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1. Introduction

The field of Inductive Logic Programming (see [121], [119], [120], [118], [99] and [126]) is
an area of active research. Inductive Logic Programming (ILP) deals with the topic of
extracting a suitable explanation of a phenomenon from finite sets of examples. While
this is the basic topic in most areas of Artificial Intelligence (Al), the target concept in
ILP (i.e. the phenomenon to be learned) is a logic program. Logic programs are finite
sets of clauses which allow a very natural interpretation as declarations of procedural

rules. While this natural interpretation of a clause
A — Bl, ceey Bn

is “to solve the task A, solve the sequence By, ..., By of subtasks”, the interpretation in
ILP is more rule based: if x1,...,x, are the variable symbols occurring in the head of
the clause (i.e. in A), then x1,...,2, will be assumed to have the property A if they
have the properties By,...,B,. This gives the interpretation “if By,..., B, hold, then
A does also hold”.

Since the concepts of interest are logic programs, examples for any ILP based learning
system can (or should) be ground atoms. Each such example can be either a positive or

a negative example: if P is the program to be learned and e is an example, then
e if e is positive, then P = e and

o if e is negative, then P [~ e.
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ILP techniques have been applied in many branches of science, notable in computa-

tional biology. There, several areas of application have been identified, notably
e Drug activity comparison (see [88], [148], [24] and [87]),
e Diagnosis of rheumatic diseases (see [33] and [100]),
e Mutagenesis prediction (see [40], [151], [152] and [153]),

e Protein structure prediction (see [122] and [86]) and

Design of Medical Diagnosis Tools (see [136] and [101]).

Other areas of application are prediction of strategies for chess games (see [16]), finite
element methods (see [50], |52], [51], |54] and |55]), data mining (see [173], [115] and
[116]) and learning models for dynamic systems (see [25] and [55]).

This thesis deals with a natural extension of the classical ILP paradigm, namely syn-
thesizing temporal logic programs from given examples. Temporal Logic is a natural way

to describe relations which may change over time. We will distinguish two different areas:

Propositional Inductive Temporal Logic Programming Here the language used in or-
der to describe the programs is LTL, a simple temporal logic language allowing the
use of operators such as X, G, F, U and R for modeling time-dependent relations.
LrL is very popular in the fields of Model Checking and Supervisory Control. We
will exploit the fact that each LTL formula can be represented as a nondetermi-
nistic Biichi-automaton (an automaton accepting infinite sequences of letters) in
order to define operators which manipulate such an automaton in order to fit the

specification given by the examples.

First Order Inductive Temporal Logic Programming Here the language of interest is
much more flexible and expressive than in the propositional case. The major draw-

back is the undecidability of first order logic (which has been proven by Church in
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1936) and therefore of the full first order temporal logic. To keep first order tem-
poral logic tractable, we identify a simple extension of a PROLOG style language
which allows the usage of temporal the operators X, G, F, U and P in front of literals.
We will see that this programming language (which we will call PROLOG(+T')) has
a very natural procedural interpretation in terms of some well known rewrite rules
for temporal logic formulas. These rules will be used in order to give a saturation

based calculus.

The main part of this thesis will be devoted to the field of First Order Inductive
Temporal Logic Programming. We will see that the lattice properties (with respect to
the subsumption—ordering) of first order atoms, literals and clauses can be extended to
ProOLOG(+T) atoms, literals and clauses. So the existence of least generalizations and
greatest specializations of PROLOG(+T')—clauses can be ensured. We will give algorithms
which allow the computation of such generalizations and specializations and use the tech-
niques from these algorithms in order to define refinement operators for ProLoG(+T)
programs.

The thesis is structured as follows: in the first part we will define some basic notations
from first order logic, temporal logic and logic programming. The chapters in this first
part are kept rather short since we assume that the reader is familiar with these topics.
After having introduced these basic concepts we will briefly introduce some concepts
from the field of ILP.

The second part is dedicated to an in depth treatment of First Order Temporal ILP.
This includes the definition of PROLOG(+T) and the discussion of its declarative se-
mantics. Having achieved this, we will present a proof procedure, discuss the lattice
properties of PROLOG(-+T) objects and study refinement operators.

The third part is then dedicated to Propositional Temporal ILP. After having defined
basic concepts from the field of w—automata, we will present two operations for refining

L1 programs by manipulating their representing automata. The final chapter of this
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third part will be devoted to the question of the complexity of the identification task.
Therefore we will derive upper bounds for the VC dimension of certain classes of LTL

programs. These VC dimensions allow a direct extraction of the number of examples
which are needed in order to identify the program under consideration (or more precise:

a program which is equivalent to the program under consideration).



Part |I.

Temporal Logic and (inductive)

Logic Programming






2. Preliminaries

Contents
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2.3.2. First Order Temporal Logic . . . . .. .. ... ... ... ... 23

In this chapter we will briefly define and review some of the basic and most important
concepts which we will use throughout the rest of this thesis. This includes propositional
logic, first order logic and temporal logic. Each of these three logics is equipped with
both a semantical consequence relation which we will as usual denote as . The three
logics will be defined by first defining the sets of formulas which can be built from
some atomic objects and connectives and can be seen as a more or less detailed way to
describe mathematical concepts in a syntactic way. The properties of the logics are only
mentioned. We will not prove them since the literature on propositional, first order and

temporal logic is rich (see [18], [147], |31], [20], [89] and [56]).

2.1. Propositional Logic

The simplest logic which we will define is the classical propositional logic. Propositional

logic is a formalism which has been studied very well. Early studies were done by
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Boole (see [23]) in the 19th century. But to this date the study of propositional logic
was motivated by the circumstance that researchers wanted to formalize the process
of mathematical reasoning. Propositional logic seemed to be a good starting point for
such formalizations. Later the usefulness of propositional logic for the description of
electrical and electronical circuits was pointed out. We refer to [104] for an introduction
to applications of propositional logic.

Now assume that a countable infinite set X = {p; | i € N} is given. Each element of X
will be called a propositional variable or simply a variable if there is no way of confusion.
Formulas of the propositional language defined over X are defined inductively as follows

(roughly following the treatment from [20]).

Definition 2.1.1 (Propositional Logic)
Let a set X of propositional variables be given. The set of formulas over X is defined

as:

1. true and false are formulas,
2. each p € X is a formula,
3. if ¢ is a formula, then —¢ is a formula and

4. if o7 and g are formulas, then so are (¢1 A ¢2), (1 V ¢2), (g1 — ¢2) and

(1 < @2).

The set of all formulas over X will be denoted as F(X).

The above definition of propositional formulas models the syntactic level of propo-
sitional reasoning. To model the semantic part, i.e. the logical consequence relation,
we will now define a way to evaluate propositional formulas to values 1 (identified as

true) and O (identified as false). This will be done using a suitable concept of evaluation
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functions.

Definition 2.1.2 (Evaluation)
Let X be a set of propositional variables. An ewvaluation for X is a function v :
X U{true,false} — Zy (where Zy denotes the Galois field of cardinality 2) satisfying

v(true) = 1 and v(false) = 0.

The concept of an evaluation can now be extended to functions ¢ : F(X) — Zg in the

obvious (homomorphic) way. Let ¢ € F(X) be any formula. Then
1. if p =p € X, then 0(p) = v(p),
2. if ¢ = =, then 0(p) = 1 — (),
3. if o = (p1 A gp2), then 0(p) = min {o(e1),5(2)},
4. if v = (1 V p2), then 9(p) = max {d(p1), 9(p2)},
5. if ¢ = (p1 — 2), then 9(p) = max {d(—¢1), 0(p2)} and

6. if o = (p1 + 2), then 9(p) = min {(p1 — 2),0(p2 — ©1)}-

Since there is no way of confusion we will from now on identify ¢ and v writing v(y)
for the result of 9(¢) for any formula ¢ € F(X). The set of all evaluations (or valuations
from now on) will be denoted as VAL.

For the sake of simplicity we will introduce two more concepts:

1. Let ¢1,..., ¢y, be any finite sequence of formulas from F(X). Then the formulas

N1 @i and /[, ¢; are defined as

n n—
Nei = (cpn A ‘Pz’) and
=1 i=

—_

—_

T <<=
s
Il

N
©
S
<

<7

i
s

N———
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2. We assume that the connectives have the following binding priorities:

a) — has a higher binding priority than A,
b) A has a higher binding priority than V,
¢) V has a higher binding priority than — and

d) — has a higher binding priority than «.

Applying the binding priority rules allows the omission or brackets in many formulas

which improves the readability. For example, the formula

(=p1 V (p2 Ap3)) — pa

can be written as

—p1 Vp2 Aps — py

Now let ¢ be any formula. A valuation v is called a model of ¢ if and only if v(p) = 1.
The set of all models of ¢ will be denoted as MD(p)'. Similarly for sets ® of formulas
we define a valuation v to be a model of @ if v(p) = 1 for every ¢ € ®. We then have
MD(®) = e MD(2).

We will call pairs (o1, 2) € F(X)? (semantically) equivalent (written @1 = ) if and
only if v(p1) = v(p2) for every valuation v. Equivalently we could define semantical

equivalence as follows:

p1 =9 if and only if {p1} | w2 and {p2} E ¢1

if and only if 0 = ¢1 < 9

'So MD(y) = {v € VAL | v(¢) = 1}.



2.1 Propositional Logic 11

where |= denotes the semantical consequence relation which will be defined below.
Note that = is an equivalence relation on F(X). Furthermore note that ¢ = ¢y if
and only if MD(yp1) = MD(p2).

A formula ¢ € F(X) is called
o satisfiable if MD(yp) # 0,
e valid if MD(¢) = VAL and
e unsatisfiable if MD(yp) = ().
Similar concepts can be defined for sets of formulas. A set ® C F(X) is called
e satisfiable if MD(®) # 0,
e valid if MD(®) = VAL and
e unsatisfiable it MD(®) = ().

Satisfiable sets of propositional formulas can be characterized by Theorem 2.1.1 which

is commonly known as the finiteness theorem.
Theorem 2.1.1 (Finiteness Theorem)

Let & C F(X) be a set of formulas. Then ® is satisfiable if and only if every finite set

U C @ is satisfiable.

The concept of logical consequence is commonly modeled as follows: A formula ¢ is a

logical consequence of a set ® C F(X) if every model of ® is also a model of .

Definition 2.1.3 (Logical Consequence)
Let ® C F(X) be a set of formulas and let ¢ € F(X) be a formula. Then ¢ is a
logical consequence of ® (written as ® = ¢) if and only if for every v € VAL such as

v(®) C {1}? it holds that v(p) = 1.
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Equivalently one can define ® = ¢ if and only if MD(®) C MD(yp). Moreover we can
define the following: Let ® be as above and let ¥ C F(X) be any set of formulas. Then
® = U if and only if & = 1) for every ¢ € W. If ¥ is a finite set, say ¥ = {¢1, ..., ¢, },
then ® |= W if and only if ® = A", ;.

Equivalently one can use the following characterization of unsatisfiable sets of formulas.
Theorem 2.1.2

Let ® C F(X) be a set of formulas. Then ® is unsatisfiable if and only if ® |= false.

The logical consequence relation enjoys the following nice properties.

Theorem 2.1.3

Let ® C F(X) be a set of formulas and let ¢ € F(X) be a formula. Then
1. & =@ if and only if ® U {—¢} |~ false.
2. If @ |= false, then there is a finite set ¥ C ® such that ¥ |= false.

Part 2 of Theorem 2.1.3 is also known as the compactness theorem. 1t is an easy
corollary of Theorem 2.1.1.

For finite sets ® C F(X) of propositional logic formulas and formulas ¢ € F(X) it
is decidable whether ® = ¢ holds or not. However, the related satisfiability problem
is NP complete (see [38] and [71]), that is one cannot (or better should not) hope
for efficient procedures which are capable of deciding if a formula ¢ (or a set of ®
formulas) is satisfiable. Moreover the problem of deciding the logical consequence relation

is co — NP complete which indicates that is in some sense even more difficult to decide

than satisfiability.

2.2. First Order Logic

In contrast to propositional logic, first order logic or (first order) predicate logic allows a

more precise formalization of (mathematical) relations. Using a more flexible language of
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logic was motivated by the limitations arising from the usage of propositional logic. For
example propositional logic only allows reasoning about propositions, i.e. things which
are either true or false. But in Mathematics the truth or falsity of a proposition often
depends on the values of certain variables occurring as inputs to functions. For example
the formula f(xz) = 0 should be evaluable to true or false. But the truth value of this

formula depends on

e the function which is represented by the function—symbol f and

e the value which is assigned to the variable x.

So propositional logic is not an adequate formal system for modeling this formula. Early
studies of first order logic were presented at the beginning of the 20th century e.g. by
Frege (see [69]), Gentzen (see [75]), Russell and Whitehead (see [170]) and several others.
At this point of time sound and complete calculi have been developed. But practical
applications arose much later.

As we have already pointed out formulas are not built from propositions alone but
from a more general concept which we will call atomic formulas or simply atoms from
now on. Therefore we will have to refine the syntax of the logical language to be used in
a suitable way.

Recall that in the case of propositional logic, the syntax (i.e. the formulas of a logical
language) only depends on the set X of propositional variables. A similar concept for

first order logic is given by the concept of signatures.
Definition 2.2.1 (Signature)
A signature is a tuple sig = (X, F, P,«) where

1. X ={z; | i €I for some set I C N of indices} is a countable set of variable sym-

bols,

2. F and P are finite sets of function resp. predicate symbols and
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3. a: FUP — N is a function which maps each symbol to a natural number (its

arity) and is therefore called the arity function.

If o € FUP is a function— respectively predicate-symbol and «(o) = n for some
n > 0, we will say that o has arity n. In the case that n = 0 we will also say that o is a
constant symbol.

The simplest objects which can be built from a signature are terms.

Definition 2.2.2 (Terms)
Let sig = (X, F, P,«) be a signature. The set 7 (sig) (or simply 7) of terms over sig

is defined inductively as follows:
1. each z € X' is a term and

2. if f € F is a function symbol, n = a(f) and t1,...,t, € T are terms, then so is

ft1, ... tn).

Formulas are now defined to be either atomic ones or formulas composed from simpler

ones.

Definition 2.2.3 (Atomic Formulas)
Let sig = (X, F, P,a) be a signature. The set A(sig) (or simply A) of all atomic

formulas (or simply atoms) over sig is defined inductively as follows:
1. true and false are in A and

2. if p € P is a predicate symbol, n = «a(p) and t1,...,t, € 7 are terms, then

p(tl,. .o ,tn) is in A.

In contrast to formulas of the propositional logic language, first order logic formulas

7

are also capable to model terms like “for all x it holds that ...” and “there is an x such
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that ...”. This is achieved by introducing two quantifiers ¥V (the universal quantifier)

and 3 (the existence quantifier).

Definition 2.2.4 (First Order Formulas)
Let sig = (X, F, P,«) be a signature. The set F(sig) (or simply F) of formulas over

sig is defined inductively as follows:
1. every ¢ € Ais a formula,
2. if ¢ is a formula, then so is -,

3. if ¢; and ¢y are formulas, then so are (p1 A @2), (p1 V @2), (p1 — @2) and

(p1 < p2) and

4. if pis a formula and x € X is a variable symbol, then Vzy and Jx¢ are formulas.

Formulas from the set

AU{-p|pec A}

are called [literals. Since the formulas of first order logic allow finer reasoning about
mathematical concepts, their interpretation also has to be more detailed. This includes
the interpretation of the function symbols and the interpretation of the predicate sym-
bols. So the concept of evaluation functions as introduced for propositional logic is not
adequate anymore. An interpretation is given as a tuple consisting of a set of possible
values of the variables (the universe), two mappings assigning functions to the function
symbols and predicates to the predicate symbols and a mapping assigning values to the

variable symbols.
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Definition 2.2.5 (Interpretation)

Let sig = (X, F, P,«) be a signature. An interpretation (for sig formulas) is a tuple

J = (Uj7g7q37w)7

where
1. Uy is a nonempty set of objects (the universe of J),
2. ¥ is a function which maps each f € F to a function f7 : U;(f) — Uy,
3. P is a function which maps each p € F to a predicate p7 : U;(p) — {0,1} and

4. w: X — Uz maps each variable symbol z to an element w(z) € Uy.

Now let J be an interpretation. The evaluation of terms is straightforward depending

on the structure of the term to be evaluated:
1. J(z) =: 27 = w(x) for every x € X and
2. J(f(te,...,tn)) = f7 (t{,...,tnj) for each f(t1,...,ty) € 7.

Having defined how to evaluate terms, every formula can be evaluated in a straight-

forward way:

1 T (ptr, ... ta)) =7 (¢],...,t]) € {0,1},
2. J(=p) =1-=J(e),

3. J(e1 Ap2) =min{JT (¢1), T (¢2)}

4. J(p1Vp2) = max{J (¢1), T (p2)},

5. J(p1 — p2) = max{J (=¢1), T (p2)},
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6. J (p1 < 2) = min {T (o1 — ¥2), T (2 — »1)},
7. J(Vzp) =min {J(¢) |t € Uy} and
8. J(Fxyp) = max{Jé(g&) |t e UJ}.
where J! is defined as J! = (Uz, 3, B, @) with @ : X — U being defined as
w(z) ©T#x
t ST =

We will write J = ¢ if J(p) = 1. Similarly we will write J = ® (for a set ® C F) if
and only if J = ¢ for every p € ®.

As in the case of propositional logic an interpretation 7 is called a model of a formula
¢ (respectively a model of a set ® of formulas) if J = ¢ (respectively J | ®). The set

of all models of ¢ is defined to be

MD(¢) ={T | T I= ¥}

and the set of all models for ® is

MD(®) = (] MD(g).
ped

We will adopt the following terms from propositional logic: A formula ¢ € F is called
e satisfiable if MD(yp) # 0,
e valid if J = ¢ for every interpretation J and
o unsatisfiable if MD(yp) = ().

Similar concepts can be defined for sets of formulas. A set ® C F is called
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e satisfiable if MD(®) # 0,
e yalid if every ¢ € @ is valid and
e unsatisfiable if MD(®) = .

As in the case of propositional logic we define a relation = by defining:

Definition 2.2.6 (Logical Consequence)

Let & C F be a set of formulas and let ¢ € F be a formula. Then ¢ is a logical
consequence of ® (® = ¢) if and only if for every interpretation J such as J(®) =1
it holds that J(¢) = 1.

Again we can express = by ® = ¢ if and only if MD(®) C MD(yp).
The properties of |= are still the same as in propositional logic.

Theorem 2.2.1

Let ® C F be a set of formulas. Then ® is unsatisfiable if and only if ¢ = false.

Theorem 2.2.2

Let ® C F be a set of formulas. Then ® is satisfiable if and only if every finite set ' C ®
is satisfiable.

Theorem 2.2.3

Let ® C F be a set of formulas and let ¢ € F be a formula. Then
1. ® = ¢ if and only if ® U {—p} |= false.
2. If @ |= false, then there is a finite set ¥ C @ such that ¥ |= false.

In contrast to propositional logic, where testing for satisfiability is decidable (but N'P—
complete), testing for satisfiability is undecidable in first order logic. This is due to the

following theorem proved by Church in 1936 (see [32]).
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Theorem 2.2.4

Let ® C F be a set of formulas. Then the following problem is undecidable:
Input:

1 < MD(®)#0
Output:

0 < else

2.3. Temporal Logic

In contrast to the logics which we have introduced so far, temporal logic is concerned
with reasoning about time-dependent properties. An example might be the operator X

which has the following intuitive interpretation:
If ¢ is true at the next point of time, then Xy is true at the current point of time.

Consequently X will be referred to as Next State Operator. Here we can already notice
that in our temporal logics time will be of discrete nature. Consequently any sequence
of points of time can only contain countably many such points.

Again we wish to distinguish temporal logics according to the primitive objects under
consideration. So we will have propositional temporal logic and first order temporal logic
as alternatives while the former is properly contained in the latter. Another possible
criterion of differentiation is between linear time (see |110]) and branching time (see
[58], [59]) logics. Linear time logics allow reasoning about one possible continuation
of the current point of time while branching time logics are equipped with operators
quantifying over sequences of continuations, so called paths (and are therefore called
path quantifiers). We will only consider linear time temporal logics since they are well
suited for our purposes. Perhaps the most prominent of these linear time temporal logics
is LTL which has been subject of both theoretical research and practical applications.

Since temporal logics allow reasoning about time-dependent aspects of objects, the

concept of interpretations will have to be extended to sequences of interpretations. This
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will be the subject of consideration for the rest of this chapter.

2.3.1. Propositional Temporal Logic

Again assume that X is a given set of propositional variables as defined in section 2.1,
that is X = {p; | i« € N}. The language LrL of linear time temporal logic formulas is

built from the language F(X) by introducing several temporal operators.

Definition 2.3.1 (Propositional Linear Time Temporal Logic, e.g. [110])

The language LTL of linear time temporal logic formulas is inductively defined as
L. every ¢ € F(X) is in LTL,
2. if p is in LTI, then so are Xy, Gy and Fy and

3. if 1,9 are in LTL, then so are ¢1Uyps and ¢1Rpa

The temporal operators X, G, F, U and R will have the following intuitive interpretation:

1. Xg: if @ is true at the next point of time, then X¢p is true at the actual point of

time (Next State Operator).
2. Gp: ¢ is true at every point of time (Always—Operator).
3. Fyp: there is a point of time such that ¢ is true at this point (FEventually—Operator).
4. p1Upa: 1 holds until ¢ is true (Until-Operator).
5. p1Rpa: 1 has to be true before @9 is true (Release Operator).

Formally LrL formulas are evaluated in sequences of states each of which is a single
evaluation of the propositional symbols of the language which is defined by the set X.

Sequences of states are assumed to be

e infinite and
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e countable.

So each such sequence is isomorphic to the set N of natural numbers and the time
points in these sequences are discrete. Consequently the set of all sequences of states is

uncountable.

Definition 2.3.2 (Temporal State)

A temporal state is a set s C X.

We can interpret a temporal state s as an evaluation vs : X — Zg defined by

1 ©zxz€s
vs(z) =
0 < else

and extend this evaluation from X to F(X) in the obvious way.
So far we are not able to assign a meaning to the temporal operators G, F, X, U and
P. Therefore we extend the concept of an evaluation (as introduced in section 2.1) to

temporal interpretations defined formally as follows.

Definition 2.3.3 (Temporal Interpretation)
A temporal interpretation (or interpretation for short) is an infinite sequence J =
(80581, -,S4,...) of temporal states.

For j € N the notation J7 will denote the temporal interpretation starting at time

point j, i.e. J7 = (85,8415, Sks--- )

Now let ¢ € LTL be a formula and let J = (s, s1,...,S;,...) be a temporal interpre-

tation. We extend the relation = as follows:

1. if p € X, then J |= ¢ if and only if ¢ € s,
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2. if o = 9, then J | ¢ if and only if J = 1,

3. if o = 1 Apa, then J = ¢ if and only if 7 | ¢1 and J | o,

4. if o = 1 V 9, then J = ¢ if and only if J | 1 or J | ¢2,

5. if o = 1 — @9, then J = ¢ if and only if J £~ @1 or J E @2,

6. if o = X1p, then J = ¢ if and only if J' = 1,

7. if ¢ = Gy, then J |= ¢ if and only for every i > 0 it holds that J* |= 1),
8. if ¢ = Fe, then J |= ¢ if and only if there is 7 > 0 such that J° = 1,

9. if o = Uy, then J |= ¢ if and only if there is i > 0 such that J° = @9 and for

every j such that 0 < j < i it holds that J7 = ¢ and

10. if o = p1Rps9, then J = ¢ if and only if for every i > 0 such that J* £ oo there

is j such that 0 < j < i and J7 |= 1.

As in the case of propositional and first order logic, an interpretation J with J | ¢
for some LTL formula ¢ is called a model of . The set of all models of ¢ is again denoted
as MD(p). As before we define sets ® of formulas to be satisfied by an interpretation J
if every formula in @ is satisfied by J. Formally: J = ® if and only if I = ¢ for each

@ € ®. The notation MD is extended to sets of LTL formulas as before:

MD(®) = (] MD(y).
ped

As before we will call a formula ¢ (respectively a set ® of formulas)
e satisfiable if MD(yp) # 0 (respectively MD(®) # (),
e valid if J = ¢ for each J (respectively if every ¢ € @ is valid) and

o unsatisfiable if MD(p) = ) (respectively MD(®) = ().



2.3 Temporal Logic 23

As one might already expect, there is also an extension of the logical consequence relation

E known from propositional logic to LTL. Again we have

® | p if and only if MD(®) C MD(y).

We will also write ¢ = 9 if the set ® only consists of the single formula ¢, that is
¢ | 1 denotes {¢} | . The properties of = carry over from propositional logic to LTT.
Furthermore we have the following lemma.

Lemma 2.3.1

Let ® be a set of LTr.-formulas and let ¢ be an Lrr.—formula.
1. ® is unsatisfiable if and only if ® |= false.
2. If ® = ¢, then there is a finite subset ¥ C ® such that ¥ = ¢.

In particular, testing for unsatisfiability can be accomplished by applying Lemma 2.3.1.
Corollary 2.3.1
Let ® be a set of LTr—formulas. If ® |= false, then there is some finite subset &y C P

such that ®( = false.

The relation = is again extended in the obvious way: for every pair 1, ps of LTL
formulas we have ¢ = @9 if and only if p1 = @2 and @2 = @7 or equivalently if and only
if MD(p1) = MD(¢p32).

2.3.2. First Order Temporal Logic

This last section of this chapter will deal with the extension of the propositional temporal
logic LTL introduced in chapter 2.3.1 to the field of first order logic. The resulting logic
will consequently be denoted as FOLTL (standing for First Order LTL).

Assume that a signature sig = (X, F, P, «) as defined in chapter 2.2 is given. Therefore
the set 7 = 7 (sig) is defined.
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We will introduce the set of FOLTL—formulas stepwise.

Definition 2.3.4 (Temporal Atoms)
The set of all temporal atoms over sig (denoted as Ay(sig)) is defined as the smallest

set of objects closed under the following rules:

1. if p € A(sig) is a first order atomic formula, then ¢ € A;(sig)

Y

Y

2. if ¢ is a temporal atom from A;(sig), then Xy, Fp and Gy are in A;(sig) and

3. if 1 and p9 are in A;(sig), then so are p1Ugpy and p1Pys.
The definition of temporal literals is very similar to the definition of temporal atoms.

Definition 2.3.5 (Temporal Literals)

The set of all temporal literals over sig (denoted as L(sig)) is defined as the smallest

set of objects closed under the following rules:
1. if ¢ € Ay(sig) is a temporal atomic formula, then ¢ € L(sig),

Y

2. if ¢ is a temporal literal from L;(sig), then Xy, Fy and Gy are in L(sig)

3. if ¢ € L4(sig) is a temporal literal, then so is - and

4. if o1 and @9 are in L4(sig), then so are p1Ugpy and p1Pyo.

Formulas from FOLTL are now defined as in the case of a first order logic language.

Definition 2.3.6 (First Order Linear Time Temporal Logic, e.g. [3])

The set of FOLTL-formulas is the smallest set of objects closed under the following

rules:

1. each ¢ € L(sig) is a formula in FoLTL,
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2. if p1 and @9 are formulas from FOLTL, then so are (o1 A¢2), (¢1V2), (91 — ©2)

and (p1 < 2),
3. if v is a formula from FOLTL, then so are Xy, Gy and Fy,
4. if 1 and @9 are formulas from FOLTL, then so are ¢1Uyps and 1Py and

5. if ¢ is a formula from FOLTL and =z € X, then Vxp and Jzy are formulas from

FoLtL.

The extension of the connectives A and V is extended to include arbitrary many for-
mulas as described for first order logic formulas on page 9. We will also make use of the
binding priority for the connectives —, A, V, — and — omitting brackets whenever this
is possible.

In contrast to the propositional temporal logic LTL one can distinguish between two
kinds of symbols: rigid symbols and flezible symbols. Rigid symbols are symbols which
are required to be interpreted to the same operation regardless of the point of time
under consideration while flexible symbols may be interpreted as different operations at
different points of time. We assume that each symbol is either flexible or rigid.

The semantics of FOLTL is described by a suitable extension of the concept of temporal
interpretations as introduced for LTL in chapter 2.3.1. We will follow notations from [3]
which present an adaption of the so called possible worlds semantics which had been
originally developed by Hintikka (see [81]|) and Kripke (see [97]). An interpretation is
given as a tuple

J =(Uyg, S, s0,61,02,w,T),
where
e U is a nonempty set, called the universe of J,

e S is a set of states (also called possible worlds) which contains the distinguished
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element sg, the initial state (or actual world),
e 01,00 C S x S are accessibility relations,
e w:AX — Uy is an evaluation of the variable symbols and

e 7 is a first order interpretation for the symbols of sig which maps each symbol
o € FUP in each state s to an operation Z(s,0) : U;(U) — Uy (ifoc€ F)ortoa
predicate Z(s, o) : U;(o) — {0,1} (if 0 € P). T is assumed to have the following

properties:

— if o is a rigid symbol, then Z(s1,0) = Z(s2,0) for every s1,s9 € S and

— if 0 is a flexible symbol, then there are s1, so € S such that Z(s1,0) # Z(s2,0).

The ewvaluation of terms in such an interpretation is accomplished as expected: let

t € T (sig) be given.
1. if t =2 € X, then J(z) = w(z) and

2. ift = f(t1,...,ty) for some f € F with a(f) =n and tq,...,t, € T(sig), then

JI(t) = I(s0, [) (T (t1),..., T (tn)) -
The interpretation of formulas is now defined similarly to the interpretation of formulas
in first order logic.
e J(true):=1,
e J(false):=0 and

o if p=p(t1,...,t,) € A(sig) for p € P with a(p) =n and t,...,t, € T (sig), then

T(@) =Tt .., tn)) :=Z(s0,p)(T (t1), ..., T (tn)).
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For the connectives A, V, — and < which we will call first order connectives from now
on and the quantifiers V and 3 the semantics is defined as usual. Let ¢, 1 and @2 be

FoLrL formulas and let z € X be a variable symbol.
o J(=p) :=1-J(e),
o J(p1 Npa) :=min{J (1), T (¢2)},
o J(p1Vp2) :=max{J(¢1), T (2)},
o J(p1 — p2) :==max{J (~¢1), T (¢2)},

o J(p1 < 2) :=min{J(p1 — ¢2), T (p2 — ¢1)},

J (Va) :==min {Tl(p) | t € Uz} and

J (Fzp) :=max {TL(p) | t € Us}.

where J! emerges from J in a similar way as in first order logic (see page 17).

What remains to be defined is the semantics of the temporal operators. This is done
via the reachability relations d; and do which model the next state—relation (J1) and its
transitive closure (d2). For modeling the semantics we will need another concept. Let
s € S be any state. The interpretation J[s] emerges from J by setting its initial state
(or its actual world which gives a better intuition in this case) from sy to s. Now let

©, 1 and @9 be given.
e J(Xp):=1if and only if there is s; € S such that sgd;s1 and J[s1](¢) =1,
e J(Fp):=1if and only if there is s; € S such that sgd2s; and J[s1](¢) = 1,
o J(Gyp) :=1if and only if J[s1](¢) =1 for every s; € S such that sgd2s,

o J(p1Ugps) = 1 if and only if for every s; € S such that spdas; it holds that

J[s1](¢1) = 1 or there is sg € S such that sgdase, sadas1 and J[s2](p2) =1 and
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o J(p1Pp2) = 1 if and only if there is s; € S such that sgdes; and J[s1](p1) = 1

and for each sy € S such that spdesg and s9desy it holds that J[so](—¢2) = 1.

As usual we will write J = ¢ if J(¢) =1 and call J a model. The set of all models

of ¢ is again denoted as MD(y). For sets ® of formulas we have the obvious extension:

MD(®) = (] MD(y).
peD

The notations of satisfiability, validity and unsatisfiability are extended in a straightfor-
ward way. To conclude the definition of the semantics of FOLTL we extend the logical
consequence relation = to FoLTr—formulas and sets of FOLTL—formulas by adjusting
the notations from first order logic given on page 18.

Now that both propositional and first order linear time temporal logic is defined we are
ready to introduce the remaining concepts which will be the subject of the theory to be

developed in this thesis, namely Logic Programming and Inductive Logic Programming.
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This chapter briefly reviews the basic concepts of Logic Programming as introduced by
Kowalski (see [94] and [93]). Logic Programming is a form of Declarative Programming
which is a programming concept based on the philosophy that the programmer should
not be concerned with the way a solution is searched for by a programming system but
(s)he should be allowed to concentrate on the description of the properties of the solu-
tions. Various realizations of declarative languages, mostly functional languages such as
LISP or HASKELL, have been proposed. Logic Programming is another form of declara-
tive programming which is concerned with describing relationships between objects with

certain properties.

3.1. Predicate Logic as a Programming Language

The basic objects of a logic programming language are formulas of a special type, so

called clauses.
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Definition 3.1.1 (Clause, Robinson [140])

A clause C is a disjunction of literals I;:

Assume for now that a clause C is given. C can also be seen as a set of literals
C ={ly,...,l,}. Since every literal is either an atom from .4 or the negation of an atom,
we can partition C into two sets Pos(C') and NEG(C') containing the positive literals of

C (i.e. the atoms') and the negative ones (i.e. the negations of atoms):

C={lLlie{l,....n},l; e AAU{l; |1 €{1,...,n},~l; € A}.

=:Pos(C) =:Nec(C)

Now we can identify several classes of clauses: C' is called a
e hornclause if and only if |[Pos(C)| <1,
o definite hornclause if and only if [Pos(C)| =1 and
e unit clause (or fact) if and only if [Pos(C)| = 1 and NEG(C') = 0.

A goal (or a query) G is a finite sequence of atoms which are considered to be con-
junctively connected: G = Gy A --- A Gp,. The atoms G; are called the subgoals of
G.

The distinguished clause which neither contains positive nor negative literals, and
which is therefore represented as the set {}, is called the empty clause which we will
denote as (J2. The empty clause is considered equivalent to any unsatisfiable first order

formula.

'Here we identify ——¢ and .
?Note that [ is also a goal, namely the goal which does not contain any subgoals. We will therefore
also refer to O as the empty goal.
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The philosophy of Logic Programming is the following (see e.g. [94]| and [164]):

e Statements which are known to be correct are modeled by unit clauses (facts).

e Relations between objects are modeled by definite horn clauses (which are inter-

preted as rules).

e Program calls are modeled by goals.

We will assume that every rule represents a hornclause which is implicitly universally
closed, that is every variable symbol which occurs in a rule is assumed to be inside the

scope of a universal quantifier. Formally this means that if

C=p1 N Npp =1

is a rule which contains the variables {x1,...,2,,} then we merely work with the formula

Vey .. Ve, (o1 A Aop — ).

Example 3.1.1
Let sig be a signature which contains a relation symbol is even with a(is even) =1
and function symbols null and s with a(null) = 0 and a(s) = 1. Then the concept of

even numbers is modeled by the following set of definite horn clauses:

C1 = is_even(null) and

Cy = is_even(z) — is_even(s(s(z))).

Programs in a logic programming language are now given as sets of facts and rules.

Definition 3.1.2 (Logic Program, Lloyd [105])
Let sig = (X, F, P,«a) be a signature. A (logic) program over sig is a finite set of

definite hornclauses over sig.
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Example 3.1.2

Let P be the set = {C1,C5} from Example 3.1.1. Then P is a logic program over the

signature given there.

Due to the special structure of definite hornclauses and goals one can introduce spe-
cial notations for them. Assume that C' is a definite horn clause and Pos(C) = {A},

NeG(C) ={-By,...,~ By} for A, By,...,B, € A. Then we have

C = {A-Bi,...,~By}
= AV-ByVv---V-B,

AV —(ByA---ABy)

(ByA--AB,)— A

=: A« By,...,B,.

This can be seen as a procedure declaration for a procedure labeled A as described by

Kowalski in [94]. The interpretation is then given as follows:
To solve A, solve B1,B>,...,B,!

Now assume that G is a goal consisting of the subgoals G;, that is G =Gy A--- AGy,.

By analogy we have

G = —(Gi A AGp)

Using the procedural interpretation from above we can see a goal as the statement
Solve G1,Ga,...,Gp!

Now if one wants to run a logic program a goal G is added to the program and a
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theorem proving procedure tests if the goal is a logical consequence of the program under
consideration. The task how this is achieved is the subject of the next section of this

chapter.

3.2. The Concept of SLD—Resolution

This section will be concerned with a brief explanation of the concept of SLD-resolution
(originally introduced in [95]) which is a theorem proving procedure designed to handle
(definite) hornclauses. It is a refinement of the classical Resolution procedure introduced
by Robinson (see [140]). Since there are many excellent texts on theorem proving in
general (and especially on the topic of logic programming) the discussion will be rather
short. We refer the interested reader to the literature (see [31], [§8], [7], [105] and [126]).

The key result for understanding SLD-Resolution is given by the following lemma

which is a special case of Proposition 3.1 from [105].

Lemma 3.2.1 (Lloyd [105])

Let P be alogic program and let G be a goal. Then P = G if and only if PU{— G} = .

This lemma can also be seen as an easy consequence of Theorem 2.2.3. So if G; A
-+ N Gy 18 a logical consequence of P one only has to deduce the empty clause from
PU{~(G1A---AGy,)}. This is achieved by application of the principle of SLD-resolution
which we will define now.

Several other approaches for implementing logical programming languages have been
proposed. In principle it is possible to take any complete proof procedure for first order
logic in order to achieve this goal. But due to implementation difficulties and performance
problems one concentrates on refutation complete calculi. Popular approaches are based
on tableaux techniques (see e.g. |67 and |4] for calculi for definite logic programs and [19|
and [130] for calculi for disjunctive logic programming languages) and the Model Elimi-

nation Technique as described by Loveland in [107] and [108] (see e.g. [70]). However, the
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SLD-resolution approach has been the first method to be implemented in PROLOG sys-
tems and is therefore still a dominant procedure in logic programming systems. Although
SLD Resolution is sound and refutation complete many implementations omit certain
operations which are necessary in order to guarantee these properties. In particular, the
occur check which is necessary during the unification process is a very expensive opera-
tion and therefore many implementations skip this check. Although there are programs
which allow skipping this check (see [9]) omitting the check results in losing the property
of soundness (see e.g. [112]). Another expensive operation is the breadth first search
strategy which is necessary in order to guarantee refutation completeness. Most PRO-
LOG systems simply carry out one inference step (namely the first one which is possible)
without trying other steps which might be applicable. This might result in non halting
derivations which have trivial solutions.

In order to reason about instantiations of formulas one has to define a suitable con-
cept of substitution. Intuitively a substitution replaces variables by terms. Formally a

substitution is defined as a certain type of homomorphism on terms and formulas.

Definition 3.2.1 (Substitution, Robinson [140])

A substitution is a mapping o : X — 7 such that {z € X' | o(x) # x} is finite.

Since the set of variables which are changed by the substitution o is required to be
finite, we can write down substitutions by stating which variables are replaced by which
terms and omitting the variables which remain unchanged. The set of all these variables
will be called the domain of the substitution ¢ and will be denoted as Dom(o). Assume
that Dom(o) = {z | o(x) # x} = {@4,..., 2, } and that o (z;;) = t; € T for j =

1,...,n. Then o will be identified by the set of bindings

t1 T o(xy) o (w,)
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where each of the n bindings il denotes the substitution o; with
J

tj < T = inj
oj(z) =

r < else

Substitutions are extended to terms and formulas by defining homomorphic extensions:

o(f(tr,...,tn)) = flo(t1),...,o(tn)),
op(ti,...,tn)) = plo(tr),...,o(tn)),
o(-p) = —olp),
o1 Np2) = oler) No(e2),
o(p1Vg2) o(p1) Volp2),
o(e1 — ¢2) o(p1) = o(p2),
o(p1 < ¢2) o(p1) <= o(p2),
o(Vap) = Vro(p) and
o(Fzg) = Jzo(y).

Substitutions can be composed in order to build complex substitutions from simpler
ones. This will be interesting for us in the following part of this section when we will

define the result computed by a logic program P given a goal G as input.

Definition 3.2.2 (Composition of Substitutions, Robinson [140])

e

e (2) (2) L
Let o1 = {“:(1—1),,15%1)} and g9 = {“:(1—2), L } be substitutions. Then the
1 n 1

) t'£727,)

substitution o1 o o9 (the composition of o1 and o3) is defined as follows:

M RN R

01009 = — —

() (ADY W
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~

\ xz('l) | 20 = o9 <t(1)) U {ﬁ | P e {xgl),...,x(l)}}
02 (t(l)) Z Z t§2) ’ '

That is in order to compute the composition of o; and o9 one first applies oy to the
terms which o replaces for the variables in its domain, then adds the bindings of o9
(in order to add the elements which are not yet in the domain of o) and then reduces
the resulting set by removing identical bindings and such bindings which won’t have any
effect.

We will identify a distinguished element € as the substitution which does not contain
any binding and so will have no effect on the objects to which it is applied. This element
is given as € = () and is denoted as the empty substitution. The composition operation o

enjoys the following properties (Proposition 4.1 from [105]):

Lemma 3.2.2 (Properties of Substitutions, Lloyd [105])

Let 01,09 and o3 be substitutions, let £ be a term and let ¢ be a formula. Then
1. cjoe=¢co00; =0y,
2. 03(01(t)) = (01 0 02)(1),
3. 03(01(p)) = (01 0 02)(¢) and
4. (01 003) 003 =010 (09003).

Let ¢1 and @9 be arbitrary formulas from F. We say that ¢ and @9 are variants if
there are substitutions o1 and o9 such that o1(p1) = @2 and o9(p2) = o07.

Now let t1,t2 be terms and let @1,y be literals. Substitutions ¢ which yield syntac-
tically identical objects, i.e. substitutions ¢ such that o(t1) = o(t2) or o(¢1) = o(p2)

play an important role.
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Definition 3.2.3 (Unification)
Let t; and to be terms, let ¢1 and @9 be literals. t; and ty (respectively @1 and ¢3)
are said to be unifiable if and only if there is a substitution o such that o(t1) = o(t2)

(respectively o(y1) = o(p2)). o is called a unifier.

Some unifiers can be characterized as unifiers which only change the objects to be

unified as much as necessary.

Definition 3.2.4 (Most General Unifier)

Let ¢t; and t5 be terms and let ¢1 and @9 be literals. A unifier o for ¢; and ts
(respectively for ¢1 and ¢9) is called a most general unifier (or mgu) if and only if
for every unifier o1 for ¢; and ¢y (respectively 1 and ) there is a substitution oo
such that 0 = 01 0 09. We will denote this by writing o = mgu(t1,t2) (respectively

o =mgu(p1, p2)).

Having defined which properties a most general unifier satisfies it is necessary to ensure
that in the case of unifiable objects there is indeed an algorithm which can compute such
a substitution. The following lemma from [140| ensures this.

Lemma 3.2.3 (Unification Theorem, Robinson [140])
Let t; and t9 be terms and let 1 and @9 be literals. If ¢; and ¢y (respectively ¢1 and
9) are unifiable, then there exists a mgu of ¢; and t9 (respectively ¢1 and @9) which is

uniquely determined up to renaming of variables and which can be effectively computed.

Several algorithms have been proposed for computing most general unifiers. The first
and also most simple one was presented by Robinson in 1965 (see [140]) which has the
drawback that its worst case runtime is exponential in the length of the objects to be
identified. It has also been shown that the unification problem is solvable in linear

time by Paterson and Wegman which presented an algorithm which operates on directed
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acyclic graphs representing the objects (see [129]). However, due to its simplicity another
algorithm introduced by Martelli and Montanari in 1982 (see [113]) is used very often
in Logic Programming systems. We will refine this algorithm in order to be capable of
handling temporal objects in a later chapter.

Now let P = {Py,..., P,} be a logic program. Furthermore assume that G = G1 A
--- AN Gy, is a goal. Due to the special structure of definite horn clauses we can assume

that each P; can be written as
P =4,<BY .. BY

for some n; and Ai,By), . ,BY(L? € A. Assume that ¢ and j are such that G; and A;
are unifiable with o = mgu(4;,G;). The resolvent (or SLD-resolvent) of G and P; with

respect to o is the goal

a(Gl/\---AGj_l/\BY)/\...,B,Q?AGJ-H/\---AGm)

a(Gl)A---Aa(Gj_l)Aa(By))A---/\a(B,(L?) Ao (Gip1) A Ao (G)
— <G1A---AG]-_1AB§")A-.-/\BS)AG]-HA---AGm)a

i

Definition 3.2.5 (SLD—derivation—step, Kowalski and Kuehner [95])
Let P be alogic program and let G = G1A---AG,, be a goal. An SLD-derivation—step

is a sequence of actions carried out as follows:
1. A subgoal Gj is chosen.

