
Indutive Temporal LogiProgramming
Dipl. Inf. Robert Kolter
Dem Fahbereih Informatikder Tehnishen Universität Kaiserslauternvorgelegte Dissertationzur Verleihung des akademishen GradesDoktor der Naturwissenshaften
Kaiserslautern, 6.12.2009Dekan: Prof. Dr. Karsten BernsBerihterstatter: Prof. Dr. Otto MayerProf. Dr. Markus NebelTag der wissenshaftlihen Aussprahe: 29.5.2009D386

ii

Contents
1. Introdution 1I. Temporal Logi and (indutive) Logi Programming 52. Preliminaries 72.1. Propositional Logi . 72.2. First Order Logi . 122.3. Temporal Logi . 192.3.1. Propositional Temporal Logi . 202.3.2. First Order Temporal Logi . 233. Logi Programming 293.1. Prediate Logi as a Programming Language 293.2. The Conept of SLD�Resolution . 333.3. Soundness and Completeness . 404. Indutive Logi Programming 434.1. The basi Framework . 434.2. Generalization and Speialization . 464.3. Re�nement Operators and their Properties 47

iv ContentsII. First Order Indutive Temporal Logi Programming 495. The Programming Language Prolog(+T) 515.1. Syntax of Prolog(+T) . 525.1.1. Terms in Prolog(+T) . 525.1.2. Fats . 555.1.3. Rules . 555.1.4. Programs . 575.1.5. Queries . 595.1.6. The Relation of Prolog(+T) to other Temporal Logi program-ming Languages . 605.2. Delarative Semantis of Prolog(+T) . 655.2.1. Preliminaries . 655.2.2. Redution of Literals . 745.2.3. Semantis for programs . 815.3. A Saturation�based temporal Proof Proedure 865.3.1. Tableaux Rules . 875.3.2. Soundness and Completeness Issues 1046. The Lattie Struture of Prolog(+T) objets 1156.1. Subsumption . 1166.2. The Lattie Struture of Literals . 1176.2.1. Generalizations of Terms . 1176.2.2. Generalizations and Speializations of Literals 1196.3. The Lattie Struture of Rules . 1256.3.1. Greatest Speializations . 1256.3.2. Least Generalizations . 129

Contents v7. Re�nement Operators for Prolog(+T)�programs 1417.1. Re�nement Operators for Prolog(+T)�Literals 1427.2. Re�nement Operators for Rules . 1477.2.1. Downward Re�nement . 1507.2.2. Upward Re�nement . 1527.3. Re�nement Strategies . 1597.3.1. Elimination of Variants . 1627.3.2. Restrition to redued Rules . 1637.3.3. Elimination of Tautologies . 1657.3.4. Premises vs. Conlusions . 1668. Identi�ability of Prolog(+T)�programs 1698.1. PAC�Learning . 1708.2. Learnability . 1778.2.1. The general ase . 1778.2.2. Programs with syntatial restritions 183III. Propositional Indutive Temporal Logi Programming 1899. Preliminaries 1919.1. Finite Automata on in�nite Objets . 1929.2. Automata Construtions for Propositional Temporal Logi Formulas . . . 1969.2.1. A Modi�ed Formal Automata�Model 1969.2.2. A primitive Constrution . 1999.2.3. An Overview over improved Construtions 2039.2.4. Some Complexity Results . 2059.2.5. Cheking Language�Emptiness . 210

vi Contents10.Automata Manipulations 21110.1. Impliation as an Ordering . 21210.2. Upward Re�nement . 21310.2.1. Formulas without Temporal Operators 21410.2.2. Formulas with Temporal Operators 21610.3. Downward Re�nement . 21810.3.1. Formulas without Temporal Operators 21910.3.2. Formulas with Temporal Operators 22010.4. Modifying Automata by Appliation of Re�nement Operations 22110.4.1. Upward Re�nement . 22110.4.2. Downward Re�nement . 23210.4.3. Extrating Formulas . 23710.5. The Identi�ation Proess . 23811.Identi�ability of Ltl�programs 25111.1. General Notations . 25111.2. Upper Bounds for the VC�Dimension of Classes of Ltl�Programs 25411.2.1. General Ltl�Programs . 25411.2.2. The deterministi Sublogi of Ltl 25612.Conlusions 26112.1. Summary of the Topis . 26112.2. Perspetives for Future Researh . 263A. Formal Desription of the Programming Languages 267A.1. Syntax of Prolog(+T) . 267A.1.1. Terms . 268A.1.2. Atoms and Literals . 270A.1.3. Rules . 271

Contents viiA.1.4. General Prolog(+T)�Objets . 271A.2. Syntax of Ltl . 272

viii Contents

1. Introdution
The �eld of Indutive Logi Programming (see [121℄, [119℄, [120℄, [118℄, [99℄ and [126℄) isan area of ative researh. Indutive Logi Programming (ILP) deals with the topi ofextrating a suitable explanation of a phenomenon from �nite sets of examples. Whilethis is the basi topi in most areas of Arti�ial Intelligene (AI), the target onept inILP (i.e. the phenomenon to be learned) is a logi program. Logi programs are �nitesets of lauses whih allow a very natural interpretation as delarations of proeduralrules. While this natural interpretation of a lause

A← B1, . . . , Bnis �to solve the task A, solve the sequene B1, . . . , Bn of subtasks�, the interpretation inILP is more rule based: if x1, . . . , xn are the variable symbols ourring in the head ofthe lause (i.e. in A), then x1, . . . , xn will be assumed to have the property A if theyhave the properties B1, . . . , Bn. This gives the interpretation �if B1, . . . , Bn hold, then
A does also hold�.Sine the onepts of interest are logi programs, examples for any ILP�based learningsystem an (or should) be ground atoms. Eah suh example an be either a positive ora negative example: if P is the program to be learned and e is an example, then
• if e is positive, then P |= e and
• if e is negative, then P 6|= e.

2 Chapter 1. IntrodutionILP tehniques have been applied in many branhes of siene, notable in omputa-tional biology. There, several areas of appliation have been identi�ed, notably
• Drug�ativity omparison (see [88℄, [148℄, [24℄ and [87℄),
• Diagnosis of rheumati diseases (see [33℄ and [100℄),
• Mutagenesis predition (see [40℄, [151℄, [152℄ and [153℄),
• Protein�struture predition (see [122℄ and [86℄) and
• Design of Medial Diagnosis Tools (see [136℄ and [101℄).Other areas of appliation are predition of strategies for hess games (see [16℄), �niteelement methods (see [50℄, [52℄, [51℄, [54℄ and [55℄), data mining (see [173℄, [115℄ and[116℄) and learning models for dynami systems (see [25℄ and [55℄).This thesis deals with a natural extension of the lassial ILP paradigm, namely syn-thesizing temporal logi programs from given examples. Temporal Logi is a natural wayto desribe relations whih may hange over time. We will distinguish two di�erent areas:Propositional Indutive Temporal Logi Programming Here the language used in or-der to desribe the programs is Ltl, a simple temporal logi language allowing theuse of operators suh as X, G, F, U and R for modeling time�dependent relations.Ltl is very popular in the �elds of Model Cheking and Supervisory Control. Wewill exploit the fat that eah Ltl�formula an be represented as a nondetermi-nisti Bühi�automaton (an automaton aepting in�nite sequenes of letters) inorder to de�ne operators whih manipulate suh an automaton in order to �t thespei�ation given by the examples.First Order Indutive Temporal Logi Programming Here the language of interest ismuh more �exible and expressive than in the propositional ase. The major draw-bak is the undeidability of �rst order logi (whih has been proven by Churh in

Chapter 1. Introdution 31936) and therefore of the full �rst order temporal logi. To keep �rst order tem-poral logi tratable, we identify a simple extension of a Prolog�style languagewhih allows the usage of temporal the operators X, G, F, U and P in front of literals.We will see that this programming language (whih we will all Prolog(+T)) hasa very natural proedural interpretation in terms of some well known rewrite rulesfor temporal logi formulas. These rules will be used in order to give a saturationbased alulus.The main part of this thesis will be devoted to the �eld of First Order IndutiveTemporal Logi Programming. We will see that the lattie properties (with respet tothe subsumption�ordering) of �rst order atoms, literals and lauses an be extended toProlog(+T)�atoms, �literals and �lauses. So the existene of least generalizations andgreatest speializations of Prolog(+T)�lauses an be ensured. We will give algorithmswhih allow the omputation of suh generalizations and speializations and use the teh-niques from these algorithms in order to de�ne re�nement operators for Prolog(+T)programs.The thesis is strutured as follows: in the �rst part we will de�ne some basi notationsfrom �rst order logi, temporal logi and logi programming. The hapters in this �rstpart are kept rather short sine we assume that the reader is familiar with these topis.After having introdued these basi onepts we will brie�y introdue some oneptsfrom the �eld of ILP.The seond part is dediated to an in�depth treatment of First Order Temporal ILP.This inludes the de�nition of Prolog(+T) and the disussion of its delarative se-mantis. Having ahieved this, we will present a proof proedure, disuss the lattieproperties of Prolog(+T) objets and study re�nement operators.The third part is then dediated to Propositional Temporal ILP. After having de�nedbasi onepts from the �eld of ω�automata, we will present two operations for re�ningLtl�programs by manipulating their representing automata. The �nal hapter of this

4 Chapter 1. Introdutionthird part will be devoted to the question of the omplexity of the identi�ation task.Therefore we will derive upper bounds for the VC�dimension of ertain lasses of Ltl�programs. These VC�dimensions allow a diret extration of the number of exampleswhih are needed in order to identify the program under onsideration (or more preise:a program whih is equivalent to the program under onsideration).

Part I.
Temporal Logi and (indutive)Logi Programming

2. Preliminaries
Contents2.1. Propositional Logi . 72.2. First Order Logi . 122.3. Temporal Logi . 192.3.1. Propositional Temporal Logi 202.3.2. First Order Temporal Logi . 23In this hapter we will brie�y de�ne and review some of the basi and most importantonepts whih we will use throughout the rest of this thesis. This inludes propositionallogi, �rst order logi and temporal logi. Eah of these three logis is equipped withboth a semantial onsequene relation whih we will as usual denote as |=. The threelogis will be de�ned by �rst de�ning the sets of formulas whih an be built fromsome atomi objets and onnetives and an be seen as a more or less detailed way todesribe mathematial onepts in a syntati way. The properties of the logis are onlymentioned. We will not prove them sine the literature on propositional, �rst order andtemporal logi is rih (see [18℄, [147℄, [31℄, [20℄, [89℄ and [56℄).2.1. Propositional LogiThe simplest logi whih we will de�ne is the lassial propositional logi. Propositionallogi is a formalism whih has been studied very well. Early studies were done by

8 Chapter 2. PreliminariesBoole (see [23℄) in the 19th entury. But to this date the study of propositional logiwas motivated by the irumstane that researhers wanted to formalize the proessof mathematial reasoning. Propositional logi seemed to be a good starting point forsuh formalizations. Later the usefulness of propositional logi for the desription ofeletrial and eletronial iruits was pointed out. We refer to [104℄ for an introdutionto appliations of propositional logi.Now assume that a ountable in�nite set X = {pi | i ∈ N} is given. Eah element of Xwill be alled a propositional variable or simply a variable if there is no way of onfusion.Formulas of the propositional language de�ned over X are de�ned indutively as follows(roughly following the treatment from [20℄).De�nition 2.1.1 (Propositional Logi)Let a set X of propositional variables be given. The set of formulas over X is de�nedas:1. true and false are formulas,2. eah p ∈ X is a formula,3. if ϕ is a formula, then ¬ϕ is a formula and4. if ϕ1 and ϕ2 are formulas, then so are (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), (ϕ1 → ϕ2) and
(ϕ1 ↔ ϕ2).The set of all formulas over X will be denoted as F(X).The above de�nition of propositional formulas models the syntati level of propo-sitional reasoning. To model the semanti part, i.e. the logial onsequene relation,we will now de�ne a way to evaluate propositional formulas to values 1 (identi�ed astrue) and 0 (identi�ed as false). This will be done using a suitable onept of evaluation

2.1 Propositional Logi 9funtions.De�nition 2.1.2 (Evaluation)Let X be a set of propositional variables. An evaluation for X is a funtion v :

X∪{true, false} → Z2 (where Z2 denotes the Galois �eld of ardinality 2) satisfying
v(true) = 1 and v(false) = 0.The onept of an evaluation an now be extended to funtions v̂ : F(X)→ Z2 in theobvious (homomorphi) way. Let ϕ ∈ F(X) be any formula. Then1. if ϕ = p ∈ X, then v̂(p) = v(p),2. if ϕ = ¬ψ, then v̂(ϕ) = 1− v̂(ϕ),3. if ϕ = (ϕ1 ∧ ϕ2), then v̂(ϕ) = min {v̂(ϕ1), v̂(ϕ2)},4. if ϕ = (ϕ1 ∨ ϕ2), then v̂(ϕ) = max {v̂(ϕ1), v̂(ϕ2)},5. if ϕ = (ϕ1 → ϕ2), then v̂(ϕ) = max {v̂(¬ϕ1), v̂(ϕ2)} and6. if ϕ = (ϕ1 ↔ ϕ2), then v̂(ϕ) = min {v̂(ϕ1 → ϕ2), v̂(ϕ2 → ϕ1)}.Sine there is no way of onfusion we will from now on identify v̂ and v writing v(ϕ)for the result of v̂(ϕ) for any formula ϕ ∈ F(X). The set of all evaluations (or valuationsfrom now on) will be denoted as Val.For the sake of simpliity we will introdue two more onepts:1. Let ϕ1, . . . , ϕn be any �nite sequene of formulas from F(X). Then the formulas
∧n
i=1 ϕi and ∨n

i=1 ϕi are de�ned as
n∧

i=1

ϕi =

(

ϕn ∧
n−1∧

i=1

ϕi

) and
n∨

i=1

ϕi =

(

ϕn ∨
n−1∨

i=1

ϕi

)

.

10 Chapter 2. Preliminaries
2. We assume that the onnetives have the following binding priorities:a) ¬ has a higher binding priority than ∧,b) ∧ has a higher binding priority than ∨,) ∨ has a higher binding priority than → andd) → has a higher binding priority than ↔.Applying the binding priority rules allows the omission or brakets in many formulaswhih improves the readability. For example, the formula

(¬p1 ∨ (p2 ∧ p3))→ p4an be written as
¬p1 ∨ p2 ∧ p3 → p4Now let ϕ be any formula. A valuation v is alled a model of ϕ if and only if v(ϕ) = 1.The set of all models of ϕ will be denoted as MD(ϕ)1. Similarly for sets Φ of formulaswe de�ne a valuation v to be a model of Φ if v(ϕ) = 1 for every ϕ ∈ Φ. We then haveMD(Φ) =

⋂

ϕ∈Φ MD(ϕ).We will all pairs (ϕ1, ϕ2) ∈ F(X)2 (semantially) equivalent (written ϕ1 ≡ ϕ2) if andonly if v(ϕ1) = v(ϕ2) for every valuation v. Equivalently we ould de�ne semantialequivalene as follows:
ϕ1 ≡ ϕ2 if and only if {ϕ1} |= ϕ2 and {ϕ2} |= ϕ1if and only if ∅ |= ϕ1 ↔ ϕ21So MD(ϕ) = {v ∈ Val | v(ϕ) = 1}.

2.1 Propositional Logi 11where |= denotes the semantial onsequene relation whih will be de�ned below.Note that ≡ is an equivalene relation on F(X). Furthermore note that ϕ1 ≡ ϕ2 ifand only if MD(ϕ1) = MD(ϕ2).A formula ϕ ∈ F(X) is alled
• satis�able if MD(ϕ) 6= ∅,
• valid if MD(ϕ) = Val and
• unsatis�able if MD(ϕ) = ∅.Similar onepts an be de�ned for sets of formulas. A set Φ ⊆ F(X) is alled
• satis�able if MD(Φ) 6= ∅,
• valid if MD(Φ) = Val and
• unsatis�able if MD(Φ) = ∅.Satis�able sets of propositional formulas an be haraterized by Theorem 2.1.1 whihis ommonly known as the �niteness theorem.Theorem 2.1.1 (Finiteness Theorem)Let Φ ⊆ F(X) be a set of formulas. Then Φ is satis�able if and only if every �nite set

Ψ ⊆ Φ is satis�able.The onept of logial onsequene is ommonly modeled as follows: A formula ϕ is alogial onsequene of a set Φ ⊆ F(X) if every model of Φ is also a model of ϕ.De�nition 2.1.3 (Logial Consequene)Let Φ ⊆ F(X) be a set of formulas and let ϕ ∈ F(X) be a formula. Then ϕ is alogial onsequene of Φ (written as Φ |= ϕ) if and only if for every v ∈ Val suh as
v(Φ) ⊆ {1}2 it holds that v(ϕ) = 1.

12 Chapter 2. PreliminariesEquivalently one an de�ne Φ |= ϕ if and only if MD(Φ) ⊆ MD(ϕ). Moreover we ande�ne the following: Let Φ be as above and let Ψ ⊆ F(X) be any set of formulas. Then
Φ |= Ψ if and only if Φ |= ψ for every ψ ∈ Ψ. If Ψ is a �nite set, say Ψ = {ψ1, . . . , ψn},then Φ |= Ψ if and only if Φ |= ∧n

i=1 ψi.Equivalently one an use the following haraterization of unsatis�able sets of formulas.Theorem 2.1.2Let Φ ⊆ F(X) be a set of formulas. Then Φ is unsatis�able if and only if Φ |= false.The logial onsequene relation enjoys the following nie properties.Theorem 2.1.3Let Φ ⊆ F(X) be a set of formulas and let ϕ ∈ F(X) be a formula. Then1. Φ |= ϕ if and only if Φ ∪ {¬ϕ} |= false.2. If Φ |= false, then there is a �nite set Ψ ⊆ Φ suh that Ψ |= false.Part 2 of Theorem 2.1.3 is also known as the ompatness theorem. It is an easyorollary of Theorem 2.1.1.For �nite sets Φ ⊆ F(X) of propositional logi formulas and formulas ϕ ∈ F(X) itis deidable whether Φ |= ϕ holds or not. However, the related satis�ability problemis NP�omplete (see [38℄ and [71℄), that is one annot (or better should not) hopefor e�ient proedures whih are apable of deiding if a formula ϕ (or a set of Φformulas) is satis�able. Moreover the problem of deiding the logial onsequene relationis o−NP�omplete whih indiates that is in some sense even more di�ult to deidethan satis�ability.2.2. First Order LogiIn ontrast to propositional logi, �rst order logi or (�rst order) prediate logi allows amore preise formalization of (mathematial) relations. Using a more �exible language of

2.2 First Order Logi 13logi was motivated by the limitations arising from the usage of propositional logi. Forexample propositional logi only allows reasoning about propositions, i.e. things whihare either true or false. But in Mathematis the truth or falsity of a proposition oftendepends on the values of ertain variables ourring as inputs to funtions. For examplethe formula f(x) = 0 should be evaluable to true or false. But the truth�value of thisformula depends on
• the funtion whih is represented by the funtion�symbol f and
• the value whih is assigned to the variable x.So propositional logi is not an adequate formal system for modeling this formula. Earlystudies of �rst order logi were presented at the beginning of the 20th entury e.g. byFrege (see [69℄), Gentzen (see [75℄), Russell and Whitehead (see [170℄) and several others.At this point of time sound and omplete aluli have been developed. But pratialappliations arose muh later.As we have already pointed out formulas are not built from propositions alone butfrom a more general onept whih we will all atomi formulas or simply atoms fromnow on. Therefore we will have to re�ne the syntax of the logial language to be used ina suitable way.Reall that in the ase of propositional logi, the syntax (i.e. the formulas of a logiallanguage) only depends on the set X of propositional variables. A similar onept for�rst order logi is given by the onept of signatures.De�nition 2.2.1 (Signature)A signature is a tuple sig = (X , F, P, α) where1. X = {xi | i ∈ I for some set I ⊆ N of indies} is a ountable set of variable sym-bols,2. F and P are �nite sets of funtion� resp. prediate�symbols and

14 Chapter 2. Preliminaries3. α : F ∪ P → N is a funtion whih maps eah symbol to a natural number (itsarity) and is therefore alled the arity�funtion.If σ ∈ F ∪ P is a funtion� respetively prediate�symbol and α(σ) = n for some
n ≥ 0, we will say that σ has arity n. In the ase that n = 0 we will also say that σ is aonstant symbol.The simplest objets whih an be built from a signature are terms.De�nition 2.2.2 (Terms)Let sig = (X , F, P, α) be a signature. The set T (sig) (or simply T) of terms over sigis de�ned indutively as follows:1. eah x ∈ X is a term and2. if f ∈ F is a funtion�symbol, n = α(f) and t1, . . . , tn ∈ T are terms, then so is

f(t1, . . . , tn).Formulas are now de�ned to be either atomi ones or formulas omposed from simplerones.De�nition 2.2.3 (Atomi Formulas)Let sig = (X , F, P, α) be a signature. The set A(sig) (or simply A) of all atomiformulas (or simply atoms) over sig is de�ned indutively as follows:1. true and false are in A and2. if p ∈ P is a prediate symbol, n = α(p) and t1, . . . , tn ∈ T are terms, then
p(t1, . . . , tn) is in A.In ontrast to formulas of the propositional logi language, �rst order logi formulasare also apable to model terms like �for all x it holds that . . . � and �there is an x suh

2.2 First Order Logi 15that . . . �. This is ahieved by introduing two quanti�ers ∀ (the universal quanti�er)and ∃ (the existene quanti�er).De�nition 2.2.4 (First Order Formulas)Let sig = (X , F, P, α) be a signature. The set F(sig) (or simply F) of formulas oversig is de�ned indutively as follows:1. every ϕ ∈ A is a formula,2. if ϕ is a formula, then so is ¬ϕ,3. if ϕ1 and ϕ2 are formulas, then so are (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), (ϕ1 → ϕ2) and
(ϕ1 ↔ ϕ2) and4. if ϕ is a formula and x ∈ X is a variable symbol, then ∀xϕ and ∃xϕ are formulas.Formulas from the set

A∪ {¬ϕ | ϕ ∈ A}are alled literals. Sine the formulas of �rst order logi allow �ner reasoning aboutmathematial onepts, their interpretation also has to be more detailed. This inludesthe interpretation of the funtion symbols and the interpretation of the prediate sym-bols. So the onept of evaluation funtions as introdued for propositional logi is notadequate anymore. An interpretation is given as a tuple onsisting of a set of possiblevalues of the variables (the universe), two mappings assigning funtions to the funtionsymbols and prediates to the prediate symbols and a mapping assigning values to thevariable symbols.

16 Chapter 2. PreliminariesDe�nition 2.2.5 (Interpretation)Let sig = (X , F, P, α) be a signature. An interpretation (for sig�formulas) is a tuple
J = (UJ ,F,P, w) ,where1. UJ is a nonempty set of objets (the universe of J),2. F is a funtion whih maps eah f ∈ F to a funtion fJ : U

α(f)
J → UJ ,3. P is a funtion whih maps eah p ∈ F to a prediate pJ : U
α(p)
J → {0, 1} and4. w : X → UJ maps eah variable symbol x to an element w(x) ∈ UJ .Now let J be an interpretation. The evaluation of terms is straightforward dependingon the struture of the term to be evaluated:1. J (x) =: xJ = w(x) for every x ∈ X and2. J (f(t1, . . . , tn)) = fJ

(
tJ1 , . . . , t

J
n

) for eah f(t1, . . . , tn) ∈ T .Having de�ned how to evaluate terms, every formula an be evaluated in a straight-forward way:1. J (p(t1, . . . , tn)) = pJ
(
tJ1 , . . . , t

J
n

)
∈ {0, 1},2. J (¬ϕ) = 1− J (ϕ),3. J (ϕ1 ∧ ϕ2) = min {J (ϕ1),J (ϕ2)},4. J (ϕ1 ∨ ϕ2) = max {J (ϕ1),J (ϕ2)},5. J (ϕ1 → ϕ2) = max {J (¬ϕ1),J (ϕ2)},

2.2 First Order Logi 176. J (ϕ1 ↔ ϕ2) = min {J (ϕ1 → ϕ2),J (ϕ2 → ϕ1)},7. J (∀xϕ) = min
{
J tx(ϕ) | t ∈ UJ

} and8. J (∃xϕ) = max
{
J tx(ϕ) | t ∈ UJ

}.where J tx is de�ned as J tx = (UJ ,F,P, w̃) with w̃ : X → UJ being de�ned as
w̃(x̄) =

w(x̄) ⇔ x̄ 6= x

t ⇔ x̄ = x

.We will write J |= ϕ if J (ϕ) = 1. Similarly we will write J |= Φ (for a set Φ ⊆ F) ifand only if J |= ϕ for every ϕ ∈ Φ.As in the ase of propositional logi an interpretation J is alled a model of a formula
ϕ (respetively a model of a set Φ of formulas) if J |= ϕ (respetively J |= Φ). The setof all models of ϕ is de�ned to beMD(ϕ) = {J | J |= ϕ}and the set of all models for Φ isMD(Φ) =

⋂

ϕ∈Φ

MD(ϕ).We will adopt the following terms from propositional logi: A formula ϕ ∈ F is alled
• satis�able if MD(ϕ) 6= ∅,
• valid if J |= ϕ for every interpretation J and
• unsatis�able if MD(ϕ) = ∅.Similar onepts an be de�ned for sets of formulas. A set Φ ⊆ F is alled

18 Chapter 2. Preliminaries
• satis�able if MD(Φ) 6= ∅,
• valid if every ϕ ∈ Φ is valid and
• unsatis�able if MD(Φ) = ∅.As in the ase of propositional logi we de�ne a relation |= by de�ning:De�nition 2.2.6 (Logial Consequene)Let Φ ⊆ F be a set of formulas and let ϕ ∈ F be a formula. Then ϕ is a logialonsequene of Φ (Φ |= ϕ) if and only if for every interpretation J suh as J (Φ) = 1it holds that J (ϕ) = 1.Again we an express |= by Φ |= ϕ if and only if MD(Φ) ⊆ MD(ϕ).The properties of |= are still the same as in propositional logi.Theorem 2.2.1Let Φ ⊆ F be a set of formulas. Then Φ is unsatis�able if and only if Φ |= false.Theorem 2.2.2Let Φ ⊆ F be a set of formulas. Then Φ is satis�able if and only if every �nite set Φ′ ⊆ Φis satis�able.Theorem 2.2.3Let Φ ⊆ F be a set of formulas and let ϕ ∈ F be a formula. Then1. Φ |= ϕ if and only if Φ ∪ {¬ϕ} |= false.2. If Φ |= false, then there is a �nite set Ψ ⊆ Φ suh that Ψ |= false.In ontrast to propositional logi, where testing for satis�ability is deidable (but NP�omplete), testing for satis�ability is undeidable in �rst order logi. This is due to thefollowing theorem proved by Churh in 1936 (see [32℄).

2.3 Temporal Logi 19Theorem 2.2.4Let Φ ⊆ F be a set of formulas. Then the following problem is undeidable:Input: ΦOutput:

1 ⇔ MD(Φ) 6= ∅

0 ⇔ else2.3. Temporal LogiIn ontrast to the logis whih we have introdued so far, temporal logi is onernedwith reasoning about time�dependent properties. An example might be the operator Xwhih has the following intuitive interpretation:If ϕ is true at the next point of time, then Xϕ is true at the urrent point of time.Consequently X will be referred to as Next�State�Operator. Here we an already notiethat in our temporal logis time will be of disrete nature. Consequently any sequeneof points of time an only ontain ountably many suh points.Again we wish to distinguish temporal logis aording to the primitive objets underonsideration. So we will have propositional temporal logi and �rst order temporal logias alternatives while the former is properly ontained in the latter. Another possibleriterion of di�erentiation is between linear time (see [110℄) and branhing time (see[58℄, [59℄) logis. Linear time logis allow reasoning about one possible ontinuationof the urrent point of time while branhing time logis are equipped with operatorsquantifying over sequenes of ontinuations, so alled paths (and are therefore alledpath quanti�ers). We will only onsider linear time temporal logis sine they are wellsuited for our purposes. Perhaps the most prominent of these linear time temporal logisis Ltl whih has been subjet of both theoretial researh and pratial appliations.Sine temporal logis allow reasoning about time�dependent aspets of objets, theonept of interpretations will have to be extended to sequenes of interpretations. This

20 Chapter 2. Preliminarieswill be the subjet of onsideration for the rest of this hapter.2.3.1. Propositional Temporal LogiAgain assume that X is a given set of propositional variables as de�ned in setion 2.1,that is X = {pi | i ∈ N}. The language Ltl of linear time temporal logi formulas isbuilt from the language F(X) by introduing several temporal operators.De�nition 2.3.1 (Propositional Linear Time Temporal Logi, e.g. [110℄)The language Ltl of linear time temporal logi formulas is indutively de�ned as1. every ϕ ∈ F(X) is in Ltl,2. if ϕ is in Ltl, then so are Xϕ, Gϕ and Fϕ and3. if ϕ1, ϕ2 are in Ltl, then so are ϕ1Uϕ2 and ϕ1Rϕ2The temporal operators X, G, F, U and R will have the following intuitive interpretation:1. Xϕ: if ϕ is true at the next point of time, then Xϕ is true at the atual point oftime (Next�State�Operator).2. Gϕ: ϕ is true at every point of time (Always�Operator).3. Fϕ: there is a point of time suh that ϕ is true at this point (Eventually�Operator).4. ϕ1Uϕ2: ϕ1 holds until ϕ2 is true (Until�Operator).5. ϕ1Rϕ2: ϕ1 has to be true before ϕ2 is true (Release�Operator).Formally Ltl�formulas are evaluated in sequenes of states eah of whih is a singleevaluation of the propositional symbols of the language whih is de�ned by the set X.Sequenes of states are assumed to be
• in�nite and

2.3 Temporal Logi 21
• ountable.So eah suh sequene is isomorphi to the set N of natural numbers and the timepoints in these sequenes are disrete. Consequently the set of all sequenes of states isunountable.De�nition 2.3.2 (Temporal State)A temporal state is a set s ⊆ X.We an interpret a temporal state s as an evaluation vs : X → Z2 de�ned by

vs(x) =

1 ⇔ x ∈ s

0 ⇔ elseand extend this evaluation from X to F(X) in the obvious way.So far we are not able to assign a meaning to the temporal operators G, F, X, U andP. Therefore we extend the onept of an evaluation (as introdued in setion 2.1) totemporal interpretations de�ned formally as follows.De�nition 2.3.3 (Temporal Interpretation)A temporal interpretation (or interpretation for short) is an in�nite sequene J =

(s0, s1, . . . , si, . . .) of temporal states.For j ∈ N the notation J j will denote the temporal interpretation starting at timepoint j, i.e. J j = (sj, sj+1, . . . , sk, . . .).Now let ϕ ∈ Ltl be a formula and let J = (s0, s1, . . . , si, . . .) be a temporal interpre-tation. We extend the relation |= as follows:1. if ϕ ∈ X, then J |= ϕ if and only if ϕ ∈ s0,

22 Chapter 2. Preliminaries2. if ϕ = ¬ψ, then J |= ϕ if and only if J 6|= ψ,3. if ϕ = ϕ1 ∧ ϕ2, then J |= ϕ if and only if J |= ϕ1 and J |= ϕ2,4. if ϕ = ϕ1 ∨ ϕ2, then J |= ϕ if and only if J |= ϕ1 or J |= ϕ2,5. if ϕ = ϕ1 → ϕ2, then J |= ϕ if and only if J 6|= ϕ1 or J |= ϕ2,6. if ϕ = Xψ, then J |= ϕ if and only if J 1 |= ψ,7. if ϕ = Gψ, then J |= ϕ if and only for every i ≥ 0 it holds that J i |= ψ,8. if ϕ = Fψ, then J |= ϕ if and only if there is i ≥ 0 suh that J i |= ψ,9. if ϕ = ϕ1Uϕ2, then J |= ϕ if and only if there is i ≥ 0 suh that J i |= ϕ2 and forevery j suh that 0 ≤ j < i it holds that J j |= ϕ1 and10. if ϕ = ϕ1Rϕ2, then J |= ϕ if and only if for every i ≥ 0 suh that J i 6|= ϕ2 thereis j suh that 0 ≤ j < i and J j |= ϕ1.As in the ase of propositional and �rst order logi, an interpretation J with J |= ϕfor some Ltl�formula ϕ is alled a model of ϕ. The set of all models of ϕ is again denotedas MD(ϕ). As before we de�ne sets Φ of formulas to be satis�ed by an interpretation Jif every formula in Φ is satis�ed by J . Formally: J |= Φ if and only if I |= ϕ for eah
ϕ ∈ Φ. The notation MD is extended to sets of Ltl�formulas as before:MD(Φ) =

⋂

ϕ∈Φ

MD(ϕ).As before we will all a formula ϕ (respetively a set Φ of formulas)
• satis�able if MD(ϕ) 6= ∅ (respetively MD(Φ) 6= ∅),
• valid if J |= ϕ for eah J (respetively if every ϕ ∈ Φ is valid) and
• unsatis�able if MD(ϕ) = ∅ (respetively MD(Φ) = ∅).

2.3 Temporal Logi 23As one might already expet, there is also an extension of the logial onsequene relation
|= known from propositional logi to Ltl. Again we have

Φ |= ϕ if and only if MD(Φ) ⊆ MD(ϕ).We will also write ϕ |= ψ if the set Φ only onsists of the single formula ϕ, that is
ϕ |= ψ denotes {ϕ} |= ψ. The properties of |= arry over from propositional logi to Ltl.Furthermore we have the following lemma.Lemma 2.3.1Let Φ be a set of Ltl�formulas and let ϕ be an Ltl�formula.1. Φ is unsatis�able if and only if Φ |= false.2. If Φ |= ϕ, then there is a �nite subset Ψ ⊆ Φ suh that Ψ |= ϕ.In partiular, testing for unsatis�ability an be aomplished by applying Lemma 2.3.1.Corollary 2.3.1Let Φ be a set of Ltl�formulas. If Φ |= false, then there is some �nite subset Φ0 ⊆ Φsuh that Φ0 |= false.The relation ≡ is again extended in the obvious way: for every pair ϕ1, ϕ2 of Ltl�formulas we have ϕ1 ≡ ϕ2 if and only if ϕ1 |= ϕ2 and ϕ2 |= ϕ1 or equivalently if and onlyif MD(ϕ1) = MD(ϕ2).2.3.2. First Order Temporal LogiThis last setion of this hapter will deal with the extension of the propositional temporallogi Ltl introdued in hapter 2.3.1 to the �eld of �rst order logi. The resulting logiwill onsequently be denoted as FoLtl (standing for F irst Order Ltl).Assume that a signature sig = (X , F, P, α) as de�ned in hapter 2.2 is given. Thereforethe set T = T (sig) is de�ned.

24 Chapter 2. PreliminariesWe will introdue the set of FoLtl�formulas stepwise.De�nition 2.3.4 (Temporal Atoms)The set of all temporal atoms over sig (denoted as At(sig)) is de�ned as the smallestset of objets losed under the following rules:1. if ϕ ∈ A(sig) is a �rst order atomi formula, then ϕ ∈ At(sig),2. if ϕ is a temporal atom from At(sig), then Xϕ, Fϕ and Gϕ are in At(sig) and3. if ϕ1 and ϕ2 are in At(sig), then so are ϕ1Uϕ2 and ϕ1Pϕ2.The de�nition of temporal literals is very similar to the de�nition of temporal atoms.De�nition 2.3.5 (Temporal Literals)The set of all temporal literals over sig (denoted as Lt(sig)) is de�ned as the smallestset of objets losed under the following rules:1. if ϕ ∈ At(sig) is a temporal atomi formula, then ϕ ∈ Lt(sig),2. if ϕ is a temporal literal from Lt(sig), then Xϕ, Fϕ and Gϕ are in Lt(sig),3. if ϕ ∈ Lt(sig) is a temporal literal, then so is ¬ϕ and4. if ϕ1 and ϕ2 are in Lt(sig), then so are ϕ1Uϕ2 and ϕ1Pϕ2.Formulas from FoLtl are now de�ned as in the ase of a �rst order logi language.De�nition 2.3.6 (First Order Linear Time Temporal Logi, e.g. [3℄)The set of FoLtl�formulas is the smallest set of objets losed under the followingrules:1. eah ϕ ∈ Lt(sig) is a formula in FoLtl,

2.3 Temporal Logi 252. if ϕ1 and ϕ2 are formulas from FoLtl, then so are (ϕ1∧ϕ2), (ϕ1∨ϕ2), (ϕ1 → ϕ2)and (ϕ1 ↔ ϕ2),3. if ϕ is a formula from FoLtl, then so are Xϕ, Gϕ and Fϕ,4. if ϕ1 and ϕ2 are formulas from FoLtl, then so are ϕ1Uϕ2 and ϕ1Pϕ2 and5. if ϕ is a formula from FoLtl and x ∈ X , then ∀xϕ and ∃xϕ are formulas fromFoLtl.The extension of the onnetives ∧ and ∨ is extended to inlude arbitrary many for-mulas as desribed for �rst order logi formulas on page 9. We will also make use of thebinding priority for the onnetives ¬, ∧, ∨, → and → omitting brakets whenever thisis possible.In ontrast to the propositional temporal logi Ltl one an distinguish between twokinds of symbols: rigid symbols and �exible symbols. Rigid symbols are symbols whihare required to be interpreted to the same operation regardless of the point of timeunder onsideration while �exible symbols may be interpreted as di�erent operations atdi�erent points of time. We assume that eah symbol is either �exible or rigid.The semantis of FoLtl is desribed by a suitable extension of the onept of temporalinterpretations as introdued for Ltl in hapter 2.3.1. We will follow notations from [3℄whih present an adaption of the so alled possible worlds semantis whih had beenoriginally developed by Hintikka (see [81℄) and Kripke (see [97℄). An interpretation isgiven as a tuple
J = (UJ , S, s0, δ1, δ2, w,I) ,where

• UJ is a nonempty set, alled the universe of J ,
• S is a set of states (also alled possible worlds) whih ontains the distinguished

26 Chapter 2. Preliminarieselement s0, the initial state (or atual world),
• δ1, δ2 ⊆ S × S are aessibility relations,
• w : X → UJ is an evaluation of the variable symbols and
• I is a �rst order interpretation for the symbols of sig whih maps eah symbol
σ ∈ F ∪ P in eah state s to an operation I(s, σ) : U

α(σ)
J → UJ (if σ ∈ F) or to aprediate I(s, σ) : U

α(σ)
J → {0, 1} (if σ ∈ P). I is assumed to have the followingproperties:� if σ is a rigid symbol, then I(s1, σ) = I(s2, σ) for every s1, s2 ∈ S and� if σ is a �exible symbol, then there are s1, s2 ∈ S suh that I(s1, σ) 6= I(s2, σ).The evaluation of terms in suh an interpretation is aomplished as expeted: let

t ∈ T (sig) be given.1. if t = x ∈ X , then J (x) = w(x) and2. if t = f(t1, . . . , tn) for some f ∈ F with α(f) = n and t1, . . . , tn ∈ T (sig), then
J (t) = I(s0, f) (J (t1), . . . ,J (tn)) .The interpretation of formulas is now de�ned similarly to the interpretation of formulasin �rst order logi.

• J (true) := 1,
• J (false) := 0 and
• if ϕ = p(t1, . . . , tn) ∈ A(sig) for p ∈ P with α(p) = n and t1, . . . , tn ∈ T (sig), then

J (ϕ) = J (p(t1, . . . , tn)) := I(s0, p)(J (t1), . . . ,J (tn)).

2.3 Temporal Logi 27For the onnetives ∧, ∨,→ and↔ whih we will all �rst order onnetives from nowon and the quanti�ers ∀ and ∃ the semantis is de�ned as usual. Let ϕ,ϕ1 and ϕ2 beFoLtl�formulas and let x ∈ X be a variable symbol.
• J (¬ϕ) := 1− J (ϕ),
• J (ϕ1 ∧ ϕ2) := min {J (ϕ1),J (ϕ2)},
• J (ϕ1 ∨ ϕ2) := max {J (ϕ1),J (ϕ2)},
• J (ϕ1 → ϕ2) := max {J (¬ϕ1),J (ϕ2)},
• J (ϕ1 ↔ ϕ2) := min {J (ϕ1 → ϕ2),J (ϕ2 → ϕ1)},
• J (∀xϕ) := min

{
J tx(ϕ) | t ∈ UJ

} and
• J (∃xϕ) := max

{
J tx(ϕ) | t ∈ UJ

}.where J tx emerges from J in a similar way as in �rst order logi (see page 17).What remains to be de�ned is the semantis of the temporal operators. This is donevia the reahability relations δ1 and δ2 whih model the next state�relation (δ1) and itstransitive losure (δ2). For modeling the semantis we will need another onept. Let
s ∈ S be any state. The interpretation J [s] emerges from J by setting its initial state(or its atual world whih gives a better intuition in this ase) from s0 to s. Now let
ϕ,ϕ1 and ϕ2 be given.
• J (Xϕ) := 1 if and only if there is s1 ∈ S suh that s0δ1s1 and J [s1](ϕ) = 1,
• J (Fϕ) := 1 if and only if there is s1 ∈ S suh that s0δ2s1 and J [s1](ϕ) = 1,
• J (Gϕ) := 1 if and only if J [s1](ϕ) = 1 for every s1 ∈ S suh that s0δ2s1,
• J (ϕ1Uϕ2) = 1 if and only if for every s1 ∈ S suh that s0δ2s1 it holds that
J [s1](ϕ1) = 1 or there is s2 ∈ S suh that s0δ2s2, s2δ2s1 and J [s2](ϕ2) = 1 and

28 Chapter 2. Preliminaries
• J (ϕ1Pϕ2) = 1 if and only if there is s1 ∈ S suh that s0δ2s1 and J [s1](ϕ1) = 1and for eah s2 ∈ S suh that s0δ2s2 and s2δ2s1 it holds that J [s2](¬ϕ2) = 1.As usual we will write J |= ϕ if J (ϕ) = 1 and all J a model . The set of all modelsof ϕ is again denoted as MD(ϕ). For sets Φ of formulas we have the obvious extension:MD(Φ) =

⋂

ϕ∈Φ

MD(ϕ).The notations of satis�ability, validity and unsatis�ability are extended in a straightfor-ward way. To onlude the de�nition of the semantis of FoLtl we extend the logialonsequene relation |= to FoLtl�formulas and sets of FoLtl�formulas by adjustingthe notations from �rst order logi given on page 18.Now that both propositional and �rst order linear time temporal logi is de�ned we areready to introdue the remaining onepts whih will be the subjet of the theory to bedeveloped in this thesis, namely Logi Programming and Indutive Logi Programming.

3. Logi Programming
Contents3.1. Prediate Logi as a Programming Language 293.2. The Conept of SLD�Resolution 333.3. Soundness and Completeness 40This hapter brie�y reviews the basi onepts of Logi Programming as introdued byKowalski (see [94℄ and [93℄). Logi Programming is a form of Delarative Programmingwhih is a programming onept based on the philosophy that the programmer shouldnot be onerned with the way a solution is searhed for by a programming system but(s)he should be allowed to onentrate on the desription of the properties of the solu-tions. Various realizations of delarative languages, mostly funtional languages suh asLISP or HASKELL, have been proposed. Logi Programming is another form of delara-tive programming whih is onerned with desribing relationships between objets withertain properties.3.1. Prediate Logi as a Programming LanguageThe basi objets of a logi programming language are formulas of a speial type, soalled lauses.

30 Chapter 3. Logi ProgrammingDe�nition 3.1.1 (Clause, Robinson [140℄)A lause C is a disjuntion of literals li:
C =

n∨

i=1

li.Assume for now that a lause C is given. C an also be seen as a set of literals
C = {l1, . . . , ln}. Sine every literal is either an atom from A or the negation of an atom,we an partition C into two sets Pos(C) and Neg(C) ontaining the positive literals of
C (i.e. the atoms1) and the negative ones (i.e. the negations of atoms):

C = {li | i ∈ {1, . . . , n}, li ∈ A}
︸ ︷︷ ︸

=:Pos(C)

∪{li | i ∈ {1, . . . , n},¬li ∈ A}
︸ ︷︷ ︸

=:Neg(C)

.Now we an identify several lasses of lauses: C is alled a
• hornlause if and only if |Pos(C)| ≤ 1,
• de�nite hornlause if and only if |Pos(C)| = 1 and
• unit lause (or fat) if and only if |Pos(C)| = 1 and Neg(C) = ∅.A goal (or a query) G is a �nite sequene of atoms whih are onsidered to be on-juntively onneted: G = G1 ∧ · · · ∧ Gm. The atoms Gi are alled the subgoals of

G.The distinguished lause whih neither ontains positive nor negative literals, andwhih is therefore represented as the set {}, is alled the empty lause whih we willdenote as �2. The empty lause is onsidered equivalent to any unsatis�able �rst orderformula.1Here we identify ¬¬ϕ and ϕ.2Note that � is also a goal, namely the goal whih does not ontain any subgoals. We will thereforealso refer to � as the empty goal.

3.1 Prediate Logi as a Programming Language 31The philosophy of Logi Programming is the following (see e.g. [94℄ and [164℄):
• Statements whih are known to be orret are modeled by unit lauses (fats).
• Relations between objets are modeled by de�nite horn lauses (whih are inter-preted as rules).
• Program alls are modeled by goals.We will assume that every rule represents a hornlause whih is impliitly universallylosed, that is every variable symbol whih ours in a rule is assumed to be inside thesope of a universal quanti�er. Formally this means that if

C = ϕ1 ∧ · · · ∧ ϕn → ψis a rule whih ontains the variables {x1, . . . , xm} then we merely work with the formula
∀x1 . . . ∀xm (ϕ1 ∧ · · · ∧ ϕn → ψ) .Example 3.1.1Let sig be a signature whih ontains a relation symbol is_even with α(is_even) = 1and funtion symbols null and s with α(null) = 0 and α(s) = 1. Then the onept ofeven numbers is modeled by the following set of de�nite horn lauses:

C1 = is_even(null) and
C2 = is_even(x)→ is_even(s(s(x))).Programs in a logi programming language are now given as sets of fats and rules.De�nition 3.1.2 (Logi Program, Lloyd [105℄)Let sig = (X , F, P, α) be a signature. A (logi) program over sig is a �nite set ofde�nite hornlauses over sig.

32 Chapter 3. Logi ProgrammingExample 3.1.2Let P be the set = {C1, C2} from Example 3.1.1. Then P is a logi program over thesignature given there.Due to the speial struture of de�nite hornlauses and goals one an introdue spe-ial notations for them. Assume that C is a de�nite horn lause and Pos(C) = {A},Neg(C) = {¬B1, . . . ,¬Bn} for A,B1, . . . , Bn ∈ A. Then we have
C = {A,¬B1, . . . ,¬Bn}

= A ∨ ¬B1 ∨ · · · ∨ ¬Bn

≡ A ∨ ¬ (B1 ∧ · · · ∧Bn)

≡ (B1 ∧ · · · ∧Bn)→ A

=: A← B1, . . . , Bn.This an be seen as a proedure delaration for a proedure labeled A as desribed byKowalski in [94℄. The interpretation is then given as follows:To solve A, solve B1,B2,. . . ,Bn!Now assume that G is a goal onsisting of the subgoals Gi, that is G = G1 ∧ · · · ∧Gm.By analogy we have
¬G = ¬ (G1 ∧ · · · ∧Gm)

≡ ¬G1 ∨ · · · ∨ ¬Gm

=: ← G1, . . . , Gm.Using the proedural interpretation from above we an see a goal as the statementSolve G1,G2,. . . ,Gm!Now if one wants to run a logi program a goal G is added to the program and a

3.2 The Conept of SLD�Resolution 33theorem proving proedure tests if the goal is a logial onsequene of the program underonsideration. The task how this is ahieved is the subjet of the next setion of thishapter.3.2. The Conept of SLD�ResolutionThis setion will be onerned with a brief explanation of the onept of SLD�resolution(originally introdued in [95℄) whih is a theorem proving proedure designed to handle(de�nite) hornlauses. It is a re�nement of the lassial Resolution proedure introduedby Robinson (see [140℄). Sine there are many exellent texts on theorem proving ingeneral (and espeially on the topi of logi programming) the disussion will be rathershort. We refer the interested reader to the literature (see [31℄, [8℄, [7℄, [105℄ and [126℄).The key result for understanding SLD�Resolution is given by the following lemmawhih is a speial ase of Proposition 3.1 from [105℄.Lemma 3.2.1 (Lloyd [105℄)Let P be a logi program and let G be a goal. Then P |= G if and only if P ∪{← G} |= �.This lemma an also be seen as an easy onsequene of Theorem 2.2.3. So if G1 ∧

· · · ∧ Gm is a logial onsequene of P one only has to dedue the empty lause from
P ∪{¬(G1∧· · ·∧Gm)}. This is ahieved by appliation of the priniple of SLD�resolutionwhih we will de�ne now.Several other approahes for implementing logial programming languages have beenproposed. In priniple it is possible to take any omplete proof proedure for �rst orderlogi in order to ahieve this goal. But due to implementation di�ulties and performaneproblems one onentrates on refutation�omplete aluli. Popular approahes are basedon tableaux tehniques (see e.g. [67℄ and [4℄ for aluli for de�nite logi programs and [19℄and [130℄ for aluli for disjuntive logi programming languages) and the Model Elimi-nation Tehnique as desribed by Loveland in [107℄ and [108℄ (see e.g. [70℄). However, the

34 Chapter 3. Logi ProgrammingSLD�resolution approah has been the �rst method to be implemented in Prolog sys-tems and is therefore still a dominant proedure in logi programming systems. AlthoughSLD�Resolution is sound and refutation�omplete many implementations omit ertainoperations whih are neessary in order to guarantee these properties. In partiular, theour�hek whih is neessary during the uni�ation proess is a very expensive opera-tion and therefore many implementations skip this hek. Although there are programswhih allow skipping this hek (see [9℄) omitting the hek results in losing the propertyof soundness (see e.g. [112℄). Another expensive operation is the breadth��rst searhstrategy whih is neessary in order to guarantee refutation�ompleteness. Most Pro-log systems simply arry out one inferene step (namely the �rst one whih is possible)without trying other steps whih might be appliable. This might result in non�haltingderivations whih have trivial solutions.In order to reason about instantiations of formulas one has to de�ne a suitable on-ept of substitution. Intuitively a substitution replaes variables by terms. Formally asubstitution is de�ned as a ertain type of homomorphism on terms and formulas.De�nition 3.2.1 (Substitution, Robinson [140℄)A substitution is a mapping σ : X → T suh that {x ∈ X | σ(x) 6= x} is �nite.Sine the set of variables whih are hanged by the substitution σ is required to be�nite, we an write down substitutions by stating whih variables are replaed by whihterms and omitting the variables whih remain unhanged. The set of all these variableswill be alled the domain of the substitution σ and will be denoted as Dom(σ). Assumethat Dom(σ) = {x | σ(x) 6= x} = {xi1 , . . . , xin} and that σ (xij) = tj ∈ T for j =

1, . . . , n. Then σ will be identi�ed by the set of bindings
{
xi1
t1
, . . . ,

xin
tn

}

=

{
xi1

σ (xi1)
, . . . ,

xin
σ (xin)

}

3.2 The Conept of SLD�Resolution 35where eah of the n bindings xij

tj
denotes the substitution σj with

σj(x) =

tj ⇔ x = xij

x ⇔ elseSubstitutions are extended to terms and formulas by de�ning homomorphi extensions:
σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)),

σ(p(t1, . . . , tn)) = p(σ(t1), . . . , σ(tn)),

σ(¬ϕ) = ¬σ(ϕ),

σ(ϕ1 ∧ ϕ2) = σ(ϕ1) ∧ σ(ϕ2),

σ(ϕ1 ∨ ϕ2) = σ(ϕ1) ∨ σ(ϕ2),

σ(ϕ1 → ϕ2) = σ(ϕ1)→ σ(ϕ2),

σ(ϕ1 ↔ ϕ2) = σ(ϕ1)↔ σ(ϕ2),

σ(∀xϕ) = ∀xσ(ϕ) and
σ(∃xϕ) = ∃xσ(ϕ).Substitutions an be omposed in order to build omplex substitutions from simplerones. This will be interesting for us in the following part of this setion when we willde�ne the result omputed by a logi program P given a goal G as input.De�nition 3.2.2 (Composition of Substitutions, Robinson [140℄)Let σ1 =

{

x
(1)
1

t
(1)
1

, . . . , x
(1)
n

t
(1)
n

} and σ2 =

{

x
(2)
1

t
(2)
1

, . . . , x
(2)
m

t
(2)
m

} be substitutions. Then thesubstitution σ1 ◦ σ2 (the omposition of σ1 and σ2) is de�ned as follows:
σ1 ◦ σ2 =

x
(1)
1

σ2

(

t
(1)
1

) , . . . ,
x

(1)
n

σ2

(

t
(1)
n

) ,
x

(2)
1

t
(2)
1

, . . . ,
x

(2)
m

t
(2)
m

36 Chapter 3. Logi Programming
\

x
(1)
i

σ2

(

t
(1)
i

) | x(1)
i = σ2

(

t
(1)
i

)

∪
{

x
(2)
j

t
(2)
j

| x(2)
j ∈

{

x
(1)
1 , . . . , x(1)

n

}
}

That is in order to ompute the omposition of σ1 and σ2 one �rst applies σ2 to theterms whih σ1 replaes for the variables in its domain, then adds the bindings of σ2(in order to add the elements whih are not yet in the domain of σ1) and then reduesthe resulting set by removing idential bindings and suh bindings whih won't have anye�et.We will identify a distinguished element ε as the substitution whih does not ontainany binding and so will have no e�et on the objets to whih it is applied. This elementis given as ε = ∅ and is denoted as the empty substitution. The omposition operation ◦enjoys the following properties (Proposition 4.1 from [105℄):Lemma 3.2.2 (Properties of Substitutions, Lloyd [105℄)Let σ1, σ2 and σ3 be substitutions, let t be a term and let ϕ be a formula. Then1. σ1 ◦ ε = ε ◦ σ1 = σ1,2. σ2(σ1(t)) = (σ1 ◦ σ2)(t),3. σ2(σ1(ϕ)) = (σ1 ◦ σ2)(ϕ) and4. (σ1 ◦ σ2) ◦ σ3 = σ1 ◦ (σ2 ◦ σ3).Let ϕ1 and ϕ2 be arbitrary formulas from F . We say that ϕ1 and ϕ2 are variants ifthere are substitutions σ1 and σ2 suh that σ1(ϕ1) = ϕ2 and σ2(ϕ2) = σ1.Now let t1, t2 be terms and let ϕ1, ϕ2 be literals. Substitutions σ whih yield synta-tially idential objets, i.e. substitutions σ suh that σ(t1) = σ(t2) or σ(ϕ1) = σ(ϕ2)play an important role.

3.2 The Conept of SLD�Resolution 37De�nition 3.2.3 (Uni�ation)Let t1 and t2 be terms, let ϕ1 and ϕ2 be literals. t1 and t2 (respetively ϕ1 and ϕ2)are said to be uni�able if and only if there is a substitution σ suh that σ(t1) = σ(t2)(respetively σ(ϕ1) = σ(ϕ2)). σ is alled a uni�er.Some uni�ers an be haraterized as uni�ers whih only hange the objets to beuni�ed as muh as neessary.De�nition 3.2.4 (Most General Uni�er)Let t1 and t2 be terms and let ϕ1 and ϕ2 be literals. A uni�er σ for t1 and t2(respetively for ϕ1 and ϕ2) is alled a most general uni�er (or mgu) if and only iffor every uni�er σ1 for t1 and t2 (respetively ϕ1 and ϕ2) there is a substitution σ2suh that σ = σ1 ◦ σ2. We will denote this by writing σ = mgu(t1, t2) (respetively
σ = mgu(ϕ1, ϕ2)).Having de�ned whih properties a most general uni�er satis�es it is neessary to ensurethat in the ase of uni�able objets there is indeed an algorithm whih an ompute suha substitution. The following lemma from [140℄ ensures this.Lemma 3.2.3 (Uni�ation Theorem, Robinson [140℄)Let t1 and t2 be terms and let ϕ1 and ϕ2 be literals. If t1 and t2 (respetively ϕ1 and

ϕ2) are uni�able, then there exists a mgu of t1 and t2 (respetively ϕ1 and ϕ2) whih isuniquely determined up to renaming of variables and whih an be e�etively omputed.Several algorithms have been proposed for omputing most general uni�ers. The �rstand also most simple one was presented by Robinson in 1965 (see [140℄) whih has thedrawbak that its worst ase runtime is exponential in the length of the objets to beidenti�ed. It has also been shown that the uni�ation problem is solvable in lineartime by Paterson and Wegman whih presented an algorithm whih operates on direted

38 Chapter 3. Logi Programmingayli graphs representing the objets (see [129℄). However, due to its simpliity anotheralgorithm introdued by Martelli and Montanari in 1982 (see [113℄) is used very oftenin Logi Programming systems. We will re�ne this algorithm in order to be apable ofhandling temporal objets in a later hapter.Now let P = {P1, . . . , Pn} be a logi program. Furthermore assume that G = G1 ∧

· · · ∧ Gm is a goal. Due to the speial struture of de�nite horn lauses we an assumethat eah Pi an be written as
Pi = Ai ← B

(i)
1 , . . . , B(i)

nifor some ni and Ai, B(i)
1 , . . . , B

(i)
ni ∈ A. Assume that i and j are suh that Gj and Aiare uni�able with σ = mgu(Ai, Gj). The resolvent (or SLD�resolvent) of G and Pi withrespet to σ is the goal

σ
(

G1 ∧ · · · ∧Gj−1 ∧B(i)
1 ∧ . . . , B(i)

ni
∧Gj+1 ∧ · · · ∧Gm

)

= σ (G1) ∧ · · · ∧ σ (Gj−1) ∧ σ
(

B
(i)
1

)

∧ · · · ∧ σ
(

B(i)
ni

)

∧ σ (Gj+1) ∧ · · · ∧ σ (Gm)

=:
(

G1 ∧ · · · ∧Gj−1 ∧B(i)
1 ∧ · · · ∧B(1)

ni
∧Gj+1 ∧ · · · ∧Gm

)

σDe�nition 3.2.5 (SLD�derivation�step, Kowalski and Kuehner [95℄)Let P be a logi program and let G = G1∧· · ·∧Gm be a goal. An SLD�derivation�stepis a sequene of ations arried out as follows:1. A subgoal Gi is hosen.2. A lause A ← B1, . . . , Bn from P is hosen suh that A and Gi are uni�able.Let σ be a most general uni�er for A and Gi.3. The SLD�resolvent G′ of G and A ← B1, . . . , Bm with respet to σ is on-struted.

