
Indu
tive Temporal Logi
Programming
Dipl. Inf. Robert Kolter
Dem Fa
hberei
h Informatikder Te
hnis
hen Universität Kaiserslauternvorgelegte Dissertationzur Verleihung des akademis
hen GradesDoktor der Naturwissens
haften
Kaiserslautern, 6.12.2009Dekan: Prof. Dr. Karsten BernsBeri
hterstatter: Prof. Dr. Otto MayerProf. Dr. Markus NebelTag der wissens
haftli
hen Ausspra
he: 29.5.2009D386

ii

Contents
1. Introdu
tion 1I. Temporal Logi
 and (indu
tive) Logi
 Programming 52. Preliminaries 72.1. Propositional Logi
 . 72.2. First Order Logi
 . 122.3. Temporal Logi
 . 192.3.1. Propositional Temporal Logi
 . 202.3.2. First Order Temporal Logi
 . 233. Logi
 Programming 293.1. Predi
ate Logi
 as a Programming Language 293.2. The Con
ept of SLD�Resolution . 333.3. Soundness and Completeness . 404. Indu
tive Logi
 Programming 434.1. The basi
 Framework . 434.2. Generalization and Spe
ialization . 464.3. Re�nement Operators and their Properties 47

iv ContentsII. First Order Indu
tive Temporal Logi
 Programming 495. The Programming Language Prolog(+T) 515.1. Syntax of Prolog(+T) . 525.1.1. Terms in Prolog(+T) . 525.1.2. Fa
ts . 555.1.3. Rules . 555.1.4. Programs . 575.1.5. Queries . 595.1.6. The Relation of Prolog(+T) to other Temporal Logi
 program-ming Languages . 605.2. De
larative Semanti
s of Prolog(+T) . 655.2.1. Preliminaries . 655.2.2. Redu
tion of Literals . 745.2.3. Semanti
s for programs . 815.3. A Saturation�based temporal Proof Pro
edure 865.3.1. Tableaux Rules . 875.3.2. Soundness and Completeness Issues 1046. The Latti
e Stru
ture of Prolog(+T) obje
ts 1156.1. Subsumption . 1166.2. The Latti
e Stru
ture of Literals . 1176.2.1. Generalizations of Terms . 1176.2.2. Generalizations and Spe
ializations of Literals 1196.3. The Latti
e Stru
ture of Rules . 1256.3.1. Greatest Spe
ializations . 1256.3.2. Least Generalizations . 129

Contents v7. Re�nement Operators for Prolog(+T)�programs 1417.1. Re�nement Operators for Prolog(+T)�Literals 1427.2. Re�nement Operators for Rules . 1477.2.1. Downward Re�nement . 1507.2.2. Upward Re�nement . 1527.3. Re�nement Strategies . 1597.3.1. Elimination of Variants . 1627.3.2. Restri
tion to redu
ed Rules . 1637.3.3. Elimination of Tautologies . 1657.3.4. Premises vs. Con
lusions . 1668. Identi�ability of Prolog(+T)�programs 1698.1. PAC�Learning . 1708.2. Learnability . 1778.2.1. The general
ase . 1778.2.2. Programs with synta
ti
al restri
tions 183III. Propositional Indu
tive Temporal Logi
 Programming 1899. Preliminaries 1919.1. Finite Automata on in�nite Obje
ts . 1929.2. Automata Constru
tions for Propositional Temporal Logi
 Formulas . . . 1969.2.1. A Modi�ed Formal Automata�Model 1969.2.2. A primitive Constru
tion . 1999.2.3. An Overview over improved Constru
tions 2039.2.4. Some Complexity Results . 2059.2.5. Che
king Language�Emptiness . 210

vi Contents10.Automata Manipulations 21110.1. Impli
ation as an Ordering . 21210.2. Upward Re�nement . 21310.2.1. Formulas without Temporal Operators 21410.2.2. Formulas with Temporal Operators 21610.3. Downward Re�nement . 21810.3.1. Formulas without Temporal Operators 21910.3.2. Formulas with Temporal Operators 22010.4. Modifying Automata by Appli
ation of Re�nement Operations 22110.4.1. Upward Re�nement . 22110.4.2. Downward Re�nement . 23210.4.3. Extra
ting Formulas . 23710.5. The Identi�
ation Pro
ess . 23811.Identi�ability of Ltl�programs 25111.1. General Notations . 25111.2. Upper Bounds for the VC�Dimension of Classes of Ltl�Programs 25411.2.1. General Ltl�Programs . 25411.2.2. The deterministi
 Sublogi
 of Ltl 25612.Con
lusions 26112.1. Summary of the Topi
s . 26112.2. Perspe
tives for Future Resear
h . 263A. Formal Des
ription of the Programming Languages 267A.1. Syntax of Prolog(+T) . 267A.1.1. Terms . 268A.1.2. Atoms and Literals . 270A.1.3. Rules . 271

Contents viiA.1.4. General Prolog(+T)�Obje
ts . 271A.2. Syntax of Ltl . 272

viii Contents

1. Introdu
tion
The �eld of Indu
tive Logi
 Programming (see [121℄, [119℄, [120℄, [118℄, [99℄ and [126℄) isan area of a
tive resear
h. Indu
tive Logi
 Programming (ILP) deals with the topi
 ofextra
ting a suitable explanation of a phenomenon from �nite sets of examples. Whilethis is the basi
 topi
 in most areas of Arti�
ial Intelligen
e (AI), the target
on
ept inILP (i.e. the phenomenon to be learned) is a logi
 program. Logi
 programs are �nitesets of
lauses whi
h allow a very natural interpretation as de
larations of pro
eduralrules. While this natural interpretation of a
lause

A← B1, . . . , Bnis �to solve the task A, solve the sequen
e B1, . . . , Bn of subtasks�, the interpretation inILP is more rule based: if x1, . . . , xn are the variable symbols o

urring in the head ofthe
lause (i.e. in A), then x1, . . . , xn will be assumed to have the property A if theyhave the properties B1, . . . , Bn. This gives the interpretation �if B1, . . . , Bn hold, then
A does also hold�.Sin
e the
on
epts of interest are logi
 programs, examples for any ILP�based learningsystem
an (or should) be ground atoms. Ea
h su
h example
an be either a positive ora negative example: if P is the program to be learned and e is an example, then
• if e is positive, then P |= e and
• if e is negative, then P 6|= e.

2 Chapter 1. Introdu
tionILP te
hniques have been applied in many bran
hes of s
ien
e, notable in
omputa-tional biology. There, several areas of appli
ation have been identi�ed, notably
• Drug�a
tivity
omparison (see [88℄, [148℄, [24℄ and [87℄),
• Diagnosis of rheumati
 diseases (see [33℄ and [100℄),
• Mutagenesis predi
tion (see [40℄, [151℄, [152℄ and [153℄),
• Protein�stru
ture predi
tion (see [122℄ and [86℄) and
• Design of Medi
al Diagnosis Tools (see [136℄ and [101℄).Other areas of appli
ation are predi
tion of strategies for
hess games (see [16℄), �niteelement methods (see [50℄, [52℄, [51℄, [54℄ and [55℄), data mining (see [173℄, [115℄ and[116℄) and learning models for dynami
 systems (see [25℄ and [55℄).This thesis deals with a natural extension of the
lassi
al ILP paradigm, namely syn-thesizing temporal logi
 programs from given examples. Temporal Logi
 is a natural wayto des
ribe relations whi
h may
hange over time. We will distinguish two di�erent areas:Propositional Indu
tive Temporal Logi
 Programming Here the language used in or-der to des
ribe the programs is Ltl, a simple temporal logi
 language allowing theuse of operators su
h as X, G, F, U and R for modeling time�dependent relations.Ltl is very popular in the �elds of Model Che
king and Supervisory Control. Wewill exploit the fa
t that ea
h Ltl�formula
an be represented as a nondetermi-nisti
 Bü
hi�automaton (an automaton a

epting in�nite sequen
es of letters) inorder to de�ne operators whi
h manipulate su
h an automaton in order to �t thespe
i�
ation given by the examples.First Order Indu
tive Temporal Logi
 Programming Here the language of interest ismu
h more �exible and expressive than in the propositional
ase. The major draw-ba
k is the unde
idability of �rst order logi
 (whi
h has been proven by Chur
h in

Chapter 1. Introdu
tion 31936) and therefore of the full �rst order temporal logi
. To keep �rst order tem-poral logi
 tra
table, we identify a simple extension of a Prolog�style languagewhi
h allows the usage of temporal the operators X, G, F, U and P in front of literals.We will see that this programming language (whi
h we will
all Prolog(+T)) hasa very natural pro
edural interpretation in terms of some well known rewrite rulesfor temporal logi
 formulas. These rules will be used in order to give a saturationbased
al
ulus.The main part of this thesis will be devoted to the �eld of First Order Indu
tiveTemporal Logi
 Programming. We will see that the latti
e properties (with respe
t tothe subsumption�ordering) of �rst order atoms, literals and
lauses
an be extended toProlog(+T)�atoms, �literals and �
lauses. So the existen
e of least generalizations andgreatest spe
ializations of Prolog(+T)�
lauses
an be ensured. We will give algorithmswhi
h allow the
omputation of su
h generalizations and spe
ializations and use the te
h-niques from these algorithms in order to de�ne re�nement operators for Prolog(+T)programs.The thesis is stru
tured as follows: in the �rst part we will de�ne some basi
 notationsfrom �rst order logi
, temporal logi
 and logi
 programming. The
hapters in this �rstpart are kept rather short sin
e we assume that the reader is familiar with these topi
s.After having introdu
ed these basi

on
epts we will brie�y introdu
e some
on
eptsfrom the �eld of ILP.The se
ond part is dedi
ated to an in�depth treatment of First Order Temporal ILP.This in
ludes the de�nition of Prolog(+T) and the dis
ussion of its de
larative se-manti
s. Having a
hieved this, we will present a proof pro
edure, dis
uss the latti
eproperties of Prolog(+T) obje
ts and study re�nement operators.The third part is then dedi
ated to Propositional Temporal ILP. After having de�nedbasi

on
epts from the �eld of ω�automata, we will present two operations for re�ningLtl�programs by manipulating their representing automata. The �nal
hapter of this

4 Chapter 1. Introdu
tionthird part will be devoted to the question of the
omplexity of the identi�
ation task.Therefore we will derive upper bounds for the VC�dimension of
ertain
lasses of Ltl�programs. These VC�dimensions allow a dire
t extra
tion of the number of exampleswhi
h are needed in order to identify the program under
onsideration (or more pre
ise:a program whi
h is equivalent to the program under
onsideration).

Part I.
Temporal Logi
 and (indu
tive)Logi
 Programming

2. Preliminaries
Contents2.1. Propositional Logi
 . 72.2. First Order Logi
 . 122.3. Temporal Logi
 . 192.3.1. Propositional Temporal Logi
 202.3.2. First Order Temporal Logi
 . 23In this
hapter we will brie�y de�ne and review some of the basi
 and most important
on
epts whi
h we will use throughout the rest of this thesis. This in
ludes propositionallogi
, �rst order logi
 and temporal logi
. Ea
h of these three logi
s is equipped withboth a semanti
al
onsequen
e relation whi
h we will as usual denote as |=. The threelogi
s will be de�ned by �rst de�ning the sets of formulas whi
h
an be built fromsome atomi
 obje
ts and
onne
tives and
an be seen as a more or less detailed way todes
ribe mathemati
al
on
epts in a synta
ti
 way. The properties of the logi
s are onlymentioned. We will not prove them sin
e the literature on propositional, �rst order andtemporal logi
 is ri
h (see [18℄, [147℄, [31℄, [20℄, [89℄ and [56℄).2.1. Propositional Logi
The simplest logi
 whi
h we will de�ne is the
lassi
al propositional logi
. Propositionallogi
 is a formalism whi
h has been studied very well. Early studies were done by

8 Chapter 2. PreliminariesBoole (see [23℄) in the 19th
entury. But to this date the study of propositional logi
was motivated by the
ir
umstan
e that resear
hers wanted to formalize the pro
essof mathemati
al reasoning. Propositional logi
 seemed to be a good starting point forsu
h formalizations. Later the usefulness of propositional logi
 for the des
ription ofele
tri
al and ele
troni
al
ir
uits was pointed out. We refer to [104℄ for an introdu
tionto appli
ations of propositional logi
.Now assume that a
ountable in�nite set X = {pi | i ∈ N} is given. Ea
h element of Xwill be
alled a propositional variable or simply a variable if there is no way of
onfusion.Formulas of the propositional language de�ned over X are de�ned indu
tively as follows(roughly following the treatment from [20℄).De�nition 2.1.1 (Propositional Logi
)Let a set X of propositional variables be given. The set of formulas over X is de�nedas:1. true and false are formulas,2. ea
h p ∈ X is a formula,3. if ϕ is a formula, then ¬ϕ is a formula and4. if ϕ1 and ϕ2 are formulas, then so are (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), (ϕ1 → ϕ2) and
(ϕ1 ↔ ϕ2).The set of all formulas over X will be denoted as F(X).The above de�nition of propositional formulas models the synta
ti
 level of propo-sitional reasoning. To model the semanti
 part, i.e. the logi
al
onsequen
e relation,we will now de�ne a way to evaluate propositional formulas to values 1 (identi�ed astrue) and 0 (identi�ed as false). This will be done using a suitable
on
ept of evaluation

2.1 Propositional Logi
 9fun
tions.De�nition 2.1.2 (Evaluation)Let X be a set of propositional variables. An evaluation for X is a fun
tion v :

X∪{true, false} → Z2 (where Z2 denotes the Galois �eld of
ardinality 2) satisfying
v(true) = 1 and v(false) = 0.The
on
ept of an evaluation
an now be extended to fun
tions v̂ : F(X)→ Z2 in theobvious (homomorphi
) way. Let ϕ ∈ F(X) be any formula. Then1. if ϕ = p ∈ X, then v̂(p) = v(p),2. if ϕ = ¬ψ, then v̂(ϕ) = 1− v̂(ϕ),3. if ϕ = (ϕ1 ∧ ϕ2), then v̂(ϕ) = min {v̂(ϕ1), v̂(ϕ2)},4. if ϕ = (ϕ1 ∨ ϕ2), then v̂(ϕ) = max {v̂(ϕ1), v̂(ϕ2)},5. if ϕ = (ϕ1 → ϕ2), then v̂(ϕ) = max {v̂(¬ϕ1), v̂(ϕ2)} and6. if ϕ = (ϕ1 ↔ ϕ2), then v̂(ϕ) = min {v̂(ϕ1 → ϕ2), v̂(ϕ2 → ϕ1)}.Sin
e there is no way of
onfusion we will from now on identify v̂ and v writing v(ϕ)for the result of v̂(ϕ) for any formula ϕ ∈ F(X). The set of all evaluations (or valuationsfrom now on) will be denoted as Val.For the sake of simpli
ity we will introdu
e two more
on
epts:1. Let ϕ1, . . . , ϕn be any �nite sequen
e of formulas from F(X). Then the formulas
∧n
i=1 ϕi and ∨n

i=1 ϕi are de�ned as
n∧

i=1

ϕi =

(

ϕn ∧
n−1∧

i=1

ϕi

) and
n∨

i=1

ϕi =

(

ϕn ∨
n−1∨

i=1

ϕi

)

.

10 Chapter 2. Preliminaries
2. We assume that the
onne
tives have the following binding priorities:a) ¬ has a higher binding priority than ∧,b) ∧ has a higher binding priority than ∨,
) ∨ has a higher binding priority than → andd) → has a higher binding priority than ↔.Applying the binding priority rules allows the omission or bra
kets in many formulaswhi
h improves the readability. For example, the formula

(¬p1 ∨ (p2 ∧ p3))→ p4
an be written as
¬p1 ∨ p2 ∧ p3 → p4Now let ϕ be any formula. A valuation v is
alled a model of ϕ if and only if v(ϕ) = 1.The set of all models of ϕ will be denoted as MD(ϕ)1. Similarly for sets Φ of formulaswe de�ne a valuation v to be a model of Φ if v(ϕ) = 1 for every ϕ ∈ Φ. We then haveMD(Φ) =

⋂

ϕ∈Φ MD(ϕ).We will
all pairs (ϕ1, ϕ2) ∈ F(X)2 (semanti
ally) equivalent (written ϕ1 ≡ ϕ2) if andonly if v(ϕ1) = v(ϕ2) for every valuation v. Equivalently we
ould de�ne semanti
alequivalen
e as follows:
ϕ1 ≡ ϕ2 if and only if {ϕ1} |= ϕ2 and {ϕ2} |= ϕ1if and only if ∅ |= ϕ1 ↔ ϕ21So MD(ϕ) = {v ∈ Val | v(ϕ) = 1}.

2.1 Propositional Logi
 11where |= denotes the semanti
al
onsequen
e relation whi
h will be de�ned below.Note that ≡ is an equivalen
e relation on F(X). Furthermore note that ϕ1 ≡ ϕ2 ifand only if MD(ϕ1) = MD(ϕ2).A formula ϕ ∈ F(X) is
alled
• satis�able if MD(ϕ) 6= ∅,
• valid if MD(ϕ) = Val and
• unsatis�able if MD(ϕ) = ∅.Similar
on
epts
an be de�ned for sets of formulas. A set Φ ⊆ F(X) is
alled
• satis�able if MD(Φ) 6= ∅,
• valid if MD(Φ) = Val and
• unsatis�able if MD(Φ) = ∅.Satis�able sets of propositional formulas
an be
hara
terized by Theorem 2.1.1 whi
his
ommonly known as the �niteness theorem.Theorem 2.1.1 (Finiteness Theorem)Let Φ ⊆ F(X) be a set of formulas. Then Φ is satis�able if and only if every �nite set

Ψ ⊆ Φ is satis�able.The
on
ept of logi
al
onsequen
e is
ommonly modeled as follows: A formula ϕ is alogi
al
onsequen
e of a set Φ ⊆ F(X) if every model of Φ is also a model of ϕ.De�nition 2.1.3 (Logi
al Consequen
e)Let Φ ⊆ F(X) be a set of formulas and let ϕ ∈ F(X) be a formula. Then ϕ is alogi
al
onsequen
e of Φ (written as Φ |= ϕ) if and only if for every v ∈ Val su
h as
v(Φ) ⊆ {1}2 it holds that v(ϕ) = 1.

12 Chapter 2. PreliminariesEquivalently one
an de�ne Φ |= ϕ if and only if MD(Φ) ⊆ MD(ϕ). Moreover we
ande�ne the following: Let Φ be as above and let Ψ ⊆ F(X) be any set of formulas. Then
Φ |= Ψ if and only if Φ |= ψ for every ψ ∈ Ψ. If Ψ is a �nite set, say Ψ = {ψ1, . . . , ψn},then Φ |= Ψ if and only if Φ |= ∧n

i=1 ψi.Equivalently one
an use the following
hara
terization of unsatis�able sets of formulas.Theorem 2.1.2Let Φ ⊆ F(X) be a set of formulas. Then Φ is unsatis�able if and only if Φ |= false.The logi
al
onsequen
e relation enjoys the following ni
e properties.Theorem 2.1.3Let Φ ⊆ F(X) be a set of formulas and let ϕ ∈ F(X) be a formula. Then1. Φ |= ϕ if and only if Φ ∪ {¬ϕ} |= false.2. If Φ |= false, then there is a �nite set Ψ ⊆ Φ su
h that Ψ |= false.Part 2 of Theorem 2.1.3 is also known as the
ompa
tness theorem. It is an easy
orollary of Theorem 2.1.1.For �nite sets Φ ⊆ F(X) of propositional logi
 formulas and formulas ϕ ∈ F(X) itis de
idable whether Φ |= ϕ holds or not. However, the related satis�ability problemis NP�
omplete (see [38℄ and [71℄), that is one
annot (or better should not) hopefor e�
ient pro
edures whi
h are
apable of de
iding if a formula ϕ (or a set of Φformulas) is satis�able. Moreover the problem of de
iding the logi
al
onsequen
e relationis
o−NP�
omplete whi
h indi
ates that is in some sense even more di�
ult to de
idethan satis�ability.2.2. First Order Logi
In
ontrast to propositional logi
, �rst order logi
 or (�rst order) predi
ate logi
 allows amore pre
ise formalization of (mathemati
al) relations. Using a more �exible language of

2.2 First Order Logi
 13logi
 was motivated by the limitations arising from the usage of propositional logi
. Forexample propositional logi
 only allows reasoning about propositions, i.e. things whi
hare either true or false. But in Mathemati
s the truth or falsity of a proposition oftendepends on the values of
ertain variables o

urring as inputs to fun
tions. For examplethe formula f(x) = 0 should be evaluable to true or false. But the truth�value of thisformula depends on
• the fun
tion whi
h is represented by the fun
tion�symbol f and
• the value whi
h is assigned to the variable x.So propositional logi
 is not an adequate formal system for modeling this formula. Earlystudies of �rst order logi
 were presented at the beginning of the 20th
entury e.g. byFrege (see [69℄), Gentzen (see [75℄), Russell and Whitehead (see [170℄) and several others.At this point of time sound and
omplete
al
uli have been developed. But pra
ti
alappli
ations arose mu
h later.As we have already pointed out formulas are not built from propositions alone butfrom a more general
on
ept whi
h we will
all atomi
 formulas or simply atoms fromnow on. Therefore we will have to re�ne the syntax of the logi
al language to be used ina suitable way.Re
all that in the
ase of propositional logi
, the syntax (i.e. the formulas of a logi
allanguage) only depends on the set X of propositional variables. A similar
on
ept for�rst order logi
 is given by the
on
ept of signatures.De�nition 2.2.1 (Signature)A signature is a tuple sig = (X , F, P, α) where1. X = {xi | i ∈ I for some set I ⊆ N of indi
es} is a
ountable set of variable sym-bols,2. F and P are �nite sets of fun
tion� resp. predi
ate�symbols and

14 Chapter 2. Preliminaries3. α : F ∪ P → N is a fun
tion whi
h maps ea
h symbol to a natural number (itsarity) and is therefore
alled the arity�fun
tion.If σ ∈ F ∪ P is a fun
tion� respe
tively predi
ate�symbol and α(σ) = n for some
n ≥ 0, we will say that σ has arity n. In the
ase that n = 0 we will also say that σ is a
onstant symbol.The simplest obje
ts whi
h
an be built from a signature are terms.De�nition 2.2.2 (Terms)Let sig = (X , F, P, α) be a signature. The set T (sig) (or simply T) of terms over sigis de�ned indu
tively as follows:1. ea
h x ∈ X is a term and2. if f ∈ F is a fun
tion�symbol, n = α(f) and t1, . . . , tn ∈ T are terms, then so is

f(t1, . . . , tn).Formulas are now de�ned to be either atomi
 ones or formulas
omposed from simplerones.De�nition 2.2.3 (Atomi
 Formulas)Let sig = (X , F, P, α) be a signature. The set A(sig) (or simply A) of all atomi
formulas (or simply atoms) over sig is de�ned indu
tively as follows:1. true and false are in A and2. if p ∈ P is a predi
ate symbol, n = α(p) and t1, . . . , tn ∈ T are terms, then
p(t1, . . . , tn) is in A.In
ontrast to formulas of the propositional logi
 language, �rst order logi
 formulasare also
apable to model terms like �for all x it holds that . . . � and �there is an x su
h

2.2 First Order Logi
 15that . . . �. This is a
hieved by introdu
ing two quanti�ers ∀ (the universal quanti�er)and ∃ (the existen
e quanti�er).De�nition 2.2.4 (First Order Formulas)Let sig = (X , F, P, α) be a signature. The set F(sig) (or simply F) of formulas oversig is de�ned indu
tively as follows:1. every ϕ ∈ A is a formula,2. if ϕ is a formula, then so is ¬ϕ,3. if ϕ1 and ϕ2 are formulas, then so are (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), (ϕ1 → ϕ2) and
(ϕ1 ↔ ϕ2) and4. if ϕ is a formula and x ∈ X is a variable symbol, then ∀xϕ and ∃xϕ are formulas.Formulas from the set

A∪ {¬ϕ | ϕ ∈ A}are
alled literals. Sin
e the formulas of �rst order logi
 allow �ner reasoning aboutmathemati
al
on
epts, their interpretation also has to be more detailed. This in
ludesthe interpretation of the fun
tion symbols and the interpretation of the predi
ate sym-bols. So the
on
ept of evaluation fun
tions as introdu
ed for propositional logi
 is notadequate anymore. An interpretation is given as a tuple
onsisting of a set of possiblevalues of the variables (the universe), two mappings assigning fun
tions to the fun
tionsymbols and predi
ates to the predi
ate symbols and a mapping assigning values to thevariable symbols.

16 Chapter 2. PreliminariesDe�nition 2.2.5 (Interpretation)Let sig = (X , F, P, α) be a signature. An interpretation (for sig�formulas) is a tuple
J = (UJ ,F,P, w) ,where1. UJ is a nonempty set of obje
ts (the universe of J),2. F is a fun
tion whi
h maps ea
h f ∈ F to a fun
tion fJ : U

α(f)
J → UJ ,3. P is a fun
tion whi
h maps ea
h p ∈ F to a predi
ate pJ : U
α(p)
J → {0, 1} and4. w : X → UJ maps ea
h variable symbol x to an element w(x) ∈ UJ .Now let J be an interpretation. The evaluation of terms is straightforward dependingon the stru
ture of the term to be evaluated:1. J (x) =: xJ = w(x) for every x ∈ X and2. J (f(t1, . . . , tn)) = fJ

(
tJ1 , . . . , t

J
n

) for ea
h f(t1, . . . , tn) ∈ T .Having de�ned how to evaluate terms, every formula
an be evaluated in a straight-forward way:1. J (p(t1, . . . , tn)) = pJ
(
tJ1 , . . . , t

J
n

)
∈ {0, 1},2. J (¬ϕ) = 1− J (ϕ),3. J (ϕ1 ∧ ϕ2) = min {J (ϕ1),J (ϕ2)},4. J (ϕ1 ∨ ϕ2) = max {J (ϕ1),J (ϕ2)},5. J (ϕ1 → ϕ2) = max {J (¬ϕ1),J (ϕ2)},

2.2 First Order Logi
 176. J (ϕ1 ↔ ϕ2) = min {J (ϕ1 → ϕ2),J (ϕ2 → ϕ1)},7. J (∀xϕ) = min
{
J tx(ϕ) | t ∈ UJ

} and8. J (∃xϕ) = max
{
J tx(ϕ) | t ∈ UJ

}.where J tx is de�ned as J tx = (UJ ,F,P, w̃) with w̃ : X → UJ being de�ned as
w̃(x̄) =







w(x̄) ⇔ x̄ 6= x

t ⇔ x̄ = x

.We will write J |= ϕ if J (ϕ) = 1. Similarly we will write J |= Φ (for a set Φ ⊆ F) ifand only if J |= ϕ for every ϕ ∈ Φ.As in the
ase of propositional logi
 an interpretation J is
alled a model of a formula
ϕ (respe
tively a model of a set Φ of formulas) if J |= ϕ (respe
tively J |= Φ). The setof all models of ϕ is de�ned to beMD(ϕ) = {J | J |= ϕ}and the set of all models for Φ isMD(Φ) =

⋂

ϕ∈Φ

MD(ϕ).We will adopt the following terms from propositional logi
: A formula ϕ ∈ F is
alled
• satis�able if MD(ϕ) 6= ∅,
• valid if J |= ϕ for every interpretation J and
• unsatis�able if MD(ϕ) = ∅.Similar
on
epts
an be de�ned for sets of formulas. A set Φ ⊆ F is
alled

18 Chapter 2. Preliminaries
• satis�able if MD(Φ) 6= ∅,
• valid if every ϕ ∈ Φ is valid and
• unsatis�able if MD(Φ) = ∅.As in the
ase of propositional logi
 we de�ne a relation |= by de�ning:De�nition 2.2.6 (Logi
al Consequen
e)Let Φ ⊆ F be a set of formulas and let ϕ ∈ F be a formula. Then ϕ is a logi
al
onsequen
e of Φ (Φ |= ϕ) if and only if for every interpretation J su
h as J (Φ) = 1it holds that J (ϕ) = 1.Again we
an express |= by Φ |= ϕ if and only if MD(Φ) ⊆ MD(ϕ).The properties of |= are still the same as in propositional logi
.Theorem 2.2.1Let Φ ⊆ F be a set of formulas. Then Φ is unsatis�able if and only if Φ |= false.Theorem 2.2.2Let Φ ⊆ F be a set of formulas. Then Φ is satis�able if and only if every �nite set Φ′ ⊆ Φis satis�able.Theorem 2.2.3Let Φ ⊆ F be a set of formulas and let ϕ ∈ F be a formula. Then1. Φ |= ϕ if and only if Φ ∪ {¬ϕ} |= false.2. If Φ |= false, then there is a �nite set Ψ ⊆ Φ su
h that Ψ |= false.In
ontrast to propositional logi
, where testing for satis�ability is de
idable (but NP�
omplete), testing for satis�ability is unde
idable in �rst order logi
. This is due to thefollowing theorem proved by Chur
h in 1936 (see [32℄).

2.3 Temporal Logi
 19Theorem 2.2.4Let Φ ⊆ F be a set of formulas. Then the following problem is unde
idable:Input: ΦOutput: 


1 ⇔ MD(Φ) 6= ∅

0 ⇔ else2.3. Temporal Logi
In
ontrast to the logi
s whi
h we have introdu
ed so far, temporal logi
 is
on
ernedwith reasoning about time�dependent properties. An example might be the operator Xwhi
h has the following intuitive interpretation:If ϕ is true at the next point of time, then Xϕ is true at the
urrent point of time.Consequently X will be referred to as Next�State�Operator. Here we
an already noti
ethat in our temporal logi
s time will be of dis
rete nature. Consequently any sequen
eof points of time
an only
ontain
ountably many su
h points.Again we wish to distinguish temporal logi
s a

ording to the primitive obje
ts under
onsideration. So we will have propositional temporal logi
 and �rst order temporal logi
as alternatives while the former is properly
ontained in the latter. Another possible
riterion of di�erentiation is between linear time (see [110℄) and bran
hing time (see[58℄, [59℄) logi
s. Linear time logi
s allow reasoning about one possible
ontinuationof the
urrent point of time while bran
hing time logi
s are equipped with operatorsquantifying over sequen
es of
ontinuations, so
alled paths (and are therefore
alledpath quanti�ers). We will only
onsider linear time temporal logi
s sin
e they are wellsuited for our purposes. Perhaps the most prominent of these linear time temporal logi
sis Ltl whi
h has been subje
t of both theoreti
al resear
h and pra
ti
al appli
ations.Sin
e temporal logi
s allow reasoning about time�dependent aspe
ts of obje
ts, the
on
ept of interpretations will have to be extended to sequen
es of interpretations. This

20 Chapter 2. Preliminarieswill be the subje
t of
onsideration for the rest of this
hapter.2.3.1. Propositional Temporal Logi
Again assume that X is a given set of propositional variables as de�ned in se
tion 2.1,that is X = {pi | i ∈ N}. The language Ltl of linear time temporal logi
 formulas isbuilt from the language F(X) by introdu
ing several temporal operators.De�nition 2.3.1 (Propositional Linear Time Temporal Logi
, e.g. [110℄)The language Ltl of linear time temporal logi
 formulas is indu
tively de�ned as1. every ϕ ∈ F(X) is in Ltl,2. if ϕ is in Ltl, then so are Xϕ, Gϕ and Fϕ and3. if ϕ1, ϕ2 are in Ltl, then so are ϕ1Uϕ2 and ϕ1Rϕ2The temporal operators X, G, F, U and R will have the following intuitive interpretation:1. Xϕ: if ϕ is true at the next point of time, then Xϕ is true at the a
tual point oftime (Next�State�Operator).2. Gϕ: ϕ is true at every point of time (Always�Operator).3. Fϕ: there is a point of time su
h that ϕ is true at this point (Eventually�Operator).4. ϕ1Uϕ2: ϕ1 holds until ϕ2 is true (Until�Operator).5. ϕ1Rϕ2: ϕ1 has to be true before ϕ2 is true (Release�Operator).Formally Ltl�formulas are evaluated in sequen
es of states ea
h of whi
h is a singleevaluation of the propositional symbols of the language whi
h is de�ned by the set X.Sequen
es of states are assumed to be
• in�nite and

2.3 Temporal Logi
 21
•
ountable.So ea
h su
h sequen
e is isomorphi
 to the set N of natural numbers and the timepoints in these sequen
es are dis
rete. Consequently the set of all sequen
es of states isun
ountable.De�nition 2.3.2 (Temporal State)A temporal state is a set s ⊆ X.We
an interpret a temporal state s as an evaluation vs : X → Z2 de�ned by

vs(x) =







1 ⇔ x ∈ s

0 ⇔ elseand extend this evaluation from X to F(X) in the obvious way.So far we are not able to assign a meaning to the temporal operators G, F, X, U andP. Therefore we extend the
on
ept of an evaluation (as introdu
ed in se
tion 2.1) totemporal interpretations de�ned formally as follows.De�nition 2.3.3 (Temporal Interpretation)A temporal interpretation (or interpretation for short) is an in�nite sequen
e J =

(s0, s1, . . . , si, . . .) of temporal states.For j ∈ N the notation J j will denote the temporal interpretation starting at timepoint j, i.e. J j = (sj, sj+1, . . . , sk, . . .).Now let ϕ ∈ Ltl be a formula and let J = (s0, s1, . . . , si, . . .) be a temporal interpre-tation. We extend the relation |= as follows:1. if ϕ ∈ X, then J |= ϕ if and only if ϕ ∈ s0,

22 Chapter 2. Preliminaries2. if ϕ = ¬ψ, then J |= ϕ if and only if J 6|= ψ,3. if ϕ = ϕ1 ∧ ϕ2, then J |= ϕ if and only if J |= ϕ1 and J |= ϕ2,4. if ϕ = ϕ1 ∨ ϕ2, then J |= ϕ if and only if J |= ϕ1 or J |= ϕ2,5. if ϕ = ϕ1 → ϕ2, then J |= ϕ if and only if J 6|= ϕ1 or J |= ϕ2,6. if ϕ = Xψ, then J |= ϕ if and only if J 1 |= ψ,7. if ϕ = Gψ, then J |= ϕ if and only for every i ≥ 0 it holds that J i |= ψ,8. if ϕ = Fψ, then J |= ϕ if and only if there is i ≥ 0 su
h that J i |= ψ,9. if ϕ = ϕ1Uϕ2, then J |= ϕ if and only if there is i ≥ 0 su
h that J i |= ϕ2 and forevery j su
h that 0 ≤ j < i it holds that J j |= ϕ1 and10. if ϕ = ϕ1Rϕ2, then J |= ϕ if and only if for every i ≥ 0 su
h that J i 6|= ϕ2 thereis j su
h that 0 ≤ j < i and J j |= ϕ1.As in the
ase of propositional and �rst order logi
, an interpretation J with J |= ϕfor some Ltl�formula ϕ is
alled a model of ϕ. The set of all models of ϕ is again denotedas MD(ϕ). As before we de�ne sets Φ of formulas to be satis�ed by an interpretation Jif every formula in Φ is satis�ed by J . Formally: J |= Φ if and only if I |= ϕ for ea
h
ϕ ∈ Φ. The notation MD is extended to sets of Ltl�formulas as before:MD(Φ) =

⋂

ϕ∈Φ

MD(ϕ).As before we will
all a formula ϕ (respe
tively a set Φ of formulas)
• satis�able if MD(ϕ) 6= ∅ (respe
tively MD(Φ) 6= ∅),
• valid if J |= ϕ for ea
h J (respe
tively if every ϕ ∈ Φ is valid) and
• unsatis�able if MD(ϕ) = ∅ (respe
tively MD(Φ) = ∅).

2.3 Temporal Logi
 23As one might already expe
t, there is also an extension of the logi
al
onsequen
e relation
|= known from propositional logi
 to Ltl. Again we have

Φ |= ϕ if and only if MD(Φ) ⊆ MD(ϕ).We will also write ϕ |= ψ if the set Φ only
onsists of the single formula ϕ, that is
ϕ |= ψ denotes {ϕ} |= ψ. The properties of |=
arry over from propositional logi
 to Ltl.Furthermore we have the following lemma.Lemma 2.3.1Let Φ be a set of Ltl�formulas and let ϕ be an Ltl�formula.1. Φ is unsatis�able if and only if Φ |= false.2. If Φ |= ϕ, then there is a �nite subset Ψ ⊆ Φ su
h that Ψ |= ϕ.In parti
ular, testing for unsatis�ability
an be a

omplished by applying Lemma 2.3.1.Corollary 2.3.1Let Φ be a set of Ltl�formulas. If Φ |= false, then there is some �nite subset Φ0 ⊆ Φsu
h that Φ0 |= false.The relation ≡ is again extended in the obvious way: for every pair ϕ1, ϕ2 of Ltl�formulas we have ϕ1 ≡ ϕ2 if and only if ϕ1 |= ϕ2 and ϕ2 |= ϕ1 or equivalently if and onlyif MD(ϕ1) = MD(ϕ2).2.3.2. First Order Temporal Logi
This last se
tion of this
hapter will deal with the extension of the propositional temporallogi
 Ltl introdu
ed in
hapter 2.3.1 to the �eld of �rst order logi
. The resulting logi
will
onsequently be denoted as FoLtl (standing for F irst Order Ltl).Assume that a signature sig = (X , F, P, α) as de�ned in
hapter 2.2 is given. Thereforethe set T = T (sig) is de�ned.

24 Chapter 2. PreliminariesWe will introdu
e the set of FoLtl�formulas stepwise.De�nition 2.3.4 (Temporal Atoms)The set of all temporal atoms over sig (denoted as At(sig)) is de�ned as the smallestset of obje
ts
losed under the following rules:1. if ϕ ∈ A(sig) is a �rst order atomi
 formula, then ϕ ∈ At(sig),2. if ϕ is a temporal atom from At(sig), then Xϕ, Fϕ and Gϕ are in At(sig) and3. if ϕ1 and ϕ2 are in At(sig), then so are ϕ1Uϕ2 and ϕ1Pϕ2.The de�nition of temporal literals is very similar to the de�nition of temporal atoms.De�nition 2.3.5 (Temporal Literals)The set of all temporal literals over sig (denoted as Lt(sig)) is de�ned as the smallestset of obje
ts
losed under the following rules:1. if ϕ ∈ At(sig) is a temporal atomi
 formula, then ϕ ∈ Lt(sig),2. if ϕ is a temporal literal from Lt(sig), then Xϕ, Fϕ and Gϕ are in Lt(sig),3. if ϕ ∈ Lt(sig) is a temporal literal, then so is ¬ϕ and4. if ϕ1 and ϕ2 are in Lt(sig), then so are ϕ1Uϕ2 and ϕ1Pϕ2.Formulas from FoLtl are now de�ned as in the
ase of a �rst order logi
 language.De�nition 2.3.6 (First Order Linear Time Temporal Logi
, e.g. [3℄)The set of FoLtl�formulas is the smallest set of obje
ts
losed under the followingrules:1. ea
h ϕ ∈ Lt(sig) is a formula in FoLtl,

2.3 Temporal Logi
 252. if ϕ1 and ϕ2 are formulas from FoLtl, then so are (ϕ1∧ϕ2), (ϕ1∨ϕ2), (ϕ1 → ϕ2)and (ϕ1 ↔ ϕ2),3. if ϕ is a formula from FoLtl, then so are Xϕ, Gϕ and Fϕ,4. if ϕ1 and ϕ2 are formulas from FoLtl, then so are ϕ1Uϕ2 and ϕ1Pϕ2 and5. if ϕ is a formula from FoLtl and x ∈ X , then ∀xϕ and ∃xϕ are formulas fromFoLtl.The extension of the
onne
tives ∧ and ∨ is extended to in
lude arbitrary many for-mulas as des
ribed for �rst order logi
 formulas on page 9. We will also make use of thebinding priority for the
onne
tives ¬, ∧, ∨, → and → omitting bra
kets whenever thisis possible.In
ontrast to the propositional temporal logi
 Ltl one
an distinguish between twokinds of symbols: rigid symbols and �exible symbols. Rigid symbols are symbols whi
hare required to be interpreted to the same operation regardless of the point of timeunder
onsideration while �exible symbols may be interpreted as di�erent operations atdi�erent points of time. We assume that ea
h symbol is either �exible or rigid.The semanti
s of FoLtl is des
ribed by a suitable extension of the
on
ept of temporalinterpretations as introdu
ed for Ltl in
hapter 2.3.1. We will follow notations from [3℄whi
h present an adaption of the so
alled possible worlds semanti
s whi
h had beenoriginally developed by Hintikka (see [81℄) and Kripke (see [97℄). An interpretation isgiven as a tuple
J = (UJ , S, s0, δ1, δ2, w,I) ,where

• UJ is a nonempty set,
alled the universe of J ,
• S is a set of states (also
alled possible worlds) whi
h
ontains the distinguished

26 Chapter 2. Preliminarieselement s0, the initial state (or a
tual world),
• δ1, δ2 ⊆ S × S are a

essibility relations,
• w : X → UJ is an evaluation of the variable symbols and
• I is a �rst order interpretation for the symbols of sig whi
h maps ea
h symbol
σ ∈ F ∪ P in ea
h state s to an operation I(s, σ) : U

α(σ)
J → UJ (if σ ∈ F) or to apredi
ate I(s, σ) : U

α(σ)
J → {0, 1} (if σ ∈ P). I is assumed to have the followingproperties:� if σ is a rigid symbol, then I(s1, σ) = I(s2, σ) for every s1, s2 ∈ S and� if σ is a �exible symbol, then there are s1, s2 ∈ S su
h that I(s1, σ) 6= I(s2, σ).The evaluation of terms in su
h an interpretation is a

omplished as expe
ted: let

t ∈ T (sig) be given.1. if t = x ∈ X , then J (x) = w(x) and2. if t = f(t1, . . . , tn) for some f ∈ F with α(f) = n and t1, . . . , tn ∈ T (sig), then
J (t) = I(s0, f) (J (t1), . . . ,J (tn)) .The interpretation of formulas is now de�ned similarly to the interpretation of formulasin �rst order logi
.

• J (true) := 1,
• J (false) := 0 and
• if ϕ = p(t1, . . . , tn) ∈ A(sig) for p ∈ P with α(p) = n and t1, . . . , tn ∈ T (sig), then

J (ϕ) = J (p(t1, . . . , tn)) := I(s0, p)(J (t1), . . . ,J (tn)).

2.3 Temporal Logi
 27For the
onne
tives ∧, ∨,→ and↔ whi
h we will
all �rst order
onne
tives from nowon and the quanti�ers ∀ and ∃ the semanti
s is de�ned as usual. Let ϕ,ϕ1 and ϕ2 beFoLtl�formulas and let x ∈ X be a variable symbol.
• J (¬ϕ) := 1− J (ϕ),
• J (ϕ1 ∧ ϕ2) := min {J (ϕ1),J (ϕ2)},
• J (ϕ1 ∨ ϕ2) := max {J (ϕ1),J (ϕ2)},
• J (ϕ1 → ϕ2) := max {J (¬ϕ1),J (ϕ2)},
• J (ϕ1 ↔ ϕ2) := min {J (ϕ1 → ϕ2),J (ϕ2 → ϕ1)},
• J (∀xϕ) := min

{
J tx(ϕ) | t ∈ UJ

} and
• J (∃xϕ) := max

{
J tx(ϕ) | t ∈ UJ

}.where J tx emerges from J in a similar way as in �rst order logi
 (see page 17).What remains to be de�ned is the semanti
s of the temporal operators. This is donevia the rea
hability relations δ1 and δ2 whi
h model the next state�relation (δ1) and itstransitive
losure (δ2). For modeling the semanti
s we will need another
on
ept. Let
s ∈ S be any state. The interpretation J [s] emerges from J by setting its initial state(or its a
tual world whi
h gives a better intuition in this
ase) from s0 to s. Now let
ϕ,ϕ1 and ϕ2 be given.
• J (Xϕ) := 1 if and only if there is s1 ∈ S su
h that s0δ1s1 and J [s1](ϕ) = 1,
• J (Fϕ) := 1 if and only if there is s1 ∈ S su
h that s0δ2s1 and J [s1](ϕ) = 1,
• J (Gϕ) := 1 if and only if J [s1](ϕ) = 1 for every s1 ∈ S su
h that s0δ2s1,
• J (ϕ1Uϕ2) = 1 if and only if for every s1 ∈ S su
h that s0δ2s1 it holds that
J [s1](ϕ1) = 1 or there is s2 ∈ S su
h that s0δ2s2, s2δ2s1 and J [s2](ϕ2) = 1 and

28 Chapter 2. Preliminaries
• J (ϕ1Pϕ2) = 1 if and only if there is s1 ∈ S su
h that s0δ2s1 and J [s1](ϕ1) = 1and for ea
h s2 ∈ S su
h that s0δ2s2 and s2δ2s1 it holds that J [s2](¬ϕ2) = 1.As usual we will write J |= ϕ if J (ϕ) = 1 and
all J a model . The set of all modelsof ϕ is again denoted as MD(ϕ). For sets Φ of formulas we have the obvious extension:MD(Φ) =

⋂

ϕ∈Φ

MD(ϕ).The notations of satis�ability, validity and unsatis�ability are extended in a straightfor-ward way. To
on
lude the de�nition of the semanti
s of FoLtl we extend the logi
al
onsequen
e relation |= to FoLtl�formulas and sets of FoLtl�formulas by adjustingthe notations from �rst order logi
 given on page 18.Now that both propositional and �rst order linear time temporal logi
 is de�ned we areready to introdu
e the remaining
on
epts whi
h will be the subje
t of the theory to bedeveloped in this thesis, namely Logi
 Programming and Indu
tive Logi
 Programming.

3. Logi
 Programming
Contents3.1. Predi
ate Logi
 as a Programming Language 293.2. The Con
ept of SLD�Resolution 333.3. Soundness and Completeness 40This
hapter brie�y reviews the basi

on
epts of Logi
 Programming as introdu
ed byKowalski (see [94℄ and [93℄). Logi
 Programming is a form of De
larative Programmingwhi
h is a programming
on
ept based on the philosophy that the programmer shouldnot be
on
erned with the way a solution is sear
hed for by a programming system but(s)he should be allowed to
on
entrate on the des
ription of the properties of the solu-tions. Various realizations of de
larative languages, mostly fun
tional languages su
h asLISP or HASKELL, have been proposed. Logi
 Programming is another form of de
lara-tive programming whi
h is
on
erned with des
ribing relationships between obje
ts with
ertain properties.3.1. Predi
ate Logi
 as a Programming LanguageThe basi
 obje
ts of a logi
 programming language are formulas of a spe
ial type, so
alled
lauses.

30 Chapter 3. Logi
 ProgrammingDe�nition 3.1.1 (Clause, Robinson [140℄)A
lause C is a disjun
tion of literals li:
C =

n∨

i=1

li.Assume for now that a
lause C is given. C
an also be seen as a set of literals
C = {l1, . . . , ln}. Sin
e every literal is either an atom from A or the negation of an atom,we
an partition C into two sets Pos(C) and Neg(C)
ontaining the positive literals of
C (i.e. the atoms1) and the negative ones (i.e. the negations of atoms):

C = {li | i ∈ {1, . . . , n}, li ∈ A}
︸ ︷︷ ︸

=:Pos(C)

∪{li | i ∈ {1, . . . , n},¬li ∈ A}
︸ ︷︷ ︸

=:Neg(C)

.Now we
an identify several
lasses of
lauses: C is
alled a
• horn
lause if and only if |Pos(C)| ≤ 1,
• de�nite horn
lause if and only if |Pos(C)| = 1 and
• unit
lause (or fa
t) if and only if |Pos(C)| = 1 and Neg(C) = ∅.A goal (or a query) G is a �nite sequen
e of atoms whi
h are
onsidered to be
on-jun
tively
onne
ted: G = G1 ∧ · · · ∧ Gm. The atoms Gi are
alled the subgoals of

G.The distinguished
lause whi
h neither
ontains positive nor negative literals, andwhi
h is therefore represented as the set {}, is
alled the empty
lause whi
h we willdenote as �2. The empty
lause is
onsidered equivalent to any unsatis�able �rst orderformula.1Here we identify ¬¬ϕ and ϕ.2Note that � is also a goal, namely the goal whi
h does not
ontain any subgoals. We will thereforealso refer to � as the empty goal.

3.1 Predi
ate Logi
 as a Programming Language 31The philosophy of Logi
 Programming is the following (see e.g. [94℄ and [164℄):
• Statements whi
h are known to be
orre
t are modeled by unit
lauses (fa
ts).
• Relations between obje
ts are modeled by de�nite horn
lauses (whi
h are inter-preted as rules).
• Program
alls are modeled by goals.We will assume that every rule represents a horn
lause whi
h is impli
itly universally
losed, that is every variable symbol whi
h o

urs in a rule is assumed to be inside thes
ope of a universal quanti�er. Formally this means that if

C = ϕ1 ∧ · · · ∧ ϕn → ψis a rule whi
h
ontains the variables {x1, . . . , xm} then we merely work with the formula
∀x1 . . . ∀xm (ϕ1 ∧ · · · ∧ ϕn → ψ) .Example 3.1.1Let sig be a signature whi
h
ontains a relation symbol is_even with α(is_even) = 1and fun
tion symbols null and s with α(null) = 0 and α(s) = 1. Then the
on
ept ofeven numbers is modeled by the following set of de�nite horn
lauses:

C1 = is_even(null) and
C2 = is_even(x)→ is_even(s(s(x))).Programs in a logi
 programming language are now given as sets of fa
ts and rules.De�nition 3.1.2 (Logi
 Program, Lloyd [105℄)Let sig = (X , F, P, α) be a signature. A (logi
) program over sig is a �nite set ofde�nite horn
lauses over sig.

32 Chapter 3. Logi
 ProgrammingExample 3.1.2Let P be the set = {C1, C2} from Example 3.1.1. Then P is a logi
 program over thesignature given there.Due to the spe
ial stru
ture of de�nite horn
lauses and goals one
an introdu
e spe-
ial notations for them. Assume that C is a de�nite horn
lause and Pos(C) = {A},Neg(C) = {¬B1, . . . ,¬Bn} for A,B1, . . . , Bn ∈ A. Then we have
C = {A,¬B1, . . . ,¬Bn}

= A ∨ ¬B1 ∨ · · · ∨ ¬Bn

≡ A ∨ ¬ (B1 ∧ · · · ∧Bn)

≡ (B1 ∧ · · · ∧Bn)→ A

=: A← B1, . . . , Bn.This
an be seen as a pro
edure de
laration for a pro
edure labeled A as des
ribed byKowalski in [94℄. The interpretation is then given as follows:To solve A, solve B1,B2,. . . ,Bn!Now assume that G is a goal
onsisting of the subgoals Gi, that is G = G1 ∧ · · · ∧Gm.By analogy we have
¬G = ¬ (G1 ∧ · · · ∧Gm)

≡ ¬G1 ∨ · · · ∨ ¬Gm

=: ← G1, . . . , Gm.Using the pro
edural interpretation from above we
an see a goal as the statementSolve G1,G2,. . . ,Gm!Now if one wants to run a logi
 program a goal G is added to the program and a

3.2 The Con
ept of SLD�Resolution 33theorem proving pro
edure tests if the goal is a logi
al
onsequen
e of the program under
onsideration. The task how this is a
hieved is the subje
t of the next se
tion of this
hapter.3.2. The Con
ept of SLD�ResolutionThis se
tion will be
on
erned with a brief explanation of the
on
ept of SLD�resolution(originally introdu
ed in [95℄) whi
h is a theorem proving pro
edure designed to handle(de�nite) horn
lauses. It is a re�nement of the
lassi
al Resolution pro
edure introdu
edby Robinson (see [140℄). Sin
e there are many ex
ellent texts on theorem proving ingeneral (and espe
ially on the topi
 of logi
 programming) the dis
ussion will be rathershort. We refer the interested reader to the literature (see [31℄, [8℄, [7℄, [105℄ and [126℄).The key result for understanding SLD�Resolution is given by the following lemmawhi
h is a spe
ial
ase of Proposition 3.1 from [105℄.Lemma 3.2.1 (Lloyd [105℄)Let P be a logi
 program and let G be a goal. Then P |= G if and only if P ∪{← G} |= �.This lemma
an also be seen as an easy
onsequen
e of Theorem 2.2.3. So if G1 ∧

· · · ∧ Gm is a logi
al
onsequen
e of P one only has to dedu
e the empty
lause from
P ∪{¬(G1∧· · ·∧Gm)}. This is a
hieved by appli
ation of the prin
iple of SLD�resolutionwhi
h we will de�ne now.Several other approa
hes for implementing logi
al programming languages have beenproposed. In prin
iple it is possible to take any
omplete proof pro
edure for �rst orderlogi
 in order to a
hieve this goal. But due to implementation di�
ulties and performan
eproblems one
on
entrates on refutation�
omplete
al
uli. Popular approa
hes are basedon tableaux te
hniques (see e.g. [67℄ and [4℄ for
al
uli for de�nite logi
 programs and [19℄and [130℄ for
al
uli for disjun
tive logi
 programming languages) and the Model Elimi-nation Te
hnique as des
ribed by Loveland in [107℄ and [108℄ (see e.g. [70℄). However, the

34 Chapter 3. Logi
 ProgrammingSLD�resolution approa
h has been the �rst method to be implemented in Prolog sys-tems and is therefore still a dominant pro
edure in logi
 programming systems. AlthoughSLD�Resolution is sound and refutation�
omplete many implementations omit
ertainoperations whi
h are ne
essary in order to guarantee these properties. In parti
ular, theo

ur�
he
k whi
h is ne
essary during the uni�
ation pro
ess is a very expensive opera-tion and therefore many implementations skip this
he
k. Although there are programswhi
h allow skipping this
he
k (see [9℄) omitting the
he
k results in losing the propertyof soundness (see e.g. [112℄). Another expensive operation is the breadth��rst sear
hstrategy whi
h is ne
essary in order to guarantee refutation�
ompleteness. Most Pro-log systems simply
arry out one inferen
e step (namely the �rst one whi
h is possible)without trying other steps whi
h might be appli
able. This might result in non�haltingderivations whi
h have trivial solutions.In order to reason about instantiations of formulas one has to de�ne a suitable
on-
ept of substitution. Intuitively a substitution repla
es variables by terms. Formally asubstitution is de�ned as a
ertain type of homomorphism on terms and formulas.De�nition 3.2.1 (Substitution, Robinson [140℄)A substitution is a mapping σ : X → T su
h that {x ∈ X | σ(x) 6= x} is �nite.Sin
e the set of variables whi
h are
hanged by the substitution σ is required to be�nite, we
an write down substitutions by stating whi
h variables are repla
ed by whi
hterms and omitting the variables whi
h remain un
hanged. The set of all these variableswill be
alled the domain of the substitution σ and will be denoted as Dom(σ). Assumethat Dom(σ) = {x | σ(x) 6= x} = {xi1 , . . . , xin} and that σ (xij) = tj ∈ T for j =

1, . . . , n. Then σ will be identi�ed by the set of bindings
{
xi1
t1
, . . . ,

xin
tn

}

=

{
xi1

σ (xi1)
, . . . ,

xin
σ (xin)

}

3.2 The Con
ept of SLD�Resolution 35where ea
h of the n bindings xij

tj
denotes the substitution σj with

σj(x) =







tj ⇔ x = xij

x ⇔ elseSubstitutions are extended to terms and formulas by de�ning homomorphi
 extensions:
σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)),

σ(p(t1, . . . , tn)) = p(σ(t1), . . . , σ(tn)),

σ(¬ϕ) = ¬σ(ϕ),

σ(ϕ1 ∧ ϕ2) = σ(ϕ1) ∧ σ(ϕ2),

σ(ϕ1 ∨ ϕ2) = σ(ϕ1) ∨ σ(ϕ2),

σ(ϕ1 → ϕ2) = σ(ϕ1)→ σ(ϕ2),

σ(ϕ1 ↔ ϕ2) = σ(ϕ1)↔ σ(ϕ2),

σ(∀xϕ) = ∀xσ(ϕ) and
σ(∃xϕ) = ∃xσ(ϕ).Substitutions
an be
omposed in order to build
omplex substitutions from simplerones. This will be interesting for us in the following part of this se
tion when we willde�ne the result
omputed by a logi
 program P given a goal G as input.De�nition 3.2.2 (Composition of Substitutions, Robinson [140℄)Let σ1 =

{

x
(1)
1

t
(1)
1

, . . . , x
(1)
n

t
(1)
n

} and σ2 =

{

x
(2)
1

t
(2)
1

, . . . , x
(2)
m

t
(2)
m

} be substitutions. Then thesubstitution σ1 ◦ σ2 (the
omposition of σ1 and σ2) is de�ned as follows:
σ1 ◦ σ2 =







x
(1)
1

σ2

(

t
(1)
1

) , . . . ,
x

(1)
n

σ2

(

t
(1)
n

) ,
x

(2)
1

t
(2)
1

, . . . ,
x

(2)
m

t
(2)
m







36 Chapter 3. Logi
 Programming
\











x
(1)
i

σ2

(

t
(1)
i

) | x(1)
i = σ2

(

t
(1)
i

)






∪
{

x
(2)
j

t
(2)
j

| x(2)
j ∈

{

x
(1)
1 , . . . , x(1)

n

}
}



That is in order to
ompute the
omposition of σ1 and σ2 one �rst applies σ2 to theterms whi
h σ1 repla
es for the variables in its domain, then adds the bindings of σ2(in order to add the elements whi
h are not yet in the domain of σ1) and then redu
esthe resulting set by removing identi
al bindings and su
h bindings whi
h won't have anye�e
t.We will identify a distinguished element ε as the substitution whi
h does not
ontainany binding and so will have no e�e
t on the obje
ts to whi
h it is applied. This elementis given as ε = ∅ and is denoted as the empty substitution. The
omposition operation ◦enjoys the following properties (Proposition 4.1 from [105℄):Lemma 3.2.2 (Properties of Substitutions, Lloyd [105℄)Let σ1, σ2 and σ3 be substitutions, let t be a term and let ϕ be a formula. Then1. σ1 ◦ ε = ε ◦ σ1 = σ1,2. σ2(σ1(t)) = (σ1 ◦ σ2)(t),3. σ2(σ1(ϕ)) = (σ1 ◦ σ2)(ϕ) and4. (σ1 ◦ σ2) ◦ σ3 = σ1 ◦ (σ2 ◦ σ3).Let ϕ1 and ϕ2 be arbitrary formulas from F . We say that ϕ1 and ϕ2 are variants ifthere are substitutions σ1 and σ2 su
h that σ1(ϕ1) = ϕ2 and σ2(ϕ2) = σ1.Now let t1, t2 be terms and let ϕ1, ϕ2 be literals. Substitutions σ whi
h yield synta
-ti
ally identi
al obje
ts, i.e. substitutions σ su
h that σ(t1) = σ(t2) or σ(ϕ1) = σ(ϕ2)play an important role.

3.2 The Con
ept of SLD�Resolution 37De�nition 3.2.3 (Uni�
ation)Let t1 and t2 be terms, let ϕ1 and ϕ2 be literals. t1 and t2 (respe
tively ϕ1 and ϕ2)are said to be uni�able if and only if there is a substitution σ su
h that σ(t1) = σ(t2)(respe
tively σ(ϕ1) = σ(ϕ2)). σ is
alled a uni�er.Some uni�ers
an be
hara
terized as uni�ers whi
h only
hange the obje
ts to beuni�ed as mu
h as ne
essary.De�nition 3.2.4 (Most General Uni�er)Let t1 and t2 be terms and let ϕ1 and ϕ2 be literals. A uni�er σ for t1 and t2(respe
tively for ϕ1 and ϕ2) is
alled a most general uni�er (or mgu) if and only iffor every uni�er σ1 for t1 and t2 (respe
tively ϕ1 and ϕ2) there is a substitution σ2su
h that σ = σ1 ◦ σ2. We will denote this by writing σ = mgu(t1, t2) (respe
tively
σ = mgu(ϕ1, ϕ2)).Having de�ned whi
h properties a most general uni�er satis�es it is ne
essary to ensurethat in the
ase of uni�able obje
ts there is indeed an algorithm whi
h
an
ompute su
ha substitution. The following lemma from [140℄ ensures this.Lemma 3.2.3 (Uni�
ation Theorem, Robinson [140℄)Let t1 and t2 be terms and let ϕ1 and ϕ2 be literals. If t1 and t2 (respe
tively ϕ1 and

ϕ2) are uni�able, then there exists a mgu of t1 and t2 (respe
tively ϕ1 and ϕ2) whi
h isuniquely determined up to renaming of variables and whi
h
an be e�e
tively
omputed.Several algorithms have been proposed for
omputing most general uni�ers. The �rstand also most simple one was presented by Robinson in 1965 (see [140℄) whi
h has thedrawba
k that its worst
ase runtime is exponential in the length of the obje
ts to beidenti�ed. It has also been shown that the uni�
ation problem is solvable in lineartime by Paterson and Wegman whi
h presented an algorithm whi
h operates on dire
ted

38 Chapter 3. Logi
 Programminga
y
li
 graphs representing the obje
ts (see [129℄). However, due to its simpli
ity anotheralgorithm introdu
ed by Martelli and Montanari in 1982 (see [113℄) is used very oftenin Logi
 Programming systems. We will re�ne this algorithm in order to be
apable ofhandling temporal obje
ts in a later
hapter.Now let P = {P1, . . . , Pn} be a logi
 program. Furthermore assume that G = G1 ∧

· · · ∧ Gm is a goal. Due to the spe
ial stru
ture of de�nite horn
lauses we
an assumethat ea
h Pi
an be written as
Pi = Ai ← B

(i)
1 , . . . , B(i)

nifor some ni and Ai, B(i)
1 , . . . , B

(i)
ni ∈ A. Assume that i and j are su
h that Gj and Aiare uni�able with σ = mgu(Ai, Gj). The resolvent (or SLD�resolvent) of G and Pi withrespe
t to σ is the goal

σ
(

G1 ∧ · · · ∧Gj−1 ∧B(i)
1 ∧ . . . , B(i)

ni
∧Gj+1 ∧ · · · ∧Gm

)

= σ (G1) ∧ · · · ∧ σ (Gj−1) ∧ σ
(

B
(i)
1

)

∧ · · · ∧ σ
(

B(i)
ni

)

∧ σ (Gj+1) ∧ · · · ∧ σ (Gm)

=:
(

G1 ∧ · · · ∧Gj−1 ∧B(i)
1 ∧ · · · ∧B(1)

ni
∧Gj+1 ∧ · · · ∧Gm

)

σDe�nition 3.2.5 (SLD�derivation�step, Kowalski and Kuehner [95℄)Let P be a logi
 program and let G = G1∧· · ·∧Gm be a goal. An SLD�derivation�stepis a sequen
e of a
tions
arried out as follows:1. A subgoal Gi is
hosen.2. A
lause A ← B1, . . . , Bn from P is
hosen su
h that A and Gi are uni�able.Let σ be a most general uni�er for A and Gi.3. The SLD�resolvent G′ of G and A ← B1, . . . , Bm with respe
t to σ is
on-stru
ted.

