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Introduction

White Noise analysis is an important special case of the infinite dimensional calculus Gaussian
analysis. The mathematical framework offers various generalizations of concepts known from
finite-dimensional analysis, like differential operators and Fourier transform. Detailed informa-
tion concerning these methods can be found in the monographs [32], [4], [34], [51], [61] and
the articles [65], [42], [77], [74]. Within Gaussian analysis a various kind of problems can be
represented and solved in mathematical rigorous way. These can be treated only in an infinite
dimensional setting or in the framework of generalized functions. Such kind of problems arise
in mathematical physics (like statistical mechanics, quantum field theory, quantum mechanics
and polymer physics) and applied mathematics (Stochastic analysis, Dirichlet forms, stochastic
partial differential equations or financial mathematics).

This work can be separated into two main parts:

o Further development of Gaussian analysis.

e Applications to path integrals.

Gaussian analysis and generalized functions

Over the last thirty years there has been an increasing interest in Gaussian and especially White
Noise analysis, based on its rapid development in mathematical structure and applications in
various domains. One underlying point for this sophisticated structure was the circle of ideas
going under the heading characterization theorems. These results (see [41], [57], [66], [42],
[19]) and their variations and refinements (see, e.g., [52], [59], [60], [78], [84] and references
quoted there) were the starting point for a deep insight into the structure of spaces of smooth and
generalized random variables over the white noise spaces or, more generally, Gaussian spaces.
For detailed information we refer again to the books [34], [S1] and [61].

The basic technical idea in the development of this theory is the use of dual pairs of spaces

of test and generalized functionals. Of course, the usefulness of a particular test function space
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depends on the application one has in mind. Hence, various dual pairs appear in the literature.
Here construction, characterization and transformation concepts of a few kinds of dual pairs are
presented in Chapter 2, where necessary preliminaries are given in Chapter 1. For applications

the following spaces are of most interest in this thesis:

The Hida spaces:

We recall the construction of the nuclear triplet
(N) € L) < (N,

and give the construction of the second quantized space (N) solely in terms of the topol-
ogy of a nuclear space N, independent of the particular representation as a projective

limit, see Section 2.5.1.

The spaces of regular distributions:

In Section 2.6 spaces of regular test and generalized functions are discussed. These spaces
are of various interest since in all terms the chaos expansion is given by Hilbert space
kernels. Hence, also the distributions have an expansion in a series of n-fold stochastic

integrals. In our case the triplet
GcLlwcg,

is of most interest for applications. This triple was first introduced in [67] and later

characterized via Bargman-Segal-spaces in [21].

In Chapter 3 and Chapter 4 we give further development to the inner structure of Gaussian

spaces. Among them are differential calculus and products of generalized functions.

Differential calculus

In Section 3.1 differential operators of first and second order on spaces of generalized functions
are discussed. Especially, Gateaux derivatives and the so called Gross Laplacian are introduced
and properties are listed. The ensuing Section 3.2 introduces linear operators based on differen-
tial operators in spaces of test and generalized functions. These are important for applications
of the concept of generalized functions, e.g. for a mathematical rigorous definition of Feynman
integrands. First we follow [34] and [82], see also [51] and [61], and define this operator on
the test function space (N). Later we prove in which case an extension to generalized func-
tions is sensible. Let us denote that an important example where such extensions make sense is
Donsker’s delta. Moreover, we give a representation of such operators in terms of exponentials

of differential operators. In detail the following operators are discussed:



Translation:

A translation in a direction of an element from the complexification of the underlying
Hilbert space is defined first for test function spaces, see e.g. [34], [67]. In Section 3.2.1
we prove that a translation can be extended to a well-defined operator from the space of
regular generalized functions G’ into itself. In addition a representation of a translation in
such a direction 7 is given by the exponential of the Gateaux derivative in 1, see Theorem
3.21.

Orthogonal projection:

Following [82] we consider a composition of a regular test functions with an orthogo-
nal projection in a direction of an element from the complexification of the underlying
Hilbert space as an operator from G into itself. In Corollary 3.19 it is shown that there
exists no extension of such an orthogonal projection to spaces of generalized functions.
Nevertheless, there exist regular generalized functions for which this composition is well-
defined. Thus we decompose an orthogonal projection into an orthogonal projection (in
the corresponding direction) of every kernel and an exponential of the second Gateaux
derivative w.r.t. the direction of the projection, see Theorem 3.21. Here the orthogonal
projection of the kernels can be extended to a well-defined operator from G’ into itself,
see Lemma 3.16. Hence, a characterization of the domain of an orthogonal projection in
the space of regular generalized functions G’ is given via the domain of an exponential of

the second Gateaux derivative, see Theorem 3.20.

Complex scaling:

The so called scaling operator o, z € C, discussed in Section 3.2.3, is of huge interest.
Some properties of o, are collected and its domain and range is specified, first where it
acts continuously (close to [34] and [82]). Moreover, we discuss how to extend domains
of o, since for applications to path integrals. Furthermore, a representation as a combi-
nation of the second quantization of z1I (here 1 denotes the identity on the corresponding
space) and an exponential of the Gross Laplacian is given in Theorem 3.32. Let us denote
that the second quantization of z1l can be extended to a continuous operator from (S)" into
itself. Thus close to the orthogonal projection the domain of the scaling operator can be

characterized via an exponential of the Gross Laplacian.

Localized complex scaling:

In the special case of white noise spaces we can define a localized complex scaling op-

erator 0, ,, 2 € C, —0o < ) < t < oo, which is roughly speaking a restriction of the



scaling operator to a finite interval. In Theorem 3.42 its representation as a combination
of the second quantization of z1l, a projection and an exponential of the Gross Laplacian
restricted to the time-interval [#y, t] is shown. Furthermore, with help of the adjoint of the
localized scaling operator a relation to the kinetic energy in a path integral combined with

a Gaussian fall-off is given, see Theorem 3.40.

In addition we show that the underlying differential operators generate semigroups of linear

operators on the corresponding underlying space of test functions.

Products of generalized functions

Since the test function spaces form algebras the inner or pointwise products are well-defined
in any case. Furthermore, via the dual pairing the pointwise product of a test function and an
element from the corresponding space of generalized functions is still a well-defined object in
this distribution space. Thus one can define a pointwise product of generalized functions when-
ever the product of the corresponding generalized chaos decompositions defines an element of
a suitable distribution space. In contrast to the pointwise product the so called Wick product is
closed under the corresponding multiplication in several distribution spaces like Hida distribu-
tions and regular generalized functions, see e.g. [43] and [25], [19], [62],[81] for applications.
In Theorem 4.9 it is shown in which case both products coincide under some projection prop-
erties. Note that these properties go back to the strongly independence defined in [3], see also
[7] and [17].

For application products of Donsker’s delta with generalized functions are of enormous inter-
est. In [55] a formula for n-times product of various Donsker’s deltas is achieved. This formula
is used to construct products of Donsker’s delta of Brownian motion and Brownian bridge at
several times, see Section 4.3. In addition a relation between both via the Wick or strongly in-
dependent pointwise product is given, see Theorem 4.16. But for applications also products of
arbitrary generalized functions with several types of Donsker’s deltas are important. In Section
4.4 products of regular test functions with Donsker’s delta are considered. These always exist
since Donsker’s delta is a regular distribution. In Theorem 4.24 it is shown that a representation
of this product can always be presented by a translation combined with an orthogonal projection
operator of the regular test function multiplied with Donsker’s delta. The product therein is a
Wick product, especially an independent pointwise product. In addition, we characterize the
set of regular generalized functions which can be multiplied with Donsker’s delta as a subset of
G’ for which the orthogonal projection exists, see Theorem 4.25 and Theorem 4.28. Thereby
the orthogonal projection is mentioned in the direction of the function where Donsker’s delta is

located.



Applications to path integrals

In many branches of theoretical physics, e.g. quantum field theory and polymer physics (path)
integrals are of particular interest. The initial idea of averages over paths has a mathematical
meaning only for the solution of the heat equation. In this case, one can present the solution
by a path integral, based on the Wiener measure. This is stated by the famous Feynman-Kac
formula
!
E (exp (f V(xo + B,) dr) f(xo + B,)) ,
fo
for suitable £,V : R > R, x €e RYand 0 <ty <t < T < oo, see e.g. [68]. Furthermore, for

suitable potentials the heat kernel Ky is given by

1 1 ,
mexp( 2(t_t0)(.x0 x))

! r—1 r—1I
XE(exp (f V(xo - (xo—x)+ B, — B,) a’r)), (D)
f0 t—1 t—1

forO<ty<t<T,x,x €RY seee.g. [31].

KV(X’ 1 Xo, t()) =

There have been a lot of attempts to write down solutions of complex scaled heat equations
(like e.g. the Schrodinger equation) as a (path) integral in a mathematical rigorous way. The
methods used in this context (e.g. analytic continuation, limits of finite dimensional approxi-
mation and Fourier transform) are always more involved and less direct than in the euclidean —
i.e. Feynman-Kac — case. This is stated by the following fact: one may easily prove that there
exists no reasonably well-behaved translation invariant measure on any infinite-dimensional
Hilbert space. More detailed, for any translation invariant measure on a infinite dimensional
Hilbert space such that all balls are measurable sets there must be many balls whose measure
is either zero or co. Therefore, it is reasonable why the formal expression D, x used in some
physical textbooks is problematic and misleading. But one may have hope that the ill defined
‘measure’ D, x combined with the kinetic energy term produces a well-defined complex mea-
sure with imaginary variance o> = i, or that this combination can be represented as the limit
of Gaussian measures. But this causes problems if we assume that cylinder functions are in-
tegrated in the obvious way, see [14]. In [6] it is shown that for any finite (complex or real)

measure with N-dimensional densities

N (x - Xj—1)2
pZ‘N>~-~>to(xN’ ) XO) = l_l PR

exp|i
2riy(ti —ti-1) ( 2y(t;—tj-1)
one must have that iy € R*. Hence, there is no hope for measure theory to solve problems with

path integration. Instead of giving a long list of publications with different approaches to path



integrals, we refer to [1] and the large number of references therein. We choose a white noise
approach to construct a complex scaled heat kernel as the expectation of a generalized function
for a new class of potentials. Furthermore, we construct Feynman integrands and give a relation
between the general Gaussian ansatz for path integrals and the concept of the complex scaled

heat kernel.