3.2 The Conept of SLD�Resolution 39Given P we will write G ⊢Res G′ if there is an SLD�derivation�step yielding G′ from
G. The relation ⊢ is then de�ned as the re�exive�transitive losure of ⊢Res:

G
0
⊢ G′ :⇔ G = G′,

G
1
⊢ G′ :⇔ G ⊢Res G′ and

G
n+1
⊢ G′ :⇔ there is Ḡ suh that G n

⊢ Ḡ and Ḡ 1
⊢ G′So we an de�ne G ⊢ G′ if there is some n ≥ 0 suh that G n

⊢ G′. In other words ⊢=⊢∗Res.An SLD�derivation of G from P is a sequene (Gi)i≥0 suh that G0 = G and for eah ithere is a lause from P whih an be used in order to arry out an SLD�derivation�stepyielding Gi+1.An SLD�derivation (Gi)i≥0 of G from P whih is of �nite length, say (Gi)
n
i=1 is alledan SLD�derivation of Gn from P given input G.An SLD�derivation (Gi)

n
i=1 of Gn from P given input G0 is alled suessful if Gn = �.In the ase that there is a suessful SLD�derivation of � from P given input G wewill write P ⊢ G, otherwise we will write P 6⊢ G. Furthermore we will all suessfulSLD�derivations of � from P given input G SLD�refutations of← G from P . Sometimeswe will also refer to SLD�derivations of goals from P given input G as SLD�derivationsof P ∪ {← G}.So given a program P and a goal G one an onstrut all possible derivations of

P ∪ {← G} and hek if there is a refutation of P ∪ {← G}. If suh a refutation exists,then it an be found by breadth��rst�searh. If no suh refutation exists, then in generalthere is no way to detet this sine the fragment of lausal logi is undeidable (see [142℄).Example 3.2.1Again onsider the program from Examples 3.1.1 and 3.1.2. Assume that the goal G isgiven by G = is_even(s(s(s(s(null))))). Then an SLD�refutation of P ∪ {← G} anbe visualized as depited in Figure 3.1 where an arrow between two goals means that the

40 Chapter 3. Logi Programming
is_even(s(s(s(s(null)))))

is_even(s(s(null)))

is_even(null)Figure 3.1.: SLD�refutationseond goal is a resolvent of the �rst one (with respet to a suitable mgu).3.3. Soundness and CompletenessAs we have seen omputations by logi programs are arried out by giving a goal G toa program P and proving that the set P ∪ {← G} is unsatis�able, that is proving that
P∪{← G} ⊢ � holds. The result of suh a omputation is given by the substitution whihemerges from omposing the uni�ers used in this refutation. Let σ be this substitution.We �rst state the following lemma:Lemma 3.3.1 (Soundness, Apt and v. Emden [10℄)The SLD�resolution rule is sound. That is if P ⊢ ϕ, then P |= ϕ.This lemma is proved diretly in [10℄ but it is also a onsequene of the soundness ofthe general resolution rule presented in [140℄.So assume that P ∪ {← G} ⊢ �. Then we have P ∪ {← G} |= � and due to Lemma3.2.1 we have P |= G. Sine G is a goal, we have G =← G1, . . . , Gm for atoms Gi andtherefore P |= G1 ∧ · · · ∧Gm.We introdue two onepts of substitutions whih will turn out to be useful.De�nition 3.3.1 (Answer, Lloyd [105℄)Let P be a logi program and let G = G1, . . . , Gm be a goal.

3.3 Soundness and Completeness 411. An answer for P ∪ {← G} is a substitution for the variables ourring in G.2. A orret answer for P∪{← G} is an answer σ suh that P |= (G1 ∧ · · · ∧Gm)σ.3. A omputed answer for P∪{← G} is the omposition of the most general uni�ersused in a refutation of P ∪ {← G}.So a omputed answer for P ∪{← G} an be seen as a result omputed by the program
P given a goal G as input. Indeed, this interpretation of logi programs and goals is anadequate way to arry out omputations as the next theorem shows.Theorem 3.3.1 (Refutation�Completeness, v. Emden and Kowalski [164℄)Let P be a logi program and let G be a goal.1. Every omputed answer for P ∪ {← G} is a orret answer for P ∪ {← G}.2. For every orret answer σ for P ∪ {← G} there is a omputed answer σ1 for

P ∪ {← G} and a substitution σ2 suh that σ = σ1 ◦ σ2.So if an answer is omputed by using SLD�resolution this answer is a orret solutionof the problem modeled by the program P under onsideration (soundness). Additionallyit is possible to ompute any answer whih an be instantiated to a orret one (om-pleteness). Furthermore it is possible to model every omputable funtion by a suitablelogi program (see [5℄). So prediate logi an indeed be seen as an adequate formalismfor omputation.

42 Chapter 3. Logi Programming

4. Indutive Logi Programming
Contents4.1. The basi Framework . 434.2. Generalization and Speialization 464.3. Re�nement Operators and their Properties 47This hapter will be onerned with a brief introdution of the onepts from IndutiveLogi Programming (or ILP for short) whih we will extend to the temporal logi to bede�ned in the next part of this thesis. Therefore we will �rst present a desription of thetasks whih ILP systems have to perform. After this we will introdue several importantonepts from lattie theory whih will be used throughout the next hapters.4.1. The basi FrameworkIndutive Logi Programming is onerned with synthesizing general rules from exam-ples. Heneforth it is a speial ase of the theory of algorithmi learning. In generalalgorithmi learning is a generi term for every theory whih is onerned with determin-ing explanations for ertain phenomena. In ILP, the objets (or onepts) to be learnedare logi programs. The hints about the onept to be learned are given by sets E+and E− onsisting of ground atoms. These sets are onsidered to be examples for the(unknown) program P to be learned. E+ ontains the positive examples and E− ontainsthe negative ones. The interpretation of positive end negative examples is then given by

44 Chapter 4. Indutive Logi Programming
• P |= e+ for every e+ ∈ E+ and
• P 6|= e− for every e− ∈ E−.The problem setting whih we will use here is usually referred to as the normal problemsetting for ILP1. Some properties of a program P and sets E+ and E− an be de�nedformally as follows (following [126℄).De�nition 4.1.1 (Properties of Programs, e.g. [126℄)Let P be a logi program and let E+ and E− be (�nite) sets of ground atoms. P isalled
• omplete wrt. E+ if P |= e+ for every e+ ∈ E+,
• onsistent wrt. E− if P ∪ {¬e− | e− ∈ E−} 6|= � and
• orret wrt. E+ and E− if P is omplete wrt. E+ and onsistent wrt. E−.Additionally the following de�nitions allow a loser lassi�ation of programs relativeto given sets of examples.De�nition 4.1.2 (Further Properties, e.g. [126℄)Let P be a logi program and let E+ and E− be sets of positive and negative examples.

P is alled
• too strong wrt. E− if P is not onsistent wrt. E−,
• too weak wrt. E+ if P is not omplete wrt. E+,
• overly general wrt. E+ and E− if P is omplete wrt. E+ and not onsistent wrt.
E− and1In ontrast to the normal setting the nonomontoni setting for ILP has been de�ned (see [79℄).

4.1 The basi Framework 45
• overly spei� wrt. E+ and E− if P is onsistent wrt. E− and not omplete wrt.
E+.The task, whih an ILP system has to perform is to �nd (or synthesize) a program Pwhih is orret wrt. given sets E+ and E−.Usually this normal setting is extended in a way that the usage of bakground knowl-edge is possible. Bakground knowledge is given as a �nite set B of lauses whih areinterpreted as rules whih are known to be orret. The program P to be synthesized isnow required to have the following properties:

• P ∪ B |= e+ for every e+ ∈ E+ and
• P ∪ B 6|= e− for every e− ∈ E−.It is possible to distinguish between several ways the examples are presented to an ILPsystem.Bath / Inremental In a bath learning system the examples from E+ and E− are givento the system at the beginning of the learning task. In ontrast, an inrementallearning system reeives the examples at di�erent points of time. An example fora bath learning system is Foil (see [137℄).Top down / Bottom up The distintion between top down and bottom up systemsomes from the diretion in whih the system searhes for a orret program. Whilein a top down system an overly general set P ∪ B is speialized, in a bottom upsystem an overly spei� set P ∪B is generalized. Generalization and speializationwill be treated in depth in a later hapter taking temporal literals and lauses intoaount.Interative / Noninterative An interative system is apable of interating with theuser. Therefore suh a system an ask if some assumptions it has generated while

46 Chapter 4. Indutive Logi Programmingsearhing for a orret program are ful�lled or not. This allows the generation ofbetter programs.In all ases, the program whih is generated from the sets E+, E− and B annot beguaranteed to be exatly the program whih the person who has generated the exampleshas in mind. Rather it is (in most ases2) possible to onstrut a program whih isorret with respet to examples seen so far and whih has a very high probability ofbeing orret for other examples whih have not yet been seen.4.2. Generalization and SpeializationIn order to modify a logi program to �t its spei�ation one has to re�ne the program bymanipulating lauses in order to imply more or less atoms. The basis of all re�nementoperations is some �xed generality ordering, mostly the subsumption ordering whihis both relatively powerful and still deidable (in ontrast to the ordering indued bylogial impliation whih in general is undeidable). We will here restrit our attentionon re�nement operations on pairs of lauses. Assume that a quasi ordering �3 on theset of lauses over some signature is given. Further assume that C1 and C2 are lauses.A lause C is then alled (following [133℄)
• a generalization of C1 and C2 if C � C1 and C � C2 and
• a speialization of C1 and C2 if C � C1 and C � C2.Certain speializations and generalizations are of speial interest in ILP. A lause C isalled
• a least generalization of C1 and C2 if C is a generalization of C1 and C2 and forevery generalization D of C1 and C2 it holds that D � C and2Note that there may exist (nontrivial) E+ and E− suh that no orret P may exist, see [126℄ for aproof of this.3� is alled a quasi�ordering if � is re�exive and transitive. Given � the notation � will be used asexpeted. We will write ≈ if both � and � holds and ≺ (resp. ≻) if � (res. �) and not ≈ holds forpairs of objets of the underlying set.

4.3 Re�nement Operators and their Properties 47
• a greatest speialization of C1 and C2 if C is a speialization of C1 and C2 and forevery speialization D of C1 and C2 it holds that C � D.A pair (S,�) onsisting of a nonempty set S and a quasi�ordering � is alled a lattieif for every pair x1, x2 of elements from S there exists a least generalization and a greatestspeialization wrt. � in S.Assuming that the hosen ordering � yields a lattie struture4, operations for re�ne-ment an be implemented in two ways:Upward Re�nement Given C1 and C2 onstrut a least generalization of C1 and C2 wrt.
�.Downward Re�nement Given C1 and C2 onstrut a greatest speialization of C1 and
C2 wrt. �.4.3. Re�nement Operators and their PropertiesAs we have desribed in hapter 4.2, speialization and generalization are entral oper-ations whih any ILP system has to perform. An algorithm whih is apable of general-izing and/or speializing lauses is alled a re�nement operator. Consequently one andistinguish between Upward Re�nement Operators and Downward Re�nement Operatorsdepending on the diretion in whih the re�nement is performed, that is depending on thequestion whether it onstruts a generalization or a speialization of the input lauses.Formally we assume that a generality ordering � (a quasi ordering) is given as desribedabove. A downward re�nement operator is a funtion ρd mapping lauses to sets of lausessuh that for every lause C it holds that

ρd(C) ⊆ {D | C � D} .4In hapter 6 we will see that there are indeed orderings whih have this property.

48 Chapter 4. Indutive Logi ProgrammingConsequently an upward re�nement operator is given as a funtion ρu mapping lausesto sets of lauses suh that for eah lause C it holds that
ρu(C) ⊆ {D | D � C} .Let ρ be any re�nement operator (upward or downward) and let C be a lause. A-ording to the notational onventions from [126℄ we de�ne 1�step�re�nement, n�step�re�nements and re�nements as follows:

ρ1(C) = ρ(C) (1�step�re�nement),
ρn(C) = ρ(ρn−1(C)), n > 1 (n�step�re�nement) and
ρ∗(C) =

⋃

i≥1

ρi(C) (re�nement)
ρ is alled
• loally �nite if for every C the set ρ(C) is �nite and omputable,
• omplete if for every pair C1, C2 suh that C1 ≻ C2 (or C1 ≺ C2 for upwardre�nement operators) there is an element C ∈ ρ∗(C1) suh that C ≈ C2,
• proper if for every C it holds that ρ(C) ⊆ {D | D ≻ C} (or ρ(C) ⊆ {D | D ≺ C})and
• ideal if ρ is loally �nite, omplete and proper.Ideality seems to be a desirable property of re�nement operators. However, in generalit is not possible to guarantee the existene of suh ideal re�nement operators (see forexample [162℄).

Part II.
First Order Indutive TemporalLogi Programming

5. The Programming LanguageProlog(+T)
Contents5.1. Syntax of Prolog(+T) . 525.1.1. Terms in Prolog(+T) . 525.1.2. Fats . 555.1.3. Rules . 555.1.4. Programs . 575.1.5. Queries . 595.1.6. The Relation of Prolog(+T) to other Temporal Logi pro-gramming Languages . 605.2. Delarative Semantis of Prolog(+T) 655.2.1. Preliminaries . 655.2.2. Redution of Literals . 745.2.3. Semantis for programs . 815.3. A Saturation�based temporal Proof Proedure 865.3.1. Tableaux Rules . 875.3.2. Soundness and Completeness Issues 104We will now introdue the programming language of interest. This language will besimilar to Prolog (see [154℄ for an introdution) but will allow the usage of temporal

52 Chapter 5. The Programming Language Prolog(+T)operators. Therefore we will all it Prolog(+T). Prolog(+T) will allow list proessing(as Prolog does) but onstraints have not yet been integrated.5.1. Syntax of Prolog(+T)5.1.1. Terms in Prolog(+T)Sine Prolog(+T) is essentially a logi programming language whih is enrihed withthe temporal operators X, G, F, U and P, the basi onepts are the same as desribed inhapter 3.1. However, to beome a pratially usable language, the usage of terms has tobe simpli�ed in order to allow more omfortable manipulating tehniques. In partiular,Prolog(+T) allows lists as terms whih is probably the most omfortable feature ofProlog.De�nition 5.1.1 (Prolog(+T)�terms)Let sig = (X , F, P, α) be a signature. The set of Prolog(+T)�terms over sig isde�ned to be the smallest set whih is losed under the following rules:1. _ is a Prolog(+T)�term,2. every string representing an integer is a Prolog(+T)�term,3. every term t ∈ T (sig) is a Prolog(+T)�term,4. if t1, . . . , tn is a �nite (possibly empty) sequene of Prolog(+T)�terms, then
[t1, . . . , tn] is a Prolog(+T)�term and5. if t is a Prolog(+T)�term and t1, . . . , tn is a �nite (possibly empty) sequeneof Prolog(+T)�terms, then [t|t1, . . . , tn] is a Prolog(T)�term.We will make use of the following onvention: Variable identi�ers will start with upperase letters while other identi�ers suh as funtion symbols and prediate symbols have

5.1 Syntax of Prolog(+T) 53to start with lower ase letters.The term _ is referred to as an anonymous variable. Anonymous variables are aonept whih is reently used in Prolog�programs in order to de�ne prediates whihhave variables as parameters whih are not used in the de�nition. An example might bethe de�nition of the nonnegative subtration funtion:nndi�(x, y) =

x− y ⇔ x ≥ y

0 else .If x is a variable symbol and 0 is a term representing the natural number 0, then thefollowing 3�ary prediate might be part of the de�nition of the funtion nndi� : N
2 → N:

pnndi�(0, X, 0).This models the following part of the de�nition of nndi�: nndi�(0, x) = 0 for everyvalue of x. Consequently, the value of x itself does not play any role in this ase. Sothe ourrene of x an be replaed by the anonymous variable _ here whih yields theprediate
pnndi�(0,_, 0).In general, anonymous variables might be used whenever one is only onerned withproving that a solution exists without being interested in the atual value of this solution.Integers are inluded in order to yield more omfortable programming failities. It isobvious that integers are not essential for the ompleteness of the language sine it ispossible to de�ne the natural numbers N (and therefore the integers Z) in terms of aonstant symbol null and an unary funtion s realizing the suessor funtion.The terms built up using the last two points from the above de�nition are referredto as lists. They represent olletions of elements. The term [] represents the so alled

54 Chapter 5. The Programming Language Prolog(+T)empty list whih does not ontain any elements. If a list an be desribed by ompletelywriting down all its elements, then it might be realized as a list of the form [t1, . . . , tn].Note that the empty list is just a speial ase of suh a list and also note that some ofthe elements t1, . . . , tn might again be lists sine the de�nition of Prolog(+T)�termsis reursive. So the following onstrut is a well�formed Prolog(+T)�term1:
[f(X), g(f(X), a), [], [Y|a, b, c]].In lists of the form t = [t̄|t1, . . . , tn], the term t̄ is usually referred to as the head of thelist while the list [t1, . . . , tn] is referred to as the tail of the list.For all kinds of Prolog(+T)�terms t we de�ne the set Var(t) to ontain all variablesourring in t. Formally this is aomplished as follows.De�nition 5.1.2 (Variables in Prolog(+T)�terms)Let t be a Prolog(+T)�term. Then the set Var(t) of variables of t is de�ned asfollows:1. if t = _ or t = [], then Var(t) = ∅,2. if t = X for some variable identi�er X, then Var(t) = {X},3. if t = f(t1, . . . , tn) or t = [t1, . . . , tn], then Var(t) =

⋃n
i=1Var(ti) and4. if t = [t̄|t1, . . . , tn], then Var(t) = Var(t̄) ∪⋃n

i=1Var(ti).A variable is said to our in a term t if and only if it is a member of the set Var(t).Anonymous variables and the list onept are only introdued in order to improve theusability of Prolog(+T) for pratial appliations. It is possible to show that omittingthese onepts does not e�et the expressivity of the language. Therefore we will not1Provided that the signature of interest does ontain de�nitions for the symbols used in this term.

5.1 Syntax of Prolog(+T) 55deal with lists and anonymous variables in proofs of properties in the sequel.5.1.2. FatsAs in Prolog, Prolog(+T) allows modeling relationships between objets as rulesand fats (whih are a speial ase of rules, namely rules without premises). Roughlyspeaking, rules are models of inferenes whih may be arried out. In general suhinferenes may only be appliable if some premises are ful�lled. For fats no suh premisesare present: any fat is interpreted as something whih is true without having to be proved.As in Prolog, fats in Prolog(+T) are equivalent to atomi formulas.De�nition 5.1.3A Prolog(+T)�fat is a string of the form
ϕ.,where ϕ ∈ At(sig) (for some suitable signature sig) is an atomi formula of FoLtl.Note the symbol . at the end of the de�nition of a fat. This omes from the irum-stane that fats are speial ases of rules.5.1.3. RulesAs desribed above, rules in general model allowed inferenes whih may be applied ifsome premises are known to be ful�lled. Rules are (as desribed in hapter 3.1) modeledas lauses. However, we will not restrit ourselves on (de�nite) hornlauses here.De�nition 5.1.4 (Rules in Prolog(+T))Let sig = (X , F, P, α) be a signature. A Prolog(+T)�rule is either a Prolog(+T)�

56 Chapter 5. The Programming Language Prolog(+T)fat or a statement of the form
ψ :−ϕ1, . . . , ϕn.for ψ ∈ At(sig) and ϕ1, . . . , ϕn ∈ Lt(sig). The atom ψ is alled the head of the rulewhile the set {ϕ1, . . . , ϕn} is alled the tail of the rule.

So the tail of a rule desribes the premises whih have to be proved while the headdesribes the proposition whih an be inferred. In general the tail may ontain nega-tive literals, that is ϕi ∈ Lt(sig) \ At(sig) is permitted. This has both advantages anddisadvantages. On the one hand, allowing negated premises yields better readable, moreelegant and shorter programs, on the other hand the de�nition of the semantis of pro-grams ontaining rules with negated premises is more ompliated to desribe. We willsee how this an be overome in a later setion of this hapter.For reasons of readability we will make the following onvention: if
ψ :−ϕ1, . . . , ϕn.is a Prolog(+T)�rule and ϕi is from Lt(sig) \ At(sig), that is ϕi = ¬ϕ for some

ϕ ∈ Lt(sig), then we will write ϕi = not(ϕ) instead. Another reason for using the abovenotation is the fat that we will not be dealing with lassial negation but merely withnegation as failure (or better: with an adaption of this negation�approah). Intuitively
not(ϕ) is assumed to be a logial onsequene of a program P if ϕ annot be provedfrom P in a �nite number of proof steps or equivalently if every attempt to prove ϕ from
P fails after a �nite number of steps. We will see in later setions how the negation asfailure�approah an be adapted in order to handle Prolog(+T)�programs.

5.1 Syntax of Prolog(+T) 575.1.4. ProgramsAs in Prolog, a program in Prolog(+T) is given as a �nite set of Prolog(+T)�rules(and fats). The variables in the rules will be assumed to be universally quanti�ed. Thisis a useful assumption as we will see when studying the semantis of Prolog(+T)�programs in hapter 5.2.De�nition 5.1.5 (Prolog(+T)�program)A Prolog(+T)�program is a �nite set P of Prolog(+T)�rules.Prolog(+T)�programs (or simply programs if there's no way of onfusion) will bedenoted as P, P̄ , P ′ . . . from now on. Due to the speial form of the formulas in programsit is possible to build a formula whih is semantially equivalent to a Prolog(+T)�program and whih has a very simple form. Let P be a program ontaining n rules.That is let P = {P1, . . . , Pn} where eah Pi has the form
Pi = ψ(i) :−ϕ(i)

1 , . . . , ϕ(i)
ni
.for ψ(i) ∈ At(sig) and ϕ(i)

1 , . . . , ϕ
(i)
ni ∈ Lt(sig) and some ni ∈ N. For formal reasons wewill identify ψ(i) :− and ψ(i). Due to the interpretation of lauses as sets of literals wetherefore have

Pi ≡ ¬
(

ϕ
(i)
1 ∧ · · · ∧ ϕ(i)

ni

)

∨ ψ(i)

≡ ¬ϕ(i)
1 ∨ · · · ∨ ¬ϕ(i)

ni
∨ ψ(i)

≡ ψ(i) ∨
ni∨

j=1

¬ϕ(i)
jfor i = 1, . . . , n. Sine sets of lauses are satis�ed under interpretations if all lauses aresatis�ed simultaneously we have J |= P if and only if J |= Pi for i = 1, . . . , n if and only

58 Chapter 5. The Programming Language Prolog(+T)if J |= P1 ∧ · · · ∧ Pn if and only if J |= ∧n
i=1 Pi. This gives P ≡ ∧n

i=1 Pi and therefore
P ≡

n∧

i=1

Pi

=

n∧

i=1

ψ(i) ∨
ni∨

j=1

¬ϕ(i)
j

is a relatively simple formula whih might haraterize the semantis of a Prolog(+T)�program P .From now on we will assume that the rules in a program P are standardized apart.De�nition 5.1.6Let ϕ1 and ϕ2 be FoLtl�formulas. ϕ1 and ϕ2 are alled standardized apart ifVar(ϕ1) ∩Var(ϕ2) = ∅.It is obvious that two rules from a program an be easily standardized apart. Thisis a onsequene of the assumption that all variables in rules are impliitly universallyquanti�ed: let P be a program as desribed above and let i, j ∈ {1, . . . , n} be suhthat Var(P1) ∩ Var(P2) = {Xi1, . . . , Xik} 6= ∅. We now �x two sets {X(1)
i1
, . . . , X

(1)
ik

}and {X(2)
i1
, . . . , X

(2)
ik

} suh that {X(1)
i1
, . . . , X

(1)
ik
, X

(2)
i1
, . . . , X

(2)
ik

}

∩ (Var(P1) ∪Var(P2)) = ∅,de�ne substitutions
σi =

{

Xi1

X
(i)
i1

, . . . ,
Xik

X
(i)
ik

} and
σj =

{

Xi1

X
(j)
i1

, . . . ,
Xik

X
(j)
ik

}

and replae the program P by P̄ = (P \ {Pi, Pj})∪{σi(Pi), σj(Pj)}. Due to the impliituniversal quanti�ation of all variables in the rules of P we have P |= ϕ if and only if
P̄ |= ϕ for any ϕ.

5.1 Syntax of Prolog(+T) 595.1.5. QueriesAs in Prolog, a Prolog(T)�program is run by giving a query to the program andsearhing for a substitution suh that the result of applying this substitution to the queryyields a logial onsequene of the program. Formally we will adopt the philosophy oflogi programming as desribed in hapter 3.1. A query in Prolog(+T) is thereforeinterpreted as a sequene of single queries whih have to be solved one by one. As inrules we will also allow negation as failure in queries.
De�nition 5.1.7 (Prolog(+T)�query)Let sig = (X , F, P, α) be a signature. A Prolog(+T)�query over sig is a formula ofthe form

G = ϕ1, . . . , ϕn.,suh that ϕ1, . . . , ϕn ∈ Lt(sig).
As we are interested in substitutions for the variables in a goal, we need the oneptof an answer as desribed by [105℄. An answer for a query G is a substitution σ suhthat Dom(σ) = Var(G). If P is a Prolog(+T)�program and G = ϕ1, . . . , ϕn., thenan answer σ is alled orret for G if P |= σ(ϕ1) ∧ · · · ∧ σ(ϕn). Obviously the semantisof a program P an be haraterized in terms of the set of all goals G onsisting of asingle query (i.e. G = ϕ. for some ϕ ∈ Lt(sig)) suh that there is a orret answer σ for

G. In this ase σ(ϕ) is ontained in the set haraterizing the semantis of the program.How these haraterization an be formally desribed will be the subjet of the followingsetion of this hapter.

60 Chapter 5. The Programming Language Prolog(+T)5.1.6. The Relation of Prolog(+T) to other Temporal Logi programmingLanguagesThis setion will deal with the question of how Prolog(+T) di�ers from other temporallogi programming languages introdued so far. In partiular we will disuss the di�er-enes between Prolog(+T), Templog and Tokio. It will turn out that on the onehand Prolog(+T) is syntatially losely related to Templog although there are somedi�erenes whih are worth pointing out. On the other hand we will disuss Tokio whihis also similar to Prolog(+T) regarding the temporal operators used in its de�nitionbut whih has a ompletely di�erent philosophial origin.TemplogTemplog is a �rst�order temporal programming language whih has originally beenintrodued and de�ned by Abadi and Manna in [3℄ and [2℄. The underlying logi ofTemplog allows the usage of the same set of temporal operators as Prolog(+T) whilethe authors distinguish between �exible and rigid symbols. Flexible symbols may beinterpreted as operations with a semantis whih hanges over time while the interpreta-tions of rigid symbols must not be depending on the point of time at whih the symbolis evaluated.In [3℄ the de�nition of Templog is arried out as follows:1. The authors de�ne a temporal logi on whih Templog is based.2. They de�ne a fragment of Templog in order to present the basi ideas.3. Finally they introdue the full logi by enhaning the set of temporal operatorswhih are allowed in the de�nition of the programming statements of the program-ming language Templog.The fragment of Templog whih is de�ned in [3℄ introdues the onepts of initialtemporal hornlauses and permanent temporal hornlauses as an extension of the horn-

5.1 Syntax of Prolog(+T) 61lauses whih are used as programming statements in Prolog. An initial temporalhornlause is a onstrut whih has the form
∀x1 . . . ∀xk (ϕ1 ∧ · · · ∧ ϕn → ψ)for so alled next�atomi formulas ϕ1, . . . , ϕn and ψ where ⋃n

i=1Var(ϕi) ∪ Var(ψ) =

{x1, . . . , xn}. Here a formula ϕ is alled next�atomi if ϕ has the form ϕ = Xiϕ̄ for some
i ≥ 0 and some atom ϕ̄. Due to the fat that the de�nition Templog is motivated bythe wish to enhane Prolog with temporal operators the authors of [3℄ introdue theabbreviation

ψ ← ϕ1, . . . , ϕn := ∀x1 . . . ∀xk (ϕ1 ∧ · · · ∧ ϕn → ψ)whih learly shows the relation between Templog and Prolog.Additionally permanent temporal hornlauses are programming statements of the form
∀x1 . . . ∀xkG (ϕ1 ∧ · · · ∧ ϕn → ψ)for next�atomi formulas ϕ1, . . . , ϕn and ψ and {x1, . . . , xk} as before. Similar to initialtemporal hornlauses permanent temporal hornlauses may be abbreviated using

ψ ⇐ ϕ1, . . . , ϕn := ∀x1 . . . ∀xkG (ϕ1 ∧ · · · ∧ ϕn → ψ) .Programs in the fragment de�ned in this way are de�ned as sets onsisting of permanentand initial hornlauses. Queries to suh programs are de�ned as onjuntions of next�atomi formulas. It is possible to show that the programming language de�ned by thisfragment an be evaluated using a resolution�style theorem proving proedure (see e.g.[1℄ for a disussion of suh a proedure).After having de�ned the fragment presented above the authors introdue the full logiprogramming Templog by allowing usage of G in the head and F in the tail of program

62 Chapter 5. The Programming Language Prolog(+T)statements (both with restritions).As a summary we an see:1. Templog o�ers a distintion between �exible and rigid symbols whih allows tointerpret symbols in a di�erent way at di�erent points of time.2. Prolog(+T) does not have a ounterpart to the operator ⇐ of Templog.3. In ontrast to Prolog(+T) Templog limits the appliation of G and F to thehead (resp. the tail) of lauses.4. The operators U and P are forbidden in Templog programs.TokioTokio is another programming language whih allows the usage of ertain temporaloperators in programming statements. Tokio has been presented in [6℄ as an extentionof the logi Itl (see e.g. [117℄). In ontrast to the logi underlying both Templogand Prolog(+T) Tokio and its predeessor Itl are interval based logi programminglanguages. This means that the main goal of a proof proedure exeuting a Tokioprogram is not to prove a goal but to �nd an interval of time in whih the goal holds.We will make this lear soon.The syntax of Tokio's programming onstruts is de�ned in [6℄ (in another paper aninterpreter for Tokio written in Prolog is presented. It is noted that the exeutiontime ofTokio programs using this interpreter is slowed down by a fator of 40 in ontrastto ordinary Prolog programs; we refer to [92℄ for implementation details). Similarly toProlog we an use programming statements whih do not ontain temporal operators.So every Prolog�statement ψ ← ϕ1, . . . , ϕn is also a well�formed Tokio�statement.Additionally to Prolog Tokio allows the usage of several temporal onstruts. Theseare
• sequential exeution,

5.1 Syntax of Prolog(+T) 63
• the Next�operator,
• the Always�operator,
• the Sometimes�operator,
• the keep�operator and
• the �n�operator.Sine Tokio is an interval�based programming approah the main goal of a proverexeuting a Tokio formula is to de�ne an interval of time in whih this formula issatis�ed. Time in Tokio is onsidered disrete, so an interval I an be desribed byspeifying its start� resp. endpoint in terms of natural numbers. If I = [Ibeg, I�n] is suhan interval we have to require that Ibeg ≤ I�n. Sine the motivation for the de�nitionof Tokio is the desription of hardware the authors of [6℄ prefer the term exeution inorder to denote the satisfation of a formula.We will now make the onepts of Tokio more lear.1. Tokio allows the spei�ation of the sequential exeution of goals. This is arriedout by the so alled hop�operator whih is denoted by &&. So a statement ψ ←
ϕ1&& . . . &&ϕn is exeuted in an interval I = [Ibeg, I�n] if I an be divided intointervals I1, . . . , In suh that I1 = [Ibeg, t1], . . . , Ij = [tj−1, tj], . . . , In = [tn−1, I�n]for t1, . . . , tn−1 ∈ N suh that ti ≤ ti+1 for i = 1, . . . , n− 2 and eah ϕi is exeutedin the interval Ii.2. The Next�operator is intended as a similar onept to the operator X from Pro-log(+T). In Tokio the Next�operator is denoted as � and a statement ψ ← �ϕ isintended to be exeuted in an interval I = [Ibeg, I�n] if ψ is exeuted in the interval
[Ibeg + 1, I�n].3. Similarly the Always� and Sometimes�operators whih are denoted as # resp. <>

64 Chapter 5. The Programming Language Prolog(+T)require the exeution of a statement at ertain points of time in an interval. If
I = [Ibeg, I�n] is a given interval, thena) ψ ← #ϕ is exeuted in I if ϕ is exeuted at every point Ibeg, . . . , Ibeg+j, . . . , I�nof time andb) ψ ← <>ϕ is exeuted in I if there is (at least) one j with 0 ≤ j ≤ �n − begsuh that ϕ is exeuted at Ibeg + j.4. The keep�operator allows reasoning about the exeution of a statement at servalpoints of time in an interval. If I is given then ψ ← keep(ϕ) is exeuted in I if
ϕ is exeuted at every point of time in I exept of the last point. More formallyif I = [Ibeg, I�n] then ψ ← keep(ϕ) is exeuted in I if ϕ is exeuted at time
Ibeg, . . . , I�n − 1 and ϕ is not exeuted at time point I�n.5. Finally the �n�operator is introdued in order to reason about the exeution of astatement at a �nal point of time in an interval. If I = [Ibeg, I�n] is given then
ψ ← �n(ϕ) is exeuted in I if ϕ is exeuted at the time I�n.Although the operators #, && and � are the same operators as their ounterpartsin Prolog(+T) the keep and �n�operators annot be mapped to Prolog(+T) ade-quately. The only relationships we an derive is that1. statements of the form ψ ← keep(ϕ) are related to statements of the form ψ :−ϕUϕ̄for some ϕ̄ and2. statements of the form ψ ← �n(ϕ) are related to statements of the form ψ :−ϕPϕ̄for some ϕ̄.As a summary we an therefore point out the following di�erenes between Tokio andProlog(+T):1. Prolog(+T) does not have diret ounterparts for the operators keep, �n and &&of Tokio.

5.2 Delarative Semantis of Prolog(+T) 652. In Prolog(+T) we do not have any limits for the time points in whih formulasare satis�ed. In ontrast Tokio statements are exeuted in intervals. Sine suhintervals are assumed to be given by time points whih are represented as naturalnumbers, they always have a �nite length.3. The philosophies of Tokio and Prolog(+T) are ompletely di�erent sine themain task in Tokio is the onstrution of a model (i.e. the detetion of an interval)while the main task in Prolog(+T) is to refute a formula, i.e. proving that thereannot exist any models.5.2. Delarative Semantis of Prolog(+T)This setion will deal with the delarative semantis of the programming language Pro-log(+T) introdued in the last setion. The delarative semantis is de�ned in terms ofthe logial onsequene relation |= and it is important to distinguish this semantis fromthe operational semantis whih is de�ned in terms of some suitable alulus ⊢. Thisoperational semantis will be the subjet of hapter 5.3.5.2.1. PreliminariesWe will now extend the onepts of Herbrand�interpretations as introdued in �rst orderlogi (see [140℄ or [105℄) to the logi FoLtl. We will see that the results from �rst orderlogi arry over to FoLtl.Let sig = (X , F, P, α) be any signature. We will need the onept of ground objets inorder to de�ne Herbrand�interpretations.
• A term t ∈ T (sig) is alled a ground term if Var(t) = ∅.
• A FoLtl�formula ϕ is alled a ground formula if Var(ϕ) = ∅.Similarly a ground atom is a ground formula whih is an atom, a ground literal is a

66 Chapter 5. The Programming Language Prolog(+T)ground formula whih is a literal and a ground lause is a ground formula whih is alause.For the rest of this hapter we will assume that sig = (X , F, P, α) is any �xed signature.Let Φ be any set of formulas over sig. The set of all ground terms whih an be built fromsymbols ourring in Φ will be alled the Herbrand�universe of Φ and will be denoted as
UΦ. In partiular we will be interested in UP for Prolog(+T)�programs P . Similarlyone de�nes sets BΦ and BFoLtl

Φ as follows:
BΦ = {ϕ ∈ A(sig) | Var(ϕ) = ∅} and

BFoLtl
Φ = {ϕ ∈ At(sig) | Var(ϕ) = ∅}The set BΦ is the well known Herbrand�base. The set BFoLtl

Φ is an extension of theHerbrand�base whih also allows the inlusion of temporal atoms. We will also refer to
BFoLtl

Φ as the Herbrand�base of Φ sine there is no way of onfusion2.We will see that a well-known result from �rst order logi an be extended to FoLtl.Therefore we will de�ne the set Free(o) for some logial objet o to be the set of freevariables ourring in this objet. Formally:
• for terms from T (sig) we de�ne� Free(X) = {X} if X ∈ X is a variable symbol and� Free(f(t1, . . . , tn))) =

⋃n
i=1 Free(ti) if f ∈ F is a funtion symbol with

α(f) = n and t1, . . . , tn ∈ T (sig).Equivalently we ould de�ne Free(t) = Var(t) for any t ∈ T (sig).
• For formulas we de�ne2Due to the fat that syntatially di�erent literals might be logially equivalent we have that a positiveliteral an be equivalent to a negative one, e.g. Gp(X) ≡ not(Fnot(p(X))). Therefore we will makethe following onvention: BFoLtl

P ontains all temporal literals whih are equivalent to some positivetemporal literal.

5.2 Delarative Semantis of Prolog(+T) 67� Free(true) = Free(false) = ∅,� if p ∈ P is a prediate symbol with α(p) = n and t1, . . . , tn ∈ T (sig), thenFree(p(t1, . . . , tn)) =
⋃n
i=1 Free(ti),� if ϕ is a formula, thenFree(not(ϕ)) = Free(Xϕ) = Free(Gϕ) = Free(Fϕ) = Free(ϕ),� if ϕ is formula, then Free(∀Xϕ) = Free(∃Xϕ) = Free(ϕ) \ {X} and� if ϕ1 and ϕ2 are formulas, then Free(ϕ1Uϕ2) = Free(ϕ1Pϕ2) = Free(ϕ1 ∧

ϕ2) = Free(ϕ1 ∨ ϕ2) = Free(ϕ1 → ϕ2) = Free(ϕ1 ↔ ϕ2) = Free(ϕ1) ∪Free(ϕ2).A formula ϕ is alled losed if Free(ϕ) = ∅. Similarly a formula ϕ is alled universallylosed if ϕ is a losed formula whih does not ontain the quanti�er ∃.We will now see that ertain subsets of the Herbrand�base of a program an be on-sidered as interpretations. This is ahieved in a similar way as in the ase of �rst orderlogi programs. However, we will have to put some restritions on the subsets of interest.After this we will make a link between these sets of atoms (whih we will refer to as set�based�interpretations) and the interpretations of FoLtl�formulas as de�ned in hapter2.3.2 (whih we will refer to as struture�based interpretations).Let P = {P1, . . . , Pn} be any Prolog(+T)�program and let I ⊆ BFoLtl
P be any setof ground atoms built from symbols ourring in P . Furthermore let ϕ be any universallylosed FoLtl�formula3. I will be seen as an interpretation for ϕ as follows:1. if ϕ = Xiψ for any i ≥ 0 and any nontemporal atom ψ from BP , then I |= ϕ if andonly if ϕ ∈ I,3Similarly as in First Order Logi these onstrution strongly relies on the assumption that everyvariable symbol in the formula under onsideration is universally quanti�ed. For general formulasthe onstrution fails.

68 Chapter 5. The Programming Language Prolog(+T)2. if ϕ = ϕ1 ∧ ϕ2, then I |= ϕ if and only if I |= ϕ1 and I |= ϕ2,3. if ϕ = ϕ1 ∨ ϕ2, then I |= ϕ if and only if I |= ϕ1 or I |= ϕ2,4. if ϕ = ¬ψ, then I |= ϕ if and only I 6|= ψ,5. if ϕ = ϕ1 → ϕ2, then I |= ϕ if and only if I |= ¬ϕ1 or I |= ϕ2,6. if ϕ = ϕ1 ↔ ϕ2, then I |= ϕ if and only if I |= ϕ1 → ϕ2 and I |= ϕ2 → ϕ1 and7. if ϕ = ∀Xψ thena) if X ∈ Var(ψ), then I |= ϕ if and only if for every substitution σ =
{
X
t

} forsome t suh that Var(t) = ∅ it holds that I |= σ(ψ) andb) if X 6∈ Var(ψ), then I |= ϕ if and only if I |= ψ.This de�nition of the semantis in terms of subsets of BFoLtl
P only allows the inter-pretation of formulas whih ontain the temporal operator X. But in order to handleformulas involving G, F, U and P we have to restrit the subsets of interest to suh subsetswhih are temporally losed.De�nition 5.2.1 (Temporally losed set)A set I ⊆ BFoLtl

P is alled temporally losed if and only if for every ϕ,ϕ1 and ϕ2 from
BFoLtl
P and every i ≥ 0 the following onditions are ful�lled:1. XiGϕ ∈ I if and only if Xi+jϕ ∈ I for every j ≥ 0,2. XiFϕ ∈ I if and only if Xi+jϕ ∈ I for some j ≥ 0,3. Xiϕ1Uϕ2 ∈ I if and only if Xiϕ2 ∈ I or Xiϕ1 ∈ I and Xi+1ϕ1Uϕ2 ∈ I,4. Xiϕ1Pϕ2 ∈ I if and only if Xiϕ2 6∈ I and Xiϕ1 ∈ I or Xi+1ϕ1Pϕ2 ∈ I and5. ϕ ∈ I if and only if {ψ ∈ BFoLtl

P | ψ ≡ ϕ
}
⊆ I.

5.2 Delarative Semantis of Prolog(+T) 69The motivation for this de�nition should immediately be lear sine it is diretly de-rived from the properties of the semantial equivalene relation for FoLtl�formulas. Soa set I is temporally losed if satisfation of one member of an equivalene lass impliessatisfation of all members of this equivalene lass. Therefore onsidering temporallylosed subsets of BFoLtl
P as the interpretations of interest is reasonable.It is important to note that one an in many ases enrih a set I ⊆ BFoLtl

P by addingatoms in order to reeive a temporally losed set. This proedure will later be referredto as building (or onstruting) the temporal losure. In general, a temporally losedsuperset of a set I is not uniquely determined.Example 5.2.1Consider the set I = {Fp(a)}. every temporally losed superset of I ontains Xjp(a) forsome j ≥ 0.The temporally losed supersets of a set I an be seen as the unions of sets on (in�nite)maximal paths in an in�nite tree. We will therefore onstrut a labeled graph T (I) =

(V,E, l) from I as desribed below4.
T (I) = (V,E, l) with l : V → 2B

FoLtl
P ∪ {fail} is the in�nite tree satisfying thefollowing onditions:1. There is a uniquely determined v0 ∈ V suh that (v, v0) 6∈ E for eah v ∈ V (theroot node),2. l(v0) = I and3. for eah v ∈ V the following is true:a) if there is an atom XiGϕ ∈ l(v), then there is v′ ∈ V suh that (v, v′) ∈ E and

l(v′) = l(v) ∪ {Xi+jϕ | j ≥ 0},4Here V is a nonempty set of nodes (also alled verties), E ⊆ V ×V is a set of edges onneting thesenodes and l : v → 2BFoLtl
P ∪ {fail} is a mapping whih labels the nodes.

70 Chapter 5. The Programming Language Prolog(+T)b) if there is an atom XiFϕ ∈ l(v) then there are v′1, . . . , v′j , · · · ∈ V suh that
(v, v′j) ∈ E and l(v′j) = l(v) ∪ {Xi+jϕ} for eah j ≥ 0,) if there is an atom Xiϕ1Uϕ2 ∈ l(v), then there are v′1, v′2 ∈ V suh that
(v, v′1), (v, v

′
2) ∈ E and

• l(v′1) = l(v) ∪ {Xiϕ2} and
• l(v′2) = l(v) ∪ {Xi+1ϕ1Uϕ2}if Xiϕ2 6∈ l(v),d) if there is an atom Xiϕ1Pϕ2 ∈ l(v) then there are v′1, v

′
2 ∈ V suh that

(v, v′1), (v, v
′
2) ∈ E and

• if Xiϕ2 ∈ l(v), then l(v′1) = l(v′2) = fail and
• if Xiϕ2 6∈ l(v), then l(v′1) = l(v)∪{Xiϕ1)} and l(v′2) = l(v)∪{Xi+1ϕ1Pϕ2}.ande) for eah ϕ ∈ l(v) it holds that

{ψ ∈ BFoLtl
P | ψ ≡ ϕ} ⊆ l(v).Given T (I) the set of all (possibly in�nite) maximal paths π starting at v0 suh thatthere is no v with l(π) = fail ourring on π will be denoted as p(T (I)).Given π ∈ p(T (I)), the set l(π) denotes the union of all sets with whih the nodes on

π are labeled. Formally if V (π) denotes the set of nodes ourring on π, then
l(π) =

⋃

v∈V (π)

l(v).Then the following laims are immediate:1. For every π ∈ p(T (I)) the set l(π) is temporally losed.2. For every π ∈ p(T (I)) it holds that I ⊆ l(π).

5.2 Delarative Semantis of Prolog(+T) 71We will from now on denote the set onsisting of all sets omputable in the way skethedabove as the temporal losure of I and denote it asTempClosure(I) = {l(π) | π ∈ p(T (I))} .De�nition 5.2.2 (Set�based Herbrand�Interpretation)A set�based Herbrand�Interpretation for a program P is a temporally losed subset
I ⊆ BFoLtl

P . A set�based Herbrand�model for P is any temporally losed set I ⊆
BFoLtl
P suh that I |= P .It is worth notiing that onsidering only temporally losed sets as interpretations hasthe drawbak that there are some programs whih are not satis�able. This is one di�er-ene to pure �rst order logi programs whih are always satis�ed by the interpretation

I = BP . Consider the following program P = {P1, P2} where
P1 = p(a). and
P2 = q(X)Pp(X) :−p(X).Now �x any temporally losed I ⊆ BFoLtl

P . If I |= P , then in partiular we have I |=
P1, that is I |= P1 = p(a). So p(a) ∈ I. On the other hand we have I |= P2 = q(X)Pp(X) :

−p(X) and sine P2 is onsidered universally losed we have I |= q(a)Pp(a) :−p(a). Butsine I is temporally losed we have I 6|= p(a) and I |= q(a) or I |= Xq(a)Pp(a). This isa ontradition. So I 6|= P and therefore P has no set�based Herbrand�model.We will now prove that for universally losed sets of FoLtl�formulas the oneptsof set�based Herbrand�Interpretations and struture�based Herbrand�Interpretations asintrodued in hapter 2.3.2 are equivalent. This allows reasoning about properties ofprograms by onsidering interpretations as sets of literals instead of the formally more

72 Chapter 5. The Programming Language Prolog(+T)ompliated strutures.We will �rst prove the easier diretion.Lemma 5.2.1Let P be a Prolog(+T)�program. If P has a struture�based Herbrand�model, then
P has a set�based Herbrand�model.Proof. Let P be a Prolog(+T)�program and let J = (UJ , S, s0, δ1, δ2, w,I) be astruture�based Herbrand�model of P . Set IJ = {ϕ ∈ BFoLtl

P | J |= ϕ}, i.e. IJ beomesthe set of all ground instanes satis�ed by J . Then every I ∈ TempClosure(IJ) iseasily seen to be a set�based Herbrand�model of P . �The opposite diretion is also true although it is muh more ompliated to prove (dueto the more ompliated de�nition of struture�based interpretations).Lemma 5.2.2Let P be a Prolog(+T)�program. If P has a set�based Herbrand�model, then P hasa struture�based Herbrand�model.Proof. Let I ⊆ BFoLtl
P be a set�based Herbrand�model of P , that is I is tempo-rally losed and I |= P . We will onstrut a struture�based interpretation JI =

(UP , S, s0, δ1, δ2, w,I) from I suh that JI |= P . Therefore de�ne S = {s(i) | i ∈ N}and s0 = s(0). Furthermore de�ne for s ∈ S and any t = f(t1, . . . , tn) ∈ UP : I(s, t) =

I(s, f)(t1, . . . , tn) = f(t1, . . . , tn) as obvious. Sine every element of P is onsidereduniversally losed we an set w as any arbitrary mapping.We then de�ne δ1 :=
{(
s(i), s(i+1)

)
| i ≥ 0

} and δ2 :=
{(
s(i), s(i+j)

)
| i, j ≥ 0

}. Afterthis we proeed as follows:1. Take some ϕ from I and set I = I \ {ϕ}.2. Case 1 if ϕ = Xip(t1, . . . , tn) for some i ≥ 0, some prediate symbol p of arity n

5.2 Delarative Semantis of Prolog(+T) 73and t1, . . . , tn ∈ UP , then we set
I
(

s(i), p
)

(t1, . . . , tn) = 1,Case 2 if ϕ = XiGψ for some i ≥ 0 and some ψ ∈ BFoLtl
P , then set

I
(

s(i+j), ψ
)

= 1for every j ≥ 0,Case 3 if ϕ = XiFψ for some i ≥ 0 and some ψ ∈ BFoLtl
P , then set

I
(

s(i+j), ψ
)

= 1for some j ≥ 0,Case 4 if ϕ = Xiϕ1Uϕ2 for some i ≥ 0 and ϕ1, ϕ2 ∈ BFoLtl
P , then set

I
(

s(i), ϕ2

)

= 1or
I
(

s(i), ϕ1

)

= 1 and I (s(i+1), ϕ1Uϕ2

)

= 1andCase 5 if ϕ = Xiϕ1Pϕ2 for some i ≥ 0 and ϕ1, ϕ2 ∈ BFoLtl
P , then set

I
(

s(i), ϕ2

)

= 0and
I
(

s(i), ϕ1

)

= 1 or I (s(i+1), ϕ1Pϕ2

)

= 1.3. If I 6= ∅, then go bak to step 1.

74 Chapter 5. The Programming Language Prolog(+T)It is obvious that the struture�based interpretation JI whih emerges by applying thesesteps as long as I 6= ∅ (i.e. the limit interpretation) is a struture�based Herbrand�modelof P . �Theorem 5.2.1 (Equivalene of set� and struture�based interpretations)Let P be any Prolog(+T)�program. Then P has a struture�based Herbrand�modelif and only if P has a set�based Herbrand�model.Proof. Immediately from Lemma 5.2.1 and Lemma 5.2.2. �

5.2.2. Redution of LiteralsIt will turn out useful to introdue a onept of redution for temporal literals. Intuitivelya redued form of some temporal literal ϕ is a normal form Red(ϕ). We will thereforede�ne how a redued literal looks like and how it an be e�etively omputed given the(unredued) literal.An approah to de�ne a ertain type of normal�form for temporal logi formulas hasbeen presented in [65℄ and [64℄ for the propositional logi Ltl enrihed with past opera-tors. However, this separated normal form is de�ned for a muh larger lass of formulasthan only atoms and literals. Consequently the struture of this normal form is muhmore ompliated than neessary for our purposes.In order to ompute redued forms of literals we will exploit several simple semantialequivalenes. The basi idea is to �rst pull out the negation operator (if it is ontained), sothat eah redued literal ϕ is either of the form ϕ = ψ for some literal ψ not ontaining notor ϕ = not(ψ) for some ψ not ontaining not. The following set of logial equivaleneswill be the basis of our redution onept.

5.2 Delarative Semantis of Prolog(+T) 75GGϕ 7→ Gϕ, FFϕ 7→ Fϕ,Gnot(ϕ) 7→ not(Fϕ), Fnot(ϕ) 7→ not(Gϕ),Xnot(ϕ) 7→ not(Xϕ), not(not(ϕ)) 7→ ϕ,Xfalse 7→ false, Xtrue 7→ true,Gfalse 7→ false, Gtrue 7→ true,Ffalse 7→ false, Ftrue 7→ true,

trueUϕ 7→ Fϕ, truePϕ 7→ not(ϕ),
ϕUtrue 7→ true, ϕPtrue 7→ false,

falseUϕ 7→ ϕ, falsePϕ 7→ not(Fϕ),
ϕUfalse 7→ Gϕ and ϕPfalse 7→ Fϕ.Figure 5.1.: Rewrite System for omputing redued literalsLemma 5.2.3Let ϕ be any formula from FoLtl. ThenGGϕ ≡ Gϕ, FFϕ ≡ Fϕ,Gnot(ϕ) ≡ not(Fϕ), Fnot(ϕ) ≡ not(Gϕ),Xnot(ϕ) ≡ not(Xϕ), not(not(ϕ)) ≡ ϕ,Xfalse ≡ false, Xtrue ≡ true,Gfalse ≡ false, Gtrue ≡ true,Ffalse ≡ false, Ftrue ≡ true,

trueUϕ ≡ Fϕ, truePϕ ≡ not(ϕ),

ϕUtrue ≡ true, ϕPtrue ≡ false,

falseUϕ ≡ ϕ, falsePϕ ≡ not(Fϕ),

ϕUfalse ≡ Gϕ and ϕPfalse ≡ Fϕ.These equivalenes are easily seen to be orret. In order to de�ne a suitable oneptof reduedness we will onvert the equivalenes into a terminating and on�uent rewritesystem. The rules of this system are then applied exhaustively to a literal and theresulting nonreduible literal is said to be the redued form of the original literal. Theset of rules is given in Figure 5.1.In order to analyze the properties of the introdued rewrite system we will have to

76 Chapter 5. The Programming Language Prolog(+T)review some of the basi onepts from term rewriting. The presentation will be standard(see [13℄, [12℄ or [83℄).Let t ∈ T be a term. The set of positions of t is de�ned as1. Pos(X) = {ε} if t = X ∈ X and2. Pos(f(t1, . . . , tn) = {ε} ∪⋃n
i=1{ip | p ∈ Pos(ti)}.Similarly we de�ne positions in literals as follows:Pos(true) = Pos(false) = {ε},Pos(p(t1, . . . , tn)) = {ε} ∪

n⋃

i=1

{ip | p ∈ Pos(ti)},Pos(¬ϕ) = Pos(ϕ),Pos(Xϕ) = Pos(Gϕ) = Pos(Fϕ)

= {ε} ∪ {1p | p ∈ Pos(ϕ) andPos(ϕ1Uϕ2) = Pos(ϕ1Pϕ2)

= {ε} ∪ {1p | p ∈ Pos(ϕ1)} ∪ {2p | p ∈ Pos(ϕ2)}.So Pos(o) ⊆ N
∗ for any logial objet o.The term respetively literal at any given position an then be extrated as follows:1. t|ε = t for eah t ∈ T and2. f(t1, . . . , ti, . . . , tn)|ip = ti|p for p ∈ Pos(ti).Similarly we an extrat subparts from literals:1. ϕ|ε = ϕ for every literal ϕ,2. p(t1, . . . , ti, . . . , tn)|ip = ti|p for p ∈ Pos(ti),3. Xϕ|1p = Gϕ|1p = Fϕ|1p = ϕ|p for p ∈ Pos(ϕ),

5.2 Delarative Semantis of Prolog(+T) 774. (ϕ1Uϕ2)|1p = (ϕ1Pϕ2)|1p = ϕ1|p for p ∈ Pos(ϕ1) and5. (ϕ1Uϕ2)|2p = (ϕ1Pϕ2)|2p = ϕ2|p for p ∈ Pos(ϕ2).Example 5.2.2Let t = f(f(g(X, f(a)))) and ϕ = p(f(g(a, f(a)))) be given. ThenPos(t) = {ε, 1, 11, 111, 112, 1121} ,Pos(ϕ) = Pos(p(f(g(a, f(a)))))
= {ε} ∪ {1p | p ∈ Pos(f(g(a, f(a))))}
= {ε} ∪ {1ε, 11, 111, 1111, 1112, 11121}

= {ε, 1, 11, 111, 1111, 1112, 11121}and
t|112 = f(a) t|1121 = a

ϕ|11 = f(g(a, f(a))) ϕ|11121 = aThe operation of replaement is now de�ned as follows (following the formalisms from[13℄):1. t′[t]|ε = t for t, t′ ∈ X ,2. f(t1, . . . , ti, . . . , tn)[t]|ip = f(t1, . . . , ti−1, ti[t]|p, ti+1, . . . , tn) for t ∈ X and p ∈Pos(ti),3. ϕ[ψ]|ε = ¬ϕ[ψ]|ε = ψ for literals ϕ,ψ,4. a) (Xϕ[ψ])|1p = X(ϕ[ψ]|p) for p ∈ Pos(ϕ) if ϕ|p is a literal andb) (Xϕ[t])|1p = X(ϕ[t]|p) for p ∈ Pos(ϕ) if ϕ|p is a term,5. a) (Gϕ[ψ])|1p = G(ϕ[ψ]|p) for p ∈ Pos(ϕ) if ϕ|p is a literal andb) (Gϕ[t])|1p = G(ϕ[t]|p) for p ∈ Pos(ϕ) if ϕ|p is a term,

78 Chapter 5. The Programming Language Prolog(+T)6. a) (Fϕ[ψ])|1p = F(ϕ[ψ]|p) for p ∈ Pos(ϕ) if ϕ|p is a literal andb) (Fϕ[t])|1p = F(ϕ[t]|p) for p ∈ Pos(ϕ) if ϕ|p is a literal,7. (ϕ1Uϕ2)[ψ]|1p = (ϕ1Pϕ2)|1p = ϕ1|p for p ∈ Pos(ϕ1) and8. (ϕ1Uϕ2)[ψ]|2p = (ϕ1Pϕ2)|2p = ϕ2|p for p ∈ Pos(ϕ2).Using replaement we de�ne redution formally as follows. Let a set {li 7→ ri | i =

1, . . . , n} of rules be given. Then1. ϕ 7→ ψ if and only if there is p ∈ Pos(ϕ), i ∈ {1, . . . , n} and a substitution σ suhthat σ(li) = ϕ|p and ψ = ϕ[σ(ri)]|p,2. ϕ n7→ ψ for n ∈ {1, 2, . . . } if and only if there is a sequene ϕ0, ϕ1, . . . , ϕn suh that
ϕ0 = ϕ, ϕn = ψ and ϕi 7→ ϕi+1 for i ∈ {0, 1, . . . , n− 1} and3. ϕ ∗7→ ψ if and only if ϕ = ψ or there is an n suh that ϕ n7→ ψ.A rewrite system given by a set of rules {li 7→ ri | i = 1, . . . , n} (for some �nite n) isalled terminating if the length of redutions is �nite. Formally: there is no sequene

(ϕi)i∈N suh that ϕi 6= ϕi+1 and ϕi 7→ ϕi+1 for every i ≥ 0. So in a terminating rewritesystem every literal will be redued to some literal whih annot be redued any further.Similarly we will all literals ϕ1 and ϕ2 joinable if there is ψ suh that ϕ1
∗7→ ψ and

ϕ2
∗7→ ψ. 7→ is alled on�uent (loally on�uent) if for every ϕ suh that ϕ ∗7→ ϕ1(ϕ 7→ ϕ1) and ϕ ∗7→ ϕ2 (ϕ 7→ ϕ2) there is ψ suh that ϕ1

∗7→ ψ and ϕ2
∗7→ ψ. Terminationand on�uene are properties of a rewrite system whih are essential if one wants toompute normal forms.In order to analyze the on�uene of a rewrite system it su�es to onentrate ona �nite set of redutions, so alled ritial pairs. Assume that r(1) = li1 7→ ri1 and

r(2) = li2 7→ ri2 are two rules. We will all r(1) and r(2) overlapping (at position p) if andonly if there is a position p ∈ Pos(li1) and a substitution σ suh that σ = mgu(li1 |p, li2).