3.2 The Con
ept of SLD�Resolution 39Given P we will write G ⊢Res G′ if there is an SLD�derivation�step yielding G′ from
G. The relation ⊢ is then de�ned as the re�exive�transitive
losure of ⊢Res:

G
0
⊢ G′ :⇔ G = G′,

G
1
⊢ G′ :⇔ G ⊢Res G′ and

G
n+1
⊢ G′ :⇔ there is Ḡ su
h that G n

⊢ Ḡ and Ḡ 1
⊢ G′So we
an de�ne G ⊢ G′ if there is some n ≥ 0 su
h that G n

⊢ G′. In other words ⊢=⊢∗Res.An SLD�derivation of G from P is a sequen
e (Gi)i≥0 su
h that G0 = G and for ea
h ithere is a
lause from P whi
h
an be used in order to
arry out an SLD�derivation�stepyielding Gi+1.An SLD�derivation (Gi)i≥0 of G from P whi
h is of �nite length, say (Gi)
n
i=1 is
alledan SLD�derivation of Gn from P given input G.An SLD�derivation (Gi)

n
i=1 of Gn from P given input G0 is
alled su

essful if Gn = �.In the
ase that there is a su

essful SLD�derivation of � from P given input G wewill write P ⊢ G, otherwise we will write P 6⊢ G. Furthermore we will
all su

essfulSLD�derivations of � from P given input G SLD�refutations of← G from P . Sometimeswe will also refer to SLD�derivations of goals from P given input G as SLD�derivationsof P ∪ {← G}.So given a program P and a goal G one
an
onstru
t all possible derivations of

P ∪ {← G} and
he
k if there is a refutation of P ∪ {← G}. If su
h a refutation exists,then it
an be found by breadth��rst�sear
h. If no su
h refutation exists, then in generalthere is no way to dete
t this sin
e the fragment of
lausal logi
 is unde
idable (see [142℄).Example 3.2.1Again
onsider the program from Examples 3.1.1 and 3.1.2. Assume that the goal G isgiven by G = is_even(s(s(s(s(null))))). Then an SLD�refutation of P ∪ {← G}
anbe visualized as depi
ted in Figure 3.1 where an arrow between two goals means that the

40 Chapter 3. Logi
 Programming
is_even(s(s(s(s(null)))))

is_even(s(s(null)))

is_even(null)Figure 3.1.: SLD�refutationse
ond goal is a resolvent of the �rst one (with respe
t to a suitable mgu).3.3. Soundness and CompletenessAs we have seen
omputations by logi
 programs are
arried out by giving a goal G toa program P and proving that the set P ∪ {← G} is unsatis�able, that is proving that
P∪{← G} ⊢ � holds. The result of su
h a
omputation is given by the substitution whi
hemerges from
omposing the uni�ers used in this refutation. Let σ be this substitution.We �rst state the following lemma:Lemma 3.3.1 (Soundness, Apt and v. Emden [10℄)The SLD�resolution rule is sound. That is if P ⊢ ϕ, then P |= ϕ.This lemma is proved dire
tly in [10℄ but it is also a
onsequen
e of the soundness ofthe general resolution rule presented in [140℄.So assume that P ∪ {← G} ⊢ �. Then we have P ∪ {← G} |= � and due to Lemma3.2.1 we have P |= G. Sin
e G is a goal, we have G =← G1, . . . , Gm for atoms Gi andtherefore P |= G1 ∧ · · · ∧Gm.We introdu
e two
on
epts of substitutions whi
h will turn out to be useful.De�nition 3.3.1 (Answer, Lloyd [105℄)Let P be a logi
 program and let G = G1, . . . , Gm be a goal.

3.3 Soundness and Completeness 411. An answer for P ∪ {← G} is a substitution for the variables o

urring in G.2. A
orre
t answer for P∪{← G} is an answer σ su
h that P |= (G1 ∧ · · · ∧Gm)σ.3. A
omputed answer for P∪{← G} is the
omposition of the most general uni�ersused in a refutation of P ∪ {← G}.So a
omputed answer for P ∪{← G}
an be seen as a result
omputed by the program
P given a goal G as input. Indeed, this interpretation of logi
 programs and goals is anadequate way to
arry out
omputations as the next theorem shows.Theorem 3.3.1 (Refutation�Completeness, v. Emden and Kowalski [164℄)Let P be a logi
 program and let G be a goal.1. Every
omputed answer for P ∪ {← G} is a
orre
t answer for P ∪ {← G}.2. For every
orre
t answer σ for P ∪ {← G} there is a
omputed answer σ1 for

P ∪ {← G} and a substitution σ2 su
h that σ = σ1 ◦ σ2.So if an answer is
omputed by using SLD�resolution this answer is a
orre
t solutionof the problem modeled by the program P under
onsideration (soundness). Additionallyit is possible to
ompute any answer whi
h
an be instantiated to a
orre
t one (
om-pleteness). Furthermore it is possible to model every
omputable fun
tion by a suitablelogi
 program (see [5℄). So predi
ate logi

an indeed be seen as an adequate formalismfor
omputation.

42 Chapter 3. Logi
 Programming

4. Indu
tive Logi
 Programming
Contents4.1. The basi
 Framework . 434.2. Generalization and Spe
ialization 464.3. Re�nement Operators and their Properties 47This
hapter will be
on
erned with a brief introdu
tion of the
on
epts from Indu
tiveLogi
 Programming (or ILP for short) whi
h we will extend to the temporal logi
 to bede�ned in the next part of this thesis. Therefore we will �rst present a des
ription of thetasks whi
h ILP systems have to perform. After this we will introdu
e several important
on
epts from latti
e theory whi
h will be used throughout the next
hapters.4.1. The basi
 FrameworkIndu
tive Logi
 Programming is
on
erned with synthesizing general rules from exam-ples. Hen
eforth it is a spe
ial
ase of the theory of algorithmi
 learning. In generalalgorithmi
 learning is a generi
 term for every theory whi
h is
on
erned with determin-ing explanations for
ertain phenomena. In ILP, the obje
ts (or
on
epts) to be learnedare logi
 programs. The hints about the
on
ept to be learned are given by sets E+and E−
onsisting of ground atoms. These sets are
onsidered to be examples for the(unknown) program P to be learned. E+
ontains the positive examples and E−
ontainsthe negative ones. The interpretation of positive end negative examples is then given by

44 Chapter 4. Indu
tive Logi
 Programming
• P |= e+ for every e+ ∈ E+ and
• P 6|= e− for every e− ∈ E−.The problem setting whi
h we will use here is usually referred to as the normal problemsetting for ILP1. Some properties of a program P and sets E+ and E−
an be de�nedformally as follows (following [126℄).De�nition 4.1.1 (Properties of Programs, e.g. [126℄)Let P be a logi
 program and let E+ and E− be (�nite) sets of ground atoms. P is
alled
•
omplete wrt. E+ if P |= e+ for every e+ ∈ E+,
•
onsistent wrt. E− if P ∪ {¬e− | e− ∈ E−} 6|= � and
•
orre
t wrt. E+ and E− if P is
omplete wrt. E+ and
onsistent wrt. E−.Additionally the following de�nitions allow a
loser
lassi�
ation of programs relativeto given sets of examples.De�nition 4.1.2 (Further Properties, e.g. [126℄)Let P be a logi
 program and let E+ and E− be sets of positive and negative examples.

P is
alled
• too strong wrt. E− if P is not
onsistent wrt. E−,
• too weak wrt. E+ if P is not
omplete wrt. E+,
• overly general wrt. E+ and E− if P is
omplete wrt. E+ and not
onsistent wrt.
E− and1In
ontrast to the normal setting the nonomontoni
 setting for ILP has been de�ned (see [79℄).

4.1 The basi
 Framework 45
• overly spe
i�
 wrt. E+ and E− if P is
onsistent wrt. E− and not
omplete wrt.
E+.The task, whi
h an ILP system has to perform is to �nd (or synthesize) a program Pwhi
h is
orre
t wrt. given sets E+ and E−.Usually this normal setting is extended in a way that the usage of ba
kground knowl-edge is possible. Ba
kground knowledge is given as a �nite set B of
lauses whi
h areinterpreted as rules whi
h are known to be
orre
t. The program P to be synthesized isnow required to have the following properties:

• P ∪ B |= e+ for every e+ ∈ E+ and
• P ∪ B 6|= e− for every e− ∈ E−.It is possible to distinguish between several ways the examples are presented to an ILPsystem.Bat
h / In
remental In a bat
h learning system the examples from E+ and E− are givento the system at the beginning of the learning task. In
ontrast, an in
rementallearning system re
eives the examples at di�erent points of time. An example fora bat
h learning system is Foil (see [137℄).Top down / Bottom up The distin
tion between top down and bottom up systems
omes from the dire
tion in whi
h the system sear
hes for a
orre
t program. Whilein a top down system an overly general set P ∪ B is spe
ialized, in a bottom upsystem an overly spe
i�
 set P ∪B is generalized. Generalization and spe
ializationwill be treated in depth in a later
hapter taking temporal literals and
lauses intoa

ount.Intera
tive / Nonintera
tive An intera
tive system is
apable of intera
ting with theuser. Therefore su
h a system
an ask if some assumptions it has generated while

46 Chapter 4. Indu
tive Logi
 Programmingsear
hing for a
orre
t program are ful�lled or not. This allows the generation ofbetter programs.In all
ases, the program whi
h is generated from the sets E+, E− and B
annot beguaranteed to be exa
tly the program whi
h the person who has generated the exampleshas in mind. Rather it is (in most
ases2) possible to
onstru
t a program whi
h is
orre
t with respe
t to examples seen so far and whi
h has a very high probability ofbeing
orre
t for other examples whi
h have not yet been seen.4.2. Generalization and Spe
ializationIn order to modify a logi
 program to �t its spe
i�
ation one has to re�ne the program bymanipulating
lauses in order to imply more or less atoms. The basis of all re�nementoperations is some �xed generality ordering, mostly the subsumption ordering whi
his both relatively powerful and still de
idable (in
ontrast to the ordering indu
ed bylogi
al impli
ation whi
h in general is unde
idable). We will here restri
t our attentionon re�nement operations on pairs of
lauses. Assume that a quasi ordering �3 on theset of
lauses over some signature is given. Further assume that C1 and C2 are
lauses.A
lause C is then
alled (following [133℄)
• a generalization of C1 and C2 if C � C1 and C � C2 and
• a spe
ialization of C1 and C2 if C � C1 and C � C2.Certain spe
ializations and generalizations are of spe
ial interest in ILP. A
lause C is
alled
• a least generalization of C1 and C2 if C is a generalization of C1 and C2 and forevery generalization D of C1 and C2 it holds that D � C and2Note that there may exist (nontrivial) E+ and E− su
h that no
orre
t P may exist, see [126℄ for aproof of this.3� is
alled a quasi�ordering if � is re�exive and transitive. Given � the notation � will be used asexpe
ted. We will write ≈ if both � and � holds and ≺ (resp. ≻) if � (res. �) and not ≈ holds forpairs of obje
ts of the underlying set.

4.3 Re�nement Operators and their Properties 47
• a greatest spe
ialization of C1 and C2 if C is a spe
ialization of C1 and C2 and forevery spe
ialization D of C1 and C2 it holds that C � D.A pair (S,�)
onsisting of a nonempty set S and a quasi�ordering � is
alled a latti
eif for every pair x1, x2 of elements from S there exists a least generalization and a greatestspe
ialization wrt. � in S.Assuming that the
hosen ordering � yields a latti
e stru
ture4, operations for re�ne-ment
an be implemented in two ways:Upward Re�nement Given C1 and C2
onstru
t a least generalization of C1 and C2 wrt.
�.Downward Re�nement Given C1 and C2
onstru
t a greatest spe
ialization of C1 and
C2 wrt. �.4.3. Re�nement Operators and their PropertiesAs we have des
ribed in
hapter 4.2, spe
ialization and generalization are
entral oper-ations whi
h any ILP system has to perform. An algorithm whi
h is
apable of general-izing and/or spe
ializing
lauses is
alled a re�nement operator. Consequently one
andistinguish between Upward Re�nement Operators and Downward Re�nement Operatorsdepending on the dire
tion in whi
h the re�nement is performed, that is depending on thequestion whether it
onstru
ts a generalization or a spe
ialization of the input
lauses.Formally we assume that a generality ordering � (a quasi ordering) is given as des
ribedabove. A downward re�nement operator is a fun
tion ρd mapping
lauses to sets of
lausessu
h that for every
lause C it holds that

ρd(C) ⊆ {D | C � D} .4In
hapter 6 we will see that there are indeed orderings whi
h have this property.

48 Chapter 4. Indu
tive Logi
 ProgrammingConsequently an upward re�nement operator is given as a fun
tion ρu mapping
lausesto sets of
lauses su
h that for ea
h
lause C it holds that
ρu(C) ⊆ {D | D � C} .Let ρ be any re�nement operator (upward or downward) and let C be a
lause. A
-
ording to the notational
onventions from [126℄ we de�ne 1�step�re�nement, n�step�re�nements and re�nements as follows:

ρ1(C) = ρ(C) (1�step�re�nement),
ρn(C) = ρ(ρn−1(C)), n > 1 (n�step�re�nement) and
ρ∗(C) =

⋃

i≥1

ρi(C) (re�nement)
ρ is
alled
• lo
ally �nite if for every C the set ρ(C) is �nite and
omputable,
•
omplete if for every pair C1, C2 su
h that C1 ≻ C2 (or C1 ≺ C2 for upwardre�nement operators) there is an element C ∈ ρ∗(C1) su
h that C ≈ C2,
• proper if for every C it holds that ρ(C) ⊆ {D | D ≻ C} (or ρ(C) ⊆ {D | D ≺ C})and
• ideal if ρ is lo
ally �nite,
omplete and proper.Ideality seems to be a desirable property of re�nement operators. However, in generalit is not possible to guarantee the existen
e of su
h ideal re�nement operators (see forexample [162℄).

Part II.
First Order Indu
tive TemporalLogi
 Programming

5. The Programming LanguageProlog(+T)
Contents5.1. Syntax of Prolog(+T) . 525.1.1. Terms in Prolog(+T) . 525.1.2. Fa
ts . 555.1.3. Rules . 555.1.4. Programs . 575.1.5. Queries . 595.1.6. The Relation of Prolog(+T) to other Temporal Logi
 pro-gramming Languages . 605.2. De
larative Semanti
s of Prolog(+T) 655.2.1. Preliminaries . 655.2.2. Redu
tion of Literals . 745.2.3. Semanti
s for programs . 815.3. A Saturation�based temporal Proof Pro
edure 865.3.1. Tableaux Rules . 875.3.2. Soundness and Completeness Issues 104We will now introdu
e the programming language of interest. This language will besimilar to Prolog (see [154℄ for an introdu
tion) but will allow the usage of temporal

52 Chapter 5. The Programming Language Prolog(+T)operators. Therefore we will
all it Prolog(+T). Prolog(+T) will allow list pro
essing(as Prolog does) but
onstraints have not yet been integrated.5.1. Syntax of Prolog(+T)5.1.1. Terms in Prolog(+T)Sin
e Prolog(+T) is essentially a logi
 programming language whi
h is enri
hed withthe temporal operators X, G, F, U and P, the basi

on
epts are the same as des
ribed in
hapter 3.1. However, to be
ome a pra
ti
ally usable language, the usage of terms has tobe simpli�ed in order to allow more
omfortable manipulating te
hniques. In parti
ular,Prolog(+T) allows lists as terms whi
h is probably the most
omfortable feature ofProlog.De�nition 5.1.1 (Prolog(+T)�terms)Let sig = (X , F, P, α) be a signature. The set of Prolog(+T)�terms over sig isde�ned to be the smallest set whi
h is
losed under the following rules:1. _ is a Prolog(+T)�term,2. every string representing an integer is a Prolog(+T)�term,3. every term t ∈ T (sig) is a Prolog(+T)�term,4. if t1, . . . , tn is a �nite (possibly empty) sequen
e of Prolog(+T)�terms, then
[t1, . . . , tn] is a Prolog(+T)�term and5. if t is a Prolog(+T)�term and t1, . . . , tn is a �nite (possibly empty) sequen
eof Prolog(+T)�terms, then [t|t1, . . . , tn] is a Prolog(T)�term.We will make use of the following
onvention: Variable identi�ers will start with upper
ase letters while other identi�ers su
h as fun
tion symbols and predi
ate symbols have

5.1 Syntax of Prolog(+T) 53to start with lower
ase letters.The term _ is referred to as an anonymous variable. Anonymous variables are a
on
ept whi
h is re
ently used in Prolog�programs in order to de�ne predi
ates whi
hhave variables as parameters whi
h are not used in the de�nition. An example might bethe de�nition of the nonnegative subtra
tion fun
tion:nndi�(x, y) =







x− y ⇔ x ≥ y

0 else .If x is a variable symbol and 0 is a term representing the natural number 0, then thefollowing 3�ary predi
ate might be part of the de�nition of the fun
tion nndi� : N
2 → N:

pnndi�(0, X, 0).This models the following part of the de�nition of nndi�: nndi�(0, x) = 0 for everyvalue of x. Consequently, the value of x itself does not play any role in this
ase. Sothe o

urren
e of x
an be repla
ed by the anonymous variable _ here whi
h yields thepredi
ate
pnndi�(0,_, 0).In general, anonymous variables might be used whenever one is only
on
erned withproving that a solution exists without being interested in the a
tual value of this solution.Integers are in
luded in order to yield more
omfortable programming fa
ilities. It isobvious that integers are not essential for the
ompleteness of the language sin
e it ispossible to de�ne the natural numbers N (and therefore the integers Z) in terms of a
onstant symbol null and an unary fun
tion s realizing the su

essor fun
tion.The terms built up using the last two points from the above de�nition are referredto as lists. They represent
olle
tions of elements. The term [] represents the so
alled

54 Chapter 5. The Programming Language Prolog(+T)empty list whi
h does not
ontain any elements. If a list
an be des
ribed by
ompletelywriting down all its elements, then it might be realized as a list of the form [t1, . . . , tn].Note that the empty list is just a spe
ial
ase of su
h a list and also note that some ofthe elements t1, . . . , tn might again be lists sin
e the de�nition of Prolog(+T)�termsis re
ursive. So the following
onstru
t is a well�formed Prolog(+T)�term1:
[f(X), g(f(X), a), [], [Y|a, b, c]].In lists of the form t = [t̄|t1, . . . , tn], the term t̄ is usually referred to as the head of thelist while the list [t1, . . . , tn] is referred to as the tail of the list.For all kinds of Prolog(+T)�terms t we de�ne the set Var(t) to
ontain all variableso

urring in t. Formally this is a

omplished as follows.De�nition 5.1.2 (Variables in Prolog(+T)�terms)Let t be a Prolog(+T)�term. Then the set Var(t) of variables of t is de�ned asfollows:1. if t = _ or t = [], then Var(t) = ∅,2. if t = X for some variable identi�er X, then Var(t) = {X},3. if t = f(t1, . . . , tn) or t = [t1, . . . , tn], then Var(t) =

⋃n
i=1Var(ti) and4. if t = [t̄|t1, . . . , tn], then Var(t) = Var(t̄) ∪⋃n

i=1Var(ti).A variable is said to o

ur in a term t if and only if it is a member of the set Var(t).Anonymous variables and the list
on
ept are only introdu
ed in order to improve theusability of Prolog(+T) for pra
ti
al appli
ations. It is possible to show that omittingthese
on
epts does not e�e
t the expressivity of the language. Therefore we will not1Provided that the signature of interest does
ontain de�nitions for the symbols used in this term.

5.1 Syntax of Prolog(+T) 55deal with lists and anonymous variables in proofs of properties in the sequel.5.1.2. Fa
tsAs in Prolog, Prolog(+T) allows modeling relationships between obje
ts as rulesand fa
ts (whi
h are a spe
ial
ase of rules, namely rules without premises). Roughlyspeaking, rules are models of inferen
es whi
h may be
arried out. In general su
hinferen
es may only be appli
able if some premises are ful�lled. For fa
ts no su
h premisesare present: any fa
t is interpreted as something whi
h is true without having to be proved.As in Prolog, fa
ts in Prolog(+T) are equivalent to atomi
 formulas.De�nition 5.1.3A Prolog(+T)�fa
t is a string of the form
ϕ.,where ϕ ∈ At(sig) (for some suitable signature sig) is an atomi
 formula of FoLtl.Note the symbol . at the end of the de�nition of a fa
t. This
omes from the
ir
um-stan
e that fa
ts are spe
ial
ases of rules.5.1.3. RulesAs des
ribed above, rules in general model allowed inferen
es whi
h may be applied ifsome premises are known to be ful�lled. Rules are (as des
ribed in
hapter 3.1) modeledas
lauses. However, we will not restri
t ourselves on (de�nite) horn
lauses here.De�nition 5.1.4 (Rules in Prolog(+T))Let sig = (X , F, P, α) be a signature. A Prolog(+T)�rule is either a Prolog(+T)�

56 Chapter 5. The Programming Language Prolog(+T)fa
t or a statement of the form
ψ :−ϕ1, . . . , ϕn.for ψ ∈ At(sig) and ϕ1, . . . , ϕn ∈ Lt(sig). The atom ψ is
alled the head of the rulewhile the set {ϕ1, . . . , ϕn} is
alled the tail of the rule.

So the tail of a rule des
ribes the premises whi
h have to be proved while the headdes
ribes the proposition whi
h
an be inferred. In general the tail may
ontain nega-tive literals, that is ϕi ∈ Lt(sig) \ At(sig) is permitted. This has both advantages anddisadvantages. On the one hand, allowing negated premises yields better readable, moreelegant and shorter programs, on the other hand the de�nition of the semanti
s of pro-grams
ontaining rules with negated premises is more
ompli
ated to des
ribe. We willsee how this
an be over
ome in a later se
tion of this
hapter.For reasons of readability we will make the following
onvention: if
ψ :−ϕ1, . . . , ϕn.is a Prolog(+T)�rule and ϕi is from Lt(sig) \ At(sig), that is ϕi = ¬ϕ for some

ϕ ∈ Lt(sig), then we will write ϕi = not(ϕ) instead. Another reason for using the abovenotation is the fa
t that we will not be dealing with
lassi
al negation but merely withnegation as failure (or better: with an adaption of this negation�approa
h). Intuitively
not(ϕ) is assumed to be a logi
al
onsequen
e of a program P if ϕ
annot be provedfrom P in a �nite number of proof steps or equivalently if every attempt to prove ϕ from
P fails after a �nite number of steps. We will see in later se
tions how the negation asfailure�approa
h
an be adapted in order to handle Prolog(+T)�programs.

5.1 Syntax of Prolog(+T) 575.1.4. ProgramsAs in Prolog, a program in Prolog(+T) is given as a �nite set of Prolog(+T)�rules(and fa
ts). The variables in the rules will be assumed to be universally quanti�ed. Thisis a useful assumption as we will see when studying the semanti
s of Prolog(+T)�programs in
hapter 5.2.De�nition 5.1.5 (Prolog(+T)�program)A Prolog(+T)�program is a �nite set P of Prolog(+T)�rules.Prolog(+T)�programs (or simply programs if there's no way of
onfusion) will bedenoted as P, P̄ , P ′ . . . from now on. Due to the spe
ial form of the formulas in programsit is possible to build a formula whi
h is semanti
ally equivalent to a Prolog(+T)�program and whi
h has a very simple form. Let P be a program
ontaining n rules.That is let P = {P1, . . . , Pn} where ea
h Pi has the form
Pi = ψ(i) :−ϕ(i)

1 , . . . , ϕ(i)
ni
.for ψ(i) ∈ At(sig) and ϕ(i)

1 , . . . , ϕ
(i)
ni ∈ Lt(sig) and some ni ∈ N. For formal reasons wewill identify ψ(i) :− and ψ(i). Due to the interpretation of
lauses as sets of literals wetherefore have

Pi ≡ ¬
(

ϕ
(i)
1 ∧ · · · ∧ ϕ(i)

ni

)

∨ ψ(i)

≡ ¬ϕ(i)
1 ∨ · · · ∨ ¬ϕ(i)

ni
∨ ψ(i)

≡ ψ(i) ∨
ni∨

j=1

¬ϕ(i)
jfor i = 1, . . . , n. Sin
e sets of
lauses are satis�ed under interpretations if all
lauses aresatis�ed simultaneously we have J |= P if and only if J |= Pi for i = 1, . . . , n if and only

58 Chapter 5. The Programming Language Prolog(+T)if J |= P1 ∧ · · · ∧ Pn if and only if J |= ∧n
i=1 Pi. This gives P ≡ ∧n

i=1 Pi and therefore
P ≡

n∧

i=1

Pi

=

n∧

i=1



ψ(i) ∨
ni∨

j=1

¬ϕ(i)
j



is a relatively simple formula whi
h might
hara
terize the semanti
s of a Prolog(+T)�program P .From now on we will assume that the rules in a program P are standardized apart.De�nition 5.1.6Let ϕ1 and ϕ2 be FoLtl�formulas. ϕ1 and ϕ2 are
alled standardized apart ifVar(ϕ1) ∩Var(ϕ2) = ∅.It is obvious that two rules from a program
an be easily standardized apart. Thisis a
onsequen
e of the assumption that all variables in rules are impli
itly universallyquanti�ed: let P be a program as des
ribed above and let i, j ∈ {1, . . . , n} be su
hthat Var(P1) ∩ Var(P2) = {Xi1, . . . , Xik} 6= ∅. We now �x two sets {X(1)
i1
, . . . , X

(1)
ik

}and {X(2)
i1
, . . . , X

(2)
ik

} su
h that {X(1)
i1
, . . . , X

(1)
ik
, X

(2)
i1
, . . . , X

(2)
ik

}

∩ (Var(P1) ∪Var(P2)) = ∅,de�ne substitutions
σi =

{

Xi1

X
(i)
i1

, . . . ,
Xik

X
(i)
ik

} and
σj =

{

Xi1

X
(j)
i1

, . . . ,
Xik

X
(j)
ik

}

and repla
e the program P by P̄ = (P \ {Pi, Pj})∪{σi(Pi), σj(Pj)}. Due to the impli
ituniversal quanti�
ation of all variables in the rules of P we have P |= ϕ if and only if
P̄ |= ϕ for any ϕ.

5.1 Syntax of Prolog(+T) 595.1.5. QueriesAs in Prolog, a Prolog(T)�program is run by giving a query to the program andsear
hing for a substitution su
h that the result of applying this substitution to the queryyields a logi
al
onsequen
e of the program. Formally we will adopt the philosophy oflogi
 programming as des
ribed in
hapter 3.1. A query in Prolog(+T) is thereforeinterpreted as a sequen
e of single queries whi
h have to be solved one by one. As inrules we will also allow negation as failure in queries.
De�nition 5.1.7 (Prolog(+T)�query)Let sig = (X , F, P, α) be a signature. A Prolog(+T)�query over sig is a formula ofthe form

G = ϕ1, . . . , ϕn.,su
h that ϕ1, . . . , ϕn ∈ Lt(sig).
As we are interested in substitutions for the variables in a goal, we need the
on
eptof an answer as des
ribed by [105℄. An answer for a query G is a substitution σ su
hthat Dom(σ) = Var(G). If P is a Prolog(+T)�program and G = ϕ1, . . . , ϕn., thenan answer σ is
alled
orre
t for G if P |= σ(ϕ1) ∧ · · · ∧ σ(ϕn). Obviously the semanti
sof a program P
an be
hara
terized in terms of the set of all goals G
onsisting of asingle query (i.e. G = ϕ. for some ϕ ∈ Lt(sig)) su
h that there is a
orre
t answer σ for

G. In this
ase σ(ϕ) is
ontained in the set
hara
terizing the semanti
s of the program.How these
hara
terization
an be formally des
ribed will be the subje
t of the followingse
tion of this
hapter.

60 Chapter 5. The Programming Language Prolog(+T)5.1.6. The Relation of Prolog(+T) to other Temporal Logi
 programmingLanguagesThis se
tion will deal with the question of how Prolog(+T) di�ers from other temporallogi
 programming languages introdu
ed so far. In parti
ular we will dis
uss the di�er-en
es between Prolog(+T), Templog and Tokio. It will turn out that on the onehand Prolog(+T) is synta
ti
ally
losely related to Templog although there are somedi�eren
es whi
h are worth pointing out. On the other hand we will dis
uss Tokio whi
his also similar to Prolog(+T) regarding the temporal operators used in its de�nitionbut whi
h has a
ompletely di�erent philosophi
al origin.TemplogTemplog is a �rst�order temporal programming language whi
h has originally beenintrodu
ed and de�ned by Abadi and Manna in [3℄ and [2℄. The underlying logi
 ofTemplog allows the usage of the same set of temporal operators as Prolog(+T) whilethe authors distinguish between �exible and rigid symbols. Flexible symbols may beinterpreted as operations with a semanti
s whi
h
hanges over time while the interpreta-tions of rigid symbols must not be depending on the point of time at whi
h the symbolis evaluated.In [3℄ the de�nition of Templog is
arried out as follows:1. The authors de�ne a temporal logi
 on whi
h Templog is based.2. They de�ne a fragment of Templog in order to present the basi
 ideas.3. Finally they introdu
e the full logi
 by enhan
ing the set of temporal operatorswhi
h are allowed in the de�nition of the programming statements of the program-ming language Templog.The fragment of Templog whi
h is de�ned in [3℄ introdu
es the
on
epts of initialtemporal horn
lauses and permanent temporal horn
lauses as an extension of the horn-

5.1 Syntax of Prolog(+T) 61
lauses whi
h are used as programming statements in Prolog. An initial temporalhorn
lause is a
onstru
t whi
h has the form
∀x1 . . . ∀xk (ϕ1 ∧ · · · ∧ ϕn → ψ)for so
alled next�atomi
 formulas ϕ1, . . . , ϕn and ψ where ⋃n

i=1Var(ϕi) ∪ Var(ψ) =

{x1, . . . , xn}. Here a formula ϕ is
alled next�atomi
 if ϕ has the form ϕ = Xiϕ̄ for some
i ≥ 0 and some atom ϕ̄. Due to the fa
t that the de�nition Templog is motivated bythe wish to enhan
e Prolog with temporal operators the authors of [3℄ introdu
e theabbreviation

ψ ← ϕ1, . . . , ϕn := ∀x1 . . . ∀xk (ϕ1 ∧ · · · ∧ ϕn → ψ)whi
h
learly shows the relation between Templog and Prolog.Additionally permanent temporal horn
lauses are programming statements of the form
∀x1 . . . ∀xkG (ϕ1 ∧ · · · ∧ ϕn → ψ)for next�atomi
 formulas ϕ1, . . . , ϕn and ψ and {x1, . . . , xk} as before. Similar to initialtemporal horn
lauses permanent temporal horn
lauses may be abbreviated using

ψ ⇐ ϕ1, . . . , ϕn := ∀x1 . . . ∀xkG (ϕ1 ∧ · · · ∧ ϕn → ψ) .Programs in the fragment de�ned in this way are de�ned as sets
onsisting of permanentand initial horn
lauses. Queries to su
h programs are de�ned as
onjun
tions of next�atomi
 formulas. It is possible to show that the programming language de�ned by thisfragment
an be evaluated using a resolution�style theorem proving pro
edure (see e.g.[1℄ for a dis
ussion of su
h a pro
edure).After having de�ned the fragment presented above the authors introdu
e the full logi
programming Templog by allowing usage of G in the head and F in the tail of program

62 Chapter 5. The Programming Language Prolog(+T)statements (both with restri
tions).As a summary we
an see:1. Templog o�ers a distin
tion between �exible and rigid symbols whi
h allows tointerpret symbols in a di�erent way at di�erent points of time.2. Prolog(+T) does not have a
ounterpart to the operator ⇐ of Templog.3. In
ontrast to Prolog(+T) Templog limits the appli
ation of G and F to thehead (resp. the tail) of
lauses.4. The operators U and P are forbidden in Templog programs.TokioTokio is another programming language whi
h allows the usage of
ertain temporaloperators in programming statements. Tokio has been presented in [6℄ as an extentionof the logi
 Itl (see e.g. [117℄). In
ontrast to the logi
 underlying both Templogand Prolog(+T) Tokio and its prede
essor Itl are interval based logi
 programminglanguages. This means that the main goal of a proof pro
edure exe
uting a Tokioprogram is not to prove a goal but to �nd an interval of time in whi
h the goal holds.We will make this
lear soon.The syntax of Tokio's programming
onstru
ts is de�ned in [6℄ (in another paper aninterpreter for Tokio written in Prolog is presented. It is noted that the exe
utiontime ofTokio programs using this interpreter is slowed down by a fa
tor of 40 in
ontrastto ordinary Prolog programs; we refer to [92℄ for implementation details). Similarly toProlog we
an use programming statements whi
h do not
ontain temporal operators.So every Prolog�statement ψ ← ϕ1, . . . , ϕn is also a well�formed Tokio�statement.Additionally to Prolog Tokio allows the usage of several temporal
onstru
ts. Theseare
• sequential exe
ution,

5.1 Syntax of Prolog(+T) 63
• the Next�operator,
• the Always�operator,
• the Sometimes�operator,
• the keep�operator and
• the �n�operator.Sin
e Tokio is an interval�based programming approa
h the main goal of a proverexe
uting a Tokio formula is to de�ne an interval of time in whi
h this formula issatis�ed. Time in Tokio is
onsidered dis
rete, so an interval I
an be des
ribed byspe
ifying its start� resp. endpoint in terms of natural numbers. If I = [Ibeg, I�n] is su
han interval we have to require that Ibeg ≤ I�n. Sin
e the motivation for the de�nitionof Tokio is the des
ription of hardware the authors of [6℄ prefer the term exe
ution inorder to denote the satisfa
tion of a formula.We will now make the
on
epts of Tokio more
lear.1. Tokio allows the spe
i�
ation of the sequential exe
ution of goals. This is
arriedout by the so
alled
hop�operator whi
h is denoted by &&. So a statement ψ ←
ϕ1&& . . . &&ϕn is exe
uted in an interval I = [Ibeg, I�n] if I
an be divided intointervals I1, . . . , In su
h that I1 = [Ibeg, t1], . . . , Ij = [tj−1, tj], . . . , In = [tn−1, I�n]for t1, . . . , tn−1 ∈ N su
h that ti ≤ ti+1 for i = 1, . . . , n− 2 and ea
h ϕi is exe
utedin the interval Ii.2. The Next�operator is intended as a similar
on
ept to the operator X from Pro-log(+T). In Tokio the Next�operator is denoted as � and a statement ψ ← �ϕ isintended to be exe
uted in an interval I = [Ibeg, I�n] if ψ is exe
uted in the interval
[Ibeg + 1, I�n].3. Similarly the Always� and Sometimes�operators whi
h are denoted as # resp. <>

64 Chapter 5. The Programming Language Prolog(+T)require the exe
ution of a statement at
ertain points of time in an interval. If
I = [Ibeg, I�n] is a given interval, thena) ψ ← #ϕ is exe
uted in I if ϕ is exe
uted at every point Ibeg, . . . , Ibeg+j, . . . , I�nof time andb) ψ ← <>ϕ is exe
uted in I if there is (at least) one j with 0 ≤ j ≤ �n − begsu
h that ϕ is exe
uted at Ibeg + j.4. The keep�operator allows reasoning about the exe
ution of a statement at servalpoints of time in an interval. If I is given then ψ ← keep(ϕ) is exe
uted in I if
ϕ is exe
uted at every point of time in I ex
ept of the last point. More formallyif I = [Ibeg, I�n] then ψ ← keep(ϕ) is exe
uted in I if ϕ is exe
uted at time
Ibeg, . . . , I�n − 1 and ϕ is not exe
uted at time point I�n.5. Finally the �n�operator is introdu
ed in order to reason about the exe
ution of astatement at a �nal point of time in an interval. If I = [Ibeg, I�n] is given then
ψ ← �n(ϕ) is exe
uted in I if ϕ is exe
uted at the time I�n.Although the operators #, && and � are the same operators as their
ounterpartsin Prolog(+T) the keep and �n�operators
annot be mapped to Prolog(+T) ade-quately. The only relationships we
an derive is that1. statements of the form ψ ← keep(ϕ) are related to statements of the form ψ :−ϕUϕ̄for some ϕ̄ and2. statements of the form ψ ← �n(ϕ) are related to statements of the form ψ :−ϕPϕ̄for some ϕ̄.As a summary we
an therefore point out the following di�eren
es between Tokio andProlog(+T):1. Prolog(+T) does not have dire
t
ounterparts for the operators keep, �n and &&of Tokio.

5.2 De
larative Semanti
s of Prolog(+T) 652. In Prolog(+T) we do not have any limits for the time points in whi
h formulasare satis�ed. In
ontrast Tokio statements are exe
uted in intervals. Sin
e su
hintervals are assumed to be given by time points whi
h are represented as naturalnumbers, they always have a �nite length.3. The philosophies of Tokio and Prolog(+T) are
ompletely di�erent sin
e themain task in Tokio is the
onstru
tion of a model (i.e. the dete
tion of an interval)while the main task in Prolog(+T) is to refute a formula, i.e. proving that there
annot exist any models.5.2. De
larative Semanti
s of Prolog(+T)This se
tion will deal with the de
larative semanti
s of the programming language Pro-log(+T) introdu
ed in the last se
tion. The de
larative semanti
s is de�ned in terms ofthe logi
al
onsequen
e relation |= and it is important to distinguish this semanti
s fromthe operational semanti
s whi
h is de�ned in terms of some suitable
al
ulus ⊢. Thisoperational semanti
s will be the subje
t of
hapter 5.3.5.2.1. PreliminariesWe will now extend the
on
epts of Herbrand�interpretations as introdu
ed in �rst orderlogi
 (see [140℄ or [105℄) to the logi
 FoLtl. We will see that the results from �rst orderlogi

arry over to FoLtl.Let sig = (X , F, P, α) be any signature. We will need the
on
ept of ground obje
ts inorder to de�ne Herbrand�interpretations.
• A term t ∈ T (sig) is
alled a ground term if Var(t) = ∅.
• A FoLtl�formula ϕ is
alled a ground formula if Var(ϕ) = ∅.Similarly a ground atom is a ground formula whi
h is an atom, a ground literal is a

66 Chapter 5. The Programming Language Prolog(+T)ground formula whi
h is a literal and a ground
lause is a ground formula whi
h is a
lause.For the rest of this
hapter we will assume that sig = (X , F, P, α) is any �xed signature.Let Φ be any set of formulas over sig. The set of all ground terms whi
h
an be built fromsymbols o

urring in Φ will be
alled the Herbrand�universe of Φ and will be denoted as
UΦ. In parti
ular we will be interested in UP for Prolog(+T)�programs P . Similarlyone de�nes sets BΦ and BFoLtl

Φ as follows:
BΦ = {ϕ ∈ A(sig) | Var(ϕ) = ∅} and

BFoLtl
Φ = {ϕ ∈ At(sig) | Var(ϕ) = ∅}The set BΦ is the well known Herbrand�base. The set BFoLtl

Φ is an extension of theHerbrand�base whi
h also allows the in
lusion of temporal atoms. We will also refer to
BFoLtl

Φ as the Herbrand�base of Φ sin
e there is no way of
onfusion2.We will see that a well-known result from �rst order logi

an be extended to FoLtl.Therefore we will de�ne the set Free(o) for some logi
al obje
t o to be the set of freevariables o

urring in this obje
t. Formally:
• for terms from T (sig) we de�ne� Free(X) = {X} if X ∈ X is a variable symbol and� Free(f(t1, . . . , tn))) =

⋃n
i=1 Free(ti) if f ∈ F is a fun
tion symbol with

α(f) = n and t1, . . . , tn ∈ T (sig).Equivalently we
ould de�ne Free(t) = Var(t) for any t ∈ T (sig).
• For formulas we de�ne2Due to the fa
t that synta
ti
ally di�erent literals might be logi
ally equivalent we have that a positiveliteral
an be equivalent to a negative one, e.g. Gp(X) ≡ not(Fnot(p(X))). Therefore we will makethe following
onvention: BFoLtl

P
ontains all temporal literals whi
h are equivalent to some positivetemporal literal.

5.2 De
larative Semanti
s of Prolog(+T) 67� Free(true) = Free(false) = ∅,� if p ∈ P is a predi
ate symbol with α(p) = n and t1, . . . , tn ∈ T (sig), thenFree(p(t1, . . . , tn)) =
⋃n
i=1 Free(ti),� if ϕ is a formula, thenFree(not(ϕ)) = Free(Xϕ) = Free(Gϕ) = Free(Fϕ) = Free(ϕ),� if ϕ is formula, then Free(∀Xϕ) = Free(∃Xϕ) = Free(ϕ) \ {X} and� if ϕ1 and ϕ2 are formulas, then Free(ϕ1Uϕ2) = Free(ϕ1Pϕ2) = Free(ϕ1 ∧

ϕ2) = Free(ϕ1 ∨ ϕ2) = Free(ϕ1 → ϕ2) = Free(ϕ1 ↔ ϕ2) = Free(ϕ1) ∪Free(ϕ2).A formula ϕ is
alled
losed if Free(ϕ) = ∅. Similarly a formula ϕ is
alled universally
losed if ϕ is a
losed formula whi
h does not
ontain the quanti�er ∃.We will now see that
ertain subsets of the Herbrand�base of a program
an be
on-sidered as interpretations. This is a
hieved in a similar way as in the
ase of �rst orderlogi
 programs. However, we will have to put some restri
tions on the subsets of interest.After this we will make a link between these sets of atoms (whi
h we will refer to as set�based�interpretations) and the interpretations of FoLtl�formulas as de�ned in
hapter2.3.2 (whi
h we will refer to as stru
ture�based interpretations).Let P = {P1, . . . , Pn} be any Prolog(+T)�program and let I ⊆ BFoLtl
P be any setof ground atoms built from symbols o

urring in P . Furthermore let ϕ be any universally
losed FoLtl�formula3. I will be seen as an interpretation for ϕ as follows:1. if ϕ = Xiψ for any i ≥ 0 and any nontemporal atom ψ from BP , then I |= ϕ if andonly if ϕ ∈ I,3Similarly as in First Order Logi
 these
onstru
tion strongly relies on the assumption that everyvariable symbol in the formula under
onsideration is universally quanti�ed. For general formulasthe
onstru
tion fails.

68 Chapter 5. The Programming Language Prolog(+T)2. if ϕ = ϕ1 ∧ ϕ2, then I |= ϕ if and only if I |= ϕ1 and I |= ϕ2,3. if ϕ = ϕ1 ∨ ϕ2, then I |= ϕ if and only if I |= ϕ1 or I |= ϕ2,4. if ϕ = ¬ψ, then I |= ϕ if and only I 6|= ψ,5. if ϕ = ϕ1 → ϕ2, then I |= ϕ if and only if I |= ¬ϕ1 or I |= ϕ2,6. if ϕ = ϕ1 ↔ ϕ2, then I |= ϕ if and only if I |= ϕ1 → ϕ2 and I |= ϕ2 → ϕ1 and7. if ϕ = ∀Xψ thena) if X ∈ Var(ψ), then I |= ϕ if and only if for every substitution σ =
{
X
t

} forsome t su
h that Var(t) = ∅ it holds that I |= σ(ψ) andb) if X 6∈ Var(ψ), then I |= ϕ if and only if I |= ψ.This de�nition of the semanti
s in terms of subsets of BFoLtl
P only allows the inter-pretation of formulas whi
h
ontain the temporal operator X. But in order to handleformulas involving G, F, U and P we have to restri
t the subsets of interest to su
h subsetswhi
h are temporally
losed.De�nition 5.2.1 (Temporally
losed set)A set I ⊆ BFoLtl

P is
alled temporally
losed if and only if for every ϕ,ϕ1 and ϕ2 from
BFoLtl
P and every i ≥ 0 the following
onditions are ful�lled:1. XiGϕ ∈ I if and only if Xi+jϕ ∈ I for every j ≥ 0,2. XiFϕ ∈ I if and only if Xi+jϕ ∈ I for some j ≥ 0,3. Xiϕ1Uϕ2 ∈ I if and only if Xiϕ2 ∈ I or Xiϕ1 ∈ I and Xi+1ϕ1Uϕ2 ∈ I,4. Xiϕ1Pϕ2 ∈ I if and only if Xiϕ2 6∈ I and Xiϕ1 ∈ I or Xi+1ϕ1Pϕ2 ∈ I and5. ϕ ∈ I if and only if {ψ ∈ BFoLtl

P | ψ ≡ ϕ
}
⊆ I.

5.2 De
larative Semanti
s of Prolog(+T) 69The motivation for this de�nition should immediately be
lear sin
e it is dire
tly de-rived from the properties of the semanti
al equivalen
e relation for FoLtl�formulas. Soa set I is temporally
losed if satisfa
tion of one member of an equivalen
e
lass impliessatisfa
tion of all members of this equivalen
e
lass. Therefore
onsidering temporally
losed subsets of BFoLtl
P as the interpretations of interest is reasonable.It is important to note that one
an in many
ases enri
h a set I ⊆ BFoLtl

P by addingatoms in order to re
eive a temporally
losed set. This pro
edure will later be referredto as building (or
onstru
ting) the temporal
losure. In general, a temporally
losedsuperset of a set I is not uniquely determined.Example 5.2.1Consider the set I = {Fp(a)}. every temporally
losed superset of I
ontains Xjp(a) forsome j ≥ 0.The temporally
losed supersets of a set I
an be seen as the unions of sets on (in�nite)maximal paths in an in�nite tree. We will therefore
onstru
t a labeled graph T (I) =

(V,E, l) from I as des
ribed below4.
T (I) = (V,E, l) with l : V → 2B

FoLtl
P ∪ {fail} is the in�nite tree satisfying thefollowing
onditions:1. There is a uniquely determined v0 ∈ V su
h that (v, v0) 6∈ E for ea
h v ∈ V (theroot node),2. l(v0) = I and3. for ea
h v ∈ V the following is true:a) if there is an atom XiGϕ ∈ l(v), then there is v′ ∈ V su
h that (v, v′) ∈ E and

l(v′) = l(v) ∪ {Xi+jϕ | j ≥ 0},4Here V is a nonempty set of nodes (also
alled verti
es), E ⊆ V ×V is a set of edges
onne
ting thesenodes and l : v → 2BFoLtl
P ∪ {fail} is a mapping whi
h labels the nodes.

70 Chapter 5. The Programming Language Prolog(+T)b) if there is an atom XiFϕ ∈ l(v) then there are v′1, . . . , v′j , · · · ∈ V su
h that
(v, v′j) ∈ E and l(v′j) = l(v) ∪ {Xi+jϕ} for ea
h j ≥ 0,
) if there is an atom Xiϕ1Uϕ2 ∈ l(v), then there are v′1, v′2 ∈ V su
h that
(v, v′1), (v, v

′
2) ∈ E and

• l(v′1) = l(v) ∪ {Xiϕ2} and
• l(v′2) = l(v) ∪ {Xi+1ϕ1Uϕ2}if Xiϕ2 6∈ l(v),d) if there is an atom Xiϕ1Pϕ2 ∈ l(v) then there are v′1, v

′
2 ∈ V su
h that

(v, v′1), (v, v
′
2) ∈ E and

• if Xiϕ2 ∈ l(v), then l(v′1) = l(v′2) = fail and
• if Xiϕ2 6∈ l(v), then l(v′1) = l(v)∪{Xiϕ1)} and l(v′2) = l(v)∪{Xi+1ϕ1Pϕ2}.ande) for ea
h ϕ ∈ l(v) it holds that

{ψ ∈ BFoLtl
P | ψ ≡ ϕ} ⊆ l(v).Given T (I) the set of all (possibly in�nite) maximal paths π starting at v0 su
h thatthere is no v with l(π) = fail o

urring on π will be denoted as p(T (I)).Given π ∈ p(T (I)), the set l(π) denotes the union of all sets with whi
h the nodes on

π are labeled. Formally if V (π) denotes the set of nodes o

urring on π, then
l(π) =

⋃

v∈V (π)

l(v).Then the following
laims are immediate:1. For every π ∈ p(T (I)) the set l(π) is temporally
losed.2. For every π ∈ p(T (I)) it holds that I ⊆ l(π).

5.2 De
larative Semanti
s of Prolog(+T) 71We will from now on denote the set
onsisting of all sets
omputable in the way sket
hedabove as the temporal
losure of I and denote it asTempClosure(I) = {l(π) | π ∈ p(T (I))} .De�nition 5.2.2 (Set�based Herbrand�Interpretation)A set�based Herbrand�Interpretation for a program P is a temporally
losed subset
I ⊆ BFoLtl

P . A set�based Herbrand�model for P is any temporally
losed set I ⊆
BFoLtl
P su
h that I |= P .It is worth noti
ing that
onsidering only temporally
losed sets as interpretations hasthe drawba
k that there are some programs whi
h are not satis�able. This is one di�er-en
e to pure �rst order logi
 programs whi
h are always satis�ed by the interpretation

I = BP . Consider the following program P = {P1, P2} where
P1 = p(a). and
P2 = q(X)Pp(X) :−p(X).Now �x any temporally
losed I ⊆ BFoLtl

P . If I |= P , then in parti
ular we have I |=
P1, that is I |= P1 = p(a). So p(a) ∈ I. On the other hand we have I |= P2 = q(X)Pp(X) :

−p(X) and sin
e P2 is
onsidered universally
losed we have I |= q(a)Pp(a) :−p(a). Butsin
e I is temporally
losed we have I 6|= p(a) and I |= q(a) or I |= Xq(a)Pp(a). This isa
ontradi
tion. So I 6|= P and therefore P has no set�based Herbrand�model.We will now prove that for universally
losed sets of FoLtl�formulas the
on
eptsof set�based Herbrand�Interpretations and stru
ture�based Herbrand�Interpretations asintrodu
ed in
hapter 2.3.2 are equivalent. This allows reasoning about properties ofprograms by
onsidering interpretations as sets of literals instead of the formally more

72 Chapter 5. The Programming Language Prolog(+T)
ompli
ated stru
tures.We will �rst prove the easier dire
tion.Lemma 5.2.1Let P be a Prolog(+T)�program. If P has a stru
ture�based Herbrand�model, then
P has a set�based Herbrand�model.Proof. Let P be a Prolog(+T)�program and let J = (UJ , S, s0, δ1, δ2, w,I) be astru
ture�based Herbrand�model of P . Set IJ = {ϕ ∈ BFoLtl

P | J |= ϕ}, i.e. IJ be
omesthe set of all ground instan
es satis�ed by J . Then every I ∈ TempClosure(IJ) iseasily seen to be a set�based Herbrand�model of P . �The opposite dire
tion is also true although it is mu
h more
ompli
ated to prove (dueto the more
ompli
ated de�nition of stru
ture�based interpretations).Lemma 5.2.2Let P be a Prolog(+T)�program. If P has a set�based Herbrand�model, then P hasa stru
ture�based Herbrand�model.Proof. Let I ⊆ BFoLtl
P be a set�based Herbrand�model of P , that is I is tempo-rally
losed and I |= P . We will
onstru
t a stru
ture�based interpretation JI =

(UP , S, s0, δ1, δ2, w,I) from I su
h that JI |= P . Therefore de�ne S = {s(i) | i ∈ N}and s0 = s(0). Furthermore de�ne for s ∈ S and any t = f(t1, . . . , tn) ∈ UP : I(s, t) =

I(s, f)(t1, . . . , tn) = f(t1, . . . , tn) as obvious. Sin
e every element of P is
onsidereduniversally
losed we
an set w as any arbitrary mapping.We then de�ne δ1 :=
{(
s(i), s(i+1)

)
| i ≥ 0

} and δ2 :=
{(
s(i), s(i+j)

)
| i, j ≥ 0

}. Afterthis we pro
eed as follows:1. Take some ϕ from I and set I = I \ {ϕ}.2. Case 1 if ϕ = Xip(t1, . . . , tn) for some i ≥ 0, some predi
ate symbol p of arity n

5.2 De
larative Semanti
s of Prolog(+T) 73and t1, . . . , tn ∈ UP , then we set
I
(

s(i), p
)

(t1, . . . , tn) = 1,Case 2 if ϕ = XiGψ for some i ≥ 0 and some ψ ∈ BFoLtl
P , then set

I
(

s(i+j), ψ
)

= 1for every j ≥ 0,Case 3 if ϕ = XiFψ for some i ≥ 0 and some ψ ∈ BFoLtl
P , then set

I
(

s(i+j), ψ
)

= 1for some j ≥ 0,Case 4 if ϕ = Xiϕ1Uϕ2 for some i ≥ 0 and ϕ1, ϕ2 ∈ BFoLtl
P , then set

I
(

s(i), ϕ2

)

= 1or
I
(

s(i), ϕ1

)

= 1 and I (s(i+1), ϕ1Uϕ2

)

= 1andCase 5 if ϕ = Xiϕ1Pϕ2 for some i ≥ 0 and ϕ1, ϕ2 ∈ BFoLtl
P , then set

I
(

s(i), ϕ2

)

= 0and
I
(

s(i), ϕ1

)

= 1 or I (s(i+1), ϕ1Pϕ2

)

= 1.3. If I 6= ∅, then go ba
k to step 1.

74 Chapter 5. The Programming Language Prolog(+T)It is obvious that the stru
ture�based interpretation JI whi
h emerges by applying thesesteps as long as I 6= ∅ (i.e. the limit interpretation) is a stru
ture�based Herbrand�modelof P . �Theorem 5.2.1 (Equivalen
e of set� and stru
ture�based interpretations)Let P be any Prolog(+T)�program. Then P has a stru
ture�based Herbrand�modelif and only if P has a set�based Herbrand�model.Proof. Immediately from Lemma 5.2.1 and Lemma 5.2.2. �

5.2.2. Redu
tion of LiteralsIt will turn out useful to introdu
e a
on
ept of redu
tion for temporal literals. Intuitivelya redu
ed form of some temporal literal ϕ is a normal form Red(ϕ). We will thereforede�ne how a redu
ed literal looks like and how it
an be e�e
tively
omputed given the(unredu
ed) literal.An approa
h to de�ne a
ertain type of normal�form for temporal logi
 formulas hasbeen presented in [65℄ and [64℄ for the propositional logi
 Ltl enri
hed with past opera-tors. However, this separated normal form is de�ned for a mu
h larger
lass of formulasthan only atoms and literals. Consequently the stru
ture of this normal form is mu
hmore
ompli
ated than ne
essary for our purposes.In order to
ompute redu
ed forms of literals we will exploit several simple semanti
alequivalen
es. The basi
 idea is to �rst pull out the negation operator (if it is
ontained), sothat ea
h redu
ed literal ϕ is either of the form ϕ = ψ for some literal ψ not
ontaining notor ϕ = not(ψ) for some ψ not
ontaining not. The following set of logi
al equivalen
eswill be the basis of our redu
tion
on
ept.

5.2 De
larative Semanti
s of Prolog(+T) 75GGϕ 7→ Gϕ, FFϕ 7→ Fϕ,Gnot(ϕ) 7→ not(Fϕ), Fnot(ϕ) 7→ not(Gϕ),Xnot(ϕ) 7→ not(Xϕ), not(not(ϕ)) 7→ ϕ,Xfalse 7→ false, Xtrue 7→ true,Gfalse 7→ false, Gtrue 7→ true,Ffalse 7→ false, Ftrue 7→ true,

trueUϕ 7→ Fϕ, truePϕ 7→ not(ϕ),
ϕUtrue 7→ true, ϕPtrue 7→ false,

falseUϕ 7→ ϕ, falsePϕ 7→ not(Fϕ),
ϕUfalse 7→ Gϕ and ϕPfalse 7→ Fϕ.Figure 5.1.: Rewrite System for
omputing redu
ed literalsLemma 5.2.3Let ϕ be any formula from FoLtl. ThenGGϕ ≡ Gϕ, FFϕ ≡ Fϕ,Gnot(ϕ) ≡ not(Fϕ), Fnot(ϕ) ≡ not(Gϕ),Xnot(ϕ) ≡ not(Xϕ), not(not(ϕ)) ≡ ϕ,Xfalse ≡ false, Xtrue ≡ true,Gfalse ≡ false, Gtrue ≡ true,Ffalse ≡ false, Ftrue ≡ true,

trueUϕ ≡ Fϕ, truePϕ ≡ not(ϕ),

ϕUtrue ≡ true, ϕPtrue ≡ false,

falseUϕ ≡ ϕ, falsePϕ ≡ not(Fϕ),

ϕUfalse ≡ Gϕ and ϕPfalse ≡ Fϕ.These equivalen
es are easily seen to be
orre
t. In order to de�ne a suitable
on
eptof redu
edness we will
onvert the equivalen
es into a terminating and
on�uent rewritesystem. The rules of this system are then applied exhaustively to a literal and theresulting nonredu
ible literal is said to be the redu
ed form of the original literal. Theset of rules is given in Figure 5.1.In order to analyze the properties of the introdu
ed rewrite system we will have to

76 Chapter 5. The Programming Language Prolog(+T)review some of the basi

on
epts from term rewriting. The presentation will be standard(see [13℄, [12℄ or [83℄).Let t ∈ T be a term. The set of positions of t is de�ned as1. Pos(X) = {ε} if t = X ∈ X and2. Pos(f(t1, . . . , tn) = {ε} ∪⋃n
i=1{ip | p ∈ Pos(ti)}.Similarly we de�ne positions in literals as follows:Pos(true) = Pos(false) = {ε},Pos(p(t1, . . . , tn)) = {ε} ∪

n⋃

i=1

{ip | p ∈ Pos(ti)},Pos(¬ϕ) = Pos(ϕ),Pos(Xϕ) = Pos(Gϕ) = Pos(Fϕ)

= {ε} ∪ {1p | p ∈ Pos(ϕ) andPos(ϕ1Uϕ2) = Pos(ϕ1Pϕ2)

= {ε} ∪ {1p | p ∈ Pos(ϕ1)} ∪ {2p | p ∈ Pos(ϕ2)}.So Pos(o) ⊆ N
∗ for any logi
al obje
t o.The term respe
tively literal at any given position
an then be extra
ted as follows:1. t|ε = t for ea
h t ∈ T and2. f(t1, . . . , ti, . . . , tn)|ip = ti|p for p ∈ Pos(ti).Similarly we
an extra
t subparts from literals:1. ϕ|ε = ϕ for every literal ϕ,2. p(t1, . . . , ti, . . . , tn)|ip = ti|p for p ∈ Pos(ti),3. Xϕ|1p = Gϕ|1p = Fϕ|1p = ϕ|p for p ∈ Pos(ϕ),

5.2 De
larative Semanti
s of Prolog(+T) 774. (ϕ1Uϕ2)|1p = (ϕ1Pϕ2)|1p = ϕ1|p for p ∈ Pos(ϕ1) and5. (ϕ1Uϕ2)|2p = (ϕ1Pϕ2)|2p = ϕ2|p for p ∈ Pos(ϕ2).Example 5.2.2Let t = f(f(g(X, f(a)))) and ϕ = p(f(g(a, f(a)))) be given. ThenPos(t) = {ε, 1, 11, 111, 112, 1121} ,Pos(ϕ) = Pos(p(f(g(a, f(a)))))
= {ε} ∪ {1p | p ∈ Pos(f(g(a, f(a))))}
= {ε} ∪ {1ε, 11, 111, 1111, 1112, 11121}

= {ε, 1, 11, 111, 1111, 1112, 11121}and
t|112 = f(a) t|1121 = a

ϕ|11 = f(g(a, f(a))) ϕ|11121 = aThe operation of repla
ement is now de�ned as follows (following the formalisms from[13℄):1. t′[t]|ε = t for t, t′ ∈ X ,2. f(t1, . . . , ti, . . . , tn)[t]|ip = f(t1, . . . , ti−1, ti[t]|p, ti+1, . . . , tn) for t ∈ X and p ∈Pos(ti),3. ϕ[ψ]|ε = ¬ϕ[ψ]|ε = ψ for literals ϕ,ψ,4. a) (Xϕ[ψ])|1p = X(ϕ[ψ]|p) for p ∈ Pos(ϕ) if ϕ|p is a literal andb) (Xϕ[t])|1p = X(ϕ[t]|p) for p ∈ Pos(ϕ) if ϕ|p is a term,5. a) (Gϕ[ψ])|1p = G(ϕ[ψ]|p) for p ∈ Pos(ϕ) if ϕ|p is a literal andb) (Gϕ[t])|1p = G(ϕ[t]|p) for p ∈ Pos(ϕ) if ϕ|p is a term,

78 Chapter 5. The Programming Language Prolog(+T)6. a) (Fϕ[ψ])|1p = F(ϕ[ψ]|p) for p ∈ Pos(ϕ) if ϕ|p is a literal andb) (Fϕ[t])|1p = F(ϕ[t]|p) for p ∈ Pos(ϕ) if ϕ|p is a literal,7. (ϕ1Uϕ2)[ψ]|1p = (ϕ1Pϕ2)|1p = ϕ1|p for p ∈ Pos(ϕ1) and8. (ϕ1Uϕ2)[ψ]|2p = (ϕ1Pϕ2)|2p = ϕ2|p for p ∈ Pos(ϕ2).Using repla
ement we de�ne redu
tion formally as follows. Let a set {li 7→ ri | i =

1, . . . , n} of rules be given. Then1. ϕ 7→ ψ if and only if there is p ∈ Pos(ϕ), i ∈ {1, . . . , n} and a substitution σ su
hthat σ(li) = ϕ|p and ψ = ϕ[σ(ri)]|p,2. ϕ n7→ ψ for n ∈ {1, 2, . . . } if and only if there is a sequen
e ϕ0, ϕ1, . . . , ϕn su
h that
ϕ0 = ϕ, ϕn = ψ and ϕi 7→ ϕi+1 for i ∈ {0, 1, . . . , n− 1} and3. ϕ ∗7→ ψ if and only if ϕ = ψ or there is an n su
h that ϕ n7→ ψ.A rewrite system given by a set of rules {li 7→ ri | i = 1, . . . , n} (for some �nite n) is
alled terminating if the length of redu
tions is �nite. Formally: there is no sequen
e

(ϕi)i∈N su
h that ϕi 6= ϕi+1 and ϕi 7→ ϕi+1 for every i ≥ 0. So in a terminating rewritesystem every literal will be redu
ed to some literal whi
h
annot be redu
ed any further.Similarly we will
all literals ϕ1 and ϕ2 joinable if there is ψ su
h that ϕ1
∗7→ ψ and

ϕ2
∗7→ ψ. 7→ is
alled
on�uent (lo
ally
on�uent) if for every ϕ su
h that ϕ ∗7→ ϕ1(ϕ 7→ ϕ1) and ϕ ∗7→ ϕ2 (ϕ 7→ ϕ2) there is ψ su
h that ϕ1

∗7→ ψ and ϕ2
∗7→ ψ. Terminationand
on�uen
e are properties of a rewrite system whi
h are essential if one wants to
ompute normal forms.In order to analyze the
on�uen
e of a rewrite system it su�
es to
on
entrate ona �nite set of redu
tions, so
alled
riti
al pairs. Assume that r(1) = li1 7→ ri1 and

r(2) = li2 7→ ri2 are two rules. We will
all r(1) and r(2) overlapping (at position p) if andonly if there is a position p ∈ Pos(li1) and a substitution σ su
h that σ = mgu(li1 |p, li2).