Complex scaling of the heat equation

Chapter 5 proposes a strategy to construct a solution of the complex scaled heat equation as
the generalized expectation of a generalized function of white noise. This is inspired by [13],
see also [6]. That means we construct a complex scaled Feynman-Kac-kernel with white noise

methods for suitable potentials V by giving a meaning to

K (x,1] x0,10) = (x0 — X)z)

1 1
——eXp|l-————
\27(t — t9)z? p( 2(t = t0)?

1 (! —t -1
xE(eXp(—sz(XO"‘r O(X—xo)+ZBr—r OBz)di”)), )
z° Js t—1 t—1t

which is a scaled version of (1). This is done by inserting Donsker’s delta in order to fix the

final point x € R?, and taking a generalized expectation, i.e.,

Ky(x,t;x0,t)) = E (exp (le f V(x+ zB,) dr) 0,0(B; — (x — xo))) , 3)

]

whenever the integrand is a generalized function of white noise, e.g. a Hida distribution. The

fundamental concept in proving this is a Wick product representation of the integrand

exp (le f V(x +zB,) dr) 0.0(B; — (x = xp))

4]

= exp (l2 ft V(xo + T- to(x — Xp) + z(Br . tOBt))dr) ¢ 0,0 (B, — (x — xp)),

2 Jy t— 1t t—to
whose generalized expectation coincides with (2). For analytic potentials these Wick product
representation is shown in Section 5.3. The proof is based on a finite dimensional approximation
close to the construction of classical Feynman-Kac-kernels, see e.g. [31]. In Section 5.4 we
generalized this to potentials fulfilling some regularity conditions. Therein the knowledge from

Section 4.4 is used.

Feynman integrands

The idea to realize Feynman integrals within the white noise framework was first mentioned

in the work of Hida and Streit [35]. The basic concept therein goes back to Feynman’s primal



construction of averages over paths, where the integral in white noise is understood as the
dual pairing of a distribution with a test function. In this case, the Feynman integrand is an
element of a suitable space of distributions which depends on the interacting potential. In the
white noise framework the first attempt to include interaction with a potential was done in
[40]. Khandekar and Streit constructed the Feynman integrand for a large class of potentials
including singular ones. Basically they constructed a strong Dyson series converging in the
space of Hida distributions. This causes various works where for different classes of potentials,
Feynman integrals have been constructed in White Noise analysis. In Chapter 6 we give a short
overview of these classes and a general ansatz for the Feynman integrand in white noise (for
detailed constructions see e.g. [10], [40], [34], [20], [49], [5], [74], [9], [56], [27] and [26]). In
most cases perturbation techniques was used, see [40], [34], [20], [49], [74], [9]. Nevertheless,
in all cases the corresponding Feynman integrand exists as a Hida distribution or is in the larger
space of Kondratiev distributions.

In Chapter 7 we give a new strategy to construct Feynman integrands in white noise based on
the concept of complex scaling, see again [13], [6] and [30]. This is based on the representation
of the kinetic energy factor combined with a Gaussian fall-off as a localized scaling operator
and its adjoint. Within this concept the Feynman integrand for a new class of analytic potentials
is constructed as generalized function of white noise, called Doss class. Let us remark that this
class includes also non-perturbative accessible potentials. The techniques used here are analytic
continuation, a relation between the localized scaling operator and normalized exponentials and
the formula for products of regular generalized functions and Donsker’s delta found in Theorem
4.25. Thus a relation to the complex scaled Feynman-Kac kernel is given, see Theorem 7.1.
Among these calculations it is shown that not only the expectation of the Feynman integrand but
also the T-transform of it has a physical meaning as a time-dependent propagator, see Theorem
7.16. This is proven without a formal integration by parts. Beyond that, we also construct a
linear time-dependent complex scaled Feynman-Kac formula. Parts of this results are already
published in [27] and [26]. Although the classes of potentials described in Chapter 6 might not
lead us to regular generalized functions (in the worst case Kondratiev distributions), we are able
to construct the corresponding Feynman integrands with help of the complex scaling ansatz as
Hida or Kondratiev distributions, see Section 7.5. Furthermore we combine such a class (the
Khandekar-Streit class) with the Doss class, see Theorem, 7.25. The underlying concepts are

the perturbation techniques described in Chapter 6.






Chapter 1

Preliminaries

1.1 Some facts on nuclear triples

We start in considering a real separable Hilbert space H with inner product (-, -) and norm | - |.
If N is a separable nuclear space (in the sense of Grothendieck) which is densely topologically

embedded in H we can construct the Gel’fand triple
NcHCN.
By an extension of the inner product in H

<n’é‘:>:(n’f)’ fE?‘{, é':E N,

one can realize the dual pairing (-, -) of N and N. Instead of reproducing the abstract definition
of nuclear spaces we give a complete (and convenient) characterization in terms of projective
limits of countably Hilbert spaces (see e.g., [64] or [70] not only for the definition but also for

the proof of the characterization).

Theorem 1.1. The nuclear Frechet space N can be represented as
N =(H,
peN

where {H,, p € N} is a family of Hilbert spaces such that for all p;, p, € N there exists p € N
such that the embeddings H, — H,, and H,, — H,, are of Hilbert-Schmidt type. The topology
of N is given by the projective limit topology, i.e., the coarsest topology on N such that the

canonical embeddings N — H,, are continuous for all p € N.

We denote the Hilbertian norms on H), by |-|,. Without loss of generality we always suppose
that for all p € N and for all £ € N the relation |£] < |£], holds and that the system of norms is

9



10 CHAPTER 1. PRELIMINARIES

ordered, i.e., |- |, < |-, for p < g. General duality theory tells us that the dual space N’ can be

written as

N = J#H.,,

peN

provided with inductive limit topology by using the dual family of spaces {H_, := H, p € N}.
Remember that the inductive limit topology (w.r.t. this family) is the finest topology on N’ such
that the embeddings H_, < N’ are continuous for a p € N. It is convenient to denote the norm
on H_, by |-]-.

Moreover, we want to introduce the notion of tensor powers of a nuclear space. The simplest
way to do this is to start from usual tensor powers 7{5’”, n € N, of Hilbert spaces. Since there
is no danger of confusion, we will preserve the notation | - |y, | - |,, and | - |, for the norms on

H®", HF" and HE, respectively, for all n € N. Using the definition

N®" .= prlim H®",
peN

one can prove (see again [64] or [70]) that N®" is a nuclear space which is called the n-th tensor

power of N. The dual space of N®" can be written as
®ny _ : : ®n
(N®") =ind lplerg?{_p.

All of the results quoted above hold also for complex spaces, especially for the complexified
space N¢. By definition an element 6 € N¢ decomposes into 6 = & + in, where £, € N. If we

also introduce the corresponding complexified Hilbert spaces H,, ¢ the inner product becomes

(01,02)91,. = (91,9_2)% = (&1, E)nm, + (M M), + 10, E)w, — 1€ M2,

for 01,0, € H,c, 0, = & +iny, 0, = &+ i, where €, &, 11,12 € H,. Thus, we have introduced
a nuclear triple

NE" C HEL < (NE")

We also want to introduce the (Boson or symmetric) Fock space I'(H) of H by
rirn = Doz
n=0
with the convention 7). := C and the Hilbertian norm

2 =2 _ (n) T ®n
oo B={e" neNye (HH

n=0

1Bl = > |
n=0



1.2. HOLOMORPHY ON LOCAL CONVEX SPACES 11

Example 1.2. (i) If we consider a finite dimensional Hilbert space H of dimension d € N,
then

N=H=N =R’

(ii) One can choose the real space of Schwartz test function, S(R), of rapidly decreasing
smooth functions as our nuclear space N. Then the Hilbert space H can be taken as
the space of real-valued square-integrable functions w.r.t. the Lebesque measure, H =
L*(R,R). As one can see in later chapters this is the convenient choice of N and H in
White Noise analysis. Usually one chooses the Hilbertian norms { |-1,, p€ N} topolo-

gizing S (R), which are given by
18l, := 1H"glo, g € S(R).

Here H denotes the Hamiltonian of the Harmonic oscillator with ground state eigenvalue

2, written in a formula

02
Hg(1t) := —@g(t) + (@ + Dg(n), teR.

Hence, in this case H, is the completion of S (R) w.r.t. | - |,

1.2 Holomorphy on local convex spaces

In this section we collect some facts from the theory of holomorphic functions in locally convex
topological vector spaces (over the complex field C), see e.g. [11]. These topics are necessary
tools to characterize the Gaussian spaces which we want to introduce in Chapter 2, (see Section
2.5 for the characterization). So let & be a locally convex topological vector space and £L(E")
the space of n-linear mappings from &" into C. Moreover, we denote L (E") to be the subspace
of L(&") of symmetric n-linear forms and £"(&) the n-homogeneous polynomials on & Then

there is a linear bijection
L(E): Ao AcP(E).

Definition 1.3. Let U C & be open and G a function from U to C. G is said to be Gateaux-
holomorphic, short G-holomorphic, if for all ¢ € U and for all 0 € & the mapping from C to C:
A = G(& + A60) is holomorphic in some neighborhood of zero in C.

If G is G-holomorphic then for every 8 € U there exists a sequence of homogeneous poly-
nomials %d”G/@) such that

[ee)

1 —
GE+0) = Z ;d”G(G)(f), (L.1)

n=0 "
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for all £ from some open set V C U. We call the function G holomorphic, if for all 8 € U there
exists an open neighborhood V of zero such that the sum in (1.1) converges uniformly on V
(in &) to a continuous function. As an alternative to the denotation "holomorphic" one also says
"entire" in different kind of literature. We say that G is holomorphic at & if there is an open set

U containing &, such that G is holomorphic on U.
Proposition 1.4. G is holomorphic if and only if it is G-holomorphic and locally bounded.