5.2 Delarative Semantis of Prolog(+T) 79Critial pairs are pairs of literals whih an be derived from the appliation of a restritedkind of overlapping rules.De�nition 5.2.3 (Critial Pair, e.g. Baader and Nipkow [13℄)Let r(1) = li1 7→ ri1 and r(2) = li2 7→ ri2 be overlapping at position p ∈ Pos(li1)suh that li1 |p 6∈ X and let σ = mgu(li1 |p, li2). Then 〈σ(ri1), σ(li1 [σ(ri2)]|p〉 is alled aritial pair (with respet to 7→).The following lassial result shows that on�uene of a terminating rewrite system 7→an be proved by heking if ritial pairs are joinable.Lemma 5.2.4 (Critial�Pair�Lemma, Knuth and Bendix [90℄)A terminating rewrite system 7→ is on�uent if and only if all ritial pairs (with respetto 7→) are joinable.From now on we will onentrate on the rewrite system desribed in Figure 5.1. Thissystem will therefore be denoted as 7→. We will see that 7→ indeed has the desiredproperties. The �rst property is immediate.Lemma 5.2.5
7→ is terminating.Proof. First observe that no appliation of a rewrite step yields a literal whih is longerthan the original literal. In partiular there are several rules whih shorten the literals.Sine every literal onsists of a �nite number of symbols, these rules an only be applied a�nite number of times. So now onsider the length�preserving rules Gnot(ϕ) 7→ not(Fϕ),Fnot(ϕ) 7→ not(Gϕ) and Xnot(ϕ) 7→ not(Xϕ). It is obvious that these rules pushnegations to the left. But this an also be done only a �nite number of times (due to the�nite length of literals), so the rules annot be applied in�nitely often. This proves thelemma. �

80 Chapter 5. The Programming Language Prolog(+T)In order to show that 7→ is also on�uent we will prove that all ritial pairs arejoinable.1. Let the rule GGϕ 7→ Gϕ overlap with itself. Then there are two possible rewritesteps (the replaed subliteral is underlined):GGGϕ 7→ GGϕ andGGGϕ 7→ GGϕ.Sine the literals whih emerge from applying these two steps are idential, thispair is learly joinable.2. Similarly it an be shown that an overlapping of FFϕ 7→ Fϕ with itself is joinableusing the following steps: FFFϕ 7→ FFϕ andFFFϕ 7→ FFϕ.3. If Gnot(ϕ) 7→ not(Fϕ) overlaps with not(not(ϕ)) 7→ ϕ we haveGnot(not(ϕ)) 7→ Gϕ andGnot(not(ϕ)) 7→ not(Fnot(ϕ)) 7→ not(notGϕ)) 7→ Gϕ.4. If Fnot(ϕ) 7→ not(Gϕ) overlaps with not(not(ϕ)) 7→ ϕ we haveFnot(not(ϕ)) 7→ Fϕ andFnot(not(ϕ)) 7→ not(Gnot(ϕ)) 7→ not(not(Fϕ)) 7→ Fϕ.

5.2 Delarative Semantis of Prolog(+T) 815. If Xnot(ϕ) 7→ not(Xϕ) overlaps with not(not(ϕ)) 7→ ϕ we haveXnot(not(ϕ)) 7→ Xϕ andXnot(not(ϕ)) 7→ not(Xnot(ϕ)) 7→ not(not(Xϕ)) 7→ Xϕ.The other rules of the rewrite system an only overlap in a nonritial way, so eahritial pair with respet to 7→ is joinable and the following lemma is proved.Lemma 5.2.6
7→ is on�uent.From now on let Red(ϕ) denote the uniquely determined redued literal whih emergesfrom the appliation of the above rewrite system. We have

ϕ ≡ Red(ϕ)(due to the fat that 7→ is onstruted from a set of semantial equivalenes), and there-fore the following theorem holds.Theorem 5.2.2For every FoLtl�literal ϕ there is a uniquely determined normal form Red(ϕ) with
ϕ ≡ Red(ϕ) whih an be e�etively omputed.In some of the following hapters we will restrit our analysis to redued literals sinethese an be handled muh easier than general ones.5.2.3. Semantis for programsWe will now show how the semantis of a FoLtl�program P an be haraterized in termsof the stable model semantis introdued by Gelfond and Lifshitz in [73℄. The adaptionof the Gelfond�Lifshitz onstrutions is neessary sine rules in Prolog(+T)�programsmay ontain negated literals in the tail (note that the problem of induing stable models,

82 Chapter 5. The Programming Language Prolog(+T)i.e. models for normal (nontemporal) logi programs has been already addressed, i.e. in[128℄ and [125℄). So the results from logi programming regarding de�nite logi programssuh as the existene of monotoni and ontinuous operators whih have �xpoints whihan be seen as least models (in fat they are idential to the intersetion of all Herbrand�models, see [164℄) annot be easily generalized to Prolog(+T)�programs anymore.For nontemporal logi programming languages, Gelfond and Lifshitz have extended thelassial immediate onsequene operator TP whih haraterizes the least Herbrand�Model to an operator whih, given any subset M of BP , omputes a least Herbrand�model of a modi�ed de�nite program PM whih (if M is hosen in the right way) hasthe property of being a stable model of P (see [73℄).We will now adapt the neessary onepts introdued in [73℄ in order to deal withProlog(+T)�programs.So assume that a set P onsisting of redued ground rules is given and M ⊆ BFoLtl
Pis any set of redued ground atoms built from symbols ourring in P . The program PMis then onstruted as follows:1. if there is a rule in P suh that not(ϕ) for some ϕ ∈ M ours in the tail of thisrule, then this rule is deleted and2. negated atoms in the tails of the remaining lauses are also deleted.Then PM is learly negation�free in the sense that no rule in PM ontains a negatedatom in its tail. We will see that negation�free sets of Prolog(+T)�ground�rules havemodels (in the ase of satis�ability). Note that P is in general not satis�able as shownin the example after De�nition 5.2.2 on page 71.For satis�able negation�free programs we an indeed extend the �xpoint semantis of�rst order logi programming languages in a straightforward way. Reall that P has beenrequired to onsist only of ground rules, that is in general, P is not a �nite set of rulesanymore. We proeed as follows:

5.2 Delarative Semantis of Prolog(+T) 831. starting from the empty set ∅ we will onstrut an in�nite tree onsisting of nodeslabeled with subsets of BFoLtl
P and2. show that the union of all labels of nodes on any maximal path in this tree is aset�based Herbrand�model of P .We will use the following extension of the immediate onsequene operator TP (see [164℄or [105℄). This operator is used in the theory of �rst order Logi Programming to deriveharaterizations for the semantis of a de�nite program. The semantis of a program Pis there given as the smallest set of ground atoms of the underlying �rst order languagewhih P satis�es. Equivalently the semantis is given as the set of all implied groundatoms implied by the program. This set an be haraterized as the least �xpoint of anoperator (namely the operator TP as introdued in [164℄) and is easily seen to be uniquelydetermined (sine Herbrand�models of de�nite logi programs an be interseted yieldingHerbrand�models). For haraterizing the semantis of Prolog(+T)�programs we willhange the original operator TP in a way that allows the treatment of FoLtl�objetsrather than only �rst order objets.De�nition 5.2.4 (Immediate Consequene Operator for FoLtl)Let P be any negation�free set of ground rules. The mapping TFoLtlP : 2B

FoLtl
P →

2B
FoLtl
P is de�ned as follows:
TFoLtlP (I) =

ϕ ∈ BFoLtl
P |

there is a rule ϕ :−ψ1, . . . , ψk. in P suh that
I |= ψ1, . . . , ψk

.

This operator will be used together with the operator TempClosure in alternatingorder.

84 Chapter 5. The Programming Language Prolog(+T)Now assume that any negation�free Prolog(+T)�program P whih only ontainsground rules is given. We onstrut an in�nite labeled tree T (P) = (V,E, l) with l : V →

2B
FoLtl
P suh that the following onditions are satis�ed:1. V ontains a uniquely determined root node v0,2. l(v0) = ∅ and3. for eah v ∈ V it holds thata) if v is on an even level then there is v′ ∈ V suh that (v, v′) ∈ E and l(v′) =

TFoLtlP (l(v)) andb) if v is on an odd level then assume thatTempClosure(l(v)) = {T1, . . . ,Ti, . . . }and there are nodes v′1, . . . , v′i, · · · ∈ V suh that (v, v′i) ∈ E and l(v′i) = Ti forevery i ≥ 1.Given T (P) we de�ne the set p(T (P)) to onsist of all maximal paths in T , that isof all (in general in�nite) maximal sequenes of nodes (vi)i∈N suh that (vi, vi+1) ∈ E.If π ∈ p(T (P)) is a maximal path then V (π) denotes the set of nodes whih are visitedwhile traversing π.Lemma 5.2.7For every satis�able set P of negation�free ground rules and for every π ∈ p(T (P)) itholds that1. ⋃v∈V (π) l(v) |= P and2. ⋃v∈V (π) l(v) |= P is temporally losed.Proof. The �rst laim is lear by de�nition of TFoLtlP . For the proof of the seond laim�x any π ∈ p(T (P)). If ⋃v∈V (π) l(v) is not temporally losed, then an appliation of the

5.2 Delarative Semantis of Prolog(+T) 85operator TempClosure would yield a temporally losed superset whih shows that πis not maximal in this ase. This ontradits the assumption on π. So ⋃v∈V (π) l(v) istemporally losed. �So the models of P derived by the above onstrution an be olleted in a set ΘP asfollows:
ΘP =

⋃

v∈V (π)

l(v) | π ∈ p(T (P))

.In order to deal with programs ontaining negation, we will now onentrate on pro-grams PM as desribed above.Lemma 5.2.8Let P be a set of ground Prolog(+T)�rules and let M ⊆ BFoLtl

P be a set of atomsourring in P . If P is satis�able, then every J ∈ ΘPM
is a Herbrand�model of P .Proof. Let M be as required. Then J |= PM for every J ∈ ΘPM

. Assume that
PM = {P1, . . . , Pn}, �x J ∈ ΘPM

and i ∈ {1, . . . , n}. Sine J |= PM we have J |= Pi.Consider the following ases.Case 1 Pi ∈ P . Then the laim is immediate.Case 2 Pi 6∈ P . Then Pi emerges from a rule from P by deleting negated atoms in thetail of Pj . That is for Pi = ϕ :−ψ1, . . . , ψk. there is Pj = ϕ :−ψ1, . . . , ψk, ψ̄1, . . . , ψ̄l.in P for ψ̄1, . . . , ψ̄l ∈ BFoLtl
P . Sine J |= Pi we have J |= ϕ ∨ ¬ψ1, . . . ,¬ψk whihimplies J |= ϕ ∨ ¬ψ1 ∨ · · · ∨ ¬ψk ∨ ψ̄1 ∨ · · · ∨ ψ̄l and therefore J |= Pj .It remains to prove that also the rules C from P whih have been deleted during the on-strution of PM are satis�ed by J . If C is suh a rule, then C = ϕ :−ψ1, . . . , ψk, not(ψ).for some ψ ∈ M . Sine J |= M the laim is immediate. So J is a model of P and thelemma is proved. �

86 Chapter 5. The Programming Language Prolog(+T)5.3. A Saturation�based temporal Proof ProedureAs we have already mentioned in hapter 5.2 we will now study the operational semantisof Prolog(+T). This semantis will be studied by presenting a alulus whih is bothsound and refutation omplete. Basially this alulus will be an extension of the well�known tableaux priniple whih is a quite popular priniple in many areas of automatedreasoning. In ontrast to Prolog where an eventually modi�ed (and speed up) versionof the SLD�resolution priniple is hosen for proving logial onsequene of goals (andtherefore for omputing answers to programs) resolution�based approahes are not thebest hoie for our problem. Consider the following problem: given a program P =

{P1, . . . , Pn} and a goal G =:−ϕ1, . . . , ϕm. Assume that i is suh that ϕi = Gp(X).Then ϕi ≡ p(X) ∧ XGp(X). If there is for example a rule Pj = XXXp(X) :−q(Y, Y). in
P the normal SLD�priniple will not be able to ompute a resolvent. But it is obviousthat G′ = ϕ1, . . . , ϕi−1, p(X),Xp(X),XXp(X), q(Y, Y),XXXXGp(X), ϕi+1, . . . , ϕm should bea resolvent of G and Pj . Therefore we will adapt the tableaux alulus in order to dealwith temporal onstruts. We will see that the resulting proof proedure is indeed soundand (in some sense) refutation omplete.The study of sound and omplete proof�proedures for FoLtl and its fragments datesas far bak as to the �rst ontributions of Abadi and Manna (see [3℄). It has been pointedout quite early that the whole logi FoLtl is not only undeidable (whih is lear sine itontains the whole �rst order logi) but also not reursively enumerable (see e.g. [82℄ or[30℄). Consequently no omplete proof�proedure for FoLtl an exist. But restritionsof FoLtl yield reursively enumerable fragments. For example in [82℄ a restrited usageof temporal operators yields the monodi fragment whih an be embedded into themonadi seond order theory5. Omitting the use of U and P yields a logi whih an bereursively enumerated. Enumeration an be arried out by a sequent�style alulus (see5A formula ϕ is alled monodi if every subformula ψ of ϕ whih has the form ψ = ψ1⊕ψ2 for ⊕ ∈ {U,P}has at most one free variable. Consequently the monodi fragment of �rst order tempporal logionsists of all monodi formulas.

5.3 A Saturation�based temporal Proof Proedure 87[14℄). Other types of proof�proedures for FoLtl�fragments are Hilbert�style aluli(see e.g. [53℄), Resolution�style aluli (see [91℄, [41℄, [43℄, [44℄, [91℄, [41℄ and [42℄) andASM�based proedures (see [174℄). A good survey of �rst order temporal logi proof�proedures has been presented reently by C. Castellini in his Ph.D. Thesis (see [27℄).Our proof�proedure whih we will present on this setion is a tableaux�style proe-dure. Several modi�ations of the tableaux�onstrution for �rst order logi have beenpresented in order to derive proof�proedures for �rst order temporal logi languages (see[28℄ and [29℄ for FoLtl and [114℄ for the �rst order version of Ctl). Nevertheless ourmethod has its justi�ation sine it is de�ned espeially for Prolog(+T)�formulas andsine it integrates the redution�onept for temporal literals introdued above.5.3.1. Tableaux RulesSine Prolog(+T) is �rst order logi based we will have to de�ne a proof proedurewhih enables us to handle �rst order logi onstruts. The tableaux method (see [66℄) isone suh method. Basially it onstruts a tableaux (whih is represented as a diretedgraph) onsisting of nodes whih are labeled with sets of formulas. The key propertyfor the soundness and ompleteness is the following: if n1 and n2 are suh nodes and F1and F2 are the sets of formulas labeling these two nodes and n2 is a suessor of n1 thenunsatis�ability of F2 implies unsatis�ability of F1.We will distinguish two priniple kinds of tableaux rules here: expansion rules andsaturation rules. Expansion rules are rules whih onsider the �rst order part of a formula.An example might be the following: if ϕ1 ∧ ϕ2 is to be satis�ed, then both ϕ1 and ϕ2have to be satis�ed at the same time. On the other hand, saturation rules onsider thetemporal part of formulas. Here we an argue with the example presented above: if Gϕis to be satis�ed, then ϕ and XGϕ have to be satis�ed (in other words Xiϕ has to besatis�ed for every i ≥ 0).The disussion of the proof proedure will now proeed as follows: �rst we will have

88 Chapter 5. The Programming Language Prolog(+T)to de�ne ertain onepts whih are needed for the presentation of the proof proedure.This will inlude a node format for the nodes of the tableaux. After having introduedthe basis we will onsider the expansion rules and the saturation rules separately. Wewill see that the expansion rules are the rules from the lassial tableaux alulus for�rst order prediate logi (moreover, the proof proedure to be introdued is apable ofhandling formulas whih are not restrited to the formulas ourring in Prolog(+T)�programs). In order to be appliable we will then present two kinds of terminationriteria: riteria for termination in the ase of suess and in the ase of failure. We willsee that termination by failure is a muh more di�ult task than suessful termination.The hapter will then be ontinued by proving the soundness and refutation ompletenessof the proedure.Basi FormalismsWe will now desribe the format of the nodes from whih a tableaux is built up.De�nition 5.3.1 (Tableaux node)A tableaux node is a tuple n = (Φ, F, S) where Φ is a nonempty set of FoLtl�formulasand F and S are (possibly empty) sets of tableaux nodes. The sets F and S will bereferred to as the father nodes and the son nodes of n.For the proofs in later setions we will introdue the following abbreviation. For anode n we will denote the set of formulas labeling this node by F(n). In other words if
n = (Φ, F, S), then F(n) = Φ.De�nition 5.3.2 (Path)A path is a sequene π = (n0, n1, . . . , nk, . . .) of tableaux nodes suh that ni =

(Φi, Fi, Si) for i = 0, 1, . . . , F0 = ∅ and for eah i ∈ {0, 1, . . . } it holds that

5.3 A Saturation�based temporal Proof Proedure 89
ni+1 ∈ Si. A node n is said to our on π if there is an index i suh that ni = n. If
π = (n0, n1, . . . , nk−1), the integer k is alled the length of π and π is alled �nite (orof �nite length). Otherwise (i.e. if no suh k exists), π is alled in�nite (or of in�nitelength).Note that in general paths in a tableaux will be of in�nite length. This will be ofinterest in the proof of refutation ompleteness whih we will present later on.We will now desribe the onstrution of the initial tableaux node for the tableaux tobe onstruted from a formula ϕ. This node is given as follows:

n0 = ({ϕ}, ∅, ∅) .Whenever we will refer to the initial node of a tableaux from now on we will mean anode n0 onstruted in this way.Expansion RulesWe will now desribe how to onstrut new nodes from nodes whih have already beenonstruted. The rules to be desribed in this setion will later on be referred to asexpansion rules. We assume that n = (Φ, F, S) is a node whih has been hosen from aset N of nodes. A �xed seletion rule has to be hosen in order to selet formulas from
F(n) to whih the rules an be applied. The only requirement whih we will have to puton the seletion rule is the requirement of fairness. Informally fairness means that noappliation of a rule to a formula from F(n) is retarded for an in�nite time. Equivalentlywe an say that every possible inferene step is eventually arried out (as long as theproedure does not terminate).Now let ϕ be the seleted formula. We distinguish the following ases:

90 Chapter 5. The Programming Language Prolog(+T)1. ϕ = ϕ1 ∧ ϕ2. In this ase we reate a node n′ = (F(n′), F ′, S′) as follows:
F(n′) = (F(n) \ {ϕ1 ∧ ϕ2}) ∪ {ϕ1, ϕ2} ,

F ′ = {n}, S′ = ∅. Furthermore we update the set S of sons of n to S = S ∪ {n}.This rule will from now on be referred to as (∧1).2. ϕ = ¬ (ϕ1 ∨ ϕ2). In this ase we reate a node n′ = (F(n′), F ′, S′) as follows:
F(n′) = (F(n) \ {¬ (ϕ1 ∧ ϕ2)}) ∪ {¬ϕ1,¬ϕ2} ,

F ′ = {n}, S′ = ∅. Furthermore we update the set S of sons of n to S = S ∪ {n}.This rule will from now on be referred to as (∧2).3. ϕ = ϕ1 ∨ ϕ2. In this ase we reate two nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) as follows:
F(n′) = (F(n) \ {ϕ1 ∨ ϕ2}) ∪ {ϕ1} ,

F ′ = {n}, S′ = ∅ and
F(n′′) = (F(n) \ {ϕ1 ∨ ϕ2}) ∪ {ϕ2} ,

F ′′{n} =, S′ = ∅. The set S of sons of n will be updated to S = S ∪ {n′, n′′}. Thisrule will be referred to as (∨1).4. ϕ = ¬ (ϕ1 ∧ ϕ2). In this ase we reate two nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) as follows:
F(n′) = (F(n) \ {¬ (ϕ1 ∧ ϕ2)}) ∪ {¬ϕ1} ,

5.3 A Saturation�based temporal Proof Proedure 91
F ′ = {n}, S′ = ∅ and

F(n′′) = (F(n) \ {¬ (ϕ1 ∧ ϕ2)}) ∪ {¬ϕ2} ,

F ′′{n} =, S′ = ∅. The set S of sons of n will be updated to S = S ∪ {n′, n′′}. Thisrule will be referred to as (∨2).5. ϕ = ϕ1 → ϕ2. In this ase two nodes n′ = (F(n′), F ′, S′) and n′′ = (F(n′′), F ′′, S′′)will be onstruted with
F(n′) = (F(n) \ {ϕ1 → ϕ2}) ∪ {¬ϕ1} ,

F ′ = {n}, S′ = ∅ and
F(n′) = (F(n) \ {ϕ1 → ϕ2}) ∪ {ϕ2} ,

F ′ = {n}, S′ = ∅. The set S will be updated to S = S ∪ {n′, n′′}. This rule will bereferred to as (→ 1).6. ϕ = ¬ (ϕ1 → ϕ2). Here a node n′ = (F(n′), F ′, S′) will be onstruted with
F(n′) = (F(n) \ {¬ (ϕ1 → ϕ2)}) ∪ {ϕ1,¬ϕ2} ,

F ′ = {n} and S′ = ∅. S will be updated to S = S ∪ {n′}. The rule will be referredto as (→ 2).7. ϕ = ϕ1 ↔ ϕ2. Here we reate a node n′ = (F(n′), F ′, S′) with
F(n′) = (F(n) \ {ϕ1 ↔ ϕ2}) ∪ {ϕ1 → ϕ2, ϕ2 → ϕ1} ,

F ′ = {n} and S′ = ∅. S is updated to S = S ∪ {n′}. The rule will be referred to

92 Chapter 5. The Programming Language Prolog(+T)as (↔ 1).8. ϕ = ¬ (ϕ1 ↔ ϕ2). Here we reate two nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) with
F(n′) = (F(n) \ {¬ (ϕ1 ↔ ϕ2)}) ∪ {¬ (ϕ1 → ϕ2)} ,

F ′ = {n}, S′ = ∅ and
F(n′′) = (F(n) \ {¬ (ϕ1 ↔ ϕ2)}) ∪ {¬ (ϕ2 → ϕ1)} ,

F ′′ = {n}, S′′ = ∅. Again S is updated to S = S ∪ {n′, n′′}. The rule will bereferred to as (↔ 2).9. ϕ = ¬¬ψ. Here we will reate a node n′ = (F(n′), F ′, S′) with
F(n′) = (F(n) \ {¬¬ψ}) ∪ {ψ} ,

F ′ = {n} and S′ = ∅. S is updated to S = S ∪ {n′} and the rule is referred to as
(¬−E).10. ϕ = ¬∀Xψ(X). Here we will reate a node n′ = (F(n′), F ′, S′) with

F(n′) = (F(n) \ {¬∀Xψ(X)}) ∪ {∃X¬ψ(X)} ,

F ′ = {n} and S′ = ∅. S is updated to S = S ∪ {n′} and the rule is referred to as
(R∀).11. ϕ = ¬∃Xψ(X). Here we will reate a node n′ = (F(n′), F ′, S′) with

F(n′) = (F(n) \ {¬∃Xψ(X)}) ∪ {∀X¬ψ(X)} ,

5.3 A Saturation�based temporal Proof Proedure 93
F ′ = {n} and S′ = ∅. S is updated to S = S ∪ {n′} and the rule is referred to as
(R∃).12. ϕ = ∀Xψ(X). Here we reate a new node n′ = (F(n′), F ′, S′) with

F(n′) = F(n) ∪ {ψ(t)}for some ground term t whih an be built up from symbols ourring in F(n),
F ′ = {n} and S′ = ∅. We update S to S = S∪{n′} and refer to this rule as (σ−I1).13. ϕ = ∃Xψ(X). Here we reate a new node n′ = (F(n′), F ′, S′) with

F(n′) = F(n) ∪ {ψ(Xnew)}for some variable symbol Xnew 6∈ Var(F(n)), F ′ = {n} and S′ = ∅. We update Sto S = S ∪ {n′} and refer to this rule as (σ−I2).14. ϕ = ∀Xψ and X 6∈ Var(ψ). Here we reate a node n′ = (F(n′), F ′, S′) with
F(n′) = (F(n) \ {∀Xψ}) ∪ {ψ},

F ′ = {n} and S′ = ∅. S is updated to S = S ∪ {n′} and the rule is referred to as
(∀−E).15. ϕ = ∃Xψ and X 6∈ Var(ψ). Here we reate a node n′ = (F(n′), F ′, S′) with

F(n′) = (F(n) \ {∃Xψ}) ∪ {ψ},

F ′ = {n} and S′ = ∅. S is updated to S = S ∪ {n′} and the rule is referred to as
(∃−E).We an group the above rules as follows: (∧1) and (∧2) are alled ∧�type rules, (∨1)

94 Chapter 5. The Programming Language Prolog(+T)and (∨2) are alled ∨�type rules, (→ 1) and (→ 2) are alled →�type rules and (↔ 1)and (↔ 2) are alled ↔�type rules. Furthermore (¬−E) is alled the ¬�elimination rule,
(R∀) and (R∃) are alled rewrite rules, (σ−I1) and (σ−I2) are alled substitution rulesand (∀−E) and (∃−E) are alled quanti�er�elimination rules. The rules are summarizedin Figure 5.2. Here the formula above the fration stroke denotes the seleted formulafrom F(n) and the formulas below the fration strokes denote the formulas reated fromthis formula. The number of olumns below the fration stroke denotes the number ofnew nodes to be reated. For example in

ϕ1 ∧ ϕ2

ϕ1

ϕ2one new node ontaining two new formulas has to be reated.Saturation RulesIn ontrast to the expansion rules desribed above, the saturation rules whih will bedesribed deal with the temporal part of a formula rather than with the �rst order part.We will present two rules for eah of the operators G, F, U and P. For the operator X nosuh rule will be given.As for the expansion rules we will desribe the rules separately by distinguishing thedi�erent possibilities of how a seleted formula might look like. For the rest of this setionassume that i is any �xed integer and n = (F(n), F, S) is the node from whih a formula
ϕ is hosen. The saturation rules are given as follows:1. If ϕ = XiGψ, then we reate a new node n′ = (F(n′), F ′, S′) with F(n′) =

(
F(n) \

{XiGψ}) ∪ {Xiψ,Xi+1Gψ}, F ′ = {n} and S′ = ∅. S is updated to
S = S ∪ {n}. The rule is referred to as (G1).

5.3 A Saturation�based temporal Proof Proedure 95

(∧1)
ϕ1 ∧ ϕ2

ϕ1

ϕ2

(∧2)
¬ (ϕ1 ∨ ϕ2)

¬ϕ1

¬ϕ2

(∨1)
ϕ1 ∨ ϕ2

ϕ1 ϕ2
(∨2)

¬ (ϕ1 ∧ ϕ2)

¬ϕ1 ¬ϕ2

(→ 1)
ϕ1 → ϕ2

¬ϕ1 ϕ2
(→ 2)

¬ (ϕ1 → ϕ2)

ϕ1

¬ϕ2

(↔ 1)
ϕ1 ↔ ϕ2

ϕ1 → ϕ2

ϕ2 → ϕ1

(↔ 2)
¬ (ϕ1 ↔ ϕ2)

¬ (ϕ1 → ϕ2) ¬ (ϕ2 → ϕ1)(¬�E) ¬¬ϕ
ϕ

(∀−E)
∀Xϕ
ϕ

X 6∈ Var(ϕ) (∃−E)
∃Xϕ
ϕ

X 6∈ Var(ϕ)

(R∀) ¬∀Xϕ(X)

∃X¬ϕ(X)
(R∃) ¬∃Xϕ(X)

∀X¬ϕ(X)

(σ−I1)
∀Xϕ(X)

ϕ(t)

for a ground term t whih an be built up from symbolsourring in F(n)

(σ−I2)
∃Xϕ(X)

ϕ(Xnew)
for any new variable symbol XnewFigure 5.2.: Expansion Rules

96 Chapter 5. The Programming Language Prolog(+T)2. If ϕ = ¬XiGψ, then we reate two new nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) with F(n′) =
(
F(n) \

{
¬XiGψ}) ∪ {¬Xiψ}, F ′ = {n} and S′ = ∅and F(n′′) =

(
F(n) \

{
¬XiGψ})∪{¬Xi+1Gψ}, F ′′ = {n} and S′′ = ∅. Additionally

S is updated to S = S ∪ {n′, n′′}. The rule will be alled (G2).3. If ϕ = XiFψ, then we reate two new nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) with F(n′) =
(
F(n) \

{XiFψ}) ∪ {Xiψ}, F ′ = {n} and S′ = ∅and F(n′′) =
(
F(n) \

{XiFψ}) ∪ {Xi+1Fψ}, F ′′ = {n} and S′′ = ∅. Additionally
S is updated to S = S ∪ {n′, n′′}. The rule will be alled (F1).4. If ϕ = ¬XiFψ, then we reate a new node n′ = (F(n′), F ′, S′) with F(n′) =
(
F(n) \

{
¬XiFψ}) ∪ {¬Xiψ,¬Xi+1Fψ}, F ′ = {n} and S′ = ∅. S is updated to

S = S ∪ {n}. The rule is referred to as (F2).5. If ϕ = Xiψ1Uψ2, then we reate two new nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) with F(n′) =
(
F(n) \

{Xiψ1Uψ2

})
∪
{Xiψ2

}, F ′ = {n} and S′ = ∅and F(n′′) =
(
F(n) \

{Xiψ1Uψ2

})
∪
{Xiψ1 ∧ Xi+1ψ1Uψ2

}, F ′′ = {n} and S′′ = ∅.Additionally S is updated to S = S ∪ {n′, n′′}. The rule will be alled (U1).6. If ϕ = ¬Xiψ1Uψ2, then we reate a new node n′ = (F(n′), F ′, S′) with F(n′) =
(
F(n) \

{
¬Xiψ1Uψ2

})
∪
{
¬Xiψ2,¬Xiψ1 ∨ ¬Xi+1ψ1Uψ2

}, F ′ = {n} and S′ = ∅. Sis updated to S = S ∪ {n}. The rule is referred to as (U2).7. If ϕ = Xiψ1Pψ2, then we reate a new node n′ = (F(n′), F ′, S′) with F(n′) =
(
F(n) \

{Xiψ1Pψ2

})
∪
{
¬Xiψ2,Xiψ1 ∨ Xi+1ψ1Pψ2

}, F ′ = {n} and S′ = ∅. S isupdated to S = S ∪ {n}. The rule is referred to as (P1).8. If ϕ = ¬Xiψ1Pψ2, then we reate two new nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) with F(n′) =
(
F(n) \

{
¬Xiψ1Pψ2

})
∪
{Xiψ2

}, F ′ = {n} and S′ =

∅ and F(n′′) =
(
F(n) \

{
¬Xiψ1Pψ2

})
∪
{
¬Xiψ1 ∧ ¬Xi+1ψ1Pψ2

}, F ′′ = {n} and

5.3 A Saturation�based temporal Proof Proedure 97G�type
(G1)

XiGϕ

Xiϕ

Xi+1Gϕ

(G2)
¬XiGϕ

¬Xiϕ ¬Xi+1GϕF�type
(F1)

XiFϕ

Xiϕ Fi+1Fϕ
(F2)

¬XiFϕ

¬Xiϕ

¬Xi+1FϕU�type
(U1)

Xiϕ1Uϕ2

Xiϕ2 Xiϕ1 ∧ Xi+1ϕ1Uϕ2
(U2)

¬Xiϕ1Uϕ2

¬Xiϕ2

¬Xiϕ1 ∨ ¬Xi+1ϕ1Uϕ2P�type
(P1)

Xiϕ1Pϕ2

¬Xiϕ2

Xiϕ1 ∨ Xi+1ϕ1Pϕ2

(P2)
¬Xiϕ1Pϕ2

Xiϕ2 ¬Xiϕ1 ∧ ¬Xi+1ϕ1Pϕ2Redution Rule
(Red)

ϕRed(ϕ)
if Red(ϕ) 6= ϕFigure 5.3.: Saturation Rules

S′′ = ∅. Additionally S is updated to S = S ∪ {n′, n′′}. The rule will be alled
(P2).Additionally we will have to use the following rule (alled the redution rule): If ϕis a literal and Red(ϕ) 6= ϕ, then we reate a new node n′ = (F(n′), F ′, S′) with

F(n′) = (F(n) \ {ϕ})∪{Red(ϕ)}, set F ′ = {n} and S′ = ∅ and update S to S = S∪{n′}.As for the expansion rules the saturation rules are summarized in Figure 5.3.Termination CriteriaIn order to be useful the tableaux proedure needs some riteria to indiate when theexpansion of a node an be aborted. This is a nontrivial task sine in general (and inontrast to �rst order logi) there is nearly always a rule whih may be applied to some

98 Chapter 5. The Programming Language Prolog(+T)formula. To be more preise if n is a tableaux node and if there is at least one formula
ϕ ∈ F(n) suh that ϕ ontains one of the operators G, F, U and P, there is an in�nitesequene (ni)

∞
i=j0

of tableaux nodes suh that nj0 = n and eah nji+1 emerges from njiby appliation of a saturation rule. Consider for example a node n suh that Gϕ ∈ F(n)for some formula ϕ. Then a node n′ an be onstruted suh that {ϕ,XGϕ} ⊆ F(n′) (byappliation of the rule (G1)). This rule an then be applied to n′ yielding n′′ suh that
{Xϕ,XXGϕ} ⊆ F(n′′) and so forth. This example might illustrate the need of some moresophistiated riteria of when to abort the expansion of nodes.We will adapt the onept of losedness of a node whih is known from �rst order logito inlude the temporal operators. In �rst order logi a node is alled losed if thereare literals ϕ1, ϕ2 ∈ F(n) suh that ϕ2 = ¬ψ and ϕ1 and ϕ2 are uni�able. For �rstorder logial literals this is adequate but for FoLtl�literals we need a more ompliatedriterion sine the syntatial form of a literal is in general not unique (onsider e.g.
ϕ1 = not(Xp(X)) and ϕ2 = Xnot(p(X)) where ϕ1 6= ϕ2 but ϕ1 ≡ ϕ2).De�nition 5.3.3Let n be a tableaux node. Then n is alled losed if there are formulas ϕ1 and ϕ2from F(n) suh that1. Red(ϕ1) and Red(¬ϕ2) are uni�able or2. there is an i ≥ 0 suh that Red(ϕ1) = Xiψ(1)

1 Pψ(1)
2 and Red(ϕ2) = Xiψ(2) andRed(ψ

(1)
2) and Red(ψ(2)) are uni�able or3. there is an i ≥ 0 suh that Red(ϕ1) = ¬Xiψ(1)

1 Uψ(1)
2 and Red(ϕ2) = Xiψ(2) andRed(ψ

(1)
2) and Red(ψ(2)) are uni�able.A path π is alled losed if it ontains a losed node. Otherwise π is alled open.The de�nition of losedness presented here is more ompliated then neessary. It

5.3 A Saturation�based temporal Proof Proedure 99would su�e to de�ne losedness solely by the �rst point of the de�nition. However, thetwo other points allow detetion of losedness at an earlier point of time whih mightspeed up the proof proedure.Given the de�nition of losedness we are able to detet several nontrivial ases of losednodes.1. Assume that {¬Xp(X),¬X¬p(X)} ⊆ F(n). Then Red(¬Xp(X)) = ¬Xp(X) andRed(¬¬X¬p(X)) = ¬Xp(X) and an mgu is given by ε. So n is losed.2. Assume that {GXF¬Gp(X, a),FFXGGGp(b, Y} ⊆ F(n). ThenRed(GXF¬Gp(X, a)) = ¬FXGp(X, a)and Red(¬FFXGGGp(b, Y)) = ¬FXGp(b, Y).An mgu is given by {X
b
, Y
a

}. So n is losed.3. Finally assume that {XXFp(a)Pq(b),X¬XG¬p(X)} ⊆ F(n). Here we haveRed(XXFp(a)Pq(b)) = XXFp(a)Pq(b) and Red(X¬XG¬p(X)) = XXFp(X) whihare uni�able with the mgu {X
a

}. So n is losed.Using this de�nition of losedness of nodes we an state the following riterion:Termination by Closedness If n is a node suh that n is losed. Then n an be skipped.Here the term skipping means that it is not neessary to try to apply expansion and/orsaturation rules to n. As we will see, losedness of a node n orresponds to unsatis�abilityof F(n). Consequently we will have to apply rules in suh a way that every path startingfrom the initial node leads to a losed node.The termination riterion from above an be seen as a kind of suess riterion, thatis it enables a proof proedure to determine if the atual node has to be expanded or

100 Chapter 5. The Programming Language Prolog(+T)not. In ontrast we an also state a dual (but muh weaker) riterion of when theomplete onstrution an be aborted. In order to state this riterion we need some morede�nitions.De�nition 5.3.4Let n = (Φ, F, S) be a tableaux node. n is alled disjuntively expanded if only therules (G1) and (F2) an be applied to formulas from F(n) and no subformula of aformula in F(n) ontains U or P.So a node is disjuntively expanded if every possible ontinuation of the path from theroot node leading to this node does not ontain a node whih ontains a formula whihan be split due to the presene of a disjuntion symbol.In addition to the property of being disjuntively expanded we have to state a propertyof a path whih denotes the fat that every possible instantiation has indeed been arriedout.De�nition 5.3.5Let π = (n0, . . . , nk) be a path in a tableaux. Then π is alled ompletely instantiatedif for every ground term t ourring in F(n0) and every node ni on π suh that thereis a formula ∀Xϕ(X) ∈ F(ni) there is a node nj on π with j ≥ i and ϕ(t) ∈ F(nj).These two de�nitions enable us to state the following riterion for termination byfailure.Termination by Failure Let π = (n0, . . . , n) be a ompletely instantiated path and let
n be disjuntively expanded. Then the tableaux onstrution may be aborted if there areno formulas ϕ1, ϕ2 ∈ F(n) and no i ≥ 0 suh that at least one of the following onditionsis ful�lled:

5.3 A Saturation�based temporal Proof Proedure 1011. Red(ϕ1) = Xiψ1, Red(ϕ2) = ¬Xiψ2 and Red(ψ1) and Red(ψ2) are uni�able,2. Red(ϕ1) = ¬Xiψ1, Red(ϕ2) = XjGψ2 for some j ≤ i and Red(ψ1) and Red(ψ2)are uni�able or3. Red(ϕ1) = ¬Xiψ1, Red(ϕ2) = ¬XjFψ2 for some j ≤ i and Red(ψ1) and Red(ψ2)are uni�able.This riterion is sound as the following lemma states.Lemma 5.3.1Let n be a node on an open path π in a suh that the riterion Termination by Failureholds for n. Then F(n) is satis�able.Proof. Let F(n) be as required. Then every ϕ ∈ F(n) is either a �rst order literal or aFoLtl�literal ontaining at most the operators X, G and F (if at all). De�ne the set Jπas follows:
Jπ = {ϕ ∈ F(n) | Var(ϕ) = ∅,Red(ϕ) is positive }Then Jπ |= F(n) and every temporally losed superset of Jπ is a Herbrand�model of

F(n). �For the sake of simpliity we will introdue another formal onept. A node n is saidto fail if the riterion Termination by Failure an be applied to the path πn leading fromthe root node to n.The Tableaux�ProedureHaving de�ned the rules of interest and the termination riteria, the de�nition of a proofproedure based on these rules is almost immediate. Assume that P = {P1, . . . , Pn} isa Prolog(+T)�program and assume that G = ψ1 ∧ · · · ∧ ψm is a Prolog(+T)�goal.As always assume that the Pi have the form Pi = ϕi :−ψ(i)
1 , . . . , ψ

(i)
ni . We onstrut the

102 Chapter 5. The Programming Language Prolog(+T)following formula ϕP,G to be proven unsatis�able:
ϕP,G =

(
n∧

i=1

Pi

)

∧ :−G

≡
(

n∧

i=1

ϕi :−ψ(i)
1 , . . . , ψ(i)

ni

)

∧ (:−ψ1, . . . , ψm)

≡
(

n∧

i=1

ψ
(i)
1 ∧ · · · ∧ ψ(i)

ni
→ ϕi

)

∧
(

m∨

i=1

¬ψi
)

.We then onstrut the initial tableaux node n0 = ({ϕP,G} , ∅, ∅) as desribed above andde�ne two sets of nodes. The set N will onsist of all nodes whih have been onstrutedso far while the set U will ontain all unproessed nodes, that is nodes whih have notyet been ompletely expanded. Initially we have N = U = {n0}. We assume that Uis realized as a queue, that is elements an only be taken from the front of U and putat the bak of U . This ensures fairness of the node seletion rule. See the disussionon page 89 for a treatment of the question of fairness regarding the seletion rule forformulas. While U is not empty and no termination riterion is appliable we take the�rst node nat from U and searh for the �rst formula and the �rst rule whih an beapplied to this formula. New nodes are then reated aording to the de�nition of therule whih has been applied. We formalize this algorithm in Algorithm 1. There wewill use the following notations: sine U is assumed to be a queue struture, the onlyaessible element is the element at the front of U . This element will be returned by thefuntion U.�rst. Consequently the operation U.pop will remove the �rst element from
U . Insertion of elements is only possible at the end of U . So if U = {n1, . . . , nk} and
Nnew = {nnew} (respetively Nnew = {n1new, n2new}) is a set of newly reated nodes, then
U ∪Nnew = {n1, . . . , nk, nnew} (respetively U ∪Nnew = {n1, . . . , nk, n

1new, n2new}).

5.3 A Saturation�based temporal Proof Proedure 103
Algorithm 1 Tableaux algorithm for ground goalsInput:
• Prolog(+T)�program P

• Prolog(+T)�ground goal :−G = G1, . . . , GnOutput: yes i� P |= G1 ∧ · · · ∧Gn1: onstrut ϕP,G2: n0 ← ({ϕP,G}, ∅, ∅)3: N ← {n0}, U ← {n0}Require: U is realized as a queue4: while U 6= ∅ do5: nat ← U.�rst6: U.pop7: if F(nat) is not losed then8: if n fails then9: return no10: else11: selet a formula ϕ ∈ F(nat) and a rule R appliable to ϕ12: apply R to ϕ13: Nnew ← (set of) node(s) reated by rule R14: N ← N ∪Nnew15: U ← U ∪Nnew16: end if17: end if18: end while19: return yes

104 Chapter 5. The Programming Language Prolog(+T)5.3.2. Soundness and Completeness IssuesWe will now address the topi of proving that the tableaux method desribed in theforegoing setion is sound and refutation omplete. The �rst part will be onsidered withsoundness. Therefore we have to note that eah node n = (F(n), F, S) in a tableaux anbe seen as the root of a tableaux starting at this node.The proofs from this setion losely follow the proofs for the nontemporal tableauxproedure as presented in [20℄. Our ontribution is the treatment of the temporal on-struts.Lemma 5.3.2Let n be any tableaux node whih is the root of a losed tableaux. Then F (n) is unsat-is�able.Proof. Let h denote the height of the tableaux T rooted by n, that is h is the length ofthe longest path starting at n. We proeed by indution on h. First assume that h = 0.Then n is a leaf and sine T is losed, we an distinguish the following three ases:Case 1 There is a pair ϕ1, ϕ2 of literals in F(n) suh that Red(ϕ1) and Red(¬ϕ2) areuni�able. So learly F(n) is unsatis�able.Case 2 There is i ≥ 0 suh that Red(ϕ1) = Xiψ(1)
1 Pψ(1)

2 , Red(ϕ2) = Xiψ(2) andRed(ψ
(1)
2) and Red(ψ(2)) are uni�able. Let σ = mgu(Red(ϕ1),Red(ϕ2)) and

ψ = σ(ψ(2)) = σ(ψ
(1)
2) be given. Then we have

σ(Red(ϕ1)) ∧ σ(Red(ϕ2)) = σ(Xiψ(1)
1 Pψ(1)

2) ∧ σ(Xiψ(2))

= Xiσ(ψ
(1)
1)Pσ(ψ

(1)
2) ∧ Xiσ(ψ(2))

≡ ¬Xiσ(ψ
(1)
2) ∧ (Xiσ(ψ

(1)
1) ∨ Xi+1σ(ψ

(1)
1)Pσ(ψ

(1)
2)) ∧ Xiσ(ψ(2))

≡ ¬Xiψ ∧ Xiψ ∧ (Xiσ(ψ
(1)
1) ∨ Xi+1σ(ψ

(1)
1)Pσ(ψ

(1)
2))

≡ false ∧ (Xiσ(ψ
(1)
1) ∨ Xi+1σ(ψ

(1)
1)Pσ(ψ

(1)
2))

≡ false,

5.3 A Saturation�based temporal Proof Proedure 105so learly F(n) is unsatis�able.Case 3 There is i ≥ 0 suh that Red(ϕ1) = ¬Xiψ(1)
1 Uψ(1)

2 , Red(ϕ2) = Xiψ(2) andRed(ψ
(1)
2) and Red(ψ(2)) are uni�able. Again let σ = mgu(Red(ϕ1),Red(ϕ2))and ψ = σ(ψ(2)) = σ(ψ

(1)
2) be given. Then we have

σ(Red(ϕ1)) ∧ σ(Red(ϕ2)) = σ(¬Xiψ(1)
1 Uψ(1)

2) ∧ σ(Xiψ(2))

= ¬Xiσ(ψ
(1)
1)Uσ(ψ

(1)
2) ∧ Xiσ(ψ(2))

≡ ¬Xiσ(ψ
(1)
2) ∧ (¬Xiσ(ψ

(1)
1) ∨ ¬Xi+1σ(ψ

(1)
1 Uψ(1)

2)) ∧ Xiσ(ψ(2))

≡ ¬Xiψ ∧ Xiψ ∧ (¬Xiσ(ψ
(1)
1) ∨ ¬Xi+1σ(ψ

(1)
1 Uψ(1)

2))

≡ false ∧ (¬Xiσ(ψ
(1)
1) ∨ ¬Xi+1σ(ψ

(1)
1 Uψ(1)

2))

≡ false.So F(n) is unsatis�able.In every of the above ases we have shown that F(n) is unsatis�able. So the ase that
h = 0 is proved.Now assume that h > 0. Then a rule has been applied to n yielding one or twosuessor nodes n′ and n′′. Sine T is losed, the tableaux T ′ and T ′′ rooted by n′ and
n′′ are also losed. Furthermore their height is h − 1 and so by indution F(n′) and
F(n′′) are both unsatis�able. We distinguish the following ases of how n might havebeen expanded.Case 1 Rule (∧ 1) has been applied. Then F(n) = {ϕ1 ∧ ϕ2} ∪ F ′ and F(n′) =

F ′ ∪ {ϕ1, ϕ2}. Sine F(n′) is unsatis�able we have J 6|= F (n′) for every J . Fixone suh J . Sine J 6|= F (n′) at least one of the formulas in F(n′) is not satis�edby J . There are three possibilities:Case 1.1 There is ϕ0 ∈ F ′ suh that J 6|= ϕ0. This immediately gives J 6|= F(n).Case 1.2 J 6|= ϕ1. Then J 6|= ϕ1 ∧ ϕ2 and so J 6|= F(n).

106 Chapter 5. The Programming Language Prolog(+T)Case 1.3 J 6|= ϕ2 This is analogous to the foregoing ase.So this proves that F(n) is unsatis�able.Case 2 Rule (∨ 1) has been applied. Then F(n) = {ϕ1∨ϕ2}∪F ′ and F(n′) = F ′∪{ϕ1},
F(n′′) = F ′ ∪{ϕ2}. By indution both F(n′) and F(n′′) are unsatis�able. Fix any
J . Then J 6|= F(n′) and J 6|= F(n′′). We again distinguish two ases:Case 2.1 There is ϕ0 ∈ F ′ suh that J 6|= ϕ0. This ase is idential to ase 1.1.Case 2.2 J |= ϕ0 for every ϕ0 ∈ F ′. Then the unsatis�ability of F(n′) and F(n′′)gives J 6|= ϕ1 and J 6|= ϕ2. Therefore J 6|= ϕ1 ∨ ϕ2 and so J 6|= F(n).Case 3 Rule (¬�E) has been applied. Here F(n′) = {¬¬ϕ} ∪F ′ and F(n′) = F ′ ∪ {ϕ}.Sine ϕ ≡ ¬¬ϕ we have J |= ϕ if and only if J |= ¬¬ϕ. Sine F(n′) is unsatis�able
F (n) is also unsatis�able.Case 4 A rewrite rule or the redution rule has been applied. Then the laim is provedexatly as in the foregoing ase.Case 5 One of the rules (∀−E) and (∃−E) has been applied. This ase is trivial sine if
X 6∈ Var(ϕ) we have ∀Xϕ ≡ ∃Xϕ ≡ ϕ. So if n′ is reated from n by appliation ofone of the above rules then F(n′) is unsatis�able if and only if F(n) is unsatis�able.Case 6 Rule (σ−I1) has been applied. Then F(n) = {∀Xϕ(X)} ∪ F ′ and F(n′) = F ′ ∪

{ϕ(t)}. Again �x any J . Then J 6|= F(n′). The possible ases are:Case 6.1 J 6|= ϕ0 for some ϕ0 ∈ F ′. Then we have the situation from ase 1.1 andase 2.1.Case 6.2 J |= ϕ0 for every ϕ0 ∈ F ′. Then J 6|= ϕ(t) that is J 6|= σ(ϕ(x)) for
σ =

{
X
t

} and therefore J 6|= ∀Xϕ(X). So F(n) is unsatis�able.

5.3 A Saturation�based temporal Proof Proedure 107Case 7 The appliation of the other rules are redued to the foregoing ases by ex-ploiting semantial de�nitions (for the temporal operators, the impliation and theequivalene) and DeMorgan's laws (for the rules (∧ 2), (∨ 2), (→ 2) and (↔ 2)).This proves the lemma. �The above lemma espeially holds for the starting node of a tableaux so we have thefollowing easy orollary.Corollary 5.3.1 (Soundness)Let ϕ be any FoLtl-formula. If the tableaux for ϕ is losed, then ϕ is unsatis�able.Although rather tehnial, the proof that the tableaux onstrution is sound is quitestraightforward exploiting only basi proof tehniques. Proving refutation ompletenessis muh more triky. The tableaux onstrution tehnique known from �rst order logiuses so alled Hintikka�sets (see [66℄) in order to prove that for an unsatis�able formulathe tableaux onstrution is indeed apable of onstruting a losed tableaux. Hintikka�sets are also of great use for proving the refutation ompleteness of the Prolog(+T)tableaux proedure as we will see now.Intuitively a Hintikka�set is a set of formulas whih is semantially losed, that if thereis e.g. a formula ϕ1 ∧ ϕ2 in the set, then so are ϕ1 and ϕ2. The following de�nitionformalizes this.De�nition 5.3.6 (Temporal Hintikka�Set)Let P be a Prolog(+T)�program and let S be a set of FoLtl�formulas suh thatevery funtion� or prediate�symbol ourring in S also ours in P . Then S is alleda (temporal) Hintikka�set if for every FoLtl�formula ϕ the following holds for every
i ≥ 0:1. if ϕ ∈ BFoLtl

P , then ϕ ∈ S i� {ψ | ψ ≡ ¬ϕ} ∩ S = ∅,2. if ϕ = Xi (ϕ1 ∧ ϕ2), then ϕ ∈ S implies Xiϕ1 ∈ S and Xiϕ2 ∈ S,

108 Chapter 5. The Programming Language Prolog(+T)3. if ϕ = Xi (ϕ1 ∨ ϕ2), then ϕ ∈ S implies Xiϕ1 ∈ S or Xiϕ2 ∈ S,4. if ϕ = Xi∀Xψ(X), then ϕ ∈ S implies Xiψ(t) ∈ S for every t ∈ UP ,5. if ϕ = Xi∃Xψ(X), then ϕ ∈ S implies Xiψ(t) ∈ S for some ground term t,6. if ϕ = XiGψ, then ϕ ∈ S implies Xi+jψ ∈ S for every j ≥ 0,7. if ϕ = XiFψ, then ϕ ∈ S implies Xi+jψ ∈ S for some j ≥ 0,8. if ϕ = ¬XiGψ, then ϕ ∈ S implies there is j ≥ 0 suh that ¬Xi+jψ ∈ S or
¬Xi+jGψ ∈ S for every j ≥ 0,9. if ϕ = ¬XiFψ, then ϕ ∈ S implies ¬Xi+jψ ∈ S for every j ≥ 0,10. if ϕ = Xiϕ1Uϕ2, then ϕ ∈ S implies Xiϕ2 ∈ S or Xiϕ1 ∈ S and Xi+1ϕ1Uϕ2 ∈ S,11. if ϕ = ϕ1Pϕ2, then ϕ ∈ S implies ¬Xiϕ2 ∈ S and Xiϕ1 ∈ S or Xi+1ϕ1Pϕ2 ∈ S,12. if ϕ = ¬Xiϕ1Uϕ2, then ϕ ∈ S implies ¬Xiϕ2 ∈ S and ¬Xiϕ1 ∈ S or
¬Xi+1ϕ1Uϕ2 ∈ S and13. if ϕ = ¬Xiϕ1Pϕ2, then ϕ ∈ S implies Xiϕ2 ∈ S or ¬Xiϕ1 ∈ S and ¬Xi+1ϕ1Pϕ2 ∈

S.If S is a Hintikka�set onstruted from symbols ourring in a program P , then we willalso say that S is a Hintikka�set with respet to (wrt.) P . The de�nition of Hintikka setsan easily be adapted to deal with the speial form of Prolog(+T)�rules by requiring
ϕ :−ψ1, . . . , ψn. ∈ S if and only if there is i suh that ψi 6∈ S or ϕ ∈ S.The above de�nition is suitable for dealing with �nite paths of tableaux nodes (as wewill see soon). However sine paths might also be of in�nite length, we need some morede�nitions. In partiular we need a onept of maximality of in�nite paths. As beforethe formalisms used in the sequel losely follow [20℄.

5.3 A Saturation�based temporal Proof Proedure 109De�nition 5.3.7Let n = (F(n), F, S) be a tableaux node, let ϕ ∈ F(n) be a formula and let R be atableaux rule whih an be applied to ϕ. Then R(ϕ) denotes the set of new formulasreated by the appliation of R.Having introdued the operator R we an haraterize paths as in tableaux to bemaximal whether they are of �nite length or of in�nite length.De�nition 5.3.8Let π be an open path. Then π is alled maximal if
• π is �nite and no more rules an be applied to F(π) or
• π = (n0, n1, . . . , ni, . . .) is in�nite and for every i ≥ 0, every ϕ ∈ F(ni) andevery rule R whih an be applied to ϕ there is a node nj (j > i) suh that

R(ϕ) ⊆ F(nj).Maximality of an open path will now turn out to be the key onept for provingrefutation ompleteness.Lemma 5.3.3Let π be a maximal open path of tableaux nodes onstruted from symbols ourring ina program P . Then F(π) is a (temporal) Hintikka�set wrt P .Proof. First assume that π is �nite. Sine π is open and maximal, no rules an beapplied to the formulas from F(π). In partiular, no element of F(π) ontains one of theoperators G, F, U or P. Heneforth if we assume that F(π) is not a Hintikka�set, one ofthe following ases has to our:Case 1 There is a literal ϕ ∈ F(π) suh that ψ ∈ F(π) for some ψ with ψ ≡ ¬ψ. Butthen π is losed whih ontradits the assumptions on π.