5.2 De
larative Semanti
s of Prolog(+T) 79Criti
al pairs are pairs of literals whi
h
an be derived from the appli
ation of a restri
tedkind of overlapping rules.De�nition 5.2.3 (Criti
al Pair, e.g. Baader and Nipkow [13℄)Let r(1) = li1 7→ ri1 and r(2) = li2 7→ ri2 be overlapping at position p ∈ Pos(li1)su
h that li1 |p 6∈ X and let σ = mgu(li1 |p, li2). Then 〈σ(ri1), σ(li1 [σ(ri2)]|p〉 is
alled a
riti
al pair (with respe
t to 7→).The following
lassi
al result shows that
on�uen
e of a terminating rewrite system 7→
an be proved by
he
king if
riti
al pairs are joinable.Lemma 5.2.4 (Criti
al�Pair�Lemma, Knuth and Bendix [90℄)A terminating rewrite system 7→ is
on�uent if and only if all
riti
al pairs (with respe
tto 7→) are joinable.From now on we will
on
entrate on the rewrite system des
ribed in Figure 5.1. Thissystem will therefore be denoted as 7→. We will see that 7→ indeed has the desiredproperties. The �rst property is immediate.Lemma 5.2.5
7→ is terminating.Proof. First observe that no appli
ation of a rewrite step yields a literal whi
h is longerthan the original literal. In parti
ular there are several rules whi
h shorten the literals.Sin
e every literal
onsists of a �nite number of symbols, these rules
an only be applied a�nite number of times. So now
onsider the length�preserving rules Gnot(ϕ) 7→ not(Fϕ),Fnot(ϕ) 7→ not(Gϕ) and Xnot(ϕ) 7→ not(Xϕ). It is obvious that these rules pushnegations to the left. But this
an also be done only a �nite number of times (due to the�nite length of literals), so the rules
annot be applied in�nitely often. This proves thelemma. �

80 Chapter 5. The Programming Language Prolog(+T)In order to show that 7→ is also
on�uent we will prove that all
riti
al pairs arejoinable.1. Let the rule GGϕ 7→ Gϕ overlap with itself. Then there are two possible rewritesteps (the repla
ed subliteral is underlined):GGGϕ 7→ GGϕ andGGGϕ 7→ GGϕ.Sin
e the literals whi
h emerge from applying these two steps are identi
al, thispair is
learly joinable.2. Similarly it
an be shown that an overlapping of FFϕ 7→ Fϕ with itself is joinableusing the following steps: FFFϕ 7→ FFϕ andFFFϕ 7→ FFϕ.3. If Gnot(ϕ) 7→ not(Fϕ) overlaps with not(not(ϕ)) 7→ ϕ we haveGnot(not(ϕ)) 7→ Gϕ andGnot(not(ϕ)) 7→ not(Fnot(ϕ)) 7→ not(notGϕ)) 7→ Gϕ.4. If Fnot(ϕ) 7→ not(Gϕ) overlaps with not(not(ϕ)) 7→ ϕ we haveFnot(not(ϕ)) 7→ Fϕ andFnot(not(ϕ)) 7→ not(Gnot(ϕ)) 7→ not(not(Fϕ)) 7→ Fϕ.

5.2 De
larative Semanti
s of Prolog(+T) 815. If Xnot(ϕ) 7→ not(Xϕ) overlaps with not(not(ϕ)) 7→ ϕ we haveXnot(not(ϕ)) 7→ Xϕ andXnot(not(ϕ)) 7→ not(Xnot(ϕ)) 7→ not(not(Xϕ)) 7→ Xϕ.The other rules of the rewrite system
an only overlap in a non
riti
al way, so ea
h
riti
al pair with respe
t to 7→ is joinable and the following lemma is proved.Lemma 5.2.6
7→ is
on�uent.From now on let Red(ϕ) denote the uniquely determined redu
ed literal whi
h emergesfrom the appli
ation of the above rewrite system. We have

ϕ ≡ Red(ϕ)(due to the fa
t that 7→ is
onstru
ted from a set of semanti
al equivalen
es), and there-fore the following theorem holds.Theorem 5.2.2For every FoLtl�literal ϕ there is a uniquely determined normal form Red(ϕ) with
ϕ ≡ Red(ϕ) whi
h
an be e�e
tively
omputed.In some of the following
hapters we will restri
t our analysis to redu
ed literals sin
ethese
an be handled mu
h easier than general ones.5.2.3. Semanti
s for programsWe will now show how the semanti
s of a FoLtl�program P
an be
hara
terized in termsof the stable model semanti
s introdu
ed by Gelfond and Lifs
hitz in [73℄. The adaptionof the Gelfond�Lifs
hitz
onstru
tions is ne
essary sin
e rules in Prolog(+T)�programsmay
ontain negated literals in the tail (note that the problem of indu
ing stable models,

82 Chapter 5. The Programming Language Prolog(+T)i.e. models for normal (nontemporal) logi
 programs has been already addressed, i.e. in[128℄ and [125℄). So the results from logi
 programming regarding de�nite logi
 programssu
h as the existen
e of monotoni
 and
ontinuous operators whi
h have �xpoints whi
h
an be seen as least models (in fa
t they are identi
al to the interse
tion of all Herbrand�models, see [164℄)
annot be easily generalized to Prolog(+T)�programs anymore.For nontemporal logi
 programming languages, Gelfond and Lifs
hitz have extended the
lassi
al immediate
onsequen
e operator TP whi
h
hara
terizes the least Herbrand�Model to an operator whi
h, given any subset M of BP ,
omputes a least Herbrand�model of a modi�ed de�nite program PM whi
h (if M is
hosen in the right way) hasthe property of being a stable model of P (see [73℄).We will now adapt the ne
essary
on
epts introdu
ed in [73℄ in order to deal withProlog(+T)�programs.So assume that a set P
onsisting of redu
ed ground rules is given and M ⊆ BFoLtl
Pis any set of redu
ed ground atoms built from symbols o

urring in P . The program PMis then
onstru
ted as follows:1. if there is a rule in P su
h that not(ϕ) for some ϕ ∈ M o

urs in the tail of thisrule, then this rule is deleted and2. negated atoms in the tails of the remaining
lauses are also deleted.Then PM is
learly negation�free in the sense that no rule in PM
ontains a negatedatom in its tail. We will see that negation�free sets of Prolog(+T)�ground�rules havemodels (in the
ase of satis�ability). Note that P is in general not satis�able as shownin the example after De�nition 5.2.2 on page 71.For satis�able negation�free programs we
an indeed extend the �xpoint semanti
s of�rst order logi
 programming languages in a straightforward way. Re
all that P has beenrequired to
onsist only of ground rules, that is in general, P is not a �nite set of rulesanymore. We pro
eed as follows:

5.2 De
larative Semanti
s of Prolog(+T) 831. starting from the empty set ∅ we will
onstru
t an in�nite tree
onsisting of nodeslabeled with subsets of BFoLtl
P and2. show that the union of all labels of nodes on any maximal path in this tree is aset�based Herbrand�model of P .We will use the following extension of the immediate
onsequen
e operator TP (see [164℄or [105℄). This operator is used in the theory of �rst order Logi
 Programming to derive
hara
terizations for the semanti
s of a de�nite program. The semanti
s of a program Pis there given as the smallest set of ground atoms of the underlying �rst order languagewhi
h P satis�es. Equivalently the semanti
s is given as the set of all implied groundatoms implied by the program. This set
an be
hara
terized as the least �xpoint of anoperator (namely the operator TP as introdu
ed in [164℄) and is easily seen to be uniquelydetermined (sin
e Herbrand�models of de�nite logi
 programs
an be interse
ted yieldingHerbrand�models). For
hara
terizing the semanti
s of Prolog(+T)�programs we will
hange the original operator TP in a way that allows the treatment of FoLtl�obje
tsrather than only �rst order obje
ts.De�nition 5.2.4 (Immediate Consequen
e Operator for FoLtl)Let P be any negation�free set of ground rules. The mapping TFoLtlP : 2B

FoLtl
P →

2B
FoLtl
P is de�ned as follows:
TFoLtlP (I) =







ϕ ∈ BFoLtl
P |

there is a rule ϕ :−ψ1, . . . , ψk. in P su
h that
I |= ψ1, . . . , ψk







.

This operator will be used together with the operator TempClosure in alternatingorder.

84 Chapter 5. The Programming Language Prolog(+T)Now assume that any negation�free Prolog(+T)�program P whi
h only
ontainsground rules is given. We
onstru
t an in�nite labeled tree T (P) = (V,E, l) with l : V →

2B
FoLtl
P su
h that the following
onditions are satis�ed:1. V
ontains a uniquely determined root node v0,2. l(v0) = ∅ and3. for ea
h v ∈ V it holds thata) if v is on an even level then there is v′ ∈ V su
h that (v, v′) ∈ E and l(v′) =

TFoLtlP (l(v)) andb) if v is on an odd level then assume thatTempClosure(l(v)) = {T1, . . . ,Ti, . . . }and there are nodes v′1, . . . , v′i, · · · ∈ V su
h that (v, v′i) ∈ E and l(v′i) = Ti forevery i ≥ 1.Given T (P) we de�ne the set p(T (P)) to
onsist of all maximal paths in T , that isof all (in general in�nite) maximal sequen
es of nodes (vi)i∈N su
h that (vi, vi+1) ∈ E.If π ∈ p(T (P)) is a maximal path then V (π) denotes the set of nodes whi
h are visitedwhile traversing π.Lemma 5.2.7For every satis�able set P of negation�free ground rules and for every π ∈ p(T (P)) itholds that1. ⋃v∈V (π) l(v) |= P and2. ⋃v∈V (π) l(v) |= P is temporally
losed.Proof. The �rst
laim is
lear by de�nition of TFoLtlP . For the proof of the se
ond
laim�x any π ∈ p(T (P)). If ⋃v∈V (π) l(v) is not temporally
losed, then an appli
ation of the

5.2 De
larative Semanti
s of Prolog(+T) 85operator TempClosure would yield a temporally
losed superset whi
h shows that πis not maximal in this
ase. This
ontradi
ts the assumption on π. So ⋃v∈V (π) l(v) istemporally
losed. �So the models of P derived by the above
onstru
tion
an be
olle
ted in a set ΘP asfollows:
ΘP =







⋃

v∈V (π)

l(v) | π ∈ p(T (P))






.In order to deal with programs
ontaining negation, we will now
on
entrate on pro-grams PM as des
ribed above.Lemma 5.2.8Let P be a set of ground Prolog(+T)�rules and let M ⊆ BFoLtl

P be a set of atomso

urring in P . If P is satis�able, then every J ∈ ΘPM
is a Herbrand�model of P .Proof. Let M be as required. Then J |= PM for every J ∈ ΘPM

. Assume that
PM = {P1, . . . , Pn}, �x J ∈ ΘPM

and i ∈ {1, . . . , n}. Sin
e J |= PM we have J |= Pi.Consider the following
ases.Case 1 Pi ∈ P . Then the
laim is immediate.Case 2 Pi 6∈ P . Then Pi emerges from a rule from P by deleting negated atoms in thetail of Pj . That is for Pi = ϕ :−ψ1, . . . , ψk. there is Pj = ϕ :−ψ1, . . . , ψk, ψ̄1, . . . , ψ̄l.in P for ψ̄1, . . . , ψ̄l ∈ BFoLtl
P . Sin
e J |= Pi we have J |= ϕ ∨ ¬ψ1, . . . ,¬ψk whi
himplies J |= ϕ ∨ ¬ψ1 ∨ · · · ∨ ¬ψk ∨ ψ̄1 ∨ · · · ∨ ψ̄l and therefore J |= Pj .It remains to prove that also the rules C from P whi
h have been deleted during the
on-stru
tion of PM are satis�ed by J . If C is su
h a rule, then C = ϕ :−ψ1, . . . , ψk, not(ψ).for some ψ ∈ M . Sin
e J |= M the
laim is immediate. So J is a model of P and thelemma is proved. �

86 Chapter 5. The Programming Language Prolog(+T)5.3. A Saturation�based temporal Proof Pro
edureAs we have already mentioned in
hapter 5.2 we will now study the operational semanti
sof Prolog(+T). This semanti
s will be studied by presenting a
al
ulus whi
h is bothsound and refutation
omplete. Basi
ally this
al
ulus will be an extension of the well�known tableaux prin
iple whi
h is a quite popular prin
iple in many areas of automatedreasoning. In
ontrast to Prolog where an eventually modi�ed (and speed up) versionof the SLD�resolution prin
iple is
hosen for proving logi
al
onsequen
e of goals (andtherefore for
omputing answers to programs) resolution�based approa
hes are not thebest
hoi
e for our problem. Consider the following problem: given a program P =

{P1, . . . , Pn} and a goal G =:−ϕ1, . . . , ϕm. Assume that i is su
h that ϕi = Gp(X).Then ϕi ≡ p(X) ∧ XGp(X). If there is for example a rule Pj = XXXp(X) :−q(Y, Y). in
P the normal SLD�prin
iple will not be able to
ompute a resolvent. But it is obviousthat G′ = ϕ1, . . . , ϕi−1, p(X),Xp(X),XXp(X), q(Y, Y),XXXXGp(X), ϕi+1, . . . , ϕm should bea resolvent of G and Pj . Therefore we will adapt the tableaux
al
ulus in order to dealwith temporal
onstru
ts. We will see that the resulting proof pro
edure is indeed soundand (in some sense) refutation
omplete.The study of sound and
omplete proof�pro
edures for FoLtl and its fragments datesas far ba
k as to the �rst
ontributions of Abadi and Manna (see [3℄). It has been pointedout quite early that the whole logi
 FoLtl is not only unde
idable (whi
h is
lear sin
e it
ontains the whole �rst order logi
) but also not re
ursively enumerable (see e.g. [82℄ or[30℄). Consequently no
omplete proof�pro
edure for FoLtl
an exist. But restri
tionsof FoLtl yield re
ursively enumerable fragments. For example in [82℄ a restri
ted usageof temporal operators yields the monodi
 fragment whi
h
an be embedded into themonadi
 se
ond order theory5. Omitting the use of U and P yields a logi
 whi
h
an bere
ursively enumerated. Enumeration
an be
arried out by a sequent�style
al
ulus (see5A formula ϕ is
alled monodi
 if every subformula ψ of ϕ whi
h has the form ψ = ψ1⊕ψ2 for ⊕ ∈ {U,P}has at most one free variable. Consequently the monodi
 fragment of �rst order tempporal logi

onsists of all monodi
 formulas.

5.3 A Saturation�based temporal Proof Pro
edure 87[14℄). Other types of proof�pro
edures for FoLtl�fragments are Hilbert�style
al
uli(see e.g. [53℄), Resolution�style
al
uli (see [91℄, [41℄, [43℄, [44℄, [91℄, [41℄ and [42℄) andASM�based pro
edures (see [174℄). A good survey of �rst order temporal logi
 proof�pro
edures has been presented re
ently by C. Castellini in his Ph.D. Thesis (see [27℄).Our proof�pro
edure whi
h we will present on this se
tion is a tableaux�style pro
e-dure. Several modi�
ations of the tableaux�
onstru
tion for �rst order logi
 have beenpresented in order to derive proof�pro
edures for �rst order temporal logi
 languages (see[28℄ and [29℄ for FoLtl and [114℄ for the �rst order version of Ctl). Nevertheless ourmethod has its justi�
ation sin
e it is de�ned espe
ially for Prolog(+T)�formulas andsin
e it integrates the redu
tion�
on
ept for temporal literals introdu
ed above.5.3.1. Tableaux RulesSin
e Prolog(+T) is �rst order logi
 based we will have to de�ne a proof pro
edurewhi
h enables us to handle �rst order logi

onstru
ts. The tableaux method (see [66℄) isone su
h method. Basi
ally it
onstru
ts a tableaux (whi
h is represented as a dire
tedgraph)
onsisting of nodes whi
h are labeled with sets of formulas. The key propertyfor the soundness and
ompleteness is the following: if n1 and n2 are su
h nodes and F1and F2 are the sets of formulas labeling these two nodes and n2 is a su

essor of n1 thenunsatis�ability of F2 implies unsatis�ability of F1.We will distinguish two prin
iple kinds of tableaux rules here: expansion rules andsaturation rules. Expansion rules are rules whi
h
onsider the �rst order part of a formula.An example might be the following: if ϕ1 ∧ ϕ2 is to be satis�ed, then both ϕ1 and ϕ2have to be satis�ed at the same time. On the other hand, saturation rules
onsider thetemporal part of formulas. Here we
an argue with the example presented above: if Gϕis to be satis�ed, then ϕ and XGϕ have to be satis�ed (in other words Xiϕ has to besatis�ed for every i ≥ 0).The dis
ussion of the proof pro
edure will now pro
eed as follows: �rst we will have

88 Chapter 5. The Programming Language Prolog(+T)to de�ne
ertain
on
epts whi
h are needed for the presentation of the proof pro
edure.This will in
lude a node format for the nodes of the tableaux. After having introdu
edthe basi
s we will
onsider the expansion rules and the saturation rules separately. Wewill see that the expansion rules are the rules from the
lassi
al tableaux
al
ulus for�rst order predi
ate logi
 (moreover, the proof pro
edure to be introdu
ed is
apable ofhandling formulas whi
h are not restri
ted to the formulas o

urring in Prolog(+T)�programs). In order to be appli
able we will then present two kinds of termination
riteria:
riteria for termination in the
ase of su

ess and in the
ase of failure. We willsee that termination by failure is a mu
h more di�
ult task than su

essful termination.The
hapter will then be
ontinued by proving the soundness and refutation
ompletenessof the pro
edure.Basi
 FormalismsWe will now des
ribe the format of the nodes from whi
h a tableaux is built up.De�nition 5.3.1 (Tableaux node)A tableaux node is a tuple n = (Φ, F, S) where Φ is a nonempty set of FoLtl�formulasand F and S are (possibly empty) sets of tableaux nodes. The sets F and S will bereferred to as the father nodes and the son nodes of n.For the proofs in later se
tions we will introdu
e the following abbreviation. For anode n we will denote the set of formulas labeling this node by F(n). In other words if
n = (Φ, F, S), then F(n) = Φ.De�nition 5.3.2 (Path)A path is a sequen
e π = (n0, n1, . . . , nk, . . .) of tableaux nodes su
h that ni =

(Φi, Fi, Si) for i = 0, 1, . . . , F0 = ∅ and for ea
h i ∈ {0, 1, . . . } it holds that

5.3 A Saturation�based temporal Proof Pro
edure 89
ni+1 ∈ Si. A node n is said to o

ur on π if there is an index i su
h that ni = n. If
π = (n0, n1, . . . , nk−1), the integer k is
alled the length of π and π is
alled �nite (orof �nite length). Otherwise (i.e. if no su
h k exists), π is
alled in�nite (or of in�nitelength).Note that in general paths in a tableaux will be of in�nite length. This will be ofinterest in the proof of refutation
ompleteness whi
h we will present later on.We will now des
ribe the
onstru
tion of the initial tableaux node for the tableaux tobe
onstru
ted from a formula ϕ. This node is given as follows:

n0 = ({ϕ}, ∅, ∅) .Whenever we will refer to the initial node of a tableaux from now on we will mean anode n0
onstru
ted in this way.Expansion RulesWe will now des
ribe how to
onstru
t new nodes from nodes whi
h have already been
onstru
ted. The rules to be des
ribed in this se
tion will later on be referred to asexpansion rules. We assume that n = (Φ, F, S) is a node whi
h has been
hosen from aset N of nodes. A �xed sele
tion rule has to be
hosen in order to sele
t formulas from
F(n) to whi
h the rules
an be applied. The only requirement whi
h we will have to puton the sele
tion rule is the requirement of fairness. Informally fairness means that noappli
ation of a rule to a formula from F(n) is retarded for an in�nite time. Equivalentlywe
an say that every possible inferen
e step is eventually
arried out (as long as thepro
edure does not terminate).Now let ϕ be the sele
ted formula. We distinguish the following
ases:

90 Chapter 5. The Programming Language Prolog(+T)1. ϕ = ϕ1 ∧ ϕ2. In this
ase we
reate a node n′ = (F(n′), F ′, S′) as follows:
F(n′) = (F(n) \ {ϕ1 ∧ ϕ2}) ∪ {ϕ1, ϕ2} ,

F ′ = {n}, S′ = ∅. Furthermore we update the set S of sons of n to S = S ∪ {n}.This rule will from now on be referred to as (∧1).2. ϕ = ¬ (ϕ1 ∨ ϕ2). In this
ase we
reate a node n′ = (F(n′), F ′, S′) as follows:
F(n′) = (F(n) \ {¬ (ϕ1 ∧ ϕ2)}) ∪ {¬ϕ1,¬ϕ2} ,

F ′ = {n}, S′ = ∅. Furthermore we update the set S of sons of n to S = S ∪ {n}.This rule will from now on be referred to as (∧2).3. ϕ = ϕ1 ∨ ϕ2. In this
ase we
reate two nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) as follows:
F(n′) = (F(n) \ {ϕ1 ∨ ϕ2}) ∪ {ϕ1} ,

F ′ = {n}, S′ = ∅ and
F(n′′) = (F(n) \ {ϕ1 ∨ ϕ2}) ∪ {ϕ2} ,

F ′′{n} =, S′ = ∅. The set S of sons of n will be updated to S = S ∪ {n′, n′′}. Thisrule will be referred to as (∨1).4. ϕ = ¬ (ϕ1 ∧ ϕ2). In this
ase we
reate two nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) as follows:
F(n′) = (F(n) \ {¬ (ϕ1 ∧ ϕ2)}) ∪ {¬ϕ1} ,

5.3 A Saturation�based temporal Proof Pro
edure 91
F ′ = {n}, S′ = ∅ and

F(n′′) = (F(n) \ {¬ (ϕ1 ∧ ϕ2)}) ∪ {¬ϕ2} ,

F ′′{n} =, S′ = ∅. The set S of sons of n will be updated to S = S ∪ {n′, n′′}. Thisrule will be referred to as (∨2).5. ϕ = ϕ1 → ϕ2. In this
ase two nodes n′ = (F(n′), F ′, S′) and n′′ = (F(n′′), F ′′, S′′)will be
onstru
ted with
F(n′) = (F(n) \ {ϕ1 → ϕ2}) ∪ {¬ϕ1} ,

F ′ = {n}, S′ = ∅ and
F(n′) = (F(n) \ {ϕ1 → ϕ2}) ∪ {ϕ2} ,

F ′ = {n}, S′ = ∅. The set S will be updated to S = S ∪ {n′, n′′}. This rule will bereferred to as (→ 1).6. ϕ = ¬ (ϕ1 → ϕ2). Here a node n′ = (F(n′), F ′, S′) will be
onstru
ted with
F(n′) = (F(n) \ {¬ (ϕ1 → ϕ2)}) ∪ {ϕ1,¬ϕ2} ,

F ′ = {n} and S′ = ∅. S will be updated to S = S ∪ {n′}. The rule will be referredto as (→ 2).7. ϕ = ϕ1 ↔ ϕ2. Here we
reate a node n′ = (F(n′), F ′, S′) with
F(n′) = (F(n) \ {ϕ1 ↔ ϕ2}) ∪ {ϕ1 → ϕ2, ϕ2 → ϕ1} ,

F ′ = {n} and S′ = ∅. S is updated to S = S ∪ {n′}. The rule will be referred to

92 Chapter 5. The Programming Language Prolog(+T)as (↔ 1).8. ϕ = ¬ (ϕ1 ↔ ϕ2). Here we
reate two nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) with
F(n′) = (F(n) \ {¬ (ϕ1 ↔ ϕ2)}) ∪ {¬ (ϕ1 → ϕ2)} ,

F ′ = {n}, S′ = ∅ and
F(n′′) = (F(n) \ {¬ (ϕ1 ↔ ϕ2)}) ∪ {¬ (ϕ2 → ϕ1)} ,

F ′′ = {n}, S′′ = ∅. Again S is updated to S = S ∪ {n′, n′′}. The rule will bereferred to as (↔ 2).9. ϕ = ¬¬ψ. Here we will
reate a node n′ = (F(n′), F ′, S′) with
F(n′) = (F(n) \ {¬¬ψ}) ∪ {ψ} ,

F ′ = {n} and S′ = ∅. S is updated to S = S ∪ {n′} and the rule is referred to as
(¬−E).10. ϕ = ¬∀Xψ(X). Here we will
reate a node n′ = (F(n′), F ′, S′) with

F(n′) = (F(n) \ {¬∀Xψ(X)}) ∪ {∃X¬ψ(X)} ,

F ′ = {n} and S′ = ∅. S is updated to S = S ∪ {n′} and the rule is referred to as
(R∀).11. ϕ = ¬∃Xψ(X). Here we will
reate a node n′ = (F(n′), F ′, S′) with

F(n′) = (F(n) \ {¬∃Xψ(X)}) ∪ {∀X¬ψ(X)} ,

5.3 A Saturation�based temporal Proof Pro
edure 93
F ′ = {n} and S′ = ∅. S is updated to S = S ∪ {n′} and the rule is referred to as
(R∃).12. ϕ = ∀Xψ(X). Here we
reate a new node n′ = (F(n′), F ′, S′) with

F(n′) = F(n) ∪ {ψ(t)}for some ground term t whi
h
an be built up from symbols o

urring in F(n),
F ′ = {n} and S′ = ∅. We update S to S = S∪{n′} and refer to this rule as (σ−I1).13. ϕ = ∃Xψ(X). Here we
reate a new node n′ = (F(n′), F ′, S′) with

F(n′) = F(n) ∪ {ψ(Xnew)}for some variable symbol Xnew 6∈ Var(F(n)), F ′ = {n} and S′ = ∅. We update Sto S = S ∪ {n′} and refer to this rule as (σ−I2).14. ϕ = ∀Xψ and X 6∈ Var(ψ). Here we
reate a node n′ = (F(n′), F ′, S′) with
F(n′) = (F(n) \ {∀Xψ}) ∪ {ψ},

F ′ = {n} and S′ = ∅. S is updated to S = S ∪ {n′} and the rule is referred to as
(∀−E).15. ϕ = ∃Xψ and X 6∈ Var(ψ). Here we
reate a node n′ = (F(n′), F ′, S′) with

F(n′) = (F(n) \ {∃Xψ}) ∪ {ψ},

F ′ = {n} and S′ = ∅. S is updated to S = S ∪ {n′} and the rule is referred to as
(∃−E).We
an group the above rules as follows: (∧1) and (∧2) are
alled ∧�type rules, (∨1)

94 Chapter 5. The Programming Language Prolog(+T)and (∨2) are
alled ∨�type rules, (→ 1) and (→ 2) are
alled →�type rules and (↔ 1)and (↔ 2) are
alled ↔�type rules. Furthermore (¬−E) is
alled the ¬�elimination rule,
(R∀) and (R∃) are
alled rewrite rules, (σ−I1) and (σ−I2) are
alled substitution rulesand (∀−E) and (∃−E) are
alled quanti�er�elimination rules. The rules are summarizedin Figure 5.2. Here the formula above the fra
tion stroke denotes the sele
ted formulafrom F(n) and the formulas below the fra
tion strokes denote the formulas
reated fromthis formula. The number of
olumns below the fra
tion stroke denotes the number ofnew nodes to be
reated. For example in

ϕ1 ∧ ϕ2

ϕ1

ϕ2one new node
ontaining two new formulas has to be
reated.Saturation RulesIn
ontrast to the expansion rules des
ribed above, the saturation rules whi
h will bedes
ribed deal with the temporal part of a formula rather than with the �rst order part.We will present two rules for ea
h of the operators G, F, U and P. For the operator X nosu
h rule will be given.As for the expansion rules we will des
ribe the rules separately by distinguishing thedi�erent possibilities of how a sele
ted formula might look like. For the rest of this se
tionassume that i is any �xed integer and n = (F(n), F, S) is the node from whi
h a formula
ϕ is
hosen. The saturation rules are given as follows:1. If ϕ = XiGψ, then we
reate a new node n′ = (F(n′), F ′, S′) with F(n′) =

(
F(n) \

{XiGψ}) ∪ {Xiψ,Xi+1Gψ}, F ′ = {n} and S′ = ∅. S is updated to
S = S ∪ {n}. The rule is referred to as (G1).

5.3 A Saturation�based temporal Proof Pro
edure 95

(∧1)
ϕ1 ∧ ϕ2

ϕ1

ϕ2

(∧2)
¬ (ϕ1 ∨ ϕ2)

¬ϕ1

¬ϕ2

(∨1)
ϕ1 ∨ ϕ2

ϕ1 ϕ2
(∨2)

¬ (ϕ1 ∧ ϕ2)

¬ϕ1 ¬ϕ2

(→ 1)
ϕ1 → ϕ2

¬ϕ1 ϕ2
(→ 2)

¬ (ϕ1 → ϕ2)

ϕ1

¬ϕ2

(↔ 1)
ϕ1 ↔ ϕ2

ϕ1 → ϕ2

ϕ2 → ϕ1

(↔ 2)
¬ (ϕ1 ↔ ϕ2)

¬ (ϕ1 → ϕ2) ¬ (ϕ2 → ϕ1)(¬�E) ¬¬ϕ
ϕ

(∀−E)
∀Xϕ
ϕ

X 6∈ Var(ϕ) (∃−E)
∃Xϕ
ϕ

X 6∈ Var(ϕ)

(R∀) ¬∀Xϕ(X)

∃X¬ϕ(X)
(R∃) ¬∃Xϕ(X)

∀X¬ϕ(X)

(σ−I1)
∀Xϕ(X)

ϕ(t)

for a ground term t whi
h
an be built up from symbolso

urring in F(n)

(σ−I2)
∃Xϕ(X)

ϕ(Xnew)
for any new variable symbol XnewFigure 5.2.: Expansion Rules

96 Chapter 5. The Programming Language Prolog(+T)2. If ϕ = ¬XiGψ, then we
reate two new nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) with F(n′) =
(
F(n) \

{
¬XiGψ}) ∪ {¬Xiψ}, F ′ = {n} and S′ = ∅and F(n′′) =

(
F(n) \

{
¬XiGψ})∪{¬Xi+1Gψ}, F ′′ = {n} and S′′ = ∅. Additionally

S is updated to S = S ∪ {n′, n′′}. The rule will be
alled (G2).3. If ϕ = XiFψ, then we
reate two new nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) with F(n′) =
(
F(n) \

{XiFψ}) ∪ {Xiψ}, F ′ = {n} and S′ = ∅and F(n′′) =
(
F(n) \

{XiFψ}) ∪ {Xi+1Fψ}, F ′′ = {n} and S′′ = ∅. Additionally
S is updated to S = S ∪ {n′, n′′}. The rule will be
alled (F1).4. If ϕ = ¬XiFψ, then we
reate a new node n′ = (F(n′), F ′, S′) with F(n′) =
(
F(n) \

{
¬XiFψ}) ∪ {¬Xiψ,¬Xi+1Fψ}, F ′ = {n} and S′ = ∅. S is updated to

S = S ∪ {n}. The rule is referred to as (F2).5. If ϕ = Xiψ1Uψ2, then we
reate two new nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) with F(n′) =
(
F(n) \

{Xiψ1Uψ2

})
∪
{Xiψ2

}, F ′ = {n} and S′ = ∅and F(n′′) =
(
F(n) \

{Xiψ1Uψ2

})
∪
{Xiψ1 ∧ Xi+1ψ1Uψ2

}, F ′′ = {n} and S′′ = ∅.Additionally S is updated to S = S ∪ {n′, n′′}. The rule will be
alled (U1).6. If ϕ = ¬Xiψ1Uψ2, then we
reate a new node n′ = (F(n′), F ′, S′) with F(n′) =
(
F(n) \

{
¬Xiψ1Uψ2

})
∪
{
¬Xiψ2,¬Xiψ1 ∨ ¬Xi+1ψ1Uψ2

}, F ′ = {n} and S′ = ∅. Sis updated to S = S ∪ {n}. The rule is referred to as (U2).7. If ϕ = Xiψ1Pψ2, then we
reate a new node n′ = (F(n′), F ′, S′) with F(n′) =
(
F(n) \

{Xiψ1Pψ2

})
∪
{
¬Xiψ2,Xiψ1 ∨ Xi+1ψ1Pψ2

}, F ′ = {n} and S′ = ∅. S isupdated to S = S ∪ {n}. The rule is referred to as (P1).8. If ϕ = ¬Xiψ1Pψ2, then we
reate two new nodes n′ = (F(n′), F ′, S′) and n′′ =

(F(n′′), F ′′, S′′) with F(n′) =
(
F(n) \

{
¬Xiψ1Pψ2

})
∪
{Xiψ2

}, F ′ = {n} and S′ =

∅ and F(n′′) =
(
F(n) \

{
¬Xiψ1Pψ2

})
∪
{
¬Xiψ1 ∧ ¬Xi+1ψ1Pψ2

}, F ′′ = {n} and

5.3 A Saturation�based temporal Proof Pro
edure 97G�type
(G1)

XiGϕ

Xiϕ

Xi+1Gϕ

(G2)
¬XiGϕ

¬Xiϕ ¬Xi+1GϕF�type
(F1)

XiFϕ

Xiϕ Fi+1Fϕ
(F2)

¬XiFϕ

¬Xiϕ

¬Xi+1FϕU�type
(U1)

Xiϕ1Uϕ2

Xiϕ2 Xiϕ1 ∧ Xi+1ϕ1Uϕ2
(U2)

¬Xiϕ1Uϕ2

¬Xiϕ2

¬Xiϕ1 ∨ ¬Xi+1ϕ1Uϕ2P�type
(P1)

Xiϕ1Pϕ2

¬Xiϕ2

Xiϕ1 ∨ Xi+1ϕ1Pϕ2

(P2)
¬Xiϕ1Pϕ2

Xiϕ2 ¬Xiϕ1 ∧ ¬Xi+1ϕ1Pϕ2Redu
tion Rule
(Red)

ϕRed(ϕ)
if Red(ϕ) 6= ϕFigure 5.3.: Saturation Rules

S′′ = ∅. Additionally S is updated to S = S ∪ {n′, n′′}. The rule will be
alled
(P2).Additionally we will have to use the following rule (
alled the redu
tion rule): If ϕis a literal and Red(ϕ) 6= ϕ, then we
reate a new node n′ = (F(n′), F ′, S′) with

F(n′) = (F(n) \ {ϕ})∪{Red(ϕ)}, set F ′ = {n} and S′ = ∅ and update S to S = S∪{n′}.As for the expansion rules the saturation rules are summarized in Figure 5.3.Termination CriteriaIn order to be useful the tableaux pro
edure needs some
riteria to indi
ate when theexpansion of a node
an be aborted. This is a nontrivial task sin
e in general (and in
ontrast to �rst order logi
) there is nearly always a rule whi
h may be applied to some

98 Chapter 5. The Programming Language Prolog(+T)formula. To be more pre
ise if n is a tableaux node and if there is at least one formula
ϕ ∈ F(n) su
h that ϕ
ontains one of the operators G, F, U and P, there is an in�nitesequen
e (ni)

∞
i=j0

of tableaux nodes su
h that nj0 = n and ea
h nji+1 emerges from njiby appli
ation of a saturation rule. Consider for example a node n su
h that Gϕ ∈ F(n)for some formula ϕ. Then a node n′
an be
onstru
ted su
h that {ϕ,XGϕ} ⊆ F(n′) (byappli
ation of the rule (G1)). This rule
an then be applied to n′ yielding n′′ su
h that
{Xϕ,XXGϕ} ⊆ F(n′′) and so forth. This example might illustrate the need of some moresophisti
ated
riteria of when to abort the expansion of nodes.We will adapt the
on
ept of
losedness of a node whi
h is known from �rst order logi
to in
lude the temporal operators. In �rst order logi
 a node is
alled
losed if thereare literals ϕ1, ϕ2 ∈ F(n) su
h that ϕ2 = ¬ψ and ϕ1 and ϕ2 are uni�able. For �rstorder logi
al literals this is adequate but for FoLtl�literals we need a more
ompli
ated
riterion sin
e the synta
ti
al form of a literal is in general not unique (
onsider e.g.
ϕ1 = not(Xp(X)) and ϕ2 = Xnot(p(X)) where ϕ1 6= ϕ2 but ϕ1 ≡ ϕ2).De�nition 5.3.3Let n be a tableaux node. Then n is
alled
losed if there are formulas ϕ1 and ϕ2from F(n) su
h that1. Red(ϕ1) and Red(¬ϕ2) are uni�able or2. there is an i ≥ 0 su
h that Red(ϕ1) = Xiψ(1)

1 Pψ(1)
2 and Red(ϕ2) = Xiψ(2) andRed(ψ

(1)
2) and Red(ψ(2)) are uni�able or3. there is an i ≥ 0 su
h that Red(ϕ1) = ¬Xiψ(1)

1 Uψ(1)
2 and Red(ϕ2) = Xiψ(2) andRed(ψ

(1)
2) and Red(ψ(2)) are uni�able.A path π is
alled
losed if it
ontains a
losed node. Otherwise π is
alled open.The de�nition of
losedness presented here is more
ompli
ated then ne
essary. It

5.3 A Saturation�based temporal Proof Pro
edure 99would su�
e to de�ne
losedness solely by the �rst point of the de�nition. However, thetwo other points allow dete
tion of
losedness at an earlier point of time whi
h mightspeed up the proof pro
edure.Given the de�nition of
losedness we are able to dete
t several nontrivial
ases of
losednodes.1. Assume that {¬Xp(X),¬X¬p(X)} ⊆ F(n). Then Red(¬Xp(X)) = ¬Xp(X) andRed(¬¬X¬p(X)) = ¬Xp(X) and an mgu is given by ε. So n is
losed.2. Assume that {GXF¬Gp(X, a),FFXGGGp(b, Y} ⊆ F(n). ThenRed(GXF¬Gp(X, a)) = ¬FXGp(X, a)and Red(¬FFXGGGp(b, Y)) = ¬FXGp(b, Y).An mgu is given by {X
b
, Y
a

}. So n is
losed.3. Finally assume that {XXFp(a)Pq(b),X¬XG¬p(X)} ⊆ F(n). Here we haveRed(XXFp(a)Pq(b)) = XXFp(a)Pq(b) and Red(X¬XG¬p(X)) = XXFp(X) whi
hare uni�able with the mgu {X
a

}. So n is
losed.Using this de�nition of
losedness of nodes we
an state the following
riterion:Termination by Closedness If n is a node su
h that n is
losed. Then n
an be skipped.Here the term skipping means that it is not ne
essary to try to apply expansion and/orsaturation rules to n. As we will see,
losedness of a node n
orresponds to unsatis�abilityof F(n). Consequently we will have to apply rules in su
h a way that every path startingfrom the initial node leads to a
losed node.The termination
riterion from above
an be seen as a kind of su

ess
riterion, thatis it enables a proof pro
edure to determine if the a
tual node has to be expanded or

100 Chapter 5. The Programming Language Prolog(+T)not. In
ontrast we
an also state a dual (but mu
h weaker)
riterion of when the
omplete
onstru
tion
an be aborted. In order to state this
riterion we need some morede�nitions.De�nition 5.3.4Let n = (Φ, F, S) be a tableaux node. n is
alled disjun
tively expanded if only therules (G1) and (F2)
an be applied to formulas from F(n) and no subformula of aformula in F(n)
ontains U or P.So a node is disjun
tively expanded if every possible
ontinuation of the path from theroot node leading to this node does not
ontain a node whi
h
ontains a formula whi
h
an be split due to the presen
e of a disjun
tion symbol.In addition to the property of being disjun
tively expanded we have to state a propertyof a path whi
h denotes the fa
t that every possible instantiation has indeed been
arriedout.De�nition 5.3.5Let π = (n0, . . . , nk) be a path in a tableaux. Then π is
alled
ompletely instantiatedif for every ground term t o

urring in F(n0) and every node ni on π su
h that thereis a formula ∀Xϕ(X) ∈ F(ni) there is a node nj on π with j ≥ i and ϕ(t) ∈ F(nj).These two de�nitions enable us to state the following
riterion for termination byfailure.Termination by Failure Let π = (n0, . . . , n) be a
ompletely instantiated path and let
n be disjun
tively expanded. Then the tableaux
onstru
tion may be aborted if there areno formulas ϕ1, ϕ2 ∈ F(n) and no i ≥ 0 su
h that at least one of the following
onditionsis ful�lled:

5.3 A Saturation�based temporal Proof Pro
edure 1011. Red(ϕ1) = Xiψ1, Red(ϕ2) = ¬Xiψ2 and Red(ψ1) and Red(ψ2) are uni�able,2. Red(ϕ1) = ¬Xiψ1, Red(ϕ2) = XjGψ2 for some j ≤ i and Red(ψ1) and Red(ψ2)are uni�able or3. Red(ϕ1) = ¬Xiψ1, Red(ϕ2) = ¬XjFψ2 for some j ≤ i and Red(ψ1) and Red(ψ2)are uni�able.This
riterion is sound as the following lemma states.Lemma 5.3.1Let n be a node on an open path π in a su
h that the
riterion Termination by Failureholds for n. Then F(n) is satis�able.Proof. Let F(n) be as required. Then every ϕ ∈ F(n) is either a �rst order literal or aFoLtl�literal
ontaining at most the operators X, G and F (if at all). De�ne the set Jπas follows:
Jπ = {ϕ ∈ F(n) | Var(ϕ) = ∅,Red(ϕ) is positive }Then Jπ |= F(n) and every temporally
losed superset of Jπ is a Herbrand�model of

F(n). �For the sake of simpli
ity we will introdu
e another formal
on
ept. A node n is saidto fail if the
riterion Termination by Failure
an be applied to the path πn leading fromthe root node to n.The Tableaux�Pro
edureHaving de�ned the rules of interest and the termination
riteria, the de�nition of a proofpro
edure based on these rules is almost immediate. Assume that P = {P1, . . . , Pn} isa Prolog(+T)�program and assume that G = ψ1 ∧ · · · ∧ ψm is a Prolog(+T)�goal.As always assume that the Pi have the form Pi = ϕi :−ψ(i)
1 , . . . , ψ

(i)
ni . We
onstru
t the

102 Chapter 5. The Programming Language Prolog(+T)following formula ϕP,G to be proven unsatis�able:
ϕP,G =

(
n∧

i=1

Pi

)

∧ :−G

≡
(

n∧

i=1

ϕi :−ψ(i)
1 , . . . , ψ(i)

ni

)

∧ (:−ψ1, . . . , ψm)

≡
(

n∧

i=1

ψ
(i)
1 ∧ · · · ∧ ψ(i)

ni
→ ϕi

)

∧
(

m∨

i=1

¬ψi
)

.We then
onstru
t the initial tableaux node n0 = ({ϕP,G} , ∅, ∅) as des
ribed above andde�ne two sets of nodes. The set N will
onsist of all nodes whi
h have been
onstru
tedso far while the set U will
ontain all unpro
essed nodes, that is nodes whi
h have notyet been
ompletely expanded. Initially we have N = U = {n0}. We assume that Uis realized as a queue, that is elements
an only be taken from the front of U and putat the ba
k of U . This ensures fairness of the node sele
tion rule. See the dis
ussionon page 89 for a treatment of the question of fairness regarding the sele
tion rule forformulas. While U is not empty and no termination
riterion is appli
able we take the�rst node na
t from U and sear
h for the �rst formula and the �rst rule whi
h
an beapplied to this formula. New nodes are then
reated a

ording to the de�nition of therule whi
h has been applied. We formalize this algorithm in Algorithm 1. There wewill use the following notations: sin
e U is assumed to be a queue stru
ture, the onlya

essible element is the element at the front of U . This element will be returned by thefun
tion U.�rst. Consequently the operation U.pop will remove the �rst element from
U . Insertion of elements is only possible at the end of U . So if U = {n1, . . . , nk} and
Nnew = {nnew} (respe
tively Nnew = {n1new, n2new}) is a set of newly
reated nodes, then
U ∪Nnew = {n1, . . . , nk, nnew} (respe
tively U ∪Nnew = {n1, . . . , nk, n

1new, n2new}).

5.3 A Saturation�based temporal Proof Pro
edure 103
Algorithm 1 Tableaux algorithm for ground goalsInput:
• Prolog(+T)�program P

• Prolog(+T)�ground goal :−G = G1, . . . , GnOutput: yes i� P |= G1 ∧ · · · ∧Gn1:
onstru
t ϕP,G2: n0 ← ({ϕP,G}, ∅, ∅)3: N ← {n0}, U ← {n0}Require: U is realized as a queue4: while U 6= ∅ do5: na
t ← U.�rst6: U.pop7: if F(na
t) is not
losed then8: if n fails then9: return no10: else11: sele
t a formula ϕ ∈ F(na
t) and a rule R appli
able to ϕ12: apply R to ϕ13: Nnew ← (set of) node(s)
reated by rule R14: N ← N ∪Nnew15: U ← U ∪Nnew16: end if17: end if18: end while19: return yes

104 Chapter 5. The Programming Language Prolog(+T)5.3.2. Soundness and Completeness IssuesWe will now address the topi
 of proving that the tableaux method des
ribed in theforegoing se
tion is sound and refutation
omplete. The �rst part will be
onsidered withsoundness. Therefore we have to note that ea
h node n = (F(n), F, S) in a tableaux
anbe seen as the root of a tableaux starting at this node.The proofs from this se
tion
losely follow the proofs for the nontemporal tableauxpro
edure as presented in [20℄. Our
ontribution is the treatment of the temporal
on-stru
ts.Lemma 5.3.2Let n be any tableaux node whi
h is the root of a
losed tableaux. Then F (n) is unsat-is�able.Proof. Let h denote the height of the tableaux T rooted by n, that is h is the length ofthe longest path starting at n. We pro
eed by indu
tion on h. First assume that h = 0.Then n is a leaf and sin
e T is
losed, we
an distinguish the following three
ases:Case 1 There is a pair ϕ1, ϕ2 of literals in F(n) su
h that Red(ϕ1) and Red(¬ϕ2) areuni�able. So
learly F(n) is unsatis�able.Case 2 There is i ≥ 0 su
h that Red(ϕ1) = Xiψ(1)
1 Pψ(1)

2 , Red(ϕ2) = Xiψ(2) andRed(ψ
(1)
2) and Red(ψ(2)) are uni�able. Let σ = mgu(Red(ϕ1),Red(ϕ2)) and

ψ = σ(ψ(2)) = σ(ψ
(1)
2) be given. Then we have

σ(Red(ϕ1)) ∧ σ(Red(ϕ2)) = σ(Xiψ(1)
1 Pψ(1)

2) ∧ σ(Xiψ(2))

= Xiσ(ψ
(1)
1)Pσ(ψ

(1)
2) ∧ Xiσ(ψ(2))

≡ ¬Xiσ(ψ
(1)
2) ∧ (Xiσ(ψ

(1)
1) ∨ Xi+1σ(ψ

(1)
1)Pσ(ψ

(1)
2)) ∧ Xiσ(ψ(2))

≡ ¬Xiψ ∧ Xiψ ∧ (Xiσ(ψ
(1)
1) ∨ Xi+1σ(ψ

(1)
1)Pσ(ψ

(1)
2))

≡ false ∧ (Xiσ(ψ
(1)
1) ∨ Xi+1σ(ψ

(1)
1)Pσ(ψ

(1)
2))

≡ false,

5.3 A Saturation�based temporal Proof Pro
edure 105so
learly F(n) is unsatis�able.Case 3 There is i ≥ 0 su
h that Red(ϕ1) = ¬Xiψ(1)
1 Uψ(1)

2 , Red(ϕ2) = Xiψ(2) andRed(ψ
(1)
2) and Red(ψ(2)) are uni�able. Again let σ = mgu(Red(ϕ1),Red(ϕ2))and ψ = σ(ψ(2)) = σ(ψ

(1)
2) be given. Then we have

σ(Red(ϕ1)) ∧ σ(Red(ϕ2)) = σ(¬Xiψ(1)
1 Uψ(1)

2) ∧ σ(Xiψ(2))

= ¬Xiσ(ψ
(1)
1)Uσ(ψ

(1)
2) ∧ Xiσ(ψ(2))

≡ ¬Xiσ(ψ
(1)
2) ∧ (¬Xiσ(ψ

(1)
1) ∨ ¬Xi+1σ(ψ

(1)
1 Uψ(1)

2)) ∧ Xiσ(ψ(2))

≡ ¬Xiψ ∧ Xiψ ∧ (¬Xiσ(ψ
(1)
1) ∨ ¬Xi+1σ(ψ

(1)
1 Uψ(1)

2))

≡ false ∧ (¬Xiσ(ψ
(1)
1) ∨ ¬Xi+1σ(ψ

(1)
1 Uψ(1)

2))

≡ false.So F(n) is unsatis�able.In every of the above
ases we have shown that F(n) is unsatis�able. So the
ase that
h = 0 is proved.Now assume that h > 0. Then a rule has been applied to n yielding one or twosu

essor nodes n′ and n′′. Sin
e T is
losed, the tableaux T ′ and T ′′ rooted by n′ and
n′′ are also
losed. Furthermore their height is h − 1 and so by indu
tion F(n′) and
F(n′′) are both unsatis�able. We distinguish the following
ases of how n might havebeen expanded.Case 1 Rule (∧ 1) has been applied. Then F(n) = {ϕ1 ∧ ϕ2} ∪ F ′ and F(n′) =

F ′ ∪ {ϕ1, ϕ2}. Sin
e F(n′) is unsatis�able we have J 6|= F (n′) for every J . Fixone su
h J . Sin
e J 6|= F (n′) at least one of the formulas in F(n′) is not satis�edby J . There are three possibilities:Case 1.1 There is ϕ0 ∈ F ′ su
h that J 6|= ϕ0. This immediately gives J 6|= F(n).Case 1.2 J 6|= ϕ1. Then J 6|= ϕ1 ∧ ϕ2 and so J 6|= F(n).

106 Chapter 5. The Programming Language Prolog(+T)Case 1.3 J 6|= ϕ2 This is analogous to the foregoing
ase.So this proves that F(n) is unsatis�able.Case 2 Rule (∨ 1) has been applied. Then F(n) = {ϕ1∨ϕ2}∪F ′ and F(n′) = F ′∪{ϕ1},
F(n′′) = F ′ ∪{ϕ2}. By indu
tion both F(n′) and F(n′′) are unsatis�able. Fix any
J . Then J 6|= F(n′) and J 6|= F(n′′). We again distinguish two
ases:Case 2.1 There is ϕ0 ∈ F ′ su
h that J 6|= ϕ0. This
ase is identi
al to
ase 1.1.Case 2.2 J |= ϕ0 for every ϕ0 ∈ F ′. Then the unsatis�ability of F(n′) and F(n′′)gives J 6|= ϕ1 and J 6|= ϕ2. Therefore J 6|= ϕ1 ∨ ϕ2 and so J 6|= F(n).Case 3 Rule (¬�E) has been applied. Here F(n′) = {¬¬ϕ} ∪F ′ and F(n′) = F ′ ∪ {ϕ}.Sin
e ϕ ≡ ¬¬ϕ we have J |= ϕ if and only if J |= ¬¬ϕ. Sin
e F(n′) is unsatis�able
F (n) is also unsatis�able.Case 4 A rewrite rule or the redu
tion rule has been applied. Then the
laim is provedexa
tly as in the foregoing
ase.Case 5 One of the rules (∀−E) and (∃−E) has been applied. This
ase is trivial sin
e if
X 6∈ Var(ϕ) we have ∀Xϕ ≡ ∃Xϕ ≡ ϕ. So if n′ is
reated from n by appli
ation ofone of the above rules then F(n′) is unsatis�able if and only if F(n) is unsatis�able.Case 6 Rule (σ−I1) has been applied. Then F(n) = {∀Xϕ(X)} ∪ F ′ and F(n′) = F ′ ∪

{ϕ(t)}. Again �x any J . Then J 6|= F(n′). The possible
ases are:Case 6.1 J 6|= ϕ0 for some ϕ0 ∈ F ′. Then we have the situation from
ase 1.1 and
ase 2.1.Case 6.2 J |= ϕ0 for every ϕ0 ∈ F ′. Then J 6|= ϕ(t) that is J 6|= σ(ϕ(x)) for
σ =

{
X
t

} and therefore J 6|= ∀Xϕ(X). So F(n) is unsatis�able.

5.3 A Saturation�based temporal Proof Pro
edure 107Case 7 The appli
ation of the other rules are redu
ed to the foregoing
ases by ex-ploiting semanti
al de�nitions (for the temporal operators, the impli
ation and theequivalen
e) and DeMorgan's laws (for the rules (∧ 2), (∨ 2), (→ 2) and (↔ 2)).This proves the lemma. �The above lemma espe
ially holds for the starting node of a tableaux so we have thefollowing easy
orollary.Corollary 5.3.1 (Soundness)Let ϕ be any FoLtl-formula. If the tableaux for ϕ is
losed, then ϕ is unsatis�able.Although rather te
hni
al, the proof that the tableaux
onstru
tion is sound is quitestraightforward exploiting only basi
 proof te
hniques. Proving refutation
ompletenessis mu
h more tri
ky. The tableaux
onstru
tion te
hnique known from �rst order logi
uses so
alled Hintikka�sets (see [66℄) in order to prove that for an unsatis�able formulathe tableaux
onstru
tion is indeed
apable of
onstru
ting a
losed tableaux. Hintikka�sets are also of great use for proving the refutation
ompleteness of the Prolog(+T)tableaux pro
edure as we will see now.Intuitively a Hintikka�set is a set of formulas whi
h is semanti
ally
losed, that if thereis e.g. a formula ϕ1 ∧ ϕ2 in the set, then so are ϕ1 and ϕ2. The following de�nitionformalizes this.De�nition 5.3.6 (Temporal Hintikka�Set)Let P be a Prolog(+T)�program and let S be a set of FoLtl�formulas su
h thatevery fun
tion� or predi
ate�symbol o

urring in S also o

urs in P . Then S is
alleda (temporal) Hintikka�set if for every FoLtl�formula ϕ the following holds for every
i ≥ 0:1. if ϕ ∈ BFoLtl

P , then ϕ ∈ S i� {ψ | ψ ≡ ¬ϕ} ∩ S = ∅,2. if ϕ = Xi (ϕ1 ∧ ϕ2), then ϕ ∈ S implies Xiϕ1 ∈ S and Xiϕ2 ∈ S,

108 Chapter 5. The Programming Language Prolog(+T)3. if ϕ = Xi (ϕ1 ∨ ϕ2), then ϕ ∈ S implies Xiϕ1 ∈ S or Xiϕ2 ∈ S,4. if ϕ = Xi∀Xψ(X), then ϕ ∈ S implies Xiψ(t) ∈ S for every t ∈ UP ,5. if ϕ = Xi∃Xψ(X), then ϕ ∈ S implies Xiψ(t) ∈ S for some ground term t,6. if ϕ = XiGψ, then ϕ ∈ S implies Xi+jψ ∈ S for every j ≥ 0,7. if ϕ = XiFψ, then ϕ ∈ S implies Xi+jψ ∈ S for some j ≥ 0,8. if ϕ = ¬XiGψ, then ϕ ∈ S implies there is j ≥ 0 su
h that ¬Xi+jψ ∈ S or
¬Xi+jGψ ∈ S for every j ≥ 0,9. if ϕ = ¬XiFψ, then ϕ ∈ S implies ¬Xi+jψ ∈ S for every j ≥ 0,10. if ϕ = Xiϕ1Uϕ2, then ϕ ∈ S implies Xiϕ2 ∈ S or Xiϕ1 ∈ S and Xi+1ϕ1Uϕ2 ∈ S,11. if ϕ = ϕ1Pϕ2, then ϕ ∈ S implies ¬Xiϕ2 ∈ S and Xiϕ1 ∈ S or Xi+1ϕ1Pϕ2 ∈ S,12. if ϕ = ¬Xiϕ1Uϕ2, then ϕ ∈ S implies ¬Xiϕ2 ∈ S and ¬Xiϕ1 ∈ S or
¬Xi+1ϕ1Uϕ2 ∈ S and13. if ϕ = ¬Xiϕ1Pϕ2, then ϕ ∈ S implies Xiϕ2 ∈ S or ¬Xiϕ1 ∈ S and ¬Xi+1ϕ1Pϕ2 ∈

S.If S is a Hintikka�set
onstru
ted from symbols o

urring in a program P , then we willalso say that S is a Hintikka�set with respe
t to (wrt.) P . The de�nition of Hintikka sets
an easily be adapted to deal with the spe
ial form of Prolog(+T)�rules by requiring
ϕ :−ψ1, . . . , ψn. ∈ S if and only if there is i su
h that ψi 6∈ S or ϕ ∈ S.The above de�nition is suitable for dealing with �nite paths of tableaux nodes (as wewill see soon). However sin
e paths might also be of in�nite length, we need some morede�nitions. In parti
ular we need a
on
ept of maximality of in�nite paths. As beforethe formalisms used in the sequel
losely follow [20℄.

