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Abstract

In the Dynamic Multi-Period Routing Problem, one is given a new

set of requests at the beginning of each time period. The aim is to

assign requests to dates such that all requests are fulfilled by their

deadline and such that the total cost for fulling the requests is mini-

mized. We consider a generalization of the problem which allows two

classes of requests: The 1st class requests can only be fulfilled by the

1st class server, whereas the 2nd class requests can be fulfilled by either

the 1st or 2nd class server. For each tour, the 1st class server incurs

a cost that is α times the cost of the 2nd class server, and in each

period, only one server can be used. At the beginning of each period,

the new requests need to be assigned to service dates. The aim is to

make these assignments such that the sum of the costs for all tours

over the planning horizon is minimized.

We study the problem with requests located on the nonnegative real

line and prove that there cannot be a deterministic online algorithm

with a competitive ratio better than α. However, if we require the

difference between release and deadline date to be equal for all requests,

we can show that there is a min{2α, 2 + 2/α}-competitive algorithm.

Keywords: vehicle routing, multi-period optimization, online algo-

rithms, competitive analysis

1 Introduction

We consider a vehicle routing problem similar to the one studied by

Angelelli et al. [2]. In the Dynamic Multi-Period Routing Problem

(DMPRP) there is a finite number of time periods t = 1, . . . , T . At

the beginning of each time period, a new set of requests is released.

Each request ri has a release date d(ri) and a deadline date D(ri) and
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must be fulfilled in one of the periods d(ri), . . . ,D(ri). The allowed

time for deferring the requests, i.e., the difference between deadline

date and release date, is called deferral time δ(ri) = D(ri) − d(ri).

Fulfilling a request means that a vehicle has to go to the request’s

location in the plane. For this purpose, there is a single vehicle (also

called server) available which has to return to the depot at the end of

each time period.

At the beginning of each period, when new requests become known,

they have to be assigned irrevocably to a feasible target date, i.e., the

date when they will be fulfilled. On a certain target date, the vehicle

fulfills all requests assigned to that date in one Traveling Salesman

Tour.

The goal is to make the assignment of requests to target dates such

that the total distance traveled over the planning horizon is minimal.

Note that the assignment of requests to target dates has to be made

without the knowledge of future requests, i.e., in an online manner,

whereas the planning of the Traveling Salesman Tour for a specific day

is performed offline.

There has been done a fair amount of research about Multi-Period

Vehicle Routing Problems. Ausiello et al. [3] consider the Vehicle Rout-

ing Problem with release times. Angelelli et al. [2] introduce the DM-

PRP and assume deferral times of 1 while allowing requests in the first

and last period that have a deferral time of 0. They show that the

algorithms IMMEDIATE and DELAY that serve all requests as soon

as they arrive or as late as possible, respectively, have a competitive

ratio of 2. For the case that requests are located on the nonnegative

real line, they present the algorithm SMART which they prove to be√
2-competitive, and hence optimal if the number of time periods is 2.

In their paper [1], Angelelli et al. show that for an arbitrary horizon

length T , the competitive ratio of SMART is 1.5 for requests located

on the nonnegative real line. Heinz et al. [6] consider a more general

framework called the Online Target Date Assignment Problem which

also comprises the DMPRP with customers located in the Euclidean

plane. They present the algorithm PackTogetherOrDelay which is 2-

competitive for the DMPRP with uniform deferral times. Gassner et

al. [5] prove that under certain conditions, the algorithm SMART by

Angelelli et al. [2] is 1.8284-competitive for the Online Target Date

Assignment Problem and they present the algorithm CLEVER with a

competitive ratio of 1.5.

We consider the DMPRP with requests located on the nonnegative

real line R
+, the depot being the origin. In this setting, the length
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of the tour for one day is determined by the maximum distance of a

request to the origin: The vehicle goes to this most distant location

and back to the origin. We study the following generalization of the

DMPRP: In the DMPRP with two classes, each request is either a 1st

class request or a 2nd class request. We will denote this by cl(ri) = 1st

or cl(ri) = 2nd, if ri is a 1st or 2nd class request, respectively. According

to that, we have two servers: The 1st class server can fulfill both 1st

and 2nd class requests, whereas the 2nd class server can only serve 2nd

class requests. We assume that the 1st class server is more expensive,

i.e., the cost of a tour by the 1st class server incurs a cost that is α

times the cost incurred by the 2nd class server and α > 1. Furthermore,

we will assume that on each day t at most one server can be used. The

aim is to make assignments of requests to target dates such that the

cost occuring over the planning horizon is minimized. In this setting, a

request ri can be characterized by a tuple (cl(ri)|t(ri), T (ri) | dist(ri))

consisting of its class, earliest and latest feasible target date and its

distance from the origin.