2. A clause A <+ Bi,...,B, from P is chosen such that A and G; are unifiable.

Let o be a most general unifier for A and G;.

3. The SLD resolvent G’ of G and A < By,...,B,, with respect to o is con-

structed.
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Given P we will write G Fres G’ if there is an SLD-derivation—step yielding G’ from

G. The relation F is then defined as the reflexive transitive closure of Fgeg:

0
GFG & G=d4,
1
GFG & GFgres G and

n+1 _ n _ _ 1
G + G & thereis G such that GF G and G + G’

So we can define G = G’ if there is some n > 0 such that G qu G'. In other words F=FFes-

An SLD-derivation of G from P is a sequence (G});>o such that Gy = G and for each ¢
there is a clause from P which can be used in order to carry out an SLD—derivation—step
yielding Gjy1.

An SLD-derivation (G;);>0 of G from P which is of finite length, say (G;)I_; is called
an SLD derivation of G, from P given input G.

An SLD-derivation (G;); of Gj, from P given input Gy is called successful if G,, = 0.

In the case that there is a successful SLD derivation of O from P given input G we
will write P F G, otherwise we will write P I/ G. Furthermore we will call successful
SLD derivations of [ from P given input G SLD refutations of « G from P. Sometimes
we will also refer to SLD derivations of goals from P given input G as SLD derivations
of PU{— G}.

So given a program P and a goal G one can construct all possible derivations of
P U {< G} and check if there is a refutation of P U {«< G}. If such a refutation exists,
then it can be found by breadth—first—search. If no such refutation exists, then in general

there is no way to detect this since the fragment of clausal logic is undecidable (see [142]).

Example 3.2.1
Again consider the program from Examples 3.1.1 and 3.1.2. Assume that the goal G is
given by G = is_even(s(s(s(s(null))))). Then an SLD-refutation of P U {« G} can

be visualized as depicted in Figure 3.1 where an arrow between two goals means that the
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I s_even(s(s(s(s(null)))))

y

is_even(s(s(null)))

i s_even(null)

[]

Figure 3.1.: SLD refutation

second goal is a resolvent of the first one (with respect to a suitable mgu).

3.3. Soundness and Completeness

As we have seen computations by logic programs are carried out by giving a goal G to
a program P and proving that the set P U {« G} is unsatisfiable, that is proving that
PU{<— G} F Oholds. The result of such a computation is given by the substitution which
emerges from composing the unifiers used in this refutation. Let o be this substitution.

We first state the following lemma:

Lemma 3.3.1 (Soundness, Apt and v. Emden [10])

The SLD-resolution rule is sound. That is if P+ ¢, then P | ¢.

This lemma is proved directly in [10] but it is also a consequence of the soundness of
the general resolution rule presented in [140].

So assume that P U {« G} F O. Then we have PU {<— G} E O and due to Lemma
3.2.1 we have P = G. Since G is a goal, we have G =— G1,...,G,, for atoms G; and
therefore P =Gy A -+ A Gpy.

We introduce two concepts of substitutions which will turn out to be useful.

Definition 3.3.1 (Answer, Lloyd [105])

Let P be a logic program and let G = G1,...,G,, be a goal.
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1. An answer for P U {« G} is a substitution for the variables occurring in G.
2. A correct answer for PU{«< G} is an answer o such that P = (G1 A+ AGp,) 0.

3. A computed answer for PU{« G} is the composition of the most general unifiers

used in a refutation of P U {— G}.

So a computed answer for PU{« G} can be seen as a result computed by the program
P given a goal G as input. Indeed, this interpretation of logic programs and goals is an
adequate way to carry out computations as the next theorem shows.

Theorem 3.3.1 (Refutation-Completeness, v. Emden and Kowalski [164])

Let P be a logic program and let G be a goal.
1. Every computed answer for P U {« G} is a correct answer for P U {<— G}.

2. For every correct answer o for P U {« G} there is a computed answer o; for

P U {+ G} and a substitution oy such that o = g1 0 03.

So if an answer is computed by using SLD resolution this answer is a correct solution
of the problem modeled by the program P under consideration (soundness). Additionally
it is possible to compute any answer which can be instantiated to a correct one (com-
pleteness). Furthermore it is possible to model every computable function by a suitable
logic program (see [5]). So predicate logic can indeed be seen as an adequate formalism

for computation.
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This chapter will be concerned with a brief introduction of the concepts from Inductive
Logic Programming (or ILP for short) which we will extend to the temporal logic to be
defined in the next part of this thesis. Therefore we will first present a description of the
tasks which ILP systems have to perform. After this we will introduce several important

concepts from lattice theory which will be used throughout the next chapters.

4.1. The basic Framework

Inductive Logic Programming is concerned with synthesizing general rules from exam-
ples. Henceforth it is a special case of the theory of algorithmic learning. In general
algorithmic learning is a generic term for every theory which is concerned with determin-
ing explanations for certain phenomena. In ILP, the objects (or concepts) to be learned
are logic programs. The hints about the concept to be learned are given by sets £T
and £~ consisting of ground atoms. These sets are considered to be examples for the
(unknown) program P to be learned. £ contains the positive ezamples and £~ contains

the negative ones. The interpretation of positive end negative examples is then given by
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o P ey forevery e, € ET and
o Ple_ foreverye_ €& .

The problem setting which we will use here is usually referred to as the normal problem
setting for ILP'. Some properties of a program P and sets £t and £ can be defined

formally as follows (following [126]).

Definition 4.1.1 (Properties of Programs, e.g. [126])
Let P be a logic program and let £7 and £~ be (finite) sets of ground atoms. P is
called

o complete wrt. ET if P = ey for every ey € ET,
o consistent wrt. £~ if PU{—-e_ | e_ € £~} =0 and

e correct wrt. £T and £ if P is complete wrt. £1 and consistent wrt. £~.

Additionally the following definitions allow a closer classification of programs relative

to given sets of examples.

Definition 4.1.2 (Further Properties, e.g. [126])
Let P be a logic program and let £ET and £~ be sets of positive and negative examples.

P is called
e too strong wrt. £~ if P is not consistent wrt. £7,
e too weak wrt. £ if P is not complete wrt. £,

e overly general wrt. E¥ and £~ if P is complete wrt. £ and not consistent wrt.

£~ and

'In contrast to the normal setting the nonomontonic setting for ILP has been defined (see [79]).
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e overly specific wrt. E¥ and £ if P is consistent wrt. £~ and not complete wrt.

Et.

The task, which an ILP system has to perform is to find (or synthesize) a program P
which is correct wrt. given sets T and €.

Usually this normal setting is extended in a way that the usage of background knowl-
edge is possible. Background knowledge is given as a finite set B of clauses which are
interpreted as rules which are known to be correct. The program P to be synthesized is

now required to have the following properties:
e PUB [ e, for every ey € £T and
o PUB £ e_ forevery e € £

It is possible to distinguish between several ways the examples are presented to an ILP

system.

Batch / Incremental In a batch learning system the examples from £T and £~ are given
to the system at the beginning of the learning task. In contrast, an incremental
learning system receives the examples at different points of time. An example for

a batch learning system is FOIL (see [137]).

Top down / Bottom up The distinction between top down and bottom up systems
comes from the direction in which the system searches for a correct program. While
in a top down system an overly general set P U B is specialized, in a bottom up
system an overly specific set PUB is generalized. Generalization and specialization
will be treated in depth in a later chapter taking temporal literals and clauses into

account.

Interactive / Noninteractive An interactive system is capable of interacting with the

user. Therefore such a system can ask if some assumptions it has generated while
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searching for a correct program are fulfilled or not. This allows the generation of

better programs.

In all cases, the program which is generated from the sets £, £~ and B cannot be
guaranteed to be exactly the program which the person who has generated the examples
has in mind. Rather it is (in most cases?) possible to construct a program which is
correct with respect to examples seen so far and which has a very high probability of

being correct for other examples which have not yet been seen.

4.2. Generalization and Specialization

In order to modify a logic program to fit its specification one has to refine the program by
manipulating clauses in order to imply more or less atoms. The basis of all refinement
operations is some fixed generality ordering, mostly the subsumption ordering which
is both relatively powerful and still decidable (in contrast to the ordering induced by
logical implication which in general is undecidable). We will here restrict our attention
on refinement operations on pairs of clauses. Assume that a quasi ordering =<3 on the
set of clauses over some signature is given. Further assume that C; and C5 are clauses.

A clause C is then called (following [133])

e a generalization of Cq and Cy if C > C7 and C' = C5 and

e a specialization of Cq and Cy if C < C7 and C' < Cs.

Certain specializations and generalizations are of special interest in ILP. A clause C' is

called

e a least generalization of C7 and Cy if C is a generalization of C; and Cs and for

every generalization D of C and Cs it holds that D > C' and

*Note that there may exist (nontrivial) €7 and £ such that no correct P may exist, see [126] for a
proof of this.

3< is called a quasi—ordering if < is reflexive and transitive. Given =< the notation > will be used as
expected. We will write ~ if both < and > holds and < (resp. ) if < (res. =) and not ~ holds for
pairs of objects of the underlying set.
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e a greatest specialization of Cq and Csy if C is a specialization of C7 and Cs and for

every specialization D of C and Cs it holds that C' = D.

A pair (5, <) consisting of a nonempty set S and a quasi-ordering =< is called a lattice
if for every pair z1, x2 of elements from S there exists a least generalization and a greatest
specialization wrt. < in S.

Assuming that the chosen ordering < yields a lattice structure*, operations for refine-

ment can be implemented in two ways:

Upward Refinement Given Cy and C5 construct a least generalization of Cy and Co wrt.

=.

Downward Refinement Given (7 and Cy construct a greatest specialization of C7 and

Cy wrt. <.

4.3. Refinement Operators and their Properties

As we have described in chapter 4.2, specialization and generalization are central oper-
ations which any ILP system has to perform. An algorithm which is capable of general-
izing and/or specializing clauses is called a refinement operator. Consequently one can
distinguish between Upward Refinement Operators and Downward Refinement Operators
depending on the direction in which the refinement is performed, that is depending on the
question whether it constructs a generalization or a specialization of the input clauses.
Formally we assume that a generality ordering < (a quasi ordering) is given as described
above. A downward refinement operator is a function pg mapping clauses to sets of clauses

such that for every clause C' it holds that

pa(C) €{D|C = D}.

“In chapter 6 we will see that there are indeed orderings which have this property.
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Consequently an upward refinement operator is given as a function p, mapping clauses

to sets of clauses such that for each clause C it holds that

pu(C) S{D | D = C}.

Let p be any refinement operator (upward or downward) and let C' be a clause. Ac-
cording to the notational conventions from [126] we define 1-step—refinement, n—step—

refinements and refinements as follows:

pH(C) = p(C) (1 step refinement),

p(C) = p(p"HC)),n>1 (n step refinement) and
pr(C) = Upi(C’) (refinement)
i>1

p is called
e locally finite if for every C' the set p(C) is finite and computable,

e complete if for every pair C1,Cy such that C; = Cy (or C; < Cy for upward

refinement operators) there is an element C € p*(C1) such that C ~ Cy,

e proper if for every C it holds that p(C) C{D | D = C} (or p(C) C{D | D < C})

and
e ideal if p is locally finite, complete and proper.

Ideality seems to be a desirable property of refinement operators. However, in general
it is not possible to guarantee the existence of such ideal refinement operators (see for

example [162]).
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We will now introduce the programming language of interest. This language will be

similar to PROLOG (see [154] for an introduction) but will allow the usage of temporal
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operators. Therefore we will call it PROLOG(+T). PrRoLOG(+T) will allow list processing

(as PROLOG does) but constraints have not yet been integrated.

5.1. Syntax of Prolog(+T)

5.1.1. Terms in Prolog(+T)

Since PROLOG(-+T) is essentially a logic programming language which is enriched with
the temporal operators X, G, F, U and P, the basic concepts are the same as described in
chapter 3.1. However, to become a practically usable language, the usage of terms has to
be simplified in order to allow more comfortable manipulating techniques. In particular,
PROLOG(+T) allows lists as terms which is probably the most comfortable feature of

PROLOG.

Definition 5.1.1 (PROLOG (+ T )—terms)
Let sig = (X, F, P,a) be a signature. The set of PROLOG(+T)—terms over sig is

defined to be the smallest set which is closed under the following rules:
1. _is a PROLOG(+T)—term,
2. every string representing an integer is a PROLOG(+T)—term,
3. every term t € 7 (sig) is a PROLOG(+T) term,

4. if t1,...,t, is a finite (possibly empty) sequence of PROLOG(+T) terms, then

[t1,...,t] is a PROLOG(+T) term and

5. if t is a PROLOG(+T) term and tq,...,t, is a finite (possibly empty) sequence

of PROLOG(+T) terms, then [t|t1,...,t,] is a PROLOG(T) term.

We will make use of the following convention: Variable identifiers will start with upper

case letters while other identifiers such as function symbols and predicate symbols have
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to start with lower case letters.

The term _ is referred to as an anonymous variable. Anonymous variables are a
concept which is recently used in PROLOG—programs in order to define predicates which
have variables as parameters which are not used in the definition. An example might be

the definition of the nonnegative subtraction function:

r—y STy
nndiff(z, y) = .

0 else

If x is a variable symbol and 0 is a term representing the natural number 0, then the

following 3 ary predicate might be part of the definition of the function nndiff : N> — N:
Pundiff(0, X, 0).

This models the following part of the definition of nndiff: nndiff(0,2) = 0 for every
value of x. Consequently, the value of z itself does not play any role in this case. So
the occurrence of x can be replaced by the anonymous variable _ here which yields the

predicate

Pundiff (0, _,0).

In general, anonymous variables might be used whenever one is only concerned with

proving that a solution ezists without being interested in the actual value of this solution.

Integers are included in order to yield more comfortable programming facilities. It is
obvious that integers are not essential for the completeness of the language since it is
possible to define the natural numbers N (and therefore the integers Z) in terms of a

constant symbol null and an unary function s realizing the successor function.

The terms built up using the last two points from the above definition are referred

to as lists. They represent collections of elements. The term [] represents the so called
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empty list which does not contain any elements. If a list can be described by completely
writing down all its elements, then it might be realized as a list of the form [t1,...,t,].
Note that the empty list is just a special case of such a list and also note that some of
the elements ¢1,...,t, might again be lists since the definition of PROLOG(+T)—terms

is recursive. So the following construct is a well formed PROLOG(+T) term!:

[£(X), g(£(X), ), [], [Y|a, b, c]].

In lists of the form ¢ = [t|t1,...,t,], the term ¢ is usually referred to as the head of the
list while the list [t1,...,t,] is referred to as the tail of the list.
For all kinds of PROLOG(+T) terms t we define the set VAR(t) to contain all variables

occurring in ¢. Formally this is accomplished as follows.

Definition 5.1.2 (Variables in PROLOG(+T)—terms)
Let t be a PROLOG(+T)-term. Then the set VAR(t) of wariables of ¢ is defined as

follows:

1. if t = ort =[], then VAR(t) = 0),
2. if ¢ = X for some variable identifier X, then VAR(t) = {X},
3. if t = £(t1,...,tn) or t = [t1,...,t,], then VAR(t) = [J;_; VAR(t;) and

4. if t = [t|t1,. .., t,], then VAR(t) = VAR() U VAR(;).

A variable is said to occur in a term ¢ if and only if it is a member of the set VAR(¢).
Anonymous variables and the list concept are only introduced in order to improve the
usability of PROLOG(+T) for practical applications. It is possible to show that omitting

these concepts does not effect the expressivity of the language. Therefore we will not

!Provided that the signature of interest does contain definitions for the symbols used in this term.
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deal with lists and anonymous variables in proofs of properties in the sequel.

5.1.2. Facts

As in ProLoG, PROLOG(+T) allows modeling relationships between objects as rules
and facts (which are a special case of rules, namely rules without premises). Roughly
speaking, rules are models of inferences which may be carried out. In general such
inferences may only be applicable if some premises are fulfilled. For facts no such premises
are present: any fact is interpreted as something which is true without having to be proved.

As in PROLOG, facts in PROLOG(+T') are equivalent to atomic formulas.

Definition 5.1.3

A ProroG(+T)—fact is a string of the form

where ¢ € A;(sig) (for some suitable signature sig) is an atomic formula of FoLTL.

Note the symbol . at the end of the definition of a fact. This comes from the circum-

stance that facts are special cases of rules.

5.1.3. Rules

As described above, rules in general model allowed inferences which may be applied if
some premises are known to be fulfilled. Rules are (as described in chapter 3.1) modeled

as clauses. However, we will not restrict ourselves on (definite) hornclauses here.

Definition 5.1.4 (Rules in PROLOG(+T))

Let sig = (X, F, P, a) be a signature. A PROLOG(+T)-rule is either a PROLOG(+T)—
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fact or a statement of the form

UV i—P1,..., Pn.

for ¢ € Au(sig) and ¢1,...,¢, € Li(sig). The atom ¢ is called the head of the rule

while the set {¢1,...,¢,} is called the tail of the rule.

So the tail of a rule describes the premises which have to be proved while the head
describes the proposition which can be inferred. In general the tail may contain nega-
tiwe literals, that is ¢; € L£4(sig) \ Ai(sig) is permitted. This has both advantages and
disadvantages. On the one hand, allowing negated premises yields better readable, more
elegant and shorter programs, on the other hand the definition of the semantics of pro-
grams containing rules with negated premises is more complicated to describe. We will

see how this can be overcome in a later section of this chapter.

For reasons of readability we will make the following convention: if

¢ TPy, Pne

is a PROLOG(+T)-rule and ¢; is from L(sig) \ A¢(sig), that is ¢; = —¢ for some
© € L(sig), then we will write ¢; = not(yp) instead. Another reason for using the above
notation is the fact that we will not be dealing with classical negation but merely with
negation as failure (or better: with an adaption of this negation—approach). Intuitively
not(p) is assumed to be a logical consequence of a program P if ¢ cannot be proved
from P in a finite number of proof steps or equivalently if every attempt to prove ¢ from
P fails after a finite number of steps. We will see in later sections how the negation as

failure approach can be adapted in order to handle PROLOG(+T) programs.
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5.1.4. Programs

As in PROLOG, a program in PROLOG(+T) is given as a finite set of PROLOG(+T) rules
(and facts). The variables in the rules will be assumed to be universally quantified. This
is a useful assumption as we will see when studying the semantics of PROLOG(+T)

programs in chapter 5.2.

Definition 5.1.5 (PROLOG (+T)—program)

A PrOLOG(+T) program is a finite set P of PROLOG(+T) rules.

PROLOG(+T)—programs (or simply programs if there’s no way of confusion) will be
denoted as P, P, P’ ... from now on. Due to the special form of the formulas in programs
it is possible to build a formula which is semantically equivalent to a PROLOG(+T)-
program and which has a very simple form. Let P be a program containing n rules.

That is let P ={Py,...,P,} where each P; has the form

P= gl ),

for 1) € A, (sig) and gpgi), . .,cpgi) € L4(sig) and some n; € N. For formal reasons we
will identify ¢® :— and ¢@. Due to the interpretation of clauses as sets of literals we

therefore have

P, = ﬁ< gm...wgg)vww
= v vl v g

DN
¢( ) v \/ 2
j=1

for ¢ =1,...,n. Since sets of clauses are satisfied under interpretations if all clauses are

satisfied simultaneously we have J |= P if and only if J = P, for i = 1,...,n if and only
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if 7= P A--- AP, if and only if 7 = A, P;. This gives P = A, P, and therefore

=

P = b

s
I
—_

Il
=

(w v \/ P

1

-.
Il

is a relatively simple formula which might characterize the semantics of a PROLOG(+T)
program P.

From now on we will assume that the rules in a program P are standardized apart.

Definition 5.1.6

Let 7 and ¢ be FoLri—formulas. ¢; and 9o are called standardized apart if

VAR(¢p1) N VAR(p2) = 0.

It is obvious that two rules from a program can be easily standardized apart. This
is a consequence of the assumption that all variables in rules are implicitly universally
quantified: let P be a program as described above and let 4,5 € {1,...,n} be such
that VAR(P)) N VAR(Py) = {Xi,....,Xi,} # 0. We now fix two sets {xﬁf)xﬁi)}
and {ng), - ,x;f)} such that {xz(.ll), TS 2 S ,xi)} N(VAR(P) U VAR(P)) = 0,

define substitutions

and replace the program P by P = (P \ {P;, P;}) U{0;(P;),0j(P;)}. Due to the implicit

universal quantification of all variables in the rules of P we have P = ¢ if and only if

P |= ¢ for any o.
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5.1.5. Queries

As in PROLOG, a PROLOG(T) program is run by giving a query to the program and
searching for a substitution such that the result of applying this substitution to the query
yields a logical consequence of the program. Formally we will adopt the philosophy of
logic programming as described in chapter 3.1. A query in PROLOG(+T) is therefore
interpreted as a sequence of single queries which have to be solved one by one. As in

rules we will also allow negation as failure in queries.

Definition 5.1.7 (PROLOG (4T )—query)
Let sig = (X, F, P,«a) be a signature. A PROLOG(+T) query over sig is a formula of

the form

G:(p].?”’?(pn’?

such that ¢1,..., ¢, € L(sig).

As we are interested in substitutions for the variables in a goal, we need the concept
of an answer as described by [105]. An answer for a query G is a substitution o such
that DoMm(o) = VAR(G). If P is a PROLOG(+T) program and G = ¢1,..., ¢y, then
an answer o is called correct for G if P |=o(¢1) A+ Ao(en). Obviously the semantics
of a program P can be characterized in terms of the set of all goals G consisting of a
single query (i.e. G = ¢. for some ¢ € L;(sig)) such that there is a correct answer o for
G. In this case o(¢p) is contained in the set characterizing the semantics of the program.
How these characterization can be formally described will be the subject of the following

section of this chapter.
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5.1.6. The Relation of Prolog(+T) to other Temporal Logic programming

Languages

This section will deal with the question of how PRoOLOG(+T) differs from other temporal
logic programming languages introduced so far. In particular we will discuss the differ-
ences between PROLOG(+T), TEMPLOG and TOKIO. It will turn out that on the one
hand PrROLOG(+T) is syntactically closely related to TEMPLOG although there are some
differences which are worth pointing out. On the other hand we will discuss TOKIO which

is also similar to PROLOG(+T) regarding the temporal operators used in its definition

but which has a completely different philosophical origin.

Templog

TEMPLOG is a first—order temporal programming language which has originally been
introduced and defined by Abadi and Manna in [3] and [2]. The underlying logic of
TEMPLOG allows the usage of the same set of temporal operators as PROLOG(+T) while
the authors distinguish between flexible and rigid symbols. Flexible symbols may be
interpreted as operations with a semantics which changes over time while the interpreta-
tions of rigid symbols must not be depending on the point of time at which the symbol
is evaluated.

In [3] the definition of TEMPLOG is carried out as follows:

1. The authors define a temporal logic on which TEMPLOG is based.
2. They define a fragment of TEMPLOG in order to present the basic ideas.

3. Finally they introduce the full logic by enhancing the set of temporal operators
which are allowed in the definition of the programming statements of the program-

ming language TEMPLOG.

The fragment of TEMPLOG which is defined in [3]| introduces the concepts of initial

temporal hornclauses and permanent temporal hornclauses as an extension of the horn-
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clauses which are used as programming statements in PROLOG. An initial temporal

hornclause is a construct which has the form

Vay ... Veg (pr A A pn — 1)

for so called nexzt atomic formulas @1, ..., ¢, and ¥ where |J;_; VAR(p;) U VAR(¢) =
{x1,...,2,}. Here a formula ¢ is called nezt-atomic if ¢ has the form ¢ = X'@ for some
¢ > 0 and some atom @. Due to the fact that the definition TEMPLOG is motivated by
the wish to enhance PROLOG with temporal operators the authors of [3] introduce the

abbreviation

V= p1,.yon i=Vor. . Veg (1 A Aop — )

which clearly shows the relation between TEMPLOG and PROLOG.

Additionally permanent temporal hornclauses are programming statements of the form

Var.. VoG (1 A A pp — 1)

for next atomic formulas @1, ..., ¢, and ¥ and {x1,..., 2%} as before. Similar to initial

temporal hornclauses permanent temporal hornclauses may be abbreviated using

V<P, pon i =Ver VG (o1 Ao A — ).

Programs in the fragment defined in this way are defined as sets consisting of permanent
and initial hornclauses. Queries to such programs are defined as conjunctions of next
atomic formulas. It is possible to show that the programming language defined by this
fragment can be evaluated using a resolution—style theorem proving procedure (see e.g.
[1] for a discussion of such a procedure).

After having defined the fragment presented above the authors introduce the full logic

programming TEMPLOG by allowing usage of G in the head and F in the tail of program
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statements (both with restrictions).

As a summary we caln see:

1. TEMPLOG offers a distinction between flexible and rigid symbols which allows to

interpret symbols in a different way at different points of time.
2. PROLOG(+T) does not have a counterpart to the operator < of TEMPLOG.

3. In contrast to PROLOG(+T) TEMPLOG limits the application of G and F to the

head (resp. the tail) of clauses.

4. The operators U and P are forbidden in TEMPLOG programs.

Tokio

TOKIO is another programming language which allows the usage of certain temporal
operators in programming statements. TOKIO has been presented in [6] as an extention
of the logic ITL (see e.g. [117]). In contrast to the logic underlying both TEMPLOG
and PROLOG(+T) ToKI1O and its predecessor ITL are interval based logic programming
languages. This means that the main goal of a proof procedure executing a TOKIO
program is not to prove a goal but to find an interval of time in which the goal holds.
We will make this clear soon.

The syntax of TOKIO’s programming constructs is defined in [6] (in another paper an
interpreter for TOKIO written in PROLOG is presented. It is noted that the execution
time of TOKIO programs using this interpreter is slowed down by a factor of 40 in contrast
to ordinary PROLOG programs; we refer to [92] for implementation details). Similarly to
PROLOG we can use programming statements which do not contain temporal operators.
So every PROLOG—statement i «— ¢1,..., @, is also a well-formed TOKIO-statement.

Additionally to PROLOG TOKIO allows the usage of several temporal constructs. These

are

e sequential execution,
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the Next—operator,

the Always—operator,

the Sometimes—operator,

the keep—operator and

the fin—operator.

Since TOKIO is an interval based programming approach the main goal of a prover

executing a TOKIO formula is to define an interval of time in which this formula is

satisfied. Time in TOKIO is considered discrete, so an interval I can be described by

specifying its start resp. endpoint in terms of natural numbers. If I = [Iyeq, Ifin] is such

an interval we have to require that Ipe, < Ig,. Since the motivation for the definition

of TOKIO is the description of hardware the authors of |6] prefer the term ezecution in

order to denote the satisfaction of a formula.

We will now make the concepts of TOKIO more clear.

1.

3.

Tok10 allows the specification of the sequential execution of goals. This is carried
out by the so called chop—operator which is denoted by &&. So a statement v «—
©1&& . .. &&py is executed in an interval I = [lheq, Ifin] if I can be divided into
intervals Iy, ..., I, such that Iy = [leg, t1),...,1; = [tj—1,t],. .., In = [tn—1, Ifin)
for t1,...,t,—1 € N such that t; <t;41 fori =1,...,n—2 and each ¢; is executed

in the interval I;.

The Next operator is intended as a similar concept to the operator X from PRO-
LOG(+T). In TOKIO the Next—operator is denoted as @ and a statement 1) < Qg is
intended to be executed in an interval I = [Ipeg, Ifin] if 1) is executed in the interval

[Ibeg + 17 Iﬁn]-

Similarly the Always and Sometimes operators which are denoted as # resp. <>
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require the execution of a statement at certain points of time in an interval. If

I = [Iyeg, Ifin] is a given interval, then

a) 1) «— #pis executed in I if ¢ is executed at every point Ipeg, ..., Ibeg+J; - - -, fin

of time and

b) ¢ « <>p is executed in I if there is (at least) one j with 0 < j < fin — beg

such that ¢ is executed at Ipeg + J.

4. The keep operator allows reasoning about the execution of a statement at serval
points of time in an interval. If I is given then v « keep(p) is executed in I if
@ is executed at every point of time in I except of the last point. More formally
if I = [Ipeg,Ifin] then ¢ «— keep(p) is executed in I if ¢ is executed at time

Iheg, ..., Ifin — 1 and ¢ is not executed at time point Ig,.

5. Finally the fin—operator is introduced in order to reason about the execution of a
statement at a final point of time in an interval. If I = [lyeq, Iin] is given then

) — fin(yp) is executed in I if ¢ is executed at the time Igy.

Although the operators #, && and @ are the same operators as their counterparts
in PROLOG(+T) the keep and fin operators cannot be mapped to PROLOG(+T) ade-

quately. The only relationships we can derive is that

1. statements of the form ¢ < keep(p) are related to statements of the form ¢ :—pUp

for some @ and

2. statements of the form ¢ < fin(y) are related to statements of the form 1 :—pPg

for some .

As a summary we can therefore point out the following differences between TOKIO and

ProroG(+T):

1. PROLOG(+T) does not have direct counterparts for the operators keep, fin and &&

of ToKIO.
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2. In PROLOG(+T) we do not have any limits for the time points in which formulas
are satisfied. In contrast TOKIO statements are executed in intervals. Since such
intervals are assumed to be given by time points which are represented as natural

numbers, they always have a finite length.

3. The philosophies of Tok10 and PROLOG(-+T) are completely different since the
main task in TOKIO is the construction of a model (i.e. the detection of an interval)
while the main task in PROLOG(+T) is to refute a formula, i.e. proving that there

cannot exist any models.

5.2. Declarative Semantics of Prolog(+T)

This section will deal with the declarative semantics of the programming language PRO-
LOG(+T) introduced in the last section. The declarative semantics is defined in terms of
the logical consequence relation = and it is important to distinguish this semantics from
the operational semantics which is defined in terms of some suitable calculus . This

operational semantics will be the subject of chapter 5.3.

5.2.1. Preliminaries

We will now extend the concepts of Herbrand—interpretations as introduced in first order
logic (see [140] or [105]) to the logic FoLrL. We will see that the results from first order
logic carry over to FOLTL.

Let sig = (X, F, P,«) be any signature. We will need the concept of ground objects in

order to define Herbrand interpretations.
o A term ¢ € 7 (sig) is called a ground term if VAR(t) = ().
e A FoLtL-formula ¢ is called a ground formula if VAR(p) = 0.

Similarly a ground atom is a ground formula which is an atom, a ground literal is a
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ground formula which is a literal and a ground clause is a ground formula which is a
clause.

For the rest of this chapter we will assume that sig = (X, F, P, «) is any fixed signature.
Let ® be any set of formulas over sig. The set of all ground terms which can be built from
symbols occurring in ® will be called the Herbrand-universe of ® and will be denoted as
Ug. In particular we will be interested in Up for PROLOG(+T) programs P. Similarly

one defines sets Bg and BgOLTL as follows:

Bs = {p € A(sig) | VAR(¢) = 0} and
Bg°™ = {p € Au(sig) | VaRr(p) = 0}
The set Bg is the well known Herbrand-base. The set BgOLTL is an extension of the
Herbrand base which also allows the inclusion of temporal atoms. We will also refer to
BgOLTL as the Herbrand base of ® since there is no way of confusion?.
We will see that a well-known result from first order logic can be extended to FOLTL.

Therefore we will define the set FREE(o) for some logical object o to be the set of free

variables occurring in this object. Formally:
e for terms from 7 (sig) we define

— FRrREE(X) = {X} if X € X is a variable symbol and

— FRrREB(f(t1,...,tn))) = Ui FREE(t;) if £ € F is a function symbol with

a(f) =n and ty,...,t, € T (sig).
Equivalently we could define FREE(t) = VAR(t) for any t € 7 (sig).

e For formulas we define

2Due to the fact that syntactically different literals might be logically equivalent we have that a positive
literal can be equivalent to a negative one, e.g. Gp(X) = not(Fnot(p(X))). Therefore we will make
the following convention: BE°™" contains all temporal literals which are equivalent to some positive

temporal literal.
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— FREE(true) = FREE(false) = (),

— if p € P is a predicate symbol with a(p) = n and t1,...,t, € 7(sig), then
FREE(p(tlv s )tn)) = U?:l FREE(tZ)a

— if ¢ is a formula, then

FREE(not(p)) = FREE(Xp) = FREE(Gy) = FREE(Fp) = FREE(p),

— if ¢ is formula, then FREE(VXp) = FREE(FXp) = FREE(p) \ {X} and

— if ¢ and 9 are formulas, then FREE(¢1Ups) = FREE(p1Py2) = FREE(p1 A

©2) = FREE(p1 V ¢2) = FREE(p; — 2) = FREE(p1 < ¢2) = FREE(p1) U

FREE(¢2).

A formula ¢ is called closed if FREE(p) = (. Similarly a formula ¢ is called universally
closed if ¢ is a closed formula which does not contain the quantifier 3.

We will now see that certain subsets of the Herbrand base of a program can be con-
sidered as interpretations. This is achieved in a similar way as in the case of first order
logic programs. However, we will have to put some restrictions on the subsets of interest.
After this we will make a link between these sets of atoms (which we will refer to as set
based—interpretations) and the interpretations of FoOLTL—formulas as defined in chapter
2.3.2 (which we will refer to as structure—based interpretations).

Let P = {P,...,P,} be any PROLOG(+T)-program and let I C BLEOL be any set
of ground atoms built from symbols occurring in P. Furthermore let ¢ be any universally

closed FoLTL-formula®. I will be seen as an interpretation for ¢ as follows:

1. if ¢ = X% for any ¢ > 0 and any nontemporal atom v from Bp, then I E ¢ if and

only if p € I,

3Similarly as in First Order Logic these construction strongly relies on the assumption that every
variable symbol in the formula under consideration is universally quantified. For general formulas
the construction fails.
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2. if o = 1 A e, then I = ¢ if and only if T = ¢1 and I = @,

3. if o =1 Vg, then I = if and only if I = 1 or I = o,

4. if ¢ = =, then I |= ¢ if and only I £ 9,

5. if ¢ = p1 — @9, then I =@ if and only if I = =1 or I = o,

6. if o = 1 < @9, then I = @ if and only if I = @1 — @9 and I = @9 — ¢1 and
7. if ¢ = VX1 then

a) if X € VAR(¢), then I |= ¢ if and only if for every substitution o = {2} for

some t such that VAR(t) = 0 it holds that I = o(¢)) and

b) if X &€ VAR(¢)), then I = ¢ if and only if I = 1.

This definition of the semantics in terms of subsets of BEOLTL only allows the inter-
pretation of formulas which contain the temporal operator X. But in order to handle
formulas involving G, F, U and P we have to restrict the subsets of interest to such subsets

which are temporally closed.

Definition 5.2.1 (Temporally closed set)
Aset I C BEOLTL is called temporally closed if and only if for every ¢, 1 and o from

BEOLTL and every ¢ > 0 the following conditions are fulfilled:
1. X'Gyp € I if and only if Xy e I for every j > 0,
2. XFp e I if and only if X**7p € I for some j > 0,
3. Xlp1Upy € T if and only if Xépy € I or Xip; € T and Xy Upy € 1,
4. Xl Py € I if and only if Xipy & I and Xip; € I or X1 Ppy € T and

5. ¢ € I'if and only if {¢y € BpOY™ | ¢ = o} C 1.
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The motivation for this definition should immediately be clear since it is directly de-
rived from the properties of the semantical equivalence relation for FOLTL formulas. So
a set I is temporally closed if satisfaction of one member of an equivalence class implies
satisfaction of all members of this equivalence class. Therefore considering temporally
closed subsets of BEOLTL as the interpretations of interest is reasonable.

It is important to note that one can in many cases enrich a set I C BEOLTL by adding
atoms in order to receive a temporally closed set. This procedure will later be referred
to as building (or constructing) the temporal closure. In general, a temporally closed

superset of a set I is not uniquely determined.

Example 5.2.1
Consider the set I = {Fp(a)}. every temporally closed superset of I contains X/p(a) for

some j > 0.

The temporally closed supersets of a set I can be seen as the unions of sets on (infinite)
maximal paths in an infinite tree. We will therefore construct a labeled graph T'(I) =
(V,E,l) from I as described below?.

T(I) = (V,E,l) with [ : V — 2B U {fail} is the infinite tree satisfying the

following conditions:

1. There is a uniquely determined vy € V' such that (v,vg) € E for each v € V (the

root node),
2. l(vg) = I and
3. for each v € V the following is true:

a) if there is an atom X'Gy € I(v), then there is v’ € V such that (v,v’) € E and

(W) =1(v) U{XHp|j >0},

“Here V is a nonempty set of nodes (also called wertices), E C V x V is a set of edges connecting these

nodes and [ : v — 257" U {fail} is a mapping which labels the nodes.
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b) if there is an atom X'Fy € I(v) then there are vy, ..., 05, € V osuch that

(v,v}) € E and I(v}) = l(v) U {XIp} for each j > 0,
c) if there is an atom X'p;Ugps € I(v), then there are vj,vh € V such that
(v,v}), (v,v}) € E and
e 1(v}) = 1(v) U{Xps} and
o U(vh) = 1(v) U{X"p1Upn}
if Xipy ¢ 1(v),
d) if there is an atom X'p;Pps € I(v) then there are vj,vh € V such that
(v,v}), (v,v}) € E and
o if X'py € I(v), then I(v]) = I(vh) = fail and
o if X'py € 1(v), then I(v]) = 1(v)U{X%p1)} and I(vh) = I(v) U{X"T 1Py}
and

e) for each ¢ € [(v) it holds that
{v € BRH™ | v =9} Cl(v).

Given T'(I) the set of all (possibly infinite) maximal paths 7 starting at vy such that
there is no v with {(7) = fail occurring on 7 will be denoted as p(T'(1)).
Given 7 € p(T'(I)), the set [(7) denotes the union of all sets with which the nodes on

7 are labeled. Formally if V(7) denotes the set of nodes occurring on 7, then

Then the following claims are immediate:
1. For every 7 € p(T(I)) the set I(r) is temporally closed.

2. For every m € p(T'(I)) it holds that I C I(m).
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We will from now on denote the set consisting of all sets computable in the way sketched

above as the temporal closure of I and denote it as

TeEMPCLOSURE(]) = {l(7) | m € p(T'(1))} .

Definition 5.2.2 (Set—based Herbrand—Interpretation)
A set-based Herbrand-Interpretation for a program P is a temporally closed subset
I C BEOLTL. A set based Herbrand model for P is any temporally closed set I C

BEOY' such that I = P.

It is worth noticing that considering only temporally closed sets as interpretations has
the drawback that there are some programs which are not satisfiable. This is one differ-
ence to pure first order logic programs which are always satisfied by the interpretation

I = Bp. Consider the following program P = {P;, P,} where

P, = p(a). and

Py, = q(X)Pp(X) :—p(X).

Now fix any temporally closed I C BEOL™ If I |= P, then in particular we have I =
Py, that is I = P, = p(a). Sop(a) € I. On the other hand we have I = P» = q(X)Pp(X) :
—p(X) and since Py is considered universally closed we have I = q(a)Pp(a) :—p(a). But
since I is temporally closed we have I [~ p(a) and I |= q(a) or I = Xq(a)Pp(a). This is

a contradiction. So I f& P and therefore P has no set based Herbrand model.

We will now prove that for universally closed sets of FOLTL formulas the concepts
of set—based Herbrand—Interpretations and structure—based Herbrand-Interpretations as
introduced in chapter 2.3.2 are equivalent. This allows reasoning about properties of

programs by considering interpretations as sets of literals instead of the formally more
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complicated structures.

We will first prove the easier direction.

Lemma 5.2.1
Let P be a PROLOG(+T)-program. If P has a structure-based Herbrand—model, then

P has a set—-based Herbrand—model.

Proof. Let P be a PrROLOG(+T) program and let J = (Uy, S, sg,d1,02,w,Z) be a
structure-based Herbrand-model of P. Set I; = {¢ € BEOY | J = ¢}, i.e. 17 becomes
the set of all ground instances satisfied by J. Then every I € TEMPCLOSURE([7) is
easily seen to be a set based Herbrand model of P. O

The opposite direction is also true although it is much more complicated to prove (due

to the more complicated definition of structure-based interpretations).

Lemma 5.2.2
Let P be a PROLOG(+T) program. If P has a set based Herbrand model, then P has

a structure—based Herbrand-model.

Proof. Let I C BIEOLTL be a set-based Herbrand-model of P, that is I is tempo-
rally closed and I | P. We will construct a structure based interpretation J; =
(Up, S, s9,01,02,w,T) from I such that J; = P. Therefore define S = {s) | i € N}
and so = s(9. Furthermore define for s € S and any t = f(t1,...,t,) € Up: I(s,t) =
Z(s, f)(t1,.-- tn) = f(t1,...,ty) as obvious. Since every element of P is considered
universally closed we can set w as any arbitrary mapping.

We then define §; := {(s(i),s(iﬂ)) |i>0} and 6y := {(s(i),s(”j)) |4,j >0}. After

this we proceed as follows:
1. Take some ¢ from I and set I =T\ {¢}.

2. Case 1 if ¢ = X'p(ty,...,t,) for some i > 0, some predicate symbol p of arity n
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and t1,...,t, € Up, then we set
7 <S(i),p> (t1,. . tn) =1,
Case 2 if ¢ = X'Gy for some i > 0 and some ) € BEOLTL then set
7 <s(i+ﬂ'>,¢) =1

for every j > 0,

Case 3 if ¢ = X'Fe) for some i > 0 and some 1) € BEOI‘TL, then set
T <s(i+j),1/)) =1

for some j > 0,

Case 4 if o = X% U, for some i > 0 and o1, @9 € BEOLTL then set
7z (s(i),gpg) =1

or

7 (s(i),gpl) =landZ (S(i+l),gplU<p2) =1

and

Case 5 if ¢ = Xip Py, for some i > 0 and ¢, @2 € BEOI‘TL, then set
7z (S(i),tpg) =0

and

7 (s(i),gpl) =lorZ <s(i+1),<,01|3(,02) =1

3. If I # (), then go back to step 1.
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It is obvious that the structure—based interpretation [J; which emerges by applying these
steps as long as I # () (i.e. the limit interpretation) is a structure based Herbrand model

of P. O

Theorem 5.2.1 (Equivalence of set— and structure—based interpretations)
Let P be any PROLOG(+T)-program. Then P has a structure-based Herbrand—model

if and only if P has a set based Herbrand model.

Proof. Immediately from Lemma 5.2.1 and Lemma 5.2.2. (]

5.2.2. Reduction of Literals

It will turn out useful to introduce a concept of reduction for temporal literals. Intuitively
a reduced form of some temporal literal ¢ is a normal form RED(¢). We will therefore
define how a reduced literal looks like and how it can be effectively computed given the

(unreduced) literal.

An approach to define a certain type of normal—form for temporal logic formulas has
been presented in [65] and [64] for the propositional logic LTL enriched with past opera-
tors. However, this separated normal form is defined for a much larger class of formulas
than only atoms and literals. Consequently the structure of this normal form is much

more complicated than necessary for our purposes.

In order to compute reduced forms of literals we will exploit several simple semantical
equivalences. The basic idea is to first pull out the negation operator (if it is contained), so
that each reduced literal ¢ is either of the form ¢ = ) for some literal ) not containing not
or ¢ = not(¢) for some 1 not containing not. The following set of logical equivalences

will be the basis of our reduction concept.
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GGy
Gnot(p)
Xnot(yp)

Xfalse
Gfalse
Ffalse
trueUyp
pUtrue
falseUp
pUfalse

1111111111

Gy,
not(Fyp),
not(Xyp),
false,
false,
false,
Fe,
true,

(107

Gy and

FFp
Fnot(yp)
not(not(y))
Xtrue
Gtrue
Ftrue
truePy
pPtrue
falsePyp
pPfalse

1111111111

Fe,
not(Gy),
12

true,
true,
true,
not(yp),
false,
not(Fyp),
Fo.