The proof of this proposition can be found e.g., in [11]. Let us explicitly consider a function
holomorphic at the point 0 € & = N¢. Then, since we do not want to discern between different
restrictions of one function, we consider germs of holomorphic functions. That means, we
identify F and G if there exists an open neighborhood U with 0 € U C N¢ such that F(¢) =
G(¢) forall ¢ € U.

Definition 1.5. We define Holy(N¢) to be the algebra of germs of complex-valued functions on
N¢ which are holomorphic at zero. It is equipped with the inductive limit topology given by the

following family of norms

Npieo(G) = sup |G(E), p,leN.

€lp<27!

Corollary 1.6. A function G : N¢ — C is an element of Holy(N¢) if and only if there exist
peN,e>0and0 < C < oo such that:

(i) Forall ¢ € Nc with |€|, < € and for all § € N¢ the function
CaA G+ 10) € C,

is analytic at 0 € C.

(ii) For all ¢ € Nc with |€], < € one has that |G(§)| < C.



Chapter 2
Gaussian Analysis

This chapter is, with regard to contents, a repetition of the basic concepts of Gaussian Analysis.
Among this are construction, characterization, transformations and examples for elements of
several spaces of test and generalized functions. Hence, we point the reader familiar with Hida,

Kondratiev and regular distributions to the next chapter.

2.1 Gaussian spaces

To introduce a probability measure on the vector space N’ we consider the o-algebra C,(N")

generated by cylinder sets:

Fy,...,F,

Colrtn o= {xeN'

(x, &) e Fy,...,(x,&,) € F,,}, EeN,FieBR), j=1,...,n, neN,
where B(R) denotes the Borel o-algebra on R. By the characteristic function

fN oxp (i, £) duu(x) = exp (- Jigh). €€ N,

the canonical Gaussian measure on (N’, C,(N’)) is given via Minlos’ theorem, see e.g. [33],
[4] and [34]. We consider the completion of the resultant probability space (N’, C-(N’), i) and
denote the completion of the o-algebra C,(N’) w.r.t. u by C,(N’).

If a measurable function f defined on N’ is integrable w.r.t. u, that means fN, | £(x)| du(x)
is finite, we call the integral fN, f(x) du(x) the expectation of f and denote it by E,(f). If the
measure is fixed we write only E instead of E,. Furthermore, we define the space of integrable
functions w.r.t. u by L'(u) := L (N', CW(N’),/J).

The space of complex-valued functions which are square-integrable w.r.t. our measure u

L) := L (N, Cou(N), 1),

13
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is the central space in the setting of Gaussian Analysis. The inner product of it is given by
o = [ TR0 f.g € Lo
N/

Example 2.1. (i) For ¢ € N®*, n € N, and ¢, € C we define the smooth Wick monomials

of order n corresponding to the kernels ¢ by
I((p("))(x) = <: x&" :,<p(")> , x€N', neN,.
Here the maps
N oxmH:x®:¢e (N®")I,

are the so called Wick powers of order n, n € N, and <: §®0> &0 =1, see e.g. [4]
or [34]. Note that the smooth Wick monomials of different order are orthogonal w.r.t. the
inner product in L*(u).

(ii) By using an approximation we can construct Wick monomials 1 ( f(”)) with kernels f™ €
HE". Le., for any sequence ((p("))/_eN c N&" converging to f™ in HE" one has conver-
gence of the corresponding Wick monomials 1 (go(")) to 1 ( f(”)) in any LP(u), p > 1, see
e.g. [4]. Therefore, we use I(f(”)) = <: x& s, f(”)> as a formal notation for the measur-
able monomials introduced above. Again, we have an orthogonality property for Wick

monomials associated to kernels f* € HE" and g™ € HE™, n,m € N:

1(F™), (g™ = cxen s N @ g™ du(x) = Spm (W’ g™ e, 20
L) H

N/

where 6, denotes the Kronecker delta.

(iii) An important example for an element of L*(u) is the so called Wick exponential

exp ((x, &)
" E, (exp(x.))

(9]

1 1
= &Xp (<x, f)) eXp (_Elflo) Z —' ®n :’§®n> ,

n=0

rexp ((x,€))
(2.2)
forxe N and € € N.

In the following we give more special examples by choosing a concrete nuclear space N and

a corresponding Hilbert space H, in this case the white noise spaces.

Example 2.2. (i) We consider the real Schwartz triple (or white noise triple)

S@R) c L*(R,R) c S'(R).
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(ii)

(iii)

In the sense of a L*(u)-limit a version of Wiener’s Brownian motion starting in zero at

time ty is given by:

!
B (w) == w, 1}, = f w(s)ds, 0<ty<t< oo, (2.3)

fo

where the later informal expression rigorously only makes sense for w € L*(R). Here 1,
denotes the indicator function of A C R. Similar, for 0 < ty < t < oo we can define a

version of a Brownian bridge starting in zero at time t, and ending in zero at time t via

0—0 ) §—1Io
B, [ (w) = (w, 1}.5) — P (W, 1), W< s<t (2.4)
-1

To define d-parametric white noise, d € N, we consider the Gel fand triple
SRY) c LA(RY R) c S’ (RY).
Hence, a version of d-parameter Brownian sheet can be defined by

B(xl’ E) Xd)((l)) = <CL), ]l[xl/\0,0\/xl) Teee” ]l[xd/\0,0de)>’ (xla ) xd)T € Rda w € S/(Rd)

Following [78] one can also define vector-valued white noise. In this case one starts with
the real separable Hilbert space of vector-valued square-integrable functions Lfi(R) =
L*(R,R%), d € N. Then S4R), the space of vector-valued Schwartz test functions is
chosen as its densely embedded nuclear subspace. Here the topology on S 4(R) is given

by the system of Hilbertian norms

d
g2 = 1gil g=(g1,....80) € Sa(R), g; € S(R), 1 < j<d, peN,.
j=1

The resultant vector-valued white noise triple is then given by
S4(R) c LY(R) c S/(R).
Again, a version of (d-dimensional) Brownian motion is given by

B(t,w) 1= (w, o) := (), Mppn)) > 0<tg<t<00, w=(wr,...,w) € SYR).

j=1es

Note that on §(R) the canonical Gaussian measure p, can be determined via the char-

acteristic function

1 d
Culg) = exp[—i fR Zg?(r)dr], g € S,(R).
j=1
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Now we want to consider the space of smooth polynomials on N’:

N

PIN') := {90 l px)= D (¥, "), g" e N, xe N, N N}.

n=0

Of course, any ¢ € P(N’) can be represented as a smooth Wick polynomial, i.e.,

N

PN') = {90 ‘ @(x) = Z (: X" :,go(’”), e™ e NS xeN', Ne N}.
n=0

Moreover, one can show that P(N’) is dense in L?(u). Consequently, for any f € L*(u), there

exists an Ito-Segal-Wiener chaos decomposition given by

o0

f(x) = Z (tx® 0 f0), fP e HE, xeN. (2.5)

n=0

Hence, by (2.1) the norm of f € L*(u) can be represented as follows

(o)

||f||iz(ﬂ) = Z n! (W, f(”)).

n=0

We introduce a generalized Laplace transform on the space L*(u), called S -transform.
Definition 2.3. Let f € L*(u) and & € N. Then we define the S -transform of f in £ as the inner
product

Sf&) = (f.: exp((€)):)

1
o exp(—5|g|§) fN ) exp (£ du(),

By definition of the Wick monomials we obtain that

(o)

Sf@ =) (£ "), €eN,
n=0
where of course f™ denotes the n-th kernel of the chaos decomposition of € L*(u), see (2.5).
Moreover, there exists an entire extension

[

S £(0) = Z (¢*.f™). 6eNc. (2.6)

n=0

Remark 2.4. For an explanation of the connection between S -transform and the Segal-Barg-
mann transform we refer to [42].
Nevertheless, for practical purposes the distribution space P'(N") is in some sense too large.

This in detailed is pointed out in e.g. [82].
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2.2 Generalized functions

In this section we introduce a preliminary distribution theory in infinite dimensional Gaussian
analysis. We first choose P(N’) as our (minimal) test function space. The idea to use spaces of
this type as adequate spaces of test functions is rather old, see [46]. Therein it is also discussed in
which sense this space is minimal. As mentioned in the last section P(N’) is densely embedded
in L2(u). The space P(N’) may be equipped with various different topologies, but there exists
a natural one such that P(N’) becomes a nuclear space, see e.g. [4]. The topology on P(N’) is
chosen such that it becomes isomorphic to the topological direct sum of tensor powers N2, see
e.g. [70],

P(N') = é} NG
n=0

The isomorphism is given by

[59)

ne No} € ®N®”,

n=0

PN 3 ¢, () = Do 2% ™), xe N e {gt”
n=0

where in this case only a finite number of ¢ is non-zero. Instead of reproducing the full
construction we describe the notion of convergence of sequences w.r.t. this topology on P(N”).