110 Chapter 5. The Programming Language Prolog(+T)Case 2 There is ϕ = ϕ1 ∧ ϕ2 ∈ F(π) suh that ϕ1 6∈ F(π) or ϕ2 6∈ F(π). But in thisase the rule (∧1) an be applied to ϕ whih ontradits the maximality of π.Case 3 There is ϕ = ϕ1 ∨ ϕ2 ∈ F(π) suh that ϕ1 6∈ F(π) and ϕ2 6∈ F(π). In this ase
(∨1) an be applied whih again ontradits the maximality of π.Case 4 There is ϕ = ∀Xψ(X) ∈ F(π) and t ∈ UP suh that ψ(t) 6∈ F(π). Then (σ−I1)an be applied to ϕ and therefore π is not maximal.Case 5 There is ϕ = ∃Xψ(X) ∈ F(π) and ψ(t) 6∈ F(π) for every t. Then (σ−I2) an beapplied to ϕ and therefore π is not maximal.So in the ase of a �nite path π the laim is true. Now assume that π is of in�nite length.Then we have more ases to distinguish. The �rst �ve ases are idential to the asesfrom above. So we will only have to onsider the ases in whih the operators G, F, Uand P are involved. Assume that the assumptions from above are ful�lled, that is assumethat π is maximal and open and assume that F(π) is not a Hintikka�set, i.e. assumethat the onlusion of the impliations from the de�nition of temporal Hintikka�sets areviolated.Case 6 There is XiGψ ∈ F(π) suh that Xi+1ψ 6∈ F(π) for some j. Then let j0 be theminimal suh j, that is j0 = min

{
j | Xi+jψ 6∈ F(π)

}. Sine j0 is minimal, we haveXj0−1ψ ∈ F(π) and Xi+j0−2Gψ ∈ F(π). This implies Xi+j0−1Gψ ∈ F(π) sine
π is maximal (otherwise (G1) ould be applied). Again maximality now yieldsXi+j0Gψ ∈ F(π) and therefore Xi+j0ψ ∈ F(π) whih is a ontradition.Case 7 Let XiFψ be in F(π).a) Assume that Xi+jψ 6∈ F(π) for every j ≥ 0. Sine π is maximal, every possibleappliation of the rule (∨1) has been arried out. Furthermore the path πorresponds to the path whih ontains the right one of the new formulas

5.3 A Saturation�based temporal Proof Proedure 111reated by (∨1) (sine instead there would be a minimal value j0 suh thatXi+j0ψ ∈ F(π)). This yields Xi+jFψ ∈ F(π) for every j ≥ 0.b) Now assume that there is j ≥ 0 suh that Xi+jFψ 6∈ F(π). As in ase 6 wehose the minimal value of all these j's, namely j0 = min
{
j | Xi+jFψ 6∈ F(π)

}.So Xi+j0Fψ 6∈ F(π) and Xi+j0−1Fψ ∈ F(π). By maximality of π the ap-pliation of (∨1) has been arried out and with Xi+j0Fψ 6∈ F(π) we haveXi+j0−1ψ ∈ F(π).Case 8 Let ¬XiGψ be in F(π). We have the following ases:a) for eah j ≥ 0 it holds that ¬Xi+jψ 6∈ F(π). Then in partiular we have
¬Xiψ 6∈ F(π). But sine π is maximal we have ¬Xi+1Gψ ∈ F(π) sine other-wise (G2) ould be applied and π is not maximal.b) there is j ≥ 0 suh that ¬Xi+jGψ 6∈ F(π). As before we hose the minimalvalue of all these j's: j0 = min

{
j | ¬Xi+jGψ 6∈ F(π)

}. Then ¬Xi+j0Gψ 6∈
F(π). Furthermore sine ¬XiGψ ∈ F(π) we have j0 ≥ 1. Sine j0 is minimalwe have ¬Xi+j0−1Gψ ∈ F(π) and the maximality of π yields ¬Xi+j0−1ψ ∈

F(π).Case 9 Let ¬XiFψ be in F(π) and assume that there is j ≥ 0 suh that Xi+jψ ∈ F(π).Then we immediately have that there is a node n ourring on π whih is losed.This ontradits the assumption that π is open.Case 10 Let Xiψ1Uψ2 be in F(π). If Xiψ2 ∈ F(π) then the ase is lear. Now assumethat Xiψ2 6∈ F(π). Sine π is maximal we have that the rule (U1) whih is appliablehas indeed been applied and reates the formula ϕ′ = Xiψ1 ∧ Xi+1ψ1Uψ2 to whih
(∧1) an be applied. By maximality of π we have {Xiψ1,Xi+1ψ1Uψ2} ⊆ F(π).Case 11 Let Xiψ1Pψ2 be in F(π). Then we immediately have ¬Xiψ2 ∈ F(π) by maxi-mality of π. Now if Xiψ1 ∈ F(π), the ase is lear. So assume that Xiψ1 6∈ F(π).

112 Chapter 5. The Programming Language Prolog(+T)Then we have Xi+1ψ1Pψ2 ∈ F(π) sine otherwise π is not maximal.Case 12 Let ¬Xiψ1Uψ2 be in F(π). By maximality of π we have {¬Xiψ2,¬Xiψ1 ∨

¬Xi+1ψ1Uψ2} ⊆ F(π) and therefore the appliation of (∨1) yields the desiredresult.Case 13 Let ¬Xiψ1Pψ2 be in F(π). By appliation of (P2) we have the following possi-bilities:a) Xiψ2 ∈ F(π). Then the ase is lear.b) Xiψ2 6∈ F(π). Then (P2) reates the formula ¬Xiψ1 ∧ ¬Xi+1ψ1Pψ2 and anappliation of (∧1) yields {¬Xiψ1,¬Xi+1ψ1Pψ2} ⊆ F(π).Therefore F(π) is a temporal Hintikka�set wrt. P and the lemma is proved. �As in �rst order logi, we are able to onstrut models for ertain kinds of temporalHintikka�sets.Lemma 5.3.4Let S be a temporal Hintikka�set suh that S = F(π) for a maximal open path. Then
S is satis�able.Proof. The laim is immediately by onsidering any interpretation whih satis�es everyground atom from F(π). �Combining these two lemmas we have the following theorem.Theorem 5.3.1 (Refutation�Completeness)Let P be a Prolog(+T)�program and let G = ψ1 ∧ · · · ∧ ψn. be a goal. If P |=
ψ1 ∧ · · · ∧ ψn, then the tableaux rooted with ({ϕP,G} , ∅, ∅) is losed.Proof. We have P |= ψ1∧· · ·∧ψn i� P ∪{G} |= � i� ϕP,G is unsatis�able. Now assumethat the tableaux rooted with ({ϕP,G}, ∅, ∅) is not losed. Then there is a maximal openpath π in this tableaux. We then have that F(π) is a temporal Hintikka�set wrt. P and

5.3 A Saturation�based temporal Proof Proedure 113onsequently F(π) is satis�able. This yields satis�ability of ϕP,G whih is a ontradition.So the theorem is proved. �This result states the most desirable property of Prolog(+T) and its inferene meh-anism. We have therefore shown that Prolog(+T) is indeed an adequate programminglanguage for the fragment of �rst order temporal logi under onsideration. So we anproeed by treating the lattie properties of Prolog(+T)�objets in order to justifyour treatment of the re�nement operations in the following hapters.

114 Chapter 5. The Programming Language Prolog(+T)

6. The Lattie Struture of Prolog(+T)objets
Contents6.1. Subsumption . 1166.2. The Lattie Struture of Literals 1176.2.1. Generalizations of Terms . 1176.2.2. Generalizations and Speializations of Literals 1196.3. The Lattie Struture of Rules 1256.3.1. Greatest Speializations . 1256.3.2. Least Generalizations . 129We will now show how the onept of subsumption an be generalized from �rst orderformulas to Prolog(+T)�objets. The main part of this generalization will be theintegration of the temporal operators X, G, F, U and P, so the ompliated part is setion6.2 where it will be shown that the lattie properties of the subsumption ordering arryover from �rst order logi literals to FoLtl�literals. In ontrast the results from setion6.3 will be nearly idential to results from �rst order ILP.

116 Chapter 6. The Lattie Struture of Prolog(+T) objets6.1. SubsumptionDuring the onstrution of programs whih satisfy a spei�ation given by sets E+ ⊆

BFoLtl
P and E− ⊆ BFoLtl

P it might be neessary to speialize and/or generalize ertainobjets. In general, speialization and generalization should be related to the proessof largening and shrinking the set of logial onsequenes (that is modifying a program
P in order to yield a program P ′ whih implies more � in the ase of generalization �respetively less � in the ase of speialization � than the original program P). However,the logial onsequene relation |= is undeidable and therefore one needs another order-ing whih is on the one hand deidable (that is it an be implemented on a omputer)and on the other side losely related to logial onsequene. Subsumption has turned outuseful for this purpose (see [77℄ for a disussion of the di�erene between subsumptionand impliation in First Order Logi).Informally, subsumption models the assumption that some objet is more general thananother one in the way that the more general objet implies more than the less generalone1. Formally, subsumption between literals is de�ned as follows.De�nition 6.1.1 (Subsumption for atoms, Plotkin [133℄)Let ϕ1 and ϕ2 be literals from FoLtl. Then ϕ1 < ϕ2 if and only if there is asubstitution θ suh that θ(ϕ1) = ϕ2.As one might expet, we will write ϕ1 4 ϕ2 if ϕ2 < ϕ1, ϕ1 ≻ ϕ2 if ϕ1 < ϕ2 and not
ϕ2 < ϕ1, ϕ1 ≺ ϕ2 if ϕ2 ≻ ϕ1 and ϕ1 ≈ ϕ2 if ϕ1 < ϕ2 and ϕ2 < ϕ1. Additionally we willwrite ϕ1 6< ϕ2 denoting that ϕ1 < ϕ2 does not hold.It is easily seen that < is re�exive and transitive. But it is not a partial ordering on theset of all FoLtl�literals sine it is not anti�symmetri. Consider the literals ϕ1 = p(x)1This is due to the fat that the less general objet an be onstruted by instantiating the more generalone.

6.2 The Lattie Struture of Literals 117and ϕ2 = p(y). Then for θ1 =
{
x
y

} and θ2 =
{
y
x

} we have θ1(ϕ1) = ϕ2 and θ2(ϕ2) = ϕ1and therefore ϕ1 < ϕ2 and ϕ2 < ϕ1 but ϕ1 6= ϕ2. However, ϕ1 and ϕ2 are variants.We will use the ordering < in order to de�ne a quasi�order �s on literals whih yieldsa lattie�struture. Therefore we de�ne
• false �s ϕ for every FoLtl�literal ϕ,
• ϕ �s true for every FoLtl�literal ϕ and
• ϕ1 �s ϕ2 for ϕ1, ϕ2 6∈ {true, false} if and only if ϕ1 < ϕ2.The notations �s, ≻s, ≺s and ≈s are de�ned as expeted.In the following setion we will see how the ordering �s yields a lattie struture inthe set of all FoLtl�literals thus extending a well�known result from �rst order logi(see [133℄ and [134℄).6.2. The Lattie Struture of Literals6.2.1. Generalizations of TermsIn order to present operations for omputing least generalizations and greatest speial-izations of literals, we have to review some operations operating on terms. Reall thata uni�er for two literals ϕ1 and ϕ2 is a substitution θ suh that θ(ϕ1) = θ(ϕ2). Theproess of uni�ation an be reversed by onstruting from ϕ1 and ϕ2 both a literal ϕand substitutions θ1 and θ2 suh that θ1(ϕ) = ϕ1 and θ2(ϕ) = ϕ2. Figure 6.1 illustratesthe situation.In [133℄ it has been shown that it is always possible to onstrut least generalizationsand greatest speializations of terms. We will review the algorithm for onstruting leastgeneralizations here sine we will need it later when omputing least generalizations ofliterals.

118 Chapter 6. The Lattie Struture of Prolog(+T) objets
ϕ1 ϕ2

ψ

ϕ

θ2θ1

θθFigure 6.1.: Uni�ation vs. Anti�uni�ationAlgorithm 2 Anti�uni�ation for termsInput: terms t1 and t2Output: term t̄ suh that t̄ is a least generalization of t1 and t21: t′1 ← t1, t′2 ← t22: θ1 ← ε, θ2 ← ε3: i← 0Require: {zi | i ∈ N} is a set of variables not ourring in t1 and t24: if t′1 = t′2 then5: return t̄ = t′16: else7: p←leftmost position at whih t′1 and t′2 di�er8: s← t′1|p9: t← t′2|p10: if there is j ∈ {1, . . . , i} suh that θ1(zj) = s and θ2(zj) = t then11: replae t′1|p by zj12: replae t′2|p by zj13: else14: i← i+ 115: replae t′1|p by zi16: replae t′2|p by zi17: θ1 = θ1 ◦
{
zi

s

}18: θ2 = θ2 ◦
{
zi

t

}19: goto 420: end if21: end if

6.2 The Lattie Struture of Literals 119Algorithm 2 indeed produes a least generalization of the two input terms. This resultan for example be found in [133℄ or [126℄. Sine this least generalization is a general-ization with respet to subsumption we will denote the term returned by Algorithm 2as LGS(t1, t2).In later setions we will also denote any least generalization of literals ϕ1 and ϕ2 asLGS(ϕ1, ϕ2) and least generalizations of lauses C1 and C2 as LGS(C1, C2) sine thiswill not ause any onfusion.6.2.2. Generalizations and Speializations of LiteralsWe will now apply the results from the last setion in order to prove that the set of literalsfrom FoLtl is a lattie ordered by the subsumption ordering �s. For formal reasons theset of all FoLtl�literals will from now on be denoted as LFoLtl. The proof will not bethat di�ult but rather long due to the di�erent ases whih have to be distinguished.Theorem 6.2.1
(
LFoLtl,�s) is a lattie.Proof. In order to prove the theorem we will show that both a least generalization anda greatest speialization of two given literals ϕ1 and ϕ2 exists in LFoLtl.Speialization Let ϕ1, ϕ2 ∈ LFoLtl be given. Assume without loss of generality that ϕ1and ϕ2 have no variables in ommon, that is ϕ1 and ϕ2 are standardized apart.1. if ϕ1 = true or ϕ2 = true, thenGSS(ϕ1, ϕ2) = true,2. a) if ϕ1 = false, then GSS(ϕ1, ϕ2) = ϕ2 and

120 Chapter 6. The Lattie Struture of Prolog(+T) objetsb) if ϕ2 = false, then GSS(ϕ1, ϕ2) = ϕ1,3. if ϕ1 and ϕ2 are uni�able with σ = mgu(ϕ1, ϕ2), thenGSS(ϕ1, ϕ2) = σ(ϕ1) and4. if ϕ1 and ϕ2 are not uni�able, thenGSS(ϕ1, ϕ2) = true.It is obvious that GSS(ϕ1, ϕ2) is always a speialization of the original literals ϕ1and ϕ2. It remains to show that it is indeed a greatest speialization. The onlytwo nontrivial ases are that both ϕ1 6∈ {true, false} and ϕ2 6∈ {true, false}.Consider the two ases:Case 1 ϕ1 and ϕ2 are not uni�able. Then there annot exist any literal ψ suh that
ψ 6= true and ϕ1 �s ψ and ϕ2 �s ψ sine then there would be substitutions θ1and θ2 suh that θ1(ϕ1) = ψ and θ2(ϕ2) = ψ. Sine ϕ1 and ϕ2 are standardizedapart this would give

θ1(ϕ1) = (θ1 ◦ θ2)(ϕ1) = ψ

θ2(ϕ2) = (θ1 ◦ θ2)(ϕ2) = ψ

So θ1 ◦θ2 is a uni�er for ϕ1 and ϕ2 whih is a ontradition to the assumptionthat ϕ1 and ϕ2 are not uni�able. So the laim is proved.Case 2 ϕ1 and ϕ2 are uni�able. Then there is σ = mgu(ϕ1, ϕ2). if σ(ϕ1) is nota greatest speialization, then there is ψ and substitutions θ1, θ2 suh that

6.2 The Lattie Struture of Literals 121
θ1(ϕ1) = ψ, θ2(ϕ2) = ψ and ψ ≻s σ(ϕ1). But then there would be γ 6= εsuh that γ(ψ) = σ(ϕ1) and therefore σ would not be most general, whih isa ontradition. So the laim is proved.Generalization Let ϕ1, ϕ2 ∈ LFoLtl be given.1. if ϕ1 is positive and ϕ2 is negative or if ϕ1 is negative and ϕ2 is positive, thenLGS(ϕ1, ϕ2) := true.2. if ϕ1 = false or ϕ2 = false, then LGS(ϕ1, ϕ2) = false. Similarly if ϕ1 =

true, then LGS(ϕ1, ϕ2) = ϕ2 and if ϕ2 = true, then LGS(ϕ1, ϕ2) = ϕ1.3. if both ϕ1 and ϕ2 are negative, then assume that
ϕ1 = ¬ψ1 and
ϕ2 = ¬ψ2and de�ne LGS(ϕ1, ϕ2) = ¬LGS(ψ1, ψ2)4. if both ϕ1 and ϕ2 are positive, thena) if ϕ1 = p(t1, . . . , tn) and ϕ2 = p(t′1, . . . , t

′
n) for some p with α(p) = n andterms t1, . . . , tn, t′1, . . . , t′n, thenLGS(ϕ1, ϕ2) = p(LGS(t1, t
′
1), . . . ,LGS(tn, t

′
n)),b) if ϕ1 = p(t1, . . . , tn) and ϕ2 = q(t′1, . . . , t

′
m) for p, q with α(p) = n, α(q) =

m and t1, . . . , tn, t′1, . . . , t′m suh that p 6= q, thenLGS(ϕ1, ϕ2) = false,

122 Chapter 6. The Lattie Struture of Prolog(+T) objets) if ϕ1 = Xψ1 and ϕ2 = Xψ2, thenLGS(ϕ1, ϕ2) = XLGS(ψ1, ψ2),d) if ϕ1 = Gψ1 and ϕ2 = Gψ2, thenLGS(ϕ1, ϕ2) = GLGS(ψ1, ψ2),e) if ϕ1 = Fψ1 and ϕ2 = Fψ2, thenLGS(ϕ1, ϕ2) = FLGS(ψ1, ψ2),f) if ϕ1 = ψ
(1)
1 Uψ(1)

2 and ϕ2 = ψ
(2)
1 Uψ(2)

2 , thenLGS(ϕ1, ϕ2) = LGS(ψ
(1)
1 , ψ

(2)
1)ULGS(ψ

(1)
2 , ψ

(2)
2),g) if ϕ1 = ψ

(1)
1 Pψ(1)

2 and ϕ2 = ψ
(2)
1 Pψ(2)

2 , thenLGS(ϕ1, ϕ2) = LGS(ψ(1)
1 , ψ

(2)
1)PLGS(ψ(1)

2 , ψ
(2)
2) andh) in all other ases: LGS(ϕ1, ϕ2) = false.Again we will distinguish several ases.Case 1 Case 1 from the above list ours. Then the laim is trivial.Case 2 Case 2 ours. Then the laim is due to the de�nition of �s.Case 3 We now proeed by indution on the struture of the literals. First assumethat both ϕ1 and ϕ2 are nontemporal. Then the laim is due to results from[126℄ regarding the lattie struture of �rst order logi literals. Similarly we an

6.2 The Lattie Struture of Literals 123prove the ase in whih both literals are negative by exploiting the assumptionthat the algorithm is orret for the subliterals under onsideration. Nowassume that ϕ1 and ϕ2 are of the form desribed in points), d) and e). Thenwe an exploit the indution hypothesis for the literals ψ1 and ψ2 and thelaim is immediate. Similarly we an treat the points f) and g). Finally inase h) no nontrivial least generalization an exist.So the theorem is proved. �The tehniques from the proof of the above theorem are summarized in Algorithms 3and 4.Algorithm 3 Greatest Speialization of FoLtl�literalsInput: literals ϕ1, ϕ2Output: GSS(ϕ1, ϕ2)1: if ϕ1 and ϕ2 are uni�able then2: σ ← mgu(ϕ1, ϕ2)3: return σ(ϕ1)4: else5: return true6: end if
Example 6.2.11. Consider ϕ1 = GFp(X, f(a)) and ϕ2 = GFq(a). Then LGS(ϕ1, ϕ2) = false andGSS(ϕ1, ϕ2) = true.2. Now onsider ϕ1 = p(X, X) and p(f(a), b). Here we have LGS(ϕ1, ϕ2) = p(Z1, Z2)and GSS(ϕ1, ϕ2) = true.3. Finally onsider ϕ1 = GXp(A, X) and ϕ2 = GXp(Y, b). Then LGS(ϕ1) = GXp(Z1, Z2)and GSS(ϕ1, ϕ2) = GXp(a, b).

124 Chapter 6. The Lattie Struture of Prolog(+T) objets

Algorithm 4 Least Generalization of FoLtl�literalsInput: literals ϕ1, ϕ2Output: LGS(ϕ1, ϕ2)1: if ϕ1 = p(t1, . . . , tn) and ϕ2 = p(t′1, . . . , t
′
n) for some p and t1, . . . , tn, t′1, . . . , t′n then2: return p(LGS(t1, t′1), . . . ,LGS(tn, t

′
n))3: end if4: if ϕ1 = ¬ψ1 and ϕ2 = ¬ψ2 then5: return ¬LGS(ψ1, ψ2)6: end if7: if ϕ1 = Xψ1 and ϕ2 = Xψ2 then8: return XLGS(ψ1, ψ2)9: end if10: if ϕ1 = Gψ1 and ϕ2 = Gψ2 then11: return GLGS(ψ1, ψ2)12: end if13: if ϕ1 = Fψ1 and ϕ2 = Fψ2 then14: return FLGS(ψ1, ψ2)15: end if16: if ϕ1 = ψ

(1)
1 Uψ(1)

2 and ϕ2 = ψ
(2)
1 Uψ(2)

2 then17: return LGS(ψ(1)
1 , ψ

(2)
1)ULGS(ψ(1)

2 , ψ
(2)
2)18: end if19: if ϕ1 = ψ

(1)
1 Pψ(1)

2 and ϕ2 = ψ
(2)
1 Pψ(2)

2 then20: return LGS(ψ(1)
1 , ψ

(2)
1)PLGS(ψ(1)

2 , ψ
(2)
2)21: end if22: return false

6.3 The Lattie Struture of Rules 1256.3. The Lattie Struture of RulesAlgorithms 3 and 4 from the last setion an now be used in order to ompute leastgeneralizations and greatest speializations of lauses, that is least generalizations andgreatest speializations of Prolog(+T)�rules. For this purpose we will adapt a prooffor the existene of least generalizations and greatest speializations of �rst order logilauses whih might for example be found in [126℄. The subsumption ordering for rulesis de�ned as follows.De�nition 6.3.1 (Subsumption for Rules, Plotkin [133℄)Let C1 and C2 be Prolog(+T)�rules (represented as sets of literals). Then C1 �s C2if and only if there is a substitution θ suh that θ(C1) ⊆ C2.The symbols ≻s, �s and ≺s are then de�ned as usual.6.3.1. Greatest SpeializationsAs in the last setion, the simpler part is the omputation of greatest speializations oflauses. Therefore we will adapt a tehnique desribed in [126℄. We will see that thegreatest speialization of two Prolog(+T)�rules is in general not unique. This is dueto the fat that we allow negated atoms in the tails of rules.Assume that
C1 = ϕ1 :−ψ(1)

1 , . . . , ψ(1)
n1

and
C2 = ϕ2 :−ψ(2)

1 , . . . , ψ(2)
n2are given. We identify C1 and C2 with the sets of literals involved in these rules, that is

126 Chapter 6. The Lattie Struture of Prolog(+T) objetswe onentrate on
SC1 =

{

¬ψ(1)
1 , . . . ,¬ψ(1)

n1
, ϕ1

} and
SC2 =

{

¬ψ(2)
1 , . . . ,¬ψ(2)

n2
, ϕ2

}as the objets of interest. We now build the set C = SC1 ∪ SC2 and onstrut a set ofProlog(+T)�rules from this set eah of whih is a greatest speialization of C1 and
C2. But in order to do this we de�ne a helper funtion Tail whih will be useful in thede�nition.Let T = {γ1, . . . , γk} be a set of FoLtl�literals. Then the string Tail(T) is de�nedas Tail(T) = ¬γ1, . . . ,¬γk,where ¬¬γi will be identi�ed with γi for i = 1, . . . , k.Now assume that S = {l1, . . . , ln1+n2+2}. We then build the set L onsisting of allProlog(+T)�rules whih an be onstruted using the following sheme: if li is positive,then L ontains the rule

li :−Tail(S \ {li}).Algorithm 5 illustrates this sheme.The properties of Algorithm 5 are summarized in the following theorem.Theorem 6.3.1Let C1 and C2 be Prolog(+T)�rules. Then Algorithm 5 omputes a set of rules eahof whih is a greatest speialization of C1 and C2.Proof. Let C1 and C2 be given. Without loss of generality we an assume that C1and C2 are standardized apart. Let C be any rule omputed by Algorithm 5. Then for
S = SC1 ∪ SC2 we have SC1 ⊆ S and SC2 ⊆ S so both C1 �s C and C2 �s C holds,that is C is a speialization under subsumption of C1 and C2. Now onsider any rule

6.3 The Lattie Struture of Rules 127Algorithm 5 Greatest Speialization of Prolog(+T)�rulesInput: Prolog(+T)�rules C1, C2Output: set of greatest speializations of C1, C2Require: C1 = ϕ1 :−ψ(1)
1 , . . . , ψ

(1)
n1 , C2 = ϕ1 :−ψ(2)

1 , . . . , ψ
(2)
n21: L← ∅2: SC1 ←

{

¬ψ(1)
1 , . . . ,¬ψ(1)

n1 , ϕ1

}3: SC2 ←
{

¬ψ(2)
1 , . . . ,¬ψ(2)

n2 , ϕ2

}4: S ← SC1 ∪ SS2Require: S = {l1, . . . , lo}5: for i = 1, . . . , o do6: if li is positive then7: L← L ∪ {li :−Tail(S \ {li})}8: end if9: end for10: return L
C̄ suh that C1 �s C̄ and C2 �s C̄. Then there are substitutions θ1 and θ2 suh that
θ1(C1) ⊆ C̄ and θ2(C2) ⊆ C̄ and θ1 and θ2 only replae variables in C1 and C2 (sine C1and C2 are standardized apart). De�ne θ = θ1 ∪ θ2. Then

θ (SC) = θ (SC1 ∪ SC2)

= θ (SC1) ∪ θ (SC2)

= θ1 (SC1) ∪ θ2 (SC2)

⊆ SC̄ .So C �s C̄. Sine C was hosen arbitrary from the set of rules omputed by Algorithm 5the laim is proved. �Although the syntatial form of a greatest speialization of Prolog(+T)�rules is notuniquely determined we an adapt the notation GSS(C1, C2). This is justi�ed sine forevery C(1), C(2) omputed by Algorithm 5 given the inputs C1 and C2 we have SC(1) =

128 Chapter 6. The Lattie Struture of Prolog(+T) objets
SC(2) = SC1 ∪ SC2 and therefore C(1) ≡ C(2). ConsequentlyGSS(C1, C2)will from now on be used in order to denote any of the rules omputed by Algorithm 5.We will now lose this setion by presenting a simple example of how Algorithm 5reates greatest speializations of Prolog(+T)�rules.Example 6.3.1Consider the rules

C1 = Gp(a) :−XXp(X1). and
C2 = XFp(X2) :−not(r(X2)),Gp(b).Then we have
SC1 = {not(XXp(X1)),Gp(a)} and
SC2 = {r(X2), not(Gp(b)),XFq(X2)}and therefore

S = {not(XXp(X)),Gp(a), r(X), not(Gp(b)),XFq(X)} .The rules generated by Algorithm 3 are the following:1. Gp(a) :−XXp(X1), not(r(X2)), not(Gp(b)), not(XFq(X2)).,2. r(X2) :−XXp(X1), not(Gp(a)),Gp(b), not(XFq(X2)). and3. XFq(X2) :−XXp(X1), not(Gp(a)), not(r(X2)),Gp(b).

6.3 The Lattie Struture of Rules 1296.3.2. Least GeneralizationsWhat remains to be established is the existene of least generalizations of Prolog(+T)�rules under subsumption. For �rst order literals the onept of ompatibility has beenused for the proof of the existene of least generalizations of lauses. Two �rst orderliterals ϕ1 and ϕ2 are onsidered ompatible if they are either both positive or bothnegative and if they start with the same prediate symbol. For FoLtl�literals thesituation is slightly more ompliated. Intuitively we should onsider literals ompatibleif they are either both positive or both negative and if they ontain the same temporaloperators in the same order. Formally we will present a tehnique whih onstruts fora literal ϕ a tree Tree(ϕ) from whih a tuple Temp(ϕ) of words built up from theoperators involved in the literal ϕ an be extrated. Two literals ϕ1 and ϕ2 are thenonsidered ompatible if they yield idential sets Temp(ϕ1) and Temp(ϕ2).Given a literal ϕ we will now show how to onstrut a labeled graph Tree(ϕ). Reallfrom hapter 5.2 that a labeled graph is a tuple T = (V,E, l) onsisting of a �nite set Vontaining the verties or nodes, a set E ⊆ V × V ontaining the edges and a mapping
l. Here l has the form l : V → {U,P,X,G,F,¬} ∪ P ∪ T . We will partition the set Vinto three sets Vt, Vp and Vf ontaining so alled temporal nodes, prediate nodes andfuntion nodes, that is V = Vt

·∪ VP
·∪ Vf . The onstrution of Tree(ϕ) is now given byindution on the form of ϕ.Case 1 ϕ = p(t1, . . . , tn) ∈ BP is a �rst order atom. Then we setTree(ϕ) = ({v0, v1, . . . , vn}, {(v0, vi) | i = 1, . . . , n}, l) ,where l is de�ned by
l(v0) = p and
l(vi) = ti for i > 0

130 Chapter 6. The Lattie Struture of Prolog(+T) objetsand
Vt = ∅,

Vf = {v1, . . . , vn} and
Vp = {v0}.Case 2 ϕ = not(ψ) for some Prolog(+T)�literal ψ. Then assume that Tree(ψ) =

(
V̄ , Ē, l̄

) is given. If V̄ =
{

v̄1, . . . , v̄|V̄ |

}

= V̄t
·∪ V̄p

·∪ V̄f then we de�ne
V =

{

v0, v̄1, . . . , v̄|V̄ |

} for some v0 6∈ V̄ ,
Vt = V̄t,

Vf = V̄f ,

Vp = V̄p ∪ {v0},

E = Ē ∪
{
(v0, v̄) | v̄ ∈ V̄ suh that (¯̄v, v̄) 6∈ Ē for eah ¯̄v ∈ V̄

}
,

l(v0) = not and
l(v) = l̄(v) for eah v 6= v0.Case 3 ϕ = ⊕ψ for some Prolog(+T)�literal ψ and some ⊕ ∈ {X,G,F}. Then assumethat Tree(ψ) =

(
V̄ , Ē, l̄

) is given. If V̄ =
{

v̄1, . . . , v̄|V̄ |

}

= V̄t
·∪ V̄p

·∪ V̄f , thende�ne
V =

{

v0, v̄1, . . . , v̄|V̄ |

} for some v0 6∈ V̄ ,
Vt = V̄t,

Vf = V̄f ,

Vp = V̄p ∪ {v0},

E = Ē ∪
{
(v0, v̄) | v̄ ∈ V̄ suh that (¯̄v, v̄) 6∈ Ē for eah ¯̄v ∈ V̄

}
,

6.3 The Lattie Struture of Rules 131
l(v0) = ⊕ and
l(v) = l̄(v) for eah v 6= v0.Case 4 ϕ = ψ1⊕ψ2 for Prolog(+T)�literals ψ1 and ψ2 and some ⊕ ∈ {U,P}. Assumethat Tree(ψ1) =

(
V̄1, Ē1, l̄1

) with V̄1 = V̄1,t
·∪ V̄1,p

·∪ V̄1,f and Tree(ψ2) =
(
V̄2, Ē2, l̄2

) with V̄2 = V̄2,t
·∪ V̄2,p

·∪ V̄2,f are given suh that V̄1 ∩ V̄2 = ∅. Choosesome new v0 6∈ V̄1 ∪ V̄2 and set
V = {v0} ∪ V̄1 ∪ V̄2,

Vt = V̄1,t ∪ V̄2,t ∪ {v0},

Vp = V̄1,p ∪ V̄2,p,

Vf = V̄1,f ∪ V̄2,f ,

E = Ē1 ∪ Ē2 ∪

(v0, v) |
v ∈ V̄1 ∪ V̄2 suh that (v̄, v) 6∈ Ē1 ∪ Ē1for eah v̄ ∈ V̄1 ∪ V̄2

,

l(v0) = ⊕,

l(v) = l̄1(v) for v ∈ V̄1 and
l(v) = l̄2(v) for v ∈ V̄2.Example 6.3.21. Assume that ϕ1 = q(a)Up(b) and ϕ2 = q(c)Up(a). The graphs Tree(ϕ1) andTree(ϕ2) are depited in Figures 6.2 and 6.3 where the nodes from Vf are drawnas squares while all other nodes are drawn as irles.2. Now assume that ϕ3 = q(c)UXp(a). Then Tree(ϕ3) is as depited in Figure 6.4.Now reall that a path from a node v1 to a node v2 in a (labeled) graph G = (V,E, l)is de�ned as follows:1. either (v1, v2) ∈ E or

132 Chapter 6. The Lattie Struture of Prolog(+T) objets
U

p

a b

q

Figure 6.2.: Tree(q(a)Up(b))
U

q p

c aFigure 6.3.: Tree(q(c)Up(a))

U

q

c

a

X

p

Figure 6.4.: Tree(q(c)UXp(a))

6.3 The Lattie Struture of Rules 1332. there is v ∈ V suh that (v1, v) ∈ E and there is a path from v to v2 in G.Paths an be desribed very naturally by giving the sequene of nodes on this path.We will from now on desribe paths as π = (v1, . . . , vn) and all π a path of length n.Having onstruted Tree(ϕ) from the literal ϕ, we an extrat the information Temp(ϕ)as follows: assume that the nodes from Vf are numbered in asending order from left toright. If Vf = {v1, . . . , vk} then Temp(ϕ) = (s1, . . . , sk) where si is de�ned as follows:1. Let π = (v0, . . . , vki
, vi) be the uniquely determined path from v0 to vi and2. si = l(v0) ◦ · · · ◦ l(vki
) where ◦ denotes the onatenation of words.Example 6.3.3Again onsider the literals from Example 6.3.2. We then haveTemp(ϕ1) = (Uq,Up) ,Temp(ϕ2) = (Uq,Up) andTemp(ϕ3) = (Uq,UXp) .

The onstrution of Temp(ϕ) from a given literal ϕ allows the extension of the oneptof ompatibility from �rst order logi.De�nition 6.3.2Let ϕ1 and ϕ2 be Prolog(+T)�literals. ϕ1 and ϕ2 are alled ompatible ifTemp(ϕ1) = Temp(ϕ2).Intuitively ϕ1 and ϕ2 are assumed to be ompatible if they only di�er in their subterms.So ompatibility is a riterion for the existene of a nontrivial least generalization of twoliterals.

134 Chapter 6. The Lattie Struture of Prolog(+T) objetsExample 6.3.4Again onsider the literals ϕ1, ϕ2 and ϕ3 from Example 6.3.2. From Example 6.3.3 it islear that Temp(ϕ1) = Temp(ϕ2) = (Uq,Up). So ϕ1 and ϕ2 are ompatible. On theother hand Temp(ϕ3) 6= Temp(ϕ1). So ϕ1 and ϕ3 are not ompatible.The onept of ompatibility of literals will now be used in order to ompute least gen-eralizations of Prolog(+T)�rules. Essentially the proedure is idential to a proedurewhih is known from �rst order ILP. Assume that
C1 = ϕ1 :−ψ(1)

1 , . . . , ψ(1)
n1
. and

C2 = ϕ2 :−ψ(2)
1 , . . . , ψ(2)

n2
.are two Prolog(+T)�rules. We will again work with the sets SC1 and SC2 of literalswhih represent these rules. So assume that

SC1 =
{

¬ψ(1)
1 , . . . ,¬ψ(1)

n1
, ϕ1

}

=
{

χ
(1)
0 , χ

(1)
1 , . . . , χ(1)

n1

} and
SC2 =

{

¬ψ(2)
1 , . . . ,¬ψ(2)

n2
, ϕ2

}

=
{

χ
(2)
0 , χ

(2)
1 , . . . , χ(2)

n2

}

,where χ(i)
0 = ϕi and χ(i)

j = ¬ψ(i)
j for i = 1, 2 and j > 0. LetSel = {(χ(1)

i0
, χ

(2)
j0

)

, . . . ,
(

χ
(1)
ik
, χ

(2)
jk

)}be the set of all pairs of ompatible literals from SC1 and SC2 . If Sel = ∅ or if Sel doesnot ontain at least one pair of positive literals, then we de�neLGS(C1, C2) = {false}.This is reasonable sine1. if there are no ompatible literals, then no rule C and no pair of substitutions

6.3 The Lattie Struture of Rules 135
σ1, σ2 6= ε suh that σ (SC) ⊆ SC1 and σ2 (SC) ⊆ SC2 an exist (assuming that
SC 6= ∅) and2. if there is no pair of ompatible atoms, then there is no literal whih an be gener-alized in order to yield the head of the generalized rule.We will now onentrate on the ase that Sel 6= ∅, that is there is at least one pair ofompatible literals. In order to ompute the set of least generalizations of C1 and C2 we�rst adapt a tehnique presented in [133℄ whih transforms literals to terms. Thereforeassume that sig = (X , F, P, α) is the signature from whih C1 and C2 are built. Weextend this signature to sigext = (X , Fext, Pext, αext) as follows:

• Fext = F∪
{

fp1, . . . , fp|P |

}

∪{fnot}∪{fnext, falways, f�nally, funtil, fpreedes} assumingthat P =
{
p1, . . . , p|P |

},
• Pext = P ∪ {pnew} for some symbol pnew 6∈ P and
•

αext(f) = α(f) for f ∈ F,
αext (fpi

)
= α(pi) for i = 1, . . . , |P |,

αext(pnew) = k,

αext(fnot) = αext(fnext) = αext(falways) = αext(f�nally) = 1 and
αext(funtil) = αext(fpreedes) = 2.Using the signature sigext we de�ne an operation Term : Lt(sig) → T (sigext) whihmaps literals to terms. Term is de�ned indutively as follows:

• if ϕ = p(t1, . . . , tn) for some symbol p ∈ P and t1, . . . , tn ∈ T (sig), then Term(ϕ) =

fp(t1, . . . , tn),
• if ϕ = not(ψ) for some literal ψ ∈ Lt(sig), then Term(ϕ) = fnot(Term(ψ)),

136 Chapter 6. The Lattie Struture of Prolog(+T) objets
• � if ϕ = Xψ for some ψ ∈ Lt(sig), then Term(ϕ) = fnext(Term(ψ)),� if ϕ = Gψ for some ψ ∈ Lt(sig), then Term(ϕ) = falways(Term(ψ)) and� if ϕ = Fψ for some ψ ∈ Lt(sig), then Term(ϕ) = f�nally(Term(ψ)),
• � if ϕ = ψ1Uψ2 for ψ1, ψ2 ∈ Lt(sig), thenTerm(ϕ) = funtil(Term(ψ1),Term(ψ2))and� if ϕ = ψ1Pψ2 for ψ1, ψ2 ∈ Lt(sig), thenTerm(ϕ) = fpreedes(Term(ψ1),Term(ψ2)).Now we onstrut

ψ1 = pnew (Term(χ(1)
i0

)

, . . . ,Term(χ(1)
ik

)) and
ψ2 = pnew (Term(χ(2)

j0

)

, . . . ,Term(χ(2)
jk

))and ompute
ψ = LGS(ψ1, ψ2) =: pnew(t1, . . . , tk).The set of generalized literals an now be extrated from the sequene t1, . . . , tk ofterms using the transformation Literal : T (sigext)→ Lt(sig) de�ned as follows:

• if t = fp(t1, . . . , tn) for some p ∈ P and t1, . . . , tn ∈ T (sig), then Literal(t) =

p(t1, . . . , tn),
• if t = fnot(t̄) for some t̄ ∈ T (sigext), then Literal(t) = not(Literal(t̄)),
• � if t = fnext(t̄) for some t̄ ∈ T (sigext), then Literal(t) = XLiteral(t̄),� if t = falways(t̄) for some t̄ ∈ T (sigext), then Literal(t) = GLiteral(t̄) and

6.3 The Lattie Struture of Rules 137� if t = f�nally(t̄) for some t̄ ∈ T (sigext), then Literal(t) = FLiteral(t̄),
• � if t = funtil(t1, t2) for t1, t2 ∈ T (sigext), thenLiteral(t) = Literal(t1)ULiteral(t2)and� if t = fpreedes(t1, t2) for t1, t2 ∈ T (sigext), thenLiteral(t) = Literal(t1)PLiteral(t2).It is immediately lear from the de�nition of the operations Term and Literal thatwe have for every literal ϕ and every term t:Literal(Term(ϕ)) = ϕ andTerm(Literal(t)) = tHaving onstruted ψ = pnew(t1, . . . , tk) as desribed above, we extrat the generalizedliterals by omputing the following set:

SC = {Literal(t1), . . . ,Literal(tk)} = {χ1, . . . , χk} .By assumption we have that there is at least one positive literal χi. So the set of possiblerules whih an be extrated from SC is nonempty. We will again use the operation Tailde�ned on page 126. The algorithm to onstrut the set or rules from SC is desribed inAlgorithm 6.Theorem 6.3.2Let C1 and C2 be Prolog(+T)�rules and let C be any Prolog(+T)�rule from theset omputed by Algorithm 6 given inputs C1 and C2. Then C is a least generalization

138 Chapter 6. The Lattie Struture of Prolog(+T) objets
Algorithm 6 Least Generalization of Prolog(+T)�rulesInput: Prolog(+T)�rules C1, C2Output: set of least generalizations of C1 and C2Require: C1 = ϕ1 :−ψ(1)

1 , . . . , ψ
(1)
n1 , C2 = ϕ1 :−ψ(2)

1 , . . . , ψ
(2)
n21: L← ∅2: SC1 ←

{

¬ψ(1)
1 , . . . ,¬ψ(1)

n1 , ϕ1

}3: SC2 ←
{

¬ψ(2)
1 , . . . ,¬ψ(2)

n2 , ϕ2

}4: S ← SC1 ∪ SS2Require: S = {l1, . . . , lo}5: Co← ∅6: for i = 1, . . . , o do7: for j = i+ 1, . . . , o do8: if i 6= j then9: if Temp(li) = Temp(lj) then10: Co← Co ∪ {(li, lj)}11: end if12: end if13: end for14: end forRequire: Co = {(li1 , lj1), . . . , (lik , ljk)}15: SC ← ∅Require: pnew is some new prediate symbol with arity k16: ψ1 ← pnew (Term (li1) , . . . ,Term (lik))17: ψ2 ← pnew (Term (lj1) , . . . ,Term (lj1))18: ψ ← LGS(ψ1, ψ2)Require: ψ = pnew(t1, . . . , tk)19: SC ← {Literal(t1), . . . ,Literal(tk)}Require: SC = {l1, . . . , lk}20: for i = 1, . . . , k do21: if li is positive then22: L← L ∪ {li :−Tail(SC \ {li})}23: end if24: end for25: if L 6= ∅ then26: return L27: else28: return {false}29: end if

6.3 The Lattie Struture of Rules 139under subsumption of C1 and C2.Proof. Let C1 and C2 be given as
C1 = ϕ1 :−ψ(1)

1 , . . . , ψ(1)
n1

and
C2 = ϕ2 :−ψ(2)

1 , . . . , ψ(2)
n2
.We �rst show that every lause C omputed by Algorithm 6 given input C1 and C2 is ageneralization of C1 and C2. Let S be the set returned by Algorithm 6. If S = {false},then the laim is immediate by de�nition of the ordering �s. Now assume that S 6= ∅.If C is any element from S, then C has been onstruted from a literal pC(t1, . . . , tn)for some prediate symbol p, some n ∈ N and terms t1, . . . , tn. This literal has beenonstruted from C1 and C2 by appliation of Algorithm 4. So pC(t1, . . . , tn) is indeed aleast generalization of the two literals onstruted from C1 and C2. This gives the laimof the theorem. �As in the ase of omputing sets of greatest speializations we have that eah elementin a set returned by Algorithm 6 is semantially equivalent to the remaining elements inthis set. So we will again denote any Prolog(T)�rule omputed by Algorithm 6 giveninputs C1 and C2 as LGS(C1, C2).Example 6.3.5Consider the following three Prolog(+T)�rules:

C1 = Gp(a) :−Fq(X).,
C2 = p(b) :−not(q(X))Ur(X),Fq(a). and
C3 = p(a) :−not(q(a))Ur(c).We have LGS(C1, C2) = LGS(C1, C3) = {false}. The omputation of LGS(C2, C3) is

140 Chapter 6. The Lattie Struture of Prolog(+T) objetsarried out as follows: We have Co = {(p(a), p(a)), (q(X)Ur(X), q(a)Ur(c))}. So pnewwith arity 2 is added to the signature. Then the following two literals are reated:
ψ1 = pnew (fp(a), funtil(fq(X), fr(X))) and
ψ2 = pnew (fp(a), funtil(fq(a), fr(c))) .The least generalization of these literals is pnew(fp(a), funtil(fq(Z1), fr(Z2))). This gives

SC = {p(a), q(Z1)Ur(Z2)} and therefore the set C of least generalizations is
C = {p(a) :−not(q(Z1)Ur(Z2))., q(Z1)Ur(Z2) :−not(p(a)).} .The results from this setion and the setion before are summarized in the followingtheorem.Theorem 6.3.3Let R be the set of all Prolog(+T)�rules. Then (R∪ {{false}},�s) is a lattie.This theorem enables systems to re�ne programs in order to �t their spei�ations with-out taking hazards of overgeneralization or overspeialization. It will turn out importantin the following hapter where we will de�ne re�nement operators for Prolog(+T)�rules.

7. Re�nement Operators forProlog(+T)�programs
Contents7.1. Re�nement Operators for Prolog(+T)�Literals 1427.2. Re�nement Operators for Rules 1477.2.1. Downward Re�nement . 1507.2.2. Upward Re�nement . 1527.3. Re�nement Strategies . 1597.3.1. Elimination of Variants . 1627.3.2. Restrition to redued Rules 1637.3.3. Elimination of Tautologies . 1657.3.4. Premises vs. Conlusions . 166We will now onsider the problem of re�ning literals and rules. In ontrast to theomputation of least generalizations and greatest speializations as desribed in the lasthapter, only one objet is involved now. For objets from �rst order logi several re�ne-ment operators have been desribed and studied (see [98℄ and [126℄). We will see that there�nement operators for literals an be diretly used in order to re�ne Prolog(+T)�literals while the re�nement operators for �rst order lauses have to be extended in orderto be useful for the omputation of re�nements of Prolog(+T)�rules. But this exten-sion auses the number of re�nements to grow very fast. So it is neessary to ontrol the

142 Chapter 7. Re�nement Operators for Prolog(+T)�programsre�nement proess in order to avoid omputational intratability. How to ahieve thiswill be the topi of hapter 7.3.The use of re�nement operators in order to onstrut more speial resp. more generalobjets from given ones dates bak to 1981 when Shapiro introdued the model infereneframework (see [145℄ and [146℄). The approah posed there has gained a great interestin re�nement operators although it has been shown by van der Laag (see [159℄) thatShapiro's operator is (in ontrast to Shapiro's arguments whih shows that his proof isinorret) not omplete. However, in [159℄ and [98℄ it has been shown that ompletere�nement operators indeed exist.1 [127℄Further researh on re�nement operators has pointed out several onditions for theexistene of omplete re�nement operators (see [162℄, [161℄, [160℄, [127℄ and [163℄). Ad-ditionally re�nement operators for theories have been introdued (see e.g. [15℄). Re�ne-ment operators for theories work on sets of lauses rather than on single lauses. Thisapproah may yield smaller hypothesis�programs sine the appliation of suh re�nementoperators an be ombined with tehniques suh as lause�deletion.7.1. Re�nement Operators for Prolog(+T)�LiteralsWe will now brie�y resume some re�nement operators for literals whih have been de-sribed for �rst order logi atoms in [126℄. The extension of these operators to Pro-log(+T)�literals is obvious and their properties arry over to Prolog(+T). Thereforeassume that the signature under onsideration is sig = (X , F, P, α) with F = {f1, . . . , fn}.Downward Re�nement Let ϕ ∈ Lt(sig) be given with Var(ϕ) = {Z1, . . . , Zk} and let
X

(1)
1 , . . . , X

(1)
α(f1), . . . , X

(n)
1 , . . . , X

(n)
α(fn) be a sequene of pairwise distint variables suhthat X(j)

i 6∈ Var(ϕ) for all i, j. The downward re�nement operator ΘL
d : Lt(sig) →1The problem with Shapiro's inomplete re�nement operator is simply due to the fat that it requireslauses to be redued (see [133℄ and [78℄). Relaxing this requirement yields on the one hand a largersearh spae but on the other hand it yields a omplete operator.

7.1 Re�nement Operators for Prolog(+T)�Literals 1431. GXFp(f(X(1)
1

))Up(g(f(f(X(1)
1

))

, Y
))2. GXFp(g(X(2)

1 , X
(2)
2

))Up(g(f(g(X(2)
1 , X

(2)
2

))

, Y
))3. GXFp (X)Up(g(f (X) , f

(

X
(1)
1

)))4. GXFp (X)Up(g(f (X) , g
(

X
(2)
1 , X

(2)
2

)))5. GXFp(a)Up(g(f(a), Y)),GXFp(X)Up(g(f(X), a))6. GXFp(Y)Up(g(f(Y), Y)),GXFp(X)Up(g(f(X), X))Table 7.2.: Set of downward re�nements of ϕ = GXFp(X)Up(g(f(X), Y))
2Lt(sig) is now de�ned as follows:

ΘL
d (ϕ) =

ϕ

Zi

fj

(

X
(j)
1 , . . . , X

(j)
α(fj)

)

| i = 1, . . . , k, j = 1, . . . , n

(7.1)

∪
{

ϕ

{
Zj

Zi

}

| i = 1, . . . , k, j = 1, . . . , k, i 6= j

}

. (7.2)The set from (7.1) reates the literals whih emerge from the original literal byreplaing one variable by all possible instantiations of funtion symbols with (new)variables (note that replaement of variables with onstant symbols is just a speialase of this ase) while the set from (7.2) replaes variables with other variablesourring in the original expression. The proedure arried out by the appliationof ΘL
d is summarized in Algorithm 7.Example 7.1.1Assume that F = {f, g, a} and P = {p} with α(p) = α(g) = 2, α(f) = 1 and

α(a) = 0. If ϕ = GXFp(X)Up(g(f(X), Y)), then Var(ϕ) = {X, Y}. The new variablesto be introdued are X(1)
1 ,X(2)

1 and X(2)
2 . The result of ΘL

d given input ϕ is summarizedin Table 7.2.It is easy to see that1. ΘL
d is ideal and

144 Chapter 7. Re�nement Operators for Prolog(+T)�programs2. ∣∣ΘL
d (ϕ)

∣
∣ ≤ |Var(ϕ)| · (|F |+ |Var(ϕ)| − 1) for every ϕ ∈ Lt(sig).Algorithm 7 Downward�Re�nement of Prolog(+T)�literalsInput: Prolog(+T)�literal ϕ built from sig = (X , F, P, α)Output: set of speialized literalsRequire: Var(ϕ) = {X1, . . . , Xk}Require: F = {f1, . . . , fn}Require: X(1)

1 , . . . , X
(1)
α(f1), . . . , X

(n)
1 , . . . , X

(n)
α(fn) is a sequene of pairwise distint variablesfrom X \Var(ϕ)1: Ref ← ∅2: for i = 1, . . . , k do3: for j = 1, . . . , n do4: σ ←

Xi

fj

„

X
(j)
1 ,...,X

(j)
α(fj)

«

5: Ref ← Ref ∪ {σ(ϕ)}6: end for7: end for8: for i = 1, . . . , k do9: for j = 1, . . . , k do10: if i 6= j then11: σ ←
{

Xi

Xj

}12: Ref ← Ref ∪ {σ(ϕ)}13: end if14: end for15: end for16: return RefUpward Re�nement The dual ase of downward re�nement is upward re�nement. Theupward re�nement operator ΘL
u for Prolog(+T)�literals whih we will presentnow is (as the operator ΘL

d is) an extension of an ideal re�nement operator for �rstorder logi literals. In order to present the re�nement operator we need some moreformal onepts.First we will de�ne the mapping Terms : Lt(sig) ∪ T (sig)→ 2T (sig) whih returnsall terms whih our in a term respetively in a literal:1. if t = X ∈ X , then Terms(t) = {X},

7.1 Re�nement Operators for Prolog(+T)�Literals 1452. if t = f(t1, . . . , tn) for some funtion symbol f with arity n and terms t1, . . . , tn,then Terms(t) = {t} ∪⋃ni=1Terms(ti),3. if ϕ = p(t1, . . . , tn) for some prediate symbol p with arity n and terms
t1, . . . , tn, then Terms(ϕ) =

⋃n
i=1Terms(ti),4. if ϕ = not(ψ) for some ψ ∈ Lt(sig), then Terms(ϕ) = Terms(ψ),5. if ϕ = ⊕ψ for some ψ ∈ Lt(sig) and some ⊕ ∈ {X,G,F}, then Terms(ϕ) =Terms(ψ) and6. if ϕ = ψ1 ⊕ ψ2 for ψ1, ψ2 ∈ Lt(sig) and ⊕ ∈ {U,P}, then Terms(ϕ) =Terms(ψ1) ∪Terms(ψ2).We will all a term t ∈ T (sig) simple if t = f(X1, . . . , Xn) for a funtion symbol fwith arity n and variables X1, . . . , Xn suh that Xi 6= Xj for i 6= j.Now let o1 and o2 be any objets (terms or literals). The set of all ourrenes of

o1 in o2 is de�ned asO(o1, o2) = {p ∈ Pos(o2) | o1|p = o2} .An ourrene p1 of an objet o1 is said to be inside an ourrene p2 of anotherobjet o2 if there is p ∈ N
∗ suh that p2p = p1.Reall that for a literal ϕ, p ∈ Pos(ϕ) and a term t the literal ϕ[t]p is de�nedas the literal whih emerges from ϕ by replaing the term at position p with t.Similarly for p1, . . . , pk ∈ Pos(ϕ) and k > 1, the literal ϕ[t]p1,...,pk

emerges from ϕby replaing the terms at positions p1, . . . , pk with t.These onepts enable the de�nition of the upward re�nement operator ΘL
u forFoLtl�literals.

146 Chapter 7. Re�nement Operators for Prolog(+T)�programs
ΘL
u (ϕ) =

ϕ [Z]p1,...,pk
|
∅ 6= {p1, . . . , pk} = O(t, ϕ) for every simple tsuh that for every X ∈ Var(t) every p ∈ O(X, t)is inside one of the pj and Z 6∈ Var(ϕ)

︸ ︷︷ ︸

=:S1

∪

ϕ [Z]p1,...,pk
|

for every a ∈ F suh that α(a) = 0 and every
∅ 6= {p1, . . . , pk} ⊆ O(a, ϕ) and some Z 6∈ Var(ϕ)

︸ ︷︷ ︸

=:S2

∪

ϕ [Z]p1,...,pk
|

for every X ∈ Var(ϕ), every set
∅ 6= {p1, . . . , pk} ⊂ O(X, ϕ) and some Z 6∈ Var(ϕ)

︸ ︷︷ ︸

=:S3The estimation of the number of elements in ΘL
u (ϕ) is not that easy and we areonly able to present a very weak estimation. We have

|S1| ≤ |Terms(ϕ)|,

|S2| ≤ |F | ·
(

2|Pos(ϕ)| − 1
) and

|S3| ≤ |Var(ϕ)| ·
(

2|Pos(ϕ)| − 2
)

,whih gives
∣
∣ΘL

u (ϕ)
∣
∣ ≤ |S1|+ |S2|+ |S3|

≤ |Terms(ϕ)| + |F | ·
(

2|Pos(ϕ)| − 1
)

+ |Var(ϕ)| ·
(

2|Pos(ϕ)| − 2
)

.This estimation is not very preise as the following example shows. But it is not yetlear how a better estimation might be derived from the de�nition of ΘL
u withouttaking the struture of the involved terms into aount.