Figure 5.1.: Rewrite System for computing reduced literals

Lemma 5.2.3

Let ¢ be any formula from FoLTL. Then

GGy
Gnot(yp)
Xnot(yp)

Xfalse
Gfalse
Ffalse
trueUyp
pUtrue
falseUyp

pUfalse

Gy,
not(Fy),
not(Xp),
false,
false,
false,
Fo,
true,

1)

Gy and

FFp
Fnot(yp)
not(not(y))
Xtrue
Gtrue
Ftrue
truePy
pPtrue
falsePyp

pPfalse

Fo,
not(Gy),
s

true,
true,
true,
not(yp),
false,

not(Fy),

Fo.

These equivalences are easily seen to be correct. In order to define a suitable concept

of reducedness we will convert the equivalences into a terminating and confluent rewrite

system. The rules of this system are then applied exhaustively to a literal and the

resulting nonreducible literal is said to be the reduced form of the original literal. The

set of rules is given in Figure 5.1.

In order to analyze the properties of the introduced rewrite system we will have to
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review some of the basic concepts from term rewriting. The presentation will be standard
(see [13], [12] or [83]).

Let t € 7 be a term. The set of positions of t is defined as
1. Pos(X) ={e}ift =X € X and
2. Pos(£(t1,....tn) ={ey UU{ip | p € Pos(t;)}.

Similarly we define positions in literals as follows:

Pos(true) — Pos(false) — {c},
POs(plti.-...ta)) = {2} U lin | p < Pos(t),
Pos(g) = Pos().
Pos(Xy) = Pos(Gy) = Pos(Fy)

= {e}U{lp|p e Pos(y) and
Pos(piUypa) = Pos(¢i1Py2)

= {e}U{lp|p e Pos(p1)} U{2p|p € Pos(pa)}.

So Pos(o) € N* for any logical object o.

The term respectively literal at any given position can then be extracted as follows:
1. t|c =t for each t € 7 and

2. £(t1,. .. ti, ... ty)]ip = tilp for p € POS(¢;).

Similarly we can extract subparts from literals:

1. ¢|. = ¢ for every literal ¢,

2. p(t1,...,ti, ..., tn)|ip = ti|p for p € POS(;),

3. Xol1p = Gpl1p = Fol1p = ¢, for p € Pos(yp),
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4. (p1Up2)|1p = (p1Pw2)|1p = p1lp for p € Pos(¢1) and

5. (w1Upa)|ap = (01Pw2)|2p = p2lp for p € POS(p2).
Example 5.2.2

Let t = £(£f(g(X,f(a)))) and ¢ = p(£f(g(a,f(a)))) be given. Then

Pos(t) = {e1,11,111,112,1121},

Pos(p) = Pos(p(f(g(a,£(a)))))
= {e}U{lp|p e Pos(f(g(a £(2))))}
= {e}U{le, 11,111,1111,1112,11121}

= {e1,11,111,1111,1112,11121}

and

thie = £(a) thizi = a
eln = f(gla,£(a)) ¢l = a

The operation of replacement is now defined as follows (following the formalisms from

[13]):
1. t'[t]]. =t for t,t' € X,

2. f(tl,...,ti,...,tn)[t”ip = f(tl,...,ti_l,ti[t]|p,ti+1,...,tn) for t € X and p €

Pos(t;),

3. [t]]le = —p[¥]|e = ¢ for literals o, v,

4. a) (Xe[])|ip = X(pl]]p) for p € Pos(y) if ¢|, is a literal and
b) (Xelt])|ip = X(p[t]|p) for p € Pos(y) if ¢|, is a term,
5. a) (Ge[Y])|ip = G(e[Y]]p) for p € Pos(yp) if ¢|, is a literal and

b) (Golt])lp = G(pt]lp) for p € POS(p) if ¢, is a term,



78 Chapter 5. The Programming Language PROLOG (+T)

6. a) (Fe[¥))|ip =F(e[Y]]p) for p € Pos(yp) if ¢l, is a literal and

b) (Felt])|ip = F(elt]]p) for p € Pos(y) if ¢l, is a literal,
7. (p1Up2)[¢]l1p = (p1Pp2)|1p = p1lp for p € POS(p1) and
8. (w1Up2)[¥]|2p = (¢1Pp2)l2p = w2lp for p € POS(p2).

Using replacement we define reduction formally as follows. Let a set {l; — r; | i =

1,...,n} of rules be given. Then

1. ¢ — 1 if and only if there is p € Pos(p), i € {1,...,n} and a substitution ¢ such

that o(l;) = |, and ¥ = @[o(r;)]|p,

2. @ forn e {1,2,...} if and only if there is a sequence ¢g, ¢1, ...,y such that

©o = @, pn = and p; — @41 for i € {0,1,...,n— 1} and
3. ¢+ 1 if and only if ¢ = 1) or there is an n such that ¢ > 9.

A rewrite system given by a set of rules {l; — r; | i = 1,...,n} (for some finite n) is
called terminating if the length of reductions is finite. Formally: there is no sequence
(pi)ien such that ¢; # p;1 and @; — @11 for every i > 0. So in a terminating rewrite
system every literal will be reduced to some literal which cannot be reduced any further.
Similarly we will call literals ¢ and s joinable if there is v such that ¢ V> 1p and
0y = 1. — is called confluent (locally confluent) if for every ¢ such that ¢ > ¢
(¢ — @1) and @ > @y (p — ) there is 1 such that ¢ — 1) and @y + 1p. Termination
and confluence are properties of a rewrite system which are essential if one wants to
compute normal forms.

In order to analyze the confluence of a rewrite system it suffices to concentrate on
a finite set of reductions, so called critical pairs. Assume that v = I, +— r;, and
r@ = li, — 1;y are two rules. We will call rM and 7 overlapping (at position p) if and

only if there is a position p € Pos(l;,) and a substitution ¢ such that ¢ = mgu(l;, |p, l;,)-
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Critical pairs are pairs of literals which can be derived from the application of a restricted

kind of overlapping rules.

Definition 5.2.3 (Critical Pair, e.g. Baader and Nipkow [13])
Let v = 1;; +— r;, and r® = [, s r;, be overlapping at position p € Pos(l;,)
such that l;, |, ¢ & and let 0 = mgu(l;, |, li,). Then (o(r;,),o(l;, [o(ri,)]]p) is called a

critical pair (with respect to ).

The following classical result shows that confluence of a terminating rewrite system —

can be proved by checking if critical pairs are joinable.

Lemma 5.2.4 (Critical-Pair—-Lemma, Knuth and Bendix [90])
A terminating rewrite system — is confluent if and only if all critical pairs (with respect

to +) are joinable.

From now on we will concentrate on the rewrite system described in Figure 5.1. This
system will therefore be denoted as +—. We will see that +— indeed has the desired

properties. The first property is immediate.

Lemma 5.2.5

— 1S terminating.

Proof. First observe that no application of a rewrite step yields a literal which is longer
than the original literal. In particular there are several rules which shorten the literals.
Since every literal consists of a finite number of symbols, these rules can only be applied a
finite number of times. So now consider the length—-preserving rules Gnot(yp) — not(F¢),
Fnot(¢) — not(Gy) and Xnot(y) — not(Xy). It is obvious that these rules push
negations to the left. But this can also be done only a finite number of times (due to the
finite length of literals), so the rules cannot be applied infinitely often. This proves the

lemma. O
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In order to show that +— is also confluent we will prove that all critical pairs are

joinable.

1. Let the rule GGy — Gy overlap with itself. Then there are two possible rewrite

steps (the replaced subliteral is underlined):

GGGy +— GGy and

GGGy — GGep.

Since the literals which emerge from applying these two steps are identical, this

pair is clearly joinable.

2. Similarly it can be shown that an overlapping of FFyp — Fy with itself is joinable

using the following steps:
FFFp — FFp and
FFFy — FFo.
3. If Gnot(p) — not(Fyp) overlaps with not(not(p)) — ¢ we have

Gnot(not(y)) +— Gy and

Gnot(not(y)) + mnot(Fnot(p)) — not(notGy)) — Gp.

4. If Fnot(p) — not(Gyp) overlaps with not(not(y¢)) — ¢ we have

Fnot(not(y)) +— F¢ and

Fnot(not(¢)) +— not(Gnot(y))+— not(not(Fy)) — Fe.
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5. If Xnot(p) — not(Xyp) overlaps with not(not(p)) — ¢ we have

Xnot(not(p)) +— Xy and

Xnot(not(p)) +— mnot(Xnot(yp)) — not(not(Xep)) — Xe.

The other rules of the rewrite system can only overlap in a noncritical way, so each
critical pair with respect to — is joinable and the following lemma is proved.
Lemma 5.2.6

— is confluent.

From now on let RED(p) denote the uniquely determined reduced literal which emerges

from the application of the above rewrite system. We have

¢ = RED(¢)

(due to the fact that — is constructed from a set of semantical equivalences), and there-
fore the following theorem holds.

Theorem 5.2.2

For every FoLtr-literal ¢ there is a uniquely determined normal form RED(y) with

¢ = RED(p) which can be effectively computed.

In some of the following chapters we will restrict our analysis to reduced literals since

these can be handled much easier than general ones.

5.2.3. Semantics for programs

We will now show how the semantics of a FOLTL program P can be characterized in terms
of the stable model semantics introduced by Gelfond and Lifschitz in |73]. The adaption
of the Gelfond-Lifschitz constructions is necessary since rules in PROLOG(-+ T )—programs

may contain negated literals in the tail (note that the problem of inducing stable models,
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i.e. models for normal (nontemporal) logic programs has been already addressed, i.e. in
[128] and [125]). So the results from logic programming regarding definite logic programs
such as the existence of monotonic and continuous operators which have fixpoints which
can be seen as least models (in fact they are identical to the intersection of all Herbrand—
models, see [164]|) cannot be easily generalized to PROLOG(+T) programs anymore.
For nontemporal logic programming languages, Gelfond and Lifschitz have extended the
classical immediate consequence operator Tp which characterizes the least Herbrand—
Model to an operator which, given any subset M of Bp, computes a least Herbrand
model of a modified definite program Pj; which (if M is chosen in the right way) has
the property of being a stable model of P (see [73]).

We will now adapt the necessary concepts introduced in [73] in order to deal with
PROLOG(+T)—programs.

So assume that a set P consisting of reduced ground rules is given and M C BEOLTL
is any set of reduced ground atoms built from symbols occurring in P. The program Py

is then constructed as follows:

1. if there is a rule in P such that not(y) for some ¢ € M occurs in the tail of this

rule, then this rule is deleted and
2. negated atoms in the tails of the remaining clauses are also deleted.

Then Pys is clearly negation—free in the sense that no rule in Pj; contains a negated
atom in its tail. We will see that negation free sets of PROLOG(+T) ground rules have
models (in the case of satisfiability). Note that P is in general not satisfiable as shown
in the example after Definition 5.2.2 on page 71.

For satisfiable negation free programs we can indeed extend the fixpoint semantics of
first order logic programming languages in a straightforward way. Recall that P has been
required to consist only of ground rules, that is in general, P is not a finite set of rules

anymore. We proceed as follows:
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1. starting from the empty set () we will construct an infinite tree consisting of nodes

labeled with subsets of BEOLTL and

2. show that the union of all labels of nodes on any maximal path in this tree is a

set based Herbrand model of P.

We will use the following extension of the immediate consequence operator Tp (see [164]
or [105]). This operator is used in the theory of first order Logic Programming to derive
characterizations for the semantics of a definite program. The semantics of a program P
is there given as the smallest set of ground atoms of the underlying first order language
which P satisfies. Equivalently the semantics is given as the set of all implied ground
atoms implied by the program. This set can be characterized as the least fixpoint of an
operator (namely the operator Tp as introduced in [164]) and is easily seen to be uniquely
determined (since Herbrand—models of definite logic programs can be intersected yielding
Herbrand-models). For characterizing the semantics of PROLOG(+T')-programs we will
change the original operator Tp in a way that allows the treatment of FOLTL objects

rather than only first order objects.

Definition 5.2.4 (Immediate Consequence Operator for FOLTL)
Let P be any negation—free set of ground rules. The mapping TEOLTL . 9Bp

2BE"™ is defined as follows:

there is a rule ¢ :—1,...,%g. in P such that

Il:"i/}ly---ﬂ/fk

TEOLTL(I) — © c BEOLTL |

This operator will be used together with the operator TEMPCLOSURE in alternating

order.
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Now assume that any negation—free PROLOG(-+T)—program P which only contains

ground rules is given. We construct an infinite labeled tree T'(P) = (V, E,l) with [ : V —

2BE”™ such that the following conditions are satisfied:

1. V contains a uniquely determined root node vy,
2. l(vg) = 0 and
3. for each v € V' it holds that

a) if v is on an even level then there is v" € V such that (v,v’) € F and (V') =

TEoL(1(v)) and

b) if v is on an odd level then assume that
TeEMPCLOSURE(I(v)) ={T1,...,T;,... }

and there are nodes v}, ...,v},--- € V such that (v,v}) € E and [(v}) = 7; for

every ¢ > 1.

Given T(P) we define the set p(T'(P)) to consist of all maximal paths in T, that is
of all (in general infinite) maximal sequences of nodes (v;);en such that (v;,viy1) € E.
If 7 € p(T'(P)) is a maximal path then V() denotes the set of nodes which are visited
while traversing 7.

Lemma 5.2.7
For every satisfiable set P of negation—free ground rules and for every = € p(T'(P)) it

holds that
L. Upev(m l(v) = P and
2. Upev(n) 1(v) = P is temporally closed.

Proof. The first claim is clear by definition of TEOLTL. For the proof of the second claim

fix any 7 € p(T(P)). If U,ey (x) {(v) is not temporally closed, then an application of the
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operator TEMPCLOSURE would yield a temporally closed superset which shows that m
is not maximal in this case. This contradicts the assumption on 7. So UveV(w) l(v) is
temporally closed. O

So the models of P derived by the above construction can be collected in a set Op as

follows:

or=1 U )7 epr(p)
veV ()

In order to deal with programs containing negation, we will now concentrate on pro-

grams Pjs as described above.

Lemma 5.2.8
Let P be a set of ground PROLOG(+T) rules and let M C BLV™ be a set of atoms

occurring in P. If P is satisfiable, then every J € ©p,, is a Herbrand-model of P.

Proof. Let M be as required. Then J |= Py for every J € ©Op,,. Assume that
Py ={P,...,P,}, fix J € ©p, and i € {1,...,n}. Since J |= Py we have J = P,.

Consider the following cases.
Case 1 P, € P. Then the claim is immediate.

Case 2 P, ¢ P. Then P; emerges from a rule from P by deleting negated atoms in the
tail of P;. That is for P; = ¢ :—1,..., 9. thereis P; = ¢ (=1, ... S,
in P for ¢1,...,¢; € BEU™. Since J = P; we have J = ¢ V =y, ..., b which
implies J = @V =py V --- V =bg Vb1 V - -+ V 1y and therefore J = P;j.

It remains to prove that also the rules C' from P which have been deleted during the con-
struction of Py are satisfied by J. If C is such a rule, then C' = ¢ :—1, ..., 1, not(¢).
for some ¢ € M. Since J = M the claim is immediate. So J is a model of P and the

lemma is proved. O
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5.3. A Saturation—based temporal Proof Procedure

As we have already mentioned in chapter 5.2 we will now study the operational semantics
of PROLOG(+T). This semantics will be studied by presenting a calculus which is both
sound and refutation complete. Basically this calculus will be an extension of the well-
known tableauz principle which is a quite popular principle in many areas of automated
reasoning. In contrast to PROLOG where an eventually modified (and speed up) version
of the SLD-resolution principle is chosen for proving logical consequence of goals (and
therefore for computing answers to programs) resolution based approaches are not the
best choice for our problem. Consider the following problem: given a program P =
{Py,...,P,} and a goal G =:—@1,...,¢m,. Assume that i is such that ¢; = Gp(X).
Then ¢; = p(X) A XGp(X). If there is for example a rule P; = XXXp(X) :—q(Y,Y). in
P the normal SLD principle will not be able to compute a resolvent. But it is obvious
that G/ = ¢1,...,9i—1,p(X), Xp(X), XXp(X), q(Y, Y), XXXXGp(X), Pi+1; - - - , om should be
a resolvent of G and P;. Therefore we will adapt the tableaux calculus in order to deal
with temporal constructs. We will see that the resulting proof procedure is indeed sound
and (in some sense) refutation complete.

The study of sound and complete proof procedures for FOLTL and its fragments dates
as far back as to the first contributions of Abadi and Manna (see |3]). It has been pointed
out quite early that the whole logic FOLTL is not only undecidable (which is clear since it
contains the whole first order logic) but also not recursively enumerable (see e.g. [82] or
[30]). Consequently no complete proof—procedure for FOLTL can exist. But restrictions
of FOLTL yield recursively enumerable fragments. For example in [82] a restricted usage
of temporal operators yields the monodic fragment which can be embedded into the
monadic second order theory®. Omitting the use of U and P yields a logic which can be

recursively enumerated. Enumeration can be carried out by a sequent—style calculus (see

5 A formula ¢ is called monodic if every subformula % of ¢ which has the form 1) = 11 D2 for ® € {U, P}
has at most one free variable. Consequently the monodic fragment of first order tempporal logic
consists of all monodic formulas.
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[14]). Other types of proof-procedures for FOLTL—fragments are Hilbert—style calculi
(see e.g. [53]), Resolution style calculi (see [91], [41], [43], [44], [91], [41] and [42]) and
ASM based procedures (see [174]). A good survey of first order temporal logic proof
procedures has been presented recently by C. Castellini in his Ph.D. Thesis (see |27]).
Our proof-procedure which we will present on this section is a tableaux—style proce-
dure. Several modifications of the tableaux—construction for first order logic have been
presented in order to derive proof procedures for first order temporal logic languages (see
|28 and [29] for FOLTL and [114] for the first order version of CTL). Nevertheless our
method has its justification since it is defined especially for PROLOG(+T)—formulas and

since it integrates the reduction concept for temporal literals introduced above.

5.3.1. Tableaux Rules

Since PROLOG(+T) is first order logic based we will have to define a proof procedure
which enables us to handle first order logic constructs. The tableaux method (see [66]) is
one such method. Basically it constructs a tableaux (which is represented as a directed
graph) consisting of nodes which are labeled with sets of formulas. The key property
for the soundness and completeness is the following: if ny and ne are such nodes and Fj
and Fy are the sets of formulas labeling these two nodes and ns is a successor of n; then
unsatisfiability of Fy implies unsatisfiability of Fj.

We will distinguish two principle kinds of tableaux rules here: ezpansion rules and
saturation rules. Expansion rules are rules which consider the first order part of a formula.
An example might be the following: if ¢ A @9 is to be satisfied, then both 1 and @9
have to be satisfied at the same time. On the other hand, saturation rules consider the
temporal part of formulas. Here we can argue with the example presented above: if Gy
is to be satisfied, then ¢ and XGy have to be satisfied (in other words X'¢ has to be
satisfied for every i > 0).

The discussion of the proof procedure will now proceed as follows: first we will have
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to define certain concepts which are needed for the presentation of the proof procedure.
This will include a node format for the nodes of the tableaux. After having introduced
the basics we will consider the expansion rules and the saturation rules separately. We
will see that the expansion rules are the rules from the classical tableaux calculus for
first order predicate logic (moreover, the proof procedure to be introduced is capable of
handling formulas which are not restricted to the formulas occurring in PROLOG(+T)

programs). In order to be applicable we will then present two kinds of termination
criteria: criteria for termination in the case of success and in the case of failure. We will
see that termination by failure is a much more difficult task than successful termination.
The chapter will then be continued by proving the soundness and refutation completeness

of the procedure.

Basic Formalisms

We will now describe the format of the nodes from which a tableaux is built up.

Definition 5.3.1 (Tableaux node)
A tableauz node is a tuple n = (®, F, S) where ® is a nonempty set of FOLTL—formulas
and F and S are (possibly empty) sets of tableaux nodes. The sets F' and S will be

referred to as the father nodes and the son nodes of n.

For the proofs in later sections we will introduce the following abbreviation. For a

node n we will denote the set of formulas labeling this node by F(n). In other words if

n = (P, F,S), then F(n) = o.

Definition 5.3.2 (Path)
A path is a sequence m = (ng,ny,...,Nk,...) of tableaux nodes such that n; =

(®;, F;,S;) for i = 0,1,..., Fp = ( and for each ¢ € {0,1,...} it holds that
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ni11 € S;. A node n is said to occur on w if there is an index ¢ such that n; = n. If
m = (ng,n1,...,nk_1), the integer k is called the length of m and 7 is called finite (or
of finite length). Otherwise (i.e. if no such k exists), 7 is called infinite (or of infinite

length).

Note that in general paths in a tableaux will be of infinite length. This will be of

interest in the proof of refutation completeness which we will present later on.

We will now describe the construction of the initial tableauz node for the tableaux to

be constructed from a formula . This node is given as follows:

no = ({¢},0,0).

Whenever we will refer to the initial node of a tableaux from now on we will mean a

node ng constructed in this way.

Expansion Rules

We will now describe how to construct new nodes from nodes which have already been
constructed. The rules to be described in this section will later on be referred to as
expansion rules. We assume that n = (®, F,S) is a node which has been chosen from a
set N of nodes. A fixed selection rule has to be chosen in order to select formulas from
F(n) to which the rules can be applied. The only requirement which we will have to put
on the selection rule is the requirement of fairness. Informally fairness means that no
application of a rule to a formula from F(n) is retarded for an infinite time. Equivalently
we can say that every possible inference step is eventually carried out (as long as the

procedure does not terminate).

Now let ¢ be the selected formula. We distinguish the following cases:
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1. ¢ = 1 A @o. In this case we create a node n’ = (F(n'), F’,S") as follows:

F(n') = (F(n) \ {e1 A pa}) U{e1, 2},

F' = {n}, 8" = 0. Furthermore we update the set S of sons of n to S =S U {n}.

This rule will from now on be referred to as (A1).

2. ¢ ==(p1 V p2). In this case we create a node n’ = (F(n'), F’,S’) as follows:

F(n') = (Fn)\ {~(p1 Ap2)}) U{~¢1, 02},

F' = {n}, 8" = 0. Furthermore we update the set S of sons of n to S =S U{n}.

This rule will from now on be referred to as (A2).

3. ¢ = ¢1 V9. In this case we create two nodes n’ = (F(n'), F’,S") and n” =

(F(n"), F",S") as follows:

F(n') = (F(n) \{e1 V ¢2}) U{e1},

F' ={n}, 8" =0 and

F(n") = (F(n) \ {e1V @2}) U{pa},

F"{n} =, 8" = (. The set S of sons of n will be updated to S = SU{n/,n"}. This

rule will be referred to as (V1).

4. ¢ = = (p1 Awsz). In this case we create two nodes n' = (F(n'),F’,S") and n” =

(F(n"), F",5") as follows:

Fn') = (Fn)\ {=(p1 Ap2)}) U {1},
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F' ={n}, 8" =0 and

F(n'") = (Fn)\{= (g1 Ap2)}) U{-pa},

F'’{n} =, 8" = (. The set S of sons of n will be updated to S = SU{n/,n"}. This

rule will be referred to as (V2).

5. ¢ = p1 — po. In this case two nodes n’ = (F(n'), F', S") and n” = (F(n"), F",S")

will be constructed with

F(n') = (F(n)\ {p1 — w2}) U{~¢1},

F' ={n}, 8" =0 and

Fn') = (F(n) \{p1 — ¢2}) U{pa},

F'={n}, 8" = 0. The set S will be updated to S = SU{n’/,n"}. This rule will be

referred to as (— 1).

6. ¢ = (p1 — 2). Here a node n’ = (F(n'), F',S") will be constructed with

F(n') = (F(n) \ {~(e1 — ©2)}) U{p1, -2},

F'={n} and S' = 0. S will be updated to S = SU{n’}. The rule will be referred

to as (— 2).

7. ¢ = 1 <> py. Here we create a node n’ = (F(n'), F’,S") with

F(n') = (F(n)\ {e1 < w2}) U{p1 — 2,00 — @1},

F'={n} and S’ = 0. S is updated to S = S U {n'}. The rule will be referred to
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as (< 1).

= = (1 <> ¢2). Here we create two nodes n’ = (F(n'),F’,S") and n” =

v
(F(n"), ", 8") with

Fn') = (Fm)\{= (o1 = 2))) U{= (01 = ¢2)},
F'={n}, §' = 0 and

Fn") = (Fm)\ {= (1 = @)} U{=(p2 = ¢1)},

F" = {n}, 8” = 0. Again S is updated to S = S U {n’,n”}. The rule will be

referred to as (« 2).

9. ¢ = =—). Here we will create a node n’ = (F(n'), F’,S’) with

Fn') = (Fn)\ {~~v}) U {¥},

F'={n} and 8" = 0. S is updated to S = SU{n'} and the rule is referred to as

(—E).
10. ¢ = =VXy(X). Here we will create a node n' = (F(n'), F’,S") with
F(n') = (F(n) \ {-Vxy(X)}) U {FX~(X)},

F' ={n} and S’ = (. S is updated to S = SU{n'} and the rule is referred to as

(RY).

11. ¢ = =3Xy(X). Here we will create a node n' = (F(n'), F’,S") with

Fn') = (F(n) \ {~Fxy(X)}) U{VX-(X)},
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F' ={n} and S’ = (. S is updated to S = SU{n'} and the rule is referred to as
(R3).

12. ¢ = VX9)(X). Here we create a new node n’ = (F(n’), F’, S") with
F(n') = F(n) U{v(t)}

for some ground term ¢ which can be built up from symbols occurring in F(n),

F' = {n} and S’ = (). We update S to S = SU{n'} and refer to this rule as (o—1I1).
13. ¢ = 3Xy(X). Here we create a new node n' = (F(n'), F’,S") with
F(n') = F(n) U {v(Xnew)}

for some variable symbol Xyew & VAR(F(n)), F = {n} and S’ = (. We update S
to S = S U{n'} and refer to this rule as (0—1I3).

14. ¢ = VX¢) and X € VAR(¢)). Here we create a node n’ = (F(n'), F',S") with
F(n') = (F(n) \ {vx¢}) U {y},

F' ={n} and S’ = (. S is updated to S = SU{n'} and the rule is referred to as
(V-E).

15. ¢ = IX¢ and X & VAR(¢)). Here we create a node n' = (F(n'), F’,S’) with
F(n') = (F(n) \ {3xv}) U {4},

F'={n} and S’ = 0. S is updated to S = SU{n’} and the rule is referred to as
(3-E).

We can group the above rules as follows: (A1) and (A2) are called A type rules, (V1)
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and (V2) are called V—-type rules, (— 1) and (— 2) are called ——type rules and (< 1)

(v
and (< 2) are called < type rules. Furthermore (—E) is called the — elimination rule,
(RV) and (R3) are called rewrite rules, (0c—11) and (0—I2) are called substitution rules
and (V—E) and (3—-E) are called quantifier—elimination rules. The rules are summarized
in Figure 5.2. Here the formula above the fraction stroke denotes the selected formula
from F(n) and the formulas below the fraction strokes denote the formulas created from

this formula. The number of columns below the fraction stroke denotes the number of

new nodes to be created. For example in

w1 A\ P2

©1

P2

one new node containing two new formulas has to be created.

Saturation Rules

In contrast to the expansion rules described above, the saturation rules which will be
described deal with the temporal part of a formula rather than with the first order part.
We will present two rules for each of the operators G, F, U and P. For the operator X no
such rule will be given.

As for the expansion rules we will describe the rules separately by distinguishing the
different possibilities of how a selected formula might look like. For the rest of this section
assume that i is any fized integer and n = (F(n), F, S) is the node from which a formula

 is chosen. The saturation rules are given as follows:
1. If ¢ = X'Gtp, then we create a new node n' = (F(n'),F’,S") with F(n') =

(F(n) \ {X'Gy}) U {Xip,X*1Gy}, F' = {n} and & = 0. S is updated to
S = SU{n}. The rule is referred to as (G1).
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P1 N\ P2
(A1) -
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B Fp(X)
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(72) Pl
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P11 T2
g 1)
(—2) o
P2
= (1 < @2)
(1 = p2) (2 — 1)
P
2
(3-E) Ky X & VAR(yp)
—TXp(X)
(R3) VX—=p(X)

for a ground term ¢ which can be built up from symbols
occurring in F(n)

for any new variable symbol X;ew

Figure 5.2.: Expansion Rules
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_If ¢ = =X'Gy, then we create two new nodes n’ = (F(n'),F’,S") and n” =

(F(n"),F",8") with F(n') = (F(n) \ {=X'Gy}) U {-X"4p}, F' = {n} and S’ = (
and F(n") = (F(n) \ {~X'Gy})U{-X"T'Gy}, F” = {n} and S” = (). Additionally
S is updated to S = SU{n/,n"}. The rule will be called (G2).

. If ¢ = X'Fy), then we create two new nodes n’ = (F(n),F’,S") and n’ =

(F(n"),F",8") with F(n) = (F(n) \ {X'Fy}) U {X"y}, F/ = {n} and &' =
and F(n") = (F(n) \ {XFy}) U {XT'Fy}, F” = {n} and S” = . Additionally
S is updated to S = SU{n’,n”}. The rule will be called (F1).

. If ¢ = —X'Fy), then we create a new node n' = (F(n'),F',S") with F(n') =

F(n)\ {-XFypl) U {=Xip, - XiTFypY, F' = {n} and S’ = (. S is updated to
(Fm) \ {-X"Fo}) U {
S = SU{n}. The rule is referred to as (F2).

 If ¢ = X% Uy, then we create two new nodes n' = (F(n/),F’,S") and n" =

(F(n"),F",8") with F(n') = (F(n) \ {X41Uths }) U{X"Ys}, F' = {n} and S’ = (
and F(n") = (F(n) \ {X"41Uho}) U {X"h1 A X1 Ugpo }, F” = {n} and S” = 0.
Additionally S is updated to S =S U {n/,n”}. The rule will be called (U1).

. If ¢ = =X%)1Uthy, then we create a new node n' = (F(n/), F’",S") with F(n') =

(F(n) \ {=Xlap1Utha }) U {=X"2pg, =Xy v =X Uehy b, F' = {n} and &' = 0. S
is updated to S = S U {n}. The rule is referred to as (U2).

. If ¢ = X% Py, then we create a new node n' = (F(n'), F’,S") with F(n') =

(F(n) \ {X“1Prpo}) U {=Xo, X"tpy V XTHpy Pipp}, F' = {n} and &' = (. S is
updated to S = SU{n}. The rule is referred to as (P1).

. If o = =X%) Pty then we create two new nodes n’ = (F(n'), F’,S') and n” =

(F(n"),F",8") with F(n') = (F(n) \ {=X"41Py2}) U{X"Ys}, F' = {n} and &' =
0 and F(n") = (F(n)\ {=XW1Py}) U {=X"y A =XFp Py}, F” = {n} and
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XiGy ~XiGy
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(Red) Riv(p) | RED(p) # ¢

Figure 5.3.: Saturation Rules

S” = (. Additionally S is updated to S = S U {n’,n”}. The rule will be called
(P2).

Additionally we will have to use the following rule (called the reduction rule): If ¢
is a literal and RED(p) # ¢, then we create a new node n’ = (F(n'),F’,S") with
Fn') = (F(n)\ {p}H) U{RED(p)}, set F/ = {n} and S’ = () and update S to S = SU{n'}.

As for the expansion rules the saturation rules are summarized in Figure 5.3.

Termination Criteria

In order to be useful the tableaux procedure needs some criteria to indicate when the
expansion of a node can be aborted. This is a nontrivial task since in general (and in

contrast to first order logic) there is nearly always a rule which may be applied to some
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formula. To be more precise if n is a tableaux node and if there is at least one formula

¢ € F(n) such that ¢ contains one of the operators G, F, U and P, there is an infinite

o0
1=Jo

sequence (n;) of tableaux nodes such that n;, = n and each n;,, , emerges from nj,
by application of a saturation rule. Consider for example a node n such that Gy € F(n)
for some formula . Then a node n’ can be constructed such that {¢, XGp} C F(n') (by
application of the rule (G1)). This rule can then be applied to n’ yielding n” such that
{X¢p,XXGyp} C F(n") and so forth. This example might illustrate the need of some more
sophisticated criteria of when to abort the expansion of nodes.

We will adapt the concept of closedness of a node which is known from first order logic
to include the temporal operators. In first order logic a node is called closed if there
are literals @1, p2 € F(n) such that ¢y = =) and ¢ and ¢y are unifiable. For first

order logical literals this is adequate but for FOLTL literals we need a more complicated

criterion since the syntactical form of a literal is in general not unique (consider e.g.

©1 = not(Xp(X)) and o = Xnot(p(X)) where @1 # w2 but 1 = p2).

Definition 5.3.3
Let n be a tableaux node. Then n is called closed if there are formulas ¢, and @9

from F(n) such that
1. RED(p1) and RED(—¢y3) are unifiable or

2. there is an ¢ > 0 such that RED(p1) = Xizﬁgl)P?/)él) and RED(p2) = X9 and
R,ED(zpél)) and RED((?)) are unifiable or

3. there is an ¢ > 0 such that RED(¢1) = —|Xi¢§1)U¢§1) and RED(p2) = X9®) and
Rep(¢)) and REn(1)(?)) are unifiable.

A path 7 is called closed if it contains a closed node. Otherwise 7 is called open.

The definition of closedness presented here is more complicated then necessary. It
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would suffice to define closedness solely by the first point of the definition. However, the
two other points allow detection of closedness at an earlier point of time which might
speed up the proof procedure.

Given the definition of closedness we are able to detect several nontrivial cases of closed

nodes.

1. Assume that {=Xp(X), - X-p(X)} € F(n). Then RED(—-Xp(X)) = —Xp(X) and

RED(==X-p(X)) = =Xp(X) and an mgu is given by €. So n is closed.

2. Assume that {GXF—Gp(X,a), FFXGGGp(b,Y} C F(n). Then
RED(GXF-Gp(X,a)) = -FXGp(X, a)

and

RED(-FFXGGGp(b,Y)) = -FXGp(b,Y).

XY

An mgu is given by {Ev 5}. So n is closed.

3. Finally assume that {XXFp(a)Pq(b),X-XG-p(X)} C F(n). Here we have
RED(XXFp(a)Pq(b)) = XXFp(a)Pq(b) and RED(X—XG—p(X)) = XXFp(X) which

are unifiable with the mgu {é} So n is closed.

Using this definition of closedness of nodes we can state the following criterion:

Termination by Closedness If n is a node such that n is closed. Then n can be skipped.
Here the term skipping means that it is not necessary to try to apply expansion and/or
saturation rules to n. As we will see, closedness of a node n corresponds to unsatisfiability
of F(n). Consequently we will have to apply rules in such a way that every path starting
from the initial node leads to a closed node.
The termination criterion from above can be seen as a kind of success criterion, that

is it enables a proof procedure to determine if the actual node has to be expanded or
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not. In contrast we can also state a dual (but much weaker) criterion of when the
complete construction can be aborted. In order to state this criterion we need some more

definitions.

Definition 5.3.4
Let n = (@, F,S) be a tableaux node. n is called disjunctively ezpanded if only the
rules (G1) and (F2) can be applied to formulas from F(n) and no subformula of a

formula in F(n) contains U or P.

So a node is disjunctively expanded if every possible continuation of the path from the
root node leading to this node does not contain a node which contains a formula which
can be split due to the presence of a disjunction symbol.

In addition to the property of being disjunctively expanded we have to state a property
of a path which denotes the fact that every possible instantiation has indeed been carried

out.

Definition 5.3.5
Let m = (ng,...,nk) be a path in a tableaux. Then  is called completely instantiated

if for every ground term ¢ occurring in F(ng) and every node n; on 7 such that there

is a formula VXp(X) € F(n;) there is a node n; on 7 with j >4 and ¢(t) € F(n;).

These two definitions enable us to state the following criterion for termination by

failure.

Termination by Failure Let 7 = (ng,...,n) be a completely instantiated path and let
n be disjunctively expanded. Then the tableaux construction may be aborted if there are
no formulas ¢1, p2 € F(n) and no ¢ > 0 such that at least one of the following conditions

is fulfilled:
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1. RED(p1) = X1, RED(s) = =X%py and RED(zp1) and RED(¢),) are unifiable,

2. RED(ip1) = =Xy, RED(p2) = XIGepy for some j < i and RED(¢);) and RED(ty)

are unifiable or

3. RED(p1) = =Xy, RED(p2) = —-XIFeby for some j < i and RED(¢);) and RED(ts)

are unifiable.

This criterion is sound as the following lemma states.

Lemma 5.3.1
Let n be a node on an open path 7 in a such that the criterion Termination by Failure

holds for n. Then F(n) is satisfiable.

Proof. Let F(n) be as required. Then every ¢ € F(n) is either a first order literal or a
FoLri-literal containing at most the operators X, G and F (if at all). Define the set J
as follows:

I ={p € F(n) | VAR(p) = 0, RED(y) is positive }

Then J; = F(n) and every temporally closed superset of 7 is a Herbrand—model of
F(n). O

For the sake of simplicity we will introduce another formal concept. A node n is said
to fail if the criterion Termination by Failure can be applied to the path m, leading from

the root node to n.

The Tableaux—Procedure

Having defined the rules of interest and the termination criteria, the definition of a proof
procedure based on these rules is almost immediate. Assume that P = {Py,...,P,} is
a PROLOG(+T)—program and assume that G = ¢y A -+ A, is a PROLOG(+T)—goal.

As always assume that the P; have the form P; = ¢; 2—1/)§i), e 1(121) We construct the
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following formula ¢p ¢ to be proven unsatisfiable:

)
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We then construct the initial tableaux node ng = ({¢pa},0,0) as described above and

Il
—

define two sets of nodes. The set N will consist of all nodes which have been constructed
so far while the set U will contain all unprocessed nodes, that is nodes which have not
yet been completely expanded. Initially we have N = U = {ng}. We assume that U
is realized as a queue, that is elements can only be taken from the front of U and put
at the back of U. This ensures fairness of the node selection rule. See the discussion
on page 89 for a treatment of the question of fairness regarding the selection rule for
formulas. While U is not empty and no termination criterion is applicable we take the
first node n,e from U and search for the first formula and the first rule which can be
applied to this formula. New nodes are then created according to the definition of the
rule which has been applied. We formalize this algorithm in Algorithm 1. There we
will use the following notations: since U is assumed to be a queue structure, the only
accessible element is the element at the front of U. This element will be returned by the
function U.first. Consequently the operation U.pop will remove the first element from

U. Insertion of elements is only possible at the end of U. So if U = {ny,...,nx} and

1

L s N2ew ) is a set of newly created nodes, then

Nnew - {nnew} (respectively Nnew = {’n

UU Npew = {01, .., Mg, Nnew + (respectively U U Nyew = {01, ..., gy oy 1200 })-



5.3 A Saturation based temporal Proof Procedure 103

Algorithm 1 Tableaux algorithm for ground goals

Input:
e ProLOG(+T) program P
e PrOLOG(+T) ground goal :—G = Gy,...,G,

Output: yes if PG A--- NG,
1: construct ¢p g
2: no — ({¢rct 0,0)
3: N« {no}, U — {no}
Require: U is realized as a queue
4: while U # () do
5 Nact <« U.first
6: U.pop
7. if F(naet) is not closed then
8 if n fails then
9

return no
10: else
11: select a formula ¢ € F(n,et) and a rule R applicable to ¢
12: apply R to ¢
13: Niew < (set of) node(s) created by rule R
14: N «— N U Npew
15: U — U U Npew
16: end if
17:  end if

18: end while
19: return yes
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5.3.2. Soundness and Completeness Issues

We will now address the topic of proving that the tableaux method described in the
foregoing section is sound and refutation complete. The first part will be considered with
soundness. Therefore we have to note that each node n = (F(n), F,S) in a tableaux can
be seen as the root of a tableaux starting at this node.

The proofs from this section closely follow the proofs for the nontemporal tableaux
procedure as presented in [20]. Our contribution is the treatment of the temporal con-

structs.

Lemma 5.3.2
Let n be any tableaux node which is the root of a closed tableaux. Then F'(n) is unsat-

isfiable.

Proof. Let h denote the height of the tableaux 7 rooted by n, that is h is the length of
the longest path starting at n. We proceed by induction on h. First assume that h = 0.

Then n is a leaf and since 7 is closed, we can distinguish the following three cases:

Case 1 There is a pair @1, ¢y of literals in F(n) such that RED(¢1) and RED(—¢3) are

unifiable. So clearly F(n) is unsatisfiable.

Case 2 There is ¢ > 0 such that RED(¢1) = X’ﬁbgl)P?/)él), RED(p2) = X?) and
R,ED(zpél)) and R,ED(z/J(2)) are unifiable. Let 0 = mgu(RED(p1), RED(yp2)) and
Y =0o(p?) = O'(T/)él)) be given. Then we have

o(RED(¢1)) A o(RED(p2)) = o (X Pes) A o (Xiy®@)
= Xo({")Pof) AXa(u®)

~Xig(@$) A (Xio (@) v XiH o (p P (1) A Xia (@)

= —Xip A X A (Xa@V) v X o () Pa (M)

false A (Xio(¥iV) v X+ o(V)Po (M)

false,
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so clearly F(n) is unsatisfiable.

Case 3 There is ¢ > 0 such that RED(p1) = —|Xi1/)§1)U¢§1), RED(p2) = Xip2) and
R,ED(zpél)) and RED(y(?)) are unifiable. Again let o = mgu(RED (1), RED(2))
and ¢ = (@)

a(zpél)) be given. Then we have

o(RED(p1)) A o(RED(92)) = o (=X UgSY) A (X))
= X" Uep) A Xia(p®@)
— _‘Xio'(ibél)) A (—\Xia(lbgl)) Vi _|Xi+1a(w§1)uwél))) A Xi0(¢(2))

X AX A (X (1) v X o (i Ug))

false A (—|Xi0(¢§1)) \ _'Xi+10’(7/)§1)u¢§1)))

false.

So F(n) is unsatisfiable.

In every of the above cases we have shown that F(n) is unsatisfiable. So the case that
h = 0 is proved.

Now assume that A > 0. Then a rule has been applied to n yielding one or two
successor nodes n’ and n”. Since 7 is closed, the tableaux 7’ and 7" rooted by n’ and
n' are also closed. Furthermore their height is h — 1 and so by induction F(n’) and
F(n") are both unsatisfiable. We distinguish the following cases of how n might have

been expanded.

Case 1 Rule (A 1) has been applied. Then F(n) = {1 A w2} U F’ and F(n') =
F'U {p1,p2}. Since F(n') is unsatisfiable we have J (= F(n’) for every J. Fix
one such J. Since J £ F(n') at least one of the formulas in F(n') is not satisfied

by J. There are three possibilities:

Case 1.1 There is g € F’ such that J £ ¢g. This immediately gives J & F(n).

Case 1.2 J = ¢1. Then J }£ @1 A 2 and so J = F(n).
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Case 1.3 J [~ oo This is analogous to the foregoing case.
So this proves that F(n) is unsatisfiable.

Case 2 Rule (V 1) has been applied. Then F(n) = {1V }UF" and F(n') = F'U{¢1},
F(n") = F'U{pz}. By induction both F(n') and F(n”) are unsatisfiable. Fix any
J. Then J = F(n') and J = F(n”). We again distinguish two cases:

Case 2.1 There is ¢ € F’ such that J (£ ¢g. This case is identical to case 1.1.

Case 2.2 J | ¢ for every g € F’. Then the unsatisfiability of F(n’) and F(n")
gives J = o1 and J W po. Therefore J = @1 V 2 and so J = F(n).

Case 3 Rule (—E) has been applied. Here F(n') = {=—p}UF’ and F(n') = F' U {p}.
Since ¢ = =~ we have J = ¢ if and only if J = ——¢p. Since F(n') is unsatisfiable

F(n) is also unsatisfiable.

Case 4 A rewrite rule or the reduction rule has been applied. Then the claim is proved

exactly as in the foregoing case.

Case 5 One of the rules (V—E) and (3—E) has been applied. This case is trivial since if
X & VAR(yp) we have VXp = JXp = . So if n’ is created from n by application of

one of the above rules then F(n') is unsatisfiable if and only if F(n) is unsatisfiable.

Case 6 Rule (0—I7) has been applied. Then F(n) = {VXp(X)} U F’ and F(n') = F' U
{¢(t)}. Again fix any J. Then J £ F(n'). The possible cases are:

Case 6.1 J [~ ¢q for some g € F’. Then we have the situation from case 1.1 and

case 2.1.

