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Preface

This thesis deals with the solution of special problems arising in financial engineering or financial

mathematics. The main focus lies on commodity indices. Commodity indices consist of futures

or spot values of energy, livestock, grains, industry metals, precious metals and softs. A futures

contract is an agreement to buy or sell an asset at a certain future time for a certain price. Today,

commodity indices represent the easiest way of getting exposure to commodities. Commodity

index options are tied to major commodity indices. The issuers of such notes are investment

banks, financial institutions or individual commodity producers raising capital to extend their

operations while providing investors with exposure to the commodity sector.

We first dedicate ourselves with the modeling of commodity indices. Chapter 1 addresses the

important issue for the financial engineering practice of developing well-suited models for certain

assets (here: commodity indices). Descriptive analysis of the Dow Jones-UBS commodity index

compared to the Standard & Poor 500 stock index provides us with first insights of some features

of the corresponding distributions. Statistical tests of normality and mean reversion then helps

us in setting up a model for commodity indices. Additionally, chapter 1 encompasses a thorough

introduction to commodity investment, history of commodities trading and the most important

derivatives, namely futures and European options on futures. The importance of commodity

indices in investment today is outlined, too.

Chapter 2 proposes a model for commodity indices and derives fair prices for the most impor-

tant derivatives in the commodity markets. It is a Heston model [Hes93] supplemented with a

stochastic convenience yield. The Heston model belongs to the model class of stochastic volatil-

ity models and is currently widely used in stock markets. For the application in the commodity

markets the stochastic convenience yield is included in the drift of the instantaneous spot return

process. Motivated by the results of chapter 1 it seems reasonable to model the convenience yield

by a mean reverting Ornstein-Uhlenbeck process. Since trading desks only apply and consider

models with closed form solutions for options I derive such formulas for commodity futures by

solving the corresponding partial differential equation. Additionally, semi-closed form formulas

for European options on futures are determined. The Cauchy problem with respect to these

options is more challenging than the first one. A solution can be provided by applying the same
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methodology as in Heston [Hes93] and Bakshi and Madan [BM00].

Besides the optimization of the rolling procedure for commodity futures we dedicate ourselves

in chapter 3 with the optimization of the weightings of the commodity futures that make up

the index. To this end, I apply the Markowitz approach or mean-variance optimization. The

mean-variance optimization penalizes up-side and down-side risk equally, whereas most investors

do not mind up-side risk. To overcome this, I consider in the next step other risk measures,

namely Value-at-Risk and Conditional Value-at-Risk. The main part of chapter 3 is devoted to

the presentation of an approach of Rockafellar and Uryasev [RU00] and [RU02] to optimizing a

portfolio so as to reduce the risk of high losses. The Conditional Value-at-Risk is generalized to

discontinuous cumulative distribution functions of the loss. For continuous loss distributions,

the Conditional Value-at-Risk at a given confidence level is defined as the expected loss exceeding

the Value-at-Risk. Loss distributions associated with finite sampling or scenario modeling are,

however, discontinuous. Various risk measures involving discontinuous loss distributions shall

be introduced and compared. They depend on a decision variable x and the confidence level

α. My contribution to this topic is to bridge a gap in the proof of the crucial theorem in the

article of Rockafellar and Uryasev [RU02]. Furthermore, I present an alternative way of proving

some parts of the main theorem. I then apply the theoretical results to the field of portfolio

optimization with commodity indices.

Furthermore, I uncover graphically the behavior of these risk measures. For this purpose, I

consider the risk measures as a function of the confidence level α. Based on a special discrete

loss distribution, the graphs demonstrate the different properties of these risk measures. One

recognizes graphically that the definition of the Conditional Value-at-Risk as given in Rock-

afellar and Uryasev [RU02] is the most reasonable generalization to distributions with possible

discontinuities.

The goal of the first section of chapter 4 is to apply the mathematical concept of excursions for

the creation of optimal highly automated or algorithmic trading strategies. Algorithmic trading

is widely used by pension funds, mutual funds, institutional traders and hedge funds. The idea

is to consider the gain of the strategy and the excursion time it takes to realize the gain. In this

section I calculate formulas for the Ornstein-Uhlenbeck process. I show that the corresponding

formulas can be calculated quite fast since the only function appearing in the formulas is the so

called imaginary error function. This function is already implemented in many programs, such
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as in Maple. My main contribution of this topic is the optimization of the trading strategy for

Ornstein-Uhlenbeck processes via the Banach fixed-point theorem.

The second section of chapter 4 reviews a concept of statistical arbitrage as introduced in Hogan

et al. [HJTW04], a long horizon trading opportunity that generates a riskless profit. The results

of this section provide an investor with a tool to investigate empirically if some strategies (for

example momentum strategies) constitute statistical arbitrage opportunities or not. I correct

some proofs in the article [HJTW04] and furthermore, I supplement the main theorem. Espe-

cially, I prove that the necessary conditions for statistical arbitrage given in [HJTW04] are slso

sufficient. This is important for testing statistical arbitrage.
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Chapter 1

Commodity Indices

1.1. Introduction to Commodity Investment and Modeling

History of Commodity Trading

Commodities constitute the only spot markets which have existed nearly throughout the history

of humankind. Over the centuries the scope of commodities available has grown from essential

agricultural commodities to include metals and energy.

The nature of trading has evolved from barter organized on town marketplaces in the absence

of any monetary vehicle, to forward contracting between producers and merchants, then to

organized futures markets with clearing houses guaranteeing the creditworthiness of transactions.

The specification of contracts has evolved from plain-vanilla forwards to exotic options and

structured products allowing producers and market participants to hedge away risks.

In the 18th and 19th centuries, potato growers in the state of Maine started selling their crops

at the time of planting in order to finance the production process. A need for standardization in

terms of quantity, quality, delivery date emerged and led to the establishment of the New York

Cotton Exchange in 1842 and the Chicago Board of Trade in 1848 (see Geman [Gem05]).

Futures markets were originally set up to meet the needs of hedgers, namely farmers who wanted

to lock in advance a fixed price for their harvest. Commodity futures are still widely used by

producers and users of commodities for hedging purposes. Suppose that the date of analysis

is January and an airline knows that it will have to buy on September 25th of the same year

one million tons of fuel. In order to hedge against the possible increase in fuel price between
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6 Chapter 1. Commodity Indices

January and the end of September, the airline company will buy futures contracts written on

fuel, maturity September and in an amount corresponding to the necessary quantity of fuel. So

the airline company has locked in at the beginning of the year the price it will pay in September

and has done so with no cash flow payment at the beginning of the year. Another possible hedge

would be to buy options written on the fuel as the underlying.

Most of the liquidity in the futures markets is generated by the combined activity of speculators

and hedgers. Using the same example as before, a bank is betting that the fuel price will go up or

will go down and is counting on the corresponding profits the bank will generate. Commodities

are becoming increasingly attractive to investors and hedge fund managers who view them as an

alternative asset class allowing one to reduce the overall risk of a financial portfolio and enhance

the return as well.

Futures and Forwards

After having given a first motivation for futures as well as options I shall now give a formal

introduction to futures and forwards. Then I explain why it is necessary to include the so called

convenience yield.

I follow the description given in Hull [Hul06], Eydeland and Wolyniec [EW03] and Geman

[Gem05]. A forward contract is a particularly simple derivative. It is an agreement to buy

or sell an asset at a certain future time for a certain price. A forward contract is traded in

the Over-the-Counter market – usually between two financial institutions or between a financial

institution and one of its clients. One of the parties of a forward contract assumes a long position

and agrees to buy the underlying asset on a certain specified future date for a certain specified

price. The other party assumes a short position and agrees to sell the asset on the same date

for the same price.

Like a forward contract, a futures contract is an agreement between two parties to buy or sell

an asset at a certain time in the future for a certain price. It is traded on an exchange. If

two people get in touch with each other directly and agree to trade an asset in the future for a

certain price, there are obvious risks. It is possible that one of them may not have the financial

resources to honor the agreement. One of the key roles of the exchange is to organize trading so

that contract defaults are minimized. To this end, one has introduced so called margin accounts.

To illustrate how margins work, consider a trader who contacts a broker on Monday, June 3, to
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buy two December gold futures contracts on the New York Commodity Exchange. I suppose

that the current futures price is $ 400 per ounce. Because the contract size is 100 ounces, the

trader has contracted to buy a total of 200 ounces at this price. The broker will require the trader

to deposit funds in what is termed the margin account. The amount that must be deposited

at the time the contract is entered into is known as the initial margin. We will suppose this is

$ 2, 000 per contract, or $ 4, 000 in total. At the end of each trading day, the margin account is

adjusted to reflect the trader’s gain or loss. This is known as marking to market the account.

Suppose, for example, that by the end of June 3, the futures price has dropped from $ 400 to

$ 397. The trader has a loss of 200 ∗ $ 3 = $ 600. The balance in the margin account would
therefore be reduced by $ 600 to $ 3, 400. The trader’s broker has to pay the exchange $ 600

and the exchange passes the money on to the broker of a trader with a short position.

When interest rates are deterministic, as we assume in the thesis, futures prices are equal to

forward prices (see for example Duffie and Stanton [DS92] on page 569) and so all our results

for futures prices also apply for forward prices.

Rolling of Futures

The futures contract may be financially settled by design or the position closed prior to maturity

by a symmetric position in futures with the same maturity. In both cases, the investor does

not need to worry about physical delivery and related concerns. If the investment horizon

of an investor is farther away than the most deferred liquidity maturity one has to roll the

futures positions. Unlike equities, which typically entitle the holder to a continuing stake in

a corporation, commodity futures contracts normally specify a certain date for the delivery of

the underlying physical commodity. In order to avoid the delivery process and maintain a long

futures position, nearby contracts must be sold and contracts that have not yet reached the

delivery period must be purchased. This process is known as rolling a futures position.

Commodity Indices

Today, commodity indices represent the easiest way of getting exposure to commodities. Com-

modity-linked notes and commodity index options are tied to major commodity indices, such

as the Dow Jones-UBS Commodity Index (formerly called Dow Jones-AIG Commodity Index)

or Goldman Sachs Commodity Index. The issuers of such notes are investment banks, financial

institutions or individual commodity producers raising capital to extend their operations while

providing investors with exposure to the commodity sector.
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The indices are designed to provide investors with a benchmark for investment performance in

the commodity markets comparable to the stock index S&P 500. The indices show realizable

returns attainable in the commodity markets.

Relationship between Futures and Spot Prices, Convenience Yield

We now consider the relationship between the futures price F (0, T ) and spot price S(0) of an

investment asset. The following relation must hold:

F (0, T ) = S(0)erT

where r is the risk-free interest rate and T is the maturity of the futures contract. If F (0, T ) >

S(0)erT arbitrageurs can adopt the following strategy:

1. Borrow S(0) dollars at an interest rate of r.

2. Buy the spot price of the commodity S(0).

3. Enter into the futures contract to sell the commodity for F (0, T ) dollars in T years.

4. At time T one then obtains the gain F (0, T )− S(0)erT .

If F (0, T ) < S(0)erT there would be the following simple arbitrage opportunity:

1. Short the spot commodity.

2. Invest the S(0) proceeds at the risk-free rate.

3. Enter into a long futures contract to buy the commodity for F (0, T ) dollars in T years.

4. At time T one then obtains the strictly positive difference S(0)erT − F (0, T ).

Notice that the above mentioned pricing formula F (0, T ) = S(0)erT only holds if the commodity

is an investment asset (for example, gold and silver). That means it is mainly hold for investment

purposes and the investors are prepared to sell their holdings and go long futures contracts,

if they look more attractive. For commodities that are not, to any significant extent, held

for investment, this argument cannot be used. Individuals and companies who keep such a

commodity in inventory do so because of its consumption value – not because of its value as an

investment. They are reluctant to sell the commodity and buy futures contracts because futures

contracts cannot be consumed. There is, therefore, nothing to stop F (0, T ) < S(0)erT from

holding. This means that all we can assert for a consumption commodity is F (0, T ) ≤ S(0)erT .

So users of the commodity must feel that there are benefits from ownership of the physical

commodity that are not obtained by the holder of a futures contract. These benefits may
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include the ability to profit from temporary local shortages or the ability to keep a production

process running. The benefits are sometimes referred to as the convenience yield provided by

the product. The (constant) convenience yield δ is defined so that

F (0, T )eδT = S(0)erT ⇐⇒ F (0, T ) = S(0)e(r−δ)T

The greater the possibility that shortages of the commodity will occur during the life of the

futures contract, the higher the convenience yield.

1.2. Descriptive Analysis of a Commodity Index

Analysis of the available data is the first step in understanding and quantifying the essential

features of a particular market. Without thorough data analysis it is impossible to select the

most appropriate model. My sample consists of daily closing values of the Dow Jones-UBS Com-

modity Index and adjusted closing values of the Standard & Poor 500 Index from 01/02/1991

to 01/31/2006. As references for comparison of the commodity index, I plot the distributions

and calculate the test statistics of the Standard & Poor’s 500 Index.

Commodities exhibit seasonality. But I will not eliminate the seasonality in the analysis because

I am facing an index of several commodities. So the index shall not have such a pronounced

seasonality compared with a single commodity such as for example natural gas.

I focus on financial pricing models. A great majority of them are based on an assumption of

the normality or log-normality of underlying price/return distributions. Looking at the sample

histograms of the commodity index makes us apprehensive of the normality assumption for these

returns (see the figures on page 13) . So I shall conduct statistical tests to provide a formal

foundation for acceptance and rejection of a particular choice of distributions built into our

pricing models. More precisely I am interested in investigating the following items

• Can the prices be modeled as a geometric Brownian motion?

• Do the prices or the logarithm of the prices feature mean reversion, in particular is it

recommendable to model the prices as a Vasicek process?

First I provide a description of the Dow Jones-UBS Commodity Index. The value of the Dow

Jones-UBS Commodity Index (formerly Dow Jones-AIG Commodity Index until 7th May 2009)

is computed on the basis of hypothetical investments in a basket of commodities that make up
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the index. It is composed of futures contracts on 19 physical commodities.

A long futures position is maintained by selling nearby contracts and purchasing contracts that

have not yet reached the delivery period. In that sense, the Dow Jones-UBS Commodity Index

is a rolling index. The roll period is the period of five business days, beginning with the sixth

business day through and including the tenth business day of each month. In this time the value

of the Dow Jones-UBS Commodity Index is gradually shifted from reliance on the basket of lead

futures to the basket of next futures.

The index is composed of commodities traded on US exchanges, with the exception of aluminum,

nickel and zinc which trade on the London Metal Exchange.

In stock indices the weightings of the constituent assets depend on market capitalization. For

commodities, there is no direct counterpart to market capitalization. The problem is that com-

modities are held in a variety of ways – long futures positions, over-the-counter investments,

long-term fixed-price purchasing contracts, physical inventory at the producer, etc. This makes

a complete accounting of capital dedicated to holding commodities from the time they are pro-

duced to the time they are consumed infeasible. Different commodity indices have different ways

to achieve a relatively close analog to market capitalization. The Dow Jones-UBS Commodity

Index relies on five year averaging of both liquidity data and dollar-adjusted production data in

order to determine the relative quantities of included commodities. Liquidity is an important

indicator of the value placed on a commodity by financial market participants. Production data,

on the other hand, are a useful measure of economic importance but may underestimate the

economic significance of storable commodities (for example, gold) at the expense of relatively

non-storable commodities (for example, live cattle). This is why the Dow Jones-UBS Com-

modity Index relies on production, a quantity exogenous to the futures markets, and liquidity,

a quantity endogenous to these markets, to define the relative weightings (see table 1.1). Of

course the actual percentages vary based on market price. In contrast to the Dow Jones-UBS

Commodity Index, the Goldman Sachs Commodity Index is only world-production weighted;

the quantity of each commodity in the index is determined by the average quantity of production

in the last five years of available data.

To ensure that no single commodity or commodity sector dominates the index, the Dow Jones-

UBS Commodity Index relies on several diversification rules. Among these rules are:

• no related group of commodities (for example, energy, or metals, or livestock and grains)
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Table 1.1.: Dow Jones-UBS Commodity Index Target Weights 2005 (Rounded)

Commodity Group Commodity Percentage

Energy Natural Gas 12%
Crude Oil 13%

Unleaded Gas 4%
Heating Oil 4%

Livestock Live Cattle 6%
Lean Hogs 4%

Grains Wheat 5%
Corn 6%

Soybeans 8%
Soybean Oil 3%

Industry Metals Aluminum 7%
Copper 6%
Zinc 3%
Nickel 3%

Precious Metals Gold 6%
Silver 2%

Softs Sugar 3%
Cotton 3%
Coffee 3%

may constitute more than 33% of the index;

• no single commodity may constitute less than 2% of the index.

Diversification rules will be applied each year, when the Dow Jones-UBS Commodity Index is

reweighted and rebalanced on a price-percentage basis.

Quantitative Measures of Indices

First I estimate mean, median, standard deviation, skewness and excess kurtosis.

Definition 1.2.1. Let X be a random variable with existing first four moments. With µ denoting

the expectation, σ2 the variance one can define the skewness S and excess kurtosis K as

S(X) =
E

[
(X − µ)3

]

σ3
and K(X) =

E

[
(X − µ)4

]

σ4
− 3

Remark 1.2.1. A high excess kurtosis distribution (K > 0) has a sharper peak and longer,

fatter tails, while a low excess kurtosis distribution (K < 0) has a more rounded peak and

shorter thinner tails. A distribution is called leptokurtic if K > 0.



12 Chapter 1. Commodity Indices

Skewness is a measure of the asymmetry of the probability distribution of a real-valued random

variable. If a distribution has a negative skew (S < 0) the left tail is longer; the mass of the

distribution is concentrated on the right of the distribution figure. In the case of a positive skew

(S > 0) is the right tail longer; the mass of the distribution is concentrated on the left of the

figure.

With n denoting the number of observed data and x = (x1, ..., xn) the observed data the standard

estimates for the mean and variance are here defined by

x̂ =
1

n

n∑

i=1

xi and σ̂2 =
1

n− 1
n∑

i=1

(xi − x̂)2 (1.1)

and the estimates for skewness Ŝ and excess kurtosis K̂ are calculated in the following way

Ŝ =
1
n

∑n
i=1(xi − x̂)3

(
1
n

∑n
i=1(xi − x̂)2

)3/2 and K̂ =
1
n

∑n
i=1(xi − x̂)4

(
1
n

∑n
i=1(xi − x̂)2

)2 − 3 (1.2)

Note that the statistic software R also subtracts the kurtosis of the normal distribution (namely

3), so R calculates the excess kurtosis.

Table 1.2.: Quantitative Measures of Dow Jones-AIG Commodity Index

St − St−1 lnSt − lnSt−1

Mean 0.020 0.000
Median 0.025 0.000

Standard Deviation 0.925 0.008
Skewness 0.137 −0.302

Excess Kurtosis 7.004 6.596

Amount of Data 3770 3770

Table 1.3.: Quantitative Measures of Standard & Poor 500 Index

St − St−1 lnSt − lnSt−1

Mean 0.252 0.000
Median 0.270 0.000

Standard Deviation 10.515 0.010
Skewness −0.093 −0.101

Excess Kurtosis 5.749 3.998

Amount of Data 3801 3801
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Tests for Normality

To check for normality I use both the Jarque-Bera and Shapiro-Wilk test applied to the daily

differences of the prices (St − St−1) and to the logarithmic returns (lnSt − lnSt−1).

The Jarque-Bera test compares skewness and kurtosis of the observed data with that of a normal

distribution. Following Franke, Härdle and Hafner [FHH04] page 150 under the null hypothesis

of normality the estimators of 1.2 are independent and asymptotically normal distributed with

√
nŜ

L→ N (0, 6) and
√
nK̂

L→ N (0, 24)

The Jarque-Bera test uses the test statistic

JB = n

[
Ŝ
2

6
+

K̂
2

24

]

For large sample sizes the Jarque-Bera statistic follows the chi-square distribution with 2 degrees

of freedom. For normal distributions the skewness and excess kurtosis are both equal to zero,

hence JB = 0. If the Jarque-Bera statistic is sufficiently large (greater than 6.0 at 5% significance

level), the null hypothesis of normality is rejected. There exist many distributions which have the

same skewness and kurtosis as the normal distribution, so in addition I apply the Shapiro-Wilk

test which tests the complete sample for normality.

The Shapiro-Wilk test (see Shapiro and Wilk [SW65]) checks for linearity of the QQ-plot. A

QQ-plot (”Q” stands for quantile) is a probability plot, a kind of graphical method for comparing

two probability distributions, by plotting their quantiles against each other. In a probability

plot, one can consider the regression of the ordered observations on the expected values of the

order statistics from a standardized version of the hypothesized distribution – the plot tending

to be linear if the hypotheses is true. Hence a possible method of testing the distributional

assumption is by means of the comparison of the squared slope of the probability regression line

with the sample sum of squares about the mean.

It tests the null hypothesis that a sample x1, . . . , xn came from a normally distributed population

with unknown mean and variance. The SW test statistic for normality is defined by

SW =
(
∑n

i=1 aiXi)
2

∑n
i=1 (xi − x̂)2

where

• Xi is the ith order statistic, that is, the ith-smallest number in the sample;
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• x̂ = (x1 + · · ·+ xn)/n is the sample mean;

• the constants ai are given by

(a1, . . . , an) =
m⊤V −1

(m⊤V −1V −1m)1/2

where m = (m1, . . . ,mn)
⊤ and m1, . . . ,mn are the expected values of the order statistics of

independent and identically-distributed random variables sampled from the standard normal

distribution, and V is the covariance matrix of those order statistics. The numerator of the

test statistic
∑n

i=1 aiXi is, up to a normalizing constant C := (m⊤V −1V −1m)1/2, the best

linear unbiased estimate of the slope of a linear regression of the ordered observations Xi on the

expected values mi of the standard normal order statistics. The constant C is so defined that

the linear coefficients are normalized. It is clear that the null hypothesis is rejected if SW is too

small.

Tests for Mean-Reversion

The mean-reversion tests are applied both to the price data S and to the logarithm of the price

data. That means I test for the Vasicek and the exp(Vasicek) model. The Vasicek-process is

given by

dS(t) = (α− κS(t))dt+ σdW (t) (1.3)

with S(0), κ, α and σ being strictly positive constants and W denoting as usual a standard

Brownian motion.

Proposition 1.2.1. The stochastic differential equation 1.3 can be solved explicitly. S(t) is

normally distributed for all t > 0. For κ > 0 the process S is mean-reverting, for κ < 0

mean-exploding and for κ = 0 a Brownian motion with drift.

Proof: The stochastic differential equation 1.3 can be solved explicitly. Indeed, if we consider

Y (t) = eκtS(t) and integrate by parts, it yields

dY (t) = eκtdS(t) + S(t)κeκtdt

= αeκtdt+ σeκtdW (t).

Thus

S(t) = S(0)e−κt +
α

κ

(
1− e−κt

)
+

∫ t

0
σe−κ(t−s)dW (s) (1.4)
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is normally distributed with

E [S(t)] = S(0)e−κt +
α

κ

(
1− e−κt

)
(1.5)

V [S(t)] = σ2
∫ t

0
e−2κ(t−s)ds =

σ2

2κ

(
1− e−2κt

)
(1.6)

For κ > 0 the process S is mean-reverting, since the expected value tends, for t going to infinity,

to the value α/κ.

If κ < 0 (and α > 0) the mean explodes for t going to infinity

E [S(t)] = S(0)e−κt +
α

κ

(
1− e−κt

)

=
α

κ
+

(
S(0)− α

κ

)
e−κt t→∞→ +∞

So for the model to be truly mean-reverting and not mean-exploding, we must have κ > 0.

If κ = 0 the process is a Brownian motion with drift and is a random walk with no mean-

reversion.

The fact that α/κ can be regarded as a long term average value could also be inferred from the

dynamics 1.3 itself. The drift of the process S is positive whenever the process is below α/κ and

negative otherwise, so that S is pushed, at every time, to be closer on average to the level α/κ.

Discretizing stochastic differential equation 1.3 via the Euler scheme with equidistant time steps

yields

S(t) = S(t− 1) + (α− κS(t− 1)) + σεt
⇔ S(t) = α+ (1− κ)S(t− 1) + σεt

where (ε)t are independent identically distributed normal random variables with mean 0 and

variance equal to
√
ti − ti−1.

Define β = 1− κ. I perform a statistical test to confirm whether the coefficient β < 1, that is,

κ is positive, as required by the assumption of mean reversion.

For testing the mean reversion I apply the following tests:

• Dickey-Fuller test (DF) which assumes the discrete time version of the Vasicek model

St = α+ βSt−1 + σǫt (1.7)
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and checks for

DF(< 1) : H0 : β = 1 versus H1 : β < 1

DF(> 1) : H0 : β = 1 versus H1 : β > 1

• Augmented Dickey-Fuller test (ADF) assumes the more general model

St = α+ βSt−1 +
k∑

j=2

βjSt−j + σǫt (1.8)

and checks for

ADF(< 1) : H0 : β = 1 versus H1 : β < 1

ADF(> 1) : H0 : β = 1 versus H1 : β > 1

• Kwiatkowski-Philips-Schmidt-Shin test (KPSS) which assumes model 1.7 and checks for

H0 : β < 1 versus H1 : β > 1

The basis for the Dickey-Fuller test (see for example Franke, Härdle and Hafner [FHH04] section

10.6.1) is the regression

∆S(t) = α+ (β − 1)S(t− 1) + σǫt

which comes from model 1.7. The standard t-statistic then takes the form

Tn(x) =
β̂ − 1√

σ̂2(ti − ti−1)
∑n

i=2 x
2
i−1

(1.9)

where β̂ and σ̂2(ti − ti−1) are the least squares estimates for β and the variance σ
2(ti − ti−1) of

σεt, respectively. For n→∞ the statistic does not converge to the standard normal distribution
but to a distribution of a function of Brownian processes

Tn(x)
L→ 1−W 2(1)

2
(∫ 1
0 W

2(u)du
)1/2

where W is a standard Brownian motion.
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In addition I also apply the Augmented Dickey-Fuller test which has the same test statistic 1.9,

with critical values that can again be calculated with the help of R. The test is based on an

augmented regression, namely 1.8, which encompasses in addition delayed differences. I set the

number k in 1.8 equal to 2 (in R one has to type k = 1 due to different notations).

The KPSS test interchanges the hypotheses in comparison to the Dickey-Fuller test and the

Augmented Dickey-Fuller test. It is described for example in Franke, Härdle and Hafner [FHH04]

section 10.6.2.

I have implemented all the tests in R with the inclusion of package tseries. Tables 1.4 and 1.5

show the p-values for daily data of the Dow Jones-UBS Commodity Index and Standard & Poor

500 Index. Not formally speaking, the p-value is the probability of obtaining a result at least as

extreme as the one that was actually observed, given that the null hypothesis is true.

Table 1.4.: P-Values for Daily Dow Jones-AIG Commodity Data

St − St−1 lnSt − lnSt−1

Jarque-Bera 0.00000 0.00000
Shapiro-Wilk 0.00000 0.00000

AR(1) coefficient 0.99797 0.99824
ADF(<1) 0.96667 0.92113
ADF(>1) 0.03333 0.07887

DF<1 0.94211 0.88461
DF>1 0.05789 0.11539
KPSS 0.01000 0.01000

Amount of Data 3771 3771

Interpretation of Analyzed Indices

After having introduced and explained the tests we can now dedicate ourselves to interpret

the analyzed commodity index: Both the Jarque-Bera and the Shapiro-Wilk test reject the

hypotheses that the differences St− St−1 or the logarithmic returns lnSt− lnSt−1 are normally

distributed (p-values equal to zero for daily data of both indices). The plotted histograms reveal

the reason: the data is leptokurtic and fat-tailed. The high peaks at the origin come from the

fact that the changes in the data are too small. But even when switching from daily to monthly

data the disturbing leptokurticy does not vanish (p-value equal to zero for weekly data and

small p-values for monthly data, not printed here). The fat tails can also be deduced from the
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Table 1.5.: P-Values for Daily Standard & Poor 500 Data

St − St−1 lnSt − lnSt−1

Jarque-Bera 0.00000 0.00000
Shapiro-Wilk 0.00000 0.00000

AR(1) coefficient 0.99906 0.99908
ADF(<1) 0.83870 0.90545
ADF(>1) 0.16130 0.09455

DF<1 0.76398 0.83844
DF>1 0.23602 0.16156
KPSS 0.01000 0.01000

Amount of Data 3802 3802

magnitude of the distribution excess kurtosis. In the case of the commodity index it is equal

to 6.596 which is significantly higher than 0, the value of the excess kurtosis for the normal

distribution. The excess kurtosis of the stock index is lower than the commodity index, namely

3.998. On the other hand, the skewness of the distributions are not far from the skewness of the

normal distribution (which is equal to zero). Both indices are negatively skewed.

