the inviscid limit
(Re → ∞) of the transition surface, we rewrite (4.2) in terms of (̆r2,3, α, u, q), scale all quantities

according to ỹ(x) = y(x/Re) and expand them in a regular power series ỹ = ỹ(0) + ỹ(1)/Re +

O(1/Re2). Moreover, we introduce P = Re Rb2. In leading order, we then obtain ˜̆r
(0)
2,3 ≡ (1, 0),

α̃(0) ≡ 0 and

∂xũ
(0) =

1

3
ũ(0)(ũ(0) − q̃(0)), ũ(0)(0) = 1, ∂xq̃

(0) =
1

P

1

ũ(0)
, q̃(0)(0) = 0,

with q̃(0)(x) = ũ(0)(x) for x→ ∞
This system is similar to (3.4). Thus, the inviscid limit in the the rotational scenario can be
determined analogously to the one of the gravitational scenario.

The viscous limit Re → 0 exists for ℓ being smaller than a critical length ℓ⋆ = 1/
√

2. This follows
directly from the considerations in section 4.3, thus the proof is omitted here. �

As in section 3.1, the transition surface of theorem 13 belongs to the viscous-inertial string
model Svi. But also here it coincides with the one of the inertial string model Si, as the respective
numerical computations of Si equipped with q(0) = δ, δ → 0, δ > 0 show, cf. figure 4.1. For
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Figure 4.3. Comparison of string-transition curves corresponding to ℓ = 1 with
the respective rod quantities for varying thickness ǫ ∈ {10−1, 10−2, 10−3}. Svi-curve
is plotted as blue solid line, underlying Si-curve as red solid line and R-curves as
black dashed lines.

ℓ ≤ ℓ⋆ the transition surface between the inertial and viscous-inertial jet behavior is coexistently
the border surface that separates the existence regimes of the two string models. However, for
ℓ > ℓ⋆ we observe a gap for low Reynolds numbers. As already mentioned in remark 12, Svi looses
here its applicability for Rb = 0.5 due to the occurrence of a singularity; no solutions exist. Thus
the transition surface associated to Svi ends for small but finite Reynolds number Re⋆, whereas the
transition surface associated to Si goes on and has a viscous limit, i.e., Rb = 0.5 for all ℓ > ℓ⋆. On
first glance, the gap seems to arise at a sudden, fixed at [0,Re⋆ ≈ 10−4] for all ℓ > ℓ⋆. But in fact,
Re⋆ grows upto this size within a negligibly small length change, we find here Re⋆ to be linearly
proportional to (ℓ− ℓ⋆). Figure 4.2 illustrates the string-transition surfaces plotted as curves in the
(Re,Rb)-space in dependence on ℓ. The inviscid asymptote is independent of ℓ as in the gravitational
scenario. Moreover, for ℓ > ℓ⋆ the curves look very similar, the only slight differences occur in the
moderate Reynolds number range. Considering the rod-associated transition curves we observe the
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Figure 4.4. Rod-to-string convergence for moderate and high Reynolds numbers,
left: to Si, right: to Svi. L2(0, 1)-difference of the string-associated quantities
(̆r2,3, α, u,N = n3) for varying ǫ and Rb.

convergence to the Si-curve as ǫ→ 0, figure 4.3. For a detailed discussion about the existence gap
and its consequences for the applicability of the string models we refer to the following subsections.

Remark 14. Coming from the non-existence of physically relevant solutions for the string model
(4.2) with prescribed exit angle, Götz et al. [10] estimated the inviscid border to be roughly Re Rb2 ≈
1. The numerical analysis in [2] showed that the existence regime of Si is coexistently the convergence
regime (where Si acts as limit model to R) and ends at Re Rb2 ≈ 1.5 as Re → ∞. Theorem 13 gives
now the analytically exact inviscid asymptote. Note that in this limit the angle α(0) of Svi tends to
zero which is the prescribed exit angle of Si. Thus, the inviscid solutions of both string models are
identical.