Case 6.2 J = ¢q for every pg € F'. Then J £ ¢(t) that is J £ o(p(z)) for
o = {2} and therefore J [~ VXp(X). So F(n) is unsatisfiable.
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Case 7 The application of the other rules are reduced to the foregoing cases by ex-
ploiting semantical definitions (for the temporal operators, the implication and the

equivalence) and DeMorgan’s laws (for the rules (A 2), (V 2), (— 2) and (< 2)).

This proves the lemma. O
The above lemma especially holds for the starting node of a tableaux so we have the

following easy corollary.

Corollary 5.3.1 (Soundness)

Let ¢ be any FoLrL-formula. If the tableaux for ¢ is closed, then ¢ is unsatisfiable.

Although rather technical, the proof that the tableaux construction is sound is quite
straightforward exploiting only basic proof techniques. Proving refutation completeness
is much more tricky. The tableaux construction technique known from first order logic
uses so called Hintikka sets (see [66]) in order to prove that for an unsatisfiable formula
the tableaux construction is indeed capable of constructing a closed tableaux. Hintikka—
sets are also of great use for proving the refutation completeness of the PROLOG(+T)
tableaux procedure as we will see now.

Intuitively a Hintikka—set is a set of formulas which is semantically closed, that if there
is e.g. a formula @] A @9 in the set, then so are ¢; and ¢2. The following definition

formalizes this.

Definition 5.3.6 (Temporal Hintikka—Set)

Let P be a PROLOG(+T) program and let S be a set of FOLTL formulas such that
every function— or predicate—symbol occurring in S also occurs in P. Then S is called
a (temporal) Hintikka set if for every FOLTL formula ¢ the following holds for every

1> 0:

1. if o € BEOM™ then ¢ € S iff {¢ | = —p} NS =10,

2. if ¢ = X (1 A 2), then ¢ € S implies X'p; € S and Xipy € S,
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3. if ¢ = X" (1 V 2), then ¢ € S implies X'p; € S or X'pq € S,

4. if ¢ = XWXe)(X), then ¢ € S implies X'a)(t) € S for every t € Up,

5. if ¢ = X'3Xe(X), then ¢ € S implies X4(t) € S for some ground term t,
6. if o = X'Ge, then ¢ € S implies X*H¢p € S for every j > 0,

7. if o = X'F1, then ¢ € S implies X!*t¢) € S for some j > 0,

8. if ¢ = —X'Ge), then ¢ € S implies there is j > 0 such that =X € S or

—XHIGy € S for every j > 0,
9. if o = =XFe), then ¢ € S implies =X € S for every j > 0,
10. if ¢ = Xip Uy, then ¢ € S implies Xipy € S or Xl € S and X o Up, € S,
11. if ¢ = p1Pps, then ¢ € S implies —Xipy € S and Xip; € S or Xy Py, € S,

12.if ¢ = —X% Ugps, then ¢ € S implies =X'py € S and =Xy, € S or

—|Xi+1<,01U(,02 € S and

13. if ¢ = =X'p Pyy, then ¢ € S implies Xipy € S or =Xlp; € S and =X Py, €
S.

If S is a Hintikka—set constructed from symbols occurring in a program P, then we will
also say that S is a Hintikka set with respect to (wrt.) P. The definition of Hintikka sets
can easily be adapted to deal with the special form of PROLOG(+T) rules by requiring
@ —1,...,%,. € S if and only if there is 7 such that ¢; € S or p € S.

The above definition is suitable for dealing with finite paths of tableaux nodes (as we
will see soon). However since paths might also be of infinite length, we need some more
definitions. In particular we need a concept of mazimality of infinite paths. As before

the formalisms used in the sequel closely follow [20].
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Definition 5.3.7
Let n = (F(n), F,S) be a tableaux node, let ¢ € F(n) be a formula and let R be a

tableaux rule which can be applied to ¢. Then R(p) denotes the set of new formulas

created by the application of R.

Having introduced the operator R we can characterize paths as in tableaux to be

maximal whether they are of finite length or of infinite length.

Definition 5.3.8

Let m be an open path. Then 7 is called mazimal if
e 7 is finite and no more rules can be applied to F(m) or

e © = (ng,n1,...,MN4,...) is infinite and for every i > 0, every ¢ € F(n;) and
every rule R which can be applied to ¢ there is a node n; (j > i) such that

R(p) € F(ny).

Maximality of an open path will now turn out to be the key concept for proving
refutation completeness.
Lemma 5.3.3
Let m be a maximal open path of tableaux nodes constructed from symbols occurring in

a program P. Then F(7) is a (temporal) Hintikka set wrt P.

Proof. First assume that 7 is finite. Since 7 is open and maximal, no rules can be
applied to the formulas from F (7). In particular, no element of F(7) contains one of the
operators G, F, U or P. Henceforth if we assume that F(7) is not a Hintikka—set, one of

the following cases has to occur:

Case 1 There is a literal ¢ € F(7) such that ¢» € F(w) for some v with ¢ = —). But

then 7 is closed which contradicts the assumptions on 7.
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Case 2 There is ¢ = @1 A 2 € F(m) such that o1 & F(7) or @9 ¢ F(m). But in this

case the rule (A1) can be applied to ¢ which contradicts the maximality of .

Case 3 There is ¢ = @1 V g € F(rw) such that @1 & F(r) and o & F(x). In this case

(V1) can be applied which again contradicts the maximality of .

Case 4 There is ¢ = VX¢)(X) € F(n) and t € Up such that ¢(t) ¢ F(mw). Then (c—1I1)

can be applied to ¢ and therefore 7 is not maximal.

Case 5 There is ¢ = IXY(X) € F(m) and ¢(t) & F(n) for every t. Then (0—I3) can be

applied to ¢ and therefore 7 is not maximal.

So in the case of a finite path 7 the claim is true. Now assume that 7 is of infinite length.
Then we have more cases to distinguish. The first five cases are identical to the cases
from above. So we will only have to consider the cases in which the operators G, F, U
and P are involved. Assume that the assumptions from above are fulfilled, that is assume
that 7 is maximal and open and assume that F(7) is not a Hintikka set, i.e. assume
that the conclusion of the implications from the definition of temporal Hintikka—sets are

violated.

Case 6 There is X!Gtp € F(m) such that X*T¢) & F(r) for some j. Then let jo be the
minimal such j, that is jo = min {j | X'"*7¢ ¢ F(7)}. Since jo is minimal, we have
X0~y € F(r) and XT072Gy € F(w). This implies X'071Gy) € F(n) since
7 is maximal (otherwise (G1) could be applied). Again maximality now yields

XTI0Gyp € F(r) and therefore X904 € F(rr) which is a contradiction.
Case 7 Let X'F¢ be in F(r).

a) Assume that X“T7¢) ¢ F(r) for every j > 0. Since 7 is maximal, every possible
application of the rule (V1) has been carried out. Furthermore the path 7

corresponds to the path which contains the right one of the new formulas
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created by (V1) (since instead there would be a minimal value jy such that
X0y € F(r)). This yields X' Fy € F(x) for every j > 0.

Now assume that there is j > 0 such that X**7Fy ¢ F(r). As in case 6 we
chose the minimal value of all these j’s, namely jo = min {j | XTIy & f(ﬂ)}.
So XitioFy ¢ F(mw) and XH~1Fy € F(r). By maximality of 7 the ap-
plication of (V1) has been carried out and with X™Fy ¢ F(r) we have

Xitio=lyy ¢ F().

Case 8 Let —X'Ge) be in F(m). We have the following cases:

a)

for each j > 0 it holds that =X“"J¢) ¢ F(n). Then in particular we have
X ¢ F(r). But since 7 is maximal we have =X"1Gy) € F(r) since other-

wise (G2) could be applied and 7 is not maximal.

there is j > 0 such that =X Giy) ¢ F(r). As before we chose the minimal
value of all these j’s: jp = min {j | —XHiGy ¢ ]-'(71-)}_ Then —XH0Gy ¢
F(r). Furthermore since =X'Ge) € F(m) we have jo > 1. Since jo is minimal
we have —XT071Gy e F(m) and the maximality of m yields —Xitio—ly ¢

F(m).

Case 9 Let —X'Ft) be in F(7) and assume that there is j > 0 such that X"y € F(n).

Then we immediately have that there is a node n occurring on 7 which is closed.

This contradicts the assumption that 7 is open.

Case 10 Let X% Utpy be in F(x). If X“py € F(m) then the case is clear. Now assume

that X“4py ¢ F(r). Since 7 is maximal we have that the rule (U1) which is applicable

has indeed been applied and creates the formula ¢’ = X A X 14p1Ushs to which

(A1) can be applied. By maximality of 7 we have {X%)y, X"l Uspy} C F(x).

Case 11 Let X%1Pyy be in F(r). Then we immediately have =X')y € F(7) by maxi-

mality of 7. Now if X'/, € F(n), the case is clear. So assume that X%, & F().
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Then we have X"l Py € F(7) since otherwise 7 is not maximal.

Case 12 Let =X Uty be in F(r). By maximality of 7 we have {=X'y, =X} V
—Xyp Uthy} C F(x) and therefore the application of (V1) yields the desired

result.

Case 13 Let —X%); Pty be in F(r). By application of (P2) we have the following possi-

bilities:

a) X'y € F(r). Then the case is clear.

b) X%y ¢ F(m). Then (P2) creates the formula =X'); A =X 141 Pehy and an
application of (A1) yields {=X%)y, =X Ty Pepy} € F(7).

Therefore F(m) is a temporal Hintikka set wrt. P and the lemma is proved. (]
As in first order logic, we are able to construct models for certain kinds of temporal
Hintikka sets.
Lemma 5.3.4
Let S be a temporal Hintikka set such that S = F(m) for a maximal open path. Then

S is satisfiable.

Proof. The claim is immediately by considering any interpretation which satisfies every
ground atom from F (7). O

Combining these two lemmas we have the following theorem.

Theorem 5.3.1 (Refutation—Completeness)
Let P be a PROLOG(+T) program and let G = 11 A --- A iby,. be a goal. If P |=

1 A -+ Ay, then the tableaux rooted with ({¢pa},0,0) is closed.

Proof. We have P |= 91 A--- Ay, iff PU{G} = O iff pp is unsatisfiable. Now assume
that the tableaux rooted with ({¢p}, 0, 0) is not closed. Then there is a maximal open

path 7 in this tableaux. We then have that F(7) is a temporal Hintikka set wrt. P and
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consequently F(7) is satisfiable. This yields satisfiability of ¢ p ¢ which is a contradiction.
So the theorem is proved. O

This result states the most desirable property of PROLOG(+T) and its inference mech-
anism. We have therefore shown that PROLOG(+T) is indeed an adequate programming
language for the fragment of first order temporal logic under consideration. So we can
proceed by treating the lattice properties of PROLOG(+T) objects in order to justify

our treatment of the refinement operations in the following chapters.
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We will now show how the concept of subsumption can be generalized from first order
formulas to PROLOG(+T)-objects. The main part of this generalization will be the
integration of the temporal operators X, G, F, U and P, so the complicated part is section
6.2 where it will be shown that the lattice properties of the subsumption ordering carry
over from first order logic literals to FOLTL-literals. In contrast the results from section

6.3 will be nearly identical to results from first order ILP.
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6.1. Subsumption

During the construction of programs which satisfy a specification given by sets €T C
BEOLL and £~ C BEOM'™ it might be necessary to specialize and/or generalize certain
objects. In general, specialization and generalization should be related to the process
of largening and shrinking the set of logical consequences (that is modifying a program
P in order to yield a program P’ which implies more — in the case of generalization —
respectively less in the case of specialization than the original program P). However,
the logical consequence relation |= is undecidable and therefore one needs another order-
ing which is on the one hand decidable (that is it can be implemented on a computer)
and on the other side closely related to logical consequence. Subsumption has turned out
useful for this purpose (see [77] for a discussion of the difference between subsumption
and implication in First Order Logic).

Informally, subsumption models the assumption that some object is more general than
another one in the way that the more general object implies more than the less general

one'. Formally, subsumption between literals is defined as follows.

Definition 6.1.1 (Subsumption for atoms, Plotkin [133])
Let ¢ and o be literals from FoLrTL. Then ¢1 = @9 if and only if there is a

substitution 6 such that 6(¢1) = pa.

As one might expect, we will write 1 < 9 if o = @1, ©1 = @2 if Y1 = o and not
w2 = 01, 1 < 2 if Yo = 1 and @1 = Y9 if Y1 = Y2 and @9 = 1. Additionally we will
write 1 % o denoting that 1 = @9 does not hold.

It is easily seen that »= is reflexive and transitive. But it is not a partial ordering on the

set of all FoLTi-literals since it is not anti-symmetric. Consider the literals ¢; = p(x)

!This is due to the fact that the less general object can be constructed by instantiating the more general
one.
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and ¢ = p(y). Then for 6§, = {%} and 6y = {%} we have 61(p1) = w2 and 03(p2) = ¢1
and therefore @1 = 9 and @9 = 1 but 1 # ws. However, ¢ and @9 are variants.
We will use the ordering = in order to define a quasi order >, on literals which yields

a lattice structure. Therefore we define
e false >, ¢ for every FOLTL literal ¢,
e  ~; true for every FOLTL literal ¢ and
e 1 =5 o for p1, o & {true,false} if and only if @1 = po.

The notations <, =4, <5 and = are defined as expected.
In the following section we will see how the ordering >, yields a lattice structure in
the set of all FoLrr-literals thus extending a well-known result from first order logic

(see [133] and [134]).

6.2. The Lattice Structure of Literals

6.2.1. Generalizations of Terms

In order to present operations for computing least generalizations and greatest special-
izations of literals, we have to review some operations operating on terms. Recall that
a unifier for two literals ¢; and @9 is a substitution 6 such that 6(p;) = 6(p2). The
process of unification can be reversed by constructing from ¢; and @9 both a literal ¢
and substitutions #; and 03 such that 61(p) = @1 and 03(p) = @o. Figure 6.1 illustrates
the situation.

In [133] it has been shown that it is always possible to construct least generalizations
and greatest specializations of terms. We will review the algorithm for constructing least
generalizations here since we will need it later when computing least generalizations of

literals.
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2N
\/

Figure 6.1.: Unification vs. Anti—unification

Algorithm 2 Anti unification for terms

Input: terms t; and to
Output: term ¢ such that ¢ is a least generalization of t; and ¢,
1: t/l — 11, t/2 — 1o
2: 01— ¢, 0y «—¢
310
Require: {z; | i € N} is a set of variables not occurring in ¢; and t,
if ¢} =t} then
return t =t}
else
p «leftmost position at which | and ¢} differ
s tlp
t—tylp
10:  if there is j € {1,...,4} such that 0;(z;) = s and 62(z;) =t then
11: replace t}], by z;

12: replace th], by z;
13:  else

14: 1—1+1

15: replace t}], by z;
16: replace 5|, by z;

17: 91:910{2i}
18: 92—920{22}
19: goto 4

20:  end if

21: end if
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Algorithm 2 indeed produces a least generalization of the two input terms. This result
can for example be found in [133] or [126]. Since this least generalization is a general-
ization with respect to subsumption we will denote the term returned by Algorithm 2
as

LGS(t, t2).

In later sections we will also denote any least generalization of literals ¢ and o as
LGS(p1,92) and least generalizations of clauses C7 and Co as LGS(CY,C9) since this

will not cause any confusion.

6.2.2. Generalizations and Specializations of Literals

We will now apply the results from the last section in order to prove that the set of literals
from FoOLTL is a lattice ordered by the subsumption ordering >;. For formal reasons the

set of all FoLTr-literals will from now on be denoted as £¥olr

. The proof will not be
that difficult but rather long due to the different cases which have to be distinguished.
Theorem 6.2.1

(.CFOLTL, is) is a lattice.

Proof. In order to prove the theorem we will show that both a least generalization and

a greatest specialization of two given literals ¢ and ¢y exists in £FOLT,

Specialization Let o1, py € LFOLMT be given. Assume without loss of generality that ¢

and @9 have no variables in common, that is ¢; and @9 are standardized apart.

1. if o1 = true or 9 = true, then

GSS(p1,p2) = true,

2. a) if ¢ = false, then

GSS(¢1,p2) = @2 and
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b) if o = false, then

GSS(¢1,92) = ¥1,

3. if 1 and 9 are unifiable with 0 = mgu(¢1, ¢2), then

GSS(¢1,p2) = o(¢1) and

4. if 1 and @9 are not unifiable, then

GSS(p1,p2) = true.

It is obvious that GSS(p1,¢2) is always a specialization of the original literals ¢;
and 9. It remains to show that it is indeed a greatest specialization. The only
two nontrivial cases are that both ¢ € {true,false} and ¢y ¢ {true,false}.

Consider the two cases:

Case 1 ¢ and ¢y are not unifiable. Then there cannot exist any literal ¢ such that
1 # true and 1 = ¥ and @9 = 1 since then there would be substitutions 6;
and 69 such that 61 (¢1) = 1 and 02(p2) = 1. Since 1 and @9 are standardized

apart this would give

01(p1) = (01002)(¢p1) =7

O2(p2) = (B1002)(p2) =7

So 61 005 is a unifier for ¢ and @9 which is a contradiction to the assumption

that 1 and @9 are not unifiable. So the claim is proved.

Case 2 ¢ and ¢y are unifiable. Then there is o0 = mgu(p1,¢2). if o(p1) is not

a greatest specialization, then there is ¢ and substitutions 6,60, such that
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01(p1) = ¥, O02(p2) = 1 and ¢ =4 o(p1). But then there would be v # ¢
such that (1) = o(p1) and therefore o would not be most general, which is

a contradiction. So the claim is proved.
Generalization Let ¢y, o € LM be given.
1. if 1 is positive and o is negative or if ¢ is negative and (o is positive, then

LGS(¢1, p2) := true.

2. if ¢y = false or ¢y = false, then LGS(p1, p2) = false. Similarly if p; =

true, then LGS(p1,p2) = @2 and if pg = true, then LGS(p1, ¢2) = ¢1.

3. if both ¢ and ¢y are negative, then assume that

©1 = 1 and

P2 = o

and define

LGS(¢1,p2) = "LGS(¢1,12)

4. if both ¢ and o are positive, then

a) if o1 = p(t1,...,t,) and @9 = p(t),...,t,) for some p with a(p) =n and

terms tq,...,t,,t],...,t), then

sy bmo

LGS(C}DL 902) = p(LGS(tlv t/l)v s aLGS(tn7 t/n))7

b) if o1 = p(t1,...,tn) and o = q(t},...,t)) for p,q with a(p) =n, a(q) =
m and ty,...,t,,t],...,t, such that p # ¢, then

LGS(p1,p2) = false,
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if o1 = X1 and o = Xapo, then

LGS(¢1,2) = XLGS(¥1, ),
if o1 = GY1 and o = Ga)g, then

LGS(p1,p2) = GLGS(¢1,¢2),
if o1 = Fvy1 and o = Fi)o, then

LGS(¢1, ¢2) = FLGS(¢1,12),
if o1 = i Ups) and @y = {7 e, then

LGS(o1,2) = LGS(e\", pPhunas @), ¢?),
if o1 = gl)PT/Jél) and g = gz) P¢§2), then
LGS(p1,92) = LGS, 0P )PLGS (4", ¢”)) and

in all other cases:

LGS(¢1,p2) = false.

Again we will distinguish several cases.

Case 1 Case 1 from the above list occurs. Then the claim is trivial.

Case 2 Case 2 occurs. Then the claim is due to the definition of >.

Case 3 We now proceed by induction on the structure of the literals. First assume

that both ¢; and (o are nontemporal. Then the claim is due to results from

[126] regarding the lattice structure of first order logic literals. Similarly we can
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prove the case in which both literals are negative by exploiting the assumption
that the algorithm is correct for the subliterals under consideration. Now
assume that @1 and @9 are of the form described in points ¢), d) and e). Then
we can exploit the induction hypothesis for the literals ¥; and 9 and the

claim is immediate. Similarly we can treat the points f) and g). Finally in

case h) no nontrivial least generalization can exist.

So the theorem is proved. O

The techniques from the proof of the above theorem are summarized in Algorithms 3

and 4.

Algorithm 3 Greatest Specialization of FoLT1.-literals
Input: literals @1, 2
Output: GSS(p1,¥2)
if 1 and @9 are unifiable then
o« mgu(p1, p2)
return o(p;)
else
return true
end if

Example 6.2.1
1. Consider ¢1 = GFp(X, f(a)) and p2 = GFg(a). Then LGS(p1,¢2) = false and

GSS(p1,p2) = true.

2. Now consider ¢1 = p(X,X) and p(f(a),b). Here we have LGS(¢1,p2) = p(Z1,Z2)

and GSS(p1,¢2) = true.

3. Finally consider 1 = GXp(A,X) and @3 = GXp(Y,b). Then LGS(¢1) = GXp(Z1,Z2)
and GSS(p1,¢2) = GXp(a,b).
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Algorithm 4 Least Generalization of FOLTL literals

Inp

ut: literals 1, @9

Output: LGS(p1, p2)

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

D if o1 = p(t1, ..., ty) and @9 = p(t}, ..., t)) for some p and ¢y, ..., ¢y, ], ...
return p(LGS(t1,t)),...,LGS(¢s,t),))

. end if

. if Y1 = —\¢1 and Y2 = _\¢2 then
return -LGS (1, 19)

. end if

- if 1 = Xep1 and g = Xipo then

: return XLGS(¢1, )

. end if

if o1 = Gy and py = Gy then

return GLGS(v1, 1)
end if
if o1 = Fy; and o = Fiy then
return FLGS (1, 12)
end if
if 1 = 0 Uuy” and o = 0{7Uy5? then
return LGS(TAI) ) ¢§2))ULGS(¢§) ) ¢§2))
end if
if o1 = {Py and g, = PPy then
return LGS(TAI) , ¢§2) ) PLGS(T/)S) ; ¢§2))
end if
return false

,t then
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6.3. The Lattice Structure of Rules

Algorithms 3 and 4 from the last section can now be used in order to compute least
generalizations and greatest specializations of clauses, that is least generalizations and
greatest specializations of PROLOG(+T) rules. For this purpose we will adapt a proof
for the existence of least generalizations and greatest specializations of first order logic
clauses which might for example be found in [126]. The subsumption ordering for rules

is defined as follows.

Definition 6.3.1 (Subsumption for Rules, Plotkin [133])
Let C7 and Cy be PROLOG(-+T)-rules (represented as sets of literals). Then C =4 Co

if and only if there is a substitution 6 such that 8(Cy) C Cs.

The symbols >, <5 and <, are then defined as usual.

6.3.1. Greatest Specializations

As in the last section, the simpler part is the computation of greatest specializations of
clauses. Therefore we will adapt a technique described in [126]. We will see that the
greatest specialization of two PROLOG(-+T) rules is in general not unique. This is due

to the fact that we allow negated atoms in the tails of rules.

Assume that

C1 = ¥1 :_1/)9)7 s awﬁzll) and

02 = ¥2 :_1/)9)7 s ﬂf)%)

are given. We identify C1 and Cs with the sets of literals involved in these rules, that is
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we concentrate on

SC'l = {—qul)y ey _|1/}1(111)7 gpl} and

Sor = {~ul? o u e

as the objects of interest. We now build the set C' = S¢, U S¢, and construct a set of
PROLOG(+T) rules from this set each of which is a greatest specialization of C; and
C5. But in order to do this we define a helper function TA1L which will be useful in the
definition.

Let T = {v,...,7v} be a set of FoLrr-literals. Then the string TAIL(T) is defined
as

TAIL(T) = V1.5 Yk

where =—y; will be identified with ~; for i =1,... k.
Now assume that S = {l1,...,ly;+ny+2}- We then build the set L consisting of all
PROLOG(+T) rules which can be constructed using the following scheme: if [; is positive,

then L contains the rule

li Z—TAIL(S \ {lz})

Algorithm 5 illustrates this scheme.

The properties of Algorithm 5 are summarized in the following theorem.

Theorem 6.3.1
Let Cy and C3 be PROLOG(+4T) rules. Then Algorithm 5 computes a set of rules each

of which is a greatest specialization of C; and Cj.

Proof. Let C and Cs be given. Without loss of generality we can assume that Cy
and Cs are standardized apart. Let C be any rule computed by Algorithm 5. Then for
S = Sc, USe, we have S¢; € S and S, € S so both C =5 C' and Cy >4 C holds,

that is C' is a specialization under subsumption of C; and Cs. Now consider any rule



6.3 The Lattice Structure of Rules 127

Algorithm 5 Greatest Specialization of PROLOG(+T)-rules
Input: PROLOG(+T) rules Cq,Co
Output: set of greatest specializations of C1, Co
Require: C7 = ¢ :_w§1)7 e 7(111), Cy =y 3—¢§2)7 .. ,zb%)
1. L0
2: 501 — {—W/ng), e —\lbgll), (,01}

3: 502 — {_Vl/}?), e —\lb%), (,02}
4: S« Sc, USg,
Require: S = {l1,...,1,}
5: fori=1,...,0do
6 if [; is positive then
7 L+— LU {ll Z—TAIL(S \ {ll})}
8
9

end if
. end for
10: return L

C such that C; =4 C and Cy =4 C. Then there are substitutions 6; and 65 such that
61(C1) C C and 62(C3) € C and 61 and 6, only replace variables in C; and Cy (since Oy

and Cy are standardized apart). Define § = 6 U 3. Then

0(Sc) = 0(Sc, USc,)
= 9(501) UH(SCQ)
= 0 (SC'l) U 02 (SC'z)

C Se.

So C' =, C. Since C was chosen arbitrary from the set of rules computed by Algorithm 5

the claim is proved. O

Although the syntactical form of a greatest specialization of PROLOG(+T)-rules is not
uniquely determined we can adapt the notation GSS(C7,C2). This is justified since for

every C(V, C®?) computed by Algorithm 5 given the inputs C; and Cy we have Scay =
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Sce = Sc, USe, and therefore cl) =c@), Consequently

GSS(Cy, Cy)

will from now on be used in order to denote any of the rules computed by Algorithm 5.

We will now close this section by presenting a simple example of how Algorithm 5

creates greatest specializations of PROLOG(+T)-rules.

Example 6.3.1

Consider the rules

C; = Gp(a):—XXp(X;). and

Cy = XFp(Xs2) :—not(r(X2)), Gp(b).
Then we have

Sc, = {not(XXp(X1)),Gp(a)} and

Sc, = {r(Xz),not(Gp(b)), XFq(Xz)}

and therefore

S = {not(XXp(X)), Gp(a), r(X),not(Gp(b)), XFq(X)} .
The rules generated by Algorithm 3 are the following:
1. Gp(a) :=XXp(X1),not(r(X2)), not(Gp(b)), not (XFq(Xz)).,
2. r(X2) :=XXp(X1),not(Gp(a)), Gp(b), not (XFq(X2)). and

3. XFq(Xg) :—XXp(X1),not(Gp(a)),not(r(X2)), Gp(b).
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6.3.2. Least Generalizations

What remains to be established is the existence of least generalizations of PROLOG(+T)—
rules under subsumption. For first order literals the concept of compatibility has been
used for the proof of the existence of least generalizations of clauses. Two first order
literals 7 and 9 are considered compatible if they are either both positive or both
negative and if they start with the same predicate symbol. For FOLTL literals the
situation is slightly more complicated. Intuitively we should consider literals compatible
if they are either both positive or both negative and if they contain the same temporal
operators in the same order. Formally we will present a technique which constructs for
a literal ¢ a tree TREE(p) from which a tuple TEMP(p) of words built up from the
operators involved in the literal ¢ can be extracted. Two literals ¢; and 9 are then
considered compatible if they yield identical sets TEMP(p1) and TEMP(p2).

Given a literal ¢ we will now show how to construct a labeled graph TREE(p). Recall
from chapter 5.2 that a labeled graph is a tuple T' = (V, E,[) consisting of a finite set V'
containing the wvertices or nodes, a set £ C V x V containing the edges and a mapping
[. Here [ has the form [ : V — {U,P,X,G,F,-} U PU7. We will partition the set V'
into three sets Vi, V), and V} containing so called temporal nodes, predicate nodes and
function nodes, that is V =V, U Vp U V. The construction of TREE(y) is now given by

induction on the form of ¢.

Case 1 ¢ =p(ty,...,t,) € Bp is a first order atom. Then we set
TREE(p) = ({vo,v1,. .- 00}, {(vo,v;) | i=1,...,n}1),
where [ is defined by

l(vo)) = pand

l(v;) = tifori>0
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and

Vi =0,
Vi = {vi,...,v,} and

Vp = {w}

Case 2 ¢ = not(¢) for some PrRoOLOG(+T)literal ¢. Then assume that TREE(¢) =

(V,E,D is given. If V = {171,...,17“”} =V U |74 U Vf then we define

V = {vo,ﬂl, e ,T)m} for some vy € V,

Vi = W,

v, =

Vo = VpU{w},

E = EU{(v,v)|v €V such that (0,0) ¢ F for each 0 € V'},
l(vp) = not and

l(v) = l(v) for each v # vy.

Case 3 ¢ = @ for some PROLOG(+T) literal ¢ and some @ € {X,G,F}. Then assume
that TREE(¢) = (V,E_,D is given. If V = {61,...,17“7‘} =V, U Vp U V¥, then
define

V = {vo,ﬂl,...,ﬁlm} for some vy € V,
Vi = W

Vi =V,

Vo = VpU{w},

E = EU{(v,v)|v €V such that (3,0) ¢ E for each 0 € V'},
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@ and

l[(v) for each v # vp.

Case 4 ¢ = Y P 1)g for PROLOG(+T) literals 11 and 9 and some & € {U,P}. Assume

that TREE(¢1) = (V4, Er,li) with V3 = Vi U Vip U Vi s and TREE(y)p) =

(VQ,EQ,[Q) with Vo = Vs, U Vap U Vy ¢ are given such that Vi N V5 = 0. Choose

some new vg € Vi U V5 and set

v

Example 6.3.2

{vo} UV U Vs,
‘71,t U Vz,t U {vo},
‘71,p U V2,p7
Vi,pUVay,
v € V1 U Vy such that (v,v) ¢ By U Ey

El U EQ U (Uo,v) | _ _ s
for each v € V1 UV,

®,
I1(v) for v € V; and

lo(v) for v € V.

1. Assume that ¢; = q(a)Up(b) and p2 = q(c)Up(a). The graphs TREE(y;) and

TREE(p2) are depicted in Figures 6.2 and 6.3 where the nodes from Vy are drawn

as squares while all other nodes are drawn as circles.

2. Now assume that ¢3 = q(c)UXp(a). Then TREE(p3) is as depicted in Figure 6.4.

Now recall that a path from a node v; to a node vy in a (labeled) graph G = (V, E, 1)

is defined as follows:

1. either (v1,vs) € E or
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Figure 6.2.: TREE(q(2)Up(b)) Figure 6.3.: TREE(q(c)Up(a))

Figure 6.4.: TREE(q(c)UXp(a))
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2. there is v € V such that (v1,v) € E and there is a path from v to vy in G.

Paths can be described very naturally by giving the sequence of nodes on this path.
We will from now on describe paths as m = (v1,...,v,) and call 7 a path of length n.
Having constructed TREE(¢) from the literal ¢, we can extract the information TEMP(¢)
as follows: assume that the nodes from V} are numbered in ascending order from left to

right. If Vi = {v1,..., v} then TEMP(p) = (s1,..., ;) where s; is defined as follows:
1. Let m = (v, ..., vk, v;) be the uniquely determined path from vy to v; and

2. s; =1(vg) o---ol(vk,;) where o denotes the concatenation of words.

Example 6.3.3

Again consider the literals from Example 6.3.2. We then have

TeMP(p1) = (Ug,Up),
TEMP(¢2) = (Uq,Up) and
TempP(p3) = (Uq,UXp).

The construction of TEMP(y) from a given literal ¢ allows the extension of the concept

of compatibility from first order logic.

Definition 6.3.2
Let 1 and ¢ be PrROLOG(+T) literals. ¢ and @9 are called compatible if

TEMP(¢1) = TEMP(2).

Intuitively 1 and @9 are assumed to be compatible if they only differ in their subterms.
So compatibility is a criterion for the existence of a nontrivial least generalization of two

literals.
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Example 6.3.4
Again consider the literals 1, @9 and 3 from Example 6.3.2. From Example 6.3.3 it is
clear that TEMP(¢1) = TEMP(p2) = (Uqg,Up). So ¢1 and @2 are compatible. On the

other hand TEMP(¢p3) # TEMP(¢1). So ¢1 and 3 are not compatible.

The concept of compatibility of literals will now be used in order to compute least gen-
eralizations of PROLOG(+T) rules. Essentially the procedure is identical to a procedure

which is known from first order ILP. Assume that

Ci = p1:— gl),...,zp,(lll).and

Cy = =P, w0,

are two PROLOG(+T)-rules. We will again work with the sets S¢, and S¢, of literals

which represent these rules. So assume that

Se, = {ﬁﬁ),...,w,&?,wl} = {xél),xgl),---,xgl)} and

2 2) (2
SC2 = {_'1/)§ )7""_'1#1(122)7(702}:{ ((])7Xg)7)X7(222)}7
where X((]i) = ; and X§i) = —wﬁ](-i) fori=1,2 and 5 > 0. Let

set = { (6 x2) oo () }

be the set of all pairs of compatible literals from S¢, and Sg,. If Sel = () or if Sel does

not contain at least one pair of positive literals, then we define
LGS(Cy,Cs) = {false}.

This is reasonable since

1. if there are no compatible literals, then no rule C' and no pair of substitutions
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01,09 # € such that o (S¢) C S¢, and o2 (S¢) € S, can exist (assuming that

Sc # 0) and

2. if there is no pair of compatible atoms, then there is no literal which can be gener-

alized in order to yield the head of the generalized rule.

We will now concentrate on the case that Sel # (), that is there is at least one pair of
compatible literals. In order to compute the set of least generalizations of C; and Cy we
first adapt a technique presented in [133] which transforms literals to terms. Therefore
assume that sig = (X, F, P,«) is the signature from which C; and Cjy are built. We

extend this signature to sigy,; = (X, Fext, Pext, Qext) as follows:

o [yt = FU{fpp ) fp‘p‘ }U{fnot}u{fnexty fatlways; fﬁnallya funtil, fprecedes} assuming

that P = {Pl,---,P\P|},

e Pext = P U {pnew} for some symbol pyew & P and

aext (f) = «(f) for £ € F,
dext (fp,) = a(p;) fori=1,...,|P],
Qext (Pnew) = K,
Qext (frot) =  Oext (fnext) = Qext (Falways) = Qext (ffinaly) = 1 and
Qext (Funtil) = Qext (Eprecedes) = 2.

Using the signature sig,,; we define an operation TERM : L(sig) — 7 (Sigey) which

maps literals to terms. TERM is defined inductively as follows:

o if p =p(t1,...,t,) for some symbolp € P and t,...,t, € 7 (sig), then TERM(p) =

fo(ti, . stn),

e if o =not(¢) for some literal ¢ € L£(sig), then TERM(p) = £not (TERM(2)),
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o — if ¢ =Xy for some ) € L4(sig), then TERM(¢) = fyext(TERM(1))),
— if ¢ = Gy for some ¢ € L4(sig), then TERM(¢) = fajways(TERM(2))) and

— if ¢ = Fe) for some 9 € L4(sig), then TERM(¢) = fgnany (TERM(¢)))

Y

o — if o =11 Uty for ¢y, 93 € Ly(sig), then
TERM(¢) = funtil(TERM (1), TERM(1)2))

and

— if ¢ = 1Py for Y1, ¢z € Ly(sig), then

TERM(QD) = fprecedes(TERM(T/)l)7 TERM(¢2))'
Now we construct

Y1 = DPnew (TERM <Xz(;)) ..., TERM <X,(,?)) and

Y2 = Pnew (TERM <x§§)) ,...,TERM <x§i)))

and compute

¥ = LGS(¢1,%2) =: Prew(t1, - - -, k).

The set of generalized literals can now be extracted from the sequence %i,...,t; of

terms using the transformation LITERAL : 7 (sigy) — L¢(sig) defined as follows:

o if t = f,(t1,...,t,) for some p € P and ty,...,t, € T(sig), then LITERAL(t) =

p(tb' .. atn)a

o if t = f,04(f) for some t € T (Sigyy ), then LITERAL(t) = not(LITERAL(?)),

o — ift = fex(f) for some ¢ € T (Siguy;), then LITERAL(t) = XLITERAL(Y),

— if t = falways(f) for some ¢ € T (Sigey; ), then LITERAL(t) = GLITERAL(?) and
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— if t = fhnany () for some t € T (sigyy; ), then LITERAL(t) = FLITERAL(?),

° —ift = funtil(t17 tg) for t1,t9 € T(Sigext), then

LITERAL(t) = LITERAL(¢; )ULITERAL(%2)

and

— if t = fprecedes (t1, t2) for t1,t2 € T (sigey; ), then

LITERAL(t) = LITERAL(¢;)PLITERAL(t2).

It is immediately clear from the definition of the operations TERM and LITERAL that

we have for every literal ¢ and every term ¢:

LITERAL(TERM(p)) = ¢ and
TeERM(LITERAL(E)) = ¢
Having constructed ¥ = ppew(t1, - .., tx) as described above, we extract the generalized

literals by computing the following set:

Sc = {LITERAL(t1), ..., LITERAL(tx)} = {Xx1,- -, Xk} -

By assumption we have that there is at least one positive literal x;. So the set of possible
rules which can be extracted from S¢ is nonempty. We will again use the operation TAIL
defined on page 126. The algorithm to construct the set or rules from S¢ is described in
Algorithm 6.

Theorem 6.3.2

Let C; and Cy be PROLOG(+T)-rules and let C' be any PROLOG(+T)-rule from the

set computed by Algorithm 6 given inputs C; and Cs. Then C'is a least generalization



138 Chapter 6. The Lattice Structure of PROLOG (+T) objects

Algorithm 6 Least Generalization of PROLOG(+T)-rules
Input: PROLOG(+T)-rules C1, Cy
Output: set of least generalizations of C; and Cy
Require: C7 = ¢ :_¢§1)7 e 7(111), Cy =y :—wgm, .. ,zb%)
1. L «— @
2: 501 — {—W/ng), el —\Ibgll), (,01}

3: SCZ — {_'1/}§2)7"'7_‘¢£L22)7§02}
4: S Sc, USs,
Require: S = {l1,...,1,}

5 Co«— 0
6: fori=1,...,0do
7. forj=i+4+1,...,0do
8: if i # j then
9: if Temp(l;) = TEmP(l;) then
10: Co <—COU{(li,lj)}
11: end if
12: end if
13:  end for
14: end for
Require: Co = {(l;;,1,),..., L, )}
15: Sg «— 0

Require: ppew is some new predicate symbol with arity k
16: 11 < Pnew (TERM ({;,) , ..., TERM ([;,))
17: ¢ < Prew (TERM (15,), ..., TERM (I},))
18: 1) < LGS(¢1, o)

Require: ¢ = puew(ti, ..., k)

19: S¢ < {LITERAL(t1), ..., LITERAL(tg)}
Require: S¢ = {l1,...,l;}

20: fori=1,...,k do

21:  if [; is positive then

22: L—LU {lz Z—TAIL(SC \ {lz})}

23:  end if

24: end for

25: if L # () then

26: return L

27: else

28: return {false}

29: end if
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under subsumption of C7 and Cs.

Proof. Let C'y and Cs be given as

Ci = ¢ :—1/)§1), . ,1,[)&11) and

02 = ¥2 :_Q/)f)v s )sz?(v,zg)

We first show that every clause C' computed by Algorithm 6 given input Cy and Cs is a
generalization of C1 and Cs. Let S be the set returned by Algorithm 6. If S = {false},
then the claim is immediate by definition of the ordering >=,. Now assume that S # ().
If C is any element from S, then C' has been constructed from a literal po(ty,...,t,)
for some predicate symbol p, some n € N and terms ¢,...,%,. This literal has been
constructed from Cy and Cy by application of Algorithm 4. So pc(ty,...,t,) is indeed a
least generalization of the two literals constructed from C and Cs. This gives the claim
of the theorem. O

As in the case of computing sets of greatest specializations we have that each element
in a set returned by Algorithm 6 is semantically equivalent to the remaining elements in
this set. So we will again denote any PROLOG(T) rule computed by Algorithm 6 given
inputs Cq and C5 as

LGS(C1, Cy).

Example 6.3.5

Consider the following three PROLOG(+T) rules:

C; = Gp(a) :—Fq(X).,
Cy = p(b) :—not(q(X))Ur(X),Fq(a). and

Cs3 = p(a):—not(q(a))Ur(c).

We have LGS(C1,C2) = LGS(C4,C3) = {false}. The computation of LGS(Cy,C3) is
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carried out as follows: We have Co = {(p(a),p(a)), (a(X)Ur(X),q(a)Ur(c))}. So pnew

with arity 2 is added to the signature. Then the following two literals are created:

Y1 = Pnew (fp(a)afuntil(fq(x)’fr(x))) and

Y2 = Pnew (fp(a)afuntil(fq(a)’fr(c)))-

The least generalization of these literals is ppew(fp(a), funtit(£q(Z1), £r(Z2))). This gives

Sc ={p(a),q(Z1)Ur(Z2)} and therefore the set C' of least generalizations is

C = {p(a) :—not(q(Z1)Ur(Z2)).,q(Z1)Ur(Z2) :—not(p(a)).} .

The results from this section and the section before are summarized in the following

theorem.

Theorem 6.3.3

Let R be the set of all PROLOG(+T) rules. Then (R U {{false}}, ;) is a lattice.

This theorem enables systems to refine programs in order to fit their specifications with-
out taking hazards of overgeneralization or overspecialization. It will turn out important
in the following chapter where we will define refinement operators for PROLOG(+T)

rules.
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We will now consider the problem of refining literals and rules. In contrast to the
computation of least generalizations and greatest specializations as described in the last
chapter, only one object is involved now. For objects from first order logic several refine-
ment operators have been described and studied (see [98] and [126]). We will see that the
refinement operators for literals can be directly used in order to refine PROLOG(+T)
literals while the refinement operators for first order clauses have to be extended in order
to be useful for the computation of refinements of PROLOG(+T)-rules. But this exten-

sion causes the number of refinements to grow very fast. So it is necessary to control the
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refinement process in order to avoid computational intractability. How to achieve this
will be the topic of chapter 7.3.

The use of refinement operators in order to construct more special resp. more general
objects from given ones dates back to 1981 when Shapiro introduced the model inference
framework (see [145] and [146]). The approach posed there has gained a great interest
in refinement operators although it has been shown by van der Laag (see [159]) that
Shapiro’s operator is (in contrast to Shapiro’s arguments which shows that his proof is
incorrect) not complete. However, in [159] and |98| it has been shown that complete
refinement operators indeed exist.! [127]

Further research on refinement operators has pointed out several conditions for the
existence of complete refinement operators (see [162], [161], [160], [127] and [163]). Ad-
ditionally refinement operators for theories have been introduced (see e.g. [15]). Refine-
ment operators for theories work on sets of clauses rather than on single clauses. This
approach may yield smaller hypothesis programs since the application of such refinement

operators can be combined with techniques such as clause—deletion.

7.1. Refinement Operators for Prolog(4T)—Literals

We will now briefly resume some refinement operators for literals which have been de-
scribed for first order logic atoms in [126]. The extension of these operators to PRO-
LOG(+T)-literals is obvious and their properties carry over to PROLOG(+T). Therefore

assume that the signature under consideration is sig = (X, F, P, ) with F' = {f1,...,f,}.

Downward Refinement Let ¢ € L;(sig) be given with VAR(¢) = {Z1,...,Z;} and let

(1) 1) (n) (n)
X Ky K K

that XZ(-j) Z VAR(p) for all i,j. The downward refinement operator ©% : Ly(sig) —

) be a sequence of pairwise distinct variables such

!The problem with Shapiro’s incomplete refinement operator is simply due to the fact that it requires
clauses to be reduced (see [133] and [78]). Relaxing this requirement yields on the one hand a larger
search space but on the other hand it yields a complete operator.
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oo k| w| N
()
x
Ly
e

Table 7.2.: Set of downward refinements of ¢ = GXFp(X)Up(g(£(X),Y))
2£¢(i8) s now defined as follows:

Z;
£ <x§j),...,xg()fj))

Z.