The estimated AR(1) coefficient (β in model 1.7) is in all cases near one; it descends slightly

when changing from daily to weekly data and from weekly to monthly data (not printed here).

All the applied mean reversion tests come to the same conclusion: One should not model the

commodity price process nor the logarithm of the price process as a Vasicek model. The p-values

for mean reversion tests of logarithmic returns are for both indices comparable: For example for

the ADF(< 1) test the p-value of the commodity index is equal to 0.92 and 0.91 for the stock

index. We can conclude that the mean-reversion is very slow, and we do not have enough data

to form tests with enough power to detect it. In practical terms then, as long as we are not

concerned about writing options with a 100 year maturity, we do not have to worry about the

presence of mean reversion.

In the case of the differences St−St−1 the stock index seems to have a slightly more tendency to

exhibit mean-reversion, for example the p-value of the DF(< 1)-test is 76% for the stock index

in contrast to 94% for the commodity index. Since it is not usual to set up mean-reverting

models in stock indices markets for the differences St − St−1 it is recommendable to discard

mean reverting models for commodity indices, too.

The first impression of the results in the table regarding the Jarque-Bera and Shapiro-Wilk test
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is that the distribution of the logarithmic returns is not normal. This inference may not be

correct, however, and may stem from the misuse of a statistical methodology. I have assumed

that each sample element xi is a realization of the same random variable x. In other words, I

have assumed some form of stationary of the evolution. But volatility plots on page 1.2 reveal

that volatility is not constant over time for both indices.

Note that to create these graphs I used the volatility estimate with the 60-day moving window,

which I shall explain: I assume that the increments lnSi− lnSi+1 are independent and normally

distributed, and that the standard deviation of this distribution is proportional to the square

root of time between observations (as it is the case in the Black-Scholes model); that is it can be

represented as σ
√
ti − ti−1. The Black-Scholes volatility σ can be estimated using formula 1.1.

Note that it is customary to represent time increments as year fractions. So with the moving

window method, the volatility estimate at a given time tk is given by the expression σ(tk) =√
1

m−1

∑k
i=k−m+1

(
lnSi−lnSi−1√

ti−ti−1
− 1

m

∑k
i=k−m+1

lnSi−lnSi−1√
ti−ti−1

)2
with m being the specified number

of observations preceding tk used to estimate volatility.

The volatility plots reveal that the commodity index as well as the stock index exhibit noncon-

stant volatility. The volatility of volatility of both indices are nearly the same. The average

volatility of the commodity index is approximately 13% where the average volatility of the stock

index seems higher, namely approximately 17%.

In the following chapter I shall introduce a model for commodity indices with stochastic volatility.
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Chapter 2

Heston Model for Commodity Indices

2.1. The Model

Descriptive analysis of commodity indices (as for example the Dow Jones-UBS Commodity Index

which we considered in the last chapter) reveal that it is necessary to apply more sophisticated

models than geometric Brownian motion for commodities. Several important characteristics of

commodity return distributions was uncovered in the last chapter: First, commodity returns are

leptokurtic. Second, the volatility of commodity returns changes randomly over time. Third,

we do not have to worry about mean reversion.

I propose a stochastic volatility model, namely the Heston model [Hes93] supplemented with

a stochastic convenience yield. For this model I calculate no-arbitrage prices for futures and

European options on futures. Then I have implemented the solutions in Matlab and compared

them with Monte Carlo prices.

The most basic and most frequently traded asset in commodity markets are futures. Using the

technique developed by Heston [Hes93], Bakshi and Madan [BM00] and Yan [Yan02] I derive

a closed form solution for futures in order to calibrate the parameters appearing in the Heston

model. After the calibration of the parameters one is able to price non-traded options with the

help of different kinds of simulations.

But an interesting result is that the futures prices do not depend on the volatility parameters.

So when calculating the expectation of the index value S(T ) at time t the volatility parameters

do not appear. So calibration is done by means of futures prices and European options on

23
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futures. To this end, I derive a semi-closed form solution for European options. Often jumps

are also included in stochastic volatility models. But more complex models do not necessarily

offer a better fit. While one can get a better fit with some complex functional specifications,

the performance of those models out-of-sample is poor, and the parameters are unstable.

The Heston model [Hes93] is currently a frequently used model in the stock market. To apply

it also in the commodity market I include a stochastic convenience yield. The model is specified

by the following stochastic differential equations

dS(t)/S(t) = (r − δ(t)) dt+ σSdW1 +
√
V (t)dW2, S(0) > 0 (2.1)

dδ(t) = (θδ − κδδ(t)) dt+ σδdWδ, δ(0) ∈ R (2.2)

dV (t) = (θV − κV V (t)) dt+ σV

√
V (t)dWV , V (0) > 0 (2.3)

The processes S, δ and V are defined on a filtered probability space ((Ω,F , Q),F(t)). (Wa)t≥0

with a ∈ {1, 2, δ, V } are all Q-Brownian motions with instantaneous correlations ρ1 ∈ [−1, 1] and
ρ2 ∈ [−1, 1], that is, d 〈W1,Wδ〉t = ρ1dt and d 〈W2,WV 〉t = ρ2dt. Correlations between other

Brownian motions are assumed to be zero. Note that I introduce two uncorrelated Brownian

motions W1 and W2 in stochastic differential equation 2.1 modeling the instantaneous return.

W1 is correlated with the Brownian motion of the convenience yield Wδ and W2 is correlated

with the random walk of the volatilityWV . The reason for introducing two Brownian motions is

to separate the influence of volatility and convenience yield in the stock returns. This makes the

derivation and interpretation of the closed formula for futures and the semi-closed form solutions

for European options on futures more tractable.

The involved parameters of the stock returns are:

• initial stock value S(0) > 0

• the instantaneous riskless short rate r > 0

• the stochastic volatility V given by a Cox-Ingersoll-Ross process 2.3 and

• the stochastic convenience yield δ(t) is specified by an Ornstein-Uhlenbeck process 2.2.

Remark 2.1.1. The model is set up under an equivalent martingale measure Q. I note in

passing that I am facing an incomplete market rather than a complete one. Due to the second

fundamental theorem of asset prices there exist more than one equivalent martingale measure.

As common in financial engineering the equivalent martingale measure is chosen from the mar-
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ket, that is, I calibrate the parameters with options. Since there exists an equivalent martingale

measure the market is arbitrage-free (second fundamental theorem of asset prices). But I have

to outline a peculiarity of commodities in comparison to equity or fixed-income securities: One

cannot dynamically hedge. The action of borrowing and lending is hardly predictable in com-

modities. They are heavily grounded in their physical nature. One has been taught that securities

are derived by arbitrage arguments that allow us to seamlessly borrow and lend, in order to move

the asset and liability across time. In the arbitrage relationship, the future equals the spot times

ert. Now consider that you are trading in products that are not transferable into the future.

Arbitrage becomes hardly possible – and, with it, the arbitrage argument. Storage can cause

shrinkage in quantity (for example, electricity). Future oil may still be in the ground and might

cost no carry to the producer, whereas the arbitrageur would have to bear onerous storage costs.

So an important distinction with commodities as an asset class is storage, including transporta-

tion, insurance, warehousing and incidentals. Whereas equity and fixed-income securities can be

easily stored as bits of paper or electronic entries after purchase, storage of physical commodi-

ties involves complications; for example, consider storing crude oil and wheat as part of one’s

investment.

So one has to be careful with any arbitrage involving physical delivery. Clearly, it is not possible

to dynamically hedge a security that you cannot short, sometimes cannot easily own and that

can be severely illiquid.

The return process is a Black-Scholes model with two modifications. First, the volatility is not

constant anymore, because we have seen in chapter 1 that this is indeed not the case. Second,

the convenience yield motivated in chapter 1 is included.

The so called Cox-Ingersoll-Ross diffusion for the volatility solve

dV (t) = (θV − κV V (t)) dt+ σV

√
|V (t)|dWV , (2.4)

where the involved parameters are

• initial volatility V (0) > 0

• the mean reversion rate κV > 0

• the long-run mean θV ≥ 0 and

• the volatility of volatility σV > 0
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andWV being a standard Brownian motion. For every given value V (0) ≥ 0, equation 2.4 admits

a unique solution; this solution is strong, that is, adapted with respect to the natural filtration

of WV , and takes values in [0,∞[ (see Göing-Jaeschke and Yor [GJY03] page 1). If θV = 0 and

V (0) = 0, the solution of 2.4 is V (t) ≡ 0, and from the comparison theorem for one-dimensional

diffusion processes (see Revuz and Yor [RY91] Theorem 9.3.7), I deduce V (t) ≥ 0 for θV ≥ 0

and V (0) ≥ 0. Hence, in this case the absolute value in 2.4 can be omitted. If θV ≥ 0.5σ2V it

cannot reach zero almost surely (see Lamberton and Lapeyre [LL96] Proposition 6.2.4 on page

130). In the following I assume that it holds θV ≥ 0.5σ2V .

The volatility is chosen in this way by Heston [Hes93] because it is possible to derive semi-closed

form solutions for a lot of derivatives. Closed form solutions are very important in trading

derivatives because Monte Carlo methods take too much time.

An important feature of the volatility process for κV > 0 is the mean reversion, that is, it has

a long-run mean. If V (t) is greater than the long-run mean then the drift of the process is

negative. When V (t) is smaller than the long-run mean then the process is pushed up by the

drift.

Proposition 2.1.1. If V (t) is a solution of 2.3 then with s ≥ t the conditional expectation and

variance are given by

E[V (s)|V (t)] =
θV
κV

+ e−κV (s−t)

(
V (t)− θV

κV

)

V[V (s)|V (t)] = V (t)

(
σ2V
κV

) (
e−κV (s−t) − e−2κV (s−t)

)
+

θV
κV

(
σ2V
2κV

) (
1− e−κV (s−t)

)2

Proof: can be found in Ioffe [Iof10].

The convenience yield is specified by an Ornstein-Uhlenbeck process because this process in-

corporates two crucial features, namely mean reversion (economic reason) and the fact that

the process can become negative with positive probability. The last feature is implied by the

expectation and variance of the Ornstein-Uhlenbeck process calculated in chapter 1, namely 1.5

and 1.6. In interest rate models the possibility of negative values is a drawback, but when

modeling the convenience yield this in in fact desired. It enables us modeling strong contango:

Remember the relationship between commodity spot values and futures prices in the case of a
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constant convenience yield δ

F (t, T ) = S(t)e(r−δ)(T−t) (2.5)

Knowledge of S(t) and δ then leads to the whole futures curve (fix t, vary maturity T ). One

can observe that in the case where r − δ is negative, this futures curve is a decreasing function

of maturity T . A decreasing futures curve is called a backwardated futures curve. This happens

when r < δ, that is, when interest rates are low and the benefit of holding the physical commodity

high. Conversely, when the difference r−δ is positive, the forward curve is an increasing function
of maturity and one obtains the situation of contango.

From section 1.2 we already know that the Ornstein-Uhlenbeck process is mean reverting if

and only if parameter κδ > 0. Furthermore, we have already derived the explicit solution 1.4

of stochastic differential equation 2.2. As in section 1.2 I assume that the parameters of the

Ornstein-Uhlenbeck process, namely θδ, κδ and σδ, are all strictly positive.

In chapter 1 we have seen that the observed skewness and excess kurtosis of the log commodity

index returns differ from the ones of a normal distribution. The correlation between the return

process and the volatility process ρ2 influences the skewness. The amount of excess kurtosis

is managed by the volatility of volatility. If one choses the correlation ρ2 to be positive then

an increasing index value S implies an increase in volatility. So larger gains are possible. A

down-move in the index price is associated with down-move in volatility and great losses are

avoided. Thus the choice of a positive correlation implies a left skewed distribution of returns

dS(t)/S(t). A negative correlation ρ2 < 0 implies a right skewed distribution: If the index value

S rises then the volatility falls. Positive outliers occur less often than in comparison to ρ2 = 0.

Furthermore, a falling value S is associated with an increasing volatility value. The probability

of observing negative outliers is higher.

The volatility of volatility σV influences the excess kurtosis of the return distribution of the

spot: Setting σV equal to zero yields a normal distribution and thus the excess kurtosis is equal

to 0. For increasing value for σV the excess kurtosis rises.

A positive correlation between instantaneous return and convenience yield ρ1 yields the following:

An up-move of the index value is connected with an up-move of the convenience yield which in

turn yields a smaller drift of the return. A down-move of the index value forces the convenience

yield to be smaller. The drift of the return process becomes larger. A negative correlation has

the reverse effect.
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It is clear that the above mentioned effects interfere with each other and cannot be separated

in such a clear manner.

2.2. Closed form solution for Commodity Futures

Let F (t, τ, S(t), δ(t), V (t)) denote the futures price at time t with time to maturity τ . Since all

traded assets are martingales and keeping the considerations of section 1.1 in mind the following

holds

F (t, τ, S(t), δ(t), V (t)) = E [S(t+ τ)|F(t)] (2.6)

Note that the model has a Markovian structure, so the value of the conditional expectation can

be written as a function of the state variables. Define L(t) := lnS(t). The reason for considering

L(t) instead of S(t) is the simplification of the valuation equations or partial differential equa-

tions: One has to solve one ordinary differential equation less in 2.10 and 2.29 because process

S does not appear when switching to lnS. With the help of Itô’s lemma I obtain

dL =
(
r − δ − 0.5(V + σ2S)

)
dt+ σSdW1 +

√
V dW2

Since futures contracts cost nothing to enter, its expected return must be zero. Applying Itô’s

lemma to F (t, τ, L, δ, V ) and setting the drift equal to zero yield the following partial differential

equation

−Fτ + FL(r − δ − 0.5(V + σ2S)) + Fδ(θδ − κδδ) + FV (θV − κV V )

+0.5(σ2S + V )FLL + 0.5σ2δFδδ + 0.5σ2V V FV V

+FLδσSσδρ1 + FLV σV V ρ2 = 0 (2.7)

subject to the boundary condition

F (t, 0, L, δ, V ) = S(t) (2.8)

where I suppress the dependency of the futures price (F instead of F (t, τ, L, δ, V, r)). Notice

that I use Ft = −Fτ : The reason for switching from time t to the remaining time τ is the fact

that one can transform a terminal condition to an initial condition, namely 2.8. The problem

of solving the partial differential equation 2.7 subject to 2.8 is called the Cauchy problem (see

Friedman [Fri75] section 6.4, page 139). For solving the partial differential equation I try the

ansatz

F (t, τ, L, δ, V ) = exp {ln(S(t)) + β0(τ) + βδ(τ)δ(t) + βV (τ)V (t)} (2.9)
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The partial derivatives are FL = F , FLL = F , Fδ = βδF , Fδδ = β2δF , FLδ = βδF , FV = βV F ,

FV V = β2V F , FLV = βV F and Fτ = [β′0 + β′δδ + β′V V ]F . Substituting the partial derivatives

into the partial differential equation yields

−F
(
β′0 + β′δδ + β′V V

)
+ F (r − δ − 0.5(V + σ2S)) + βδF (θδ − κδδ) + βV F (θV − κV V )

+0.5(σ2S + V )F + 0.5σ2δβ
2
δF + 0.5σ2V V β

2
V F

+βδFσSσδρ1 + βV FσV V ρ2 = 0.

I group by state variables δ and V

F
[
δ
(
−β′δ − 1− κδβδ

)

+V
(
−β′V + βV (σV ρ2 − κV ) + 0.5σ2V β

2
V

)

+
(
−β′0 + 0.5σ2δβ

2
δ + (σSσδρ1 + θδ)βδ + βV θV + r

)]
= 0. (2.10)

So I obtain the following ordinary differential equations

β′δ = −1− κδβδ

β′0 = 0.5σ2δβ
2
δ + (σSσδρ1 + θδ)βδ + βV θV + r

β′V = βV (σV ρ2 − κV ) + 0.5σ2V β
2
V

subject to the boundary conditions βδ(0) = 0, βV (0) = 0 and β0(0) = 0.

The first two equations are linear ordinary differential equations of order 1, which can be solved

by standard methods. The general solution of the third ordinary differential equation is given

in lemma 2.2.1.

Lemma 2.2.1. The general solution of the ordinary differential equation

y′ = c1y + c2y
2, c1, c2 ∈ R (2.11)

is given by

y(x) =
c1

Cc1e−c1x − c2
, C ∈ R

Ordinary differential equation 2.11 has the singular solution y ≡ 0 for C →∞.

Proof: Substituting u = y−1 I get u′ = −y−2y′ = −u2y′ and hence −u−2u′ = c1u
−1 + c2u

−2.

This leads to the linear ordinary differential equation of first order u′ + c1u+ c2 = 0 which has

the general solution

u(x) = Ce−c1x − c2
c1
, C ∈ R
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By resubstituting I obtain

y(x) =
c1

Cc1e−c1x − c2
, C ∈ R

In view of βδ(0) = 0, βV (0) = 0 and β0(0) = 0 I obtain

βδ(τ) =
− (1− e−κδτ )

κδ
(2.12)

β0(τ) = rτ +
σ2δτ

2κ2δ
− σSσδρ1 + θδ

κδ
τ − (σSσδρ1 + θδ) e

−κδτ

κ2δ
+
4σ2δe

−κδτ − σ2δe
−2κδτ

4κ3δ

+
σSσδρ1 + θδ

κ2δ
− 3σ2δ
4κ3δ

(2.13)

βV (τ) ≡ 0

After providing a solution of the partial differential equation 2.7 I shall now give a rigorous proof

that solution 2.9 coincides with the conditional expectation 2.6. Does 2.7 subject to boundary

condition 2.8 admits a unique solution? The following theorem gives the answer:

Theorem 2.2.1. If the spot index solves stochastic differential equations 2.1, 2.2 and 2.3 then

futures prices at time t and maturity τ F (t, τ, lnS(t), δ(t)) are given by formula

F (t, τ, lnS(t), δ(t)) = exp {ln(S(t)) + β0(τ) + βδ(τ)δ(t)} (2.14)

where the functions βδ(τ) and β0(τ) are given by 2.12 and 2.13, respectively.

Proof: The proof can be conducted by applying a uniqueness result for the Cauchy problem

given in Friedman [Fri75], Corollary 6.4.4, page 141 and the Feynman-Kac theorem which can

be found in Karatzas and Shreve [KS00], Theorem 5.7.6, page 366. Following the notations of

Friedman [Fri75] I have to check that the coefficients matrix A is positive semi-definite

A = (aij(v))i,j=1,2,3 :=




σ2S + v σSσδρ1 σV vρ2
σSσδρ1 σ2δ 0
σV vρ2 0 σ2V v




By assumption σS , σδ, σV and v are strictly positive and ρ1, ρ2 ∈ [−1, 1]. Now I show that

matrix A is positive definite if additionally |ρ1| (= 1 or |ρ2| (= 1. By Sylvester’s criterion a

symmetric matrix A is positive definite if and only if the three principle minors P1, P2 and P3

are positive. Now

P1 = σ2S + v > 0
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and

P2 =

∣∣∣∣
σ2S + v σSσδρ1
σSσδρ1 σ2δ

∣∣∣∣ =
(
σ2S + v

)
σ2δ − σ2Sσ

2
δρ
2
1

= σ2Sσ
2
δ + vσ2δ − σ2Sσ

2
δρ
2
1 =

(
1− ρ21

)
σ2Sσ

2
δ + vσ2δ > 0

Furthermore,

P3 =

∣∣∣∣∣∣

σ2S + v σSσδρ1 σV vρ2
σSσδρ1 σ2δ 0
σV vρ2 0 σ2V v

∣∣∣∣∣∣
=

(
σ2S + v

)
σ2δσ

2
V v − σ2V v

2ρ22σ
2
δ − σ2V vσ

2
Sσ

2
δρ
2
1

=
(
1− ρ21

)
σ2V vσ

2
Sσ

2
δ +

(
1− ρ22

)
v2σ2δσ

2
V > 0

It follows that A is positive definite, in particular positive semidefinite. I remark that Sylvester’s

criterion is not expandable to semidefinite matrices, so the additional assumption |ρ1| (= 1 or

|ρ2| (= 1 is necessary.

Let (bi(v, δ))i=1,2,3 denote the coefficients appearing in the partial differential equation 2.7 with

respect to the partial derivatives ∂f
∂l ,

∂f
∂δ and ∂f

∂v , namely

(bi(δ, v))i=1,2,3 =
(
r − δ − 0.5(v + σ2S), θδ − κδδ, θV − κV v

)

The coefficients have to fulfill the polynomial/linear growth conditions for some constant C

|aij(v)| ≤ C(v2 + 1) and

|bi(v, δ)| ≤ C(
√
v2 + δ2 + 1).

The coefficients can be estimated by

|a11(v)| =
∣∣σ2S + v

∣∣ = σ2S + v ≤


σ2S

2
+

√
σ4S + 1

2


(

v2 + 1
)
,

|a12(v)| = σSσδ |ρ1| ≤ σSσδ

(
v2 + 1

)
,

|a13(v)| = σV v |ρ2| ≤ σV v ≤ σV

(
v2 + 1

)
,

|a22(v)| = σ2δ ≤ σ2δ
(
v2 + 1

)
and

|a33(v)| = σ2V v ≤ σ2V
(
v2 + 1

)

By assumption θδ, κδ, θV and κV are positive, so the following estimates hold

|b1(v, δ)| =
∣∣r − δ − 0.5(v + σ2S)

∣∣ ≤ r + σ2S + |δ|+ v ≤
(√

2 + r + σ2S

)(√
v2 + δ2 + 1

)
,

|b2(v, δ)| = |θδ − κδδ| ≤ θδ + κδ |δ| ≤ (θδ + κδ) (
√
v2 + δ2 + 1) and

|b3(v, δ)| = |θV − κV v| ≤ θV + κV v ≤ (θV + κV ) (
√
v2 + δ2 + 1)
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where I applied the Cauchy-Schwarz inequality in the estimation of b1. With

C := max




σ2S
2
+

√
σ4S + 1

2
, σSσδ, σV , σ

2
δ , σ

2
V ,
√
2 + r + σ2S , θδ + κδ, θV + κV





the growth conditions are fulfilled. So I have checked the assumptions of Corollary 6.4.4 in

Friedman [Fri75] and I conclude that there exists at most one solution of the Cauchy problem.

But I have already derived a solution of the problem, so this solution is unique. Furthermore,

the solution satisfies the growth condition (see Friedman [Fri75], Corollary 6.4.4)

|F (t, l, δ, v)| ≤ N
(
1 +

(√
l2 + δ2 + v2

)q)
(2.15)

for some positive constants N, q.

The growth condition 2.15 implies the assumption of the Feynman-Kac theorem:

|F (t, l, δ, v)| ≤M

(
1 +

(√
l2 + δ2 + v2

)2µ)
(2.16)

for some positive constants M and µ ≥ 1.

Namely, if q ≥ 2 then choose M := N and µ := q/2. Now let 0 < q < 2. I set K :=

max
{
(l, δ, v) :

√
l2 + δ2 + v2 ≤ 1

}
. Since the function

(l, δ, v)→ 1 +
(√

l2 + δ2 + v2
)q

is continuous on K and K is compact there exists an R such that

1 +
(√

l2 + δ2 + v2
)q
≤ R for all (l, δ, v) ∈ K

Choose M := NR and µ = 1.

If (l, δ, v) ∈ K then the following estimation is valid

|F (t, l, δ, v)| ≤ N
(
1 +

(√
l2 + δ2 + v2

)q)
≤ NR =M ≤M

(
1 +

(√
l2 + δ2 + v2

)2µ)

In the case of (l, δ, v) (∈ K, that is,
√
l2 + δ2 + v2 > 1 then it holds

1 +
(√

l2 + δ2 + v2
)q
≤ 1 +

(√
l2 + δ2 + v2

)2µ

So I obtain

|F (t, l, δ, v)| ≤ N
(
1 +

(√
l2 + δ2 + v2

)q)
≤M

(
1 +

(√
l2 + δ2 + v2

)2µ)
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Figure 2.1.: Futures Prices: Backwardation (blue line) and Contango (red line) in dependence
of 0.0 ≤ τ ≤ 6.0
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Since growth condition 2.16 holds I can conclude via the Feynman-Kac theorem that the solution

of the Cauchy problem F (t, τ, L(t), δ(t)) admits the stochastic representation

F (t, τ, lnS(t), δ(t)) = E [S(t+ τ)|F(t)]

on [t, τ ]× R
2.

As already mentioned in the introduction the futures prices do not depend on the volatility

parameters: In the formula for futures prices 2.14 the volatility parameters do not appear. So in

our model setting with stochastic volatility and stochastic convenience yield the volatility has no

influence on futures prices. But the convenience yield plays a crucial role. As mentioned above

the values of futures prices are the expectation of the underlying spot value of the commodity.

So more generally speaking the volatility does not change the first moment of the spot prices.

I have implemented futures formula 2.14 in MATLAB and shall discuss the behavior of futures

prices in dependence on several parameters. First I am interested in displaying contango and

backwardation. Figure 2.1 was generated with the following parameters: S(0) = 100, τ ∈
[0.0, 6.0], r = 0.03, δ(0) = 0.05 in case of the blue line (backwardation) and δ(0) = 0.01 in the

case of contango, σS = 0.3, κδ = 10.0, σδ = 0.1, θδ = 0.5 for backwardation and θδ = 0.1 for
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Figure 2.2.: Futures Prices in Dependence of Correlation: ρ1 = −0.8 (green), ρ1 = 0.0 (blue)
and ρ1 = 0.8 (red)
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Futures Prices in Dependence of Correlation equal to 0.0 (blue), 0.8 (red) and −0.8 (green)

contango, ρ1 = 0.0. To discover contango and backwardation I have chosen a very high value

for the speed of mean reversion κδ so that the convenience yield behaves nearly nonrandom

with value δ(t) ≈ δ(0) = 0.05 or δ(t) ≈ δ(0) = 0.01. Note that the mean value is given by θδ
κδ
.

Additionally, the volatility of the convenience yield σδ was set to a relative low value, namely

0.1. Consult page 27 for an explanation why it is clear that this choice of parameters lead to

the curves.

In the next step I am interested in analyzing the influence of the correlation between instanta-

neous return process and convenience yield ρ1 on the term structure of futures. In figure 2.2 I

have set the parameters equal to the parameters of figure 2.1. The only difference is the varying

correlation ρ1. A zero correlation is compared with a positive correlation ρ1 = 0.8 as well with

a negative correlation ρ1 = −0.8. One can see that in backwardation as well as in contango a

negative correlation leads to higher futures prices (the green lines lie above the blue lines) and

a positive correlation leads to smaller futures prices as in the case of zero correlation (the red

lines lie below the blue lines). This becomes immediately clear when considering the formula of
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futures prices 2.14:

F (0, τ, L(0), δ(0)) = exp

(
. . .− σSσδτρ1

κδ
− σSσδe

−κδτρ1
κ2δ

. . .

)
.

Note that all volatility parameters σS and σδ as well as κδ are greater than zero.

2.3. European Options on Futures

Let C(t, τ) denote the price of an European call option on a futures contract that matures in

τ̃ > τ , where τ is the time to maturity of the option contract and K is the strike price. Denote

by lag = τ̃ − τ the fixed difference of the two maturities. The European call option is priced as

the expected discounted payoff

C(t, τ) = e−rτ
E

[
[F (t+ τ, lag, L, δ)−K]+

]
(2.17)

where F (t+ τ, lag, L, δ) denotes the futures price. As derived in section 2.2 it does not depend

on the volatility. As with the reasoning in subsection 2.2 the contingent claim C(t, τ) satisfies

the pricing partial differential equation

−Cτ + CL(r − δ − 0.5(V + σ2S)) + Cδ(θδ − κδδ) + CV (θV − κV V )

+0.5(σ2S + V )CLL + 0.5σ2δCδδ + 0.5σ2V V CV V

+CLδσSσδρ1 + CLV σV V ρ2 = rC (2.18)

subject to the boundary condition

C(t, 0, φ) = (F (t, lag, L, δ)−K)+ (2.19)

In the following I abbreviate the futures price with F (t+ τ, lag). I define the indicator function

1{F (t+τ,lag)>K} as being unity when F (t+ τ, lag) > K and zero otherwise.

Proposition 2.3.1 taken from Bakshi and Madan [BM00] shows that knowing the prices of three

basic options is equivalent to solving the expectation 2.17.