5.3 A Saturation�based temporal Proof Pro
edure 109De�nition 5.3.7Let n = (F(n), F, S) be a tableaux node, let ϕ ∈ F(n) be a formula and let R be atableaux rule whi
h
an be applied to ϕ. Then R(ϕ) denotes the set of new formulas
reated by the appli
ation of R.Having introdu
ed the operator R we
an
hara
terize paths as in tableaux to bemaximal whether they are of �nite length or of in�nite length.De�nition 5.3.8Let π be an open path. Then π is
alled maximal if
• π is �nite and no more rules
an be applied to F(π) or
• π = (n0, n1, . . . , ni, . . .) is in�nite and for every i ≥ 0, every ϕ ∈ F(ni) andevery rule R whi
h
an be applied to ϕ there is a node nj (j > i) su
h that

R(ϕ) ⊆ F(nj).Maximality of an open path will now turn out to be the key
on
ept for provingrefutation
ompleteness.Lemma 5.3.3Let π be a maximal open path of tableaux nodes
onstru
ted from symbols o

urring ina program P . Then F(π) is a (temporal) Hintikka�set wrt P .Proof. First assume that π is �nite. Sin
e π is open and maximal, no rules
an beapplied to the formulas from F(π). In parti
ular, no element of F(π)
ontains one of theoperators G, F, U or P. Hen
eforth if we assume that F(π) is not a Hintikka�set, one ofthe following
ases has to o

ur:Case 1 There is a literal ϕ ∈ F(π) su
h that ψ ∈ F(π) for some ψ with ψ ≡ ¬ψ. Butthen π is
losed whi
h
ontradi
ts the assumptions on π.

110 Chapter 5. The Programming Language Prolog(+T)Case 2 There is ϕ = ϕ1 ∧ ϕ2 ∈ F(π) su
h that ϕ1 6∈ F(π) or ϕ2 6∈ F(π). But in this
ase the rule (∧1)
an be applied to ϕ whi
h
ontradi
ts the maximality of π.Case 3 There is ϕ = ϕ1 ∨ ϕ2 ∈ F(π) su
h that ϕ1 6∈ F(π) and ϕ2 6∈ F(π). In this
ase
(∨1)
an be applied whi
h again
ontradi
ts the maximality of π.Case 4 There is ϕ = ∀Xψ(X) ∈ F(π) and t ∈ UP su
h that ψ(t) 6∈ F(π). Then (σ−I1)
an be applied to ϕ and therefore π is not maximal.Case 5 There is ϕ = ∃Xψ(X) ∈ F(π) and ψ(t) 6∈ F(π) for every t. Then (σ−I2)
an beapplied to ϕ and therefore π is not maximal.So in the
ase of a �nite path π the
laim is true. Now assume that π is of in�nite length.Then we have more
ases to distinguish. The �rst �ve
ases are identi
al to the
asesfrom above. So we will only have to
onsider the
ases in whi
h the operators G, F, Uand P are involved. Assume that the assumptions from above are ful�lled, that is assumethat π is maximal and open and assume that F(π) is not a Hintikka�set, i.e. assumethat the
on
lusion of the impli
ations from the de�nition of temporal Hintikka�sets areviolated.Case 6 There is XiGψ ∈ F(π) su
h that Xi+1ψ 6∈ F(π) for some j. Then let j0 be theminimal su
h j, that is j0 = min

{
j | Xi+jψ 6∈ F(π)

}. Sin
e j0 is minimal, we haveXj0−1ψ ∈ F(π) and Xi+j0−2Gψ ∈ F(π). This implies Xi+j0−1Gψ ∈ F(π) sin
e
π is maximal (otherwise (G1)
ould be applied). Again maximality now yieldsXi+j0Gψ ∈ F(π) and therefore Xi+j0ψ ∈ F(π) whi
h is a
ontradi
tion.Case 7 Let XiFψ be in F(π).a) Assume that Xi+jψ 6∈ F(π) for every j ≥ 0. Sin
e π is maximal, every possibleappli
ation of the rule (∨1) has been
arried out. Furthermore the path π
orresponds to the path whi
h
ontains the right one of the new formulas

5.3 A Saturation�based temporal Proof Pro
edure 111
reated by (∨1) (sin
e instead there would be a minimal value j0 su
h thatXi+j0ψ ∈ F(π)). This yields Xi+jFψ ∈ F(π) for every j ≥ 0.b) Now assume that there is j ≥ 0 su
h that Xi+jFψ 6∈ F(π). As in
ase 6 we
hose the minimal value of all these j's, namely j0 = min
{
j | Xi+jFψ 6∈ F(π)

}.So Xi+j0Fψ 6∈ F(π) and Xi+j0−1Fψ ∈ F(π). By maximality of π the ap-pli
ation of (∨1) has been
arried out and with Xi+j0Fψ 6∈ F(π) we haveXi+j0−1ψ ∈ F(π).Case 8 Let ¬XiGψ be in F(π). We have the following
ases:a) for ea
h j ≥ 0 it holds that ¬Xi+jψ 6∈ F(π). Then in parti
ular we have
¬Xiψ 6∈ F(π). But sin
e π is maximal we have ¬Xi+1Gψ ∈ F(π) sin
e other-wise (G2)
ould be applied and π is not maximal.b) there is j ≥ 0 su
h that ¬Xi+jGψ 6∈ F(π). As before we
hose the minimalvalue of all these j's: j0 = min

{
j | ¬Xi+jGψ 6∈ F(π)

}. Then ¬Xi+j0Gψ 6∈
F(π). Furthermore sin
e ¬XiGψ ∈ F(π) we have j0 ≥ 1. Sin
e j0 is minimalwe have ¬Xi+j0−1Gψ ∈ F(π) and the maximality of π yields ¬Xi+j0−1ψ ∈

F(π).Case 9 Let ¬XiFψ be in F(π) and assume that there is j ≥ 0 su
h that Xi+jψ ∈ F(π).Then we immediately have that there is a node n o

urring on π whi
h is
losed.This
ontradi
ts the assumption that π is open.Case 10 Let Xiψ1Uψ2 be in F(π). If Xiψ2 ∈ F(π) then the
ase is
lear. Now assumethat Xiψ2 6∈ F(π). Sin
e π is maximal we have that the rule (U1) whi
h is appli
ablehas indeed been applied and
reates the formula ϕ′ = Xiψ1 ∧ Xi+1ψ1Uψ2 to whi
h
(∧1)
an be applied. By maximality of π we have {Xiψ1,Xi+1ψ1Uψ2} ⊆ F(π).Case 11 Let Xiψ1Pψ2 be in F(π). Then we immediately have ¬Xiψ2 ∈ F(π) by maxi-mality of π. Now if Xiψ1 ∈ F(π), the
ase is
lear. So assume that Xiψ1 6∈ F(π).

112 Chapter 5. The Programming Language Prolog(+T)Then we have Xi+1ψ1Pψ2 ∈ F(π) sin
e otherwise π is not maximal.Case 12 Let ¬Xiψ1Uψ2 be in F(π). By maximality of π we have {¬Xiψ2,¬Xiψ1 ∨

¬Xi+1ψ1Uψ2} ⊆ F(π) and therefore the appli
ation of (∨1) yields the desiredresult.Case 13 Let ¬Xiψ1Pψ2 be in F(π). By appli
ation of (P2) we have the following possi-bilities:a) Xiψ2 ∈ F(π). Then the
ase is
lear.b) Xiψ2 6∈ F(π). Then (P2)
reates the formula ¬Xiψ1 ∧ ¬Xi+1ψ1Pψ2 and anappli
ation of (∧1) yields {¬Xiψ1,¬Xi+1ψ1Pψ2} ⊆ F(π).Therefore F(π) is a temporal Hintikka�set wrt. P and the lemma is proved. �As in �rst order logi
, we are able to
onstru
t models for
ertain kinds of temporalHintikka�sets.Lemma 5.3.4Let S be a temporal Hintikka�set su
h that S = F(π) for a maximal open path. Then
S is satis�able.Proof. The
laim is immediately by
onsidering any interpretation whi
h satis�es everyground atom from F(π). �Combining these two lemmas we have the following theorem.Theorem 5.3.1 (Refutation�Completeness)Let P be a Prolog(+T)�program and let G = ψ1 ∧ · · · ∧ ψn. be a goal. If P |=
ψ1 ∧ · · · ∧ ψn, then the tableaux rooted with ({ϕP,G} , ∅, ∅) is
losed.Proof. We have P |= ψ1∧· · ·∧ψn i� P ∪{G} |= � i� ϕP,G is unsatis�able. Now assumethat the tableaux rooted with ({ϕP,G}, ∅, ∅) is not
losed. Then there is a maximal openpath π in this tableaux. We then have that F(π) is a temporal Hintikka�set wrt. P and

5.3 A Saturation�based temporal Proof Pro
edure 113
onsequently F(π) is satis�able. This yields satis�ability of ϕP,G whi
h is a
ontradi
tion.So the theorem is proved. �This result states the most desirable property of Prolog(+T) and its inferen
e me
h-anism. We have therefore shown that Prolog(+T) is indeed an adequate programminglanguage for the fragment of �rst order temporal logi
 under
onsideration. So we
anpro
eed by treating the latti
e properties of Prolog(+T)�obje
ts in order to justifyour treatment of the re�nement operations in the following
hapters.

114 Chapter 5. The Programming Language Prolog(+T)

6. The Latti
e Stru
ture of Prolog(+T)obje
ts
Contents6.1. Subsumption . 1166.2. The Latti
e Stru
ture of Literals 1176.2.1. Generalizations of Terms . 1176.2.2. Generalizations and Spe
ializations of Literals 1196.3. The Latti
e Stru
ture of Rules 1256.3.1. Greatest Spe
ializations . 1256.3.2. Least Generalizations . 129We will now show how the
on
ept of subsumption
an be generalized from �rst orderformulas to Prolog(+T)�obje
ts. The main part of this generalization will be theintegration of the temporal operators X, G, F, U and P, so the
ompli
ated part is se
tion6.2 where it will be shown that the latti
e properties of the subsumption ordering
arryover from �rst order logi
 literals to FoLtl�literals. In
ontrast the results from se
tion6.3 will be nearly identi
al to results from �rst order ILP.

116 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
ts6.1. SubsumptionDuring the
onstru
tion of programs whi
h satisfy a spe
i�
ation given by sets E+ ⊆

BFoLtl
P and E− ⊆ BFoLtl

P it might be ne
essary to spe
ialize and/or generalize
ertainobje
ts. In general, spe
ialization and generalization should be related to the pro
essof largening and shrinking the set of logi
al
onsequen
es (that is modifying a program
P in order to yield a program P ′ whi
h implies more � in the
ase of generalization �respe
tively less � in the
ase of spe
ialization � than the original program P). However,the logi
al
onsequen
e relation |= is unde
idable and therefore one needs another order-ing whi
h is on the one hand de
idable (that is it
an be implemented on a
omputer)and on the other side
losely related to logi
al
onsequen
e. Subsumption has turned outuseful for this purpose (see [77℄ for a dis
ussion of the di�eren
e between subsumptionand impli
ation in First Order Logi
).Informally, subsumption models the assumption that some obje
t is more general thananother one in the way that the more general obje
t implies more than the less generalone1. Formally, subsumption between literals is de�ned as follows.De�nition 6.1.1 (Subsumption for atoms, Plotkin [133℄)Let ϕ1 and ϕ2 be literals from FoLtl. Then ϕ1 < ϕ2 if and only if there is asubstitution θ su
h that θ(ϕ1) = ϕ2.As one might expe
t, we will write ϕ1 4 ϕ2 if ϕ2 < ϕ1, ϕ1 ≻ ϕ2 if ϕ1 < ϕ2 and not
ϕ2 < ϕ1, ϕ1 ≺ ϕ2 if ϕ2 ≻ ϕ1 and ϕ1 ≈ ϕ2 if ϕ1 < ϕ2 and ϕ2 < ϕ1. Additionally we willwrite ϕ1 6< ϕ2 denoting that ϕ1 < ϕ2 does not hold.It is easily seen that < is re�exive and transitive. But it is not a partial ordering on theset of all FoLtl�literals sin
e it is not anti�symmetri
. Consider the literals ϕ1 = p(x)1This is due to the fa
t that the less general obje
t
an be
onstru
ted by instantiating the more generalone.

6.2 The Latti
e Stru
ture of Literals 117and ϕ2 = p(y). Then for θ1 =
{
x
y

} and θ2 =
{
y
x

} we have θ1(ϕ1) = ϕ2 and θ2(ϕ2) = ϕ1and therefore ϕ1 < ϕ2 and ϕ2 < ϕ1 but ϕ1 6= ϕ2. However, ϕ1 and ϕ2 are variants.We will use the ordering < in order to de�ne a quasi�order �s on literals whi
h yieldsa latti
e�stru
ture. Therefore we de�ne
• false �s ϕ for every FoLtl�literal ϕ,
• ϕ �s true for every FoLtl�literal ϕ and
• ϕ1 �s ϕ2 for ϕ1, ϕ2 6∈ {true, false} if and only if ϕ1 < ϕ2.The notations �s, ≻s, ≺s and ≈s are de�ned as expe
ted.In the following se
tion we will see how the ordering �s yields a latti
e stru
ture inthe set of all FoLtl�literals thus extending a well�known result from �rst order logi
(see [133℄ and [134℄).6.2. The Latti
e Stru
ture of Literals6.2.1. Generalizations of TermsIn order to present operations for
omputing least generalizations and greatest spe
ial-izations of literals, we have to review some operations operating on terms. Re
all thata uni�er for two literals ϕ1 and ϕ2 is a substitution θ su
h that θ(ϕ1) = θ(ϕ2). Thepro
ess of uni�
ation
an be reversed by
onstru
ting from ϕ1 and ϕ2 both a literal ϕand substitutions θ1 and θ2 su
h that θ1(ϕ) = ϕ1 and θ2(ϕ) = ϕ2. Figure 6.1 illustratesthe situation.In [133℄ it has been shown that it is always possible to
onstru
t least generalizationsand greatest spe
ializations of terms. We will review the algorithm for
onstru
ting leastgeneralizations here sin
e we will need it later when
omputing least generalizations ofliterals.

118 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
ts
ϕ1 ϕ2

ψ

ϕ

θ2θ1

θθFigure 6.1.: Uni�
ation vs. Anti�uni�
ationAlgorithm 2 Anti�uni�
ation for termsInput: terms t1 and t2Output: term t̄ su
h that t̄ is a least generalization of t1 and t21: t′1 ← t1, t′2 ← t22: θ1 ← ε, θ2 ← ε3: i← 0Require: {zi | i ∈ N} is a set of variables not o

urring in t1 and t24: if t′1 = t′2 then5: return t̄ = t′16: else7: p←leftmost position at whi
h t′1 and t′2 di�er8: s← t′1|p9: t← t′2|p10: if there is j ∈ {1, . . . , i} su
h that θ1(zj) = s and θ2(zj) = t then11: repla
e t′1|p by zj12: repla
e t′2|p by zj13: else14: i← i+ 115: repla
e t′1|p by zi16: repla
e t′2|p by zi17: θ1 = θ1 ◦
{
zi

s

}18: θ2 = θ2 ◦
{
zi

t

}19: goto 420: end if21: end if

6.2 The Latti
e Stru
ture of Literals 119Algorithm 2 indeed produ
es a least generalization of the two input terms. This result
an for example be found in [133℄ or [126℄. Sin
e this least generalization is a general-ization with respe
t to subsumption we will denote the term returned by Algorithm 2as LGS(t1, t2).In later se
tions we will also denote any least generalization of literals ϕ1 and ϕ2 asLGS(ϕ1, ϕ2) and least generalizations of
lauses C1 and C2 as LGS(C1, C2) sin
e thiswill not
ause any
onfusion.6.2.2. Generalizations and Spe
ializations of LiteralsWe will now apply the results from the last se
tion in order to prove that the set of literalsfrom FoLtl is a latti
e ordered by the subsumption ordering �s. For formal reasons theset of all FoLtl�literals will from now on be denoted as LFoLtl. The proof will not bethat di�
ult but rather long due to the di�erent
ases whi
h have to be distinguished.Theorem 6.2.1
(
LFoLtl,�s) is a latti
e.Proof. In order to prove the theorem we will show that both a least generalization anda greatest spe
ialization of two given literals ϕ1 and ϕ2 exists in LFoLtl.Spe
ialization Let ϕ1, ϕ2 ∈ LFoLtl be given. Assume without loss of generality that ϕ1and ϕ2 have no variables in
ommon, that is ϕ1 and ϕ2 are standardized apart.1. if ϕ1 = true or ϕ2 = true, thenGSS(ϕ1, ϕ2) = true,2. a) if ϕ1 = false, then GSS(ϕ1, ϕ2) = ϕ2 and

120 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
tsb) if ϕ2 = false, then GSS(ϕ1, ϕ2) = ϕ1,3. if ϕ1 and ϕ2 are uni�able with σ = mgu(ϕ1, ϕ2), thenGSS(ϕ1, ϕ2) = σ(ϕ1) and4. if ϕ1 and ϕ2 are not uni�able, thenGSS(ϕ1, ϕ2) = true.It is obvious that GSS(ϕ1, ϕ2) is always a spe
ialization of the original literals ϕ1and ϕ2. It remains to show that it is indeed a greatest spe
ialization. The onlytwo nontrivial
ases are that both ϕ1 6∈ {true, false} and ϕ2 6∈ {true, false}.Consider the two
ases:Case 1 ϕ1 and ϕ2 are not uni�able. Then there
annot exist any literal ψ su
h that
ψ 6= true and ϕ1 �s ψ and ϕ2 �s ψ sin
e then there would be substitutions θ1and θ2 su
h that θ1(ϕ1) = ψ and θ2(ϕ2) = ψ. Sin
e ϕ1 and ϕ2 are standardizedapart this would give

θ1(ϕ1) = (θ1 ◦ θ2)(ϕ1) = ψ

θ2(ϕ2) = (θ1 ◦ θ2)(ϕ2) = ψ

So θ1 ◦θ2 is a uni�er for ϕ1 and ϕ2 whi
h is a
ontradi
tion to the assumptionthat ϕ1 and ϕ2 are not uni�able. So the
laim is proved.Case 2 ϕ1 and ϕ2 are uni�able. Then there is σ = mgu(ϕ1, ϕ2). if σ(ϕ1) is nota greatest spe
ialization, then there is ψ and substitutions θ1, θ2 su
h that

6.2 The Latti
e Stru
ture of Literals 121
θ1(ϕ1) = ψ, θ2(ϕ2) = ψ and ψ ≻s σ(ϕ1). But then there would be γ 6= εsu
h that γ(ψ) = σ(ϕ1) and therefore σ would not be most general, whi
h isa
ontradi
tion. So the
laim is proved.Generalization Let ϕ1, ϕ2 ∈ LFoLtl be given.1. if ϕ1 is positive and ϕ2 is negative or if ϕ1 is negative and ϕ2 is positive, thenLGS(ϕ1, ϕ2) := true.2. if ϕ1 = false or ϕ2 = false, then LGS(ϕ1, ϕ2) = false. Similarly if ϕ1 =

true, then LGS(ϕ1, ϕ2) = ϕ2 and if ϕ2 = true, then LGS(ϕ1, ϕ2) = ϕ1.3. if both ϕ1 and ϕ2 are negative, then assume that
ϕ1 = ¬ψ1 and
ϕ2 = ¬ψ2and de�ne LGS(ϕ1, ϕ2) = ¬LGS(ψ1, ψ2)4. if both ϕ1 and ϕ2 are positive, thena) if ϕ1 = p(t1, . . . , tn) and ϕ2 = p(t′1, . . . , t

′
n) for some p with α(p) = n andterms t1, . . . , tn, t′1, . . . , t′n, thenLGS(ϕ1, ϕ2) = p(LGS(t1, t
′
1), . . . ,LGS(tn, t

′
n)),b) if ϕ1 = p(t1, . . . , tn) and ϕ2 = q(t′1, . . . , t

′
m) for p, q with α(p) = n, α(q) =

m and t1, . . . , tn, t′1, . . . , t′m su
h that p 6= q, thenLGS(ϕ1, ϕ2) = false,

122 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
ts
) if ϕ1 = Xψ1 and ϕ2 = Xψ2, thenLGS(ϕ1, ϕ2) = XLGS(ψ1, ψ2),d) if ϕ1 = Gψ1 and ϕ2 = Gψ2, thenLGS(ϕ1, ϕ2) = GLGS(ψ1, ψ2),e) if ϕ1 = Fψ1 and ϕ2 = Fψ2, thenLGS(ϕ1, ϕ2) = FLGS(ψ1, ψ2),f) if ϕ1 = ψ
(1)
1 Uψ(1)

2 and ϕ2 = ψ
(2)
1 Uψ(2)

2 , thenLGS(ϕ1, ϕ2) = LGS(ψ
(1)
1 , ψ

(2)
1)ULGS(ψ

(1)
2 , ψ

(2)
2),g) if ϕ1 = ψ

(1)
1 Pψ(1)

2 and ϕ2 = ψ
(2)
1 Pψ(2)

2 , thenLGS(ϕ1, ϕ2) = LGS(ψ(1)
1 , ψ

(2)
1)PLGS(ψ(1)

2 , ψ
(2)
2) andh) in all other
ases: LGS(ϕ1, ϕ2) = false.Again we will distinguish several
ases.Case 1 Case 1 from the above list o

urs. Then the
laim is trivial.Case 2 Case 2 o

urs. Then the
laim is due to the de�nition of �s.Case 3 We now pro
eed by indu
tion on the stru
ture of the literals. First assumethat both ϕ1 and ϕ2 are nontemporal. Then the
laim is due to results from[126℄ regarding the latti
e stru
ture of �rst order logi
 literals. Similarly we
an

6.2 The Latti
e Stru
ture of Literals 123prove the
ase in whi
h both literals are negative by exploiting the assumptionthat the algorithm is
orre
t for the subliterals under
onsideration. Nowassume that ϕ1 and ϕ2 are of the form des
ribed in points
), d) and e). Thenwe
an exploit the indu
tion hypothesis for the literals ψ1 and ψ2 and the
laim is immediate. Similarly we
an treat the points f) and g). Finally in
ase h) no nontrivial least generalization
an exist.So the theorem is proved. �The te
hniques from the proof of the above theorem are summarized in Algorithms 3and 4.Algorithm 3 Greatest Spe
ialization of FoLtl�literalsInput: literals ϕ1, ϕ2Output: GSS(ϕ1, ϕ2)1: if ϕ1 and ϕ2 are uni�able then2: σ ← mgu(ϕ1, ϕ2)3: return σ(ϕ1)4: else5: return true6: end if
Example 6.2.11. Consider ϕ1 = GFp(X, f(a)) and ϕ2 = GFq(a). Then LGS(ϕ1, ϕ2) = false andGSS(ϕ1, ϕ2) = true.2. Now
onsider ϕ1 = p(X, X) and p(f(a), b). Here we have LGS(ϕ1, ϕ2) = p(Z1, Z2)and GSS(ϕ1, ϕ2) = true.3. Finally
onsider ϕ1 = GXp(A, X) and ϕ2 = GXp(Y, b). Then LGS(ϕ1) = GXp(Z1, Z2)and GSS(ϕ1, ϕ2) = GXp(a, b).

124 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
ts

Algorithm 4 Least Generalization of FoLtl�literalsInput: literals ϕ1, ϕ2Output: LGS(ϕ1, ϕ2)1: if ϕ1 = p(t1, . . . , tn) and ϕ2 = p(t′1, . . . , t
′
n) for some p and t1, . . . , tn, t′1, . . . , t′n then2: return p(LGS(t1, t′1), . . . ,LGS(tn, t

′
n))3: end if4: if ϕ1 = ¬ψ1 and ϕ2 = ¬ψ2 then5: return ¬LGS(ψ1, ψ2)6: end if7: if ϕ1 = Xψ1 and ϕ2 = Xψ2 then8: return XLGS(ψ1, ψ2)9: end if10: if ϕ1 = Gψ1 and ϕ2 = Gψ2 then11: return GLGS(ψ1, ψ2)12: end if13: if ϕ1 = Fψ1 and ϕ2 = Fψ2 then14: return FLGS(ψ1, ψ2)15: end if16: if ϕ1 = ψ

(1)
1 Uψ(1)

2 and ϕ2 = ψ
(2)
1 Uψ(2)

2 then17: return LGS(ψ(1)
1 , ψ

(2)
1)ULGS(ψ(1)

2 , ψ
(2)
2)18: end if19: if ϕ1 = ψ

(1)
1 Pψ(1)

2 and ϕ2 = ψ
(2)
1 Pψ(2)

2 then20: return LGS(ψ(1)
1 , ψ

(2)
1)PLGS(ψ(1)

2 , ψ
(2)
2)21: end if22: return false

6.3 The Latti
e Stru
ture of Rules 1256.3. The Latti
e Stru
ture of RulesAlgorithms 3 and 4 from the last se
tion
an now be used in order to
ompute leastgeneralizations and greatest spe
ializations of
lauses, that is least generalizations andgreatest spe
ializations of Prolog(+T)�rules. For this purpose we will adapt a prooffor the existen
e of least generalizations and greatest spe
ializations of �rst order logi

lauses whi
h might for example be found in [126℄. The subsumption ordering for rulesis de�ned as follows.De�nition 6.3.1 (Subsumption for Rules, Plotkin [133℄)Let C1 and C2 be Prolog(+T)�rules (represented as sets of literals). Then C1 �s C2if and only if there is a substitution θ su
h that θ(C1) ⊆ C2.The symbols ≻s, �s and ≺s are then de�ned as usual.6.3.1. Greatest Spe
ializationsAs in the last se
tion, the simpler part is the
omputation of greatest spe
ializations of
lauses. Therefore we will adapt a te
hnique des
ribed in [126℄. We will see that thegreatest spe
ialization of two Prolog(+T)�rules is in general not unique. This is dueto the fa
t that we allow negated atoms in the tails of rules.Assume that
C1 = ϕ1 :−ψ(1)

1 , . . . , ψ(1)
n1

and
C2 = ϕ2 :−ψ(2)

1 , . . . , ψ(2)
n2are given. We identify C1 and C2 with the sets of literals involved in these rules, that is

126 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
tswe
on
entrate on
SC1 =

{

¬ψ(1)
1 , . . . ,¬ψ(1)

n1
, ϕ1

} and
SC2 =

{

¬ψ(2)
1 , . . . ,¬ψ(2)

n2
, ϕ2

}as the obje
ts of interest. We now build the set C = SC1 ∪ SC2 and
onstru
t a set ofProlog(+T)�rules from this set ea
h of whi
h is a greatest spe
ialization of C1 and
C2. But in order to do this we de�ne a helper fun
tion Tail whi
h will be useful in thede�nition.Let T = {γ1, . . . , γk} be a set of FoLtl�literals. Then the string Tail(T) is de�nedas Tail(T) = ¬γ1, . . . ,¬γk,where ¬¬γi will be identi�ed with γi for i = 1, . . . , k.Now assume that S = {l1, . . . , ln1+n2+2}. We then build the set L
onsisting of allProlog(+T)�rules whi
h
an be
onstru
ted using the following s
heme: if li is positive,then L
ontains the rule

li :−Tail(S \ {li}).Algorithm 5 illustrates this s
heme.The properties of Algorithm 5 are summarized in the following theorem.Theorem 6.3.1Let C1 and C2 be Prolog(+T)�rules. Then Algorithm 5
omputes a set of rules ea
hof whi
h is a greatest spe
ialization of C1 and C2.Proof. Let C1 and C2 be given. Without loss of generality we
an assume that C1and C2 are standardized apart. Let C be any rule
omputed by Algorithm 5. Then for
S = SC1 ∪ SC2 we have SC1 ⊆ S and SC2 ⊆ S so both C1 �s C and C2 �s C holds,that is C is a spe
ialization under subsumption of C1 and C2. Now
onsider any rule

6.3 The Latti
e Stru
ture of Rules 127Algorithm 5 Greatest Spe
ialization of Prolog(+T)�rulesInput: Prolog(+T)�rules C1, C2Output: set of greatest spe
ializations of C1, C2Require: C1 = ϕ1 :−ψ(1)
1 , . . . , ψ

(1)
n1 , C2 = ϕ1 :−ψ(2)

1 , . . . , ψ
(2)
n21: L← ∅2: SC1 ←

{

¬ψ(1)
1 , . . . ,¬ψ(1)

n1 , ϕ1

}3: SC2 ←
{

¬ψ(2)
1 , . . . ,¬ψ(2)

n2 , ϕ2

}4: S ← SC1 ∪ SS2Require: S = {l1, . . . , lo}5: for i = 1, . . . , o do6: if li is positive then7: L← L ∪ {li :−Tail(S \ {li})}8: end if9: end for10: return L
C̄ su
h that C1 �s C̄ and C2 �s C̄. Then there are substitutions θ1 and θ2 su
h that
θ1(C1) ⊆ C̄ and θ2(C2) ⊆ C̄ and θ1 and θ2 only repla
e variables in C1 and C2 (sin
e C1and C2 are standardized apart). De�ne θ = θ1 ∪ θ2. Then

θ (SC) = θ (SC1 ∪ SC2)

= θ (SC1) ∪ θ (SC2)

= θ1 (SC1) ∪ θ2 (SC2)

⊆ SC̄ .So C �s C̄. Sin
e C was
hosen arbitrary from the set of rules
omputed by Algorithm 5the
laim is proved. �Although the synta
ti
al form of a greatest spe
ialization of Prolog(+T)�rules is notuniquely determined we
an adapt the notation GSS(C1, C2). This is justi�ed sin
e forevery C(1), C(2)
omputed by Algorithm 5 given the inputs C1 and C2 we have SC(1) =

128 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
ts
SC(2) = SC1 ∪ SC2 and therefore C(1) ≡ C(2). ConsequentlyGSS(C1, C2)will from now on be used in order to denote any of the rules
omputed by Algorithm 5.We will now
lose this se
tion by presenting a simple example of how Algorithm 5
reates greatest spe
ializations of Prolog(+T)�rules.Example 6.3.1Consider the rules

C1 = Gp(a) :−XXp(X1). and
C2 = XFp(X2) :−not(r(X2)),Gp(b).Then we have
SC1 = {not(XXp(X1)),Gp(a)} and
SC2 = {r(X2), not(Gp(b)),XFq(X2)}and therefore

S = {not(XXp(X)),Gp(a), r(X), not(Gp(b)),XFq(X)} .The rules generated by Algorithm 3 are the following:1. Gp(a) :−XXp(X1), not(r(X2)), not(Gp(b)), not(XFq(X2)).,2. r(X2) :−XXp(X1), not(Gp(a)),Gp(b), not(XFq(X2)). and3. XFq(X2) :−XXp(X1), not(Gp(a)), not(r(X2)),Gp(b).

6.3 The Latti
e Stru
ture of Rules 1296.3.2. Least GeneralizationsWhat remains to be established is the existen
e of least generalizations of Prolog(+T)�rules under subsumption. For �rst order literals the
on
ept of
ompatibility has beenused for the proof of the existen
e of least generalizations of
lauses. Two �rst orderliterals ϕ1 and ϕ2 are
onsidered
ompatible if they are either both positive or bothnegative and if they start with the same predi
ate symbol. For FoLtl�literals thesituation is slightly more
ompli
ated. Intuitively we should
onsider literals
ompatibleif they are either both positive or both negative and if they
ontain the same temporaloperators in the same order. Formally we will present a te
hnique whi
h
onstru
ts fora literal ϕ a tree Tree(ϕ) from whi
h a tuple Temp(ϕ) of words built up from theoperators involved in the literal ϕ
an be extra
ted. Two literals ϕ1 and ϕ2 are then
onsidered
ompatible if they yield identi
al sets Temp(ϕ1) and Temp(ϕ2).Given a literal ϕ we will now show how to
onstru
t a labeled graph Tree(ϕ). Re
allfrom
hapter 5.2 that a labeled graph is a tuple T = (V,E, l)
onsisting of a �nite set V
ontaining the verti
es or nodes, a set E ⊆ V × V
ontaining the edges and a mapping
l. Here l has the form l : V → {U,P,X,G,F,¬} ∪ P ∪ T . We will partition the set Vinto three sets Vt, Vp and Vf
ontaining so
alled temporal nodes, predi
ate nodes andfun
tion nodes, that is V = Vt

·∪ VP
·∪ Vf . The
onstru
tion of Tree(ϕ) is now given byindu
tion on the form of ϕ.Case 1 ϕ = p(t1, . . . , tn) ∈ BP is a �rst order atom. Then we setTree(ϕ) = ({v0, v1, . . . , vn}, {(v0, vi) | i = 1, . . . , n}, l) ,where l is de�ned by
l(v0) = p and
l(vi) = ti for i > 0

130 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
tsand
Vt = ∅,

Vf = {v1, . . . , vn} and
Vp = {v0}.Case 2 ϕ = not(ψ) for some Prolog(+T)�literal ψ. Then assume that Tree(ψ) =

(
V̄ , Ē, l̄

) is given. If V̄ =
{

v̄1, . . . , v̄|V̄ |

}

= V̄t
·∪ V̄p

·∪ V̄f then we de�ne
V =

{

v0, v̄1, . . . , v̄|V̄ |

} for some v0 6∈ V̄ ,
Vt = V̄t,

Vf = V̄f ,

Vp = V̄p ∪ {v0},

E = Ē ∪
{
(v0, v̄) | v̄ ∈ V̄ su
h that (¯̄v, v̄) 6∈ Ē for ea
h ¯̄v ∈ V̄

}
,

l(v0) = not and
l(v) = l̄(v) for ea
h v 6= v0.Case 3 ϕ = ⊕ψ for some Prolog(+T)�literal ψ and some ⊕ ∈ {X,G,F}. Then assumethat Tree(ψ) =

(
V̄ , Ē, l̄

) is given. If V̄ =
{

v̄1, . . . , v̄|V̄ |

}

= V̄t
·∪ V̄p

·∪ V̄f , thende�ne
V =

{

v0, v̄1, . . . , v̄|V̄ |

} for some v0 6∈ V̄ ,
Vt = V̄t,

Vf = V̄f ,

Vp = V̄p ∪ {v0},

E = Ē ∪
{
(v0, v̄) | v̄ ∈ V̄ su
h that (¯̄v, v̄) 6∈ Ē for ea
h ¯̄v ∈ V̄

}
,

6.3 The Latti
e Stru
ture of Rules 131
l(v0) = ⊕ and
l(v) = l̄(v) for ea
h v 6= v0.Case 4 ϕ = ψ1⊕ψ2 for Prolog(+T)�literals ψ1 and ψ2 and some ⊕ ∈ {U,P}. Assumethat Tree(ψ1) =

(
V̄1, Ē1, l̄1

) with V̄1 = V̄1,t
·∪ V̄1,p

·∪ V̄1,f and Tree(ψ2) =
(
V̄2, Ē2, l̄2

) with V̄2 = V̄2,t
·∪ V̄2,p

·∪ V̄2,f are given su
h that V̄1 ∩ V̄2 = ∅. Choosesome new v0 6∈ V̄1 ∪ V̄2 and set
V = {v0} ∪ V̄1 ∪ V̄2,

Vt = V̄1,t ∪ V̄2,t ∪ {v0},

Vp = V̄1,p ∪ V̄2,p,

Vf = V̄1,f ∪ V̄2,f ,

E = Ē1 ∪ Ē2 ∪







(v0, v) |
v ∈ V̄1 ∪ V̄2 su
h that (v̄, v) 6∈ Ē1 ∪ Ē1for ea
h v̄ ∈ V̄1 ∪ V̄2







,

l(v0) = ⊕,

l(v) = l̄1(v) for v ∈ V̄1 and
l(v) = l̄2(v) for v ∈ V̄2.Example 6.3.21. Assume that ϕ1 = q(a)Up(b) and ϕ2 = q(c)Up(a). The graphs Tree(ϕ1) andTree(ϕ2) are depi
ted in Figures 6.2 and 6.3 where the nodes from Vf are drawnas squares while all other nodes are drawn as
ir
les.2. Now assume that ϕ3 = q(c)UXp(a). Then Tree(ϕ3) is as depi
ted in Figure 6.4.Now re
all that a path from a node v1 to a node v2 in a (labeled) graph G = (V,E, l)is de�ned as follows:1. either (v1, v2) ∈ E or

132 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
ts
U

p

a b

q

Figure 6.2.: Tree(q(a)Up(b))
U

q p

c aFigure 6.3.: Tree(q(c)Up(a))

U

q

c

a

X

p

Figure 6.4.: Tree(q(c)UXp(a))

6.3 The Latti
e Stru
ture of Rules 1332. there is v ∈ V su
h that (v1, v) ∈ E and there is a path from v to v2 in G.Paths
an be des
ribed very naturally by giving the sequen
e of nodes on this path.We will from now on des
ribe paths as π = (v1, . . . , vn) and
all π a path of length n.Having
onstru
ted Tree(ϕ) from the literal ϕ, we
an extra
t the information Temp(ϕ)as follows: assume that the nodes from Vf are numbered in as
ending order from left toright. If Vf = {v1, . . . , vk} then Temp(ϕ) = (s1, . . . , sk) where si is de�ned as follows:1. Let π = (v0, . . . , vki
, vi) be the uniquely determined path from v0 to vi and2. si = l(v0) ◦ · · · ◦ l(vki
) where ◦ denotes the
on
atenation of words.Example 6.3.3Again
onsider the literals from Example 6.3.2. We then haveTemp(ϕ1) = (Uq,Up) ,Temp(ϕ2) = (Uq,Up) andTemp(ϕ3) = (Uq,UXp) .

The
onstru
tion of Temp(ϕ) from a given literal ϕ allows the extension of the
on
eptof
ompatibility from �rst order logi
.De�nition 6.3.2Let ϕ1 and ϕ2 be Prolog(+T)�literals. ϕ1 and ϕ2 are
alled
ompatible ifTemp(ϕ1) = Temp(ϕ2).Intuitively ϕ1 and ϕ2 are assumed to be
ompatible if they only di�er in their subterms.So
ompatibility is a
riterion for the existen
e of a nontrivial least generalization of twoliterals.

134 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
tsExample 6.3.4Again
onsider the literals ϕ1, ϕ2 and ϕ3 from Example 6.3.2. From Example 6.3.3 it is
lear that Temp(ϕ1) = Temp(ϕ2) = (Uq,Up). So ϕ1 and ϕ2 are
ompatible. On theother hand Temp(ϕ3) 6= Temp(ϕ1). So ϕ1 and ϕ3 are not
ompatible.The
on
ept of
ompatibility of literals will now be used in order to
ompute least gen-eralizations of Prolog(+T)�rules. Essentially the pro
edure is identi
al to a pro
edurewhi
h is known from �rst order ILP. Assume that
C1 = ϕ1 :−ψ(1)

1 , . . . , ψ(1)
n1
. and

C2 = ϕ2 :−ψ(2)
1 , . . . , ψ(2)

n2
.are two Prolog(+T)�rules. We will again work with the sets SC1 and SC2 of literalswhi
h represent these rules. So assume that

SC1 =
{

¬ψ(1)
1 , . . . ,¬ψ(1)

n1
, ϕ1

}

=
{

χ
(1)
0 , χ

(1)
1 , . . . , χ(1)

n1

} and
SC2 =

{

¬ψ(2)
1 , . . . ,¬ψ(2)

n2
, ϕ2

}

=
{

χ
(2)
0 , χ

(2)
1 , . . . , χ(2)

n2

}

,where χ(i)
0 = ϕi and χ(i)

j = ¬ψ(i)
j for i = 1, 2 and j > 0. LetSel = {(χ(1)

i0
, χ

(2)
j0

)

, . . . ,
(

χ
(1)
ik
, χ

(2)
jk

)}be the set of all pairs of
ompatible literals from SC1 and SC2 . If Sel = ∅ or if Sel doesnot
ontain at least one pair of positive literals, then we de�neLGS(C1, C2) = {false}.This is reasonable sin
e1. if there are no
ompatible literals, then no rule C and no pair of substitutions

6.3 The Latti
e Stru
ture of Rules 135
σ1, σ2 6= ε su
h that σ (SC) ⊆ SC1 and σ2 (SC) ⊆ SC2
an exist (assuming that
SC 6= ∅) and2. if there is no pair of
ompatible atoms, then there is no literal whi
h
an be gener-alized in order to yield the head of the generalized rule.We will now
on
entrate on the
ase that Sel 6= ∅, that is there is at least one pair of
ompatible literals. In order to
ompute the set of least generalizations of C1 and C2 we�rst adapt a te
hnique presented in [133℄ whi
h transforms literals to terms. Thereforeassume that sig = (X , F, P, α) is the signature from whi
h C1 and C2 are built. Weextend this signature to sigext = (X , Fext, Pext, αext) as follows:

• Fext = F∪
{

fp1, . . . , fp|P |

}

∪{fnot}∪{fnext, falways, f�nally, funtil, fpre
edes} assumingthat P =
{
p1, . . . , p|P |

},
• Pext = P ∪ {pnew} for some symbol pnew 6∈ P and
•

αext(f) = α(f) for f ∈ F,
αext (fpi

)
= α(pi) for i = 1, . . . , |P |,

αext(pnew) = k,

αext(fnot) = αext(fnext) = αext(falways) = αext(f�nally) = 1 and
αext(funtil) = αext(fpre
edes) = 2.Using the signature sigext we de�ne an operation Term : Lt(sig) → T (sigext) whi
hmaps literals to terms. Term is de�ned indu
tively as follows:

• if ϕ = p(t1, . . . , tn) for some symbol p ∈ P and t1, . . . , tn ∈ T (sig), then Term(ϕ) =

fp(t1, . . . , tn),
• if ϕ = not(ψ) for some literal ψ ∈ Lt(sig), then Term(ϕ) = fnot(Term(ψ)),

136 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
ts
• � if ϕ = Xψ for some ψ ∈ Lt(sig), then Term(ϕ) = fnext(Term(ψ)),� if ϕ = Gψ for some ψ ∈ Lt(sig), then Term(ϕ) = falways(Term(ψ)) and� if ϕ = Fψ for some ψ ∈ Lt(sig), then Term(ϕ) = f�nally(Term(ψ)),
• � if ϕ = ψ1Uψ2 for ψ1, ψ2 ∈ Lt(sig), thenTerm(ϕ) = funtil(Term(ψ1),Term(ψ2))and� if ϕ = ψ1Pψ2 for ψ1, ψ2 ∈ Lt(sig), thenTerm(ϕ) = fpre
edes(Term(ψ1),Term(ψ2)).Now we
onstru
t

ψ1 = pnew (Term(χ(1)
i0

)

, . . . ,Term(χ(1)
ik

)) and
ψ2 = pnew (Term(χ(2)

j0

)

, . . . ,Term(χ(2)
jk

))and
ompute
ψ = LGS(ψ1, ψ2) =: pnew(t1, . . . , tk).The set of generalized literals
an now be extra
ted from the sequen
e t1, . . . , tk ofterms using the transformation Literal : T (sigext)→ Lt(sig) de�ned as follows:

• if t = fp(t1, . . . , tn) for some p ∈ P and t1, . . . , tn ∈ T (sig), then Literal(t) =

p(t1, . . . , tn),
• if t = fnot(t̄) for some t̄ ∈ T (sigext), then Literal(t) = not(Literal(t̄)),
• � if t = fnext(t̄) for some t̄ ∈ T (sigext), then Literal(t) = XLiteral(t̄),� if t = falways(t̄) for some t̄ ∈ T (sigext), then Literal(t) = GLiteral(t̄) and

6.3 The Latti
e Stru
ture of Rules 137� if t = f�nally(t̄) for some t̄ ∈ T (sigext), then Literal(t) = FLiteral(t̄),
• � if t = funtil(t1, t2) for t1, t2 ∈ T (sigext), thenLiteral(t) = Literal(t1)ULiteral(t2)and� if t = fpre
edes(t1, t2) for t1, t2 ∈ T (sigext), thenLiteral(t) = Literal(t1)PLiteral(t2).It is immediately
lear from the de�nition of the operations Term and Literal thatwe have for every literal ϕ and every term t:Literal(Term(ϕ)) = ϕ andTerm(Literal(t)) = tHaving
onstru
ted ψ = pnew(t1, . . . , tk) as des
ribed above, we extra
t the generalizedliterals by
omputing the following set:

SC = {Literal(t1), . . . ,Literal(tk)} = {χ1, . . . , χk} .By assumption we have that there is at least one positive literal χi. So the set of possiblerules whi
h
an be extra
ted from SC is nonempty. We will again use the operation Tailde�ned on page 126. The algorithm to
onstru
t the set or rules from SC is des
ribed inAlgorithm 6.Theorem 6.3.2Let C1 and C2 be Prolog(+T)�rules and let C be any Prolog(+T)�rule from theset
omputed by Algorithm 6 given inputs C1 and C2. Then C is a least generalization

138 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
ts
Algorithm 6 Least Generalization of Prolog(+T)�rulesInput: Prolog(+T)�rules C1, C2Output: set of least generalizations of C1 and C2Require: C1 = ϕ1 :−ψ(1)

1 , . . . , ψ
(1)
n1 , C2 = ϕ1 :−ψ(2)

1 , . . . , ψ
(2)
n21: L← ∅2: SC1 ←

{

¬ψ(1)
1 , . . . ,¬ψ(1)

n1 , ϕ1

}3: SC2 ←
{

¬ψ(2)
1 , . . . ,¬ψ(2)

n2 , ϕ2

}4: S ← SC1 ∪ SS2Require: S = {l1, . . . , lo}5: Co← ∅6: for i = 1, . . . , o do7: for j = i+ 1, . . . , o do8: if i 6= j then9: if Temp(li) = Temp(lj) then10: Co← Co ∪ {(li, lj)}11: end if12: end if13: end for14: end forRequire: Co = {(li1 , lj1), . . . , (lik , ljk)}15: SC ← ∅Require: pnew is some new predi
ate symbol with arity k16: ψ1 ← pnew (Term (li1) , . . . ,Term (lik))17: ψ2 ← pnew (Term (lj1) , . . . ,Term (lj1))18: ψ ← LGS(ψ1, ψ2)Require: ψ = pnew(t1, . . . , tk)19: SC ← {Literal(t1), . . . ,Literal(tk)}Require: SC = {l1, . . . , lk}20: for i = 1, . . . , k do21: if li is positive then22: L← L ∪ {li :−Tail(SC \ {li})}23: end if24: end for25: if L 6= ∅ then26: return L27: else28: return {false}29: end if

6.3 The Latti
e Stru
ture of Rules 139under subsumption of C1 and C2.Proof. Let C1 and C2 be given as
C1 = ϕ1 :−ψ(1)

1 , . . . , ψ(1)
n1

and
C2 = ϕ2 :−ψ(2)

1 , . . . , ψ(2)
n2
.We �rst show that every
lause C
omputed by Algorithm 6 given input C1 and C2 is ageneralization of C1 and C2. Let S be the set returned by Algorithm 6. If S = {false},then the
laim is immediate by de�nition of the ordering �s. Now assume that S 6= ∅.If C is any element from S, then C has been
onstru
ted from a literal pC(t1, . . . , tn)for some predi
ate symbol p, some n ∈ N and terms t1, . . . , tn. This literal has been
onstru
ted from C1 and C2 by appli
ation of Algorithm 4. So pC(t1, . . . , tn) is indeed aleast generalization of the two literals
onstru
ted from C1 and C2. This gives the
laimof the theorem. �As in the
ase of
omputing sets of greatest spe
ializations we have that ea
h elementin a set returned by Algorithm 6 is semanti
ally equivalent to the remaining elements inthis set. So we will again denote any Prolog(T)�rule
omputed by Algorithm 6 giveninputs C1 and C2 as LGS(C1, C2).Example 6.3.5Consider the following three Prolog(+T)�rules:

C1 = Gp(a) :−Fq(X).,
C2 = p(b) :−not(q(X))Ur(X),Fq(a). and
C3 = p(a) :−not(q(a))Ur(c).We have LGS(C1, C2) = LGS(C1, C3) = {false}. The
omputation of LGS(C2, C3) is

140 Chapter 6. The Latti
e Stru
ture of Prolog(+T) obje
ts
arried out as follows: We have Co = {(p(a), p(a)), (q(X)Ur(X), q(a)Ur(c))}. So pnewwith arity 2 is added to the signature. Then the following two literals are
reated:
ψ1 = pnew (fp(a), funtil(fq(X), fr(X))) and
ψ2 = pnew (fp(a), funtil(fq(a), fr(c))) .The least generalization of these literals is pnew(fp(a), funtil(fq(Z1), fr(Z2))). This gives

SC = {p(a), q(Z1)Ur(Z2)} and therefore the set C of least generalizations is
C = {p(a) :−not(q(Z1)Ur(Z2))., q(Z1)Ur(Z2) :−not(p(a)).} .The results from this se
tion and the se
tion before are summarized in the followingtheorem.Theorem 6.3.3Let R be the set of all Prolog(+T)�rules. Then (R∪ {{false}},�s) is a latti
e.This theorem enables systems to re�ne programs in order to �t their spe
i�
ations with-out taking hazards of overgeneralization or overspe
ialization. It will turn out importantin the following
hapter where we will de�ne re�nement operators for Prolog(+T)�rules.

7. Re�nement Operators forProlog(+T)�programs
Contents7.1. Re�nement Operators for Prolog(+T)�Literals 1427.2. Re�nement Operators for Rules 1477.2.1. Downward Re�nement . 1507.2.2. Upward Re�nement . 1527.3. Re�nement Strategies . 1597.3.1. Elimination of Variants . 1627.3.2. Restri
tion to redu
ed Rules 1637.3.3. Elimination of Tautologies . 1657.3.4. Premises vs. Con
lusions . 166We will now
onsider the problem of re�ning literals and rules. In
ontrast to the
omputation of least generalizations and greatest spe
ializations as des
ribed in the last
hapter, only one obje
t is involved now. For obje
ts from �rst order logi
 several re�ne-ment operators have been des
ribed and studied (see [98℄ and [126℄). We will see that there�nement operators for literals
an be dire
tly used in order to re�ne Prolog(+T)�literals while the re�nement operators for �rst order
lauses have to be extended in orderto be useful for the
omputation of re�nements of Prolog(+T)�rules. But this exten-sion
auses the number of re�nements to grow very fast. So it is ne
essary to
ontrol the

142 Chapter 7. Re�nement Operators for Prolog(+T)�programsre�nement pro
ess in order to avoid
omputational intra
tability. How to a
hieve thiswill be the topi
 of
hapter 7.3.The use of re�nement operators in order to
onstru
t more spe
ial resp. more generalobje
ts from given ones dates ba
k to 1981 when Shapiro introdu
ed the model inferen
eframework (see [145℄ and [146℄). The approa
h posed there has gained a great interestin re�nement operators although it has been shown by van der Laag (see [159℄) thatShapiro's operator is (in
ontrast to Shapiro's arguments whi
h shows that his proof isin
orre
t) not
omplete. However, in [159℄ and [98℄ it has been shown that
ompletere�nement operators indeed exist.1 [127℄Further resear
h on re�nement operators has pointed out several
onditions for theexisten
e of
omplete re�nement operators (see [162℄, [161℄, [160℄, [127℄ and [163℄). Ad-ditionally re�nement operators for theories have been introdu
ed (see e.g. [15℄). Re�ne-ment operators for theories work on sets of
lauses rather than on single
lauses. Thisapproa
h may yield smaller hypothesis�programs sin
e the appli
ation of su
h re�nementoperators
an be
ombined with te
hniques su
h as
lause�deletion.7.1. Re�nement Operators for Prolog(+T)�LiteralsWe will now brie�y resume some re�nement operators for literals whi
h have been de-s
ribed for �rst order logi
 atoms in [126℄. The extension of these operators to Pro-log(+T)�literals is obvious and their properties
arry over to Prolog(+T). Thereforeassume that the signature under
onsideration is sig = (X , F, P, α) with F = {f1, . . . , fn}.Downward Re�nement Let ϕ ∈ Lt(sig) be given with Var(ϕ) = {Z1, . . . , Zk} and let
X

(1)
1 , . . . , X

(1)
α(f1), . . . , X

(n)
1 , . . . , X

(n)
α(fn) be a sequen
e of pairwise distin
t variables su
hthat X(j)

i 6∈ Var(ϕ) for all i, j. The downward re�nement operator ΘL
d : Lt(sig) →1The problem with Shapiro's in
omplete re�nement operator is simply due to the fa
t that it requires
lauses to be redu
ed (see [133℄ and [78℄). Relaxing this requirement yields on the one hand a largersear
h spa
e but on the other hand it yields a
omplete operator.

7.1 Re�nement Operators for Prolog(+T)�Literals 1431. GXFp(f(X(1)
1

))Up(g(f(f(X(1)
1

))

, Y
))2. GXFp(g(X(2)

1 , X
(2)
2

))Up(g(f(g(X(2)
1 , X

(2)
2

))

, Y
))3. GXFp (X)Up(g(f (X) , f

(

X
(1)
1

)))4. GXFp (X)Up(g(f (X) , g
(

X
(2)
1 , X

(2)
2

)))5. GXFp(a)Up(g(f(a), Y)),GXFp(X)Up(g(f(X), a))6. GXFp(Y)Up(g(f(Y), Y)),GXFp(X)Up(g(f(X), X))Table 7.2.: Set of downward re�nements of ϕ = GXFp(X)Up(g(f(X), Y))
2Lt(sig) is now de�ned as follows:

ΘL
d (ϕ) =






ϕ







Zi

fj

(

X
(j)
1 , . . . , X

(j)
α(fj)

)






| i = 1, . . . , k, j = 1, . . . , n






(7.1)

∪
{

ϕ

{
Zj

Zi

}

| i = 1, . . . , k, j = 1, . . . , k, i 6= j

}

. (7.2)The set from (7.1)
reates the literals whi
h emerge from the original literal byrepla
ing one variable by all possible instantiations of fun
tion symbols with (new)variables (note that repla
ement of variables with
onstant symbols is just a spe
ial
ase of this
ase) while the set from (7.2) repla
es variables with other variableso

urring in the original expression. The pro
edure
arried out by the appli
ationof ΘL
d is summarized in Algorithm 7.Example 7.1.1Assume that F = {f, g, a} and P = {p} with α(p) = α(g) = 2, α(f) = 1 and

α(a) = 0. If ϕ = GXFp(X)Up(g(f(X), Y)), then Var(ϕ) = {X, Y}. The new variablesto be introdu
ed are X(1)
1 ,X(2)

1 and X(2)
2 . The result of ΘL

d given input ϕ is summarizedin Table 7.2.It is easy to see that1. ΘL
d is ideal and

144 Chapter 7. Re�nement Operators for Prolog(+T)�programs2. ∣∣ΘL
d (ϕ)

∣
∣ ≤ |Var(ϕ)| · (|F |+ |Var(ϕ)| − 1) for every ϕ ∈ Lt(sig).Algorithm 7 Downward�Re�nement of Prolog(+T)�literalsInput: Prolog(+T)�literal ϕ built from sig = (X , F, P, α)Output: set of spe
ialized literalsRequire: Var(ϕ) = {X1, . . . , Xk}Require: F = {f1, . . . , fn}Require: X(1)

1 , . . . , X
(1)
α(f1), . . . , X

(n)
1 , . . . , X

(n)
α(fn) is a sequen
e of pairwise distin
t variablesfrom X \Var(ϕ)1: Ref ← ∅2: for i = 1, . . . , k do3: for j = 1, . . . , n do4: σ ←







Xi

fj

„

X
(j)
1 ,...,X

(j)
α(fj)

«





5: Ref ← Ref ∪ {σ(ϕ)}6: end for7: end for8: for i = 1, . . . , k do9: for j = 1, . . . , k do10: if i 6= j then11: σ ←
{

Xi

Xj

}12: Ref ← Ref ∪ {σ(ϕ)}13: end if14: end for15: end for16: return RefUpward Re�nement The dual
ase of downward re�nement is upward re�nement. Theupward re�nement operator ΘL
u for Prolog(+T)�literals whi
h we will presentnow is (as the operator ΘL

d is) an extension of an ideal re�nement operator for �rstorder logi
 literals. In order to present the re�nement operator we need some moreformal
on
epts.First we will de�ne the mapping Terms : Lt(sig) ∪ T (sig)→ 2T (sig) whi
h returnsall terms whi
h o

ur in a term respe
tively in a literal:1. if t = X ∈ X , then Terms(t) = {X},

7.1 Re�nement Operators for Prolog(+T)�Literals 1452. if t = f(t1, . . . , tn) for some fun
tion symbol f with arity n and terms t1, . . . , tn,then Terms(t) = {t} ∪⋃ni=1Terms(ti),3. if ϕ = p(t1, . . . , tn) for some predi
ate symbol p with arity n and terms
t1, . . . , tn, then Terms(ϕ) =

⋃n
i=1Terms(ti),4. if ϕ = not(ψ) for some ψ ∈ Lt(sig), then Terms(ϕ) = Terms(ψ),5. if ϕ = ⊕ψ for some ψ ∈ Lt(sig) and some ⊕ ∈ {X,G,F}, then Terms(ϕ) =Terms(ψ) and6. if ϕ = ψ1 ⊕ ψ2 for ψ1, ψ2 ∈ Lt(sig) and ⊕ ∈ {U,P}, then Terms(ϕ) =Terms(ψ1) ∪Terms(ψ2).We will
all a term t ∈ T (sig) simple if t = f(X1, . . . , Xn) for a fun
tion symbol fwith arity n and variables X1, . . . , Xn su
h that Xi 6= Xj for i 6= j.Now let o1 and o2 be any obje
ts (terms or literals). The set of all o

urren
es of

o1 in o2 is de�ned asO

(o1, o2) = {p ∈ Pos(o2) | o1|p = o2} .An o

urren
e p1 of an obje
t o1 is said to be inside an o

urren
e p2 of anotherobje
t o2 if there is p ∈ N
∗ su
h that p2p = p1.Re
all that for a literal ϕ, p ∈ Pos(ϕ) and a term t the literal ϕ[t]p is de�nedas the literal whi
h emerges from ϕ by repla
ing the term at position p with t.Similarly for p1, . . . , pk ∈ Pos(ϕ) and k > 1, the literal ϕ[t]p1,...,pk

emerges from ϕby repla
ing the terms at positions p1, . . . , pk with t.These
on
epts enable the de�nition of the upward re�nement operator ΘL
u forFoLtl�literals.

146 Chapter 7. Re�nement Operators for Prolog(+T)�programs
ΘL
u (ϕ) =







ϕ [Z]p1,...,pk
|
∅ 6= {p1, . . . , pk} = O

(t, ϕ) for every simple tsu
h that for every X ∈ Var(t) every p ∈ O

(X, t)is inside one of the pj and Z 6∈ Var(ϕ)







︸ ︷︷ ︸

=:S1

∪







ϕ [Z]p1,...,pk
|

for every a ∈ F su
h that α(a) = 0 and every
∅ 6= {p1, . . . , pk} ⊆ O

(a, ϕ) and some Z 6∈ Var(ϕ)







︸ ︷︷ ︸

=:S2

∪







ϕ [Z]p1,...,pk
|

for every X ∈ Var(ϕ), every set
∅ 6= {p1, . . . , pk} ⊂ O

(X, ϕ) and some Z 6∈ Var(ϕ)







︸ ︷︷ ︸

=:S3The estimation of the number of elements in ΘL
u (ϕ) is not that easy and we areonly able to present a very weak estimation. We have

|S1| ≤ |Terms(ϕ)|,

|S2| ≤ |F | ·
(

2|Pos(ϕ)| − 1
) and

|S3| ≤ |Var(ϕ)| ·
(

2|Pos(ϕ)| − 2
)

,whi
h gives
∣
∣ΘL

u (ϕ)
∣
∣ ≤ |S1|+ |S2|+ |S3|

≤ |Terms(ϕ)| + |F | ·
(

2|Pos(ϕ)| − 1
)

+ |Var(ϕ)| ·
(

2|Pos(ϕ)| − 2
)

.This estimation is not very pre
ise as the following example shows. But it is not yet
lear how a better estimation might be derived from the de�nition of ΘL
u withouttaking the stru
ture of the involved terms into a

ount.

7.2 Re�nement Operators for Rules 147Example 7.1.2Consider the signature sig = (X , {f, a}, {p}, α) with α(a) = 0, α(f) = 2 and
α(p) = 3 and the literal ϕ = FGp(X1, f(a, f(X1, f(a, f(a, a)))), f(X1, X2)). Then theonly simple term in Terms(ϕ) is f(X2, X3) at position p = 113. So ΘL

u (ϕ)
ontainsthe literal FGp(X1, f(a, f(a, f(a, f(a, a)))), Z). Sin
e Var(ϕ) = {X1, X2, X3} we havethat O

(X1, ϕ) = {111}, O

(X2, ϕ) = {1131} and O

(X3, ϕ) = {1132}. Noneof these sets has a nonempty proper subset so S3 = ∅ in this
ase. FurthermoreO

(a, ϕ) = {1121, 11221, 112221, 1122221, 1122222}, so there are 31 possible lit-erals whi
h might be added by ΘL
u . So the overall size of ΘL

u (ϕ) is 32 while theabove estimation yields
∣
∣ΘL

u (ϕ)
∣
∣ ≤ |S1|+ |S2|+ |S3|

≤ |Terms(ϕ)|+ |F | ·
(

2|Pos(ϕ)| − 1
)

+ |Var(ϕ)| ·
(

2|Pos(ϕ)| − 2
)

= 9 + 2 ·
(
216 − 1

)
+ 3 ·

(
216 − 2

)

= 327681The
omplete set of re�ned literals is listed in Table 7.3.Sin
e the original re�nement operator for �rst order logi
 literals is ideal, ΘL
u isalso ideal. The pro
edure for
omputing ΘL

u (ϕ) is summarized in Algorithm 8.7.2. Re�nement Operators for RulesWe will now present adapted versions of
lassi
al re�nement operators for sets of literals,i.e. for Prolog(+T)�rules. As in the
ase of re�ning literals, there is in general morethan one re�nement of an input rule. So we will have a set of rules as the result of are�nement operation. Ea
h of these rules is a set from whi
h we may
onstru
t one ormore rules ea
h of whi
h is a re�nement of the original rule.

