Automated Enforcement of Receptive Safety Properties in
Distributed Design*

Gilberto Matos

Siemens Corporate Research
Princeton,New Jersey
matos@scr.siemens.com

research done while at UMD

Abstract

Independent development of system components
may cause integration problems if their interaction is
faulty. This problem may be solved by enforcing re-
quired component interactions at the system level. We
have developed a system that automatically integrates
control-oriented components, to make them consis-
tent with aggregate system behavior requirements. Our
method is based on the automated synchronization
method that modifies independently designed compo-
nents to make them satisfy a set of user defined re-
ceptive safety properties. The automated synchroniza-
tion allows us to design the components as independent
controllers that satisfy their individual requirements
and to compose a correct executable system by com-
bining the components and enforcing their interaction
constraints. This approach gives component design-
ers the freedom to design independently, and produce
a functional system by combining the components and
specifying their interaction requirements.

Keywords: receptive safety properties, automated
synchronization, concurrent software, automated code
generation, reliability.

1 Introduction

Complexity of modern software systems often de-
mands the decomposition of systems into components.
These components may be designed separately and
even independently, by geographically remote design
teams. Development of complex systems is a difficult
task, requiring the correct functioning of all compo-
nents as well as correctness of their interaction in an
integrated system. While the individual functionality
of the components may be specified locally. the inter-
action 1s global and makes the components interde-
pendent. This makes the system integration a critical
and potentially expensive phase where the correctness
of interaction must be assured.

In previous work, we developed a method for au-
tomated synchronization of concurrent systems that
satisfy given sets of receptive safety properties[5, 6].

*This research is Supported by the Office of Naval Research
under contract ONR N000149410320 and by the National Sci-
ence Foundation under contract CCR-96-25-202

James Purtilo

University of Maryland
College Park. Maryland

purtilo@cs.umd.edu

Elizabeth White

George Mason University
Fairfax, Virginia
white@cs.gmu.edu

Systems are designed using independent components
that only need to satisfy their functional requirements.
The component interaction is specified using receptive
safety properties, and the components can be mod-
ified to enforce system behavior that satisfies these
properties. Figure 1 illustrates the process of creat-
ing a synchronized system from independent compo-
nents and receptive safety properties that constraint
the component interaction. The components are de-
signed independently, without explicitely implement-
ing their interaction. The specified safety properties
are used to analyze the synchronization requirements
of the system, and to produce modified components
that interract correctly with respect to the given safety
rules.

In this paper, we describe how this same method
can be used to distribute the design of complex sys-
tems to independent, and possibly geographically re-
mote teams. The teams can implement the individual
components concentrating exclusively on their func-
tional requirements, and the system can be integrated
by producing automatically synchronized versions of
the components. This approach is particularly suited
for designing systems where the concurrent compo-
nents are control dependent, meaningthat their execu-
tion must be interleaved. The guarantee that the syn-
chronized components will interact as specified simpli-
fies the partition of the system, and the specification
of the interfaces between components.

The format of this paper is as follows. In Section 2,
we briefly describe our model of process control sys-
tems and our method for automated synchronization
of the components of this type of system. We also
define the receptive safety properties. and the impli-
cations of their automated enforcement. In section 3,
we give an example system with significant compo-
nent functionality, and with typically simple control
interaction. We show how this system can be inte-
grated using automated synchronization of indepen-
dently specified components. We conclude by point-
ing out the advantages of this method compared to
manual component synchronization.

SAFETY

SYSTEM AS COMPOSITION
OF SYNCHRONIZED COMPONENTS

ANALYSISAND

INTEGRATION

Figure 1: System integration for Safety Properties

2 Receptive Properties and Realizabil-
ity

The behavior of a system is more complex then
just the parallel execution of its components, and this
additional complexity is a result of interaction. The
interaction between components may occur in differ-
ent ways, including data communication, control de-
pendencies (RPCs for example) and synchronization
mechanisms (such as locks and barriers). In systems
that interact with the environment, components may
also interact indirectly through environment reactions.
The interaction between the components determines
how the system as a whole satisfies its requirements.
The consequences of incorrect interactions range from
loss of performance to total and catastrophic system
failures, while correct interaction is required in reli-
able and high performance systems. The correctness
of interaction is application specific; while some inter-
action patterns may be correct in one system, they
may cause failures in others.