An application of the DMPRP can be found in the service delivery

management of a company. Customers call in and ask for a service

which the company, by contract, has to fulfill within a certain period of

time. Such a procedure is common in roadside assistance for example,

see [7]. As for the two classes, the requests may be different in what

it takes to fulfill them. There might be normal requests that can be

fulfilled using the usual tools and by every staff member, and there

might be special requests that can only be fulfilled by an expert using

special equipment, which certainly leads to a price difference.

In a more general sense, one could also perceive a similarity of the

DMPRP with two classes to metrical task systems. In the DMPRP

with two classes, the type of server used to fulfill requests in one period

could be interpreted as the ”state” of the service in the sense of a

metrical task system. Hence, in both models, the cost for fulfilling

requests directly depends on the current state and it is possible to

change states.

In this paper, we provide competitive analysis for the DMPRP with

two classes. For the basics on competitive analysis, we refer the reader

to the book of Borodin et al. [4]. In Chapter 2, we show that, in general,

there cannot be a an algorithm which beats the triviality barrier if

deferral times are arbitrary. In Chapter 3, we give a min{2α, 2+2/α}-
competitive algorithm for the case of uniform deferral times.
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2 A Lower Bound on the Competitive Ra-

tio

One possible approach to the DMPRP with two classes is to simply

ignore the classes and to use algorithms solving the corresponding DM-

PRP with one class to make the assignments of requests to target dates.

Then, on dates to which only 2nd class requests have been assigned,

the cheaper 2ndnd class server can be used, otherwise, the 1st class

server has to be used.

Theorem 1. If an online algorithm for the DMPRP with one class

is c-competitive, then it is αc-competitive for the DMPRP with two

classes.

Proof. Given an instance σ of the DMPRP with two classes, let σ1 be

the corresponding instance such that all requests are 1st class requests

and σ2 the corresponding instance with only 2nd class requests. Then,

for any online algorithm ALG, we have

ALG(σ) ≤ ALG(σ1) ≤ αALG(σ2) ≤ αcOPT (σ2) ≤ αcOPT (σ),

which proves the claim.

Thus, we can easily obtain a 2α-competitive algorithm for the DM-

PRP as considered by Angelelli et al. [2] extended to two classes by

applying one of the algorithms IMMEDIATE or DELAY which serve

all requests as soon or as late as possible, respectively. In fact, for

the scenario considered by Angelelli et al. [2], which, besides requests

with deferral time 1, allows requests that have to be fulfilled in the

same period in which they appear, there cannot be a deterministic on-

line algorithm with a competitive ratio smaller than α as the following

theorem shows.

Theorem 2. No deterministic online algorithm for the DMPRP with

two classes can have a competitive ratio smaller than α.

Proof. Consider the following instance σ. In period 1, two requests

r1 = (1st|1, 2|1) and r2 = (2nd|1, 2|b) with b > 1 appear. Let 2αb >

2α + 2b, i.e., it is cheaper to serve the two requests separately. Any

deterministic online algorithm ALG has to choose one of the following

strategies.

• If ALG serves both requests on the same day, let no new request

appear in period 2. Then, the optimal strategy would have been
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to serve them separately, and hence,

ALG(σ)

OPT(σ)
=

2αb

2b + 2α

b→∞→ α.

• If r1 is served immediately and r2 is postponed, let request r3 =

(1st|2, 2|1) appear. Then, delaying r1 and serving r2 immediately

would have yielded the best outcome.

ALG(σ)

OPT(σ)
=

2α + 2αb

2b + 2α

b→∞→ α.

• If r1 is postponed and r2 is served immediately, let r3 = (2nd|2, 2|b).
In this case, serving r1 immediately and postponing r2 would have

been the best decision and therefore,

ALG(σ)

OPT(σ)
=

2b + 2αb

2α + 2b

b→∞→ 1 + α.

This shows that ALG cannot be better than α-competitive.

3 Algorithms for the Case of Uniform De-

ferral Times

From now on, we assume uniform deferral times, i.e., D(ri)−d(ri) = δ

for all i. Thus, the time between learning about a request and its

deadline date is equal for all requests.

The following algorithm by Heinz et al. [6] has a competitive ratio

of 2 for the DMPRP with one class, customers on the real line and

uniform deferral times.

ALG 1: PackTogetherOrDelay (PTD). Assign a request ri to

the earliest date in the feasible range d(ri), . . . ,D(ri) to which a re-

quest has already been assigned. If no such date is feasible for request

ri, assign it to its deadline date D(ri).

On a specific target date, use the cheapest possible server, i.e., use

the 2nd class server if only 2nd class requests have to be served, and

the 1st class server else.