148 Chapter 7. Re�nement Operators for Prolog(+T)�programs
1. FGp(X1, f(a, f(a, f(a, f(a, a)))), Z)2. FGp(X1, f(a, f(a, f(a, f(a, Z)))), f(X1, X2))3. FGp(X1, f(a, f(a, f(a, f(Z, a)))), f(X1, X2))4. FGp(X1, f(a, f(a, f(a, f(Z, Z)))), f(X1, X2))5. FGp(X1, f(a, f(a, f(Z, f(a, a)))), f(X1, X2))6. FGp(X1, f(a, f(a, f(Z, f(a, Z)))), f(X1, X2))7. FGp(X1, f(a, f(a, f(Z, f(Z, a)))), f(X1, X2))8. FGp(X1, f(a, f(a, f(Z, f(Z, Z)))), f(X1, X2))9. FGp(X1, f(a, f(Z, f(a, f(a, a)))), f(X1, X2))10. FGp(X1, f(a, f(Z, f(a, f(a, Z)))), f(X1, X2))11. FGp(X1, f(a, f(Z, f(a, f(Z, a)))), f(X1, X2))12. FGp(X1, f(a, f(Z, f(a, f(Z, Z)))), f(X1, X2))13. FGp(X1, f(a, f(Z, f(Z, f(a, a)))), f(X1, X2))14. FGp(X1, f(a, f(Z, f(Z, a(a, Z)))), f(X1, X2))15. FGp(X1, f(a, f(Z, f(Z, f(Z, a)))), f(X1, X2))16. FGp(X1, f(a, f(Z, f(Z, f(Z, Z)))), f(X1, X2))17. FGp(X1, f(Z, f(a, f(a, f(a, a)))), f(X1, X2))18. FGp(X1, f(Z, f(a, f(a, f(a, z)))), f(X1, X2))19. FGp(X1, f(Z, f(a, f(a, f(Z, a)))), f(X1, X2))20. FGp(X1, f(Z, f(a, f(a, f(Z, Z)))), f(X1, X2))21. FGp(X1, f(Z, f(a, f(Z, f(a, a)))), f(X1, X2))22. FGp(X1, f(Z, f(a, f(Z, f(a, Z)))), f(X1, X2))23. FGp(X1, f(Z, f(a, f(a, f(Z, a)))), f(X1, X2))24. FGp(X1, f(Z, f(a, f(a, f(Z, Z)))), f(X1, X2))25. FGp(X1, f(Z, f(a, f(Z, f(a, a)))), f(X1, X2))26. FGp(X1, f(Z, f(a, f(Z, f(a, Z)))), f(X1, X2))27. FGp(X1, f(Z, f(a, f(Z, f(Z, a)))), f(X1, X2))28. FGp(X1, f(Z, f(a, f(Z, f(Z, Z)))), f(X1, X2))29. FGp(X1, f(Z, f(Z, f(Z, f(a, a)))), f(X1, X2))30. FGp(X1, f(Z, f(Z, f(Z, f(a, z)))), f(X1, X2))31. FGp(X1, f(Z, f(Z, f(Z, f(Z, a)))), f(X1, X2))32. FGp(X1, f(Z, f(Z, f(Z, f(Z, Z)))), f(X1, X2))Table 7.3.: Set of upward re�nements for ϕ = FGp(X1, f(a, f(X1, f(a, f(a, a)))), f(X1, X2))

7.2 Re�nement Operators for Rules 149
Algorithm 8 Upward�Re�nement of Prolog(+T)�literalsInput: Prolog(+T)�literal ϕOutput: set of generalized literalsRequire: Var(C) = {X1, . . . , Xk}Require: Z ∈ X \ {X1, . . . , Xk}Require: Terms(ϕ) = {t1, . . . , tn}1: Ref ← ∅2: for i = 1, . . . , n do3: if ti is simple thenRequire: Var(ti) = {Z1, . . . , Zl}4: for o = 1, . . . , l do5: if ea
h p ∈ O

(Zo, ti) is inside of one element from O

(ti, ϕ) thenRequire: {p1, . . . , pm} = O

(ti, ϕ)6: Ref ← Ref ∪ {ϕ[Z]p1,...,pm}7: end if8: end for9: end if10: end forRequire: F = {f1, . . . , f|F |11: for i = 1, . . . , |F | do12: if α(fi) = 0 then13: for ea
h ∅ 6= {p1, . . . , pm} ⊆ O

(fi, ϕ) do14: Ref ← Ref ∪ {ϕ[Z]p1,...,pm}15: end for16: end if17: end for18: for i = 1, . . . , k do19: for ea
h ∅ 6= {p1, . . . , pm} ⊂ O

(Xi, ϕ) do20: Ref ← Ref ∪ {ϕ[Z]p1, . . . , pm}21: end for22: end for23: return Ref

150 Chapter 7. Re�nement Operators for Prolog(+T)�programsIn the following se
tions we will sometimes refer to
ertain re�nement operators whi
hhave been introdu
ed for �rst order logi
 literals respe
tively
lauses. A general de-s
ription of re�nement operators
an be found in [98℄. In parti
ular we will refer tothe operators ρA (downward re�nement of atoms), δA (upward re�nement of atoms), ρl(downward re�nement of
lauses) and δu (upward re�nement of
lauses) from [126℄.7.2.1. Downward Re�nementThe basi
 idea of downward re�nement of Prolog(+T)�rules is �rst to
onsider theset SC indu
ed by a rule C and then to add
ertain literals to SC . Additionally we willrepla
e variables with terms and variables with other variables from the original rule asin the
ase of the operator ΘL
d .The original downward re�nement operator presented in [98℄ only treats �rst order
lauses. So in order to
onstru
t re�nements of Prolog(+T)�rules we have to dealwith the temporal operators. This will be done as follows:

• whenever a literal ψ is
ontained in the original set SC , the set of re�nements
ontains SC ∪ {⊕ψ} and SC ∪ {not(⊕ψ)} for ⊕ ∈ {X,G,F} and
• whenever two literals ψ1 and ψ2 are
ontained in SC , the set of re�nements
ontainsboth SC ∪ {ψ1 ⊕ ψ2} and SC ∪ {not(ψ1 ⊕ ψ2)} for ⊕ ∈ {U,P}.From the resulting set of literals we will extra
t those rules whi
h
an be written usinga head literal whi
h is positive.The operator ΘR

d : 2Lt(sig) → 22Lt(sig) is therefore de�ned as follows:
ΘR
d (SC) =







SC

{
Z

f(X1, . . . , Xl)

}

|
Z ∈ Var(C), f ∈ F,α(f) = l,

X1, . . . , Xl 6∈ Var(C),

Xi 6= Xj for i 6= j







(7.3)

7.2 Re�nement Operators for Rules 151
∪

{

SC

{
Z

X

}

| X, Z ∈ Var(C), X 6= Z

} (7.4)
∪







SC ∪ {p(X1, . . . , Xl)} |
p ∈ P,α(p) = l, X1, . . . , Xl 6∈ Var(C)

Xi 6= Xj for i 6= j







(7.5)
∪







SC ∪ {not(p(X1, . . . , Xl))} |
p ∈ P,α(p) = l,

X1, . . . , Xl 6∈ Var(C)

Xi 6= Xj for i 6= j







(7.6)
∪ {SC ∪ {Xψ} | ψ ∈ SC} ∪ {SC ∪ {not(Xψ)} | ψ ∈ SC} (7.7)
∪ {SC ∪ {Gψ} | ψ ∈ SC} ∪ {SC ∪ {not(Gψ)} | ψ ∈ SC} (7.8)
∪ {SC ∪ {Fψ} | ψ ∈ SC} ∪ {SC ∪ {not(Fψ)} | ψ ∈ SC} (7.9)
∪ {SC ∪ {ψ1Uψ2} | ψ1, ψ2 ∈ SC} (7.10)
∪ {SC ∪ {not(ψ1Uψ2)} | ψ1, ψ2 ∈ SC} (7.11)
∪ {SC ∪ {ψ1Pψ2} | ψ1, ψ2 ∈ SC} (7.12)
∪ {SC ∪ {not(ψ1Pψ2)} | ψ1, ψ2 ∈ SC} . (7.13)The line (7.3) generates all sets of literals whi
h emerge from the original set by instan-tiating variables with terms. This
onstru
tion is an obvious extension of the
onstru
tionfrom (7.1). Similarly the se
ond line (7.4) adds sets of literals in whi
h single variableshave been repla
ed by other variables from the original set. The lines (7.5) and (7.6)add new literals to the original set of literals. Finally in lines (7.7) to (7.12) temporalliterals built up from literals of the original set are added as des
ribed above. Obviouslythe resulting set is subsumed by the original set. Furthermore the literals whi
h havebeen added are general enough to be instantiated to more spe
ial literals. The
ompletepro
edure is summarized in Algorithm 9.We illustrate the upward re�nement of Prolog(+T)�rules in the following example.Example 7.2.1Let sig = (X , F, P, α) with F = {f, g, a}, P = {p, q} and α(f) = 1, α(g) = 2, α(a) = 0,

152 Chapter 7. Re�nement Operators for Prolog(+T)�programs
α(p) = 1 and α(q) = 2 be given. If C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a)., then theset of re�ned rules is as listed in Tables 7.5, 7.7 and 7.9.Theorem 7.2.1
ΘR
d is lo
ally �nite and
omplete.Proof. Lo
ally �niteness is immediately by de�nition of ΘR

d . For the
ompleteness theproof relies on the
ompleteness of the restri
tion of ΘR
d to �rst order logi

lauses. Thishas been shown in [126℄. Sin
e every possible most general (see se
tion 7.2.2 for a formalde�nition of most general literals) temporal literal is added to the set of re�nements(lines 17�22) the
ompleteness
arries over to Prolog(+T)�rules. �7.2.2. Upward Re�nementAs having done for Prolog(+T)�literals we will now des
ribe how to re�ne Pro-log(+T)�rules upward. We will see that the de�nition of an upward re�nement operatorfor �rst order logi

lauses does not need to be
hanged. This is due to the fa
t thatupward re�nement of rules is in some sense easier than downward re�nement sin
e an up-ward re�nement operator does not need to
apture all possible
ases of temporal literalswhi
h might be added. Therefore the upward re�nement operator ΘR

u to be introdu
edis more tra
table than the operator ΘR
d . But before we need some more de�nitions.De�nition 7.2.1Let sig = (X , F, P, α) be a signature, let ϕ ∈ Lt(sig) be a literal and let C be aProlog(+T)�rule over sig. Then ϕ is
alled most general with respe
t to C ifTerms(ϕ) = {X1, . . . , Xn} ⊆ X and1. ϕ = p(X1, . . . , Xn) for some p ∈ P with α(p) = n and {X1, . . . , Xn}∩Var(C) = ∅or

7.2 Re�nement Operators for Rules 1531. Gp(a) :−Fq(X1, f(X2)), q(a, a)Up(a).2. Gp(X1) :−Fq(X1, f(a)), q(a, a)Up(a).3. Gp(f(X̄1)) :−Fq(f(X̄1), f(X2)), q(a, a)Up(q).4. Gp(X1) :−Fq(X1, f(f(X̄1))), q(a, a)Up(a).5. Gp(q(X̄1, X̄2)) :−Fq(g(X̄1, X̄2), f(X2)), q(a, a)Up(a).6. Gp(X1) :−Fq(X1, f(g(X̄1, X̄2))), q(a, a)Up(a).7. Gp(X1) :−Fq(X1, f(X1)), q(a, a)Up(a).8. Gp(X2) :−Fq(X2, f(X2)), q(a, a)Up(a).9. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(p(X̄1)).10. p(X1) :−not(Gp(X1)),Fq(X1, f(X2)), g(a, a)Up(a).11. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(X̄1, X̄2)).12. q(X̄1, X̄2) :−not(Gp(X1)),Fq(X1, f(X2)), q(a, a)Up(a).13. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), p(X̄1).14. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), q(X̄1, X̄2).15. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Xnot(Fq(X1, f(X2)))).16. Xnot(Fq(X1, f(X2))) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).17. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Xnot(q(a, a)Up(a))).18. Xnot(q(a, a)Up(a)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).19. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(XGp(X1)).20. XGp(X1)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).21. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Xnot(Fq(X1, f(X2))).22. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Xnot(q(a, a)Up(a)).23. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),XGp(X1).24. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gnot(Fq(X1, f(X2)))).25. Gnot(Fq(X1, f(X2))) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).26. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gnot(q(a, a)Up(a))).27. Gnot(q(a, a)Up(a)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).28. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(GGp(X1)).29. GGp(X1)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).30. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gnot(Fq(X1, f(X2))).31. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gnot(q(a, a)Up(a)).32. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),GGp(X1).33. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fnot(Fq(X1, f(X2)))).34. Fnot(Fq(X1, f(X2))) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).35. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fnot(q(a, a)Up(a))).36. Fnot(q(a, a)Up(a)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).37. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(FGp(X1)).38. FGp(X1)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).39. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Fnot(Fq(X1, f(X2))).40. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Fnot(q(a, a)Up(a)).Table 7.5.: Set of downward re�nements of C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).(part 1)

154 Chapter 7. Re�nement Operators for Prolog(+T)�programs41. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),FGp(X1).42. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)UGp(X1)).43. Gp(X1)UGp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).44. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)Unot(Fq(X1, f(X2)))).45. Gp(X1)Unot(Fq(X1, f(X2))) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).46. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)Unot(q(a, a)Up(a))).47. Gp(X1)Unot(q(a, a)Up(a)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).48. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(Fq(X1, f(X2)))UGp(X1)).49. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(Fq(X1, f(X2)))Unot(Fq(X1, f(X2)))).50. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(Fq(X1, f(X2)))Unot(q(a, a)Up(a))).51. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(q(a, a)Up(a)UGp(X1)).52. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(q(a, a)Up(a))Unot(Fq(X1, f(X2)))).53. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(q(a, a)Up(a))Unot(q(a, a)Up(a))).54. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gp(X1)UGp(X1).55. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gp(X1)Unot(Fq(X1, f(X2))).56. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gp(X1)Unot(q(a, a)Up(a)).57. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fq(X1, f(X2)))UGp(X1).58. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fq(X1, f(X2)))Unot(Fq(X1, f(X2))).59. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fq(X1, f(X2)))Unot(q(a, a)Up(a)).60. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(a, a)Up(a)UGp(X1).61. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(a, a)Up(a))Unot(Fq(X1, f(X2))).62. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(a, a)Up(a))Unot(q(a, a)Up(a)).63. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)PGp(X1)).64. Gp(X1)PGp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).65. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)Pnot(Fq(X1, f(X2)))).66. Gp(X1)Pnot(Fq(X1, f(X2))) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).67. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)Pnot(q(a, a)Up(a))).68. Gp(X1)Pnot(q(a, a)Up(a)) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).69. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(Fq(X1, f(X2)))PGp(X1)).70. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(Fq(X1, f(X2)))Pnot(Fq(X1, f(X2)))).71. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(Fq(X1, f(X2)))Pnot(q(a, a)Up(a))).72. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(q(a, a)Up(a)PGp(X1)).73. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(q(a, a)Up(a))Pnot(Fq(X1, f(X2)))).74. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(not(q(a, a)Up(a))Pnot(q(a, a)Up(a))).75. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gp(X1)PGp(X1).76. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gp(X1)Pnot(Fq(X1, f(X2))).77. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a),Gp(X1)Pnot(q(a, a)Up(a)).78. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fq(X1, f(X2)))PGp(X1).79. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fq(X1, f(X2)))Pnot(Fq(X1, f(X2))).80. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Fq(X1, f(X2)))Pnot(q(a, a)Up(a)).Table 7.7.: Set of downward re�nements of C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).(part 1)

7.2 Re�nement Operators for Rules 155
Algorithm 9 Downward�Re�nement of Prolog(+T)�rulesInput: Prolog(+T)�rule C = ϕ :−ψ1, . . . , ψn.Output: set of spe
ialized rulesRequire: C = ϕ :−ψ1, . . . , ψn.1: SC ← {ϕ,¬ψ1, . . . ,¬ψn}2: Ref ← ∅ {set of sets of literals}Require: SC = {χ0, . . . , χn}, Var(C) = {X1, . . . , Xk}, sig = (X , F, P, α)Require: F =

{
f1, . . . , f|F |

}Require: X1, X2, . . . , Xi, . . . new variables, pairwise distin
t3: for i = 1, . . . , k do4: for j = 1, . . . , |F | do5: Ref ← Ref ∪
{

SC

{

Xi

fj

“

X1,...,Xα(fj)

”

}}6: end for7: end for8: for i = 1, . . . , k do9: for j = 1, . . . , k do10: if i 6= j then11: Ref ← Ref ∪
{

SC

{
Xi

Xj

}}12: end if13: end for14: end forRequire: P = {p1, . . . , pm}15: for i = 1, . . . ,m do16: Ref ← Ref ∪
{
SC ∪

{
pi

(
X1, . . . , Xα(pi)

)}}
∪
{
SC ∪

{
not

(
pi

(
X1, . . . , Xα(pi)

))}}17: Ref ← Ref ∪ {Xψ | ψ ∈ SC} ∪ {not(Xψ) | ψ ∈ SC}18: Ref ← Ref ∪ {Gψ | ψ ∈ SC} ∪ {not(Gψ) | ψ ∈ SC}19: Ref ← Ref ∪ {Fψ | ψ ∈ SC} ∪ {not(Fψ) | ψ ∈ SC}20: Ref ← Ref ∪ {ψ1Uψ2 | ψ1, ψ2 ∈ SC} ∪ {not(ψ1Uψ2) | ψ1, ψ2 ∈ SC}21: Ref ← Ref ∪ {ψ1Pψ2 | ψ1, ψ2 ∈ SC} ∪ {not(ψ1Pψ2) | ψ1, ψ2 ∈ SC}22: end forRequire: Ref = {S1, . . . , So}23: R← ∅ {set of rules}24: for i = 1, . . . , o doRequire: Si =
{

l
(i)
1 , . . . , l

(i)
ni

}25: for j = 1, . . . , ni do26: if lj is positive then27: R← R ∪ {lj :−Tail(Si \ {lj}).}28: end if29: end for30: end for31: return R

156 Chapter 7. Re�nement Operators for Prolog(+T)�programs81. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(a, a)Up(a)PGp(X1).82. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(a, a)Up(a))Pnot(Fq(X1, f(X2))).83. Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(a, a)Up(a))Pnot(q(a, a)Up(a)).Table 7.9.: Set of downward re�nements of C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).(part 3)2. ϕ = not(p(X1, . . . , Xn)) for some p ∈ P with α(p) = n and {X1, . . . , Xn} ∩Var(C) = ∅ or3. ϕ = ⊕ψ for ⊕ ∈ {X,G,F} and some most general literal ψ or4. ϕ = ψ1⊕ψ2 for ⊕ ∈ {U,P} and most general literals ψ1, ψ2 su
h that Var(ψ1)∩Var(ψ2) = ∅.It will be ne
essary to
onsider rules whi
h may
ontain literals more than on
e. Inthis
ase, treating rules as sets of literals is not adequate. Therefore we will introdu
e se-quen
es of literals whi
h are
omputed by dupli
ating
ertain literals from the underlyingset.De�nition 7.2.2 (Dupli
ation of Literals, e.g. [126℄)Let SC = {ϕ1, . . . , ϕn} be a set of Prolog(+T)�literals and let t ∈ Terms(SC) bea term. Then the sequen
e dup(SC , t) is de�ned as
dup(SC , t) = (ϕ1, . . . , ϕ1

︸ ︷︷ ︸

2|O

(t,ϕ1)| times, . . . , ϕn, . . . , ϕn
︸ ︷︷ ︸

2|O

(t,ϕn)| times).Positions of su
h tuples of literals are de�ned as expe
ted:Pos(ϕ1, . . . , ϕn) =

n⋃

i=1

{ip | p ∈ Pos(ϕi)}.

7.2 Re�nement Operators for Rules 157Similarly for p1, . . . , pk ∈ Pos(ϕ1, . . . , ϕn) and t ∈ T (sig) we de�ne
(ϕ1, . . . , ϕn)[t]p1,...,pk

=

(

ϕ1[t]p(1)
i
(1)
0

,...,p
(1)

i
(1)
m1

, . . . , ϕn[t]p(n)

i
(n)
0

,...,p
(n)

i
(n)
mn

)

,where for ea
h j the set {jp(j)

i
(j)
0

, . . . , jp
(j)

i
(j)
mj

}

⊆ Pos(ϕ1, . . . , ϕn) is maximal.Finally for a sequen
e (ϕ1, . . . , ϕn)
onsisting of n (not ne
essarily distin
t) literalsfrom Lt(sig) we de�ne Set(ϕ1, . . . , ϕn) =

n⋃

i=1

{ϕi}.Using these de�nitions the extension of the re�nement operator for �rst order logi

lauses to Prolog(+T)�rules is straightforward. As in the
ase of downward re�nementwe will work on sets of literals instead of rules.
ΘR
u (SC) =







SC [Z]p1,...,pk
|

t ∈ Terms(C), t = f
(
X1, . . . , Xα(f)

) simple
{p1, . . . , pk} = O

(t, C) and every p ∈ O

(Xi, C)is inside of one pi for i = 1, . . . , α(f), Z 6∈ Var(C) 

∪







Set(dup(SC , a)[Z]p1,...,pk
) |

a ∈ F,α(a) = 0, Z 6∈ Var(C)

∅ 6= {p1, . . . , pk} ⊆ O

(a, dup(SC , a))







∪







Set(dup(SC , X)[Z]p1,...,pk
) |

X ∈ Var(C), Z 6∈ Var(C)

∅ 6= {p1, . . . , pk} ⊂ O

(X, dup(SC , X)),







∪ {SC \ {ϕ} | ϕ ∈ SC is most general wrt. C} .Given C we
an therefore
ompute SC and then apply ΘR
u to C. From the resultingset the extra
tion of a set of generalized rules is then
arried out as usual. The pro
edurefor
omputing the set of generalized rules is summarized in Algorithm 10.Theorem 7.2.2

ΘR
u is lo
ally �nite and
omplete.

158 Chapter 7. Re�nement Operators for Prolog(+T)�programsAlgorithm 10 Upward�Re�nement of Prolog(+T)�rulesInput: Prolog(+T)�rule C = ϕ :−ψ1, . . . , ψn.Output: set of generalized rulesRequire: C = ϕ :−ψ1, . . . , ψn.1: SC ← {ϕ,¬ψ1, . . . ,¬ψn}2: Ref ← ∅ {set of sets of literals}Require: SC = {χ0, . . . , χn}, Z 6∈ Var(C)Require: F = {f1, . . . , f|F |}, Terms(C) = {t1, . . . , tm}3: for i = 1, . . . ,m do4: if ti is simple thenRequire: Var(ti) = {Z1, . . . , Zl}5: for o = 1, . . . , l do6: if ea
h p ∈ O

(Xo, C) is inside a p′ ∈ O

(ti, C) thenRequire: {p1, . . . , pk}O

(ti, C)7: Ref ← Ref ∪ {SC [Z]p1,...,pk
}8: end if9: end for10: end if11: end for12: for i = 1, . . . , |F | do13: if α(fi) = 0 then14: for ea
h ∅ 6= {p1, . . . , pk} ⊆ O

(fi, dup(SC , fi)) do15: Ref ← Ref ∪ {Set(dup(SC , fi)[Z]p1,...,pk

)}16: end for17: end if18: end forRequire: Var(C) = {X1, . . . , Xl}19: for i = 1, . . . , l do20: for ea
h ∅ 6= {p1, . . . , pk} ⊂ O

(Xi, dup(SC , Xi)) do21: Ref ← Ref ∪ {Set(dup(SC , Xi)[Z]p1,...,pk
)}22: end for23: end for24: for i = 0, . . . , n do25: if χi is most general wrt. C then26: Ref ← Ref ∪ {SC \ {χi}}27: end if28: end forRequire: Ref = {S1, . . . , S|S|}29: R← ∅ {set of rules}30: for i = 1, . . . , |S| doRequire: Si =

{

l
(i)
1 , . . . , l

(i)
ni

}31: for j = 1, . . . , ni do32: if lj is positive then33: R← R ∪ {lj :−Tail(Si \ {lj}).}34: end if35: end for36: end for37: return R

7.3 Re�nement Strategies 159Proof. As for the operator ΘR
d , lo
ally �niteness is immediately
lear from the de�nitionof ΘR

u . For the
ompleteness the argumentation from [126℄
an be dire
tly adapted to
ΘR
u . So the theorem is proved. �7.3. Re�nement StrategiesUp to now we have de�ned operators for re�ning Prolog(+T)�literals and �rules bothupward and downward. However, it is not yet
lear how these operators should beapplied. For example, exhaustive appli
ation of ΘR

d to any
lause is not appli
able aswe have seen in Example 7.2.1. The size of the set
omputed by Algorithm 9 is given asstated in the following lemma2.Lemma 7.3.1Let C be a Prolog(+T)�rule built over sig = (X , F, P, α). Then
|ΘR

d (C)| ≤ |Var(C)| (|F |+ |Var(C)| − 1) + 6|SC |+ 4|SC |2 + 2|P |.Proof. We have
|ΘR

d (C)| ≤

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣







SC

{
Z

f(X1, . . . , Xl)

}

|
Z ∈ Var(C), f ∈ F,α(f) = l,

X1, . . . , Xl 6∈ Var(C),

Xi 6= Xj for i 6= j







∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣

{

SC

{
Z

X

}

| X, Z ∈ Var(C), X 6= Z

}∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣







SC ∪ {p(X1, . . . , Xl)} |
p ∈ P,α(p) = l, X1, . . . , Xl 6∈ Var(C)

Xi 6= Xj for i 6= j







∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣







SC ∪ {not(p(X1, . . . , Xl))} |
p ∈ P,α(p) = l, X1, . . . , Xl 6∈ Var(C)

Xi 6= Xj for i 6= j







∣
∣
∣
∣
∣
∣
∣2We will restri
t ourselves on the
ase of downward re�nement sin
e upward re�nement often yieldssmaller sets of rules.

160 Chapter 7. Re�nement Operators for Prolog(+T)�programs
+ |{SC ∪ {Xψ} | ψ ∈ SC}|+ |{SC ∪ {not(Xψ)} | ψ ∈ SC}|

+ |{SC ∪ {Gψ} | ψ ∈ SC}|+ |{SC ∪ {not(Gψ)} | ψ ∈ SC}|

+ |{SC ∪ {Fψ} | ψ ∈ SC}|+ |{SC ∪ {not(Fψ)} | ψ ∈ SC}|

+ |{SC ∪ {ψ1Uψ2} | ψ1, ψ2 ∈ SC}|

+ |{SC ∪ {¬ψ1Uψ2} | ψ1, ψ2 ∈ SC}|

+ |{SC ∪ {ψ1Pψ2} | ψ1, ψ2 ∈ SC}|

+ |{SC ∪ {¬ψ1Pψ2} | ψ1, ψ2 ∈ SC}|by de�nition of ΘR
d . Furthermore

•
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣







SC

{
Z

f(X1, . . . , Xl)

}

|
Z ∈ Var(C), f ∈ F,α(f) = l,

X1, . . . , Xl 6∈ Var(C),

Xi 6= Xj for i 6= j







∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ |Var(C)| · |F |,

•
∣
∣
∣
∣

{

SC

{
Z

X

}

| X, Z ∈ Var(C), X 6= Z

}∣
∣
∣
∣
≤ |Var(C)| · (|Var(C)| − 1) ,

•
∣
∣
∣
∣
∣
∣
∣







SC ∪ {p(X1, . . . , Xl)} |
p ∈ P,α(p) = l, X1, . . . , Xl 6∈ Var(C)

Xi 6= Xj for i 6= j







∣
∣
∣
∣
∣
∣
∣

≤ |P | and
∣
∣
∣
∣
∣
∣
∣







SC ∪ {not(p(X1, . . . , Xl))} |
p ∈ P,α(p) = l, X1, . . . , Xl 6∈ Var(C)

Xi 6= Xj for i 6= j







∣
∣
∣
∣
∣
∣
∣

≤ |P |,

•

|{SC ∪ {Xψ} | ψ ∈ SC}| ≤ |SC |,

7.3 Re�nement Strategies 161
|{SC ∪ {not(Xψ)} | ψ ∈ SC}| ≤ |SC |,

|{SC ∪ {Gψ} | ψ ∈ SC}| ≤ |SC |,

|{SC ∪ {not(Gψ)} | ψ ∈ SC}| ≤ |SC |,

|{SC ∪ {Fψ} | ψ ∈ SC}| ≤ |SC | and
|{SC ∪ {not(Fψ)} | ψ ∈ SC}| ≤ |SC |,

•

|{SC ∪ {ψ1Uψ2} | ψ1, ψ2 ∈ SC}| ≤ |SC |2,

|{SC ∪ {not(ψ1Uψ2)} | ψ1, ψ2 ∈ SC}| ≤ |SC |2,

|{SC ∪ {ψ1Pψ2} | ψ1, ψ2 ∈ SC}| ≤ |SC |2 and
|{SC ∪ {not(ψ1Pψ2)} | ψ1, ψ2 ∈ SC}| ≤ |SC |2.

Combining these inequalities we have
|ΘR

d (C)| ≤ |Var(C)| · |F |+ |Var(C)| · (|Var(C)| − 1) + 6|SC |+ 4|SC |2 + 2|P |

= |Var(C)| · (|F |+ |Var(C)| − 1) + 6|SC |+ 4|SC |2 + 2|P |as
laimed. �We will now see how re�nement steps
an be
arried out without
onstru
ting themaximum number of rules.

162 Chapter 7. Re�nement Operators for Prolog(+T)�programs7.3.1. Elimination of VariantsRe
all that two Prolog(+T)�rules C1 and C2 are variants if there are substitutions θ1and θ2 su
h that θ1(C1) = C2 and θ2(C2) = C1. Sin
e in our setting all rules in programsare
onsidered universally
losed, only one (of possibly arbitrary many) variants must bein
luded in the set of re�ned rules. In the example from the last se
tion, one of the rules7 and 8 may be dropped.In general, the presen
e of variants in the set of re�nements is due to the
onstru
tionof the loop from line 8 to line 14 in Algorithm 9. If we
hange the j�loop to range from
i+1 to k and drop the if�
ondition (whi
h now has no e�e
t), the variants are not added.In the original algorithm the number of rules added in the loop is given as k2 − k. Ifthe modi�
ation is added, only ∑k

i=1

∑k
j=i+1 1 rules are added. So the di�eren
e in thesize of the original set of re�ned rules and the modi�ed set is given as

k2 − k −
(

k2 − k(k + 1)

2

)

=
k(k + 1)

2
− k

=
k2 + k − 2k

2

=
k2 − k

2
.Setting k = |Var(C)| and using Lemma 7.3.1 we have

∣
∣ΘR

d (C)
∣
∣ ≤ |Var(C)| · (|F |+ |Var(C)| − 1) + 6|SC |+ 4|SC |2

+2|P | − |Var(C)|2 − |Var(C)|
2

= |Var(C)| ·
(

|F |+ |Var(C)|
2

− 1

2

)

+ 6|SC |+ 4|SC |2 + 2|P |,where ΘR
d from now on denotes the re�nement operator whi
h implements the abovestrategy.The growth of the set of re�nements (depending on the number of variables in the rule

7.3 Re�nement Strategies 163

 0
 20

 40
 60

 80
 100 0

 20

 40

 60

 80

 100

 0

 10000

 20000

 30000

 40000

 50000

 60000

Number of Refinements

without elimination of variants
with elimination of variants

Number of Variables in C

Number of Elements in S_C

Number of Refinements

Figure 7.1.: Growth rate of re�ned rules with and without elimination of variantsto be re�ned and the size of the original rule) is depi
ted in Figure 7.1 using |F | = 3 and
|P | = 2.7.3.2. Restri
tion to redu
ed RulesWe have introdu
ed the
on
ept of redu
ed literals in order to keep the representationof a literal
anoni
al, so that we
an assume that ea
h literal from Lt(sig) has a
ertainform. Similarly a rule is redu
ed if every literal in this rule is redu
ed. Restri
tingourselves to the
onstru
tion of redu
ed rules during the re�nement of Prolog(+T)�rules guarantees
anoni
ity.Example 7.3.1Again
onsider rule

C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).

164 Chapter 7. Re�nement Operators for Prolog(+T)�programsThen the set of re�nements
ontains among others the rules
C1 = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(GGp(X1)). and
C2 = GGp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).These rules are synta
ti
ally di�erent. However, redu
tion of the literals involved yields:Red(C1) = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)). andRed(C2) = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).

Sin
e Red(C1) = Red(C2) one of the re�nement steps
an be skipped.
But the example from above yields even more possible improvements: both rules
anbe skipped. This is simply due toRed(C1) = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(Gp(X1)).

≡ Gp(X1) ∨ not(Fq(X1, f(X2))) ∨ not(q(a, a))Up(a) ∨ not(not(Gp(X1)))

≡ Gp(X1) ∨ not(Fq(X1, f(X2))) ∨ q(a, a)Up(a)
≡ Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).
= C.However, estimating the number of rules whi
h
an be skipped by restri
tion to redu
edliterals depends on the stru
ture of the literals involved in the re�ned rule. So in generalwe are not able to give an estimation of the redu
tion of |ΘR

d (C)|.

7.3 Re�nement Strategies 1657.3.3. Elimination of TautologiesTautologies
an be
onsidered as rules whi
h do not have any e�e
t on the provabilityresp. non�provability of goals. Therefore they do not have to be
onstru
ted. A su�
ient
riterion is stated in the following lemma.Lemma 7.3.2Let C be any Prolog(+T)�rule built over the signature sig. If there is ϕ ∈ Lt(sig) su
hthat {ϕ, not(ϕ)} ⊆ SC , then C is a tautology.Proof. immediately from
C ≡ SC

= {ϕ, not(ϕ), ψ1, . . . , ψk} for ϕ,ψ1, . . . , ψk ∈ Lt(sig)
≡ ϕ ∨ not(ϕ) ∨ ψ1 ∨ · · · ∨ ψk

≡ true ∨ ψ1 · · · ∨ ψk

≡ true.

�Example 7.3.2Let the rule
C = Gp(X) :−p(X),Fq(X, X).be given. Then {Gp(X) :−p(X),Fq(X, X),Gp(X)} ⊆ ΘR

d (C) whi
h is a tautology and
antherefore be skipped.In general, testing a rule C for being a tautology using the approa
h sket
hed above
an be a

omplished in time O (|SC |2). But similarly as in the foregoing se
tion we
annot estimate the number of rules whi
h might be skipped by tautology�eliminationwithout taking the stru
ture of C into a

ount.

166 Chapter 7. Re�nement Operators for Prolog(+T)�programs7.3.4. Premises vs. Con
lusionsThe downward re�nement operator ΘR
d adds positive as well as negative literals to the setof re�nements. Of
ourse, every rule whi
h is generated in this way is a downward re�ne-ment of the original rule. But one
an rely on the following point of view: the
on
lusionsof rules should be known in advan
e, therefore it is better to adjust the premises.In the de�nition of ΘR

d this is modeled by only adding negative literals during theexe
ution of the loop in lines 15�22. The number of literals added by only addingnegative literals is then
|P |+ 3|SC |+ 2|SC |2,so the overall number of re�nements is

∣
∣ΘR

d (C)
∣
∣ ≤ |Var(C)| ·

(

|F |+ |Var(C)|
2

− 1

2

)

+ 3|SC |+ 2|SC |2 + |P |.Figure 7.2
ompares the introdu
ed strategy with the strategy of elimination of variantsdes
ribed above.However, by adding negative literals only we lose the
ompleteness of the operator.This
an be easily seen as follows:
onsider the rules
C1 = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a). and
C2 = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a), not(q(X1, X1)).Sin
e only negative literals are added in the pro
ess of re�ning, every rule C
ontainedin (ΘR

d

)n
(C) for any n only may
ontain other positive premises. So no rule C ′ ≈s C2will be
onstru
ted.The above results regarding te
hniques for the restri
tion of the number of re�nements
omplete our study of re�nement operators for Prolog(+T)�obje
ts. We have seenthat re�nement operators for nontemporal logi
 programming languages
an be natu-

7.3 Re�nement Strategies 167

 0
 20

 40
 60

 80
 100 0

 20

 40

 60

 80

 100

 0

 10000

 20000

 30000

 40000

 50000

 60000

Number of Refinements

without elimination of variants
with elimination of variants

with elimination of variants and introduction of premisses only

Number of Variables in C

Number of Elements in S_C

Number of Refinements

Figure 7.2.: Growth Rate by adding Premises onlyrally generalized in order to in
lude me
hanisms for re�ning obje
ts
ontaining temporaloperators. Therefore re�nement operators for Prolog(+T)�obje
ts
ould be easilyderived by adapting several well�known te
hniques from the �eld of �rst order logi
programming.What remains to be studied is the
omplexity of the sear
h for a
orre
t program givensets E+ and E− of examples. This topi
 will be atta
ked in the following
hapter.

168 Chapter 7. Re�nement Operators for Prolog(+T)�programs

8. Identi�ability ofProlog(+T)�programs
Contents8.1. PAC�Learning . 1708.2. Learnability . 1778.2.1. The general
ase . 1778.2.2. Programs with synta
ti
al restri
tions 183The operators from the last
hapters always
reate programs whi
h are at every pointof time
orre
t with respe
t to the examples whi
h have been presented so far. But inorder to be of great use it is ne
essary to be able to ensure that other examples, that isexamples whi
h have not (yet) been seen are
lassi�ed
orre
t. Consider two sets E+ and
E− of examples and a program P
onstru
ted by the algorithms from the last
haptersgiving these examples as inputs. Furthermore assume that e is any ground atom from
BFoLtl
P \ (E+ ∪ E−). In order to be good, P should
lassify e
orre
t. Formally let P
orbe the
orre
t program from whi
h the examples from E+ and E− are derived, that is let

P
or be the program to be identi�ed. Then we want P to have the following properties:
• if P
or |= e, then P |= e and
• if P
or 6|= e, then P 6|= e.

170 Chapter 8. Identi�ability of Prolog(+T)�programsIn other words
{e | P
or |= e} = {e | P |= e} .In general this
annot be rea
hed. Therefore we will adapt a model of learning whi
hallows some errors with a
ertain probability. The issue of identifying logi
 programs inthe PAC�setting has been studied in depth in [36℄ and [37℄. In general not every programis identi�able. But for
ertain subsets identi�ability
an be ensured.8.1. PAC�LearningPAC�learning is a model of learning whi
h has been introdu
ed by Vailant (see [157℄).Any algorithm whi
h has to solve the learning problem is evaluated with respe
t to twoparameters ε and δ whi
h spe
ify a limit for the di�eren
e between the
on
ept to belearned and the a
tual hypothesis (ε) and the probability that the a
tual di�eren
e isgreater than this level (δ).In order to give formal de�nitions of PAC�learnability we need some more
on
epts.Single obje
ts to be identi�ed will be referred to as
on
epts, the sets of all su
h obje
tswill be
alled
on
ept
lasses. Ea
h
on
ept
lass is de�ned over some set X. Formallya
on
ept
lass over X is a set C ⊆ 2X . So a
on
ept is an element C ∈ C, that is a set

C ∈ 2X .In our
ase of learning Prolog(+T)�programs we assume that a signature sig =

(X , F, P, α) is given. Then we de�ne X to
onsists of all sets of Prolog(+T)�literalswhi
h
ontain at least one positive literal, that is
X := {C ⊆ Lt(sig) | |Pos(C)| ≥ 1} .Con
epts are Prolog(+T)�programs, that is sets P ⊆ X and
on
ept
lasses are setsof Prolog(+T)�programs, that is sets C ⊆ 2X .

8.1 PAC�Learning 171In order to identify a parti
ular
on
ept an algorithm has to pro
ess some kind ofexamples. In [157℄ and [63℄ the examples are
onsidered to be elements from X. However,it will be more adequate for us to
onsider only ground atoms as examples. So an exampleis an element ϕ from the set {ψ ∈ At(sig) | Var(ϕ) = ∅}. A
lassi�ed example for a
on
ept P is a tuple 〈ϕ, v〉
onsisting of an example ϕ and v ∈ {0, 1}. If v = 1 we
all theexample positive and assume that P |= ϕ and in the
ase that v = 0 we
all it negativeand therefore assume that P 6|= ϕ. For the sake of readability we will from now on usethe following notational
onvention: let P be a Prolog(+T)�program and let ϕ be anexample. Then
P (ϕ) = 1 ⇔ P |= ϕ and
P (ϕ) = 0 ⇔ P 6|= ϕ.A sample for P is a sequen
e SP = (〈ϕ1, P (ϕ1)〉, . . . , 〈ϕn, P (ϕn)〉) of
lassi�ed exam-ples. The number n will be
alled the length of the sample or the sample
omplexity .Let P and P ′ be Prolog(+T)�programs and let SP = (〈ϕ1, P (ϕ1)〉, . . . , 〈ϕn, P (ϕn)〉)be a sample of length n for P . P ′ is
alled
onsistent with respe
t to SP or SP�
onsistentif for every i it holds that P ′(ϕi) = P (ϕi), that is a
onsistent program
lassi�es everyexample exa
tly in the same way as the program from whi
h the examples are deriveddoes.We assume that the examples whi
h are presented to the algorithms are
hosen withrespe
t to a �xed probability distribution D on the set of all ground atoms. Also we willsometimes write PrD instead of D or simply Pr if D is
lear from the
ontext.Now let S(X, C) be the set of all samples whi
h
an be
onstru
ted for
on
epts from

C if the examples are
hosen with respe
t to D and let C and H be
on
ept
lasses. Alearning algorithm (or a learner) is a total fun
tion1 AC,H : S(X, C) → H. That is a1That is, a fun
tion whi
h is de�ned for all possible inputs.

172 Chapter 8. Identi�ability of Prolog(+T)�programslearning algorithm is presented a sample of some length and
onstru
ts a hypothesis fromthe example whi
h it has seen by pro
essing the sample. In our
ase we will have H = C,so we do not have to distinguish between di�erent representation languages.As one might expe
t, a hypothesis
omputed by some learning algorithm AC,H is
alled
onsistent with respe
t to a sample SP = (〈ϕi, P (ϕi)〉)ni=1 if for every i ∈ {1, . . . , n} itholds that
(AC,H(SP)) (ϕi) = P (ϕi).

AC,H is
alled
onsistent if every hypothesis
omputed from a given sample is
onsistentwith respe
t to this sample.The quality of a hypothesis is measured by analyzing the probability that a randomly
hosen example is
ontained in the symmetri
 di�eren
e between the
orre
t
on
ept andthe
omputed
on
ept. So the error of a program P ′ with respe
t to a program P is givenas error(P,P ′) = D
(
P∆P ′

)
= D

(
(P \ P ′) ∪ (P ′ \ P)

)
.The error of a hypothesis
omputed by a learning algorithm is usually given as a pa-rameter
alled ε and one is interested in upper bounds for the probability that a learningalgorithm or a
lassi�er indu
es hypotheses su
h that the error of these hypotheses ex-
eeds the value of ε. Several attempts have been
arried out in order to analyze su
herrors. In 1971 Vapnik and Chervonenkis have shown (see [166℄) that
lassi�ers
an be
onstru
ted whi
h have an error ration bounded from above by 4s(C, 2n)e−

nε2

8 for a givenvalue or ε where s(C, 2n) denotes the relative amount of samples of size 2n whi
h
an bedrawn from the
on
ept
lass C. Devroye and Wagner (see [46℄) have extended the resultsfrom [166℄ in order to derive distribution�free upper bounds for the error in the
ase ofhalf�planes. They show that
lassi�ers
an be
onstru
ted with an error rate bounded by
4(1+2dndi)e

−
niε2

8 for i = 1, 2 where d denotes the size of the samples under
onsiderationwhile the problem domain is divided into
lasses C1 and C2. Furthermore they extend

8.1 PAC�Learning 173their results to
on
ept
lasses with higher dimension yielding similar results.Furthermore some attempts for analyzing the learning task in the domain of identifyingboolean fun
tions have been
arried out. In [131℄ Pearl derives upper and lower boundsfor the size of the value s(n, c) denoting the relative frequen
y of samples of size n derivedfrom a
on
ept
lass representing a boolean fun
tion whi
h
an be built up with at most
c binary gates by proving that

s(n, c) ≥







2n0−n if n ≥ n0

1 elseand
s(n, c) ≤ 2log2 |Fc|−nwhere n0 denotes the maximum value of n su
h that a presented sample en
an beembedded in a boolean fun
tion f using at most c logi
al gates (where |Fc| denotes thetotal number of boolean fun
tions
ontaining at most c gates). Using these bounds Pearlproves that
lassi�ers
an be
onstru
ted whi
h have an error ration bounded from aboveby (

√

2 ln 2 · c(2 + log2 c) +
1

√

2 ln 2 · c(2 + log2 c)

)

2√
n
.

Finally Devroye (see [45℄) derives upper bounds for the error of
lassi�ers for both the
ase of �nite and in�nite
on
ept
lasses. For �nite
lasses C he proves that the error
anbe bounded from above by 2|C|e−2mε2 (using samples of size m) and that the expe
tederror is given by
√

log(2|C|
2m

+
1

√

8m log(2|C|)
.For in�nite
on
ept
lasses they show that the error
an be bounded from above by

174 Chapter 8. Identi�ability of Prolog(+T)�programs
cs(C,m2)e−2mε2 and that the expe
ted error is given by

√

log(4e8s(C,m2))

2m
+

1
√

8m log(4e8s(C,m2))
.Having presented all ne
essary prerequisites we
an now formally de�ne the
on
eptof PAC�identi�ability. For our de�nition we will only slightly
hange the notations from[22℄.De�nition 8.1.1 (PAC�Learnability, Valiant [157℄ and Blumer et al. [22℄)Let X be some set and let C and H be
on
ept
lasses over X. C is
alled PAC�learnable using H if and only if there is a learning algorithm AC,H and a fun
tion

m : R
2 → R su
h that for every probability distribution D, every P ∈ C and everyvalues of 0 < ε, δ < 1 it holds that:1. AC,H is presented some sample SP of length ⌈m(ε, δ)⌉,2. AC,H(SP) is put out and3. Pr(error(AC,H(SC , P)) ≥ ε) = Pr (D ((AC,H(SP)) ∆P) ≥ ε) < δ.The last point from the above de�nition is usually referred to as the PAC�
riterion orthe PAC�
riterion with respe
t to ε and δ.So C is PAC�learnable if there exists an algorithm whi
h regardless of the underlyingdistribution (whi
h determines how the examples are
hosen) only needs to pro
ess a�nite set of examples in order to keep the di�eren
e between the hypothesis and the
orre
t program small (≤ ε) with a high probability (< δ).The PAC
on
ept has been introdu
ed in [157℄ for the domain of learning booleanfun
tions. Often PAC�identi�ability is referred to as an abbreviation to polynomial timePAC�identi�ability where a further restri
tion is put on the learning algorithm AC,H,namely that its runtime is bounded from above by some suitable polynomial. So in this

8.1 PAC�Learning 175
ase the term C is PAC�identi�able means that C is polynomial time PAC�identi�able.Consequently there might be
on
ept
lasses whi
h are PAC�identi�able in our
on
eptwhi
h does not in
lude this requirement for the runtime of learning algorithms but whi
hare not polynomial time PAC�identi�able. In [158℄ and [132℄ L.G. Valiant addresses thisproblem deriving several
lasses of relatively simply stru
tured boolean fun
tions whi
hare not PAC�identi�able if polynomial runtime is required by a learning algorithm.In order to
hara
terize the
omplexity of learning single
on
epts from a
on
ept
lass
C the Vapnik�Chervonenkis�Dimension has been proven to be an adequate parameter.Intuitively the Vapnik�Chervonenkis�Dimension
hara
terizes the di�
ulty of how todistinguish between di�erent obje
ts from C. This intuition will now be made formally
lear.De�nition 8.1.2 (Blumer et al. [22℄)Let C be a
on
ept
lass over some set X and let T ∈ C be a
on
ept. Then

ΠC(T) = {C ∩ T | C ∈ C} .A set T of
ardinality k is said to be shattered by C if |ΠC(T)| = 2k, that is if ΠC(T) =

2T . So the sets C whi
h are shattered by C
an be seen as the most di�
ult
on
eptsfrom C. The Vapnik�Chervonenkis�Dimension of a
on
ept
lass C is now de�ned to bethe maximum size of a
on
ept whi
h is shattered by C.De�nition 8.1.3 (VC�Dimension, Blumer et al. [22℄)Let C be a
on
ept
lass over some set X. The Vapnik�Chervonenkis�Dimension of Cis de�ned asVCDim(C) = max
{

k | there is a T ∈ C with |T | = k and |ΠC(T)| = 2k
}

176 Chapter 8. Identi�ability of Prolog(+T)�programs
= max {|T | | T ∈ C is shattered by C} .If no su
h k exists we will write VCDim(C) = ∞. C is said to have unbounded VC�Dimension in this
ase.The link between the VC�Dimension and the learnability of a
on
ept
lass C is givenby the following theorem (see [22℄).Theorem 8.1.1 (Blumer et al. [22℄)Let C be a
on
ept
lass over some set X. Then C is PAC�learnable if and only ifVCDim(C) <∞.The following theorem gives a possibility to estimate the length of the sample neededin order to identify the target
on
ept given �xed values of ε and δ.Theorem 8.1.2 (Blumer et al. [22℄)Let C be a
on
ept
lass over some setX su
h that 1 ≤ VCDim(C) <∞ and let 0 < ε ≤ 1

2and 0 < δ < 1 be given. Then every
onsistent learning algorithm for C using C needs topro
ess at most
⌈

max

{
4

ε
ln

4

δ
, ln

8VCDim(C)
ε

ln
13

ε

}⌉examples in order to ensure the PAC�
riterion with respe
t to ε and δ2.In general estimating the VC�Dimension of some
on
ept
lass C is a very di�
ulttask. But in the
ase of �nite
on
ept
lasses, the VC�Dimension is bounded by thelogarithm of the size of the
lass. This is the tenor of the following lemma.Lemma 8.1.1 (Fis
her [63℄)Let C be a
on
ept
lass over some set X. If C is �nite, thenVCDim(C) ≤ log2 |C|.2In general one has to take the VC�Dimension VCDim(H) of the target
on
ept
lass into a

ount.But sin
e we require C = H this makes the analysis of the learning problem a bit easier.

8.2 Learnability 177In the following se
tions, Lemma 8.1.1 will be used in order to derive some upperbounds for the VC�Dimensions of several
lasses of Prolog(+T)�programs.8.2. Learnability and Non�Learnability of sele
ted
lasses ofProlog(+T)�programs8.2.1. The general
aseWe will now derive upper and lower bounds for the VC�Dimension of some
lasses ofProlog(+T)�programs. Therefore we will extend some te
hniques presented re
entlyin [11℄.De�nition 8.2.1Let c, t, l and o be nonnegative integers. The
lass P≤c,t,l,o is de�ned as the set of allProlog(+T)�programs P with the following properties:1. P
onsists of at most c rules,2. ea
h rule in P
onsists of at most l literals,3. ea
h literal in a rule in P does not
ontain more than t distin
t terms and4. ea
h literal in a rule in P does not
ontain more than o temporal operators.Assume that a �xed signature sig = (X , F, P, α) is given. We will from now on use thefollowing abbreviations:1. f := |F |,2. p := |P | and3. a := max {α(σ) | σ ∈ F ∪ P}.

178 Chapter 8. Identi�ability of Prolog(+T)�programsPrograms will be en
oded as strings over the binary alphabet Σ = {0, 1}. We will seethat for �xed values of c, t, l and o, the number |P≤c,t,l,o| is �nite. The VC�Dimension
anthen be estimated using Lemma 8.1.1. We will assume that ea
h literal in any program isredu
ed. This is no restri
tion sin
e we have seen that ea
h literal has a redu
ed normalform whi
h
an be e�e
tively
omputed.First we will review some of the results from [11℄. There it is shown that a term
ontaining a arguments and at most t distin
t subterms
an be en
oded using log2 f +

a log2 t bits. Consequently a set of t (distin
t) terms
an be en
oded using not more than
t(log2 f+a log2 t) bits. Sin
e f and a are
onstant we have t(log2 f+a log2 t) = O(t log2 t).We will now �x a numbering for the symbols from P and the temporal operators. Let
Pext denote the set P ∪ {X,F,G,U,P} and assume that the set P is ordered as follows:
P = {p0, . . . , p|P |−1}. The symbols pi will be mapped to bin(i) where bin(i) denotesthe string representing the binary representation of i. Furthermore we �x the followingmapping: X 7→ bin(|P |+ 1),F 7→ bin(|P |+ 2),G 7→ bin(|P |+ 3),U 7→ bin(|P |+ 4) andP 7→ bin(|P |+ 5),

where the strings might be padded with zeros on the left side in order to obtain stringsof equal length.

8.2 Learnability 179Example 8.2.1The set P = {p0}
ontaining only a single predi
ate symbol yields the following mapping:
p0 7→ 000,X 7→ 001,F 7→ 010,G 7→ 011,U 7→ 100 andP 7→ 101.

Consequently any Prolog(+T)�literal
ontaining at most t distin
t terms and atmost o temporal operators
an be en
oded using at most
o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉)bits. Therefore a rule
onsisting of at most l su
h literals
an be en
oded using at most
l (o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉))bits and a program P
ontaining at most c su
h rules
an be en
oded using at most
cl (o+ 1 + 2 (⌈log2(p + 5)⌉ + ⌈log2 p⌉+ ⌈a log2 t⌉))bits. This gives:
cl (o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉))

= clo+ cl + 2cl (⌈log2(p+ 5)⌉ + ⌈log2 p⌉+ ⌈a log2 t⌉)

180 Chapter 8. Identi�ability of Prolog(+T)�programs
= cl(o+ 1) + 2cl (⌈log2(p+ 5)⌉ + ⌈log2 p⌉+ ⌈a log2 t⌉)

= O (cl(o+ 1) + 2cl (log2(p+ 5) + log2 p+ a log2 t))

= O
(
cl(o+ 1) + 2cl

(
log2

(
(p2 + 5p)ta

)))
.With this number of bits we
an en
ode at most 2O(cl(o+1)+2cl(log2((p2+5p)ta))) di�erentbitstrings, that is we have

|P≤c,t,l,o| = 2O(cl(o+1)+2cl(log2((p2+5p)ta))) <∞and therefore VCDim(P≤c,t,l,o
)

= O
(
cl(o+ 1) + 2cl

(
log2

(
(p2 + 5p)ta

)))using Lemma 8.1.1.On the other hand the best
ase is given if no temporal operators are involved. [11℄then gives the following estimation:VCDim(P≤c,t,l,o
)

= Ω (cl + ct) .The results are summarized in the following theorem.Theorem 8.2.1Let c, t, l and o be �xed, nonnegative integers. ThenVCDim(P≤c,t,l,o
)

= O
(
c+ (o+ 1) + 2cl

(
log2

(
(p2 + 5p)ta

))) andVCDim(P≤c,t,l,o
)

= Ω (cl + ct) .Using these equalities we
an estimate the number of examples needed in order toensure the PAC�
riterion given �xed values of ε and δ.

8.2 Learnability 181Theorem 8.2.2Let c, t, l, o ≥ 0, 0 < ε ≤ 1
2 and 0 < δ < 1 be �xed. Then every learning algorithm Aneeds at most

max

{

4

ε
ln

4

δ
,
8O
(
cl(o+ 1) + 2cl

(
log2

(
(p2 + 5p)ta

)))

ε
ln

13

ε

}examples in order to ensure the PAC�
riterion.Example 8.2.2We
on
lude this se
tion by illustrating the results for the number of examples. Let
o = 10, l = 30, c = 200, t = 50, p = 7 and a = 17. Then the equation from Theorem 8.2.2
an be simpli�ed to:

max

{

4

ε
ln

4

δ
,
8VCDim (P≤c,t,l,o

)

ε
ln

13

ε

}

= max

{

4

ε
ln

4

δ
,
8O
(
cl(o+ 1) + 2cl

(
log2

(
(p2 + 5p)ta

)))

ε
ln

13

ε

}

≈ max

{

4

ε
ln

4

δ
,
8
(
cl(o+ 1) + 2cl

(
log2

(
(p2 + 5p)ta

)))

ε
ln

13

ε

}

≈ max

{⌈
4

ε
ln

4

δ

⌉

,

⌈

8
(
200 · 30(10 + 1) + 2 · 200 · 30

(
log2

(
(72 + 5 · 7)5017

)))

ε
ln

13

ε

⌉}

= max

{⌈
4

ε
ln

4

δ

⌉

,

⌈

528000 + 96000
(
log2

(
(72 + 5 · 7)5017

))

ε
ln

13

ε

⌉}

≈ max

{⌈
4

ε
ln

4

δ

⌉

,

⌈
528000 + 69000 · 96

ε
ln

13

ε

⌉}

= max

{⌈
4

ε
ln

4

δ

⌉

,

⌈
9744000

ε
ln

13

ε

⌉}

.Note that the approximation given above is quite weak sin
e the omission of the symbol
O may result in omitting quite large
onstants.Figure 8.1 illustrates the number of examples for c, t, l, o, p and a as above and variablevalues of ε and δ.

182 Chapter 8. Identi�ability of Prolog(+T)�programs

 0
 0.1

 0.2
 0.3

 0.4
 0.5 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

Number of examples

epsilon

delta

Number of examples

Figure 8.1.: Number of examples given �xed values for c, t, l, o, p and a with ε rangingfrom 0 to 1
2 and δ ranging from 0 to 1.

8.2 Learnability 1838.2.2. Programs with synta
ti
al restri
tionsWe will now see how restri
ting the form of the involved rules in programs
an lowerthe VC�dimension of a
lass of Prolog(+T)�programs and therefore make it easier toidentify these programs by presenting positive and negative examples. Therefore we willstudy two
lasses of programs whi
h have already been pointed out in [11℄:
onstrainedprograms and range�restri
ted programs.De�nition 8.2.2 (Synta
ti
al Restri
tions, Arias and Khardon [11℄)Let C = ϕ :−ψ1, . . . , ψn. be a Prolog(+T)�rule. C is
alled
• range�restri
ted if Terms(ϕ) ⊆ ⋃n

i=1Terms(ψi) and
•
onstrained if ⋃n

i=1Terms(ψi) ⊆ Terms(ϕ).Consequently a Prolog(+T)�program P = {P1, . . . , Pk} is
alled range�restri
ted(resp.
onstrained) if every Pi is range�restri
ted (resp.
onstrained).Fixing nonnegative integers c, t, l and o, the de�nition of the
lasses P≤c,t,l,o
on and
P≤c,t,l,orr is as one might expe
t:
• P≤c,t,l,o
on =

{
P ∈ P≤c,t,l,o | P is
onstrained} and

• P≤c,t,l,orr =
{
P ∈ P≤c,t,l,o | P is range�restri
ted}.We will now study how the values of VCDim(P≤c,t,l,o
on) and VCDim(P≤c,t,l,orr)
anbe estimated using the results from the foregoing se
tion.The VC�Dimension of
onstrained Prolog(+T)�programsLet P ∈ P≤c,t,l,o
on be given. Assume that P = {P1, . . . , Pk} for some k ≤ c and

Pi = ϕi :−ψ(i)
1 , . . . , ψ(i)

ni
.

184 Chapter 8. Identi�ability of Prolog(+T)�programsSin
e P ∈ P≤c,t,l,o
on we have
ni⋃

j=1

Terms(ψ(i)
j

)

⊆ Terms(ϕi)for i = 1, . . . , k. Therefore only the terms in the heads of the rules in P have to be en-
oded. This
an be a
hieved by using at most o+1+2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉)bits. The literals from {

ψ
(j)
1 , . . . , ψ

(j)
nj

}
an be en
oded by only en
oding the negationsymbols, the predi
ate symbol(s) and the temporal operators involved. Consequentlythis
an be a
hieved by using at most
o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉)bits per literal. Therefore the tail of a rule
ontaining at most l literals
an be en
odedby using at most

(l − 1) (o+ 1 + 2 (⌈log2(p + 5)⌉ + ⌈log2 p⌉))bits. So a
omplete rule
an be en
oded using at most
o+1+2 (⌈log2(p + 5)⌉ + ⌈log2 p⌉+ ⌈a log2 t⌉)+(l−1) (o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉))bits. We have

o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉)

+(l − 1) (o+ 1 + 2 (⌈log2(p+ 5)⌉ + ⌈log2 p⌉))

= o+ 1 + 2⌈log2(p + 5)⌉ + 2 log2 p⌉+ 2⌈a log2 t⌉+ (l − 1)(o + 1)

+2(l − 1)⌈log2(p + 5)⌉+ 2(l − 1)⌈log2 p⌉

= l(o+ 1) + 2l⌈log2(p+ 5)⌉+ 2l⌈log2 p⌉+ 2⌈a log2 t⌉

= l(o+ 1) + 2 (l (⌈log2(p+ 5)⌉+ ⌈log2 p⌉) + ⌈a log2 t⌉) .

