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Abstract

Wireless Sensor Networks (WSN) are dynamically-arranged networks typically com-
posed of a large number of arbitrarily-distributed sensor nodes with computing capa-
bilities contributing to –at least– one common application. The main characteristic of
these networks is that of being functionally constrained due to a scarce availability of
resources and strong dependence on uncontrollable environmental factors. These con-
ditions introduce severe restrictions on the applicability of classic real-time methods
aiming at guaranteeing time-bounded communications.
Existing real-time solutions tend to apply concepts that were originally not conceived

for sensor networks, idealizing realistic application scenarios and overlooking at impor-
tant design limitations. This results in a number of misleading practices contributing
to approaches of restricted validity in real-world scenarios.
Amending the confrontation between WSNs and real-time objectives starts with a re-

view of the basic fundamentals of existing approaches. In doing so, this thesis presents
an alternative approach based on a generalized timeliness notion suitable to the partic-
ularities of WSNs. The new conceptual notion allows the definition of feasible real-time
objectives opening a new scope of possibilities not constrained to idealized systems.
The core of this thesis is based on the definition and application of Quality of Service

(QoS) trade-offs between timeliness and other significant QoS metrics. The analysis of
local and global trade-offs provides a step-by-step methodology identifying the correla-
tions between these quality metrics. This association enables the definition of alternative
trade-off configurations (set points) influencing the quality performance of the network
at selected instants of time.
With the basic grounds established, the above concepts are embedded in a simple

routing protocol constituting a proof of concept for the validity of the presented analysis.
Extensive evaluations under realistic scenarios are driven on simulation environments
as well as real testbeds, validating the consistency of this approach.
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Every action has a consequence1.

This thesis is a consequence.

1From Netwon’s Third Law of Motion.





Preface

Pusuing a Ph.D. is –generally speaking– quite an enjoyable experience: one gets to
travel around the world attending project meetings and conferences in remote locations,
meeting people from pretty much everywhere, and all of this while still maintaining a
sort of student profile with the first benefits of an academic career. Nontheless, although
the average feeling is that of being a full-time student with a paycheck at the end of the
month, the variance in the distribution of collected emotions along the way shows more
agitation than that induced by the roller coasters of most amusement parks.
These peaks of alternating tranquility, stress, and over-enthusiasm constitute the basic

motivation to keep on going, provided that one gets to master the art of modern academic
alchemy2, defeat procrastination, and manage to maintain contact with the external
world, yet avoiding the so feared questions: “– so, when are you finishing?” or “– what
are you exactly doing?”.
Well, to anyone wondering what I have been doing for the last years, I am happy to

inform you that the answer is among the coming pages. Hint for the lazy ones: there is
a summary at the end!
However, before going to the matter, I would like to express my appreciation and

gratitude towards those whom made of both my Ph.D. as well as my stay abroad an
–even more– enriching experience.
In first place, to my supervisor Gerhard Fohler for giving me the chance of pursuing

an academic career with an incredible international atmosphere. I am truly grateful
for all the enriching experiences and good moments accumulated during this instructive
period of time.
I would also like to thank very specially all my colleagues from the Chair of Real-

Time Systems in TU-Kaiserslautern, both for their support in the scientific research
as well as for the many times of fun and procrastination [Cham 10]. In particular, my
best wishes are for the (ex-)Ph.D. students Joe Jonsson, Raphael Guerra, Alexander
Neundorf, Anand Kotra, Rodrigo Coelho, Stefan Schorr, Viet Cuong and Jens Theis. It
was a pleasure to meet you guys and I wish you all the best in your coming achievements!
I cannot do less than show my deepest gratitude to our secretary Stephanie Jung

as well as to Carmen Vicente-Fess. Not only for dealing with all the administrative
bureaucracy that I have generated along this time, but also for their aid and assistance

2Modern academic alchemy consists of the obscure art of converting poured caffein beans into any
sort of documented research manuscript (name it paper, article, report, or deliverable).
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in the complicated task of being a foreigner in a (sometimes) perfectly-organized country
as Germany. I hope that I did not get on your nerves too often with my problems and
little questions!
Last, but not least, many thanks to Markus Müller; partly for the technical support

but mainly for his patience and tremendous effort in trying to understand my German
chit-chat and still make the experience enjoyable. Vielen Dank, Markus!
During my Ph.D. studies, I have had the pleasure of meeting many other researchers

and Ph.D. candidates with whom I had a great amount of interesting conversations.
Sometimes they were work-related –others rather not–, but it was always fun to learn
and share experiences with so many people coming from different countries and cul-
tures. Definitely, it would have been not the same without such a great and enriching
international and intercultural experience.
In particular, I would like to express my gratitude to Peter van der Stok, Jean-

Dominique Decotignie, Marc Aoun and Jérôme Rousselot, for all the constructive and
certainly profitable discussions that we had during –and after– the Real-Time/WSN
workshops.
Closing this round of gratitude would not be complete without a mention to Ivan

Shcherbakov and Prashant Sachdeva with whom I had the chance to collaborate during
their studies in TU-Kaiserslautern.
On a more personal side, I would like to thank my family for giving their support

during this long process. Particularly, without the support and encouragement of my
parents during my studies this journey would never have started.
Words are not enough to prove my love and gratitude to Raluca, my girlfriend and

partner of adventures. I just hope that in the future I will be able to do as much as she
has done for me during this period of time.
Finally, coming back to the technical matter, I would like to thank you for spending

some of your time reading –at least part of– this thesis. I hope that you find it interesting!

Ramon
Kaiserslautern, 20.07.2010

The work presented in this thesis has been partially supported by the European Com-
mission under the Framework 6 IST Project Wirelessly Accessible Sensor Populations
(WASP, IST-2006-034963).
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Chapter I

Introduction

The core of Real-Time Systems (RTS) develops from the principles of determinism and
time predictability. Processor scheduling, Operating Systems (OS), and task synchro-
nization are examples of relevant problems being currently approach in this area of
research.
On the other hand, Wireless Sensor Networks (WSN) pursue ad-hoc communications

in environments with a significant uncertainty factor. Energy-aware communications
and high scalability are two of the most important factors driving the research efforts
in this field.
Merging the two –in principle– divergent research areas is not a trivial task requiring

significant efforts in understanding the constraints and limitations of each field as well
as their flexibility for adaptations. This chapter introduces the basic principles of each
area giving a brief overview of the elemental terminology of each.
The chapter is organized as follows:
Section I.1 introduces the basic principles of RTS and related terminology.
Section I.2 follows with a brief introduction to the properties and basic considerations

regarding WSN.
Concluding the chapter, section I.3 overviews the outline of the thesis.
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I.1 Introduction to Real-Time Systems

Real-Time Systems (RTS) are particular kinds of hardware or software systems that
incorporate timeliness within their target operational parameters. Their correctness is
evaluated not only with respect to the set of computed outputs but also taking into
account the associated instant of delivery. Predefined timeliness constraints introduced
at initial specification phases, condition the entire system development cycle. Among
others, common ways to express these constraints include the specification of upper-
bounds limits (e.g. deadlines) for the completion of each computation unit (e.g. tasks).
These bounds, are later on enforced by dedicated run-time mechanisms.
Examples of RTS are present in different domain fields, like the automotive industry,

avionics, control systems, and multimedia entertainment systems. The commonalities
among these domains come from the fact that the system is not in direct control of the
environment. Contrarily, the environment introduces constraints to which the system
has to react within predetermined time intervals.
A RTS in which all time constraints must be strictly enforced (e.g. no deadline miss

is allowed) is called Hard Real-Time System (HRTS). Common examples of HRTSs are
those present in automotive systems involving safety-critical or essential sub-systems
(e.g. airbag, ABS, electronic injection). A classic definition of HRTS states that a
deadline miss may result in catastrophic consequences for the user (e.g. life-danger or
substantial damages) [Buttazzo 05]. However, as the same notion of HRTS has been
applied over time in other non-critical areas like consumer electronics this statement
is not accurate anymore. As a matter of fact, the common understanding of HRTSs
nowadays establishes that a deadline miss may cause a complete system failure, despite
the repercussions of its consequences.
On the other hand, systems with a certain allowance to partially violate their time con-

straints –under specific circumstances– are known as a Soft Real-Time System (SRTS)
[Liu 00]. For example, deadlines may be exceeded on the absence of sufficient system
resources, although this is likely to produce a perceivable degradation of the overall
system quality. This relaxed form of RTSs introduces the problem of properly defining
the tolerance of a system towards unfulfilled timeliness constraints (e.g. deadline misses
or undelivered results).

I.1.1 Tasks, Scheduling and System Models

The most well-established achievements in RTSs are related to the scheduling of tasks
in single and multi-processor systems. Task scheduling is the process of organizing the
execution of a set of tasks in accordance with a number of possible requirements and
constraints. A real-time scheduler performs this planning attending to the temporal con-
straints of each task and ensures that their execution is compatible with the particular
policy that it defines.
Examples of real-time scheduling policies are Earliest Deadline First (EDF) and Rate

Monotonic (RM), defined in [Liu 73]. Both methods introduce their respective models
for the system based on a number of necessary assumptions. System models define a list
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of properties that must be fulfilled to guarantee the validity of the method. If the models
are obeyed, the defined scheduling policy offers a set of analysis tools and algorithms
that will make effective the real-time scheduling of the task set.
New algorithms that produce valid real-time schedules under different system models

are continuously proposed (e.g. [Guerra 09]), in particular those following the devel-
opment of new and challenging system architectures (e.g. server clusters, multi-core
processors, distributed systems, etc...). Literature regarding this matter is as exten-
sive as detailed, and it is available for further references (e.g. [Buttazzo 05], [Liu 73],
[Burns 90]).

