
Workgroup Middleware for Distributed Projects

Gail E. Kaiser and Stephen E. Dossick
Columbia University

Department of Computer Science
1214 Amsterdam Avenue, MC 0401

New York, NY 10027 USA
212-939-7000/fax:212-939-7084
kaiser, sdossick @cs.columbia.edu

ABSTRACT

We have developed a middleware framework for workgroup
environments that can support distributed software develop-
ment and a variety of other application domains requiring
document management and change management for distributed
projects. The framework enables hypermedia-based integra-
tion of arbitrary legacy and new information resources avail-
able via a range of protocols, not necessarily known in ad-
vance to us as the general framework developers nor even
to the environment instance designers. The repositories in
which such information resides may be dispersed across the
Internet and/or an organizational intranet. The framework
also permits a range of client models for user and tool inter-
action, and applies an extensible suite of collaboration ser-
vices, including but not limited to multi-participant workflow
and coordination, to their information retrievals and updates.
That is, the framework is interposed between clients, services
and repositories — thus “middleware”. We explain how our
framework makes it easy to realize a comprehensive collec-
tion of workgroup and workflow features we culled from a
requirements survey conducted by NASA.

KEYWORDS: Distributed software development support,
distributed document management, monitoring and manag-
ing distributed development processes, distributed change man-
agement, workflow management and coordination support in
distributed projects, Internet-based software process coordi-
nation

INTRODUCTION

We have developed a middleware framework for distributed
workgroup environments founded on what we call a referen-
tial hyperbase paradigm for representing and hyper-linking
the information resources of interest to a collaborating team
intent towards some joint purpose or goal (as opposed to in-
cidentally browsing the same materials for independent use,
such as most World Wide Web users). A referential hyper-
base differs from a conventional hyperbase in that the doc-
uments need not reside in the system’s own repository. A
referential hyperbase differs from a linkbase or link server in
providing full object-oriented database functionality includ-
ing a query language and entity typing.

The referential hyperbase system communicates with a vari-
ety of local and remote information repositories, each through
its original protocol. User clients and tools interact with the
hyperbase in client/server fashion, also each through their
appropriate protocol. The hyperbase may contain both na-
tive objects, internal to the system, and protocol objects, rep-
resenting external documents residing in one of the reposi-
tories. Native objects are retrieved and presented to clients
entirely through the hyperbase’s own object management fa-
cilities, but accessing the contents of protocol objects gener-
ally involves forwarding the appropriate operation(s) to their
home repositories and transmitting the results through the hy-
perbase back to the originating client. An extensible set of
collaborative work support services are performed explicitly
in response to requests from clients and/or implicitly upon
accesses to objects, independent of the protocol(s) used. These
groupspace, or group workspace, services may send and re-
ceive requests to/from each other as well as through the pro-
tocols to backend repositories and frontend clients.

Our system does not hardwire any particular protocols for
interacting with backend repositories or frontend clients. In-
stead, backend access protocols provide means to read and
write the documents required by the workgroup, and addi-
tional predicates and actions may expose the capabilities of
specific legacy and new information resources. Frontend pre-
sentation protocols tailor our system so that it appears to

1

Backend
Heterogeneous
Information
Repositories

Frontend
Heterogeneous
User/Tool
Clients

 Client Interface

Repository Interface

 Hyperbase
object layer

Data Access
Modules

Protocol Access
Modules

Data Schema

 Hyperbase
object layer

Data Access
Modules

Protocol Access
Modules

Data Schema

Groupspace
Interface

Groupspace
Service
Providers

Groupspace
Service
Roles

Figure 1: Framework Architecture

clients as if they are communicating with their own infor-
mation server. Thus users can continue using their familiar
legacy system commands, if desired, while still receiving the
benefits of the multi-protocol workgroup framework.