Proposition 2.3.1. Model independent one can decompose the call price C(t, τ) to

C(t, τ) = G (t, τ)Π1(t, τ)− e−rτKΠ2(t, τ) (2.20)
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where

G (t, τ) := e−rτ
E [F (t+ τ, lag)]

Π1(t, τ) := e−rτ E
[
F (t+ τ, lag) 1{F (t+τ,lag)>K}

]

G (t, τ)

Π2(t, τ) := E
[
1{F (t+τ,lag)>K}

]

Proof: The assertions follow immediately from

C(t, τ) = e−rτ
E

[
F (t+ τ, lag) 1{F (t+τ,lag)>K}

]

− e−rτKE
[
1{F (t+τ,lag)>K}

]

= G (t, τ) e−rτ 1

G (t, τ)
E

[
F (t+ τ, lag) 1{F (t+τ,lag)>K}

]

− e−rτKE
[
1{F (t+τ,lag)>K}

]

= G (t, τ)Π1(t, τ)− e−rτKΠ2(t, τ)

Note that Π1 and Π2 can be interpreted as options as well as probabilities since Πj ∈ [0, 1], for
j = 1, 2.

I now want to reveal that the three securities appearing in 2.20 are all related to a characteristic

function. This fact will be useful to derive a formula for C(t, τ). To this end, I define the

discounted characteristic function of the logarithm of the futures price

f(t, τ ;φ) ≡ e−rτ
E

[
eiφ lnF (t+τ,lag)

]
(2.21)

which is implicitly the time-t price of a hypothetical claim that pays eiφ lnF (t+τ,lag) (where i is

the imaginary unit and φ is some parameter of the contract). So the characteristic function

satisfies the pricing partial differential equation

−fτ + (r − δ − 0.5(V + σ2S))fL + (θδ − κδδ)fδ + (θV − κV V )fV

+0.5(σ2S + V )fLL + 0.5σ
2
δfδδ + 0.5σ

2
V V fV V

+fLδσSσδρ1 + fLV σV V ρ2 = rf (2.22)

subject to the boundary condition

f(t, 0, φ) = exp {iφ lnF (t, lag)}

= exp {iφ [L(t) + β0(lag) + βδ(lag)δ(t)]} (2.23)
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where I applied the closed form solution for the futures price at maturity of the option derived

in the previous subsection. The reason for introducing f becomes clear in the following theorem.

The values of the three basic options of proposition 2.3.1 can be immediately obtained if one

has calculated an explicit solution for the characteristic function f .

Theorem 2.3.1. Let function f(t, τ ;φ) be the discounted characteristic function of the random

variable lnF (t+ τ, lag) given by 2.21. If the random variable lnF (t+ τ, lag) exhibits a continu-

ous cumulative distribution function then it holds that the three basic securities G (t, τ), Π1(t, τ)

and Π2(t, τ) of proposition 2.3.1 are related to f(t, τ ;φ) in the following way

G (t, τ) = f (t, τ ;−i) (2.24)

Πj(t, τ) =
1

2
+
1

π

∫ ∞

0
Re

[
e−iφ lnKϕΠj

(t, τ ;φ)

iφ

]
dφ (2.25)

with

ϕΠ1(t, τ ;φ) :=
f (t, τ ;φ− i)

G (t, τ)
(2.26)

ϕΠ2(t, τ ;φ) := erτf(t, τ ;φ) (2.27)

In our model setting it is understood that f(t, τ ;φ) is available in closed form by solving the

valuation equation 2.22 subject to the boundary condition 2.23.

Proof: For parsimony of presentation, let F ≡ F (t+ τ, lag). Since

G (t, τ) = e−rτE [F ]

by definition and the discounted characteristic function equals

f(t, τ ;φ) = e−rτE
[
eiφ lnF

]

it holds G (t, τ) = f(t, τ ;−i).

Π2(t, τ) was given by

Π2(t, τ) = E
[
1{F>K}

]
= E

[
1{lnF>lnK}

]
= P ({lnF > lnK})

= 1− FlnF (lnK)

where F denotes the continuous cumulative distribution function of the logarithm of the futures

price. With the help of a special form of the inversion theorem which provides a connection
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between the cumulative distribution function of the random variable lnF and the characteristic

function g(φ) := E
[
eiφ lnF

]
= erτf(φ) (see Chung [Chu01], page 168, inversion formula due to

Gil-Palaez) it follows

Π2(t, τ) = 1−
(
1

2
+

∫ ∞

0

eiφ lnKg(−φ)− e−iφ lnKg(φ)

2πiφ
dφ

)
.

With g(φ) being the complex conjugate of g(φ) I can easily calculate

g(−φ) = E

[
e−iφ lnF

]
= E [cos(−φ lnF )] + iE [sin(−φ lnF )]

= E [cos(φ lnF )]− iE [sin(φ lnF )] = g(φ)

So I continue and obtain

Π2(t, τ) =
1

2
+
1

2π

∫ ∞

0
− 1

iφ

[
eiφ lnKg(φ)− e−iφ lnKg(φ)

]
dφ

=
1

2
+
1

2π

∫ ∞

0

1

iφ
e−iφ lnKg(φ) +

1

iφ
e−iφ lnKg(φ)dφ

=
1

2
+
1

π

∫ ∞

0
Re

[
e−iφ lnKg(t, τ ;φ)

iφ

]
dφ

=
1

2
+
1

π

∫ ∞

0
Re

[
e−iφ lnKerτf(t, τ ;φ)

iφ

]
dφ

Π1(t, τ) is given by

Π1(t, τ) =
E

[
F1{F>K}

]

E [F ]

= E

[
1{lnF>lnK}

F

E [F ]

]

Since the futures price F is greater than zero
F

E [F ]
defines a probability measure. So I can

apply the same calculation as for Π2(t, τ) but with respect to the changed probability measure:

Π2(t, τ) =
1

2
+
1

π

∫ ∞

0
Re



e−iφ lnKE

[
eiφ lnF

F

E [F ]

]

iφ


 dφ

But it holds
E

[
eiφ lnFF

]

E [F ]
=
f(t, τ ;φ− i)

f(t, τ ;−i)
which yields the assertion.
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Remark 2.3.1. If I could determine a solution of the characteristic function partial differential

equation 2.22 subject to boundary condition 2.23 then I would have given a formula for European

call options on futures C(t, τ) via proposition 2.3.1 and theorem 2.3.1. But both the valuation

equation for European call prices on futures prices 2.18 and the partial differential equation for

the characteristic function 2.22 are obviously indistinguishable, so what is the gain? The an-

swer is the different boundary conditions 2.23 and 2.19. The one for the characteristic function,

namely 2.23, is mathematically more tractable than the one for the European call option 2.19:

Due to the characteristic function’s exponential boundary condition, it is easier to provide a guess

for the solution of the valuation partial differential equation subject to the characteristic func-

tion’s boundary condition. The boundary condition for the characteristic function is smooth and

infinitely differentiable, while the boundary condition for the call option fails to be differentiable.

For solving the partial differential equation 2.22 subject to the boundary condition 2.23 I try

the ansatz

f(t, τ ;φ) = exp {iφ [L(t) + β0(τ + lag) + βδ(τ + lag)δ(t)] + ϑ0(τ) + ϑδ(τ)δ(t) + ϑV (τ)V (t)}

The partial derivatives are

fL = iφf ; fLL = i2φ2f = −φ2f

fδ = (ϑδ + iφβδ) f ; fδδ = (ϑδ + iφβδ)
2 f

fV = fϑV ; fV V = fϑ2V

fLδ = iφ (ϑδ + iφβδ) f

fLV = iφϑV f

fτ = f
(
ϑ′0 + δϑ′δ + V ϑ′V + iφ

[
β′0 + β′δδ

])

Substituting the partial derivatives into the partial differential equation 2.22 I get

−f
(
ϑ′0 + δϑ′δ + V ϑ′V + iφ

[
β′0 + β′δδ

])

+iφf(r − δ − 0.5(V + σ2S)) + f (ϑδ + iφβδ) (θδ − κδδ) + fϑV (θV − κV V )

+0.5(σ2S + V )(−φ2f) + 0.5σ2δ (ϑδ + iφβδ)
2 f + 0.5σ2V V fϑ

2
V

+iφf (ϑδ + iφβδ)σSσδρ1 + iφϑV fσV V ρ2 − rf = 0
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Sorting by state variables V and δ yields the partial differential equation

f
[
δ
(
−ϑ′δ − κδϑδ

)
(2.28)

+V
(
−ϑ′V + 0.5σ2V ϑ2V + (σV ρ2iφ− κV )ϑV − 0.5iφ− 0.5φ2

)

−ϑ′0 + 0.5σ2δϑ2δ + σ2δ iφβδϑδ + (σSσδρ1iφ+ θδ)ϑδ + θV ϑV − 0.5σ2Sφ2

−0.5σ2Siφ− 0.5σ2δφ2β2δ +
(
−φ2σSσδρ1 + θδiφ

)
βδ − iφβ′0 + (iφ− 1)r

]
= 0 (2.29)

where I applied in 2.28 the equality β′δ = −1− κδβδ.

So I obtain the following ordinary differential equations

ϑ′δ = −κδϑδ

ϑ′V = 0.5σ
2
V ϑ

2
V + (σV ρ2iφ− κV )ϑV − 0.5iφ− 0.5φ2

ϑ′0 = 0.5σ
2
δϑ
2
δ + σ2δ iφβδϑδ + (σSσδρ1iφ+ θδ)ϑδ + θV ϑV − 0.5σ2Sφ2

− 0.5σ2Siφ− 0.5σ2δφ2β2δ +
(
−φ2σSσδρ1 + θδiφ

)
βδ − iφβ′0 + (iφ− 1)r

subject to the boundary conditions

ϑδ(0) = 0, ϑV (0) = 0, ϑ0(0) = 0

Define

ξV :=

√
(κV − σV ρ2iφ)

2 − iφ (iφ− 1)σ2V

The solutions of the first two ordinary differential equations are given by

ϑδ ≡ 0

ϑV =
iφ (iφ− 1)

(
1− e−ξV τ

)

2ξV − [ξV − κV + σV ρ2iφ] (1− e−ξV τ )
. (2.30)

Thus the first three terms of the ordinary differential equation for ϑ0 vanish completely, and

to facilitate the presentation of the solution of the remaining ordinary differential equation, I

define

A(τ) := θV ϑV (τ)

B(τ) := −0.5σ2Sφ2 − 0.5σ2Siφ+ (iφ− 1)r

C(τ) := −0.5σ2δφ2β2δ (τ + lag)

D(τ) :=
(
−φ2σSσδρ1 + θδiφ

)
βδ(τ + lag)

E(τ) := −iφβ′0(τ + lag)
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To obtain a solution of the ordinary differential equation I have to integrate A,B, ..., E:
∫ τ

0
A(s)ds =

h2 (−ξV τ)
ξV (−2ξV + h1)

− 2h2 ln
(
2ξV − h1 + h1e

−ξV τ
)

(−2ξV + h1)h1

+
2h2 ln (2ξV )

(−2ξV + h1)h1

=: Ã(τ)

with

h1 := ξV − κV + σV ρ2iφ,

h2 := θV iφ (iφ− 1)

In proposition 2.4.1 I show that Ã can be simplified to

Ã(τ, φ) =
−τθV ((σV ρ2iφ− κV ) + ξV )

σ2V
+
2θV
σ2V

(
ln (2ξV )− ln

(
2ξV − h1 + h1e

−ξV τ
))

Note that the above version of Ã has removed the singularity at point φ = −i. I continue with
the integration of the other expressions:

∫ τ

0
B(s)ds =

(
−0.5σ2Sφ2 − 0.5σ2Siφ+ (iφ− 1)r

)
τ

=: B̃(τ)
∫ τ

0
C(s)ds =

φ2σ2δ
4κ3δ

[
4

(
e−κδlag − e−κδ(τ+lag)

)
+ e−2κδ(τ+lag) − e−2κδlag − 2κδτ

]

=: C̃(τ)
∫ τ

0
D(s)ds =

φ2ρ1σSσδ − iφθδ
κ2δ

(
e−κδ(τ+lag) − e−κδlag + κδτ

)

=: D̃(τ)∫ τ

0
E(s)ds = −iφβ0(τ + lag) + iφβ0(lag)

=: Ẽ(τ)

Thus

ϑ0(τ) = Ã(τ) + B̃(τ) + C̃(τ) + D̃(τ) + Ẽ(τ) (2.31)

solves the ordinary differential equation for ϑ0 subject to the boundary condition ϑ0(0) = 0.

After obtaining a closed-form solution for f , one can compute G, ϕΠ1 and ϕΠ2 . Π1 and Π2 are

then recovered by Fourier inversion

Πj(t, τ) =
1

2
+
1

π

∫ ∞

0
Re

[
e−iφ lnKϕΠj

(t, τ ;φ)

iφ

]
dφ
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where j ∈ {1, 2}. So I have derived a semi-closed form solution for European call options on

futures that only requires an additional numerical integration.

Theorem 2.3.2. If the spot index solves stochastic differential equations 2.1, 2.2 and 2.3 then

European call prices on futures C(t, τ) at time t and maturity τ and strike price K are given by

formula

C(t, τ) = f(t, τ ;−i)
(
1

2
+
1

π

∫ ∞

0
Re

[
e−iφ lnKϕΠ1(t, τ ;φ)

iφ

]
dφ

)

− e−rτK

(
1

2
+
1

π

∫ ∞

0
Re

[
e−iφ lnKϕΠ2(t, τ ;φ)

iφ

]
dφ

)
(2.32)

with ϕΠ1 and ϕΠ2 given by

ϕΠ1(t, τ ;φ) =
f (t, τ ;φ− i)

f (t, τ ;−i)
ϕΠ2(t, τ ;φ) = erτf(t, τ ;φ)

f(t, τ ;φ) = exp {iφ [L(t) + β0(τ + lag) + βδ(τ + lag)δ(t)] + ϑ0(τ) + ϑV (τ)V (t)}

with L(t) = lnS(t). The functions β0 and βδ already appeared in the derivation of the futures

formula 2.13 and 2.12, respectively. Functions ϑ0 and ϑV are given by 2.31 and 2.30, respectively.

Proof: With the same reasoning as in theorem 2.2.1 the Cauchy problem for the characteristic

function given by 2.22 subject to 2.23 has at most one solution. Since I have explicitly derived

a solution it follows that this solution is unique. Partial differential equation 2.22 differs from

the partial differential equation 2.18 by the additional term −rf . But since the interest rate
r is a constant the assumptions of the uniqueness result in Friedman [Fri75], Corollary 6.4.4,

page 141 are again valid. As in 2.2.1 the solution satisfies the growth condition 2.15 which is an

assumption for the applicability of the Feynman-Kac theorem (see Karatzas and Shreve [KS00]

theorem 5.7.6 on page 366).

I started this section by stating that the futures call price is given by

C(t, τ) = e−rτE
[
[F (t+ τ, lag, L, δ)−K]+

]

The expectation was then split in three basic securities 2.3.1 and the relationship of the securities

to a characteristic function f was revealed in 2.3.1. But f is the unique solution of the respective

Cauchy problem and with the help of the Feynman-Kac theorem it coincides with the expectation

f(t, τ ;φ) ≡ e−rτE
[
eiφ lnF (t+τ,lag)

]
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Futures and European call options are (relatively) liquid traded. So the concerns mentioned on

page 25 concerning arbitrage arguments in commodity markets are not relevant here. Shorting

and lending of futures and options on futures are possible, so the Put-Call parity must hold in

commodity markets, too:

Corollary 2.3.1. In the model setting of theorem 2.3.2 the no-arbitrage prices for European put

options P (t, τ) with strike price K and maturity τ > 0 on futures with futures maturity τ̃ > τ

are given by

P (t, τ) = C(t, τ) +Ke−rτ − F (t, τ̃ − τ) (2.33)

where a semi-closed form solution of European call prices C(t, τ) is given in theorem 2.3.2 and

a closed form solution of futures prices F (t, τ̃ − τ) in theorem 2.14.

Proof: see Appendix A.

In proposition 2.3.1 I decomposed the European call option in two options

C(t, τ) = e−rτE
[
F (t+ τ, lag) 1{F (t+τ,lag)>K}

]
=: AC(t, τ) (2.34)

− e−rτKE
[
1{F (t+τ,lag)>K}

]
=: CC(t, τ). (2.35)

2.34 and 2.35 are the fair values of so called binary options or digital options. The first one,

namely 2.34, is the value of the option which pays off nothing if the underlying futures price

ends up below the strike price and pays an amount equal to the futures price itself if it ends up

above the strike price. It is called asset-or-nothing call (Hull [Hul06]). The second one is the

value of an option which pays off nothing if the futures price ends up below the strike price at

time T and pays a fixed amount, namely the strike price K, if the futures price ends up above

the strike price. It is called a cash-or-nothing call. So the European call option is equivalent to

a long position in an asset-or-nothing call and a short position in a cash-or-nothing call where

the cash payoff on the cash-or-nothing call equals the strike price.

Corollary 2.3.2. As in the model setting of theorem 2.3.2 prices for the asset-or-nothing call

AC(t, τ) and cash-or-nothing call CC(t, τ) are given by

AC(t, τ) = f (t, τ ;−i)
(
1

2
+
1

π

∫ ∞

0
Re

[
e−iφ lnKϕΠ1(t, τ ;φ)

iφ

]
dφ

)
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and

CC(t, τ) = e−rτK

(
1

2
+
1

π

∫ ∞

0
Re

[
e−iφ lnKϕΠ2(t, τ ;φ)

iφ

]
dφ

)
,

respectively, where ϕΠ1 and ϕΠ2 are related to function f as in Theorem 2.3.2.

Proof: Follows immediately from theorem 2.3.2.

Remark 2.3.2. In this section the Fourier transform for all φ ∈ R

f(φ, t) = E

[
eiφX(t)

]

is a very useful vehicle to derive option prices. The state variable X(t) = lnF (t, τ) is equal to

the logarithm of the futures price. The article of Duffie, Pan and Singleton [DPS98] provides a

generalized Fourier transform for all u ∈ C:

f(u, t) = E

[
euX(t)

]

Deng [Den99] applies the methodology to the pricing of options with respect to three different

electricity models. With the help of Itô’s lemma for complex variables the valuation partial differ-

ential equations are stated. These partial differential equations with the corresponding boundary

conditions for the different options are easier to solve than the original ones for the options.

Similar to the methodology of this section basic options can be written as integrals of the gen-

eral Fourier transform. These options then serve as building blocks in pricing more complex

contingent claims.

The derived formulas for the different options can be used for a calibration of the parameters

of the model. Calibration is the process of identifying the set of model parameters that are

most likely given the observed data. I now remark how this can be conducted. The set S of
parameters to be estimated is

S = {r, S0, σS , δ0, ρ1, ρ2, θδ, κδ, σδ, V0, θV , κV , σV }

It is clear that the more parameters have to be estimated the more unstable is the calibration.

So this is a drawback of the model. Let FU be the set of observed futures prices with different
maturities and let C be the set of market values for European call options. I calibrate by

minimizing the squared relative differences between observed values and theoretical values

s∗ = argminS




∑

F obs∈FU

(
F theor − F obs

F obs

)2
+

∑

Cobs∈C

(
Ctheor − Cobs

Cobs

)2
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As the calculation of Ctheor involves numerical integration and F theor has a closed form solution,

I first precalibrate the parameters which influence the futures prices. These are then used as

starting values for the minimization over the whole parameterset S.

Hence, the first parameters to be estimated are

Sf = {r, S0, σS , δ0, ρ1, θδ, κδ, σδ}

Minimizing the squared relative differences between observed values and theoretical values of

the futures prices yields

sf = argmin
Sf




∑

F obs∈FU

(
F theor − F obs

F obs

)2



Given sf , all parameters in S can now be estimated and the resulting s∗ can be used to price
other derivatives, for example Asian Options.

Another way of calibrating the parameters is via a time series of historical index data. The

model setting in this chapter was under a risk neutral measure. So if one uses historical data

the model should be formulated under the physical measure. The option data reflect the future

expectation of the market whereas the times series is a historical view. In practice it is known

that there exist problems with calibrating a model with both stochastic volatility and stochastic

drift via time series data. The model cannot differentiate if for example an up-move in the index

value comes from a changing drift or a changing volatility. But note that there are no problems

if one applies option prices.

2.4. Implementation and Verification with Monte Carlo Simulation

I implemented the above formula in MATLAB and compared the calculated prices with Monte

Carlo simulations. The reason for conducting a Monte Carlo simulation is to verify the derived

semi-closed form solution for a European call option on futures and the closed form solution for

futures prices.

In the implementation of closed form solution 2.32 one has to be aware of the fact, that the

function f(t, τ ;φ) has a removable singularity at φ = −i and function f has to be evaluated at
point φ = −i in the semi-closed form solution of European options. To illustrate the behavior

of function f(t, τ ;φ) at point φ = −i I generated figure 2.4. On the x-axis I plotted the real
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Figure 2.3.: f(t, τ, φ− i) for 0.0001 ≤ φ ≤ 50: x-axis real part and y-axis imaginary part
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part of f(t, τ ;φ − i) and on the y-axis the imaginary part with φ ∈ [0.0001, 50]. One can see
that for φ starting at 50 and approaching 0.0001 both the real and imaginary part of function

f(t, τ ;φ − i) converge to 0. The plot was generated with the following parameters S(0) = 100,

r = 0.08, τ̃ = 0.8, τ = 0.6, K = 100, σS = 0.3, κδ = 0.6, σδ = 0.2, θδ = 0.9, κV = 0.2,

σV = 0.3, θV = 0.3, ρ1 = 0.8, ρ2 = 0.5, δ(0) = 0.15 and V (0) = 0.25. Proposition 2.4.1 gives

the proof that f(t, τ ;φ) has a removable singularity at point φ = −i for arbitrary parameter sets.

Proposition 2.4.1. For fixed point t and maturity τ > 0 let function f(t, τ ;φ) be given by

f(t, τ ;φ) = exp {iφ [L(t) + β0(τ + lag) + βδ(τ + lag)δ(t)] + ϑ0(τ) + ϑδ(τ)δ(t) + ϑV (τ)V (t)}
(2.36)

where β0 and βδ are specified in 2.13 and 2.12, respectively. Functions ϑ0 and ϑV are given

by 2.31 and 2.30, respectively.

Then function f(t, τ ;φ) has a removable singularity at point φ = −i.

Proof: A composition of holomorphic functions is again a holomorphic function in their joint

domain of definition. Examining function f at φ = −i one observes that Ã appearing in function
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ϑ0 is causing a division by zero and the denominator is equal to zero as well:

Ã(τ, φ = −i) =
h1h2 (−ξV τ)− ξV 2h2 ln

(
2ξV − h1 + h1e

−ξV τ
)

ξV (−2ξV + h1)h1

+
2h2 ln (2ξV )

(−2ξV + h1)h1

with

ξV (−i) = κV − σV ρ2

h1(−i) = ξV (−i)− κV + σV ρ2 = 0

h2(−i) = 0

I now simplify Ã and show that Ã evaluated at point φ = −i is equal to 0

Ã(τ, φ) =
−h2τ

(−2ξV + h1)
+
−2h2 ln

(
2ξV − h1 + h1e

−ξV τ
)

(−2ξV + h1)h1
+

2h2 ln (2ξV )

(−2ξV + h1)h1

=
−h2τ

(−2ξV + h1)
+

2h2
(−2ξV + h1)h1

(
ln (2ξV )− ln

(
2ξV − h1 + h1e

−ξV τ
))

With

h2τ

(−2ξV + h1)
=

h2τ

−2ξV + ξV − κV + σV ρ2iφ

=
h2τ ((σV ρ2iφ− κV ) + ξV )

((σV ρ2iφ− κV )− ξV ) ((σV ρ2iφ− κV ) + ξV )

=
τθV iφ (iφ− 1) ((σV ρ2iφ− κV ) + ξV )

(σV ρ2iφ− κV )
2 − ξ2V

=
τθV iφ (iφ− 1) ((σV ρ2iφ− κV ) + ξV )

(σV ρ2iφ− κV )
2 −

(
(σV ρ2iφ− κV )

2 − iφ (iφ− 1)σ2V
)

=
τθV ((σV ρ2iφ− κV ) + ξV )

σ2V

and

2h2
(−2ξV + h1)h1

=
2h2

(−2ξV + ξV − κV + σV ρ2iφ) (ξV − κV + σV ρ2iφ)

=
2h2

((σV ρ2iφ− κV )− ξV ) ((σV ρ2iφ− κV ) + ξV )

=
2θV iφ (iφ− 1)

(σV ρ2iφ− κV )
2 − ξ2V

=
2θV iφ (iφ− 1)

(σV ρ2iφ− κV )
2 −

(
(σV ρ2iφ− κV )

2 − iφ (iφ− 1)σ2V
)

=
2θV
σ2V
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I get

Ã(τ, φ) =
−τθV ((σV ρ2iφ− κV ) + ξV )

σ2V
+
2θV
σ2V

(
ln (2ξV )− ln

(
2ξV − h1 + h1e

−ξV τ
))

Because of

ξV (−i) = κV − σV ρ2

h1(−i) = ξV (−i)− κV + σV ρ2 = 0

I obtain

Ã(τ, φ = −i) = −τθV ((σV ρ2iφ− κV ) + κV − σV ρ2)

σ2V
+
2θV
σ2V

(ln (2ξV )− ln (2ξV )) = 0

Due to the fact that the two integrands appearing in the futures call formula 2.32 can vary

in its shape from almost simply exponentially decaying to highly oscillatory depending on the

choice of parameters, most simple quadrature or numerical integration schemes are bound to

fail. I used a more advanced scheme, namely the adaptive Lobatto quadrature to numerically

evaluate the integrals in the formula. Plot 2.4 and 2.5 illustrate the different possible shapes of

the integrands in formula 2.32. The first one is smooth in contrast to the oscillating second one.

Note that the parameterset of the first plot was generated by the parameters as for table 2.5

but with τ̃ = 0.8 while for the second plot I increased the maturity of the call option and the

volatilities (parameterset as on page 46 but with τ̃ = 4.0, τ = 0.2 and r = 0.02 ).

In the Monte Carlo simulation I applied the Euler discretization to simulate the stochastic

differential equations 2.1, 2.2 and 2.3. I use Monte Carlo simulation as a verification tool due

to its almost sure convergence ensured by the strong law of large numbers but in this place I

remark that although very flexible, the Monte Carlo simulation is not a very practical tool since

the computational time it requires is often enormously long.

For each simulation 0 ≤ i ≤ N the end values of Si(τ) and δi(τ) at maturity of the option

τ are then plugged in the futures formula 2.9. With N being the number of simulations and

F i (τ, τ̃ , S(τ), δ(τ)) denoting the i-th simulated futures price the Monte Carlo estimator for the

call option is then calculated via

MC =
1

N

N∑

i=1

e−rτ
(
F i (τ, τ̃ , S(τ), δ(τ))−K

)+
(2.37)

Additionally, we used two different variance reduction approaches:
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Figure 2.4.: Example of Smooth Integrands of Formula 2.32
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Figure 2.5.: Example of Oscillating Integrands of Formula 2.32
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• an antithetic variate approach

• a control variate approach.

The efficiency of the two approaches is measured by the standard error defined in the following

way (see for example Jäckel [Jäc02]) where I abbreviate F i (τ, τ̃ , S(τ), δ(τ)) with F i

σ̂N =

√√√√
(
1

N

N∑

i=1

(
e−rτ (F i −K)+

)2
)
−

(
1

N

N∑

i=1

e−rτ (F i −K)+
)2

ǫN =
σ̂N√
N

So the standard error is defined by the realized standard deviation of the Monte Carlo simulation

divided by the square root of the number of iterations. The smaller the standard error of the

calculation, the more accurate will be the result in general.

To illustrate how I applied the antithetic variate approach I consider as an example the con-

venience yield δ. The antithetic variate approach simulates

dδ1(t) = (θδ − κδδ1(t)) dt+ σδdWδ and

dδ2(t) = (θδ − κδδ2(t)) dt− σδdWδ

In the approach for each simulation 0 ≤ i ≤ N the end values of Si1(τ), S
i
2(τ) and δ

i
1(τ), δ

i
2(τ)

at maturity of the option τ are then plugged in the futures formula and one obtains two values

for call prices for each simulation, namely

v1(i) := e−rτ
(
F i(τ, τ̃ , Si1(τ), δ

i
1(τ))−K

)+
and

v2(i) := e−rτ
(
F i(τ, τ̃ , Si2(τ), δ

i
2(τ))−K

)+

In the antithetic variance approach I have only to count the pairwise average (Jäckel [Jäc02]) so

that the Monte Carlo estimator is then given by

MCa =
1

N

N∑

i=1

(
1

2
v1(i) +

1

2
v2(i)

)

Additionaly, I applied a control variate, namely the futures price given by formula 2.9 today

with maturity equal to the maturity of the option g∗ := F (0, τ, S(0), δ(0)). Let us remember



2.4 Implementation and Verification with Monte Carlo Simulation 51

that the futures price is equal to the expected spot value, that is, F (0, τ, S(0), δ(0)) = E [S(τ)].