I.1.2 Real-time Networks
The clear analogy between processor scheduling and Medium Access Control (MAC) in
networking communications accounts for the application of real-time scheduling policies
into real-time message scheduling. From an abstract point of view, messages need to be
organized in accessing a shared resource –the communication channel–, comparably to
tasks being scheduled for execution in the processing unit.
These scheduling principles have been successfully applied in many communication

domains, providing valuable analysis tools to perform real-time analysis. The core of
these solutions were originated in industrial applications, initially as wired networks
but soon adapted to wireless infrastructures. Real-time methods have been introduced
practically in most other networking domains and are still a challenging subject of
research in many fields (e.g. avionics, automotive industry). Examples of such methods
are present in network protocols like CAN [Davis 07], RTP [Benslimane 00], and TTP
[Kopetz 94].
Despite the inherent differences between networking and processing domains, the gen-

eral approach in real-time networking consists of enforcing –in one way or another– pre-
defined deadlines in the transmission of time-constrained messages. Generally speaking,
messages are treated as tasks with respect to their timeliness constraints. The analogy
works fine at certain levels of abstraction, although some special considerations apply.
For instance, the distributed nature of networks along with the usually-non-preemptible
transmission of on-going messages. A common misleading practice is to oversee the
necessary adaptations of system models targeting processor scheduling when applied to
a new domain. This issue is discussed in detail in section III.

I.2 Introduction to Wireless Sensor Networks
Wireless Sensor Networks (WSN) [Karl 06] are particular ad-hoc networks formed by
a set of resource-constrained nodes communicating via hop-by-hop message forwarding.
The operational parameters of WSNs are of high variability among different application
domains. For instance, the network dimensions as well as density of nodes are two
parameters with great variability. Others such as the mobility of nodes, number of data
collectors (i.e. sinks) and their exposure to ambient phenomenon influence the particular
constitution of these networks.
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I.2.1 Typical Applications

The application domain of WSNs is broad and in continuos expansion. It ranges from
environmental monitoring of large areas, until in-body healthcare control or structural
surveillance. Almost any scenario that implies monitoring of ambient variables which
can be perceived through sensors qualifies as a target application for WSNs.
The following is just a representative subset of applications that benefit from WSNs:

Health control – Monitoring of human or animal health parameters are common prac-
tices in modern medicine. WSNs offer the possibility of remotely observing the
evolution of subjects of interest avoiding intrusive monitoring. Moreover, sensor
nodes can be programmed to supply a first-level analysis tool discerning outstand-
ing samples which may require the attention of field experts.

Environmental monitoring – Whether it serves biological purposes or provides assis-
tance in disaster relief operations, environmental monitoring is one of the most
extended applications of WSNs. The difficulties of structural network deploy-
ments in large areas like forests, under-sea or any other wild natural environment
attribute exceptional value to the adaptation of affordable, unintrusive and self-
configuring sensor networks.

Intelligent buildings – Temperature, lighting, and regulation of energy consumption
are only a few of the many applications carried out in modern building. Increasing
the living comfort and reducing the energy waste are two main goals of intelligent
buildings which benefit from the versatile functionality of WSNs.

Structural surveillance – Solid materials in buildings, roads, bridges and most archi-
tectural constructions suffer from structural stress which can develop in deteri-
oration and in worst cases collapses or serious structural damages. Monitoring
these constructions in search of cracks or other signs of structural weakness is an
arduous job that can be automated and distributed with WSNs. The increase in
terms of accuracy and capability of early detection is notably superior and less
costly than any other method involving human supervision.

Security – Intrusion detection and surveillance of restricted access premises are possible
with WSNs. Motion tracking and battlefield surveillance are other domains of
interest in the development of new protocols and network architectures.

I.2.2 Design Principles

The technology and application domains from which WSNs emerged determine most
of the characteristics of their essential design principles. Many of these principles are
inherited from embedded systems and ad-hoc networks, while others are particular to
sensor networks. The following list summarizes some of the most relevant aspects that
arise in designing a WSN:

Distribution – The deployment of most sensor networks come with an implicit need
of a distributed organization. Centralized control entities are not an option due
to their implications in terms of scalability and adaptivity. Deployed nodes need
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to discover by themselves the necessary information to establish communication
with one or multiple data collector (i.e. sinks). This self-organization is the core
of hop-by-hop communications in WSNs and introduces design constraints in most
other aspects of the network.

Scalability – Scalable solutions capable of maintaining satisfactory performance levels
at variable network lengths are essential to WSNs. The coverage of large areas, dy-
namic environments, or the sudden variability of network density are some of the
many inconveniences that networking protocols may have to deal with. Properly
designed WSNs must adapt to these situations while keeping reasonable perfor-
mance levels.

Adaptivity – There is no common environment for WSN applications. However, most
application scenarios include uncontrollable factors to which the network has to
adapt. Among them, exposure to nature forces, irregular geography, multiple in-
terference sources, or mobile elements. Thus, it is a strong requirement that WSNs
are designed with a high degree of adaptivity towards changing environments.

Data centricity – The collection of information from particular nodes is not an essen-
tial service in a typical WSN. Instead, the fundamental design of these networks
focuses in gathering significant data, wherever the particular source is. This data
centric principle changes the way in which particular elements of the network are
located and addressed. It is no more an issue of who provides the information,
but rather of which information is available at a time.

Locality – Multi-hop communications are expensive in terms of overhead and must be
kept at a minimum. Maintenance services, discovery algorithms and other network
services have to exploit the information provided by nearby nodes and rely in their
neighborhood to receive sufficient information for their correct functioning.

Scarce resources – As in any other domain of embedded systems, WSNs are con-
strained with respect to the availability of resources. Network protocols and other
application algorithms have to deal with this shortage and exploit to their best
the existing resources.

Energy – Among all available resources, the energy source present on the sensor node
constraints the utilization of all other components. Whether it comes from bat-
teries or from other kind of energy harvesting systems, the amount of availabile of
energy delimits the overall capacity and performance of a node.

Cost – Most deployments are directly constrained by the production cost of individual
nodes. The selection of particular technologies or hardware components my be
directed by the available budget and the manufacturing cost.

I.2.3 Ad-hoc multi-hop communication

Many design properties in WSNs coincide in principles with those of Mobile Ad-Hoc
Networks (MANET). In particular, with respect to the capabilities of self-organization
and hop-to-hop communication WSNs can be classified as a particular kind of MANET.
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This is plausible by observing the core of a generic network stack in WSNs.
Despite current trends, which tend to increase the number of networking layers, a

typical protocol stack for WSNs consists of a minimalistic subset of the OSI model
[ISO 10], namely the physical layer, the MAC layer and the networking or routing layer.
A brief description of these layers and their main issues with respect to WSNs follows:

Physical layer – Despite not being tight to any specific technology, the vast majority
of WSNs make use of Radio Frequency (RF) transceivers. The main function of
this layer is to transform bits into signals, which are then transmitted through the
physical medium. Due to the large number of hardware technologies providing
alternative physical interfaces, it is a rather complex layer which is widely studied
in literature [Karl 06].

MAC layer – The MAC layer imposes an organized control in accessing the medium.
Transmitting entities must obey the rules introduced by the MAC protocol to gain
access to the channel. Pure Time Division Multiple Access (TDMA) and Carrier
Sense Multiple Access (CSMA) are the two types of medium access policies that
prevail in WSNs. Most MAC protocols are based on one or the other, and their
particularities consist of adjusting their behavior to achieve better results for a
reference metric, which in most cases, is the average energy consumption.

Networking layer – Routing protocols provide means to extend the one-hop commu-
nication level achieved by the MAC layer into end-to-end communication between
any two entities in the network. At a glance, routing protocols in WSNs can be
classified in two types, depending on the strategy of nodes to effectively commu-
nicate in a self-organized manner:
Re-active protocols try to find valid routing paths as a response to events which

need to be communicated. Hence, during periods of inactivity the protocol
remains in a latent state, which in turn is directly reflected in a low energy
consumption. However, these protocols suffer of a larger latency when it
comes to the moment of transmitting the first of each series of messages,
which cannot be effective until the path is discovered.

Pro-active protocols solve the problem of large latency by periodically main-
taining routing paths despite no message needed to be transmitted. The
downside is a clearly larger consumption of energy which in some cases re-
sults unnecessarily wasted.

I.2.4 Hardware, firmware, and software

Three main aspects describe the characteristics of a WSN platform: the on-board hard-
ware components assembled on each node, the firmware, composed by the operating
system and drivers allowing access to these components, and finally, the software pro-
gram(s) implementing the network application(s).
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Hardware

The basic hardware platform in a typical WSN is composed of a processing unit (CPU),
some limited amount of memory, a communication interface (i.e. radio transceiver),
and one or several sensors. Micro-Controllers (µC) are commonly adopted due to their
compact design and flexibility, although field programmable gate arrays (FPGA) as
well as other technologies are also being used. The main constrains that restricts the
development of hardware platforms are related to energy consumption and physical
dimensions.

Firmware

The operating system, or run-time environment, represents the core of the system
firmware. It provides an abstraction layer (i.e. functional API) between the appli-
cation developer and the general hardware platform. In addition, peripheral drivers and
other extensions may allow access to particular hardware components or communication
interfaces, in some cases implementing a complete or partial networking stack.

Software

The end-user software application is the collection of programs implementing the main
functionalities of the sensor network. These programs may be developed on top of
the hardware platform as stand-alone applications, or as high level network services
embedded into complex frameworks. Typical programming languages for the former,
include C, C++, and nesC, while the latter may take advantage of service-oriented and
other general description languages such as XML.

I.3 Thesis outline
The rest of this thesis is organized in the following chapters:
Chapter II overviews the necessary background to further develop the contents of this

thesis. The chapter presents a prospective analysis of the state-of-the-art and
exposes the main open issues and points of interest with respect to real-time and
WSNs.

Chapter III analyzes the implications of the commonly adopted notion of timeliness and
explores an alternative notion better suited for WSNs. The chapter introduces the
generalized timeliness notion with a practical example of its applicability, which
estimates the end-to-end latency of a sequence of messages in a sensor network.

Chapter IV presents a general analysis of Quality of Service (QoS) in WSNs. The
chapter defines a step-by-step analysis of QoS trade-offs and identifies the main
elements involved.