We are currently rethinking and reimplementing workflow
and transaction-based coordination components previously
integrated with our earlier, single-protocol (HTTP) referen-
tial hyperbase system targeted specifically to distributed soft-
ware development projects [11]. We have also ported and
continue to develop that system’s distributed tool launching
component [12]. [9] describes our experience using the ear-
lier HTTP-only system for our own continuing software de-
velopment efforts. Our new multi-protocol framework is in-
troduced in [10]. Here we briefly discuss the new framework
and our initial implementation, and then focus on how it en-
abled us to rapidly fulfill most of the generic workgroup re-
quirements adapted from the publicly available results of a
survey conducted within NASA in 1995 [8].

REFERENTIAL HYPERBASE

Figure 1 illustrates the middleware architecture. Each fron-
tend client communicates with the referential hyperbase server
in the client’s own native protocol, which is understood by
the corresponding Protocol Access Module (PAM). The ref-
erential hyperbase server retrieves and updates documents
from/to each backend repository using that repository’s na-
tive protocol, through the corresponding Data Access Mod-
ule (DAM). The PAMs and DAMs are written specially for
each client and repository, respectively, as “plugins” with re-
spect to the hyperbase system, and are dynamically loaded
as needed. Groupspace services are also interfaced to the
hyperbase server via plugins. The hyperbase system itself
consists of four main components: an object layer; an un-
derlying object management system (OMS), not shown, that

realizes the object layer; a data schema that may be extended
by DAMs, PAMs and groupspace services; and an API for
writing DAMs, PAMs and the service interfaces.

The data schema predefines a DAM base class, which is then
extended by each new DAM. In general, a DAM treats its
protocol object instances as “stubs” for external documents
— thus the referential nature of the hyperbase. These docu-
ments might reside anywhere on the Internet and/or organiza-
tional intranet. A protocol object might reflect any granular-
ity, from an individual tuple in a relational database, to a GIF
image, to an MPEG clip, to an entire website hierarchy or
database management system, to another hypermedia server,
or even to another workgroup environment. Different proto-
col objects might represent the same document in different
ways or at enclosing granularities, e.g., a URL pointing to
a named fragment of an HTML file and a URL referring to
the whole file can co-exist in the same hyperbase. Arbitrary
application-specific meta-data and links can be represented
by the attributes of protocol objects, independent of any links
embedded in their contents and any meta-data maintained by
their home repositories. Such attributes can be used, e.g., to
represent dependencies utilized during change propagation.

Every DAM necessarily publishes a read method and usu-
ally also a write method; e.g., in the case of HTTP, these
would perform GET and PUT functions, respectively. Read-
ing a protocol object from the hyperbase generally results
in retrieving the document content from its repository and
sending that content, along with application-specific meta-
data and links from the hyperbase, to the appropriate client.
A client may modify the content and write the protocol ob-
ject, which typically results in updating the corresponding
repository. Optional methods may provide type-specific or
repository-specific functionality for particular protocol ob-
ject subclasses. For example, printable materials might be
associated with a print method, and a protocol object cor-
responding to an Oracle or Sybase database might provide an
SQL query interface. Any of these methods may potentially
employ the object layer as a persistent object store, e.g., to
construct auxiliary objects as children of some protocol ob-
ject.

One or more attributes of a protocol object designate the lo-
cation of the corresponding external document. For example,
this might be a string attribute indicating the URL for a World
Wide Web entity. Other attributes, also interpreted by the
class’s DAM, locally cache the document content; what con-
stitutes content of course depends on the type. For a WWW
entity this might be an HTML file or a GIF image, and for
another collaboration environment the content might be any-
thing from a list of active users to a “to-do” list of pending
tasks to its events registrar.

GROUPSPACE SERVICES
A groupspace operates on top of a referential hyperbase to
actively support workgroup tasks, most significantly but not

2

solely through workflow, rather than simply providing pas-
sive access to documents. Groupspace functionality is not
specific to any particular protocol(s), but inserted indepen-
dently of the mix of repositories and clients. However, a
groupspace service might internally perform distinct actions
for different document classes; for instance, in a software de-
velopment environment, an editor reading, and possibly later
writing, a prose functional specification would probably be
treated as a completely different task, with different work-
flow constraints, than a compiler reading source code in or-
der to generate and write executables.