We consider

N(p)
pe PN,  o(x)= Z< DX :,(p(”>>,
n=0
and a sequence (¢;) jen given by
N(g))
’ — . n . (n)
gie PND, i = > (a0,
n=0

Moreover, we define the mapping p,, : P(N") — Ng’” by pag = ¢™. Then the sequence (¢;) jen
of smooth polynomials converges to ¢ € P(N’) if and only if the set {N(¢;), j € N} is bounded

and p,p; — pap as j goes to infinity in Ng” for all n € N. Now we consider the triple
PN') c L(w) c P’(N'),

where P’(N’) denotes the dual space of P(N”) w.r.t. L*(u). The (bilinear) dual pairing (-, -)
between P’ (N’) and P(N’) is connected to the (sesquilinear) inner product on L*(u) by

«fe) = (f, QO)LZ(;,)’ feLlX ), ¢ePWN). (2.7)
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The concept of expectation can be extended from L?-functions to distributions ® € $'(N”’) by
E (D) := (D, 1), ¢ePN),

since the constant function 1 is in P(N’). We are interested in providing a description of '(N”)
via a natural decomposition of ® € P’(N’). So let ®™ € N(’Cé’”. Then there exists a distribution

I (d)(”)) acting on polynomials ¢ € P(N’) as

(7(0). o) = ni {0, ")

As a formal notation we use / ((Dm)) = <: .on . (1)(”>> for the distribution introduced above. Then
any ® € £'(N’) has the unique decomposition

(o)

O(x) = Z (:2% L 0"), xe N,

n=0
where the sum above converges in £’(N’). Moreover, we have that

[ee)

(@09 = > nl(®", 6"}, e PN,

n=0

see e.g. [45].

2.3 Spaces of test and generalized functions

In this section we consider projective and inductive limits of sequences of Hilbert spaces, the
so called test and generalized functions. For doing this we define the following Hilbertian norm
for a smooth Wick polynomial ¢(x) = ¥V, <: X%, go(”)>, x € N’, by

90(")

2
[7’

2 . n1+6~ng
gl p g := D (n)'*F2
n=0

forany p,q € Z, 8 € [-1,1]. Then for p,q € N, 5 € [0, 1] the completion of P(N’) w.r.t. |- |?

B
is a Hilbert space which is denoted by (H, p)g. Equivalently, we can define

(H,); = {f € L( l F@ =) (x5 fP), x e NI s < oo}.
n=0

The space of test functions (NV)? is then defined as the projective limit of the spaces (H p)fj, ie.,

NP = ().

p,q>0
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For a test function ¢ € (N)? there exists a unique chaos decomposition

N

o(x) = Z <: X" :,tp(”)> , xeN’,
n=0

since (N)’ c L2(u). Note that the kernels ¢® € (N)®", see e.g. [34]. Hence, for every ¢ €
(N)? there exists an unique (in L*(u)) point-wise defined representative ¢ which is strongly
continuous from N’ into C.

To consider generalized functions we denote the dual spaces of (7-(1,)6 and (N w.r.t. L*(u)
by (H- p):'g and (N) 7, respectively. We denote the corresponding bilinear dual pairing by (-, -)).
This is connected to the sesquilinear inner product on L?(u) as described in (2.7). From general

duality theory we can conclude that
W7 = @)
P:q=0

Hence, every distribution is of finite order, i.e., for every ® € (N)™ there exists p,q € Ny
such that @ € (7-{_,)):5. Moreover, by definition the Hilbert space (7-(_[,):2 can be described as

follows:

(H_)2 = {cp e P'(N) | 0" € (NE", IIDIE, _, 5 < 00}-

Remark 2.5. If we consider the white noise triplet as in Example 2.2 (i) and the Hilbertian
norms | - |, as in Section 1.1 then the spaces (N) = (N)? and (NY = (N)™ coincide with
the well-known spaces of Hida test functions and distributions, (S (R)) and (S (R))’, which are
usually denoted by (S) and (S)'. Further information can be found in e.g. [44], [41], [48], [4],
[66], [34] and [42].

So we get the following chain of spaces
M'c NP cN)c L) c(NY c (NP c (V™.

The space (N)~! is called the space of Kondratiev distributions. This is (in some sense) the
largest space of generalized functions which can be characterized with help of the § -transform
(see Remark 2.8 below).

Example 2.6. Let us again consider the white noise triplet introduced in Example 2.2. Then an
example for an element of (S)’ is the so called Gaussian white noise process w(t), t > 0, which

is the derivative of Brownian motion in the weak sense. This process is defined by
(U(t) = <(,U, 5t>’ t Z 05

where 6, € S'(R) denotes the Dirac delta function.
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Remark 2.7. By Kolmogorov’s continuity theorem (see e.g. [79]) there exists a continuous
version B(t), t > 0 of B(t), t > 0, called standard Brownian motion. In detail the existence of
a continuous version of test functions is shown in [51]. Among this work we always consider
continuous versions of a test function in calculations. In contrast to this we consider Brownian
motion as defined in Example 2.2. But this does not matter since we use equality of random

variables in mean square or in the sense of generalized functions.

2.4 Transformations of generalized functions

In this section we want to extend the S -transform introduced in Definition 2.3 to generalized
functions. Moreover, we want to define a generalized Fourier transform for such functions. Let

us consider the Wick exponential as in (2.2):

(9]

cexp({x, &) 1= Z%( X2, E%y, forxe N and £ € N.

n=0

Calculating its p, g, B-norm yields

paB Z( ‘)Hﬂznq

The expression (2.8) is finite for all 8 < 1 and therefore : exp ({(x, &)) :€ (N)P. Hence, using the

|- exp (&) |

Z(nnﬂ PRI (2.8)

dual pairing between (N)? and (N)7, there exists a natural extension of the S -transform of a
distribution ® € (N)?, B < 1. Le., for ® € (N)? with kernels ®™, n € N, we can define the

S -transform by
S@)) = { @, exp (&) : ) = > (0, £7),
n=0

for all £ € N. In the case when 8 = 1 the norm in (2.8) is finite if and only if 29|¢ |,2, < 1. Hence,
in contrast to the case when g € [0, 1) the Wick exponentials are not in the test function space
(N)'. They are only in the spaces (H,), for which [} < 274

Nevertheless, we can define the S -transform of an element of (NV)~!, since every distribution
is of finite order. Le., for all ® € (N)™" there exist some p,q € Ny such that @ € (H_,),. Thus,
for all £ € N with 24 |§|%7 < 1 the S -transform of @ is a well-defined object given by

S(@)(&) := { D,: exp () )= > (00, £7). (2.9)
n=0
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Close to (2.6) this definition can be directly extended to complex vectors 6 € N¢ with |9|f] <2
by

S(@)(0) := { O,z exp () : ) = > (@, ¢°").
n=0
In this case the Wick exponentials have complex kernels. Therefore, for all ® € (7—(_,,):(1] the
S -transform is well-defined for all 6 from the following neighborhood of zero:
U,, = {9 e N| 16 < 2-4}, p.q €N,
Remark 2.8. Now we can understand why (N)™" is somehow the largest space of generalizzed

Pqp
i is not finite for any p, q if ¢ # 0. That means the Wick exponentials are

functions, since for B > 1 the space (N)™ con not be defined. In this case || exp ({-,&)) ||

— 220:0(”!)1+ﬁ2nq n%é;@n
not longer in (7—(,,)5 and the S -transform is no longer a well-defined object.

A transformation, which is later useful for applications, is the generalized Fourier transform,

called T-transform. This can be defined by its relation to the S -transform:
1
(TD)(O) :=exp (—5(9, 9)) (SD)if), De(N)', e, (2.10)

where U C N is an open neighborhood of zero such that the S -transform is well-defined. One

can calculate that the following definition for the T-transform is equivalent
(TD)O) := { D,exp(i(-,0)) ), 6OeU.

Therefore, it is indeed a generalized Fourier transform.

2.5 Characterization of generalized functions

In this section the characterization of Hida and Kondratiev distributions via their S- and T-
transforms are given. Note that both transformations map a generalized function to a holomor-
phic function, as defined in Section 1.2. Hence, we show now that the S - and 7-transforms give
isomorphisms between the spaces of generalized functions and suitable spaces of holomorphic

functions.

2.5.1 Hida distributions

The characterization of Hida distributions by their S- and T-transforms was first discussed in
[66] and then shown in [42]. But before we formulate the characterization theorem we have to

define the appropriate space of holomorphic functions.
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Definition 2.9. A function F : N — C is called U-functional iff
(i) F is "ray-analytic": that means for all £,60 € N the mapping
Ry F(E+yd) eC
has an analytic continuation to C as an entire function.

(ii) F is uniformly bounded of order 2, i.e., there exist some constants 0 < K,D < oo and
some p € N such that forallz€ C, £ e N

IF(z€)| < K exp (DIzPIE).

From Section 1.2 one can easily conclude that U-functionals have a holomorphic extension

to entire functions on N¢.
Theorem 2.10. The following statements are equivalent:
(i) F: N — Cisa U-functional.
(ii) F is the T-transform of a unique Hida distribution ® € (N)'.
(iii) F is the S -transform of a unique Hida distribution ® € (N'.
Theorem 2.11. Let {F,},  denote a sequence of U-functionals with the following properties:
(i) Forall ¢ € N, {F,(€)},oy is a Cauchy sequence.

(ii) There exist some constants P, Q > 0 and p € Ny such that the relation

Fo(z)| < Pexp (QlP £17)
holds for alln € N, ¢ € N and z € C. Here F, denotes the entire analytic extension.
Then there exists a unique ® € (N) such that (T‘IF ,,)neN converges strongly to ©.
This theorem is also valid for the S -transform.

Theorem 2.12. Let (A, A, v) denote a measure space and A — ¢(1) a mapping from A to (N)'.
Let F(A) denote the T-transform of ®(A) with the following conditions for all A € A:

(i) A= F(A,€) is a measurable function for all € € N.
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(ii) There exists a p € Ny such that for all ¢ € N and z € C the relation
|F(A.26)| < P(D) exp ((QDIPIELR).
holds for some Q € L*(A,v) and P € L'(A, v).
Then ® is Bochner integrable and
I\CD(/I) dv(d) e (N)'.

Moreover, for ¢ € (N') we have that

<< f (1) a’V(ﬂ),w» = fA (@), ) dv(A).
A

This allows us to interchange T -transform and integration, i.e., for § € N

T( f (1) dV(/l))(f) = f T(D(D))(E) dv().
A A
Again, the same theorem holds for the S -transform. For the proofs see e.g. [34].