8.2 Learnability 185So any program P ∈ P≤c,t,l,o
on
an be en
oded using at most
cl(o+ 1) + 2c (l (⌈log2(p+ 5)⌉+ ⌈log2 p⌉) + ⌈a log2 t⌉)bist and therefore the VC�dimension of P≤c,t,l,o
on
an be estimated as stated in the fol-lowing theorem.Theorem 8.2.3Let c, t, l and o be nonnegative integers. ThenVCDim(P≤c,t,l,o
on)

= O
(

cl(o+ 1) + 2c log2

(

(p2 + 5p)lta
))

.Proof. The
laim is due to
cl(o+ 1) + 2c (l (⌈log2(p+ 5) + ⌈log2 p⌉) + ⌈a log2 t⌉)

= O
(
cl(o+ 1) + 2c

(
l log2(p+2 +5p) + a log2 t

))

= O
(

cl(o+ 1) + 2c
(

log2(p
2 + 5p)l + log2 t

a
))

= O
(

cl(o+ 1) + 2c log2

(

(p2 + 5p)lta
))and an appli
ation of Lemma 8.1.1. �The VC�Dimension of range�restri
ted Prolog(+T)�programsIn some sense this situation is similar to the situation from the last se
tion. Assume that

P = {P1, . . . , Pk} ∈ P≤c,t,l,orr is given su
h that Pi = ϕi :−ψ(i)
1 , . . . , ψni

(i). Similarly asin the
ase of
onstrained programs it su�
es to en
ode the terms from {

ψ
(i)
1 , . . . , ψ

(i)
ni

}.Sin
e ∣∣∣{ψ(i)
1 , . . . , ψ

(i)
ni

}∣
∣
∣ ≤ l − 1 the
omplete tail of Pi
an be en
oded using at most

(l − 1) (o+ 1 + 2 (⌈log2(p + 5)⌉ + ⌈log2 p⌉+ ⌈a log2 t⌉))

186 Chapter 8. Identi�ability of Prolog(+T)�programsbits while the remaining literal ϕi
an be en
oded by skipping the involved terms usingat most
o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉)bits. So the
omplete rule Pi
an be en
oded with

o+1+2 (⌈log2(p + 5)⌉ + ⌈log2 p⌉)+(l−1) (o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉))bits. We have
o+ 1 + 2 (⌈log2(p+ 5)⌉ + ⌈log2 p⌉)

+(l − 1) (o+ 1 + 2 (⌈log2(p+ 5)⌉+ ⌈log2 p⌉+ ⌈a log2 t⌉))

= o+ 1 + 2⌈log2(p+ 5)⌉+ 2⌈log2 p⌉+ (l − 1)(o+ 1) + 2(l − 1)⌈log2(p+ 5)⌉

+2(l − 1)⌈log2 p⌉+ 2(l − 1)⌈a log2 t⌉

= l(o+ 1) + 2 (l (⌈log2(p+ 5)⌉ + ⌈log2 p⌉) + (l − 1)⌈a log2 t⌉) .Therefore P
an be en
oded using at most
cl(o+ 1) + 2c (l (⌈log2(p+ 5)⌉+ ⌈log2 p⌉) + (l − 1)⌈a log2 t⌉)bits and we
an estimate the VC�dimension of P≤c,t,l,orr as follows.Theorem 8.2.4Let c, t, l and o be nonnegative integers. ThenVCDim(P≤c,t,l,orr)

= O
(

cl(o+ 1) + 2c log2

(

(p2 + 5p)lta+l−1
))

.Proof. The
laim is due to
cl(o+ 1) + 2c (l (⌈log2(p+ 5)⌉+ ⌈log2 p⌉) + (l − 1)⌈a log2 t⌉)

8.2 Learnability 187
= O (cl(o+ 1) + 2c (l (log2(p + 5) + log2 p) + (l − 1)a log2 t))

= O
(
cl(o+ 1) + 2c

(
l
(
log2(p

2 + 5p)
)

+ (l − 1)a log2 t
))

= O
(

cl(o+ 1) + 2c
(

log2(p
2 + 5p)l + log2 t

a+l−1
))

= O
(

cl(o+ 1) + 2c log2

(

(p2 + 5p)lta+l−1
))and Lemma 8.1.1. �Having obtained the above results on the
omplexity of the identi�
ation task for Pro-log(+T)�programs our treatment of �rst order indu
tive temporal logi
 programmingis
omplete. We have seen the following:

• It is reasonable to study programs written in Prolog(+T) sin
e this language isboth powerful (it
ontains the full �rst order fragment of horn
lause programs)and still relatively tra
table (due to the synta
ti
 limitation to rules),
• Prolog(+T) is equipped with a well de�ned semanti
s given by temporally
losedsets of ground atoms and
• Prolog(+T) allows spe
ialization and generalization of
on
epts by appli
ationof re�nement operators.All these points make
lear that Prolog(+T) is a suitable language for the spe
i�-
ation of rea
tive systems using �rst order temporal logi
. In
ontrast a restri
tion topropositional temporal logi
 results in the language Ltl whi
h is de
idable for satis�a-bility and whi
h is not limited to formulas in
lause form. Although Ltl is
onsequentlyless expressive than Prolog(+T) the two properties mentioned before justify studyingthe identi�
ation problem in Ltl. This will therefore be the topi
 of the following partof this thesis.

188 Chapter 8. Identi�ability of Prolog(+T)�programs

Part III.
Propositional Indu
tive TemporalLogi
 Programming

9. Preliminaries
Contents9.1. Finite Automata on in�nite Obje
ts 1929.2. Automata Constru
tions for Propositional Temporal Logi
Formulas . 1969.2.1. A Modi�ed Formal Automata�Model 1969.2.2. A primitive Constru
tion . 1999.2.3. An Overview over improved Constru
tions 2039.2.4. Some Complexity Results . 2059.2.5. Che
king Language�Emptiness 210Having
ompleted our treatment of �rst order indu
tive temporal logi
 programmingwe will now restri
t ourselves on propositional logi
 languages. On the one hand thiswill be a limitation sin
e we do not allow reasoning about fun
tions and predi
ates witharity greater than 0 but on the other hand we will be able to use mu
h more synta
ti
ally
omplex statements sin
e we will not be limited to statements in
lause form any longer.The language of interest will be Ltl as introdu
ed in
hapter 2.3.1.In this
hapter we will des
ribe the ne
essary preliminaries from the theory of propo-sitional (linear) temporal logi
 whi
h will be used in the sequel. First we will introdu
ethe
on
ept of Bü
hi�automata whi
h are automata over in�nite sequen
es of symbols(in�nite words or ω�words). After this we will see that every Ltl�formula ϕ
an be

192 Chapter 9. Preliminariestranslated into a Bü
hi automaton whi
h has a nonempty a

epted language if and onlyif the formula ϕ from whi
h is has been
onstru
ted is satis�able.9.1. Finite Automata on in�nite Obje
tsWe will now introdu
e notations whi
h allow us to generalize the theory of formal lan-guages
onsisting of �nite words to su
h languages whi
h
onsist of in�nite words, thatis words whi
h
an be seen as an in�nite sequen
e of elements (
alled the letters of theword). Therefore assume for the rest of this
hapter that Σ is a �nite set of symbols,
alled the alphabet .De�nition 9.1.1 (ω�word, e.g. Lothaire [106℄)An in�nite word (or ω�word) over Σ is a mapping w : N → Σ. The set of all in�nitewords over Σ is denoted as Σω. Every set L ⊆ Σω is
alled an ω�language over Σ.
ω�languages are a natural way to extend the theory of formal languages to in�nitesequen
es of letters. In many pra
ti
al appli
ations ω�languages are used in order tomodel in�nite sequen
es of a
tions performed by nonterminating (rea
tive) systems. Theset of all possible behaviors of su
h a system is des
ribed in terms of an ω�language and itis then
he
ked if a property ϕ holds in this system simply by
he
king if the ω�languagewhi
h is re
ognized by the produ
t stru
ture whi
h emerges from the model of the systemand the negation of the formula, is empty. How to a
hieve this, will the subje
t of therest of this
hapter.In order to re
ognize ω�languages, the theory of �nite automata has been extended byadding stru
tures whi
h allow a

eptan
e of in�nite words. This leads to the theory of

ω�automata as des
ribed by Bü
hi (see [26℄), Street (see [155℄), Muller (see [123℄) andRabin (see [138℄). We will des
ribe ω�automata in a similar was as de�ned by Bü
hisin
e this type of automata is used in model
he
king to
hara
terize the set of models

9.1 Finite Automata on in�nite Obje
ts 193of Ltl�formulas.De�nition 9.1.2 (Bü
hi�automaton, e.g. Wolper [172℄)Let Σ be an alphabet. A nondeterministi
 Bü
hi�automaton over Σ is a tuple
A = (Σ,States, δ, S0, Sf) ,where

• States is a �nite set (the set of states),
• δ : States ×Σ→ 2States is the transition relation,
• S0 ⊆ States is the set of initial states and
• Sf ⊆ States is the set of a

epting or �nal states.Note that the formal de�nition of su
h a Bü
hi automaton does only slightly di�erfrom the de�nition of a �nite state automaton a

epting �nite words. In order to a

eptin�nite words over Σ the a

eptan
e
ondition of A has to be modi�ed sin
e it is
learthat the a

eptan
e
ondition for �nite words, requiring that the
onsuming the lastsymbol leads into a �nal state,
annot be applied (sin
e there is no last symbol). Soassume that a Bü
hi automaton A = (Σ,States, δ, S0, Sf), an ω�word w and a mapping

γ : N→ States are given. We will denote the set of all states o

urring in�nitely oftenin the sequen
e labeled by γ as S∞(γ). Formally:
S∞(γ) = {s ∈ States | || {i | γ(i) = s} || =∞} .We
all γ adequate for (A, w) (or (A, w)�adequate) if and only if γ satis�es the followingproperties:

194 Chapter 9. Preliminaries1. γ(0) ∈ S0,2. for every i ≥ 0 it holds that γ(i+ 1) ∈ δ(γ(i), w(i)) and3. S∞(γ) ∩ Sf 6= ∅.A word w ∈ Σω is said to be a

epted by A if and only if there is a mapping γ su
hthat γ is adequate for (A, w). Similarly a subset L of Σω (that is, an ω�language) isa

epted by A if and only if there is a mapping γ whi
h is su
h that γ is (A, w)�adequatefor every w ∈ L.It has proven useful to de�ne a slight modi�
ation of Bü
hi�automata in whi
h thelast
omponent of the tuple is not a set of states but a set of sets of states. This leadsto generalized Bü
hi�automata. If
A = (Σ,States, δ, S0,F)is su
h a generalized Bü
hi�automaton and w ∈ Σω is an in�nite word over Σ, then

γ : N→ States is
alled adequate for (A, w) (or (A, w)�adequate) if any only if1. γ(0) ∈ S0,2. for every i ≥ 0 it holds that γ(i+ 1) ∈ δ(γ(i), w(i)) and3. if F = {F1, . . . , Fn}, then S∞(γ) ∩ Fi 6= ∅ for i = 1, . . . , n.Again we will
all w a

epted by A if there is γ su
h that γ is (A, w)�adequate and
L ⊆ Σω is
alled a

epted by A if there is γ su
h that γ is (A, w)�adequate for every
w ∈ L.In both
ases, that is if A is a Bü
hi�automaton or if A is a generalized Bü
hi�automaton, the language L(A) is de�ned as the set of all ω�words whi
h are a

epted by
A. L ⊆ Σω is
alled (generalized) Bü
hi�a

eptable if and only if there is a (generalized)Bü
hi�automaton A su
h that L = L(A). From [172℄ we have the following lemma.

9.1 Finite Automata on in�nite Obje
ts 195Lemma 9.1.1 (e.g. Wolper [172℄)Let L ⊆ Σω be any ω�language. Then L is Bü
hi�a

eptable if and only if L is generalizedBü
hi�a

eptable.Proof. The only�if part is immediately: if A = (Σ,States, δ, S0, Sf) is a Bü
hi�automaton, then we de�ne Ā = (Σ,States, δ, S0,F) with F = {{s1, . . . , sn}} for Sf =

{s1, . . . , sn}. Then Ā is a generalized Bü
hi�automaton and it is straightforward to showthat w ∈ L(A) if and only if w ∈ L(Ā) for every w ∈ Σω. For the if�part assume that
A = (Σ,States, δ, S0,F) with F = {F1, . . . , Fn} ⊆ 2States is given. We then de�ne
Ā =

(
Σ,States′, δ′, S′

0, Sf
) as follows:

• States′ = {(s, i) | s ∈ States, i = 1, . . . , n},
• S′

0 = {(s, 1) | s ∈ S0},
• for all s, t ∈ States, for all i, j ∈ {1, . . . , j} and ea
h σ ∈ Σ de�ne (t, i) ∈

δ′((s, j), a) if and only if t ∈ δ(s, a) and i = j if s 6∈ Fj respe
tively i = j + 1

mod k if s ∈ Fj and
• Sf = {(s, 1) | s ∈ F1}.It is now straightforward to prove that w ∈ L(A) if and only if w ∈ L(Ā) for every

w ∈ Σω. So the lemma is proved. �Sin
e Bü
hi�a

eptan
e and generalized Bü
hi�a

eptan
e are equivalent, it is suf-�
ient to
on
entrate on algorithms whi
h
onstru
t generalized Bü
hi�automata andapply the
onstru
tion from the proof of Lemma 9.1.1 to the resulting automaton.The usefulness of nondeterministi
 Bü
hi�automata also
omes from the fa
t that theyare
losed under every boolean operation. We have the following properties.Theorem 9.1.1 (e.g. Clarke et al. [35℄ and Sistla et al. [149℄)1. If L1 ⊆ Σω and L2 ⊆ Σω are Bü
hi�a

eptable languages, then so area) L1 ∩ L2 and

196 Chapter 9. Preliminariesb) L1 ∪ L2and2. if L ⊆ Σω is Bü
hi�a

eptable, then so is L̄ = Σω \ L.We will not prove this theorem but we refer to se
tion 9.2.2 for a
onstru
tion ofthe produ
t of two Bü
hi�automata whi
h results in an automaton whi
h a

epts theinterse
tion of the languages a

epted by the original automata.9.2. Automata Constru
tions for Propositional TemporalLogi
 FormulasThe reason for studying Bü
hi�automata stems from the fa
t that from ea
h Ltl�formulaone
an
onstru
t an automaton whi
h a

epts exa
tly the sequen
es of states whi
h aremodels of this formula. So we will now study a language whi
h di�ers from the languageProlog(+T) studied in the last part in two ways:1. it is a propositional logi
 based temporal logi
 language and2. it is not limited to sets of
lauses whi
h
ontain at least one positive literal.In fa
t we will study the full language Ltl from now in. Therefore assume that a �niteset X of proposition symbols is given. We will refer to elements of X by writing p, q, . . .sometimes using indexes. Formulas of the language Ltl are de�ned as in
hapter 2.3.Note that in
ontrast to FoLtl we do not deal with the operator P here but instead weuse the operator R.9.2.1. A Modi�ed Formal Automata�ModelIn this se
tion we will des
ribe a slight modi�
ation of the
on
ept of Bü
hi�automatawhi
h is needed in order to allow the manipulation of su
h automata during the pro
ess of

9.2 Automata Constru
tions for Propositional Temporal Logi
 Formulas 197formula re�nement as des
ribed later. In
lassi
al
onstru
tion pro
edures for automatafrom Ltl�formulas (see e.g. [172℄) states are labeled with formulas from a set of sub-formulas of the original formula ϕ. This set of subformulas is usually referred to as the
losure of ϕ. The problem whi
h we fa
e here is that
ertain formulas might appear morethan on
e (and therefore at di�erent positions) in ϕ. Consider for example the formula
ϕ = GF ((Fp→ q) ∨ (r → Fp)). As a subformula, the formula ψ = Fp is treated as a sin-gle element. But for re�ning the formula ϕ it
an make a di�eren
e if the re�ned formulais for example ϕ1 = GF ((Xp→ q) ∨ (r → Fp)) or ϕ2 = GF ((Fp→ q) ∨ (r → Xp)). So weneed some model whi
h allows to store additional information regarding the positions atwhi
h
ertain formulas o

ur.For the
onstru
tion we will assume that every Ltl�formula is in negation�normal�form, that is it
ontains only the operators X, U and R, the
onne
tives ∧ and ∨ togetherwith the
onstant symbols true and false and negations only o

ur in front of propo-sitional symbols. In order to obtain the negation�normal�form NNF(ϕ) of a formula ϕwe will have to exploit semanti
al identities (de�Morgan's laws) and properties of thetemporal operators. In parti
ular we will need the following equivalen
es:Fϕ ≡ trueUϕ andGϕ ≡ falseRϕ.and

¬ (ϕ1Uϕ2) ≡ (ϕ1)R (ϕ2) and
¬ (ϕ1Rϕ2) ≡ (ϕ1)U (ϕ2) .

198 Chapter 9. PreliminariesExample 9.2.1For ϕ = ¬(p→ Xq)UFr we haveNNF(ϕ) = NNF(¬(p→ Xq)UFr)
= NNF(¬(p→ Xq))UNNF(Fr)
= (NNF(p) ∧NNF(¬Xq))UNNF (trueUr)
= (p ∧ XNNF(¬q))U (NNF(true)UNNF(r))

= (p ∧ X¬q)U (trueUr) .So assume without loss of generality that ϕ is in negation�normal�form. The
losureof ϕ is de�ned to be the set Closure(ϕ) of all pairs (ψ, p) where ψ is an Ltl�formulaand p ∈ N
∗ su
h that Closure(ϕ) satis�es the following
onditions:

• (ϕ, ε) ∈ Closure(ϕ),
• if (ϕ1 ∧ · · · ∧ ϕn, p) ∈ Closure(ϕ), then (ϕ1, p1), . . . , (ϕn, pn) ∈ Closure(ϕ),
• if (ϕ1 ∨ · · · ∨ ϕn, p) ∈ Closure(ϕ), then (ϕ1, p1), . . . , (ϕn, pn) ∈ Closure(ϕ),
• if (Xψ, p) ∈ Closure(ϕ), then (ψ, p1) ∈ Closure(ϕ),
• if (ϕ1Uϕ2, p) ∈ Closure(ϕ), then (ϕ1, p1), (ϕ2, p2) ∈ Closure(ϕ) and
• if (ϕ1Rϕ2, p) ∈ Closure(ϕ), then (ϕ1, p1), (ϕ2, p2) ∈ Closure(ϕ).So Closure(ϕ)
ontains all the (not ne
essarily proper) subformulas of ϕ togetherwith their positions on ϕ.The states of the generalized Bü
hi�automaton Aϕ are now de�ned as
ertain subsetsof Closure(ϕ) whi
h satisfy several semanti
al
onstraints.

9.2 Automata Constru
tions for Propositional Temporal Logi
 Formulas 1999.2.2. A primitive Constru
tionWe will now see how the automaton Aϕ
an be
onstru
ted from ϕ if ϕ is in negation�normal�form.The alphabet of the automaton will be the set of subsets of symbols o

urring in theoriginal formula. The automaton will be a generalized Bü
hi�automaton, so it will havea set of sets of a

epting states. Assume that ϕ is a formula whi
h
ontains exa
tly thesymbols of some set X. Then the alphabet of the automaton Aϕ is Σ = 2X .The set States of states is now given as the elements s from Seq(Closure(ϕ))×2N
∗1su
h that s = (Φ,Pos) =



{ϕ1, . . . , ϕn}
︸ ︷︷ ︸

=Φ

, {p1, . . . , pm}
︸ ︷︷ ︸

=Pos 

 has the following properties:1. false 6∈ Φ,2. n = m,3. for ea
h i: (ϕi, pi) ∈ Closure(ϕ),4. for ea
h i: if ϕi = ϕ
(i)
1 ∧ ϕ

(i)
2 , then (ϕ(i)

1 , pi1
)

∈ s and (ϕ(i)
2 , pi2

)

∈ s,5. for ea
h i: if ϕi = ϕ
(i)
1 ∨ ϕ

(i)
2 , then (ϕ(i)

1 , pi1
)

∈ s or (ϕ(i)
2 , pi2

)

∈ s and6. for ea
h i: if ϕ ∈ X ∪ {true}, then {p ∈ Pos | ϕ|p = ϕi} = O

(ϕi, ϕ).Here (ϕ, p) ∈ s denotes the fa
t that there is j ∈ {1, . . . , n} su
h that ϕj = ϕ and
pj = p.What remains to be de�ned are the transition relation δ, the set S0 and the set F ofa

epting sets of states. δ has the form

δ : States× 2P → 2States.Now let s1, s2 ∈ States be given su
h that s1 = (Φ,Pos) = ({ϕ1, . . . , ϕn}, {p1, . . . , pn})1Here Seq(Closure(ϕ)) denotes the set of all sequen
es of elements from Closure(ϕ).

200 Chapter 9. Preliminariesand s2 = (Φ′,Pos′) = ({ϕ′
1, . . . , ϕ

′
m}, {p′1, . . . , p′m}). Furthermore let σ ∈ Σ be �xed.Then s2 ∈ δ(s1, σ) i�1. for ea
h p ∈ X:a) p ∈ Φ implies p ∈ σ andb) ¬p ∈ Φ implies p 6∈ σ,2. for ea
h ψ = Xϕ̄ ∈ Φ and ea
h pi ∈ Pos su
h that ϕi = ψ there is ji ∈ {1, . . . ,m}su
h that ϕ′

ji
= ϕ̄ and p′ji = pi1,3. for ea
h ψ = ϕ̄1Uϕ̄2 ∈ Φ and ea
h pi ∈ Pos su
h that ϕi = ψ there is either

ji ∈ {1, . . . , n} su
h that ϕ′
ji

= ϕ̄2 or there are ji1 ∈ {1, . . . , n}, ji2 ∈ {1, . . . ,m}su
h that ϕji1 = ϕ̄1 and ϕ′
ji2

= Xψ = Xϕ̄1Uϕ̄2 and4. for ea
h ψ = ϕ̄1Rϕ̄2 ∈ Φ and ea
h pi ∈ Pos su
h that ϕi = ψ there is ji1 ∈
{1, . . . , n} su
h that ϕji1 = ϕ̄2 and there is either ji2 ∈ {1, . . . , n} su
h that ϕji2 =

ϕ̄1 or there is ji2 ∈ {1, . . . ,m} su
h that ϕ′
ji2

= Xψ = Xϕ̄1Rϕ̄2.The set S0 is de�ned as the set of all states su
h that the original formula ϕ is
ontainedin its Φ�
omponent, that is
S0 = {s = (Φ,Pos) ∈ States | ϕ ∈ Φ} .To de�ne the set F of sets of a

epting states we de�ne the
on
ept of eventualities.Eventualities are formulas whi
h are needed in order to guarantee that given a for-mula ϕ1Uϕ2, the formula ϕ2 is indeed ful�lled at some point of time. So if (ϕ1Uϕ2, p) ∈Closure(ϕ), then e(ϕ2) = ϕ1Uϕ2 is
alled an eventuality. Now assume thatClosure(ϕ)
ontains exa
tly the eventualities (e1(ϕ1), p1), . . . , (ek(ϕk), pk). Then we de�ne F =

{F1, . . . , Fk} with
Fi = {s = (Φ,Pos) ∈ States | {ei(ϕi), ϕi} ⊆ Φ or ei(ϕi) 6∈ Φ}.

9.2 Automata Constru
tions for Propositional Temporal Logi
 Formulas 201The
onstru
tion of Aϕ is now
omplete. This
onstru
tion
an be extended fromsingle formulas to sets of formulas in the obvious way. Let Φ = {ϕ1, . . . , ϕn} be any setof Ltl�formulas. Then
AΦ = Aϕ1 × · · · × Aϕn .where × is a (slightly more
ompli
ated) generalization of the produ
t
onstru
tion from�nite automata to Bü
hi�automata.This
onstru
tion
an be
arried out as follows: �rst we
onstru
t the set Statesfrom the sets of states of the input automata and after this we extra
t the remaining
omponents from this set. How to a
hieve this is des
ribed in se
tion 9.2.4.Now let Aϕ1 = (Σ,States1, δ1, S0,1,F1) and Aϕ2 = (Σ,States2, δ2, S0,2,F2) beBü
hi�automata representing Ltl�formulas ϕ1 and ϕ2. In order to respe
t the posi-tions of the original formulas in the new formula ϕ1∧ϕ2 we have to
hange the positionsin the original states from States1 and States2. Therefore we repla
e States1 andStates2 by
⋃

s∈States1Φ(s),
⋃

p∈Pos(s) 1pand
⋃

s∈States2Φ(s),
⋃

p∈Pos(s) 2p .Furthermore assume thatStates1 =
{

s
(1)
1 , . . . , s(1)n1

} andStates2 =
{

s
(2)
1 , . . . , s(2)n2

}and
S0,1 =

{

s
(1)
i1
, . . . , s

(1)
ik

} and

202 Chapter 9. Preliminaries
S0,2 =

{

s
(2)
j1
, . . . , s

(2)
2k

}Then A = Aϕ1 ×Aϕ2 is the Bü
hi�automaton A = (Σ,States, δ, S0,F) whi
h has aset States of states
onstru
ted as follows:
S0 =

k⋃

k1=1

l⋃

k2=1







(

Φ
(

s
(1)
ik1

)

∪ Φ
(

s
(2)
jk2

)

∪ {ϕ1 ∧ ϕ2},Pos(s(1)ik1

)

∪ Pos(s(2)jk2

)

∪ {ε}
)







,

S =

n1⋃

i=1

n2⋃

j=1

{(

Φ
(

s
(1)
i

)

∪ Φ
(

s
(2)
j

)

,Pos(s(1)i) ∪ Pos(s(2)j))} andStates = S0 ∪ S,while the remaining
omponents of the automaton (i.e. the transition relation δ andthe a

eptan
e
omponent F) have to be extra
ted from States (see the algorithms inse
tion 9.2.4 for details).This
onstru
tion yields an automaton whi
h a

epts the language L (Aϕ1)∩L (Aϕ2).Furthermore we have
|States| = |States1| · |States2|+ |S0,1| · |S0,2| and

|S0| = |S0,1| · |S0,2|.

In order to prove that for a set Φ of Ltl�formulas and an Ltl�formula ϕ the relation
Φ |= ϕ holds, we pro
eed as follows:1. For Φ = {ϕ1, . . . , ϕn} we
onstru
t AΦ = Aϕ1 × · · · × Aϕn

2,2.
onstru
t A¬ϕ,3.
onstru
t A = AΦ ×A¬ϕ and2Note that it is also possible to
onstru
t AΦ = AV

n
i=1 ϕi

dire
tly (i.e. without using the produ
t
onstru
tion).

9.2 Automata Constru
tions for Propositional Temporal Logi
 Formulas 2034.
he
k if L(A) = ∅.For some of the algorithms whi
h we will introdu
e in a later
hapter we will alsoneed a method for
onstru
ting the union of two Bü
hi�automata. Again assume that
ϕ1 and ϕ2 are given and assume that Aϕ1 and Aϕ2 are as above. Then the Bü
hi�automaton Aϕ1 ||Aϕ2 representing ϕ1∨ϕ2

3
an be
onstru
ted by �rst modifying States1and States2 as des
ribed above and then
onstru
ting the set States by
S0 =

k⋃

k1=1

l⋃

k2=1

{(

Φ
(

s
(1)
ik1

)

∪ Φ
(

s
(2)
jk2

)

∪ {ϕ1 ∧ ϕ2},Pos(s(1)ik1

)

∪Pos(s(2)jk2

)

∪ {ε}
)}and States = S0 ∪ States1 ∪ States2.The automaton Aϕ1||Aϕ2 is then given as (Σ,States, δ, S0,F) (again with δ and Fextra
ted from States). It is easily seen that this
onstru
tion is sound. Furthermorewe have

|States| = |S0,1| · |S0,2|+ |States1|+ |States2|9.2.3. An Overview over improved Constru
tionsThe primitive
onstru
tion presented in the last se
tion always yields an automaton whosestate set is of size exponential in the length of the input formula. We will therefore givean overview over several optimization te
hniques whi
h allow the
onstru
tion of smallerautomata.Removing Transitions A transition whi
h is not expli
itly needed (and whi
h is thereforeredundant) in the automaton
an be deleted. Su
h transitions
an be identi�ed asfollows: if there is s ∈ States, σ ∈ Σ, s1 = (Φ1,Pos1) ∈ States and s2 =

(Φ2,Pos2) ∈ States su
h that3That is: Aϕ1 ||Aϕ2 = Aϕ1∨ϕ2 .

204 Chapter 9. Preliminaries1. s1 ∈ δ(s, σ), s2 ∈ δ(s, σ) and2. for every ϕ1Uϕ2 ∈ Φ1: ϕ1Uϕ2 ∈ Φ2 and ϕ2 ∈ Φ1 implies ϕ2 ∈ Φ2,then the transition from s to s2
an be deleted from the automaton (see [172℄ fora justi�
ation of this optimization).Eliminating equivalent states By identifying sets of formulas whi
h are in some senseequivalent it is possible to lower the number of states. Consider for example thestate s given by s = ({ϕ1, ϕ2, ϕ2 ∧ ϕ2},Pos). This state has the property that
Φ |= ϕ i� Φ′ = Φ\{ϕ1 ∧ϕ2} = {ϕ1, ϕ2} |= ϕ for every Ltl�formula ϕ. This allowsus to remove the original state s and repla
e it with some state s′ = (Φ′,Pos′). In[76℄, [172℄ and several other papers the following improvements have been dis
ussed:1. {ϕ1, ϕ2, ϕ2 ∧ ϕ2} → {ϕ1, ϕ2},2. {ϕ1, ϕ1 ∨ ϕ2} → {ϕ1},3. {ϕ2, ϕ1 ∨ ϕ2} → {ϕ2} and4. {ϕ2, ϕ1Uϕ2} → {ϕ1}.Several other simpli�
ation te
hniques may be appli
able. We do not give a more indepth�treatment here sin
e we do not need all these te
hniques in the sequel.A number of approa
hes has been introdu
ed for the
onstru
tion of Bü
hi�automatafrom Ltl�formulas. Probably the most straightforward and simple
onstru
tion (whi
his the basis for our automaton model)
an for example be seen in [172℄ although itsorigin
omes from [168℄ and [167℄
ontinuing the work originally started by Bü
hi in [26℄.The early
onstru
tions of Bü
hi�automata for Ltl�formulas were of exponential size inthe size of the original formula. More sophisti
ated
onstru
tions have been developedin [76℄, [39℄, [150℄ and [72℄. [17℄ and [60℄ introdu
e similar approa
hes for the problemof Ltl model
he
king whi
h do not
onstru
t Bü
hi�automata dire
tly but whi
h usesimilar te
hniques and results.

9.2 Automata Constru
tions for Propositional Temporal Logi
 Formulas 205Besides
onstru
ting automata several other approa
hes for
he
king Ltl�formulas forsatis�ability resp. unsatis�ability have been presented. An early paper by Venkatesh(see [169℄) des
ribes the
onstru
tion of a normal form for Ltl�formulas whi
h is thengiven to a resolution�style theorem proving pro
edure as an input. Similarly Fisher (see[64℄) introdu
es another normal form
alled separated normal form for formulas in
ludingfuture and past operators. Again the theorem proving pro
edure is based on resolution.Another treatment of this pro
edure
an be found in a paper by Dixon, Fisher and Peim(see [65℄). Dixon (see [48℄ and [47℄) and Dixon and Fisher (see [49℄) also addressed thetopi
 of speeding up theorem proving pro
edures in order to improve the satis�abilitytests.Another approa
h for Ltl is presented by Felty (see [61℄). Here the
al
ulus for
he
king formulas is based on the sequent
al
ulus originally introdu
ed by Gentzen (seee.g. [75℄ or [89℄). A further paper extends this sequent
al
ulus from Ltl to the modallogi
 S4.3 (see [62℄).The third popular approa
h is based on tableaux�style te
hniques similar to our te
h-niques from
hapter 5.3. This te
hnique has been developed by Manna and Wolper (see[171℄ and [111℄) as well as by Li
htenstein, Pnueli and Zu
k (see [102℄ and [103℄). Goodsurveys of tableaux te
hniques have been presented by Emerson (see [57℄) and Reynoldsand Dixon (see [139℄).All these approa
hes have their own powers and weaknesses. But for our purposes theautomata�based approa
h seems to be the most promising one as it allows the general-ization and spe
ialization of given formulas from their representing automata as we willsee in
hapter 10.9.2.4. Some Complexity ResultsIn order to estimate the
omplexity of the re�nement pro
edures to be introdu
ed in thefollowing
hapter we will present some results regarding the
omplexity of some basi

206 Chapter 9. Preliminariesoperations on Bü
hi�automata. Assume that States is a set of sates whi
h has been
onstru
ted. We will sket
h the
omplexity of extra
ting δ, S0 and F from States.Extra
ting the Transition RelationObviously the
omplexity of the extra
tion of δ from States has to depend on the numberof states, i.e. |States| and the number of elements in the alphabet of the automaton, i.e.
|Σ| = |2X | = 2|X|. Algorithm 11 is a straightforward implementation of the de�nitionof the transition relation for Bü
hi�automata. For notational simpli
ity we will use thefollowing abbreviation. If s = (Φ,Pos) is a state, then Φ(s) will denote the set offormulas stored in s, i.e. Φ(s) = Φ. Furthermore assume that δ(s, σ) = ∅ holds as aninitial
ondition.We will now give a detailed analysis of the runtime of Algorithm 11. Therefore assumethat nmax denotes the maximum number of formulas stored in any element of States,that is nmax = max {|Φ| | Φ = Φ(s), s ∈ States}. Furthermore we will assume that ea
h
he
k of the form ϕ ∈ Φ(s) is atomi
, i.e. is
an be performed in one
omputation stepand
he
ks performed in
onditions are performed one�by�one, that is a
he
k whi
hinvolves n sub
he
ks requires n
omputation steps.The part of Algorithm 11 between line 4 and line 11
an then be preformed in

T1(|States|, |Σ|) ≤ 6|P |

= 6 log2 |Σ|
omputation steps.Similarly we have that the part between lines 12 and 32
an be performed in
T2(|States|, |Σ|) ≤ nmax · (1 + 3nmax + 3 + 4)

= nmax · (8 + 3nmax)

9.2 Automata Constru
tions for Propositional Temporal Logi
 Formulas 207Algorithm 11 Extra
tion of δ from Σ and StatesInput: set States of states and alphabet Σ = 2XOutput: transition relation δ1: for ea
h s1 ∈ States do2: for ea
h s2 ∈ States do3: for ea
h σ ∈ Σ do4: for ea
h p ∈ P do5: if p ∈ σ and p ∈ Φ(s1) then6: δ(s1, σ)← δ(s1, σ) ∪ {s2}7: end if8: if p 6∈ σ and ¬p ∈ Φ(s1) then9: δ(s1, σ)← δ(s1, σ) ∪ {s2}10: end if11: end forRequire: s1 = ({ϕ1, . . . , ϕn}, {p1, . . . , pn})Require: s2 = ({ϕ′
1, . . . , ϕ

′
m}, {p′1, . . . , p′m})12: for i = 1, . . . , n do13: if ϕi = Xψ then14: for j = 1, . . . ,m do15: if ϕ′

j = ψ and p′j = pi1 then16: δ(s1, σ)← δ(s1, σ) ∪ {s2}17: end if18: end for19: end if20: if ϕi = ϕ̄1Uϕ̄2 then21: if ϕ̄2 ∈ Φ(s1) or ϕ̄1 ∈ Φ(s1) and Xψ ∈ Φ(s2) then22: δ(s1, σ)← δ(s1, σ) ∪ {s2}23: end if24: end if25: if ϕi = ϕ̄1Rϕ̄2 then26: if ϕ̄2 ∈ Φ(s1) then27: if ϕ̄1 ∈ Φ(s1) or Xψ ∈ Φ(s2) then28: δ(s1, σ)← δ(s1, σ) ∪ {s2}29: end if30: end if31: end if32: end for33: end for34: end for35: end for36: return δ

208 Chapter 9. Preliminaries
= 8nmax + 3n2

max

steps.The
omplexity of the
omplete algorithm
an therefore be estimated as follows:
T (|States|, |Σ|) ≤ |States|2 · |Σ| · (T1(|States|, |Σ|) + T2(|States|, |Σ|))

= |States|2 · |Σ| · (6 log2 |Σ|+ 8nmax + 3n2
max

)

∈ O
(
n2

max · |States|2 · |Σ| · log2 |Σ|
)
.So we have the following theorem.Theorem 9.2.1Let States and Σ be given. Then δ : States×Σ→ 2States
an be
onstru
ted in time

O
(
n2

max · |States|2 · |Σ| · log2 |Σ|
)
.Extra
ting the Initial StatesExtra
ting the initial states from States is the simplest task. By de�nition every s =

(Φ,Pos) ∈ S0 is su
h that ϕ ∈ Φ. Then a simple linear sear
h strategy
an
he
k if sis indeed
ontained in S0. The runtime of su
h a
he
k is bounded from above by nmax.Consequently
he
king every s ∈ States
an be done in time O(nmax · |States|).Theorem 9.2.2Let States be given. Then S0 ⊆ States
an be extra
ted in time O(nmax · |States|).Extra
ting the A

eptan
e ComponentFor the extra
tion of the a

eptan
e
omponent F it is ne
essary to
olle
t the even-tualities whi
h are in
luded in the states. This
an be a

omplished in nmax · |States|

9.2 Automata Constru
tions for Propositional Temporal Logi
 Formulas 209steps yielding a set Ev of pairs (ei(ϕi), pi). The size of Ev is bounded from above by
nmax · |States|. Following the de�nition of the a

eptan
e
omponent we
an
ompute
F using Algorithm 12.Algorithm 12 Extra
ting the A

eptan
e Component F from StatesInput: set States of statesOutput: a

eptan
e
omponent F1: F ← ∅2:
ompute Ev (as des
ribed)3: for ea
h (ei(ϕi), pi) ∈ Ev do4: F ← ∅5: for ea
h s ∈ States do6: if ei(ϕi) ∈ Φ(s) and ϕ ∈ Φ(s) or ei(ϕi) 6∈ Φ(s) then7: F ← F ∪ {s}8: end if9: end for10: F ← F ∪ {F}11: end for12: return FThe time
omplexity of Algorithm 12
an be estimated as follows:

T (|States|) ≤ 1 + nmax · |States|+ |Ev| · (1 + |States| · (2 + 1) + 1) + 1

= 2 + nmax · |States|+ |Ev| · (2 + 3 · |States|)
≤ 2 + nmax · |States|+ nmax · |States| · (2 + 3 · |States|)
= 2 + 3nmax · |States|+ 3nmax · |States|2
∈ O

(
nmax · |States|2) .So we have the following theorem.Theorem 9.2.3Let States be given. Then the a

eptan
e
omponent F
an be extra
ted from Statesin time O (nmax · |States|2).

210 Chapter 9. Preliminaries9.2.5. Che
king Language�EmptinessWe have already mentioned that it will be ne
essary to
he
k the emptiness of the lan-guages a

epted by Bü
hi�automata. In this se
tion we will see how this
an be a
hieved.Let G = (V,E) be a dire
ted graph and let V ′ ⊆ V be a nonempty set of verti
es from
V and let E′ be a nonempty set of edges from E. Then the subgraph G′ = (V ′, E′) is
alled maximal strongly
onne
ted if
• for ea
h pair n1, n2 of verti
es from V ′ it holds that n2 is rea
hable from n1 and
n1 is rea
hable from n2 and

• V ′ is maximal wrt. ⊆, that is there is no v ∈ V \ V ′ su
h that (V ′ ∪ {v}, E′) isstrongly
onne
ted.The set of all strongly
onne
ted subgraphs of G is
alled the set of maximal strongly
onne
ted
omponents of G. The maximal strongly
onne
ted
omponents of G form apartition of G into disjoint subsets. A maximal strongly
onne
ted
omponent (V ′, E′)is
alled non�trivial if either |V ′| > 1 or V ′ = {v} for some v and (v, v) ∈ E′.The maximal strongly
onne
ted
omponents of a graph
an be
omputed in time
O(|V |) (see [156℄ and [74℄).The link to our problem is given as follows: Obviously every extended Bü
hi�automaton
A = (Σ,States, δ, S0,F) indu
es a dire
ted Graph GA = (States, E) where for everypair s1, s2 ∈ States the edge (s1, s2) belongs to E if there is an element σ ∈ Σ su
h that
s2 ∈ δ(s1, σ). For
he
king that L(A) = ∅ it su�
es to
ompute the maximal strongly
onne
ted
omponents of GA and
he
k if there is a maximal strongly
onne
ted
om-ponent S whi
h is rea
hable from some initial state s0 ∈ S0 su
h that S ∩ F 6= ∅ forevery F ∈ F . So
he
king logi
al impli
ation of some property ϕ in a system given by anLtl�program P
an be redu
ed to the
omputation of the maximal strongly
onne
ted
omponents of AP ×A¬ϕ and a simple
ontainment
he
k.

10. Automata Manipulations
Contents10.1. Impli
ation as an Ordering . 21210.2. Upward Re�nement . 21310.2.1. Formulas without Temporal Operators 21410.2.2. Formulas with Temporal Operators 21610.3. Downward Re�nement . 21810.3.1. Formulas without Temporal Operators 21910.3.2. Formulas with Temporal Operators 22010.4. Modifying Automata by Appli
ation of Re�nement Opera-tions . 22110.4.1. Upward Re�nement . 22110.4.2. Downward Re�nement . 23210.4.3. Extra
ting Formulas . 23710.5. The Identi�
ation Pro
ess . 238This
hapter will deal with the pro
edures whi
h are ne
essary in order to re�ne Ltl�programs. As we have seen in the last
hapter, we are always able to
onstru
t a gener-alized Bü
hi�automaton from a temporal logi
 formula whi
h has a nonempty a

eptedlanguage if and only if the formula from whi
h the automaton had been
onstru
ted issatis�able. The
onstru
tion relies on the set of subformulas o

urring in the originalformula. So a state is labeled with a set of formulas together with their positions.

212 Chapter 10. Automata ManipulationsNow assume that a modi�ed Bü
hi�automaton Aϕ = (Σ,States, δ, S0,F)
onstru
tedfrom a Ltl�formula ϕ is given. By de�nition we have ϕ ∈ Φ(s) for every s ∈ S0. Nowassume further that any Ltl�formula e is given (an example). Then this example
anbe a positive one or a negative one. In either
ase we
an
onstru
t the representingautomaton A¬e.1. If e is a positive example, then a modi�
ation of the model under
onsiderationhas to be
arried out if L(Aϕ ×A¬e) 6= ∅ sin
e in this
ase the positive example eis not implied by the model under
onsideration.2. If e is a negative example, then
onsequently we have to re�ne the model if L(Aϕ×

A¬e) = ∅ sin
e in this
ase the negative example e is implied.In either
ase we will have to modify the states of the representing automaton Aϕ insu
h a way that the modi�ed model is
ompatible with the new example e.10.1. Impli
ation as an OrderingIn the
ase of FoLtl, we have used the
on
ept of subsumption as the basis for gener-alization and spe
ialization operations. In Ltl this would not be a good
hoi
e for tworeasons:1. Ltl is a propositional temporal logi
 language, so the
on
ept of substitutionswould not make any sense sin
e there are no variable symbols to substitute and2. Prolog(+T)�obje
ts are essentially
lauses. The results regarding greatest spe-
ializations and least generalizations are only
on
erned with su
h
lauses. In Ltlthe obje
ts are not limited to
lauses and so we
annot hope to apply the te
hniquesestablished in
hapter 6.So we see that subsumption is not appli
able here. However, sin
e Ltl is propositional,we know that the logi
al
onsequen
e relation |= is de
idable. This enables us to use a

10.2 Upward Re�nement 213�ner relation than the subsumption ordering <, namely the impli
ation ordering.De�nition 10.1.1Let ϕ1 and ϕ2 be Ltl formulas. Then the ordering % is de�ned as ϕ1 % ϕ2 if andonly if ϕ1 |= ϕ2.The notations -, ≻, ≺ are de�ned in the usual way. In the
ase of ϕ1 % ϕ1 and
ϕ2 % ϕ1 we will not introdu
e a new symbol sin
e in this
ase ϕ1 ≡ ϕ2.10.2. Upward Re�nementWe will now show how Ltl�formulas
an be re�ned upwards, that is we will see how we
an
onstru
t a formula ψ from a given formula ϕ su
h that ψ % ϕ where ψ is in somesense minimal. This
on
ept of minimality will be made pre
ise now.De�nition 10.2.1Let ϕ be an Ltl�formula. An Ltl�formula ψ is
alled a minimal upward re�nementwrt. % of ϕ if1. ψ % ϕ and2. there is no Ltl�formula ψ′ su
h that ψ ≻ ψ′ ≻ ϕ.Our
on
ept of minimal re�nements is identi
al to the
on
ept of
overs whi
h is awell�known
on
ept from the theory of ILP (see [126℄ for example). In other words, aformula ψ is a minimal upward re�nement wrt. % of a formula ϕ if and only if ψ is anupward
over of ϕ (with respe
t to the ordering %). In parti
ular all properties of
oversalso hold for minimal re�nements.We will now show how upward
overs
an be
onstru
ted. Therefore assume that ϕis a �xed Ltl�formula in whi
h propositional variables from the set X = {p1, . . . , pm}

214 Chapter 10. Automata Manipulationso

ur. The
onstru
tion of re�nements of ϕ depends on the question if there are temporaloperators involved in ϕ.10.2.1. Formulas without Temporal OperatorsAssume that ϕ is a purely propositional logi
 formula. The idea of how to re�ne ϕ is to
onstru
t a formula ψ whi
h has nearly the same models as ϕ. To obtain su
h a formulawe need a spe
ial kind of formulas, namely so
alled maximal minterms.De�nition 10.2.2LetX be a set of propositional variable symbols and let ϕ be a formula in whi
h exa
tlythe variables from X = {p1, . . . , pm} o

ur. Then ϕ is
alled a maximal minterm ifand only if1. ϕ =
∧|X|
i=1 ψi,2. for every i ∈ {1, . . . , k} it holds that ψi ∈ X or ψi ∈ {¬p | p ∈ X} and3. there is no pair i0, i1 su
h that ψi0 ≡ ¬ψ1.The set of all maximal minterms
ontaining variables from X will be denoted asMinTerms(X).Theorem 10.2.1Let ϕ be a propositional logi
 formula
ontaining variables from a �nite set X of propo-sitional symbols. If ϕ is satis�able, then for every χ ∈ MinTerms(X) with ϕ 6|= ¬χ aminimal upward re�nement of ϕ is given by ϕ ∧ ¬χ.Proof. Assume that ϕ and X are given as required. First we observe that ϕ ∧ ¬χ |= ϕfor every χ ∈ MinTerms(X), that is ϕ ∧ ¬χ % ϕ holds. Now assume that χ is
hosensu
h that ϕ 6|= ¬χ. Assume that ϕ ∧ ¬χ 6≻ ϕ, that is assume that ϕ % ϕ ∧ ¬χ. Then

10.2 Upward Re�nement 215MD(ϕ = MD(ϕ∧¬χ) = MD(ϕ)∩MD(¬χ) or equivalently MD(¬χ) ⊇ MD(ϕ). But thisgives ϕ |= ¬χ
ontradi
ting the assumptions on ϕ and χ.It remains to prove that the formula ϕ ∧ ¬χ is indeed a minimal re�nement. Assumethat this is not the
ase, that is assume that there is a formula α su
h that ϕ∧¬χ ≻ α ≻ ϕ.Then we have1. MD(ϕ ∧ ¬χ) ⊂ MD(α) ⊂ MD(ϕ) and2. |MD(¬χ)| = 2|X| − 1 sin
e χ ∈MinTerms(X) and therefore |MD(χ)| = 1.This gives |MD(ϕ∧¬χ)| ≤ |MD(α)| ≤ |MD(ϕ)| sin
e X is assumed to be �nite. We
andistinguish two
ases:Case 1 ϕ |= ¬χ. Then |MD(ϕ ∧ ¬χ)| = |MD(ϕ)| and therefore |MD(α)| = |MD(ϕ)|whi
h gives α ≡ ϕ and in parti
ular α 6≻ ϕ whi
h is a
ontradi
tion.Case 2 ϕ 6|= ¬χ. Then we have |MD(ϕ ∧ ¬χ)| = |MD(ϕ)| − 1 < |MD(ϕ)|. But sin
eMD(α) ⊂ MD(ϕ) andMD(ϕ∧¬χ) ⊂ MD(α) this gives either |MD(α)| = |MD(ϕ)|−

1 = |MD(ϕ ∧ ¬χ)| whi
h yields α ≡ ϕ ∧ ¬χ or |MD(α)| = |MD(ϕ)| whi
h gives
α ≡ ϕ. In the former
ase we have ϕ ∧ ¬χ 6≻ α and in the latter
ase we have
α 6≻ ϕ. So both
ases yield a
ontradi
tion.Sin
e every
ase yields a
ontradi
tion, su
h a formula ϕ
annot exist and the
laim isproved. �For the sake of simpli
ity we will introdu
e a spe
ial mapping Ψu
ontaining all upwardre�nements of a formula ϕ, that is

Ψu(ϕ) = {ϕ ∧ ¬χ | χ ∈MinTerms(X)} .

216 Chapter 10. Automata ManipulationsExample 10.2.1Let X = {p1, p2, p3} and ϕ = p1 → (p2 → p3) be given. Then
MinTerms(X) =







¬p1 ∧ ¬p2 ∧ ¬p3,

¬p1 ∧ ¬p2 ∧ p3,

¬p1 ∧ p2 ∧ ¬p3,

¬p1 ∧ p2 ∧ p3

p1 ∧ ¬p2 ∧ ¬p3,

p1 ∧ ¬p2 ∧ p3,

p1 ∧ p2 ∧ ¬p3,

p1 ∧ p2 ∧ p3





and
Ψu(ϕ) = {(p1 → (p2 → p3)) ∧ ¬χ | χ ∈MinTerms(X)}

=







(p1 → (p2 → p3)) ∧ (p1 ∨ p2 ∨ p3), (p1 → (p2 → p3)) ∧ (p1 ∨ p2 ∨ ¬p3)

(p1 → (p2 → p3)) ∧ (p1 ∨ ¬p2 ∨ p3), (p1 → (p2 → p3)) ∧ (p1 ∨ ¬p2 ∨ ¬p3)

(p1 → (p2 → p3)) ∧ (¬p1 ∨ p2 ∨ p3), (p1 → (p2 → p3)) ∧ (¬p1 ∨ p2 ∨ ¬p3)

(p1 → (p2 → p3)) ∧ (¬p1 ∨ ¬p2 ∨ p3), (p1 → (p2 → p3)) ∧ (¬p1 ∨ ¬p2 ∨ ¬p3)







.

10.2.2. Formulas with Temporal OperatorsIn the foregoing se
tion we have des
ribed how to re�ne purely propositional Ltl�formulas. There is one problem with this approa
h:
onsider the formula ϕ = p1 ∧ p2.The re�nement pro
edures for propositional formulas
onstru
t formulas su
h as (p1 ∧

p2) ∧ (¬p1 ∨ ¬p2), (p1 ∧ p2) ∧ (¬p1 ∨ p2),. . . but if the formula to be identi�ed is for ex-ample ψ = Gp1 ∧Gp2, then this formula will never be
onstru
ted. In order to over
omethis limitation we will have to des
ribe how to temporally generalize formulas. For the
ase of upward re�nement, whi
h will be dis
ussed in this se
tion,
onsider the following

10.2 Upward Re�nement 217formula ϕ = Fp for some propositional variable symbol p ∈ X. Obviously a temporalinterpretation J = (s0, s1, . . .) is a model of ϕ if there is an index j su
h that J j |= ϕ(or equivalently if J |= Xjϕ). So we have that p |= Fp. More general Xjp |= Fp for every
j ≥ 0, that is Xjp % Fp for every j ∈ N. So an upward re�nement of any formula Fψ
an be
onstru
ted as Xjψ. This approa
h
an be
ontinued: obviously Gψ |= Xjψ, thatis Gψ % Xjψ % Fψ. We will now examine how this idea of temporal re�nement
an be
ombined with the re�nement pro
edure des
ribed for propositional formulas.Therefore assume that any Ltl�formula ϕ is given. For the formulas ϕ1 and ϕ2 wewill require that ψ % ϕ1 respe
tively ψ % ϕ2 for every formula ψ ∈ Γu(ϕ1) respe
tively
ψ ∈ Γu(ϕ2). Then the set Γu(ϕ) is de�ned as follows:

Γu(ϕ) = Ψu(ϕ)

∪
{
ϕ[Xiχ]p | p ∈ Pos(ϕ), ϕ|p = Fχ for some i ≥ 0

}

∪
{
ϕ[Gχ]p | p ∈ Pos(ϕ), ϕ|p = Xiχ for some i ≥ 0

}

∪







ϕ[ϕ̄1 ⋆ ϕ2]p, ϕ[ϕ1 ⋆ ϕ̄2]p |
p ∈ Pos(ϕ), ϕ|p = ϕ1 ⋆ ϕ2, ϕ̄1 ∈ Γu(ϕ1),

ϕ̄2 ∈ Γu(ϕ2), ⋆ ∈ {U,R} 





.For proving the properties of the formulas from Γu(ϕ) we will exploit the followingobservation:Lemma 10.2.1 (Repla
ement�Lemma, Upward�Version)Let ϕ and ψ be Ltl�formulas, let p ∈ Pos(ϕ) be a position in ϕ. If ψ % ϕ|p, then
ϕ[ψ]p % ϕ.Proof. Assume that ϕ|p % ψ, that is ϕ|p |= ψ. Let J ∈ MD(ϕ) be a �xed model of ϕ.We will prove that J |= ϕ[ψ]p.Case 1 If J |= ϕ|p, then J |= ψ sin
e ϕ|p % ψ. But in this
ase we also have J |= ϕ[ψ]psin
e J (ϕ|p) = J (ψ).Case 2 If J 6|= ϕ|p, then we have to distinguish how J evaluates ψ. If J 6|= ψ, then

218 Chapter 10. Automata Manipulationsthe
laim is obvious (using the same argumentation as in the foregoing
ase). Soassume that J |= ψ. Then we have two sub
ases:Case 2.1 If ϕ|p is positive in ϕ, then the
laim is immediately.Case 2.2 If ϕ|p is negative in ϕ, then we have ϕ|p = ¬q for some propositionalvariable symbol q sin
e ϕ is assumed to be in negation normal form. But theassumption ϕ|p % ψ yields ψ ∈ {true,¬q} and so the
laim follows.This proves the lemma. �It is now straightforward to prove that every formula
ontained in the set Γu(ϕ) is ageneralization of ϕ with respe
t to the ordering %.Theorem 10.2.2For every Ltl�formula ϕ and every ψ ∈ Γu(ϕ) it holds that ψ % ϕ.Proof. If ψ ∈ Ψu(ϕ), then the
laim is due to Theorem 10.2.1. Otherwise the repla
ement�lemma
an be applied. �10.3. Downward Re�nementDually to the
onstru
tion of minimal upward re�nements we
an
onstru
t maximaldownward re�nements of a formula ϕ. As we might expe
t, a maximal downward re�ne-ment is de�ned as follows.De�nition 10.3.1Let ϕ be an Ltl�formula. An Ltl�formula ψ is
alled amaximal downward re�nementwrt. % of ϕ if1. ϕ % ψ and2. there is no Ltl�formula ψ′ su
h that ϕ ≻ ψ′ ≻ ψ.

10.3 Downward Re�nement 219As in the
ase of upward re�nement we will distinguish between formulas with andwithout temporal operators. We will see that the
on
epts developed in the foregoingse
tion
an again be adapted.10.3.1. Formulas without Temporal OperatorsRe
all that a minimal upward re�nement of a formula ϕ whi
h does not
ontain temporaloperators is given as ϕ∧¬χ for some maximal minterm χ. The philosophy was as follows:sin
e χ is a minterm, χ has exa
tly one model. So ¬χ has 2|X|−1 models where X is theset of variables under
onsideration. Building the
onjun
tion of ϕ and a formula whi
hhas as many models as possible without being a tautology (i.e. ¬χ) yields a more generalformula whi
h is a minimal upward re�nement. The dual aspe
t of removing a modelis adding a model. So for building a maximal upward re�nement of ϕ we will have to
onstru
t a disjun
tion of ϕ and a formula whi
h has exa
tly one model, i.e. a minterm.Theorem 10.3.1Let ϕ be a propositional logi
 formula
ontaining variables from a �nite set X of propo-sitional symbols. If ϕ is satis�able but no tautology, then for every χ ∈MinTerms(X)with χ 6|= ϕ a maximal downward re�nement of ϕ is given by ϕ ∨ χ.Proof. Let ϕ be any formula
ontaining variables from X. First we will again note thatfor every χ ∈ MinTerms(X) it holds that ϕ |= ϕ ∨ χ, so ϕ % ϕ ∨ χ. Now assume that
χ 6|= ϕ. Then we have MD(χ) 6⊆ MD(ϕ) and therefore MD(ϕ ∨ χ) = MD(ϕ) ∪MD(χ) 6=MD(ϕ) whi
h (together with MD(ϕ) ⊆ MD(ϕ ∨ χ)) gives MD(ϕ) ⊂ MD(ϕ ∨ χ), i.e.
ϕ ≻ ϕ ∨ χ.Now assume that ϕ ∨ χ is not a maximal downward re�nement of ϕ. Let α be aformula su
h that ϕ ≻ α ≻ ϕ ∨ χ. Then we have MD(ϕ) ⊂ MD(α) ⊂ MD(ϕ ∨ χ)and therefore |MD(ϕ)| < |MD(α)| < |MD(ϕ ∨ χ)| sin
e MD(ϕ), MD(α) and MD(χ) are�nite. Sin
e χ ∈MinTerms(X) we have |MD(χ)| = 1, so either |MD(α)| = |MD(ϕ)| or
|MD(α)| = |MD(ϕ)| + 1. This is a
ontradi
tion, so the
laim is proved. �

220 Chapter 10. Automata ManipulationsAgain we will
olle
t all downward re�nements of ϕ as follows:
Ψd(ϕ) = {ϕ ∨ χ | χ ∈MinTerms(X)} .Example 10.3.1Consider the set X = {p1, p2, p3} and the formula ϕ = p1 → (p2 → p3) from Example10.2.1. Here we have

Ψd(ϕ) = {ϕ ∨ χ | χ ∈MinTerms(X)}

=







(p1 → (p2 → p3)) ∧ (¬p1 ∧ ¬p2 ∧ ¬p3),

(p1 → (p2 → p3)) ∧ (¬p1 ∧ ¬p2 ∧ p3),

(p1 → (p2 → p3)) ∧ (¬p1 ∧ p2 ∧ ¬p3),

(p1 → (p2 → p3)) ∧ (¬p1 ∧ p2 ∧ p3),

(p1 → (p2 → p3)) ∧ (p1 ∧ ¬p2 ∧ ¬p3),

(p1 → (p2 → p3)) ∧ (p1 ∧ p2 ∧ p3),

(p1 → (p2 → p3)) ∧ (p1 ∧ p2 ∧ ¬p3),

(p1 → (p2 → p3)) ∧ (p1 ∧ p2 ∧ p3)







.

10.3.2. Formulas with Temporal OperatorsIn full analogy to the upward
ase we will de�ne a set Γd(ϕ) for an Ltl�formula ϕ asfollows:
Γd(ϕ) = Ψd(ϕ)

∪
{
ϕ[Fχ]p | p ∈ Pos(ϕ), ϕ|p = Xiχ for some i ≥ 0

}

∪
{
ϕ[Xiχ]p | p ∈ Pos(ϕ), ϕ|p = Gχ for every i ≥ 0

}

∪







ϕ[ϕ̄1 ⋆ ϕ2]p, ϕ[ϕ1 ⋆ ϕ̄2]p |
p ∈ Pos(ϕ), ϕ|p = ϕ1 ⋆ ϕ2, ϕ̄1 ∈ Γd(ϕ1),

ϕ̄2 ∈ Γd(ϕ2), ⋆ ∈ {U,R} 





.

10.4 Modifying Automata by Appli
ation of Re�nement Operations 221Again we assume that the formulas ϕ̄1 and ϕ̄2 from Γd(ϕ1) and Γd(ϕ2) satisfy theproperties ϕ1 % ϕ̄1 and ϕ2 % ϕ̄2. The properties of Γd(ϕ) are proved as in the upward
ase.Lemma 10.3.1 (Repla
ement�Lemma, Downward�Version)Let ϕ and ψ be Ltl�formulas, let p ∈ Pos(ϕ) be a position in ϕ. If ψ % ϕ|p, then
ϕ % ϕ[ψ]p.Proof. analogous to the upward
ase. �So we have that the formulas from Γd(ϕ) are downward re�nements of ϕ.Theorem 10.3.2For every Ltl�formula ϕ and every ψ ∈ Γu(ϕ) it holds that ϕ % ψ.Proof. analogous to the upward
ase. �In the following se
tion we will show how the
hoi
e of a formula from Γu(ϕ) or Γd(ϕ)
an be implemented as a manipulation of the representing automaton Aϕ.10.4. Modifying Automata by Appli
ation of Re�nementOperations10.4.1. Upward Re�nementWe will now present algorithms whi
h allow upward�re�nement of given Bü
hi�automataby manipulating the set of states (and updating the transition relation, the set of initialstate and the a

eptan
e
omponent). As pointed out in the foregoing se
tion we
andistinguish between re�nement by appli
ation of propositional formulas and re�nementby appli
ation of temporal formulas.All algorithms will only di�er in the way the new states are
onstru
ted. So we willpla
e our attention on the pro
edures to
onstru
t new states from given ones. For therest of this se
tion we will assume that Aϕ = (Σ,States, δ, S0,F) is given.