Groupspace services are divided into two aspects: providers
and roles. Roles are standard interfaces for those services
“expected” to be provided by a particular workgroup envi-
ronment. Note different environment instances may define
different roles, or define what are in essence the same roles
differently. These interfaces may be employed by the refer-
ential hyperbase system itself, as well as by other groupspace
services and by PAMs and DAMs. For example, conven-
tional concurrency control and failure recovery is required
by all multi-user hypermedia systems [17], and thus must be
realized by some role if not built into the underlying OMS.

Providers are independent components, connected to the hy-
perbase system via plugins, that each realize some service
such as workflow automation, concurrency control and re-
covery, tool management, intelligent search, guided tours,
and so on. Providers register callbacks implicitly invoked
by accesses to instances of particular classes (and their sub-
classes), or by accesses to any object. Providers may also
publish menus whose entries may be explicitly invoked. Ex-
actly one provider may register as the default implementa-
tion of a role. It is not necessary to know anything about
the provider that fulfills a role in order to use the standard
facilities for that role, since the referential hyperbase’s API
is extended with these operations (for that environment in-
stance).

The referential hyperbase system triggers groupspace ser-
vice roles, and corresponding providers, in two basic modes,
which we call wrap-around (or implicit) and direct (or ex-
plicit). In either case, the services are independent of the
particular communication protocols used. The wrap-around
mode involves activating the particular service both before
and after each request from the hyperbase to a DAM and
hence a backend information repository.

For example, a workflow service might treat reading a pro-
tocol object as a primitive task, and check preconditions be-
fore the operation’s execution and assert postconditions af-
terwards. Plausible preconditions might include the user’s
access rights to the document as well as his/her authoriza-
tion and responsibilities with respect to the enclosing com-
posite task, the status of all inputs (have prerequisites been
fulfilled?), and so on. Possible postconditions might include
checking deadlines for production of outputs (have impli-

cations been fulfilled?), notification of supervisors, routing
to another user for postprocessing as another task, etc. The
workflow engine itself does not need to know whether the ac-
tual task reflected by the protocol object read involves invok-
ing an X.509 authentication service, retrieving a Web page,
or submitting an SQL query.

Wrap-around services are stacked, meaning a specific order
among services is configured for the before callbacks, and
the reverse order is employed for the after callbacks. Multi-
ple providers for the same role may participate in the stack
without awareness on the part of clients. In contrast, clients
cannot take advantage of direct services except through the
standard interface of a role, or by requesting certain methods
of a named provider — requiring some knowledge of that
provider’s functionality.

Direct mode assumes that each service exposes a menu of
activities (no visual interpretation is implied) whose entries
then can be explicitly selected. The simplest example is a
list of tools handled by a tool launching service. Note that
while a given tool probably needs to know the format of its
input and output data, the launching service does not; they
can be passed as BLOBS (binary large objects). Another
possibility is a workflow service’s set of tasks; some of those
tasks may correspond exactly to reads and writes of individ-
ual protocol object instances, as above, but others may be
significantly more complex and involve sophisticated com-
putations on perhaps hundreds of objects, e.g., marketing and
requirements analysis for revamping the “look and feel” of an
existing product line.

User clients might be developed specifically as an adjunct
to the middleware framework, with their PAMs speaking the
“language” consisting of its published terms — from the stan-
dard API plus the roles specific to a given environment in-
stance. In contrast, the PAMs for legacy presentation proto-
cols convert or translate to the features provided by the work-
group environment, and vice versa, in a manner meaningful
for the relevant legacy system. Which services and which
menu entries are made available to a particular client de-
pends on the PAM. A sophisticated PAM might filter a menu
to make available only some of its entries only under certain
circumstances, supply details about the expected parameters,
and express the menu entries in a way meaningful to its users.

IMPLEMENTATION
Our referential hyperbase server, called Xanth, is implemented
as a Java application and runs on any platform that supports
Java 1.1. Its Java graphical user interface client runs as an
applet in Java-enabled browsers, which must be configured
to use our special HTTP proxy (which may be cascaded with
conventional caching or firewall proxies and/or with other
special-purpose proxies).