7.2 Re�nement Operators for Rules 147Example 7.1.2Consider the signature sig = (X , {f, a}, {p}, α) with α(a) = 0, α(f) = 2 and
α(p) = 3 and the literal ϕ = FGp(X1, f(a, f(X1, f(a, f(a, a)))), f(X1, X2)). Then theonly simple term in Terms(ϕ) is f(X2, X3) at position p = 113. So ΘL

u (ϕ) ontainsthe literal FGp(X1, f(a, f(a, f(a, f(a, a)))), Z). Sine Var(ϕ) = {X1, X2, X3} we havethat O(X1, ϕ) = {111}, O(X2, ϕ) = {1131} and O(X3, ϕ) = {1132}. Noneof these sets has a nonempty proper subset so S3 = ∅ in this ase. FurthermoreO(a, ϕ) = {1121, 11221, 112221, 1122221, 1122222}, so there are 31 possible lit-erals whih might be added by ΘL
u . So the overall size of ΘL

u (ϕ) is 32 while theabove estimation yields
∣
∣ΘL

u (ϕ)
∣
∣ ≤ |S1|+ |S2|+ |S3|

≤ |Terms(ϕ)|+ |F | ·
(

2|Pos(ϕ)| − 1
)

+ |Var(ϕ)| ·
(

2|Pos(ϕ)| − 2
)

= 9 + 2 ·
(
216 − 1

)
+ 3 ·

(
216 − 2

)

= 327681The omplete set of re�ned literals is listed in Table 7.3.Sine the original re�nement operator for �rst order logi literals is ideal, ΘL
u isalso ideal. The proedure for omputing ΘL

u (ϕ) is summarized in Algorithm 8.7.2. Re�nement Operators for RulesWe will now present adapted versions of lassial re�nement operators for sets of literals,i.e. for Prolog(+T)�rules. As in the ase of re�ning literals, there is in general morethan one re�nement of an input rule. So we will have a set of rules as the result of are�nement operation. Eah of these rules is a set from whih we may onstrut one ormore rules eah of whih is a re�nement of the original rule.

148 Chapter 7. Re�nement Operators for Prolog(+T)�programs
1. FGp(X1, f(a, f(a, f(a, f(a, a)))), Z)2. FGp(X1, f(a, f(a, f(a, f(a, Z)))), f(X1, X2))3. FGp(X1, f(a, f(a, f(a, f(Z, a)))), f(X1, X2))4. FGp(X1, f(a, f(a, f(a, f(Z, Z)))), f(X1, X2))5. FGp(X1, f(a, f(a, f(Z, f(a, a)))), f(X1, X2))6. FGp(X1, f(a, f(a, f(Z, f(a, Z)))), f(X1, X2))7. FGp(X1, f(a, f(a, f(Z, f(Z, a)))), f(X1, X2))8. FGp(X1, f(a, f(a, f(Z, f(Z, Z)))), f(X1, X2))9. FGp(X1, f(a, f(Z, f(a, f(a, a)))), f(X1, X2))10. FGp(X1, f(a, f(Z, f(a, f(a, Z)))), f(X1, X2))11. FGp(X1, f(a, f(Z, f(a, f(Z, a)))), f(X1, X2))12. FGp(X1, f(a, f(Z, f(a, f(Z, Z)))), f(X1, X2))13. FGp(X1, f(a, f(Z, f(Z, f(a, a)))), f(X1, X2))14. FGp(X1, f(a, f(Z, f(Z, a(a, Z)))), f(X1, X2))15. FGp(X1, f(a, f(Z, f(Z, f(Z, a)))), f(X1, X2))16. FGp(X1, f(a, f(Z, f(Z, f(Z, Z)))), f(X1, X2))17. FGp(X1, f(Z, f(a, f(a, f(a, a)))), f(X1, X2))18. FGp(X1, f(Z, f(a, f(a, f(a, z)))), f(X1, X2))19. FGp(X1, f(Z, f(a, f(a, f(Z, a)))), f(X1, X2))20. FGp(X1, f(Z, f(a, f(a, f(Z, Z)))), f(X1, X2))21. FGp(X1, f(Z, f(a, f(Z, f(a, a)))), f(X1, X2))22. FGp(X1, f(Z, f(a, f(Z, f(a, Z)))), f(X1, X2))23. FGp(X1, f(Z, f(a, f(a, f(Z, a)))), f(X1, X2))24. FGp(X1, f(Z, f(a, f(a, f(Z, Z)))), f(X1, X2))25. FGp(X1, f(Z, f(a, f(Z, f(a, a)))), f(X1, X2))26. FGp(X1, f(Z, f(a, f(Z, f(a, Z)))), f(X1, X2))27. FGp(X1, f(Z, f(a, f(Z, f(Z, a)))), f(X1, X2))28. FGp(X1, f(Z, f(a, f(Z, f(Z, Z)))), f(X1, X2))29. FGp(X1, f(Z, f(Z, f(Z, f(a, a)))), f(X1, X2))30. FGp(X1, f(Z, f(Z, f(Z, f(a, z)))), f(X1, X2))31. FGp(X1, f(Z, f(Z, f(Z, f(Z, a)))), f(X1, X2))32. FGp(X1, f(Z, f(Z, f(Z, f(Z, Z)))), f(X1, X2))Table 7.3.: Set of upward re�nements for ϕ = FGp(X1, f(a, f(X1, f(a, f(a, a)))), f(X1, X2))

7.2 Re�nement Operators for Rules 149
Algorithm 8 Upward�Re�nement of Prolog(+T)�literalsInput: Prolog(+T)�literal ϕOutput: set of generalized literalsRequire: Var(C) = {X1, . . . , Xk}Require: Z ∈ X \ {X1, . . . , Xk}Require: Terms(ϕ) = {t1, . . . , tn}1: Ref ← ∅2: for i = 1, . . . , n do3: if ti is simple thenRequire: Var(ti) = {Z1, . . . , Zl}4: for o = 1, . . . , l do5: if eah p ∈ O(Zo, ti) is inside of one element from O(ti, ϕ) thenRequire: {p1, . . . , pm} = O(ti, ϕ)6: Ref ← Ref ∪ {ϕ[Z]p1,...,pm}7: end if8: end for9: end if10: end forRequire: F = {f1, . . . , f|F |11: for i = 1, . . . , |F | do12: if α(fi) = 0 then13: for eah ∅ 6= {p1, . . . , pm} ⊆ O(fi, ϕ) do14: Ref ← Ref ∪ {ϕ[Z]p1,...,pm}15: end for16: end if17: end for18: for i = 1, . . . , k do19: for eah ∅ 6= {p1, . . . , pm} ⊂ O(Xi, ϕ) do20: Ref ← Ref ∪ {ϕ[Z]p1, . . . , pm}21: end for22: end for23: return Ref

150 Chapter 7. Re�nement Operators for Prolog(+T)�programsIn the following setions we will sometimes refer to ertain re�nement operators whihhave been introdued for �rst order logi literals respetively lauses. A general de-sription of re�nement operators an be found in [98℄. In partiular we will refer tothe operators ρA (downward re�nement of atoms), δA (upward re�nement of atoms), ρl(downward re�nement of lauses) and δu (upward re�nement of lauses) from [126℄.7.2.1. Downward Re�nementThe basi idea of downward re�nement of Prolog(+T)�rules is �rst to onsider theset SC indued by a rule C and then to add ertain literals to SC . Additionally we willreplae variables with terms and variables with other variables from the original rule asin the ase of the operator ΘL
d .The original downward re�nement operator presented in [98℄ only treats �rst orderlauses. So in order to onstrut re�nements of Prolog(+T)�rules we have to dealwith the temporal operators. This will be done as follows:

• whenever a literal ψ is ontained in the original set SC , the set of re�nementsontains SC ∪ {⊕ψ} and SC ∪ {not(⊕ψ)} for ⊕ ∈ {X,G,F} and
• whenever two literals ψ1 and ψ2 are ontained in SC , the set of re�nements ontainsboth SC ∪ {ψ1 ⊕ ψ2} and SC ∪ {not(ψ1 ⊕ ψ2)} for ⊕ ∈ {U,P}.From the resulting set of literals we will extrat those rules whih an be written usinga head literal whih is positive.The operator ΘR

d : 2Lt(sig) → 22Lt(sig) is therefore de�ned as follows:
ΘR
d (SC) =

SC

{
Z

f(X1, . . . , Xl)

}

|
Z ∈ Var(C), f ∈ F,α(f) = l,

X1, . . . , Xl 6∈ Var(C),

Xi 6= Xj for i 6= j

(7.3)

7.2 Re�nement Operators for Rules 151
∪

{

SC

{
Z

X

}

| X, Z ∈ Var(C), X 6= Z

} (7.4)
∪

SC ∪ {p(X1, . . . , Xl)} |
p ∈ P,α(p) = l, X1, . . . , Xl 6∈ Var(C)

Xi 6= Xj for i 6= j

(7.5)
∪

SC ∪ {not(p(X1, . . . , Xl))} |
p ∈ P,α(p) = l,

X1, . . . , Xl 6∈ Var(C)

Xi 6= Xj for i 6= j

(7.6)
∪ {SC ∪ {Xψ} | ψ ∈ SC} ∪ {SC ∪ {not(Xψ)} | ψ ∈ SC} (7.7)
∪ {SC ∪ {Gψ} | ψ ∈ SC} ∪ {SC ∪ {not(Gψ)} | ψ ∈ SC} (7.8)
∪ {SC ∪ {Fψ} | ψ ∈ SC} ∪ {SC ∪ {not(Fψ)} | ψ ∈ SC} (7.9)
∪ {SC ∪ {ψ1Uψ2} | ψ1, ψ2 ∈ SC} (7.10)
∪ {SC ∪ {not(ψ1Uψ2)} | ψ1, ψ2 ∈ SC} (7.11)
∪ {SC ∪ {ψ1Pψ2} | ψ1, ψ2 ∈ SC} (7.12)
∪ {SC ∪ {not(ψ1Pψ2)} | ψ1, ψ2 ∈ SC} . (7.13)The line (7.3) generates all sets of literals whih emerge from the original set by instan-tiating variables with terms. This onstrution is an obvious extension of the onstrutionfrom (7.1). Similarly the seond line (7.4) adds sets of literals in whih single variableshave been replaed by other variables from the original set. The lines (7.5) and (7.6)add new literals to the original set of literals. Finally in lines (7.7) to (7.12) temporalliterals built up from literals of the original set are added as desribed above. Obviouslythe resulting set is subsumed by the original set. Furthermore the literals whih havebeen added are general enough to be instantiated to more speial literals. The ompleteproedure is summarized in Algorithm 9.We illustrate the upward re�nement of Prolog(+T)�rules in the following example.Example 7.2.1Let sig = (X , F, P, α) with F = {f, g, a}, P = {p, q} and α(f) = 1, α(g) = 2, α(a) = 0,

152 Chapter 7. Re�nement Operators for Prolog(+T)�programs
α(p) = 1 and α(q) = 2 be given. If C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a)., then theset of re�ned rules is as listed in Tables 7.5, 7.7 and 7.9.Theorem 7.2.1
ΘR
d is loally �nite and omplete.Proof. Loally �niteness is immediately by de�nition of ΘR

d . For the ompleteness theproof relies on the ompleteness of the restrition of ΘR
d to �rst order logi lauses. Thishas been shown in [126℄. Sine every possible most general (see setion 7.2.2 for a formalde�nition of most general literals) temporal literal is added to the set of re�nements(lines 17�22) the ompleteness arries over to Prolog(+T)�rules. �7.2.2. Upward Re�nementAs having done for Prolog(+T)�literals we will now desribe how to re�ne Pro-log(+T)�rules upward. We will see that the de�nition of an upward re�nement operatorfor �rst order logi lauses does not need to be hanged. This is due to the fat thatupward re�nement of rules is in some sense easier than downward re�nement sine an up-ward re�nement operator does not need to apture all possible ases of temporal literalswhih might be added. Therefore the upward re�nement operator ΘR

u to be introduedis more tratable than the operator ΘR
d . But before we need some more de�nitions.De�nition 7.2.1Let sig = (X , F, P, α) be a signature, let ϕ ∈ Lt(sig) be a literal and let C be aProlog(+T)�rule over sig. Then ϕ is alled most general with respet to C ifTerms(ϕ) = {X1, . . . , Xn} ⊆ X and1. ϕ = p(X1, . . . , Xn) for some p ∈ P with α(p) = n and {X1, . . . , Xn}∩Var(C) = ∅or

7.2 Re�nement Operators for Rules 1531. Gp(a) :−Fq(X1, f(X2)), q(a, a)Up(a).2. Gp(X1) :−Fq(X1, f(a)), q(a, a)Up(a).3. Gp(f(X̄1)) :−Fq(f(X̄1), f(X2)), q(a, a)Up(q).4. Gp(X1) :−Fq(X1, f(f(X̄1))), q(a, a)Up(a).5. Gp(q(X̄1, X̄2)) :−Fq(g(X̄1, X̄2), f(X2)), q(a, a)Up(a).6. Gp(X1) :−Fq(X1, f(g(X̄1, X̄2))), q(a, a)Up(a).7. Gp(X1) :−Fq(X1, f(X1)), q(a, a)Up(a).8. Gp(X2) :−Fq(X2, f(X2)), q(a, a)Up(a).9. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(p(X̄1)).10. p(X1) :−not(Gp(X1)),Fq(X1, f(X2)), g(a, a)Up(a).11. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(X̄1, X̄2)).12. q(X̄1, X̄2) :−not(Gp(X1)),Fq(X1, f(X2)), q(a, a)Up(a).13. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), p(X̄1).14. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), q(X̄1, X̄2).15. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Xnot(Fq(X1, f(X2)))).16. Xnot(Fq(X1, f(X2))) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).17. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Xnot(q(a, a)Up(a))).18. Xnot(q(a, a)Up(a)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).19. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(XGp(X1)).20. XGp(X1)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).21. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Xnot(Fq(X1, f(X2))).22. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Xnot(q(a, a)Up(a)).23. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),XGp(X1).24. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gnot(Fq(X1, f(X2)))).25. Gnot(Fq(X1, f(X2))) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).26. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gnot(q(a, a)Up(a))).27. Gnot(q(a, a)Up(a)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).28. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(GGp(X1)).29. GGp(X1)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).30. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gnot(Fq(X1, f(X2))).31. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gnot(q(a, a)Up(a)).32. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),GGp(X1).33. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fnot(Fq(X1, f(X2)))).34. Fnot(Fq(X1, f(X2))) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).35. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fnot(q(a, a)Up(a))).36. Fnot(q(a, a)Up(a)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).37. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(FGp(X1)).38. FGp(X1)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).39. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Fnot(Fq(X1, f(X2))).40. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Fnot(q(a, a)Up(a)).Table 7.5.: Set of downward re�nements of C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).(part 1)

154 Chapter 7. Re�nement Operators for Prolog(+T)�programs41. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),FGp(X1).42. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)UGp(X1)).43. Gp(X1)UGp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).44. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)Unot(Fq(X1, f(X2)))).45. Gp(X1)Unot(Fq(X1, f(X2))) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).46. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)Unot(q(a, a)Up(a))).47. Gp(X1)Unot(q(a, a)Up(a)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).48. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(Fq(X1, f(X2)))UGp(X1)).49. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(Fq(X1, f(X2)))Unot(Fq(X1, f(X2)))).50. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(Fq(X1, f(X2)))Unot(q(a, a)Up(a))).51. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(q(a, a)Up(a)UGp(X1)).52. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(q(a, a)Up(a))Unot(Fq(X1, f(X2)))).53. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(q(a, a)Up(a))Unot(q(a, a)Up(a))).54. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gp(X1)UGp(X1).55. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gp(X1)Unot(Fq(X1, f(X2))).56. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gp(X1)Unot(q(a, a)Up(a)).57. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fq(X1, f(X2)))UGp(X1).58. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fq(X1, f(X2)))Unot(Fq(X1, f(X2))).59. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fq(X1, f(X2)))Unot(q(a, a)Up(a)).60. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(a, a)Up(a)UGp(X1).61. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(a, a)Up(a))Unot(Fq(X1, f(X2))).62. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(a, a)Up(a))Unot(q(a, a)Up(a)).63. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)PGp(X1)).64. Gp(X1)PGp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).65. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)Pnot(Fq(X1, f(X2)))).66. Gp(X1)Pnot(Fq(X1, f(X2))) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).67. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)Pnot(q(a, a)Up(a))).68. Gp(X1)Pnot(q(a, a)Up(a)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).69. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(Fq(X1, f(X2)))PGp(X1)).70. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(Fq(X1, f(X2)))Pnot(Fq(X1, f(X2)))).71. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(Fq(X1, f(X2)))Pnot(q(a, a)Up(a))).72. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(q(a, a)Up(a)PGp(X1)).73. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(q(a, a)Up(a))Pnot(Fq(X1, f(X2)))).74. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(q(a, a)Up(a))Pnot(q(a, a)Up(a))).75. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gp(X1)PGp(X1).76. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gp(X1)Pnot(Fq(X1, f(X2))).77. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gp(X1)Pnot(q(a, a)Up(a)).78. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fq(X1, f(X2)))PGp(X1).79. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fq(X1, f(X2)))Pnot(Fq(X1, f(X2))).80. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fq(X1, f(X2)))Pnot(q(a, a)Up(a)).Table 7.7.: Set of downward re�nements of C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).(part 1)

7.2 Re�nement Operators for Rules 155
Algorithm 9 Downward�Re�nement of Prolog(+T)�rulesInput: Prolog(+T)�rule C = ϕ :−ψ1, . . . , ψn.Output: set of speialized rulesRequire: C = ϕ :−ψ1, . . . , ψn.1: SC ← {ϕ,¬ψ1, . . . ,¬ψn}2: Ref ← ∅ {set of sets of literals}Require: SC = {χ0, . . . , χn}, Var(C) = {X1, . . . , Xk}, sig = (X , F, P, α)Require: F =

{
f1, . . . , f|F |

}Require: X1, X2, . . . , Xi, . . . new variables, pairwise distint3: for i = 1, . . . , k do4: for j = 1, . . . , |F | do5: Ref ← Ref ∪
{

SC

{

Xi

fj

“

X1,...,Xα(fj)

”

}}6: end for7: end for8: for i = 1, . . . , k do9: for j = 1, . . . , k do10: if i 6= j then11: Ref ← Ref ∪
{

SC

{
Xi

Xj

}}12: end if13: end for14: end forRequire: P = {p1, . . . , pm}15: for i = 1, . . . ,m do16: Ref ← Ref ∪
{
SC ∪

{
pi

(
X1, . . . , Xα(pi)

)}}
∪
{
SC ∪

{
not

(
pi

(
X1, . . . , Xα(pi)

))}}17: Ref ← Ref ∪ {Xψ | ψ ∈ SC} ∪ {not(Xψ) | ψ ∈ SC}18: Ref ← Ref ∪ {Gψ | ψ ∈ SC} ∪ {not(Gψ) | ψ ∈ SC}19: Ref ← Ref ∪ {Fψ | ψ ∈ SC} ∪ {not(Fψ) | ψ ∈ SC}20: Ref ← Ref ∪ {ψ1Uψ2 | ψ1, ψ2 ∈ SC} ∪ {not(ψ1Uψ2) | ψ1, ψ2 ∈ SC}21: Ref ← Ref ∪ {ψ1Pψ2 | ψ1, ψ2 ∈ SC} ∪ {not(ψ1Pψ2) | ψ1, ψ2 ∈ SC}22: end forRequire: Ref = {S1, . . . , So}23: R← ∅ {set of rules}24: for i = 1, . . . , o doRequire: Si =
{

l
(i)
1 , . . . , l

(i)
ni

}25: for j = 1, . . . , ni do26: if lj is positive then27: R← R ∪ {lj :−Tail(Si \ {lj}).}28: end if29: end for30: end for31: return R

156 Chapter 7. Re�nement Operators for Prolog(+T)�programs81. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(a, a)Up(a)PGp(X1).82. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(a, a)Up(a))Pnot(Fq(X1, f(X2))).83. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(a, a)Up(a))Pnot(q(a, a)Up(a)).Table 7.9.: Set of downward re�nements of C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).(part 3)2. ϕ = not(p(X1, . . . , Xn)) for some p ∈ P with α(p) = n and {X1, . . . , Xn} ∩Var(C) = ∅ or3. ϕ = ⊕ψ for ⊕ ∈ {X,G,F} and some most general literal ψ or4. ϕ = ψ1⊕ψ2 for ⊕ ∈ {U,P} and most general literals ψ1, ψ2 suh that Var(ψ1)∩Var(ψ2) = ∅.It will be neessary to onsider rules whih may ontain literals more than one. Inthis ase, treating rules as sets of literals is not adequate. Therefore we will introdue se-quenes of literals whih are omputed by dupliating ertain literals from the underlyingset.De�nition 7.2.2 (Dupliation of Literals, e.g. [126℄)Let SC = {ϕ1, . . . , ϕn} be a set of Prolog(+T)�literals and let t ∈ Terms(SC) bea term. Then the sequene dup(SC , t) is de�ned as
dup(SC , t) = (ϕ1, . . . , ϕ1

︸ ︷︷ ︸

2|O(t,ϕ1)| times, . . . , ϕn, . . . , ϕn
︸ ︷︷ ︸

2|O(t,ϕn)| times).Positions of suh tuples of literals are de�ned as expeted:Pos(ϕ1, . . . , ϕn) =

n⋃

i=1

{ip | p ∈ Pos(ϕi)}.

7.2 Re�nement Operators for Rules 157Similarly for p1, . . . , pk ∈ Pos(ϕ1, . . . , ϕn) and t ∈ T (sig) we de�ne
(ϕ1, . . . , ϕn)[t]p1,...,pk

=

(

ϕ1[t]p(1)
i
(1)
0

,...,p
(1)

i
(1)
m1

, . . . , ϕn[t]p(n)

i
(n)
0

,...,p
(n)

i
(n)
mn

)

,where for eah j the set {jp(j)

i
(j)
0

, . . . , jp
(j)

i
(j)
mj

}

⊆ Pos(ϕ1, . . . , ϕn) is maximal.Finally for a sequene (ϕ1, . . . , ϕn) onsisting of n (not neessarily distint) literalsfrom Lt(sig) we de�ne Set(ϕ1, . . . , ϕn) =

n⋃

i=1

{ϕi}.Using these de�nitions the extension of the re�nement operator for �rst order logilauses to Prolog(+T)�rules is straightforward. As in the ase of downward re�nementwe will work on sets of literals instead of rules.
ΘR
u (SC) =

SC [Z]p1,...,pk
|

t ∈ Terms(C), t = f
(
X1, . . . , Xα(f)

) simple
{p1, . . . , pk} = O(t, C) and every p ∈ O(Xi, C)is inside of one pi for i = 1, . . . , α(f), Z 6∈ Var(C)

∪

Set(dup(SC , a)[Z]p1,...,pk
) |

a ∈ F,α(a) = 0, Z 6∈ Var(C)

∅ 6= {p1, . . . , pk} ⊆ O(a, dup(SC , a))

∪

Set(dup(SC , X)[Z]p1,...,pk
) |

X ∈ Var(C), Z 6∈ Var(C)

∅ 6= {p1, . . . , pk} ⊂ O(X, dup(SC , X)),

∪ {SC \ {ϕ} | ϕ ∈ SC is most general wrt. C} .Given C we an therefore ompute SC and then apply ΘR
u to C. From the resultingset the extration of a set of generalized rules is then arried out as usual. The proedurefor omputing the set of generalized rules is summarized in Algorithm 10.Theorem 7.2.2

ΘR
u is loally �nite and omplete.

158 Chapter 7. Re�nement Operators for Prolog(+T)�programsAlgorithm 10 Upward�Re�nement of Prolog(+T)�rulesInput: Prolog(+T)�rule C = ϕ :−ψ1, . . . , ψn.Output: set of generalized rulesRequire: C = ϕ :−ψ1, . . . , ψn.1: SC ← {ϕ,¬ψ1, . . . ,¬ψn}2: Ref ← ∅ {set of sets of literals}Require: SC = {χ0, . . . , χn}, Z 6∈ Var(C)Require: F = {f1, . . . , f|F |}, Terms(C) = {t1, . . . , tm}3: for i = 1, . . . ,m do4: if ti is simple thenRequire: Var(ti) = {Z1, . . . , Zl}5: for o = 1, . . . , l do6: if eah p ∈ O(Xo, C) is inside a p′ ∈ O(ti, C) thenRequire: {p1, . . . , pk}O(ti, C)7: Ref ← Ref ∪ {SC [Z]p1,...,pk
}8: end if9: end for10: end if11: end for12: for i = 1, . . . , |F | do13: if α(fi) = 0 then14: for eah ∅ 6= {p1, . . . , pk} ⊆ O(fi, dup(SC , fi)) do15: Ref ← Ref ∪ {Set(dup(SC , fi)[Z]p1,...,pk

)}16: end for17: end if18: end forRequire: Var(C) = {X1, . . . , Xl}19: for i = 1, . . . , l do20: for eah ∅ 6= {p1, . . . , pk} ⊂ O(Xi, dup(SC , Xi)) do21: Ref ← Ref ∪ {Set(dup(SC , Xi)[Z]p1,...,pk
)}22: end for23: end for24: for i = 0, . . . , n do25: if χi is most general wrt. C then26: Ref ← Ref ∪ {SC \ {χi}}27: end if28: end forRequire: Ref = {S1, . . . , S|S|}29: R← ∅ {set of rules}30: for i = 1, . . . , |S| doRequire: Si =

{

l
(i)
1 , . . . , l

(i)
ni

}31: for j = 1, . . . , ni do32: if lj is positive then33: R← R ∪ {lj :−Tail(Si \ {lj}).}34: end if35: end for36: end for37: return R

7.3 Re�nement Strategies 159Proof. As for the operator ΘR
d , loally �niteness is immediately lear from the de�nitionof ΘR

u . For the ompleteness the argumentation from [126℄ an be diretly adapted to
ΘR
u . So the theorem is proved. �7.3. Re�nement StrategiesUp to now we have de�ned operators for re�ning Prolog(+T)�literals and �rules bothupward and downward. However, it is not yet lear how these operators should beapplied. For example, exhaustive appliation of ΘR

d to any lause is not appliable aswe have seen in Example 7.2.1. The size of the set omputed by Algorithm 9 is given asstated in the following lemma2.Lemma 7.3.1Let C be a Prolog(+T)�rule built over sig = (X , F, P, α). Then
|ΘR

d (C)| ≤ |Var(C)| (|F |+ |Var(C)| − 1) + 6|SC |+ 4|SC |2 + 2|P |.Proof. We have
|ΘR

d (C)| ≤

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

SC

{
Z

f(X1, . . . , Xl)

}

|
Z ∈ Var(C), f ∈ F,α(f) = l,

X1, . . . , Xl 6∈ Var(C),

Xi 6= Xj for i 6= j

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣

{

SC

{
Z

X

}

| X, Z ∈ Var(C), X 6= Z

}∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

SC ∪ {p(X1, . . . , Xl)} |
p ∈ P,α(p) = l, X1, . . . , Xl 6∈ Var(C)

Xi 6= Xj for i 6= j

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

SC ∪ {not(p(X1, . . . , Xl))} |
p ∈ P,α(p) = l, X1, . . . , Xl 6∈ Var(C)

Xi 6= Xj for i 6= j

∣
∣
∣
∣
∣
∣
∣2We will restrit ourselves on the ase of downward re�nement sine upward re�nement often yieldssmaller sets of rules.

160 Chapter 7. Re�nement Operators for Prolog(+T)�programs
+ |{SC ∪ {Xψ} | ψ ∈ SC}|+ |{SC ∪ {not(Xψ)} | ψ ∈ SC}|

+ |{SC ∪ {Gψ} | ψ ∈ SC}|+ |{SC ∪ {not(Gψ)} | ψ ∈ SC}|

+ |{SC ∪ {Fψ} | ψ ∈ SC}|+ |{SC ∪ {not(Fψ)} | ψ ∈ SC}|

+ |{SC ∪ {ψ1Uψ2} | ψ1, ψ2 ∈ SC}|

+ |{SC ∪ {¬ψ1Uψ2} | ψ1, ψ2 ∈ SC}|

+ |{SC ∪ {ψ1Pψ2} | ψ1, ψ2 ∈ SC}|

+ |{SC ∪ {¬ψ1Pψ2} | ψ1, ψ2 ∈ SC}|by de�nition of ΘR
d . Furthermore

•
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

SC

{
Z

f(X1, . . . , Xl)

}

|
Z ∈ Var(C), f ∈ F,α(f) = l,

X1, . . . , Xl 6∈ Var(C),

Xi 6= Xj for i 6= j

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ |Var(C)| · |F |,

•
∣
∣
∣
∣

{

SC

{
Z

X

}

| X, Z ∈ Var(C), X 6= Z

}∣
∣
∣
∣
≤ |Var(C)| · (|Var(C)| − 1) ,

•
∣
∣
∣
∣
∣
∣
∣

SC ∪ {p(X1, . . . , Xl)} |
p ∈ P,α(p) = l, X1, . . . , Xl 6∈ Var(C)

Xi 6= Xj for i 6= j

∣
∣
∣
∣
∣
∣
∣

≤ |P | and
∣
∣
∣
∣
∣
∣
∣

SC ∪ {not(p(X1, . . . , Xl))} |
p ∈ P,α(p) = l, X1, . . . , Xl 6∈ Var(C)

Xi 6= Xj for i 6= j

∣
∣
∣
∣
∣
∣
∣

≤ |P |,

•

|{SC ∪ {Xψ} | ψ ∈ SC}| ≤ |SC |,

7.3 Re�nement Strategies 161
|{SC ∪ {not(Xψ)} | ψ ∈ SC}| ≤ |SC |,

|{SC ∪ {Gψ} | ψ ∈ SC}| ≤ |SC |,

|{SC ∪ {not(Gψ)} | ψ ∈ SC}| ≤ |SC |,

|{SC ∪ {Fψ} | ψ ∈ SC}| ≤ |SC | and
|{SC ∪ {not(Fψ)} | ψ ∈ SC}| ≤ |SC |,

•

|{SC ∪ {ψ1Uψ2} | ψ1, ψ2 ∈ SC}| ≤ |SC |2,

|{SC ∪ {not(ψ1Uψ2)} | ψ1, ψ2 ∈ SC}| ≤ |SC |2,

|{SC ∪ {ψ1Pψ2} | ψ1, ψ2 ∈ SC}| ≤ |SC |2 and
|{SC ∪ {not(ψ1Pψ2)} | ψ1, ψ2 ∈ SC}| ≤ |SC |2.

Combining these inequalities we have
|ΘR

d (C)| ≤ |Var(C)| · |F |+ |Var(C)| · (|Var(C)| − 1) + 6|SC |+ 4|SC |2 + 2|P |

= |Var(C)| · (|F |+ |Var(C)| − 1) + 6|SC |+ 4|SC |2 + 2|P |as laimed. �We will now see how re�nement steps an be arried out without onstruting themaximum number of rules.

162 Chapter 7. Re�nement Operators for Prolog(+T)�programs7.3.1. Elimination of VariantsReall that two Prolog(+T)�rules C1 and C2 are variants if there are substitutions θ1and θ2 suh that θ1(C1) = C2 and θ2(C2) = C1. Sine in our setting all rules in programsare onsidered universally losed, only one (of possibly arbitrary many) variants must beinluded in the set of re�ned rules. In the example from the last setion, one of the rules7 and 8 may be dropped.In general, the presene of variants in the set of re�nements is due to the onstrutionof the loop from line 8 to line 14 in Algorithm 9. If we hange the j�loop to range from
i+1 to k and drop the if�ondition (whih now has no e�et), the variants are not added.In the original algorithm the number of rules added in the loop is given as k2 − k. Ifthe modi�ation is added, only ∑k

i=1

∑k
j=i+1 1 rules are added. So the di�erene in thesize of the original set of re�ned rules and the modi�ed set is given as

k2 − k −
(

k2 − k(k + 1)

2

)

=
k(k + 1)

2
− k

=
k2 + k − 2k

2

=
k2 − k

2
.Setting k = |Var(C)| and using Lemma 7.3.1 we have

∣
∣ΘR

d (C)
∣
∣ ≤ |Var(C)| · (|F |+ |Var(C)| − 1) + 6|SC |+ 4|SC |2

+2|P | − |Var(C)|2 − |Var(C)|
2

= |Var(C)| ·
(

|F |+ |Var(C)|
2

− 1

2

)

+ 6|SC |+ 4|SC |2 + 2|P |,where ΘR
d from now on denotes the re�nement operator whih implements the abovestrategy.The growth of the set of re�nements (depending on the number of variables in the rule

7.3 Re�nement Strategies 163

 0
 20

 40
 60

 80
 100 0

 20

 40

 60

 80

 100

 0

 10000

 20000

 30000

 40000

 50000

 60000

Number of Refinements

without elimination of variants
with elimination of variants

Number of Variables in C

Number of Elements in S_C

Number of Refinements

Figure 7.1.: Growth rate of re�ned rules with and without elimination of variantsto be re�ned and the size of the original rule) is depited in Figure 7.1 using |F | = 3 and
|P | = 2.7.3.2. Restrition to redued RulesWe have introdued the onept of redued literals in order to keep the representationof a literal anonial, so that we an assume that eah literal from Lt(sig) has a ertainform. Similarly a rule is redued if every literal in this rule is redued. Restritingourselves to the onstrution of redued rules during the re�nement of Prolog(+T)�rules guarantees anoniity.Example 7.3.1Again onsider rule

C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).

164 Chapter 7. Re�nement Operators for Prolog(+T)�programsThen the set of re�nements ontains among others the rules
C1 = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(GGp(X1)). and
C2 = GGp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).These rules are syntatially di�erent. However, redution of the literals involved yields:Red(C1) = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)). andRed(C2) = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).

Sine Red(C1) = Red(C2) one of the re�nement steps an be skipped.
But the example from above yields even more possible improvements: both rules anbe skipped. This is simply due toRed(C1) = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).

≡ Gp(X1) ∨ not(Fq(X1, f(X2))) ∨ not(q(a, a))Up(a) ∨ not(not(Gp(X1)))

≡ Gp(X1) ∨ not(Fq(X1, f(X2))) ∨ q(a, a)Up(a)
≡ Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).
= C.However, estimating the number of rules whih an be skipped by restrition to reduedliterals depends on the struture of the literals involved in the re�ned rule. So in generalwe are not able to give an estimation of the redution of |ΘR

d (C)|.

7.3 Re�nement Strategies 1657.3.3. Elimination of TautologiesTautologies an be onsidered as rules whih do not have any e�et on the provabilityresp. non�provability of goals. Therefore they do not have to be onstruted. A su�ientriterion is stated in the following lemma.Lemma 7.3.2Let C be any Prolog(+T)�rule built over the signature sig. If there is ϕ ∈ Lt(sig) suhthat {ϕ, not(ϕ)} ⊆ SC , then C is a tautology.Proof. immediately from
C ≡ SC

= {ϕ, not(ϕ), ψ1, . . . , ψk} for ϕ,ψ1, . . . , ψk ∈ Lt(sig)
≡ ϕ ∨ not(ϕ) ∨ ψ1 ∨ · · · ∨ ψk

≡ true ∨ ψ1 · · · ∨ ψk

≡ true.

�Example 7.3.2Let the rule
C = Gp(X) :−p(X),Fq(X, X).be given. Then {Gp(X) :−p(X),Fq(X, X),Gp(X)} ⊆ ΘR

d (C) whih is a tautology and antherefore be skipped.In general, testing a rule C for being a tautology using the approah skethed abovean be aomplished in time O (|SC |2). But similarly as in the foregoing setion weannot estimate the number of rules whih might be skipped by tautology�eliminationwithout taking the struture of C into aount.

166 Chapter 7. Re�nement Operators for Prolog(+T)�programs7.3.4. Premises vs. ConlusionsThe downward re�nement operator ΘR
d adds positive as well as negative literals to the setof re�nements. Of ourse, every rule whih is generated in this way is a downward re�ne-ment of the original rule. But one an rely on the following point of view: the onlusionsof rules should be known in advane, therefore it is better to adjust the premises.In the de�nition of ΘR

d this is modeled by only adding negative literals during theexeution of the loop in lines 15�22. The number of literals added by only addingnegative literals is then
|P |+ 3|SC |+ 2|SC |2,so the overall number of re�nements is

∣
∣ΘR

d (C)
∣
∣ ≤ |Var(C)| ·

(

|F |+ |Var(C)|
2

− 1

2

)

+ 3|SC |+ 2|SC |2 + |P |.Figure 7.2 ompares the introdued strategy with the strategy of elimination of variantsdesribed above.However, by adding negative literals only we lose the ompleteness of the operator.This an be easily seen as follows: onsider the rules
C1 = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a). and
C2 = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(X1, X1)).Sine only negative literals are added in the proess of re�ning, every rule C ontainedin (ΘR

d

)n
(C) for any n only may ontain other positive premises. So no rule C ′ ≈s C2will be onstruted.The above results regarding tehniques for the restrition of the number of re�nementsomplete our study of re�nement operators for Prolog(+T)�objets. We have seenthat re�nement operators for nontemporal logi programming languages an be natu-

7.3 Re�nement Strategies 167

 0
 20

 40
 60

 80
 100 0

 20

 40

 60

 80

 100

 0

 10000

 20000

 30000

 40000

 50000

 60000

Number of Refinements

without elimination of variants
with elimination of variants

with elimination of variants and introduction of premisses only

Number of Variables in C

Number of Elements in S_C

Number of Refinements

Figure 7.2.: Growth Rate by adding Premises onlyrally generalized in order to inlude mehanisms for re�ning objets ontaining temporaloperators. Therefore re�nement operators for Prolog(+T)�objets ould be easilyderived by adapting several well�known tehniques from the �eld of �rst order logiprogramming.What remains to be studied is the omplexity of the searh for a orret program givensets E+ and E− of examples. This topi will be attaked in the following hapter.

168 Chapter 7. Re�nement Operators for Prolog(+T)�programs

8. Identi�ability ofProlog(+T)�programs
Contents8.1. PAC�Learning . 1708.2. Learnability . 1778.2.1. The general ase . 1778.2.2. Programs with syntatial restritions 183The operators from the last hapters always reate programs whih are at every pointof time orret with respet to the examples whih have been presented so far. But inorder to be of great use it is neessary to be able to ensure that other examples, that isexamples whih have not (yet) been seen are lassi�ed orret. Consider two sets E+ and
E− of examples and a program P onstruted by the algorithms from the last haptersgiving these examples as inputs. Furthermore assume that e is any ground atom from
BFoLtl
P \ (E+ ∪ E−). In order to be good, P should lassify e orret. Formally let Porbe the orret program from whih the examples from E+ and E− are derived, that is let

Por be the program to be identi�ed. Then we want P to have the following properties:
• if Por |= e, then P |= e and
• if Por 6|= e, then P 6|= e.

170 Chapter 8. Identi�ability of Prolog(+T)�programsIn other words
{e | Por |= e} = {e | P |= e} .In general this annot be reahed. Therefore we will adapt a model of learning whihallows some errors with a ertain probability. The issue of identifying logi programs inthe PAC�setting has been studied in depth in [36℄ and [37℄. In general not every programis identi�able. But for ertain subsets identi�ability an be ensured.8.1. PAC�LearningPAC�learning is a model of learning whih has been introdued by Vailant (see [157℄).Any algorithm whih has to solve the learning problem is evaluated with respet to twoparameters ε and δ whih speify a limit for the di�erene between the onept to belearned and the atual hypothesis (ε) and the probability that the atual di�erene isgreater than this level (δ).In order to give formal de�nitions of PAC�learnability we need some more onepts.Single objets to be identi�ed will be referred to as onepts, the sets of all suh objetswill be alled onept lasses. Eah onept lass is de�ned over some set X. Formallya onept lass over X is a set C ⊆ 2X . So a onept is an element C ∈ C, that is a set

C ∈ 2X .In our ase of learning Prolog(+T)�programs we assume that a signature sig =

(X , F, P, α) is given. Then we de�ne X to onsists of all sets of Prolog(+T)�literalswhih ontain at least one positive literal, that is
X := {C ⊆ Lt(sig) | |Pos(C)| ≥ 1} .Conepts are Prolog(+T)�programs, that is sets P ⊆ X and onept lasses are setsof Prolog(+T)�programs, that is sets C ⊆ 2X .

8.1 PAC�Learning 171In order to identify a partiular onept an algorithm has to proess some kind ofexamples. In [157℄ and [63℄ the examples are onsidered to be elements from X. However,it will be more adequate for us to onsider only ground atoms as examples. So an exampleis an element ϕ from the set {ψ ∈ At(sig) | Var(ϕ) = ∅}. A lassi�ed example for aonept P is a tuple 〈ϕ, v〉 onsisting of an example ϕ and v ∈ {0, 1}. If v = 1 we all theexample positive and assume that P |= ϕ and in the ase that v = 0 we all it negativeand therefore assume that P 6|= ϕ. For the sake of readability we will from now on usethe following notational onvention: let P be a Prolog(+T)�program and let ϕ be anexample. Then
P (ϕ) = 1 ⇔ P |= ϕ and
P (ϕ) = 0 ⇔ P 6|= ϕ.A sample for P is a sequene SP = (〈ϕ1, P (ϕ1)〉, . . . , 〈ϕn, P (ϕn)〉) of lassi�ed exam-ples. The number n will be alled the length of the sample or the sample omplexity .Let P and P ′ be Prolog(+T)�programs and let SP = (〈ϕ1, P (ϕ1)〉, . . . , 〈ϕn, P (ϕn)〉)be a sample of length n for P . P ′ is alled onsistent with respet to SP or SP�onsistentif for every i it holds that P ′(ϕi) = P (ϕi), that is a onsistent program lassi�es everyexample exatly in the same way as the program from whih the examples are deriveddoes.We assume that the examples whih are presented to the algorithms are hosen withrespet to a �xed probability distribution D on the set of all ground atoms. Also we willsometimes write PrD instead of D or simply Pr if D is lear from the ontext.Now let S(X, C) be the set of all samples whih an be onstruted for onepts from

C if the examples are hosen with respet to D and let C and H be onept lasses. Alearning algorithm (or a learner) is a total funtion1 AC,H : S(X, C) → H. That is a1That is, a funtion whih is de�ned for all possible inputs.

172 Chapter 8. Identi�ability of Prolog(+T)�programslearning algorithm is presented a sample of some length and onstruts a hypothesis fromthe example whih it has seen by proessing the sample. In our ase we will have H = C,so we do not have to distinguish between di�erent representation languages.As one might expet, a hypothesis omputed by some learning algorithm AC,H is alledonsistent with respet to a sample SP = (〈ϕi, P (ϕi)〉)ni=1 if for every i ∈ {1, . . . , n} itholds that
(AC,H(SP)) (ϕi) = P (ϕi).

AC,H is alled onsistent if every hypothesis omputed from a given sample is onsistentwith respet to this sample.The quality of a hypothesis is measured by analyzing the probability that a randomlyhosen example is ontained in the symmetri di�erene between the orret onept andthe omputed onept. So the error of a program P ′ with respet to a program P is givenas error(P,P ′) = D
(
P∆P ′

)
= D

(
(P \ P ′) ∪ (P ′ \ P)

)
.The error of a hypothesis omputed by a learning algorithm is usually given as a pa-rameter alled ε and one is interested in upper bounds for the probability that a learningalgorithm or a lassi�er indues hypotheses suh that the error of these hypotheses ex-eeds the value of ε. Several attempts have been arried out in order to analyze suherrors. In 1971 Vapnik and Chervonenkis have shown (see [166℄) that lassi�ers an beonstruted whih have an error ration bounded from above by 4s(C, 2n)e−

nε2

8 for a givenvalue or ε where s(C, 2n) denotes the relative amount of samples of size 2n whih an bedrawn from the onept lass C. Devroye and Wagner (see [46℄) have extended the resultsfrom [166℄ in order to derive distribution�free upper bounds for the error in the ase ofhalf�planes. They show that lassi�ers an be onstruted with an error rate bounded by
4(1+2dndi)e

−
niε2

8 for i = 1, 2 where d denotes the size of the samples under onsiderationwhile the problem domain is divided into lasses C1 and C2. Furthermore they extend

8.1 PAC�Learning 173their results to onept lasses with higher dimension yielding similar results.Furthermore some attempts for analyzing the learning task in the domain of identifyingboolean funtions have been arried out. In [131℄ Pearl derives upper and lower boundsfor the size of the value s(n, c) denoting the relative frequeny of samples of size n derivedfrom a onept lass representing a boolean funtion whih an be built up with at most
c binary gates by proving that

s(n, c) ≥

2n0−n if n ≥ n0

1 elseand
s(n, c) ≤ 2log2 |Fc|−nwhere n0 denotes the maximum value of n suh that a presented sample en an beembedded in a boolean funtion f using at most c logial gates (where |Fc| denotes thetotal number of boolean funtions ontaining at most c gates). Using these bounds Pearlproves that lassi�ers an be onstruted whih have an error ration bounded from aboveby (

√

2 ln 2 · c(2 + log2 c) +
1

√

2 ln 2 · c(2 + log2 c)

)

2√
n
.

Finally Devroye (see [45℄) derives upper bounds for the error of lassi�ers for both thease of �nite and in�nite onept lasses. For �nite lasses C he proves that the error anbe bounded from above by 2|C|e−2mε2 (using samples of size m) and that the expetederror is given by
√

log(2|C|
2m

+
1

√

8m log(2|C|)
.For in�nite onept lasses they show that the error an be bounded from above by

174 Chapter 8. Identi�ability of Prolog(+T)�programs
cs(C,m2)e−2mε2 and that the expeted error is given by

√

log(4e8s(C,m2))

2m
+

1
√

8m log(4e8s(C,m2))
.Having presented all neessary prerequisites we an now formally de�ne the oneptof PAC�identi�ability. For our de�nition we will only slightly hange the notations from[22℄.De�nition 8.1.1 (PAC�Learnability, Valiant [157℄ and Blumer et al. [22℄)Let X be some set and let C and H be onept lasses over X. C is alled PAC�learnable using H if and only if there is a learning algorithm AC,H and a funtion

m : R
2 → R suh that for every probability distribution D, every P ∈ C and everyvalues of 0 < ε, δ < 1 it holds that:1. AC,H is presented some sample SP of length ⌈m(ε, δ)⌉,2. AC,H(SP) is put out and3. Pr(error(AC,H(SC , P)) ≥ ε) = Pr (D ((AC,H(SP)) ∆P) ≥ ε) < δ.The last point from the above de�nition is usually referred to as the PAC�riterion orthe PAC�riterion with respet to ε and δ.So C is PAC�learnable if there exists an algorithm whih regardless of the underlyingdistribution (whih determines how the examples are hosen) only needs to proess a�nite set of examples in order to keep the di�erene between the hypothesis and theorret program small (≤ ε) with a high probability (< δ).The PAC onept has been introdued in [157℄ for the domain of learning booleanfuntions. Often PAC�identi�ability is referred to as an abbreviation to polynomial timePAC�identi�ability where a further restrition is put on the learning algorithm AC,H,namely that its runtime is bounded from above by some suitable polynomial. So in this

8.1 PAC�Learning 175ase the term C is PAC�identi�able means that C is polynomial time PAC�identi�able.Consequently there might be onept lasses whih are PAC�identi�able in our oneptwhih does not inlude this requirement for the runtime of learning algorithms but whihare not polynomial time PAC�identi�able. In [158℄ and [132℄ L.G. Valiant addresses thisproblem deriving several lasses of relatively simply strutured boolean funtions whihare not PAC�identi�able if polynomial runtime is required by a learning algorithm.In order to haraterize the omplexity of learning single onepts from a onept lass
C the Vapnik�Chervonenkis�Dimension has been proven to be an adequate parameter.Intuitively the Vapnik�Chervonenkis�Dimension haraterizes the di�ulty of how todistinguish between di�erent objets from C. This intuition will now be made formallylear.De�nition 8.1.2 (Blumer et al. [22℄)Let C be a onept lass over some set X and let T ∈ C be a onept. Then

ΠC(T) = {C ∩ T | C ∈ C} .A set T of ardinality k is said to be shattered by C if |ΠC(T)| = 2k, that is if ΠC(T) =

2T . So the sets C whih are shattered by C an be seen as the most di�ult oneptsfrom C. The Vapnik�Chervonenkis�Dimension of a onept lass C is now de�ned to bethe maximum size of a onept whih is shattered by C.De�nition 8.1.3 (VC�Dimension, Blumer et al. [22℄)Let C be a onept lass over some set X. The Vapnik�Chervonenkis�Dimension of Cis de�ned asVCDim(C) = max
{

k | there is a T ∈ C with |T | = k and |ΠC(T)| = 2k
}

176 Chapter 8. Identi�ability of Prolog(+T)�programs
= max {|T | | T ∈ C is shattered by C} .If no suh k exists we will write VCDim(C) = ∞. C is said to have unbounded VC�Dimension in this ase.The link between the VC�Dimension and the learnability of a onept lass C is givenby the following theorem (see [22℄).Theorem 8.1.1 (Blumer et al. [22℄)Let C be a onept lass over some set X. Then C is PAC�learnable if and only ifVCDim(C) <∞.The following theorem gives a possibility to estimate the length of the sample neededin order to identify the target onept given �xed values of ε and δ.Theorem 8.1.2 (Blumer et al. [22℄)Let C be a onept lass over some setX suh that 1 ≤ VCDim(C) <∞ and let 0 < ε ≤ 1

2and 0 < δ < 1 be given. Then every onsistent learning algorithm for C using C needs toproess at most
⌈

max

{
4

ε
ln

4

δ
, ln

8VCDim(C)
ε

ln
13

ε

}⌉examples in order to ensure the PAC�riterion with respet to ε and δ2.In general estimating the VC�Dimension of some onept lass C is a very di�ulttask. But in the ase of �nite onept lasses, the VC�Dimension is bounded by thelogarithm of the size of the lass. This is the tenor of the following lemma.Lemma 8.1.1 (Fisher [63℄)Let C be a onept lass over some set X. If C is �nite, thenVCDim(C) ≤ log2 |C|.2In general one has to take the VC�Dimension VCDim(H) of the target onept lass into aount.But sine we require C = H this makes the analysis of the learning problem a bit easier.

8.2 Learnability 177In the following setions, Lemma 8.1.1 will be used in order to derive some upperbounds for the VC�Dimensions of several lasses of Prolog(+T)�programs.8.2. Learnability and Non�Learnability of seleted lasses ofProlog(+T)�programs8.2.1. The general aseWe will now derive upper and lower bounds for the VC�Dimension of some lasses ofProlog(+T)�programs. Therefore we will extend some tehniques presented reentlyin [11℄.De�nition 8.2.1Let c, t, l and o be nonnegative integers. The lass P≤c,t,l,o is de�ned as the set of allProlog(+T)�programs P with the following properties:1. P onsists of at most c rules,2. eah rule in P onsists of at most l literals,3. eah literal in a rule in P does not ontain more than t distint terms and4. eah literal in a rule in P does not ontain more than o temporal operators.Assume that a �xed signature sig = (X , F, P, α) is given. We will from now on use thefollowing abbreviations:1. f := |F |,2. p := |P | and3. a := max {α(σ) | σ ∈ F ∪ P}.

178 Chapter 8. Identi�ability of Prolog(+T)�programsPrograms will be enoded as strings over the binary alphabet Σ = {0, 1}. We will seethat for �xed values of c, t, l and o, the number |P≤c,t,l,o| is �nite. The VC�Dimension anthen be estimated using Lemma 8.1.1. We will assume that eah literal in any program isredued. This is no restrition sine we have seen that eah literal has a redued normalform whih an be e�etively omputed.First we will review some of the results from [11℄. There it is shown that a termontaining a arguments and at most t distint subterms an be enoded using log2 f +

a log2 t bits. Consequently a set of t (distint) terms an be enoded using not more than
t(log2 f+a log2 t) bits. Sine f and a are onstant we have t(log2 f+a log2 t) = O(t log2 t).We will now �x a numbering for the symbols from P and the temporal operators. Let
Pext denote the set P ∪ {X,F,G,U,P} and assume that the set P is ordered as follows:
P = {p0, . . . , p|P |−1}. The symbols pi will be mapped to bin(i) where bin(i) denotesthe string representing the binary representation of i. Furthermore we �x the followingmapping: X 7→ bin(|P |+ 1),F 7→ bin(|P |+ 2),G 7→ bin(|P |+ 3),U 7→ bin(|P |+ 4) andP 7→ bin(|P |+ 5),

where the strings might be padded with zeros on the left side in order to obtain stringsof equal length.

8.2 Learnability 179Example 8.2.1The set P = {p0} ontaining only a single prediate symbol yields the following mapping:
p0 7→ 000,X 7→ 001,F 7→ 010,G 7→ 011,U 7→ 100 andP 7→ 101.

Consequently any Prolog(+T)�literal ontaining at most t distint terms and atmost o temporal operators an be enoded using at most
o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉)bits. Therefore a rule onsisting of at most l suh literals an be enoded using at most
l (o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉))bits and a program P ontaining at most c suh rules an be enoded using at most
cl (o+ 1 + 2 (⌈log2(p + 5)⌉ + ⌈log2 p⌉+ ⌈a log2 t⌉))bits. This gives:
cl (o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉))

= clo+ cl + 2cl (⌈log2(p+ 5)⌉ + ⌈log2 p⌉+ ⌈a log2 t⌉)

180 Chapter 8. Identi�ability of Prolog(+T)�programs
= cl(o+ 1) + 2cl (⌈log2(p+ 5)⌉ + ⌈log2 p⌉+ ⌈a log2 t⌉)

= O (cl(o+ 1) + 2cl (log2(p+ 5) + log2 p+ a log2 t))

= O
(
cl(o+ 1) + 2cl

(
log2

(
(p2 + 5p)ta

)))
.With this number of bits we an enode at most 2O(cl(o+1)+2cl(log2((p2+5p)ta))) di�erentbitstrings, that is we have

|P≤c,t,l,o| = 2O(cl(o+1)+2cl(log2((p2+5p)ta))) <∞and therefore VCDim(P≤c,t,l,o
)

= O
(
cl(o+ 1) + 2cl

(
log2

(
(p2 + 5p)ta

)))using Lemma 8.1.1.On the other hand the best ase is given if no temporal operators are involved. [11℄then gives the following estimation:VCDim(P≤c,t,l,o
)

= Ω (cl + ct) .The results are summarized in the following theorem.Theorem 8.2.1Let c, t, l and o be �xed, nonnegative integers. ThenVCDim(P≤c,t,l,o
)

= O
(
c+ (o+ 1) + 2cl

(
log2

(
(p2 + 5p)ta

))) andVCDim(P≤c,t,l,o
)

= Ω (cl + ct) .Using these equalities we an estimate the number of examples needed in order toensure the PAC�riterion given �xed values of ε and δ.

8.2 Learnability 181Theorem 8.2.2Let c, t, l, o ≥ 0, 0 < ε ≤ 1
2 and 0 < δ < 1 be �xed. Then every learning algorithm Aneeds at most

max

{

4

ε
ln

4

δ
,
8O
(
cl(o+ 1) + 2cl

(
log2

(
(p2 + 5p)ta

)))

ε
ln

13

ε

}examples in order to ensure the PAC�riterion.Example 8.2.2We onlude this setion by illustrating the results for the number of examples. Let
o = 10, l = 30, c = 200, t = 50, p = 7 and a = 17. Then the equation from Theorem 8.2.2an be simpli�ed to:

max

{

4

ε
ln

4

δ
,
8VCDim (P≤c,t,l,o

)

ε
ln

13

ε

}

= max

{

4

ε
ln

4

δ
,
8O
(
cl(o+ 1) + 2cl

(
log2

(
(p2 + 5p)ta

)))

ε
ln

13

ε

}

≈ max

{

4

ε
ln

4

δ
,
8
(
cl(o+ 1) + 2cl

(
log2

(
(p2 + 5p)ta

)))

ε
ln

13

ε

}

≈ max

{⌈
4

ε
ln

4

δ

⌉

,

⌈

8
(
200 · 30(10 + 1) + 2 · 200 · 30

(
log2

(
(72 + 5 · 7)5017

)))

ε
ln

13

ε

⌉}

= max

{⌈
4

ε
ln

4

δ

⌉

,

⌈

528000 + 96000
(
log2

(
(72 + 5 · 7)5017

))

ε
ln

13

ε

⌉}

≈ max

{⌈
4

ε
ln

4

δ

⌉

,

⌈
528000 + 69000 · 96

ε
ln

13

ε

⌉}

= max

{⌈
4

ε
ln

4

δ

⌉

,

⌈
9744000

ε
ln

13

ε

⌉}

.Note that the approximation given above is quite weak sine the omission of the symbol
O may result in omitting quite large onstants.Figure 8.1 illustrates the number of examples for c, t, l, o, p and a as above and variablevalues of ε and δ.

182 Chapter 8. Identi�ability of Prolog(+T)�programs

 0
 0.1

 0.2
 0.3

 0.4
 0.5 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

Number of examples

epsilon

delta

Number of examples

Figure 8.1.: Number of examples given �xed values for c, t, l, o, p and a with ε rangingfrom 0 to 1
2 and δ ranging from 0 to 1.

8.2 Learnability 1838.2.2. Programs with syntatial restritionsWe will now see how restriting the form of the involved rules in programs an lowerthe VC�dimension of a lass of Prolog(+T)�programs and therefore make it easier toidentify these programs by presenting positive and negative examples. Therefore we willstudy two lasses of programs whih have already been pointed out in [11℄: onstrainedprograms and range�restrited programs.De�nition 8.2.2 (Syntatial Restritions, Arias and Khardon [11℄)Let C = ϕ :−ψ1, . . . , ψn. be a Prolog(+T)�rule. C is alled
• range�restrited if Terms(ϕ) ⊆ ⋃n

i=1Terms(ψi) and
• onstrained if ⋃n

i=1Terms(ψi) ⊆ Terms(ϕ).Consequently a Prolog(+T)�program P = {P1, . . . , Pk} is alled range�restrited(resp. onstrained) if every Pi is range�restrited (resp. onstrained).Fixing nonnegative integers c, t, l and o, the de�nition of the lasses P≤c,t,l,oon and
P≤c,t,l,orr is as one might expet:
• P≤c,t,l,oon =

{
P ∈ P≤c,t,l,o | P is onstrained} and

• P≤c,t,l,orr =
{
P ∈ P≤c,t,l,o | P is range�restrited}.We will now study how the values of VCDim(P≤c,t,l,oon) and VCDim(P≤c,t,l,orr) anbe estimated using the results from the foregoing setion.The VC�Dimension of onstrained Prolog(+T)�programsLet P ∈ P≤c,t,l,oon be given. Assume that P = {P1, . . . , Pk} for some k ≤ c and

Pi = ϕi :−ψ(i)
1 , . . . , ψ(i)

ni
.