The desired system behavior can be described by a
set of safety and liveness properties that specify the
aggregate behavior. A formal definition for both types
of properties relates the safety and liveness properties
to sets of acceptable executions. The fundamental dif-
ference between safety and liveness properties is in the
finiteness of execution traces where those properties
can be verified. If all violations of a given property are
detectable on finite traces, that is a safety property,
while the liveness properties accept every finite exe-
cution and may reject some infinite execution traces.
This definition of safety is much broader than the no-
tion of physical safety, and includes properties such as
real-time behavior, fault tolerance [7], and data range
constraints.

Safety violations are always caused by the occur-
rence of some violating event. Safety properties whose
violations can only be caused by controlled actions
have been studied by Abadi and Lamport [1]. They
named these properties receptive based on an earlier
definition of receptiveness of trace structures [3]. They
also proved that receptive safety properties play an
important role in the realizability and compositional-

ity of complex systems. Receptiveness provides a tool
for distinguishing between realizable and unrealizable
safety properties. Any realizable safety property can
be represented by a stronger receptive safety property;
A system that satisfies a receptive safety property also
satisfies all weaker safety properties implied by it.

Software development is increasingly reliant on
component based technologies. Research in concur-
rent systems is often based on finite state components
executing in parallel [4, 2]. This view of components is
especially useful for embedded control systems where
the main criterion for correctness is whether the sys-
tem completes certain actions in the right order or at
the appropriate time. We use this finite state machine
(FSM) model for both the system components and the
safety properties. Just as components can be mod-
eled by finite state machines, many important system
properties can be captured using similar notations. In
our system the safety properties are defined as FSMs
that react to component states, and signalize safety
violations by reaching a predefined REJECT state.

Violations of receptive safety properties are by def-
inition a result of a controller action. By delaying the
violating controller actions, we can prevent the oc-
currence of states that violate the specified receptive
safety properties. In our execution model, the system
controller comprises a number of concurrent compo-
nents, and the controller actions correspond to specific
combinations of component actions. By delaying the
components whose actions cause the safety violation,
the violation itself is delayed. While the components
with potential for violations are delayed, others are
allowed to proceed with their execution until the sys-
tem eventually reaches a state where the delays are no
longer necessary

2.1 Enforcement of Receptive Safety

Properties

The synchronization mechanism in GenEx is based
on the delaying of component transitions. Delayed
transitions are 1implemented by introducing an addi-
tional state where the component FSM blocks as long
as the completion of its transition may cause a safety
violation. Figure 2(b) illustrates the implementation

ORIGINAL
TRANSITION

SRC

REQ

@ PEST (b)

REQ & 'ERRCOND

SYNCHRONIZED

DELAYED TRANSITION

REQ & ERRCOND

ERRCOND

IERRCOND

Figure 2: Overview of delayed transition implementation

of a delayed transition for the transition in Figure 2(a).
If the safety analysis finds that the transition could
lead to a violation. the delayed transition is added
to block the component whenever the safety precon-
ditions hold. The enabling condition of the original
transition REQ is combined with a set of conditions
ERRCOND that is the precondition of the safety
violation, and the resulting conditions enable the de-
layed transition. The original transition will be al-
lowed to proceed only when its enabling condition
REQ is satisfied and the safety violation precondition
ERRCOND is not. The transition from the delayed
to the destination state will occur only when there is
no potential for a safety violation.

GenEx uses this method to delay all component
transitions that can cause a violation of some recep-
tive safety property. The receptive safety properties
describe the unacceptable system behaviors, and the
receptiveness guarantees that some controlled compo-
nent causes every violation. GenEx statically analyzes
the safety rules and the components to find the com-
ponents and their transitions that may cause the vi-
olations. All transitions that may cause safety viola-
tions are prevented using the delayed transition mech-
anism with the safety violation preconditions as en-
abling conditions.

2.2 Software Development with Auto-
mated Control Integration

Integration of complex systems from independently
developed components can be a frustrating process if
the components interaction is faulty. If component
interaction can be corrected during system integra-
tion, by synchronizing their behavior and making it
consistent with specified receptive safety rules, the
component development becomes more independent.
We have shown [5, 6] how automated control inte-

gration allows faster integration of complex systems
with strong assurance that the final product satisfies
all functional and safety requirements.