We use ObjectStore’s Persistent Storage Engine (PSE) as the
OMS. Xanth’s object layer supports the usual hierarchical

3

navigation and addition/deletion of objects, and provides an
OQL subset as its query language (PSE does not supply its
own query language).

PAMs are explicitly registered; DAMs are implicitly regis-
tered via inclusion of their protocol subclass in the object
layer’s data schema. Every PAM runs in its own Java thread
and is responsible for handling any network communications
required by the protocol. DAMs are woken up only when
needed, though they may spawn their own background threads
during initialization. Xanth’s API thus includes atomic op-
erations where warranted, to protect shared data from con-
current access, since PAMs, DAMs and groupspace service
providers can access the OMS through the object layer. All
our DAMs currently follow the JavaBeans conventions, and
we plan to soon convert all the PAMs and service plugins.
Groupspace service roles are implemented as Java interfaces.

Xanth does not hardwire any particular groupspace services,
but a particular Xanth workgroup environment called OzWeb
1.0 defines three roles, WorkflowManager, TransactionMan-
ager and ToolMediator, with one service fulfilling each role.
Details are outside the scope of this paper; see [10].

EVALUATION
The italicized capabilities listed below are paraphrased from
the NASA workgroup/workflow requirements survey. We
adopt these as generic goals for our middleware framework,
independent of any particular application, but most of them
are obviously useful for distributed software development.
We respond to each requirement with a brief description of
how Xanth makes it relatively easy to realize.

Cross-platform support, covering Unix workstations, PC Win-
dows, Macintoshes, and pen-based PDAs: Both Xanth clients
and servers run on any platform supporting Java 1.1. We’ve
tested Windows, Solaris, Linux and Irix. MacOS should
work, too, but Apple had just released their Java 1.1 sup-
port as of this writing. We’ve developed partial client sup-
port for the Newton MessagePad 2000 that exploits its na-
tive “to-do” list protocol: A PAM listens to the machine’s
serial port for the Newton “hotsync”, accepts updates indi-
cating completed assignments, and sends a zip-like file with
new work assignments and their ASCII parameters. A cor-
responding DAM defines Newton-specific “to-do” lists as a
subclass of the todoList base class, in turn a subclass of
the DAM class. A shell script invokes a utility to convert the
todoItem children to/from “newton” and stores/retrieves
them in the proper synchronization subdirectory.

Access via email, HTTP and dialup modem: A mail filter
program captures email to a Unix userid and resends the con-
tents of the message to the Xanth server in HTTP format; re-
sponses are similarly converted back from HTTP to email.
Another HTTP PAM handles conventional WWW-style re-
quests and responses, and the WebObject DAM commu-
nicates with backend websites via HTTP. Whether email or

HTTP access is appropriate for dialup depends on the modem
speed.

Reliable, secure and authenticated data transmission and stor-
age: This could be handled separately by every concerned
PAM and DAM, but it would be better to provide X.509 au-
thentication, public-key encryption and so forth as a wrap-
around groupspace service automatically applied to all data
accesses and updates as well as to all requests for direct ser-
vices. This feature has not yet been implemented.

Support for off-line work and merging: Checkout and Check-
in operations are transmitted by clients via HTTP to the
component fulfilling the TransactionManager role in OzWeb
1.0, to place and remove persistent locks permitting off-line
work in the meantime without need for merging — provided
that all other users of the relevant backend repository(ies)
also update it only through the same environment instance.
However, if the repository itself supports the checkout model
or long-duration locks, e.g., a WEBDAV-compliant website [15],
then its corresponding methods would be exposed through
the DAM for use by the TransactionManager provider in en-
forcing the concurrency control policy. If a non-exclusive
form of Checkoutwhere used instead, then either the DAM
or the backend repository itself would need to provide the
merging utility, which is inherently specific to the data for-
mat and semantics. Our transaction manager component is
presented in [18].