)

Of(p) = Q¢ li=1,....kj=1,..,n% (7.1)

The set from (7.1) creates the literals which emerge from the original literal by
replacing one variable by all possible instantiations of function symbols with (new)
variables (note that replacement of variables with constant symbols is just a special
case of this case) while the set from (7.2) replaces variables with other variables
occurring in the original expression. The procedure carried out by the application

of @dﬁ is summarized in Algorithm 7.

Example 7.1.1

Assume that F' = {f,g,a} and P = {p} with a(p) = a(g) = 2, a(f) = 1 and
a(a) =0. If o = GXFp(X)Up(g(£(X),Y)), then VAR(p) = {X, Y}. The new variables
to be introduced are Xgl) ,X§2) and ng). The result of @dﬁ given input ¢ is summarized

in Table 7.2.

It is easy to see that

1. @dﬁ is ideal and
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2. |04(p)| < [VAR(p)| - (|F| + |VAR(p)| — 1) for every ¢ € Ly(sig).

Algorithm 7 Downward—Refinement of PROLOG(+T)-literals
Input: PrROLOG(+T) literal ¢ built from sig = (X, F, P, «)
Output: set of specialized literals

Require: VAR(y) = {X1,..., Xk}

Require: F = {fy,...,f,}

Require: Xgl), ... ,Xal()fl), ... ,Xgn), . ,Xan()fn) is a sequence of pairwise distinct variables
from X \ VAR(p)
1: Ref —10
2: fori=1,...,k do
33 forj=1,...,ndo
4: o — X;
£ (xﬁj),...,xg&j))
5: Ref « Ref U{o(p)}
6: end for
7: end for
8 fori=1,...,k do
9. forj=1,...,kdo
10: if i # j then
11: o — ﬁ—;
12: Ref < Ref U{o(¢)}
13: end if
14:  end for
15: end for

16: return Ref

Upward Refinement The dual case of downward refinement is upward refinement. The
upward refinement operator @5 for PROLOG(+T) literals which we will present
now is (as the operator ©% is) an extension of an ideal refinement operator for first
order logic literals. In order to present the refinement operator we need some more

formal concepts.

First we will define the mapping TERMS : Ly(sig) U T (sig) — 27 ¢'8) which returns

all terms which occur in a term respectively in a literal:

1. if t =X € X, then TErRMS(t) = {X},
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2. ift = £(t4,...,t,) for some function symbol £ with arity n and terms ¢q,...,t,,

then TerMS(t) = {t} U, TERMS(;)

Y

3. if ¢ = p(t1,...,t,) for some predicate symbol p with arity n and terms

t1,...,tpn, then TERMS(p) = |U;—; TERMS(;),
4. if o =not(¢y) for some ¥ € L4(sig), then TERMS(p) = TERMS(?)),

5. if ¢ = @ for some Y € L4(sig) and some @ € {X,G,F}, then TERMS(p) =

TERMS()) and

6. if o = 1 @ Yy for 11,19 € Ly(sig) and & € {U,P}, then TERMS(p) =
TERMS(¢1) U TERMS(1)2).

We will call a term ¢ € 7 (sig) simple if t = £(Xy,...,X,) for a function symbol £

with arity n and variables Xq,...,X, such that X; # X; for 7 # j.

Now let 01 and oy be any objects (terms or literals). The set of all occurrences of

01 in o9 is defined as

Occ(o1,02) = {p € Pos(o2) | 01]p = 02} .

An occurrence p; of an object 01 is said to be inside an occurrence py of another

object o9 if there is p € N* such that pop = p;.

Recall that for a literal ¢, p € Pos(p) and a term ¢ the literal ¢[t], is defined
as the literal which emerges from ¢ by replacing the term at position p with ¢.

Similarly for pi,...,pr € POS(p) and k > 1, the literal ¢[t],, ., emerges from ¢

k

by replacing the terms at positions py,...,pg with ¢.

These concepts enable the definition of the upward refinement operator @5 for

FoLrL literals.
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0 # {p1,...,pr} = Occ(t, p) for every simple ¢
Or(p) = (¢ (], ..y, | such that for every X € VAR(t) every p € Occ(X, t)

is inside one of the p; and Z ¢ VAR(yp)

=:51

. | for every a € F such that a(a) = 0 and every
U (p Z p 7"'7p
B # {p1,...,pr} C Occ(a,p) and some Z &€ VAR(p)

=:5%

for every X € VAR(yp), every set
U el
0 #{p1,...,pr} C Occ(X,¢) and some Z ¢ VAR(cp)J

=:53

The estimation of the number of elements in ©%(¢) is not that easy and we are

only able to present a very weak estimation. We have

[S1] < |TErRMS(p)],
S < |F]- (2P 1) and
1S3l < [Var(g)| - (2P0 —2)
which gives
05(@)] < |S1] + |Sa] +S3]

< |Tervis(g)] + |- (2750) = 1) + [Var(e)| - (270 - 2).

This estimation is not very precise as the following example shows. But it is not yet
clear how a better estimation might be derived from the definition of ©% without

taking the structure of the involved terms into account.
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Example 7.1.2

Consider the signature sig = (X,{f,a},{p}, @) with a(a) = 0, a(f) = 2 and
a(p) = 3 and the literal ¢ = FGp(X1,f(a, £(X1,f(a,f(a,a)))), £(X1,X2)). Then the
only simple term in TERMS(y) is £(X2,X3) at position p = 113. So ©%(y) contains
the literal FGp(X1,£(a,f(a,f(a,f(a,a)))),Z). Since VAR(p) = {X1,X2,X3} we have
that Occ(Xy,¢) = {111}, Occ(Xe, ¢) = {1131} and Occ(Xs,¢) = {1132}. None
of these sets has a nonempty proper subset so S3 = ) in this case. Furthermore
Occ(a, ) = {1121,11221,112221, 1122221, 1122222}, so there are 31 possible lit-
erals which might be added by ©%. So the overall size of ©%(¢) is 32 while the

above estimation yields

IN

|05 (p)| |S1] + S| + |Ss]

IN

TERNS ()| + |F| - (2700 = 1) + [Var(y)] - (2P0 - 2)
= 9+42-(2"9-1)+3.(2'9-2)

= 327681
The complete set of refined literals is listed in Table 7.3.

Since the original refinement operator for first order logic literals is ideal, ©% is

also ideal. The procedure for computing ©%(¢) is summarized in Algorithm 8.

7.2. Refinement Operators for Rules

We will now present adapted versions of classical refinement operators for sets of literals,
i.e. for PROLOG(+T) rules. As in the case of refining literals, there is in general more
than one refinement of an input rule. So we will have a set of rules as the result of a
refinement operation. Fach of these rules is a set from which we may construct one or

more rules each of which is a refinement of the original rule.
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FGp(X1,£f(a,f(a,f(a,f(a,a)))),2)

FGP(X17 f(aa f(a7 f(av f(a7 Z))))7 f(XlaXQ))

FGP(X17 f(aa f(a7 f(av f(Z, a))))7 f(XlaXQ))

FGP(X17 f(aa f(a7 f(av f(Z, Z))))7 f(XlaXQ))
FGp(X1,f(a,f(a,£(Z,f(a,a)))), £(X1,X2))

FGp(X1,£f(a,f(a,£(Z,£(a,Z)))), £(X1,X2))

FGp(X1,£f(a,f(a,£(Z,£(Z,a)))), £(X1,X2))

FGp(X1,f(a,f(a,£(Z,£(Z,2)))), £(X1,X2))
FGP(X17 f(aa f(Z, f(av f(a7 a))))7 f(XlaXQ))

FGP(X17 f(aa f(Z, f(av f(a7 Z))))7 f(XlaXQ))

FGP(X17 f(aa f(Z, f(av f(Z, a))))7 f(XlaXQ))

FGP(X17 f(aa f(Z, f(av f(Z, Z))))7 f(XlaXQ))

FGP(X17 f(aa f(Z, f(Z, f(a7 a))))7 f(XlaXQ))

FGp(X1,£f(a,£(Z,£(Z,a(a,Z)))), £(X1,X2))

FGp(X1,£f(a,£(Z,£(Z,£(Z,a)))), £(X1,X2))

FGp(X1,£f(a,£(Z,£(Z,£(2Z,2)))), £(X1,X2))

FGp(X1,£(Z,f(a,f(a,f(a,a)))), £(X1,X2))

FGP(X17 f(Z, f(a7 f(av f(a7 Z))))7 f(XlaXQ))

FGP(X17 f(Z, f(a7 f(av f(Z, a))))7 f(XlaXQ))

FGP(X17 f(Z, f(a7 f(av f(Z, Z))))7 f(XlaXQ))

FGP(X17 f(Z, f(a7 f(Z, f(a7 a))))7 f(XlaXQ))

FGp(X1,£(Z,f(a,£(Z,£(a,Z)))), £(X1,X2))

FGp(X1,£(Z,f(a,f(a,£(Z,a)))), £(X1,X2))

FGp(X1,£(Z,f(a,f(a,£(Z,2)))), £(X1,X2))
FGp(X1,£(Z,f(a,£(Z,£(a,a)))), £(X1,X2))

FGp(X1,£(Z,f(a,£(Z,£(a,Z)))), £(X1,X2))

FGP(X17 f(Z, f(a7 f(Z, f(Z, a))))7 f(XlaXQ))

FGP(X17 f(Z, f(a7 f(Z, f(Z, Z))))7 f(XlaXQ))

FGP(X17 f(Z, f(Z, f(Z, f(a7 a))))7 f(XlaXQ))

FGP(X17 f(Z, f(Z, f(Z, f(a7 Z))))7 f(XlaXQ))

FGp(X1,£(Z,£(Z,£(Z,£(Z,a)))), £(X1,X2))

FGp(X1,£(Z,£(Z,£(Z,£(Z,2)))), £(X1,X2))

1.

2.

3.

4.

D.

6.

7.

8.

9.

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

22.

23.

24.
25.

26.

27.
28.

29.

30.

31.

32.

Table 7.3.: Set of upward refinements for ¢ = FGp(X1, f(a, £(X1,f(a,f(a,a)))), £(X1,X2))
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Algorithm 8 Upward Refinement of PROLOG(+T) literals

Input: ProLOG(+T) literal ¢
Output: set of generalized literals
Require: VAR(C) = {Xy,...,Xx}
Require: Z € X'\ {X1,...,X;}
Require: TERMS(p) = {t1,...,tn}

1. Ref « ()
2: fori=1,...,ndo
3. if t; is simple then
Require: VAR(t;) ={Z1,...,2;}
4 foro=1,...,l do
5: if each p € Occ(Z,,t;) is inside of one element from Occ(t;, @) then
Require: {p1,---,pm} = OcCC(t;, p)
6: Ref «— Ref U{@[Z]p,,...pm}
7 end if
8: end for
9: end if
10: end for

Require: F'= {f1,... . f|p
11: fori=1,...,|F| do
12: if a(fi) =0 then

13: for each 0 # {p1,...,pm} C Occ(fi,p) do
14: Ref «— Ref U{o[Z]p,,...pm}

15: end for

16:  end if

17: end for

18: fori=1,...,k do
19:  for each 0 # {p1,...,pm} C Occ(X;, ) do

20: Ref — Ref U {(,D[Z]pl, I 7pm}
21: end for
22: end for

23: return Ref
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In the following sections we will sometimes refer to certain refinement operators which
have been introduced for first order logic literals respectively clauses. A general de-
scription of refinement operators can be found in [98]. In particular we will refer to
the operators p4 (downward refinement of atoms), d 4 (upward refinement of atoms), p;

(downward refinement of clauses) and d,, (upward refinement of clauses) from [126].

7.2.1. Downward Refinement

The basic idea of downward refinement of PROLOG(+T)-rules is first to consider the
set S¢ induced by a rule C' and then to add certain literals to S¢. Additionally we will
replace variables with terms and variables with other variables from the original rule as
in the case of the operator @dﬁ.

The original downward refinement operator presented in [98] only treats first order
clauses. So in order to construct refinements of PROLOG(+T) rules we have to deal

with the temporal operators. This will be done as follows:

e whenever a literal ¢ is contained in the original set S, the set of refinements

contains S¢ U {@®9} and S¢ U {not(®v)} for & € {X,G,F} and

e whenever two literals 11 and 1), are contained in S¢, the set of refinements contains

both Sc U {1 @ 12} and Sc U {not(¢1 @ 1)} for @ € {U,P}.

From the resulting set of literals we will extract those rules which can be written using
a head literal which is positive.

The operator @Zf : 9Le(sig) _y 92510 o tharefore defined as follows:

Z e VAR(C),f € F,a(f) =1,
0%(Se) = < Se {ﬁ} | Xi,...,% € VAR(O), (7.3)

Xi#XijI‘Z‘#j
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C

{SC{;} ]X,ZEVAR(C),X#Z} (7.4)

p€ Palp)=1X,....% & VAR(C)
U ScLJ{p(Xl,...,Xl)}‘ (7.5)
Xi 75 Xj for 4 75 j

pePalp) =1
U ¢ Sc U{not(p(X1,.... X))} [ Xq,...,X & VAR(C) (7.6)
X; # X; for i # j
U {ScU{X¢} [ ¢ € Sct U{Sc U{not(Xy)} |4 € So} (7.7)
U {ScU{Gy} | ¢ € Sct U{Sc U {not(Gy)} |4 € So} (7.8)
U {Sc U{Fy} [ ¢ € So} U{Sc U {not(Fy)} | ¥ € Sc} (7.9)
U {Sc U{tnUea} | ¢, 42 € Sci} (7.10)
U {Sc U {not(¢1Uth2)} | ¥1,42 € Sc} (7.11)
U {Sc U{g1Pya} [ 1,92 € Sc} (7.12)
U {Sc U {not(¥1Py2)} | ¥1,12 € Sc}. (7.13)

The line (7.3) generates all sets of literals which emerge from the original set by instan-
tiating variables with terms. This construction is an obvious extension of the construction
from (7.1). Similarly the second line (7.4) adds sets of literals in which single variables
have been replaced by other variables from the original set. The lines (7.5) and (7.6)
add new literals to the original set of literals. Finally in lines (7.7) to (7.12) temporal
literals built up from literals of the original set are added as described above. Obviously
the resulting set is subsumed by the original set. Furthermore the literals which have
been added are general enough to be instantiated to more special literals. The complete
procedure is summarized in Algorithm 9.

We illustrate the upward refinement of PROLOG(4T) rules in the following example.

Example 7.2.1

Let sig = (X, F, P,«) with F = {f,g,a}, P = {p,q} and a(f) = 1, a(g) = 2, a(a) =0,
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a(p) = 1 and a(q) = 2 be given. If C' = Gp(Xy) :—Fq(X1,£(X2)),q(a,a)Up(a)., then the
set of refined rules is as listed in Tables 7.5, 7.7 and 7.9.

Theorem 7.2.1

@Z} is locally finite and complete.

Proof. Locally finiteness is immediately by definition of @le. For the completeness the
proof relies on the completeness of the restriction of @Zf to first order logic clauses. This
has been shown in [126]. Since every possible most general (see section 7.2.2 for a formal
definition of most general literals) temporal literal is added to the set of refinements

(lines 17-22) the completeness carries over to PROLOG(+T)-rules. (]

7.2.2. Upward Refinement

As having done for PROLOG(+T)-literals we will now describe how to refine PRO-
LOG(+T)-rules upward. We will see that the definition of an upward refinement operator
for first order logic clauses does not need to be changed. This is due to the fact that
upward refinement of rules is in some sense easier than downward refinement since an up-
ward refinement operator does not need to capture all possible cases of temporal literals
which might be added. Therefore the upward refinement operator @uR to be introduced

is more tractable than the operator @Zf. But before we need some more definitions.

Definition 7.2.1
Let sig = (X, F,P,«) be a signature, let ¢ € L(sig) be a literal and let C be a
PROLOG(+T)-rule over sig. Then ¢ is called most general with respect to C if

TErRMS(p) = {X1,...,X,} € X and

1. ¢ =p(Xy,...,X,) for some p € P with a(p) =n and {Xy,...,X,} NVAR(C) =0

or
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1. | Gp(a) :—Fq(X1,£(X2)),q(a,2)Up(a)
2. | Gp(X1) :—Fq(X1,£(a)),q(a,a)Up(a).
3. | Gp(£(X1)) :—Fq(£(X1),£(X2)),q(a,a)Up(a)
4. | Gp(X4) :—Fq(Xy,£(£(X1))), q(a,2)Up(a).
5. | Gp(a(%1,%2)) :—Fa(g(X1,%2), £(X2)), q(a,2)Up(a)
6. | Gp(X1) :—Fq(X1, £(g(X1,X2))), q(a,2)Up(a)
7. | Gp(X1) :=Fq(Xy,£(X1)),q(a,a)Up(a).
5. [ Gpl(fe) —Falke,{(%a)),a(,a)Up(a).
9. | Gp(X1) :—Fq(X1,£(X2)), q(a, 2)Up(a), not(p(X1))
10. | p(X1) :—not(Gp(X1)), Fq(Xs, £(X2)). g(a, 2)Up(a).
11. | Gp(Xy) :—Fq(X1,£(X2)),q(a,a)Up(a),not(q(X1, X2)).
12. | q(X1,X2) :—not(Gp(X1)),Fq(X1,£(X2)),q(a,a)Up(a).
13. | Gp(Xy) :—Fq(X1,£(X2)), q(a, 2)Up(a), p(X4
14. | Gp(X1) :—Fq(X1,£(X2)),q(a, a)Up(a), q(X1, X2).
15. | Gp(X1) :—Fq(X1,£(X2)), q(a, a)Up(a), not(Xnot (Fq (X, £(X2)))).
16. | Xnot(Fq(X1,£(X2))) :—Fq(X1,£(X2)),q(a,a)Up(a), not(Gp(X4)).
17. | Gp(X4) :—Fq(X1,£(X2)), q(a, 2)Up(a), not(Xnot(q(a, a)Up(a))).
18. | Xnot(q(a,a)Up(a)) :—Fq(X1,£(X2)),q(a,a)Up(a),not(Gp(X1)).
19. | Gp(X1) :—Fq(X1,£(X2)),q(a,a)Up(a),not (XGp(Xy))
20. | XGp(X1)) :—Fq(X1,£(X2)),q(a,a)Up(a),not(Gp(Xy)).
21. | Gp(X4) :—Fq(X1,£(X2)), q(a, 2)Up(a), Xnot (Fq(Xs, £(X2))).
22. | Gp(X4) :—Fq(X1,£(X2)), q(a, 2)Up(a), Xnot(q(a, a)Up(a)).
23. | Gp(X1) :—Fq(X1,£(X2)), q(a, 2)Up(a), XGp(X1).
24. | Gp(X1) :—Fq(X1,£(X2)), q(a, 2)Up(a), not(Gnot (Fq(X1, £(X2)))).
25. | Gnot(Fq(Xs,£(X2))) :—Fq(X1,£(X2)), q(a, 2)Up(a), not(Gp(Xy)).
26. | Gp(X1) :—Fq(X1,£(X2)), q(a, 2)Up(a), not(Gnot(q(a, a)Up(a))).
27. | Gnot(q(a, a)Up(a)) :—Fq(X1, £(X2)),q(a, 2)Up(a),not(Gp(X1)).
28. | Gp(X4) :—Fq(X1,£(X2)), q(a, 2)Up(a),not(GGp(Xy)).
29. | GGp(Xy1)) :—Fq(X1, £(X2)), q(a, 2)Up(a),not(Gp(Xy)).
30. | Gp(X1) :—Fq(X1,£(X2)),q(a,2)Up(a), Gnot (Fq(X1, £(X2))).
31. | Gp(Xy) :(—Fq(X1,£f(X2)),q(a,a)Up(a), Gnot(q(a,a)Up(a)).
32. | Gp(Xy) :—Fq(X1,£(X2)),q(a,2)Up(a), GGp(Xy).
33. | Gp(X1) :—Fq(X1,£(X2)),q(a,a)Up(a),not(Fnot(Fq(X1,£(X2)))).
34. | Fnot(Fq(X1,£(X2))) :—Fq(X1,£(X2)), q(a, 2)Up(a), not(Gp(Xy)).
35. | Gp(X1) :—Fq(X1,£(X2)),q(a,a)Up(a),not(Fnot(q(a,a)Up(a))).
36. | Fnot(q(a,2)Up(a)) :—Fq(X1,£(X2)), q(a, 2)Up(a),not(Gp(X1)).
37. | Gp(X1) :—Fq(X1,£(X2)),q(a,a)Up(a),not(FGp(Xy)).
38. | FGp(X1)) :—Fq(X1, £(X2)), q(a, 2)Up(a), not(Gp(X1)).
39. | Gp(X4) :—Fq(X1,£(X2)), q(a,2)Up(a), Fnot(Fq(Xs, £(X2))).
40. | Gp(X1) :—Fq(X1,£(X2)),q(a,2)Up(a), Fnot(q(a, a)Up(a)).
Table 7.5.: Set of downward refinements of C' = Gp(Xy) : —Fq(X1,£(X2)),q(a,a)Up(a).

(part 1)
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41. | Gp(X1) :—Fq(X1, £(X2)), q(a, a)Up(a), FGp(Xy).

42. | Gp(Xy) :—Fq(Xy, £ ( 2)),q(a,a)Up(a),not(Gp(X1)UGp(Xy)).

43. | Gp(X1)UGp(X1) :—Fq(X1,£(X2)), q(a, 2)Up(a), not(Gp(Xy)).

44. | Gp(X1) :—Fq(X;, £(X ))>q(a7a)UP(a) not(Gp(X1)Unot(Fq(X1, £(X2)))).

45. | Gp(X1)Unot(Fq(Xs, £(X2))) :—Fq(X1,£(X2)), q(a, 2)Up(a), not(Gp(X1)).

46. | Gp(X1) :—Fq(Xs, £(X2)),q(a, a)Up(a), not(Gp(X1)Unot(q(a, a)Up(a))).

47. Gp(Xl)Unot(q(a a)Up(a)) :—Fq(X1,£(X2)),q(a,a)Up(a),not(Gp(X1)).

48. | Gp(X1) :=Fq(X1,£(X2)), a(a, a)Up(a), not(not(Fq(Xs, £(X2)))UGp(Xy))-

49. | Gp(Xy) —Fq(Xl,f(Xg)),q(a,a)Up(a),not(not(Fq(X1 £(X5)))Unot(Fq(X1,£(X2)))).
50. | Gp(Xy) :(—Fq(X1,£(X2)),q(a,a)Up(a),not(not(Fq(X1,£(X2)))Unot(q(a,a)Up(a))).
51. | Gp(Xy) :(—Fq(X1,£(X2)),q(a,a)Up(a),not(not(q(a, a)Up(a)UGp(Xy)).

52. | Gp(Xy) :(—Fq(X1,£(X2)),q(a,a)Up(a),not(not(q(a,a)Up(a))Unot(Fq(X1,£(X2)))).
53. | Gp(Xy) :—Fq(X1,£(X2)),q(a,a)Up(a),not(not(q(a, a)Up(a))Unot(q(a,a)Up(a))).

54. | Gp(X1) :—Fq(X1,£(X2)), q(a, 2)Up(a), Gp(X1)UGp(Xy).

55. | Gp(X1) :=Fq(X1,£(X2)), q(a,a)Up(a), Gp(X1)Unot (Fq(X1, £(X2))).

56. | Gp(X1) :—Fq(X1, £(X2)), q(a, 2)Up(a), Gp(X1)Unot(q(a, a)Up(a)).

57. | Gp(X1) :=Fq(X1,£(X2)), q(a,a)Up(a),not (Fq(X1, £(X2)) ) UGP(X1).

58. | Gp(X1) :—Fq(X1,£(X2)),q(a, 2)Up(a), not(Fq(X1, £(X2)))Unot (Fq(X1, £(X2))).

59. | Gp(Xy) —Fq(th(Xz)),q(a’a)UP(a)anot(Fq(Xh (X2)))Unot(q(a, a)Up(a)).

60. | Gp(X1) :—Fq(X1,£(X2)),q(a, a)Up(a), not(q(a, a)Up(a)UGp(X1).

61. | Gp(X;) :—Fq(X1,£(X2)),q(a,a)Up(a),not(q(a,a)Up(a))Unot(Fq(Xs, £(X2))).

62. | Gp(X1) :—Fq(Xs1,£(X2)), q(a, 2)Up(a), not(q(a, 2)Up(a))Unot(q(a, a)Up(a)).

63. | Gp(X1) :—Fq(X1,£(X2)),q(a, 2)Up(a), not(Gp(X1)PGp(X1)).

64. | Gp(X1)PGp(Xs) :—Fq(X1,£(X2)), q(a, 2)Up(a), not (Gp(X1)).

65. | Gp(X1) :—Fq(X1,£(X2)),q(a, 2)Up(a), not(Gp(X1)Pnot(Fq(X1, £(X2)))).

66. | Gp(X1)Pnot(Fq(Xs, £(X2))) :—Fq(X1,£(X2)), q(a, 2)Up(a), not(Gp(Xy)).

67. | Gp(X1) :—Fq(X1, £(X2)), q(a, 2)Up(a), not(Gp(X1)Pnot(q(a, a)Up(a))).

68. | Gp(X;)Pnot(q(a,a)Up(a)) :—Fq(X1,£(X2)),q(a,a)Up(a),not(Gp(X1)).

69. | Gp(X1) :—Fq(X1,£(X2)), q(a, 2)Up(a), not(not(Fq(X1, £(X2)))PGp(Xy)).

70. | Gp(X1) :—Fq(X1,£(X2)),q(a,a)Up(a),not(not(Fq(Xs, £(X2)))Pnot(Fq(X1, £(X2)))).
71. | Gp(X1) :—Fq(X1,£(X2)),q(a,2)Up(a),not(not(Fq(Xy, £(X2)))Pnot(q(a, a)Up(a))).

72. | Gp(X1) :—Fq(X1,£(X2)),q(a,a)Up(a),not(not(q(a, a)Up(a)PGp(X1)).

73. | Gp(X1) :—Fq(X1,£(X2)),q(a,a)Up(a),not(not(q(a, a)Up(a))Pnot(Fq(X1,£(X2)))).

74. | Gp(X1) :—Fq(X1,£(X2)), q(a,2)Up(a), not(not(q(a, a)Up(a))Pnot(q(a, 2)Up(a))).

75. | Gp(X4) :—Fq(X1,£(X2)),q(a, 2)Up(a), Gp(X1 )PGp(X1).

76. | Gp(X) :—Fq(X1,£(X2)),q(a,;2)Up(a), Gp(X1)Pnot (Fq(Xs, £(X2))).

77. | Gp(X1) :—Fq(X1,£(X2)), q(a,2)Up(a), Gp(X1)Pnot(q(a, a)Up(a)).

78. | Gp(X) :—Fq(X1,£(X2)),q(a,;2)Up(a),not(Fq(Xs, £(X2)))PGp(X1).

79. | Gp(X1) :—Fq(X1,£(X2)),q(a,2)Up(a),not(Fq(Xs, £(X2)))Pnot(Fq(Xs, £(X2))).

80. | Gp(X1) :—Fq(X1,£(X2)),q(a, 2)Up(a), not(Fq(X1, £(X2)))Pnot(q(a, a)Up(a)).

Table 7.7.: Set of downward refinements of C' = Gp(Xy) : —Fq(X1,£(X2)),q(a,a)Up(a).

(part 1)
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Algorithm 9 Downward Refinement of PROLOG(+T) rules

Input: ProroG(+T)-rule C = ¢ :—t)1, ..., 9.
Output: set of specialized rules

Require: C = ¢ —1,...,%,.
1: Sg «— {go,ﬁ’(/Jl, e ﬁwn}
2: Ref « () {set of sets of literals}
Require: Sc = {x0,-..,Xn}, VAR(C) ={X1,...,Xx}, sig= (X, F, P,«a)
Require: E :_{fl, . :,f|F‘}
Require: Xi,Xs,...,X;,... new variables, pairwise distinct
3: fori=1,...,k do
4: for j=1,...,|F| do
Xi
5: Ref — Ref U {SC {fj (Xhmja(fj)) }}
6: end for
7: end for
8 fori=1,...,k do
9: forj=1,...,kdo

10: if i # j then

11: RefHRefu{Sc{;‘—;}}

12: end if

13:  end for

14: end for

Require: P ={p1,...,pm}

15: fori=1,...,m do

16: Ref «— Ref U {SC U {Pi (Xl, ce. ,Xa(pi))}} U {SC U {not (Pi (Xl, . ,Xa(pi)))}}
170 Ref «— Ref U{X¢p | € Sc} U{not(Xy) |y € Sc}

18:  Ref «— Ref U{Gy | ¢ € Sc} U{not(Gy) |y € Sc}

19:  Ref «— Ref U{Fy | ¢ € Sc} U {not(Fy) | ¥ € Sc}
20:  Ref <« Ref U{¢1Uty | ¥1,1)2 € Sc} U {not(1Ushs) | 91,92 € Sc'}

21:  Ref « Ref U {1 Piba | 1,109 € Sc} U {not(v1Pib2) | 1,2 € Sc}
22: end for

Require: Ref = {S1,...,S5,}
23: R «— () {set of rules}

24: forv=1,...,0do
Require: S; = {l;z), ... ,l,(l?}
25: forj=1,...,n; do

26: if I; is positive then

27: R+~ RU {lj Z—TAIL(Si \ {lj})}
28: end if

29: end for

30: end for

31: return R




156 Chapter 7. Refinement Operators for PROLOG (+T) programs

81. | Gp(Xy) :—Fq(X4,£(X2)),q(a
82. | Gp(Xy) :—Fq(X4,£(X2)),q(a
83. | Gp(Xy) :—Fq(X1,£(X2)), q(a

)
N~—
C
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&
=]
o
ot

(9(a,2)Up(a)PGp(X4).
a)Up(a),not(q(a,a)Up(a))Pnot(Fq(Xi, £(X2))).
(9(a,a)Up(a))Pnot(q(a, a)Up(a)).

)
S~—
C
oy
&
=]
o
ot

Table 7.9.: Set of downward refinements of C' = Gp(X;) : —Fq(X1,£(X2)),q(a,a)Up(a).
(part 3)

2. ¢ = not(p(Xy,...,X,)) for some p € P with a(p) = n and {X;,...,X,} N
VAR(C) = ()

or

3. ¢ = @Y for @ € {X,G,F} and some most general literal ¢ or

4. ¢ =11 Do for @ € {U,P} and most general literals 11, 12 such that VAR(¢1)N
VAR(¢2) = 0.

It will be necessary to consider rules which may contain literals more than once. In
this case, treating rules as sets of literals is not adequate. Therefore we will introduce se-
quences of literals which are computed by duplicating certain literals from the underlying

set.

Definition 7.2.2 (Duplication of Literals, e.g. [126])
Let So = {®1,...,pn} be a set of PROLOG(+T) literals and let ¢ € TERMS(S¢) be

a term. Then the sequence dup(Sc,t) is defined as

dup(Sc,t) = ( @1yee @1 yeevy PnseveyPn ).
S— —
210cce(t,v1)| times 2|0ca(t,en)l times

Positions of such tuples of literals are defined as expected:

Pos(e1,...,¢n) = [ J{ip | p € Pos(pi)}.
=1
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Similarly for pi,...,pr € POs(p1,...,¢,) and t € T (sig) we define

(1 @n)ltlpr,mn = (cpl[t]pi.(ll))v---mi(lf) "”’('D"[t]PEEZ)»-waZz)> 7
0 0 mn

mq

(jj)), . ,jp%.)) } C Pos(¢1,- .., %) is maximal.
Im

i oy

where for each j the set {jp
Finally for a sequence (p1,...,¢,) consisting of n (not necessarily distinct) literals

from L;(sig) we define

SET(p1,. .., ¢n) = U{cpi}-

Using these definitions the extension of the refinement operator for first order logic
clauses to PROLOG(+T)-rules is straightforward. Asin the case of downward refinement

we will work on sets of literals instead of rules.

t € TERMS(O),t = £ (Xl, R ,Xa(f)) simple
Ox(Sc) = Sc(Zlpy,..pw | {p1,-..,px} = Occ(t,C) and every p € Occ(X;, C)

is inside of one p; for i = 1,...,a(f),Z & VAR(C)

a€ F,a(a) =0,Z ¢ VAR(C)
0 7é {ph I apk} - OCC(a, dup(507 a))

U SET(duP(SC’a)[z]p1,~~~,pk) |

X € VAR(C),Z ¢ VAR(C)

0 #{p1,...,pk} C Occ(X, dup(Sc,X)),
{Sc \ {¢} | ¢ € Sc is most general wrt. C'}.

U SET(duP(SC’X)[Z]p1,~~~,pk) |

(-

Given C we can therefore compute S and then apply OF to C. From the resulting
set the extraction of a set of generalized rules is then carried out as usual. The procedure

for computing the set of generalized rules is summarized in Algorithm 10.

Theorem 7.2.2

OR is locally finite and complete.
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Algorithm 10 Upward-Refinement of PROLOG(+T)-rules
Input: ProroG(+T)-rule C = ¢ :—t)1,...,%,.
Output: set of generalized rules
Require: C = ¢ :—¢1,...,%,.
1: So — {p,1,...,n}
2: Ref «— () {set of sets of literals}
Require: Sc = {x0,---,Xn}, Z & VAR(C)
Require: F' = {fy,....f|p}, TERMS(C) = {t1,...,tm}

3: fori=1,...,mdo
4: if t; is simple then
Require: VAR(t;) ={Z1,...,Z1}
5: foro=1,...,ldo
6: if each p € Occ(X,, C) is inside a p’ € Occ(t;, C) then
Require: {p1,...,pr}Occ(t;, C)
7: Ref — Ref U{Sc|Z]p,,...pn}
8: end if
9: end for
10:  end if
11: end for

12: fori=1,...,|F| do
13:  if a(f;) = 0 then

14: for each 0§ # {p1,...,pr} C Occ(f;, dup(Sc, £;)) do
15: Ref « Ref U{SET(dup(Sc, fi)[Z]P1=---7Pk)}

16: end for

17  end if

18: end for

Require: VAR(C) = {Xy,..., X}
19: fori=1,...,l do
20:  for each 0 # {p1,...,pr} C Occ(X;, dup(Sc,X;)) do

21: Ref — Ref U {SET(dup(Sc,X)[Z]py,...p0 )}
22: end for
23: end for

24: for :=0,...,ndo

25:  if x; is most general wrt. C then
% Ref — Ref U{Sc\ {xi}}

27:  end if

28: end for

Require: Ref = {S1,...,5)5}

29: R «— () {set of rules}

30: fori=1,...,|5| do

Require: S; = {lgi), e ,l,(ff}

31: for j=1,...,n;do

32: if I; is positive then

33: R+— RU {17 Z—TAIL(SZ' \ {17})}
34: end if

35: end for

36: end for

37: return R
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Proof. As for the operator @(7}, locally finiteness is immediately clear from the definition
of OF. For the completeness the argumentation from [126] can be directly adapted to

O©F. So the theorem is proved. O

7.3. Refinement Strategies

Up to now we have defined operators for refining PROLOG(+T)-literals and —rules both
upward and downward. However, it is not yet clear how these operators should be
applied. For example, exhaustive application of @Zf to any clause is not applicable as
we have seen in Example 7.2.1. The size of the set computed by Algorithm 9 is given as

stated in the following lemma?.

Lemma 7.3.1

Let C be a PROLOG(+T)-rule built over sig = (X, F, P,«). Then
0F(C)] < [VAR(C)| (IF| + [VAR(C)| = 1) + 6|Sc| + 4|Sc[* + 2| P).

Proof. We have

Ze VAR(C),f € F,a(f) =1,
OO < [$selspgi} ] K g VaR(C)
X; # Xj for i # j
+ {Sc{é} |X,Z€VAR(C),X7$Z}'
pePalp)=1X1,...,% & VAR(C)

Xi#Xijri;éj

+ 14 Sc U{p(X1,..., X))} |

p €< P,a(p) =10,%X1,...,% ¢VAR(C)

Xi#XijI‘Z'#j

+ < ScU{not(p(X1,.-., X))} |

2We will restrict ourselves on the case of downward refinement since upward refinement often yields
smaller sets of rules.
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+ {Sc U{X¢} |9 € So} 4+ {Sc U {not(Xe)} | 4 € So}
+ {Sc U{Gy} | ¥ € S} + [{Sc U {not(Gy)} | ¢ € Sc}
+ {Sc U{Fy} [ ¥ € Sc} + [{Sc U {not(Fi)} | ¢ € Scl
+[{Sc U {v1Uha} | ¥1, 92 € Sci

+ [{Sc U {=1Uha} | 11,42 € Sc}

+ [{Sc U {t1Pya} | ¥1,12 € Sc}|

+{Sc U{=¢1Pia} | ¥1, 92 € Scl

by definition of @Zf Furthermore

Z € VAR(C),f € F,a(f) =1,
Z
v. ¥ < : .
SC {f(Xl,...,Xl)} | Xl"“7xl gVAR‘(C)v — |VAR(C)| |F|7

Xi#XijI‘Z'#j

Hsc {;} 1%,Z € VAR(C), X # z}‘ < [VAR(C)| - (IVAR(C)] = 1),

pE P,Oé(p) =1,X1,..., % QVAR(C)
Sc U {p(Xl,...,Xl)} ‘ < ‘P‘ and
Xi#Xj fOI‘Z'#j J
p € P,alp) =1,X1,...,% & VAR(C)
SCU{nOt(p(x17--'7Xl))} | < |P|7
X; 75 Xj for ¢ 75]

{Sc U{Xy} |y e Sc}t < |Scl,
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{Sc U{not(Xy)} | € Sc}l < |Scl,
{Sc U{Gy} [ ¢ e Sctl < [Sal,

[{Sc U {not(Gy)} | ¥ € Sc}l < [Scl,
{Sc U{F¢} [ € Scil < [Scl and

{Sc U{not(F)} [ ¢ € So}| < [Scl,

[{Sc U{gnUta} [ 1,92 € Sc}| < [Scl?,
[{Sc U {not(¢1Uh2)} | Y192 € S}l < [Scl?,

[{Sc U {¥1P2} | 11,92 € Sc}| < [Sc|? and
[{Sc U {not(¢1Py2)} [ 1,2 € Sc}| < [Scl*.

Combining these inequalities we have

05 (C)] < [VAR(C)| - [F| +|VAR(C)| - (IVAR(C)| = 1) + 6]Sc| + 4[Sc|* + 2| P|

= |VAR(O)| - (IF| + [VAR(C)| = 1) + 6|Sc| + 4]Sc|* + 2| P|

as claimed. O

We will now see how refinement steps can be carried out without constructing the

maximum number of rules.
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7.3.1. Elimination of Variants

Recall that two PROLOG(+T)-rules Cy and Cs are variants if there are substitutions 6
and 03 such that 6, (Cy) = Cy and 05(Cy) = C1. Since in our setting all rules in programs
are considered universally closed, only one (of possibly arbitrary many) variants must be
included in the set of refined rules. In the example from the last section, one of the rules

7 and 8 may be dropped.

In general, the presence of variants in the set of refinements is due to the construction
of the loop from line 8 to line 14 in Algorithm 9. If we change the j—loop to range from

i+1 to k and drop the if condition (which now has no effect), the variants are not added.

In the original algorithm the number of rules added in the loop is given as k? — k. If
the modification is added, only Zle Z?:i-{-l 1 rules are added. So the difference in the

size of the original set of refined rules and the modified set is given as

2 2
k2 +k—2k
2
kK —k

5

k2_k_<k2_w> - M_k

Setting k = |[VAR(C)| and using Lemma 7.3.1 we have

OR(C)] < IVAR(C)[- (IF| + [VAR(C)| ~ 1) + 6]50] + 4[5
2 _
LolP| - |[VAR(C)| . |[VAR(C)|
VAR(C 1
= var(@)]- (171 + 2 = 5 olscl + aiscP + 21,

where @zf from now on denotes the refinement operator which implements the above

strategy.

The growth of the set of refinements (depending on the number of variables in the rule
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without elimination of variants
with elimination of variants -—-—-—----

Number of Refinements

60000
50000
40000
30000
20000
10000

100

Figure 7.1.: Growth rate of refined rules with and without elimination of variants

to be refined and the size of the original rule) is depicted in Figure 7.1 using |F'| = 3 and
|P| = 2.

7.3.2. Restriction to reduced Rules

We have introduced the concept of reduced literals in order to keep the representation
of a literal canonical, so that we can assume that each literal from £;(sig) has a certain
form. Similarly a rule is reduced if every literal in this rule is reduced. Restricting
ourselves to the construction of reduced rules during the refinement of PROLOG(+T)

rules guarantees canonicity.

Example 7.3.1

Again consider rule

C = Gp(X1) :=Fq(X1,£(X2)),q(a, a)Up(a).
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Then the set of refinements contains among others the rules

C; = Gp(X1) :—Fq(X1,£(X2)),q(a,a)Up(a),not(GGp(X1)). and

Cy = GGp(X;1) :—Fq(X1,£(X2)),q(a,a)Up(a),not(Gp(X1)).

These rules are syntactically different. However, reduction of the literals involved yields:

RED(C1) = Gp(Xy) :—Fq(X1,£(X2)),q(a,a)Up(a),not(Gp(X1)). and

RED(C2) = Gp(X;1) :—Fq(X1,£(X2)),q(a,a)Up(a),not(Gp(X1)).

Since RED(CY) = RED(Cy) one of the refinement steps can be skipped.

But the example from above yields even more possible improvements: both rules can

be skipped. This is simply due to

RED(C1) = Gp(X1) :—Fq(X1,£(X2)),q(a,a)Up(a),not(Gp(X1)).

Gp(X1) V not(Fq(X1,£(X2))) Vnot(q(a,a))Up(a) V not(not(Gp(X1)))

Gp(X1) V not(Fq(X1,£(X2))) V q(a,a)Up(a)

Gp(X1) :—Fq(X1,£(X2)), q(a,2)Up(a).

= C.

However, estimating the number of rules which can be skipped by restriction to reduced
literals depends on the structure of the literals involved in the refined rule. So in general

we are not able to give an estimation of the reduction of [©%(C)|.
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7.3.3. Elimination of Tautologies

Tautologies can be considered as rules which do not have any effect on the provability
resp. non provability of goals. Therefore they do not have to be constructed. A sufficient

criterion is stated in the following lemma.

Lemma 7.3.2
Let C be any PROLOG(+T) rule built over the signature sig. If there is ¢ € £;(sig) such

that {¢,not(¢)} C S, then C is a tautology.

Proof. immediately from

C

Sc

= {SDaHOt(SD),T/)la s ﬂl’k} for (1071/)17' . >Qz[)k € Et(SIg)

@ Vnot(p)Va V.-V

= trueV - -V

true.

Example 7.3.2
Let the rule

C = Gp(X) :—p(X), Fq(X, X).

be given. Then {Gp(X) :—p(X),Fq(X,X),Gp(X)} C ©F%(C) which is a tautology and can

therefore be skipped.

In general, testing a rule C for being a tautology using the approach sketched above
can be accomplished in time O (|S¢|?). But similarly as in the foregoing section we
cannot estimate the number of rules which might be skipped by tautology—elimination

without taking the structure of C' into account.
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7.3.4. Premises vs. Conclusions

The downward refinement operator @Zf adds positive as well as negative literals to the set
of refinements. Of course, every rule which is generated in this way is a downward refine-
ment of the original rule. But one can rely on the following point of view: the conclusions
of rules should be known in advance, therefore it is better to adjust the premises.

In the definition of @Z} this is modeled by only adding negative literals during the
execution of the loop in lines 15-22. The number of literals added by only adding
negative literals is then

|P| + 3|Sc| + 2|Sc?,
so the overall number of refinements is

VARr(C 1
03| < van()]- (1F1+ B2FE - 3 a1l + 215l + 1P

Figure 7.2 compares the introduced strategy with the strategy of elimination of variants
described above.
However, by adding negative literals only we lose the completeness of the operator.

This can be easily seen as follows: consider the rules

C; = Gp(X1) :—Fq(X1,£(X2)),q(a,a)Up(a). and

Cy = Gp(Xl) :_Fq(lef(XQ))7q(a7a)UP(a)7n0t(q(X17X1))’

Since only negative literals are added in the process of refining, every rule C' contained
in (@Z})n (C) for any n only may contain other positive premises. So no rule ¢’ x4 Cs
will be constructed.