Chapter V describes a timeliness aware routing protocol embedding the generalized
timeliness notion and the estimation of the end-to-end latency introduced in chap-
ter III.
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Chapter VI presents an evaluative analysis of the timeliness aware protocol based on
simulations and small scale test-bed experiments. Main performance figures are
presented and discussed in this chapter.

Chapter VII concludes the work presented in this thesis and overviews the main achieve-
ments and most meaningful results.

Appendix A describes in extension the Operating System Abstraction Layer (OSAL),
which is already introduced in section II.2. The appendix goes in depth with
details that could not fit in the main body of the thesis.

Appendix B contains further details and additional figures that were not placed in
their respective sections. The purpose of this appendix is to provide higher detail
in some particular topics of this thesis without incurring in overloading the main
sections.

The complete bibliography and glossary of terms are listed in the following sections.
In addition, the highlights and main contribution of each individual chapter are sum-
marized in a closing section for convenience and easy location of concepts.



Chapter II

Overview of the State-of-the-Art

Before aiming at prominent achievements in any research direction it is necessary to
understand the current situation of well-established results. In doing so, this chapter
presents an overview of the state-of-the-art in the area of Wireless Sensor Networks
(WSN), exploring a number of representative scientific publications and related sources.
The chapter is structured as follows:
Section II.1 briefly introduces the architecture of sensor nodes and their hardware

components. Part of this section is dedicated to identifying the main sources of energy
consumption in a typical sensor node.
Section II.2 explores how the hardware components and resources are handled by the

Operating System (OS). It presents a general overview of existing OSs and introduces
the basics of a conceptual abstraction layer for the OS.
Once the hardware and firmware aspects of the sensor node are covered, section II.3

explores the real-time aspects in the current state-of-the-art. The section is divided in
two parts, going respectively in depth into real-time communication protocols (section
II.3.1), and real-time frameworks and middleware (section II.3.2). For practical reasons,
and to provide a better understanding of the remaining of this thesis, preference is given
to real-time and timeliness-aware protocols.
The purpose of section II.4 is to introduce the basic notions regarding Quality of Ser-

vice (QoS). In particular, it develops the basic definitions and terminology used through-
out this thesis, which is necessary to diminish the possibility of confusions occasioned
by terms that are often subject to different interpretations.
WSNs constitute an emerging area of research which combines and shares properties

with many other fields. However, there are an important number of inherent properties
that represent major challenges by themselves and need to be individually approached.
For this reason, section II.5 explores the most relevant properties and identifies common
misleading assumptions as well as the consequences associated to them.
Finally, the chapter concludes with a summary.

9
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II.1 Architecture of Sensor Nodes

The architecture of a node in a typical Wireless Sensor Network (WSN) does not differ
in many aspects from the general architecture of embedded systems. Sensor nodes are
small, low-budget devices with a significantly reduced quantity of available resources.
This section overviews the main hardware components in a typical sensor node and
identifies the most significants sources of energy consumption.

II.1.1 Typical Hardware Components

The particularities of most application domains introduce a number of constraints re-
garding size, weigh, and physical dimensions, which impose limitations on the amount
of components that can be integrated in the hardware platform.
However, the minimum set-up for a sensor node consists of a processing unit, some

memory –in any of its possible variants–, a communication interface (e.g. Radio Fre-
quency (RF) transceiver) and one or more sensors. The connexion between these ele-
ments depends greatly on the singularities of each system and its design.

Processing Units

A popular choice among embedded systems is to rely on Micro-Controller (µC) to handle
the core functionalities of the system. µC concentrate on a single Integrated Circuit (IC)
most of the hardware components required in an embedded platform. Namely: CPU,
RAM, programmable memory, communication interfaces, and data buses. Additionally,
some µC also embed a set of sensors or a number of A/D and D/A converters.
Several families and models of µCs with particular specifications are available of-the-

shelf. The Texas Instruments MSP430 [msp 04] is a popular choice among them, partly
for having a design explicitly conceived for low-cost embedded systems. This family of
µCs is powered by a 16-bit CPU operating in one of six available power-consumption
modes. These provides a range of different states in which unneeded components remain
in sleep mode, hence achieving a significantly low energy consumption.
Table II.1, extracted from the technical data-sheets summarizes the general specifica-

tions of the MSP430 family.
Alternatives to µCs like field programmable gate arrays (FPGA) or application spe-

cific integrated circuits (ASIC) seem appealing due to their high performance at moder-
ate levels of energy consumption. However, the larger flexibility of µCs with respect to
development and maintenance of applications prevails over the efficiency of specialized
solutions. Hybrid approaches, in which static modules are put into an ASIC, while oth-
ers prone to be updated after deployment run on µCs seem promising [Karl 06]. Further
research on this topic may lead to efficient combination of resources showing the true
potential of combined architectures.
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◦ Low Supply Voltage Range 1.8V to 3.6V

◦ Ultralow-Power Consumption:
Active Mode: 200µA at 1MHz, 2.2V

Standby Mode: 0.7µA

Off Mode (RAM Retention): 0.1µA

◦ Five Power Saving Modes
◦ Wake-Up From Standby Mode in less than 6µs

◦ 16-Bit RISC Architecture, 125ns Instruction Cycle Time (at 8Mhz)
◦ Basic Clock Module Configurations:

Various Internal Resistors
Single External Resistor
32kHz Crystal
High Frequency Crystal
Resonator
External Clock Source

◦ 16-Bit Timer_A With Three Capture/Compare Registers
◦ On-Chip Comparator for Analog Signal Compare Function or Slope A/D Conversion
◦ Serial Communication Interface (USART0)

Software-Selects Asynchronous UART or Synchronous SPI
◦ Serial Onboard Programming,

No External Programming Voltage Needed
Programmable Code Protection by Security Fuse

◦ Family Members Include:
MSP430F122: 4KB + 256B Flash Memory 256B RAM
MSP430F123: 8KB + 256B Flash Memory 256B RAM

*source: MSP430 Technical Data Sheet [msp 04]

Table II.1: MSP430: Summary of specifications.
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Memory

Memory plays two important roles in any embedded device. On the one hand, it holds
the necessary program to govern the system. On the other, it provides the necessary
capacity to store and access data. The two roles have different requirements which are
often fulfilled by different kinds of memory.

Read Only Memory (ROM) is usually preferred to store executable code in a non-
volatile manner. This can be erasable and re-writable (e.g. EPROM, EEPROM,
FLASH) or not (e.g. PROM). The amount of ROM in the system determines an
upper bound for the size of the program that can be installed on the system at
once. The capability of re-programming the memory determines if the application
code can be updated during or after deployment.

Random Access Memory (RAM) comes in many different technologies, sizes, and
specification. The most important characteristic that identifies RAM is related
to the possibility of randomly accessing its data. RAM is typically volatile, i.e.
data does not persist in memory after the loss of energy. The use of RAM is mostly
limited to the storage of data and the maintenance of run-time system status (e.g.
program variables and internal data structures).

Communication Interface

Although WSNs are not constrained to the RF spectrum, this is the most commonly
used medium in wireless communication. Other options, like optical communications
present severe disadvantages which dissuade their application in the field. In contrast,
RF communications provide significantly long transmission ranges at high data rates
and do not require line of sight between two communicating entities.
As an example, Table II.2, extracted from the technical data-sheets summarizes the

general specifications of the popular CC2420 family of transceivers [cc2 08].

Sensors

The main purpose of WSNs involves sensing physical variables. A great variety of
sensors, which keeps on growing as technology advances, is available on the market.
However, as the main part of this thesis is not affected by the specific sensing capacity
of nodes, the analysis of particular sensors is intentionally left out. Nevertheless, the
following is a brief summary introducing a number of common sensors and their typical
use.

Acoustic sensors – In this category, microphones and ultrasonic sensors are included.
Their main purpose is to allow capturing different levels of noise and convert them
into digital signals.

Thermal sensors – These include thermometers, thermal flux sensors, and other sorts
of temperature measuring devices.
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◦ True single-chip 2.4 GHz IEEE 802.15.4 compliant RF transceiver with baseband
modem and MAC support

DSSS baseband modem with 2 MChips/s and 250 kbps effective data rate.
Suitable for both RFD and FFD operation

◦ Low current consumption (RX: 18.8 mA, TX: 17.4 mA)
Low supply voltage (2.1 – 3.6 V) with integrated voltage regulator
Low supply voltage (1.6 – 2.0 V) with external voltage regulator

◦ Programmable output power
No external RF switch / filter needed
I/Q low-IF receiver
I/Q direct upconversion transmitter
Very few external components
128(RX) + 128(TX) byte data buffering
Digital RSSI / LQI support
Hardware MAC encryption (AES-128)
Battery monitor

*source:CC2420 Technical Data Sheet [cc2 08]

Table II.2: CC2420: Summary of specifications.

Environment sensors – These sensors are used to detect special weather conditions,
including humidity sensors, dew warning alarms, moisture detectors and rain sen-
sors.

Optical sensors – This category refers mainly to light sensors, although there are oth-
ers like color detectors and infrared sensors.

Motion sensors – Several sensors fit in this category, including accelerometers, gyro-
scopes, inclinometers, and multiple positioning sensors.

Medical sensors – Medical conditions are monitored with special sensors like –among
others– blood pressure sensors and ECGs.

II.1.2 Main Sources of Energy Consumption

The overall energy consumption of the hardware platform is a critical aspect to take into
consideration during the selection of a particular sensor node. In equal conditions, the
particular technology and number of present components accounts for the life-time of a
node upon deployment. In general, strong restrictions come from the need of keeping
a low energy consumption profile, despite the possibility of adding energy harvesting
elements (e.g. solar panels).
This section overviews the main sources of current consumption in a typical WSN.
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The examples and indicative figures are taken from official data-sheets as an estimated
guideline. However, as technology is rapidly evolving, it is difficult to commit to any
statement of validity for these figures beyond an approximate order of magnitude. Cer-
tain elements, and in particular some sensors, are left aside of this analysis as they
require specific considerations depending on the target application domain.

Micro-Controller

Modern µCs can operate in one of multiple modes, each of them enabling or disabling a
subset of features to achieve a certain energy consumption level. Taking as an example
the MSP430, figure II.1 –extracted from the MSP430 technical data-sheets– shows the
energy consumption figures for each operating mode. Considering the difference between
the least and most consuming modes, there is a difference of approximately 350µA.