The following holds for all β ∈ R

E [MC] = E

[
MC + β

(
g∗ − 1

N

N∑

i=1

Si(τ)

)]

The ordinary Monte Carlo estimator MC 2.37 is then replaced by

MCCV =MC + β

(
g∗ − 1

N

N∑

i=1

Si(τ)

)
(2.38)

and the Monte Carlo error then reads as

σ̂cvN =√√√√
(
1

N

N∑

i=1

(
e−rτ (F i −K)+ + g∗ − Si(τ)

)2
)
−

(
1

N

N∑

i=1

(
e−rτ (F i −K)+ + g∗ − Si(τ)

))2

ǫcvN =
σ̂cvN√
N

The optimal choice of β is

β∗ =
Cov

[
e−rτ (F (τ, τ̃ , e−rτS(τ), δ(τ))−K)

+
, S(τ)

]

V [S(τ)]

which minimizes the variance of MCCV (Jäckel [Jäc02]). An intuitive understanding of the

control variate method is to observe that e−rτ (F (τ, τ̃ , S(τ), δ(τ))−K)+ and S(τ) are positively

correlated. For any draw of the futures price that overestimates the result, the spot value is

likely to overestimate g∗. As a result, the term multiplied by β in equation 2.38 is likely to

correct the result by subtracting the aberration. The value of β∗ is estimated from the same

simulation that is used to calculate MCCV : With Xi
1 := e−rτ

(
F i (τ, τ̃ , e−rτS(τ), δ(τ))−K

)+

denoting the ith simulated call price and Xi
2 := Si(τ) the ith simulated discounted spot index

value β∗ can be estimated via

β∗ =

∑N
i=1

(
Xi
1 − 1

N

∑N
i=1X

i
1

)
∗

(
X i
2 − 1

N

∑N
i=1X

i
2

)

∑N
i=1

(
Xi
2 − 1

N

∑N
i=1X

i
2

)2

After introducing and explaining the different variance reduction approaches for Monte Carlo

simulations it is now interesting to quantify the amount of variance reduction in our case. To

this end, I present table 2.2. One can see that for all three parameter sets the combination of the
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Table 2.1.: Parameter Sets for Tables 2.3, 2.4 and 2.5

Parameters Table 2.4 Table 2.5 Table 2.3

Initial Spot Value S(0) 100 100 100
Interest Rate r 0.03 0.03 0.03

Maturity Underlying Future τ̃ 1.0 τ̃ ∈ [0.7, 2.0] 1.0
Maturity Option τ τ ∈ [0.3, 0.9] 0.6 0.6

Strike K 100 100 K ∈ [40, 160]
Volatility Spot σS 0.1 0.1 0.1

Speed of Mean Reversion Conv. Y. κδ 0.5 0.5 0.5
Volatility Conv. Y. σδ 0.1 0.1 0.1
Mean Con. Y.∗κδ θδ 0.025 0.025 0.025

Speed of Mean Reversion Volatility κV 0.33 0.33 0.33
Volatility of Volatility σV 0.1 0.1 0.1
Mean Volatility∗κV θV 0.03 0.03 0.03

Correlation Spot and Conv. Y. ρ1 0.0 0.0 0.0
Correlation Spot and Volatility ρ2 −0.3 −0.3 −0.3

Initial Value Conv. Y. δ(0) 0.05 0.05 0.05
Initial Value Volatility V (0) 0.1 0.1 0.1

Table 2.2.: Comparison of Monte Carlo Errors w.r.t. different Variance Reduction Methods
100, 000 Simulations

Parameter 1 Parameter 2 Parameter 3

Without Variance Reduction 0.0512 0.0234 0.0239
Antithetic 0.0298 0.0135 0.0139

Control Variate 0.0246 0.0130 0.0130
Antithetic and Control Variate 0.0122 0.0071 0.0065

antithetic and control variate reduction yields the best Monte Carlo error, namely for example

0.0065 for parameter set 3 in contrast to an error of 0.0239 without any variance reduction. In all

sets antithetic and control variate approach alone can halve the error without variance reduction.

Via combination of antithetic and control variate this error is again divided by two. Parameter

set 1 encompasses the parameters as for table 2.4 (see table 2.1) with τ = 0.6. Parameter set 2

is the same as parameter set 1 but with another option maturity τ = 0.15; parameter set 3 is

the the same as parameter set 2 but with a modified spot-volatility-correlation ρ2 = 0.3.

In the following, I shall illustrate and visualize the dependence of the semi-closed form solution

for the call price on futures with respect to different parameters. Furthermore, I compare these
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prices to the simulated prices. The Monte Carlo simulation is conducted with the inclusion

of two variance reduction methods, namely the above-mentioned combination of the antithetic

approach and control variate. For each figure I used 100, 000 simulations for each of the 400

(20 ∗ 20) simulated prices.
In plots 2.8 to 2.11 I do not present the call prices but the implied Black volatilities. To

explain how one maps the futures call price obtained by the semi-closed form solution 2.32 to

the corresponding implied Black volatility I first have to recall the famous Black’s formula for

futures call prices:

Proposition 2.4.2. Let F (t, τ̃) denote the the futures price at time t with maturity τ̃ . Assume

that F (t, τ̃) follows the stochastic differential equation

dF (t, τ̃) = F (t, τ̃)σdW (t)

where σ > 0 denotes the volatility of the futures contract and W is a standard Brownian motion.

Under this condition, the values of the futures call C(t, τ) and put P (t, τ) with maturity τ ≤ τ̃

are given by formulas

CBl(t, τ) = e−rτ (F (t, τ̃)Φ(d1)−KΦ(d2))

PBl(t, τ) = e−rτ (KΦ(d1)− F (t, τ̃)Φ(d2))

where r > 0 is the risk-free interest rate and

d1 =
ln(F (t, τ̃)/K) + (σ2/2)τ

σ
√
τ

d2 =
ln(F (t, τ̃)/K)− (σ2/2)τ

σ
√
τ

= d1 − σ
√
τ

Φ marks the cumulative distribution function of the standard normal distribution.

Proof: see Black [Bla76] .

The implied volatility for a given futures call price is defined as the volatility σ0 in the Black

formula such that the Black call price CBl and the Heston call price CH coincide, that is,

CH !
= CBl(σ0)

In the plots below I set F (0, τ) = S(0) = 100.



54 Chapter 2. Heston Model for Commodity Indices

Table 2.3.: Dependence on Strike K

K Closed Formula Monte Carlo price difference

40 57.0942 57.0993 0.0051
50 47.3221 47.3130 -0.0091
60 37.6990 37.7117 0.0128
70 28.6591 28.6618 0.0027
80 20.6629 20.6616 -0.0013
90 14.0819 14.0860 0.0041
100 9.1031 9.1383 0.0352
110 5.6367 5.6569 0.0202
120 3.3730 3.3580 -0.0150
130 1.9589 1.9343 -0.0247
140 1.1005 1.0829 -0.0176
150 0.5920 0.5989 0.0069
160 0.3023 0.3119 0.0096

Table 2.4.: Dependence on Option Maturity τ

τ Closed Formula Monte Carlo price difference

0.30 6.2365 6.3315 0.0950
0.35 6.8059 6.8777 0.0718
0.40 7.3303 7.3901 0.0598
0.45 7.8172 7.8672 0.0501
0.50 8.2720 8.3122 0.0401
0.55 8.6995 8.7384 0.0389
0.60 9.1031 9.1460 0.0430
0.65 9.4858 9.5265 0.0406
0.70 9.8501 9.8657 0.0156
0.75 10.1981 10.2086 0.0106
0.80 10.5313 10.5547 0.0233
0.85 10.8514 10.8503 -0.0011
0.90 11.1595 11.1678 0.0083



2.4 Implementation and Verification with Monte Carlo Simulation 55

Table 2.5.: Dependence on Underlying Futures Maturity τ̃

τ̃ Closed Formula Monte Carlo price difference

0.70 9.2776 9.2991 0.0216
0.80 9.2127 9.2459 0.0332
0.90 9.1548 9.1870 0.0322
1.00 9.1031 9.1296 0.0266
1.10 9.0569 9.0553 -0.0016
1.20 9.0156 9.0415 0.0258
1.30 8.9788 9.0073 0.0285
1.40 8.9459 8.9859 0.0401
1.50 8.9165 8.9209 0.0044
1.60 8.8901 8.9089 0.0188
1.70 8.8666 8.8800 0.0134
1.80 8.8455 8.8720 0.0265
1.90 8.8266 8.8888 0.0621
2.00 8.8097 8.8375 0.0278

In the first figure 2.6 I varied strike price K and the option maturity τ , in the second one 2.8

the interest rate r and the initial value of the convenience yield δ0 and the third one 2.10 is

concerned with the option and futures maturities τ and τ̃ .

The surfaces represent the prices/ implied volatilities obtained via the formula and the black

dots mark the prices/ implied volatilities obtained by the Monte Carlo simulation.

The histograms illustrate the empirical distribution of the differences of the Black implied volatil-

ities with respect to the Monte Carlo prices and the closed form prices. The red line shows a

normal distribution fitted to the differences having their empirical mean and variance.

The chosen parameters for the figures can be looked up in column Table 2.4 of table 2.1 with

option maturity τ = 0.8. Note that the mean value for the convenience yield is given by

mδ :=
θδ
κδ
= 0.05 and the one for the mean volatility by mV := θV

κV
= 0.1. Since the interest

rate r is equal to 0.03 we have a setting in backwardation: r −mδ < 0. The volatility of the

instantaneous spot index return dS(t)/S(t) is given by
√
σ2S + V (t) ≈

√
σ2S +mV ≈ 0.33.

After the illustration of the simultaneous dependence of the call price on some pairs of parame-

ters, I then varied only one parameter at a time. Tables 2.4, 2.5 and 2.3 display the dependence

of European options on futures with respect to the maturity of the option τ , maturity of the
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underlying future τ̃ and strike price K. The parameter sets for tables 2.4, 2.5 and 2.3 are given

in table 2.1.

All the figures and tables reveal the following futures call price features with respect to the

chosen parameters:

1. With increasing strike price K decreases the value of the price (see table 2.3 and figure

2.6).

2. With increasing option maturity τ increases the value of the price/ Black implied volatility

(see table 2.4, figure 2.6 and figure 2.10).

3. With increasing futures maturity τ̃ decreases the value of the price/ Black implied volatility

(see table 2.5 and figure 2.10).

4. The prices are the highest in the case of high interest rates combined with very low

(negative) initial values for the convenience yield δ0 (see figure 2.8).
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Figure 2.6.: Dependence of European Call Price on K and τ
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Figure 2.8.: Dependence of Implied Volatility of European Options on Futures on r and δ0
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Figure 2.10.: Dependence of Implied Volatility of European Options on Futures on τ̃ and τ

0 1 2 3 4 5
0

0.5

1

0.25

0.26

0.27

0.28

0.29

0.3

0.31

Maturity Future

Maturity Option

B
la
c
k
 I
m
p
lie
d
 V
o
la
ti
lit
y

0.26

0.265

0.27

0.275

0.28

0.285

0.29

0.295

0.3

0.305

Figure 2.11.: Error between Semi-Closed Form Solution and MC in dependence of maturities τ̃
and τ

−2 −1 0 1 2 3 4 5

x 10
−3

0

10

20

30

40

50

60

Error Implied Volatility

F
re
q
u
e
n
c
y
 o
f 
E
rr
o
r





Chapter 3

Construction of Optimal Commodity Indices

and Portfolios

3.1. Optimal Rolling of Commodity Futures

Let us recall the rolling procedure of the Dow Jones-UBS Commodity Index as mentioned in

section 1.2. Rolling was necessary to maintain a long futures position. To this end, nearby

contracts (lead futures) are sold and futures that have not yet reached the delivery period (next

futures) are bought. The roll period for all commodities of the index is the period of five business

days, beginning with the sixth business day through and including the tenth business day of each

month. In this time the value of the Dow Jones-UBS Commodity Index is gradually shifted from

reliance on the basket of lead futures to the basket of next futures. But is this rolling period

optimal? Optimal rolling days are those days where the spread between the next futures prices

and the lead futures prices is as small as possible because then the loss associated with the

rolling is minimized.

We now show that we have an indifference of the rolling with respect to different rolling dates

under the assumption that futures prices are martingales. But then we will explore that in

practice there is indeed a difference.

At time t0 we buy a futures with maturity t1 > t0, at time t1 we sell it and invest the money in

a futures with maturity t2 > t1. Figure 3.1 illustrates the investment.

We calculate the expected value of the investment using only that the commodity futures are

61
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Figure 3.1.: Two Periods Rolling Strategy

t0 t1 t2

−F (t0, t1) +F (t1, t1)

−F (t1, t2) F (t2, t2)

martingales

E [−F (t0, t1) + F (t1, t1)− F (t1, t2)] = −F (t0, t1) + F (t0, t1)− F (t0, t2)

= −F (t0, t2)

Which shows that the above mentioned rolling is equal in the mean to buying at time t0 directly

a futures with maturity t2. In reality, due to asymmetry of the supply and demand shortly before

the maturity of the futures, their prices may strongly rise and thus violate the assumptions we

have made for their distributions.

Müller [Mül05] reveals that for some commodities, for example, Brent and Gasoil, in the analyzed

time period from 01/01/1995 to 08/20/2004 optimal rolling days can be determined and those

days differ with that of the Dow Jones-UBS Commodity Index. The energy products analyzed in

Müller [Mül05] are Brent and Gasoil traded on the International Petroleum Exchange based in

London. The contract size of Brent is 1, 000 barrel and of Gasoil 100 metric tons. The contract

price is in US dollars and cents per barrel. The International Petroleum Exchange is one of the

world’s largest energy futures and options exchanges. Its flagship commodity, Brent Crude is a

world benchmark for oil prices, but the exchange also handles futures contracts and options on

gas oil, natural gas, electricity, coal contracts and carbon emission allowances with the European

Climate Exchange.

The industry metals are Primary Aluminum and Grade A Copper both traded on the London

Metal Exchange. Both metals have the same contract size, namely 25 metric tons. The contract

price is in US dollars and cents per tonne. The London Metal Exchange is the major international

market for the main industrially-used non-ferrous metals, namely aluminum, aluminum alloy,

copper, lead, nickel, tin, and zinc. Aluminum has the highest volume of spot and futures trade on
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the exchange, followed closely by copper. The two metals are also amongst the most important

metals in an industrial sense.

The ingredients for the optimization of rolling days are historical futures prices with two different

maturities at every time point. The lead futures expires in the midst of the current month and

the other one expires in the midst of the next month. If the lead futures is terminated it is

substituted by the next futures price and the next futures price is the one with expiration one

month later. In table 3.1 we have extracted the data for Brent to give an illustration: We see

that on January, the 17th 1995 the contract day is equal to one. This means that the lead

futures has expired on January, the 16th and has to be substituted by the next future. The

best rolling day was February, the 13th, because on this day the difference between 1st and 2nd

is minimized. Remember that the lead futures (2nd) are sold and the next futures (1st) are

bought. So the loss is equal to the spread.

Let us denote the lead futures prices with F 2nd and the next futures F 1st. In Müller [Mül05] the

spreads Υ = F 1st − F 2nd for two times series of futures are considered. Given the observations

f1stit and f2ndit (i = 1, . . . , nt) for each contract day t = 1, . . . , 20, one can calculate the spreads

for each contract day t by

sit = f1stit − f2ndit

The optimal time points for switching are to be determined by finding the contract days t with

smallest spreads Υt. We are therefore interested to compare spreads Υt1 and Υt2 for any pair

of different contract days t1 and t2. This leads to the test problem

H0 : Υt1  Υt2 versus H1 : Υt1 ≺ Υt2

where Υt1 ≺ Υt2 is used to indicate that the realizations of Υt2 are typically (in a stochastic

sense) larger than those of Υt1 . If we denote the cumulative distribution functions of Υt1 and

Υt2 by Ht1 and Ht2 , respectively, this gives

Υt1 ≺ Υt2 ⇐⇒ Ht1(x) > Ht2(x) for all x,

that is, Ht1 stochastically dominates Ht2 .

In Müller [Mül05] two statistical tests are applied, the t-test and the Wilcoxon Signed Rank

test.
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Table 3.1.: Extraction of Analyzed Time Series

Date IPE Brent Contract Day Brent 2nd Brent 1st Spread 1st – 2nd

16-Jan-95 21 16,37 16,43 0,06

17-Jan-95 1 16,82 16,64 -0,18
18-Jan-95 2 16,93 16,75 -0,18
19-Jan-95 3 16,8 16,61 -0,19
20-Jan-95 4 16,87 16,66 -0,21
23-Jan-95 5 16,64 16,47 -0,17
24-Jan-95 6 16,86 16,72 -0,14
25-Jan-95 7 16,79 16,63 -0,16
26-Jan-95 8 16,67 16,57 -0,1
27-Jan-95 9 16,39 16,34 -0,05
30-Jan-95 10 16,57 16,44 -0,13
31-Jan-95 11 16,8 16,64 -0,16
01-Feb-95 12 16,88 16,67 -0,21
02-Feb-95 13 16,89 16,67 -0,22
03-Feb-95 14 17,2 16,78 -0,42
06-Feb-95 15 17,22 16,72 -0,5
07-Feb-95 16 17,07 16,56 -0,51
08-Feb-95 17 17,07 16,48 -0,59
09-Feb-95 18 17,11 16,59 -0,52
10-Feb-95 19 17,33 16,7 -0,63
13-Feb-95 20 17,42 16,73 -0,69

14-Feb-95 1 16,75 16,62 -0,13
15-Feb-95 2 16,76 16,61 -0,15



3.1 Optimal Rolling of Commodity Futures 65

The t-test assumes the distributions of Υt1 and Υt2 to be normal. We moreover assume that we

have paired observations such that we consider

di = sit1 − sit2 , i = 1, . . . , n

as observations of D = Υt1 −Υt2 ∼ N(∆, σ2D). Thus, the test problem reduces to

H0 : ∆ ≥ 0 versus H1 : ∆ < 0

and the test statistic is given by

t =
√
n· D

sD
∼ tn−1, where D =

n∑

i=1

di, sD =

√√√√ 1

n− 1

n∑

i=1

(di −D)2

The hypothesis is rejected if

t < −tn−1,1−α

where α denotes the significance level and tn−1,1−α the (1−α)-quantile of the tn−1 distribution.

As n gets large, the tn−1,1−α can be approximated by the (1−α)-quantile of the standard normal.

Furthermore a distribution-free test, namely the Wilcoxon signed rank test is applied. It is

based on paired observations where the test problem reads as

H0 : Ht1(x) ≤ Ht2(x) for all x versus H1 : Ht1(x) > Ht2(x) for all x

The test statistic is calculated from the ranks

ri = rank(di) = rank(sit1 − sit2), i = 1, . . . , n

where the rank denotes the position of the observation di in the ordered sample. Define

W+ =
∑

di>0

ri , W− =
∑

di<0

ri ,

and the test statistic by

W = min{W+,W−}

There are tables for the exact distribution of W in case that n ≤ 30. For larger values of n, the

distribution of W is normal (under H0) with expectation n(n+1)
2 and variance n(2n+1)(n+1)

24 .

In Müller [Mül05] the following results for the optimal contract days are:
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• Brent:

Particular small p-values are found for both tests starting from contract days i = 3 to i = 7

and j > 8. This means that smaller spreads can be found at the contract days around 3

to 7 (corresponds approximately to the 18th to 25th calendar day of a month).

• Gasoil:

For both tests small p-values can be found for contract days i = 1, . . . , 4 and j > 3.

This means that the smallest spreads can be found at the very first days (corresponds

approximately to the 15th to 19th calendar day of a month).

• Aluminum and Copper:

For these two commodities we hardly find p-values smaller than 5% or 10%. For this

reason we conclude that all contract days give nearly similar spreads.

3.2. Markowitz Optimization

Many commodities, like those in the energy and industrial metals sectors, have liquid futures

contracts that expire every month. Therefore, these commodities can be rolled forward every

month. In the last chapter we discovered the best rolling days for each of the four commodities.

I now fix these optimal days:

• Brent: 3rd, 4th and 5th contract day

• Gasoil, Copper, Aluminum: 2nd, 3rd and 4th contract day

In addition of the two energy products and the two industry metals I also consider the precious

metal gold. It is traded on the London Bullion Market Association with a contract size of one

ounce. In contrast to the other four commodities Gold has a liquid spot market. So for Gold no

futures prices are analyzed but the London PM fix. The London PM fix is normally considered

the main reference price for the day and is the price most often used in contracts. The price of

gold is quoted in US dollars and cents per troy ounce.

After having fixed the rolling days I now also fix for each rolling day the proportions of lead

futures being substituted by next futures. With Vi(0) > 0 invested in the lead futures of the

i−th commodity the rolling strategy Vi(t), t > 0 then takes the following form: The amount Vi(t)

is fully invested in the lead futures of the i-th commodity until the first rolling day is reached.

On the first rolling day 33% of the money invested in the lead futures are sold. The money is
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then immediately reinvested in the next futures. The roll process continues the following two

rolling days. The basket of lead futures is gradually shifted to a basket of next futures in the

same fashion as on the first day: 50% on the second day, 100% on the third and last day. At

the end of the rolling period one has sold all the lead futures and is fully invested in the next

futures which are then called the lead futures. A second nearby basket of futures is formed (with

futures maturities further in the future) for use in the nest month’s roll. So the strategy is a

self-financing one since after the initial endowment no further money flows in or out.

After having determined the optimal weightings of commodity futures (optimal in the sense as

shall be described below) the whole initial money V is allocated to the 5 commodities V1, . . . ,V5

corresponding to the weightings. But the fluctuating futures prices and the rolling procedure

causes that the actual weightings of the respective commodities in the index change and are

not equal to the one-period Markowitz weightings after a while. To maintain the Markowitz

weightings I apply in addition a rebalancing mechanism. Every month on the third day of month

(or the next trading day where the exchange is open) the actual weightings of the commodities

are compared to the Markowitz ones and adjusted. That means that some futures are sold and

the money is invested in the ones where the weighting was too small.

I also take into account the trading costs for selling and buying of futures in the roll period and

for the rebalancing of the portfolio. The transaction costs are set to the following values

• International Petroleum Exchange (IPE) and London Metal Exchange (LME): 0.3 percent

per barrel/ per tonne which is sold or bought

• London Bullion Market Association (LBMA): 5 percent per ounce which is sold or bought

Note that the transaction costs are tracked in separate time series. That means that all the

results and plots are without friction losses.

The goal of this section is the construction of an optimal index in the sense that I want to find the

optimal weightings of the five commodities in the index via the mean-variance approach (or often

called Markowitz optimization [Mar52]). This approach is described for example in section 1.2

in Korn [Kor97]. It is a one period model. The crucial observation is that a pure maximization

of expected return would lead to putting all of the money in the asset with the highest expected

return. As such a strategy represents a highly risky position Markowitz suggested to also

quantify the risk by the variance of the position. Furthermore, he recommended to consider in
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addition to the single return and single risk of an asset, respectively, the covariance risk of all

assets together. The optimization consists of maximizing the index return Rπ over all weightings

π = (π1, π2, . . . , π5) with πi ∈ [0, 1] for all i = 1, 2, . . . , 5 and
∑5

i=1 πi = 1 which fulfill that the

index variance is not greater than a given boundary B:

max
π

E [Rπ] with constraint V [Rπ] ≤ B

The index return is the sum of the 5 weighted rolling strategies returns Ri(T ) =
Vi(T )
Vi(0)

Rπ =

5∑

i=1

πiRi(T )

Thus

E [Rπ] =
5∑

i=1

πiE [Ri(T )] (3.1)

The variance of the index reads as

V [Rπ] = V

[
5∑

i=1

πiRi(T )

]
=

5∑

i,j=1

πiπj Cov [Ri(T ), Rj(T )] (3.2)

I now dedicate myself to the estimation of the expectations 3.1 and covariances 3.2. The applied

model for the four rolling strategies and the Gold PM fixing prices Vi is the Black-Scholes model

dVi(t)

Vi(0)
= µidt+ σidWi(t), Vi(0) > 0 (3.3)

where Wi(t) with i = 1, . . . , 5 are correlated Brownian motions with correlations ρij ∈ [−1, 1].

For the calculation and estimation of the expectations and covariances appearing in the Marko-

witz optimization the following proposition will be useful.

Proposition 3.2.1. Let M be a positive random variable where the logarithm lnM is normally

distributed with mean α1 and standard deviation ν1. Then it holds for all positive integer values

n

E [Mn] = exp
(
nα1 + 0.5n2ν21

)

Especially, the mean and variance are given by

E [M ] = exp
(
α1 + 0.5ν21

)

V [M ] = exp
(
2α1 + ν21

) (
eν

2
1 − 1

)
= E [M ]2

(
eν

2
1 − 1

)
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With N being an additional lognormal random variable with mean α2 and standard variation

ν2 then the product M ∗ N is lognormally distributed, too. The mean of ln(M ∗ N) is equal to

α1 + α2 and the variance is V [M ] + V [N ] + 2Cov [M,N ]. So it follows that

E [NM ] = exp (α3 + 0.5ν3) (3.4)

with α3 = α1 + α2 and ν3 = ν21 + ν22 + 2Cov [M,N ].

Proof: Is given in Aitchison and Brown [AB57], page 8 and theorem 2.4 on page 12.

Corollary 3.2.1. With Vi(t) t ≥ 0 being specified by 3.3 for every i = 1, . . . , 5 the expectations,

variances and covariances of the returns Ri(T ) =
Vi(T )
Vi(0)

appearing in the Markowitz optimization

are given by

E [Ri(T )] = exp (µiT )

V [Ri(T )] = E [Ri(T )]
2 (
exp

(
σ2i T

)
− 1

)

Cov [Ri(T ), Rj(T )] = E [Ri(T )]E [Rj(T )] (exp (ρijσiσjT )− 1)

where the investment horizon in years is denoted by T .

Proof: The model 3.3 can be written as Vi(t)
Vi(0)

= exp
{(
µi − 1

2σ
2
i

)
t+ σidWi(t)

}
. This is equiv-

alent to ln Vi(t)
Vi(0)

=
{(
µi − 1

2σ
2
i

)
t+ σidWi(t)

}
. Thus the log-returns ln Vi(t+∆t)

Vi(t)
are normally

distributed with mean
(
µi − 1

2σ
2
i

)
∆t and volatility σ2i∆t. Since the Brownian increments are

independent also the log-returns are independent. So for all rolling strategies Vi the returns

Ri(T ) = Vi(T )/Vi(0) are lognormally distributed. Via proposition 3.2.1 I can calculate

E [Ri(T )] = exp
(
µiT − 0.5σ2i T + 0.5σ2i T

)
= exp (µiT )

and

V [Ri(T )] = E [Ri(T )]
2 (
exp

(
σ2i T

)
− 1

)

With

α = µiT − 0.5σ2i T + µjT − 0.5σ2jT

ν = σ2i T + σ2jT + 2ρijσiσjT
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the covariances can be written as

Cov [Ri(T ), Rj(T )] = E [Ri(T )Rj(T )]− E [Ri(T )]E [Rj(T )]

= exp (α+ 0.5ν)− exp (µiT + µjT )

= exp (µiT + µjT ) (exp (ρijσiσjT )− 1)

So I am left with the estimation of the Black-Scholes parameters µi, σi and ρij . To this end,

I consider the k-th daily log-return of the i-th rolled commodity rik = ln(Vi(k)/Vi(k − 1)). As

above T denotes the investment horizon in years:

mi :=
1

n

n∑

k=1

rik =
1

n
ln
Vi(T )

Vi(0)

µi :=
n

T
mi

σ2i :=
n

T

1

n− 1

n∑

k=1

(rik −mi)
2

σij :=
n

T

1

n− 1

n∑

k=1

(rik −mi) (rjk −mj)

ρij :=
σij
σiσj

Note that the estimated expectation of the return is simply the observed end value of Vi divided

by the initial endowment

E [Ri(T )] = exp (µiT ) = exp

(
ln
Vi(T )

Vi(0)

)
= Ri(T )

These are printed in the first row of table 3.2. The annualized yield is calculated via (Ri(T ))
1/T−

1 (printed in the second row of table 3.2). Consult proposition 3.2.2 about different types of

annualization which yield different values for the annualized returns.

Since there exist different alternatives of annualizations we have implemented two of them and

observed that one of them always yields smaller annualized returns than the second one. Propo-

sition 3.2.2 introduces the two types of annualizations and gives the reasoning for the differences.