4.2. Rod-to-string convergence almost everywhere. Analogously to the gravitational 2d sce-
nario, we show the rod-to-string convergence of all string-associated quantities (̆r2,3, α, u,N = n3)
numerically. Thereby, the existence regimes of the two string models also turn out to be the regimes
of convergence where the respective string model is the asymptotic limit model to the rod. Hence,
the string-to-rod convergence generally holds for ℓ ≤ ℓ⋆. In case of ℓ > ℓ⋆, it is valid for moderate and
high Reynolds numbers or low and high Rossby numbers. In figure 4.4 the L2(0, ℓ = 1)-difference
between the string-associated quantities computed with R (4.1) and Si, Svi (4.2) is exemplarily
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visualized for Re = 1 (moderate) and Re = 10 (high) with varying Rb, ǫ. The numerical analysis
clearly shows the accordance of existence and convergence regimes. Moreover, the string-associated
quantities on the common string-transition surface corresponding to Si and Svi, respectively, match
perfectly upto a boundary layer at the nozzle that arises due to the different conditions on the exit
angle.

Remark 15. On first glance, the bending behavior of the 2d viscous jet in the transition area
is counter intuitive, see figure 4.5. For faster rotation (smaller Rb) one might expect a stronger

bending but this is only true as long as the Coriolis forces of order O(Rb−1) dominate the centrifugal
forces O(Rb−2). With increasing centrifugal forces, the bending decreases.

An exception to the rod-to-string convergence is a small parameter stripe around the existence
gap of Svi for ℓ > ℓ⋆. Here, the assumption on the monotonicity of q is hurt. We observe the
existence of either no string solutions or physically irrelevant ones. The last are characterized by an
exit angle α(0) < −π/2 which involves a string jet aiming to stay in the nozzle. The rod solutions,
in contrast, look reasonable. The region is illustrated for ℓ = 1 in figure 4.6.

10
−4

10
−2

10
0

0.5

0.48

0.46

Re

R
b

α(0)=−π/2

q(0)=0

gap

s
vi

s
i

Figure 4.6. Region of no rod-to-string convergence for ℓ = 1.
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4.3. Low Reynolds number limits, jump in strings. Let ζ = ǫ/
√

Re be the viscosity-weighted
slenderness parameter as defined in section 3.3. For highly viscous jets (Re → 0, ǫ → 0) we again
distinguish the string limit if ζ → 0, the ǫ-independent viscosity limit if ζ → ∞ and the balanced
limit if ζ is moderate. But, in contrast to the gravitational scenario, we observe a jump in the string
limit for ℓ > ℓ⋆ which comes from the existence and convergence gap in the mentioned parameter
stripe (figure 4.6).

Proceeding as in section 3.3 and expanding all quantities of R (4.1) in a regular power series of
Re, we get in leading order: (n2, n3)

(0) ≡ (0, 0), u(0) ≡ 1 and the following simplified system with
the respective boundary conditions of (4.1)

∂sr̆
(0)
2,3 = χ(α(0)) ∂sm

(0) =
4

ζ2
n

(1)
2 (4.3)

∂sα
(0) = κ(0) ∂sn

(1)
2 = (n

(1)
3 − 1)κ(0) − 2

Rb
+

1

Rb2 r̆
(0)
2,3 · χ⊥(α(0))

∂sκ
(0) =

4

3
m(0) ∂sn

(1)
3 = −n(1)

2 κ(0) − 1

Rb2 r̆
(0)
2,3 · χ(α(0)).