The above results regarding techniques for the restriction of the number of refinements
complete our study of refinement operators for PROLOG(+T)-objects. We have seen

that refinement operators for nontemporal logic programming languages can be natu-



7.3 Refinement Strategies 167

without elimination of variants
with elimination of variants -—-—-—----
with elimination of variants and introduction of premisses only --------
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Figure 7.2.: Growth Rate by adding Premises only

rally generalized in order to include mechanisms for refining objects containing temporal
operators. Therefore refinement operators for PROLOG(+T)-objects could be easily
derived by adapting several well known techniques from the field of first order logic
programming.

What remains to be studied is the complexity of the search for a correct program given

sets £ and £~ of examples. This topic will be attacked in the following chapter.
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The operators from the last chapters always create programs which are at every point

of time correct with respect to the examples which have been presented so far. But in

order to be of great use it is necessary to be able to ensure that other ezamples, that is

examples which have not (yet) been seen are classified correct. Consider two sets €T and

€~ of examples and a program P constructed by the algorithms from the last chapters

giving these examples as inputs. Furthermore assume that e is any ground atom from

BEOLTA\ (EYUET). In order to be good, P should classify e correct. Formally let Peoy

be the correct program from which the examples from £ and £~ are derived, that is let

P.o:r be the program to be identified. Then we want P to have the following properties:

e if P,y e, then P =€ and

o if P [~ e, then P [~ e.
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In other words

{6|Pc0r):e}:{€| P):e}

In general this cannot be reached. Therefore we will adapt a model of learning which
allows some errors with a certain probability. The issue of identifying logic programs in
the PAC—setting has been studied in depth in [36] and [37]. In general not every program

is identifiable. But for certain subsets identifiability can be ensured.

8.1. PAC—-Learning

PAC learning is a model of learning which has been introduced by Vailant (see [157]).
Any algorithm which has to solve the learning problem is evaluated with respect to two
parameters ¢ and § which specify a limit for the difference between the concept to be
learned and the actual hypothesis (¢) and the probability that the actual difference is
greater than this level (9).

In order to give formal definitions of PAC learnability we need some more concepts.
Single objects to be identified will be referred to as concepts, the sets of all such objects
will be called concept classes. Each concept class is defined over some set X. Formally
a concept class over X is a set C C 2%. So a concept is an element C' € C, that is a set
C e 2X.

In our case of learning PROLOG(+T)-programs we assume that a signature sig =
(X, F, P,a) is given. Then we define X to consists of all sets of PROLOG(+T) literals

which contain at least one positive literal, that is

X = {C C Ly(sig) | [Pos(C)] > 1} .

Concepts are PROLOG(+T)—programs, that is sets P C X and concept classes are sets

of PROLOG(+T) programs, that is sets C C 2.
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In order to identify a particular concept an algorithm has to process some kind of
examples. In [157] and [63] the examples are considered to be elements from X. However,
it will be more adequate for us to consider only ground atoms as examples. So an example
is an element ¢ from the set {1 € A;(sig) | VAR(p) = 0}. A classified ezample for a
concept P is a tuple (p, v) consisting of an example ¢ and v € {0,1}. If v = 1 we call the
example positive and assume that P |= ¢ and in the case that v = 0 we call it negative
and therefore assume that P [~ ¢. For the sake of readability we will from now on use
the following notational convention: let P be a PROLOG(+T) program and let ¢ be an

example. Then

Plp)=1 & PEypand

Plp)=0 < Pl

A sample for P is a sequence Sp = ((¢1,P(1)), ..., {¢n, P(pn))) of classified exam-
ples. The number n will be called the length of the sample or the sample complexity.

Let P and P’ be PROLOG(+T) programs and let Sp = ({1, P(¢1)),-- -, (©n, P(¢n)))
be a sample of length n for P. P’ is called consistent with respect to Sp or Sp—consistent
if for every i it holds that P'(¢;) = P(y;), that is a consistent program classifies every
example exactly in the same way as the program from which the examples are derived

does.

We assume that the examples which are presented to the algorithms are chosen with
respect to a fixed probability distribution D on the set of all ground atoms. Also we will

sometimes write Prp instead of D or simply Pr if D is clear from the context.
Now let S(X,C) be the set of all samples which can be constructed for concepts from
C if the examples are chosen with respect to D and let C and H be concept classes. A

learning algorithm (or a learner) is a total function® Acg : S(X,C) — H. That is a

!That is, a function which is defined for all possible inputs.
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learning algorithm is presented a sample of some length and constructs a hypothesis from
the example which it has seen by processing the sample. In our case we will have H = C,

so we do not have to distinguish between different representation languages.

As one might expect, a hypothesis computed by some learning algorithm A¢ 4, is called
consistent with respect to a sample Sp = ((pi, P(¢;)))i, if for every i € {1,...,n} it

holds that
(Ac,n(Sp)) (wi) = P(pi).

Ac 3¢ is called consistent if every hypothesis computed from a given sample is consistent

with respect to this sample.

The quality of a hypothesis is measured by analyzing the probability that a randomly
chosen example is contained in the symmetric difference between the correct concept and
the computed concept. So the error of a program P’ with respect to a program P is given
as

error(P,P') = D (PAP') =D ((P\ P)U (P"\ P)).

The error of a hypothesis computed by a learning algorithm is usually given as a pa-
rameter called € and one is interested in upper bounds for the probability that a learning
algorithm or a classifier induces hypotheses such that the error of these hypotheses ex-
ceeds the value of €. Several attempts have been carried out in order to analyze such
errors. In 1971 Vapnik and Chervonenkis have shown (see [166]) that classifiers can be
constructed which have an error ration bounded from above by 4s(C, 271)6_% for a given
value or € where s(C,2n) denotes the relative amount of samples of size 2n which can be
drawn from the concept class C. Devroye and Wagner (see [46]) have extended the results
from [166] in order to derive distribution free upper bounds for the error in the case of
half-planes. They show that classifiers can be constructed with an error rate bounded by
4(1 +2dn§l)6_% for ¢ = 1,2 where d denotes the size of the samples under consideration

while the problem domain is divided into classes C; and Cy. Furthermore they extend
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their results to concept classes with higher dimension yielding similar results.

Furthermore some attempts for analyzing the learning task in the domain of identifying
boolean functions have been carried out. In [131] Pearl derives upper and lower bounds
for the size of the value s(n, ¢) denoting the relative frequency of samples of size n derived
from a concept class representing a boolean function which can be built up with at most

¢ binary gates by proving that

and

s(n,c) < 2082 |Fel—n

where ng denotes the maximum value of n such that a presented sample e, can be
embedded in a boolean function f using at most ¢ logical gates (where |F| denotes the
total number of boolean functions containing at most ¢ gates). Using these bounds Pearl
proves that classifiers can be constructed which have an error ration bounded from above

by

1 2
<\/21n2-c(2+log20 >—

)+ V2In2-¢(2 +logyc) ) Vn

Finally Devroye (see [45]) derives upper bounds for the error of classifiers for both the
case of finite and infinite concept classes. For finite classes C he proves that the error can
be bounded from above by 2|C|e=2m¢” (using samples of size m) and that the expected

error is given by

log(2[C| 1

2m V/8mlog(2[C])

For infinite concept classes they show that the error can be bounded from above by
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es(C, m2)6_2m€2 and that the expected error is given by

[T
2m \/8m log(4e88(c7m2))'

Having presented all necessary prerequisites we can now formally define the concept
of PAC identifiability. For our definition we will only slightly change the notations from
[22].

Definition 8.1.1 (PAC—Learnability, Valiant [157] and Blumer et al. [22])

Let X be some set and let C and H be concept classes over X. C is called PAC-
learnable using ‘H if and only if there is a learning algorithm Ac 3 and a function
m : R? — R such that for every probability distribution D, every P € C and every

values of 0 < &, < 1 it holds that:
1. Acn is presented some sample Sp of length [m(e, d)],
2. Acn(Sp) is put out and

3. Pr(error(Acn(Sc,P)) > ¢) =Pr (D ((Acn(Sp)) AP) > ¢) < 4.

The last point from the above definition is usually referred to as the PAC criterion or
the PAC—criterion with respect to € and 6.

So C is PAC-learnable if there exists an algorithm which regardless of the underlying
distribution (which determines how the examples are chosen) only needs to process a
finite set of examples in order to keep the difference between the hypothesis and the
correct program small (< ) with a high probability (< d).

The PAC concept has been introduced in [157] for the domain of learning boolean
functions. Often PAC—identifiability is referred to as an abbreviation to polynomial time
PAC—identifiability where a further restriction is put on the learning algorithm Ac 3,

namely that its runtime is bounded from above by some suitable polynomial. So in this
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case the term C is PAC-identifiable means that C is polynomial time PAC—identifiable.
Consequently there might be concept classes which are PAC identifiable in our concept
which does not include this requirement for the runtime of learning algorithms but which
are not polynomial time PAC—identifiable. In [158] and [132| L.G. Valiant addresses this
problem deriving several classes of relatively simply structured boolean functions which
are not PAC identifiable if polynomial runtime is required by a learning algorithm.

In order to characterize the complexity of learning single concepts from a concept class
C the Vapnik—Chervonenkis—Dimension has been proven to be an adequate parameter.
Intuitively the Vapnik—Chervonenkis—Dimension characterizes the difficulty of how to
distinguish between different objects from C. This intuition will now be made formally

clear.

Definition 8.1.2 (Blumer et al. [22])

Let C be a concept class over some set X and let T' € C be a concept. Then

e(T)={CNT|CecC).

A set T of cardinality & is said to be shattered by C if |TI¢(T)| = 2¥, that is if II(T) =
2T So the sets C' which are shattered by C can be seen as the most difficult concepts
from C. The Vapnik Chervonenkis Dimension of a concept class C is now defined to be

the maximum size of a concept which is shattered by C.

Definition 8.1.3 (VC—Dimension, Blumer et al. [22])
Let C be a concept class over some set X. The Vapnik Chervonenkis Dimension of C

is defined as

VCDIM(C) = max {k: | there is a T € C with |T| = k and |Ie(T)| = 2’“}
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= max{|T]| T € C is shattered by C}.

If no such k exists we will write VCDIM(C) = oo. C is said to have unbounded VC

Dimension in this case.

The link between the VC—Dimension and the learnability of a concept class C is given

by the following theorem (see [22]).
Theorem 8.1.1 (Blumer et al. [22])

Let C be a concept class over some set X. Then C is PAC-learnable if and only if
VCDiM(C) < oo.

The following theorem gives a possibility to estimate the length of the sample needed
in order to identify the target concept given fixed values of € and §.
Theorem 8.1.2 (Blumer et al. [22])
Let C be a concept class over some set X such that 1 < VCDIM(C) < coandlet 0 < e < %
and 0 < 6 < 1 be given. Then every consistent learning algorithm for C using C needs to

process at most

4 4 8VCDIM(C) . 13
max4—-In—, In——21In —
e 0 € €

examples in order to ensure the PAC—criterion with respect to ¢ and §2.

In general estimating the VC Dimension of some concept class C is a very difficult
task. But in the case of finite concept classes, the VC Dimension is bounded by the
logarithm of the size of the class. This is the tenor of the following lemma.

Lemma 8.1.1 (Fischer [63])

Let C be a concept class over some set X. If C is finite, then

VCDiM(C) < logy |C].

’In general one has to take the VC-Dimension VCDmM(H) of the target concept class into account.
But since we require C = H this makes the analysis of the learning problem a bit easier.
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In the following sections, Lemma 8.1.1 will be used in order to derive some upper

bounds for the VC Dimensions of several classes of PROLOG(+T) programs.

8.2. Learnability and Non—Learnability of selected classes of
Prolog(+T)—programs
8.2.1. The general case

We will now derive upper and lower bounds for the VC Dimension of some classes of
PROLOG(+T)—programs. Therefore we will extend some techniques presented recently

in [11].

Definition 8.2.1
Let ¢,t,] and o be nonnegative integers. The class P=¢%h0 ig defined as the set of all

PROLOG(+T)—programs P with the following properties:
1. P consists of at most ¢ rules,
2. each rule in P consists of at most [ literals,
3. each literal in a rule in P does not contain more than ¢ distinct terms and

4. each literal in a rule in P does not contain more than o temporal operators.

Assume that a fixed signature sig = (X, F, P, «) is given. We will from now on use the

following abbreviations:
1. f:=|F|,
2. p:=|P| and

3. a:=max{a(o) | o € FUP}.
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Programs will be encoded as strings over the binary alphabet ¥ = {0,1}. We will see
that for fixed values of ¢, t,1 and o, the number [P=<¢41°| is finite. The VC Dimension can
then be estimated using Lemma 8.1.1. We will assume that each literal in any program is
reduced. This is no restriction since we have seen that each literal has a reduced normal

form which can be effectively computed.

First we will review some of the results from [11]. There it is shown that a term
containing @ arguments and at most ¢ distinct subterms can be encoded using logs f +
alog, t bits. Consequently a set of ¢ (distinct) terms can be encoded using not more than

t(logy f+alogyt) bits. Since f and a are constant we have t(log, f+alogyt) = O(tlogy t).

We will now fix a numbering for the symbols from P and the temporal operators. Let
Py denote the set P U{X,F,G,U,P} and assume that the set P is ordered as follows:
P = {po,...,pp|-1}. The symbols p; will be mapped to bin(i) where bin(i) denotes

the string representing the binary representation of . Furthermore we fix the following

mapping:

X +— bin(|P|+1),
F +— bin(|]P|+2),
G ~— bin(|P|+ 3),
U — bin(|P|+4) and

P — bin(|P|+5),

where the strings might be padded with zeros on the left side in order to obtain strings

of equal length.
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Example 8.2.1

The set P = {pp} containing only a single predicate symbol yields the following mapping:

po — 000,

X — 001,

F — 010,

G — 011,

U — 100 and

P — 101.

Consequently any PROLOG(+T)-literal containing at most ¢ distinct terms and at

most o temporal operators can be encoded using at most

o+ 1+ 2([logy(p +5)] + [loga p] + [alogy )

bits. Therefore a rule consisting of at most [ such literals can be encoded using at most

L(o+1+2([logy(p+5)] + [logap] + [alogyt]))

bits and a program P containing at most ¢ such rules can be encoded using at most

cl (04 1+ 2([logs(p +5)] + [loga p] + [alogy t]))

bits. This gives:

cl (04 1+ 2([logy(p + 5)] + [logy p] + [alogy t1))

= clo+cl+ 2cl ([logy(p + 5)| + [logy | + [alogy t])
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= cl(o+ 1)+ 2cl ([logy(p + 5)] + [logy p| + [alog, t])
= O(cd(o+1)+2cl (logy(p+5) + logyp+ alogyt))

= O(cl(o+ 1)+ 2cl (log, ((p* + 5p)t*))) -

With this number of bits we can encode at most 2O(Cl("+1)+2d(h’g2((p2+5p)ta))) different

bitstrings, that is we have

pEetbo] — g0(eler1)+2et(loma (02 4500°))) < o

and therefore
VODI (PEe40) = O (cl(o+ 1) + 2l (log, ((9* + 5p)t°)))

using Lemma 8.1.1.
On the other hand the best case is given if no temporal operators are involved. [11]

then gives the following estimation:
VCDim (PSC’“’O) =Q(cl+ct).

The results are summarized in the following theorem.

Theorem 8.2.1

Let ¢, t, I and o be fixed, nonnegative integers. Then

VCDim <7>S07“’0) = O (c+ (o+1)+ 2 (logy ((p* + 5p)t*))) and

VCDI (PEetto) = (el + ct).

Using these equalities we can estimate the number of examples needed in order to

ensure the PAC—criterion given fixed values of € and §.



8.2 Learnability 181

Theorem 8.2.2
Let ¢,t,l,0 > 0,0 < e < % and 0 < § < 1 be fixed. Then every learning algorithm A
needs at most

In —
€ €

max {§ In % 80 (cl(o +1) +2c (10g2 ((p2 + 5p)ta))) 13}
57

examples in order to ensure the PAC—criterion.

Example 8.2.2
We conclude this section by illustrating the results for the number of examples. Let
0=10,1=30,c=200,t=>50,p="7and a =17. Then the equation from Theorem 8.2.2

can be simplified to:

4 4 8VCDiM (P=etlo) 13
max< —In —, In —
e 9 € €
80 (cl 1) + 2l (1 2 4 5p)te
= max{élné, (C (o+1)+2 (0g2 ((p +5p) ))) IHE}
e 9 € €
8 (cl 1) + 2¢l (1 2 4 5p)te
~ max{élné, (C (o+1)+2 (og2((p +5p) ))) lng}
e 9 € €
T4 47 [8(200-30(10 + 1) +2-200 - 30 (log, (7% + 5 - 7)50'7))) . 13
~ max<{ |—In—|, In —
e 0 € €
f4 47 [528000 4 96000 (log, (72 + 5 - 7)5017)) 13
= max<{ |-ln=|, In—
e 0 € €
(4 47 [528000 + 69000 -96 = 13
~ max<{ |[—In—|, In —
e 9 € €
(4 47 [9744000 . 13
= maxq |[-In—-|,|——In— | ».
e 9 € €

Note that the approximation given above is quite weak since the omission of the symbol
O may result in omitting quite large constants.
Figure 8.1 illustrates the number of examples for ¢, ¢, [, 0, p and a as above and variable

values of € and 4.
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8.2.2. Programs with syntactical restrictions

We will now see how restricting the form of the involved rules in programs can lower
the VC—dimension of a class of PROLOG(+T)—programs and therefore make it easier to
identify these programs by presenting positive and negative examples. Therefore we will
study two classes of programs which have already been pointed out in [11]|: constrained

programs and range-restricted programs.

Definition 8.2.2 (Syntactical Restrictions, Arias and Khardon [11])

Let C = ¢ :—11,...,%,. be a PROLOG(+T) rule. C is called
e range restricted if TERMS(p) C U, TERMS(¢);) and

o constrained if |J;_; TERMS(¢);) € TERMS(p).

Consequently a PROLOG(+T)-program P = {P,..., P} is called range—restricted
(resp. constrained) if every P; is range restricted (resp. constrained).

Fixing nonnegative integers c,t,l and o, the definition of the classes P and

<etlo . .
=9""% is as one might expect:

< . :
o Pt = {P € petlo| Pis constralned} and
o Probho = {P € petlbo | P is range restricted}.

We will now study how the values of VCDIm < c%f{t’l’o) and VCDIm <P§C’t’l’o) can

be estimated using the results from the foregoing section.

The VC-Dimension of constrained Prolog(+T)—programs

Let P € Pc%f,’t’l’o be given. Assume that P = {P,..., P;} for some k < ¢ and
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. <citl
Since P € Py we have

Cj TERMS <z/1](.i)> C TERMS(¢p;)
j=1

for ¢ = 1,...,k. Therefore only the terms in the heads of the rules in P have to be en-
coded. This can be achieved by using at most o+1+2 ([log,(p + 5)] + [logs p| + [alog, t])
bits. The literals from {ng), e ,1/1,%)} can be encoded by only encoding the negation
symbols, the predicate symbol(s) and the temporal operators involved. Consequently

this can be achieved by using at most

0+ 1+2([logy(p+5)] + [logy p])

bits per literal. Therefore the tail of a rule containing at most [ literals can be encoded

by using at most

(I =1)(0o+1+2([loga(p +5)] + [loga p]))

bits. So a complete rule can be encoded using at most

o+1+2 ([logy(p +5)] + [logy p] + [alogy t])+(1—1) (0 + 1 + 2 ([logy(p + 5)] + [logy p1))

bits. We have

0+ 1+2([logy(p+5)] + [logy p] + [alogy t])
+(—1) (0 + 1+ 2([loga(p+5)] + [loga p]))

= o+ 1+2[logy(p+5)] + 2logyp] + 2[alogyt] + (I —1)(0 + 1)
+2(1 — 1)[logy(p + 5)] + 2(1 — 1)[logy p]

= l(o+1)+2l[logy(p +5)] + 2l[logy p| + 2[alog, t]

= llo+1)+2(I([loga(p +5)] + [logy p]) + [alogy t]) .
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So any program P € Pesh° can be encoded using at most

cl(o+1) +2¢ (I ([loga(p + 5)] + [logy p]) + [alogy t])

bist and therefore the VC dimension of Pc%ﬁ’t’l’o can be estimated as stated in the fol-

lowing theorem.

Theorem 8.2.3

Let ¢, t, I and o be nonnegative integers. Then
VCDIM <7>§Of;t’l’°) ~0 <cl(o +1) + 2clog, ((p2 + 5p)lt“>) .
Proof. The claim is due to

cl(o+ 1)+ 2¢ (I ([logy(p + 5) + [logy p]) + [alogy t])
= O(cl(o+1)+2c(llogy(p +* +5p) + alogy t))
= 0 (cl(o +1)+ 2¢ (logQ(p2 +5p)! + log, t“))

) (cl(o + 1) + 2clog, <(p2 + 5p)lta))

and an application of Lemma 8.1.1. O

The VC-Dimension of range—-restricted Prolog(+T)—programs

In some sense this situation is similar to the situation from the last section. Assume that

P={P,...,P} € Ppoblo i given such that P, = ¢; :— gi), <oy Wn, (7). Similarly as

in the case of constrained programs it suffices to encode the terms from { gi), ... ,¢r(z?}-
Since Hz/)y), ey ,(fz)}‘ <[ —1 the complete tail of P; can be encoded using at most

(I =1) o+ 1+2([logy(p +5)] + [logy p] + [alog, t]))
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bits while the remaining literal ¢; can be encoded by skipping the involved terms using
at most

0+ 1+2([logy(p +5)] + [logy p1)
bits. So the complete rule F; can be encoded with

o+1+2 ([logy(p +5)] + [loga p])+(1—1) (0 + 1 + 2 ([logy(p + 5)] + [logy p| + [alog, t]))

bits. We have

0+ 142 ([logy(p+5)] + [logy p])
+(=1)(o+ 14 2([logy(p +5)] + [logy p] + [alogy t]))

= o+ 1+ 2[logy(p+5)]| +2[logap] + (I = 1)(0+ 1) +2(I — 1)[logy(p + 5)]
+2(1 — 1)[logy p] +2(I — 1)[alogy t]

= o+ 1) +2(I([loga(p +5)] + [logy p]) + (I — Dfalogy t]).
Therefore P can be encoded using at most

cl(o+1) +2c (I ([loga(p + 5)] + [logy p]) + (I — 1)[alogy t])

bits and we can estimate the VC—dimension of Prgc’t’l’o as follows.

Theorem 8.2.4

Let ¢, t, I and o be nonnegative integers. Then
VCDim (Pﬁc’t’l"’) =0 (cl(o +1) + 2clog, <(p2 + 5p)lt“+l_1)) )
Proof. The claim is due to

cl(o+1) 4 2¢ (I ([loga(p + 5)1 + [loga p]) + (I — 1)[alogy t])
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(cl(o+1) 4+ 2¢(l(logy(p +5) 4+ logy p) + (I — 1)alogy t))

0

= O(cl(o+1)+2c(l(logy(p* + 5p)) + (I — Dalogy t))
O (cl(o+ 1) +2¢ (logy (p? + 5p)' + logy t+1~ 1))
O

(cl o+ 1)+ 2clog, ((p2 + 5p)lt“+l_1))
and Lemma 8.1.1. U
Having obtained the above results on the complexity of the identification task for PrRoO-

LOG(+T) programs our treatment of first order inductive temporal logic programming

is complete. We have seen the following:

e It is reasonable to study programs written in PROLOG(+T) since this language is
both powerful (it contains the full first order fragment of horn clause programs)

and still relatively tractable (due to the syntactic limitation to rules),

e PrROLOG(+T) is equipped with a well defined semantics given by temporally closed

sets of ground atoms and

e PrROLOG(+T) allows specialization and generalization of concepts by application

of refinement operators.

All these points make clear that PROLOG(+T) is a suitable language for the specifi-
cation of reactive systems using first order temporal logic. In contrast a restriction to
propositional temporal logic results in the language LTL which is decidable for satisfia-
bility and which is not limited to formulas in clause form. Although LTL is consequently
less expressive than PROLOG(+T) the two properties mentioned before justify studying
the identification problem in LrL. This will therefore be the topic of the following part

of this thesis.
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Having completed our treatment of first order inductive temporal logic programming
we will now restrict ourselves on propositional logic languages. On the one hand this
will be a limitation since we do not allow reasoning about functions and predicates with
arity greater than 0 but on the other hand we will be able to use much more syntactically
complex statements since we will not be limited to statements in clause form any longer.
The language of interest will be LTL as introduced in chapter 2.3.1.

In this chapter we will describe the necessary preliminaries from the theory of propo-
sitional (linear) temporal logic which will be used in the sequel. First we will introduce
the concept of Biichi—automata which are automata over infinite sequences of symbols

(infinite words or w words). After this we will see that every LrL formula ¢ can be
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translated into a Biichi automaton which has a nonempty accepted language if and only

if the formula ¢ from which is has been constructed is satisfiable.

9.1. Finite Automata on infinite Objects

We will now introduce notations which allow us to generalize the theory of formal lan-
guages consisting of finite words to such languages which consist of infinite words, that
is words which can be seen as an infinite sequence of elements (called the letters of the
word). Therefore assume for the rest of this chapter that X is a finite set of symbols,

called the alphabet.

Definition 9.1.1 (w—word, e.g. Lothaire [106])
An infinite word (or w—word) over ¥ is a mapping w : N — 3. The set of all infinite

words over Y is denoted as X“. Every set L C > is called an w-language over X.

w-languages are a natural way to extend the theory of formal languages to infinite
sequences of letters. In many practical applications w—-languages are used in order to
model infinite sequences of actions performed by nonterminating (reactive) systems. The
set of all possible behaviors of such a system is described in terms of an w-language and it
is then checked if a property ¢ holds in this system simply by checking if the w language
which is recognized by the product structure which emerges from the model of the system
and the negation of the formula, is empty. How to achieve this, will the subject of the
rest of this chapter.

In order to recognize w—languages, the theory of finite automata has been extended by
adding structures which allow acceptance of infinite words. This leads to the theory of
w—automata as described by Biichi (see |26]), Street (see [155]), Muller (see [123]) and
Rabin (see [138]). We will describe w—automata in a similar was as defined by Biichi

since this type of automata is used in model checking to characterize the set of models
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of LTL—formulas.

Definition 9.1.2 (Biichi—automaton, e.g. Wolper [172])

Let ¥ be an alphabet. A nondeterministic Biichi automaton over X is a tuple

A = (X, STATES, 6, S0, Sf)

where
e STATES is a finite set (the set of states),
o 0 :STATES x ¥ — 25TTF ig the transition relation,
e Sop C STATES is the set of initial states and

° Sf C STATES is the set of accepting or final states.

Note that the formal definition of such a Biichi automaton does only slightly differ
from the definition of a finite state automaton accepting finite words. In order to accept
infinite words over X the acceptance condition of A has to be modified since it is clear
that the acceptance condition for finite words, requiring that the consuming the last
symbol leads into a final state, cannot be applied (since there is no last symbol). So
assume that a Biichi automaton A = (X, STATES, §, Sp, Sf), an w-word w and a mapping
~v: N — STATES are given. We will denote the set of all states occurring infinitely often

in the sequence labeled by v as S°°(). Formally:

S5%(y) = {s e Statns [ | {i | 1() = s} | = oo} .

We call v adequate for (A, w) (or (A, w)-adequate) if and only if v satisfies the following

properties:



194 Chapter 9. Preliminaries

1. 4(0) € So,
2. for every i > 0 it holds that (i + 1) € §(y(¢),w(i)) and
3. S®(y) NSy #0.

A word w € X% is said to be accepted by A if and only if there is a mapping ~ such
that ~ is adequate for (A, w). Similarly a subset L of ¥* (that is, an w-language) is
accepted by A if and only if there is a mapping v which is such that ~ is (A, w)—-adequate
for every w € L.

It has proven useful to define a slight modification of Biichi—automata in which the
last component of the tuple is not a set of states but a set of sets of states. This leads

to generalized Biichi—automata. 1f

A = (3, STATES, 6, So, F)

is such a generalized Biichi automaton and w € X% is an infinite word over X, then

v : N — STATES is called adequate for (A,w) (or (A, w) adequate) if any only if
1. 4(0) € So,
2. for every i > 0 it holds that y(i + 1) € §(y(¢), w(i)) and
3. it F={F,...,F,}, then S®(y)NF, £ fori=1,...,n.

Again we will call w accepted by A if there is v such that v is (A, w)—adequate and
L C ¥¥ is called accepted by A if there is v such that v is (A, w) adequate for every
weE L.

In both cases, that is if A is a Biichi automaton or if A is a generalized Biichi
automaton, the language L(.A) is defined as the set of all w—words which are accepted by
A. L C 3% is called (generalized) Biichi—acceptable if and only if there is a (generalized)

Biichi automaton A such that L = L(A). From [172] we have the following lemma.
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Lemma 9.1.1 (e.g. Wolper [172])
Let L C ¥ be any w language. Then L is Biichi acceptable if and only if L is generalized

Biichi—acceptable.

Proof. The only if part is immediately: if A = (3, STATES,§, So, S¢) is a Biichi

automaton, then we define A = (X, STATES, §, S, F) with F = {{s1,...,s,}} for Sp =
{s1,...,8,}. Then Ais a generalized Biichi-automaton and it is straightforward to show
that w € L(A) if and only if w € L(A) for every w € X*¥. For the if part assume that
A = (%,STATES, 6, So, F) with F = {Fy,..., F,} C 25™7 ig given. We then define

A= (E, STATES',(S’,S(’],Sf) as follows:
o STATES = {(s,i) | s € STATES,i = 1,...,n},
o Sy ={(s,1) | s € So},

e for all s,t € STaTEs, for all 4,5 € {1,...,j} and each o0 € X define (t,i) €
8 ((s,7),a) if and only if t € 0(s,a) and i = j if s & F} respectively ¢ = j + 1
mod k if s € F; and

o Sy ={(s,1)|s€ Fi}.

It is now straightforward to prove that w € L(A) if and only if w € L(A) for every
w € X¥. So the lemma is proved. O
Since Biichi—acceptance and generalized Biichi—acceptance are equivalent, it is suf-
ficient to concentrate on algorithms which construct generalized Biichi-automata and
apply the construction from the proof of Lemma 9.1.1 to the resulting automaton.
The usefulness of nondeterministic Biichi—automata also comes from the fact that they
are closed under every boolean operation. We have the following properties.
Theorem 9.1.1 (e.g. Clarke et al. [35] and Sistla et al. [149])

1. If Ly € 3% and Ly C 3¢ are Biichi—acceptable languages, then so are

a) Ly N Ly and
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b) Ly ULy
and
2. if L C ¥ is Biichi acceptable, then sois L = X%\ L.

We will not prove this theorem but we refer to section 9.2.2 for a construction of
the product of two Biichi automata which results in an automaton which accepts the

intersection of the languages accepted by the original automata.

9.2. Automata Constructions for Propositional Temporal

Logic Formulas

The reason for studying Biichi—automata stems from the fact that from each LTr.—formula
one can construct an automaton which accepts exactly the sequences of states which are
models of this formula. So we will now study a language which differs from the language

PROLOG(+T) studied in the last part in two ways:
1. it is a propositional logic based temporal logic language and
2. it is not limited to sets of clauses which contain at least one positive literal.

In fact we will study the full language LTL from now in. Therefore assume that a finite
set X of proposition symbols is given. We will refer to elements of X by writing p, q, ...
sometimes using indexes. Formulas of the language LTL are defined as in chapter 2.3.
Note that in contrast to FOLTL we do not deal with the operator P here but instead we

use the operator R.

9.2.1. A Modified Formal Automata—Maodel

In this section we will describe a slight modification of the concept of Biichi—automata

which is needed in order to allow the manipulation of such automata during the process of
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formula refinement as described later. In classical construction procedures for automata
from LrL formulas (see e.g. [172]) states are labeled with formulas from a set of sub-
formulas of the original formula ¢. This set of subformulas is usually referred to as the
closure of . The problem which we face here is that certain formulas might appear more
than once (and therefore at different positions) in . Consider for example the formula
¢ =GF((Fp — q) V (r — Fp)). As a subformula, the formula ¢) = Fp is treated as a sin-
gle element. But for refining the formula ¢ it can make a difference if the refined formula
is for example ¢; = GF (Xp — q) V (r — Fp)) or @3 = GF ((Fp — ¢) V (r — Xp)). So we
need some model which allows to store additional information regarding the positions at

which certain formulas occur.

For the construction we will assume that every LTL—formula is in negation—-normal—
form, that is it contains only the operators X, U and R, the connectives A and V together
with the constant symbols true and false and negations only occur in front of propo-
sitional symbols. In order to obtain the negation—normal-form NNF(y) of a formula ¢
we will have to exploit semantical identities (de Morgan’s laws) and properties of the

temporal operators. In particular we will need the following equivalences:

Fo = truelUp and

Gy falseRyp.

and

(1) R(p2) and

(1) U (2).

= (p1Uep2)

- (¢1Ryp2)
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Example 9.2.1

For ¢ = —=(p — Xq)UFr we have

NNF(¢) = NNF(=(p — Xq)UFr)
= NNF(=(p — Xq))UNNF(Fr)
= (NNF(p) A NNF(=Xq)) UNNF (trueUr)
= (p AXNNF(—q)) U (NNF(true)UNNF(r))

= (pAX=g)U (truelr).

So assume without loss of generality that ¢ is in negation—normal-form. The closure
of ¢ is defined to be the set CLOSURE(yp) of all pairs (¢, p) where ¢ is an Lrr.—formula

and p € N* such that CLOSURE(yp) satisfies the following conditions:

(p,e) € CLOSURE(yp),

o if (01 A+ Awn,p) € CLOSURE(yp), then (¢1,pl),..., (¢n,pn) € CLOSURE(p),

o if (o1 V-V pp,p) € CLOSURE(p), then (p1,pl),..., (pn,pn) € CLOSURE(p),

e if (X9, p) € CLOSURE(p), then (¢, pl) € CLOSURE(p),

o if (p1Uypa,p) € CLOSURE(yp), then (p1,pl), (p2,p2) € CLOSURE(p) and

o if (p1Rypa,p) € CLOSURE(p), then (p1,pl), (p2,p2) € CLOSURE(p).

So CLOSURE(y) contains all the (not necessarily proper) subformulas of ¢ together
with their positions on ¢.
The states of the generalized Biichi-automaton A, are now defined as certain subsets

of CLOSURE(y) which satisfy several semantical constraints.
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9.2.2. A primitive Construction

We will now see how the automaton A, can be constructed from ¢ if ¢ is in negation
normal—form.

The alphabet of the automaton will be the set of subsets of symbols occurring in the
original formula. The automaton will be a generalized Biichi automaton, so it will have
a set of sets of accepting states. Assume that ¢ is a formula which contains exactly the
symbols of some set X. Then the alphabet of the automaton A, is ¥ = 2X.

The set STATES of states is now given as the elements s from SEQ(CLOSURE(¢p)) x 2V !

such that s = (®,Pos) = | {¢1,---,¢n},{p1,--.,Pm} | has the following properties:

=P =Pos

1. false € P,

2. n=m,

3. for each i: (p;,p;) € CLOSURE(p),

4. for each i: if ¢; = gpgi) A gpgi), then <g0§i),pi1) € s and (gpg),pﬂ) € s,
5. for each i: if p; = gpgi) \% gpg), then <<p§i),pi1) € sor <<p§i),pi2) € s and
6. for each i: if p € X U {true}, then {p € Pos | ¢|, = ¢;} = Occ(y;, ¢).

Here (p,p) € s denotes the fact that there is j € {1,...,n} such that ¢; = ¢ and

pPj = D-
What remains to be defined are the transition relation d, the set Sy and the set F of

accepting sets of states. J has the form
8 : Srarks x 28 — 9STATES

Now let s1, s9 € STATES be given such that s; = (®,P0os) = ({¢1,---,0n}, {P1s---,Pn})

"Here SEQ(CLOSURE(()) denotes the set of all sequences of elements from CLOSURE((p).
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and so = (9, Pos’) = ({¢],..., ¢} {pL, ..., P,}). Furthermore let o € ¥ be fixed.
Then sg € §(s1,0) iff

1. for each p € X:

a) p € ® implies p € o and

b) —p € ® implies p & o,

2. for each ¢ = X@ € ® and each p; € Pos such that ¢; = ¢ there is j; € {1,...,m}

such that ¢} = ¢ and pj, = p;1,

3. for each ¢ = ¢p1Ugs € ® and each p; € PoOs such that ¢; = 9 there is either
ji € {1,...,n} such that ¢’ = @ or there are j;; € {1,...,n},ji, € {1,...,m}

such that @;, = ¢1 and cp;-iz = Xt = XUy and

4. for each ¢ = ¢1Rp2 € @ and each p; € Pos such that ¢; = 9 there is j;, €
{1,...,n} such that @;;, = 2 and there is either j;, € {1,...,n} such that ¢@;, =

¢ or there is j;, € {1,...,m} such that 909'1'2 = Xt¢p = X@1Rs.

The set Sy is defined as the set of all states such that the original formula ¢ is contained

in its ®—component, that is
So ={s=(®,P0os) € STATES | ¢ € ®}.

To define the set F of sets of accepting states we define the concept of eventualities.
Eventualities are formulas which are needed in order to guarantee that given a for-
mula ¢1Ugps, the formula @9 is indeed fulfilled at some point of time. So if (p1Ups,p) €
CLOSURE(y), then e(p2) = ¢1Upa is called an eventuality. Now assume that CLOSURE(yp)
contains exactly the eventualities (e1(¢1),p1),---, (ex(@k),pr). Then we define F =
{F1,...,Fy} with

F; ={s=(®,P0s) € STATES | {e;(vi),pi} € ® or e;(¢;) & P}.
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The construction of A, is now complete. This construction can be extended from
single formulas to sets of formulas in the obvious way. Let ® = {p1,...,p,} be any set
of L1L formulas. Then

A¢=A¢1X---XA¢71.

where x is a (slightly more complicated) generalization of the product construction from

finite automata to Biichi automata.

This construction can be carried out as follows: first we construct the set STATES
from the sets of states of the input automata and after this we extract the remaining

components from this set. How to achieve this is described in section 9.2.4.

Now let Ay, = (X,STATES1,d1,50,1,F1) and Ay, = (3, STATESy, b2, So2,F2) be
Biichi automata representing LTL formulas ¢; and ¢s. In order to respect the posi-
tions of the original formulas in the new formula ¢ A @9 we have to change the positions
in the original states from STATES; and STATES,. Therefore we replace STATES; and

STATES2 by

U (26, U 1w

SESTATES] pePos(s)

and

U (26, U 2

SESTATES2 pePos(s)
Furthermore assume that
STATES; = {sgl), . ,37(111)} and
STATES; = {s§2>, . ,37(122)}

and
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S0z = {s o)

Then A = Ay, x Ay, is the Biichi automaton A = (3, STATES, §, So, F) which has a

set STATES of states constructed as follows:

Sy = O l (q) <35f2) ue (Sgii) U {o1 A w2},

ki=lko=1 | POS <s§i)) U Pos <s§2> U {5})

1

9

s - U Q{@ (s®) U (s, Pos (s7) UPos (7)) } and
STATES = SpU S,

while the remaining components of the automaton (i.e. the transition relation ¢ and
the acceptance component F) have to be extracted from STATES (see the algorithms in
section 9.2.4 for details).

This construction yields an automaton which accepts the language L (Ay,) N L (Ag,).

Furthermore we have

|STATES| = |STATES;|- [STATES:| + [So1] - [S0,2| and

1Sol = [S0,1] - |S0,2]-

In order to prove that for a set ® of LrL formulas and an LrL formula ¢ the relation

® |= ¢ holds, we proceed as follows:

1. For ® = {1,...,pn} we construct Ap = Ay, X -+ x Ay, 2,

2. construct A

-

3. construct A= Agp x A-, and

2Note that it is also possible to construct Ag = A/\Ll »; directly (i.e. without using the product
construction).
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4. check if L(A) = 0.

For some of the algorithms which we will introduce in a later chapter we will also
need a method for constructing the union of two Biichi—automata. Again assume that
@1 and g are given and assume that A, and A, are as above. Then the Biichi-
automaton Ay, || Ay, representing ¢1Vo? can be constructed by first modifying STATES;

and STATESs as described above and then constructing the set STATES by

So = CJ O {<<I> (sﬁif) ue <s§2) U {1 A pa},Pos <s£2) UPos (sii) U {g})}
k1=1ka=1

and

STATES = Sy U STATES] U STATESs.

The automaton A, || Ay, is then given as (3, STATES, d, So, F) (again with § and F
extracted from STATES). It is easily seen that this construction is sound. Furthermore
we have

|STATES| = [So 1] - |So,2| + |STATES]| + [STATES

9.2.3. An Overview over improved Constructions

The primitive construction presented in the last section always yields an automaton whose
state set is of size exponential in the length of the input formula. We will therefore give
an overview over several optimization techniques which allow the construction of smaller

automata.

Removing Transitions A transition which is not explicitly needed (and which is therefore
redundant) in the automaton can be deleted. Such transitions can be identified as
follows: if there is s € STATES, 0 € X, 51 = (®1,P0S;) € STATES and sy =

(P2, POSy) € STATES such that

3That is: Ap, || Ay = A, ve,.
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1. s1 €0(s,0), s2 € §(s,0) and

2. for every p1Upo € @1: p1Ups € ®o and o € P implies g € Pg,

then the transition from s to sy can be deleted from the automaton (see [172] for

a justification of this optimization).

Eliminating equivalent states By identifying sets of formulas which are in some sense
equivalent it is possible to lower the number of states. Consider for example the
state s given by s = ({¢1, 2,02 A w2}, P0s). This state has the property that
D= piff &' =0\ {1 Apa} = {p1,p2} E ¢ for every LTL formula . This allows
us to remove the original state s and replace it with some state s’ = (®',Pos’). In

[76], [172] and several other papers the following improvements have been discussed:

[y

. {@17%027(102 A (102} - {@17%02}7

[\)

A, o1V} = {ei},

w

A2, 01V 2} — {2} and

B

A2, p1Up2} — {p1}.

Several other simplification techniques may be applicable. We do not give a more in
depth—treatment here since we do not need all these techniques in the sequel.

A number of approaches has been introduced for the construction of Biichi—automata
from Lrr—formulas. Probably the most straightforward and simple construction (which
is the basis for our automaton model) can for example be seen in [172] although its
origin comes from [168| and [167| continuing the work originally started by Biichi in [26].
The early constructions of Biichi—automata for LTi.—formulas were of exponential size in
the size of the original formula. More sophisticated constructions have been developed
in [76], [39], [150] and |72]. [17]| and |60] introduce similar approaches for the problem
of LT model checking which do not construct Biichi-automata directly but which use

similar techniques and results.
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Besides constructing automata several other approaches for checking LTr.—formulas for
satisfiability resp. unsatisfiability have been presented. An early paper by Venkatesh
(see [169]) describes the construction of a normal form for LTL formulas which is then
given to a resolution—style theorem proving procedure as an input. Similarly Fisher (see
[64]) introduces another normal form called separated normal form for formulas including
future and past operators. Again the theorem proving procedure is based on resolution.
Another treatment of this procedure can be found in a paper by Dixon, Fisher and Peim
(see [65]). Dixon (see [48] and [47]) and Dixon and Fisher (see [49]) also addressed the
topic of speeding up theorem proving procedures in order to improve the satisfiability
tests.

Another approach for LTL is presented by Felty (see [61]). Here the calculus for
checking formulas is based on the sequent calculus originally introduced by Gentzen (see
e.g. |75] or [89]). A further paper extends this sequent calculus from LTL to the modal
logic S4.3 (see [62]).

The third popular approach is based on tableaux—style techniques similar to our tech-
niques from chapter 5.3. This technique has been developed by Manna and Wolper (see
[171] and [111]) as well as by Lichtenstein, Pnueli and Zuck (see [102] and [103]). Good
surveys of tableaux techniques have been presented by Emerson (see [57|) and Reynolds
and Dixon (see [139]).

All these approaches have their own powers and weaknesses. But for our purposes the
automata based approach seems to be the most promising one as it allows the general-
ization and specialization of given formulas from their representing automata as we will

see in chapter 10.

9.2.4. Some Complexity Results

In order to estimate the complexity of the refinement procedures to be introduced in the

following chapter we will present some results regarding the complexity of some basic
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operations on Biichi-automata. Assume that STATES is a set of sates which has been

constructed. We will sketch the complexity of extracting d, Sop and F from STATES.