Proposition 3.2.2. Let y = (y1, y2, ..., yn) be a sequence of real-valued values greater than
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Table 3.2.: Expected Returns of Commodities as Input for Markowitz Optimization

Brent Gasoil Aluminum Copper Gold

01/01/1995 – 08/20/2004 6.05 3.95 0.51 0.94 1.08
Annualized 21% 15% -7% -1% 1%

−100%, interpreted as returns, and T the investment horizon in years. Then for the two annu-

alizations a1(y) and a2(y)

a1(y) :=

(
1 +

1

n

n∑

i=1

yi

)n/T

− 1 and a2(y) :=
T

√√√√
n∏

i=1

(1 + yi)− 1 (3.5)

holds

a1(y) ≥ a2(y) (3.6)

Proof: We have to compare
(
1 + 1

n

∑n
i=1 yi

)n
with

∏n
i=1 (1 + yi). The first expression can be

written as
(
1 +

1

n

n∑

i=1

yi

)n

= exp

(
n ln

(
1 +

1

n

n∑

i=1

yi

))

= exp

(
n ln

(
1

n

n∑

i=1

(1 + yi)

))

and the second one as
n∏

i=1

(1 + yi) = exp

(
n∑

i=1

ln (1 + yi)

)

The logarithm is a concave function so the negative logarithm is convex. So the inequality of

Jensen can be applied and yields

−n ln
(
1

n

n∑

i=1

(1 + yi)

)
≤ n

1

n

n∑

i=1

(− ln (1 + yi))

which is equivalent to

a1(y) ≥ a2(y)

As in the preceding section the time period of the observed futures data is 01/01/1995 –

08/20/2004 (= 9.63 years). I assume in the following that the commodities are divisible in
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Table 3.3.: Covariance Matrix of Commodities as Input for Markowitz Optimization

Brent Gasoil Aluminum Copper Gold

Brent 63.28 20.52 0.05 0.24 0.11
Gasoil 20.52 22.73 0.04 0.17 0.13
Alu 0.05 0.04 0.08 0.10 0.01

Copper 0.24 0.17 0.10 0.46 0.03
Gold 0.11 0.13 0.01 0.03 0.20

the sense that I assume that one can buy for example half a tonne of Gasoil. Of course this is

in practice not possible, since contract sizes have to be complied. The prescription of the data

is given on page 62. I have programmed the estimation of the parameters of the Black-Scholes

models and input values of the optimization in VBA/EXCEL. For the Markowitz optimization I

use EXCEL-SOLVER. It applies the gradient descent algorithm to determine a local maximum

of the expected return. I randomized the starting values to get the global maximum.

First I examine the input data of the Markowitz optimization, namely the expectations and

covariances which can be found in tables 3.2 and 3.3, respectively. The first row of table 3.2

shows the return as the devision of end value and initial value. The energy products have the

highest return/ annualized yield (21%, 15%) followed by Gold (1%). But the variances of Brent

and Gasoil in the time period of approximately 10 years is extreme high. The annual yield of the

industry metals in the observed time period was negative where the variances are moderate (0.46

for Copper and 0.08 for Aluminum). Since covariances depend on the Black-Scholes parameters

given in table 3.4 the parameters should be examined. The correlation of the Brownian motions

of the two energy products is equal to 65%. This high correlation is also reflected in the first plot

of figure 3.2. The two industry metals are positive correlated, too. Their correlation amounts

to 57%. In the observed time period the energy and industry metals are nearly uncorrelated.

Gold is nearly uncorrelated to both the energy and industry metals (the correlation is for all

commodities smaller than 12%).

The negative expected return of the industry metals combined with the (approximately) zero

correlation with the other commodities make it clear why Aluminum and Copper do not appear

in the optimal portfolios presented in table 3.5. In this table the variance of the index was set to

different values (starting from the lowest value of 1.00 to the highest value 64.00). The results

are not surprising: A small value of variance leads to a high weight of the sound gold. If more
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Figure 3.2.: Results of Markowitz Optimization
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Table 3.4.: Estimated Black-Scholes Parameters: Correlation of Brownian motions ρ, volatilities
σ and drift µ

Brent Gasoil Aluminum Copper Gold

Volatility 32% 31% 17% 21% 13%
Drift 19% 14% -7% -0.6% 0.8%

Correlation Brent Gasoil Aluminum Copper Gold

Brent 100% 65% 3% 6% 4%
Gasoil 65% 100% 4% 7% 8%
Alu 3% 4% 100% 57% 11%

Copper 6% 7% 57% 100% 12%
Gold 4% 8% 11% 12% 100%

variance of the index is allowed Gasoil and Brent dominate the index. With the index return

and variance I can calculate the Black-Scholes drift and volatility of the index via corollary 3.2.1.

I plot these values in figure 3.2 because they are more vivid.

In the second plot of figure 3.2 I compare three different efficient frontiers. The dark blue one

results from an investment where the start values of the commodity weightings are equal to

the Markowitz ones (see table 3.5). Two other efficient frontiers are also included in figure 3.2,

namely the frontier where the index values are rebalanced monthly (yellow line) and another

one where I forced that the industry metals are included by at least 10% (light blue one).

It is clear that a forced inclusion of Aluminum and Copper yields the worst results since I

have included more constraints in the optimization. We see that monthly rebalancing leads to

the best results in our case. Due to the fluctuating futures prices and the rolling procedure

(backwardation/ contango) the weightings differ with the Markowitz weightings after a while:

If sik = Vi(k)/Vi(k − 1) denotes the k−th daily return of the i−th commodity then the return

R is given by

• First Day: R1 = π1s11 + π2s21 + ...+ π5s51

• Second Day: R2 = R1

(
π1s11
R1

s12 +
π2s21
R1

s22 + ...+ π5s51
R1

s52

)
= π1s11s12 + ...+ π5s51s52

• ...

• Last Day: RN =
∑5

i=1 πiVi(N)/Vi(0)

In the case where for example s11 *= 1 the weighting of the first commodity on the second day

is not equal to the start weighting (π1 *= π1s11). If one would rebalance on the second day one
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Table 3.5.: Results of Markowitz Optimization: Optimal Weightings

Markowitz

Brent 7% 35% 59% 100%
Gasoil 10% 51% 41% 0%
Alu 0% 0% 0% 0%

Copper 0% 0% 0% 0%
Gold 83% 14% 0% 0%

Index Return 1.71 4.28 5.19 6.05

Index Variance 1.00 21.00 36.00 63.28
Index BS Drift 6% 15% 17% 19%

Index BS Volatility 17% 28% 30% 32%

Table 3.6.: Results of Markowitz Optimization: Optimal Weightings with Forced Inclusion of
Aluminum and Copper

Brent 7% 42% 73% 80%
Gasoil 11% 38% 7% 0%
Alu 10% 10% 10% 10%

Copper 10% 10% 10% 10%
Gold 62% 0% 0% 0%

Index Return 1.66 4.18 4.84 4.98

Index Variance 1.00 21.00 36.00 40.55
Index BS Drift 5% 15% 16% 17%

Index BS Volatility 18% 29% 31% 32%

would buy/sell futures contracts to force the weightings to be equal to (πi)i=1,...,5. In our special

case the yellow rebalancing frontier outperforms enormously the static blue Markowitz frontier.

A last note on the transaction costs: At first site it seems quite surprising that the trading costs

are lower when I rebalance in comparison of no rebalancing. Rebalancing costs are additional

costs to the costs of rolling. But observe that the trading costs of the index depend highly on the

amount of Brent in the index. The transaction costs on the International Petroleum Exchange

is set to 0.3% US dollars per ounce/ per tonne. For example, on January, the 3rd 1995 the Brent

lead futures has a value of $ 16 per barrel and Gasoil $ 145 per tonne. If one invests $ 10, 000

in Brent (Gasoil) one has to pay ≈ $ 2 ($ 0.2). So the transaction costs of Brent are ten times

higher than those of Gasoil. This is the reason why transaction costs depend only on the amount

of Brent in the index. In the case of monthly rebalancing the value of Brent is thwarted, so are



76 Chapter 3. Construction of Optimal Commodity Indices and Portfolios

Table 3.7.: Monthly Rebalancing

Markowitz-Weightings as Start Values

Brent 7% 35% 59% 100%
Gasoil 10% 51% 41% 0%
Alu 0% 0% 0% 0%

Copper 0% 0% 0% 0%
Gold 83% 14% 0% 0%

Monthly Rebalancing Index Results

Index Return 1.50 4.13 5.19 6.05
Index Trading Costs 3,040 21,667 38,601 68,338

Index BS Drift 4% 15% 17% 19%
Index BS Volatility 12% 25% 29% 32%

the transaction costs compared to the ones of no rebalancing.

Mean variance optimization penalizes up-side and down-side risk equally, whereas most investors

do not mind up-side risk. To overcome this, I consider in the next section other risk measures:

Value-at-Risk and Conditional Value-at-Risk.
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3.3. Minimization of Conditional Value-at-Risk for General Loss

Distributions

This section presents an approach of Rockafellar and Uryasev [RU00] and [RU02] to optimizing

a portfolio so as to reduce the risk of high losses. My contribution of this topic is to bridge

a gap in the proof of the crucial theorem in the article of Rockafellar and Uryasev [RU02].

Furthermore, I present an alternative way of proving some parts of the main theorem. I then

apply the theoretical results in the field of portfolio optimization with commodity indices.

The Conditional Value-at-Risk CVaR is generalized to discontinuous cumulative distribution

functions of the loss. For continuous loss distributions, the CVaR at a given confidence level

is defined as the expected loss exceeding the Value-at-Risk VaR. Loss distributions associated

with finite sampling or scenario modeling are, however, discontinuous. Various risk measures

involving discontinuous loss distributions shall be introduced and compared. They depend on a

decision variable x and the confidence level α.

Furthermore, I uncover graphically the behavior of these risk measures. Especially, I consider

the risk measures as a function of α. Based on a special discrete loss distribution, the graphs

demonstrate the different properties of these risk measures. One recognizes graphically that the

definition of the Conditional Value-at-Risk as given in Rockafellar and Uryasev [RU02] is the

most reasonable generalization to distributions with possible discontinuities. It seems rather

surprising that three loss points are sufficient to reveal graphically the different behaviors of all

four risk measures.

Loss can be envisioned as a function z = f(x, y) of a decision vector x ∈ X ⊆ R
n rep-

resenting what we may generally call a portfolio or index, with X expressing decision con-

straints, and a vector y ∈ Y ⊆ R
m representing the future values of a number of variables

like in our case commodity rolling strategies returns, bond returns and structured product

returns. When y is taken to be random with known probability distribution, z comes out

as a random variable having its distribution dependent on the choice of x. As an example

consider the case of three returns of three assets y = (y1, y2, y3) and x = (x1, x2, x3) repre-

senting the weightings of the respective assets in the portfolio. The weightings should be in

X :=
{
x | xi ∈ [0, 1] for all i = 1, 2, 3 and

∑3
i=1 xi = 1

}
. Then a possible way of defining

the loss function z is the negative return z = f(x, y) = −x1y1 − x2y2 − x3y3.
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Any optimization problem of maximizing the expected return of a portfolio in terms of the

choice of x should then also take into account the riskiness of the portfolio which depends on x.

In section 3.2 the risk was measured by the variance of the portfolio. The higher the variance

the riskier was the portfolio. Mean-variance optimization penalizes up-side and down-side risk

equally, whereas most investors do not mind up-side risk. To overcome this, we consider in

this section various other risk measures with main focus on the last one: Value-at-Risk and

Conditional Value-at-Risk.

In everything that follows, we suppose the random vector y (the ”return vector”) is governed by

a probability measure P on Y (a Borel-measure) that is independent of the index weightings x.

For each x, we denote by Ψ(x, ·) on R the resulting distribution function for the loss z = f(x, y):

Ψ(x, ζ) = P [{y | f(x, y) ≤ ζ}] ,

making the technical assumptions that f(x, y) is continuous in x and measurable in y, and that

E [|f(x, y)|] <∞.

We consider a confidence level α ∈ ]0, 1[, which in applications would be something like α = 0.95

or α = 0.99. At this confidence level, there is a corresponding VaR and CVaR:

Definition 3.3.1. The α−VaR of the loss associated with a decision x is the value

ζα(x) = min {ζ | Ψ(x, ζ) ≥ α} (3.7)

The minimum in 3.7 is attained because Ψ(x, ζ) is nondecreasing and right-continuous in ζ.

Definition 3.3.2. In the case of Ψ(x, ζα(x)) < 1 (so there is a chance of a loss greater than

ζα(x)) the α−CVaR is defined by

φα(x) =
Ψ(x, ζα(x))− α

1− α
ζα(x) +

1−Ψ(x, ζα(x))

1− α
E [f(x, y) | f(x, y) > ζα(x)] (3.8)

If Ψ(x, ζα(x)) = 1 (so ζα(x) is the highest loss that can occur and thus the conditional expectation

in 3.8 is ill-defined) then

φα(x) = ζα(x)

The crucial feature in definition 3.3.2 of α−CVaR is the splitting of probability atoms (if present):

In the circumstances of figure 3.3 where for α = 1/2 (thus ζα(x) = 2) holds that

1/3 = lim
ζրζα(x)

Ψ(x, ζ) < α < lim
ζցζα(x)

Ψ(x, ζ) = Ψ(x, ζα(x)) = 2/3,
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Figure 3.3.: Cumulative Distribution Function Ψ(x, ·) of Loss (x-axis) of Example 3.3.3

an atom at ζα(x) having total probability Ψ(x, ζα(x)) − limζրζα(x)Ψ(x, ζ) = 1/3 > 0 is ef-

fectively split into two pieces with probabilities Ψ (x, ζα(x)) − α = 2/3 − 1/2 = 1/6 and

α − limζրζα(x)Ψ(x, ζ) = 1/6 , respectively. Only the first of these pieces is adjoined to the

interval ]ζα(x),∞[, which itself has probability 1−Ψ(x, ζα(x)) = 1/3. So one achieves a proba-

bility of 1− α = 1/2, whereas, if the atom could not be split, we would have to choose between

the intervals ]ζα(x),∞[ and [ζα(x),∞[, neither of which actually has probability 1− α = 1/2.

Definition 3.3.3. The upper α-CVaR of the loss associated with a decision x is the value

φ+α (x) := E [f(x, y) | f(x, y) > ζα(x)] , (3.9)

whereas the lower α-CVaR of the loss is the value

φ−α (x) := E [f(x, y) | f(x, y) ≥ ζα(x)] (3.10)

The conditional expectation in 3.10 is well defined because P [{y | f(x, y) ≥ ζα(x)}] ≥ 1 −
Ψ(x, ζα(x)) = 1 − α > 0, since we have assumed that α ∈ ]0, 1[. But the one in 3.9 only

makes sense as long as P [{y | f(x, y) > ζα(x)}] > 0, that is, Ψ(x, ζα(x)) < 1, which is not as-

sured through our assumption that α ∈ ]0, 1[, since there might be a probability atom at ζα(x)

large enough to cover the interval 1− limζրζα(x)Ψ(x, ζ).
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The reasons for defining the α-CVaR for general loss distributions as a weighted average of

α-VaR and upper α-CVaR are the following:

• The fundamental minimization formula (3.3.1, upcoming) which states that the calculation

of α-CVaR can be conducted by a convenient optimization of convex type in one dimension

does hold for the α-CVaR as defined in 3.3.2. But it does not hold for the upper and lower

α-CVaR as will be demonstrated in corollary 3.3.1.

• α-CVaR as defined in 3.3.2 is continuous in the confidence level α. Note that for the risk

measures α-VaR, upper α-CVaR and lower α-CVaR a jump in the respective risk measures

is sure to occur if a slightly higher confidence level is demanded. Of course in practice this

is an undesirable feature. Example 3.3.3 highlights these characteristics of the four risk

measures.

• α-CVaR as defined in 3.3.2 is a coherent risk measure in the sense of Artzner et al.

[ADEH99] where α-VaR, upper and lower α-CVaR fail to be coherent (see on page 1458

in Rockafellar and Uryasev [RU02]).

I now calculate the α-VaR and α-CVaR in three special cases. In the first example the distribu-

tion function of the loss Ψ(x, ·) is continuous. Example 3.3.1 shows that the definitions for the
α-VaR and α-CVaR comprise the respective ”standard” definitions given in the article of Rock-

afellar and Uryasev [RU00]. The second example picks up a well-known situation in practice:

The probability measure P of the return vector y is the result of a Monte-Carlo simulation (for

example 10, 000 simulations). So P is concentrated in finitely many points yk in Y . The last

example shows the continuity of the α-CVaR with respect to the confidence level α in contrast

to α-VaR, upper and lower α-CVaR.

Example 3.3.1. If the distribution function of the loss Ψ(x, ·) is continuous then for the α-VaR
holds

ζα(x) = min {ζ | Ψ(x, ζ) ≥ α} = min {ζ | Ψ(x, ζ) = α}

If Ψ(x, ·) is in addition strictly increasing, ζα(x) is simply the unique ζ satisfying Ψ(x, ζ) = α.

If Ψ(x, ·) is not strictly increasing, that means the distribution function has ”flat” spots, the

equation Ψ(x, ζ) = α can have a whole range of solutions.

With α ∈ ]0, 1[ the upper α-CVaR is well defined since

P [{y|f(x, y) > ζα(x)}] = P [{y|f(x, y) ≥ ζα(x)}] > 0
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The α-CVaR and the lower and upper α-CVaR coincide

φ−α (x) = φα(x) = φ+α (x)

since

E [f(x, y) | f(x, y) ≥ ζα(x)] = 0 ζα(x) + 1 E [f(x, y) | f(x, y) > ζα(x)]

= E [f(x, y) | f(x, y) > ζα(x)]

Example 3.3.2. Suppose the probability measure P is concentrated in finitely many points yk

in Y , so that for each x ∈ X the distribution of the loss z = f(x, y) is likewise concentrated

in finitely many points, and Ψ(x, ·) is a step function with jumps at those points. Fixing x, let

those corresponding loss points be ordered as z1 < z2 < · · · < zN , with the probability of zk being

pk > 0. Let kα be the unique index such that

kα∑

k=1

pk ≥ α >

kα−1∑

k=1

pk (3.11)

The α-VaR of the loss is then given by

ζα(x) = zkα (3.12)

The conditional expectation appearing in the definition of the α−CVaR can be calculated in our

example as (see Billingsley [Bil95], Example 34.1, page 446)

E [f(x, y) | f(x, y) > ζα(x)] =
1

1−∑kα
k=1 pk

N∑

k=kα+1

pkzk (3.13)

where I have used

Ψ(x, ζα(x)) =

kα∑

k=1

pk

When Ψ(x, ζα(x)) < 1 then the α-CVaR can then be written as

φα(x) =
1

1− α




(
kα∑

k=1

pk − α

)
zkα +

N∑

k=kα+1

pkzk


 (3.14)

Otherwise φα(x) = ζα(x). Note that I have suppressed the dependence on x for the loss zi =

f(x, yi) and the index value kα(x).
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Figure 3.4.: α−VaR in Dependence of Confidence Level α (X-axis) in Example 3.3.3

Remark 3.3.1. In the setting of Example 3.3.2 imagine we are facing the problem of min-

imizing the α−CVaR in dependence of the decision variable x ∈ X (”portfolio weightings”).

For each x ∈ X we would have to run the algorithm for the calculation of the α−CVaR: First
sorting the losses, determination of the α−VaR and applying the α−CVaR formula 3.14. To con-

duct the algorithm one has to discretize the set X. Furthermore, it is not clear if formula 3.14 is

convex. The following propositions and theorems shall be concerned with providing some insight

how we can solve the problem of efficiently calculate the α−CVaR.

Example 3.3.3. I now calculate and visualize in MAPLE the different risk measures in a

concrete version of example 3.3.2. For fixed x ∈ X the distribution of loss z = f(x, y) is

concentrated in three points y1, y2, y3 ∈ Y , whereby the values of the corresponding loss points

z1, z2, z3 with probability pi are given by table 3.8. Then the distribution function of the loss

Ψ(x, ·) and the α-VaR in dependence of the confidence level α take the form as in figures 3.3
and 3.4. The diagram for distribution function Ψ(x, ·) shows that for example for α ∈ ] 1/3, 2/3 [

the equation Ψ(x, ζ) = α has no solution whereas the equation Ψ(x, ζ) = 1/3 has many solutions

in ζ. The diagram for the α−VaR ζα(x) exposes the instability of the α−VaR with respect to α:
A slightly higher confidence level can cause a jump.

For calculating the α−VaR and upper α−CVaR I apply formulas 3.12 and 3.13. The formula
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Table 3.8.: Losses and Probabilities in Example 3.3.3

y1 y2 y3
zi 1 2 3
pi 1/3 1/3 1/3

for the lower α−CVaR takes the form

φ−α =
1

1−∑kα−1
k=1 pk

N∑

k=kα

pkzk

Table 3.9 shows the values of the three risk measures in dependence of α. This simple example

shows that the risk measures lower and upper α−CVaR are generally instable with respect to
the confidence level α. In addition we see that the upper α−CVaR is always greater or equal
than the lower α−CVaR and the last one is always greater or equal than the α−VaR (for a
formal justification of these features one can consult Proposition 5, page 1450 in Rockafellar and

Uryasev [RU02]). Plot 3.5 illustrates the values of the four risk measures.

Table 3.9.: Values for α−VaR, lower and upper α−CVaR

α−VaR lower α−CVaR upper α−CVaR kα
α ∈ ]0, 1/3] 1 2 2.5 1
α ∈ ]1/3, 2/3] 2 2.5 3 2
α ∈ ]2/3, 1[ 3 3 not defined 3

If one defines the α−CVaR as the weighted average of the α−VaR and the upper α−CVaR
(where the weighting depends on α as in 3.3.2) then the risk measure is continuous with respect

to the confidence level α (see proposition 13, page 1458 in Rockafellar and Uryasev [RU02]). In

our example the α−CVaR can be calculated via formula 3.14):

α ∈ ]0, 1/3] : φα(x) =
1

1− α

[
(1/3− α) 1 +

(
1

3
2 +

1

3
3

)]
=
2− α

1− α

α ∈ ]1/3, 2/3] : φα(x) =
1

1− α

[
(2/3− α) 2 +

(
1

3
2 +

1

3
3

)]
=
7/3− 2α

1− α

α ∈ ]2/3, 1[ : φα(x) =
1

1− α
[(1− α) 3] = 3
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Figure 3.5.: Risk Measures in Dependence of Confidence Level α in Example 3.3.3

So the α-CVaR takes the form

φα(x) =





2−α
1−α for α ∈ ] 0, 1/3 ]
7/3−2α
1−α for α ∈ ] 1/3, 2/3 ]

3 for α ∈ ] 2/3, 1 ]

So our simple example shows that among the risk measures α−VaR, α−CVaR, lower and upper
α−CVaR only α−CVaR is stable with respect to the confidence level α.

In the article of Rockafellar and Uryasev [RU00] is shown that the α−CVaR and α−VaR of

the loss z can be calculated simultaneously by solving an elementary optimization problem of

convex type in one dimension (if f(x, y) is convex in x). The optimization of a convex function

is a very convenient problem since a local minimum is a global minimum. In [RU00] the crucial

theorems have the unpractical assumption that for each x ∈ X the distribution function for the

loss Ψ(x, ζ) is everywhere continuous with respect to ζ. In their follow-up article Rockafellar

and Uryasev [RU02] dropped this assumption and they proved that the theorems also hold in
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the general case if one defines the α−CVaR via 3.3.2. Let us note that no such formulas hold

for the lower and upper α−CVaR as shown in corollary 3.3.1.

In preparation for the fundamental minimization theorem I now provide some definitions and

propositions.

We denote by Ψ(x, ζ−) the left limit of Ψ(x, ·) at ζ; thus

Ψ(x, ζ−) = P [{y | f(x, y) < ζ}] (3.15)

For ζ ∈ R let B(ζ) be defined by

B(ζ) := E
[
[f(x, y)− ζ]+

]

Since B(ζ) is finite and convex the one-sided derivatives of B(ζ) exist as will be shown in

proposition 3.3.1. There I determine the right and left derivatives of B(ζ). The assertions

can be found implicitly in the proof of the fundamental minimization theorem [RU02]. But I

provide an alternative way of calculating the derivatives: Since the existence of the one-sided

derivatives is assured, it suffices to determine the limit of the difference quotient of B(ζ) for a

special sequence ζ + 1/n and ζ − 1/n, respectively. This simplifies the proof of Rockafellar and
Uryasev [RU02].

Proposition 3.3.1. Let the decision vector x ∈ X be fixed. Then for all ζ ∈ R holds

1. The right derivative of B(ζ) exists with B′r(ζ) = Ψ(x, ζ)− 1

2. The left derivative of B(ζ) exists with B′l(ζ) = Ψ(x, ζ
−)− 1.

Proof: For each return vector y ∈ Y the function b(ζ, y) = [f(x, y)− ζ]+ is a convex function

with respect to ζ since b is a composition of the convex function ζ → f(x, y) − ζ and the

nondecreasing convex function t → [t]+ (see Rockafellar [Roc97], Theorem 5.1). It follows that

B(ζ) = E
[
[f(x, y)− ζ]+

]
is also convex and finite since by assumption E [|f(x, y)|] < ∞. As a

finite convex function, B(ζ) has finite right and left derivatives at any ζ (see Rockafellar [Roc97],

Theorem 23.1 and Theorem 24.1).

1. Let ζ0 ∈ R and sn = 1/n. The right difference quotient of b in ζ0 reads as gn(y) =
b(ζ0 + sn, y)− b(ζ0, y)

sn
. The sequence gn(y) is monotone decreasing since b(ζ, y) is convex.

Now, if f(x, y) > ζ0 then there exists N ∈ N with ζ0 + sN < f(x, y) and it follows that

[f(x, y)− (ζ0 + sn)]
+ − [f(x, y)− ζ0]

+

sn
=

f(x, y)− (ζ0 + sn)− (f(x, y)− ζ0)

sn
= −1



86 Chapter 3. Construction of Optimal Commodity Indices and Portfolios

for all n ≥ N .

If f(x, y) ≤ ζ0 then

[f(x, y)− (ζ0 + sn)]
+ − [f(x, y)− ζ0]

+

sn
= 0 for all n ∈ N

It follows that

lim
n→∞

gn(y) =
b(ζ0 + sn, y)− b(ζ0, y)

sn
=

{
−1, if f(x, y) > ζ0
0, if f(x, y) ≤ ζ0

limn→∞ E [gn(y)] = E [limn→∞ gn(y)] by the monotone convergence theorem. So I obtain

lim
n→∞

s−1n (E [b(ζ0 + sn, y)]− E [b(ζ0, y)]) = lim
n→∞

E [b(ζ0 + sn, y)− b(ζ0, y)]

sn

= lim
n→∞

E [gn(y)] = E

[
lim
n→∞

gn(y)
]

= −1 P [f(x, y) > ζ0] = −1 (1−Ψ(x, ζ0))

= Ψ(x, ζ0)− 1

Hence B′r(ζ) = Ψ(x, ζ0)− 1 is proved.

2. Let ζ0 ∈ R and tn = −1/n. Setting hn(y) =
b(ζ0 + tn, y)− b(ζ0, y)

tn
the sequence (hn(y)) is

increasing for each y (since b(ζ, y) is convex with respect to ζ) and one obtains analogously

to 1

lim
n→∞

hn(y) =
b(ζ0 + tn, y)− b(ζ0, y)

tn
=

{
−1, if f(x, y) ≥ ζ0
0, if f(x, y) < ζ0

and

lim
n→∞

t−1n (E [b(ζ0 + tn, y)]− E [b(ζ0, y)]) = lim
n→∞

E [b(ζ0 + tn, y)− b(ζ0, y)]

tn

= lim
n→∞

E [hn(y)] = E

[
lim
n→∞

hn(y)
]

= −1 P [f(x, y) ≥ ζ0]

= −1 (1− P [f(x, y) < ζ0])

= Ψ(x, ζ−0 )− 1

where the last step applies definition 3.15. So I have shown that B′l(ζ) = Ψ(x, ζ
−
0 )− 1.
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Next, we shall turn to the fundamental minimization theorem as stated in Rockafellar and

Uryasev [RU00] and [RU02]. This important theorem states in particular that

φα(x) = min
ζ∈R

Fα(x, ζ) with (3.16)

Fα(x, ζ) = ζ + (1− α)−1E
[
[f(x, y)− ζ]+

]

Remark 3.3.2. Rockafellar and Uryasev proved in [RU02] that the α−VaR ζα(x) is in the set

argminζ Fα(x, ζ) and conclude from 3.16 the identity φα(x) = Fα(x, ζα(x)). But in their proof

one cannot find any hint for the correctness of 3.16. I close this gap by choosing the opposite

way: I first prove directly the identity φα(x) = Fα(x, ζα(x)) and from ζα(x) ∈ argminζ Fα(x, ζ)
I can conclude the correctness of φα(x) = minζ Fα(x, ζ).