Now that we have two classes of requests and servers, the following

holds.

Theorem 3. The competitive ratio of PTD for the DMPRP with two

classes is exactly 2α.
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Proof. By Theorem 1, since PTD is 2-competitive for the case of one

server, it is 2α-competitive for the problem with two servers. The

following instance σ shows that 2 is actually the competitive ratio.

Let

• r1 = (1st|1, δ|ǫ),

• r2 = (2nd|2, δ + 1|1),

• r3 = (2nd|δ + 1, 2δ|1),

• r4 = (1st|δ + 1, 2δ|ǫ),

where 0 < ǫ ≤ 1.

PTD assigns r1 and r2 to period t = δ, r3 and r4 are assigned to

period t = 2δ. Both times, the 1st class server has to be used. Hence,

a cost of 2α+2α is incurred. A better strategy, however, is to serve r1

in period t = 1 with the 1st class server, r2 and r3 in period t = δ + 1

with the 2nd class server and r4 in t = δ + 2 with the 2nd class server

at a total cost of 2αǫ + 2 + 2αǫ. So we get the ratio

PTD(σ)

OPT(σ)
=

2α + 2α

2αǫ + 2 + 2αǫ

which approaches 2α as ǫ approaches 0.

PTD is based on the following properties of the DMPRP with one

class: It is efficient to fulfill requests only on deadline dates. Any

request that is scheduled before a deadline date can easily be postponed

to the next deadline date without increasing the cost. The reason for

this is closely related to the second property: It is advantageous to

aggregate requests since the cost for a tour is only determined by the

request furthest away from the origin, whereas the other requests are

fulfilled at no additional cost.

For the DMPRP with two classes, however, the situation is dif-

ferent. The instance presented in the previous proof makes it clear

that it can be reasonable to serve 1st and 2nd class requests separately

with different servers. In case they have the same deadline date, this

requires serving one of them before a deadline date. The following

Theorem shows that we still have properties similar to those in the

one class case.

Theorem 4. Let σ be a given instance of the DMPRP with two classes

of requests and servers. Let D be the set of all occurring deadline dates.

Then there exists an optimal offline solution which only fulfills requests

on days t such that t ∈ D or t + 1 ∈ D, i.e., on deadline dates or one

day before a deadline date.
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Proof. First, consider the following situation: let t be a date with t /∈ D
but t + 1 ∈ D a day before a deadline but not a deadline itself, and

consider an optimal assignment that uses both, t and t + 1. Then, the

assignment must be such that servers of different classes are used in

period t and t + 1. Otherwise it would be cheaper to serve all of them

together on day t + 1.

Now, consider an optimal assignment that assigns a subset of re-

quests σ̄ ⊆ σ to a day t with t, t + 1 /∈ D. Then the requests in σ̄

could as well be postponed to the next deadline date or the day be-

fore, depending on which server is needed for them, without affecting

feasibility. Serving the requests σ̄ together with other requests requir-

ing the same server, in consequence of moving them to a new target

date, does not incur any extra cost. This shows how an optimal assign-

ment can be transformed into one that only uses target dates t with

t ∈ D or t + 1 ∈ D.

Based on the above structural results, the next algorithm follows

the strategy of assigning requests of different classes only to different

target dates.

ALG 2. For k ≥ 0, define the interval

Ik = [kδ + 1, (k + 1)δ].

• If k is even: Serve all 1st class requests released in Ik in period

t = (k +1)δ with the 1st class server, and all 2nd class requests

in period t = (k + 1)δ + 1 with the 2nd class server.

• If k is odd: Serve all 2nd class requests released in Ik in period

t = (k +1)δ with the 2nd class server, and all 1st class requests

in period t = (k + 1)δ + 1 with the 1st class server.

ALG 2 divides the planning horizon in intervals comprising δ days

each. Since we have uniform deferral times of δ, the earliest possible

deadline date of a request released in Ik is kδ + 1 + δ = (k + 1)δ + 1.

ALG 2 serves all requests released in Ik before or in that period and

thus yields feasible assignments for each k.

For requests released in Ik two target dates are used. Note that

the second target date used for requests released in Ik is (k + 1)δ + 1,

whereas the first target date used for requests released in the next

interval Ik+1 is (k + 2)δ. So, they coincide for a deferral time of δ = 1.

The distinction between odd and even values of k in the algorithm

makes sure that even if those target dates coincide, the algorithm does

not assign requests of different classes to the same date.
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Theorem 5. ALG 2 is 2 + 2

α
-competitive for the DMPRP with two

classes, uniform deferral times and customers located on the real line.

For δ > 1, the competitive ratio is exactly 2 + 2

α
.