Extracting the Transition Relation

Obviously the complexity of the extraction of § from STATES has to depend on the number
of states, i.e. |STATES| and the number of elements in the alphabet of the automaton, i.e.
12| = 2] = 21 Algorithm 11 is a straightforward implementation of the definition
of the transition relation for Biichi automata. For notational simplicity we will use the
following abbreviation. If s = (®,P0s) is a state, then ®(s) will denote the set of
formulas stored in s, i.e. ®(s) = ®. Furthermore assume that 6(s,o) = () holds as an
initial condition.

We will now give a detailed analysis of the runtime of Algorithm 11. Therefore assume
that npax denotes the maximum number of formulas stored in any element of STATES,
that is npax = max {|®| | & = ®(s), s € STATES}. Furthermore we will assume that each
check of the form ¢ € ®(s) is atomic, i.e. is can be performed in one computation step
and checks performed in conditions are performed one by one, that is a check which

involves n subchecks requires n computation steps.

The part of Algorithm 11 between line 4 and line 11 can then be preformed in

Ti(|STAaTES|, |2]) < 6]P|

= 6log, [X]

computation steps.

Similarly we have that the part between lines 12 and 32 can be performed in

To(|STATES|, |2]) < nmax - (1 + 3nmax + 3 +4)

= MNmax * (8 + 3nmax)
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Algorithm 11 Extraction of § from ¥ and STATES

Input: set STATES of states and alphabet 3 = 2%
Output: transition relation §

1: for each s; € STATES do

2 for each s9 € STATES do
3 for each 0 € ¥ do
4 for each p € P do
5: if p€ o and p € ®(s;) then
6: (5(81,0’)<—5(81,U)U{82}
7 end if
8 if p ¢ o and —p € ®(s1) then
9: d(s1,0) <« d(s1,0) U {s2}
10: end if
11: end for
Require: s1={e1s--sent P,y Pn})
Require: S2 = ({90/17"'790;n}7{p/17"'7p;n})
12: fort=1,...,ndo
13: if p; = X1y then
14: for j=1,...,mdo
15: if ¢ = ¢ and p; = p;1 then
16: d(s1,0) «— 0(s1,0) U{sa}
17: end if
18: end for
19: end if
20: if p; = p1Upo then
21: if p2 € ®(s1) or p1 € P(s1) and Xyp € P(s2) then
22: (5(81,0’) <—(5($1,0’)U{82}
23: end if
24: end if
25: if p; = p1RYy then
26: if oo € ‘I)(Sl) then
27: if o1 € ®(s1) or X € P(s3) then
28: (5(81,0’) <—(5($1,0’)U{82}
29: end if
30: end if
31: end if
32: end for
33: end for
34:  end for
35: end for

36: return 0
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2
= 8Nmax T 3Mjax

steps.

The complexity of the complete algorithm can therefore be estimated as follows:

T(|StaTEs|,|%]) < |STATES|? - |Z| - (T1(|STATES|, |Z]) 4+ To(|STATES], [2]))
= |STATES|? - |Z] - (610gy |X] + 8nmax + 3120y

€ O (nk, - |STaTES]? - |X] - log, [X]) .

max

So we have the following theorem.

Theorem 9.2.1

Let STATES and X be given. Then 6 : STATES x ¥ — 25TT"S can be constructed in time

O (nl .y - |STATES|? - |Z] - log, X)) -

max

Extracting the Initial States

Extracting the initial states from STATES is the simplest task. By definition every s =
(®,Pos) € Sy is such that ¢ € ®. Then a simple linear search strategy can check if s
is indeed contained in Sy. The runtime of such a check is bounded from above by npax.

Consequently checking every s € STATES can be done in time O(npax - |STATES]).

Theorem 9.2.2

Let STATES be given. Then Sy C STATES can be extracted in time O(nmax - [STATES]).

Extracting the Acceptance Component

For the extraction of the acceptance component F it is necessary to collect the even-

tualities which are included in the states. This can be accomplished in npay - [STATES|
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steps yielding a set Ev of pairs (e;(;),pi). The size of Ev is bounded from above by
Nmax * |STATES|. Following the definition of the acceptance component we can compute

F using Algorithm 12.

Algorithm 12 Extracting the Acceptance Component F from STATES
Input: set STATES of states
Output: acceptance component F

. F—10

2: compute EV (as described)

3: for each (e;(p;),pi) € Ev do

4: F @

5 for each s € STATES do

6 if ei(¢;) € @(s) and ¢ € P(s) or e;(p;) € P(s) then
7: F+— FU {S}

8 end if

9 end for

10 F«—FU{F}

11: end for

12: return F

The time complexity of Algorithm 12 can be estimated as follows:

T(|StATES|) < 14 npax - |STATES| + |Ev|- (1 + |STATES|- (2+1)+1)+1
= 24 Npax - |STATES| + |EV| - (2 4+ 3 - |STATES|)
< 24 Numax - [STATES| 4 nupax - [STATES| - (2 4 3 - |STATES)
= 2+ 3nmax - |STATES| + 3nmay - [STATES|?

€ O (Nmax - |[STATES[?) .

So we have the following theorem.

Theorem 9.2.3
Let STATES be given. Then the acceptance component F can be extracted from STATES

in time O (nmax - [STATES|?).
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9.2.5. Checking Language—Emptiness

We have already mentioned that it will be necessary to check the emptiness of the lan-
guages accepted by Biichi—automata. In this section we will see how this can be achieved.

Let G = (V, E) be a directed graph and let V/ C V be a nonempty set of vertices from
V and let E’ be a nonempty set of edges from E. Then the subgraph G' = (V' E') is

called mazximal strongly connected if

e for each pair nq,ns of vertices from V' it holds that no is reachable from n; and

nq is reachable from nsy and

e V'’ is maximal wrt. C, that is there is no v € V' \ V' such that (V' U {v}, F’) is

strongly connected.

The set of all strongly connected subgraphs of G is called the set of mazimal strongly
connected components of G. The maximal strongly connected components of G form a
partition of G into disjoint subsets. A maximal strongly connected component (V', E’)
is called non-trivial if either |V’| > 1 or V' = {v} for some v and (v,v) € E'.

The maximal strongly connected components of a graph can be computed in time
O(|V]) (see [156] and [74]).

The link to our problem is given as follows: Obviously every extended Biichi—automaton
A = (X, STATES, 0, Sy, F) induces a directed Graph G4 = (STATES, E) where for every
pair s1, So € STATES the edge (s1, s2) belongs to E if there is an element o € ¥ such that
So € 0(s1,0). For checking that L(A) = 0 it suffices to compute the maximal strongly
connected components of G4 and check if there is a maximal strongly connected com-
ponent S which is reachable from some initial state sqg € Sy such that SN F # () for
every F' € F. So checking logical implication of some property ¢ in a system given by an
L1 program P can be reduced to the computation of the maximal strongly connected

components of Ap x A, and a simple containment check.
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This chapter will deal with the procedures which are necessary in order to refine LTI.—

programs. As we have seen in the last chapter, we are always able to construct a gener-

alized Biichi automaton from a temporal logic formula which has a nonempty accepted

language if and only if the formula from which the automaton had been constructed is

satisfiable. The construction relies on the set of subformulas occurring in the original

formula. So a state is labeled with a set of formulas together with their positions.



212 Chapter 10. Automata Manipulations

Now assume that a modified Biichi-automaton A, = (3, STATES, 0, So, F) constructed
from a LTL formula ¢ is given. By definition we have ¢ € ®(s) for every s € Sy. Now
assume further that any LrL formula e is given (an example). Then this example can
be a positive one or a negative one. In either case we can construct the representing

automaton A-—..

1. If e is a positive example, then a modification of the model under consideration
has to be carried out if L(A, x A-.) # () since in this case the positive example e

is not implied by the model under consideration.

2. If e is a negative example, then consequently we have to refine the model if L(A, x

A_.) = () since in this case the negative example e is implied.

In either case we will have to modify the states of the representing automaton A, in

such a way that the modified model is compatible with the new example e.

10.1. Implication as an Ordering

In the case of FOLTL, we have used the concept of subsumption as the basis for gener-
alization and specialization operations. In LTL this would not be a good choice for two

reasons:

1. LrL is a propositional temporal logic language, so the concept of substitutions

would not make any sense since there are no variable symbols to substitute and

2. PROLOG(+T) objects are essentially clauses. The results regarding greatest spe-
cializations and least generalizations are only concerned with such clauses. In LTL
the objects are not limited to clauses and so we cannot hope to apply the techniques

established in chapter 6.

So we see that subsumption is not applicable here. However, since LTL is propositional,

we know that the logical consequence relation |= is decidable. This enables us to use a
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finer relation than the subsumption ordering =, namely the implication ordering.

Definition 10.1.1

Let ¢1 and @9 be LTL formulas. Then the ordering =~ is defined as @1 7 o if and

~

only if 1 = 2.

The notations 3, >, < are defined in the usual way. In the case of ¢; 77 ¢ and

w2 7 1 we will not introduce a new symbol since in this case p; = ¢o.

10.2. Upward Refinement

We will now show how LTT—formulas can be refined upwards, that is we will see how we
can construct a formula 1 from a given formula ¢ such that 4 - ¢ where 9 is in some

sense minimal. This concept of minimality will be made precise now.

Definition 10.2.1
Let ¢ be an LTL formula. An LrL formula v is called a minimal upward refinement

wrt. 7 of ¢ if
1. ¥ 7 ¢ and

2. there is no LTr.—formula 1’ such that 1 = ¢’ = ¢.

Our concept of minimal refinements is identical to the concept of covers which is a
well-known concept from the theory of ILP (see [126] for example). In other words, a
formula ¢ is a minimal upward refinement wrt. 2~ of a formula ¢ if and only if ¥ is an
upward cover of ¢ (with respect to the ordering 7). In particular all properties of covers
also hold for minimal refinements.

We will now show how upward covers can be constructed. Therefore assume that ¢

is a fixed LTL formula in which propositional variables from the set X = {p1,...,pm}
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occur. The construction of refinements of ¢ depends on the question if there are temporal

operators involved in (.

10.2.1. Formulas without Temporal Operators

Assume that ¢ is a purely propositional logic formula. The idea of how to refine ¢ is to
construct a formula v which has nearly the same models as . To obtain such a formula

we need a special kind of formulas, namely so called mazimal minterms.

Definition 10.2.2
Let X be a set of propositional variable symbols and let ¢ be a formula in which exactly
the variables from X = {pi,...,pm} occur. Then ¢ is called a mazimal minterm if

and only if
X
2. for every i € {1,...,k} it holds that ¢; € X or ¢; € {-p | p € X} and
3. there is no pair g, ¢; such that ¢;, = ;.

The set of all maximal minterms containing variables from X will be denoted as

MINTERMS(X).

Theorem 10.2.1
Let ¢ be a propositional logic formula containing variables from a finite set X of propo-
sitional symbols. If ¢ is satisfiable, then for every y € MINTERMS(X) with ¢ £ —x a

minimal upward refinement of ¢ is given by ¢ A —y.

Proof. Assume that ¢ and X are given as required. First we observe that ¢ A =x | ¢
for every x € MINTERMS(X), that is ¢ A =y 2Z ¢ holds. Now assume that y is chosen

such that ¢ = —x. Assume that ¢ A =x # ¢, that is assume that ¢ = ¢ A —=y. Then
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MD(p = MD(p A —=x) = MD(p) N MD(—) or equivalently MD(—x) 2 MD(y). But this
gives p = —x contradicting the assumptions on ¢ and .

It remains to prove that the formula ¢ A =y is indeed a minimal refinement. Assume
that this is not the case, that is assume that there is a formula « such that pA—y = a = ¢.

Then we have

1. MD(p A —x) C MD(«a) C€ MD(yp) and

2. |[MD(=x)| = 21 — 1 since x € MINTERMS(X) and therefore [MD(x)| = 1.

This gives IMD(¢ A —x)| < IMD(«)| < |[MD(yp)| since X is assumed to be finite. We can

distinguish two cases:

Case 1 ¢ = —x. Then |MD(p A =x)| = |MD(p)| and therefore |MD(«)| = |[MD(yp)]

which gives a = ¢ and in particular « % ¢ which is a contradiction.

Case 2 ¢ = —x. Then we have |MD(¢ A =x)| = |MD(¢)| — 1 < |[MD(p)|. But since
MD(a) € MD(p) and MD(pA—x) C MD(«) this gives either [MD(«)| = |[MD(p)|—
1 = |MD(¢ A =x)| which yields a = ¢ A =x or |[MD(«)| = |[MD(p)| which gives
a = . In the former case we have p© A =y ¥ « and in the latter case we have

a ¥ . So both cases yield a contradiction.

Since every case yields a contradiction, such a formula ¢ cannot exist and the claim is

proved. O

For the sake of simplicity we will introduce a special mapping ¥, containing all upward

refinements of a formula ¢, that is

Uulp) ={eA-x|x € MINTERMS(X)}.



216 Chapter 10. Automata Manipulations

Example 10.2.1

Let X = {p1,p2,p3} and ¢ = p1 — (p2 — p3) be given. Then
( 3\
—p1 A p2 A p3,
—p1 A\ P2 A p3,
—p1 A p2 A 3,

—p1 A p2 A\ p3

MINTERMS(X) =
p1 A\ —p2 A —ps3,
p1 A\ —p2 A ps,

p1 A p2 NP3,

p1 Ap2 A p3

and

Uu(p) = {(p — (p2 = p3)) A—x| x € MINTERMS(X)}
(
(p1 = (p2 = p3)) A (p1 Vp2 V ps3), (p1 — (p2 — p3 p1V 2V p3)

(p1 = (P2 = p3)) A (p1 vV —=p2 V p3), (p1 — (P2 — p3 p1V p2 V —ps3)

), ( ( )
_ ), ( ( )
(p1 — (P2 = p3)) A (=p1 V p2 V p3), (p1 — (p2 — p3)) A (—=p1 V p2 V —p3)

), ( ( )

) A (
) A (
) A (
) A (

[ (1 = (P2 = p3)) A (=p1 V —p2 V p3), (p1 — (P2 — p3 —p1V mp2 V ps)

10.2.2. Formulas with Temporal Operators

In the foregoing section we have described how to refine purely propositional LTL

formulas. There is one problem with this approach: consider the formula ¢ = p; A ps.
The refinement procedures for propositional formulas construct formulas such as (p; A
p2) A (—p1 V —p2), (p1 A p2) A (=p1V p2),...but if the formula to be identified is for ex-
ample ¥ = Gpi A Gpo, then this formula will never be constructed. In order to overcome
this limitation we will have to describe how to temporally generalize formulas. For the

case of upward refinement, which will be discussed in this section, consider the following
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formula ¢ = Fp for some propositional variable symbol p € X. Obviously a temporal
interpretation J = (sq, s1,...) is a model of ¢ if there is an index j such that J7 = ¢
(or equivalently if 7 = X7p). So we have that p = Fp. More general X/p = Fp for every
j >0, that is X/p = Fp for every j € N. So an upward refinement of any formula Fi)
can be constructed as X7¢). This approach can be continued: obviously Gt = XJp, that
is G = X794 = F1p. We will now examine how this idea of temporal refinement can be
combined with the refinement procedure described for propositional formulas.

Therefore assume that any LTL formula ¢ is given. For the formulas ¢1 and @o we
will require that ¢ - 1 respectively ¥ 7 @9 for every formula ¢ € T'y (1) respectively
¥ € Ty(p2). Then the set T'y () is defined as follows:

Fu((p) = \I’u(‘p)

U {eX'xlp | p € Pos(y),¢|, = Fx for some i > 0}

(-

{©lGX]p | p € POs(p), ¢, = X'x for some i > 0}

_ _ . pEPOS(9),0lp = 1% a2, 01 € Ty(1),
U @l@1 * palp, olpr * @2y |
(152 S Pu(902)7* € {U7 R}

For proving the properties of the formulas from I',(¢) we will exploit the following

observation:

Lemma 10.2.1 (Replacement—Lemma, Upward—Version)

Let ¢ and ¢ be LrL formulas, let p € P0s(yp) be a position in ¢. If ¢ 7 ¢|,, then

elWlp Z e

Proof. Assume that ¢|, 2Z v, that is ¢|, = 9. Let J € MD(y) be a fixed model of ¢.

We will prove that J = ¢[¢],.

Case 1 If J [= ¢|p, then J = 4 since ¢|, 27 9. But in this case we also have J = ¢[¢],
since J (¢lp) = T (¢).

Case 2 If J ¥~ ¢|p, then we have to distinguish how J evaluates 1. If J f= 1, then
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the claim is obvious (using the same argumentation as in the foregoing case). So

assume that J | 9. Then we have two subcases:

Case 2.1 If ¢, is positive in ¢, then the claim is immediately.

Case 2.2 If ¢, is negative in ¢, then we have ¢|, = —¢ for some propositional
variable symbol ¢ since ¢ is assumed to be in negation normal form. But the

assumption |, 2 ¢ yields ¢ € {true, ~¢} and so the claim follows.

This proves the lemma. O
It is now straightforward to prove that every formula contained in the set 'y () is a

generalization of ¢ with respect to the ordering 7.

Theorem 10.2.2

For every LTL formula ¢ and every 1 € 'y (¢) it holds that ¢ - ¢.

Proof. If ¢ € U, (), then the claim is due to Theorem 10.2.1. Otherwise the replacement—

lemma can be applied. O

10.3. Downward Refinement

Dually to the construction of minimal upward refinements we can construct maximal
downward refinements of a formula ¢. As we might expect, a maximal downward refine-

ment is defined as follows.

Definition 10.3.1
Let ¢ be an Lt formula. An Lt formula ¢ is called a mazimal downward refinement

wrt. 7 of ¢ if
1. ¢ 7 9 and

2. there is no LrL formula ¢’ such that ¢ = ¢’ = ).
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As in the case of upward refinement we will distinguish between formulas with and
without temporal operators. We will see that the concepts developed in the foregoing

section can again be adapted.

10.3.1. Formulas without Temporal Operators

Recall that a minimal upward refinement of a formula ¢ which does not contain temporal
operators is given as @ A=y for some maximal minterm . The philosophy was as follows:
since y is a minterm, y has exactly one model. So =y has 21X —1 models where X is the
set of variables under consideration. Building the conjunction of ¢ and a formula which
has as many models as possible without being a tautology (i.e. —x) yields a more general
formula which is a minimal upward refinement. The dual aspect of removing a model
is adding a model. So for building a maximal upward refinement of ¢ we will have to
construct a disjunction of ¢ and a formula which has exactly one model, i.e. a minterm.
Theorem 10.3.1

Let ¢ be a propositional logic formula containing variables from a finite set X of propo-
sitional symbols. If ¢ is satisfiable but no tautology, then for every x € MINTERMS(X)

with y £ ¢ a maximal downward refinement of ¢ is given by ¢ V x.

Proof. Let ¢ be any formula containing variables from X. First we will again note that
for every x € MINTERMS(X) it holds that ¢ = ¢ V x, so ¢ 72 ¢ V x. Now assume that
X & . Then we have MD(x) € MD(p) and therefore MD(p V x) = MD(p) U MD(x) #
MD(y) which (together with MD(¢) C MD(p V x)) gives MD(¢) C MD(p V ), i.e.
p=eVX.

Now assume that ¢ V x is not a maximal downward refinement of ¢. Let o be a
formula such that ¢ > a = ¢ V x. Then we have MD(p) C MD(a) C MD(p V x)
and therefore |MD(y)| < |[MD(a)| < |[MD(p V x)| since MD(yp), MD(«) and MD(x) are
finite. Since x € MINTERMS(X) we have |MD(x)| = 1, so either [MD(«)| = |[MD(y)| or

IMD(«)| = |[MD(p)| + 1. This is a contradiction, so the claim is proved. O
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Again we will collect all downward refinements of ¢ as follows:

Uy(e) ={eVx|x € MINTERMS(X)} .

Example 10.3.1

Consider the set X = {p1,p2,p3} and the formula ¢ = p; — (p2 — p3) from Example

10.2.1. Here we have

a(p) = {eVx|x€MNTERMS(X)}

(p1 — (P2 = p3)) A (=p1 A —p2 A —p3),
(p1 — (p2 — p3)) A
(p1 — (p2 — p3)) A
(pr — (p2 = p3)) A
(p1 — (p2 — p3)) A
(p1 — (P2 = p3)) A

(p1 — (p2 — p3)) A

(p1 — (p2 — p3)) A

(=p1 A —p2 A p3),
(=p1 A p2 A —p3),
(=p1 A p2 A ps3),
(p1 A —p2 A —p3),

(p1 A p2 A ps3),

(p1 A p2 A —p3),

(p1 A p2 A p3)

10.3.2. Formulas with Temporal Operators

In full analogy to the upward case we will define a set I';(¢) for an Lrr—formula ¢ as

follows:

La(p) = Yalp)

U {cp[Fx]p | p € Pos(p), ¢lp, = Xt for some i > 0}

U {o[X], | p € Pos(p), p|, = Gy for every i > 0
P P

_ _ . peEPOS(p),plp = @1 xp2, 01 € Lalepr),
U @ld1 *palp, olpr * @alp

P2 € Pd(tpg),* S {U, R}
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Again we assume that the formulas ¢; and @y from T'y(p1) and T'y(p2) satisfy the
properties ¢1 2= @1 and @9 7= @2. The properties of I'y(¢) are proved as in the upward
case.

Lemma 10.3.1 (Replacement—Lemma, Downward—Version)

Let ¢ and ¢ be LrL-formulas, let p € Pos(y) be a position in ¢. If ¢ 2 ¢|,, then

"B ‘PW]p-

Proof. analogous to the upward case. U

So we have that the formulas from I'4(¢) are downward refinements of .

Theorem 10.3.2

For every LTr—formula ¢ and every ¢ € I';(¢) it holds that ¢ 77 1.

Proof. analogous to the upward case. U
In the following section we will show how the choice of a formula from T',(¢) or T'y(p)

can be implemented as a manipulation of the representing automaton A,,.

10.4. Modifying Automata by Application of Refinement

Operations

10.4.1. Upward Refinement

We will now present algorithms which allow upward refinement of given Biichi automata
by manipulating the set of states (and updating the transition relation, the set of initial
state and the acceptance component). As pointed out in the foregoing section we can
distinguish between refinement by application of propositional formulas and refinement
by application of temporal formulas.

All algorithms will only differ in the way the new states are constructed. So we will
place our attention on the procedures to construct new states from given ones. For the

rest of this section we will assume that A, = (X, STATES, §, So, F) is given.
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Propositional Refinement

Assume that VAR(¢) = {p1, ..., P|var(y)|} and that x = A'VAR(“D ' e MINTERMS(VAR(p))
for I; € {pi,—p;} are given. Then the construction of A n—y is simple: First we
have to construct NNF(=y). After that we construct Axnp(—y) and return Agp—y =
Ap X ANNE(—y)- Since x = /\lvAR 2l l; we have @« = NNF(—-y) = NNF <ﬂ /\‘VAR( 27 > =
NNF (\/L\:/?R(@ - ) V'VAR(“D ;- Algorithm 13 gives the implementation of the strat-

egy described here.

Algorithm 13 Propositional Upward Refinement
Input:

e Biichi automaton A = (X, STATES, §, Sy, F)
o x € MINTERMS(VAR(yp)).

Output: Agp—y-
1: compute a = NNF(—x)
2: compute A,
3: return A, x A,

By soundness of the product operation x we have the following theorem.
Theorem 10.4.1
Let ¢ be an Lrr.—formula, let A, and let x € MINTERMS(y) be given. Then Algorithm 13

returns Apn—y .

Temporal Refinement

The next step is now to present a procedure which allows the introduction of temporal
operators. We will see that for each of the rewritten formulas from T',(¢) \ Yu(p). So
assume that any such ¢ € T'y () \ Wy () is chosen. We will proceed by distinction of the
form of ).

Case 1 1 = ¢[X"x], for some p € POs(p) such that ¢|, = Fy, some LTr.~formula x and

some ¢ > (. By definition of the set of states of a Biichi automaton, for every state
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s such that X"y € ®(s) there has to be at least one s’ such that X'~! € ®(s’). Our

construction will have to take this into account.

Case 2 9 = ¢[Gy], for some p € Pos(y) such that ¢|, = X"x. This case is simpler in
the sense that some states might be deleted and so the resulting automaton might

be smaller than the original one.

Case 3 If ¢ = p[p1 % 2]p or ¢ = ¢[p1 *x G|, for x € {U,R} and p € Pos(p) with
©|p = 1 * @2, then states from Ay, emerge from states of A, and states from Ay,
(respectively from Ag,) be merging the sets of formulas stored in these states. We

will see below how this can be achieved.

We will now examine the cases sketched above in more detail.

Case 1 We will first present a method which is suitable for the situation described in case
1. Assume that p € Pos(yp) is given such that ¢[, = trueUy = Fx for some L1L
formula x and assume that 7 > 0 is some fixed integer. If A, = (¥, STATES, 6, So, F)
then we have to process every s = ({¢1,...,¢n},{p1,...,pPn}) € STATES and check

if the following cases occur:

Case 1.1 Thereis ig € {1,...,n} such that ¢;, = trueUy and p; = p. In this case

we have to construct states 3g,...,5; as follows:

§] = ({@17 s 790i0—17XjX7 Qoio-f—la s 7%071}7 {p17 s 7pio—17pi01i_japi0+l7 s 7pn})

Here the term 1°~7 denotes a sequence of i — j occurrences of the letter 1.

Case 1.2 Case 1.1 is not fulfilled but there is some ig € {1,...,n} such that p;, <p
and trueUx C ¢;,. In this case the formula to be manipulated is a proper

subformula of the formula ¢;, and therefore it has to be replaced. Let p be
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from N* such that p;;p = p. Then we have to construct the state

§ = ({(1017 o 7%07;0—17 (IDiO [XZX]ﬁ7 (lp'i0+17 .. 790n}7 {p17 cee 7pn})

Case 1.3 In the case that neither of the above cases is fulfilled we only add the

state s to the set of new states.
The method described here is summarized in Algorithm 14.

Case 2 In contrast to the method presented in the foregoing case constructing the set
of states of the automaton Agg,), given some p € P0Os(yp) such that ¢, = Xix
for some ¢ > 0 might yield a smaller set of states since the states which have
been built in order to guarantee that x holds can be deleted. Again let A, =
(3, STATES, §, So, F) be given. If s = ({¢1,...,¢n},{P1,-..,pn}) is the state which

is actually processed, we have to distinguish the following cases:

Case 2.1 If there is ig € {1,...,n} such that ¢;, = X'y and p;, = p, then we can

construct two new states:

51 = ({o1,---,9ig—1,falseRx, @ig+1,--->n}s {P1,---,Pn}) and

Sg = ({(1017 <o Pig—15 X5 Pig+1s- - - @n}, {ph cee apio—bpiol)pio—‘rl) cee apn})

These states are added to the set of new states. Following the construction of
these states we can identify the states which might be deleted. These are the

states s’ # s such that

S/ = ({(1017 s a@io—l)xi_jX) Pig+1s - - - a@n}a {ph cee )pio—lvpi01j7pio+17 s ,pn})

Each such state is marked as to be deleted.
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Case 2.2 Case 2.1 is not fulfilled but there is i9p € {1,...,n} such that p;; < p
and X'y is a proper subformula of ©i,. Here we will identify p € N* such that

Di,P = p and construct the state
5={e1,...,Qip—1, i, [falseRxlp, Cip+1, - s @n}, {P1s- - Dn})-

Case 2.3 If neither case 2.1 or case 2.2 is fulfilled, we only add s to the set of new

states.
The above construction is formalized in Algorithm 15.

Case 3 Let us now assume that ¢ = p[@; % 2], for some @1 € I'y(¢1), some x € {U,R}
and some p € Pos(g) such that ¢|, = @1 * 2. Let Az, = (X', STATES', &, S}, F)

be given. Our construction will be divided into three parts.

Step 1 First we will rename the positions from the states of A, in order to match
the positions in ¢. That is if s = (®(s'), {p1,...,pn}) € STATES' is given,
then s has to be changed to (®(s’), {plp1,...,plp,).

Step 2 We will then process every s = ({(‘0&1)7 . ,90531)} , {pgl), . ,p,(qll)}) € STATES

as follows:

(1

1. for every ig € {1,...,n1} such that P, = p we have to carry out an

explicit replacement, that is we replace s by

= <{(‘0§1)’ Pl 0 B Pk ,gpgl)} 7 {p§1)7 . m&)}) 7

)

10

2. for every ig € {1,...,n1} such that p
1)

%0

< p and ¢ is a proper subformula

of ¢/ we replace s by

= ({(pgl)"“’%('3)—1#’2%)[951];31,@2%11,...,@}3} 7 {Pgl),.-.,pgll)})
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where p € N* is such that pgs)ﬁ = p and

)

10

3. for every ip € {1,...,n1} such that p < p;, we delete the formula ¢
(1)

and the associated position p; *. So s is replaced by

s = ({cpgl), R ,cpz(;)_l, 902%11, o ,cpgl)} s {pgl), R ,pgs)_l,pgll, R ,pf#}) .

Step 3 Assume that after having completed step 2, the state s has the form

e ({2} ).

Then for each s’ = ({gogz), e ,@,(122)} , {pgz)’ e ,p,%) }) € StaTES” we perform
the following actions:
1 1 2 2
1. q)new - {‘pgl)a B 7S0§k)7gog )7 e 7%0%2)}1
2. POSpew = {pg), . ,pgi),pgz), ... ,p%)} and

3. create the state Spew = (Prew, POSnew) and add it to NEWSTATES.

Setting Y,ew = X UX we can then construct the new transition relation &', the
new set Sp new Of initial states and the new acceptance component F' as usual and
the automaton construction is completed. The algorithm for this construction is

given in Algorithm 16.

Case 4 The final case is given by the situation in which ¥ = @[p; * @2, for some
@2 € I'y(p2), some x € {U, R} and some p € Pos(p) such that ¢|, = @1 * 2. The
construction is then carried out in full analogy to the construction from case 3. So

we will only present the algorithm which is depicted in Algorithm 17.

Asin the case of propositional upward refinement the above algorithms for constructing
the set of new states of the resulting automaton representing the refined formula can be

combined with the standard approaches for extracting the initial states, the transition
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Algorithm 14 Temporal Upward Refinement: Constructing new States for F — X

Input:
o A, = (3, STATES, d, Sp, F)
e p € Pos(y) such that ¢|, = trueUy = Fyx
e i>0

Output: set NEWSTATES of states of A@[Xi

1: NEWSTATES «— {(0,0)}
2: for each s € STATES do

Require: s=({e1, .- ont {P1s - Pn})

Xlp

3:  if there is 7y such that ¢;, = trueUy and p;, = p then

4 for j=0,...,ido

5: 5 ({@15- 5 Pio—1, XX, Pig+15 - -+ P}y P15 - - 5 Pig—1,Pig 17 Pig+1, - - -

6: NEWSTATES <+ NEWSTATES U {5}

7: end for

8: else if there is 79 such that trueUyx C ¢;, and p;, < p then

9: p < element from N* such that p;p
({(1017 < Pig—1, Pig [XZX]ﬁv Pio+1y .- - a@n}7 {p17 cee apn})

10: NEWSTATES «— NEWSTATES U {5}

11:  else

12: NEWSTATES <+ NEWSTATES U {s}

13:  end if

14: end for

Pn})
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Algorithm 15 Temporal Upward Refinement: Constructing new States for X! — G
Input:

o A, = (X,STATES, §, S0, F)
e p € Pos(yp) such that ¢, = X"x

Output: set NEWSTATES of states of Ay,

1: mark each s € STATES as not to be deleted
2. NEWSTATES « {(0,0)}
3: for each s € STATES which is marked as not to be deleted do

Require: s=({e1,. - ont {P1s - Pn})

4:  if there is 7p such that ¢;, = Xty and Di, = p then
5: 51 < ({9017 -3 Pig—1, falseRyY, Pig+1s - 780n}7 {p17 <. 7pn})
6: 82 ({®1, -+, Pig—15 X5 Pig+15 -+ s P} AP1, - -+ s Dig—1, Pig s Dig+15 - - - s Pn})
7: NEWSTATES «— NEWSTATES U {51, 52}
8: for each s’ € STATES do
Require: s’ = ({90/17"'790;n}7{p/17”'7p;n})
9: if n =m then
10: if {o,. 0 = o1, s 0ig—1. X 77X, Pig+1y - - pn} for some j > 0
then
11: if {pi,...,00,} =A{p1,-- Dip—1,Pis 1, Dig+1, - - - » Pn} then
12: mark s" as to be deleted
13: end if
14: end if
15: end if
16: end for
17:  else if there if ¢y such that p;, < p and Xix C i, then
18: p <+ element from N* such that p;;p = p
19: 8 ({¢15- s Pig—1, iy [falseRx]p, Yig+15- - Pnts {P1s -+ - s Pn})
20: NEWSTATES <« NEWSTATES U {5}
21:  else
22: NEWSTATES «— NEWSTATES U {s}
23:  end if
24: end for

25: return NEWSTATES
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Algorithm 16 Temporal Upward Refinement: Constructing new States for Replacement
of Eventualities (replacing the first component)

Input:
o A, = (3,STATES, 4, Sp, F)
e p € Pos(yp) such that p|, = p1 * @o for x € {U,R}
o Az = (X', StaTES, 8, S), F') for some p € T'y(¢1)

Output: set NEWSTATES of states of Ay
1: for each s’ € STATES' do
Require: s = (®(s'),{p},...,0.})
2. s — (O(s), {pp},....p0,})
3. end for
4: NEWSTATES « {(0,0)}
5. for each s € STATES do

Require: s= ({gogl), ... ,90211)} , {pgl), . ,pgll)})

Gxp2]p

6: forig=1,...,n1 do
7: if p%) < p and ¢ is a subformula of 902%) then
8: p < element from N* such that pgg)ﬁ =p
1 1 1) — 1 1 1 1
9: S < ({‘Pg )7 cet SOZ('O)_:[? QOEO) [(10]131 7(102('01_17 e 7%0511)} I {pg )7 e 7p£ll)}>
10: else if p < ) then
1 1 1 1 1 1 1 1
11: S < ({‘Pg )7 crty (101('0)_17 (10;(01_17 e 730%1)} ) {pg )7 R >pgo)_17pz('oz,_17 e >p£Ll)}>
12: end if
13:  end for
. 1 1 1 1
Require: s= <{‘:0§'1)v . ,wgk)}, {pg-l), e gk)})
14:  for each s’ € STATES' do
. 2 2 2 2
Require: s’ = ({gpg),...,gogm)},{p@,...,p%})
1 1 2 2
15: (IJHQW<—{ §1>,...,gp§.k),¢§),...,go;}}
16: POSpew { ﬁ),..., g.i),pgm,...,p%)}
17: NEWSTATES «— NEWSTATES U {(Ppew, POSnew) }
18:  end for
19: end for

20: return NEWSTATES
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Algorithm 17 Temporal Upward Refinement: Constructing new States for Replacement
of Eventualities (replacing the second component)

Input:
o A, = (3,STATES, 4, Sp, F)
e p € Pos(yp) such that p|, = p1 * @o for x € {U,R}
o Az = (X', StaTES, 8, S), F') for some p € T'y(¢p1)

Output: set NEWSTATES of states of Ay

1: for each s’ € STaTES' do
Require: s = (®(s'),{p},...,0.})

2. s — (O(s), {pp},....p0,})

3. end for

4: NEWSTATES « {(0,0)}

5. for each s € STATES do

Require: s= ({sogl), cees @gzll)} ) {pgl)v e ’pglll)})

P1%P]p

6: forig=1,...,n1 do
7: if pgg) < p and ¢y is a subformula of 902%) then
8: P < element from N* such that pgg)ﬁ =p
1 1 1) — 1 1 1 1
9: S < ({‘Pg )7 st SOZ('O)_:[? QOEO) [(10]132 7%0501_17 e 7%0511)} I {pg )7 e 7p£ll)}>
10: else if p < p) then
1 1 1 1 1 1 1 1
11: S < ({‘Pg )7 crcy (101('0)_17 (10;(01_17 e ,(-szl)} ) {pg )7 M >pgo)_17pz('oz,_17 e >p$bl)}>
12: end if
13:  end for
. 1 1 1 1
Require: s= ({<p§-1), . ,<p§-k)}, {pg-l), e gk)})
14:  for each s’ € STATES' do
. 2 2 2 2
Require: s = ({gpg),...,gogm)},{pg),...,pgz)})
1 1 2 2
15: (IJHQW<—{ §1>,...,¢§k),cp§>,...,¢£L2)}
16: PoOSpew «— { ﬁ),..., g.i),pgm,...,p%)}
17: NEWSTATES «— NEWSTATES U {(®Ppew, POSnew) }
18:  end for
19: end for

20: return NEWSTATES
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function and the acceptance component of the resulting automaton. A procedure of how
to achieve this is straightforward to implement. Therefore we will not give it in detail

but will merely concentrate on the following theorem.

Theorem 10.4.2
Let A, = (X,STATES,d, Sy, F) be an automaton representing an LTL-formula ¢ and
let ¥ € T'yu(¢) be an upward-refinement of ¢. Then the sets of states computed by

Algorithms 14, 15, 16 and 17 are correct.

Proof. Let an LrL formula ¢ be given and assume that some ¢ € T',(p) is chosen.
Assume that A, = (X,STATES, §, Sy, F) is given (and is constructed correctly). Let
STATES’ be the set of states which has been constructed by application of one of the
algorithms presented above and let STATES.,, be the correct set of states of Ay. We will
have to prove that STATES' = STATES,-. The direction C is simple: Let s = (®(s), Pos)
be any state from STATES'. By assumption that A, is constructed correctly we have that
false ¢ ®(s) and since the algorithms presented above do not introduce conjunctions
or disjunctions we have that if o1 A g € ®(s) (p1 V p2 € ®(s)) then 1 € P(s) and (or)
w2 € ®(s). The correctness of the positions stored in Pos is immediate. So the direction

C is proved.

Now assume that s = (®(s),P0s) = ({¢1,...,on}, {P1,--.,Pn}) is astate in STATES ;.
If p & PoOS, then we trivially have that s € STATES' since then s € STATES. If p € Pos,
say p = p;j then the claim is proven by showing that all necessary dependencies have
been constructed. These dependencies have the form X'y, that is if they are constructed
then X7y, ..., Xy, X% have to be constructed and included. But this is done by the

algorithms so s € STATES' and the direction D is proved. O

Since the extraction of the remaining components of A, is more or less trivial, we have

that the refinement procedures described are correct.
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10.4.2. Downward Refinement
Propositional Refinement

As in the case of propositional upward refinement we can define an algorithm for con-
structing the refined formula ¢ V x from a formula ¢, the automaton A, and some
X € MINTERMS(VAR(¢p)) by first constructing the automaton A, and then constructing
the automaton Ay, = Ay||A,. Since the operation || is sound we immediately have the
soundness of the refinement procedure. The procedure itself is given in Algorithm 18
Theorem 10.4.3

Let ¢ be an LrL—formula, let A, and let x € MINTERMS(p) be given. Then Algorithm

18 returns A,y

Algorithm 18 Propositional Downward Refinement

Input:
e Biichi automaton A = (X, STATES, §, Sy, F)
o x € MINTERMS(VAR(yp)).

Output: Agy,.

1. compute a = NNF(x)
2: compute A,

3: return A, || A,

Temporal Refinement

The case of refining LTi—formulas by adding respectively changing temporal operators
has been described for the case of upward refinement in chapter 10.4.1. Downward
refinement is more or less dual to upward refinement as we will see soon. Again we can
assume that some LTL—formula ¢ and some element 1) € T4(p) \ ¥4(yp) are fixed. As in

chapter 10.4.1 we have to distinguish the following cases for :

Case 1 ¢ = ¢[X'y], for some p € Pos(p) such that ¢|, = Gy and some i > 0.

This case can be seen as the inversion of case 2 from chapter 10.4.1 where cer-
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Case

tain states had been marked as to be deleted. Consequently the states which
are deleted there have to be introduced here. So assume that any element s =
o1, sont, {p1,---,pn}) € STATES is given. We can identify the following sub-

cases:

Case 1.1 If there is ig € {1,...,n} such that ¢;, = falseRx and p;, = p, then we

have to construct ¢ + 1 states g, ..., 5; as follows:

§] = ({9017 s 790i0—17XjX7 Qoio-f—la s 7%071}7 {p17 s 7pio—17pi01i_japi0+l7 s 7pn)

Case 1.2 Case 1.1 is not fulfilled but there is i9p € {1,...,n} such that p;; < p
and falseRYy is a proper subformula of ¢;,. Then let p € N* be such that

Di,D = p. We construct the state

§ = ({(1017 o 7%07;0—17 (IDiO [XZX]ﬁ7 (lp'i0+17 .. 790n}7 {p17 o Jpn})

Case 1.3 If neither of the above cases is fulfilled we add the original state s to

NEWSTATES.
The complete procedure is given in Algorithm 19.

2 By analogy to the case of constructing A where X?x had been replaced by

©[Gx]p

falseRy we can construct Ary), from Ay, i > 0 and some p € POs(p) where
olp = X'x. If any s = ({01, ,9n}, {P1,---,Pn}) € STATES is processed, then we

distinguish the following cases:

Case 2.1 There is ig € {1,...,n} such that ¢;, = X’y and p;, = p. Then we

construct the following states:

51 = ({e1,..,0ig—1,truelx, ©ig+1, -y ont, {P1,--.,Pn}) and
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S22 = ({(1017”’7902'0—17X7Q0i0+17"'790n}7{p17”’7pi0—17pi017pi0+17”’7pn})’

After 51 and 55 have been added to NEWSTATES, we mark each s’ # s as to

be deleted (see chapter 10.4.1) which have the form

S/ = ({(1017 -y Pig—1, Xi_jX) Pig+1s - - - ,<Pn}7 {ph cee )pio—lvpi01j7pio+17 s ,pn})

for some j > 0.

Case 2.2 If case 2.1 is not fulfilled but there is ig € {1,...,n} such that p;, < p
and X'y is a proper subformula of @i, we identify p € N* such that p;;p = p

and construct

§ = ({(1017 <o Pig—15Pig [trueUX]ﬁy Pig+1s - - - a‘pn}v {p1, s ’pn})

and add s to NEWSTATES.
Case 2.3 Neither of the above cases is fulfilled. then s is added to the set NEwW-

STATES.
The complete procedure is summarized in Algorithm 20.

Case 3 If the refined formula is ¥ = @[@1 * @3], for some p € Pos(y) such that ¢|, =
1 * 2, some x € {U,R} and some @1 € 'y(¢1), then we can re use Algorithm 16

without any changes since this algorithm only refers to ¢; and not to membership

of @1 in Pu((pl) or Pd((pg).

Case 4 By analogy to the foregoing case we can re use Algorithm 17 in order to compute
the set of states for Ay in the case that ¢ = [p1 * @a], for p € POs(p2) with
olp = 1% 2, * € {U,R} and @a € T'y(¢2).