Our method supports a software development
framework where the data dependencies are defined
early in the project. but the control interactions can
be left for the integration phases. During the de-
velopment of concurrent components, the designers
must cooperate on a smaller set of common interfaces,
namely the data processing ones. This allows the sep-
aration of data processing and control interaction for
different phases of system development. This separa-
tion fits well with the majority of modern program-
ming languages where the data hierarchies are defined
very early in the development process. while the con-
trol aspect of every component is largely independent.

By allowing the component behaviors to be syn-
chronized late in the design process, in the integra-
tion phase, we give more independence to the design-
ers in developing their respective components. The
only restriction is that the components should not im-
pose conflicting requirements on the ordering of sys-
tem actions. because such components can never be
integrated into a functional system. A simple guide-
line for component development is that they should
not impose serialization on events unless the sequenc-
ing is required for their functionality. The serialization
requirements of individual components should be ver-
ified early. only to ensure that no conflicts exist.

In the next section, we describe the reengineering of
the control in an existing application. After describ-
ing the application itself, we briefly describe how the
initial control integration was accomplished and then
how we applied the techniques described above.

3 The AEGIS Tracking System

The AEGIS Weapons Systems, consisting of an ar-
ray of sensors and weapons, is designed to defend
a battle group against air, surface and subsurface
threats. The system is responsible for tracking and
categorizing objects in the system with respect to
weapons doctrines, engageability regions and fixed re-
gions. Parts of the system can be automated or semi-
automated, resulting in a system with a great deal of
complexity.

In 1993, the University of Maryland software inter-
connection lab prototyped a small part of the AEGIS
system as part of a larger exercise to demonstrate var-
ious prototyping languages and techniques [8]. The
difficult algorithms in the prototype are not depen-
dant on synchronization and so could be implemented
in a single component; however this component must
be integrated with the rest of the system including in-
formation gathering, data, and graphical presentation
components.

The achitecture of the system was based on a vir-
tual shared memory module, implemented as a sin-
gle component that communicated with the functional
components. The functional components of the sys-
tem included a loader, a spreadsheet, the tracker mod-
ule, a display unit and a list unit. The initialization
of the system was performed by the loader which re-
quired exclusive access to the shared memory module.
After the loader completed its function, the spread-
sheet and tracker were allowed to start executing and
accessing the shared memory. The spreadsheet exe-
cuted independently from the other components and
had no further synchronization requirements. The
spreadsheet acted as a producer of data, and all of its
updates were atomic. The tracker component used the
data produced by the spreadsheet, and computed the
parameters to be used by the display and list compo-
nents. The display and list only functioned when data
was available from the tracker, so they had to synchro-
nize with the tracker and access the shared memory
after the tracker’s accesses. These functional compo-
nents interacted indirectly via ordered accesses to the
shared memory module. In the initial implementation
this ordering was built explicitly into the component
implementation structure as extra read/write state-
ments. For example, the tracker and spreadsheet func-
tional components remain blocked on a read statement
until the loader sends each a message telling them to
proceed.

In the next section, we describe another way to
build this system by enforcing control requirements
automatically. When the control interfaces are en-
forced at the system level, designers can produce sim-
pler functional components since they have less strin-
gent behavior specifications. Assuming the compo-
nents and interaction specifications are designed cor-
rectly, an executable implementation that satisfies all
requirements can be automatically generated by syn-
chronizing the system components.

4 System Specification
The AEGIS system is specified as a set of finite
state components and receptive safety rules that de-

scribe their interactions. The control aspect of com-
ponent behavior is almost trivial. as shown by the
tracker component FSM description in Figure 3a).
This component consists of three states, and the tran-
sitions between them are unconditional. This models
a greedy component that attempts to process data as
fast as it can, using all available processing resources.
The control behavior of other components is very sim-
ilar to the tracker and with similar complexity. Each
component has an initialization. and an active and
passive state. The active state is when the component
is executing its function, and the idle state is when it
is done, or waiting to be allowed to activate again.

We consider the components to have a finite state
control behavior that roughly corresponds to the con-
trol structure of the component implementation in a
sequential programming language. Part of this control
structure is unrelated with the interaction between the
component and the rest of the system, so it can be
abstracted away in the representation whose goal is
system synchronization. The abstracted part of of the
component can be assumed to implement its data pro-
cessing functionality. In the case of the tracker com-
ponent, most of its functionality is executed as a part
of the transition from TR_IDLE to TR_ACTIVE.