Example 2.13 (Normalized exponentials). For later application one would like to give a mean-

ing to the formal expression

O = exp(%(l —72)x, x)), zeC\ {0}, xeN.

Using finite dimensional approximations to calculate its S -transform, we see that the sequence
factorizes in a convergent sequence of U-functionals and a divergent pre-factor. So instead of
constructing the ill defined expression ®, we consider its multiplicative renormalization (see
[34, Sec. 3] for more details) J, = ®/E(®). So the divergent pre-factor cancels in each step of

approximation. For J, we also use the suggestive notation of normalized exponential
J, = Nexp (%(1 —772)x, x)).
The resulting S -transform is given by
S J.(€) = exp (—%(1 - )& f)), ¢ € He.

The right hand side is obviously a U-functional and thus by characterization J, € (N)'.
To define the kinetic energy factor in path integrals in addition we consider the following

informal expression on the white noise space, i.e., N = S 4(R) and H = LEI(R), 0<d< o,

exp (%(1 - z_z)f w (r)? dr), w e SHR),
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where 7 is a complex constant and —oco < ty < t < oo. Again, we define the normalized

exponential

1 !
Jona(w) = Nexp(i(l -772) f w (r)? dr), w € SH(R),
fo

as a distribution via the following S -transform

t d t
S (Nexp (%(1 — Z_z)f (1)(}")2 dr)) (g) = exp [_%(1 _ ZQ) Zf g? (r) dr] ,
to j=0 Yo

forg =(gi,....84) € S4(R).

Example 2.14 (Donsker’s delta). In order to ‘pin’ Brownian motion at a point a € R we want
to consider the formal composition of the Dirac delta distribution with a Brownian motion in
one dimension (B,), 0 <t < oo, i.e., 0 (B (t) — a). This can be given a precise meaning as a Hida

distribution, see e.g. [50]. More general, using the Fourier-transform representation of Dirac

delta, informally

6((,m) —a) = lim ¢, =: lim f exp (iA((-, ) — @) dA,

for some n € H, n # 0. Of course, this is only sensible for choices of N for which {-,n), is not
vector-valued. Thus, applying Theorem 2.11 to the sequence (¢,),cy leads us to a well-defined
Hida distribution. Its T-transform and S -transform are given by

TOEm—a)(©) =
and

S 6(Cm —a) () =

1
NEor (

1

1 ' o
Nz (_2(77, 5 GEm=ar -5 6))

1
2(n,m)

((é:’ 77) - a)Z) )

for all ¢ € N. Moreover, with (2.9) and the generating function for the Hermite polynomials,

see e.g. [80], it follows that

1
S (6((m —a) (€)

1 ( a? ) -
\2r(n,m) 2(n,m) Z:(;
Hence, its chaos decomposition is given by

(09

S ED N

n=0

L _ay?
\V2n(n,n) P ( 2(n,m) (@ -a )

a
H, | —— 2@, m))™*(&®", n®").
{«/207,77))

:,f(")>,
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where the kernels f™ are given by

2

1 a
—— expl- H,
NZCE L CXP( 20, n)) ( 2. n)]

For a detailed construction and proofs we refer to [54].

) _ Q)" (2.11)

Example 2.15. Let us again consider the vector-valued white noise spaces, see Example 2.2
(iii). In Example 2.14 the formal composition of the Dirac delta distribution with a d-dimensio-
nal Brownian motion (B,), 0 < t < oo, i.e., 5(B(t) —a), a = (aj, . ..,ay) € RY is not included.

But for applications also the meaning of
6d (<C(), 77> - Cl) ) w € S;(R)’

is also of interest, for n € L*(R). Here 6 denotes the Dirac delta function in S'(RY) and

.....

Example 2.2 (iii), the S -transform is given by

1
(2n(n, 7]))% =P (_ 2(n,n)

S O —a)(g) = (g.m) - a)z) :

forallg = (g1,...,84) € Sa(R). Here (g,1) = ((gjs1) 1. 4

.....

2.5.2 Kondratiev distributions

Now we are interested in recalling the characterization theorems for Kondratiev distributions,
for details and proofs see [42]. Here the corresponding suitable space of holomorphic functions

is given by Holy(N¢), see Section 1.2 for the definition.

Theorem 2.16. Let U C N¢ be open and F : U — C be holomorphic at zero, then there exists
a unigue ® € (N)™' such that T® = F. Conversely, let ® € (N)~' then T® is holomorphic at
zero. The correspondence between F and @ is a bijection if we identify holomorphic functions,

which coincide on an open neighborhood of zero.

As a consequence of the characterization we have also a criterion for sequences and integrals

with respect to an additional parameter.

Theorem 2.17. Let (®,), .y be a sequence in (N)~', such that there exists a set Uu,, c Nc,
P, q € Ny, so that the following statements hold:

(i) All T®, are holomorphic on U, ,.
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(ii) There exists 0 < C < oo such that |T®, (0)| < C forall @ € U, , and all n € N.
(iii) (T®, (0)),en is a Cauchy sequence in C for all 0 € U, ,.

Then (®,),y converges strongly in (N)™".

Theorem 2.18. Let (A, A, v) be a measure space and A — ®, a mapping from A to (N)™'. We

assume that there exists a set U, , C Nc, p,q € Ny, such that:
(i) T®,, is holomorphic on U, , for every A € A.
(ii) the mapping A — T®, (0) is measurable for every 8 € U, ,.
(iii) there exists a function C € L' (A, v) such that
TP, O) < CD),
forall 8 € U, , and for v-almost all A € A.

Then there exist p’, q' € Ny, which only depend on p, q, such that ®, is Bochner integrable.

In particular,

f ®,dv (1) € (N)™!

A

and T [ fA ®,dv (/l)] is holomorphic on U,y ,. We may interchange dual pairing and integration

<<fA(DAdV u)"’o» i fA«‘Dﬂ’sO))dv W, e,

Close to Section 2.5.1 Theorem 2.16, Theorem 2.17 and Theorem 2.18, are also valid for the

S -transform.

Example 2.19 (Local times). As in Example 2.2 (iii) we consider d-dimensional white noise.
We are interested in the local time, which is intuitively a measure for the mean time a Brownian

particle spends at a given point a € R%. Informally this is stated by Tanaka’s formula
1 r
L(r,a) = — f 84(B(t) —a)dt, reRY, (2.12)
rJo
where 6(B(t) — a) is Donsker’s delta, see Example 2.15. Note that the local time does not exist
as a Bochner integral in any (N)®, B < 1, because for any a # 0 there exists some g € S 4(R)
such that fot g(s)ds = a. But then (use Example 2.15 and (2.10))

S6%UB(r) - )—(i)d/2
(B( “)(g‘zm )



2.6. REGULAR GENERALIZED FUNCTIONS 27

which is clearly not integrable for d > 2. Thus,

1 T
SL(r.a)(g) = — f S6U(B(t) — a)(g)dt

0

cannot be defined for all g € S 4(R), i.e., it cannot be an entire function. This illustrates the
advantage of using the large space (S)~'. For a € R?, a # 0, we choose q such that 279 < %IaI

and consider
Uy = {heSyc(R)|29h]; < 1}.

Then by an easy calculation (again use Example 2.14 and (2.10)) we obtain that for all g € U, 4

the relation

IS 8U(B(t) — a)(g)l < C(1) := L " ex _a_Z + |a|2)
s = o\ 2nt P 2t

holds. Since C(t) is integrable w.r.t. the Lebesgue measure on the interval [0, r] it follows that
L(r,a) € (N)™! by Theorem 2.18. Details of this proof and also more useful examples for
elements of (N)™! can be found in [43].

2.6 Regular generalized functions

As a special class of generalized functions we introduce the regular test and generalized func-
tions and recall their characterization via the Bargmann-Segal spaces, in this section. Note that
this type of test and generalized functions was first introduced in [67] and later characterized in
[21]. An important application resort are the studies of stochastic (partial) differential equations,
see e.g. [22], [23], [3] or [7].

Before we introduce spaces of regular distributions we define the meaning of being regular
for a generalized function ® € P(N’). Therefore, we introduce the space of smooth polynomials

of order m € Ny:

Pu(N') 1= {90 e PN) i (: 21 6™), o™ e N&", x € N’}.
n=0

Definition 2.20. A generalized function ® € P’ (N’) is called regular generalized function if for
all m € N there exists some f,, € L*(u) such that for all ¢ € P,,(N") one has that

(D, ) = fN Jn(D)p(x)du(x).

The subset of regular generalized functions from P'(N’) is denoted by P.,,(N").

reg
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The next theorem gives a characterization of regular generalized functions by the kernels in

their generalized chaos decomposition. The proof can be found in e.g. [19].

Theorem 2.21. A generalized function © is in P.,,(N’) if and only if for all n € Ny the kernel

reg
dW js in 7‘(8”.

Close to Section 2.3 for g € Z and 8 € [0, 1] we consider the norms

|2
©">

lplZg := > (nl)!+#2m
n=0

for smooth Wick polynomials ¢ = >~ I,,((p(”)). Then we define the Hilbert spaces Qg as the

completion of P(u) w.r.t. || - |lo4s. Equivalently, we can define
& = {f € L*(u) ‘ F= (s fOY AR < oo}.
n=0

The space of regular test functions G is then given by the projective limit of the spaces g§:

¢ -6

q<0

We denote the dual spaces of gﬁj and G# w.r.t. L*(u) by g:g and GP, respectively. Again, from

general duality theory we know that

g’ =Jg%

q<0

Finally we obtain the chain of spaces
G cGFcgcl’wcg cgPcg.

The spaces G° and G~° have been introduced in [67] and are denoted by G and &', respectively.
Again, the bilinear dual pairing (-, -)) between G' and G~! is connected to the sesquilinear

inner product on L?(u) by

fr o) = (. @2, feL*(w,peG.