Proof. For a given sequence of requests σ let σeven (σodd) be the subse-

quence of all requests released in an interval Ik with even (odd) index

k. We have

ALG 2(σ) ≤ ALG 2(σeven) + ALG 2(σodd).

For δ > 1 equality holds, whereas for δ = 1 we can have a strict

inequality because target dates for requests released in σeven and σodd

coincide.

For a fixed k ≥ 0 let σk ⊆ σ be the subset of requests released in

Ik, and let rk,1 (rk,2) be the 1st (2nd) class request among them with

maximum distance to the origin. Then, by definition of ALG 2 we

have

ALG 2(σk) = 2α dist(rk,1) + 2 dist(rk,2).

An optimal strategy either serves all requests in σk in one tour on the

same day or it serves requests of different classes on two different days

and thus,

OPT(σk) = min{2α max{dist(rk,1),dist(rk,2)},

2α dist(rk,1) + 2 dist(rk,2)}.

If the minimum is attained for 2α dist(rk,1)+2 dist(rk,2), ALG 2 yields

the optimal solution. Otherwise we get a ratio of

ALG 2(σk)

OPT(σk)
≤ 2αdist(rk,1) + 2dist(rk,2)

2α max{dist(rk,1),dist(rk,2)}
≤ 1 +

1

α
.

Let rk be a request belonging to σk and let rk+2 be a request in σk+2.

Then the deadline date D(rk) of rk and the release date d(rk+2) of

rk+2 fulfill

D(rk) ≤ (k + 1)δ + δ = (k + 2)δ < (k + 2)δ + 1 ≤ d(rk+2).

Hence, no algorithm can assign rk and rk+2 to the same target date.

Thus, we have

ALG 2(σeven) ≤ (1 +
1

α
)OPT(σeven) ≤ (1 +

1

α
)OPT(σ)

and the same holds for σodd. Putting everything together we obtain

ALG 2(σ) ≤ ALG 2(σeven) + ALG 2(σodd) ≤ (2 +
2

α
)OPT(σ).

So, ALG 2 is 2 + 2

α
-competitive. On the following instance this bound

is tight if δ > 1. Let σ be a request sequence with

8



• r1 = (2nd|1, δ + 1|ǫ),

• r2 = (1st|1, δ + 1|ǫ),

• r3 = (1st|δ, 2δ|1),

• r4 = (2nd|δ, 2δ|1 + ǫ),

• r5 = (1st|δ + 1, 2δ + 1|1),

• r6 = (2nd|δ + 1, 2δ + 1|1 + ǫ),

where 0 < ǫ ≤ 1. ALG 2 serves r1 and r4 in period t = δ with the 1st

class server, r2 and r3 in period t = δ + 1 with the 2nd class server.

Request r6 is served in t = 2δ with the 2nd class server and r5 in

t = 2δ + 1 with the 1st class server. For δ > 1, all these target dates

are distinct. So the cost incurred by ALG 2 is

ALG 2(σ) = 2(1 + ǫ) + 2α + 2(1 + ǫ) + 2α.

An optimal strategy would be to serve r1 and r2 in period t = 1 with

the 1st class server, and r3, r4, r5, r6 in period t = δ + 1 with the 1st

class server. The total cost is

OPT(σ) = 2αǫ + 2α(1 + ǫ).

This yields a ratio of

ALG 2(σ)

OPT(σ)
=

2α + 2(1 + ǫ) + 2α + 2(1 + ǫ)

2αǫ + 2α(1 + ǫ)
=

4α + 4 + 4ǫ

2α + 4αǫ

which approaches 2 + 2

α
as ǫ approaches 0.

We know that ALG 2 is 2 + 2

α
-competitive, whereas PTD is 2α-

competitive. It suggests itself to choose between ALG 2 and PTD

depending on which competitive ratio is smaller for a given α. We

have 2 + 2

α
≤ 2α if and only if α ≥ 1

2
+ 1

2

√
5. So ALG 2 is better for

large values of α, whereas PTD is better for small values of α.

Intuitively, if the 1st class server is very expensive compared to

the 2nd class server, it seems reasonable to only use it if absolutely

necessary, that is, solely for 1st class requests. This corresponds to the

strategy of ALG 2. Otherwise, if the 1st class server is not much more

expensive, it makes sense to serve all requests with the 1st class server.

This is the strategy of PTD.

ALG 3. If α ≤ 1

2
+ 1

2

√
5 apply PTD, else apply ALG 2.

Theorem 6. ALG 3 is min{2α, 2 + 2

α
}-competitive for the DMPRP

with two classes, uniform deferral times and customers located on the

real line.
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In the worst case, if α = 1

2
+ 1

2

√
5, ALG 3 is 1 +

√
5 ≈ 3.2361-

competitive.
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