Proposition 3.3.2. For each x ∈ X one has

φα(x) = Fα(x, ζα(x))

Proof: The auxiliary function Fα(x, ζ) evaluated at the α−VaR reads as

Fα(x, ζα(x)) = ζα(x) + (1− α)−1E
[
[f(x, y)− ζα(x)]

+]
(3.17)

If Ψ(x, ζα(x)) < 1 the expectation appearing in 3.17 can be written as

E
[
[f(x, y)− ζα(x)]

+]
= E

[
f(x, y)1{f(x,y)>ζα(x)}

]
− ζα(x)E

[
1{f(x,y)>ζα(x)}

]

= P [f(x, y) > ζα(x)]E [f(x, y) | f(x, y) > ζα(x)] (3.18)

− ζα(x) (1− P [f(x, y) ≤ ζα(x)])

= (1−Ψ(x, ζα(x))) [E [f(x, y) | f(x, y) > ζα(x)]− ζα(x)]

Note that I applied in 3.18 the formula

E [f(x, y) | f(x, y) > ζα(x)] = (P [f(x, y) > ζα(x)])
−1

E
[
f(x, y)1{f(x,y)>ζα(x)}

]

which can be found for example in Billingsley [Bil95], Example 34.1, page 446.

So I obtain

Fα(x, ζα(x)) = ζα(x) + (1− α)−1(1−Ψ(x, ζα(x))) [E [f(x, y) | f(x, y) > ζα(x)]− ζα(x)]

=
Ψ(x, ζα(x))− α

1− α
ζα(x) +

1−Ψ(x, ζα(x))
1− α

E [f(x, y) | f(x, y) > ζα(x)]

= φα(x)
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Figure 3.6.: Function F·(x, ·) in Dependence of Confidence Level α and Losses ζ in Example 3.3.3
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In the case of Ψ(x, ζα(x)) = 1 the α−CVaR is by definition equal to the α−VaR and it holds in
that case for the auxiliary function

Fα(x, ζα(x)) = ζα(x) + (1− α)−1E
[
[f(x, y)− ζα(x)]

+]
= ζα(x)

Remark 3.3.3. At first glance the definition of the α−CVaR as a weighted average of α−VaR
and upper α−CVaR seemed artificial. But proposition 3.3.2 in combination with the upcoming
theorem 3.3.1 explain why we defined it in that way.

Definition 3.3.4. (Upper α−VaR) The upper α−VaR of the loss with respect to the decision
vector x is defined by

ζ+α (x) = inf {ζ | Ψ(x, ζ) > α}

Clearly, ζ+α (x) ≥ ζα(x). These values are equal except when Ψ(x, ζ) is constant at level α over
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Figure 3.7.: Differences of VaR and upper-VaR in Dependence of Confidence Level α in Exam-
ple 3.3.3

a ζ−interval. This is illustrated in diagrams 3.7 where I apply the example 3.3.3 to the risk
measures upper α−VaR and α−VaR.

Theorem 3.3.1. (Fundamental Minimization Formula) Function

Fα(x, ζ) = ζ + (1− α)−1E
[
[f(x, y)− ζ]+

]

is finite and convex (hence continuous) in ζ ∈ R with

1. φα(x) = minζ Fα(x, ζ)

2. [ζα(x), ζ
+
α (x)] = argminζ Fα(x, ζ)

Proof: Function Fα(x, ζ) = ζ + (1 − α)−1E
[
[f(x, y)− ζ]+

]
is finite for each x ∈ X since by

assumption E [|f(x, y)|] < ∞. Furthermore, Fα(x, ζ) is convex as the composition of convex
functions.

Applying Proposition 3.3.1 one has

∂+Fα(x, ζ)

∂ζ
= 1 +

Ψ(x, ζ)− 1
1− α

=
Ψ(x, ζ)− α

1− α

∂−Fα(x, ζ)

∂ζ
= 1 +

Ψ(x, ζ−)− 1
1− α

=
Ψ(x, ζ−)− α

1− α
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These two one-sided derivatives are nondecreasing in ζ since the distribution function is nonde-

creasing. Furthermore, I have

lim
ζ→∞

∂+Fα(x, ζ)

∂ζ
= lim

ζ→∞

∂−Fα(x, ζ)

∂ζ
= 1 and

lim
ζ→−∞

∂−Fα(x, ζ)

∂ζ
= lim

ζ→−∞

∂−Fα(x, ζ)

∂ζ
= − α

1− α

It follows that the level sets {ζ | Fα(x, ζ) ≤ c} are bounded for each c ∈ R. Because of continuity

the minimum minζ Fα(x, ζ) is attained by the theorem of Weierstrass. Hence, in view of the

convexity argminζ Fα(x, ζ) is a nonempty bounded interval and closed since argminζ Fα(x, ζ) =

F−1α (x, {c}), c = minζ Fα(x, ζ), is the closed inverse image of the continuous function Fα(x, ζ).

It follows

argminζ Fα(x, ζ) =

{
ζ | ∂

−Fα(x, ζ)

∂ζ
≤ 0 ≤ ∂+Fα(x, ζ)

∂ζ

}

=

{
ζ | Ψ(x, ζ

−)− α

1− α
≤ 0 ≤ Ψ(x, ζ)− α

1− α

}

=
{
ζ | Ψ(x, ζ−) ≤ α ≤ Ψ(x, ζ)

}

In view of definitions ζα(x) = min {ζ | Ψ(x, ζ) ≥ α} and ζ+α (x) = inf {ζ | Ψ(x, ζ) > α} I can
conclude that [ζα(x), ζ

+
α (x)] = argminζ Fα(x, ζ) which proves assertion 2.

Combining the identity of proposition 3.3.2 φα(x) = Fα(x, ζα(x)) and assertion 2 which yields

minζ Fα(x, ζ) = Fα(x, ζα(x)) I obtain assertion 1: φα(x) = minζ Fα(x, ζ).

Example 3.3.4. I now calculate and illustrate the behavior of function Fα(x, ζ) in the setting

of example 3.3.3. Remember that in this basic example the loss can take three values with equal

probability, namely 1, 2 and 3.

In this case Fα(x, ζ) = ζ + (1− α)−1E
[
[f(x, y)− ζ]+

]
takes the form

ζ ∈ ]−∞, 1[ : Fα(x, ζ) = ζ + (1− α)−1 ((1− ζ)1/3 + (2− ζ)1/3 + (3− ζ)1/3) =
2− αζ

1− α

ζ ∈ [1, 2[ : Fα(x, ζ) = ζ + (1− α)−1 ((2− ζ)1/3 + (3− ζ)1/3) =
(1/3− α)ζ + 5/3

1− α

ζ ∈ [2, 3[ : Fα(x, ζ) = ζ + (1− α)−1 ((2− ζ)1/3 + (3− ζ)1/3) =
(2/3− α)ζ + 1

1− α

ζ ∈ [3,∞[ : Fα(x, ζ) = ζ

The graph of this function is given in figure 3.6. The graph of F·(x, ·) shows that Fα(x, ·) is con-
tinuous, not generally differentiable and convex which holds in general as proved in theorem 3.3.1
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Figure 3.8.: Function F0.5(x, ·) in Example 3.3.3
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and proposition 3.3.3.

In figures 3.9 and 3.8 I plot function Fα(x, ζ) for fixed values of the confidence level α = 0.5

and α = 1/3. These reveal that the extremal sets argminζ∈R Fα(x, ζ) can vary from being just a

single point (as in the case for α = 0.5) to being a whole interval (as it is the case for α = 1/3).

The 0.5−VaR is equal to 2 and φ0.5(x) = F0.5(x, 2) = 2.6. For α = 1/3 I have ζ1/3(x) = 1,

ζ+1/3(x) = 2 and φ1/3(x) = 2.5.

Corollary 3.3.1. For the risk measures upper and lower α−CVaR the fundamental minimiza-

tion theorem 3.3.1 does not hold in general.

Proof: Is already given in example 3.3.3. The lower 0.5−CVaR is in this case equal to 2.5 and
the upper 0.5−CVaR is 3 (see table 3.9). But it holds minζ F0.5(x, ζ) = F0.5(x, 2) = 2.6. The

graph of F0.5(x, ·) can be found in figure 3.8.

Theorem 3.3.2. (Optimization Shortcut) It holds

1.

min
x∈X

φα(x) = min
(x,ζ)∈X×R

Fα(x, ζ)

2.

Fα(x
∗, ζ∗) = minimal⇐⇒

{
φα(x

∗) = minimal
ζ∗ ∈ argminζ∈R Fα(x

∗, ζ)

Proof:



92 Chapter 3. Construction of Optimal Commodity Indices and Portfolios

1. One has

min
x∈X

φα(x) ≥ min
(x,ζ)∈X×R

Fα(x, ζ)

In fact, if

min
x∈X

φα(x) < min
(x,ζ)∈X×R

Fα(x, ζ)

then there exists x0 ∈ X with

φα(x0) ≤ Fα(x, ζ)

for all (x, ζ) ∈ X × R, in particular

φα(x0) < Fα(x0, ζα(x0))

which contradicts the assertion of the proposition 3.3.2.

On the other hand it holds

min
x∈X

φα(x) ≤ min
(x,ζ)∈X×R

Fα(x, ζ)

Suppose that

min
x∈X

φα(x) > min
(x,ζ)∈X×R

Fα(x, ζ)

Then there exists (x0, ζ0) ∈ X × R with

φα(x) > Fα(x0, ζ0)

for all x ∈ X. By the minimization theorem 3.3.1 one has however

Fα(x0, ζ0) ≥ Fα(x0, ζα(x0)) = φα(x0)

hence I have a contradiction.

2. Let Fα(x
∗, ζ∗) = minimal. Clearly, one has ζ∗ ∈ argminζ∈R Fα(x

∗, ζ). Assume that there

exists x0 ∈ X with φα(x0) < φα(x
∗). In view of the minimization theorem one has

φα(x0) = Fα(x0, ζα(x0)) ≥ Fα(x
∗, ζ∗) = min

ζ∈R

Fα(x
∗, ζ) = φα(x

∗)

which is a contradiction.

Conversely, let φα(x
∗) = minimal and ζ∗ ∈ argminζ∈R Fα(x

∗, ζ). Assume that there exists

(x0, ζ0) ∈ X × R with Fα(x
∗, ζ∗) > Fα(x0, ζ0). Applying the minimization theorem again

one obtains

Fα(x0, ζ0) ≥ Fα(x0, ζα(x0)) = φα(x0) ≥ φα(x
∗)

= min
ζ

Fα(x
∗, ζ) = Fα(x

∗, ζ∗)
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Figure 3.9.: Function F1/3(x, ·) in Example 3.3.3
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whence I have a contradiction.

In the following proposition 3.3.3 I simplify a proof of Rockafellar and Uryasev [RU02] by

applying a result which I have proven in proposition 3.3.2.

Proposition 3.3.3. If the loss f(x, y) is convex with respect to x, then

1. Fα(x, ζ) is jointly convex in (x, ζ).

2. φα(x) is convex with respect to x.

Proof:

1. For each return vector y ∈ Y the function [f(x, y)− ζ]+ is convex with respect to (x, ζ)

since this function is the composition of the convex function ζ → f(x, y) − ζ and the

nondecreasing convex function t → [t]+ (see theorem 5.1 in Rockafellar [Roc97]). It follows

that Fα(x, ζ) = ζ+(1−α)−1E
[
[f(x, y)− ζ]+

]
is also convex since the integrand is convex.

2. Follows directly from assertion 1 and the fact that by proposition 3.3.2 it holds φα(x) =

Fα(x, ζα(x)).

I am now interested in reconsidering the optimization problem of section 3.2. In this section

I optimize the expected return of the index value with the constraint that the variance of the

index is smaller than given bounds. By varying the bound value of the constraint one obtains
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the so called efficient frontier which is the graphical representation of risk versus return. Since

the risk measure α−CVaR allows a convenient optimization as illustrated in theorem 3.3.1 and
proposition 3.3.3 (in the case of a convex loss function with respect to x) I now modify the above

mentioned optimization problem by substituting the risk measure variance by the α−CVaR.

To this end, the following theorem is a very useful vehicle.

Theorem 3.3.3. For a given objective function g : X → R and a given bound for the risk u let

the optimization problem 1 be given by

minimize g(x) over x ∈ X satisfying φα(x) ≤ u

and optimization problem 2 be given by

minimize g(x) over (x, ζ) ∈ X × R satisfying Fα(x, ζ) ≤ u

Then the two problems are equivalent in the sense that

(x∗, ζ∗) solves the second problem⇐⇒
{

x∗ solves the first problem
Fα(x

∗, ζ∗) ≤ u

Proof: Suppose that x∗ solves the first problem, that is, g(x∗)=minimal satisfying φα(x
∗) ≤ u.

Assume that there exist b∗ ∈ X and ζ∗ ∈ R with g(b∗) < g(x∗) and Fα(b
∗, ζ∗) ≤ u. Because of

φα(b
∗) = minζ∈R Fα(b

∗, ζ) one has φα(b
∗) ≤ Fα(b

∗, ζ∗) ≤ u which contradicts the fact that x∗ is

a solution of the first problem.

Conversely, if g(x∗)=minimal with Fα(b
∗, ζ∗) ≤ u then x∗ solves the first problem. In fact,

assume that there exists b∗ ∈ X with g(b∗) < g(x∗) and φα(b
∗) ≤ u. By proposition 3.3.2 one

has φα(b
∗) = Fα (b

∗, ζα(b
∗)) ≤ u which contradicts that x∗ is a solution of the second problem.

Example 3.3.5. Remember example 3.3.2. Y is in this case a discrete probability space with

elements yk, k = 1, 2, . . . , N , having probability pk = 1/N . Then function Fα(x, ζ) reads as

Fα(x, ζ) = ζ + ((1− α)N)−1
N∑

k=1

[f(x, yk)− ζ]+

The return of an index is the sum of the returns on the individual instruments in the index, scaled

by the proportions x. Since I want to maximize the expected end value of the index the objective
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function g appearing in theorem 3.3.3 is set to the negative expected return of the commodity

index, namely g(x) := − 1
N

∑N
k=1 [x1y1k + x2y2k + x3y3k]. The loss f(x, y) is the negative return

of the index, namely f(x, yk) = − [x1y1k + x2y2k + x3y3k]. Note that both the objective function

g and the loss function f are linear (convex) with respect to x. With the help of theorem 3.3.3

we are now facing the following optimization problem

minimize g(x) = − 1
N

N∑

k=1

[x1y1k + x2y2k + x3y3k]

over (x, ζ) ∈ X × R satisfying Fα(x, ζ) = ζ + ((1− α)N)−1
N∑

k=1

[f(x, yk)− ζ]+ ≤ u

The objective function is linear and even the constraint can be equivalently formulated as a linear

one: We introduce additional variables ηk for k = 1, 2, . . . , N subject to the conditions

ηk ≥ 0, f(x, yk)− ζ − ηk ≤ 0,

and requiring that

ζ + ((1− α)N)−1
N∑

k=1

ηk ≤ u

Thus we are in the very convenient situation where the optimization problem can be solved

by applying linear programming techniques. Since the number of constraints is greater than

the number of scenarios of the Monte Carlo-Simulation (for example N = 100, 000) note that

some tools like for example EXCEL-SOLVER or MATLAB cannot handle this large number of

constraints or is too slow. I found out that CPLEX is very fast and can handle the amount

of data, QSOPT has exactly the same performance as CPLEX and LP SOLVE has nearly the

same performance as CPLEX.

Let us summarize:



96 Chapter 3. Construction of Optimal Commodity Indices and Portfolios

minimize g(x) = − 1
N

N∑

k=1

[x1y1k + x2y2k + x3y3k]

over x = (x1, x2, x3), ζ, η = (η1, η2, . . . , ηN )

subject to:

1. 0 ≤ xk ≤ 1,
∑3

k=1 xk = 1 for k = 1, 2, 3

2. ηk ≥ 0 for k = 1, 2, . . . , N

3. f(x, yk)− ζ − ηk ≤ 0 for k = 1, 2, . . . , N

4. ζ + ((1− α)N)−1
∑N

k=1 ηk ≤ u

I now apply example 3.3.5 in a special portfolio optimization problem. An institutional investor

allocates his wealth between bonds, a commodity index and a structured product on the commo-

dity index. The investment in the commodity index could for example take place in the form of

a commodity index of the type as described in section 3.2: One invests in futures of Aluminum,

Copper, Brent, Gasoil and Gold where the weightings of the respective commodities are equal

to the Markowitz-weightings.

It is now our task to optimize the weightings of the three assets in the sense that the expected

mean of the portfolio is maximized with the constraint that the 0.95-CVaR is smaller than fixed

bound values. The result shall be an efficient frontier.

I assume that the structured product is offered by a bank especially for the institutional investor

and is not traded on the market. Thus no market values for the custom made product is available.

The derivative consists of a guaranteed sum and a participation in the upside potential of the

commodity index. The participation is realized by buying so called hindsight options which have

the following payoffs at the end of the investment horizon

max (ξ − S0, 0)

where ξ is defined as the maximum of the commodity index with respect to yearly observation

points and S0 denotes the commodity value at beginning (At-the-Money Option). The partic-

ipation rate k is derived as follows: Calculate the difference between the guaranteed sum and

discounted guaranteed sum. The difference is then divided by the simulated option price of the

hindsight option. That implies that the bank sells the hindsight option for the ”fair” price of
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the option. It is clear that in practice the participation rate k is reduced so that the bank can

get a fee (and can reduce the losses which can occur due to model misspecification). But in our

example k is not reduced. The specific payoff structure is taken from Martellini, Simsek and

Goltz [MSG05] who consider stock options.

I give an example for the payoff-structure of the derivative: Imagine we offer a guaranteed sum

of $ 100. So at initial date an investor has to pay $ 100. The investment horizon is set to 10

years. Furthermore, I assume that a zero-coupon bond with maturity 10 years has the price 0.6

and a ”fair” price of the hindsight option with the same maturity is $ 60. Then the calculation

of the participation rate reads as follows:

k =
100− 100 ∗ 0.6

60
=
2

3
.

That means at initial date $ 60 is spent in bonds and $ 40 in the hindsight option which corre-

sponds to buying a 2/3 hindsight option. After ten years the investor gets the $ 100 from the

investment in bonds and in addition the payoff of the hindsight option.

To start with the optimization I first have to describe the models for the assets. The short rate

r is assumed to be constant over the whole investment horizon.

Under the physical measure the commodity index S is modeled as a Heston model which we

already came across in chapter 2. For simplicity the stochastic convenience yield is dropped

dS(t)/S(t) = µS(t)dt+
√

V (t)dWS(t)

dV (t) = κ (θ − V (t)) dt+ σV
√

V (T )dW V (t)

The drift µS is expressed in terms of the market prices of risk of the commodity index λS :

µS(t) = r +
√

V (t)λS

The Brownian motions WS(t) and W V (t) are correlated with correlation ρSV .

To derive a fair value of the hindsight option I further have to model the commodity index under

a risk-neutral measure. Facing an incomplete market I assume that we can switch from the true

measure to a risk-neutral measure by substituting the drift of the index µS by the short rate r.

After simulating I first have to calculate the participation rate k, which is done in the following

steps:
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Table 3.10.: Model Parameters for the Portfolio Optimization Problem

Parameter Stochastic Volatility Constant Volatility

Investment Horizon 10 years 10 years
Guaranteed Sum 100 100

Initial Value Commodity Index S(0) 100 100
Correlation Index-Variance ρSV 0.7 0.7

Market Price of Risk λS 0.2 0.2

Initial Value Volatility V (0) 0.16 0.16

Speed of Mean Reversion κ 40% 500%
Long-Run Mean θ 0.16 0.16

Volatility of Volatility σV 50% 50%

Short Rate r 4% 4%

1. Derive the average of the payoff of the hindsight option at maturity with respect to the

risk-adjusted commodity index process and multiply it by the discounting factor.

2. The difference between guaranteed sum and the guaranteed sum multiplied by the dis-

counting factor is divided by the average of the hindsight option.

The returns of the commodity index and the structured product are given by the general formula

Return :=
end value

initial value
− 1

where the initial value is known at beginning and the end value depends on the simulation, that

is, it is random. For the commodity index return the commodity index is observed under the

physical measure. For the nonrandom bond return one has

Bondreturn =
1

exp(−rT )
− 1 = exp(rT )− 1

The end value of the structured product consists of the guaranteed sum which results from the

investment in bonds and the payoff of the hindsight option under the physical measure

StrReturn =
Guaranteed Sum + Participation rate * Payoff Hindsight

Guaranteed Sum
− 1.

I do not annualize the returns. The mean of the returns of the assets can be found in tables 3.11

in the case of the stochastic volatility model and in table 3.12.

The simulation is conducted via discretizing the stochastic differential equations for the com-

modity index, the risk-adjusted commodity index and the variance process for the commodity
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Figure 3.10.: Results of an Implementation of Example 3.3.5
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Table 3.11.: Stochastic Volatility: 10 Years Mean Returns of Assets

Asset Mean Return

Commodity Index 203%
Bond 49%

Structured Product 101%

Table 3.12.: Constant Volatility: 10 Years Mean Returns of Assets

Asset Mean Return

Commodity Index 228%
Bond 49%

Structured Product 103%

index. I use the Euler scheme. So for example the discretized variance process reads as

V (t+∆t) = V (t) + κ (θ − V (t))∆t+ σV
√

V (t)
√
∆tN (0, 1)

To obtain stable results (that is, portfolio weightings which do not depend on the random seed) I

set the number of simulations to 25, 000. For the simulation of the standard independent normal

random variables I have used the algorithms ran1 and gasdev which can be found in Press et

al. [PTVF02]. The Brownian motions of the commodity index and volatility are correlated. To

realize the correlations I have applied a Cholesky decomposition. Since it a very useful formula

I here provide the decomposition for three processes, also I only need the two-dimensional

decomposition.

Proposition 3.3.4. Let X1, X2, X3 be three independent normal random variables and ρ12,

ρ13, ρ23 be in [−1, 1] . Then Y1, Y2 and Y3 defined by

Y1 = X1

Y2 = ρ12X1 +
√
1− ρ212X2

Y3 = ρ13X1 +
ρ23 − ρ12ρ13√
1− ρ212

X2 +

√
1 + 2ρ12ρ13ρ23 − ρ212 − ρ213 − ρ223√

1− ρ212
X3

are correlated with Corr (Yi, Yj) = ρij (for 1 ≤ i < j ≤ 3).

I have implemented the simulation in C++. Furthermore, I have to solve a linear programming

problem with thousands of variables as described in example 3.3.5. To handle this, I included the
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Table 3.13.: Stochastic Volatility: Optimal Weightings

Assets Portfolio

Commodity Index Bonds Struct. Product 10 Years Mean 0.95−VaR 0.95−CVaR
0% 100% 0% 49% -0.49 -0.49
5% 90% 5% 59% -0.40 -0.40
16% 69% 15% 81% -0.21 -0.20
26% 48% 26% 103% -0.02 0.00
37% 27% 36% 125% 0.17 0.20
48% 6% 47% 147% 0.36 0.40
66% 0% 34% 168% 0.55 0.60
86% 0% 14% 189% 0.74 0.80
100% 0% 0% 203% 0.94 1.00

LP SOLVE C++-File. To use this tool I have to assign the linear programming problem in a text

file (saved with file extension .lp instead of .txt) where the given syntax of the LP SOLVE has to

be kept. To this end, I have programmed a C++ file which samples the simulated returns and

the other relevant input parameters and exports these values in the above mentioned text file. To

have a convenient user interface the input parameters and results are handled in EXCEL/VBA.

Table 3.10 records the parameters of the model. The correlation of the Brownian motions

of the commodity index and the volatility is set to a positive value, namely ρSV = 0.7. A

positive correlation is a typical feature in commodity markets. Typically a negative correlation

is observed in stock markets ρSV ≈ −0.7 to −0.9. The initial value of volatility V (0) and

the long run mean of the volatility θ are set to 0.16. This corresponds to a volatility of the

instantaneous commodity index returns of
√
0.16 = 40% per year. The volatility of volatility

amounts to 20% = 50% ∗
√
0.16 per year. So we can conclude that the volatility value of the

commodity return is expected to fluctuate between 36%− 44%.

The optimal portfolio weightings are presented in tables 3.14 and 3.13. In addition I show the

portfolio mean, the 0.95−VaR and 0.95−CVaR. We see that the 0.95−VaR is always smaller than
the 0.95−CVaR. This was already clear from the beginning due to the definitions. Remember
that the loss of the portfolio was defined as the negative expected portfolio return. So the values

of the 0.95−VaR in tables 3.14 and 3.13 are equal to the 5%−worst portfolio return and the
values of the 0.95−CVaR represent the average of the 5%−worst portfolio returns. In the case of
a full investment of the nonrandom bond it is clear that 0.95−VaR and 0.95−CVaR coincide and
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Table 3.14.: Constant Volatility: Optimal Weightings

Assets Portfolio

Commodity Index Bonds Struct. Product 10 Years Mean 0.95−VaR 0.95−CVaR
0% 100% 0% 49% -0.49 -0.49
7% 93% 0% 61% -0.40 -0.40
21% 79% 0% 87% -0.21 -0.20
36% 64% 0% 113% -0.02 0.00
50% 50% 0% 139% 0.17 0.20
65% 35% 0% 165% 0.36 0.40
79% 21% 0% 191% 0.55 0.60
94% 6% 0% 217% 0.74 0.80
100% 0% 0% 228% 0.92 1.00

are equal to the negative portfolio mean−0∗203%−1∗49%−0∗101% = −49% = − exp(0.04∗10).

A very restrictive 0.95−CVaR (for example equal to −0.49) corresponds to a very risk-averse
investor. This value can only be preserved with a full investment in riskless bonds. A risk-

seeking investor (for example 0.95−CVaR= 0.4) should invest all his money in commodities.
An investor who wishes to have a balance between risk and return (e.g. 0.95−CVaR=0.20) is
recommended to put 37% in the commodity index, 27% in bonds and 36% in the structured

product in the stochastic volatility model. In the constant volatility model exactely half of the

money should be put in bonds and the other half in the commodity index.

The crucial and quite interesting observation is that in the stochastic volatility model an invest-

ment in the structured product is recommendable for all nonextreme 0.95−CVaR values where
in the constant volatility model the product does not appear in any optimal portfolio. The

structured product is compounded of the riskless bonds and the hindsight option which pays

off more if the path of the commodity option exhibits at least one high peak at one observation

point. The index is expected to fluctuate more in the stochastic volatility model than in the

constant one. Even if the index return at the end of the investment horizon has performed not

overwhelming, the hindsight option nonetheless has in the stochastic volatility case a higher

probability to deliver a very good performance. So the hindsight option presents definitely a

complementary investment possibility which is not the case in the constant volatility model.

This holds also when one changes the correlation of the Brownian motions to −0.7. A negative
correlation is typical in stock markets. The optimization results are substantially the same.



Chapter 4

Excursions and Statistical Arbitrage

4.1. Excursions

The goal of this section is to apply the mathematical concept of excursions for the creation of

optimal highly automated or algorithmic trading strategies. The idea is to consider the gain of

the strategy and the excursion time it takes to realize the gain.

In this section I present formulas for the Ornstein-Uhlenbeck process. I show that the corre-

sponding formulas can be calculated quite fast since the only function appearing in the formulas

is the so called imaginary error function. This function is already implemented in many pro-

grams, such as in Maple. Algorithmic trading is widely used by pension funds, mutual funds,

institutional traders and hedge funds. In this high frequency trading computers make the deci-

sion to initiate orders based on information that is received electronically.

My main contribution to this topic is the optimization of the trading strategy via the Banach

fixed-point theorem.

Example 4.1.1. A famous and widely used algorithmic trading strategy is the so called mo-

mentum trading (see for example Risk [Mad08]). The construction of momentum strategies and

the mentioning of the efficiency of these strategies in stock markets first appeared in Jegadeesh

and Titman [JT93]. The (basic) idea behind these kind of strategies is the observation that high

performing stocks have an upward trend for a specific time horizon in the future. In addition

assets with a low performance exhibit lower performance in the future. So the strategy consists

of a short-selling of loser assets and buying of winner assets. I now give a precise description
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which is extracted from Rouwenhorst [Rou98].

At the end of each month, all stocks are ranked into deciles based on their past J-month return

(J equals 3, 6, 9, or 12) and assigned to one of ten relative strength portfolios (1 equals lowest

past performance, or loser, 10 equals highest past performance or winner). These portfolios

are equally weighted at formation, and held for K subsequent months (K equals 3, 6, 9, or 12

months) during which time they are not rebalanced. The holding period exceeds the interval over

which return information is available (monthly), which creates an overlap in the holding period

returns. The paper of Rouwenhorst [Rou98] follows the article of Jegadeesh and Titman [JT93]

who report the monthly average return of K strategies, each starting one month apart. This is

equivalent to a composite portfolio in which each month 1/K of the holdings are revised. For

example, toward the end of month t the J = 6, K = 3 portfolio of winners consists of three

parts: a position carried over from an investment at the end of month t− 3 in the 10 percent of
firms with highest prior six-month performance as of t − 3, and two similar positions resulting
from an investment in the top-performing firms at the end of months t − 2 and t − 1. At the

end of month t, the first of these holdings will be liquidated and replaced with an investment in

the stocks with highest six-month performance as of time t. The amount of cash available at

the beginning of each holding period defines the size of investment in the winner stocks. At the

same time, the loser stocks are sold short for exactly the same amount, leading to a zero-cost

net investment.