ζ → 0 – non-conform string limit. In the string limit, n
(1)
2 ≡ 0 holds in correspondence to theorem 2

which implies κ(0) = (̆r
(0)
2,3 · χ⊥(α(0)) − 2Rb)/(Rb2(1 − n

(1)
3 )). The resulting string equations with

N = n3 are

∂s r̆
(0)
2,3 = χ(α(0)), (1 −N (1)) ∂sα

(0) = − 2

Rb
+

1

Rb2 r̆
(0)
2,3 · χ⊥(α(0)), ∂sN

(1) = − 1

Rb2 r̆
(0)
2,3 · χ(α(0))

(compare also (4.2), Re → 0). In Si they are supplemented with the rod-associated boundary
conditions. In Svi the condition on the exit angle is released in favor of the interface conditions.
Thus, the viscous-inertial string model in leading order is satisfied by

r̆
(0)
2,3(s) = (1, 0) + sχ(α⋆), α(0) ≡ α⋆, sinα⋆ = −2Rb, N (1)(s) =

1

Rb2

(

cosα⋆(ℓ− s) +
ℓ2 − s2

2

)

(4.4)

for all tupels (Rb, ℓ) yielding N (1)(s⋆) = 1 with s⋆ ∈ [0, ℓ[. In particular, Rb ≤ 0.5 must hold, since
sinα⋆ = −2Rb ∈ [−1, 1]. The leading-order system describes a straight horizontal jet ejected under
the angle α⋆. On the transition surface, s⋆ = 0 is fixed which gives the necessary degree of freedom
to determine the respective Rossby number in dependence on ℓ:

Rb = ℓ

√

√

1

ℓ2
+ 2 − 3

2
, ℓ ≤ ℓ⋆

The stated restriction on the jet length ensures Rb ≤ 0.5 (cf. theorem 13, Re → 0). The string
solutions of Svi and Si match here very well – upto a boundary layer at the nozzle – and represent
the asymptotic limit of R. For bigger ℓ (ℓ > ℓ⋆), the transition surface associated to Svi has no
viscous limit – in contrast to the one of Si where Rb = 0.5 as Re → 0. In face of this existence gap,
it is interesting to see that the model Svi (4.4) nevertheless allows for solutions upto Rb = 0.5. At
Rb = 0.5 these solutions are characterized by the angle α⋆ = −π/2 and the ℓ-dependent transition
point s⋆ = (ℓ2 − ℓ⋆ 2)1/2. As s⋆ grows for larger ℓ, we observe a clear jump in the string solutions
of Svi and Si, figure 4.7.

Remark 16. Concerning Si we have an analytical outer solution in the viscous limit for Rb = 0.5,
ℓ > ℓ⋆ (cf. figure 4.7). The angle

α(0)(s) = −π
2
−
{

s, for s ≤ s̃
s̃, for s > s̃

, s̃ = ℓ− ℓ⋆

obviously implies a jet behavior that satisfies the inertial string model in leading order except of the
boundary condition α(0)(0) = 0.
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ζ → ∞ – ǫ-independent viscosity limit. In the viscosity limit of (4.3), m(0) ≡ 0 holds which implies
the following explicit analytical solution being independent of the slenderness parameter ǫ

r̆
(0)
2,3(s) = (1 + s, 0), α(0) ≡ 0, κ(0) ≡ 0

n
(1)
2 (s) =

2

Rb
(ℓ− s), n

(1)
3 (s) =

1

Rb2

(

1 +
ℓ+ s

2

)

(ℓ− s).

It describes a straight, horizontally ejected jet (with exit angle α(0) = 0).

5. Numerical investigation of viscous jet under gravity and rotation

In this section we consider the general 3d scenario of a viscous jet exposed to gravity and rotation,
figure 2.1.

The numerical study of the two proposed string models (2.6) shows that Si and Svi are com-
patible, i.e. their existence regimes in the four-parametric space (Re,Rb,Fr, ℓ) are disjoint and
their transition hyperplanes are the same almost everywhere. The existence regime of Si is also
its convergence regime where Si is the asymptotic limit model to R (2.2). For Svi, we observe a
generalization of the existence gap that already enters the problem in the 2d rotational scenario.
The model looses its applicability when pi/q(s