222 Chapter 10. Automata ManipulationsPropositional Re�nementAssume thatVar(ϕ) = {p1, . . . , p|Var(ϕ)|} and that χ =
∧|Var(ϕ)|
i=1 li ∈MinTerms(Var(ϕ))for li ∈ {pi,¬pi} are given. Then the
onstru
tion of Aϕ∧¬χ is simple: First wehave to
onstru
t NNF(¬χ). After that we
onstru
t ANNF(¬χ) and return Aϕ∧¬χ =

Aϕ×ANNF(¬χ). Sin
e χ =
∧|Var(ϕ)|
i=1 li we have α = NNF(¬χ) = NNF(¬∧|Var(ϕ)|

i=1 li

)

=NNF(∨|Var(ϕ)|
i=1 ¬li

)

=
∨|Var(ϕ)|
i=1 ¬li. Algorithm 13 gives the implementation of the strat-egy des
ribed here.Algorithm 13 Propositional Upward Re�nementInput:

• Bü
hi�automaton A = (Σ,States, δ, S0,F)

• χ ∈MinTerms(Var(ϕ)).Output: Aϕ∧¬χ.1:
ompute α = NNF(¬χ)2:
ompute Aα3: return Aϕ ×AαBy soundness of the produ
t operation × we have the following theorem.Theorem 10.4.1Let ϕ be an Ltl�formula, letAϕ and let χ ∈MinTerms(ϕ) be given. Then Algorithm 13returns Aϕ∧¬χ.Temporal Re�nementThe next step is now to present a pro
edure whi
h allows the introdu
tion of temporaloperators. We will see that for ea
h of the rewritten formulas from Γu(ϕ) \ Ψu(ϕ). Soassume that any su
h ψ ∈ Γu(ϕ)\Ψu(ϕ) is
hosen. We will pro
eed by distin
tion of theform of ψ.Case 1 ψ = ϕ[Xiχ]p for some p ∈ Pos(ϕ) su
h that ϕ|p = Fχ, some Ltl�formula χ andsome i ≥ 0. By de�nition of the set of states of a Bü
hi�automaton, for every state

10.4 Modifying Automata by Appli
ation of Re�nement Operations 223
s su
h that Xiχ ∈ Φ(s) there has to be at least one s′ su
h that Xi−1 ∈ Φ(s′). Our
onstru
tion will have to take this into a

ount.Case 2 ψ = ϕ[Gχ]p for some p ∈ Pos(ϕ) su
h that ϕ|p = Xiχ. This
ase is simpler inthe sense that some states might be deleted and so the resulting automaton mightbe smaller than the original one.Case 3 If ψ = ϕ[ϕ̄1 ⋆ ϕ2]p or ψ = ϕ[ϕ1 ⋆ ϕ̄2]p for ⋆ ∈ {U,R} and p ∈ Pos(ϕ) with
ϕ|p = ϕ1 ⋆ ϕ2, then states from Aψ emerge from states of Aϕ and states from Aϕ̄1(respe
tively from Aϕ̄2) be merging the sets of formulas stored in these states. Wewill see below how this
an be a
hieved.We will now examine the
ases sket
hed above in more detail.Case 1 We will �rst present a method whi
h is suitable for the situation des
ribed in
ase1. Assume that p ∈ Pos(ϕ) is given su
h that ϕ|p = trueUχ ≡ Fχ for some Ltl�formula χ and assume that i ≥ 0 is some �xed integer. IfAϕ = (Σ,States, δ, S0,F)then we have to pro
ess every s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn}) ∈ States and
he
kif the following
ases o

ur:Case 1.1 There is i0 ∈ {1, . . . , n} su
h that ϕi0 = trueUχ and pi = p. In this
asewe have to
onstru
t states s̄0, . . . , s̄i as follows:

s̄j = ({ϕ1, . . . , ϕi0−1,Xjχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01
i−j , pi0+1, . . . , pn}).Here the term 1i−j denotes a sequen
e of i− j o

urren
es of the letter 1.Case 1.2 Case 1.1 is not ful�lled but there is some i0 ∈ {1, . . . , n} su
h that pi0 < pand trueUχ ⊏ ϕi0 . In this
ase the formula to be manipulated is a propersubformula of the formula ϕi0 and therefore it has to be repla
ed. Let p̄ be

224 Chapter 10. Automata Manipulationsfrom N
∗ su
h that pi0 p̄ = p. Then we have to
onstru
t the state
s̄ = ({ϕ1, . . . , ϕi0−1, ϕi0 [Xiχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn}).Case 1.3 In the
ase that neither of the above
ases is ful�lled we only add thestate s to the set of new states.The method des
ribed here is summarized in Algorithm 14.Case 2 In
ontrast to the method presented in the foregoing
ase
onstru
ting the setof states of the automaton Aϕ[Gχ]p given some p ∈ Pos(ϕ) su
h that ϕ|p = Xiχfor some i ≥ 0 might yield a smaller set of states sin
e the states whi
h havebeen built in order to guarantee that χ holds
an be deleted. Again let Aϕ =

(Σ,States, δ, S0,F) be given. If s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn}) is the state whi
his a
tually pro
essed, we have to distinguish the following
ases:Case 2.1 If there is i0 ∈ {1, . . . , n} su
h that ϕi0 = Xiχ and pi0 = p, then we
an
onstru
t two new states:
s̄1 = ({ϕ1, . . . , ϕi0−1, falseRχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pn}) and
s̄2 = ({ϕ1, . . . , ϕi0−1, χ, ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01, pi0+1, . . . , pn}).

These states are added to the set of new states. Following the
onstru
tion ofthese states we
an identify the states whi
h might be deleted. These are thestates s′ 6= s su
h that
s′ = ({ϕ1, . . . , ϕi0−1,Xi−jχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01

j , pi0+1, . . . , pn}).Ea
h su
h state is marked as to be deleted.

10.4 Modifying Automata by Appli
ation of Re�nement Operations 225Case 2.2 Case 2.1 is not ful�lled but there is i0 ∈ {1, . . . , n} su
h that pi0 < pand Xiχ is a proper subformula of ϕi0 . Here we will identify p̄ ∈ N
∗ su
h that

pi0 p̄ = p and
onstru
t the state
s̄ = ({ϕ1, . . . , ϕi0−1, ϕi0 [falseRχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn}).Case 2.3 If neither
ase 2.1 or
ase 2.2 is ful�lled, we only add s to the set of newstates.The above
onstru
tion is formalized in Algorithm 15.Case 3 Let us now assume that ψ = ϕ[ϕ̄1 ⋆ ϕ2]p for some ϕ̄1 ∈ Γu(ϕ1), some ⋆ ∈ {U,R}and some p ∈ Pos(ϕ) su
h that ϕ|p = ϕ1 ⋆ ϕ2. Let Aϕ̄1 = (Σ′,States′, δ′, S′

0,F ′)be given. Our
onstru
tion will be divided into three parts.Step 1 First we will rename the positions from the states of Aϕ̄1 in order to mat
hthe positions in ψ. That is if s′ = (Φ(s′), {p1, . . . , pn}) ∈ States′ is given,then s has to be
hanged to (Φ(s′), {p1p1, . . . , p1pn).Step 2 We will then pro
ess every s =
({

ϕ
(1)
1 , . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
n1

})

∈ Statesas follows:1. for every i0 ∈ {1, . . . , n1} su
h that p(1)
i0

= p we have to
arry out anexpli
it repla
ement, that is we repla
e s by
s̄ =

({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0

[ϕ̄1]1, ϕ
(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p(1)

n1

})

,2. for every i0 ∈ {1, . . . , n1} su
h that p(1)
i0

< p and ϕ is a proper subformulaof ϕ(1)
i0

we repla
e s by
s̄ =

({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0

[ϕ̄1]p̄1, ϕ
(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p(1)

n1

})

226 Chapter 10. Automata Manipulationswhere p̄ ∈ N
∗ is su
h that p(1)

i0
p̄ = p and3. for every i0 ∈ {1, . . . , n1} su
h that p < pi0 we delete the formula ϕ(1)

i0and the asso
iated position p(1)
i0
. So s is repla
ed by

s̄ =
({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
i0−1, p

(1)
i0+1, . . . , p

(1)
n1

})

.Step 3 Assume that after having
ompleted step 2, the state s has the form
s =

({

ϕ
(1)
j1
, . . . , ϕ

(1)
jk

}

,
{

p
(1)
j1
, . . . , p

(1)
jk

})

.Then for ea
h s′ =
({

ϕ
(2)
1 , . . . , ϕ

(2)
n2

}

,
{

p
(2)
1 , . . . , p

(2)
n2

})

∈ States′ we performthe following a
tions:1. Φnew =
{

ϕ
(1)
j1
, . . . , ϕ

(1)
jk
, ϕ

(2)
1 , . . . , ϕ

(2)
n2

},2. Posnew =
{

p
(1)
j1
, . . . , p

(1)
jk
, p

(2)
1 , . . . , p

(2)
n2

} and3.
reate the state snew = (Φnew,Posnew) and add it to NewStates.Setting Σnew = Σ ∪ Σ′ we
an then
onstru
t the new transition relation δ′, thenew set S0,new of initial states and the new a

eptan
e
omponent F ′ as usual andthe automaton
onstru
tion is
ompleted. The algorithm for this
onstru
tion isgiven in Algorithm 16.Case 4 The �nal
ase is given by the situation in whi
h ψ = ϕ[ϕ1 ⋆ ϕ̄2]p for some
ϕ̄2 ∈ Γu(ϕ2), some ⋆ ∈ {U,R} and some p ∈ Pos(ϕ) su
h that ϕ|p = ϕ1 ⋆ ϕ2. The
onstru
tion is then
arried out in full analogy to the
onstru
tion from
ase 3. Sowe will only present the algorithm whi
h is depi
ted in Algorithm 17.As in the
ase of propositional upward re�nement the above algorithms for
onstru
tingthe set of new states of the resulting automaton representing the re�ned formula
an be
ombined with the standard approa
hes for extra
ting the initial states, the transition

10.4 Modifying Automata by Appli
ation of Re�nement Operations 227

Algorithm 14 Temporal Upward Re�nement: Constru
ting new States for F 7→ XiInput:
• Aϕ = (Σ,States, δ, S0,F)

• p ∈ Pos(ϕ) su
h that ϕ|p = trueUχ ≡ Fχ
• i ≥ 0Output: set NewStates of states of Aϕ[Xiχ]p1: NewStates← {(∅, ∅)}2: for ea
h s ∈ States doRequire: s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn})3: if there is i0 su
h that ϕi0 = trueUχ and pi0 = p then4: for j = 0, . . . , i do5: s̄← ({ϕ1, . . . , ϕi0−1,Xjχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01

i−j , pi0+1, . . . , pn})6: NewStates← NewStates ∪ {s̄}7: end for8: else if there is i0 su
h that trueUχ ⊏ ϕi0 and pi0 < p then9: p̄ ← element from N
∗ su
h that pi0 p̄ = p s̄ ←

({ϕ1, . . . , ϕi0−1, ϕi0 [Xiχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn})10: NewStates← NewStates ∪ {s̄}11: else12: NewStates← NewStates ∪ {s}13: end if14: end for

228 Chapter 10. Automata Manipulations
Algorithm 15 Temporal Upward Re�nement: Constru
ting new States for Xi 7→ GInput:
• Aϕ = (Σ,States, δ, S0,F)

• p ∈ Pos(ϕ) su
h that ϕ|p = XiχOutput: set NewStates of states of Aϕ[Gχ]p1: mark ea
h s ∈ States as not to be deleted2: NewStates← {(∅, ∅)}3: for ea
h s ∈ States whi
h is marked as not to be deleted doRequire: s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn})4: if there is i0 su
h that ϕi0 = Xiχ and pi0 = p then5: s̄1 ← ({ϕ1, . . . , ϕi0−1, falseRχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pn})6: s̄2 ← ({ϕ1, . . . , ϕi0−1, χ, ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01, pi0+1, . . . , pn})7: NewStates← NewStates ∪ {s̄1, s̄2}8: for ea
h s′ ∈ States doRequire: s′ = ({ϕ′
1, . . . , ϕ

′
m}, {p′1, . . . , p′m})9: if n = m then10: if {ϕ′

1, . . . , ϕ
′
m} = {ϕ1, . . . , ϕi0−1,Xi−jχ,ϕi0+1, . . . , ϕn} for some j ≥ 0then11: if {p′1, . . . , p′m} = {p1, . . . , pi0−1, pi01

j , pi0+1, . . . , pn} then12: mark s′ as to be deleted13: end if14: end if15: end if16: end for17: else if there if i0 su
h that pi0 < p and Xiχ ⊏ ϕi0 then18: p̄← element from N
∗ su
h that pi0 p̄ = p19: s̄← ({ϕ1, . . . , ϕi0−1, ϕi0 [falseRχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn})20: NewStates← NewStates ∪ {s̄}21: else22: NewStates← NewStates ∪ {s}23: end if24: end for25: return NewStates

10.4 Modifying Automata by Appli
ation of Re�nement Operations 229
Algorithm 16 Temporal Upward Re�nement: Constru
ting new States for Repla
ementof Eventualities (repla
ing the �rst
omponent)Input:
• Aϕ = (Σ,States, δ, S0,F)

• p ∈ Pos(ϕ) su
h that ϕ|p = ϕ1 ⋆ ϕ2 for ⋆ ∈ {U,R}
• Aϕ = (Σ′,States′, δ′, S′

0,F ′) for some ϕ ∈ Γu(ϕ1)Output: set NewStates of states of Aϕ[ϕ̄⋆ϕ2]p1: for ea
h s′ ∈ States′ doRequire: s′ = (Φ(s′), {p′1, . . . , p′n})2: s← (Φ(s′), {pp′1, . . . , pp′n})3: end for4: NewStates← {(∅, ∅)}5: for ea
h s ∈ States doRequire: s =
({

ϕ
(1)
1 , . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
n1

})6: for i0 = 1, . . . , n1 do7: if p(1)
i0
≤ p and ϕ1 is a subformula of ϕ(1)

i0
then8: p̄← element from N

∗ su
h that p(1)
i0
p̄ = p9: s←

({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0

[ϕ]p̄1 , ϕ
(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
n1

})10: else if p < p
(1)
i0

then11: s←
({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
i0−1, p

(1)
i0+1, . . . , p

(1)
n1

})12: end if13: end forRequire: s =
(

{ϕ(1)
j1
, . . . , ϕ

(1)
jk
}, {p(1)

j1
, . . . , p

(1)
jk
}
)14: for ea
h s′ ∈ States′ doRequire: s′ =

({

ϕ
(2)
1 , . . . , ϕ

(2)
n2

}

,
{

p
(2)
1 , . . . , p

(2)
n2

})15: Φnew ← {

ϕ
(1)
j1
, . . . , ϕ

(1)
jk
, ϕ

(2)
1 , . . . , ϕ

(2)
n2

}16: Posnew ← {

p
(1)
j1
, . . . , p

(1)
jk
, p

(2)
1 , . . . , p

(2)
n2

}17: NewStates← NewStates ∪ {(Φnew,Posnew)}18: end for19: end for20: return NewStates

230 Chapter 10. Automata Manipulations
Algorithm 17 Temporal Upward Re�nement: Constru
ting new States for Repla
ementof Eventualities (repla
ing the se
ond
omponent)Input:
• Aϕ = (Σ,States, δ, S0,F)

• p ∈ Pos(ϕ) su
h that ϕ|p = ϕ1 ⋆ ϕ2 for ⋆ ∈ {U,R}
• Aϕ = (Σ′,States′, δ′, S′

0,F ′) for some ϕ ∈ Γu(ϕ1)Output: set NewStates of states of Aϕ[ϕ1⋆ϕ̄]p1: for ea
h s′ ∈ States′ doRequire: s′ = (Φ(s′), {p′1, . . . , p′n})2: s← (Φ(s′), {pp′1, . . . , pp′n})3: end for4: NewStates← {(∅, ∅)}5: for ea
h s ∈ States doRequire: s =
({

ϕ
(1)
1 , . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
n1

})6: for i0 = 1, . . . , n1 do7: if p(1)
i0
≤ p and ϕ1 is a subformula of ϕ(1)

i0
then8: p̄← element from N

∗ su
h that p(1)
i0
p̄ = p9: s←

({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0

[ϕ]p̄2 , ϕ
(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
n1

})10: else if p < p
(1)
i0

then11: s←
({

ϕ
(1)
1 , . . . , ϕ

(1)
i0−1, ϕ

(1)
i0+1, . . . , ϕ

(1)
n1

}

,
{

p
(1)
1 , . . . , p

(1)
i0−1, p

(1)
i0+1, . . . , p

(1)
n1

})12: end if13: end forRequire: s =
(

{ϕ(1)
j1
, . . . , ϕ

(1)
jk
}, {p(1)

j1
, . . . , p

(1)
jk
}
)14: for ea
h s′ ∈ States′ doRequire: s′ =

({

ϕ
(2)
1 , . . . , ϕ

(2)
n2

}

,
{

p
(2)
1 , . . . , p

(2)
n2

})15: Φnew ← {

ϕ
(1)
j1
, . . . , ϕ

(1)
jk
, ϕ

(2)
1 , . . . , ϕ

(2)
n2

}16: Posnew ← {

p
(1)
j1
, . . . , p

(1)
jk
, p

(2)
1 , . . . , p

(2)
n2

}17: NewStates← NewStates ∪ {(Φnew,Posnew)}18: end for19: end for20: return NewStates

10.4 Modifying Automata by Appli
ation of Re�nement Operations 231fun
tion and the a

eptan
e
omponent of the resulting automaton. A pro
edure of howto a
hieve this is straightforward to implement. Therefore we will not give it in detailbut will merely
on
entrate on the following theorem.Theorem 10.4.2Let Aϕ = (Σ,States, δ, S0,F) be an automaton representing an Ltl�formula ϕ andlet ψ ∈ Γu(ϕ) be an upward�re�nement of ϕ. Then the sets of states
omputed byAlgorithms 14, 15, 16 and 17 are
orre
t.Proof. Let an Ltl�formula ϕ be given and assume that some ψ ∈ Γu(ϕ) is
hosen.Assume that Aϕ = (Σ,States, δ, S0,F) is given (and is
onstru
ted
orre
tly). LetStates′ be the set of states whi
h has been
onstru
ted by appli
ation of one of thealgorithms presented above and let Statescor be the
orre
t set of states of Aψ. We willhave to prove that States′ = Statescor. The dire
tion ⊆ is simple: Let s = (Φ(s),Pos)be any state from States′. By assumption that Aϕ is
onstru
ted
orre
tly we have that
false 6∈ Φ(s) and sin
e the algorithms presented above do not introdu
e
onjun
tionsor disjun
tions we have that if ϕ1 ∧ϕ2 ∈ Φ(s) (ϕ1 ∨ ϕ2 ∈ Φ(s)) then ϕ1 ∈ Φ(s) and (or)
ϕ2 ∈ Φ(s). The
orre
tness of the positions stored in Pos is immediate. So the dire
tion
⊆ is proved.Now assume that s = (Φ(s),Pos) = ({ϕ1, . . . , ϕn}, {p1, . . . , pn}) is a state in Statescor.If p 6∈ Pos, then we trivially have that s ∈ States′ sin
e then s ∈ States. If p ∈ Pos,say p = pj then the
laim is proven by showing that all ne
essary dependen
ies havebeen
onstru
ted. These dependen
ies have the form Xiχ, that is if they are
onstru
tedthen Xi−1χ, . . . ,X1χ,X0χ have to be
onstru
ted and in
luded. But this is done by thealgorithms so s ∈ States′ and the dire
tion ⊇ is proved. �Sin
e the extra
tion of the remaining
omponents of Aψ is more or less trivial, we havethat the re�nement pro
edures des
ribed are
orre
t.

232 Chapter 10. Automata Manipulations10.4.2. Downward Re�nementPropositional Re�nementAs in the
ase of propositional upward re�nement we
an de�ne an algorithm for
on-stru
ting the re�ned formula ϕ ∨ χ from a formula ϕ, the automaton Aϕ and some
χ ∈MinTerms(Var(ϕ)) by �rst
onstru
ting the automaton Aχ and then
onstru
tingthe automaton Aϕ∨χ = Aϕ||Aχ. Sin
e the operation || is sound we immediately have thesoundness of the re�nement pro
edure. The pro
edure itself is given in Algorithm 18Theorem 10.4.3Let ϕ be an Ltl�formula, let Aϕ and let χ ∈MinTerms(ϕ) be given. Then Algorithm18 returns Aϕ∨χ.Algorithm 18 Propositional Downward Re�nementInput:
• Bü
hi�automaton A = (Σ,States, δ, S0,F)

• χ ∈MinTerms(Var(ϕ)).Output: Aϕ∨χ.1:
ompute α = NNF(χ)2:
ompute Aα3: return Aϕ||AαTemporal Re�nementThe
ase of re�ning Ltl�formulas by adding respe
tively
hanging temporal operatorshas been des
ribed for the
ase of upward re�nement in
hapter 10.4.1. Downwardre�nement is more or less dual to upward re�nement as we will see soon. Again we
anassume that some Ltl�formula ϕ and some element ψ ∈ Γd(ϕ) \Ψd(ϕ) are �xed. As in
hapter 10.4.1 we have to distinguish the following
ases for ψ:Case 1 ψ = ϕ[Xiχ]p for some p ∈ Pos(ϕ) su
h that ϕ|p = Gχ and some i ≥ 0.This
ase
an be seen as the inversion of
ase 2 from
hapter 10.4.1 where
er-

10.4 Modifying Automata by Appli
ation of Re�nement Operations 233tain states had been marked as to be deleted. Consequently the states whi
hare deleted there have to be introdu
ed here. So assume that any element s =

({ϕ1, . . . , ϕn}, {p1, . . . , pn}) ∈ States is given. We
an identify the following sub-
ases:Case 1.1 If there is i0 ∈ {1, . . . , n} su
h that ϕi0 = falseRχ and pi0 = p, then wehave to
onstru
t i+ 1 states s̄0, . . . , s̄i as follows:
s̄j = ({ϕ1, . . . , ϕi0−1,Xjχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01

i−j , pi0+1, . . . , pn).Case 1.2 Case 1.1 is not ful�lled but there is i0 ∈ {1, . . . , n} su
h that pi0 < pand falseRχ is a proper subformula of ϕi0 . Then let p̄ ∈ N
∗ be su
h that

pi0 p̄ = p. We
onstru
t the state
s̄ = ({ϕ1, . . . , ϕi0−1, ϕi0 [Xiχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn}).Case 1.3 If neither of the above
ases is ful�lled we add the original state s toNewStates.The
omplete pro
edure is given in Algorithm 19.Case 2 By analogy to the
ase of
onstru
ting Aϕ[Gχ]p where Xiχ had been repla
ed by

falseRχ we
an
onstru
t Aϕ[Fχ]p from Aϕ, i ≥ 0 and some p ∈ Pos(ϕ) where
ϕ|p = Xiχ. If any s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn}) ∈ States is pro
essed, then wedistinguish the following
ases:Case 2.1 There is i0 ∈ {1, . . . , n} su
h that ϕi0 = Xiχ and pi0 = p. Then we
onstru
t the following states:

s̄1 = ({ϕ1, . . . , ϕi0−1, trueUχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pn}) and

234 Chapter 10. Automata Manipulations
s̄2 = ({ϕ1, . . . , ϕi0−1, χ, ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01, pi0+1, . . . , pn}).

After s̄1 and s̄2 have been added to NewStates, we mark ea
h s′ 6= s as tobe deleted (see
hapter 10.4.1) whi
h have the form
s′ = ({ϕ1, . . . , ϕi0−1,Xi−jχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01

j , pi0+1, . . . , pn})for some j ≥ 0.Case 2.2 If
ase 2.1 is not ful�lled but there is i0 ∈ {1, . . . , n} su
h that pi0 < pand Xiχ is a proper subformula of ϕi0 we identify p̄ ∈ N
∗ su
h that pi0 p̄ = pand
onstru
t

s̄ = ({ϕ1, . . . , ϕi0−1, ϕi0 [trueUχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn})and add s̄ to NewStates.Case 2.3 Neither of the above
ases is ful�lled. then s is added to the set New-States.The
omplete pro
edure is summarized in Algorithm 20.Case 3 If the re�ned formula is ψ = ϕ[ϕ̄1 ⋆ ϕ2]p for some p ∈ Pos(ϕ) su
h that ϕ|p =

ϕ1 ⋆ ϕ2, some ⋆ ∈ {U,R} and some ϕ̄1 ∈ Γd(ϕ1), then we
an re�use Algorithm 16without any
hanges sin
e this algorithm only refers to ϕ̄1 and not to membershipof ϕ̄1 in Γu(ϕ1) or Γd(ϕ2).Case 4 By analogy to the foregoing
ase we
an re�use Algorithm 17 in order to
omputethe set of states for Aψ in the
ase that ψ = ϕ[ϕ1 ⋆ ϕ̄2]p for p ∈ Pos(ϕ2) with
ϕ|p = ϕ1 ⋆ ϕ2, ⋆ ∈ {U,R} and ϕ̄2 ∈ Γd(ϕ2).So all possible
ases for the elements ψ ∈ Γd(ϕ) are
overed.

10.4 Modifying Automata by Appli
ation of Re�nement Operations 235

Algorithm 19 Temporal Downward Re�nement: Constru
ting new States for G 7→ XiInput:
• Aϕ = (Σ,States, δ, S0,F)

• p ∈ Pos(ϕ) su
h that ϕ|p = falseRχ ≡ Gχ
• i ≥ 0Output: set NewStates of states of Aϕ[Xiχ]p1: NewStates← {(∅, ∅)}2: for ea
h s ∈ States doRequire: s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn})3: if there is i0 su
h that ϕi0 = falseRχ and pi0 = p then4: for j = 0, . . . , i do5: s̄← ({ϕ1, . . . , ϕi0−1,Xjχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01

i−j , pi0+1, . . . , pn})6: NewStates← NewStates ∪ {s̄}7: end for8: else if there is i0 su
h that falseRχ ⊏ ϕi0 and pi0 < p then9: p̄ ← element from N
∗ su
h that pi0 p̄ = p s̄ ←

({ϕ1, . . . , ϕi0−1, ϕi0 [Xiχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn})10: NewStates← NewStates ∪ {s̄}11: else12: NewStates← NewStates ∪ {s}13: end if14: end for

236 Chapter 10. Automata Manipulations
Algorithm 20 Temporal Downward Re�nement: Constru
ting new States for Xi 7→ FInput:
• Aϕ = (Σ,States, δ, S0,F)

• p ∈ Pos(ϕ) su
h that ϕ|p = XiχOutput: set NewStates of states of Aϕ[Fχ]p1: mark ea
h s ∈ States as not to be deleted2: NewStates← {(∅, ∅)}3: for ea
h s ∈ States whi
h is marked as not to be deleted doRequire: s = ({ϕ1, . . . , ϕn}, {p1, . . . , pn})4: if there is i0 su
h that ϕi0 = Xiχ and pi0 = p then5: s̄1 ← ({ϕ1, . . . , ϕi0−1, trueUχ,ϕi0+1, . . . , ϕn}, {p1, . . . , pn})6: s̄2 ← ({ϕ1, . . . , ϕi0−1, χ, ϕi0+1, . . . , ϕn}, {p1, . . . , pi0−1, pi01, pi0+1, . . . , pn})7: NewStates← NewStates ∪ {s̄1, s̄2}8: for ea
h s′ ∈ States doRequire: s′ = ({ϕ′
1, . . . , ϕ

′
m}, {p′1, . . . , p′m})9: if n = m then10: if {ϕ′

1, . . . , ϕ
′
m} = {ϕ1, . . . , ϕi0−1,Xi−jχ,ϕi0+1, . . . , ϕn} for some j ≥ 0then11: if {p′1, . . . , p′m} = {p1, . . . , pi0−1, pi01, pi0+1, . . . , pn} then12: mark s′ as to be deleted13: end if14: end if15: end if16: end for17: else if there if i0 su
h that pi0 < p and Xiχ ⊏ ϕi0 then18: p̄← element from N

∗ su
h that pi0 p̄ = p19: s̄← ({ϕ1, . . . , ϕi0−1, ϕi0 [trueUχ]p̄, ϕi0+1, . . . , ϕn}, {p1, . . . , pn})20: NewStates← NewStates ∪ {s̄}21: else22: NewStates← NewStates ∪ {s}23: end if24: end for25: return NewStates

10.4 Modifying Automata by Appli
ation of Re�nement Operations 237By analogy to the situation of
onstru
ting the states for the upward�re�ned automata,we are now able to present the following theorem.Theorem 10.4.4Let Aϕ = (Σ,States, δ, S0,F) be an automaton representing an Ltl�formula ϕ andlet ψ ∈ Γd(ϕ) be an upward�re�nement of ϕ. Then the sets of states
omputed byAlgorithms 19 and 20, are
orre
t.Proof. Exa
tly as in the
ase of upward re�nement. �10.4.3. Extra
ting FormulasThe �nal step in the pro
ess of re�ning Ltl�formulas by appli
ation of the automatamanipulations introdu
ed in this
hapter is to extra
t the re�ned program whi
h hasbeen learned. This is a simple task due to the properties of the automata
onstru
tionused to build the representing automata.Re
all that the set of initial states S0 of an automaton Aϕ representing ϕ has beende�ned as the set of all states s su
h that ϕ ∈ Φ(s). So after having
ompleted there�nement pro
ess it su�
es to extra
t this formula from one of the initial states of theresulting automaton.De�nition 10.4.1Let ϕ1 and ϕ2 be Ltl�formulas. Then ϕ1 ⊑ ϕ2 if there is a position p ∈ Pos(ϕ2)su
h that ϕ2|p = ϕ1. Furthermore we will write ϕ1 ⊏ ϕ2 if ϕ1 ⊑ ϕ2 and p 6= ε.In other words, ϕ1 ⊑ ϕ2 (ϕ1 ⊏ ϕ2) if and only if ϕ1 is a (proper) subformula of ϕ2.Using the notation ⊑ we
an de�ne the maximum of a state s.De�nition 10.4.2Let A = (Σ,States, δ, S0,F) be an extended Bü
hi�automaton and let s ∈ States.

238 Chapter 10. Automata ManipulationsThen a formula ϕ ∈ Φ(s) is
alled a maximum of s if there is no formula ψ ∈ Φ(s)su
h that ϕ ⊏ ψ.Obviously for every s ∈ States there is exa
tly one maximum. This formula will bedenoted as max(s). This enables the extra
tion of a formula from a Bü
hi�automatonsimply by extra
ting the maximum max(s0) for any initial state.Theorem 10.4.5Let A = (Σ,States, δ, S0,F) be an extended Bü
hi�automaton and let s0 ∈ S0 be anyinitial state of A. Then if A = Aϕ, then ϕ = max(s0).Proof. Immediately by de�nition of Aϕ. �Sin
e we have de�ned our version of Bü
hi�automata in su
h a way that not onlythe formulas but also the positions of these formulas in the original formula from whi
hthe automaton had been
onstru
ted are stored, we
an extra
t the maximum of any
s ∈ S0 simply by sear
hing for the position ε in the position�
omponent of s. So let s =

({ϕ1, . . . , ϕn}, {p1, . . . , pn}) be given and let i0 be su
h that pi0 = ε. Then ϕi0 = max(s).So sear
hing for the maximum of s
an be a
hieved in time O(|Φ(s)|).10.5. The Identi�
ation Pro
essDuring the foregoing se
tions we have developed te
hniques whi
h are ne
essary in orderto identify Ltl�programs from positive and negative examples. So this �nal se
tion ofthis
hapter will deal with the topi
 of how to
ombine these te
hniques in order to derivean identi�
ation pro
edure. In order to implement an identi�
ation pro
edure we haveto ensure that at every point of time there is a uniquely determined
ontinuation of there�nement pro
ess. In other words we have to ensure that our method is deterministi
.So assume that there is a (heuristi
) fun
tion h sele
ting a type of re�nement stepto be
arried out. Depending on the out
ome of the
omputation
arried out by h we

10.5 The Identi�
ation Pro
ess 239have to
all one of the algorithms developed in the foregoing se
tions. Formally h has toreturn the following information:
• a number of an algorithm to be
alled and
• the input data for this algorithm.Considering the di�erent signatures whi
h Algorithms 13 to 20 have, the following datamight be ne
essary:
• a formula χ ∈MinTerms(Var(ϕ)) as input for Algorithms 13 and 18,
• a position p ∈ Pos(ϕ),
• a value i ≥ 0 for Algorithms 14 and 19,
• an index j ∈ {1, 2} for Algorithms 16 and 17 sele
ting whi
h
omponent has to berepla
ed and
• an automaton Aϕ as input for Algorithms 16 and 17.So if Aut denotes the set of all Bü
hi�automata
onstru
ted in the way developed inthis and the foregoing
hapter, h should have the following signature:

h : Aut→ Z10 ×MinTerms(Var(ϕ))× Pos(ϕ) × N× {1, 2}.For the sake of formal
learness we assume that the
omponents of h(A) given anyautomaton A ∈ Aut
an be a

essed by appli
ation of a simple proje
tion. That is theproje
tions
(·)1 : Z10 ×MinTerms(Var(ϕ)) × Pos(ϕ)× N× {1, 2} → Z10,

(·)2 : Z10 ×MinTerms(Var(ϕ)) × Pos(ϕ)× N× {1, 2} →MinTerms(Var(ϕ)),

(·)3 : Z10 ×MinTerms(Var(ϕ)) × Pos(ϕ)× N× {1, 2} → Pos(ϕ),

240 Chapter 10. Automata Manipulations
(·)4 : Z10 ×MinTerms(Var(ϕ)) × Pos(ϕ)× N× {1, 2} → N and
(·)5 : Z10 ×MinTerms(Var(ϕ)) × Pos(ϕ)× N× {1, 2} → {1, 2}are de�ned.Additionally we assume that another fun
tion h̄ : Z2 × {1, 2} × Pos(ϕ) × Aut → Autis given whi
h returns an automaton representing the formula to be inserted during arun of Algorithms 16 and 17. The �rst argument of h̄ denotes the dire
tion whi
h there�nement step has to take (0 for upward re�nement and 1 for downward re�nement)while the se
ond argument denotes the
omponent to be repla
ed in the formula at theposition given by the third
omponent.So the identi�
ation pro
ess
an be sket
hed as follows:Step 0 Given input ϕ,
onstru
t the automaton A = Aϕ.Step 1 Now assume that E+ = {ϕ1, . . . , ϕk}. For i ranging from 1 to k perform thefollowing loop.Step 1.1 Constru
t ANNF(¬ϕi),Step 1.2
onstru
t A×ANNF(¬ϕi) andStep 1.3 as long as L(A×ANNF(¬ϕi)) 6= ∅ doStep 1.3.1
ompute h(A) = ((h(A))1, . . . , (h(A))5) andStep 1.3.2 depending on the value of (h(A))1 perform the following a
tions:1. if (h(A))1 = 0, then repla
e A by the result of Algorithm 13 giveninputs A and (h(A))2,2. if (h(A))1 = 1, thena)
ompute the set NewStates by appli
ation of Algorithm 14 giveninputs A, (h(A))3 and (h(A))4,b) extra
t the remaining
omponents:

10.5 The Identi�
ation Pro
ess 241i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand then
) repla
e A by (NewStates, δnew, S0,new,Fnew),3. if (h(A))1 = 2, thena)
ompute the set NewStates by appli
ation of Algorithm 15 giveninputs A and (h(A))3,b) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand then
) repla
e A by (NewStates, δnew, S0,new,Fnew),4. if (h(A))1 = 3, thena)
ompute the automaton Ā = h̄(A, 0, 1, (h(A))3),b)
ompute the set NewStates by appli
ation of Algorithm 16 giveninputs A, (h(A))3 and Ā,
) extra
t the remaining
omponents:

242 Chapter 10. Automata Manipulationsi. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand thend) repla
e A by (NewStates, δnew, S0,new,Fnew),5. if (h(A))1 = 4, thena)
ompute the automaton Ā = h̄(A, 0, 2, (h(A))3),b)
ompute the set NewStates by appli
ation of Algorithm 17 giveninputs A, (h(A))3 and Ā,
) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand thend) repla
e A by (NewStates, δnew, S0,new,Fnew),6. if (h(A))1 = 5, then repla
e A by the result of Algorithm 18 giveninputs A and (h(A))2,7. if (h(A))1 = 6, thena)
ompute the set NewStates by appli
ation of Algorithm 19 giveninputs A, (h(A))3 and (h(A))4,

10.5 The Identi�
ation Pro
ess 243b) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand then
) repla
e A by (NewStates, δnew, S0,new,Fnew),8. if (h(A))1 = 7, thena)
ompute the set NewStates by appli
ation of Algorithm 20 giveninputs A and (h(A))3,b) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand then
) repla
e A by (NewStates, δnew, S0,new,Fnew),9. if (h(A))1 = 8, thena)
ompute the automaton Ā = h̄(A, 1, 1, (h(A))3),b)
ompute the set NewStates by appli
ation of Algorithm 16 giveninputs A, (h(A))3 and Ā,
) extra
t the remaining
omponents:

244 Chapter 10. Automata Manipulationsi. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand thend) repla
e A by (NewStates, δnew, S0,new,Fnew),and10. if (h(A))1 = 9, thena)
ompute the automaton Ā = h̄(A, 1, 2, (h(A))3),b)
ompute the set NewStates by appli
ation of Algorithm 17 giveninputs A, (h(A))3 and Ā,
) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand thend) repla
e A by (NewStates, δnew, S0,new,Fnew).Step 2 Now assume that E− = {ϕ1, . . . , ϕl}. For i ranging from 1 to l perform thefollowing loop.Step 2.1 Constru
t ANNF(¬ϕi),

10.5 The Identi�
ation Pro
ess 245Step 2.2
onstru
t A×ANNF(¬ϕi) andStep 2.3 as long as L(A×ANNF(¬ϕi)) = ∅ doStep 2.3.1
ompute h(A) = ((h(A))1, . . . , (h(A))5) andStep 2.3.2 depending on the value of (h(A))1 perform the following a
tions:1. if (h(A))1 = 0, then repla
e A by the result of Algorithm 13 giveninputs A and (h(A))2,2. if (h(A))1 = 1, thena)
ompute the set NewStates by appli
ation of Algorithm 14 giveninputs A, (h(A))3 and (h(A))4,b) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand then
) repla
e A by (NewStates, δnew, S0,new,Fnew),3. if (h(A))1 = 2, thena)
ompute the set NewStates by appli
ation of Algorithm 15 giveninputs A and (h(A))3,b) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 and

246 Chapter 10. Automata Manipulationsiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand then
) repla
e A by (NewStates, δnew, S0,new,Fnew),4. if (h(A))1 = 3, thena)
ompute the automaton Ā = h̄(A, 0, 1, (h(A))3),b)
ompute the set NewStates by appli
ation of Algorithm 16 giveninputs A, (h(A))3 and Ā,
) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand thend) repla
e A by (NewStates, δnew, S0,new,Fnew),5. if (h(A))1 = 4, thena)
ompute the automaton Ā = h̄(A, 0, 2, (h(A))3),b)
ompute the set NewStates by appli
ation of Algorithm 17 giveninputs A, (h(A))3 and Ā,
) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 and

10.5 The Identi�
ation Pro
ess 247iii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand thend) repla
e A by (NewStates, δnew, S0,new,Fnew),6. if (h(A))1 = 5, then repla
e A by the result of Algorithm 18 giveninputs A and (h(A))2,7. if (h(A))1 = 6, thena)
ompute the set NewStates by appli
ation of Algorithm 19 giveninputs A, (h(A))3 and (h(A))4,b) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand then
) repla
e A by (NewStates, δnew, S0,new,Fnew),8. if (h(A))1 = 7, thena)
ompute the set NewStates by appli
ation of Algorithm 20 giveninputs A and (h(A))3,b) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 and

248 Chapter 10. Automata Manipulationsiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand then
) repla
e A by (NewStates, δnew, S0,new,Fnew),9. if (h(A))1 = 8, thena)
ompute the automaton Ā = h̄(A, 1, 1, (h(A))3),b)
ompute the set NewStates by appli
ation of Algorithm 16 giveninputs A, (h(A))3 and Ā,
) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand thend) repla
e A by (NewStates, δnew, S0,new,Fnew),and10. if (h(A))1 = 9, thena)
ompute the automaton Ā = h̄(A, 1, 2, (h(A))3),b)
ompute the set NewStates by appli
ation of Algorithm 17 giveninputs A, (h(A))3 and Ā,
) extra
t the remaining
omponents:i. extra
t δnew by appli
ation of Algorithm 11 given inputs New-States and Σ = 2Var(ϕ),

10.5 The Identi�
ation Pro
ess 249ii. extra
t S0,new from NewStates as des
ribed before Theorem9.2.2 andiii. extra
t Fnew by appli
ation of Algorithm 12 given input New-Statesand thend) repla
e A by (NewStates, δnew, S0,new,Fnew).The strategy des
ribed above is then an implementation of the identi�
ation pro
essof Ltl�formulas from sets E+ and E− of positive and negative examples. As soon asthe identi�
ation pro
ess stops we therefore extra
t the learned formula from the set ofinitial states of the resulting automaton as des
ribed in the proof of Theorem 10.4.5.The de�nition of the identi�
ation pro
ess has shown that Ltl�programs
an belearned from sets E+ and E− by appli
ation of our algorithms. What remains to beexamined is (as in the
ase of Prolog(+T)�programs) the
omplexity of the identi�-
ation task. The following
hapter will therefore atta
k this problem.

250 Chapter 10. Automata Manipulations

11. Identi�ability of Ltl�programs
Contents11.1. General Notations . 25111.2. Upper Bounds for the VC�Dimension of Classes of Ltl�Programs . 25411.2.1. General Ltl�Programs . 25411.2.2. The deterministi
 Sublogi
 of Ltl 256This �nal
hapter will deal with a similar problem as
hapter 8.2, namely the problemof estimating the
omplexity of the identi�
ation pro
ess of LTL�programs. In
hapter8.2 we have extended some te
hniques from [11℄ in order to derive upper bounds for theVC�dimension of several
lasses of Prolog(+T)�programs. We will pro
eed similarlyfor LTL�programs.11.1. General NotationsWe will �rst identify the obje
ts to be en
oded and then show how many bits will beneeded in order to en
ode these obje
ts. It is immediately
lear that the propositionalsymbols from X and the propositional
onstants true and false have to be en
oded.This yields |X|+2 distin
t obje
ts. Additionally we will
hoose the symbols "(", "," and")" (i.e. the bra
kets and the
omma�symbol), the logi
al
onne
tives ∧, ∨,→,↔ and ¬and the temporal operators X, G, F, U and R. Assuming that X = {p1, . . . , pn} this gives

252 Chapter 11. Identi�ability of Ltl�programsSymbol En
oding Symbol En
oding(bin(n+ 3) X bin(n+ 11)) bin(n+ 4) F bin(n+ 12), bin(n+ 5) G bin(n+ 13)

∧ bin(n+ 6) U bin(n+ 14)

∨ bin(n+ 7) R bin(n+ 15)

→ bin(n+ 8)
↔ bin(n+ 9)
¬ bin(n+ 10)Table 11.1.: En
odings for logi
al
onne
tives from Ltla total of n+15 distin
t obje
ts. For the sake of formal
learan
e we will assume that allformulas are represented in pre�x�notation, that is the 2�ary
onne
tives ∧, ∨, → and

↔ as well as the 2�ary temporal operators U and R are seen as 2�ary fun
tion symbolsand the remaining logi
al and temporal operators are treated as unary fun
tion symbols.For example if ϕ = p1 ∧ Xp2UGp3, then ϕ is treated as the string ∧(p1,U(X(p2),G(p3))).The en
oding
od whi
h we will use is based on the value n of elements o

urring in
X. If pi ∈ X is any propositional
onstant, then
od(pi) = bin(i) where bin(i) denotesthe binary representation of the integer i. Additionally we de�ne
od(true) = bin(n+1)and
od(false) = bin(n + 2). The remaining symbols
an be en
oded in an arbitrarybut �xed way. We will
hoose the en
oding from Table 11.1.The en
oding from Table 11.1 has to be
hanged in the way that the en
oding ofsymbols with stri
tly less than |bin(n+ 15)| symbols are padded with zeros from the leftside. This yields equal length for every en
oded symbol. For example if X = {p1, p2, p3},then n = 3 and n+ 15 = 18. So we have
od(p1) = 00001 and
od(R) = 10010.Obviously every symbol to be en
oded
an be represented as a string from {0, 1}∗ oflength ⌈log2(n + 15)⌉. Sin
e the en
oding is padded with zeros every formula will been
oded as a string from {0, 1}∗ whi
h has a length whi
h is a multiple of this value.Having de�ned the en
oding of the symbols used in Ltl�formulas it remains to showhow
omposite formulas are en
oded. But this is straightforward: Let any Ltl�formula

11.1 General Notations 253
ϕ be given.Case 1 if ϕ = ϕ1 ⊕ ϕ2 for ⊕ ∈ {∧,∨,→,↔,U,R}, then
od(ϕ) =
od(⊕)
od(”(”)
od(ϕ1)
od(”, ”)
od(ϕ2)
od(”)”)andCase 2 if ϕ = ⊕ψ for ⊕ ∈ {¬,X,G,F}, then
od(ϕ) =
od(⊕)
od(ψ)Example 11.1.1Let ϕ = G(p1 → (Xp2 → ¬p3)) be given. Due to the assumption from above we will treat
ϕ as G→ (p1,→ (Xp2,¬p3)). We have X = {p1, p2, p3} that is n = 3 and therefore n +

15 = 18. Consequently the symbols are en
oded using ⌈log2(18)⌉ = 5 bits. The en
odingof the relevant symbols is therefore:
od(p1) = 00001,
od(p2) = 00010,
od(p3) = 00011,
od(”(”) = 00100,
od(”)”) = 00110,
od(”, ”) = 00101,
od(→) = 01011,
od(¬) = 01101,
od(X) = 01110 and
od(G) = 10000. So we have
od(ϕ) =
od(G(p1 → (Xp2 → ¬p3)))

=
od(G(→ (p1,→ (X(p2),¬(p3)))))

=
od(G)
od(”(”)
od(→) . . .

= 10000 00100 01011 00100 00001 00101 01011 01000 01110 00100 . . .

. . . 00010 00110 00101 01101 00100 00011 00110 00110 00110 . . .

. . . 00110 00110Some results for the value of VCDim(C) for
lasses C
onsisting of
ertain proposi-tional logi
 formulas have been presented before. Early studies by Natarajan (see [124℄)

254 Chapter 11. Identi�ability of Ltl�programsmerely deal with polynomial time PAC�learnability. Several newer papers also deal withestimations as well as with exa
t bounds for the VC�dimension of
lasses of booleanformulas. For example in [135℄ it is shown that the
lass Monn of monotone booleanformulas
onsisting of n propositional variables has VCDim(Monn) =
(
n

⌊n
2
⌋

). Further ap-proa
hes for the problem of learning propositional formulas whi
h do not use the notionof VC�dimension are for example presented in [141℄ and [80℄.As in
hapter 8 we will now pro
eed by �rst deriving estimations for an upper boundfor the VC�dimension of synta
ti
ally unrestri
ted Ltl�formulas and then by studyinga more restri
ted language given by the so�
alled deterministi
 sublogi
 Ltldet of Ltl.11.2. Upper Bounds for the VC�Dimension of Classes ofLtl�Programs11.2.1. General Ltl�ProgramsWe will now derive upper bounds for the VC�Dimension of
ertain
lasses Ltl�programs.For this purpose we de�ne the following: for given values of n, c and t the
lass Ltln,c,tdenotes the set of all Ltl�formulas
ontaining at most n distin
t propositional variables,at most c logi
al
onne
tives and at most t temporal operators.For the rest of this se
tion assume that n, c and t are �xed nonnegative integers andassume that a formula ϕ ∈ Ltln,c,t is
hosen. We will de�ne a measuring�fun
tion
|| · || : Ltln,c,t → N mapping formulas to integers as follows: ||ϕ|| = |
od(ϕ)|, that is ||ϕ||denotes the number of binary digits in the representation of
od(ϕ).We will now derive an upper bound for the value VCDim(Ltln,c,t) by presentinga fun
tion l : N

3 → N su
h that ||ϕ|| ≤ l(n, c, t) for any values of n, c and t andevery ϕ ∈ Ltln,c,t. First we have to re
all that the propositional
onstants true andfalse and the propositional variables pi ∈ X
an be en
oded using ⌈log2(n + 15)⌉ bits,that is ||ϕ|| = ⌈log2(n + 15)⌉ for ϕ ∈ X ∪ {true, false}. Furthermore the
onne
tives

11.2 Upper Bounds for the VC�Dimension of Classes of Ltl�Programs 255and the temporal operators
an be en
oded with the same number of bits. So we willhave to identify the worst
ase, that is the
ase in whi
h ϕ ∈ Ltln,c,t has maximumlength. Clearly in this
ase exa
tly t binary temporal operators have to be involved in
ϕ. Similarly we need c binary
onne
tives in order to rea
h the maximum length. Ea
hof these operators and
onne
tives is en
oded using ⌈log2(n + 15)⌉ bits. Additionallywe need 3⌈log2(n + 15)⌉ more bits in order to en
ode the bra
kets and the
ommas.Furthermore in this
ase we have t + c + 1 subformulas ψj without o

urren
es of anytemporal operator or
onne
tive, that is ψj ∈ X ∪ {true, false} for j = 1, . . . , t+ c+ 1.This gives a total number of

4(t+ c)⌈log2(n+ 15)⌉ + (t+ c+ 1)⌈log2(n + 15)⌉

= (5t+ 5c+ 1)⌈log2(n+ 15)⌉bits as the maximum value of ||ϕ|| for any ϕ ∈ Ltln,c,t. But with this number of bits we
an en
ode at most 2(5t+5c+1)⌈log2(n+15)⌉ di�erent formulas, that is
|Ltln,c,t| ≤ 2(5t+5c+1)⌈log2(n+15)⌉and so the following theorem
an be proved.

Theorem 11.2.1Let n, c and t be �xed nonnegative integers. ThenVCDim (Ltln,c,t) = O ((5t+ 5c+ 1) log2(n + 15)) .Proof. Immediately by the above estimation for the size of Ltln,c,t and Lemma 8.1.1.�

256 Chapter 11. Identi�ability of Ltl�programs11.2.2. The deterministi
 Sublogi
 of LtlIn the foregoing se
tion we have derived an upper bound for the value of the VC�dimension of stru
tured
lasses of arbitrary Ltl�formulas. Here we will see that a par-ti
ular subset of Ltl, namely the set of all deterministi
 formulas as introdu
ed by [109℄
an be identi�ed using only marginally more bits in the en
oding of formulas.Roughly speaking the language Ltldet of deterministi
 Ltl�formulas
onsists of allthese elements from Ltl in whi
h the usage of the nondeterministi
 operators ∨, U andR is guarded by some propositional variable symbol p. Formally Ltldet is de�ned asfollows:1. true and false are in Ltldet,2. every p ∈ X is in Ltldet and3. for all ϕ1, ϕ2 ∈ Ltldet and ea
h p ∈ X ϕ1 ∧ ϕ2, Xϕ1, (p ∧ ϕ1) ∨ (¬p ∨ ϕ2),
(p ∧ ϕ1)U(¬p ∨ ϕ2) and (p ∧ ϕ1)R(¬p ∨ ϕ2) are in Ltldet.As before the set Ltln,c,t,det denotes the set of all formulas ϕ ∈ Ltldet
ontaining at most

n distin
t elements from X, at most c
onne
tives and at most t temporal operators.Sin
e Ltldet�formulas are synta
ti
ally more
omplex than general Ltl�formulas, we
an ask if this does
hange the value of VCDim (Ltln,c,t,det). Below we will see that thisis not the
ase.Of
ourse, the language Ltldet is less expressive than Ltl. But in [109℄ it is shown thatLtldet�formulas have the property that their negation
an be represented by a 1�weakBü
hi�automaton (a
ertain type of Bü
hi�automaton whi
h is equipped with partialordering on the set States whi
h is
ompatible with the relation δ) whi
h has a set ofstates of size linear in the size (that is the length) of ϕ.In order to derive an upper bound for the VC�dimension of Ltldet we will againrewrite formulas in pre�x notation and
hange the arity of the nondeterministi
 symbols
∨, U and R to 3 as follows: assume that ⊕ ∈ {∨,U,R}, p ∈ X and ϕ1, ϕ2 are
hosen.

11.2 Upper Bounds for the VC�Dimension of Classes of Ltl�Programs 257Then ϕ = (p ∧ ϕ1) ⊕ (¬p ∧ ϕ2) will be rewritten to ⊕(p, ϕ1, ϕ2). Using the en
odings
heme from the foregoing se
tion we
an en
ode these formulas by setting
od(ϕ) =
od(⊕)
od(”(”)
od(p)
od(”, ”)
od(ϕ1)
od(”, ”)
od(ϕ2)
od(”)”).Sin
e the operators F and G do not have to be en
oded, we
an now en
ode everysymbol o

urring in a formula from Ltln,c,t,det using at most ⌈log2(n+ 13)⌉ bits. So we
learly have for arbitrary formulas ϕ ∈ Ltln,c,t,det:1. If ϕ ∈ X ∪ {true, false}, then
||ϕ|| = ⌈log2(n+ 13)⌉,2. if ϕ = Xψ, then

||ϕ|| = ⌈log2(n+ 13)⌉ + ||ψ||,3. if ϕ = ϕ1 ∧ ϕ2, then
||ϕ|| = 4⌈log2(n+ 13)⌉ +

2∑

i=1

||ϕi||and4. if ϕ = (p ∧ ϕ1)⊕ (¬p ∧ ϕ2) for some ⊕ ∈ {∨,U,R}, then
||ϕ|| = 6⌈log2(n+ 13) +

2∑

i=1

||ϕi||.The next step is to determine the maximum number of positions in φ su
h that anelement from X ∪ {true, false} o

urs at this position. Obviously for t = 0 we have atmost c+ 1 su
h positions. In the
ase that t > 0 we
an distinguish the following
ases:1. If ϕ = Xψ, then
|{p ∈ Pos(ϕ) | ϕ|p ∈ X ∪ {true, false}}|

258 Chapter 11. Identi�ability of Ltl�programs
= |{p ∈ Pos(ϕ) | ψ|p ∈ X ∪ {true, false}}|and2. if ϕ = (p ∧ ϕ1)⊕ (¬p ∧ ϕ2) for ⊕ ∈ {U,R}, then
|{p ∈ Pos(ϕ) | ϕ|p ∈ X ∪ {true, false}}|

= 2 +

2∑

i=1

|{p ∈ Pos(ϕi) | ψ|p ∈ X ∪ {true, false}}| .Clearly we have the maximum value of su
h positions for if ϕ
ontains t binary temporaloperators. It is obvious that in this
ase we have
|{p ∈ Pos(ϕ) | ϕ|p ∈ X ∪ {true, false}}| ≤ 4t.But sin
e t su
h binary operators
onsume 3t logi
al
onne
tives there must be k ≥ 0su
h that c ≤ 3t+k. So additional we have 3t+k+1 more su
h positions. So in total wehave 4t+3t+ k+1 = 7t+ k+1 su
h positions. So the elements from X ∪{true, false}whi
h o

ur in ϕ
an be en
oded using at most

(7t+ k + 1)⌈log2(n+ 13)⌉bits.The total value of ||ϕ||
an be estimated using the following two parameters whi
hdetermine the number of positions with deterministi

onne
tives and the number ofpositions with nondeterministi

onne
tives:Det(ϕ) = |{p ∈ Pos(ϕ) | ϕ|p = ¬ψ or ϕ|p = ϕ1 ∧ ϕ2 or ϕ|p = Xψ}| andNDet(ϕ) = |{p ∈ Pos(ϕ) | ϕ|p = (p ∧ ϕ1)⊕ (¬p ∧ ϕ2) for some ⊕ ∈ {∨,U,R}}| .

11.2 Upper Bounds for the VC�Dimension of Classes of Ltl�Programs 259Sin
e ea
h of the c
onne
tives in ϕ is either deterministi
 or nondeterministi
 we have
||ϕ|| ≤ (7t+ k + 1)⌈log2(n+ 13)⌉ + 4Det(ϕ)⌈log2(n+ 13)⌉ + 6NDet(ϕ)⌈log2(n+ 13)⌉

= (7t+ k + 1 + 4Det(ϕ) + 6NDet(ϕ))⌈log2(n+ 13)⌉.Using the estimations Det(ϕ) ≤ c and NDet(ϕ) ≤ t+ c we have
||ϕ|| ≤ (7t+ k + t+ 4c+ 6(c+ t))⌈log2(n+ 13)⌉

= (13t+ 10c + k + 1)⌈log2(n+ 13)⌉.Finally we have k ≤ c and therefore
||ϕ|| ≤ (13t+ 10c + c+ 1)⌈log2(n+ 13)⌉

= (13t+ 11c + 1)⌈log2(n + 13)⌉.So any formula ϕ ∈ Ltln,c,t,det
an be en
oded using at most (13t+11c+1)⌈log2(n+13)⌉bits and therefore
∣
∣Ltln,c,t,det∣∣ ≤ 2(13t+11c+1)⌈log2(n+13)⌉.So the following theorem is proved.Theorem 11.2.2Let n, c and t be �xed nonnegative integers. ThenVCDim (Ltln,c,t,det) = O ((13t + 11c+ 1) log2(n+ 13)) .As we have already mentioned in the beginning of this se
tion the valueVCDim (Ltln,c,t,det)is not signi�
antly greater than the value of VCDim (Ltln,c,t).The results from the theorems derived in this
hapter
omplete our study on thelearnability of Ltl�programs from positive and negative examples. We have seen that

260 Chapter 11. Identi�ability of Ltl�programsLtl�programs
an be identi�ed by applying manipulations to the set of states of
ertainautomata (the representing automata) of a
tual hypotheses. By appli
ation of upwardand downward re�nement pro
edures we were able to de�ne an identi�
ation pro
ess forLtl�formulas. The following last
hapter of this thesis summarizes the results obtainedduring our studies and points out open problems and dire
tions for future resear
h.

12. Con
lusions
This short �nal
hapter will summarize the topi
s addressed in this thesis and point outsome aspe
ts for future resear
h a
tivities.12.1. Summary of the Topi
sWe have addressed the problem of learning temporal logi
 programs written in sometemporal logi
 programming language from positive and negative examples. Thereforewe have stru
tured the theory into two parts:First order Indu
tive Temporal Logi
 Programming In the
ase of �rst order languageswe have developed the programming language Prolog(+T) whi
h is a rule�based,Prolog�style programming languages whi
h is equipped with the temporal oper-ators X, G, F, U and P. We have des
ribed how to prove goals from Prolog(+T)�programs and have seen how the semanti
s of Prolog(+T)�programs
an be
hara
terized. While the former topi

an be solved using a modi�ed and extendedtableaux pro
edure, the latter
an be solved by extending the theory of Herbrand�Interpretations and Herbrand�Models whi
h are a standard tool from the �eld of�rst order Logi
 Programming.Following the de�nition and des
ription of the programming language of interestwe have seen how spe
ialization and generalization operations
an be
arried outin order to modify the programs in the
ase that they
ontradi
t the examples.

262 Chapter 12. Con
lusionsThe last point of the �rst part dealt with the question of how to analyze the
omplexity of the learning task. We have seen that the
lass of Prolog(+T)�programs
an be stru
tured depending on
ertain synta
ti
 parameters in su
h away that it enables the derivation of upper bounds for the VC�Dimension of these
lasses.Propositional Indu
tive Temporal Logi
 Programming While the te
hniques developedfor �rst order temporal programming languages fa
e the problem that �rst orderlogi
 in general and �rst order temporal logi
 in parti
ular is unde
idable, the re-stri
tion to propositional temporal logi
 languages yields de
idable satis�abilityand impli
ation problems. Therefore we have studied how Ltl
an be used inorder to solve the problem of learning
ertain temporal logi
 formulas from posi-tive and negative examples. We have re
alled that Ltl�formulas
an be translatedinto nondeterministi
 Bü
hi�automata and that these automata
an be re�ned inorder to �t spe
i�
ations imposed by the sets of examples. Furthermore we haveseen that the generality ordering
hosen in the
ase of �rst order languages (i.e.the subsumption ordering)
annot be applied in the
ase of Ltl sin
e the obje
tsunder
onsideration are not ne
essarily
lauses. But sin
e propositional tempo-ral programming languages have de
idable satis�ability problems we
ould re�neprograms with respe
t to the impli
ation ordering whi
h is �ner than subsumption.As in the
ase of �rst order temporal logi
 we have also studied the
omplexityof identifying Ltl�formulas (resp. Ltl�programs) from positive and negative ex-amples by deriving upper bounds for the VC�dimension of
ertain
lasses of su
hformulas.