Since the constant function 1 is in G' we may extend the concept of expectation from integrable

functions to distributions ® € G '

E (D) := (D, 1).
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It is not hard to see that Qi’; is a Hilbert space which can be described as follows

Gy = {cb = > 1(@")

O e H, O3, .5 < oo}.
n=0

This description of gj’; (and therefore also of G*¥) shows that its elements have the property that
the Wick monomials in their (generalized) chaos decomposition are square-integrable functions.

This is the characteristic feature of so called regular generalized functions.

2.6.1 Characterization of the space G’ via the Bargmann-Segal space

To understand the basic concept of the characterization of G and G’ via the Bargmann-Segal
space, we first have to introduce a Gaussian measure on the complexification of N’, which is
denoted by N(. Therefore, we define the measure u 1 as the Gaussian measure with character-
istic function C%(f) = exp (—i(g, g)), ¢ € N. The covariance operator corresponding to M1 is
then given by %]1, where 1 denotes the identity operator on H. Following e.g. [41] or [21], we

are now able to define a Gaussian measure on the measurable space (Nc’c’ C(T(N('C)).

Definition 2.22. Let 7 = x + iy € N[, x,y € N’, then we define the measure
dv(z) = dui(x) X dp i (y)
on the measurable space (N(é, CG(N(’C)).

Remark 2.23. Now close to Section 2.1 we can consider the space of square-integrable complex
valued functions L*(v) := L? (N(’C, Co(N(), v). In addition one can construct smooth holomor-

phic orthogonal monomials close to (2.5).

Let us denote the set IP to be the set of all orthogonal projections on H such that for any
P € P one has that R(P) c N and dim R(P) < oo, where R(P) denotes the range of the operator
P.

Definition 2.24. A function H : Hc — C is in the Bargmann-Segal space E,(v) if it satisfies

the following conditions:
(i) H is entire on Hc, and
(ii)

sup f |H(P2)|* dv(z) < oo.
N

PeP A
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Several properties, also for families of Bargmann-Segal spaces, can be found in [21]. Therein

also the following characterization theorems are shown.

Corollary 2.25. A test function ¢ is an element of G if and only if for any A > 0 the function
(Sp)() € E*(v).

Theorem 2.26. The generalized function @ is an element of G’ if and only if there exists € > 0

such that the measurable extension of S ®(g-) exists and is an element of E*(v).

Using the series expansion of H € E*(v) noted in Remark 2.23 together with the summability
property of its kernels given by the square-integrability of H, one can restrict H to holomorphic
functions on Hc. This mapping can be used to construct, see [21], a natural isomorphism
between E%(v) and the in the literature well-known Bargmann-Segal space on a Hilbert space,
see [71], [2], [72], and [73]. In applications of the characterization theorem this isomorphism

turned out to be useful, see [21].
Example 2.27. Donsker’s delta 6 ({-,n) —a) is in G, for alln € H and a € R.

Proof. The statement can be shown in two different ways. On the one side, see Example 2.14,
we know that ¢ ({-,n7) —a) € (NN)'. Thus, one only has to verify that its || - ||, o-norm is finite for
some 0 < g < oo. For this proof we refer to [82].

On the other side following Theorem 2.26 one has to check whether there exists some € > 0
such that S (6 ((-,n) — a)) (&-) € E*(v). In the white noise case, i.e., N = S(R) and H = L*(R),
this is already proven in [21] for a composition of the Dirac delta distribution with a Brownian
motion. Let ® := §({-,n) — a),n € H and a € R. Then, obviously S (®D)(&-) is entire on H, see
Example 2.14. Moreover

f S (@)(e2)I dv(2)
Ne

_ 1 B 1 o 1 —_— 2)d
27(17, 1) fNC eXp( 2(n, n)((gz’ = a) 2(n, n)((‘%’ ) —a)”| dv(@)

_ fex (—8—2(u2+ﬁ2))d(u)
~ 2 Je P\ T2 7,

where the density
_1 (212 _ .
dy(u) = exp( (x*+y )) dxdy, u=x+1iy, x,yeR.
4

Therefore

1
fN IS@)(e2) dv(z) = T fR jﬂ; exp((38” — Dx’ + (67 - 1)y*) dxdy,

C
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is finite for all 0 < & < \/% Thus, since

f IS (D) (ePz)* dv(z) < f 1S (D) (£2)]> dv(z) < oo,
ch: N

C

we get that
sup f IS (®)(eP2) dv(z) < f IS (D) (£2)* dv(z) < oo.
PeP JN. N
Hence, S®(e') € E*(v) forall 0 < € < % and therefore ® € G’ by Theorem 2.26. |

Analogously to the proof of Example 2.27 one can show that the d-dimensional Donsker’s

delta, see Example 2.15 is in a regular distribution.

Remark 2.28. Similarly to Theorem 2.26 one can prove a characterization of G~', whereas the

Bargmann-Segal space is replaced by an infinite dimensional Hardy space.

2.6.2 Independence of regular generalized functions

A priori it is not clear how to define independence for regular generalized functions, since they
are not pointwisely defined. We first give a definition of independent random variables in G’
according to [7], see also [3] and [17]. That means as in Example 2.2 (i) we consider N = S (R)
and H = L*(R;dx). Let I be an interval in R, and denote by F; the o-algebra generated by the

random variables (-, 1, ) — (-, L9050, S, €1, 1o < s < 1.

Definition 2.29. We call ® € G' F;-measurable, if for all g € S (R),

S(@)(g) = S(@)(1g).

Remark 2.30. (i) Recall that f € L*(u) is F;-measurable if and only if S f(g) = S f(1,g) for
all g € S(R).

(ii) Note that the S -transform of an element in G’ has a continuous extension from S (R) to
L*(R), hence for ® € G’ we have that S(®)(1,g) is well-defined for all intervals I c R
and all g € S (R).

Definition 2.31. Two generalized random variables ®, Y € G’ are called independent if there
exist intervals I, J C R whose intersection has Lebesgue measure zero, and @ is F;-measurable,

and ¥ is Fj-measurable.

Of course, close to a multi-dimensional Brownian motion (see Example 2.2 (iii)) we can

define independence on the space S ;(IR), d > 0, analogously to the above considerations.






Chapter 3

Differential calculus and related

operations in Gaussian spaces

In Section 3.1 we discuss differential operators of first and second order on spaces of gener-
alized functions. Especially, Gateaux derivatives and the Gross Laplacian are introduced and
properties are listed. The ensuing Section 3.2 introduced linear operators based on differential
operators on spaces of test and generalized functions. These are important for applications of
the concept of generalized functions, e.g. for a mathematical rigorous definition of Feynman

integrands.

3.1 Differential operators in Gaussian spaces

In this section we consider several differential operators on (N, 0 < B < 1. Instead of giving
a long list of comprehensive references we refer to the books [61], [34] and [S1]. We start in

defining Géteaux derivatives on the test function space (N)?, 0 < 8 < 1, close to Definition 1.3.

Definition 3.1. Let ¢ € (N)’, 0 < B < 1, and x,y € N'. We consider the function 1 — @(x+ Ay)
on R. If this function is differentiable at A = 0, we say that ¢ is Gateaux differentiable at x in

direction y and denote

0
Dyp(x) = —me(x + )| -

If ¢ is Gateaux differentiable at x in direction y for all x € N’ we simply call it Gateaux

differentiable in direction y.

Lemma 3.2. For o,y € (N), 0 <B <1, andy € N’ the Gateaux derivative has the following

properties:

33
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(i) The chaos expansion of Dy is given by

Dyp(x) = Z n(: x®0 @y, o™y, xe N,
n=0

where ¢ again denotes the n-th kernel of .
(ii) A product rule is given by:
Dyprp = (Dyh)g + Y(Dyp).
(iii) The S -transform of Dy in & € N is given by
0
SD)E) = TS @E+ )| .

Lemma 3.3. For n € H the differential operator D, is continuous form G#, 0 < B < 1, into
itself. Moreover, it extends continuously from G*, 0 < B < 1, into itself and the statements
(i)-(iii) in Lemma 3.2 also holds.

The proof can be done analogously to e.g. [S1]. Therein it is shown that for n € N the
differential operator D,, extends continuously from (N)#, 0 < 8 < 1, into itself.

Definition 3.4. Let ¢ € (N, 0 < B < 1, with kernels ¢V, n € N. Then for any x € N’ we
define the Gross Laplacian of ¢ by

M@@:fﬁw2m+n@xmunmm%)
n=0

Here Tr € N'®? denotes the trace kernel defined by

(Tr,é®@n) =&, n), &éneN. 3.1
Theorem 3.5. The Gross Laplacian is a continuous operator from (N, 0 < B < 1, into itself.

Let us consider the test function spaces w.r.t. the Schwartz triplet, see Example 2.2, (S ),
0 < B < 1. The Gateaux derivative in direction &,, ¢ € R, is denoted by Ds, =: ;. For h € L*(R)
and ¢ € (§) we get that

Dyp(x) = f h(Ddp(x)dt,  x € (SY.
R

Theorem 3.6. A relation of the Gross Laplacian and d,, t € R, on (S)?, 0 < 8 < 1, is given as

Jfollows:
M:f&m
R

For the proofs and more properties of this differential operators we refer to [51] and [34].
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3.2 Operators on Gaussian spaces related to differential op-

erators

In this section we introduce special kind of linear operators on spaces of test and generalized
functions. In detail we discuss translations, orthogonal projections and scaling operators. First
we follow e.g. [34] and [82] and define this operators on spaces of test functions (N) or G. Later
we show in which case extensions to generalized functions make sense. Moreover, we give a

representation of such operators in terms of differential operators.

3.2.1 Translation operator

We start in considering the translation operator, which is sometimes also called shift operator.

Definition 3.7. We define the translation operator for n € N’ by

T, (N) > N)
o (- +1).

Close to [34] we define

()= Z (Z) : x®0h @k

=0
and for ¢ € (N) with kernels ¢™, n € N, we have that
o (n+k n
Ty = lx+m) = Y Z( . )( K (7, 00, ) (32)
n=0 k=0
whenever the series converges for arbitrary n € N’. It was shown in [51] that 7, is a continuous
mapping from (NV)? into itself.