Version Control: The TransactionManager or some other groupspace
service(s) could implement versions, but again those versions
would only be accessible through Xanth and the backend
repository would only contain the latest variant. The CVSPackage
DAM, and its auxiliary CVSFile DAM for mirroring the
files from a CVS directory within the hyperbase, support
an example of a backend repository that itself provides ver-
sioning [13]. We’re working on another DAM that monitors
(polls) the CVS global log for changes and queues up these
events, which could trigger workflow and/or provide input to
a notification service.

Addressing, routing and tracking. Directory services: It is
not clear to us what NASA had in mind here. One form of
routing and tracking is provided by the WorkflowManager
component. A general tracking utility could be provided by
another groupspace service for logging whatever is appropri-
ate on behalf of all the other services (and DAMs and PAMs).
LDAP [19] and other directory services could be searched via
corresponding DAMs.

Personal and shared calendars with meeting and resource
scheduling: Our calendar base class, a PAM, defines com-
mon functionality for scheduling systems. As an example,
the icalSchedulePAM represents the individual and group
calendars implemented by the public domain ical scheduling
tool [7].

4

To-do items that are prioritizable, assignable to others, and
trackable for status: The generic todoList PAM class de-
fines a common representation for the “to-do” lists of various
tools. For instance, the “to-do” items stored in ical calendars
are automatically forwarded to the next day until deleted or
marked as “done”.

Integrated project files for email, calendar, to-do, etc., with
data enclosures including BLOBS: The integration is pro-
vided through the Xanth hyperbase. Arbitrary protocol ob-
jects can be attached via links to any other protocol objects.
One protocol object can be enclosed with another when trans-
mitted back to clients either as just the OID for later access,
or as contents and attributes.

Threaded dialogues: Our NNTP PAM provides access to In-
ternet and intranet news servers, and represents articles ac-
cessible via these servers. Threaded articles may be linked
to each other through the hyperbase. Since the cross-article
links are implemented by the hyperbase layer, it is possible
to make links between articles in different discussion groups
or on different news servers independent of the underlying
usenet threads.

Chat/conference: We’re implementing the proposed Rendezvous
Protocol (RVP), an IETF Internet Draft [5], to support scal-
able instant messaging (one-line messages) and chat (real-
time text conversations) among users of the same or differ-
ent Xanth environments. Each RVP server will operate as
a Xanth module (either groupspace plugin or PAM), and the
clients as JavaBeans, which can be incorporated into JDK1.1-
compliant Web browsers or other tools.

Video conferencing: This could potentially be realized either
through a stream-oriented DAM/PAM pair or by a groupspace
service. It is not clear, however, what it would mean to apply
wrap-around services to a video conference, or whether the
real-time requirements could be satisfied if the video stream
passed through the hyperbase system. It might be better for
the ToolMediator to fork the video application separately.

Compatibility with current desktop software, and access to
desktop and legacy data. A DAM could be constructed to
extract/insert data from/to ActiveX applications. A PAM im-
plementing the ActiveX Container standard could pop up
the appropriate application when such data is accessed by
clients. This has not yet been implemented. However, the
ToolMediator service already runs arbitrary Windows appli-
cations on the user’s PC, or on a server machine and export
the display to the user’s Unix workstation via WinDD.

Group whiteboards, editors and drawing tools: There’s noth-
ing particularly special in Xanth about multi-user versus single-
user tools. We have previously developed session manage-
ment and workflow support for synchronous what-you-see-
is-what-I-see groupware, see [14, 3], but have not yet incor-
porated those particular functions into the new groupspace
components used with Xanth.

User-friendly. Sophisticated data entry, access and ware-
housing facilities: Existing legacy clients, whether deemed
to be particularly “user friendly” and sophisticated, or not,
can continue to be used through construction of appropri-
ate PAMs. And of course new clients can be developed, ei-
ther for the workgroup framework in general, or for some
legacy information resource, and also connected to Xanth via
a PAM. And analogously for DAMs with respect to legacy
and new repositories. The generic approach to groupspace
services permits, e.g., introduction of data mining indepen-
dent of the information source.