12.2 Perspe
tives for Future Resear
h 26312.2. Perspe
tives for Future Resear
hThree major perspe
tives
an or should be pointed out: Integration of
onstraints (andintegration of
onstraint solving te
hniques into the theorem proving pro
edure), thede�nition of a synta
ti
ally less restri
ted �rst order language (i.e. relaxing the
onditionthat the obje
ts of Prolog(+T)�programs are essentially
lauses) and studying other,perhaps more expressive propositional temporal languages, su
h as Ctl, Ctl∗, the µ�
al
ulus or some of the sublogi
s of the foregoing languages.Integration of Constraints Constraints are
onstru
ts whi
h model relations between
ertain obje
ts su
h that the relations have a �xed interpretation. Su
h relationsymbols with �xed interpretation
an be the equality symbol = or some
omparisonsymbol su
h as ≤, <, > or ≥. Of
ourse these symbols are well suited for reasoningabout arithmeti
 relations and
onsequently many
onstraints are arithmeti

on-straints. The integration of
onstraints into Prolog(+T) would make it ne
essaryto extend the theorem proving pro
edure in order to integrate
onstraint solvingresp.
onstraint satisfa
tion routines (see [84℄ or [85℄ for a survey of
onstraint pro-gramming te
hniques) and te
hniques for synthesizing logi
 programs
ontaining
onstraints (see [144℄)Extending the syntax of Prolog(+T) Another perspe
tive for future resear
h might bethe extension of Prolog(+T) in su
h a way that the program statements neednot to be
lauses anymore. This would lead us to the full �rst order linear timetemporal logi
 FoLtl. Dealing with FoLtl obje
ts might
ause several problems.On the one hand we
an not hope for e�
ient re�nement pro
edures anymore sin
ethe obje
ts under
onsideration are not ne
essarily
lauses, so subsumption doesnot make any sense for general FoLtl�formulas. On the other hand the theoremproving task would be
ome mu
h more
ompli
ated (see [3℄ for a des
ription oftemporal logi
 theorem proving in the
ase of non
lausal languages).

264 Chapter 12. Con
lusionsOther propositional temporal languages The restri
tion to propositional temporal pro-gramming languages has (as we have seen in the third part of this thesis) the ad-vantage that satis�ability and impli
ation problems
an be de
ided (in
ontrastto Prolog(+T) whi
h
ontains the full �rst order predi
ate logi
 and whi
h istherefore unde
idable). But we have only studied one of all possible propositionaltemporal languages, namely the linear time temporal logi
 Ltl. Here the termlinear means that the language
ontains only su
h temporal quanti�ers whi
h al-low reasoning about one possible
ontinuation of the a
tual point of time under
onsideration. Bran
hing time Logi
 (as we will see below)
ontains other quanti-�ers whi
h are
apable of modeling questions dealing with all
ontinuations resp.some
ontinuations and whi
h
an in these sense be seen as temporal versions ofthe universal and existential quanti�er.Bran
hing Time Logi
 As we have already noted above, Bran
hing time temporallogi
 allows reasoning about more than one
ontinuation of the a
tual point oftime. Ctl (another prominent spe
i�
ation language whi
h implements the
on
ept of bran
hing time) is equipped with the quanti�ers E and A whi
hmodel the
ir
umstan
e that there exists a
omputation path resp. that for all
omputation paths the quanti�ed formula has to hold (see [34℄ or [58℄ for a for-mal des
ription of Ctl). Consequently the term Ctl stands for ComputationTree Logi
 sin
e the set of possible
omputations
an be seen as trees. Ctl�formulas
an be translated into Alternating Tree Automata (see [21℄) whi
h
ould also be studied and extended in order to allow re�nement operations.Mixed Logi
 Combining Linear and Bran
hing Time Temporal Logi
s one gets thelogi
 Ctl∗ whi
h is more expressive than both CTL and Ltl. Formulas fromCtl∗
an be translated into Street tree Automata (see e.g. [59℄). This logi

ould also be studied in order to learn Ctl∗
onstru
t from examples.Fixpoint Logi
 From the theoreti
al point of view the µ�
al
ulus Lµ is perhaps

12.2 Perspe
tives for Future Resear
h 265the most interesting propositional temporal language. It integrates temporaloperators and �xpoint operators (see [96℄). It is more expressive than Ltl,Ctl and Ctl∗ (see [143℄).All these logi
s are essentially propositional logi
s and therefore they are de
idablefor satis�ability. Consequently they should be studied in order to
hara
terize the
omplexity of identifying
on
epts from positive and negative examples.

266 Chapter 12. Con
lusions

A. Formal Des
ription of theProgramming Languages
ContentsA.1. Syntax of Prolog(+T) . 267A.1.1. Terms . 268A.1.2. Atoms and Literals . 270A.1.3. Rules . 271A.1.4. General Prolog(+T)�Obje
ts 271A.2. Syntax of Ltl . 272For the sake of
ompleteness and in order to make it easier to develop parsers andinterpreters for the languages used throughout this thesis we will now give grammars forthese languages. The grammars will be presented in an EBNF�like syntax, i.e. ea
hgrammar will
onsist of a set of rules with one nonterminal symbol on the left hand sideand more or less arbitrary right hand sides. These grammars
an be easily
onvertedinto a form whi
h is suitable for tools generating
ompilers (e.g. bison, see [68℄).A.1. Syntax of Prolog(+T)By de�nition we have several di�erent types of obje
ts whi
h have to be generated by thegrammar. These are terms, atoms and literals and rules (in
luding fa
ts as spe
ial
ases).

268 Chapter A. Formal Des
ription of the Programming LanguagesConsequently we have to present rules whi
h are
apable to de�ne all these obje
ts.A.1.1. TermsTerms have been de�ned to be
onstru
ts of the following form:
• Variable Terms, i.e.
onstru
ts su
h as t = x for symbols x ∈ X ,
• Strings representing Integers from Z,
• Fun
tion Terms, i.e.
onstru
ts su
h as t = f(t1, . . . , tn) or
• List Terms, that is t = [] or t = [t1, . . . , tn] or t = [t̄|t1, . . . , tn].Consequently the �rst produ
tion step for the generation of a term must
hose whi
htype of term has to be
reated.Term ::= Variable�symbol | Fun
tion�Term | List�Term | NumberVariable�Terms and IntegersDepending on the type of term to be generated we have to give rules for generating ea
hsu
h type. Therefore we make the following
onvention:
• a variable symbol has to start with an upper
ase letter and
• any other symbol (i.e. a fun
tion or a predi
ate symbol) has to start with a lower
ase letter.The simplest obje
ts to be
reated are variable terms and integers.Variable�symbol ::= `_' | Upper�Case�Letter |Upper�Case�Letter Variable�Su�xUpper�Case�Letter ::= `A' |`B' |`C' |`D' |`E' |`F' |`G' |`H' |`I' |`J' |`K' |`L' |`M' |`N' |`O' |`P' |`Q' |`R' |`S' |`T' |`U' |`V' |`W' |`X' |`Y' |`Z'

A.1 Syntax of Prolog(+T) 269Lower�Case�Letter ::= `a' |`b' |`
' |`d' |`e' |`f' |`g' |`h' |`i' |`j' |`k' |`l' |`m' |`n' |`o' |`p' |`q' |`r' |`s' |`t' |`u' |`v' |`w' |`x' |`y' |`z'Letter ::= Upper�Case�Letter | Lower�Case�LetterDigit ::= `0' | `1' | `2' | `3' | `4' | `5' | `6' | `7' |`8' | `9'Spe
ial�Symbol ::= Letter | Digit | `_'Variable�Su�x ::= Spe
ial�Symbol | Spe
ial�Symbol Spe
ial�SymbolNumber ::= Positive�Number | Negative�NumberPositive�Number ::= Digit | Digit Positive�NumberNegative�Number ::= `-' Positive�NumberFun
tion�TermsThe next more
ompli
ated
onstru
ts are fun
tion terms, i.e. terms of the form t =

f(t1, . . . , tn) with n = α(f) and terms t1, . . . , tn or t = f for
onstant symbols f (i.e.su
h symbols f with α(f) = 0).Fun
tion�Term ::= Fun
tion�Name |Fun
tion�Name Left�DelimiterArgument�List Right�DelimiterLeft�Delimiter ::= `('Right�Delimiter ::= `)'Fun
tion�Name ::= Lower�Case�Letter | Lower�Case�Letter Fun
tion�Su�xFun
tion�Su�x ::= Variable�Su�xArgument�List ::= Term | Term `,' Argument�ListList�TermsList terms are the most
ompli
ated terms to generate sin
e they might have severaldi�erent forms. A term t is a list term if it is t = [] (i.e. t is the empty list) or if t
onsists

270 Chapter A. Formal Des
ription of the Programming Languagesof an enumeration of elements (i.e. t = [t1, . . . , tn] for terms t1, . . . , tn) or if t is given byits head and its tail. In this
ase we
an distinguish the
ases that t = [t̄|t1, . . . , tn] and
t = [t̄|t′] where t̄ denotes the head and t1, . . . , tn is an enumeration of the elements in thetail or t′ is a term representing the whole tail of t.List�Term ::= Left�List�Delimiter Right�List�Delimiter |Left�List�Delimiter List�ArgumentsRight�List�DelimiterLeft�List�Delimiter ::= `['Right�List�Delimiter ::= `℄'List�Arguments ::= Argument�List |Term `|' Argument�List |Term `|' TermA.1.2. Atoms and LiteralsAtoms and literals are either temporal or nontemporal ones. Nontemporal atoms andliterals are then either one of the
onstants true and false or built using predi
atesymbols. In this
ase they have the form p(t1, . . . , tn) or not(p(t1, . . . , tn)).Atom ::= `true' | `false' | Relational�AtomRelational�Atom ::= Predi
ate�Name |Predi
ate�Name Left�DelimiterArgument�List Right�DelimiterPredi
ate�Name ::= Lower�Case�Letter | Lower�Case�Letter Predi
ate�Su�xPredi
ate�Su�x ::= Variable�Su�xLiteral ::= Atom | `not' Left�Delimiter Literal Right�DelimiterIn order to integrate the temporal operators we generalize the
on
ept of literals togeneral literals. General literals are then divided into two
lasses, namely temporal literals

A.1 Syntax of Prolog(+T) 271and nontemporal literals.General�Literal ::= Literal | Temporal�Literal |`not' Left�Delimiter General�LiteralRight�DelimiterTemporal�Literal ::= Unary�Temporal�Literal |Binary�Temporal�LiteralUnary�Temporal�Literal ::= Unary�Temporal�Conne
tive General�LiteralBinary�Temporal�Literal ::= General�LiteralBinary�Temporal�Conne
tive General�LiteralUnary�Temporal�Conne
tive ::= `X' | `F' | `G'Binary�Temporal�Conne
tive ::= `U' | `P'A.1.3. RulesRules are
reated using the produ
tions for literals. Ea
h rule is either a fa
t or a de�niterule, that is a rule with a nonempty tail.Rule ::= Fa
t | De�nite�RuleFa
t ::= General�Literal End�DelimiterDe�nite�Rule ::= General�Literal Impli
ation�SymbolList�Of�Literals End�DelimiterEnd�Delimiter ::= `.'Impli
ation�Symbol ::= `:−'List�Of�Literals ::= General�Literal | General�Literal `,' List�Of�LiteralsA.1.4. General Prolog(+T)�Obje
tsSin
e every Prolog(+T)�obje
t is either a term or a formula, we add a rule produ
ethese two types of obje
ts. Ea
h formula is then given as a literal (a general literal) or arule.

272 Chapter A. Formal Des
ription of the Programming LanguagesProlog(+T)�Obje
t ::= Term | FormulaFormula ::= General�Literal | RuleThese rules
omplete the syntax of Prolog(+T). In order to be well formed an obje
tneeds
• to be parsed and then
• to be
he
ked if the symbols used in the obje
t are
ompatible with the
onstraintsgiven by the signature.A.2. Syntax of LtlThe syntax of Ltl is very simple, sin
e there are nearly no
onstraints on the form ofa formula. Consequently a grammar whi
h generates the set of all Ltl�formulas
an beextra
ted dire
tly from the de�nition of the language Ltl (see page 20).Formulas from Ltl are either atomi
 formulas (i.e. the
onstants true and false orproposition symbols) or
omposite formulas. Composite formulas are built using unaryor binary
onne
tives whi
h
an be either propositional or temporal ones.LTL�Formula ::= LTL�Atom | LTL�Composite�FormulaLTL�Atom ::= `true' | `false' | LTL�Proposition�SymbolLTL�Composite�Formula ::= LTL�Unary | LTL�BinaryFor the sake of simpli
ity we will introdu
e names for the symbols used in the rulesto generate the formulas, in parti
ular we will introdu
e names for the bra
kets and the
onne
tives.Left�Delimiter ::= `('Right�Delimiter ::= `)'LTL�Unary�Propositional�Conne
tive ::= `!'

A.2 Syntax of Ltl 273LTL�Unary�Temporal�Conne
tive ::= `X' | `G' | `F'LTL�Binary�Propositional�Conne
tive ::= `+' | `∗' | `→' | `↔'LTL�Binary�Temporal�Conne
tive ::= `U' | `R'Proposition symbols are used in order to build atomi
 formulas of Ltl. They have tostart with a letter (no matter if it is an upper
ase letter or a lower
ase letter) followedby a (possibly empty) string of arbitrary symbols. Su
h strings are generated using therule below whi
h has the symbol symbol�su�x on its left hand side.LTL�Proposition�Symbol ::= Nondigit | Nondigit Symbol�Su�xNondigit ::= `a' |`b' |`
' |`d' |`e' |`f' |`g' |`h' |`i' |`j' |`k' |`l' |`m' |`n' |`o' |`p' |`q' |`r' |`s' |`t' |`u' |`v' |`w' |`x' |`y' |`z' |`A' |`B' |`C' |`D' |`E' |`F' |`G' |`H' |`I' |`J' |`K' |`L' |`M' | `N' |`O' |`P' |`Q' |`R' |`S' |`T' |`U' |`V' |`W' |`X' |`Y' |`Z'Digit ::= `0' | `1' | `2' | `3' | `4' | `5' | `6' | `7' | `8' | `9'Symbol�Su�x ::= `' | Digit Symbol�Su�x | Nondigit Symbol�Su�x |`_' Symbol�Su�xAs we have already mentioned above,
omposite Ltl�formulas
an be built up usingunary and binary
onne
tives whi
h
an be either propositional ones or temporal ones.The rules for building su
h formulas are given below. First we have to present two rulesfor building general formulas using binary and unary
onne
tives.LTL�Unary ::= LTL�Negation | LTL�Unary�Temporal�FormulaLTL�Binary ::= LTL�Binary�Propositional�Formula |LTL�Binary�Temporal�FormulaHaving
hosen the arity of the
onne
tive rules for generating the formulas using
on-ne
tives with the
hosen arity have to be applied.

274 Chapter A. Formal Des
ription of the Programming LanguagesLTL�Negation ::= LTL�Unary�Propositional�Conne
tiveLTL�FormulaLTL�Unary�Temporal�Formula ::= LTL�Unary�Temporal�SymbolLTL�FormulaLTL�Binary�Propositional�Formula ::= Left�Delimiter LTL�FormulaLTL�Binary�Propositional�Conne
tiveLTL�Formula Right�DelimiterLTL�Binary�Temporal�Formula ::= Left�Delimiter LTL�FormulaLTL�Binary�Temporal�Conne
tiveLTL�Formula Right�DelimiterSin
e there are no further restri
tions on the syntax of Ltl�formulas the grammar forLtl is now
omplete.

List of Figures
3.1. SLD�refutation . 405.1. Rewrite System for
omputing redu
ed literals 755.2. Expansion Rules . 955.3. Saturation Rules . 976.1. Uni�
ation vs. Anti�uni�
ation . 1186.2. Tree(q(a)Up(b)) . 1326.3. Tree(q(c)Up(a)) . 1326.4. Tree(q(c)UXp(a)) . 1327.1. Growth rate of re�ned rules with and without elimination of variants . . . 1637.2. Growth Rate by adding Premises only . 1678.1. Number of examples given �xed values for c, t, l, o, p and a with ε rangingfrom 0 to 1

2 and δ ranging from 0 to 1. 182

276 List of Figures

List of Tables
7.2. Set of downward re�nements of ϕ = GXFp(X)Up(g(f(X), Y)) 1437.3. Set of upward re�nements for ϕ = FGp(X1, f(a, f(X1, f(a, f(a, a)))), f(X1, X2))1487.5. Set of downward re�nements of C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).(part 1) . 1537.7. Set of downward re�nements of C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).(part 1) . 1547.9. Set of downward re�nements of C = Gp(X1) :−Fq(X1, f(X2)), q(a, a)Up(a).(part 3) . 15611.1. En
odings for logi
al
onne
tives from Ltl 252

278 List of Tables

List of Algorithms
1. Tableaux algorithm for ground goals . 1032. Anti�uni�
ation for terms . 1183. Greatest Spe
ialization of FoLtl�literals 1234. Least Generalization of FoLtl�literals . 1245. Greatest Spe
ialization of Prolog(+T)�rules 1276. Least Generalization of Prolog(+T)�rules 1387. Downward�Re�nement of Prolog(+T)�literals 1448. Upward�Re�nement of Prolog(+T)�literals 1499. Downward�Re�nement of Prolog(+T)�rules 15510. Upward�Re�nement of Prolog(+T)�rules 15811. Extra
tion of δ from Σ and States . 20712. Extra
ting the A

eptan
e Component F from States 20913. Propositional Upward Re�nement . 22214. Temporal Upward Re�nement: Constru
ting new States for F 7→ Xi 22715. Temporal Upward Re�nement: Constru
ting new States for Xi 7→ G 22816. Temporal Upward Re�nement: Constru
ting new States for Repla
ementof Eventualities (repla
ing the �rst
omponent) 229

280 List of Algorithms17. Temporal Upward Re�nement: Constru
ting new States for Repla
ementof Eventualities (repla
ing the se
ond
omponent) 23018. Propositional Downward Re�nement . 23219. Temporal Downward Re�nement: Constru
ting new States for G 7→ Xi . . 23520. Temporal Downward Re�nement: Constru
ting new States for Xi 7→ F . . 236

Bibliography[1℄ M. Abadi and Z. Manna, A Timely Resolution, Symposium on Logi
 in ComputerS
ien
e, IEEE, 1986, pp. 176�186.[2℄ , Temporal Logi
 Programming, Journal of Symboli
 Computation 8 (1988),277�295.[3℄ , Non
lausal Dedu
tion in First�Order Temporal Logi
, Journal of the ACM37 (1990), no. 2, 279�317.[4℄ S. Akama, Tableaux for logi
 programming with strong negation, Automated Rea-soning with Analyti
 Tableaux and Related Methods, Springer Verlag, 1997, Le
-ture Notes in Computer S
ien
e 1227, pp. 31�42.[5℄ H. Andreka and I. Nemeti, The Generalized Completeness of Horn Predi
ate Logi
as a Programming Language, A
ta Cyberneti
a 4 (1978), 3�10.[6℄ T. Aoyagi, M. Fujita, and T. Moto-Oka, Temporal Logi
 Programming LanguageTokio: Programming in Tokio, Pro
eedings of the 4th Conferen
e on Logi
 Pro-gramming, Springer Verlag, 1985, Le
ture Notes in Computer S
ien
e 221, pp. 128�137.[7℄ K.R. Apt, Logi
 programming, Handbook of Theoreti
al Computer S
ien
e, VolumeB: Formal Models and Semati
s (B), Elsevier, 1990, pp. 493�574.[8℄ , From Logi
 Programming to Prolog, Prenti
e Hall, 1997.[9℄ K.R. Apt and A. Pellegrini, On the o

ur-
he
k-free PROLOG programs, ACMTransa
tions on Programming Languages and Systems 16 (1994), no. 3, 687�726.[10℄ K.R. Apt and M.H. van Emden, Contributions to the Theory of Logi
 Programming,Journal of the ACM 29 (1984), no. 3, 841�862.[11℄ M. Arias and R. Khardon, Complexity Parameters for First Order Classes, Te
h.Report 2004�6, Tufts University, July 2004.[12℄ J. Avenhaus, Reduktionssysteme, Springer Verlag, 1995, (in German).[13℄ F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge UniversityPress, 1999.[14℄ M. Baaz, A. Leits
h, and R. Za
h, Completeness of a First-order Temporal Logi
with Time-Gaps, Theoreti
al Computer S
ien
e 160 (1996), 241�270.

282 Bibliography[15℄ L. Badea, A Re�nement Operator For Theories, Pro
eedings of the 15th Interna-tional Conferen
e on Indu
tive Logi
 Programming, Springer Verlag, 2001, Le
tureNotes in Computer S
ien
e 2175.[16℄ M. Bain and A. Srinivasan, Indu
tive Logi
 Programming with large-s
ale unstru
-tured Data, Ma
hine Intelligen
e 14 (1996), 233�267.[17℄ J. Barnat, L. Brim, and J. Chaloupka, Parallel Breadt��rst Sear
h Ltl ModelChe
king, Pro
eedings of the 18th IEEE International Conferen
e on AutomatedSoftware Engineering (ASE '03), IEEE, 2003, pp. 106�115.[18℄ D.W. Barnes and J.M. Ma
k, An algebrai
 Introdu
tion to Mathemati
al Logi
,Springer Verlag, 1975.[19℄ P. Baumgartner and U. Furba
h, Cal
uli for Disjun
tive Logi
 Programming, Te
h.Report 13�96, Universität Koblenz�Landau, 1995.[20℄ M. Ben-Ari,Mathemati
al Logi
 for Computer S
ien
e, se
ond ed., Springer Verlag,2001.[21℄ O. Bernholtz, M. Vardi, and P. Wolper, An Automata�Theoreti
 Approa
h toBran
hing�Time Model Che
king, Pro
eedings of the 6th International Conferen
eon Computer Aided Veri�
ation, Springer Verlag, 1994, Le
ture Notes in ComputerS
ien
e 818, pp. 142�155.[22℄ A. Blumer, A. Ehrenfeu
ht, D. Haussler, and M. Warmuth, Learnability and theVapnik-Chervonenkis-Dimension, Journal of the ACM 36 (1989), no. 4, 929�965.[23℄ G. Boole, An Investigation of the Laws on whi
h are founded the Mathemati
alTheories of Logi
 and Probabilities, Dover, New York, 1958.[24℄ P.S. Braddo
k, D.E. hu, I.J. Stratford, A.L. Harris, and R. Bi
knell, A stru
ture�a
tivity analysis of antagonism of the growth fa
tor and angiogeni
 a
tivity of basi
�briblast growth fa
tor by Suramin and related polyanions, British Journal of Can
er69 (1994), no. 5, 890�898.[25℄ I. Bratko, S. Muggleton, and A. Var²ek, Learning qualitative models of dynami
systems, Indu
tive Logi
 Programming (S. Muggleton, ed.), 1991, pp. 207�224.[26℄ J.R. Bü
hi, Weak se
ond�order arithmeti
 and �nite Automata, Zeits
hrift fürmathematis
he Logik und Grundlagen der Mathematik 6 (1960), 60�92.[27℄ C. Castellini, Automated Reasoning in Quanti�ed Modal and Temporal Logi
s,Ph.D. thesis, S
hool of Informati
s, University of Edinburgh, 2005.[28℄ S. Cerrito, M. Cialdea Mayer, and S. Praud, A Tableau Cal
ulus for First OrderLinear Temporal Logi
 over Bounded Time Stru
tures, Te
h. Report LRI n. 1207,Dipartimento di Informati
a e Automazione Università degli studi Roma Tre, Di-partimento di Informati
a e Automazione, 1999.

Bibliography 283[29℄ , First Order Linear Temporal Logi
 over Finite Time Stru
tures, Pro
eed-ings of the 6th International Conferen
e on Logi
 for Programming and AutomatedReasoning (LPAR'99), Springer Verlag, 1999, Le
ture Notes in Computer S
ien
e1705, pp. 62�76.[30℄ , First Order Linear Temporal Logi
 over Finite Time Stru
tures is notsemi-de
idable, Te
h. Report LRI n. 1208, Dipartimento di Informati
a e Au-tomazione Università degli studi Roma Tre, Dipartimento di Informati
a e Au-tomazione, 1999.[31℄ C.L. Chang and C.T. Lee, Symboli
 Logi
 and Me
hani
al Theorem Proving, thirded., A
ademi
 Press, 1990.[32℄ A. Chur
h, A Note on the Ents
heidungsproblem, Journal of Symboli
 Logi
 1(1936), 40�41.[33℄ P. Clark and R. Boswell, Rule indu
tion with
n2: some re
ent improvements,Pro
eedings of the �fth European Working Session on Learning, Springer Verlag,1991, pp. 151�163.[34℄ E.M. Clarke and E.A. Emerson, Design and Synthesis of Syn
hronization SkeletonsUsing Bran
hing-Time Temporal Logi
, Logi
 of Programs, 1981, pp. 52�71.[35℄ E.M. Clarke, O. Grumberg, and D.A. Peled, Model Che
king, MIT Press, 1999.[36℄ W. Cohen, PAC-learning Re
ursive Logi
 Programs: E�
ient Algorithms, Journalof Arti�
ial Intelligen
e Resear
h 2 (1995), 501�539.[37℄ , PAC-learning Re
ursive Logi
 Programs: Negative Results, Journal of Ar-ti�
ial Intelligen
e Resear
h 2 (1995), 541�573.[38℄ S. Cook, The Complexity of Theorem Proving Pro
edures, Pro
. 3rd ACM Symp.on Theory of Computing, ACM Press, 1971, pp. 151�158.[39℄ M. Daniele, F. Giun
higlia, and M.Y. Vardi, Improved Automata Generation forLinear Temporal Logi
, CAV '99: Pro
eedings of the 11th International Conferen
eon Computer Aided Veri�
ation, Springer Verlag, 1999, Le
ture Notes in ComputerS
ien
e 1855, pp. 249�260.[40℄ A.K. Debnath, R.L. Lopez de Compadre, G. Debnath, A.J. Shusterman, andC. Hans
h, Stru
ture�a
tivity relationship aromati
 and heteroatomati
 nitro
om-pounds. Correlation with mole
ular orbital energies and hydrophobi
ity, Journal ofMedi
ini
al Chemistry 34 (1991), no. 2, 786�797.[41℄ A. Degtyarev and M. Fisher, Towards First�Order Temporal Resolution, Pro
eed-ings of KI, the 24th German Conferen
e on Arti�
ial Intelligen
e, Springer Verlag,2001, Le
ture Notes in Computer S
ien
e 2174, pp. 18�32.

284 Bibliography[42℄ A. Degtyarev, M. Fisher, and B. Konev, Exploring the monodi
 fragment of �rst-order temporal logi
 using
lausal temporal resolution, Te
h. Report ULCS-03-012,University of Liverpool, Department of Computer S
ien
e, 2003.[43℄ , Monodi
 Temporal Resolution, Pro
eedings of the 19th Conferen
e on Au-tomated Dedu
tion, CADE�19, Springer Verlag, 2003, Le
ture Notes in ComputerS
ien
e 2741, pp. 397�411.[44℄ ,Monodi
 Temporal Resolution, ACM Transa
tions on Computational Logi
7 (2006), no. 1, 108�150.[45℄ L.P. Devroye, Automati
 Pattern Re
ognition: A Study of the Probability of Error,IEEE Transa
tions on Pattern Analysis and Ma
hine Intelligen
e 10 (1988), no. 4,530�543.[46℄ L.P. Devroye and T.J. Wagner, A distribution�free Performan
e Bound in ErrorEstimation, IEEE Transa
tions on Information Theory 22 (1976), no. 5, 586�587.[47℄ C. Dixon, Sear
h Strategies for Resolution in Temporal Logi
s, Pro
eedings of theInternational Conferen
e on Automated Dedu
tion (CADE-13), Springer Verlag,1996, Le
ture Notes in Computer S
ien
e 1104, pp. 673�687.[48℄ , Temporal Resolution: Removing Irrelevant Information, Pro
eedings of theFourth International Workshop on Temporal Reasoning (TIME'97), IEEE Press,1997, pp. 4�11.[49℄ C. Dixon and M. Fisher, The Set of Support Strategy in Temporal Resolution, Pro-
eedings of the Fifth International Workshop on Temporal Reasoning (TIME'98),IEEE Press, 1998, pp. 113�120.[50℄ B. Dolsak, Constru
ting �nite element meshes usign arti�
ial intelligen
e methods,Master's thesis, University of Maribor, 1991.[51℄ B. Dolsak, A. Jezernik, and I. Bratko, A knowledge base for �nite element meshdesign, Pro
eedings of the sixth ISSEK Workshop, 1992.[52℄ B. Dolsak and S. Muggleton, The appli
ation of Indu
tive Logi
 Programming to�nite element mesh design, Indu
tive Logi
 Programming (S. Muggleton, ed.), A
a-demi
 Press, London, 1992.[53℄ B. Dutertre, Complete Proof Systems for First Order Interval Temporal Logi
, Logi
in Computer S
ien
e, 1995, pp. 36�43.[54℄ S. Dzeroski and I. Bratko, Handling noise in indu
tive logi
 programming, Pro-
eedings of the Se
ond International Workshop on Indu
tive Logi
 Programming,1992.[55℄ S. Dzeroski and B. Dolsak, Comparison of ilp systems on the problem of �niteelement mesh design, Pro
eedings of the sixth ISSEK Workshop, 1992.

Bibliography 285[56℄ E.A. Emerson, Temporal and modal logi
, Handbook of Theoreti
al Computer S
i-en
e, Volume B: Formal Models and Semati
s (B), Elsevier, 1990, pp. 995�1072.[57℄ , Automated Temporal Reasoning for Rea
tive Systems, Logi
 for Con
ur-ren
y: Stru
ture versus Automata, Springer Verlag, 1996, pp. 41�101.[58℄ E.A. Emerson and E.M. Clarke, Using Bran
hing Time Temporal Logi
 to Synthe-size Syn
hronization Skeletons, S
ien
e of Computer Programming 2 (1982), no. 3,241�266.[59℄ E.A. Emerson and A.P. Sistla, De
iding Full Bran
hing Time Logi
, Informationand Control 61 (1984), no. 3, 175�201.[60℄ J. Esparza and K. Heljanko, A New Unfolding Approa
h to LTL Model Che
king,Pro
eedings of the 27th International Colloquium on Automata, Languages andProgramming, Springer Verlag, 2000, Le
ture Notes in Computer S
ien
e 1853,pp. 475�486.[61℄ A. Felty, Temporal Logi
 Theorem Proving and its Appli
ation to the FeatureIntera
tion Problem, Te
h. Report DII 14/01, University of Siena, 2001, in E.Giun
higlia and F. Massa

i (ed.): Issues in the Design and Experimental Evalua-tion of Systems for Modal and Temporal Logi
s.[62℄ A. Felty and L. Thery, Intera
tive Theorem Proving with Temporal Logi
, Journalof Symboli
 Computation 23 (1997), no. 4, 367�397.[63℄ P. Fis
her, Algorithmis
hes Lernen, Teubner Verlag, 1999, (in German).[64℄ M. Fisher, A Normal Form for Temporal Logi
s and its Appli
ations in Theorem-Proving and Exe
ution, Journal of Logi
 and Computation 7 (1997), no. 4, 429�456.[65℄ M. Fisher, C. Dixon, and M. Peim, Clausal Temporal Resolution, ACM Transa
-tions on Computational Logi
 2 (2001), no. 1, 12�56.[66℄ M. Fitting, First-Order Logi
 and Automated Theorem Proving, Springer-Verlag,1990.[67℄ , Tableaux for Logi
 Programming, Journal of Automated Reasoning 13(1994), no. 2, 175�188.[68℄ Free Software Foundation, Bison 2.3, the ya

�
ompatible parser generator, man-ual, www.gnu.org/software/bison/manual/pdf/bison.pdf.[69℄ G. Frege, Begri�ss
hrift, eine der arithmetis
hen na
hgebildete Formelspra
he desreinen Denkens, in [165℄, Halle, 1879.[70℄ U. Furba
h, P. Baumgartner, and F. Stolzenburg, Model Elimination, Logi
 Pro-gramming and Computing Answers, Te
h. Report 1�95, Universität Koblenz�Landau, 1995.

286 Bibliography[71℄ M. R. Garey and D. S. Johnson, Computers and Intra
tability � A Guide to theTheory of NP-Completeness, Freeman, San Fran
is
o, 1979.[72℄ P. Gastin and D. Oddoux, Fast LTL to Bü
hi Automata Translation, Pro
eedingsof the 13th International Conferen
e on Computer Aided Veri�
ation (CAV '01),Springer Verlag, 2001, Le
ture Notes in Computer S
ien
e 2102, pp. 53�65.[73℄ M. Gelfond and V. Lifs
hitz, The Stable Model Semanti
s for Logi
 Programming,Pro
eedings of the Fifth International Conferen
e on Logi
 Programming (Cam-bridge, Massa
husetts) (R.A. Kowalski and K. Bowen, eds.), The MIT Press, 1988,pp. 1070�1080.[74℄ R. Gentilini, C. Piazza, and A. Poli
riti, Computing Strongly Conne
ted Com-ponents in a Linear Number of Symboli
 Steps, Pro
eedings of the 14th AnnualACM-SIAM Symposium on Dis
rete Algorithms (Baltimore, Maryland), So
ietyfor Industrial and Applied Mathemati
s, 2003, pp. 573�582.[75℄ G. Gentzen, Untersu
hungen über das logis
he S
hlieÿen, Mathematis
heZeits
hrift 39 (1935), 176�210 and 405�431.[76℄ R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper, Simple On-the-�y Automati
 Ver-i�
ation of Linear Temporal Logi
, Proto
ol Spe
i�
ation Testing and Veri�
ation(Warsaw, Poland), Chapman & Hall, 1995, pp. 3�18.[77℄ G. Gottlob, Subsumption and Impli
ation, Information Pro
essing Letters 24(1987), no. 2, 109�111.[78℄ G. Gottlob and C.G. Fermüller, Removing Redundan
y from a Clause, Arti�
ialIntelligen
e 61 (1993), no. 2, 263�289.[79℄ N. Helft, Indu
tion as nonmonotoni
 inferen
e, Pro
eedings of the 1st InternationalConferen
e on Prin
iples of Knowledge Representation and Reasoning, MorganKaufmann, 1989, pp. 149�156.[80℄ A. Hernandez-Aguirre, B.P. Bu
kles, and C.A. Coello Coello, On Learning kDNF snBoolean Formulas, Pro
eedings of the The 3rd NASA/DoDWorkshop on EvolvableHardware, IEEE Computer So
iety, 2001, pp. 240�248.[81℄ J. Hintikka, Knowledge and Belief, Cornell University Press: Itha
a, NY, 1962.[82℄ I. Hodkinson, F. Wolter, and M. Zakharyas
hev, De
idable fragments of �rst-ordertemporal logi
s, Annals of Pure and Applied Logi
 106 (2000), 85�134.[83℄ G. Huet, Con�uent Redu
tions: Abstra
t Properties and Appli
ations to TermRewriting Systems, Journal of the ACM 27 (1980), 797�821.[84℄ Joxan Ja�ar and Mi
hael J. Maher, Constraint Logi
 Programming: A Survey,Journal of Logi
 Programming 19/20 (1994), 503�581.

Bibliography 287[85℄ J.-P. Jouannaud and R. Treinen, Constraints and Constraint Solving: An Introdu
-tion, Constraints in Computational Logi
s: Theory and Appli
ations (H. Comon,C. Mar
he, and R. Treinen, eds.), Springer Verlag, 1999, pp. 1�46.[86℄ A. Karmath and R.D. King, An automated ILP Server in the Field of Bioinformat-i
s, Pro
eedings of the 15th International Conferen
e on Indu
tive Logi
 Program-ming, Springer Verlag, 2001, Le
ture Notes in Computer S
ien
e 2175, pp. 91�103.[87℄ R.D. King, S. Muggleton, and M.J.E. Sternberg, Drug Design by Ma
hine Learning:The use of Indu
tive Logi
 programming to model the stru
ture�a
tivity relation-ships of Trimethoprom analogues binding to Dihydrofolate redu
tase, Pro
eedingsof the National A
ademy of S
ien
es 89 (1992), no. 23, 11322�11326.[88℄ R.D. King, A. Srinivasan, and M.J.E. Sternberg, Relating
hemi
al a
tivity to stru
-ture: An examination of ILP su

esses, New Generation Computing, Spe
ial issueon Indu
tive Logi
 Programming 13 (1995), no. 3/4, 411�434.[89℄ S.C. Kleene, Introdu
tion to Metamathemati
s, 7th ed., North Holland, 1971.[90℄ D. E. Knuth and P. B. Bendix, Simple Word Problems in Universal Algebra, Com-putational Problems in Abstra
t Algebra (J. Lee
h, ed.), Pergamon Press, 1970,pp. 263�297.[91℄ B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt, Me
hanising �rst-order temporal resolution, Information and Computation 199 (2003), no. 1�2, 55�86.[92℄ S. Kono, T. Aoyagi, M. Fujita, and H. Tanaka, Implementation of Temporal Pro-gramming Language Tokio, Pro
eedings of the 4th Conferen
e on Logi
 Program-ming, Springer Verlag, 1985, Le
ture Notes in Computer S
ien
e 221, pp. 138�147.[93℄ R.A. Kowalski, Predi
ate Logi
 as a Programming Language, Information Pro
ess-ing '74 (J.L. Rosenfeldt, ed.), North Holland, 1974, pp. 569�574.[94℄ , Algorithm=Logi
+Control, Communi
ations of the ACM 22 (1979), no. 7,424�436.[95℄ R.A. Kowalski and D. Kuehner, Linear Resolution with Sele
tion Fun
tion, Arti�-
ial Intelligen
e 2 (1971), no. 3,4, 227�260.[96℄ D. Kozen, Results on the Propositional mu-Cal
ulus, Theoreti
al Computer S
ien
e27 (1983), 333�354.[97℄ S. Kripke, Semanti
al analysis of modal logi
, Zeits
hrift für Mathematis
he Logikund Grundlagen der Mathematik 9 (1963), 67�96.[98℄ P.D. Laird, Learning from good and bad data, Kluwer A
ademi
 Publishers, 1988.

288 Bibliography[99℄ N. Lavra
 and S. Dzeroski, Indu
tive Logi
 Programming: Te
hniques and Appli-
ations , Ellis Horwood, 1994.[100℄ N. Lavra
, S. Dzeroski, V. Pirnat, and V. Krizman, Learning rules for early di-agnosis of rheumati
 diseases, Pro
eedings of the 3rd S
andinavian Conferen
e onArti�
ial Intelligen
e, IOS Press, Amsterdam, 1992, pp. 138�149.[101℄ N. Lavra
, I. Kononenko, E. Keravnou, M. Kukar, and B. Zupan, Intelligent DataAnalysis for Medi
al Diagnosis: Using Ma
hine Learning and Temporal Abstra
-tion, AI Communi
ations 11 (1998), no. 3�4, 191�218.[102℄ O. Li
htenstein and A. Pnueli, Che
king that �nite state
on
urrent Programs sat-isfy their linear Spe
i�
ations, Pro
eedings of the 12th ACM Symposium on Prin-
iples of Programming Languages, ACM, 1985, pp. 97�107.[103℄ O. Li
htenstein, A. Pnueli, and L. Zu
k, The Glory of the Past, Logi
s of Programs(R. Parikh, ed.), Springer Verlag, 1985, Le
ture Notes in Computer S
ien
e 193,pp. 196�218.[104℄ H. Liebig and S. Thome, Logis
her Entwurf digitaler Systeme, third ed., SpringerVerlag, 1996, (in German).[105℄ J.W. Lloyd, Foundations of Logi
 Programming, Springer Verlag, 1987.[106℄ M. Lothaire, Algebrai
 Combinatori
s on Words, Cambridge University Press, 2002.[107℄ D.W. Loveland, Me
hani
al Theorem Proving by Model Elimination, Journal of theACM 15 (1968), no. 2, 236�251.[108℄ , A simpli�ed Format for the Model Elimination Theorem-Proving Pro
e-dure, Journal of the ACM 16 (1969), no. 3, 349�363.[109℄ M. Maidl, The Common Fragment of CTL and LTL, Pro
eedings of the 41th An-nual Symposium on Foundations of Computer S
ien
e (FOCS '00), 2000, pp. 643�652.[110℄ Z. Manna and A. Pnueli, The Temporal Logi
 of Rea
tive and Con
urrent Systems:Spe
i�
ation, Springer Verlag, 1992.[111℄ Z. Manna and P. Wolper, Synthesis of
ommuni
ating Pro
esses from TemporalLogi
 Spe
i�
ations, ACM Transa
tions on Programming Languages and Systems6 (1984), no. 1, 68�93.[112℄ K. Marriott and H. Sondergaard, On prolog and the o

ur
he
k problem, ACMSIGPLAN Noti
es 24 (1989), no. 5, 76�82.[113℄ A. Martelli and U. Montanari, An E�
ient Uni�
ation Algorithm, ACM Transa
-tions on Programming Languages and Systems 4 (1982), no. 2, 258�282.

Bibliography 289[114℄ W. May and P.H. S
hmitt, A Tableau Cal
ulus for First�Order Bran
hing TimeLogi
, Pro
eedings of the International Conferen
e on Formal and Applied Pra
ti
alReasoning, FAPR-96, Springer Verlag, 1996, Le
ture Notes in Computer S
ien
e1085, pp. 399�413.[115℄ R. Mooney, P. Melville, L. Tang, J. Shavlik, I. Dutra, D. Page, and V. SantosCosta, Relational Data Mining with Indu
tive Logi
 Programming for Link Dis
ov-ery, Pro
eedings of the National S
ien
e Foundation Workshop on Next GenerationData Mining, 2002.[116℄ , Relational Data Mining with Indu
tive Logi
 Programming for Link Dis-
overy, Data Mining: Next Generation Challenges and Future Dire
tions (H. Kar-gupta, A. Joshi, K. Sivakumar, and Y. Yesha, eds.), AAAI Press, 2004, pp. 239�254.[117℄ B. Moszkowski, Exe
uting Temporal Logi
 Programs, Te
h. Report Te
hni
al Re-port No. 55, University of Cambridge, Computer Laboratory, 1984.[118℄ S. Muggleton, Indu
tive Logi
 Programming, A
ademi
 Press, 1992.[119℄ , Inverse Entailment and Progol, New Generation Computing 13 (1995),245�286.[120℄ S. Muggleton and L. de Raedt, Indu
tive Logi
 Programming: Theory and Methods,Journal of Logi
 Programming 19,20 (1994), 629�679.[121℄ S. Muggleton and C. Feng, E�
ient Indu
tion of Logi
 Programs, Pro
eedings ofthe �rst Conferen
e on Algorithmi
 Learning Theory, Ohmsma, 1990, pp. 368�381.[122℄ S. Muggleton, King, and M.J.E. Sternberg, Predi
ting protein se
ondary stru
tureusing indu
tive logi
 programming, Protein Engineering 5 (1992), 647�657.[123℄ D.E. Muller, In�nite Sequen
es and �nite Ma
hines, Pro
eedings of the 4th IEEESymposium on Swit
hing Cir
uit Theory and Logi
 Design, 1960, pp. 3�16.[124℄ B.K. Natarajan, On learning Boolean fun
tions, Pro
eedings of the nineteenth an-nual ACM
onferen
e on Theory of
omputing, ACM, 1987, pp. 296�304.[125℄ I. Niemelä and P. Simons, Smodels - an implementation of the stable model and well-founded semanti
s for normal logi
 programs., Pro
eedings of the 4th InternationalConferen
e on Logi
 Programming and Nonmonotoni
 Reasoning, Springer Verlag,1997, Le
ture Notes in Computer S
ien
e 1265, pp. 420�429.[126℄ S.-H. Nienhuys-Cheng and R. de Wolf, Foundations of Indu
tive Logi
 Program-ming, Springer Verlag, 1997.[127℄ S.-H Nienhuys-Cheng, P.R.J. van der Laag, and L. van der Torre, Constru
tingRe�nement Operators by De
omposing Logi
al Imppli
ation, Pro
eedings of the 3rdConferen
e of the Italian Asso
iation for Arti�
ial Intelligen
e, AI∗IA�93, SpringerVerlag, 1993, Le
ture Notes in Computer S
ien
e 728, pp. 178�189.

290 Bibliography[128℄ R.P. Otero, Indu
tion of Stable Models, Pro
eedings of the 15th International Con-feren
e on Indu
tive Logi
 Programming, Springer Verlag, 2001, Le
ture Notes inComputer S
ien
e 2175, pp. 193�205.[129℄ M.S. Paterson and M.N. Wegman, Linear Uni�
ation, Journal of Computer andSystem S
ien
es 16 (1978), 158�167.[130℄ P.Baumgartner and U. Furba
h, Hyper Tableaux and Disjun
tive Logi
 Program-ming, ICLP 96 Workshop on Dedu
tive Databases and Logi
 Programming, vol.295, GMD, 1996.[131℄ J. Pearl, Capa
ity and Error Estimates for Boolean Classi�ers with limited Ca-pa
ity, IEEE Transa
tions on Pattern Analysis and Ma
hine Intelligen
e 1 (1979),no. 4, 350�355.[132℄ J. Pearl and L.G. Valiant, Computational Limitations on Learning from Examples,Journal of the ACM 35 (1988), no. 4, 965�984.[133℄ G.D. Plotkin, A Note on Indu
tive Generalization, Ma
hine Intelligen
e 5 (1970),153�163.[134℄ , A Further Note on Indu
tive Generalization, Ma
hine Intelligen
e 6 (1971),101�124.[135℄ A.D. Pro
a

ia and J.S. Rosens
hein, Exa
t VC�Dimension of Monotone Formulas,Neural Information Pro
essing�Letters and Reviews 10 (2006), no. 7, 165�168.[136℄ R. Quinion, M.-O. Cordier, G. Garrault, and F. Wang, Appli
ation of ILP toCardia
 Arrhythmia Chara
terization for Chroni
le Re
ognition, Pro
eedings of the15th International Conferen
e on Indu
tive Logi
 Programming, Springer Verlag,2001, Le
ture Notes in Computer S
ien
e 2175, pp. 220�227.[137℄ J.R. Quinlan and R.M. Cameron-Jones, Foil: A midterm report, Pro
eedings ofthe 6th European Conferen
e on Ma
hine Learning, Le
ture Notes in Arti�
ialIntelligen
e, vol. 667, Springer-Verlag, 1993, pp. 3�20.[138℄ M.O. Rabin, De
idability of se
ond�order Theories and Automata on in�nite Trees,Transa
tions of the Ameri
an Mathemati
al So
iety 141 (1969), 1�35.[139℄ M. Reynolds and C. Dixon, Handbook of temporal reasoning in arti�
ial intelligen
e,Foundations of Arti�
ial Intelligen
e, vol. 1,
h. Theorem�Proving for Dis
reteTemporal Logi
, Elsevier, 2005.[140℄ J.A. Robinson, A Ma
hine-Oriented Logi
 Based on the Resolution Prin
iple, Jour-nal of the ACM 12 (1965), no. 1, 23�41.[141℄ Y. Sakai and A. Maruoka, Learning monotone log-term DNF formulas, Pro
eedingsof the seventh annual
onferen
e on Computational learning theory, ACM, 1994,pp. 165�172.

Bibliography 291[142℄ M. S
hmidt-S
hauss, Impli
ation of Clauses is Unde
idable, Theoreti
al ComputerS
ien
e 59 (1988), 287�296.[143℄ K. S
hneider, Veri�
ation of rea
tive systems � formal methods and algorithms,Texts in Theoreti
al Computer S
ien
e (EATCS Series), Springer, 2003.[144℄ M. Sebag and C. Rouveirol, Constraint Indu
tive Logi
 Programming, Advan
es inIndu
tive Logi
 Programming (L. De Raedt, ed.), IOS Press, 1996, pp. 277�294.[145℄ E.Y. Shapiro, An Algorithm that Infers Theories from Fa
ts, Pro
eedings of the 7thJoint Conferen
e on Arti�
ial Intelligen
e (IJCAI-81), Morgan Kaufmann, 1981,pp. 446�451.[146℄ , Indu
tive Inferen
e of Theories from Fa
ts, Te
h. Report Resear
h Report192, Yale University, 1981.[147℄ J.R. Shoen�eld, Mathemati
al Logi
, Addison-Wesley, 1967.[148℄ G.M Shutske, F.A. Pierrat, K.J. Kapples, M.L. Cornfeldt, M.R. Szew
zak,F.P. Huger, G.M. Bores, V. Haroutunian, and K.L. Davis, 9�Amino�1,2.3.4�Tetrahydroa
ridin�1�ols: Synthesis and Evaluation as Potential Alzheimer's Dis-ease Therapeuthi
s, Journal of Medi
ini
al Chemistry 32 (1989), no. 8, 1805�1813.[149℄ A.P. Sistla, M.Y. Vardi, and P. Wolper, The Complementation Problem for Bü
hiAutomata with Appli
ations to Temporal Logi
, Theoreti
al Computer S
ien
e 49(1987), no. 2,3, 217�237.[150℄ F. Somenzi and R. Bloem, E�
ient Bü
hi automata from LTL Formulae, Pro
eed-ings of the 12th International Conferen
e on Computer Aided Veri�
ation (CAV'00), Springer Verlag, 2000, Le
ture Notes in Computer S
ien
e 1855, pp. 248�263.[151℄ A. Srinivasan, S. Muggleton, R.D. King, and M.J.E. Sternberg, Mutagenesis: ILPexperiments in a non-determinate biologi
al domain, Pro
eedings of the 4th Interna-tional Workshop on Indu
tive Logi
 Programming (S. Wrobel, ed.), GMD-Studien,vol. 237, Gesells
haft für Mathematik und Datenverarbeitung MBH, 1994, pp. 217�232.[152℄ A. Srinivasan, S. Muggleton, R.D. King, and M.J.E. Sternberg, The e�e
t of ba
k-ground knowledge in indu
tive logi
 programming: A
ase study, Te
h. report, PRG-TR-9-95 Oxford University Computing Laboratory, 1995.[153℄ , Theories for mutagene
ity: A study of �rst-order and feature based indu
i-ton, Te
h. report, PRG-TR-8-95 Oxford University Computing Laboratory, 1995.[154℄ L. Sterling and E. Shapiro, The Art of Prolog, MIT Press, 1997.[155℄ J.S. Street, Propositional dynami
 Logi
 of Looping and Converse is elementarilyde
idable, Information and Control 54 (1982), no. 1/2, 121�141.

292 Bibliography[156℄ R.E. Tarjan, Depth �rst sear
h and linear graph algorithms, SIAM Journal of Com-puting 1 (1972), no. 2, 146�160.[157℄ L.G. Valiant, A Theory of the Learnable, Communi
ations of the ACM 27 (1984),no. 11, 1134�1142.[158℄ , Learning Disjun
tion of Conjun
tions, Pro
eedings of the 9th InternationalJoint Conferen
e on Arti�
ial Intelligen
e, Morgan Kaufman, 1985, pp. 560�566.[159℄ P.R.J. van der Laag, A Most General Re�nement Operator for Redu
ed Senten
es,Te
h. Report Dis
ussion Paper No. 123, Erasmus University Rotterdam, Fa
ultyof E
onomi
s, 1992.[160℄ P.R.J. van der Laag and S.-H Nienhuys-Cheng, Subsumption and Re�nement inModel Inferen
e, Pro
eedings of the 6th European Conferen
e on Ma
hine Learning,ECML�93, Springer Verlag, 1993, Le
ture Notes in Computer S
ien
e 667, pp. 95�114.[161℄ , A Note on ideal Re�nement Operators in ILP, Pro
eedings of the 4thInternational Workshop on Indu
tive Logi
 programming, ILP�94, Gesells
haft fürMathematik und Datenverarbeitung, 1994, GMD�Studien 237, pp. 247�262.[162℄ P.R.J. van der Laag and S.-H. Nienhuys-Cheng, Existen
e and nonexisten
e of
omplete re�nement operators, Pro
eedings of the 7th International Conferen
e onMa
hine Learning (F. Bergadano and L. De Raedt, eds.), Le
ture Notes in Arti�
ialIntelligen
e, vol. 784, Springer Verlag, 1994, pp. 307�322.[163℄ P.R.J. van der Laag and S.-H Nienhuys-Cheng, Completeness and Properness ofRe�nement Operators in Indu
tive Logi
 Programming, Journal of Logi
 Program-ming 34 (1998), no. 3, 201�225.[164℄ M.H. van Emden and R.A. Kowalski, The Semanti
s of Predi
ate Logi
 as a Pro-gramming Language, Journal of the ACM 23 (1976), no. 4, 733�742.[165℄ J. van Heijenoort (ed.), From Frege to Gödel: A Sour
e Book in Mathemati
al Logi
1879�1931, Harvard University Press, 1977.[166℄ V.N. Vapnik and A.Y. Chervonenkis, On the Uniform Convergen
e of Relative Fre-quen
ies of Events to their Probabilities, Theory of Probability and its Appli
ations16 (1971), no. 2, 264�280.[167℄ M.Y. Vardi and P. Wolper, An automata-theoreti
 Approa
h to automati
 ProgramVeri�
ation, Pro
eedings of the 1st Symposium on Logi
 in Computer S
ien
e,Cambridge University Press, 1986, pp. 322�331.[168℄ , Reasoning about in�nite Computations, Information and Computation 115(1994), no. 1, 1�37.

Bibliography 293[169℄ G. Venkatesh, A De
ision Method for Temporal Logi
 based on Resolution, Pro
eed-ings of the 5t
 Conferen
e on Foundations of Software Te
hnology and Theoreti
alComputer S
ien
e, Springer Verlag, 1985, Le
ture Notes in Computer S
ien
e 206,pp. 272�289.[170℄ A.N. Whitehead and B. Russell, Prin
ipia Mathemati
a, Cambridge UniversityPress, 1927.[171℄ P. Wolper, Temporal Logi

an be more expressive, Information and Computation56 (1983), no. 1�2, 72�99.[172℄ , Constru
ting Automata from Temporal Logi
 Formulas: A Tutorial, Le
-tures on Formal Methods in Performan
e Analysis (First EEF/Euro Summer S
hoolon Trends in Computer S
ien
e), Le
ture Notes in Computer S
ien
e, vol. 2090,Springer-Verlag, July 2001, pp. 261�277.[173℄ S. Wrobel, Indu
tive Logi
 Programming for Knowledge Dis
overy in Databases,Relational Data Mining (S. Dzeroski and N. Lavra
, eds.), Springer Verlag, 2001,pp. 74�104.[174℄ Y. Xu, X. Song, E. Cerny, and O.A. Mohamed, Model Che
king for a First�OrderTemporal Logi
 using Multiway De
ision Graphs, The Computer Journal 47 (2004),no. 1, 71�84.

294 Bibliography

Index
<, 116
<s, 117
%, 213
A, 14
A(sig), 14a

essibility relation, 26a
tual world, 26adequate, 193alphabet, 192answer, 40, 59
omputed, 40
orre
t, 40, 59arity, 14atom, 14ground, 65temporal, 24automatonBü
himodi�ed, 193properties, 195generalized Bü
hi, 194ba
kground knowledge, 45binding priorities, 10
lause, 30empty, 30ground, 66unit, 30
losed, 98
losedness, 98Closure, 198
ompa
tness theorem, 12
ompatible, 133
omplete, 44, 48
NP , 12

o�NP�, 12
omponentmaximal strongly
onne
ted, 210maximal strongly
onne
tednon�trivial, 210Computation Tree Logi
, 264
on
ept, 170
on
ept
lass, 170
onne
tives�rst order, 27
onsequen
elogi
al, 11, 18, 23, 28
onsistent, 44
orre
t, 44Ctl, 264Ctl∗, 264de
idable, 12derivationSLD�, 39derivation�stepSLD�, 38Det, 258Dom, 34domain, 34
dup, 156EBNF, 267equivalen
esemanti
al, 10error, 172Ev, 209evaluation, 9of formulas, 16of terms, 16, 26evaluation fun
tion, 9

296 Indexeventualities, 200example, 171
lassi�ed, 171negative, 171positive, 171Extended Ba
kus Naur Form, 267F, 20, 24
F , 15
F(X), 8
F(sig), 15
F , 88fa
t, 30Prolog(+T)�, 55false, 8�niteness theorem, 11FoLtl, 23formula, 8, 15, 24atomi
, 14
losed, 67universally, 67ground, 65Free, 66fun
tionarity�, 14G, 20, 24
Γd, 220
Γu, 217generalization, 46least, 46of literals, 121of rules, 129goal, 30graphlabeled, 129GSS, 119, 128Herbrand�base, 66Herbrand�universe, 66horn
lause, 30de�nite, 30ideal, 48ILP, 43

interpretation, 15, 25temporal, 21, 25
LFoLtl, 119language

ω, 192a

epted, 194latti
e, 47learner, 171learning algorithm, 171learning algorithm
onsistent, 172lengthof a path, 133letter, 192LGS, 121, 134list, 53empty, 54head, 54tail, 54Literal, 136literal, 15ground, 65negative, 30positive, 30temporal, 24lo
ally �nite, 48logi
�rst order, 12predi
ate, 12propositional, 7temporal, 19�rst order, 19propositional, 19Logi
 Programming, 29Indu
tive, 43Ltldet, 256Ltln,c,t,det, 256Ltln,c,t, 254Ltl, 20maximumof a state, 237MD, 10

Index 297mgu, 37mintermmaximal, 214MinTerms(X), 214model, 10, 17, 22, 28
Lµ, 264NDet, 258Neg, 30negation�normal�form, 197NNF, 197node, 129
losed, 98
ompletely instantiated, 100disjun
tively expanded, 100father, 88fun
tion, 129predi
ate, 129son, 88tableaux, 88initial, 89temporal, 129O

, 145o

urren
e, 145operatorAlways�, 20Eventually�, 20Next�state�, 20Release�, 20Until�, 20orderimpli
ation, 213subsumption, 116overly general, 44overly spe
i�
, 45P, 24
Ψd, 220
Ψu, 215
P≤c,t,l,o, 177
P≤c,t,l,o
on , 183
Prr≤c,t,l,o, 183
p(T (I)), 70
PM , 82

PAC�
riterion, 174PAC�learnability, 174path, 88, 131
losed, 98�nite, 88in�nite, 88length of, 88maximal, 109open, 98
ΠC , 175Pos (positions), 76, 156Pos (positive literals), 30possible worlds, 25produ
t
onstru
tion, 201program, 31Prolog(+T)�, 57
onstrained, 183range�restri
ted, 183Prolog, 51Prolog(+T), 52proper, 48quanti�erexisten
e, 15universal, 15quanti�ers, 15quasi ordering, 46query, 30Prolog(+T)�, 59R, 20Red, 81redu
tion, 78Re�nementdownwardmaximal, 218upwardminimal, 213re�nement, 48

n�step, 481�step, 48re�nement operator, 47downward, 47for literals, 142

298 Indexfor rules, 150upward, 48for literals, 144for rules, 157refutationSLD�, 39repla
ement, 77Resolution, 33SLD�, 33resolvent, 38rule
↔�type, 94
¬�elimination, 94
→�type, 94
∨�type, 94
∧�type, 93Prolog(+T)�, 55
onstrained, 183expansion, 89head, 56quanti�er�elimination, 94range�restri
ted, 183rewrite, 94saturation, 94substitution, 94tail, 56

S∞, 193sample, 171
onsistent, 171length, 171sample
omplexity, 171satis�ability, 28satis�ability problem, 12satis�able, 11, 17, 22semanti
spossible worlds, 25Seq, 199Set, 157set temporal Hintikka, 107temporally
losed, 68shattered, 175signature, 13

spe
ialization, 46greatest, 47of literals, 119of rules, 125standardized apart, 58statetemporal, 21States, 193states, 25subgoal, 30subgraphmaximal strongly
onne
ted, 210substitution, 34
omposition, 35empty, 36subsumption, 116, 125symbol�exible, 25fun
tion, 13predi
ate, 13rigid, 25variable, 13
T , 14
T (sig), 14
TFoLtlP , 83Tail, 126TempClosure, 71temporally
losed, 68Term, 135term, 14Prolog(+T), 52ground, 65simple, 145Terms, 144
ΘL
d , 143

ΘR
d , 150

ΘL
u , 145

ΘR
u , 157

ΘP , 85
T (I), 69timebran
hing, 19linear, 19

Index 299too strong, 44too weak, 44
T (P), 84Tree, 129true, 8U, 20, 24uni�able, 37uni�er, 37most general, 37universe, 16, 25unsatis�ability, 28unsatis�able, 11, 17, 22
V (π), 70Val, 9valid, 11, 17, 22validity, 28valuation, 9Var, 54variable, 8anonymous, 53free, 66propositional, 8variant, 36VCDim, 175VC�Dimension, 175word

ω, 192a

epted, 194in�nite, 192X, 20, 24