⋆) → ∞ for i = α and/or i = β which happens for
example on its transition hyperplane q(s⋆ = 0) = 0 for Rb = 0.5, Fr → ∞ and ℓ > ℓ⋆ (see remarks 6
and 12). In the parameter neighborhood of the existence gap the rod-to-string convergence is not
given. However, over a wide range of parameters characterized by small Rossby numbers (fast rota-
tions), Svi is very well applicable and the asymptotic limit model to R. To get an impression of the
regimes we exemplarily visualize the transition hyperplane associated to Si for ℓ = 1. Figure 5.1
shows the transition surface in the (Re−1,Rb−1,B = Re Fr−2)-space where it separates the inertial
jet regime located below from the viscous-inertial one above. The inertial regime is the existence
and convergence regime of Si. The boundary curves for Rb → ∞ and B → 0 (Fr → ∞) correspond
to the gravitational and rotational transition curves of the 2d scenarios (cf. sections 3 and 4). For
smaller ℓ (shorter fibers), the surface is shifted up and the inertial regime grows.

Each parameter tupel (Re,Rb,Fr, ℓ) implies a characteristic jet behavior, as illustrated in fig-
ure 5.2 for ℓ = 1 fixed. The dependence on the parameters is thereby continuous. As expected,
smaller Fr-numbers (stronger gravity effects) yield more vertically directed and straighter jets,
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smaller Rb-numbers (faster rotation) yield faster jets with more pronounced bending in the a2-a3-
plane at height of the nozzle. In comparison to the outer forces, the influence of viscosity is qual-
itatively much lower. However, smaller Re-numbers (higher viscosity) increase the gravity effects:
the jets are stronger vertically directed and show less bending. Moreover, they are slower. From
the behavior at the nozzle (exit angle) we can easily conclude the jet’s belonging to a string model.
Considering the four chosen parameter set-ups in figure 5.2, (Re,Rb,Fr) ∈ {(1, 1, 1), (0.1, 1, 1)}
(where B ∈ {1, 0.1}) imply an inertial string Si and (Re,Rb,Fr) ∈ {(1, 0.1, 1), (1, 1, 0.5)} (where
B ∈ {1, 4}) a viscous-inertial one Svi, compare with the classification via the transition hyperplane
in figure 5.1.

6. Conclusion

The modeling and simulation of slender viscous inertial jets exposed to gravity and rotation are
the topic of this paper. We showed the asymptotic reduction of a viscous Cosserat rod to a string
system for vanishing slenderness parameter ǫ and proposed two compatible string models Si, Svi

that differ exclusively in the closure condition for the jet tangent. For the stationary situation of a
spun jet of certain length ℓ with stress-free end, they describe the inertial and viscous-inertial jet
behavior, respectively. Their disjoint regimes of applicability/validity where the respective string
solution is the asymptotic limit to the rod turned out to cover nearly the whole four-parametric
space given by (Re,Rb,Fr, ℓ). By exploring the transition hyperplane and its limits, we cleared
the thitherto numerical speculations [10, 2] about the existence regime of ”physically relevant” Si-
solutions for the special rotational 2d scenario (Fr → ∞). We derived the inviscid limit analytically

as Re Rb2 = 3/(2 mini|λi|3) ≈ 1.4 with λi root of the function Airy Prime (cf. Re Rb2 ≈ 1 in [10],
Re Rb2 ≈ 1.5 in [2]). Analogously, for the gravitational 2d scenario (Rb → ∞), the inviscid limit is
proved to be Re Fr2 = 3/(2 mini|λi|3). But this work goes far beyond the consideration of these 2d
scenarios. Extending [2, 12] to 3d, it sets the model-framework for the simulation of real rotational
spinning processes.

In view of industrial applications, the rod model shows its superiority towards the string models
for highly viscous jets. Depending on the ratio of slenderness and Reynolds number ζ = ǫ/

√
Re,

we deduced – apart from the consistent string limit when ζ → 0 – two further practically relevant
limits: a ǫ-independent viscosity limit (ζ → ∞) and a balanced limit (moderate ζ). For the
viscosity limit, we even got analytical solutions. Moreover, be aware that, when aerodynamic forces
and temperature-dependent viscosity are considered additionally, the determination of the valid
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string regime (classification of string) becomes in general much more difficult. We will focus on
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these aspects in a subsequent paper where we deal with an industrial rotational spinning process in
the glass wool manufacturing.
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