Ability to integrate additional facilities using standard proto-
cols. Enhanceable with respect to interfaces and third party
products. These are precisely the main contributions of our
multi-protocol architecture. It took the second author four
hours to complete the CVS DAM and six hours for the NNTP
PAM. Another member of our lab, who was not directly in-
volved in the development of Xanth except to interface the
TransactionManager component, was able to add HTTPcheckin
and checkout operations in about an hour. Not counting
Xanth and the Oz 1.0 roles and providers, development of all
the workgroup facilities indicated as completed above was
done in two weeks.

Scalable to thousands of users while remaining inexpensive
and supportable with a small staff: Because Xanth and its
ToolMediator provide a range of mechanisms for running re-
mote tools and otherwise operate as middleware for network-
based computing, fewer applications will need to be main-
tained on personal computers, hence administration costs should
be reduced. We have some preliminary ideas about how to
organize “alliances” of multiple Xanth servers to scale up to
teams of teams, based on our previous work on Oz [2], but
this requirement will have to wait for future work.

We also developed a Tcl scripting console as a PAM, so one
can telnet to a port on the machine running the Xanth server
and debug by directly calling service plugin, DAM and PAM
methods. The facilities above were tested in this way, rather
than constructing full-blown graphical user interfaces.

CONCLUSIONS
The Open Hypermedia Protocol (OHP) [6] is being negoti-
ated in the hypertext community so that viewers for one hy-
permedia system can be used with any other compliant sys-
tem. Writing a PAM for a given protocol seems substan-
tially simpler and quicker than writing or adapting a viewer
to speak OHP, and analogously for DAMs and repositories.
Obviously, a PAM can be developed for OHP so that OHP-
compliant clients can be utilized. We do not intend to im-
ply that Xanth qualifies as an open hypermedia system, since
we do not intend to build our own viewers, but instead that
mixing and matching of legacy hypermedia systems can also
be achieved by integrating them with Xanth via PAMs and
DAMs — at the same time automatically enhancing them
with the available groupspace services.

5

A variety of collaboration environments have been developed
on top of the World Wide Web infrastructure, each providing
some of the workgroup facilities presented above, e.g., the
Virtual Collaboratorium [1] and BSCW [4]. But these are
generally specific to HTTP, and do not support other proto-
cols, while most hypermedia systems support their own “pro-
prietary” protocol, possibly augmented with OHP.

Our approach is closer to that of the Hyperform framework
for hypermedia system development [16]: We provide a frame-
work around which sophisticated, protocol-independent hy-
permedia collaboration environments may be designed, much
as Hyperform provides a rich set of hypermedia abstractions
in its framework. We do not focus, however, on develop-
ment tools like those provided in Hyperform. Instead, we
concentrate on providing support for development of multi-
ple protocol interfaces, giving workgroup environments built
with our toolkit access to, as well as allowing access from,
many different legacy information systems.

ACKNOWLEDGEMENTS: We would like to thank Jingshuang
Jack Yang, Wenyu Jiang, and Xiaoning Zhang for their work
with the authors on OzWeb. Discussions with members of
Dick Taylor’s group at the University of California at Irvine
have also contributed substantially to this research.

This effort is sponsored in part by the Defense Advanced Research
Projects Agency, and Rome Laboratory, Air Force Materiel Com-
mand, USAF, under cooperative agreement F30602-97-2-0022.

REFERENCES
1. Pete Beckman, Todd Green, and Juan Villacis. The virtual

collaboratorium.
http://www.extreme.indiana.edu:80/pseware/vc/overview.html.

2. Israel Ben-Shaul and Gail E. Kaiser. A Paradigm for Decen-
tralized Process
Modeling. Kluwer, 1995. http://www.wkap.nl/kapis/CGI-
BIN/WORLD/book.htm?0-7923-9631-6.

3. Israel Z. Ben-Shaul and Gail E. Kaiser. Integrating groupware
activities into workflow management systems. In 7th Israeli
Conference on Computer Systems and Software Engineering,
pages 140–149. IEEE Computer Society Press, June 1996.
ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-002-95.ps.Z.