The data reading/writing requests are issued by the
components as part of their actions. Actions repre-
sent the effect of specific component transition, and
only the execution of the appropriate transition in-
vokes the corresponding action. The actions are con-
trolled by the component behavior, and the delayable
nature of component transitions means their execution
can be synchronized to prevent dangerous action se-
quences. Qur synchronization method will analyze the
interaction between the components, and modify the
components control structure to include the necessary
delays.

The global receptive safety rules are defined based
on the system interaction requirements, derived from
acceptable component interactions. A receptive safety
rule for this system is shown in Figure 3b), and it spec-
ifies the valid initialization sequence for the loader,
spreadsheet and the tracker. This safety property
is receptive because its violations can only be caused
by the actions of the controlled components. The
spreadsheet and tracker will cause a safety viola-
tion if they access the shared memory before the loader
sets its initial state. The INIT_SEQUENCE safety
property specifies this as a violation, easily detectable
by system behavior analysis. The components will be
modified by adding conditional delays to their tran-
sitions to the active state, making them wait for the
completion of system initialization. The lack of ex-
plicit delays in the components makes them easy to
use in different component configurations, with other
types of interaction constraints.

Automated synchronization using GenEx produces
an integrated system where the components consult
the safety rules’ state data in determining their en-
abled transitions. The synchronization of the compo-
nents works independently of the runtime organization
of the systems. The same generated code can, depend-
ing on the runtime support library, execute in a sin-

a) Tracker b)

true true

INIT_SEQUENCE

INIT_ENABLED

true Loader = Lo_done

SYS ENABLED

Spreadsheet = Sp_active
Tracker = Tr_Active

Figure 3: A component and a receptive safety rule for the AEGIS system

gle process form or as a collection of distributed pro-
cesses comprising one or more components and safety
rules. This flexibility makes the automatically gen-
erated aegis system portable to a variety of environ-
ments including those without support for multipro-
cess execution required by the original manual imple-
mentation.

5 Conclusion

Our method can be used to reduce the dependencies
between components in complex concurrent systems.
By eliminating control dependencies and enforcing the
desired system control behavior automatically, we al-
low the designers to produce the control aspects of
their software modules independently. The indepen-
dence between design teams makes it possible for them
to concentrate on implementing their assigned compo-
nents for their specific functional requirements.

The use of receptive safety properties allows us to
partition the analysis and integration, thus drastically
reducing their computational complexity. This capa-
bility makes our automated synchronization method
relevant for complex industrial systems.

References
[1] Martin Abadi and Leslie Lamport. “Composing
Specifications”. ACM Transactions on Program-

ming Languages and Systems, 15:73-132, January
1993.

[2] G. Berry and G. Gonthier. “The Esterel Syn-
chronous Programming Language: Design, Seman-
tics, Implementation”. Science of Computer Pro-
gramming, November 1992.

[3] David L. Dill. “Trace Theory for Automatic Hi-
erarchical Verification of Speed-Independent cir-
cuits”. PhD thesis, Carnegie Mellon University,
1988.

[4] David Harel. “StateCharts: A Visual Formalism
for Complex Systems”. Science of Computer Pro-
gramming. 8:231-274. 1987.

[5] Gilberto Matos. “Analysis and Applications of Re-
ceptive Safety Properties in Concurrent Systems”.
PhD thesis, University of Maryland, College Park,
MD, January 98.

[6] Gilberto Matos, James Purtilo, and Elizabeth
White. “Automated Computation of Decompos-
able Synchronization Conditions”. In Proceedings
of the 2nd High Assurance Software Engineering
Workshop, 1997.

[7] Gilberto Matos and Elizabeth White. “Applica-
tion of Dynamic Reconfiguration in the Design of
Fault Tolerant Production Systems”. In Proceed-
wngs of the 4th International Conference on Con-
figurable Distributed Systems (CDS’98), May 1998.

to appear.

[8] J. Purtilo, C. Falkenberg, E. White, W. Ander-
sen, and T. Ollove. “An exercise with prototying
technology”. unpublished, January 1994.