Figure II.1: Current consumption and description of power modes in the MSP430. Extracted
from the MSP430 data-sheets [msp 04].

RF transceiver

In terms of current consumption, RF communications are among the most expensive
operations in WSN. Table II.3 shows the typical current consumption of the CC2420
extracted from the transceiver’s data-sheets.
A comparison between this figure and the previous one shows that the current con-

sumption of a CC2420 in both “receive mode” and “transmit mode” is one or two orders
of magnitude higher than in the active mode of the MSP430. This is a clear motivation
for keeping radio activity at a minimum if energy efficient networks are envisioned. The
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role of power-aware protocols in reducing the active time of radio transceivers is essential
in saving energy and enlarging the system life-time.

Mode Consumption
Idle mode 426µA

Receive mode 18.8mA
Transmit mode:

−25dBm 8.5mA
−15dBm 9.9mA
−10dBm 11mA
−5dBm 14mA

0dBm 17.4mA

Table II.3: Current consumption and description of power modes in the CC2420 [cc2 08].

Memory

On-chip memory consumption is typically accounted for on the figures corresponding
to the current consumption of the µCs. Among the remaining kinds of memory, the
most common and with a higher impact on the overall current consumption is FLASH
memory.
As an example, in [Mainwaring 02] the authors estimated the power consumption of

continuous reading and writing operations on the integrated FLASH memory of a Mica
sensor node [Hill 02]. The result shows that while reading data the current consumption
is 1.111nAh, and while writing or erasing the consumption raises up to 83.333nAh.
One important characteristics of FLASH memory is that erasing is done in blocks (or

pages) which sizes varies between models. Note, in any case, that in terms of power
consumption writing and erasing operations are nearly one order of magnitude more
demanding than reading operations.

Life-time vs Energy consumption

There is a relation between the energy consumption of hardware components and the
effective life-time of sensor nodes. Under strict energy requirements, in [Mainwaring 02]
the authors detail the energy strategy to achieve a network life-time of 9 months in a
network of Mica motes. Based on a pair of AA batteries (approximately 2200mAh at
3V ), the authors estimate a conservative daily available current budget of 6.9mAh. The
current consumption is distributed among the node’s operations as shown in table II.4.
Table II.5 extracted from [Rossi 10] provides the life-time estimation for three sensor

boards. The table is based on a mesh network of nodes powered with a pair of AA
batteries reporting data once every 3 minutes.
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Operation nAh
Transmitting a packet 20.000

Receiving a packet 8.000
Radio listening for 1 millisecond 1.250

Operating sensor for 1 sample (analog) 1.080
Operating sensor for 1 sample (digital) 0.347
Reading a sample from the ADC Flash 0.011

Read Data Flash 1.111
Write/Erase Data 83.333

Table II.4: Power required by various Mica operations (extracted from [Mainwaring 02]).

Mode Mica2 MicaZ Telos
Wake-up delay 0.2ms 0.2ms 0.006ms

Sleep mode 30µW 30µW 2µW
Active mode 33mW 33mW 3mW

Data rate 19kbps 250kbps 250kbps

Life-time 453 days 328 days 945 days

Table II.5: Example of life-time vs energy consumptions on three sensor platforms.

II.2 Operating systems
Little work has been done towards the unification of the existing variety of Operat-
ing Systems (OS) targeting sensor networks. Well established standards like POSIX
[Rivas 03], including specific profiles for embedded systems, are too complex for the
limited availability of resources in typical sensor platforms.
The following list is representative of the current state-of-the-art. It provides a general

overview of the services offered by a typical OS in WSNs as well as of existing tools to
assist programmers in building and testing their applications.

II.2.1 Thread-based Operating Systems
Thread-based operating system have the advantage of following a well-known and ex-
tended programming model. They introduce a minimal learning-curve for application
programmers with experience in most general purpose OSs. However, in systems with
low availability of resources, the overhead produced by the scheduler and the handling of
tasks may result significantly large. Nevertheless, there are a number of available thread-
based OSs for WSN approaching in different manners the trade-off between offering a
full-featured OS and incurring in relatively low overhead.

Mantis OS

Mantis OS [Bhatti 05] aims at a low memory footprint, easy to program architecture, and
support for preemptive multiple threads. It follows a prioritized threaded programming
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model similar to classic POSIX with a scheduler based on priorities and a round-robin
policy for those threads with same priority.
The OS consists of a kernel with integrated scheduler, a command server and device

driver system. It supports mutual-exclusion and semaphores. It also integrates a low-
level communications stack for serial and radio communication interfaces, including a
simple Medium Access Control (MAC) layer and a device abstraction layer that provides
uniform access to devices. MANTIS OS is mostly implemented in C and has been ported
to a number of platforms.

FreeRTOS

FreeRTOS [RTE 09] falls in the category of a kernel rather than a full OS as generally
understood. It supports, among other features, prioritized and preemptive threads,
interrupt service routines (ISR), mutexes and queues and dynamic memory allocation.
FreeRTOS favors simplicity and portability over optimization. Nearly all the code

is written in C, with only a few assembler functions. The scheduler follows either a
prioritized preemptive or cooperative scheduler policy, depending on its configuration.
In the former, tasks with the same priority share CPU time in a round robin fashion,
while in the latter, context switches only occur if a task is blocked or yields.

OS Abstraction Layer

The definition of proper control mechanisms for the hardware platform into software
frameworks arises a number of portability issues. The Operating System Abstraction
Layer (OSAL) [Serna Oliver 10c] is designed to address these issues and diminish the
conflicts between different software and hardware platforms. In particular, it addresses
the discrepancies among different OS with respect to their functional Application Pro-
gramming Interfaces (API), hardware configuration mechanisms, resource management
and peripherals handling.
OSAL is an abstraction layer set on top of the OS, which translates system primitives

from the target glsOS into an unified API. Thus, application builders make use of a
common API and hence, portability among different platforms is reduced to the re-
implementation of the OSAL.
OSAL embraces the management of hardware configurations and access to specific

set-points which represent a major hook to performance trade-offs. It defines a subset
of OS primitives which satisfies the basic application builder’s requirements but at the
same time, remain simple to match most target OSs. The resemblance of the subset to
a POSIX [Rivas 03] OS API is motivated by the desire of reducing the learning-curve as
well as the preference of a neutral reference without specific features from any particular
platform.

II.2.2 Component-based Operating Systems
Component-based OSs are particular kinds of event-driven OSs. They achieve a sig-
nificantly low overhead due to their simplified scheduling mechanism. However, their



18 Chapter II. Overview of the State-of-the-Art

programming models may introduce higher learning times for unexperienced applica-
tion programmers. In some cases, the benefits of their low overhead is affected by the
difficulties of creating efficient implementations.

Contiki

Contiki [Dunkels 04] is an operating system designed for memory-constrained environ-
ments, such as sensor networks. It is built around an event-driven kernel [Duffy 07], and
features dynamic loading and unloading of individual programs and services. It sup-
ports a full TCP/IP stack via the µIP library, as well as programming abstractions via
protothreads. Contiki is implemented in C and has been designed to be easily portable
to new platforms.

TinyOS

TinyOS [Berkeley 09] is a popular run-time system specifically designed for networked
sensors. Its wide adoption is one of its main strengths together with the availability of
a rich library of networking and application components.
TinyOS implements an event-driven execution paradigm where every execution is

triggered by some external event interrupt. It provides physical device abstractions as a
conventional OS does. The programming model exposed by NesC incorporates the event-
driven execution, the concurrency model, and the component-oriented application design
of TinyOS. However, it requires the programmer to adopt a very careful programming
policy which may jeopardize the ability of reusing code in various deployments.

II.2.3 Virtual Machines
An alternative approach to achieve the abstraction of OSs, hardware platforms, and
architectures is to develop on top of Virtual Machines (VM). Squawk, Maté [Levis 02],
Sentilla [Corporation 09] and other VMs are built to target sensor networks and small
embedded systems. Despite the benefits of VM in terms of quick deployment and main-
tainability, it is arguable that the overhead in terms of execution and memory utilization
represents a serious inconvenience for complex deployments.
VMs are typically reserved for simple monitoring activities requiring low effort and

minimal configurations. This enables unexperienced users to adopt sensor networks
without requiring the assistance of experts. However, the performance and flexibil-
ity of these systems is not comparable to that of systems running native applications.
Nevertheless, further literature on this topic is available for reference in [Costa 07].

II.3 Real-Time Aspects
Adapting conflicting requirements and limitations of Real-Time Systems (RTS) and
WSNs and bringing both domains into a harmonic coexistence is a challenging problem
that has been approached from different perspectives. Existing methods propose a
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number of solutions and achieve –in some cases– well defined real-time methods for
WSNs.
Individual communication protocols introduce support for real-time within the typical

services provided by their respective networking layer. A bottom-up approach guaran-
tees the interoperability of different protocols as they are combined according to the
necessities raised by the particular application. However, such designs are typically
dependent on the accuracy and performance of lower and upper layers, and only a care-
ful combination with attention to their specifications may lead to complete real-time
networking stack.
Integrated approaches to communication frameworks with real-time support are an

alternative to the classic layered stacks. They offer closed solution without a clear sepa-
ration of layers allowing shortcuts that would not be possible in a layered architecture.
However, their flexibility in adapting to new scenarios which were not considered at
design time are significantly reduced.
In both cases, the effectivity of these solutions depend in great measure on the char-

acteristics of system models and their particular interpretation of real-time objectives.
The following is a retrospective analysis of existing methods representative of both cat-
egories.

II.3.1 Real-Time Communication Protocols

The following sections overview the current state-of-the-art in real-time networking pro-
tocols for WSN. The elaboration of a complete list of existing protocols is not feasible
due to the extensive literature on this field. However, in this section a significant number
of representative protocols is described, with especial attention to the timeliness related
issues as well as particularities of each method.