In the following I denote the value of the long-short portfolio as (X(t))t≥0. I enter the trade

when the value equals X(t) = a and exit the trade at X(t) = b > a, and waiting until the

process returns to X(t) = a, to complete the trading cycle. Since X(t) is a stochastic process,

the time taken to complete the trade cycle are a sequence of random variables henceforth called

sequence of excursions of value a via value b. So the values a and b are trading signals.

I am interested in considering the expected gain of a strategy per unit time. Since process X

models the value of a long-short portfolio the gain of each trade cycle amounts to b−a−z where

z ∈ R
+
0 denotes the transaction cost per trade cycle. Note that the values of the trading cycle

length are independent and identically distributed random variables if process X is a stationary

strong Markov process. The expected value of the gain for the strategy per unit time is then

given by

E [R(a, b, z)] = E

[
b− a− z

T

]
= (b− a− z)E

[
1

T

]
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By applying the inequality of Jensen for convex functions one can write

E [1/T ] ≥ 1/E [T ]

So (b− a− z)/E [T ] is a lower bound for the expected gain per unit time.

Definition 4.1.1. Given a continuous process (X(t))t≥0 with state space I the first passage time

that it hits b after a is defined by

Ta = inf {t ≥ 0 : X(t) = a}

Ta;b = inf {t ≥ Ta : X(t) = b}

for all a, b ∈ I. If a or b is never reached, we set inf {∅} =∞.

When calculating moments of random variables the Laplace transform is a convenient tool.

The following examples for not necessarily stationary processes illustrate that the expected

trading cycle length can become infinite. I consider three basic processes: the Brownian motion,

Brownian motion with drift and geometric Brownian motion.

Definition 4.1.2. (see Chung [Chu01] page 197) Let T be a positive (≥ 0) random variable

having the density function F so that F has support in [0,∞[, namely F (0−) = 0. The Laplace

transform of T or F is the function L on R
+ = [0,∞[ given by

L : α→ E
[
e−αT

]
=

∫ ∞

0
e−αxdF (x).

It is obvious that

L(0) = lim
αց0

L(α) = 1, and L(∞) = lim
α→∞

L(α) = F (0).

Proposition 4.1.1. (Laplace transform as moment generating function) For T being a positive
(≥ 0) random variable the first moment can be calculated with the help of the Laplace transform

E [T ] = − lim
α→0+

dL(α)
dα

(4.1)

Proof: Applying the dominated convergence theorem one can interchange limes and integral.

In the following P
a indicates the probability measure corresponding to a Markov process with

initial position a ∈ R. E
a means taking the expectation with respect to the probability measure

P
a. A rigorous introduction can be looked up in Karatzas and Shreve [KS00] on page 74 and 75.



106 Chapter 4. Excursions and Statistical Arbitrage

Example 4.1.2. In the case of a Brownian motion (W (t))t≥0 starting at W (0) = 0 the Laplace

transform of Tb for b > 0 takes the form

L(α) = E
0
[
e−αTb

]
= e−b

√
2α

(see Karatzas and Shreve [KS00], Remark 2.8.3). Differentiating the Laplace transform yields

−dL(α)
dα

= −e−b
√
2α(−b) 1√

2α

α→0+→ ∞.

Furthermore, it holds P
0 [Tb <∞] = 1 (see again Karatzas and Shreve [KS00], Remark 2.8.3).

So the probability of a hit of the barrier b is unity. But very long excursions away from the

barrier can occur. For illustrative purposes the expectation can be approximated by the sum of

the products of the hitting times and their probabilities. It diverges. The reasoning for this is

that the probabilities do not fall sufficiently fast for longer hitting times. So we shall not model

the long-short portfolio as a Brownian motion.

For arbitrary a, b we obtain

E
a
[
e−αTb

]
= e−|a−b|

√
2α

(see Borodin and Salminen [BS02], page 198). The expected time length of the first passage time

Tb for arbitrary a &= b is infinite, too.

Example 4.1.3. The Laplace transform of the first passage time for the Brownian motion with

drift, namely Wµ(t) = µt+W (t) (µ ∈ R) can be found in Borodin and Salminen [BS02] on page

295

E
a
[
e−αTb

]
= E

a
[
e−αTb ; Tb <∞

]
= eµ(b−a)−|b−a|

√
2α+µ2

.

The first equality follows from the fact that if Tb = ∞ it follows e−αTb = 0 and therefore

E
a
[
e−αTb

]
= E

a
[
e−αTb ; Tb <∞

]
, the qualification under the expectation signifying that the

contributions to the expectation occur only for the sample paths over which Tb is finite.

Differentiating the Laplace transform for µ &= 0 with respect to α gives

−dE
a
[
e−αTb

]

dα
= −eµ(b−a)−|b−a|

√
2α+µ2

(−|b− a|) 1√
2α+ µ2

α→0+→ eµ(b−a)−|µ||b−a|
|b− a|
|µ|

So for b > a we obtain

E
a [Tb] =

{
b−a
µ

: µ > 0

∞ : µ ≤ 0
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and for b < a

E
a [Tb] =

{
a−b
|µ| : µ < 0

∞ : µ ≥ 0

Note that for special values of µ, a and b (for example µ = 1, b = 0.2 and a = 0.3) the probability

that the Brownian motion with drift starting in a never reaches level b is strictly positive (see

Borodin and Salminen [BS02] page 295):

P
a [Tb =∞] = 1− eµ(b−a)−|µ||b−a|

So the Brownian motion with drift does not seem to be an interesting model for calculating the

mean length of the trading cycle.

Example 4.1.4. The problem appearing in the previous two examples also occurs in the case

of the geometric Brownian motion dX(t)/X(t) = µdt + σdW (t) (σ > 0): The following result

is taken from Wilmott, Dewynne and Howison [Wil98] on page 371: For b > a

E
a [Tb] =

{ 1
µ−0.5σ2 ln(b/a) : µ > 0.5σ2

∞ : µ ≤ 0.5σ2

and for b < a

E
a [Tb] =

{ 1
0.5σ2−µ ln(a/b) : µ < 0.5σ2

∞ : µ ≥ 0.5σ2

Remark 4.1.1. I will now show that the Ornstein-Uhlenbeck mean-revearting process exhibits

the desired feature E
a [Tb;a] < ∞. The drawback of the Brownian motion with drift and the

geometric Brownian motion is the fact that for a (for example) positive drift the mean length to

reach level b > a > 0 is finite, but the mean length of the recurrence to the smaller value a is

infinite.

I now apply the Ornstein-Uhlenbeck process for the long-short portfolio (X(t))t≥0. We already

came across the process in lemma 1.2.1:

dX(t) = −θX(t)dt+ σdW (t). (4.2)

with σ > 0 (to ovoid divisions by zero in the following calculations). I assume that θ > 0.

Then the process is stationary (see Borodin and Salminen [BS02] pages 136-137). If θ < 0 the

process is not stationary but transient. The Ornstein-Uhlenbeck process is the oldest example

of a stochastic differential equation (Uhlenbeck and Ornstein [UO30]).
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The process has the entire real line ]−∞,∞[ as its state space (Karlin and Taylor [KT81] page

170 C). This feature is well-suited for our purpose of modeling a long-short portfolio taking

on both negative and positive values. As mentioned in proposition 1.2.1 the infinitesimal drift

parameter reflects a restoring force directed towards the origin and of a magnitude proportional

to the distance.

As calculated in proposition 1.2.1 the solution of 4.2 is

X(t) = X0e
−θt + σ

∫ t

0
e−θ(t−s)dW (s); 0 ≤ t <∞

If E
[
X20

]
<∞, the expectation and variance are given by

m(t) := E [X(t)] = m(0)e−θt (4.3)

V (t) := V [X(t)] =
σ2

2θ
+

(
V (0)− σ2

2θ

)
e−2θt (4.4)

If the initial random variable X(0) has a normal distribution with mean zero m(0) = 0 and

variance V (0) = σ2/(2θ), then X is a stationary process, that is, the distribution of (X(t +

t1), X(t+ t2), ..., X(t+ tk)) for 0 ≤ t1 < t2 < ... < tk <∞ does not depend on t (Karatzas and

Shreve [KS00] Example 5.6.8). In fact, if m(0) = 0 and variance V (0) = σ2/(2θ) then the time

dependence of the mean and the variance in equations 4.3 and 4.4 cancels out.

Proposition 4.1.2. The Ornstein-Uhlenbeck process specified by 4.2 is a stationary strong

Markov process.

Proof: Follows directly from Friedman [Fri75], Theorem 3.4 on page 112 and Karatzas and

Shreve [KS00] Example 5.6.8.

Definition 4.1.3. An R−valued stochastic process (X(t))t≥0 is called Gaussian if, for any

integer k ≥ 1 and real numbers 0 ≤ t1 < t2 < ... < tk <∞, the random vector (Xt1 , Xt2 , ..., Xtk)

has a joint normal distribution.

Proposition 4.1.3. Let X be given by the linear stochastic differential equation

dX(t) = (A(t)X(t) + a(t)) dt+ σ(t)dW (t), X(0) = ξ,

where W is a Brownian motion independent of the initial vector ξ, and A(t), a(t) and σ(t) are

nonrandom, measurable, and locally bounded.

If X(0) has a normal distribution, then X is a Gaussian process.
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Proof: Karatzas and Shreve [KS00] page 355.

Corollary 4.1.1. The Ornstein-Uhlenbeck process is a Gaussian process.

Proof: follows immediately from proposition 4.1.3.

In the following calculation of the mean time of the trading cycle the speed measure and the

scale function are very valuable functions. Let X be a solution of the one-dimensional stochastic

differential equation

dX(t) = b(X(t))dt+ σ(X(t))dW (t) (4.5)

with Borel-measurable coefficients b : I → R and σ : I → R with I = ]l, r[ and −∞ ≤ l < r ≤ ∞.

I require that

• for all x ∈ R it holds that σ2(x) > 0 and

• for all x ∈ R exists an ε > 0 such that

∫ x+ε

x−ε

1 + |b(y)|dy
σ2(y)

<∞

We fix an arbitrary number c ∈ I and define for l < x < r the scale function S by

s(η) := exp

{
−

∫ η

c

2b(φ)

σ2(φ)
dφ

}

S(x) :=

∫ x

c

s(η)dη

and the speed density m for x ∈ I by

m(x) = 2/
(
σ2(x)s(x)

)

Remark 4.1.2. The finiteness (or nonfiniteness) of limx→+∞ S(x) or limx→−∞ S(x) do not

depend on the choice of c (Karatzas and Shreve [KS00] page 339 5.5.12). In the following

applications of the scale function only differences of the scale function do appear so that the we

can choose an arbitrary c.

Proposition 4.1.4. Let X be a solution to

dX(t) = b(X(t))dt+ σ(X(t))dW (t) (4.6)
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with state space I = ]l, r[ where −∞ ≤ l < r ≤ ∞ and with Borel-measurable coefficients

b : I → R and σ : I → R with I = ]l, r[; −∞ ≤ l < r ≤ ∞ and let the coefficients satisfy

σ(x) > 0 for all x ∈ I and it holds for all x ∈ I there exists an ǫ > 0 such that
∫ x+ε

x−ε

1 + |b(y)|
σ2(y)

dy <∞.

Furthermore, let b and σ be bounded on compact subintervals of I and let the scale function S(x)

and the speed measure m(x) satisfy

p(l+) = −∞ and p(r−) =∞ and m(I) <∞ (4.7)

where m(I) :=
∫ r
l
m(x)dx. In addition we assume that for all x, z ∈ I and t > 0

P
x [X(t) = z] = 0

Then the solution X to 4.5 starting at x ∈ I never exits I. The process is positive recurrent with
l < a < x < u < b < r:

E
x [Ta] = −

∫ x

a

(S(x)− S(y))m(dy) + (S(x)− S(a))m (]a, r[) <∞,

E
x [Tb] = −

∫ b

x

(S(y)− S(x))m(dy) + (S(b)− S(x))m (]l, b[) <∞,

E
a [Tb;a] = E

a [Tb] + E
b [Ta] = (S(u)− S(x))m(I) <∞.

Proof: see Pollak and Siegmund [PS85] or Karatzas and Shreve [KS00] pages 352-353

Remark 4.1.3. It is clear that a positively recurrent process is recurrent in the sense that for

all x, y ∈ I it holds
P
x [Ty <∞] = 1

since otherwise the expectations appearing in proposition 4.1.4 would not be finite. A positively

recurrent process is a regular process, that is, for all interior points x and y of I it holds

P
x [Ty <∞] > 0.

I now recall the definition of the imaginary error function.

Definition 4.1.4. For all x ∈ R the function Erfi(x) is defined by

Erfi(x) :=
2√
π

∫ x

0
et

2
dt =

2√
π

∞∑

k=0

x2k+1

k!(2k + 1)
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Corollary 4.1.2. Let the Ornstein-Uhlenbeck process X be given by the stochastic differential

equation 4.2 with σ > 0 and θ > 0. The state space is I = ]−∞,∞[. Let a, b ∈ I and a < b.

Then the expected trading length amounts to

E
a [Ta;b] =

π

θ

(
Erfi

(
b
√
θ/σ

)
− Erfi

(
a
√
θ/σ

))

Proof: I first check the assumptions of proposition 4.1.4. The coefficients are bounded on

compact subintervals of I. Furthermore,
∫ x+ε

x−ε

1 + |b(y)|
σ2(y)

dy =

∫ x+ε

x−ε

1 + | − θy|
σ2

dy

=

∫ x+ε

x−ε

1 + θ|y|
σ2

dy =
2ε

σ2
+

θ

σ2

∫ x+ε

x−ε
|y|dy.

• For x > 0 I define ε = |x|. Then it follows that the integral is bounded:
∫ x+|x|

x−|x|
ydy =

∫ 2x

0
ydy =

1

2
(2x)2 = 2x2 <∞

• For x < 0 I define again ε = |x|. Then I obtain:
∫ 0

2x
−ydy =

∫ 2x

0
ydy = 2x2 <∞

• For x = 0 I choose ε = 1. Then ∫ 1

−1
|y|dy = 1

For an arbitrary c ∈ I the integrand of the scale function takes the form

s(η) = exp

{
−

∫ η

c

2µ(φ)

σ2(φ)
dφ

}
= exp

{∫ η

c

2θφ

σ2
dφ

}

= exp

{
2θ

σ2

∫ η

c

φdφ

}
= exp

{
2θ

σ2
1

2
η2

}
= exp

{
θ

σ2
η2

}
.

So for −∞ < x <∞ the scale function reads as

S(x) =

∫ x

c

s(η)dη =

∫ x

c

exp

{
θ

σ2
η2

}
dη

=
σ√
θ

∫ √
θ

σ
x

c

exp
{
z2

}
dz =

σ
√
π

2
√
θ
Erfi

(√
θ

σ
x

)

Taking the limit to the left and right endpoints, namely r = +∞ and l = −∞, yields that the

first two assumptions of 4.7 are fulfilled:

S(x) =
σ
√
π

2
√
θ
Erfi

(√
θ

σ
x

)
= d ∗

∫ x
√
θ

σ

0
eν

2
dν

x→+∞→ +∞
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Figure 4.1.: Expected Length of Excursion E
a [Tb;a] of the Ornstein-Uhlenbeck process for θ =

100 and σ = 0.1
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where d := σ
√
π

2
√
θ
> 0. Furthermore,

lim
x→−∞

d ∗
∫ x

√
θ

σ

0
eν

2
dν = lim

x→∞
−d ∗

∫ x
√
θ

σ

0
eν

2
dν = −∞.

The difference of the scale function evaluated at the trading signal points S(b) − S(a) is given

by

S(b)− S(a) =
σ
√
π

2
√
θ

(
Erfi

(√
θ

σ
b

)
− Erfi

(√
θ

σ
a

))
(4.8)

I am now left with the calculation of the speed measure m(I)

m(x) =
2

σ2(x)s(x)
=

2

σ2 exp
{
θ
σ2x2

}

m(I) =

∫ ∞

−∞
m(x)dx =

2

σ2

∫ ∞

−∞
exp

{
− θ

σ2
x2

}
dx =

4

σ2

∫ ∞

0
exp

{
− θ

σ2
x2

}
dx

=
4

σ2

√
πσ

2
√
θ
=
2
√
π√
θσ

<∞

Since the Ornstein-Uhlenbeck process is a Gaussian process 4.1.1 it follows that X(t) at time

t > 0 is normally distributed which entails that the set {X(t) = z} has probability zero:

P
x [X(t) = z] = 0 for all x, z ∈ I and t > 0.
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Figure 4.2.: Expected Length of Excursion E
a [Tb;a] of the Ornstein-Uhlenbeck process for θ =

100 and σ = 0.3
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Figure 4.3.: Expected Length of Excursion E
a [Tb;a] of the Ornstein-Uhlenbeck process for θ = 10

and σ = 0.1
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So I obtain for the mean trading cycle length

E
a [Tb;a] =

σ
√
π

2
√
θ

2
√
π√
θσ

(
Erfi

(√
θ

σ
b

)
− Erfi

(√
θ

σ
a

))

=
π

θ

(
Erfi

(√
θ

σ
b

)
− Erfi

(√
θ

σ
a

))

The expected excursion length of corollary 4.1.2 is plotted in figures 4.1, 4.2 and 4.3. The mean

excursion length seems to decrease with a higher volatility and lower speed of mean reversion.

Definition 4.1.5. For a, b ∈ R with a < b and θ > 0, σ > 0 and z ≥ 0 we define

F (a, b) :=
θ (b− a− z)

π
(
Erfi

(√
θ
σ
b
)
− Erfi

(√
θ
σ
a
)) .

Remark 4.1.4. Next I determine the global maximum of a lower bound of the expected return per

unit time with respect to the trading signals a and b. Function F (a, b) is not concave in general

as figure 4.4 shows. This fact complicates the determination of the global maximum. Then I

calculated the Hesse matrix but this seems too cumbersome (see Appendix B). I solve this problem

by applying the Banach fixed-point theorem. The equation delivering the local extreme points is

transformed into an equivalent fixed-point equation. The fixed-point is equal to the unique local

maximum.

Lemma 4.1.1. For f(x) = 1− x
√
πErfi(x)e−x

2
it holds

|f(x)| < 1 for all x > 0.

Proof: Let x > 0. I can write

x
√
πErfi(x)e−x

2
= x

√
π

2√
π

∫ x

0
et

2
dte−x

2
= 2x

∫ x

0
et

2
dte−x

2

Since I do not know the antiderivative of function t → et
2
but of function t → tet

2
I tried that

this function comes into play. By the mean value theorem for integration there exists a number

t0 ∈ ]0, x[ such that ∫ x

0
tet

2
dt = t0

∫ x

0
et

2
dt. (4.9)
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Figure 4.4.: Function F as defined in 4.1.5 for θ = σ = z = 1 is not concave
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It follows

∫ x

0
tet

2
dt− t0

∫ x

0
et

2
dt =

∫ x

0
(t− t0) e

t2dt =

∫ t0

0
(t− t0) e

t2dt+

∫ x

t0

(t− t0) e
t2dt = 0

and hence ∫ t0

0
(t− t0) e

t2dt = −
∫ x

t0

(t− t0) e
t2dt.

Since function t→ tet
2
is strictly increasing it holds t0 >

x
2 . It follows by 4.9

∫ x

0
tet

2
dt >

x

2

∫ x

0
et

2
dt

and I obtain ∫ x

0
et

2
dt <

2

x

∫ x

0
tet

2
dt =

1

x

(
ex

2 − 1
)
<

1

x
ex

2
.

From this it follows

0 < x
√
πErfi(x)e−x

2
= 2x

∫ x

0
et

2
dte−x

2
< 2x

1

x
ex

2
ex
−2

= 2

and hence

|f(x)| = |1− x
√
πErfi(x)e−x

2 | < 1.
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Figure 4.5.: Function f of Lemma 4.1.1
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Proposition 4.1.5. Function F (a, b) as defined in definition 4.1.5 has a global maximum in(
− σ√

θ
u∗, σ√

θ
u∗

)
where u∗ is given by the limit of the iteration sequence

un+1 =

√
π

2
Erfi (un) e

−u2
n +

z

2

√
θ

σ
, n = 0, 1, 2, 3, ...

with arbitrary starting value u0 > 0.

Proof: I first determine the set M =
{
(a, b) ∈ R

2 : gradF (a, b) = 0
}
. To this end, I define

f(a, b) := θ (b− a− z)

g(a, b) := π

(
Erfi

(√
θ

σ
b

)
− Erfi

(√
θ

σ
a

))
.

So the partial derivatives take the following form

∂F (a, b)

∂a
=

−θg(a, b)− f(a, b)(−π) 2√
π

√
θ
σ
e

“√
θ

σ
a

”2

g2(a, b)

∂F (a, b)

∂b
=

θg(a, b)− f(a, b)π 2√
π

√
θ
σ
e

“√
θ

σ
b
”2

g2(a, b)
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Thus

−θg(a, b) + f(a, b)π
2√
π

√
θ

σ
e

“√
θ

σ
a

”2
!
= 0

θg(a, b)− f(a, b)π
2√
π

√
θ

σ
e

“√
θ

σ
b
”2

!
= 0

Summing up the above equations and setting to zero it is clear thatM ⊆
{
(a, b) ∈ R

2 : a2 = b2
}
.

Since our strategy only makes sense when a < b I obtain b > 0 and a = −b.

If F (a, b) has in (−b∗, b∗) a maximum then the intersection curve

h(b) := F (−b, b) = θ (2b− z)

π
(
Erfi

(√
θ
σ
b
)
− Erfi

(√
θ
σ
(−b)

)) =
θ (2b− z)

2πErfi
(√

θ
σ
b
)

possesses a maximum in b∗. Setting

h′(b) =
4θπErfi

(√
θ
σ
b
)
− θ (2b− z) 4π√

π

√
θ
σ
e

“√
θ

σ
b
”2

(
2πErfi

(√
θ
σ
b
))2

!
= 0.

I have to solve

Erfi

(√
θ

σ
b

)
− (2b− z)

1√
π

√
θ

σ
e

“√
θ

σ
b
”2

= 0. (4.10)

It seems to be that this equality is not analytically solvable in b, hence I have to determine a

solution numerically.

From 4.10 I get

Erfi

(√
θ

σ
b

)
− 2b√

π

√
θ

σ
e

“√
θ

σ
b
”2

+
z√
π

√
θ

σ
e

“√
θ

σ
b
”2

= 0

Erfi

(√
θ

σ
b

)
+

z√
π

√
θ

σ
e

“√
θ

σ
b
”2

=
2b√
π

√
θ

σ
e

“√
θ

σ
b
”2

√
π

2
Erfi

(√
θ

σ
b

)
e
−

“√
θ

σ
b
”2

+
z

2

√
θ

σ
=

√
θ

σ
b.

Setting u :=
√
θ
σ
b I am facing the equality

u =

√
π

2
Erfi (u) e−u

2
+
z

2

√
θ

σ
=: p(u).

A fixpoint u∗ of p(u) gives a solution b∗ = σ√
θ
u∗ of the equality h′(b) = 0. The derivative of p(u)

is given by
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p′(u) =

√
π

2

(
2√
π
eu

2
e−u

2 − 2uErfi(u)e−u
2

)
= 1− u

√
πErfi(u)e−u

2
.

Since |p′(u)| ≤ L < 1 in each interval [u0,∞[ with u0 > 0 by lemma 4.1.1, p(u) is a contraction

in [u0,∞[. Note that b > 0 and thus u > 0.

By the Banach fixed-point theorem a fixpoint u∗ of p(u) exists and is unique, hence there exists

a unique solution b∗ = σ√
θ
u∗ of the equality h′(b) = 0.

If u0 > 0 is any number, then the fixed-point iteration

un+1 =

√
π

2
Erfi (un) e

−u2
n +

z

2

√
θ

σ
, n = 0, 1, 2, 3, ...

converges to u∗.

It remains to show that h(b) possesses a global maximum in b∗. The second derivative is given

by

h′′(b) =

(
θ
√
θ
σ

2√
π
e

θ

σ2 b
2 − θ 1√

π

√
θ
σ

(
2e

θ

σ2 b
2

+ (2b− z)2θb
σ2 e

θ

σ2 b
2
))

Erfi
(√

θ
σ
b
)2
π

π2 Erfi
(√

θ
σ
b
)4

−

(
θErfi

(√
θ
σ
b
)
− θ(2b− z) 1√

π

√
θ
σ
e

θ

σ2 b
2
)
2
√
θ
σ

2√
π
e

θ

σ2 b
2

Erfi
(√

θ
σ
b
)
π

π2 Erfi
(√

θ
σ
b
)4

h′′(b) =
θ
√
θ
σ

2√
π
e

θ

σ2 b
2 − θ 1√

π

√
θ
σ

(
2e

θ

σ2 b
2

+ (2b− z)2θb
σ2 e

θ

σ2 b
2
)

πErfi
(√

θ
σ
b
)2

−

(
θErfi

(√
θ
σ
b
)
− θ(2b− z) 1√

π

√
θ
σ
e

θ

σ2 b
2
)
2
√
θ
σ

2√
π
e

θ

σ2 b
2

πErfi
(√

θ
σ
b
)3

Since b∗ is a solution of equality 4.10 the second term vanishes for b = b∗ and one obtains under

the assumption 2b > z
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h′′(b∗) =
θ
√
θ
σ

2√
π
e

θ

σ2 b
∗2 − θ 1√

π

√
θ
σ

(
2e

θ

σ2 b
∗2

+ (2b∗ − z)2θb
∗

σ2 e
θ

σ2 b
∗2

)

πErfi
(√

θ
σ
b∗

)2

= −
θ 1√

π

√
θ
σ

(
(2b∗ − z)2θb

∗

σ2 e
θ

σ2 b
∗2

)

πErfi
(√

θ
σ
b∗

)2 < 0

If 2b = z function F (−b, b) = h(b) is equal to zero since the numerator is equal to zero. In

the case 2b < z function F (−b, b) = h(b) is negative: The numerator of function F is negative

and the denominator (the expected trading cycle length) is greater than zero. It is obvious that

function F is strictly positive for 2b > z.

So I can conclude that h(b) = F (−b, b) has a local maximum in b∗ which is a global maximum

since b∗ is the unique solution of h′(b) = 0.

Example 4.1.5. For the choice of θ = 1, σ = 0.2, z = 0.1 and start value u0 = 1 the first

values of the iteration sequence

un+1 =

√
π

2
Erfi(un)e

−u2
n +

z

2

√
θ

σ
=

√
π

2
Erfi(un)e

−u2
n +

1

4

are given by

u1 = 0.78810

u2 = 0.78025

u3 = 0.77895

u4 = 0.77870

u5 = 0.77865

u6 = 0.77860

u7 = 0.77860

These values are calculated with the aid of the tool Maple. Function Erfi(x) is predefined in

Maple. In view of proposition 4.1.5 the expected return per unit time

F (a, b) =
b− a− 1

π (Erfi(b)− Erfi(a))
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Figure 4.6.: Probability 4.13 for θ = 0.5 and σ = 0.3 with a = −b: The Probability of reaching
Lower Value k before Upper Value b > 0 with Start Value −b
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has a global maximum in

(
− σ√

θ
u6,

σ√
θ
u6

)
= (−0.15572, 0.15572)

I remark that by using the five-digit floating form the last value u7 is identical with the global

maximum since the input u6 of the fixed-point iteration sequence coincides with the output u7.

Remark 4.1.5. Since the Ornstein-Uhlenbeck process has a state space equal to I = ]−∞,∞[

the process is not bounded from below. So losses can become arbitrarily high. It is clear that

traders or investors are forced to quit a non-performing portfolio. So one can modify the strategy:

If the portfolio value reaches a level k < a then the portfolio is liquidated and we wait until the

portfolio value recurres to level k. Then we start again investing in the long-short portfolio. For

liquidation or restart one can assume that one has to pay the constant z for transaction costs. In

the following we shall calculate the probabilities of the following events (with b > 0 and k < −b):

1. Starting in −b the process first reaches value b and then value k

2. Starting in −b the process first reaches value k and then value b
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Figure 4.7.: Probability 4.13 for θ = 200 and σ = 0.3 with a = −b: The Probability of reaching
Lower Value k before Upper Value b > 0 with Start Value −b
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Proposition 4.1.6. Let X be a solution to

dX(t) = b(X(t))dt+ σ(X(t))dW (t) (4.11)

with state space I = ]l, r[ where −∞ ≤ l < r ≤ ∞ and assume that the coefficients b : I → R

and σ : I → R satisfy σ(x) > 0 for all x ∈ I and it holds for all x ∈ I there exists an ǫ > 0 such

that
∫ x+ε

x−ε

1 + |b(y)|
σ2(y)

dy <∞.