So all possible cases for the elements 1) € I'y(p) are covered.
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Algorithm 19 Temporal Downward Refinement: Constructing new States for G — X
Input:

o A, = (3, STATES, d, Sp, F)
e p € Pos(y) such that ¢|, = falseRy = Gx
e 1 >0

Output: set NEWSTATES of states of A@[Xi

1: NEWSTATES «— {(0,0)}
2: for each s € STATES do

Require: s=({e1, .- ont {P1s - Pn})

Xlp

3:  if there is 7y such that ¢;, = falseRy and p;, = p then

4 for j=0,...,ido

5 § ({9017 s Pig—1, X7x, Pig+1s- -+ @n}? {p17 c s Pig—=15Pig ' Pig 415+ - 7pn})
6: NEWSTATES <+ NEWSTATES U {5}

7: end for

8: else if there is 79 such that falseRx C ¢;, and p;, < p then

9: p < element from N* such that p;p = p 5 —

({(1017 < Pig—1, Pig [XZX]ﬁv Pio+1y .- - a@n}7 {p17 cee apn})

10: NEWSTATES «— NEWSTATES U {5}
11:  else
12: NEWSTATES <+ NEWSTATES U {s}
13:  end if

14: end for
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Algorithm 20 Temporal Downward Refinement: Constructing new States for X! — F
Input:

o A, = (X,STATES, §, S0, F)
e p € Pos(yp) such that ¢, = X"x

Output: set NEWSTATES of states of A [ry,

1: mark each s € STATES as not to be deleted
2. NEWSTATES « {(0,0)}
3: for each s € STATES which is marked as not to be deleted do

Require: s=({e1,. - ont {P1s - Pn})

4:  if there is 7p such that ¢;, = Xty and Di, = p then
5: 51 < ({9017 oo Pig—1, truelx, g1, - - 79071}7 {p17 cee 7pn})
6: 82 ({®1, -+, Pig—15 X5 Pig+15 -+ s P} AP1, - -+ s Dig—1, Pig s Dig+15 - - - s Pn})
7: NEWSTATES «— NEWSTATES U {51, 52}
8: for each s’ € STATES do
Require: s’ = ({90/17"'790;n}7{p/17”'7p;n})
9: if n =m then
10: if {o,. 0 = o1, s 0ig—1. X 77X, Pig+1y - - pn} for some j > 0
then
11: if {pi,...,00,} =A{p1,--  Dio—1,Pis1, Pig+1, - - - , P} then
12: mark s" as to be deleted
13: end if
14: end if
15: end if
16: end for
17:  else if there if ¢y such that p;, < p and Xix C i, then
18: p <+ element from N* such that p;;p = p
19: 8 ({155 Pig—1, wip [trueUxlp, @ig+1, - - enty {P1, -+ -, P })
20: NEWSTATES <« NEWSTATES U {5}
21:  else
22: NEWSTATES «— NEWSTATES U {s}
23:  end if
24: end for

25: return NEWSTATES
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By analogy to the situation of constructing the states for the upward-refined automata,
we are now able to present the following theorem.
Theorem 10.4.4
Let A, = (X,STATES,d, Sy, F) be an automaton representing an LTL-formula ¢ and
let ¥ € Ty(p) be an upward refinement of ¢. Then the sets of states computed by

Algorithms 19 and 20, are correct.

Proof. Exactly as in the case of upward refinement. O

10.4.3. Extracting Formulas

The final step in the process of refining LTr.—formulas by application of the automata
manipulations introduced in this chapter is to extract the refined program which has
been learned. This is a simple task due to the properties of the automata construction
used to build the representing automata.

Recall that the set of initial states Sy of an automaton A, representing ¢ has been
defined as the set of all states s such that ¢ € ®(s). So after having completed the
refinement process it suffices to extract this formula from one of the initial states of the

resulting automaton.

Definition 10.4.1
Let ¢1 and @9 be LTrL—formulas. Then ¢; T 9 if there is a position p € Pos(y2)

such that ¢a|, = 1. Furthermore we will write p1 T 2 if @1 T g and p # e.

In other words, p1 C @2 (¢1 C p2) if and only if ¢ is a (proper) subformula of ¢s.

Using the notation C we can define the mazimum of a state s.

Definition 10.4.2

Let A = (3, STATES, §, Sp, F) be an extended Biichi-automaton and let s € STATES.
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Then a formula ¢ € ®(s) is called a mazimum of s if there is no formula ¢ € ®(s)

such that ¢ C .

Obviously for every s € STATES there is exactly one maximum. This formula will be
denoted as max(s). This enables the extraction of a formula from a Biichi-automaton

simply by extracting the maximum max(sg) for any initial state.

Theorem 10.4.5
Let A = (3, STATES, §, So, F) be an extended Biichi-automaton and let sy € Sy be any

initial state of A. Then if A = A, then ¢ = max(so).

Proof. Immediately by definition of A,,. O

Since we have defined our version of Biichi-automata in such a way that not only
the formulas but also the positions of these formulas in the original formula from which
the automaton had been constructed are stored, we can extract the maximum of any
s € Sp simply by searching for the position ¢ in the position—component of s. So let s =
{1y -sont {p1,---,pn}) be given and let ig be such that p;, = €. Then ¢;, = max(s).

So searching for the maximum of s can be achieved in time O(|®(s)]).

10.5. The lIdentification Process

During the foregoing sections we have developed techniques which are necessary in order
to identify LTL—programs from positive and negative examples. So this final section of
this chapter will deal with the topic of how to combine these techniques in order to derive
an identification procedure. In order to implement an identification procedure we have
to ensure that at every point of time there is a uniquely determined continuation of the
refinement process. In other words we have to ensure that our method is deterministic.

So assume that there is a (heuristic) function b selecting a type of refinement step

to be carried out. Depending on the outcome of the computation carried out by h we
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have to call one of the algorithms developed in the foregoing sections. Formally h has to

return the following information:
e a number of an algorithm to be called and
e the input data for this algorithm.

Considering the different signatures which Algorithms 13 to 20 have, the following data

might be necessary:
e a formula x € MINTERMS(VAR(yp)) as input for Algorithms 13 and 18,
e a position p € Pos(yp),
e a value i > 0 for Algorithms 14 and 19,

e an index j € {1,2} for Algorithms 16 and 17 selecting which component has to be

replaced and
e an automaton Ay as input for Algorithms 16 and 17.

So if Aut denotes the set of all Biichi-automata constructed in the way developed in

this and the foregoing chapter, h should have the following signature:

b : Aut — Zjp x MINTERMS(VAR(p)) x Pos(p) x N x {1, 2}.

For the sake of formal clearness we assume that the components of h(A) given any
automaton A € 2ut can be accessed by application of a simple projection. That is the

projections

()1t Zip x MINTERMS(VAR(p)) x Pos(p) x N x {1,2} — Z,
()2 Zip x MINTERMS(VAR(p)) x POs(¢) x N x {1,2} — MINTERMS(VAR(¢p)),

()3 : Zip x MINTERMS(VAR(p)) x POs(¢) x N x {1,2} — Pos(yp),
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()a : Zyp x MINTERMS(VAR(p)) x Pos(¢) x N x {1,2} — N and

()5 : Zip x MINTERMS(VAR(p)) x POs(¢) x N x {1,2} — {1,2}

are defined.

Additionally we assume that another function b : Zy x {1,2} x Pos(p) x 2ut — ut
is given which returns an automaton representing the formula to be inserted during a
run of Algorithms 16 and 17. The first argument of h denotes the direction which the
refinement step has to take (0 for upward refinement and 1 for downward refinement)
while the second argument denotes the component to be replaced in the formula at the
position given by the third component.

So the identification process can be sketched as follows:
Step 0 Given input ¢, construct the automaton A = A,,.

Step 1 Now assume that €T = {¢1,...,¢x}. For i ranging from 1 to k perform the

following loop.

Step 1.1 Construct Axnp(-p,);

Step 1.2 construct A X Axnp(—y,) and

Step 1.3 as long as L(A X Axnp(—y,)) 7 0 do

Step 1.3.1 compute h(A) = ((h(A))1,...,(h(A))s) and
Step 1.3.2 depending on the value of (h(.A)); perform the following actions:
1. if (§(A))1 = 0, then replace A by the result of Algorithm 13 given
inputs A and (h(A))a,
2. if (h(A))1 = 1, then
a) compute the set NEWSTATES by application of Algorithm 14 given
inputs A, (h(A))3 and (h(A))a,

b) extract the remaining components:
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i. extract dnew by application of Algorithm 11 given inputs NEW-

STATES and X = 2VAR(®)

ii. extract Sppew from NEWSTATES as described before Theorem

9.2.2 and

iii. extract Fpew by application of Algorithm 12 given input NEw-

STATES
and then
c) replace A by (NEWSTATES, dnew S0,new, Frew):
3. if (h(A))1 = 2, then

a) compute the set NEWSTATES by application of Algorithm 15 given

inputs A and (h(.A))s3,
b) extract the remaining components:

i. extract dpew by application of Algorithm 11 given inputs NEw-

STATES and ¥ = 2VAR(®),

ii. extract Sonew from NEWSTATES as described before Theorem

9.2.2 and

iii. extract Fpew by application of Algorithm 12 given input NEw-

STATES
and then
c) replace A by (NEWSTATES, dnew S0,new, Frew):
4. if (h(A))1 = 3, then
a) compute the automaton A = §(A,0,1,(h(A))3),

b) compute the set NEWSTATES by application of Algorithm 16 given
inputs A, (h(A))3 and A,

¢) extract the remaining components:
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i. extract dnew by application of Algorithm 11 given inputs NEW-

STATES and ¥ = 2VAR(®),

ii. extract Sppew from NEWSTATES as described before Theorem
9.2.2 and

iii. extract Fpew by application of Algorithm 12 given input NEw-

STATES
and then
d) replace A by (NEWSTATES, dnew, S0.news Fnew )
5. if (h(A))1 = 4, then
a) compute the automaton A = h(A,0,2, (h(A))3),
b) compute the set NEWSTATES by application of Algorithm 17 given
inputs A, (h(A))3 and A,

c) extract the remaining components:

i. extract dpew by application of Algorithm 11 given inputs NEw-
STATES and ¥ = 2VAr(®),
ii. extract Spnew from NEWSTATES as described before Theorem
9.2.2 and
iii. extract Fnew by application of Algorithm 12 given input NEW-
STATES
and then
d) replace A by (NEWSTATES, Snew, S0,news Fnew):
6. if (h(A)); = 5, then replace A by the result of Algorithm 18 given
inputs A and (h(A))a,
7. if (h(A))1 = 6, then
a) compute the set NEWSTATES by application of Algorithm 19 given

inputs A, ((4))3 and (b(A))s.
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b) extract the remaining components:

i. extract dnew by application of Algorithm 11 given inputs NEW-
STATES and ¥ = 2VAR(®),
ii. extract Sonew from NEWSTATES as described before Theorem
9.2.2 and
iii. extract Fnew by application of Algorithm 12 given input NEW-
STATES
and then
c) replace A by (NEWSTATES, dnew S0,new, Frew):
8. if (h(A))1 =7, then
a) compute the set NEWSTATES by application of Algorithm 20 given
inputs A and (h(A))s,
b) extract the remaining components:

i. extract dpew by application of Algorithm 11 given inputs NEwW-

STATES and ¥ = 2VAR(®),
ii. extract Sonew from NEWSTATES as described before Theorem
9.2.2 and
iii. extract Fnew by application of Algorithm 12 given input NEW-
STATES
and then
c) replace A by (NEWSTATES, Onew S0,new, Fnew):
9. if (h(A))1 = 8, then
a) compute the automaton A = h(A, 1,1, (h(A))3),
b) compute the set NEWSTATES by application of Algorithm 16 given
inputs A, (h(A))3 and A,

¢) extract the remaining components:
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i. extract dnew by application of Algorithm 11 given inputs NEW-

STATES and ¥ = 2VAR(®),

ii. extract Spnew from NEWSTATES as described before Theorem
9.2.2 and

iii. extract Fnew by application of Algorithm 12 given input NEW-

STATES
and then
d) replace A by (NEWSTATES, dnew, S0.news Fnew):
and
10. if (h(A))1 =9, then
a) compute the automaton A = h(A4,1,2,(5(A))3),
b) compute the set NEWSTATES by application of Algorithm 17 given
inputs A, (h(A))3 and A,
¢) extract the remaining components:

i. extract dnew by application of Algorithm 11 given inputs NEW-
STATES and 3 = 2VAR(®),

ii. extract Sonew from NEWSTATES as described before Theorem

9.2.2 and

iii. extract Fnew by application of Algorithm 12 given input NEW-

STATES
and then

d) replace A by (NEWSTATES, dnew, S0,news Fnew )-

Step 2 Now assume that £~ = {p1,...,¢;}. For i ranging from 1 to [ perform the

following loop.

Step 2.1 Construct Axnp(-p,);
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Step 2.2 construct A X ANNp(—y,) and
Step 2.3 as long as L(A X Axnp(—yp,)) = 0 do

Step 2.3.1 compute h(A) = ((h(A))1,...,(h(A))s) and
Step 2.3.2 depending on the value of (h(.A)); perform the following actions:
1. if (h(A))1 = 0, then replace A by the result of Algorithm 13 given
inputs A and (h(A))a,
2. if (h(A))1 = 1, then
a) compute the set NEWSTATES by application of Algorithm 14 given
inputs A, (5(A4))3 and (h(A))1,
b) extract the remaining components:
i. extract dnew by application of Algorithm 11 given inputs NEW-
STATES and ¥ = 2VAR(),
ii. extract Sppew from NEWSTATES as described before Theorem
9.2.2 and
iii. extract Fpew by application of Algorithm 12 given input NEw-
STATES
and then
c) replace A by (NEWSTATES, dnew S0,new, Frew):
3. if (h(A))1 = 2, then
a) compute the set NEWSTATES by application of Algorithm 15 given
inputs A and (h(A))s,
b) extract the remaining components:
i. extract dnew by application of Algorithm 11 given inputs NEW-

STATES and X = 2VAR(®)

ii. extract Spnew from NEWSTATES as described before Theorem

9.2.2 and
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iii. extract Fnew by application of Algorithm 12 given input NEW-
STATES
and then
c) replace A by (NEWSTATES, Snew, S0,news Fnew):
4. if (h(A))1 = 3, then
a) compute the automaton A = h(A,0,1, (h(A))3),
b) compute the set NEWSTATES by application of Algorithm 16 given
inputs A, (h(A))3 and A,
¢) extract the remaining components:

i. extract dpew by application of Algorithm 11 given inputs NEw-
STATES and ¥ = 2VAR(®),
ii. extract Sppew from NEWSTATES as described before Theorem
9.2.2 and
iii. extract Fpew by application of Algorithm 12 given input NEw-
STATES
and then
d) replace A by (NEWSTATES, dnew, S0.news Fnew )
5. if (h(A))1 = 4, then
a) compute the automaton A = h(A,0,2, (h(A))3),
b) compute the set NEWSTATES by application of Algorithm 17 given
inputs A, (h(A))3 and A,
c) extract the remaining components:
i. extract dnew by application of Algorithm 11 given inputs NEW-
STATES and ¥ = 2VAR(®),
ii. extract Sonew from NEWSTATES as described before Theorem

9.2.2 and
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iii. extract Fnew by application of Algorithm 12 given input NEW-
STATES
and then
d) replace A by (NEWSTATES, e S0.new, Few )
6. if (h(A)); = 5, then replace A by the result of Algorithm 18 given
inputs A and (h(A))a,
7. if (h(A))1 = 6, then
a) compute the set NEWSTATES by application of Algorithm 19 given
inputs A, ((A))s and (5(A))s,
b) extract the remaining components:

i. extract dpew by application of Algorithm 11 given inputs NEw-
STATES and ¥ = 2VAR(®),
ii. extract Sonew from NEWSTATES as described before Theorem
9.2.2 and
iii. extract Fpew by application of Algorithm 12 given input NEw-
STATES
and then
c) replace A by (NEWSTATES, Onew S0,new, Fnew):
8. if (h(A))1 =7, then
a) compute the set NEWSTATES by application of Algorithm 20 given
inputs A and (h(A))s,
b) extract the remaining components:
i. extract dpew by application of Algorithm 11 given inputs NEw-
STATES and 3 = 2VAr(®),
ii. extract Spnew from NEWSTATES as described before Theorem

9.2.2 and
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iii. extract Fnew by application of Algorithm 12 given input NEW-

STATES
and then
¢) replace A by (NEWSTATES, dnew, S0.new Fnew)
9. if (h(A))1 = 8, then
a) compute the automaton A = h(A, 1,1, (h(A))3),
b) compute the set NEWSTATES by application of Algorithm 16 given
inputs A, (h(A))3 and A,
c) extract the remaining components:
i. extract dnew by application of Algorithm 11 given inputs NEW-

STATES and X = 2VAR(®)

ii. extract Sppew from NEWSTATES as described before Theorem

9.2.2 and

iii. extract Fnew by application of Algorithm 12 given input NEW-
STATES
and then
d) replace A by (NEWSTATES, dnew, S0.news Fnew):
and
10. if (h(A))1 =9, then
a) compute the automaton A = h(A, 1,2, (h(A))3),
b) compute the set NEWSTATES by application of Algorithm 17 given
inputs A, (h(A))s and A,
c) extract the remaining components:
i. extract dnew by application of Algorithm 11 given inputs NEW-

STATES and X = 2VAR(®)

Y
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ii. extract Sonew from NEWSTATES as described before Theorem

9.2.2 and

iii. extract Fnew by application of Algorithm 12 given input NEW-

STATES
and then

d) replace A by (NEWSTATES, dnew, S0,news Fnew)-

The strategy described above is then an implementation of the identification process
of LrL formulas from sets £T and £~ of positive and negative examples. As soon as
the identification process stops we therefore extract the learned formula from the set of
initial states of the resulting automaton as described in the proof of Theorem 10.4.5.

The definition of the identification process has shown that LTL programs can be
learned from sets £ and £ by application of our algorithms. What remains to be
examined is (as in the case of PROLOG(+T) programs) the complexity of the identifi-

cation task. The following chapter will therefore attack this problem.
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This final chapter will deal with a similar problem as chapter 8.2, namely the problem
of estimating the complexity of the identification process of LT L—programs. In chapter
8.2 we have extended some techniques from [11] in order to derive upper bounds for the
VC dimension of several classes of PROLOG(+T) programs. We will proceed similarly

for LT L-programs.

11.1. General Notations

We will first identify the objects to be encoded and then show how many bits will be
needed in order to encode these objects. It is immediately clear that the propositional
symbols from X and the propositional constants true and false have to be encoded.
This yields | X |+ 2 distinct objects. Additionally we will choose the symbols "(", "," and
")" (i.e. the brackets and the comma—symbol), the logical connectives A, V, —, <> and —

and the temporal operators X, G, F, U and R. Assuming that X = {py,...,p,} this gives
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‘ Symbol ‘ Encoding H Symbol ‘ Encoding ‘

( bin(n +3) || X bin(n + 11)
) bin(n+4) || F bin(n + 12)
, bin(n+5) | G bin(n + 13)
A bin(n+6) | U bin(n + 14)
v bin(n+7) || R bin(n + 15)
— bin(n + 8)

— bin(n + 9)

- bin(n + 10)

Table 11.1.: Encodings for logical connectives from LTL

a total of n 4 15 distinct objects. For the sake of formal clearance we will assume that all
formulas are represented in prefix—notation, that is the 2—ary connectives A, V, — and
< as well as the 2 ary temporal operators U and R are seen as 2 ary function symbols
and the remaining logical and temporal operators are treated as unary function symbols.

For example if ¢ = p; A XpoUGps, then ¢ is treated as the string A(p1, U(X(p2), G(p3))).

The encoding cod which we will use is based on the value n of elements occurring in
X. If p; € X is any propositional constant, then cod(p;) = bin(i) where bin(i) denotes
the binary representation of the integer 7. Additionally we define cod(true) = bin(n+1)
and cod(false) = bin(n + 2). The remaining symbols can be encoded in an arbitrary

but fixed way. We will choose the encoding from Table 11.1.

The encoding from Table 11.1 has to be changed in the way that the encoding of
symbols with strictly less than |bin(n + 15)| symbols are padded with zeros from the left
side. This yields equal length for every encoded symbol. For example if X = {p1, p2, p3},
then n = 3 and n + 15 = 18. So we have cod(p;) = 00001 and cod(R) = 10010.

Obviously every symbol to be encoded can be represented as a string from {0, 1}* of
length [logy(n + 15)]. Since the encoding is padded with zeros every formula will be

encoded as a string from {0, 1}* which has a length which is a multiple of this value.

Having defined the encoding of the symbols used in LTr.—formulas it remains to show

how composite formulas are encoded. But this is straightforward: Let any LTL formula
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 be given.

Case 1 if o = 1 @ g for & € {A,V,—, <, U,R}, then

cod(p) = cod(D)cod(” (") cod(p1)cod(”,” ) cod(p2)cod(”)”)

and

Case 2 if o = @1 for ® € {—,X,G,F}, then

cod(p) = cod(®)cod(1))

Example 11.1.1

Let ¢ = G(p1 — (Xp2 — —p3)) be given. Due to the assumption from above we will treat
v as G — (p1,— (Xp2,—p3)). We have X = {p1,p2,p3} that is n = 3 and therefore n +
15 = 18. Consequently the symbols are encoded using [logs(18)] = 5 bits. The encoding
of the relevant symbols is therefore: cod(p;) = 00001, cod(p2) = 00010, cod(p3) = 00011,
cod(” (”) = 00100, cod(”)”) = 00110, cod(”,”) = 00101, cod(—) = 01011, cod(—) = 01101,
cod(X) = 01110 and cod(G) = 10000. So we have

cod(p) = cod(G(p1 — (Xpa — —p3)))
= cod(G(— (p1,— (X(p2),~(p3)))))

= cod(G)cod(”(”)cod(—) ...

= [10000]00100]01011]00100 | 00001 [00101]01011[01000[01110]00100]...

...Jooo10]00110 00101 [01101]00100 00011 [00110]00110]00110]. ..

Some results for the value of VCDIM(C) for classes C consisting of certain proposi-

tional logic formulas have been presented before. Early studies by Natarajan (see [124])
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merely deal with polynomial time PAC-learnability. Several newer papers also deal with
estimations as well as with exact bounds for the VC dimension of classes of boolean
formulas. For example in [135] it is shown that the class MON,, of monotone boolean
formulas consisting of n propositional variables has VCDiM(MoN,,) = (LgJ)' Further ap-
proaches for the problem of learning propositional formulas which do not use the notion
of VC dimension are for example presented in [141] and [80].

As in chapter 8 we will now proceed by first deriving estimations for an upper bound
for the VC—dimension of syntactically unrestricted LTr.—formulas and then by studying

a more restricted language given by the so—called deterministic sublogic LTLY" of LTL.

11.2. Upper Bounds for the VC-Dimension of Classes of

Ltl-Programs

11.2.1. General LtlI-Programs

We will now derive upper bounds for the VC Dimension of certain classes LTL programs.
For this purpose we define the following: for given values of n, ¢ and t the class LrL™%!
denotes the set of all LTL—formulas containing at most n distinct propositional variables,
at most ¢ logical connectives and at most ¢ temporal operators.

For the rest of this section assume that n, ¢ and t are fixed nonnegative integers and

met is chosen. We will define a measuring function

assume that a formula ¢ € LTL
|- : Lri.™%" — N mapping formulas to integers as follows: || = |cod(¢)]|, that is |¢|
denotes the number of binary digits in the representation of cod(y).

We will now derive an upper bound for the value VCDIM(LTL™®!) by presenting
a function I : N> — N such that |¢| < I(n,c,t) for any values of n, ¢ and ¢ and

met - First we have to recall that the propositional constants true and

every ¢ € LTL
false and the propositional variables p; € X can be encoded using [logy(n + 15)] bits,

that is |¢| = [logy(n + 15)] for ¢ € X U {true,false}. Furthermore the connectives
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and the temporal operators can be encoded with the same number of bits. So we will

have to identify the worst case, that is the case in which ¢ € LrL™' has maximum

. Similarly we need ¢ binary connectives in order to reach the maximum length. Each
of these operators and connectives is encoded using [logy(n + 15)] bits. Additionally
we need 3[logy(n + 15)] more bits in order to encode the brackets and the commas.
Furthermore in this case we have ¢t + ¢ + 1 subformulas v; without occurrences of any
temporal operator or connective, that is ¢; € X U {true,false} for j=1,...,t+c+1.

This gives a total number of

4(t + c)[logy(n + 15)] + (t + ¢+ 1)[logy(n + 15)]

= (5t + 5¢+ 1)[logy(n + 15)]

bits as the maximum value of |¢| for any ¢ € LTL™%". But with this number of bits we

can encode at most 2(3t+5c+Dlog>(n+15)] different formulas, that is

|LTLn’C’t| < 2(5t+5c+1) [logy (n+15)]

and so the following theorem can be proved.

Theorem 11.2.1

Let n, ¢ and t be fixed nonnegative integers. Then

VCDIM (LTL™) = O ((5t + 5¢ + 1) logy(n + 15)) .

Proof. Immediately by the above estimation for the size of Lr.™%! and Lemma 8.1.1.00
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11.2.2. The deterministic Sublogic of Ltl

In the foregoing section we have derived an upper bound for the value of the VC
dimension of structured classes of arbitrary LTrL—formulas. Here we will see that a par-
ticular subset of LrL, namely the set of all deterministic formulas as introduced by [109]
can be identified using only marginally more bits in the encoding of formulas.

Roughly speaking the language LTLY! of deterministic LTi—formulas consists of all
these elements from LTL in which the usage of the nondeterministic operators Vv, U and
R is guarded by some propositional variable symbol p. Formally LrL%" is defined as

follows:

1. true and false are in LTL9

2. every p € X is in LTLY" and

t

3. for all ¢1,90 € LTL and each p € X o1 A wo, Xo1, (p A @1) V (-p V @2),

(p A 1)U(—p V p2) and (p A p1)R(—p V ¢2) are in 7.4t

As before the set LTL™%5%t denotes the set of all formulas ¢ € LTLY" containing at most
n distinct elements from X, at most ¢ connectives and at most ¢ temporal operators.

Since Lrrdet

—formulas are syntactically more complex than general LTr.—formulas, we
can ask if this does change the value of VCDIm (LTL”’C’t7d6t). Below we will see that this
is not the case.

Of course, the language LT is less expressive than LTL. But in [109] it is shown that
LrL%" formulas have the property that their negation can be represented by a 1 weak
Biichi—automaton (a certain type of Biichi-automaton which is equipped with partial
ordering on the set STATES which is compatible with the relation §) which has a set of
states of size linear in the size (that is the length) of .

In order to derive an upper bound for the VC—dimension of LTLY we will again

rewrite formulas in prefix notation and change the arity of the nondeterministic symbols

V, U and R to 3 as follows: assume that & € {V,U,R}, p € X and 1, @2 are chosen.
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Then ¢ = (p A 1) ® (—p A @2) will be rewritten to @®(p, ¢1,p2). Using the encoding
scheme from the foregoing section we can encode these formulas by setting cod(p) =
cod(®)cod(” (7)) cod(p) cod(”,” ) cod(p1) cod(”,” ) cod(pa)cod(”)”).

Since the operators F and G do not have to be encoded, we can now encode every

n,c,t,det

symbol occurring in a formula from LTL using at most [log,(n + 13)] bits. So we

clearly have for arbitrary formulas ¢ € LrL™bdet:

1. If p € X U{true, false}, then

loll = [loga(n +13)1,

2. if ¢ = X9, then

loll = [loga(n +13)] + [ 4],

3. if p = @1 A g, then

2
ol = 4Tlogs(n +13)]1 + > _ lil
i=1

and

4. if p = (p A1) ® (mp A ¢2) for some & € {V,U, R}, then

2
Il = 6[logy(n +13) + > Jeil.

i=1

The next step is to determine the maximum number of positions in ¢ such that an
element from X U {true, false} occurs at this position. Obviously for ¢t = 0 we have at

most ¢+ 1 such positions. In the case that ¢ > 0 we can distinguish the following cases:

1. If ¢ = X4), then

{p € Pos(y) | ¢|p € X U {true, false}}|
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= |{p € Pos(p) | Y|, € X U{true, false}}|

and

2. iffo=((@Ap1)®(—pAgs) for & € {U,R}, then

H{p € Pos(p) | ¢|p € X U {true, false}}|

2
= 2+ [{p e Pos(¢) | ¥lp € X U{true, false}}|.
=1

Clearly we have the maximum value of such positions for if ¢ contains ¢ binary temporal

operators. It is obvious that in this case we have
{p € Pos(p) | ¢|p € X U{true, false}}| < 4t.

But since t such binary operators consume 3t logical connectives there must be k > 0
such that ¢ < 3t+ k. So additional we have 3t + k+ 1 more such positions. So in total we
have 4t + 3t + k+1 = 7t + k + 1 such positions. So the elements from X U{true,false}

which occur in ¢ can be encoded using at most
(Tt + k + 1)[logy(n 4+ 13)]

bits.

The total value of |¢| can be estimated using the following two parameters which
determine the number of positions with deterministic connectives and the number of

positions with nondeterministic connectives:

Der(p) = HpePos(e) | ¢l =1 or |, =1 Aps or ¢|, = X¢}| and

NDetr(p) = KpePos(e) [ elp=(pAe1) @ (-pA ) for some & € {V,U,R}}.
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Since each of the ¢ connectives in ¢ is either deterministic or nondeterministic we have

lel < (7t +k+1)[logy(n + 13)] + 4DET(¢)[logy(n + 13)] + 6NDET(p)[logy(n + 13)]

= (Tt +k+14+4DET(p) 4+ 6NDET(p))[logy(n + 13)].
Using the estimations DET(p) < ¢ and NDET(¢) <t + ¢ we have

lel < (Tt+k+t+4c+6(c+1t))[logy(n + 13)]

= (13t +10c+ k + 1)[logy(n + 13)].
Finally we have k < ¢ and therefore

lel < (13t +10c + ¢+ 1)[logs(n + 13)]

= (13t + 1lc+ 1)[logy(n + 13)].

So any formula ¢ € LrL™%59¢ can be encoded using at most (13t +11c+1)[logy(n+13)]
bits and therefore

LTLn,c,t,det‘ < 2(13t+110+1) [logs(n+13)]

So the following theorem is proved.

Theorem 11.2.2

Let n, ¢ and t be fixed nonnegative integers. Then

VCDim (Lrr™eH4e) = O (13t + 11c + 1) logy(n + 13)) .

As we have already mentioned in the beginning of this section the value VCDIm (LTL”’C’t7d6t)

is not significantly greater than the value of VCDIiM (LTL”’C’t).
The results from the theorems derived in this chapter complete our study on the

learnability of LTL programs from positive and negative examples. We have seen that
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Lrr—programs can be identified by applying manipulations to the set of states of certain
automata (the representing automata) of actual hypotheses. By application of upward
and downward refinement procedures we were able to define an identification process for
Lri~formulas. The following last chapter of this thesis summarizes the results obtained

during our studies and points out open problems and directions for future research.
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This short final chapter will summarize the topics addressed in this thesis and point out

some aspects for future research activities.

12.1. Summary of the Topics

We have addressed the problem of learning temporal logic programs written in some
temporal logic programming language from positive and negative examples. Therefore

we have structured the theory into two parts:

First order Inductive Temporal Logic Programming In the case of first order languages
we have developed the programming language PROLOG(+T) which is a rule-based,
PrROLOG style programming languages which is equipped with the temporal oper-
ators X, G, F, U and P. We have described how to prove goals from PROLOG(+T)
programs and have seen how the semantics of PROLOG(+T)-programs can be
characterized. While the former topic can be solved using a modified and extended
tableauz procedure, the latter can be solved by extending the theory of Herbrand-
Interpretations and Herbrand—Models which are a standard tool from the field of

first order Logic Programming.

Following the definition and description of the programming language of interest
we have seen how specialization and generalization operations can be carried out

in order to modify the programs in the case that they contradict the examples.
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Chapter 12. Conclusions

The last point of the first part dealt with the question of how to analyze the
complexity of the learning task. We have seen that the class of PROLOG(+T)

programs can be structured depending on certain syntactic parameters in such a
way that it enables the derivation of upper bounds for the VC-Dimension of these

classes.

Propositional Inductive Temporal Logic Programming While the techniques developed

for first order temporal programming languages face the problem that first order
logic in general and first order temporal logic in particular is undecidable, the re-
striction to propositional temporal logic languages yields decidable satisfiability
and implication problems. Therefore we have studied how LTL can be used in
order to solve the problem of learning certain temporal logic formulas from posi-
tive and negative examples. We have recalled that Lrr.—formulas can be translated
into nondeterministic Biichi-automata and that these automata can be refined in
order to fit specifications imposed by the sets of examples. Furthermore we have
seen that the generality ordering chosen in the case of first order languages (i.e.
the subsumption ordering) cannot be applied in the case of LTL since the objects
under consideration are not necessarily clauses. But since propositional tempo-
ral programming languages have decidable satisfiability problems we could refine

programs with respect to the implication ordering which is finer than subsumption.

As in the case of first order temporal logic we have also studied the complexity
of identifying LrL.—formulas (resp. LTL-programs) from positive and negative ex-
amples by deriving upper bounds for the VC dimension of certain classes of such

formulas.
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12.2. Perspectives for Future Research

Three major perspectives can or should be pointed out: Integration of constraints (and
integration of constraint solving techniques into the theorem proving procedure), the
definition of a syntactically less restricted first order language (i.e. relaxing the condition
that the objects of PROLOG(+T)-programs are essentially clauses) and studying other,
perhaps more expressive propositional temporal languages, such as CrtL, CTL*, the p

calculus or some of the sublogics of the foregoing languages.

Integration of Constraints Constraints are constructs which model relations between
certain objects such that the relations have a fixed interpretation. Such relation
symbols with fixed interpretation can be the equality symbol = or some comparison
symbol such as <, <, > or >. Of course these symbols are well suited for reasoning
about arithmetic relations and consequently many constraints are arithmetic con-
straints. The integration of constraints into PROLOG(+T') would make it necessary
to extend the theorem proving procedure in order to integrate constraint solving
resp. constraint satisfaction routines (see [84] or [85] for a survey of constraint pro-
gramming techniques) and techniques for synthesizing logic programs containing

constraints (see [144])

Extending the syntax of Prolog(+4T) Another perspective for future research might be
the extension of PROLOG(+T) in such a way that the program statements need
not to be clauses anymore. This would lead us to the full first order linear time
temporal logic FOLTL. Dealing with FOLTL objects might cause several problems.
On the one hand we can not hope for efficient refinement procedures anymore since
the objects under consideration are not necessarily clauses, so subsumption does
not make any sense for general FOLTL—formulas. On the other hand the theorem
proving task would become much more complicated (see [3| for a description of

temporal logic theorem proving in the case of nonclausal languages).
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Other propositional temporal languages The restriction to propositional temporal pro-
gramming languages has (as we have seen in the third part of this thesis) the ad-
vantage that satisfiability and implication problems can be decided (in contrast
to PROLOG(+T) which contains the full first order predicate logic and which is
therefore undecidable). But we have only studied one of all possible propositional
temporal languages, namely the linear time temporal logic LTL. Here the term
linear means that the language contains only such temporal quantifiers which al-
low reasoning about one possible continuation of the actual point of time under
consideration. Branching time Logic (as we will see below) contains other quanti-
fiers which are capable of modeling questions dealing with all continuations resp.
some continuations and which can in these sense be seen as temporal versions of

the universal and existential quantifier.

Branching Time Logic As we have already noted above, Branching time temporal
logic allows reasoning about more than one continuation of the actual point of
time. CTL (another prominent specification language which implements the
concept of branching time) is equipped with the quantifiers E and A which
model the circumstance that there exists a computation path resp. that for all
computation paths the quantified formula has to hold (see [34] or [58] for a for-
mal description of CTL). Consequently the term CTL stands for Computation
Tree Logic since the set of possible computations can be seen as trees. CTL—
formulas can be translated into Alternating Tree Automata (see |21]) which
could also be studied and extended in order to allow refinement operations.

Mixed Logic Combining Linear and Branching Time Temporal Logics one gets the
logic CTL* which is more expressive than both CTL and LTr.. Formulas from
CTL* can be translated into Street tree Automata (see e.g. |59]). This logic

could also be studied in order to learn CTL* construct from examples.

Fixpoint Logic From the theoretical point of view the p calculus £, is perhaps
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the most interesting propositional temporal language. It integrates temporal
operators and fixpoint operators (see [96]). It is more expressive than LTL,

CrL and CTL* (see [143]).

All these logics are essentially propositional logics and therefore they are decidable
for satisfiability. Consequently they should be studied in order to characterize the

complexity of identifying concepts from positive and negative examples.
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For the sake of completeness and in order to make it easier to develop parsers and
interpreters for the languages used throughout this thesis we will now give grammars for
these languages. The grammars will be presented in an FBNF-like syntax, i.e. each
grammar will consist of a set of rules with one nonterminal symbol on the left hand side
and more or less arbitrary right hand sides. These grammars can be easily converted

into a form which is suitable for tools generating compilers (e.g. bison, see [68]).

A.1. Syntax of Prolog(+T)

By definition we have several different types of objects which have to be generated by the

grammar. These are terms, atoms and literals and rules (including facts as special cases).
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Consequently we have to present rules which are capable to define all these objects.

A.1.1. Terms
Terms have been defined to be constructs of the following form:
e Variable Terms, i.e. constructs such as t = x for symbols x € X,
e Strings representing Integers from Z,
e Function Terms, i.e. constructs such as t = f(t1,...,t,) or
e List Terms, that is t =[] or t = [t1,...,tn] or t = [t|t1, ..., tn].

Consequently the first production step for the generation of a term must chose which

type of term has to be created.

Term == Variable—symbol | Function-Term | List—Term | Number

Variable-Terms and Integers

Depending on the type of term to be generated we have to give rules for generating each

such type. Therefore we make the following convention:
e a variable symbol has to start with an upper case letter and

e any other symbol (i.e. a function or a predicate symbol) has to start with a lower

case letter.

The simplest objects to be created are variable terms and integers.

Variable—symbol n= ‘7| Upper—Case-Letter |
Upper—Case—Letter Variable-Suffix

Upper Case Letter =~ ‘A’ ['B'['C7 D’ [’ [F' 'GQ" [ [T [T K [T M|

(N? ‘(O? |(P7 ‘(Q? ‘(R‘J ‘(S) ‘(TJ |(U7 ‘(V) |(W7 ‘(X) |(Y7 ‘(Z?
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Lower Case Letter :— ‘@’ |'b’ [‘c’ [‘d" '€ ' |'g’ ' [P ] |'k” '] [‘m’ |
w0l [ g [ Y [ [ [y

Letter :=  Upper—Case—Letter | Lower—Case—Letter

Digit e U S A I L I S B U IR IRV A S I

Special Symbol = Letter | Digit | ¢’

Variable—Suffix = Special-Symbol | Special-Symbol Special-Symbol

Number ::— Positive Number | Negative Number

Positive Number = Digit | Digit Positive Number

Negative-Number  := ‘-’ Positive-Number

Function—Terms

The next more complicated constructs are function terms, i.e. terms of the form ¢ =
flt1,...,ty) with n = a(f) and terms tq,...,t, or t = f for constant symbols f (i.e.

such symbols f with a(f) = 0).

Function Term  ::— Function Name |
Function-Name Left—Delimiter

Argument List Right Delimiter

Left-Delimiter == ‘('
Right—Delimiter == ‘)’
Function Name ::— Lower Case Letter | Lower Case Letter Function Suffix
Function-Suffix ::= Variable-Suffix
Argument-List = Term | Term ;" Argument-List
List—Terms

List terms are the most complicated terms to generate since they might have several

different forms. A term ¢ is a list term if it is t = [] (i.e. ¢ is the empty list) or if ¢ consists
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of an enumeration of elements (i.e. ¢t = [t1,...,t,] for terms t1,...,t,) or if ¢ is given by
its head and its tail. In this case we can distinguish the cases that ¢ = [t|t1,...,t,] and
t = [t|t'] where ¢ denotes the head and ¢y,. .., ¢, is an enumeration of the elements in the

tail or ¢’ is a term representing the whole tail of ¢.

List—Term == Left-List—Delimiter Right—List—Delimiter |
Left List Delimiter List Arguments

Right—List—Delimiter

Left—List—Delimiter n=
Right List Delimiter ::— ‘|
List—Arguments = Argument—List |

Term ‘|" Argument-List |

Term ‘|” Term

A.1.2. Atoms and Literals

Atoms and literals are either temporal or nontemporal ones. Nontemporal atoms and
literals are then either one of the constants true and false or built using predicate

symbols. In this case they have the form p(ti,...,t,) or not(p(t1,...,t,)).

Atom —  ‘true’ | ‘false’ | Relational Atom
Relational-Atom ::= Predicate-Name |
Predicate—Name Left—Delimiter

Argument List Right Delimiter

Predicate-Name ::= Lower—Case—Letter | Lower—Case—Letter Predicate-Suffix
Predicate Suffix := Variable Suffix
Literal ::— Atom | ‘not’ Left Delimiter Literal Right Delimiter

In order to integrate the temporal operators we generalize the concept of literals to

general literals. General literals are then divided into two classes, namely temporal literals
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and nontemporal literals.
General-Literal = Literal | Temporal-Literal |
‘not’ Left Delimiter General Literal
Right Delimiter
Temporal-Literal = Unary-Temporal-Literal |
Binary Temporal Literal
Unary Temporal Literal = Unary Temporal Connective General Literal
Binary-Temporal-Literal = General-Literal
Binary Temporal Connective General Literal
Unary Temporal Connective == ‘X’ |‘F|‘G’
Binary—Temporal-Connective == ‘U’ | ‘P’
A.1.3. Rules

Rules are created using the productions for literals. Each rule is either a fact or a definite

rule, that is a rule with a nonempty tail.

Rule ==
Fact =

Definite Rule =

End-Delimiter =
Implication Symbol ::—
List Of Literals =

Fact | Definite Rule
General-Literal End—Delimiter
General Literal Implication Symbol

List Of Literals End Delimiter

(3]

4

General Literal | General Literal ‘)’ List Of Literals

A.1.4. General Prolog(+4T)—-Objects

Since every PROLOG(+T)-object is either a term or a formula, we add a rule produce

these two types of objects. Each formula is then given as a literal (a general literal) or a

rule.
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Prolog(+T) Object ::— Term | Formula

Formula ::—  General Literal | Rule

These rules complete the syntax of PROLOG(+T). In order to be well formed an object

needs
e to be parsed and then

e to be checked if the symbols used in the object are compatible with the constraints

given by the signature.

A.2. Syntax of Ltl

The syntax of LTL is very simple, since there are nearly no constraints on the form of
a formula. Consequently a grammar which generates the set of all LTr.—formulas can be
extracted directly from the definition of the language LTL (see page 20).

Formulas from LTL are either atomic formulas (i.e. the constants true and false or
proposition symbols) or composite formulas. Composite formulas are built using unary

or binary connectives which can be either propositional or temporal ones.

LTL Formula = LTL Atom | LTL Composite Formula
LTL-Atom = ‘true’ | ‘false’ | LTL-Proposition-Symbol
LTL-Composite-Formula ::= LTL-Unary | LTL-Binary

For the sake of simplicity we will introduce names for the symbols used in the rules

to generate the formulas, in particular we will introduce names for the brackets and the

connectives.
Left—Delimiter n=
Right Delimiter n= )
LTL-Unary-Propositional-Connective = ‘I
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LTL Unary Temporal Connective X G R
LTL Binary Propositional Connective T R
LTL-Binary—Temporal-Connective ‘U | ‘R’

Proposition symbols are used in order to build atomic formulas of LTL. They have to
start with a letter (no matter if it is an upper case letter or a lower case letter) followed
by a (possibly empty) string of arbitrary symbols. Such strings are generated using the

rule below which has the symbol symbol suffix on its left hand side.

LTL Proposition Symbol ::— Nondigit | Nondigit Symbol Suffix

Nondigit m= o ‘al ‘b e’ |4 et |7 g b |9 kT [T [‘m o |
O [P L s ey |
AB O DR E G R T

(M7 ‘ (N? |(OJ |(P7 ‘(Q) ‘(R‘J ‘(S) |(T7 ‘(U) |(V7 |(W7 |

LX? |LY7 ‘(Z7
ngjt o (07 ‘ ‘17 | (27 ‘ ‘37 | (47 | ‘57 ‘ (67 | (77 ‘ ‘87 | (97
Symbol-Suffix = | Digit Symbol-Suffix | Nondigit Symbol-Suffix |

‘ 7 Symbol Suffix

As we have already mentioned above, composite LTr.—formulas can be built up using
unary and binary connectives which can be either propositional ones or temporal ones.
The rules for building such formulas are given below. First we have to present two rules

for building general formulas using binary and unary connectives.

LTL-Unary := LTL-Negation | LTL-Unary—Temporal-Formula

LTL Binary :— LTL Binary Propositional Formula |

LTL-Binary-Temporal-Formula

Having chosen the arity of the connective rules for generating the formulas using con-

nectives with the chosen arity have to be applied.
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LTL Negation =

LTL-Unary-Temporal-Formula =

LTL Binary Propositional Formula ::—

LTL Binary Temporal Formula D=

LTL Unary Propositional Connective
LTL Formula
LTL-Unary-Temporal-Symbol

LTL Formula

Left Delimiter LTL Formula
LTL-Binary-Propositional-Connective
LTL Formula Right Delimiter

Left Delimiter LTL Formula
LTL-Binary-Temporal-Connective
LTL Formula Right Delimiter

Since there are no further restrictions on the syntax of LTL formulas the grammar for

LTL is now complete.
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