Real-Time MAC Protocols

MAC protocols [Demirkol 06] are responsible of the coordination between neighbor-
ing nodes in accessing a shared communication channel. Real-time communications
demand a deterministic resolution of any medium access conflict in order to achieve
time-bounded transmissions. Whether it is possible to achieve strict real-time guaran-
tees or not depends in first instance on the capability of the underlying MAC protocol
to grant access to the channel within a delimited time interval1. A rough overview of
the existing literature [Demirkol 06] allows us to classify real-time MAC protocols into
two main categories:
The first category includes all those protocols derived from pure Time Division Mul-

tiple Access (TDMA) [Kulkarni 04] as well as synchronous and off-line message schedul-
ing. The commonality among them is that they rely on decisions that are either taken

1Although many methods claim to guarantee bounded transmission delays, the fundaments of this
thesis are based in the impracticability of such bounds. For the sake of completeness, we overview
the existing literature as it is originally presented by the authors. However, in section II.5 we discuss
in detail the non feasibility of strictly bounded transmission delays in general WSNs
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off-line (e.g. message schedule tables) or arranged at run-time during a preliminary
configuration phase (e.g. distributed agreement of transmission slots).
The implicit contention-free mechanism of TDMA suggests that theoretical worst-case

transmission latencies should be easy to calculate. Each node has a pre-defined schedule
that reflects the next transmission slot at any given time. However, the schedule does
not account for the queuing mechanism nor manages temporary congestions which may
jeopardize the pre-computed transmission bounds. Moreover, the average latency of
such schemes tends to be larger than other solutions as they are designed to optimize
energy consumption rather than any timeliness aspect. Nevertheless, several real-time
adaptations that partially overcome these and other issues have been presented:
[Caccamo 02] proposes a prioritized protocol aiming at hard real-time in WSNs.

The protocol relies on a particular network topology, in which nodes are organized
in hexagonal cells. Intra-cell transmissions are scheduled according to Earliest Deadline
First (EDF) in a TDMA fashion, while channel allocation for inter-cell communica-
tions requires a router placed at the center of each cell. Routers are equipped with
two transceivers –one to receive, one to transmit– and assigned one of the 7 available
frequencies following a Frequency Division Multiple Access (FDMA) scheme. Need-
less to say, the singularity of the required topology, cost of the equipment, and strong
synchronization dependencies limit in great measure the applicability of this solution.
[Sahoo 07] presents RTMAC, a real-time MAC protocol providing delay guarantees.

Nodes are organized in cluster and their time-slot are calculated and assigned by the
corresponding cluster head –a special node with additional properties. RTMAC is de-
signed to reduce the high latency of classic TDMA protocols, allowing the re-utilization
of slots by non-interfering nodes. The protocol takes advantage of the geographical po-
sition of nodes, in particular their relative angle with respect to the cluster head, which
is used to determine non-interfering nodes. However, such a degree of precision in the
estimation of relative positions is challenging for a typical WSN.
More recently, [Gobriel 08] describes a number of promising adaptations to a classic

TDMA scheme specially addressed to WSNs. Parallel transmissions are solved with
specific graph-coloring heuristics, which improve the transmission latency while keeping
a low energy profile. The authors introduce the concept of slot stealing, which defines
a priority scheme for nodes to steal slots when the original owners leave them unused.
Nevertheless, it is questionable whether the efficiency of these heuristics remains accept-
able in real-world scenarios.
TreeMAC, presented in [Song 09], focuses on real-time high-data-rate sensor networks.

As other TDMA-based protocols, it divides time into slots and assigns them to individual
nodes. However, TreeMAC differentiates in that the number of assigned slots per node
is proportional to their hop-distance to the sink. Hence, the number of slots assigned
to a node of depth l in the network tree is –at least– equal to the sum of those from
all its child nodes (i.e. depth l + 1) plus its own requirements. TreeMAC addresses the
natural increasing congestion in tree-based schemes as the messages approach the sink
(i.e. the closer a node is from the sink the higher is the traffic).
The second group embraces protocols based on asynchronous medium access, similar

to those of general purpose networks (e.g. Carrier Sense Multiple Access (CSMA)). They
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aim at extending the default fairness-oriented behavior of classic MAC protocols offering
real-time performance. Authors often make use of hybrid solutions to achieve pseudo-
bounded delays with a better average performance than pure-TDMA. Nevertheless,
most solutions consist of a CSMA scheme combined with other methods like TDMA,
prioritization of messages, queuing policies, or specific network architectures.
[Watteyne 05] and [Watteyne 06] propose a hybrid MAC protocol for low-cost hard

real-time WSN. Their solution considers a linear network with all nodes separated at
least a distance dmin. Nodes in position to transmit wait for a back-off time propor-
tional to the distance between them and the last transmitting node. Hence, the further
node is granted with the channel access. In addition, two functional modes are possible:
protected and unprotected. Upon collision, the network switches to a cell-organized pro-
tected mode which guarantees collision-free transmission based on a channel reservation
mechanism. By alternating between modes, the protocol is able to provide real-time
support while still keeping acceptable average performance. Nevertheless, the topology
requirements and synchronization constraints restrain the applicability of this solution.
Z-MAC, presented in [Rhee 08] tries to combine the strength of TDMA and CSMA.

It reacts to the level of contention by dynamically switching between the two schemes.
As many other solutions, the aim of Z-MAC is to reduce the transmission delay while
achieving a good average performance. There are few solutions that explicitly pur-
sue real-time performance; among them, schemes like [Kumar 09] claim to guarantee
bounded delivery delays with pure CSMA. However, the constraints imposed by the
necessary models or the particularities of the evaluation scenarios makes them imprac-
tical for general deployments.

Real-Time Routing Protocols

Routing protocols for WSNs [Al-Karaki 04] present a significant number of challenges
in comparison with those of general communication networks. Despite the already men-
tioned resource constraints, these protocols have to deal with inherent properties of sen-
sor networks. Among them, a strong requirement for self-organization of nodes along
typically large networks, as well as unbalanced communication load due to the asym-
metry of message flows which converge to one or a few data collectors.
SPEED [He 03], [He 05] is one of the most popular reference papers within the real-

time community. This routing protocol introduces traffic control mechanisms to guar-
antee a desired forwarding speed across the multi-hop network. Speed obeys a stateless
non-deterministic geographic forwarding scheme. The forwarding node chooses among
its neighbors one of those capable to provide a satisfactory ratio between the forwarding
latency to the next hop and the achievable increment in distance (i.e. speed). However,
if none of the neighbors is able to satisfy the required speed, the packet is dropped
with a certain probability. Moreover, congested areas are avoided with a back-pressure
mechanism. The main drawback of SPEED is that its real-time guarantee mechanism is
based on traffic control and message flow balancing. Messages that cannot be delivered
with their required end-to-end delay are systematically dropped to reduce the network
load. Therefore, guarantees are not effectively enforced and the performance is highly
dependent on the network load.
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MMSPEED [Felemban 05],[Felemban 06] is an extension to SPEED that includes traf-
fic differentiation. For each kind of traffic, it provides multiple packet delivery speeds.
Similarly to SPEED, MMSPEED allows message dropping if a certain threshold is
reached before a successful delivery is achieved. In addition, it supports probabilis-
tic end-to-end guarantees by introducing probabilistic multi-path-forwarding. Hence,
messages are forwarded by multiple paths until a desired probability of delivery success
is reached.
Note that both SPEED and MMSPEED are based on geographic forwarding, which

assumes that nodes are location-aware. Equipping nodes with the required resources to
obtain precise position coordinates (e.g. GPS devices) is often above budget, and the
effects of imprecise low-cost solution may jeopardize the protocol performances.
RPAR [Chipara 06], tries to approach end-to-end delay guarantees with the additional

consideration of maintaining a low energy consumption profile. It is based on a power-
aware forwarding policy with the assumptions of static network and location-aware
nodes. The forwarding mechanism tries to adjust the selected transmission-power at the
radio transceiver to achieve the lowest possible energy consumption while maintaining
the delay guarantees.
In [Soyturk 08], the authors introduce a similar approach named SWR making use

of multi-path message forwarding. In SWR, each node has a weight, which can be
determined according to multiple parameters. When a message is sent, the weight of
the sender is annotated in a specific header field. Transmissions are done by broadcasting
the message. Further, each successive hop retransmits the message if the value of its
weight field is within the node’s own weight and that of the sink. This controlled
flooding mechanism generates multiple paths to the sink, while the use of additional
Quality of Service (QoS) parameters allows SWR to reduce the energy consumption
while providing a satisfactory end-to-end delivery ratio.
In [Shashi Prabh 07], the authors explore conflict-free message scheduling technics

to provide end-to-end guarantees. Their method introduces no overhead in the con-
struction of a collision-free schedule, which guarantees that messages are successfully
delivered within deterministic bounds. However, this method is constrained to hexago-
nal topologies which may rarely appear in real-world deployments.
The selection of forwarding nodes to define a routing path have been analyzed from

different perspectives. In [De Couto 03], the authors perform a series of experiments
which conclude that focusing on obtaining the shorter paths is not necessarily the op-
timal routing strategy. The main reason of their findings lays on the radio anomalies
which are discussed in section II.5.
Following a similar approach, [Korkmaz 03] presents a probabilistic analysis with

multi-objective optimization criteria to obtain the most bandwidth and delay con-
strained paths. Adopting a probabilistic approach in which the available bandwidth
and delay are characterized by random variables the authors offer a method to compute
routing paths satisfying pre-defined QoS objectives.
Despite not presenting a particular routing strategy, it is worth to mention the work

presented in [Wang 09]. The authors provide a complete analysis of the latency of
an end-to-end transmission in a WSN which may be valuable in the construction of
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timeliness methods. The strength of this method lies on the decomposition of delays
and the statistical characterization of the end-to-end latency of messages.
A similar method approached from a different perspective is described in [Serna Oliver 09b].

Chapter III presents an extended discussion on the details of this approach.