4. R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr,
K. Sikkel, J. Trevor, and G. Woetzel. Basic support
for cooperative work on the World Wide Web. Interna-
tional Journal of Human Computer Studies, Spring 1997.
http://bscw.gmd.de/Papers/IJHCS/IJHCS.html.

5. Martin Calysn. Rendezvous protocol, November 1997. In-
ternet Draft. http://ds.internic.net/internet-drafts/draft-calsyn-
rvp-00.txt.

6. Hugh Davis, Sigi Reich, and Antoine Rizk. OHP –
Open Hypermedia Protocol working draft 2.0, June 1997.
http://diana.ecs.soton.ac.uk/ hcd/ohp/ohp.htm.

7. Sanjay Ghemawat.
Ical. http://www.research.digital.com/SRC/personal/Sanjay-
Ghemawat/ical/home.html.

8. Marion Hansen. Data from Workgroup/Workflow require-
ments survey for NASA, October 1995. http://server-
mpo.arc.nasa.gov/work/intro.html.

9. Wenyu Jiang, Gail E. Kaiser, Jack Jingshuang Yang,
and Stephen E. Dossick. WebCity: A WWW-based
hypermedia environment for software development. In
7th Workshop on Information Technologies and Sys-
tems, pages 241–245, December 1997. Poster paper.
ftp://ftp.psl.cs.columbia.edu/pub/psl/wits97.ps.gz.

10. Gail E. Kaiser and Stephen E. Dossick. Distributed hy-
permedia collaboration environments supporting legacy pro-
tocols. Technical Report CUCS-003-98, Columbia Uni-
versity Department of Computer Science, January 1998.
ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-003-98.ps.gz.

11. Gail E. Kaiser, Stephen E. Dossick, Wenyu Jiang, and
Jack Jingshuang Yang. An architecture for WWW-based
hypercode environments. In 1997 International Conference
on Software Engineering: Pulling Together, pages 3–13,
May 1997. ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-037-
96.ps.gz.

12. Gail E. Kaiser, Stephen E. Dossick, Wenyu Jiang, Jack Jing-
shuang Yang, and Sonny Xi Ye. WWW-based collabo-
ration environments with distributed tool services. World
Wide Web Journal, 1998. In press. Available as Columbia
University Department of Computer Science, CUCS-003-97,
February 1997, ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-
003-97.ps.gz.

13. Pascal Molli. CVS bubbles. http://www.loria.fr/ molli/cvs-
index.html.

14. Giuseppe Valetto and Gail E. Kaiser. Enveloping sophis-
ticated tools into process-centered environments. Jour-
nal of Automated Software Engineering, 3:309–345, 1996.
ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-022-95.ps.gz.

15. Jim Whitehead. IETF WEBDAV working group: World
Wide Web Distributed Authoring and Versioning, May 1997.
http://www.ics.uci.edu/ ejw/authoring/.

16. Uffe K. Wiil and John J. Leggett. Hyperform: A hy-
permedia system development environment. ACM Trans-
actions on Information Systems, 15(1):1–31, January 1997.
http://www.daimi.aau.dk/ kock/Publications/Hyperform/-
TOIS97.ps.gz.

17. U.K. Wiil and J.J. Leggett. Concurrency Control in
collaborative hypertext systems. In 5th ACM Con-
ference on Hypertext, pages 14–24, November 1993.
http://www.daimi.aau.dk/ kock/Publications/pubs/Hypertext93.ps.gz.

18. Jack J. Yang and Gail E. Kaiser. WebPern: An extensible
transaction server for the World Wide Web. Technical Re-
port CUCS-004-98, Columbia
University Department of Computer Science, January 1998.
ftp://ftp.psl.cs.columbia.edu/pub/psl/CUCS-004-98.ps.gz.

19. W. Yeong, T. Howes, and S. Kille. Lightweight Directory Ac-
cess Protocol, March 1995. Network Working Group Request
For Comments: 1777,
http://andrew2.andrew.cmu.edu/rfc/rfc1777.html.

6