Theorem 3.8. Letn € He and p € Gthent,p € G.

This Theorem was shown in [67] and [82] with help of (3.2) but can be much easier realized

using the characterization of the test function space G, see Corollary 2.25.

Proof. Let H € E*(v) then, by the theorem of Cameron-Martin, H(- — /1) is also in E*(v)
forally € He and all 4 > 0. So for ¢ € G, S(1,0)(A) = S(P)A(- —7n/A) € E*(v) since
S (p)(A-) € E*(v) by Corollary 2.25. Hence again by Corollary 2.25 we get that 7,0 € G. O
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Remark 3.9. We extend the translation operator to a generalized function whenever the series
representation (3.2) leads us to a well-defined object in the same space of generalized functions.
But since not only the generalized function but also the operation t,, n € Hc, has no pointwise
sense we restrict ourself first to regular generalized functions. This is a suggestive restriction,
since all regular distributions have square-integrable kernels. Hence, for all k,n € Ny we have

that

<: K . (n®k’ ‘p(n+k))(H®k>

is also regular for all n € Hc. Hence in case of convergence of (3.2) again we might obtain a

regular generalized function.
Theorem 3.10. The mapping t,, n € Hc, can be extended to a mapping T, : G' — G'.

Proof. Let ¢, € G and n € Hc, then 7,9 and 7_,y are in G by Theorem 3.8. Moreover, we
have that

S ((T,¥)(0) = S (- + MY)(0) = S (@ (- — M) = S (1) (@).

Hence we get that

Ly ) = S (@(- + MY)0) = S (- — M)(1) = KpT_pb, 2 exp((, 7)) = )
= exp((,m)) @, T ) = (71, exp((,m) 1 @), YY)

Therefore, 7, = TL](Z exp((-,1m)) : ¢) for all ¢ € G. Here T:I denotes the adjoint of 7_,. But
since 7_, is continuous from & into itself also TL] is continuous from G’ into itself. Hence by
continuity of the multiplication operator : exp({-, 7)) : we get that TL] : exp({-, 7)) : 1s continuous
from G’ into itself. Let (¢,).eny C G be a sequence with limit ® € G’. Moreover let @ > 0 such
that Tfn(: exp((:, 1)) : ®) € G_,. Then for all ¢ € G we obtain

[T 0] = [€1,C exp(Cm) = @) )| < |78, G exp(Com) = @l oo

Hence lim, . {7,¢,, ¥) exists for all € G and is equal to «TL](Z exp((-, 1)) : ©),¥). Thus we

can extend 7, to a continuous linear operator 7, := Tfn :exp((-, ) : from G’ into G'. O

Remark 3.11. One can show Theorem 3.10 for other spaces of test and generalized functions.

(i) For G, 0 < B < 1, the proof is close to the proof of Theorem 3.10. If B = 1, of course
7,® does not exist for alln € He and ® € G, since n might not be in the subset of He
where the S -transform of ® is holomorphic. From now on we write , instead of T,, since

all extensions coincide on their common domain.
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(ii) If one considers a distribution space (N)*, 0 < B < 1, Theorem 3.10 only holds for
n € Nc. This was shown in [51, Theorem 10.22]. As in the case of regular generalized

functions for B = 1 a generalization of this theorem is not possible for arbitrary n € Nc.

Representation by differential operators

Following e.g. [51] or [67] the translation operator can be represented in terms of differential

operators.

Theorem 3.12. For any n € N{, the translation operator on (N)) can be represented by

R
7, =exp(D,) = Z EDI';
k=0 "

Moreover, for ¢ € (N) the S -transform of T, is given by

(o8]

1

g k
S @)&) = S(exp (Dy)e)(&) = exp (Dy)S (9)(&) = Z = (E) S ()& + 1)
k

(3.3)
oy

t=0

Proof. Letn € N and ¢ = X" (" 1, ™) € (N), then 7,0 € (N). Moreover, its S -transform
in ¢ € N is given by

S (TUSD)(f) = i kz.oo (Vl :; k) (§®n, (77®k’ ‘p(n+k))r}(®k) .

n=0 k=

But

o X k n
=22$(2) (o],
k=0 1=
= ZO Zk (’Z) (§®<n-k> &, ()D(n)) - ZO ZO (n Z k) ( o (n®k’ w(mk))mk) _

If ¢ has only a finite number of non-vanishing kernels then the summations can be interchanged
by Lemma 3.2 (iii). Let ¢ € (N) be an arbitrary test function with kernels ¢, n € N. Then the
sequence ¢y € (N) given by 37 (: - : o™} converges in (N) to ¢. Moreover by continuity
of 7, we get that 7,¢) converges to 7,¢ in (N). Therefore (3.3) holds whenever

o Il 2

Z Z (n + k) Lon (n®k’ (p(mk))ﬂ@k»
k=0

< 00,

p.q,0
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Let p,q € N. Then there exists some s € N such that n € H_,_,. With (n + k)! < n!k!2"** and
(n+ o] | < 27 Rl

I

s 5,0 for all @ € N, we get that

(), )

2

k=0 n=0 p’q’o
DI O LR I
k=0 n= e s k=0 n= nl(kh? Ppssa
i iy > ) ) 9~(a=Dk 1
Zz k3 amyen el < ||<,o||,,+s,aZ Il SZZW < oo,
k=0 n=0 =0
for all p, g € N and a suitable choice of @ € N. O

Corollary 3.13. Let n € Hc and ® € G’ then 7,0 € G’ and its S -transform is given by

1 (0

S (1,®) = exp (D,)S (@) = Z o ( a) S(®)(- + ) (3.4)

t=0

Remark 3.14. One can show that (3.4) holds for n € Nc and ® € (N)™P. Hence the translation
operator T, n € N/, can be applied to ® € (N), 0 < B < 1, whenever

[

Z k,( ) S(@)(- + 17,)

k=0

t=0

defines a Cauchy sequence in the sense of Theorem 2.11 for a sequence (1,),en C N converging

ton in N{.

3.2.2 Orthogonal projection

In this section we are interested in a realization of a composition of an orthogonal projection on

N’ with a test or generalized function.

Definition 3.15. Let n € N, |nlo = 1, then we define the projection on the orthogonal comple-
ment (orthogonal projection) of the subspace spanned by n by:

P, N =N, x> Pyx=x—(x,mn.
Moreover, we define the orthogonal projection on (N®")" by
Py (N > (N®Y, 0 s PO,

In addition for 0 < B < 1 we denote the orthogonal projection in the kernels by

P, -G, p=

(o0 o0

(n) Z <: . pon 7790(”)>

YLZO n=0
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Let us remark that (§®”, P‘ff’ngo(")) = (P‘ff’ngg’”, (p<”>), for all kernels ¢ € H®" and all € Nc.

Thus, we define a projection P, in direction € Hc by
P, {S(D), DeG} - {S(D), Deg')
Fo P F=FoP,, (3.5)
Of course, P,, is not well-defined on Holy(N¢) in general. Nevertheless, we show that on the
subspace {S(®), ® € G#}, 0 < B < 1, the definition of P,] given in (3.5) is sensible for all
n € He, Inlo = 1. In addition we show that the definition of the projection in the kernels 13,7 (see

Definition 3.15) can be extended to generalized functions. Moreover, its S -transform coincides
with the orthogonal projection P, on {S(®), ® € G*} c Holo(Nc).

Lemma 3.16. Let ® € GP, 0 < B < 1, with kernels ®™, n € N, and n € He, Inlo = 1. Then
}3,7 ® is also in G and its S -transform is given by

S (P,®) (&) = P,S (@)(&),
forall ¢ e N.

Proof. Let ® € G#,0 < < 1, with kernels @™, n € N, and € Hc. Then since @™ € H®"
and 7 € Hc we get that Pf’f,ltl)(”) is also in ®". For showing this we first note that

Peifzn (n®2k, q)(n+2k))ﬂ®2k |n|2k ‘(D(n+2k)’ < '(D(n+2k)‘0’ (3.6)
for all k,n € N, since |n|o = 1. Then
o 2
||P (I)”_q 5= Z <: on :,Pff’n(I)(")>
n=0 o
— Z(ny)l ~Bp-nq P®n (D(n) Z(n1)1 ~B)—nq q)(n)
n=0

Moreover, for £ € N we have that

[ee)

P (D («f) (i : Pjeiflnq)(n)>] &) = Z <P®n o™ L& >

n=0 n=0

- Z (D(”) PY %) = S(D)E - (€.mn) = P,S (D).

n=0

Thus 13,7 is given by

P,:G*—>g*  omS5T(PS@).
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Remark 3.17. Note that for n € N the projection P,] : GP — G coincides with the general-
ized conditional expectation with respect to the filtration induced by the set M,, := N \ span{n},
see e.g. [3] or [21] for more details.

Theorem 3.18. Let n € H, nly = 1, then there exists a linear mapping

Pn:gﬁ—>§ﬁ

o Pyp=1¢poP,,.

Moreover, the chaos decomposition of Py is given by

© k
Z ZO (n;j'k)v ( 1) <: o pon (n®2k"p(n+2k))ﬂ®2k> ’ 3.7)

n=0 k

where ¢ denotes the kernels of .