II.3.2 Real-Time Frameworks and Middleware

Middleware and frameworks provide a set of services allowing the interaction of nodes
with the guarantee of particular properties. The distinction between middleware and
frameworks is, to some extent, arbitrary. Frameworks tend to specify a set protocols or
a cross-layer approach providing these services. On the hand, middleware may be stand
alone layers providing additional services on top of the basic network stack. However,
different authors refer to their approaches as one or the other without a clear distinction.
The definition of general frameworks and middleware for WSNs has been explored by

different authors. In [Hadim 06] and [Henricksen 06] the authors explore in detail the
available literature. In most cases, general frameworks and middleware are focused in
providing energy-aware solutions with best-effort performance. However, in this section,
we overview a number of them providing explicit support for real-time or QoS methods.
RAP [Lu 02] is a real-time communication architecture following a cross-layer design

similar to the concepts presented in SPEED. It integrates a query/event service layer;
a location-addressed service; a geographic forwarding protocol supported by a velocity
monotonic scheduler. At the bottom of the communication stack, a prioritized MAC
protocol guarantees the timely transmission of messages.
The authors of RAP present an extension in [Abdelzaher 03] including a transport

protocol which allows a higher degree of abstraction of the communication process. The
same work introduces a programming language that completes the framework providing
abstract representation of the physical elements conforming the network.
The work in [Yu 03] explores the challenges and issues in designing middleware for

WSNs. It presents a cluster-based middleware architecture which provides a VM model
for diverse applications on WSNs. The work considers QoS requirements in its design,
although it is unclear which mechanisms enforce them.
In [Sharifi 06], the authors present a middleware mechanism explicitly supporting

QoS. The proposed cluster-based organization follows a publish-subscribe model taking
advantage of the redundancy of service providers to increase fault tolerance. The method
is evaluated with respect to real-time support as well as energy consumption.
More recently, the work described in [de Freitas 08] offers a real-time perspective of a

flexible middleware aiming at providing QoS support in heterogeneous sensor networks.
The authors make use of aspect and component oriented models in combination with a
mobile multi-agents approach. Finally, the work introduces a control protocol to reduce
the unnecessary message exchange.
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II.4 Principles of Quality of Service

The evaluation of complex systems requires the establishment of measurable objectives
and proper evaluation criteria. These elements are often referred as QoS. However,
the definitions of QoS and other related terms are not homogeneous among existing
literature work.
This section tries to bring up the essential terminology and establishes a solid meaning

for terms with divergent interpretations. QoS is often referred to as an intrinsic property
somehow linked to the system performance, but rarely expressed as a well-defined set of
quantifiable metrics. The following is a list of common terms and particular definitions
adopted in the reminder of this thesis.

QoS Terminology:

QoS Metrics – A QoS metric (or just metric) is a measurable evaluation criterion
reflecting a quantifiable property of the observed system. Implicitly, the definition
of a metric may determine the criteria and range of values which express different
quality levels. Examples of metrics are: “message latency”, “energy consumption
per message”.

QoS Requirement – A QoS requirement is a constraint set on a QoS metric used to
evaluate the system performance. Generally, QoS requirements are set to measure
the system performance, although this can be done by multiple metrics. Examples
of requirements are: “all messages arriving within 10ms”, “energy consumption per
message bellow 100µJ”.

QoS Level – The level at which a QoS requirement is satisfied is called the QoS level.
Some requirements may allow multiple degrees of fulfillment while others can only
be fully fulfilled or else completely unfulfilled. A QoS level may be indicated by a
percentage of fulfillment or as a binary value.

QoS Parameters – Parameters are system variables that determine the behavior of
the system itself. The value of a given parameter can be observed, but not al-
ways configured. The nature of parameters and their impact on system properties
determine whether these can be influenced by the system user (controllable param-
eters) or they are governed by uncontrollable sources (uncontrollable parameters).
Controllable parameters include system configuration points (e.g. protocol param-
eters, system set-up). On the other hand, uncontrollable parameters refer to those
given by the environment or fixed by design (e.g. ambient temperature, radio
propagation speed, hardware design).

QoS Set-Points – Controllable parameters may be adjusted independently or present
correlations in their set of possible values. The interaction between conflicting
parameters may lead to unfeasible set of values which cannot be applied to the
system. A set-point is a set of feasible parameter values that satisfy the QoS
requirements at a QoS level. Optimal set-points are those which fully satisfy all
QoS requirements.
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QoS Trade-Offs – In some cases, multiple requirements can only be satisfied with
unfeasible combinations of parameter values. Hence, only sub-optimal set-points
are possible, non of them leading to the complete fulfillment of all requirements.
A QoS trade-off is a compromise among all the feasible set-points that satisfies a
maximization criteria for the QoS level of each QoS metric.

II.5 General Misconceptions
Existing timeliness solutions aim at enabling WSNs to operate with real-time guaran-
tees. However, the design and evaluation of these methods are often based on naive
assumptions that constrain their applicability in real-world deployments.
The definition of ambitious goals –which cannot be satisfied unless severe assumptions

are granted– is one of the major drawbacks of current real-time methods. This over-
estimation of capacity entails important simplifications during the evaluation process.
Among others, common practices include the definition of misleading evaluative criteria
and the loss of generality due to ad-hoc test-beds. Hence, the quality assessment from
a timeliness perspective becomes unclear because the methods are evaluated against
unrealistic models.
In some cases, general hardware platforms are extended providing additional function-

alities based on theoretical requirements to enable better QoS methods. However, some
of these solutions overlook at the additional overhead and cost implications of these
components. The consequences of unrealistic hardware properties as well as excessive
resource demands affect the validity of general real-time and QoS methods.
This section, presents –from a timeliness perspective– three main aspects of existing

real-time solutions for WSNs. First, the section overviews the different goals of existing
real-time methods deeming their suitability if applied to a realistic WSN. Secondly, it
evaluates the consequences of a number of implicit and explicit assumptions taken in
the design of these methods. In most cases, these assumptions have a significant impact
on the real-time performance and constrain the applicability in real-world deployments.
Lastly, the section examines different evaluation criteria and identify common miscon-
ceptions of the evaluative process that can lead to misguided conclusions.
The analysis of real-time methods carried out in this section is based on typical soft-

ware and hardware platforms for WSNs. In particular, the analysis of misconceptions
contemplates the consequences of explicit and implicit assumptions regarding hardware
properties or unconventional resources. Based on this analysis, the section concludes
with a number elementary considerations, which allow mitigating the impact of unreal-
istic assumptions and facilitate meaningful evaluation tests that increase the confidence
of these methods.

II.5.1 Misleading Real-Time Objectives
The solid background of real-time systems is in many aspects a source of inspiration
to provide real-time support in new research areas. However, the inherent capacity
of satisfying real-time constraints may be significantly different from one domain to
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another. Overseeing the fundamental incompatibilities between both domains represents
one of the most common misconceptions in real-time methods for WSNs.

Assumption 1 The goal of a real-time method is to provide hard real-time guarantees
for each transmitted message.
The notion of hard real-time systems [Buttazzo 05], in which each event is as-
sociated with a strict deadline, does not match with the general architecture of
WSNs. Messages are transmitted via hop-by-hop forwarding through unreliable
links; low end-to-end delivery ratio may occur [Zhou 04]; and the low-energy profile
of most communication stacks increases the probability of expiring the maximum
retransmission attempts without success. A consequence of these facts is that any
individual transmission is susceptible to fail.
Guaranteeing strict deadlines requires excessive resources and complex algorithms
for which WSNs are not designed. A more elaborated notion of timeliness and the
definition of adequate metrics to evaluate the QoS, accommodate to a larger extent
the inherent properties of WSNs. For example, in [Serna Oliver 09c] the authors
present a notion of timeliness, which based on the current real-time performance
of the network, extracts the probability of messages being transmitted within
bounded intervals. This approach is explored in detail in III.
Efficient real-time methods should encourage the analysis and exploitation of net-
work trade-offs, adapting their timeliness performance to the suitability of expend-
ing resources.

II.5.2 Common Protocols Assumptions

Existing protocols are not free of assumptions. In this section we enumerate a number of
misleading assumptions in existing protocols and their implications in realistic scenarios.

Assumption 2 Availability of resources
In a number of existing protocols, it is common practice to base the methods on
the assumption of specific hardware resources. Although it is possible to conceive
a plausible scenario to justify these assumptions, they are not valid for the general
case as it delimits the applicability of these solutions to ad-hoc platforms. For
example, GPS devices are mentioned by [He 05], [Chipara 06], and [Felemban 06];
[Caccamo 02] assumes multiple radio transceivers; and [Ergen 06] and [Pothuri 06]
provide solution based on unconstrained nodes acting as access points.
Assumptions on such equipment imply the loss of generality and restrain the ap-
plicability of these methods to particular cases. Mitigating the implications of
such assumptions by alternative methods strengthens both the validity and ap-
plicability of the method. However, the consequences of such substitutions may
introduce inaccuracies with respect to the dedicated hardware that must be taken
into account (e.g. increased overhead or lose of accuracy with respect to dedicated
hardware).
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Data Link Level

Precise models of radio transceivers and wave propagation through the air are inherently
complex due to the interaction of a considerably large number of physical laws. However,
their accuracy may determine the validity of real-time models built on top of them.
The trade-offs between accuracy and simplicity are not straight forward, and lead to
different levels of precision. The following aspects have a significant impact on the data
link models.

Assumption 3 Radio links are symmetric and stable over time. Transmission range
follows a radial pattern equal to the interference range.
This set of assumptions has been widely discussed and refuted. Radio transmis-
sions are neither symmetric nor stable over time as shown in [Woo 03], [Zhou 04].
Both studies conclude that the transmission range of omnidirectional antennas
is not regular for all directions and varies over time even in static set-ups. In
[Holland 06], the authors experiment with the vertical placement of nodes and
conclude that nodes placed a distance above the ground achieve a significant larger
transmission and reception range.
From a timeliness perspective, the implications of unrealistic radio models intro-
duce a number of important drawbacks. In the first place, in real-world scenarios
the delivery ratio drops due to radio anomalies [Turau 06]. Hence, the necessary
mechanisms to ensure successful transmission within strict deadlines must be reen-
forced. Moreover, further nodes are typically preferred by message forwarders, as
they offer a shorter hop distance until the sink. However, these nodes may be
located within the boundaries of the effective transmission range, where links suf-
fer from a high bit error rate (BER). In [De Couto 03], the authors explore the
use of different metrics other than the distance-to-sink in order to determine the
quality of paths. Their study reveals that the elaboration of a path metric is not
straightforward and may require the combination of different indicators.
Broadcast messages, which are often used to build network trees, also suffer from
similar effects. For example, a node closer to the sink will broadcast “HELLO”
messages to its neighboring nodes, which will then register the source as the for-
warding preference for their traffic. However, some of these child nodes may not
be able to send their messages back, either due to the non-symmetric range of
the radio devices or because of temporal instability. In [Herms 06], the authors
explore further this effect and propose a simple method to determine stable links
based on the consecutive reception of enumerated broadcast messages.