184 Chapter 8. Identi�ability of Prolog(+T)�programsSine P ∈ P≤c,t,l,oon we have
ni⋃

j=1

Terms(ψ(i)
j

)

⊆ Terms(ϕi)for i = 1, . . . , k. Therefore only the terms in the heads of the rules in P have to be en-oded. This an be ahieved by using at most o+1+2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉)bits. The literals from {

ψ
(j)
1 , . . . , ψ

(j)
nj

} an be enoded by only enoding the negationsymbols, the prediate symbol(s) and the temporal operators involved. Consequentlythis an be ahieved by using at most
o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉)bits per literal. Therefore the tail of a rule ontaining at most l literals an be enodedby using at most

(l − 1) (o+ 1 + 2 (⌈log2(p + 5)⌉ + ⌈log2 p⌉))bits. So a omplete rule an be enoded using at most
o+1+2 (⌈log2(p + 5)⌉ + ⌈log2 p⌉+ ⌈a log2 t⌉)+(l−1) (o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉))bits. We have

o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉)

+(l − 1) (o+ 1 + 2 (⌈log2(p+ 5)⌉ + ⌈log2 p⌉))

= o+ 1 + 2⌈log2(p + 5)⌉ + 2 log2 p⌉+ 2⌈a log2 t⌉+ (l − 1)(o + 1)

+2(l − 1)⌈log2(p + 5)⌉+ 2(l − 1)⌈log2 p⌉

= l(o+ 1) + 2l⌈log2(p+ 5)⌉+ 2l⌈log2 p⌉+ 2⌈a log2 t⌉

= l(o+ 1) + 2 (l (⌈log2(p+ 5)⌉+ ⌈log2 p⌉) + ⌈a log2 t⌉) .

8.2 Learnability 185So any program P ∈ P≤c,t,l,oon an be enoded using at most
cl(o+ 1) + 2c (l (⌈log2(p+ 5)⌉+ ⌈log2 p⌉) + ⌈a log2 t⌉)bist and therefore the VC�dimension of P≤c,t,l,oon an be estimated as stated in the fol-lowing theorem.Theorem 8.2.3Let c, t, l and o be nonnegative integers. ThenVCDim(P≤c,t,l,oon)

= O
(

cl(o+ 1) + 2c log2

(

(p2 + 5p)lta
))

.Proof. The laim is due to
cl(o+ 1) + 2c (l (⌈log2(p+ 5) + ⌈log2 p⌉) + ⌈a log2 t⌉)

= O
(
cl(o+ 1) + 2c

(
l log2(p+2 +5p) + a log2 t

))

= O
(

cl(o+ 1) + 2c
(

log2(p
2 + 5p)l + log2 t

a
))

= O
(

cl(o+ 1) + 2c log2

(

(p2 + 5p)lta
))and an appliation of Lemma 8.1.1. �The VC�Dimension of range�restrited Prolog(+T)�programsIn some sense this situation is similar to the situation from the last setion. Assume that

P = {P1, . . . , Pk} ∈ P≤c,t,l,orr is given suh that Pi = ϕi :−ψ(i)
1 , . . . , ψni

(i). Similarly asin the ase of onstrained programs it su�es to enode the terms from {

ψ
(i)
1 , . . . , ψ

(i)
ni

}.Sine ∣∣∣{ψ(i)
1 , . . . , ψ

(i)
ni

}∣
∣
∣ ≤ l − 1 the omplete tail of Pi an be enoded using at most

(l − 1) (o+ 1 + 2 (⌈log2(p + 5)⌉ + ⌈log2 p⌉+ ⌈a log2 t⌉))

186 Chapter 8. Identi�ability of Prolog(+T)�programsbits while the remaining literal ϕi an be enoded by skipping the involved terms usingat most
o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉)bits. So the omplete rule Pi an be enoded with

o+1+2 (⌈log2(p + 5)⌉ + ⌈log2 p⌉)+(l−1) (o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉))bits. We have
o+ 1 + 2 (⌈log2(p+ 5)⌉ + ⌈log2 p⌉)

+(l − 1) (o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉))

= o+ 1 + 2⌈log2(p+ 5)⌉+ 2⌈log2 p⌉+ (l − 1)(o+ 1) + 2(l − 1)⌈log2(p+ 5)⌉

+2(l − 1)⌈log2 p⌉+ 2(l − 1)⌈a log2 t⌉

= l(o+ 1) + 2 (l (⌈log2(p+ 5)⌉ + ⌈log2 p⌉) + (l − 1)⌈a log2 t⌉) .Therefore P an be enoded using at most
cl(o+ 1) + 2c (l (⌈log2(p+ 5)⌉+ ⌈log2 p⌉) + (l − 1)⌈a log2 t⌉)bits and we an estimate the VC�dimension of P≤c,t,l,orr as follows.Theorem 8.2.4Let c, t, l and o be nonnegative integers. ThenVCDim(P≤c,t,l,orr)

= O
(

cl(o+ 1) + 2c log2

(

(p2 + 5p)lta+l−1
))

.Proof. The laim is due to
cl(o+ 1) + 2c (l (⌈log2(p+ 5)⌉+ ⌈log2 p⌉) + (l − 1)⌈a log2 t⌉)

8.2 Learnability 187
= O (cl(o+ 1) + 2c (l (log2(p + 5) + log2 p) + (l − 1)a log2 t))

= O
(
cl(o+ 1) + 2c

(
l
(
log2(p

2 + 5p)
)

+ (l − 1)a log2 t
))

= O
(

cl(o+ 1) + 2c
(

log2(p
2 + 5p)l + log2 t

a+l−1
))

= O
(

cl(o+ 1) + 2c log2

(

(p2 + 5p)lta+l−1
))and Lemma 8.1.1. �Having obtained the above results on the omplexity of the identi�ation task for Pro-log(+T)�programs our treatment of �rst order indutive temporal logi programmingis omplete. We have seen the following:

• It is reasonable to study programs written in Prolog(+T) sine this language isboth powerful (it ontains the full �rst order fragment of horn lause programs)and still relatively tratable (due to the syntati limitation to rules),
• Prolog(+T) is equipped with a well de�ned semantis given by temporally losedsets of ground atoms and
• Prolog(+T) allows speialization and generalization of onepts by appliationof re�nement operators.All these points make lear that Prolog(+T) is a suitable language for the spei�-ation of reative systems using �rst order temporal logi. In ontrast a restrition topropositional temporal logi results in the language Ltl whih is deidable for satis�a-bility and whih is not limited to formulas in lause form. Although Ltl is onsequentlyless expressive than Prolog(+T) the two properties mentioned before justify studyingthe identi�ation problem in Ltl. This will therefore be the topi of the following partof this thesis.

188 Chapter 8. Identi�ability of Prolog(+T)�programs

Part III.
Propositional Indutive TemporalLogi Programming

9. Preliminaries
Contents9.1. Finite Automata on in�nite Objets 1929.2. Automata Construtions for Propositional Temporal LogiFormulas . 1969.2.1. A Modi�ed Formal Automata�Model 1969.2.2. A primitive Constrution . 1999.2.3. An Overview over improved Construtions 2039.2.4. Some Complexity Results . 2059.2.5. Cheking Language�Emptiness 210Having ompleted our treatment of �rst order indutive temporal logi programmingwe will now restrit ourselves on propositional logi languages. On the one hand thiswill be a limitation sine we do not allow reasoning about funtions and prediates witharity greater than 0 but on the other hand we will be able to use muh more syntatiallyomplex statements sine we will not be limited to statements in lause form any longer.The language of interest will be Ltl as introdued in hapter 2.3.1.In this hapter we will desribe the neessary preliminaries from the theory of propo-sitional (linear) temporal logi whih will be used in the sequel. First we will introduethe onept of Bühi�automata whih are automata over in�nite sequenes of symbols(in�nite words or ω�words). After this we will see that every Ltl�formula ϕ an be

192 Chapter 9. Preliminariestranslated into a Bühi automaton whih has a nonempty aepted language if and onlyif the formula ϕ from whih is has been onstruted is satis�able.9.1. Finite Automata on in�nite ObjetsWe will now introdue notations whih allow us to generalize the theory of formal lan-guages onsisting of �nite words to suh languages whih onsist of in�nite words, thatis words whih an be seen as an in�nite sequene of elements (alled the letters of theword). Therefore assume for the rest of this hapter that Σ is a �nite set of symbols,alled the alphabet .De�nition 9.1.1 (ω�word, e.g. Lothaire [106℄)An in�nite word (or ω�word) over Σ is a mapping w : N → Σ. The set of all in�nitewords over Σ is denoted as Σω. Every set L ⊆ Σω is alled an ω�language over Σ.
ω�languages are a natural way to extend the theory of formal languages to in�nitesequenes of letters. In many pratial appliations ω�languages are used in order tomodel in�nite sequenes of ations performed by nonterminating (reative) systems. Theset of all possible behaviors of suh a system is desribed in terms of an ω�language and itis then heked if a property ϕ holds in this system simply by heking if the ω�languagewhih is reognized by the produt struture whih emerges from the model of the systemand the negation of the formula, is empty. How to ahieve this, will the subjet of therest of this hapter.In order to reognize ω�languages, the theory of �nite automata has been extended byadding strutures whih allow aeptane of in�nite words. This leads to the theory of

ω�automata as desribed by Bühi (see [26℄), Street (see [155℄), Muller (see [123℄) andRabin (see [138℄). We will desribe ω�automata in a similar was as de�ned by Bühisine this type of automata is used in model heking to haraterize the set of models

9.1 Finite Automata on in�nite Objets 193of Ltl�formulas.De�nition 9.1.2 (Bühi�automaton, e.g. Wolper [172℄)Let Σ be an alphabet. A nondeterministi Bühi�automaton over Σ is a tuple
A = (Σ,States, δ, S0, Sf) ,where

• States is a �nite set (the set of states),
• δ : States ×Σ→ 2States is the transition relation,
• S0 ⊆ States is the set of initial states and
• Sf ⊆ States is the set of aepting or �nal states.Note that the formal de�nition of suh a Bühi automaton does only slightly di�erfrom the de�nition of a �nite state automaton aepting �nite words. In order to aeptin�nite words over Σ the aeptane ondition of A has to be modi�ed sine it is learthat the aeptane ondition for �nite words, requiring that the onsuming the lastsymbol leads into a �nal state, annot be applied (sine there is no last symbol). Soassume that a Bühi automaton A = (Σ,States, δ, S0, Sf), an ω�word w and a mapping

γ : N→ States are given. We will denote the set of all states ourring in�nitely oftenin the sequene labeled by γ as S∞(γ). Formally:
S∞(γ) = {s ∈ States | || {i | γ(i) = s} || =∞} .We all γ adequate for (A, w) (or (A, w)�adequate) if and only if γ satis�es the followingproperties:

194 Chapter 9. Preliminaries1. γ(0) ∈ S0,2. for every i ≥ 0 it holds that γ(i+ 1) ∈ δ(γ(i), w(i)) and3. S∞(γ) ∩ Sf 6= ∅.A word w ∈ Σω is said to be aepted by A if and only if there is a mapping γ suhthat γ is adequate for (A, w). Similarly a subset L of Σω (that is, an ω�language) isaepted by A if and only if there is a mapping γ whih is suh that γ is (A, w)�adequatefor every w ∈ L.It has proven useful to de�ne a slight modi�ation of Bühi�automata in whih thelast omponent of the tuple is not a set of states but a set of sets of states. This leadsto generalized Bühi�automata. If
A = (Σ,States, δ, S0,F)is suh a generalized Bühi�automaton and w ∈ Σω is an in�nite word over Σ, then

γ : N→ States is alled adequate for (A, w) (or (A, w)�adequate) if any only if1. γ(0) ∈ S0,2. for every i ≥ 0 it holds that γ(i+ 1) ∈ δ(γ(i), w(i)) and3. if F = {F1, . . . , Fn}, then S∞(γ) ∩ Fi 6= ∅ for i = 1, . . . , n.Again we will all w aepted by A if there is γ suh that γ is (A, w)�adequate and
L ⊆ Σω is alled aepted by A if there is γ suh that γ is (A, w)�adequate for every
w ∈ L.In both ases, that is if A is a Bühi�automaton or if A is a generalized Bühi�automaton, the language L(A) is de�ned as the set of all ω�words whih are aepted by
A. L ⊆ Σω is alled (generalized) Bühi�aeptable if and only if there is a (generalized)Bühi�automaton A suh that L = L(A). From [172℄ we have the following lemma.

9.1 Finite Automata on in�nite Objets 195Lemma 9.1.1 (e.g. Wolper [172℄)Let L ⊆ Σω be any ω�language. Then L is Bühi�aeptable if and only if L is generalizedBühi�aeptable.Proof. The only�if part is immediately: if A = (Σ,States, δ, S0, Sf) is a Bühi�automaton, then we de�ne Ā = (Σ,States, δ, S0,F) with F = {{s1, . . . , sn}} for Sf =

{s1, . . . , sn}. Then Ā is a generalized Bühi�automaton and it is straightforward to showthat w ∈ L(A) if and only if w ∈ L(Ā) for every w ∈ Σω. For the if�part assume that
A = (Σ,States, δ, S0,F) with F = {F1, . . . , Fn} ⊆ 2States is given. We then de�ne
Ā =

(
Σ,States′, δ′, S′

0, Sf
) as follows:

• States′ = {(s, i) | s ∈ States, i = 1, . . . , n},
• S′

0 = {(s, 1) | s ∈ S0},
• for all s, t ∈ States, for all i, j ∈ {1, . . . , j} and eah σ ∈ Σ de�ne (t, i) ∈

δ′((s, j), a) if and only if t ∈ δ(s, a) and i = j if s 6∈ Fj respetively i = j + 1

mod k if s ∈ Fj and
• Sf = {(s, 1) | s ∈ F1}.It is now straightforward to prove that w ∈ L(A) if and only if w ∈ L(Ā) for every

w ∈ Σω. So the lemma is proved. �Sine Bühi�aeptane and generalized Bühi�aeptane are equivalent, it is suf-�ient to onentrate on algorithms whih onstrut generalized Bühi�automata andapply the onstrution from the proof of Lemma 9.1.1 to the resulting automaton.The usefulness of nondeterministi Bühi�automata also omes from the fat that theyare losed under every boolean operation. We have the following properties.Theorem 9.1.1 (e.g. Clarke et al. [35℄ and Sistla et al. [149℄)1. If L1 ⊆ Σω and L2 ⊆ Σω are Bühi�aeptable languages, then so area) L1 ∩ L2 and

196 Chapter 9. Preliminariesb) L1 ∪ L2and2. if L ⊆ Σω is Bühi�aeptable, then so is L̄ = Σω \ L.We will not prove this theorem but we refer to setion 9.2.2 for a onstrution ofthe produt of two Bühi�automata whih results in an automaton whih aepts theintersetion of the languages aepted by the original automata.9.2. Automata Construtions for Propositional TemporalLogi FormulasThe reason for studying Bühi�automata stems from the fat that from eah Ltl�formulaone an onstrut an automaton whih aepts exatly the sequenes of states whih aremodels of this formula. So we will now study a language whih di�ers from the languageProlog(+T) studied in the last part in two ways:1. it is a propositional logi based temporal logi language and2. it is not limited to sets of lauses whih ontain at least one positive literal.In fat we will study the full language Ltl from now in. Therefore assume that a �niteset X of proposition symbols is given. We will refer to elements of X by writing p, q, . . .sometimes using indexes. Formulas of the language Ltl are de�ned as in hapter 2.3.Note that in ontrast to FoLtl we do not deal with the operator P here but instead weuse the operator R.9.2.1. A Modi�ed Formal Automata�ModelIn this setion we will desribe a slight modi�ation of the onept of Bühi�automatawhih is needed in order to allow the manipulation of suh automata during the proess of

9.2 Automata Construtions for Propositional Temporal Logi Formulas 197formula re�nement as desribed later. In lassial onstrution proedures for automatafrom Ltl�formulas (see e.g. [172℄) states are labeled with formulas from a set of sub-formulas of the original formula ϕ. This set of subformulas is usually referred to as thelosure of ϕ. The problem whih we fae here is that ertain formulas might appear morethan one (and therefore at di�erent positions) in ϕ. Consider for example the formula
ϕ = GF ((Fp→ q) ∨ (r → Fp)). As a subformula, the formula ψ = Fp is treated as a sin-gle element. But for re�ning the formula ϕ it an make a di�erene if the re�ned formulais for example ϕ1 = GF ((Xp→ q) ∨ (r → Fp)) or ϕ2 = GF ((Fp→ q) ∨ (r → Xp)). So weneed some model whih allows to store additional information regarding the positions atwhih ertain formulas our.For the onstrution we will assume that every Ltl�formula is in negation�normal�form, that is it ontains only the operators X, U and R, the onnetives ∧ and ∨ togetherwith the onstant symbols true and false and negations only our in front of propo-sitional symbols. In order to obtain the negation�normal�form NNF(ϕ) of a formula ϕwe will have to exploit semantial identities (de�Morgan's laws) and properties of thetemporal operators. In partiular we will need the following equivalenes:Fϕ ≡ trueUϕ andGϕ ≡ falseRϕ.and

¬ (ϕ1Uϕ2) ≡ (ϕ1)R (ϕ2) and
¬ (ϕ1Rϕ2) ≡ (ϕ1)U (ϕ2) .

198 Chapter 9. PreliminariesExample 9.2.1For ϕ = ¬(p→ Xq)UFr we haveNNF(ϕ) = NNF(¬(p→ Xq)UFr)
= NNF(¬(p→ Xq))UNNF(Fr)
= (NNF(p) ∧NNF(¬Xq))UNNF (trueUr)
= (p ∧ XNNF(¬q))U (NNF(true)UNNF(r))

= (p ∧ X¬q)U (trueUr) .So assume without loss of generality that ϕ is in negation�normal�form. The losureof ϕ is de�ned to be the set Closure(ϕ) of all pairs (ψ, p) where ψ is an Ltl�formulaand p ∈ N
∗ suh that Closure(ϕ) satis�es the following onditions:

• (ϕ, ε) ∈ Closure(ϕ),
• if (ϕ1 ∧ · · · ∧ ϕn, p) ∈ Closure(ϕ), then (ϕ1, p1), . . . , (ϕn, pn) ∈ Closure(ϕ),
• if (ϕ1 ∨ · · · ∨ ϕn, p) ∈ Closure(ϕ), then (ϕ1, p1), . . . , (ϕn, pn) ∈ Closure(ϕ),
• if (Xψ, p) ∈ Closure(ϕ), then (ψ, p1) ∈ Closure(ϕ),
• if (ϕ1Uϕ2, p) ∈ Closure(ϕ), then (ϕ1, p1), (ϕ2, p2) ∈ Closure(ϕ) and
• if (ϕ1Rϕ2, p) ∈ Closure(ϕ), then (ϕ1, p1), (ϕ2, p2) ∈ Closure(ϕ).So Closure(ϕ) ontains all the (not neessarily proper) subformulas of ϕ togetherwith their positions on ϕ.The states of the generalized Bühi�automaton Aϕ are now de�ned as ertain subsetsof Closure(ϕ) whih satisfy several semantial onstraints.

9.2 Automata Construtions for Propositional Temporal Logi Formulas 1999.2.2. A primitive ConstrutionWe will now see how the automaton Aϕ an be onstruted from ϕ if ϕ is in negation�normal�form.The alphabet of the automaton will be the set of subsets of symbols ourring in theoriginal formula. The automaton will be a generalized Bühi�automaton, so it will havea set of sets of aepting states. Assume that ϕ is a formula whih ontains exatly thesymbols of some set X. Then the alphabet of the automaton Aϕ is Σ = 2X .The set States of states is now given as the elements s from Seq(Closure(ϕ))×2N
∗1suh that s = (Φ,Pos) =

{ϕ1, . . . , ϕn}
︸ ︷︷ ︸

=Φ

, {p1, . . . , pm}
︸ ︷︷ ︸

=Pos

 has the following properties:1. false 6∈ Φ,2. n = m,3. for eah i: (ϕi, pi) ∈ Closure(ϕ),4. for eah i: if ϕi = ϕ
(i)
1 ∧ ϕ

(i)
2 , then (ϕ(i)

1 , pi1
)

∈ s and (ϕ(i)
2 , pi2

)

∈ s,5. for eah i: if ϕi = ϕ
(i)
1 ∨ ϕ

(i)
2 , then (ϕ(i)

1 , pi1
)

∈ s or (ϕ(i)
2 , pi2

)

∈ s and6. for eah i: if ϕ ∈ X ∪ {true}, then {p ∈ Pos | ϕ|p = ϕi} = O(ϕi, ϕ).Here (ϕ, p) ∈ s denotes the fat that there is j ∈ {1, . . . , n} suh that ϕj = ϕ and
pj = p.What remains to be de�ned are the transition relation δ, the set S0 and the set F ofaepting sets of states. δ has the form

δ : States× 2P → 2States.Now let s1, s2 ∈ States be given suh that s1 = (Φ,Pos) = ({ϕ1, . . . , ϕn}, {p1, . . . , pn})1Here Seq(Closure(ϕ)) denotes the set of all sequenes of elements from Closure(ϕ).

200 Chapter 9. Preliminariesand s2 = (Φ′,Pos′) = ({ϕ′
1, . . . , ϕ

′
m}, {p′1, . . . , p′m}). Furthermore let σ ∈ Σ be �xed.Then s2 ∈ δ(s1, σ) i�1. for eah p ∈ X:a) p ∈ Φ implies p ∈ σ andb) ¬p ∈ Φ implies p 6∈ σ,2. for eah ψ = Xϕ̄ ∈ Φ and eah pi ∈ Pos suh that ϕi = ψ there is ji ∈ {1, . . . ,m}suh that ϕ′

ji
= ϕ̄ and p′ji = pi1,3. for eah ψ = ϕ̄1Uϕ̄2 ∈ Φ and eah pi ∈ Pos suh that ϕi = ψ there is either

ji ∈ {1, . . . , n} suh that ϕ′
ji

= ϕ̄2 or there are ji1 ∈ {1, . . . , n}, ji2 ∈ {1, . . . ,m}suh that ϕji1 = ϕ̄1 and ϕ′
ji2

= Xψ = Xϕ̄1Uϕ̄2 and4. for eah ψ = ϕ̄1Rϕ̄2 ∈ Φ and eah pi ∈ Pos suh that ϕi = ψ there is ji1 ∈
{1, . . . , n} suh that ϕji1 = ϕ̄2 and there is either ji2 ∈ {1, . . . , n} suh that ϕji2 =

ϕ̄1 or there is ji2 ∈ {1, . . . ,m} suh that ϕ′
ji2

= Xψ = Xϕ̄1Rϕ̄2.The set S0 is de�ned as the set of all states suh that the original formula ϕ is ontainedin its Φ�omponent, that is
S0 = {s = (Φ,Pos) ∈ States | ϕ ∈ Φ} .To de�ne the set F of sets of aepting states we de�ne the onept of eventualities.Eventualities are formulas whih are needed in order to guarantee that given a for-mula ϕ1Uϕ2, the formula ϕ2 is indeed ful�lled at some point of time. So if (ϕ1Uϕ2, p) ∈Closure(ϕ), then e(ϕ2) = ϕ1Uϕ2 is alled an eventuality. Now assume thatClosure(ϕ)ontains exatly the eventualities (e1(ϕ1), p1), . . . , (ek(ϕk), pk). Then we de�ne F =

{F1, . . . , Fk} with
Fi = {s = (Φ,Pos) ∈ States | {ei(ϕi), ϕi} ⊆ Φ or ei(ϕi) 6∈ Φ}.

9.2 Automata Construtions for Propositional Temporal Logi Formulas 201The onstrution of Aϕ is now omplete. This onstrution an be extended fromsingle formulas to sets of formulas in the obvious way. Let Φ = {ϕ1, . . . , ϕn} be any setof Ltl�formulas. Then
AΦ = Aϕ1 × · · · × Aϕn .where × is a (slightly more ompliated) generalization of the produt onstrution from�nite automata to Bühi�automata.This onstrution an be arried out as follows: �rst we onstrut the set Statesfrom the sets of states of the input automata and after this we extrat the remainingomponents from this set. How to ahieve this is desribed in setion 9.2.4.Now let Aϕ1 = (Σ,States1, δ1, S0,1,F1) and Aϕ2 = (Σ,States2, δ2, S0,2,F2) beBühi�automata representing Ltl�formulas ϕ1 and ϕ2. In order to respet the posi-tions of the original formulas in the new formula ϕ1∧ϕ2 we have to hange the positionsin the original states from States1 and States2. Therefore we replae States1 andStates2 by
⋃

s∈States1Φ(s),
⋃

p∈Pos(s) 1pand
⋃

s∈States2Φ(s),
⋃

p∈Pos(s) 2p .Furthermore assume thatStates1 =
{

s
(1)
1 , . . . , s(1)n1

} andStates2 =
{

s
(2)
1 , . . . , s(2)n2

}and
S0,1 =

{

s
(1)
i1
, . . . , s

(1)
ik

} and

202 Chapter 9. Preliminaries
S0,2 =

{

s
(2)
j1
, . . . , s

(2)
2k

}Then A = Aϕ1 ×Aϕ2 is the Bühi�automaton A = (Σ,States, δ, S0,F) whih has aset States of states onstruted as follows:
S0 =

k⋃

k1=1

l⋃

k2=1

(

Φ
(

s
(1)
ik1

)

∪ Φ
(

s
(2)
jk2

)

∪ {ϕ1 ∧ ϕ2},Pos(s(1)ik1

)

∪ Pos(s(2)jk2

)

∪ {ε}
)

,

S =

n1⋃

i=1

n2⋃

j=1

{(

Φ
(

s
(1)
i

)

∪ Φ
(

s
(2)
j

)

,Pos(s(1)i) ∪ Pos(s(2)j))} andStates = S0 ∪ S,while the remaining omponents of the automaton (i.e. the transition relation δ andthe aeptane omponent F) have to be extrated from States (see the algorithms insetion 9.2.4 for details).This onstrution yields an automaton whih aepts the language L (Aϕ1)∩L (Aϕ2).Furthermore we have
|States| = |States1| · |States2|+ |S0,1| · |S0,2| and

|S0| = |S0,1| · |S0,2|.

In order to prove that for a set Φ of Ltl�formulas and an Ltl�formula ϕ the relation
Φ |= ϕ holds, we proeed as follows:1. For Φ = {ϕ1, . . . , ϕn} we onstrut AΦ = Aϕ1 × · · · × Aϕn

2,2. onstrut A¬ϕ,3. onstrut A = AΦ ×A¬ϕ and2Note that it is also possible to onstrut AΦ = AV

n
i=1 ϕi

diretly (i.e. without using the produtonstrution).

9.2 Automata Construtions for Propositional Temporal Logi Formulas 2034. hek if L(A) = ∅.For some of the algorithms whih we will introdue in a later hapter we will alsoneed a method for onstruting the union of two Bühi�automata. Again assume that
ϕ1 and ϕ2 are given and assume that Aϕ1 and Aϕ2 are as above. Then the Bühi�automaton Aϕ1 ||Aϕ2 representing ϕ1∨ϕ2

3 an be onstruted by �rst modifying States1and States2 as desribed above and then onstruting the set States by
S0 =

k⋃

k1=1

l⋃

k2=1

{(

Φ
(

s
(1)
ik1

)

∪ Φ
(

s
(2)
jk2

)

∪ {ϕ1 ∧ ϕ2},Pos(s(1)ik1

)

∪Pos(s(2)jk2

)

∪ {ε}
)}and States = S0 ∪ States1 ∪ States2.The automaton Aϕ1||Aϕ2 is then given as (Σ,States, δ, S0,F) (again with δ and Fextrated from States). It is easily seen that this onstrution is sound. Furthermorewe have

|States| = |S0,1| · |S0,2|+ |States1|+ |States2|9.2.3. An Overview over improved ConstrutionsThe primitive onstrution presented in the last setion always yields an automaton whosestate set is of size exponential in the length of the input formula. We will therefore givean overview over several optimization tehniques whih allow the onstrution of smallerautomata.Removing Transitions A transition whih is not expliitly needed (and whih is thereforeredundant) in the automaton an be deleted. Suh transitions an be identi�ed asfollows: if there is s ∈ States, σ ∈ Σ, s1 = (Φ1,Pos1) ∈ States and s2 =

(Φ2,Pos2) ∈ States suh that3That is: Aϕ1 ||Aϕ2 = Aϕ1∨ϕ2 .

204 Chapter 9. Preliminaries1. s1 ∈ δ(s, σ), s2 ∈ δ(s, σ) and2. for every ϕ1Uϕ2 ∈ Φ1: ϕ1Uϕ2 ∈ Φ2 and ϕ2 ∈ Φ1 implies ϕ2 ∈ Φ2,then the transition from s to s2 an be deleted from the automaton (see [172℄ fora justi�ation of this optimization).Eliminating equivalent states By identifying sets of formulas whih are in some senseequivalent it is possible to lower the number of states. Consider for example thestate s given by s = ({ϕ1, ϕ2, ϕ2 ∧ ϕ2},Pos). This state has the property that
Φ |= ϕ i� Φ′ = Φ\{ϕ1 ∧ϕ2} = {ϕ1, ϕ2} |= ϕ for every Ltl�formula ϕ. This allowsus to remove the original state s and replae it with some state s′ = (Φ′,Pos′). In[76℄, [172℄ and several other papers the following improvements have been disussed:1. {ϕ1, ϕ2, ϕ2 ∧ ϕ2} → {ϕ1, ϕ2},2. {ϕ1, ϕ1 ∨ ϕ2} → {ϕ1},3. {ϕ2, ϕ1 ∨ ϕ2} → {ϕ2} and4. {ϕ2, ϕ1Uϕ2} → {ϕ1}.Several other simpli�ation tehniques may be appliable. We do not give a more indepth�treatment here sine we do not need all these tehniques in the sequel.A number of approahes has been introdued for the onstrution of Bühi�automatafrom Ltl�formulas. Probably the most straightforward and simple onstrution (whihis the basis for our automaton model) an for example be seen in [172℄ although itsorigin omes from [168℄ and [167℄ ontinuing the work originally started by Bühi in [26℄.The early onstrutions of Bühi�automata for Ltl�formulas were of exponential size inthe size of the original formula. More sophistiated onstrutions have been developedin [76℄, [39℄, [150℄ and [72℄. [17℄ and [60℄ introdue similar approahes for the problemof Ltl model heking whih do not onstrut Bühi�automata diretly but whih usesimilar tehniques and results.

9.2 Automata Construtions for Propositional Temporal Logi Formulas 205Besides onstruting automata several other approahes for heking Ltl�formulas forsatis�ability resp. unsatis�ability have been presented. An early paper by Venkatesh(see [169℄) desribes the onstrution of a normal form for Ltl�formulas whih is thengiven to a resolution�style theorem proving proedure as an input. Similarly Fisher (see[64℄) introdues another normal form alled separated normal form for formulas inludingfuture and past operators. Again the theorem proving proedure is based on resolution.Another treatment of this proedure an be found in a paper by Dixon, Fisher and Peim(see [65℄). Dixon (see [48℄ and [47℄) and Dixon and Fisher (see [49℄) also addressed thetopi of speeding up theorem proving proedures in order to improve the satis�abilitytests.Another approah for Ltl is presented by Felty (see [61℄). Here the alulus forheking formulas is based on the sequent alulus originally introdued by Gentzen (seee.g. [75℄ or [89℄). A further paper extends this sequent alulus from Ltl to the modallogi S4.3 (see [62℄).The third popular approah is based on tableaux�style tehniques similar to our teh-niques from hapter 5.3. This tehnique has been developed by Manna and Wolper (see[171℄ and [111℄) as well as by Lihtenstein, Pnueli and Zuk (see [102℄ and [103℄). Goodsurveys of tableaux tehniques have been presented by Emerson (see [57℄) and Reynoldsand Dixon (see [139℄).All these approahes have their own powers and weaknesses. But for our purposes theautomata�based approah seems to be the most promising one as it allows the general-ization and speialization of given formulas from their representing automata as we willsee in hapter 10.9.2.4. Some Complexity ResultsIn order to estimate the omplexity of the re�nement proedures to be introdued in thefollowing hapter we will present some results regarding the omplexity of some basi

206 Chapter 9. Preliminariesoperations on Bühi�automata. Assume that States is a set of sates whih has beenonstruted. We will sketh the omplexity of extrating δ, S0 and F from States.Extrating the Transition RelationObviously the omplexity of the extration of δ from States has to depend on the numberof states, i.e. |States| and the number of elements in the alphabet of the automaton, i.e.
|Σ| = |2X | = 2|X|. Algorithm 11 is a straightforward implementation of the de�nitionof the transition relation for Bühi�automata. For notational simpliity we will use thefollowing abbreviation. If s = (Φ,Pos) is a state, then Φ(s) will denote the set offormulas stored in s, i.e. Φ(s) = Φ. Furthermore assume that δ(s, σ) = ∅ holds as aninitial ondition.We will now give a detailed analysis of the runtime of Algorithm 11. Therefore assumethat nmax denotes the maximum number of formulas stored in any element of States,that is nmax = max {|Φ| | Φ = Φ(s), s ∈ States}. Furthermore we will assume that eahhek of the form ϕ ∈ Φ(s) is atomi, i.e. is an be performed in one omputation stepand heks performed in onditions are performed one�by�one, that is a hek whihinvolves n subheks requires n omputation steps.The part of Algorithm 11 between line 4 and line 11 an then be preformed in

T1(|States|, |Σ|) ≤ 6|P |

= 6 log2 |Σ|omputation steps.Similarly we have that the part between lines 12 and 32 an be performed in
T2(|States|, |Σ|) ≤ nmax · (1 + 3nmax + 3 + 4)

= nmax · (8 + 3nmax)

9.2 Automata Construtions for Propositional Temporal Logi Formulas 207Algorithm 11 Extration of δ from Σ and StatesInput: set States of states and alphabet Σ = 2XOutput: transition relation δ1: for eah s1 ∈ States do2: for eah s2 ∈ States do3: for eah σ ∈ Σ do4: for eah p ∈ P do5: if p ∈ σ and p ∈ Φ(s1) then6: δ(s1, σ)← δ(s1, σ) ∪ {s2}7: end if8: if p 6∈ σ and ¬p ∈ Φ(s1) then9: δ(s1, σ)← δ(s1, σ) ∪ {s2}10: end if11: end forRequire: s1 = ({ϕ1, . . . , ϕn}, {p1, . . . , pn})Require: s2 = ({ϕ′
1, . . . , ϕ

′
m}, {p′1, . . . , p′m})12: for i = 1, . . . , n do13: if ϕi = Xψ then14: for j = 1, . . . ,m do15: if ϕ′

j = ψ and p′j = pi1 then16: δ(s1, σ)← δ(s1, σ) ∪ {s2}17: end if18: end for19: end if20: if ϕi = ϕ̄1Uϕ̄2 then21: if ϕ̄2 ∈ Φ(s1) or ϕ̄1 ∈ Φ(s1) and Xψ ∈ Φ(s2) then22: δ(s1, σ)← δ(s1, σ) ∪ {s2}23: end if24: end if25: if ϕi = ϕ̄1Rϕ̄2 then26: if ϕ̄2 ∈ Φ(s1) then27: if ϕ̄1 ∈ Φ(s1) or Xψ ∈ Φ(s2) then28: δ(s1, σ)← δ(s1, σ) ∪ {s2}29: end if30: end if31: end if32: end for33: end for34: end for35: end for36: return δ

208 Chapter 9. Preliminaries
= 8nmax + 3n2

max

steps.The omplexity of the omplete algorithm an therefore be estimated as follows:
T (|States|, |Σ|) ≤ |States|2 · |Σ| · (T1(|States|, |Σ|) + T2(|States|, |Σ|))

= |States|2 · |Σ| · (6 log2 |Σ|+ 8nmax + 3n2
max

)

∈ O
(
n2

max · |States|2 · |Σ| · log2 |Σ|
)
.So we have the following theorem.Theorem 9.2.1Let States and Σ be given. Then δ : States×Σ→ 2States an be onstruted in time

O
(
n2

max · |States|2 · |Σ| · log2 |Σ|
)
.Extrating the Initial StatesExtrating the initial states from States is the simplest task. By de�nition every s =

(Φ,Pos) ∈ S0 is suh that ϕ ∈ Φ. Then a simple linear searh strategy an hek if sis indeed ontained in S0. The runtime of suh a hek is bounded from above by nmax.Consequently heking every s ∈ States an be done in time O(nmax · |States|).Theorem 9.2.2Let States be given. Then S0 ⊆ States an be extrated in time O(nmax · |States|).Extrating the Aeptane ComponentFor the extration of the aeptane omponent F it is neessary to ollet the even-tualities whih are inluded in the states. This an be aomplished in nmax · |States|

9.2 Automata Construtions for Propositional Temporal Logi Formulas 209steps yielding a set Ev of pairs (ei(ϕi), pi). The size of Ev is bounded from above by
nmax · |States|. Following the de�nition of the aeptane omponent we an ompute
F using Algorithm 12.Algorithm 12 Extrating the Aeptane Component F from StatesInput: set States of statesOutput: aeptane omponent F1: F ← ∅2: ompute Ev (as desribed)3: for eah (ei(ϕi), pi) ∈ Ev do4: F ← ∅5: for eah s ∈ States do6: if ei(ϕi) ∈ Φ(s) and ϕ ∈ Φ(s) or ei(ϕi) 6∈ Φ(s) then7: F ← F ∪ {s}8: end if9: end for10: F ← F ∪ {F}11: end for12: return FThe time omplexity of Algorithm 12 an be estimated as follows:

T (|States|) ≤ 1 + nmax · |States|+ |Ev| · (1 + |States| · (2 + 1) + 1) + 1

= 2 + nmax · |States|+ |Ev| · (2 + 3 · |States|)
≤ 2 + nmax · |States|+ nmax · |States| · (2 + 3 · |States|)
= 2 + 3nmax · |States|+ 3nmax · |States|2
∈ O

(
nmax · |States|2) .So we have the following theorem.Theorem 9.2.3Let States be given. Then the aeptane omponent F an be extrated from Statesin time O (nmax · |States|2).

210 Chapter 9. Preliminaries9.2.5. Cheking Language�EmptinessWe have already mentioned that it will be neessary to hek the emptiness of the lan-guages aepted by Bühi�automata. In this setion we will see how this an be ahieved.Let G = (V,E) be a direted graph and let V ′ ⊆ V be a nonempty set of verties from
V and let E′ be a nonempty set of edges from E. Then the subgraph G′ = (V ′, E′) isalled maximal strongly onneted if
• for eah pair n1, n2 of verties from V ′ it holds that n2 is reahable from n1 and
n1 is reahable from n2 and

• V ′ is maximal wrt. ⊆, that is there is no v ∈ V \ V ′ suh that (V ′ ∪ {v}, E′) isstrongly onneted.The set of all strongly onneted subgraphs of G is alled the set of maximal stronglyonneted omponents of G. The maximal strongly onneted omponents of G form apartition of G into disjoint subsets. A maximal strongly onneted omponent (V ′, E′)is alled non�trivial if either |V ′| > 1 or V ′ = {v} for some v and (v, v) ∈ E′.The maximal strongly onneted omponents of a graph an be omputed in time
O(|V |) (see [156℄ and [74℄).The link to our problem is given as follows: Obviously every extended Bühi�automaton
A = (Σ,States, δ, S0,F) indues a direted Graph GA = (States, E) where for everypair s1, s2 ∈ States the edge (s1, s2) belongs to E if there is an element σ ∈ Σ suh that
s2 ∈ δ(s1, σ). For heking that L(A) = ∅ it su�es to ompute the maximal stronglyonneted omponents of GA and hek if there is a maximal strongly onneted om-ponent S whih is reahable from some initial state s0 ∈ S0 suh that S ∩ F 6= ∅ forevery F ∈ F . So heking logial impliation of some property ϕ in a system given by anLtl�program P an be redued to the omputation of the maximal strongly onnetedomponents of AP ×A¬ϕ and a simple ontainment hek.

10. Automata Manipulations
Contents10.1. Impliation as an Ordering . 21210.2. Upward Re�nement . 21310.2.1. Formulas without Temporal Operators 21410.2.2. Formulas with Temporal Operators 21610.3. Downward Re�nement . 21810.3.1. Formulas without Temporal Operators 21910.3.2. Formulas with Temporal Operators 22010.4. Modifying Automata by Appliation of Re�nement Opera-tions . 22110.4.1. Upward Re�nement . 22110.4.2. Downward Re�nement . 23210.4.3. Extrating Formulas . 23710.5. The Identi�ation Proess . 238This hapter will deal with the proedures whih are neessary in order to re�ne Ltl�programs. As we have seen in the last hapter, we are always able to onstrut a gener-alized Bühi�automaton from a temporal logi formula whih has a nonempty aeptedlanguage if and only if the formula from whih the automaton had been onstruted issatis�able. The onstrution relies on the set of subformulas ourring in the originalformula. So a state is labeled with a set of formulas together with their positions.

212 Chapter 10. Automata ManipulationsNow assume that a modi�ed Bühi�automaton Aϕ = (Σ,States, δ, S0,F) onstrutedfrom a Ltl�formula ϕ is given. By de�nition we have ϕ ∈ Φ(s) for every s ∈ S0. Nowassume further that any Ltl�formula e is given (an example). Then this example anbe a positive one or a negative one. In either ase we an onstrut the representingautomaton A¬e.1. If e is a positive example, then a modi�ation of the model under onsiderationhas to be arried out if L(Aϕ ×A¬e) 6= ∅ sine in this ase the positive example eis not implied by the model under onsideration.2. If e is a negative example, then onsequently we have to re�ne the model if L(Aϕ×

A¬e) = ∅ sine in this ase the negative example e is implied.In either ase we will have to modify the states of the representing automaton Aϕ insuh a way that the modi�ed model is ompatible with the new example e.10.1. Impliation as an OrderingIn the ase of FoLtl, we have used the onept of subsumption as the basis for gener-alization and speialization operations. In Ltl this would not be a good hoie for tworeasons:1. Ltl is a propositional temporal logi language, so the onept of substitutionswould not make any sense sine there are no variable symbols to substitute and2. Prolog(+T)�objets are essentially lauses. The results regarding greatest spe-ializations and least generalizations are only onerned with suh lauses. In Ltlthe objets are not limited to lauses and so we annot hope to apply the tehniquesestablished in hapter 6.So we see that subsumption is not appliable here. However, sine Ltl is propositional,we know that the logial onsequene relation |= is deidable. This enables us to use a

10.2 Upward Re�nement 213�ner relation than the subsumption ordering <, namely the impliation ordering.De�nition 10.1.1Let ϕ1 and ϕ2 be Ltl formulas. Then the ordering % is de�ned as ϕ1 % ϕ2 if andonly if ϕ1 |= ϕ2.The notations -, ≻, ≺ are de�ned in the usual way. In the ase of ϕ1 % ϕ1 and
ϕ2 % ϕ1 we will not introdue a new symbol sine in this ase ϕ1 ≡ ϕ2.10.2. Upward Re�nementWe will now show how Ltl�formulas an be re�ned upwards, that is we will see how wean onstrut a formula ψ from a given formula ϕ suh that ψ % ϕ where ψ is in somesense minimal. This onept of minimality will be made preise now.De�nition 10.2.1Let ϕ be an Ltl�formula. An Ltl�formula ψ is alled a minimal upward re�nementwrt. % of ϕ if1. ψ % ϕ and2. there is no Ltl�formula ψ′ suh that ψ ≻ ψ′ ≻ ϕ.Our onept of minimal re�nements is idential to the onept of overs whih is awell�known onept from the theory of ILP (see [126℄ for example). In other words, aformula ψ is a minimal upward re�nement wrt. % of a formula ϕ if and only if ψ is anupward over of ϕ (with respet to the ordering %). In partiular all properties of oversalso hold for minimal re�nements.We will now show how upward overs an be onstruted. Therefore assume that ϕis a �xed Ltl�formula in whih propositional variables from the set X = {p1, . . . , pm}

214 Chapter 10. Automata Manipulationsour. The onstrution of re�nements of ϕ depends on the question if there are temporaloperators involved in ϕ.10.2.1. Formulas without Temporal OperatorsAssume that ϕ is a purely propositional logi formula. The idea of how to re�ne ϕ is toonstrut a formula ψ whih has nearly the same models as ϕ. To obtain suh a formulawe need a speial kind of formulas, namely so alled maximal minterms.De�nition 10.2.2LetX be a set of propositional variable symbols and let ϕ be a formula in whih exatlythe variables from X = {p1, . . . , pm} our. Then ϕ is alled a maximal minterm ifand only if1. ϕ =
∧|X|
i=1 ψi,2. for every i ∈ {1, . . . , k} it holds that ψi ∈ X or ψi ∈ {¬p | p ∈ X} and3. there is no pair i0, i1 suh that ψi0 ≡ ¬ψ1.The set of all maximal minterms ontaining variables from X will be denoted asMinTerms(X).Theorem 10.2.1Let ϕ be a propositional logi formula ontaining variables from a �nite set X of propo-sitional symbols. If ϕ is satis�able, then for every χ ∈ MinTerms(X) with ϕ 6|= ¬χ aminimal upward re�nement of ϕ is given by ϕ ∧ ¬χ.Proof. Assume that ϕ and X are given as required. First we observe that ϕ ∧ ¬χ |= ϕfor every χ ∈ MinTerms(X), that is ϕ ∧ ¬χ % ϕ holds. Now assume that χ is hosensuh that ϕ 6|= ¬χ. Assume that ϕ ∧ ¬χ 6≻ ϕ, that is assume that ϕ % ϕ ∧ ¬χ. Then

10.2 Upward Re�nement 215MD(ϕ = MD(ϕ∧¬χ) = MD(ϕ)∩MD(¬χ) or equivalently MD(¬χ) ⊇ MD(ϕ). But thisgives ϕ |= ¬χ ontraditing the assumptions on ϕ and χ.It remains to prove that the formula ϕ ∧ ¬χ is indeed a minimal re�nement. Assumethat this is not the ase, that is assume that there is a formula α suh that ϕ∧¬χ ≻ α ≻ ϕ.Then we have1. MD(ϕ ∧ ¬χ) ⊂ MD(α) ⊂ MD(ϕ) and2. |MD(¬χ)| = 2|X| − 1 sine χ ∈MinTerms(X) and therefore |MD(χ)| = 1.This gives |MD(ϕ∧¬χ)| ≤ |MD(α)| ≤ |MD(ϕ)| sine X is assumed to be �nite. We andistinguish two ases:Case 1 ϕ |= ¬χ. Then |MD(ϕ ∧ ¬χ)| = |MD(ϕ)| and therefore |MD(α)| = |MD(ϕ)|whih gives α ≡ ϕ and in partiular α 6≻ ϕ whih is a ontradition.Case 2 ϕ 6|= ¬χ. Then we have |MD(ϕ ∧ ¬χ)| = |MD(ϕ)| − 1 < |MD(ϕ)|. But sineMD(α) ⊂ MD(ϕ) andMD(ϕ∧¬χ) ⊂ MD(α) this gives either |MD(α)| = |MD(ϕ)|−

1 = |MD(ϕ ∧ ¬χ)| whih yields α ≡ ϕ ∧ ¬χ or |MD(α)| = |MD(ϕ)| whih gives
α ≡ ϕ. In the former ase we have ϕ ∧ ¬χ 6≻ α and in the latter ase we have
α 6≻ ϕ. So both ases yield a ontradition.Sine every ase yields a ontradition, suh a formula ϕ annot exist and the laim isproved. �For the sake of simpliity we will introdue a speial mapping Ψu ontaining all upwardre�nements of a formula ϕ, that is

Ψu(ϕ) = {ϕ ∧ ¬χ | χ ∈MinTerms(X)} .

216 Chapter 10. Automata ManipulationsExample 10.2.1Let X = {p1, p2, p3} and ϕ = p1 → (p2 → p3) be given. Then
MinTerms(X) =

¬p1 ∧ ¬p2 ∧ ¬p3,

¬p1 ∧ ¬p2 ∧ p3,

¬p1 ∧ p2 ∧ ¬p3,

¬p1 ∧ p2 ∧ p3

p1 ∧ ¬p2 ∧ ¬p3,

p1 ∧ ¬p2 ∧ p3,

p1 ∧ p2 ∧ ¬p3,

p1 ∧ p2 ∧ p3

and
Ψu(ϕ) = {(p1 → (p2 → p3)) ∧ ¬χ | χ ∈MinTerms(X)}

=

(p1 → (p2 → p3)) ∧ (p1 ∨ p2 ∨ p3), (p1 → (p2 → p3)) ∧ (p1 ∨ p2 ∨ ¬p3)

(p1 → (p2 → p3)) ∧ (p1 ∨ ¬p2 ∨ p3), (p1 → (p2 → p3)) ∧ (p1 ∨ ¬p2 ∨ ¬p3)

(p1 → (p2 → p3)) ∧ (¬p1 ∨ p2 ∨ p3), (p1 → (p2 → p3)) ∧ (¬p1 ∨ p2 ∨ ¬p3)

(p1 → (p2 → p3)) ∧ (¬p1 ∨ ¬p2 ∨ p3), (p1 → (p2 → p3)) ∧ (¬p1 ∨ ¬p2 ∨ ¬p3)

.

10.2.2. Formulas with Temporal OperatorsIn the foregoing setion we have desribed how to re�ne purely propositional Ltl�formulas. There is one problem with this approah: onsider the formula ϕ = p1 ∧ p2.The re�nement proedures for propositional formulas onstrut formulas suh as (p1 ∧

p2) ∧ (¬p1 ∨ ¬p2), (p1 ∧ p2) ∧ (¬p1 ∨ p2),. . . but if the formula to be identi�ed is for ex-ample ψ = Gp1 ∧Gp2, then this formula will never be onstruted. In order to overomethis limitation we will have to desribe how to temporally generalize formulas. For thease of upward re�nement, whih will be disussed in this setion, onsider the following

10.2 Upward Re�nement 217formula ϕ = Fp for some propositional variable symbol p ∈ X. Obviously a temporalinterpretation J = (s0, s1, . . .) is a model of ϕ if there is an index j suh that J j |= ϕ(or equivalently if J |= Xjϕ). So we have that p |= Fp. More general Xjp |= Fp for every
j ≥ 0, that is Xjp % Fp for every j ∈ N. So an upward re�nement of any formula Fψan be onstruted as Xjψ. This approah an be ontinued: obviously Gψ |= Xjψ, thatis Gψ % Xjψ % Fψ. We will now examine how this idea of temporal re�nement an beombined with the re�nement proedure desribed for propositional formulas.Therefore assume that any Ltl�formula ϕ is given. For the formulas ϕ1 and ϕ2 wewill require that ψ % ϕ1 respetively ψ % ϕ2 for every formula ψ ∈ Γu(ϕ1) respetively
ψ ∈ Γu(ϕ2). Then the set Γu(ϕ) is de�ned as follows:

Γu(ϕ) = Ψu(ϕ)

∪
{
ϕ[Xiχ]p | p ∈ Pos(ϕ), ϕ|p = Fχ for some i ≥ 0

}

∪
{
ϕ[Gχ]p | p ∈ Pos(ϕ), ϕ|p = Xiχ for some i ≥ 0

}

∪

ϕ[ϕ̄1 ⋆ ϕ2]p, ϕ[ϕ1 ⋆ ϕ̄2]p |
p ∈ Pos(ϕ), ϕ|p = ϕ1 ⋆ ϕ2, ϕ̄1 ∈ Γu(ϕ1),

ϕ̄2 ∈ Γu(ϕ2), ⋆ ∈ {U,R}

.For proving the properties of the formulas from Γu(ϕ) we will exploit the followingobservation:Lemma 10.2.1 (Replaement�Lemma, Upward�Version)Let ϕ and ψ be Ltl�formulas, let p ∈ Pos(ϕ) be a position in ϕ. If ψ % ϕ|p, then
ϕ[ψ]p % ϕ.Proof. Assume that ϕ|p % ψ, that is ϕ|p |= ψ. Let J ∈ MD(ϕ) be a �xed model of ϕ.We will prove that J |= ϕ[ψ]p.Case 1 If J |= ϕ|p, then J |= ψ sine ϕ|p % ψ. But in this ase we also have J |= ϕ[ψ]psine J (ϕ|p) = J (ψ).Case 2 If J 6|= ϕ|p, then we have to distinguish how J evaluates ψ. If J 6|= ψ, then

218 Chapter 10. Automata Manipulationsthe laim is obvious (using the same argumentation as in the foregoing ase). Soassume that J |= ψ. Then we have two subases:Case 2.1 If ϕ|p is positive in ϕ, then the laim is immediately.Case 2.2 If ϕ|p is negative in ϕ, then we have ϕ|p = ¬q for some propositionalvariable symbol q sine ϕ is assumed to be in negation normal form. But theassumption ϕ|p % ψ yields ψ ∈ {true,¬q} and so the laim follows.This proves the lemma. �It is now straightforward to prove that every formula ontained in the set Γu(ϕ) is ageneralization of ϕ with respet to the ordering %.Theorem 10.2.2For every Ltl�formula ϕ and every ψ ∈ Γu(ϕ) it holds that ψ % ϕ.Proof. If ψ ∈ Ψu(ϕ), then the laim is due to Theorem 10.2.1. Otherwise the replaement�lemma an be applied. �10.3. Downward Re�nementDually to the onstrution of minimal upward re�nements we an onstrut maximaldownward re�nements of a formula ϕ. As we might expet, a maximal downward re�ne-ment is de�ned as follows.De�nition 10.3.1Let ϕ be an Ltl�formula. An Ltl�formula ψ is alled amaximal downward re�nementwrt. % of ϕ if1. ϕ % ψ and2. there is no Ltl�formula ψ′ suh that ϕ ≻ ψ′ ≻ ψ.

10.3 Downward Re�nement 219As in the ase of upward re�nement we will distinguish between formulas with andwithout temporal operators. We will see that the onepts developed in the foregoingsetion an again be adapted.10.3.1. Formulas without Temporal OperatorsReall that a minimal upward re�nement of a formula ϕ whih does not ontain temporaloperators is given as ϕ∧¬χ for some maximal minterm χ. The philosophy was as follows:sine χ is a minterm, χ has exatly one model. So ¬χ has 2|X|−1 models where X is theset of variables under onsideration. Building the onjuntion of ϕ and a formula whihhas as many models as possible without being a tautology (i.e. ¬χ) yields a more generalformula whih is a minimal upward re�nement. The dual aspet of removing a modelis adding a model. So for building a maximal upward re�nement of ϕ we will have toonstrut a disjuntion of ϕ and a formula whih has exatly one model, i.e. a minterm.Theorem 10.3.1Let ϕ be a propositional logi formula ontaining variables from a �nite set X of propo-sitional symbols. If ϕ is satis�able but no tautology, then for every χ ∈MinTerms(X)with χ 6|= ϕ a maximal downward re�nement of ϕ is given by ϕ ∨ χ.Proof. Let ϕ be any formula ontaining variables from X. First we will again note thatfor every χ ∈ MinTerms(X) it holds that ϕ |= ϕ ∨ χ, so ϕ % ϕ ∨ χ. Now assume that
χ 6|= ϕ. Then we have MD(χ) 6⊆ MD(ϕ) and therefore MD(ϕ ∨ χ) = MD(ϕ) ∪MD(χ) 6=MD(ϕ) whih (together with MD(ϕ) ⊆ MD(ϕ ∨ χ)) gives MD(ϕ) ⊂ MD(ϕ ∨ χ), i.e.
ϕ ≻ ϕ ∨ χ.Now assume that ϕ ∨ χ is not a maximal downward re�nement of ϕ. Let α be aformula suh that ϕ ≻ α ≻ ϕ ∨ χ. Then we have MD(ϕ) ⊂ MD(α) ⊂ MD(ϕ ∨ χ)and therefore |MD(ϕ)| < |MD(α)| < |MD(ϕ ∨ χ)| sine MD(ϕ), MD(α) and MD(χ) are�nite. Sine χ ∈MinTerms(X) we have |MD(χ)| = 1, so either |MD(α)| = |MD(ϕ)| or
|MD(α)| = |MD(ϕ)| + 1. This is a ontradition, so the laim is proved. �

220 Chapter 10. Automata ManipulationsAgain we will ollet all downward re�nements of ϕ as follows:
Ψd(ϕ) = {ϕ ∨ χ | χ ∈MinTerms(X)} .Example 10.3.1Consider the set X = {p1, p2, p3} and the formula ϕ = p1 → (p2 → p3) from Example10.2.1. Here we have

Ψd(ϕ) = {ϕ ∨ χ | χ ∈MinTerms(X)}

=

(p1 → (p2 → p3)) ∧ (¬p1 ∧ ¬p2 ∧ ¬p3),

(p1 → (p2 → p3)) ∧ (¬p1 ∧ ¬p2 ∧ p3),

(p1 → (p2 → p3)) ∧ (¬p1 ∧ p2 ∧ ¬p3),

(p1 → (p2 → p3)) ∧ (¬p1 ∧ p2 ∧ p3),

(p1 → (p2 → p3)) ∧ (p1 ∧ ¬p2 ∧ ¬p3),

(p1 → (p2 → p3)) ∧ (p1 ∧ p2 ∧ p3),

(p1 → (p2 → p3)) ∧ (p1 ∧ p2 ∧ ¬p3),

(p1 → (p2 → p3)) ∧ (p1 ∧ p2 ∧ p3)

.