ProofforB=0. Letne H,nlo=1,and ¢ = Yoo <: on . go(”)> € G where only a finite number

of kernels ¢, n € N, are non-vanishing. Then for x € N’ we get that

Pyg(x) = P, Z ) i L (P 5, ™)

) ®(n 2k) . ‘o P®(n 2k)) ® n®2k ‘p(n)>

© k
= Z Z ( k!ik)! (_%) <: @ PO (n®2k"’0(l+2k))w®2k>. (3.8)

Of course, convergence and exchanging of the summations do not cause problems since both

sums are finite, thus P,¢ € G. Now we observe whether the kernels ¢, n € N, given by
oo k
NGO (m+ 20 TN e (e me2n)
v kZ_;‘ (73] PI e ),

are still well-defined if we do not restrict ourself to finite linear combinations. Then we obtain
by (3.6) that

0 k e} k
_ S m+20! (1 o] < 1 Z(n+2k)! 1y,
0~ ko k'n! 2 0 n! e k! 2

~ (1)

(n+2k)‘
0

1

(n + 2k)! o)

< llellg.o— ( ( ) 2720
ni\& o kh? |2
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while using Schwartz inequality and the fact that (n + 2k)!|¢,0("+2k)|(2) < 2_‘1("+2k)||cp||570, for all
n,q € N. Thus with (n + 2k)! < 2"*%*n!(2k)! and (2k)! < (2%k!)? it follows that

0 1

1 2
< _2n/ 2(1-q) E 2—(q— 1)(2k)
0 ||‘P||q,0 \/]?

k=0

| @(n)

1 _1
_— on/2(0=9) (1 _n-29) 2 _.
< llpllo—=2 P(1-27) 7 = llgllgoCa < o0, (3.9)

if g is large enough. Therefore, for every @ € N one gets that

(o)

an| ~m)|? N an n(1- —24\7!
1Pyl g = > n12|p[) < > 272 2" (1 = 27%)
n=0 n=0
—2¢\"! N an~n(1- 24\ ! _2(g—a)\"1/2
< Nl (1-272)7 )" 272700 < gl2 (1 - 27%) 7 (1 - 2726079) 7 < oo,
n=0
again if g is large enough. m|

Corollary 3.19. There exists no extension of the projection operator Py, n € H, from G into
g/
Proof. If we assume that there exists a continuous extension P, : G’ — G then its adjoint

w.r.t. the inner product in G, P;, is continuous from G into itself. But for &, 6,1 € H, one has
that

1
exp ((Pnf, 0) - (& 17)2) = S (P exp () 2) () = (P, : exp (-, 6) 1. exp (-, 6)) )
= (exp((,€) . P} s exp (¢,0) ) = S (P exp ((-.6)) :) (©).

Thus for 6 = 0 one gets that
1
S (P)1)@ =S (P} exp(¢.0)) ) €) = exp (—5@, 77)2) = V218 (S(¢. ) (©).
Thus O, P,T] is no continuous map from G into itself. O

Close to this proof one can show that an extension to other spaces of generalized functions

is not possible.

Theorem 3.20. The projection operator P,, 1 € ‘H, |nly = 1, can be applied to ® € GP,
0 < B < 1, with kernels ®™, n € N, if and only if

o

0 k
Z (n;j!k)! (_%) <: on (n®2k’®(n+2k))w®2k>’

n=0 k=0

is also an element of G.

The proof follows directly from Lemma 3.16 and (3.7).
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Representation by differential operators

Close to the translation operator one can also represent the projection operator by differential

operators combined with the orthogonal projection P,], defined as in the proof of Lemma 3.16.

Theorem 3.21. For any n € H, Inly = 1, the projection operator on G® can be represented by

- 1o\ = 1 1,
Pn:PneXp(—EDU)::PUZE(—E)DU.
k=0 "

Moreover, for ¢ € G the S -transform of P,y is given by

- 1 - 1
S(Pyp)E) = P,S (exp( - EDf,)sO) © = Pyexp( - 5025 @O,

Prooffor=0. Letn € Hand ¢ = Y02 { : x®" :,¢™) € G, then by Theorem 3.18 it follows

that P, ¢ is also in G. Moreover, its chaos decomposition is given by

o k
Z Z % (_%) <: o pon (n®2k, ¢(n+2k))(}.{®2k>
© k
= Pn Z Z % (_%) <: en . (n®2k’ 90(n+2k))(H®2k> '

0 0 k
o3 = Z 2 () 0

Due to (3.8), using Lemma 3.2 (i) and the fact that D;* <: .on (”)> 0 forall 0 < n < 2k, we
get that

i i (n]:nZ‘k)v ( )k<: @n :,(n®2k,90(n+2k))7{®2k> _ ieXp( _ %Di)<3 @n :’(p(n)>.
k=0

n=0

But then for ¢ € N one has that
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= — 20! |-
DI EH]
AN ( 2k)' 1 ‘ (29 n+ ®n

:ZZ nl:!n! (_E) <('7 e Zk))www’f >

Thus one only has to check whether the sums can be interchanged. But this can easily be shown

| =

)k < go(n), f®(n—2k) ® n®2k>

for regular test function where only a finite number of kernels are non-vanishing, using Lemma
3.2 (iii). Now let ¢ € G with kernels ¢, n € N, then the sequences given by ¢y := 37 (: .o
,¢™) and P,ou, M € N, converge to ¢ and P,¢ in G as M goes to infinity by the norm estimate

in the proof of Theorem 3.18. Thus we can interchange the sums if

co k
S5y e

for all @ € N. Following [82] there exists some g € N such that

2

< o0

b

,0

- (I’l + 2]{)' 1 g . oen . Q2K (n+2k) N an (n + Zk)' (n+2k)
— kln! 2 < ' "(77 ¢ Hw Zo nl2 T kn! ‘ ‘o
< liell; 2-’“12 et 2070 = Jlg? (1 = 279727 = 2) %,
TTeOT A 2k a0
Hence

2

> 20! [ 1\
S5y e

which converges for a suitable choice of g. O

<Nl o(1 = 20707 @7 = 27,
k=0

,0

Corollary 3.22. The projection operator P,, n € H, |nly = 1, can be applied to ® € G,

whenever

(3.10)

t=0

© ( 1)k ( P )2k
-5 5] s@x+m
; k!'\ 2) \ot
is in the Bargmann-Segal space E*(v).

Proof. Let ® € G’ such that P,® € G, with kernels ®” and ®® in H®", respectively. Here

d" = (3.11)

> (m+2k) [ 1\
T |\ &%

1) pen (8% gn+26)
kin! 2) PL (17, 0072)

k=0

We define ¢y, M € N, by @y := XM (", ®™). Then ¢y € G for all M € N since the sum

is finite. Moreover, the sequence (@), converges to ®@ in G'. Thus there exists some @ € N
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such that ||® — ¢yll-.0 converge to zero as M goes to infinity. In addition P,y € G and the
sequence of kernels ( o4 )) ey COnverges to ®™ for all n € N. Let us assume that there exists
some g € N, a < g, and some constant 0 < C < oo such that ||[P,® — P,pyll-,0 < C for all
M € N. Then ||P,® — P,@ull-g+1)0 < 2peo27"C for all M € N. Thus by Lebesgue dominated
convergence (P,,goM)MeN converges to P,® w.r.t. the norm || - [|_4+1)0 and therefore in G'.

It is left to show that there exists some g € N, @ < ¢, and some constant 0 < C < oo such
that [|P,® — P,pull-40 < C for all M € N. Let us denote that the generalized function given by

its kernels

- 200 ( 1
M(_ neN,

k
LY pen (@2 gy(n+2k)
kin! )P*’?(” 0070)

2 FH{®2k ?

k=)
is also in G_,. This causes by the fact that these kernels have to vanish in H®" as j goes to
infinity, since ®® € H®". Thus there exists some N € N such that for all j > N there exists
some a(j) < a such that

2a()

k 2
P ——) P (™, @20) < (3.12)

2 FH{®2k n | ’

= (n + 2k)! ( 1
k=j
for all n € N. Moreover, for all € > 0 there exists an N’ € N such that for all / > N we get that

(o)
§ —an

n=I

" — ) <. (3.13)

Here ¢™ denote the n-th kernel of an arbitrary regular test function ¢. Thus let M € N such that
% > max{N, N'}, then by (3.12) and (3.13) we obtain

3 _ 1r—(a+Dn | &) _ |2
”an) PW()DM”—a—l,O - an ® Pulo
n=0
u )
_ (@+Dn|&m) Aw ~(@+Dn|Gm _ Am]2
= nl2- ) Z n!2 D i lo
n=0 n—%
. 2
O et [N (201 (] ¢ on [ @2 qy(n+2K)
< Q2 e =) P 0 ) +g<22 + &< oo,
s & 'n! oy

Therefore P,y converges to P,® in G', i.e., S(P,D) € E?(v). Using Theorem 3.21 we get that
) .~ 1
S(P,®@)(é) = lim S(Pypu)() = lim P,S (exp(—EDi) soM) ©)

1 1 ~ 1
= P, lim exp (——D )S(w)(f) P, exp(—EDi) lim S(gy)(€) = P, GXP(—ED,?)S(CD)(&),
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for all £ € N. Since by Lemma 3.16 P, : G’ — @', also exp (-1D2) S(®) € E*(v).

Vise versa, let (3.10) be an element of E?(v), then there exists an element ¥ € G’ whose
S -transform is given by (3.10). Hence by Lemma 3.16 also 15,7‘{’ € G'. Using the above defined
approximation ¢y, M € N, it is easy to see that (exp (—%D,ZI) "OM)MEN converge to Y. Moreover
using (2.9) the kernels of P,¥ are given by ®™ as in (3.11). Thus by definition of P, we get
that P, ¥ = P,d € G O

Example 3.23. Letn,0 € H, nlo = 1, and a € C then 6(-,0)—a) € G'. Moreover P,6({-,0)—a) €
G’ ifand only if 0 # nand (n,6) # 1.

Proof. Letf € H, 6 # 0, and a € R. Then 6({:,0) — a) € G’ as shown in Example 2.27. Thus
with (2.11) we get for n € H, |n|y = 1, that

| 1 1\
exp (—ED;) S @0 —a)@© =Y (—5) DS (6((+6) = ) ()
k=0

L 1o\ _tz(nﬁ)z+2f(n,9)((§,9)—a))
i\ 2) \a) P 2(6.6)

M

S (6(¢,6) —a) ()

t=0

b
I

0

) 1 1 k
= 5 (6 0) - @) © Z o (—5) H, ((% ) (26, 0) 