Assumption 4 A radio transceiver is either in transmitting or receiving mode, or turned
off.
The common assumption with respect to the radio transceiver is that at any time,
it is either turned off or in one of two possible states: receiving (Rx) or transmitting
(Tx). However, the transition between these two modes produces a third state in
which the transceiver is neither listening nor sending out any signal. This, in
general, is widely neglected in simulation models, despite accounting for a large
number of collisions. In real-world scenarios, it introduces a large enough interval
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of time –e.g. 192µs in a TI CC2420 [cc2 08]– between sensing the channel and
being able to start transmitting. During this gap of time, other nodes sensing the
medium may also start transmitting, which may lead to collisions if both nodes
are within their interference ranges.
From a timeliness perspective, the most relevant impact of this effect is again a
notable decrease of the effective delivery ratio, which indirectly affects the perfor-
mance figures of real-time protocols validated against simplistic models.

Assumption 5 The received signal strength (RSSI) is proportional to the distance be-
tween sender and receiver.
The relation between RSSI and the distance between the communicating parts is
not as straight forward as often assumed. In [Newport 07], the authors analyze
the signal strength measured at increasing distances and conclude that although
the average signal strength shows a correlated trend with respect to the distance,
this cannot be extrapolated to individual measurements. This conclusion is shared
in [Zhao 03], which additionally explores the correlation between signal strength
and packet loss. They found out that typically, high signal strength produces
low packet loss, although surprisingly, the opposite statement does not necessarily
hold.

MAC Protocols

Real-time MAC protocols try to guarantee bounded transmission delays between neigh-
bor hops. Their success depends in great measure on carefully defining the operational
boundaries with respect to timeliness. Certain assumptions, as the following, may lead
to unsatisfactory results.

Assumption 6 If no other node in the network is trying to access the medium, the
medium is free.
The assumption of complete isolation with respect the the wireless medium is not
safe. Some existing methods (e.g. [Mizanian 09], [Abdelzaher 04], [Watteyne 05])
and most TDMA scheduling policies (e.g. [Sahoo 07], [Mavromoustakis 09]) are
designed under the assumption of having a constant amount of network capacity
at their disposal.
Nevertheless, communications may still suffer from external interferences and re-
duced connectivity due to weak link. As a consequence, messages may result
corrupted or not transmitted, despite theoretical guarantee of conflict-free com-
munications provided by the protocol.
Protocol designers must take into account that RF communications are prone to
uncontrollable interferences that may enter in conflict with TDMA schedules as
well as with contention-free intervals. The assumption of a completely isolated
environment could be a valid claim for testing purposes. However, the calculation
of real-time delay bounds based on this principle is not accurate.

Assumption 7 WSNs can be organized in fixed topologies which remain stable for the
entire network life-time.
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The restriction to a particular network topology is common in some real-time
protocols (e.g. [Shashi Prabh 07]). Although it is a legitimate requisite for char-
acteristic scenarios, the implications of such assumptions are questionable in real
deployments. In fact, provided that factors such as the radio anomalies discussed in
assumption 3 are taken into account, the relation between the physical placement
of nodes and their connectivity over time with neighbor nodes is not constant.

Routing Protocols

Routing protocols are not exempt of misleading assumptions which cannot be always
taken for granted.

Assumption 8 Location-awareness.
Equipping each sensor node with a GPS device is out of budget for most WSN
deployments. Realistic assumptions should be made also with respect to the avail-
ability of resources. Nevertheless, multiple location algorithms are available and
can be combined with real-time methods. However, it is important to consider
the unavoidable error of these algorithms in finding the exact position of a node.
For example, the performance of routing protocols based on geographic forward-
ing (e.g. [He 03]) may be directly affected or seriously jeopardized if these errors
occur.

Assumption 9 The maximum length of any routing path is bounded. Hop distance is
proportional to physical distance.
Assuming upper bounds on the number of hops necessary to reach the sink from
a given source node (e.g. [Ergen 07]) is a very practical but unrealistic restric-
tion. The elaboration of routing protocols that define the trajectory of messages
towards the sink following the “shortest path” may result in low throughput. In
[De Couto 03], the authors analyze this effect and provide a number of alternative
metrics.
Establishing a realistic upper bound requires strong assumptions on the network
dynamics which are often out of control. Nevertheless, the establishment of a
bound for the “longest possible path” introduces an implicit constrain in the pro-
tocol scalability.
The assumption of correlation between the physical distances and the number of
hops in a path is on itself based on the assumption of a uniform distribution of
nodes. However, given the arbitrary placement of nodes in typical WSN deploy-
ments this cannot be generalized. The distribution and density of nodes may
be responsible of non-intuitive relations between the hop count and the physical
distance.

Assumption 10 Messages that are not expected to satisfy their deadlines can be dropped.
This case may not be considered an assumption but rather a common behavior
of real-time routing protocols as a consequence of aiming at strict deadlines (see
assumption 1). In most WSN scenarios with timeliness requirements, there is an
added value to the freshness of data. Following this principle, old messages are
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often discarded at intermediate hops if the algorithm estimates that their end-to-
end deadline cannot be fulfilled.
However, guaranteeing end-to-end delays is not effective if the protocol itself con-
templates the possibility of dropping unsuccessful messages based on estimates. In
some cases, receiving old data may produce better results than receiving no data
at all. Alternative approaches may consider adaptive methods with the ability of
defining flexible deadlines.

II.5.3 Imprecise Evaluation Criteria

Choosing meaningful evaluation criteria has a great impact on the performance figures
and the quality of the evaluation procedure. In this section, we discuss some important
misconceptions affecting the generalization of evaluation analysis in realistic scenarios.

Misleading Theoretical Proofs

Assumption 11 Everything can be turned into an analytical expression.
With the use of properly validated models, meaningful bounds for the network
latency or other performance metrics can be inferred. However, in many cases the
necessary level of abstraction introduces serious simplifications of complex systems;
for example: assumptions about traffic pattern distributions, service times, or the
minimum network density.
Analysis of average-case scenarios provide theoretical bounds for the figures of
interest. However, introducing all possible factors that could interfere in the worst-
case scenario is practically unfeasible in analytical expressions.

Assumption 12 The distribution of average (service time/transmission latency/queue
size) is constant during the entire network life-time.
This assumption is correlated with the previous one and reflects the unfeasibility
of analytical expressions to capture the dynamic behavior of a WSN.

Simplistic Simulations Models

Assumption 13 “Our model reflects accurately the physical properties of ...”.
Due to the complexities of physic laws and the propagation of waves, a realistic
radio model including all possible anomalies is practicably unfeasible. Channel
access, environment, and interferences are as important to model as the method
being evaluated. Simplistic models may hide design flaws or applicability limita-
tions that appear in real-world deployments.
Experiments such as [Zhao 03], [Turau 06], and [Yarvis 02] show that the deviation
between simulation results and real test-beds are not negligible. However, the
additional level of complexity involving a real test-bed is not always affordable.
Nevertheless, an appropriate validation process can lead to sufficient levels of ac-
curacy for the most significant figures. For example, in [Rousselot 09], the authors
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profile the necessary steps to achieve accurate evaluations of timeliness protocols
with properly tuned simulations.

II.5.4 Considerations
Designing and implementing timeliness methods for WSNs without relying on misleading
assumptions is a challenge that still needs further attention. The definition of appro-
priate objectives and a careful validation of models are crucial to achieve high quality
methods.
The following list of considerations summarize the main problems of existing methods,

and may help overcome a number of popular misconceptions constraining the quality of
timeliness solutions:
◦ Hard real-time solutions require strict deterministic models that are not compatible

with WSNs. Adaptive methods and a proper definition of QoS may reduce the number
of necessary restrictive assumptions.
◦ Realistic radio models are difficult to achieve, yet crucial in the evaluation of timeliness

models. The careful validation of data link models plays a significant role in the
elaboration of satisfactory methods.
◦ RF communications in WSNs are typically exposed to many sources of interferences.

MAC protocols have to be robust enough to deal with unstable channels and weak
links.
◦ Effective routing protocols should be able to exploit timeliness without requiring re-

strictive resources. Scalability and adaptiveness are also important figures to evaluate.
◦ Validation criteria must be consistent with the scenarios for which the evaluated

methods are designed. Simplistic models may lead to optimistic figures that do not
match the real performance.

II.6 Chapter summary
This chapter overviewed the necessary background to further developing the contents of
this thesis. Through its sections, it presented a prospective analysis of the state-of-the-
art exposing the main open issues and points of interest with respect to real-time and
WSN.
The chapter covered the architecture of typical WSNs including aspects from the

software and hardware platform as well as the OS. Further, it surveyed the main aspects
regarding real-time and the existing state-of-the-art with respect to the networking
protocols. Following, the chapter brought up the essential terminology regarding QoS
and establishing a solid meaning for terms with divergent interpretations.
The chapter concluded with an enumeration of common misconceptions and mislead-

ing practices in current real-time methods for WSN.