10.3.2. Formulas with Temporal OperatorsIn full analogy to the upward ase we will de�ne a set Γd(ϕ) for an Ltl�formula ϕ asfollows:
Γd(ϕ) = Ψd(ϕ)

∪
{
ϕ[Fχ]p | p ∈ Pos(ϕ), ϕ|p = Xiχ for some i ≥ 0

}

∪
{
ϕ[Xiχ]p | p ∈ Pos(ϕ), ϕ|p = Gχ for every i ≥ 0

}

∪

ϕ[ϕ̄1 ⋆ ϕ2]p, ϕ[ϕ1 ⋆ ϕ̄2]p |
p ∈ Pos(ϕ), ϕ|p = ϕ1 ⋆ ϕ2, ϕ̄1 ∈ Γd(ϕ1),

ϕ̄2 ∈ Γd(ϕ2), ⋆ ∈ {U,R}

.

10.4 Modifying Automata by Appliation of Re�nement Operations 221Again we assume that the formulas ϕ̄1 and ϕ̄2 from Γd(ϕ1) and Γd(ϕ2) satisfy theproperties ϕ1 % ϕ̄1 and ϕ2 % ϕ̄2. The properties of Γd(ϕ) are proved as in the upwardase.Lemma 10.3.1 (Replaement�Lemma, Downward�Version)Let ϕ and ψ be Ltl�formulas, let p ∈ Pos(ϕ) be a position in ϕ. If ψ % ϕ|p, then
ϕ % ϕ[ψ]p.Proof. analogous to the upward ase. �So we have that the formulas from Γd(ϕ) are downward re�nements of ϕ.Theorem 10.3.2For every Ltl�formula ϕ and every ψ ∈ Γu(ϕ) it holds that ϕ % ψ.Proof. analogous to the upward ase. �In the following setion we will show how the hoie of a formula from Γu(ϕ) or Γd(ϕ)an be implemented as a manipulation of the representing automaton Aϕ.10.4. Modifying Automata by Appliation of Re�nementOperations10.4.1. Upward Re�nementWe will now present algorithms whih allow upward�re�nement of given Bühi�automataby manipulating the set of states (and updating the transition relation, the set of initialstate and the aeptane omponent). As pointed out in the foregoing setion we andistinguish between re�nement by appliation of propositional formulas and re�nementby appliation of temporal formulas.All algorithms will only di�er in the way the new states are onstruted. So we willplae our attention on the proedures to onstrut new states from given ones. For therest of this setion we will assume that Aϕ = (Σ,States, δ, S0,F) is given.

222 Chapter 10. Automata ManipulationsPropositional Re�nementAssume thatVar(ϕ) = {p1, . . . , p|Var(ϕ)|} and that χ =
∧|Var(ϕ)|
i=1 li ∈MinTerms(Var(ϕ))for li ∈ {pi,¬pi} are given. Then the onstrution of Aϕ∧¬χ is simple: First wehave to onstrut NNF(¬χ). After that we onstrut ANNF(¬χ) and return Aϕ∧¬χ =

Aϕ×ANNF(¬χ). Sine χ =
∧|Var(ϕ)|
i=1 li we have α = NNF(¬χ) = NNF(¬∧|Var(ϕ)|

i=1 li

)

=NNF(∨|Var(ϕ)|
i=1 ¬li

)

=
∨|Var(ϕ)|
i=1 ¬li. Algorithm 13 gives the implementation of the strat-egy desribed here.Algorithm 13 Propositional Upward Re�nementInput:

• Bühi�automaton A = (Σ,States, δ, S0,F)

• χ ∈MinTerms(Var(ϕ)).Output: Aϕ∧¬χ.1: ompute α = NNF(¬χ)2: ompute Aα3: return Aϕ ×AαBy soundness of the produt operation × we have the following theorem.Theorem 10.4.1Let ϕ be an Ltl�formula, letAϕ and let χ ∈MinTerms(ϕ) be given. Then Algorithm 13returns Aϕ∧¬χ.Temporal Re�nementThe next step is now to present a proedure whih allows the introdution of temporaloperators. We will see that for eah of the rewritten formulas from Γu(ϕ) \ Ψu(ϕ). Soassume that any suh ψ ∈ Γu(ϕ)\Ψu(ϕ) is hosen. We will proeed by distintion of theform of ψ.Case 1 ψ = ϕ[Xiχ]p for some p ∈ Pos(ϕ) suh that ϕ|p = Fχ, some Ltl�formula χ andsome i ≥ 0. By de�nition of the set of states of a Bühi�automaton, for every state

10.4 Modifying Automata by Appliation of Re�nement Operations 223
s suh that Xiχ ∈ Φ(s) there has to be at least one s′ suh that Xi−1 ∈ Φ(s′). Ouronstrution will have to take this into aount.Case 2 ψ = ϕ[Gχ]p for some p ∈ Pos(ϕ) suh that ϕ|p = Xiχ. This ase is simpler inthe sense that some states might be deleted and so the resulting automaton mightbe smaller than the original one.Case 3 If ψ = ϕ[ϕ̄1 ⋆ ϕ2]p or ψ = ϕ[ϕ1 ⋆ ϕ̄2]p for ⋆ ∈ {U,R} and p ∈ Pos(ϕ) with
ϕ|p = ϕ1 ⋆ ϕ2, then states from Aψ emerge from states of Aϕ and states from Aϕ̄1(respetively from Aϕ̄2) be merging the sets of formulas stored in these states. Wewill see below how this an be ahieved.We will now examine the ases skethed above in more detail.Case 1 We will �rst present a method whih is suitable for the situation desribed in ase1. Assume that p ∈ Pos(ϕ) is given suh that ϕ|p = trueUχ ≡ Fχ for some Ltl�formula χ and assume that i ≥ 0 is some �xed integer. IfAϕ = (Σ,States, δ, S0,F)then we have to proess every s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn}) ∈ States and hekif the following ases our:Case 1.1 There is i0 ∈ {1, . . . , n} suh that ϕi0 = trueUχ and pi = p. In this asewe have to onstrut states s̄0, . . . , s̄i as follows:

s̄j = ({ϕ1, . . . , ϕi0−1,Xjχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01
i−j , pi0+1, . . . , pn}).Here the term 1i−j denotes a sequene of i− j ourrenes of the letter 1.Case 1.2 Case 1.1 is not ful�lled but there is some i0 ∈ {1, . . . , n} suh that pi0 < pand trueUχ ⊏ ϕi0 . In this ase the formula to be manipulated is a propersubformula of the formula ϕi0 and therefore it has to be replaed. Let p̄ be

224 Chapter 10. Automata Manipulationsfrom N
∗ suh that pi0 p̄ = p. Then we have to onstrut the state
s̄ = ({ϕ1, . . . , ϕi0−1, ϕi0 [Xiχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn}).Case 1.3 In the ase that neither of the above ases is ful�lled we only add thestate s to the set of new states.The method desribed here is summarized in Algorithm 14.Case 2 In ontrast to the method presented in the foregoing ase onstruting the setof states of the automaton Aϕ[Gχ]p given some p ∈ Pos(ϕ) suh that ϕ|p = Xiχfor some i ≥ 0 might yield a smaller set of states sine the states whih havebeen built in order to guarantee that χ holds an be deleted. Again let Aϕ =

(Σ,States, δ, S0,F) be given. If s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn}) is the state whihis atually proessed, we have to distinguish the following ases:Case 2.1 If there is i0 ∈ {1, . . . , n} suh that ϕi0 = Xiχ and pi0 = p, then we anonstrut two new states:
s̄1 = ({ϕ1, . . . , ϕi0−1, falseRχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pn}) and
s̄2 = ({ϕ1, . . . , ϕi0−1, χ, ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01, pi0+1, . . . , pn}).

These states are added to the set of new states. Following the onstrution ofthese states we an identify the states whih might be deleted. These are thestates s′ 6= s suh that
s′ = ({ϕ1, . . . , ϕi0−1,Xi−jχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01

j , pi0+1, . . . , pn}).Eah suh state is marked as to be deleted.

10.4 Modifying Automata by Appliation of Re�nement Operations 225Case 2.2 Case 2.1 is not ful�lled but there is i0 ∈ {1, . . . , n} suh that pi0 < pand Xiχ is a proper subformula of ϕi0 . Here we will identify p̄ ∈ N
∗ suh that

pi0 p̄ = p and onstrut the state
s̄ = ({ϕ1, . . . , ϕi0−1, ϕi0 [falseRχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn}).Case 2.3 If neither ase 2.1 or ase 2.2 is ful�lled, we only add s to the set of newstates.The above onstrution is formalized in Algorithm 15.Case 3 Let us now assume that ψ = ϕ[ϕ̄1 ⋆ ϕ2]p for some ϕ̄1 ∈ Γu(ϕ1), some ⋆ ∈ {U,R}and some p ∈ Pos(ϕ) suh that ϕ|p = ϕ1 ⋆ ϕ2. Let Aϕ̄1 = (Σ′,States′, δ′, S′

0,F ′)be given. Our onstrution will be divided into three parts.Step 1 First we will rename the positions from the states of Aϕ̄1 in order to maththe positions in ψ. That is if s′ = (Φ(s′), {p1, . . . , pn}) ∈ States′ is given,then s has to be hanged to (Φ(s′), {p1p1, . . . , p1pn).Step 2 We will then proess every s =
({

ϕ
(1)
1 , . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
n1

})

∈ Statesas follows:1. for every i0 ∈ {1, . . . , n1} suh that p(1)
i0

= p we have to arry out anexpliit replaement, that is we replae s by
s̄ =

({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0

[ϕ̄1]1, ϕ
(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p(1)

n1

})

,2. for every i0 ∈ {1, . . . , n1} suh that p(1)
i0

< p and ϕ is a proper subformulaof ϕ(1)
i0

we replae s by
s̄ =

({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0

[ϕ̄1]p̄1, ϕ
(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p(1)

n1

})

226 Chapter 10. Automata Manipulationswhere p̄ ∈ N
∗ is suh that p(1)

i0
p̄ = p and3. for every i0 ∈ {1, . . . , n1} suh that p < pi0 we delete the formula ϕ(1)

i0and the assoiated position p(1)
i0
. So s is replaed by

s̄ =
({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
i0−1, p

(1)
i0+1, . . . , p

(1)
n1

})

.Step 3 Assume that after having ompleted step 2, the state s has the form
s =

({

ϕ
(1)
j1
, . . . , ϕ

(1)
jk

}

,
{

p
(1)
j1
, . . . , p

(1)
jk

})

.Then for eah s′ =
({

ϕ
(2)
1 , . . . , ϕ

(2)
n2

}

,
{

p
(2)
1 , . . . , p

(2)
n2

})

∈ States′ we performthe following ations:1. Φnew =
{

ϕ
(1)
j1
, . . . , ϕ

(1)
jk
, ϕ

(2)
1 , . . . , ϕ

(2)
n2

},2. Posnew =
{

p
(1)
j1
, . . . , p

(1)
jk
, p

(2)
1 , . . . , p

(2)
n2

} and3. reate the state snew = (Φnew,Posnew) and add it to NewStates.Setting Σnew = Σ ∪ Σ′ we an then onstrut the new transition relation δ′, thenew set S0,new of initial states and the new aeptane omponent F ′ as usual andthe automaton onstrution is ompleted. The algorithm for this onstrution isgiven in Algorithm 16.Case 4 The �nal ase is given by the situation in whih ψ = ϕ[ϕ1 ⋆ ϕ̄2]p for some
ϕ̄2 ∈ Γu(ϕ2), some ⋆ ∈ {U,R} and some p ∈ Pos(ϕ) suh that ϕ|p = ϕ1 ⋆ ϕ2. Theonstrution is then arried out in full analogy to the onstrution from ase 3. Sowe will only present the algorithm whih is depited in Algorithm 17.As in the ase of propositional upward re�nement the above algorithms for onstrutingthe set of new states of the resulting automaton representing the re�ned formula an beombined with the standard approahes for extrating the initial states, the transition

10.4 Modifying Automata by Appliation of Re�nement Operations 227

Algorithm 14 Temporal Upward Re�nement: Construting new States for F 7→ XiInput:
• Aϕ = (Σ,States, δ, S0,F)

• p ∈ Pos(ϕ) suh that ϕ|p = trueUχ ≡ Fχ
• i ≥ 0Output: set NewStates of states of Aϕ[Xiχ]p1: NewStates← {(∅, ∅)}2: for eah s ∈ States doRequire: s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn})3: if there is i0 suh that ϕi0 = trueUχ and pi0 = p then4: for j = 0, . . . , i do5: s̄← ({ϕ1, . . . , ϕi0−1,Xjχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01

i−j , pi0+1, . . . , pn})6: NewStates← NewStates ∪ {s̄}7: end for8: else if there is i0 suh that trueUχ ⊏ ϕi0 and pi0 < p then9: p̄ ← element from N
∗ suh that pi0 p̄ = p s̄ ←

({ϕ1, . . . , ϕi0−1, ϕi0 [Xiχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn})10: NewStates← NewStates ∪ {s̄}11: else12: NewStates← NewStates ∪ {s}13: end if14: end for

228 Chapter 10. Automata Manipulations
Algorithm 15 Temporal Upward Re�nement: Construting new States for Xi 7→ GInput:
• Aϕ = (Σ,States, δ, S0,F)

• p ∈ Pos(ϕ) suh that ϕ|p = XiχOutput: set NewStates of states of Aϕ[Gχ]p1: mark eah s ∈ States as not to be deleted2: NewStates← {(∅, ∅)}3: for eah s ∈ States whih is marked as not to be deleted doRequire: s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn})4: if there is i0 suh that ϕi0 = Xiχ and pi0 = p then5: s̄1 ← ({ϕ1, . . . , ϕi0−1, falseRχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pn})6: s̄2 ← ({ϕ1, . . . , ϕi0−1, χ, ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01, pi0+1, . . . , pn})7: NewStates← NewStates ∪ {s̄1, s̄2}8: for eah s′ ∈ States doRequire: s′ = ({ϕ′
1, . . . , ϕ

′
m}, {p′1, . . . , p′m})9: if n = m then10: if {ϕ′

1, . . . , ϕ
′
m} = {ϕ1, . . . , ϕi0−1,Xi−jχ,ϕi0+1, . . . , ϕn} for some j ≥ 0then11: if {p′1, . . . , p′m} = {p1, . . . , pi0−1, pi01

j , pi0+1, . . . , pn} then12: mark s′ as to be deleted13: end if14: end if15: end if16: end for17: else if there if i0 suh that pi0 < p and Xiχ ⊏ ϕi0 then18: p̄← element from N
∗ suh that pi0 p̄ = p19: s̄← ({ϕ1, . . . , ϕi0−1, ϕi0 [falseRχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn})20: NewStates← NewStates ∪ {s̄}21: else22: NewStates← NewStates ∪ {s}23: end if24: end for25: return NewStates

10.4 Modifying Automata by Appliation of Re�nement Operations 229
Algorithm 16 Temporal Upward Re�nement: Construting new States for Replaementof Eventualities (replaing the �rst omponent)Input:
• Aϕ = (Σ,States, δ, S0,F)

• p ∈ Pos(ϕ) suh that ϕ|p = ϕ1 ⋆ ϕ2 for ⋆ ∈ {U,R}
• Aϕ = (Σ′,States′, δ′, S′

0,F ′) for some ϕ ∈ Γu(ϕ1)Output: set NewStates of states of Aϕ[ϕ̄⋆ϕ2]p1: for eah s′ ∈ States′ doRequire: s′ = (Φ(s′), {p′1, . . . , p′n})2: s← (Φ(s′), {pp′1, . . . , pp′n})3: end for4: NewStates← {(∅, ∅)}5: for eah s ∈ States doRequire: s =
({

ϕ
(1)
1 , . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
n1

})6: for i0 = 1, . . . , n1 do7: if p(1)
i0
≤ p and ϕ1 is a subformula of ϕ(1)

i0
then8: p̄← element from N

∗ suh that p(1)
i0
p̄ = p9: s←

({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0

[ϕ]p̄1 , ϕ
(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
n1

})10: else if p < p
(1)
i0

then11: s←
({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
i0−1, p

(1)
i0+1, . . . , p

(1)
n1

})12: end if13: end forRequire: s =
(

{ϕ(1)
j1
, . . . , ϕ

(1)
jk
}, {p(1)

j1
, . . . , p

(1)
jk
}
)14: for eah s′ ∈ States′ doRequire: s′ =

({

ϕ
(2)
1 , . . . , ϕ

(2)
n2

}

,
{

p
(2)
1 , . . . , p

(2)
n2

})15: Φnew ← {

ϕ
(1)
j1
, . . . , ϕ

(1)
jk
, ϕ

(2)
1 , . . . , ϕ

(2)
n2

}16: Posnew ← {

p
(1)
j1
, . . . , p

(1)
jk
, p

(2)
1 , . . . , p

(2)
n2

}17: NewStates← NewStates ∪ {(Φnew,Posnew)}18: end for19: end for20: return NewStates

230 Chapter 10. Automata Manipulations
Algorithm 17 Temporal Upward Re�nement: Construting new States for Replaementof Eventualities (replaing the seond omponent)Input:
• Aϕ = (Σ,States, δ, S0,F)

• p ∈ Pos(ϕ) suh that ϕ|p = ϕ1 ⋆ ϕ2 for ⋆ ∈ {U,R}
• Aϕ = (Σ′,States′, δ′, S′

0,F ′) for some ϕ ∈ Γu(ϕ1)Output: set NewStates of states of Aϕ[ϕ1⋆ϕ̄]p1: for eah s′ ∈ States′ doRequire: s′ = (Φ(s′), {p′1, . . . , p′n})2: s← (Φ(s′), {pp′1, . . . , pp′n})3: end for4: NewStates← {(∅, ∅)}5: for eah s ∈ States doRequire: s =
({

ϕ
(1)
1 , . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
n1

})6: for i0 = 1, . . . , n1 do7: if p(1)
i0
≤ p and ϕ1 is a subformula of ϕ(1)

i0
then8: p̄← element from N

∗ suh that p(1)
i0
p̄ = p9: s←

({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0

[ϕ]p̄2 , ϕ
(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
n1

})10: else if p < p
(1)
i0

then11: s←
({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
i0−1, p

(1)
i0+1, . . . , p

(1)
n1

})12: end if13: end forRequire: s =
(

{ϕ(1)
j1
, . . . , ϕ

(1)
jk
}, {p(1)

j1
, . . . , p

(1)
jk
}
)14: for eah s′ ∈ States′ doRequire: s′ =

({

ϕ
(2)
1 , . . . , ϕ

(2)
n2

}

,
{

p
(2)
1 , . . . , p

(2)
n2

})15: Φnew ← {

ϕ
(1)
j1
, . . . , ϕ

(1)
jk
, ϕ

(2)
1 , . . . , ϕ

(2)
n2

}16: Posnew ← {

p
(1)
j1
, . . . , p

(1)
jk
, p

(2)
1 , . . . , p

(2)
n2

}17: NewStates← NewStates ∪ {(Φnew,Posnew)}18: end for19: end for20: return NewStates

10.4 Modifying Automata by Appliation of Re�nement Operations 231funtion and the aeptane omponent of the resulting automaton. A proedure of howto ahieve this is straightforward to implement. Therefore we will not give it in detailbut will merely onentrate on the following theorem.Theorem 10.4.2Let Aϕ = (Σ,States, δ, S0,F) be an automaton representing an Ltl�formula ϕ andlet ψ ∈ Γu(ϕ) be an upward�re�nement of ϕ. Then the sets of states omputed byAlgorithms 14, 15, 16 and 17 are orret.Proof. Let an Ltl�formula ϕ be given and assume that some ψ ∈ Γu(ϕ) is hosen.Assume that Aϕ = (Σ,States, δ, S0,F) is given (and is onstruted orretly). LetStates′ be the set of states whih has been onstruted by appliation of one of thealgorithms presented above and let Statescor be the orret set of states of Aψ. We willhave to prove that States′ = Statescor. The diretion ⊆ is simple: Let s = (Φ(s),Pos)be any state from States′. By assumption that Aϕ is onstruted orretly we have that
false 6∈ Φ(s) and sine the algorithms presented above do not introdue onjuntionsor disjuntions we have that if ϕ1 ∧ϕ2 ∈ Φ(s) (ϕ1 ∨ ϕ2 ∈ Φ(s)) then ϕ1 ∈ Φ(s) and (or)
ϕ2 ∈ Φ(s). The orretness of the positions stored in Pos is immediate. So the diretion
⊆ is proved.Now assume that s = (Φ(s),Pos) = ({ϕ1, . . . , ϕn}, {p1, . . . , pn}) is a state in Statescor.If p 6∈ Pos, then we trivially have that s ∈ States′ sine then s ∈ States. If p ∈ Pos,say p = pj then the laim is proven by showing that all neessary dependenies havebeen onstruted. These dependenies have the form Xiχ, that is if they are onstrutedthen Xi−1χ, . . . ,X1χ,X0χ have to be onstruted and inluded. But this is done by thealgorithms so s ∈ States′ and the diretion ⊇ is proved. �Sine the extration of the remaining omponents of Aψ is more or less trivial, we havethat the re�nement proedures desribed are orret.

232 Chapter 10. Automata Manipulations10.4.2. Downward Re�nementPropositional Re�nementAs in the ase of propositional upward re�nement we an de�ne an algorithm for on-struting the re�ned formula ϕ ∨ χ from a formula ϕ, the automaton Aϕ and some
χ ∈MinTerms(Var(ϕ)) by �rst onstruting the automaton Aχ and then onstrutingthe automaton Aϕ∨χ = Aϕ||Aχ. Sine the operation || is sound we immediately have thesoundness of the re�nement proedure. The proedure itself is given in Algorithm 18Theorem 10.4.3Let ϕ be an Ltl�formula, let Aϕ and let χ ∈MinTerms(ϕ) be given. Then Algorithm18 returns Aϕ∨χ.Algorithm 18 Propositional Downward Re�nementInput:
• Bühi�automaton A = (Σ,States, δ, S0,F)

• χ ∈MinTerms(Var(ϕ)).Output: Aϕ∨χ.1: ompute α = NNF(χ)2: ompute Aα3: return Aϕ||AαTemporal Re�nementThe ase of re�ning Ltl�formulas by adding respetively hanging temporal operatorshas been desribed for the ase of upward re�nement in hapter 10.4.1. Downwardre�nement is more or less dual to upward re�nement as we will see soon. Again we anassume that some Ltl�formula ϕ and some element ψ ∈ Γd(ϕ) \Ψd(ϕ) are �xed. As inhapter 10.4.1 we have to distinguish the following ases for ψ:Case 1 ψ = ϕ[Xiχ]p for some p ∈ Pos(ϕ) suh that ϕ|p = Gχ and some i ≥ 0.This ase an be seen as the inversion of ase 2 from hapter 10.4.1 where er-

10.4 Modifying Automata by Appliation of Re�nement Operations 233tain states had been marked as to be deleted. Consequently the states whihare deleted there have to be introdued here. So assume that any element s =

({ϕ1, . . . , ϕn}, {p1, . . . , pn}) ∈ States is given. We an identify the following sub-ases:Case 1.1 If there is i0 ∈ {1, . . . , n} suh that ϕi0 = falseRχ and pi0 = p, then wehave to onstrut i+ 1 states s̄0, . . . , s̄i as follows:
s̄j = ({ϕ1, . . . , ϕi0−1,Xjχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01

i−j , pi0+1, . . . , pn).Case 1.2 Case 1.1 is not ful�lled but there is i0 ∈ {1, . . . , n} suh that pi0 < pand falseRχ is a proper subformula of ϕi0 . Then let p̄ ∈ N
∗ be suh that

pi0 p̄ = p. We onstrut the state
s̄ = ({ϕ1, . . . , ϕi0−1, ϕi0 [Xiχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn}).Case 1.3 If neither of the above ases is ful�lled we add the original state s toNewStates.The omplete proedure is given in Algorithm 19.Case 2 By analogy to the ase of onstruting Aϕ[Gχ]p where Xiχ had been replaed by

falseRχ we an onstrut Aϕ[Fχ]p from Aϕ, i ≥ 0 and some p ∈ Pos(ϕ) where
ϕ|p = Xiχ. If any s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn}) ∈ States is proessed, then wedistinguish the following ases:Case 2.1 There is i0 ∈ {1, . . . , n} suh that ϕi0 = Xiχ and pi0 = p. Then weonstrut the following states:

s̄1 = ({ϕ1, . . . , ϕi0−1, trueUχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pn}) and

234 Chapter 10. Automata Manipulations
s̄2 = ({ϕ1, . . . , ϕi0−1, χ, ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01, pi0+1, . . . , pn}).

After s̄1 and s̄2 have been added to NewStates, we mark eah s′ 6= s as tobe deleted (see hapter 10.4.1) whih have the form
s′ = ({ϕ1, . . . , ϕi0−1,Xi−jχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01

j , pi0+1, . . . , pn})for some j ≥ 0.Case 2.2 If ase 2.1 is not ful�lled but there is i0 ∈ {1, . . . , n} suh that pi0 < pand Xiχ is a proper subformula of ϕi0 we identify p̄ ∈ N
∗ suh that pi0 p̄ = pand onstrut

s̄ = ({ϕ1, . . . , ϕi0−1, ϕi0 [trueUχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn})and add s̄ to NewStates.Case 2.3 Neither of the above ases is ful�lled. then s is added to the set New-States.The omplete proedure is summarized in Algorithm 20.Case 3 If the re�ned formula is ψ = ϕ[ϕ̄1 ⋆ ϕ2]p for some p ∈ Pos(ϕ) suh that ϕ|p =

ϕ1 ⋆ ϕ2, some ⋆ ∈ {U,R} and some ϕ̄1 ∈ Γd(ϕ1), then we an re�use Algorithm 16without any hanges sine this algorithm only refers to ϕ̄1 and not to membershipof ϕ̄1 in Γu(ϕ1) or Γd(ϕ2).Case 4 By analogy to the foregoing ase we an re�use Algorithm 17 in order to omputethe set of states for Aψ in the ase that ψ = ϕ[ϕ1 ⋆ ϕ̄2]p for p ∈ Pos(ϕ2) with
ϕ|p = ϕ1 ⋆ ϕ2, ⋆ ∈ {U,R} and ϕ̄2 ∈ Γd(ϕ2).So all possible ases for the elements ψ ∈ Γd(ϕ) are overed.

10.4 Modifying Automata by Appliation of Re�nement Operations 235

Algorithm 19 Temporal Downward Re�nement: Construting new States for G 7→ XiInput:
• Aϕ = (Σ,States, δ, S0,F)

• p ∈ Pos(ϕ) suh that ϕ|p = falseRχ ≡ Gχ
• i ≥ 0Output: set NewStates of states of Aϕ[Xiχ]p1: NewStates← {(∅, ∅)}2: for eah s ∈ States doRequire: s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn})3: if there is i0 suh that ϕi0 = falseRχ and pi0 = p then4: for j = 0, . . . , i do5: s̄← ({ϕ1, . . . , ϕi0−1,Xjχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01

i−j , pi0+1, . . . , pn})6: NewStates← NewStates ∪ {s̄}7: end for8: else if there is i0 suh that falseRχ ⊏ ϕi0 and pi0 < p then9: p̄ ← element from N
∗ suh that pi0 p̄ = p s̄ ←

({ϕ1, . . . , ϕi0−1, ϕi0 [Xiχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn})10: NewStates← NewStates ∪ {s̄}11: else12: NewStates← NewStates ∪ {s}13: end if14: end for

236 Chapter 10. Automata Manipulations
Algorithm 20 Temporal Downward Re�nement: Construting new States for Xi 7→ FInput:
• Aϕ = (Σ,States, δ, S0,F)

• p ∈ Pos(ϕ) suh that ϕ|p = XiχOutput: set NewStates of states of Aϕ[Fχ]p1: mark eah s ∈ States as not to be deleted2: NewStates← {(∅, ∅)}3: for eah s ∈ States whih is marked as not to be deleted doRequire: s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn})4: if there is i0 suh that ϕi0 = Xiχ and pi0 = p then5: s̄1 ← ({ϕ1, . . . , ϕi0−1, trueUχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pn})6: s̄2 ← ({ϕ1, . . . , ϕi0−1, χ, ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01, pi0+1, . . . , pn})7: NewStates← NewStates ∪ {s̄1, s̄2}8: for eah s′ ∈ States doRequire: s′ = ({ϕ′
1, . . . , ϕ

′
m}, {p′1, . . . , p′m})9: if n = m then10: if {ϕ′

1, . . . , ϕ
′
m} = {ϕ1, . . . , ϕi0−1,Xi−jχ,ϕi0+1, . . . , ϕn} for some j ≥ 0then11: if {p′1, . . . , p′m} = {p1, . . . , pi0−1, pi01, pi0+1, . . . , pn} then12: mark s′ as to be deleted13: end if14: end if15: end if16: end for17: else if there if i0 suh that pi0 < p and Xiχ ⊏ ϕi0 then18: p̄← element from N

∗ suh that pi0 p̄ = p19: s̄← ({ϕ1, . . . , ϕi0−1, ϕi0 [trueUχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn})20: NewStates← NewStates ∪ {s̄}21: else22: NewStates← NewStates ∪ {s}23: end if24: end for25: return NewStates

10.4 Modifying Automata by Appliation of Re�nement Operations 237By analogy to the situation of onstruting the states for the upward�re�ned automata,we are now able to present the following theorem.Theorem 10.4.4Let Aϕ = (Σ,States, δ, S0,F) be an automaton representing an Ltl�formula ϕ andlet ψ ∈ Γd(ϕ) be an upward�re�nement of ϕ. Then the sets of states omputed byAlgorithms 19 and 20, are orret.Proof. Exatly as in the ase of upward re�nement. �10.4.3. Extrating FormulasThe �nal step in the proess of re�ning Ltl�formulas by appliation of the automatamanipulations introdued in this hapter is to extrat the re�ned program whih hasbeen learned. This is a simple task due to the properties of the automata onstrutionused to build the representing automata.Reall that the set of initial states S0 of an automaton Aϕ representing ϕ has beende�ned as the set of all states s suh that ϕ ∈ Φ(s). So after having ompleted there�nement proess it su�es to extrat this formula from one of the initial states of theresulting automaton.De�nition 10.4.1Let ϕ1 and ϕ2 be Ltl�formulas. Then ϕ1 ⊑ ϕ2 if there is a position p ∈ Pos(ϕ2)suh that ϕ2|p = ϕ1. Furthermore we will write ϕ1 ⊏ ϕ2 if ϕ1 ⊑ ϕ2 and p 6= ε.In other words, ϕ1 ⊑ ϕ2 (ϕ1 ⊏ ϕ2) if and only if ϕ1 is a (proper) subformula of ϕ2.Using the notation ⊑ we an de�ne the maximum of a state s.De�nition 10.4.2Let A = (Σ,States, δ, S0,F) be an extended Bühi�automaton and let s ∈ States.

238 Chapter 10. Automata ManipulationsThen a formula ϕ ∈ Φ(s) is alled a maximum of s if there is no formula ψ ∈ Φ(s)suh that ϕ ⊏ ψ.Obviously for every s ∈ States there is exatly one maximum. This formula will bedenoted as max(s). This enables the extration of a formula from a Bühi�automatonsimply by extrating the maximum max(s0) for any initial state.Theorem 10.4.5Let A = (Σ,States, δ, S0,F) be an extended Bühi�automaton and let s0 ∈ S0 be anyinitial state of A. Then if A = Aϕ, then ϕ = max(s0).Proof. Immediately by de�nition of Aϕ. �Sine we have de�ned our version of Bühi�automata in suh a way that not onlythe formulas but also the positions of these formulas in the original formula from whihthe automaton had been onstruted are stored, we an extrat the maximum of any
s ∈ S0 simply by searhing for the position ε in the position�omponent of s. So let s =

({ϕ1, . . . , ϕn}, {p1, . . . , pn}) be given and let i0 be suh that pi0 = ε. Then ϕi0 = max(s).So searhing for the maximum of s an be ahieved in time O(|Φ(s)|).10.5. The Identi�ation ProessDuring the foregoing setions we have developed tehniques whih are neessary in orderto identify Ltl�programs from positive and negative examples. So this �nal setion ofthis hapter will deal with the topi of how to ombine these tehniques in order to derivean identi�ation proedure. In order to implement an identi�ation proedure we haveto ensure that at every point of time there is a uniquely determined ontinuation of there�nement proess. In other words we have to ensure that our method is deterministi.So assume that there is a (heuristi) funtion h seleting a type of re�nement stepto be arried out. Depending on the outome of the omputation arried out by h we

10.5 The Identi�ation Proess 239have to all one of the algorithms developed in the foregoing setions. Formally h has toreturn the following information:
• a number of an algorithm to be alled and
• the input data for this algorithm.Considering the di�erent signatures whih Algorithms 13 to 20 have, the following datamight be neessary:
• a formula χ ∈MinTerms(Var(ϕ)) as input for Algorithms 13 and 18,
• a position p ∈ Pos(ϕ),
• a value i ≥ 0 for Algorithms 14 and 19,
• an index j ∈ {1, 2} for Algorithms 16 and 17 seleting whih omponent has to bereplaed and
• an automaton Aϕ as input for Algorithms 16 and 17.So if Aut denotes the set of all Bühi�automata onstruted in the way developed inthis and the foregoing hapter, h should have the following signature:

h : Aut→ Z10 ×MinTerms(Var(ϕ))× Pos(ϕ) × N× {1, 2}.For the sake of formal learness we assume that the omponents of h(A) given anyautomaton A ∈ Aut an be aessed by appliation of a simple projetion. That is theprojetions
(·)1 : Z10 ×MinTerms(Var(ϕ)) × Pos(ϕ)× N× {1, 2} → Z10,

(·)2 : Z10 ×MinTerms(Var(ϕ)) × Pos(ϕ)× N× {1, 2} →MinTerms(Var(ϕ)),

(·)3 : Z10 ×MinTerms(Var(ϕ)) × Pos(ϕ)× N× {1, 2} → Pos(ϕ),

240 Chapter 10. Automata Manipulations
(·)4 : Z10 ×MinTerms(Var(ϕ)) × Pos(ϕ)× N× {1, 2} → N and
(·)5 : Z10 ×MinTerms(Var(ϕ)) × Pos(ϕ)× N× {1, 2} → {1, 2}are de�ned.Additionally we assume that another funtion h̄ : Z2 × {1, 2} × Pos(ϕ) × Aut → Autis given whih returns an automaton representing the formula to be inserted during arun of Algorithms 16 and 17. The �rst argument of h̄ denotes the diretion whih there�nement step has to take (0 for upward re�nement and 1 for downward re�nement)while the seond argument denotes the omponent to be replaed in the formula at theposition given by the third omponent.So the identi�ation proess an be skethed as follows:Step 0 Given input ϕ, onstrut the automaton A = Aϕ.Step 1 Now assume that E+ = {ϕ1, . . . , ϕk}. For i ranging from 1 to k perform thefollowing loop.Step 1.1 Construt ANNF(¬ϕi),Step 1.2 onstrut A×ANNF(¬ϕi) andStep 1.3 as long as L(A×ANNF(¬ϕi)) 6= ∅ doStep 1.3.1 ompute h(A) = ((h(A))1, . . . , (h(A))5) andStep 1.3.2 depending on the value of (h(A))1 perform the following ations:1. if (h(A))1 = 0, then replae A by the result of Algorithm 13 giveninputs A and (h(A))2,2. if (h(A))1 = 1, thena) ompute the set NewStates by appliation of Algorithm 14 giveninputs A, (h(A))3 and (h(A))4,b) extrat the remaining omponents:

10.5 The Identi�ation Proess 241i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand then) replae A by (NewStates, δnew, S0,new,Fnew),3. if (h(A))1 = 2, thena) ompute the set NewStates by appliation of Algorithm 15 giveninputs A and (h(A))3,b) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand then) replae A by (NewStates, δnew, S0,new,Fnew),4. if (h(A))1 = 3, thena) ompute the automaton Ā = h̄(A, 0, 1, (h(A))3),b) ompute the set NewStates by appliation of Algorithm 16 giveninputs A, (h(A))3 and Ā,) extrat the remaining omponents:

242 Chapter 10. Automata Manipulationsi. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand thend) replae A by (NewStates, δnew, S0,new,Fnew),5. if (h(A))1 = 4, thena) ompute the automaton Ā = h̄(A, 0, 2, (h(A))3),b) ompute the set NewStates by appliation of Algorithm 17 giveninputs A, (h(A))3 and Ā,) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand thend) replae A by (NewStates, δnew, S0,new,Fnew),6. if (h(A))1 = 5, then replae A by the result of Algorithm 18 giveninputs A and (h(A))2,7. if (h(A))1 = 6, thena) ompute the set NewStates by appliation of Algorithm 19 giveninputs A, (h(A))3 and (h(A))4,

10.5 The Identi�ation Proess 243b) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand then) replae A by (NewStates, δnew, S0,new,Fnew),8. if (h(A))1 = 7, thena) ompute the set NewStates by appliation of Algorithm 20 giveninputs A and (h(A))3,b) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand then) replae A by (NewStates, δnew, S0,new,Fnew),9. if (h(A))1 = 8, thena) ompute the automaton Ā = h̄(A, 1, 1, (h(A))3),b) ompute the set NewStates by appliation of Algorithm 16 giveninputs A, (h(A))3 and Ā,) extrat the remaining omponents:

244 Chapter 10. Automata Manipulationsi. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand thend) replae A by (NewStates, δnew, S0,new,Fnew),and10. if (h(A))1 = 9, thena) ompute the automaton Ā = h̄(A, 1, 2, (h(A))3),b) ompute the set NewStates by appliation of Algorithm 17 giveninputs A, (h(A))3 and Ā,) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand thend) replae A by (NewStates, δnew, S0,new,Fnew).Step 2 Now assume that E− = {ϕ1, . . . , ϕl}. For i ranging from 1 to l perform thefollowing loop.Step 2.1 Construt ANNF(¬ϕi),

10.5 The Identi�ation Proess 245Step 2.2 onstrut A×ANNF(¬ϕi) andStep 2.3 as long as L(A×ANNF(¬ϕi)) = ∅ doStep 2.3.1 ompute h(A) = ((h(A))1, . . . , (h(A))5) andStep 2.3.2 depending on the value of (h(A))1 perform the following ations:1. if (h(A))1 = 0, then replae A by the result of Algorithm 13 giveninputs A and (h(A))2,2. if (h(A))1 = 1, thena) ompute the set NewStates by appliation of Algorithm 14 giveninputs A, (h(A))3 and (h(A))4,b) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand then) replae A by (NewStates, δnew, S0,new,Fnew),3. if (h(A))1 = 2, thena) ompute the set NewStates by appliation of Algorithm 15 giveninputs A and (h(A))3,b) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 and

246 Chapter 10. Automata Manipulationsiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand then) replae A by (NewStates, δnew, S0,new,Fnew),4. if (h(A))1 = 3, thena) ompute the automaton Ā = h̄(A, 0, 1, (h(A))3),b) ompute the set NewStates by appliation of Algorithm 16 giveninputs A, (h(A))3 and Ā,) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand thend) replae A by (NewStates, δnew, S0,new,Fnew),5. if (h(A))1 = 4, thena) ompute the automaton Ā = h̄(A, 0, 2, (h(A))3),b) ompute the set NewStates by appliation of Algorithm 17 giveninputs A, (h(A))3 and Ā,) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 and

10.5 The Identi�ation Proess 247iii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand thend) replae A by (NewStates, δnew, S0,new,Fnew),6. if (h(A))1 = 5, then replae A by the result of Algorithm 18 giveninputs A and (h(A))2,7. if (h(A))1 = 6, thena) ompute the set NewStates by appliation of Algorithm 19 giveninputs A, (h(A))3 and (h(A))4,b) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand then) replae A by (NewStates, δnew, S0,new,Fnew),8. if (h(A))1 = 7, thena) ompute the set NewStates by appliation of Algorithm 20 giveninputs A and (h(A))3,b) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 and

248 Chapter 10. Automata Manipulationsiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand then) replae A by (NewStates, δnew, S0,new,Fnew),9. if (h(A))1 = 8, thena) ompute the automaton Ā = h̄(A, 1, 1, (h(A))3),b) ompute the set NewStates by appliation of Algorithm 16 giveninputs A, (h(A))3 and Ā,) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand thend) replae A by (NewStates, δnew, S0,new,Fnew),and10. if (h(A))1 = 9, thena) ompute the automaton Ā = h̄(A, 1, 2, (h(A))3),b) ompute the set NewStates by appliation of Algorithm 17 giveninputs A, (h(A))3 and Ā,) extrat the remaining omponents:i. extrat δnew by appliation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),

10.5 The Identi�ation Proess 249ii. extrat S0,new from NewStates as desribed before Theorem9.2.2 andiii. extrat Fnew by appliation of Algorithm 12 given input New-Statesand thend) replae A by (NewStates, δnew, S0,new,Fnew).The strategy desribed above is then an implementation of the identi�ation proessof Ltl�formulas from sets E+ and E− of positive and negative examples. As soon asthe identi�ation proess stops we therefore extrat the learned formula from the set ofinitial states of the resulting automaton as desribed in the proof of Theorem 10.4.5.The de�nition of the identi�ation proess has shown that Ltl�programs an belearned from sets E+ and E− by appliation of our algorithms. What remains to beexamined is (as in the ase of Prolog(+T)�programs) the omplexity of the identi�-ation task. The following hapter will therefore attak this problem.

250 Chapter 10. Automata Manipulations

11. Identi�ability of Ltl�programs
Contents11.1. General Notations . 25111.2. Upper Bounds for the VC�Dimension of Classes of Ltl�Programs . 25411.2.1. General Ltl�Programs . 25411.2.2. The deterministi Sublogi of Ltl 256This �nal hapter will deal with a similar problem as hapter 8.2, namely the problemof estimating the omplexity of the identi�ation proess of LTL�programs. In hapter8.2 we have extended some tehniques from [11℄ in order to derive upper bounds for theVC�dimension of several lasses of Prolog(+T)�programs. We will proeed similarlyfor LTL�programs.11.1. General NotationsWe will �rst identify the objets to be enoded and then show how many bits will beneeded in order to enode these objets. It is immediately lear that the propositionalsymbols from X and the propositional onstants true and false have to be enoded.This yields |X|+2 distint objets. Additionally we will hoose the symbols "(", "," and")" (i.e. the brakets and the omma�symbol), the logial onnetives ∧, ∨,→,↔ and ¬and the temporal operators X, G, F, U and R. Assuming that X = {p1, . . . , pn} this gives

252 Chapter 11. Identi�ability of Ltl�programsSymbol Enoding Symbol Enoding(bin(n+ 3) X bin(n+ 11)) bin(n+ 4) F bin(n+ 12), bin(n+ 5) G bin(n+ 13)

∧ bin(n+ 6) U bin(n+ 14)

∨ bin(n+ 7) R bin(n+ 15)

→ bin(n+ 8)
↔ bin(n+ 9)
¬ bin(n+ 10)Table 11.1.: Enodings for logial onnetives from Ltla total of n+15 distint objets. For the sake of formal learane we will assume that allformulas are represented in pre�x�notation, that is the 2�ary onnetives ∧, ∨, → and

↔ as well as the 2�ary temporal operators U and R are seen as 2�ary funtion symbolsand the remaining logial and temporal operators are treated as unary funtion symbols.For example if ϕ = p1 ∧ Xp2UGp3, then ϕ is treated as the string ∧(p1,U(X(p2),G(p3))).The enoding od whih we will use is based on the value n of elements ourring in
X. If pi ∈ X is any propositional onstant, then od(pi) = bin(i) where bin(i) denotesthe binary representation of the integer i. Additionally we de�ne od(true) = bin(n+1)and od(false) = bin(n + 2). The remaining symbols an be enoded in an arbitrarybut �xed way. We will hoose the enoding from Table 11.1.The enoding from Table 11.1 has to be hanged in the way that the enoding ofsymbols with stritly less than |bin(n+ 15)| symbols are padded with zeros from the leftside. This yields equal length for every enoded symbol. For example if X = {p1, p2, p3},then n = 3 and n+ 15 = 18. So we have od(p1) = 00001 and od(R) = 10010.Obviously every symbol to be enoded an be represented as a string from {0, 1}∗ oflength ⌈log2(n + 15)⌉. Sine the enoding is padded with zeros every formula will beenoded as a string from {0, 1}∗ whih has a length whih is a multiple of this value.Having de�ned the enoding of the symbols used in Ltl�formulas it remains to showhow omposite formulas are enoded. But this is straightforward: Let any Ltl�formula

11.1 General Notations 253
ϕ be given.Case 1 if ϕ = ϕ1 ⊕ ϕ2 for ⊕ ∈ {∧,∨,→,↔,U,R}, thenod(ϕ) = od(⊕)od(”(”)od(ϕ1)od(”, ”)od(ϕ2)od(”)”)andCase 2 if ϕ = ⊕ψ for ⊕ ∈ {¬,X,G,F}, thenod(ϕ) = od(⊕)od(ψ)Example 11.1.1Let ϕ = G(p1 → (Xp2 → ¬p3)) be given. Due to the assumption from above we will treat
ϕ as G→ (p1,→ (Xp2,¬p3)). We have X = {p1, p2, p3} that is n = 3 and therefore n +

15 = 18. Consequently the symbols are enoded using ⌈log2(18)⌉ = 5 bits. The enodingof the relevant symbols is therefore: od(p1) = 00001, od(p2) = 00010, od(p3) = 00011,od(”(”) = 00100, od(”)”) = 00110, od(”, ”) = 00101, od(→) = 01011, od(¬) = 01101,od(X) = 01110 and od(G) = 10000. So we haveod(ϕ) = od(G(p1 → (Xp2 → ¬p3)))

= od(G(→ (p1,→ (X(p2),¬(p3)))))

= od(G)od(”(”)od(→) . . .

= 10000 00100 01011 00100 00001 00101 01011 01000 01110 00100 . . .

. . . 00010 00110 00101 01101 00100 00011 00110 00110 00110 . . .

. . . 00110 00110Some results for the value of VCDim(C) for lasses C onsisting of ertain proposi-tional logi formulas have been presented before. Early studies by Natarajan (see [124℄)

254 Chapter 11. Identi�ability of Ltl�programsmerely deal with polynomial time PAC�learnability. Several newer papers also deal withestimations as well as with exat bounds for the VC�dimension of lasses of booleanformulas. For example in [135℄ it is shown that the lass Monn of monotone booleanformulas onsisting of n propositional variables has VCDim(Monn) =
(
n

⌊n
2
⌋

). Further ap-proahes for the problem of learning propositional formulas whih do not use the notionof VC�dimension are for example presented in [141℄ and [80℄.As in hapter 8 we will now proeed by �rst deriving estimations for an upper boundfor the VC�dimension of syntatially unrestrited Ltl�formulas and then by studyinga more restrited language given by the so�alled deterministi sublogi Ltldet of Ltl.11.2. Upper Bounds for the VC�Dimension of Classes ofLtl�Programs11.2.1. General Ltl�ProgramsWe will now derive upper bounds for the VC�Dimension of ertain lasses Ltl�programs.For this purpose we de�ne the following: for given values of n, c and t the lass Ltln,c,tdenotes the set of all Ltl�formulas ontaining at most n distint propositional variables,at most c logial onnetives and at most t temporal operators.For the rest of this setion assume that n, c and t are �xed nonnegative integers andassume that a formula ϕ ∈ Ltln,c,t is hosen. We will de�ne a measuring�funtion
|| · || : Ltln,c,t → N mapping formulas to integers as follows: ||ϕ|| = |od(ϕ)|, that is ||ϕ||denotes the number of binary digits in the representation of od(ϕ).We will now derive an upper bound for the value VCDim(Ltln,c,t) by presentinga funtion l : N

3 → N suh that ||ϕ|| ≤ l(n, c, t) for any values of n, c and t andevery ϕ ∈ Ltln,c,t. First we have to reall that the propositional onstants true andfalse and the propositional variables pi ∈ X an be enoded using ⌈log2(n + 15)⌉ bits,that is ||ϕ|| = ⌈log2(n + 15)⌉ for ϕ ∈ X ∪ {true, false}. Furthermore the onnetives

11.2 Upper Bounds for the VC�Dimension of Classes of Ltl�Programs 255and the temporal operators an be enoded with the same number of bits. So we willhave to identify the worst ase, that is the ase in whih ϕ ∈ Ltln,c,t has maximumlength. Clearly in this ase exatly t binary temporal operators have to be involved in
ϕ. Similarly we need c binary onnetives in order to reah the maximum length. Eahof these operators and onnetives is enoded using ⌈log2(n + 15)⌉ bits. Additionallywe need 3⌈log2(n + 15)⌉ more bits in order to enode the brakets and the ommas.Furthermore in this ase we have t + c + 1 subformulas ψj without ourrenes of anytemporal operator or onnetive, that is ψj ∈ X ∪ {true, false} for j = 1, . . . , t+ c+ 1.This gives a total number of

4(t+ c)⌈log2(n+ 15)⌉ + (t+ c+ 1)⌈log2(n + 15)⌉

= (5t+ 5c+ 1)⌈log2(n+ 15)⌉bits as the maximum value of ||ϕ|| for any ϕ ∈ Ltln,c,t. But with this number of bits wean enode at most 2(5t+5c+1)⌈log2(n+15)⌉ di�erent formulas, that is
|Ltln,c,t| ≤ 2(5t+5c+1)⌈log2(n+15)⌉and so the following theorem an be proved.

Theorem 11.2.1Let n, c and t be �xed nonnegative integers. ThenVCDim (Ltln,c,t) = O ((5t+ 5c+ 1) log2(n + 15)) .Proof. Immediately by the above estimation for the size of Ltln,c,t and Lemma 8.1.1.�

256 Chapter 11. Identi�ability of Ltl�programs11.2.2. The deterministi Sublogi of LtlIn the foregoing setion we have derived an upper bound for the value of the VC�dimension of strutured lasses of arbitrary Ltl�formulas. Here we will see that a par-tiular subset of Ltl, namely the set of all deterministi formulas as introdued by [109℄an be identi�ed using only marginally more bits in the enoding of formulas.Roughly speaking the language Ltldet of deterministi Ltl�formulas onsists of allthese elements from Ltl in whih the usage of the nondeterministi operators ∨, U andR is guarded by some propositional variable symbol p. Formally Ltldet is de�ned asfollows:1. true and false are in Ltldet,2. every p ∈ X is in Ltldet and3. for all ϕ1, ϕ2 ∈ Ltldet and eah p ∈ X ϕ1 ∧ ϕ2, Xϕ1, (p ∧ ϕ1) ∨ (¬p ∨ ϕ2),
(p ∧ ϕ1)U(¬p ∨ ϕ2) and (p ∧ ϕ1)R(¬p ∨ ϕ2) are in Ltldet.As before the set Ltln,c,t,det denotes the set of all formulas ϕ ∈ Ltldet ontaining at most

n distint elements from X, at most c onnetives and at most t temporal operators.Sine Ltldet�formulas are syntatially more omplex than general Ltl�formulas, wean ask if this does hange the value of VCDim (Ltln,c,t,det). Below we will see that thisis not the ase.Of ourse, the language Ltldet is less expressive than Ltl. But in [109℄ it is shown thatLtldet�formulas have the property that their negation an be represented by a 1�weakBühi�automaton (a ertain type of Bühi�automaton whih is equipped with partialordering on the set States whih is ompatible with the relation δ) whih has a set ofstates of size linear in the size (that is the length) of ϕ.In order to derive an upper bound for the VC�dimension of Ltldet we will againrewrite formulas in pre�x notation and hange the arity of the nondeterministi symbols
∨, U and R to 3 as follows: assume that ⊕ ∈ {∨,U,R}, p ∈ X and ϕ1, ϕ2 are hosen.

11.2 Upper Bounds for the VC�Dimension of Classes of Ltl�Programs 257Then ϕ = (p ∧ ϕ1) ⊕ (¬p ∧ ϕ2) will be rewritten to ⊕(p, ϕ1, ϕ2). Using the enodingsheme from the foregoing setion we an enode these formulas by setting od(ϕ) =od(⊕)od(”(”)od(p)od(”, ”)od(ϕ1)od(”, ”)od(ϕ2)od(”)”).Sine the operators F and G do not have to be enoded, we an now enode everysymbol ourring in a formula from Ltln,c,t,det using at most ⌈log2(n+ 13)⌉ bits. So welearly have for arbitrary formulas ϕ ∈ Ltln,c,t,det:1. If ϕ ∈ X ∪ {true, false}, then
||ϕ|| = ⌈log2(n+ 13)⌉,2. if ϕ = Xψ, then

||ϕ|| = ⌈log2(n+ 13)⌉ + ||ψ||,3. if ϕ = ϕ1 ∧ ϕ2, then
||ϕ|| = 4⌈log2(n+ 13)⌉ +

2∑

i=1

||ϕi||and4. if ϕ = (p ∧ ϕ1)⊕ (¬p ∧ ϕ2) for some ⊕ ∈ {∨,U,R}, then
||ϕ|| = 6⌈log2(n+ 13) +

2∑

i=1

||ϕi||.The next step is to determine the maximum number of positions in φ suh that anelement from X ∪ {true, false} ours at this position. Obviously for t = 0 we have atmost c+ 1 suh positions. In the ase that t > 0 we an distinguish the following ases:1. If ϕ = Xψ, then
|{p ∈ Pos(ϕ) | ϕ|p ∈ X ∪ {true, false}}|

258 Chapter 11. Identi�ability of Ltl�programs
= |{p ∈ Pos(ϕ) | ψ|p ∈ X ∪ {true, false}}|and2. if ϕ = (p ∧ ϕ1)⊕ (¬p ∧ ϕ2) for ⊕ ∈ {U,R}, then
|{p ∈ Pos(ϕ) | ϕ|p ∈ X ∪ {true, false}}|

= 2 +

2∑

i=1

|{p ∈ Pos(ϕi) | ψ|p ∈ X ∪ {true, false}}| .Clearly we have the maximum value of suh positions for if ϕ ontains t binary temporaloperators. It is obvious that in this ase we have
|{p ∈ Pos(ϕ) | ϕ|p ∈ X ∪ {true, false}}| ≤ 4t.But sine t suh binary operators onsume 3t logial onnetives there must be k ≥ 0suh that c ≤ 3t+k. So additional we have 3t+k+1 more suh positions. So in total wehave 4t+3t+ k+1 = 7t+ k+1 suh positions. So the elements from X ∪{true, false}whih our in ϕ an be enoded using at most

(7t+ k + 1)⌈log2(n+ 13)⌉bits.The total value of ||ϕ|| an be estimated using the following two parameters whihdetermine the number of positions with deterministi onnetives and the number ofpositions with nondeterministi onnetives:Det(ϕ) = |{p ∈ Pos(ϕ) | ϕ|p = ¬ψ or ϕ|p = ϕ1 ∧ ϕ2 or ϕ|p = Xψ}| andNDet(ϕ) = |{p ∈ Pos(ϕ) | ϕ|p = (p ∧ ϕ1)⊕ (¬p ∧ ϕ2) for some ⊕ ∈ {∨,U,R}}| .

11.2 Upper Bounds for the VC�Dimension of Classes of Ltl�Programs 259Sine eah of the c onnetives in ϕ is either deterministi or nondeterministi we have
||ϕ|| ≤ (7t+ k + 1)⌈log2(n+ 13)⌉ + 4Det(ϕ)⌈log2(n+ 13)⌉ + 6NDet(ϕ)⌈log2(n+ 13)⌉

= (7t+ k + 1 + 4Det(ϕ) + 6NDet(ϕ))⌈log2(n+ 13)⌉.Using the estimations Det(ϕ) ≤ c and NDet(ϕ) ≤ t+ c we have
||ϕ|| ≤ (7t+ k + t+ 4c+ 6(c+ t))⌈log2(n+ 13)⌉

= (13t+ 10c + k + 1)⌈log2(n+ 13)⌉.Finally we have k ≤ c and therefore
||ϕ|| ≤ (13t+ 10c + c+ 1)⌈log2(n+ 13)⌉

= (13t+ 11c + 1)⌈log2(n + 13)⌉.So any formula ϕ ∈ Ltln,c,t,det an be enoded using at most (13t+11c+1)⌈log2(n+13)⌉bits and therefore
∣
∣Ltln,c,t,det∣∣ ≤ 2(13t+11c+1)⌈log2(n+13)⌉.So the following theorem is proved.Theorem 11.2.2Let n, c and t be �xed nonnegative integers. ThenVCDim (Ltln,c,t,det) = O ((13t + 11c+ 1) log2(n+ 13)) .As we have already mentioned in the beginning of this setion the valueVCDim (Ltln,c,t,det)is not signi�antly greater than the value of VCDim (Ltln,c,t).The results from the theorems derived in this hapter omplete our study on thelearnability of Ltl�programs from positive and negative examples. We have seen that

260 Chapter 11. Identi�ability of Ltl�programsLtl�programs an be identi�ed by applying manipulations to the set of states of ertainautomata (the representing automata) of atual hypotheses. By appliation of upwardand downward re�nement proedures we were able to de�ne an identi�ation proess forLtl�formulas. The following last hapter of this thesis summarizes the results obtainedduring our studies and points out open problems and diretions for future researh.

12. Conlusions
This short �nal hapter will summarize the topis addressed in this thesis and point outsome aspets for future researh ativities.12.1. Summary of the TopisWe have addressed the problem of learning temporal logi programs written in sometemporal logi programming language from positive and negative examples. Thereforewe have strutured the theory into two parts:First order Indutive Temporal Logi Programming In the ase of �rst order languageswe have developed the programming language Prolog(+T) whih is a rule�based,Prolog�style programming languages whih is equipped with the temporal oper-ators X, G, F, U and P. We have desribed how to prove goals from Prolog(+T)�programs and have seen how the semantis of Prolog(+T)�programs an beharaterized. While the former topi an be solved using a modi�ed and extendedtableaux proedure, the latter an be solved by extending the theory of Herbrand�Interpretations and Herbrand�Models whih are a standard tool from the �eld of�rst order Logi Programming.Following the de�nition and desription of the programming language of interestwe have seen how speialization and generalization operations an be arried outin order to modify the programs in the ase that they ontradit the examples.