Then for k < a < b holds

P
a

[
sup

0≤s≤Tk
X(s) ≥ b

]
=
S(a)− S(k)

S(b)− S(k)
, P

a

[
inf

0≤s≤Tb
X(s) ≤ k

]
=
S(b)− S(a)

S(b)− S(k)

Proof: see Karatzas and Shreve [KS00] pages 342-344 formula 5.61.

Corollary 4.1.3. Let X be an Ornstein-Uhlenbeck process specified by stochastic differential
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equation 4.2. Then it holds for k < a < b

P
a

[
sup

0≤s≤Tk
X(s) ≥ b

]
=

Erfi
(√

θ
σ
a
)
− Erfi

(√
θ
σ
k
)

Erfi
(√

θ
σ
b
)
− Erfi

(√
θ
σ
k
) and (4.12)

P
a

[
inf

0≤s≤Tb
X(s) ≤ k

]
=

Erfi
(√

θ
σ
b
)
− Erfi

(√
θ
σ
a
)

Erfi
(√

θ
σ
b
)
− Erfi

(√
θ
σ
k
) (4.13)

Proof: The assumptions of lemma 4.1.6 are checked in corollary 4.1.2. Since I have already

calculated the scale function S and the difference S(x) − S(y) for x > y in equation 4.8 I can

deduce the assertion.

I close this section by summarizing how relevant the provided formulas are in practice. After

a calibration of the Ornstein-Uhlenbeck process the optimal trading signals can be determined.

Since the portfolio is not bounded from below one is recommended to specify an emergency

exit level k. Alternatively, a trader starting in value −b and waiting extremely longer than the

expected trading cycle length to reach level b should also exit the trade.

4.2. Statistical Arbitrage

This section reviews a concept of statistical arbitrage as introduced in Hogan, Jarrow, Teo and

Warachka [HJTW04], a long horizon trading opportunity that generates a riskless profit and is

designed to exploit persistent anomalies.

My contribution is the correction of parts of some proofs in the article [HJTW04].

Furthermore, I supplement the main theorem.

The following results shall provide an investor with a tool to investigate empirically if some

strategies (for example momentum strategies) constitute statistical arbitrage opportunities.

Traded in the economy are several assets
(
Sj(t)

)
j=1,2,...,n

(t ≥ 0) and a money market account

B(t) initialized at one Euro (B(0) = 1). Let the stochastic processes (x(t), y(t))t≥0 represent a

zero initial cost, self-financing trading strategy involving x(t) =
(
xj(t)

)
j=1,...,n

units of the assets

and y(t) units of a money market account at time t. These trading strategies, by definition,

must have zero initial cost, x(0)ST (0)+y(0) = 0. In addition, by definition, the trading strategy

is self-financing which is described for example in Karatzas and Shreve [KS00] section 5.8 A.
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We denote the value process of the portfolio by (X(t))t≥0 =
(
x(t)ST (t) + y(t)B(t)

)
t≥0. In the

following we work with the discounted value of the value process (ν(t) = X(t)/B(t))t≥0.

For a given trading strategy, let ∆ν(i) = ν(ti) − ν(ti−1) denote increments of the discounted

cumulative trading profit measured at equidistant time points ti − ti−1 = ∆ with ti = i∆. The

quantity ∆ denoting the time between equidistant increments may be set to one without loss of

generality (with ti understood as being i).

Assumption 4.2.1. (Model Assumption) As in Hogan et al. [HJTW04] on page 536 formula

13 I assume that the discounted cumulative trading profits are given by

ν(n) =

n∑

i=1

∆ν(i)
d∼ N

(
µ

n∑

i=1

iθ, σ2
n∑

i=1

i2λ

)

and ∆ν(i) = µiθ+σiλz(i) where (z(i))i=0,1,2,... are i.i.d. N (0, 1)−distributed random variables.
Note that N denotes the normal distribution.

Observe that the process for incremental trading profits is nonstationary when θ or λ is nonzero.

Definition 4.2.1. (Statistical Arbitrage) As in Hogan et al. [HJTW04] on page 531 Definition

1 I define a statistical arbitrage as a zero-initial cost, self-financing trading strategy (x(t))t≥0

with cumulative discounted value (ν(t))t≥0 and incremental trading profit ∆ν such that

1. ν(0) = 0,

2. limt→∞ E [ν(t)] > 0,

3. limt→∞ P [ν(t) < 0] = 0, and

4. limi→∞V [∆ν(i)] = 0 for ∆ν(i) < 0

Note that the fourth condition in 4.2.1 is not taken from the article of Hogan et al. [HJTW04],

but from the follow-up article of Jarrow, Teo, Tse and Warachka [JTTW05]. In this article they

modified/ improved the original definition of statistical arbitrage.

Proposition 4.2.1. Under assumption 4.2.1 the following assertions are equivalent

1. limn→∞ E [ν(n)] > 0

2. µ > 0.

Proof: limn→∞ E [ν(n)] = limn→∞ µ
∑n

i=1 i
θ > 0 if and only if µ > 0.
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Remark 4.2.1. Hogan et al. [HJTW04] proved in theorem 1 on page 537 that the third condition

of statistical arbitrage, namely limt→∞ P [ν(t)] = 0 holds if θ > max
{
λ− 1

2 ,−1
}
. For the proof

they applied the inequality 25 on page 538

n∑

i=1

i2λ ≤
∫ n

1
(s+ 1)2λ ds

which, however, is generally false for positive and negative λ. Indeed, setting n = 2 and λ = −1
one obtains

2∑

i=1

i−2 =
1

12
+
1

22
= 1.25

whereas ∫ 2

1
(s+ 1)−2 ds =

[
− 1

s+ 1

]2

1

= −1
3
+
1

2
=
1

6
.

In addition, I provide a counterexample for positive λ: Choose n = 2 and λ = 0.25

2∑

i=1

i0.5 = 1 +
√
2 ≈ 2.414 and

∫ 2

1
(s+ 1)0.5ds =

[
2

3
(s+ 1)

3
2

]2

1

≈ 1.578.

In the proof of the following proposition I shall correct this gap. For this reason I prove the fol-

lowing lemma.

Lemma 4.2.1. It holds:

1.
n∑

i=1

iα ≥
∫ n

1
sαds for all α ∈ R

2. { ∑n
i=1 i

α ≤
∫ n

1 sαds+ nα if α ≥ 0∑n
i=1 i

α ≤
∫ n

1 sαds+ 1 if α < 0

3.
n∑

i=1

iα ≤
∫ n

1
sαds+ 1 + nα for all α ∈ R

Proof: If α ≥ 0 then iα is monotone increasing and it holds

∫ n

1
sαds =

n−1∑

i=1

∫ i+1

i

sαds ≤
n−1∑

i=1

(i+ 1)α =
n∑

i=2

iα ≤
n∑

i=1

iα

and ∫ n

1
sαds =

n−1∑

i=1

∫ i+1

i

sαds ≥
n−1∑

i=1

iα,
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hence ∫ n

1
sαds+ nα ≥

n∑

i=1

iα.

If α < 0 then iα is monotone decreasing and one has

∫ n

1
sαds =

n−1∑

i=1

∫ i+1

i

sαds ≤
n−1∑

i=1

iα ≤
n∑

i=1

iα

and ∫ n

1
sαds =

n−1∑

i=1

∫ i+1

i

sαds ≥
n−1∑

i=1

(i+ 1)α =
n∑

i=2

iα,

hence ∫ n

1
sαds+ 1 ≥

n∑

i=1

iα.

This proves assertion 1 and 2. Assertion 3 follows directly from 2.

Remark 4.2.2. As mentioned above Hogan et al. [HJTW04] proved that

lim
t→∞

P [ν(t) < 0] = 0

holds if θ > max
{
λ− 1

2 ,−1
}
, but they do not prove that the condition θ > max

{
λ− 1

2 ,−1
}
is

sufficient. This however is import for testing statistical arbitrage. My contribution is to prove

the converse in the following proposition. Note that the authors of article [HJTW04] skipped a

boundary point (with respect to statistical arbitrage/no statistical arbitrage), namely the point

θ = −1 and λ = −12 . If the parameter values are equal to this boundary point we are also facing
a statistical arbitrage opportunity.

Proposition 4.2.2. The following assertions are equivalent

1.

θ > max

{
λ− 1

2
,−1

}
or

{
θ = −1 and λ = −1

2

}
and µ > 0

2.

lim
t→∞

P [ν(t) < 0] = 0

Proof: By assumption 4.2.1 we have that ν(n) is distributed N
(
µ

∑n
i=1 i

θ, σ2
∑n

i=1 i
2λ

)
, hence

P [ν(n) < 0] =
1√

2πσ2
∑n

i=1 i
2λ

∫ 0

−∞
exp

{
−

(
x− µ

∑n
i=1 i

θ
)2

2σ2
∑n

i=1 i
2λ

}
dx = Φ

(
− µ

∑n
i=1 i

θ

σ
√∑n

i=1 i
2λ

)
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Figure 4.8.: The Set of all (θ, λ) fulfilling the Third Condition of Statistical Arbitrage:
limt→∞ P [ν(t) < 0] = 0

where Φ denotes the standard normal distribution function.

Thus the following assertions are equivalent

a.

lim
t→∞

P [ν(t) < 0] = 0

b.

lim
n→∞

µ
∑n

i=1 i
θ

σ
√∑n

i=1 i
2λ
=∞

c.

lim
n→∞

∑n
i=1 i

θ

√∑n
i=1 i

2λ
=∞ and µ > 0

(1) =⇒ (2)

Let θ > max
{
λ− 1

2 ,−1
}
and µ > 0. We show that limn→∞

P

n

i=1 i
θ√

P

n

i=1 i
2λ
=∞.

(i) Let λ (= −12 . By lemma 4.2.1 one has

∑n
i=1 i

θ

√∑n
i=1 i

2λ
≥

∫ n

1 sθds√∫ n

1 s2λds+ 1 + n2λ
=

n1+θ−1
1+θ√

n2λ+1−1+(2λ+1)(1+n2λ)
2λ+1
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Multiplying both the numerator and denominator by n−(1+θ) it follows

n1+θ−1
1+θ√

n2λ+1−1+(2λ+1)(1+n2λ)
2λ+1

=
1−n−(1+θ)

1+θ√
n(2λ+1)−2(1+θ)−n−2(1+θ)+(2λ+1)(n−2(1+θ)+n2λ−2(1+θ))

2λ+1

n→∞→ ∞

since by assumption 1 + θ > 0 and 2(1 + θ) > 2λ+ 1.

(ii) For λ = −12 we obtain

∑n
i=1 i

θ

√∑n
i=1 i

2λ
=

∑n
i=1 i

θ

√∑n
i=1 i

−1
≥

∫ n

1 sθds√∫ n

1 s−1ds+ 1
=

n1+θ − 1√
lnn+ 1

1

1 + θ

=
1− n−(1+θ)√

(lnn)n−2(1+θ) + n−2(1+θ)

1

1 + θ

n→∞→ ∞

since by L’Hôpital

lim
x→∞

lnx

x2(1+θ)
= lim

x→∞

1

2 (1 + θ)x2(1+θ)
= 0.

For the special case θ = −1 and λ = −12 one has

∑n
i=1 i

θ

√∑n
i=1 i

2λ
=

∑n
i=1 i

−1

√∑n
i=1 i

−1
=

√√√√
n∑

i=1

i−1
n→∞→ ∞

since the harmonic series
∑∞

i=1 i
−1 is divergent.

(2) =⇒ (1)

Assume that µ > 0 and
P

n

i=1 i
θ√

P

n

i=1 i
2λ

n→∞→ ∞. It follows that θ ≥ −1. We remark that ∑∞
i=1 i

θ is

divergent if θ ≥ −1 and converges if θ < −1.

(i) Suppose that −1 < θ ≤ λ− 1
2 . Then by lemma 4.2.1
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∑n
i=1 i

θ

√∑n
i=1 i

2λ
≤

∫ n

1 sθds+ 1 + nθ

√∫ n

1 s2λds
=

n1+θ−1+(1+θ)+(1+θ)nθ

1+θ√
n2λ+1−1
2λ+1

=

1+θn−(1+θ)+(1+θ)n−1

1+θ√
n(2λ+1)−2(1+θ)−n−2(1+θ)

2λ+1

where I again multiply numerator and denominator by n−(1+θ).

If −1 < θ and θ < λ− 1
2 ⇔ 0 < 2λ− 1− 2θ then the sequence on the right hand side converges

to 0 for n→∞. The sequence converges to
√
2λ+1
1+θ if θ = λ− 1

2 ⇔ 2λ+1 = 2 (1 + θ) and θ > −1.
This contradicts

∑n
i=1 i

θ

√∑n
i=1 i

2λ

n→∞→ ∞.

(ii) Let θ = −1 with θ < λ− 1
2 . Thus 2λ+ 1 > 0. It holds by lemma 4.2.1

∑n
i=1 i

−1

√∑n
i=1 i

2λ
≤

∫ n

1 s−1ds+ 1√∫ n

1 s2λds
=

lnn+ 1√
n2λ+1 − 1

√
2λ+ 1

n→∞→ 0,

since by L’Hôpital

lim
x→∞

lnx+ 1√
x2λ+1 − 1

= lim
x→∞

2
√
x2λ+1 − 1

(2λ+ 1)x2λ+1
≤ lim

x→∞

2
√
x2λ+1

(2λ+ 1)x2λ+1

= lim
x→∞

2

2λ+ 1

1√
x2λ+1

= 0.

This again contradicts
P

n

i=1 i
−1√

P

n

i=1 i
2λ
→∞ for n→∞.

Remark 4.2.3. Proposition 4.2.1 and 4.2.2 show that under assumption 4.2.1 condition 3 of

statistical arbitrage, namely limt→∞ P [ν(t) < 0] = 0 implies condition 2 of statistical arbitrage,

namely limt→∞ E [ν(t)] > 0.

R. Jarrow et al. [JTTW05] proved that the fourth condition of statistical arbitrage, namely

limt→∞V [∆ν(t)] = 0 for ∆ν(t) < 0, holds if λ < 0 or θ > λ. In the next proposition I show

that this condition is also sufficient which is important for testing statistical arbitrage.
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Figure 4.9.: The Set of all (θ, λ) fulfilling the Fourth Condition of Statistical Arbitrage

Proposition 4.2.3. Let µ > 0. Then the following assertions are equivalent:

1. λ < 0 or θ > λ

2. limt→∞V [∆ν(t)] = 0 for ∆ν(t) < 0.

Proof: The distribution of the incremental trading profits is the normal one N
(
µtθ, σ2t2λ

)
,

hence the variance of the random variable ∆ν(t) on the set {∆ν(t) < 0} is given by

1√
2πσ2t2λ

∫ 0

−∞

(
x− µtθ

)2
e
−
(x−µtθ)

2

2σ2t2λ dx

Substituting y = x−µtθ

σtλ
one obtains

1√
2πσ2t2λ

∫ 0

−∞

(
x− µtθ

)2
e
−
(x−µtθ)

2

2σ2t2λ dx =
σ2t2λ√
2π

∫ −µtθ−λ

σ

−∞
y2e−

y2

2 dy.

(1) =⇒ (2)

Let λ < 0. One has

σ2t2λ√
2π

∫ −µtθ−λ

σ

−∞
y2e−

y2

2 dy ≤ σ2t2λ√
2π

∫ ∞

−∞
y2e−

y2

2 dy = σ2t2λ
t→∞→ 0

Now, let θ > λ. Applying partial integration we obtain

∫
u2e−

u2

2 du = −
∫

u(−u)e−u2

2 du = −ue−u2

2 +

∫
e−

u2

2 du,
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hence

σ2t2λ√
2π

∫ −µtθ−λ

σ

−∞
y2e−

y2

2 dy =
σ2t2λ√
2π


−

(
−µtθ−λ

σ

)
e−

 

−

µtθ−λ

σ

!2

2 + 0 + Φ

(−µtθ−λ
σ

)



=
σµtθ+λ

√
2πe

µ2t2(θ−λ)

2σ2

+
σ2√
2π

t2λΦ

(−µtθ−λ
σ

)

where Φ denotes the cumulative normal distribution. It follows

σµtθ+λ

√
2πe

µ2t2(θ−λ)

2σ2

+
σ2√
2π

t2λΦ

(−µtθ−λ
σ

)
t→∞→ 0

since the exponential function converges faster to infinity for θ−λ > 0 than any power function.

(2) =⇒ (1)

Let limt→∞V [∆ν(t)] = 0 for ∆ν(t) < 0. Assume that λ ≥ 0 and θ ≤ λ.

If λ = 0 and θ (= 0 then

lim
t→∞

σ2t2λ√
2π

∫ −µtθ−λ

σ

−∞
y2e−

y2

2 dy =
σ2√
2π

∫ 0

−∞
y2e−

y2

2 dy =
σ2√
2π

1

2
> 0

and for λ = θ = 0

lim
t→∞

σ2t2λ√
2π

∫ −µtθ−λ

σ

−∞
y2e−

y2

2 dy =
σ2√
2π

∫ −µ

σ

−∞
y2e−

y2

2 dy

=
σ2√
2π

(
µ

σ
e−

µ2

2σ2 +Φ
(
−µ

σ

))
> 0

For λ > 0 I obtain

σ2t2λ√
2π

∫ −µtθ−λ

σ

−∞
y2e−

y2

2 dy
t→∞→ ∞

This contradicts

σ2t2λ√
2π

∫ −µtθ−λ

σ

−∞
y2e−

y2

2 dy
t→∞→ 0

Conditions for statistical arbitrage are proven by Hogen et al. [HJTW04], theorem 1, page 537.

I show that the equivalence holds if one enlarges condition H3 by the additional condition

(θ, λ) = (−1,−0.5).
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Figure 4.10.: The Set of all (θ, λ) fulfilling all Conditions of Statistical Arbitrage

Theorem 4.2.1. A trading strategy generates statistical arbitrage if and only if incremental

trading profits satisfy the following conditions:

1. A1 : µ > 0 and

2. A2 : λ < 0 or θ > λ, and

3. A3 : θ > max
{
λ− 1

2 ,−1
}
or (θ, λ) = (−1,−0.5)

Proof: This follows directly from proposition 4.2.1, 4.2.2 and 4.2.3.

Remark 4.2.4. (Standard Arbitrage Opportunity versus Statistical Arbitrage) A standard ar-

bitrage has X(0) = 0 where there exists a finite time T > 0 such that P [X(T ) > 0] > 0 and

P [X(T ) ≥ 0] = 1. To transform the standard arbitrage opportunity into an infinite horizon

self-financing trading strategy, we just invest the proceeds at time T into the money market ac-

count, i.e. X(s) = X(T ) B(s)
B(T ) for s ≥ T . Note that ν(s) = X(T ) B(s)

B(T )
1

B(s) = ν(T ) for s ≥ T .

Then lims→∞ E [ν(s)] = E [ν(T )] > 0 which satisfies condition 2 and lims→∞ P [ν(s) < 0] =

P [ν(T ) < 0] = 0 which satisfies condition 3. Condition 4 is trivially fulfilled.

A statistical arbitrage is not necessarily a standard arbitrage opportunity: Choose µ = 0.1,

θ = −1, σ = 0.2 and λ = −0.5. With the help of theorem 4.2.1 we know that we are facing a
statistical arbitrage opportunity. Now suppose that this statistical arbitrage opportunity is also a

standard arbitrage opportunity: Then there exists a N > 0 so that P

[∑N
i=1∆ν(i) ≥ 0

]
= 1. It
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follows

P

[
0.1

N∑

i=1

1

i
+ 0.2

N∑

i=1

1√
i
z(i) ≥ 0

]
= 1.

But this is contradiction since z(i) is normal distributed with a strictly positive variance.

In the next step we dedicate ourselves with the estimation of the model parameters. For this

purpose, we first calculate the log-likelihood function for the increments in assumption 4.2.1.

Since the increments are independent we can write for the joint density

lnL
(
µ, σ2, λ, θ | ∆v

)
= ln

n∏

i=1

1

σiλ
√
2π
exp

(
−(∆νi − µiθ)2

2σ2i2λ

)

= −n ln
√
2π − 1

2

n∑

i=1

ln
(
σ2i2λ

)
− 1

2σ2

n∑

i=1

(
∆νi − µiθ

)2

i2λ

Taking partial derivatives with respect to µ, σ, λ and θ of the log-likelihood function and setting

the derivatives equal to zero yield the following:

1.

∂ lnL

∂µ

(
µ, σ2, λ, θ | ∆v

)
= − 1

2σ2

n∑

i=1

2
(
∆ν(i)− µiθ

)
(−iθ)

i2λ
!
= 0⇔

n∑

i=1

iθ

i2λ
∆ν(i)−

n∑

i=1

µi2(θ−λ) !
= 0⇔

µ =

∑n
i=1

iθ

i2λ
∆ν(i)

∑n
i=1 i

2(θ−λ)

2.

∂ lnL

∂σ2
(
µ, σ2, λ, θ | ∆v

)
= −1

2

n∑

i=1

1

σ2
+
1

2σ4

n∑

i=1

(
∆ν(i)− µiθ

)2

i2λ
!
= 0⇔

σ2 =
1

n

n∑

i=1

(
∆ν(i)− µiθ

)2

i2λ

3.

∂ lnL

∂λ

(
µ, σ2, λ, θ | ∆v

)
= −1

2

n∑

i=1

1

σ2i2λ
σ2i2λ2 ln i− 1

2σ2

n∑

i=1

(
∆ν(i)− µiθ

)2

i2λ
(−2) ln i

= −
n∑

i=1

ln i+
1

σ2

n∑

i=1

(
∆ν(i)− µiθ

)2

i2λ
ln i

!
= 0⇔

σ2
n∑

i=1

ln i =
n∑

i=1

ln i

i2λ

(
∆ν(i)− µiθ

)2
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4.

∂ lnL

∂θ

(
µ, σ2, λ, θ | ∆v

)
= − 1

2σ2

n∑

i=1

1

i2λ
2

(
∆ν(i)− µiθ

)
(−µ)iθ ln i != 0⇔

n∑

i=1

∆ν(i) ln(i)iθ−2λ = µ
n∑

i=1

ln(i)i2(θ−λ)

So we obtain

µ̂ =

∑n
i=1∆ν(i)iθ̂−2λ̂

∑n
i=1 i

2(θ̂−λ̂)

σ̂2 =
1

n

n∑

i=1

(
∆ν(i)− µ̂iθ̂

)2

i2λ̂

σ̂2
n∑

i=1

ln(i) =
n∑

i=1

ln(i)

i2λ̂

(
∆ν(i)− µ̂iθ̂

)2

n∑

i=1

∆ν(i) ln(i)iθ̂−2λ̂ = µ̂
n∑

i=1

ln(i)i2(θ̂−λ̂)

One can find solutions for the four parameters numerically with the Excel Solver. Since we have

to check if these values are the global maximum of the log-likelihood function we then have to

visualize the log-likelihood function.

To obtain valuable start values for the mean µ and θ we consider the incremental trading profits

without random noise ∆νi = µiθ. If ∆νi > 0 then we can write ln∆νi = lnµ + θlni. Note that

the incremental trading profits which are negative are skipped with an index i also skipping the

negative ones. Now we can apply the least squares method to estimate the start values for µ

and θ denoted by µ̃, θ̃. To fit the volatility σ and λ we consider ln
∣∣∣∆νi − µ̃iθ̃

∣∣∣ = lnσ + λlni.

Now we provide a statistical methodology to test for statistical arbitrage via bootstrapping. The

existence of statistical arbitrage consists of joint restrictions on the parameters underlying the

evolution of trading profits. Following theorem 4.2.1 the following restrictions have to be satisfied

simultaneously for a statistical arbitrage opportunity to exist:

1. A1 : µ > 0, and

2. A2 : λ < 0 or θ > λ, and

3. A3 : θ > max
{
λ− 1

2 ,−1
}
or (θ, λ) = (−1,−0.5)

Thus, no statistical arbitrage means
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1. Ac
1 : µ ≤ 0, or

2. Ac
2 : λ ≥ 0 and θ ≤ λ, or

3. Ac
3 : θ ≤ max

{
λ− 1

2 ,−1
}
and (θ, λ) (= (−1,−0.5)

We remark that A3 and Ac
3 are modified and rectified conditions of the sub-hypotheses H3/H

c
3

of [HJTW04] on page 537.

Because we are interested in testing a given trading strategy for statistical arbitrage, the null

hypothesis is no statistical arbitrage.

Let
(
µ̂, λ̂, θ̂, σ̂

)
denote the maximum likelihood estimator with respect to an observed incremen-

tal trading profit time series ∆νi with i = 1, 2, ..., n. Plugging the estimator in model 4.2.1 one

obtains

∆v̂(i) = µ̂iθ̂ + σ̂iλ̂z(i). (4.14)

One should simulate the process ∆v̂ with i = 1, 2, ..., n 10, 000 times and obtains 10, 000 time

series ∆ν(i)∗ with i = 1, 2, ..., n. For each time series we calculate the maximum likelihood

estimator (µ∗, λ∗, θ∗, σ∗) and check if one has statistical arbitrage or not. The number of the

occurrence of no statistical arbitrage is divided by 10, 000 and can be interpreted as the p-value.

Before testing one chooses a level of significance α (for example α = 5%). If the p-value is

smaller or equal α one rejects the null hypothesis of no statistical arbitrage. So one has found

a statistical arbitrage opportunity.

If one has detected a statistical arbitrage opportunity one can hope that the strategy is profitable

in the future, too. Since a statistical arbitrage opportunity as defined in Hogan et al. [HJTW04]

can take a long time to unfold, we cannot be sure that the estimated parameters do not change

significantly over time. It is a long-horizon strategy. Actually, for a fixed time horizon it can

happen that we have to bear severe losses.



Appendix A

Put-Call Parity for European Options on

Futures

The Put-Call parity for put and call options underlying futures contracts can be derived with

the same arbitrage arguments as in stock markets.

With C(t, T ) and P (t, T ) denoting the price of a European call and put option at time t both

with strike K and time to expiration T on a futures contract with maturity T̃ ≥ T named by

F (t, T̃ ) we can form two portfolios:

Portfolio A: a European call futures option plus an amount of cash equal to Ke−rT

Portfolio B: a European put futures option plus a long futures contract plus an amount of cash

equal to F (t, T̃ )e−rT .

In portfolio A the cash can be invested at the risk-free rate, r, and will grow to K at time T .

Let F (T, T̃ ) be the futures price at maturity of the option. If F (T, T̃ ) > K, the call option in

portfolio A is exercised and portfolio A is worth F (T, T̃ ). If F (T, T̃ ) ≤ K, the call is not exercised

and portfolio A is worth K. The value of portfolio A at time T is, therefore, max
(
F (T, T̃ ),K

)
.

In portfolio B the cash can be invested at the risk-free rate to grow to F (T, T̃ ) at time T . The

put option provides a payoff of max
(
K − F (T, T̃ ), 0

)
. The futures contract provides a payoff

of F (T, T̃ )− F (t, T̃ ). The value of portfolio B at time T is, therefore,

F (t, T̃ ) +
(
F (T, T̃ )− F (t, T̃ )

)
+max

(
K − F (T, T̃ ), 0

)
= max

(
F (T, T̃ ),K

)

Because the two portfolios have the same value at time T and there are no early exercise

opportunities, it follows that they are worth the same at time t. The value of portfolio A today

is C(t, T ) + Ke−rT . The futures contract in portfolio B is worth zero at time t. Therefore,
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portfolio B is worth P (t, T ) + F (t, T̃ ).

C(t, T ) +Ke−rT = P (t, T ) + F (t, T̃ )



Appendix B

Hesse Matrix

For a, b ∈ R with a < b and θ > 0, σ > 0 and c ≥ 0 we have already defined (see definition 4.1.5)

F (a, b) =
θ (b− a− c)

π
(
Erfi

(√
θ

σ
b
)
− Erfi

(√
θ

σ
a
))

We now calculate the partial derivatives of function F .

The numerator and denominator of function F are abbreviated with

f(a, b) = θ (b− a− c)

g(a, b) = π

(
Erfi

(√
θ

σ
b

)
− Erfi

(√
θ

σ
a
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e
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)
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2
)
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2
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=
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(
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(
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e
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2
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g3(a, b)
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∂2F (a, b)

∂2b
=
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The determinant of the Hesse matrix evaluated at point (−b, b) (b > 0) then takes the following
form
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