262 Chapter 12. ConlusionsThe last point of the �rst part dealt with the question of how to analyze theomplexity of the learning task. We have seen that the lass of Prolog(+T)�programs an be strutured depending on ertain syntati parameters in suh away that it enables the derivation of upper bounds for the VC�Dimension of theselasses.Propositional Indutive Temporal Logi Programming While the tehniques developedfor �rst order temporal programming languages fae the problem that �rst orderlogi in general and �rst order temporal logi in partiular is undeidable, the re-strition to propositional temporal logi languages yields deidable satis�abilityand impliation problems. Therefore we have studied how Ltl an be used inorder to solve the problem of learning ertain temporal logi formulas from posi-tive and negative examples. We have realled that Ltl�formulas an be translatedinto nondeterministi Bühi�automata and that these automata an be re�ned inorder to �t spei�ations imposed by the sets of examples. Furthermore we haveseen that the generality ordering hosen in the ase of �rst order languages (i.e.the subsumption ordering) annot be applied in the ase of Ltl sine the objetsunder onsideration are not neessarily lauses. But sine propositional tempo-ral programming languages have deidable satis�ability problems we ould re�neprograms with respet to the impliation ordering whih is �ner than subsumption.As in the ase of �rst order temporal logi we have also studied the omplexityof identifying Ltl�formulas (resp. Ltl�programs) from positive and negative ex-amples by deriving upper bounds for the VC�dimension of ertain lasses of suhformulas.

12.2 Perspetives for Future Researh 26312.2. Perspetives for Future ResearhThree major perspetives an or should be pointed out: Integration of onstraints (andintegration of onstraint solving tehniques into the theorem proving proedure), thede�nition of a syntatially less restrited �rst order language (i.e. relaxing the onditionthat the objets of Prolog(+T)�programs are essentially lauses) and studying other,perhaps more expressive propositional temporal languages, suh as Ctl, Ctl∗, the µ�alulus or some of the sublogis of the foregoing languages.Integration of Constraints Constraints are onstruts whih model relations betweenertain objets suh that the relations have a �xed interpretation. Suh relationsymbols with �xed interpretation an be the equality symbol = or some omparisonsymbol suh as ≤, <, > or ≥. Of ourse these symbols are well suited for reasoningabout arithmeti relations and onsequently many onstraints are arithmeti on-straints. The integration of onstraints into Prolog(+T) would make it neessaryto extend the theorem proving proedure in order to integrate onstraint solvingresp. onstraint satisfation routines (see [84℄ or [85℄ for a survey of onstraint pro-gramming tehniques) and tehniques for synthesizing logi programs ontainingonstraints (see [144℄)Extending the syntax of Prolog(+T) Another perspetive for future researh might bethe extension of Prolog(+T) in suh a way that the program statements neednot to be lauses anymore. This would lead us to the full �rst order linear timetemporal logi FoLtl. Dealing with FoLtl objets might ause several problems.On the one hand we an not hope for e�ient re�nement proedures anymore sinethe objets under onsideration are not neessarily lauses, so subsumption doesnot make any sense for general FoLtl�formulas. On the other hand the theoremproving task would beome muh more ompliated (see [3℄ for a desription oftemporal logi theorem proving in the ase of nonlausal languages).

264 Chapter 12. ConlusionsOther propositional temporal languages The restrition to propositional temporal pro-gramming languages has (as we have seen in the third part of this thesis) the ad-vantage that satis�ability and impliation problems an be deided (in ontrastto Prolog(+T) whih ontains the full �rst order prediate logi and whih istherefore undeidable). But we have only studied one of all possible propositionaltemporal languages, namely the linear time temporal logi Ltl. Here the termlinear means that the language ontains only suh temporal quanti�ers whih al-low reasoning about one possible ontinuation of the atual point of time underonsideration. Branhing time Logi (as we will see below) ontains other quanti-�ers whih are apable of modeling questions dealing with all ontinuations resp.some ontinuations and whih an in these sense be seen as temporal versions ofthe universal and existential quanti�er.Branhing Time Logi As we have already noted above, Branhing time temporallogi allows reasoning about more than one ontinuation of the atual point oftime. Ctl (another prominent spei�ation language whih implements theonept of branhing time) is equipped with the quanti�ers E and A whihmodel the irumstane that there exists a omputation path resp. that for allomputation paths the quanti�ed formula has to hold (see [34℄ or [58℄ for a for-mal desription of Ctl). Consequently the term Ctl stands for ComputationTree Logi sine the set of possible omputations an be seen as trees. Ctl�formulas an be translated into Alternating Tree Automata (see [21℄) whihould also be studied and extended in order to allow re�nement operations.Mixed Logi Combining Linear and Branhing Time Temporal Logis one gets thelogi Ctl∗ whih is more expressive than both CTL and Ltl. Formulas fromCtl∗ an be translated into Street tree Automata (see e.g. [59℄). This logiould also be studied in order to learn Ctl∗ onstrut from examples.Fixpoint Logi From the theoretial point of view the µ�alulus Lµ is perhaps

12.2 Perspetives for Future Researh 265the most interesting propositional temporal language. It integrates temporaloperators and �xpoint operators (see [96℄). It is more expressive than Ltl,Ctl and Ctl∗ (see [143℄).All these logis are essentially propositional logis and therefore they are deidablefor satis�ability. Consequently they should be studied in order to haraterize theomplexity of identifying onepts from positive and negative examples.

266 Chapter 12. Conlusions

A. Formal Desription of theProgramming Languages
ContentsA.1. Syntax of Prolog(+T) . 267A.1.1. Terms . 268A.1.2. Atoms and Literals . 270A.1.3. Rules . 271A.1.4. General Prolog(+T)�Objets 271A.2. Syntax of Ltl . 272For the sake of ompleteness and in order to make it easier to develop parsers andinterpreters for the languages used throughout this thesis we will now give grammars forthese languages. The grammars will be presented in an EBNF�like syntax, i.e. eahgrammar will onsist of a set of rules with one nonterminal symbol on the left hand sideand more or less arbitrary right hand sides. These grammars an be easily onvertedinto a form whih is suitable for tools generating ompilers (e.g. bison, see [68℄).A.1. Syntax of Prolog(+T)By de�nition we have several di�erent types of objets whih have to be generated by thegrammar. These are terms, atoms and literals and rules (inluding fats as speial ases).

268 Chapter A. Formal Desription of the Programming LanguagesConsequently we have to present rules whih are apable to de�ne all these objets.A.1.1. TermsTerms have been de�ned to be onstruts of the following form:
• Variable Terms, i.e. onstruts suh as t = x for symbols x ∈ X ,
• Strings representing Integers from Z,
• Funtion Terms, i.e. onstruts suh as t = f(t1, . . . , tn) or
• List Terms, that is t = [] or t = [t1, . . . , tn] or t = [t̄|t1, . . . , tn].Consequently the �rst prodution step for the generation of a term must hose whihtype of term has to be reated.Term ::= Variable�symbol | Funtion�Term | List�Term | NumberVariable�Terms and IntegersDepending on the type of term to be generated we have to give rules for generating eahsuh type. Therefore we make the following onvention:
• a variable symbol has to start with an upper ase letter and
• any other symbol (i.e. a funtion or a prediate symbol) has to start with a lowerase letter.The simplest objets to be reated are variable terms and integers.Variable�symbol ::= `_' | Upper�Case�Letter |Upper�Case�Letter Variable�Su�xUpper�Case�Letter ::= `A' |`B' |`C' |`D' |`E' |`F' |`G' |`H' |`I' |`J' |`K' |`L' |`M' |`N' |`O' |`P' |`Q' |`R' |`S' |`T' |`U' |`V' |`W' |`X' |`Y' |`Z'

A.1 Syntax of Prolog(+T) 269Lower�Case�Letter ::= `a' |`b' |`' |`d' |`e' |`f' |`g' |`h' |`i' |`j' |`k' |`l' |`m' |`n' |`o' |`p' |`q' |`r' |`s' |`t' |`u' |`v' |`w' |`x' |`y' |`z'Letter ::= Upper�Case�Letter | Lower�Case�LetterDigit ::= `0' | `1' | `2' | `3' | `4' | `5' | `6' | `7' |`8' | `9'Speial�Symbol ::= Letter | Digit | `_'Variable�Su�x ::= Speial�Symbol | Speial�Symbol Speial�SymbolNumber ::= Positive�Number | Negative�NumberPositive�Number ::= Digit | Digit Positive�NumberNegative�Number ::= `-' Positive�NumberFuntion�TermsThe next more ompliated onstruts are funtion terms, i.e. terms of the form t =

f(t1, . . . , tn) with n = α(f) and terms t1, . . . , tn or t = f for onstant symbols f (i.e.suh symbols f with α(f) = 0).Funtion�Term ::= Funtion�Name |Funtion�Name Left�DelimiterArgument�List Right�DelimiterLeft�Delimiter ::= `('Right�Delimiter ::= `)'Funtion�Name ::= Lower�Case�Letter | Lower�Case�Letter Funtion�Su�xFuntion�Su�x ::= Variable�Su�xArgument�List ::= Term | Term `,' Argument�ListList�TermsList terms are the most ompliated terms to generate sine they might have severaldi�erent forms. A term t is a list term if it is t = [] (i.e. t is the empty list) or if t onsists

270 Chapter A. Formal Desription of the Programming Languagesof an enumeration of elements (i.e. t = [t1, . . . , tn] for terms t1, . . . , tn) or if t is given byits head and its tail. In this ase we an distinguish the ases that t = [t̄|t1, . . . , tn] and
t = [t̄|t′] where t̄ denotes the head and t1, . . . , tn is an enumeration of the elements in thetail or t′ is a term representing the whole tail of t.List�Term ::= Left�List�Delimiter Right�List�Delimiter |Left�List�Delimiter List�ArgumentsRight�List�DelimiterLeft�List�Delimiter ::= `['Right�List�Delimiter ::= `℄'List�Arguments ::= Argument�List |Term `|' Argument�List |Term `|' TermA.1.2. Atoms and LiteralsAtoms and literals are either temporal or nontemporal ones. Nontemporal atoms andliterals are then either one of the onstants true and false or built using prediatesymbols. In this ase they have the form p(t1, . . . , tn) or not(p(t1, . . . , tn)).Atom ::= `true' | `false' | Relational�AtomRelational�Atom ::= Prediate�Name |Prediate�Name Left�DelimiterArgument�List Right�DelimiterPrediate�Name ::= Lower�Case�Letter | Lower�Case�Letter Prediate�Su�xPrediate�Su�x ::= Variable�Su�xLiteral ::= Atom | `not' Left�Delimiter Literal Right�DelimiterIn order to integrate the temporal operators we generalize the onept of literals togeneral literals. General literals are then divided into two lasses, namely temporal literals

A.1 Syntax of Prolog(+T) 271and nontemporal literals.General�Literal ::= Literal | Temporal�Literal |`not' Left�Delimiter General�LiteralRight�DelimiterTemporal�Literal ::= Unary�Temporal�Literal |Binary�Temporal�LiteralUnary�Temporal�Literal ::= Unary�Temporal�Connetive General�LiteralBinary�Temporal�Literal ::= General�LiteralBinary�Temporal�Connetive General�LiteralUnary�Temporal�Connetive ::= `X' | `F' | `G'Binary�Temporal�Connetive ::= `U' | `P'A.1.3. RulesRules are reated using the produtions for literals. Eah rule is either a fat or a de�niterule, that is a rule with a nonempty tail.Rule ::= Fat | De�nite�RuleFat ::= General�Literal End�DelimiterDe�nite�Rule ::= General�Literal Impliation�SymbolList�Of�Literals End�DelimiterEnd�Delimiter ::= `.'Impliation�Symbol ::= `:−'List�Of�Literals ::= General�Literal | General�Literal `,' List�Of�LiteralsA.1.4. General Prolog(+T)�ObjetsSine every Prolog(+T)�objet is either a term or a formula, we add a rule produethese two types of objets. Eah formula is then given as a literal (a general literal) or arule.

272 Chapter A. Formal Desription of the Programming LanguagesProlog(+T)�Objet ::= Term | FormulaFormula ::= General�Literal | RuleThese rules omplete the syntax of Prolog(+T). In order to be well formed an objetneeds
• to be parsed and then
• to be heked if the symbols used in the objet are ompatible with the onstraintsgiven by the signature.A.2. Syntax of LtlThe syntax of Ltl is very simple, sine there are nearly no onstraints on the form ofa formula. Consequently a grammar whih generates the set of all Ltl�formulas an beextrated diretly from the de�nition of the language Ltl (see page 20).Formulas from Ltl are either atomi formulas (i.e. the onstants true and false orproposition symbols) or omposite formulas. Composite formulas are built using unaryor binary onnetives whih an be either propositional or temporal ones.LTL�Formula ::= LTL�Atom | LTL�Composite�FormulaLTL�Atom ::= `true' | `false' | LTL�Proposition�SymbolLTL�Composite�Formula ::= LTL�Unary | LTL�BinaryFor the sake of simpliity we will introdue names for the symbols used in the rulesto generate the formulas, in partiular we will introdue names for the brakets and theonnetives.Left�Delimiter ::= `('Right�Delimiter ::= `)'LTL�Unary�Propositional�Connetive ::= `!'

A.2 Syntax of Ltl 273LTL�Unary�Temporal�Connetive ::= `X' | `G' | `F'LTL�Binary�Propositional�Connetive ::= `+' | `∗' | `→' | `↔'LTL�Binary�Temporal�Connetive ::= `U' | `R'Proposition symbols are used in order to build atomi formulas of Ltl. They have tostart with a letter (no matter if it is an upper ase letter or a lower ase letter) followedby a (possibly empty) string of arbitrary symbols. Suh strings are generated using therule below whih has the symbol symbol�su�x on its left hand side.LTL�Proposition�Symbol ::= Nondigit | Nondigit Symbol�Su�xNondigit ::= `a' |`b' |`' |`d' |`e' |`f' |`g' |`h' |`i' |`j' |`k' |`l' |`m' |`n' |`o' |`p' |`q' |`r' |`s' |`t' |`u' |`v' |`w' |`x' |`y' |`z' |`A' |`B' |`C' |`D' |`E' |`F' |`G' |`H' |`I' |`J' |`K' |`L' |`M' | `N' |`O' |`P' |`Q' |`R' |`S' |`T' |`U' |`V' |`W' |`X' |`Y' |`Z'Digit ::= `0' | `1' | `2' | `3' | `4' | `5' | `6' | `7' | `8' | `9'Symbol�Su�x ::= `' | Digit Symbol�Su�x | Nondigit Symbol�Su�x |`_' Symbol�Su�xAs we have already mentioned above, omposite Ltl�formulas an be built up usingunary and binary onnetives whih an be either propositional ones or temporal ones.The rules for building suh formulas are given below. First we have to present two rulesfor building general formulas using binary and unary onnetives.LTL�Unary ::= LTL�Negation | LTL�Unary�Temporal�FormulaLTL�Binary ::= LTL�Binary�Propositional�Formula |LTL�Binary�Temporal�FormulaHaving hosen the arity of the onnetive rules for generating the formulas using on-netives with the hosen arity have to be applied.

274 Chapter A. Formal Desription of the Programming LanguagesLTL�Negation ::= LTL�Unary�Propositional�ConnetiveLTL�FormulaLTL�Unary�Temporal�Formula ::= LTL�Unary�Temporal�SymbolLTL�FormulaLTL�Binary�Propositional�Formula ::= Left�Delimiter LTL�FormulaLTL�Binary�Propositional�ConnetiveLTL�Formula Right�DelimiterLTL�Binary�Temporal�Formula ::= Left�Delimiter LTL�FormulaLTL�Binary�Temporal�ConnetiveLTL�Formula Right�DelimiterSine there are no further restritions on the syntax of Ltl�formulas the grammar forLtl is now omplete.

List of Figures
3.1. SLD�refutation . 405.1. Rewrite System for omputing redued literals 755.2. Expansion Rules . 955.3. Saturation Rules . 976.1. Uni�ation vs. Anti�uni�ation . 1186.2. Tree(q(a)Up(b)) . 1326.3. Tree(q(c)Up(a)) . 1326.4. Tree(q(c)UXp(a)) . 1327.1. Growth rate of re�ned rules with and without elimination of variants . . . 1637.2. Growth Rate by adding Premises only . 1678.1. Number of examples given �xed values for c, t, l, o, p and a with ε rangingfrom 0 to 1

2 and δ ranging from 0 to 1. 182

276 List of Figures

List of Tables
7.2. Set of downward re�nements of ϕ = GXFp(X)Up(g(f(X), Y)) 1437.3. Set of upward re�nements for ϕ = FGp(X1, f(a, f(X1, f(a, f(a, a)))), f(X1, X2))1487.5. Set of downward re�nements of C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).(part 1) . 1537.7. Set of downward re�nements of C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).(part 1) . 1547.9. Set of downward re�nements of C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).(part 3) . 15611.1. Enodings for logial onnetives from Ltl 252

278 List of Tables

List of Algorithms
1. Tableaux algorithm for ground goals . 1032. Anti�uni�ation for terms . 1183. Greatest Speialization of FoLtl�literals 1234. Least Generalization of FoLtl�literals . 1245. Greatest Speialization of Prolog(+T)�rules 1276. Least Generalization of Prolog(+T)�rules 1387. Downward�Re�nement of Prolog(+T)�literals 1448. Upward�Re�nement of Prolog(+T)�literals 1499. Downward�Re�nement of Prolog(+T)�rules 15510. Upward�Re�nement of Prolog(+T)�rules 15811. Extration of δ from Σ and States . 20712. Extrating the Aeptane Component F from States 20913. Propositional Upward Re�nement . 22214. Temporal Upward Re�nement: Construting new States for F 7→ Xi 22715. Temporal Upward Re�nement: Construting new States for Xi 7→ G 22816. Temporal Upward Re�nement: Construting new States for Replaementof Eventualities (replaing the �rst omponent) 229

280 List of Algorithms17. Temporal Upward Re�nement: Construting new States for Replaementof Eventualities (replaing the seond omponent) 23018. Propositional Downward Re�nement . 23219. Temporal Downward Re�nement: Construting new States for G 7→ Xi . . 23520. Temporal Downward Re�nement: Construting new States for Xi 7→ F . . 236

Bibliography[1℄ M. Abadi and Z. Manna, A Timely Resolution, Symposium on Logi in ComputerSiene, IEEE, 1986, pp. 176�186.[2℄ , Temporal Logi Programming, Journal of Symboli Computation 8 (1988),277�295.[3℄ , Nonlausal Dedution in First�Order Temporal Logi, Journal of the ACM37 (1990), no. 2, 279�317.[4℄ S. Akama, Tableaux for logi programming with strong negation, Automated Rea-soning with Analyti Tableaux and Related Methods, Springer Verlag, 1997, Le-ture Notes in Computer Siene 1227, pp. 31�42.[5℄ H. Andreka and I. Nemeti, The Generalized Completeness of Horn Prediate Logias a Programming Language, Ata Cybernetia 4 (1978), 3�10.[6℄ T. Aoyagi, M. Fujita, and T. Moto-Oka, Temporal Logi Programming LanguageTokio: Programming in Tokio, Proeedings of the 4th Conferene on Logi Pro-gramming, Springer Verlag, 1985, Leture Notes in Computer Siene 221, pp. 128�137.[7℄ K.R. Apt, Logi programming, Handbook of Theoretial Computer Siene, VolumeB: Formal Models and Sematis (B), Elsevier, 1990, pp. 493�574.[8℄ , From Logi Programming to Prolog, Prentie Hall, 1997.[9℄ K.R. Apt and A. Pellegrini, On the our-hek-free PROLOG programs, ACMTransations on Programming Languages and Systems 16 (1994), no. 3, 687�726.[10℄ K.R. Apt and M.H. van Emden, Contributions to the Theory of Logi Programming,Journal of the ACM 29 (1984), no. 3, 841�862.[11℄ M. Arias and R. Khardon, Complexity Parameters for First Order Classes, Teh.Report 2004�6, Tufts University, July 2004.[12℄ J. Avenhaus, Reduktionssysteme, Springer Verlag, 1995, (in German).[13℄ F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge UniversityPress, 1999.[14℄ M. Baaz, A. Leitsh, and R. Zah, Completeness of a First-order Temporal Logiwith Time-Gaps, Theoretial Computer Siene 160 (1996), 241�270.

282 Bibliography[15℄ L. Badea, A Re�nement Operator For Theories, Proeedings of the 15th Interna-tional Conferene on Indutive Logi Programming, Springer Verlag, 2001, LetureNotes in Computer Siene 2175.[16℄ M. Bain and A. Srinivasan, Indutive Logi Programming with large-sale unstru-tured Data, Mahine Intelligene 14 (1996), 233�267.[17℄ J. Barnat, L. Brim, and J. Chaloupka, Parallel Breadt��rst Searh Ltl ModelCheking, Proeedings of the 18th IEEE International Conferene on AutomatedSoftware Engineering (ASE '03), IEEE, 2003, pp. 106�115.[18℄ D.W. Barnes and J.M. Mak, An algebrai Introdution to Mathematial Logi,Springer Verlag, 1975.[19℄ P. Baumgartner and U. Furbah, Caluli for Disjuntive Logi Programming, Teh.Report 13�96, Universität Koblenz�Landau, 1995.[20℄ M. Ben-Ari,Mathematial Logi for Computer Siene, seond ed., Springer Verlag,2001.[21℄ O. Bernholtz, M. Vardi, and P. Wolper, An Automata�Theoreti Approah toBranhing�Time Model Cheking, Proeedings of the 6th International Confereneon Computer Aided Veri�ation, Springer Verlag, 1994, Leture Notes in ComputerSiene 818, pp. 142�155.[22℄ A. Blumer, A. Ehrenfeuht, D. Haussler, and M. Warmuth, Learnability and theVapnik-Chervonenkis-Dimension, Journal of the ACM 36 (1989), no. 4, 929�965.[23℄ G. Boole, An Investigation of the Laws on whih are founded the MathematialTheories of Logi and Probabilities, Dover, New York, 1958.[24℄ P.S. Braddok, D.E. hu, I.J. Stratford, A.L. Harris, and R. Biknell, A struture�ativity analysis of antagonism of the growth fator and angiogeni ativity of basi�briblast growth fator by Suramin and related polyanions, British Journal of Caner69 (1994), no. 5, 890�898.[25℄ I. Bratko, S. Muggleton, and A. Var²ek, Learning qualitative models of dynamisystems, Indutive Logi Programming (S. Muggleton, ed.), 1991, pp. 207�224.[26℄ J.R. Bühi, Weak seond�order arithmeti and �nite Automata, Zeitshrift fürmathematishe Logik und Grundlagen der Mathematik 6 (1960), 60�92.[27℄ C. Castellini, Automated Reasoning in Quanti�ed Modal and Temporal Logis,Ph.D. thesis, Shool of Informatis, University of Edinburgh, 2005.[28℄ S. Cerrito, M. Cialdea Mayer, and S. Praud, A Tableau Calulus for First OrderLinear Temporal Logi over Bounded Time Strutures, Teh. Report LRI n. 1207,Dipartimento di Informatia e Automazione Università degli studi Roma Tre, Di-partimento di Informatia e Automazione, 1999.

Bibliography 283[29℄ , First Order Linear Temporal Logi over Finite Time Strutures, Proeed-ings of the 6th International Conferene on Logi for Programming and AutomatedReasoning (LPAR'99), Springer Verlag, 1999, Leture Notes in Computer Siene1705, pp. 62�76.[30℄ , First Order Linear Temporal Logi over Finite Time Strutures is notsemi-deidable, Teh. Report LRI n. 1208, Dipartimento di Informatia e Au-tomazione Università degli studi Roma Tre, Dipartimento di Informatia e Au-tomazione, 1999.[31℄ C.L. Chang and C.T. Lee, Symboli Logi and Mehanial Theorem Proving, thirded., Aademi Press, 1990.[32℄ A. Churh, A Note on the Entsheidungsproblem, Journal of Symboli Logi 1(1936), 40�41.[33℄ P. Clark and R. Boswell, Rule indution with n2: some reent improvements,Proeedings of the �fth European Working Session on Learning, Springer Verlag,1991, pp. 151�163.[34℄ E.M. Clarke and E.A. Emerson, Design and Synthesis of Synhronization SkeletonsUsing Branhing-Time Temporal Logi, Logi of Programs, 1981, pp. 52�71.[35℄ E.M. Clarke, O. Grumberg, and D.A. Peled, Model Cheking, MIT Press, 1999.[36℄ W. Cohen, PAC-learning Reursive Logi Programs: E�ient Algorithms, Journalof Arti�ial Intelligene Researh 2 (1995), 501�539.[37℄ , PAC-learning Reursive Logi Programs: Negative Results, Journal of Ar-ti�ial Intelligene Researh 2 (1995), 541�573.[38℄ S. Cook, The Complexity of Theorem Proving Proedures, Pro. 3rd ACM Symp.on Theory of Computing, ACM Press, 1971, pp. 151�158.[39℄ M. Daniele, F. Giunhiglia, and M.Y. Vardi, Improved Automata Generation forLinear Temporal Logi, CAV '99: Proeedings of the 11th International Confereneon Computer Aided Veri�ation, Springer Verlag, 1999, Leture Notes in ComputerSiene 1855, pp. 249�260.[40℄ A.K. Debnath, R.L. Lopez de Compadre, G. Debnath, A.J. Shusterman, andC. Hansh, Struture�ativity relationship aromati and heteroatomati nitro om-pounds. Correlation with moleular orbital energies and hydrophobiity, Journal ofMediinial Chemistry 34 (1991), no. 2, 786�797.[41℄ A. Degtyarev and M. Fisher, Towards First�Order Temporal Resolution, Proeed-ings of KI, the 24th German Conferene on Arti�ial Intelligene, Springer Verlag,2001, Leture Notes in Computer Siene 2174, pp. 18�32.

284 Bibliography[42℄ A. Degtyarev, M. Fisher, and B. Konev, Exploring the monodi fragment of �rst-order temporal logi using lausal temporal resolution, Teh. Report ULCS-03-012,University of Liverpool, Department of Computer Siene, 2003.[43℄ , Monodi Temporal Resolution, Proeedings of the 19th Conferene on Au-tomated Dedution, CADE�19, Springer Verlag, 2003, Leture Notes in ComputerSiene 2741, pp. 397�411.[44℄ ,Monodi Temporal Resolution, ACM Transations on Computational Logi7 (2006), no. 1, 108�150.[45℄ L.P. Devroye, Automati Pattern Reognition: A Study of the Probability of Error,IEEE Transations on Pattern Analysis and Mahine Intelligene 10 (1988), no. 4,530�543.[46℄ L.P. Devroye and T.J. Wagner, A distribution�free Performane Bound in ErrorEstimation, IEEE Transations on Information Theory 22 (1976), no. 5, 586�587.[47℄ C. Dixon, Searh Strategies for Resolution in Temporal Logis, Proeedings of theInternational Conferene on Automated Dedution (CADE-13), Springer Verlag,1996, Leture Notes in Computer Siene 1104, pp. 673�687.[48℄ , Temporal Resolution: Removing Irrelevant Information, Proeedings of theFourth International Workshop on Temporal Reasoning (TIME'97), IEEE Press,1997, pp. 4�11.[49℄ C. Dixon and M. Fisher, The Set of Support Strategy in Temporal Resolution, Pro-eedings of the Fifth International Workshop on Temporal Reasoning (TIME'98),IEEE Press, 1998, pp. 113�120.[50℄ B. Dolsak, Construting �nite element meshes usign arti�ial intelligene methods,Master's thesis, University of Maribor, 1991.[51℄ B. Dolsak, A. Jezernik, and I. Bratko, A knowledge base for �nite element meshdesign, Proeedings of the sixth ISSEK Workshop, 1992.[52℄ B. Dolsak and S. Muggleton, The appliation of Indutive Logi Programming to�nite element mesh design, Indutive Logi Programming (S. Muggleton, ed.), Aa-demi Press, London, 1992.[53℄ B. Dutertre, Complete Proof Systems for First Order Interval Temporal Logi, Logiin Computer Siene, 1995, pp. 36�43.[54℄ S. Dzeroski and I. Bratko, Handling noise in indutive logi programming, Pro-eedings of the Seond International Workshop on Indutive Logi Programming,1992.[55℄ S. Dzeroski and B. Dolsak, Comparison of ilp systems on the problem of �niteelement mesh design, Proeedings of the sixth ISSEK Workshop, 1992.

Bibliography 285[56℄ E.A. Emerson, Temporal and modal logi, Handbook of Theoretial Computer Si-ene, Volume B: Formal Models and Sematis (B), Elsevier, 1990, pp. 995�1072.[57℄ , Automated Temporal Reasoning for Reative Systems, Logi for Conur-reny: Struture versus Automata, Springer Verlag, 1996, pp. 41�101.[58℄ E.A. Emerson and E.M. Clarke, Using Branhing Time Temporal Logi to Synthe-size Synhronization Skeletons, Siene of Computer Programming 2 (1982), no. 3,241�266.[59℄ E.A. Emerson and A.P. Sistla, Deiding Full Branhing Time Logi, Informationand Control 61 (1984), no. 3, 175�201.[60℄ J. Esparza and K. Heljanko, A New Unfolding Approah to LTL Model Cheking,Proeedings of the 27th International Colloquium on Automata, Languages andProgramming, Springer Verlag, 2000, Leture Notes in Computer Siene 1853,pp. 475�486.[61℄ A. Felty, Temporal Logi Theorem Proving and its Appliation to the FeatureInteration Problem, Teh. Report DII 14/01, University of Siena, 2001, in E.Giunhiglia and F. Massai (ed.): Issues in the Design and Experimental Evalua-tion of Systems for Modal and Temporal Logis.[62℄ A. Felty and L. Thery, Interative Theorem Proving with Temporal Logi, Journalof Symboli Computation 23 (1997), no. 4, 367�397.[63℄ P. Fisher, Algorithmishes Lernen, Teubner Verlag, 1999, (in German).[64℄ M. Fisher, A Normal Form for Temporal Logis and its Appliations in Theorem-Proving and Exeution, Journal of Logi and Computation 7 (1997), no. 4, 429�456.[65℄ M. Fisher, C. Dixon, and M. Peim, Clausal Temporal Resolution, ACM Transa-tions on Computational Logi 2 (2001), no. 1, 12�56.[66℄ M. Fitting, First-Order Logi and Automated Theorem Proving, Springer-Verlag,1990.[67℄ , Tableaux for Logi Programming, Journal of Automated Reasoning 13(1994), no. 2, 175�188.[68℄ Free Software Foundation, Bison 2.3, the ya�ompatible parser generator, man-ual, www.gnu.org/software/bison/manual/pdf/bison.pdf.[69℄ G. Frege, Begri�sshrift, eine der arithmetishen nahgebildete Formelsprahe desreinen Denkens, in [165℄, Halle, 1879.[70℄ U. Furbah, P. Baumgartner, and F. Stolzenburg, Model Elimination, Logi Pro-gramming and Computing Answers, Teh. Report 1�95, Universität Koblenz�Landau, 1995.

286 Bibliography[71℄ M. R. Garey and D. S. Johnson, Computers and Intratability � A Guide to theTheory of NP-Completeness, Freeman, San Franiso, 1979.[72℄ P. Gastin and D. Oddoux, Fast LTL to Bühi Automata Translation, Proeedingsof the 13th International Conferene on Computer Aided Veri�ation (CAV '01),Springer Verlag, 2001, Leture Notes in Computer Siene 2102, pp. 53�65.[73℄ M. Gelfond and V. Lifshitz, The Stable Model Semantis for Logi Programming,Proeedings of the Fifth International Conferene on Logi Programming (Cam-bridge, Massahusetts) (R.A. Kowalski and K. Bowen, eds.), The MIT Press, 1988,pp. 1070�1080.[74℄ R. Gentilini, C. Piazza, and A. Poliriti, Computing Strongly Conneted Com-ponents in a Linear Number of Symboli Steps, Proeedings of the 14th AnnualACM-SIAM Symposium on Disrete Algorithms (Baltimore, Maryland), Soietyfor Industrial and Applied Mathematis, 2003, pp. 573�582.[75℄ G. Gentzen, Untersuhungen über das logishe Shlieÿen, MathematisheZeitshrift 39 (1935), 176�210 and 405�431.[76℄ R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper, Simple On-the-�y Automati Ver-i�ation of Linear Temporal Logi, Protool Spei�ation Testing and Veri�ation(Warsaw, Poland), Chapman & Hall, 1995, pp. 3�18.[77℄ G. Gottlob, Subsumption and Impliation, Information Proessing Letters 24(1987), no. 2, 109�111.[78℄ G. Gottlob and C.G. Fermüller, Removing Redundany from a Clause, Arti�ialIntelligene 61 (1993), no. 2, 263�289.[79℄ N. Helft, Indution as nonmonotoni inferene, Proeedings of the 1st InternationalConferene on Priniples of Knowledge Representation and Reasoning, MorganKaufmann, 1989, pp. 149�156.[80℄ A. Hernandez-Aguirre, B.P. Bukles, and C.A. Coello Coello, On Learning kDNF snBoolean Formulas, Proeedings of the The 3rd NASA/DoDWorkshop on EvolvableHardware, IEEE Computer Soiety, 2001, pp. 240�248.[81℄ J. Hintikka, Knowledge and Belief, Cornell University Press: Ithaa, NY, 1962.[82℄ I. Hodkinson, F. Wolter, and M. Zakharyashev, Deidable fragments of �rst-ordertemporal logis, Annals of Pure and Applied Logi 106 (2000), 85�134.[83℄ G. Huet, Con�uent Redutions: Abstrat Properties and Appliations to TermRewriting Systems, Journal of the ACM 27 (1980), 797�821.[84℄ Joxan Ja�ar and Mihael J. Maher, Constraint Logi Programming: A Survey,Journal of Logi Programming 19/20 (1994), 503�581.

Bibliography 287[85℄ J.-P. Jouannaud and R. Treinen, Constraints and Constraint Solving: An Introdu-tion, Constraints in Computational Logis: Theory and Appliations (H. Comon,C. Marhe, and R. Treinen, eds.), Springer Verlag, 1999, pp. 1�46.[86℄ A. Karmath and R.D. King, An automated ILP Server in the Field of Bioinformat-is, Proeedings of the 15th International Conferene on Indutive Logi Program-ming, Springer Verlag, 2001, Leture Notes in Computer Siene 2175, pp. 91�103.[87℄ R.D. King, S. Muggleton, and M.J.E. Sternberg, Drug Design by Mahine Learning:The use of Indutive Logi programming to model the struture�ativity relation-ships of Trimethoprom analogues binding to Dihydrofolate redutase, Proeedingsof the National Aademy of Sienes 89 (1992), no. 23, 11322�11326.[88℄ R.D. King, A. Srinivasan, and M.J.E. Sternberg, Relating hemial ativity to stru-ture: An examination of ILP suesses, New Generation Computing, Speial issueon Indutive Logi Programming 13 (1995), no. 3/4, 411�434.[89℄ S.C. Kleene, Introdution to Metamathematis, 7th ed., North Holland, 1971.[90℄ D. E. Knuth and P. B. Bendix, Simple Word Problems in Universal Algebra, Com-putational Problems in Abstrat Algebra (J. Leeh, ed.), Pergamon Press, 1970,pp. 263�297.[91℄ B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt, Mehanising �rst-order temporal resolution, Information and Computation 199 (2003), no. 1�2, 55�86.[92℄ S. Kono, T. Aoyagi, M. Fujita, and H. Tanaka, Implementation of Temporal Pro-gramming Language Tokio, Proeedings of the 4th Conferene on Logi Program-ming, Springer Verlag, 1985, Leture Notes in Computer Siene 221, pp. 138�147.[93℄ R.A. Kowalski, Prediate Logi as a Programming Language, Information Proess-ing '74 (J.L. Rosenfeldt, ed.), North Holland, 1974, pp. 569�574.[94℄ , Algorithm=Logi+Control, Communiations of the ACM 22 (1979), no. 7,424�436.[95℄ R.A. Kowalski and D. Kuehner, Linear Resolution with Seletion Funtion, Arti�-ial Intelligene 2 (1971), no. 3,4, 227�260.[96℄ D. Kozen, Results on the Propositional mu-Calulus, Theoretial Computer Siene27 (1983), 333�354.[97℄ S. Kripke, Semantial analysis of modal logi, Zeitshrift für Mathematishe Logikund Grundlagen der Mathematik 9 (1963), 67�96.[98℄ P.D. Laird, Learning from good and bad data, Kluwer Aademi Publishers, 1988.

288 Bibliography[99℄ N. Lavra and S. Dzeroski, Indutive Logi Programming: Tehniques and Appli-ations , Ellis Horwood, 1994.[100℄ N. Lavra, S. Dzeroski, V. Pirnat, and V. Krizman, Learning rules for early di-agnosis of rheumati diseases, Proeedings of the 3rd Sandinavian Conferene onArti�ial Intelligene, IOS Press, Amsterdam, 1992, pp. 138�149.[101℄ N. Lavra, I. Kononenko, E. Keravnou, M. Kukar, and B. Zupan, Intelligent DataAnalysis for Medial Diagnosis: Using Mahine Learning and Temporal Abstra-tion, AI Communiations 11 (1998), no. 3�4, 191�218.[102℄ O. Lihtenstein and A. Pnueli, Cheking that �nite state onurrent Programs sat-isfy their linear Spei�ations, Proeedings of the 12th ACM Symposium on Prin-iples of Programming Languages, ACM, 1985, pp. 97�107.[103℄ O. Lihtenstein, A. Pnueli, and L. Zuk, The Glory of the Past, Logis of Programs(R. Parikh, ed.), Springer Verlag, 1985, Leture Notes in Computer Siene 193,pp. 196�218.[104℄ H. Liebig and S. Thome, Logisher Entwurf digitaler Systeme, third ed., SpringerVerlag, 1996, (in German).[105℄ J.W. Lloyd, Foundations of Logi Programming, Springer Verlag, 1987.[106℄ M. Lothaire, Algebrai Combinatoris on Words, Cambridge University Press, 2002.[107℄ D.W. Loveland, Mehanial Theorem Proving by Model Elimination, Journal of theACM 15 (1968), no. 2, 236�251.[108℄ , A simpli�ed Format for the Model Elimination Theorem-Proving Proe-dure, Journal of the ACM 16 (1969), no. 3, 349�363.[109℄ M. Maidl, The Common Fragment of CTL and LTL, Proeedings of the 41th An-nual Symposium on Foundations of Computer Siene (FOCS '00), 2000, pp. 643�652.[110℄ Z. Manna and A. Pnueli, The Temporal Logi of Reative and Conurrent Systems:Spei�ation, Springer Verlag, 1992.[111℄ Z. Manna and P. Wolper, Synthesis of ommuniating Proesses from TemporalLogi Spei�ations, ACM Transations on Programming Languages and Systems6 (1984), no. 1, 68�93.[112℄ K. Marriott and H. Sondergaard, On prolog and the our hek problem, ACMSIGPLAN Noties 24 (1989), no. 5, 76�82.[113℄ A. Martelli and U. Montanari, An E�ient Uni�ation Algorithm, ACM Transa-tions on Programming Languages and Systems 4 (1982), no. 2, 258�282.

Bibliography 289[114℄ W. May and P.H. Shmitt, A Tableau Calulus for First�Order Branhing TimeLogi, Proeedings of the International Conferene on Formal and Applied PratialReasoning, FAPR-96, Springer Verlag, 1996, Leture Notes in Computer Siene1085, pp. 399�413.[115℄ R. Mooney, P. Melville, L. Tang, J. Shavlik, I. Dutra, D. Page, and V. SantosCosta, Relational Data Mining with Indutive Logi Programming for Link Disov-ery, Proeedings of the National Siene Foundation Workshop on Next GenerationData Mining, 2002.[116℄ , Relational Data Mining with Indutive Logi Programming for Link Dis-overy, Data Mining: Next Generation Challenges and Future Diretions (H. Kar-gupta, A. Joshi, K. Sivakumar, and Y. Yesha, eds.), AAAI Press, 2004, pp. 239�254.[117℄ B. Moszkowski, Exeuting Temporal Logi Programs, Teh. Report Tehnial Re-port No. 55, University of Cambridge, Computer Laboratory, 1984.[118℄ S. Muggleton, Indutive Logi Programming, Aademi Press, 1992.[119℄ , Inverse Entailment and Progol, New Generation Computing 13 (1995),245�286.[120℄ S. Muggleton and L. de Raedt, Indutive Logi Programming: Theory and Methods,Journal of Logi Programming 19,20 (1994), 629�679.[121℄ S. Muggleton and C. Feng, E�ient Indution of Logi Programs, Proeedings ofthe �rst Conferene on Algorithmi Learning Theory, Ohmsma, 1990, pp. 368�381.[122℄ S. Muggleton, King, and M.J.E. Sternberg, Prediting protein seondary strutureusing indutive logi programming, Protein Engineering 5 (1992), 647�657.[123℄ D.E. Muller, In�nite Sequenes and �nite Mahines, Proeedings of the 4th IEEESymposium on Swithing Ciruit Theory and Logi Design, 1960, pp. 3�16.[124℄ B.K. Natarajan, On learning Boolean funtions, Proeedings of the nineteenth an-nual ACM onferene on Theory of omputing, ACM, 1987, pp. 296�304.[125℄ I. Niemelä and P. Simons, Smodels - an implementation of the stable model and well-founded semantis for normal logi programs., Proeedings of the 4th InternationalConferene on Logi Programming and Nonmonotoni Reasoning, Springer Verlag,1997, Leture Notes in Computer Siene 1265, pp. 420�429.[126℄ S.-H. Nienhuys-Cheng and R. de Wolf, Foundations of Indutive Logi Program-ming, Springer Verlag, 1997.[127℄ S.-H Nienhuys-Cheng, P.R.J. van der Laag, and L. van der Torre, ConstrutingRe�nement Operators by Deomposing Logial Imppliation, Proeedings of the 3rdConferene of the Italian Assoiation for Arti�ial Intelligene, AI∗IA�93, SpringerVerlag, 1993, Leture Notes in Computer Siene 728, pp. 178�189.

290 Bibliography[128℄ R.P. Otero, Indution of Stable Models, Proeedings of the 15th International Con-ferene on Indutive Logi Programming, Springer Verlag, 2001, Leture Notes inComputer Siene 2175, pp. 193�205.[129℄ M.S. Paterson and M.N. Wegman, Linear Uni�ation, Journal of Computer andSystem Sienes 16 (1978), 158�167.[130℄ P.Baumgartner and U. Furbah, Hyper Tableaux and Disjuntive Logi Program-ming, ICLP 96 Workshop on Dedutive Databases and Logi Programming, vol.295, GMD, 1996.[131℄ J. Pearl, Capaity and Error Estimates for Boolean Classi�ers with limited Ca-paity, IEEE Transations on Pattern Analysis and Mahine Intelligene 1 (1979),no. 4, 350�355.[132℄ J. Pearl and L.G. Valiant, Computational Limitations on Learning from Examples,Journal of the ACM 35 (1988), no. 4, 965�984.[133℄ G.D. Plotkin, A Note on Indutive Generalization, Mahine Intelligene 5 (1970),153�163.[134℄ , A Further Note on Indutive Generalization, Mahine Intelligene 6 (1971),101�124.[135℄ A.D. Proaia and J.S. Rosenshein, Exat VC�Dimension of Monotone Formulas,Neural Information Proessing�Letters and Reviews 10 (2006), no. 7, 165�168.[136℄ R. Quinion, M.-O. Cordier, G. Garrault, and F. Wang, Appliation of ILP toCardia Arrhythmia Charaterization for Chronile Reognition, Proeedings of the15th International Conferene on Indutive Logi Programming, Springer Verlag,2001, Leture Notes in Computer Siene 2175, pp. 220�227.[137℄ J.R. Quinlan and R.M. Cameron-Jones, Foil: A midterm report, Proeedings ofthe 6th European Conferene on Mahine Learning, Leture Notes in Arti�ialIntelligene, vol. 667, Springer-Verlag, 1993, pp. 3�20.[138℄ M.O. Rabin, Deidability of seond�order Theories and Automata on in�nite Trees,Transations of the Amerian Mathematial Soiety 141 (1969), 1�35.[139℄ M. Reynolds and C. Dixon, Handbook of temporal reasoning in arti�ial intelligene,Foundations of Arti�ial Intelligene, vol. 1, h. Theorem�Proving for DisreteTemporal Logi, Elsevier, 2005.[140℄ J.A. Robinson, A Mahine-Oriented Logi Based on the Resolution Priniple, Jour-nal of the ACM 12 (1965), no. 1, 23�41.[141℄ Y. Sakai and A. Maruoka, Learning monotone log-term DNF formulas, Proeedingsof the seventh annual onferene on Computational learning theory, ACM, 1994,pp. 165�172.

Bibliography 291[142℄ M. Shmidt-Shauss, Impliation of Clauses is Undeidable, Theoretial ComputerSiene 59 (1988), 287�296.[143℄ K. Shneider, Veri�ation of reative systems � formal methods and algorithms,Texts in Theoretial Computer Siene (EATCS Series), Springer, 2003.[144℄ M. Sebag and C. Rouveirol, Constraint Indutive Logi Programming, Advanes inIndutive Logi Programming (L. De Raedt, ed.), IOS Press, 1996, pp. 277�294.[145℄ E.Y. Shapiro, An Algorithm that Infers Theories from Fats, Proeedings of the 7thJoint Conferene on Arti�ial Intelligene (IJCAI-81), Morgan Kaufmann, 1981,pp. 446�451.[146℄ , Indutive Inferene of Theories from Fats, Teh. Report Researh Report192, Yale University, 1981.[147℄ J.R. Shoen�eld, Mathematial Logi, Addison-Wesley, 1967.[148℄ G.M Shutske, F.A. Pierrat, K.J. Kapples, M.L. Cornfeldt, M.R. Szewzak,F.P. Huger, G.M. Bores, V. Haroutunian, and K.L. Davis, 9�Amino�1,2.3.4�Tetrahydroaridin�1�ols: Synthesis and Evaluation as Potential Alzheimer's Dis-ease Therapeuthis, Journal of Mediinial Chemistry 32 (1989), no. 8, 1805�1813.[149℄ A.P. Sistla, M.Y. Vardi, and P. Wolper, The Complementation Problem for BühiAutomata with Appliations to Temporal Logi, Theoretial Computer Siene 49(1987), no. 2,3, 217�237.[150℄ F. Somenzi and R. Bloem, E�ient Bühi automata from LTL Formulae, Proeed-ings of the 12th International Conferene on Computer Aided Veri�ation (CAV'00), Springer Verlag, 2000, Leture Notes in Computer Siene 1855, pp. 248�263.[151℄ A. Srinivasan, S. Muggleton, R.D. King, and M.J.E. Sternberg, Mutagenesis: ILPexperiments in a non-determinate biologial domain, Proeedings of the 4th Interna-tional Workshop on Indutive Logi Programming (S. Wrobel, ed.), GMD-Studien,vol. 237, Gesellshaft für Mathematik und Datenverarbeitung MBH, 1994, pp. 217�232.[152℄ A. Srinivasan, S. Muggleton, R.D. King, and M.J.E. Sternberg, The e�et of bak-ground knowledge in indutive logi programming: A ase study, Teh. report, PRG-TR-9-95 Oxford University Computing Laboratory, 1995.[153℄ , Theories for mutageneity: A study of �rst-order and feature based indui-ton, Teh. report, PRG-TR-8-95 Oxford University Computing Laboratory, 1995.[154℄ L. Sterling and E. Shapiro, The Art of Prolog, MIT Press, 1997.[155℄ J.S. Street, Propositional dynami Logi of Looping and Converse is elementarilydeidable, Information and Control 54 (1982), no. 1/2, 121�141.

292 Bibliography[156℄ R.E. Tarjan, Depth �rst searh and linear graph algorithms, SIAM Journal of Com-puting 1 (1972), no. 2, 146�160.[157℄ L.G. Valiant, A Theory of the Learnable, Communiations of the ACM 27 (1984),no. 11, 1134�1142.[158℄ , Learning Disjuntion of Conjuntions, Proeedings of the 9th InternationalJoint Conferene on Arti�ial Intelligene, Morgan Kaufman, 1985, pp. 560�566.[159℄ P.R.J. van der Laag, A Most General Re�nement Operator for Redued Sentenes,Teh. Report Disussion Paper No. 123, Erasmus University Rotterdam, Faultyof Eonomis, 1992.[160℄ P.R.J. van der Laag and S.-H Nienhuys-Cheng, Subsumption and Re�nement inModel Inferene, Proeedings of the 6th European Conferene on Mahine Learning,ECML�93, Springer Verlag, 1993, Leture Notes in Computer Siene 667, pp. 95�114.[161℄ , A Note on ideal Re�nement Operators in ILP, Proeedings of the 4thInternational Workshop on Indutive Logi programming, ILP�94, Gesellshaft fürMathematik und Datenverarbeitung, 1994, GMD�Studien 237, pp. 247�262.[162℄ P.R.J. van der Laag and S.-H. Nienhuys-Cheng, Existene and nonexistene ofomplete re�nement operators, Proeedings of the 7th International Conferene onMahine Learning (F. Bergadano and L. De Raedt, eds.), Leture Notes in Arti�ialIntelligene, vol. 784, Springer Verlag, 1994, pp. 307�322.[163℄ P.R.J. van der Laag and S.-H Nienhuys-Cheng, Completeness and Properness ofRe�nement Operators in Indutive Logi Programming, Journal of Logi Program-ming 34 (1998), no. 3, 201�225.[164℄ M.H. van Emden and R.A. Kowalski, The Semantis of Prediate Logi as a Pro-gramming Language, Journal of the ACM 23 (1976), no. 4, 733�742.[165℄ J. van Heijenoort (ed.), From Frege to Gödel: A Soure Book in Mathematial Logi1879�1931, Harvard University Press, 1977.[166℄ V.N. Vapnik and A.Y. Chervonenkis, On the Uniform Convergene of Relative Fre-quenies of Events to their Probabilities, Theory of Probability and its Appliations16 (1971), no. 2, 264�280.[167℄ M.Y. Vardi and P. Wolper, An automata-theoreti Approah to automati ProgramVeri�ation, Proeedings of the 1st Symposium on Logi in Computer Siene,Cambridge University Press, 1986, pp. 322�331.[168℄ , Reasoning about in�nite Computations, Information and Computation 115(1994), no. 1, 1�37.

Bibliography 293[169℄ G. Venkatesh, A Deision Method for Temporal Logi based on Resolution, Proeed-ings of the 5t Conferene on Foundations of Software Tehnology and TheoretialComputer Siene, Springer Verlag, 1985, Leture Notes in Computer Siene 206,pp. 272�289.[170℄ A.N. Whitehead and B. Russell, Prinipia Mathematia, Cambridge UniversityPress, 1927.[171℄ P. Wolper, Temporal Logi an be more expressive, Information and Computation56 (1983), no. 1�2, 72�99.[172℄ , Construting Automata from Temporal Logi Formulas: A Tutorial, Le-tures on Formal Methods in Performane Analysis (First EEF/Euro Summer Shoolon Trends in Computer Siene), Leture Notes in Computer Siene, vol. 2090,Springer-Verlag, July 2001, pp. 261�277.[173℄ S. Wrobel, Indutive Logi Programming for Knowledge Disovery in Databases,Relational Data Mining (S. Dzeroski and N. Lavra, eds.), Springer Verlag, 2001,pp. 74�104.[174℄ Y. Xu, X. Song, E. Cerny, and O.A. Mohamed, Model Cheking for a First�OrderTemporal Logi using Multiway Deision Graphs, The Computer Journal 47 (2004),no. 1, 71�84.

294 Bibliography

Index
<, 116
<s, 117
%, 213
A, 14
A(sig), 14aessibility relation, 26atual world, 26adequate, 193alphabet, 192answer, 40, 59omputed, 40orret, 40, 59arity, 14atom, 14ground, 65temporal, 24automatonBühimodi�ed, 193properties, 195generalized Bühi, 194bakground knowledge, 45binding priorities, 10lause, 30empty, 30ground, 66unit, 30losed, 98losedness, 98Closure, 198ompatness theorem, 12ompatible, 133omplete, 44, 48
NP , 12

o�NP�, 12omponentmaximal strongly onneted, 210maximal strongly onnetednon�trivial, 210Computation Tree Logi, 264onept, 170onept lass, 170onnetives�rst order, 27onsequenelogial, 11, 18, 23, 28onsistent, 44orret, 44Ctl, 264Ctl∗, 264deidable, 12derivationSLD�, 39derivation�stepSLD�, 38Det, 258Dom, 34domain, 34
dup, 156EBNF, 267equivalenesemantial, 10error, 172Ev, 209evaluation, 9of formulas, 16of terms, 16, 26evaluation funtion, 9

296 Indexeventualities, 200example, 171lassi�ed, 171negative, 171positive, 171Extended Bakus Naur Form, 267F, 20, 24
F , 15
F(X), 8
F(sig), 15
F , 88fat, 30Prolog(+T)�, 55false, 8�niteness theorem, 11FoLtl, 23formula, 8, 15, 24atomi, 14losed, 67universally, 67ground, 65Free, 66funtionarity�, 14G, 20, 24
Γd, 220
Γu, 217generalization, 46least, 46of literals, 121of rules, 129goal, 30graphlabeled, 129GSS, 119, 128Herbrand�base, 66Herbrand�universe, 66hornlause, 30de�nite, 30ideal, 48ILP, 43

interpretation, 15, 25temporal, 21, 25
LFoLtl, 119language

ω, 192aepted, 194lattie, 47learner, 171learning algorithm, 171learning algorithmonsistent, 172lengthof a path, 133letter, 192LGS, 121, 134list, 53empty, 54head, 54tail, 54Literal, 136literal, 15ground, 65negative, 30positive, 30temporal, 24loally �nite, 48logi�rst order, 12prediate, 12propositional, 7temporal, 19�rst order, 19propositional, 19Logi Programming, 29Indutive, 43Ltldet, 256Ltln,c,t,det, 256Ltln,c,t, 254Ltl, 20maximumof a state, 237MD, 10

Index 297mgu, 37mintermmaximal, 214MinTerms(X), 214model, 10, 17, 22, 28
Lµ, 264NDet, 258Neg, 30negation�normal�form, 197NNF, 197node, 129losed, 98ompletely instantiated, 100disjuntively expanded, 100father, 88funtion, 129prediate, 129son, 88tableaux, 88initial, 89temporal, 129O, 145ourrene, 145operatorAlways�, 20Eventually�, 20Next�state�, 20Release�, 20Until�, 20orderimpliation, 213subsumption, 116overly general, 44overly spei�, 45P, 24
Ψd, 220
Ψu, 215
P≤c,t,l,o, 177
P≤c,t,l,oon , 183
Prr≤c,t,l,o, 183
p(T (I)), 70
PM , 82

PAC�riterion, 174PAC�learnability, 174path, 88, 131losed, 98�nite, 88in�nite, 88length of, 88maximal, 109open, 98
ΠC , 175Pos (positions), 76, 156Pos (positive literals), 30possible worlds, 25produt onstrution, 201program, 31Prolog(+T)�, 57onstrained, 183range�restrited, 183Prolog, 51Prolog(+T), 52proper, 48quanti�erexistene, 15universal, 15quanti�ers, 15quasi ordering, 46query, 30Prolog(+T)�, 59R, 20Red, 81redution, 78Re�nementdownwardmaximal, 218upwardminimal, 213re�nement, 48

n�step, 481�step, 48re�nement operator, 47downward, 47for literals, 142

298 Indexfor rules, 150upward, 48for literals, 144for rules, 157refutationSLD�, 39replaement, 77Resolution, 33SLD�, 33resolvent, 38rule
↔�type, 94
¬�elimination, 94
→�type, 94
∨�type, 94
∧�type, 93Prolog(+T)�, 55onstrained, 183expansion, 89head, 56quanti�er�elimination, 94range�restrited, 183rewrite, 94saturation, 94substitution, 94tail, 56

S∞, 193sample, 171onsistent, 171length, 171sample omplexity, 171satis�ability, 28satis�ability problem, 12satis�able, 11, 17, 22semantispossible worlds, 25Seq, 199Set, 157set temporal Hintikka, 107temporally losed, 68shattered, 175signature, 13

speialization, 46greatest, 47of literals, 119of rules, 125standardized apart, 58statetemporal, 21States, 193states, 25subgoal, 30subgraphmaximal strongly onneted, 210substitution, 34omposition, 35empty, 36subsumption, 116, 125symbol�exible, 25funtion, 13prediate, 13rigid, 25variable, 13
T , 14
T (sig), 14
TFoLtlP , 83Tail, 126TempClosure, 71temporally losed, 68Term, 135term, 14Prolog(+T), 52ground, 65simple, 145Terms, 144
ΘL
d , 143

ΘR
d , 150

ΘL
u , 145

ΘR
u , 157

ΘP , 85
T (I), 69timebranhing, 19linear, 19

Index 299too strong, 44too weak, 44
T (P), 84Tree, 129true, 8U, 20, 24uni�able, 37uni�er, 37most general, 37universe, 16, 25unsatis�ability, 28unsatis�able, 11, 17, 22
V (π), 70Val, 9valid, 11, 17, 22validity, 28valuation, 9Var, 54variable, 8anonymous, 53free, 66propositional, 8variant, 36VCDim, 175VC�Dimension, 175word

ω, 192aepted, 194in�nite, 192X, 20, 24