Chapter III

Timeliness in Wireless Sensor Networks

The inherent properties of Wireless Sensor Networks (WSN) introduced in chapter II
constitute an unfavorable environment for the enforcement of real-time constraints. The
unfeasibility of a typical network stack to guarantee time-bounded point-to-point trans-
missions clashes with the aimed ambition of fulfilling strict end-to-end delays.
Fundamental aspects suggest that alternative approaches need to be explored if mean-

ingful timeliness guarantees are pursued. These approaches may require a significant
change of objectives as well as the establishment of an appropriate set of assumptions
suitable for typical WSNs.
This chapter provides a thorough analysis of the essential flaws in the timeliness

approach currently exploited in WSNs. Moreover, it explores in detail a new direction
towards approaching timeliness guarantees in accordance with the imposed properties
and constraints of a typical WSN. The chapter is organized as follows:
Before entering in details, section III.1 settles the terminology and basic definitions

which will be used along the rest of the thesis.
Section III.2 is divided in two parts. First, it analyzes the most extended classic

notion of timeliness in the area of WSN identifying its limitations and fundamental
flaws. Next, it presents a generalized timeliness notion, which provides a means to
express meaningful timeliness in typical WSNs without restraining their applicability.
The generalized notion differs from the classic in terms of requirements and assumptions,
and opens an alternative path to pursue timeliness guarantees.
As a proof of concept, section III.3 presents a probabilistic algorithm for the estimation

of end-to-end latency of message transmissions in WSNs. This method is based on the
generalized timeliness notion and allows to estimate -with satisfactory accuracy- the
distribution function of end-to-end routing paths.
Finally, the chapter concludes with a summary.

33
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III.1 Definition of Timeliness
In general terms, timeliness refers to the occurrence of events at suitable or opportune
instants of time. More particularly, in Real-Time Systems (RTS) timeliness is a quality
metric that evaluates how opportune is the time of occurrence with respect to the
associated event. In other words, the metric evaluates the punctuality (or not) of the
event.
As in any other metric, the evaluation of timeliness involves the definition of a mea-

surable requirement that can be quantified. The simplest way to measure a metric is
to define a boolean condition that can be either satisfied or not. However, it is also
possible to define complex expressions providing a range of values according to different
levels of fulfillment.
We refer to the notion of timeliness as the conceptual notion that defines the evaluation

of time constraints in a system. The notion itself does not determine the real-time
performance of a system, however, it defines the way in which timeliness requirements
are expressed and measured. Consequently, it conditions the applicability of real-time
methods relying on it and delimits the chances to exploit timeliness.

Examples:

(a) The most extended notion of timeliness in RTSs (e.g. [Buttazzo 05]) allows individ-
ual deadlines to be associated for each event (e.g. task instance). Hence, the metric
is evaluated as a boolean variable that indicates whether an event occurred within
a given time interval or not.

(b) In other systems, the notion defines both an earliest and latest instant of time for
the event to occur. As an application example, the time window in which the airbag
of a car must be inflated after a collision is tightly determined by physic laws. Either
a too early or a too late inflation of the air cushion may result unsuccessful, or even
produce further injuries to the passengers. Hence, the notion of timeliness of such
a system must allow expressing additional constraints that define bounds for both
ends of the interval.

(c) The notion of of (m, k)-firm deadlines [Hamdaoui 95] addresses the characterization
of timing constraints of real-time streams. For a stream of events, it evaluates
timeliness satisfactorily if at least m out of any k consecutive streams meet their
deadlines. Otherwise, it is considered a dynamic failure.

(d) Other notions of timeliness may allow to express a function (continuous or discrete)
to evaluate numerically the instant in time when the event occurs (e.g. utility
functions [Li 04]). The value is often inversely proportional to the distance between
the occurrence of the event and some earlier reference in time. Applications with
such requirements include multimedia systems in which media units (e.g. video
frames) should be presented to the user at precise instants. Late or early deliveries
reduce the perceived quality although to some extent, they may be preferable than
no delivery at all.

Figure III.1 illustrates the effects of the above mentioned notions of timeliness on the
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evaluation of the quality metric.
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(a) Expressing timeliness constraints by means of
a strict deadline
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Figure III.1: Effect of the timeliness notion on the evaluation of the quality metric.

III.1.1 End-to-End Timeliness
The networking nature of Wireless Sensor Networks (WSN) introduces different levels
at which timeliness constrains can be expressed and observed. Implicitly, each network
layer will have a different view of timeliness. While a MAC protocol will care about the
latency to forward a message to an immediate neighbor, routing protocols will deal with
a multi-hop scenario with additional impediments not present in the former (e.g. path
discovery, cul-de-sacs, etc). Similarly, at the application level, timeliness constraints
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are given for functional units (e.g. “report alarm to sink”), which do not reflect the
particular vision of underlaying layers.
For higher networking layers (i.e. routing or above), it is common to express timeliness

from an end-to-end point of view. The significance of this metric is centered on the total
communication latency, measured from the instant of a message being transmitted by
the source node until it reaches its final destination. However, possible incidences arising
during this process are not relevant to the metric (e.g. the particular path across the
network or the number of retransmission required).
This thesis relies on the impossibility of achieving strict end-to-end delay guarantees

in WSNs (see section II.5 for argumentation). Nonetheless, the objective of this chapter
is to show that it is possible to elaborate a meaningful end-to-end timeliness metric
suitable for WSNs.
The following section presents a thorough analysis of the weakness of the classic notion

of timeliness and presents a new notion better suited for WSNs.

III.1.2 Timeliness as a Qualitative Metric in WSN

Although timeliness is an important Quality of Service (QoS) metric in most distributed
applications, it is often pushed into a secondary role in WSNs. The reason lies in the
supremacy of energy consumption as the top priority QoS metric.

Nevertheless, timeliness is an intrinsic quality metric which grows in relevance with
the expansion of WSNs to time-sensitive scenarios. The vast majority of applications
in sensor network deployments perform monitoring and sensing tasks involving time-
critical environmental variables. For example, typical applications include the detection
of floods or fire, security surveillance, elderly care, or health monitoring of herds.
In general, the selection of a suitable timeliness notion for a specific system should be

directed by its particular constraints. As an example, most Hard Real-Time Systems
(RTS) express their time constraints in the way of strict deadlines. This is appropri-
ate when the time constraints are directly extracted from physical properties that force
events to occur in a timely manner (e.g. the ABS sub-system in a vehicle is constrained
by physical variables related to the speed of the car, rotation of the wheels and other
factors, which determine the right instant for the system to actuate). However, other
systems in which time constraints are introduced artificially to achieve real-time perfor-
mance may express their timeliness constraints in a less strict manner.
Quantifying the tolerance towards faulty timeliness performance in a system is a

challenging problem which requires a profound knowledge of the system aided by a
proper timeliness notion with the ability to express suitable constraints. Section III.2
explores in detail the convenience of a suitable timeliness notion which enables the
exploitation of timeliness as a quality metric.
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III.2 Notions of Timeliness
The notion of timeliness currently used in WSNs derives from general purpose networks,
which at the same time, inherited it from classic RTSs. Thus, the metric is evaluated
as the capacity of individual messages to fulfill their associated strict end-to-end dead-
lines. If a message has not been delivered before the deadline expires it is considered
a failure, regardless of the exceeded amount of time. In fact, it is a common practice
of many existing protocols to discard messages at one of the intermediate hops if the
deadline has already expired (e.g. [He 03]). Even in some cases, the protocol applies
an earlier message dropping policy based on estimations made at run-time. However,
this practice introduces the risk of rejecting messages based on pessimistic estimations,
which otherwise could have achieved their end-to-end delay.
Enforcing the classic notion of timeliness in WSNs has a major drawback, namely,

that the assumptions and system models necessary to provide timeliness guarantees in
RTSs do not hold in WSNs.
In this section, we analyze the most extended notion of timeliness used in real-time

WSNs literature, stressing the limitations and weak points that arise under realistic
scenarios. Later on, we introduce a generalized timeliness notion which suits the re-
quirements of WSNs without the need of over-constraining the system models. Finally,
we show that the existing methods can be easily adapted to take advantage of the
generalized notion without much effort.

III.2.1 Classic Real-Time Notion of Timeliness
The classic real-time notion of timeliness is conceived to provide timeliness guarantees
in processor scheduling. As a performance metric, it evaluates timeliness as the capacity
to provide a feasible schedule of tasks which fulfill their relative deadlines.
Several scheduling policies and task models exist, but the basic principle can be reduced
to the following:
Real-Time schedulability analysis: Given a set of tasks Π –periodic, aperiodic or

sporadic– to be executed on a processor, each task πi has a deadline di relative to
its release time. The real-time schedulability analysis will find whether a feasible
schedule exists, such that all task instantiations of Π (i.e. jobs) are guaranteed to
fulfill their execution within their release time and relative deadline.

The associated implicit notion of timeliness allows expressing a relative deadline that
delimits the execution window for each task. As a consequence, the potential to ex-
ploit timeliness is limited to ensuring feasibility based on the execution window. In
other words, the available computation time required by each job is guaranteed at the
processing unit (i.e. CPU) within the delimited time window. The exact instant of
execution is not relevant as long as the constraints are fulfilled, and it may vary for each
instantiation.
Despite its simplicity, this notion of timeliness provides an adequate fit to exploit

timeliness on classic processor scheduling. A closer look into the system models and
their requirements allows to justify this adequacy based on the following observations:
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(a) the behavior of CPUs is strictly deterministic; (b) the execution of tasks is local and
the overhead due to the system handling can be neglected without harming the final
schedule; (c) the probability of malfunction is very low; and (d) the simplicity of the
system model allows exact analysis to ensure schedulability guarantees.
Note that the analogy between classic processor scheduling and other systems has

its limitations. In some cases, it may be adequate to perform adaptations (e.g. sim-
plifications of system models or addition of assumptions) in order to enable concrete
solutions to different problems than schedulers. However, exporting the timeliness no-
tion requires a careful analysis of the new system to ensure consistency with the models
and the reality that they represent.
For example, observation b is generally not valid in multi-processor scheduling and

observation c is not acceptable in fault-tolerant systems. In real-time networking, the re-
semblances with the original problem are generally less obvious, although the timeliness
notion is successfully applied in some cases (e.g. [Davis 07]). However, the particulari-
ties of wireless networks contain system properties that are rarely compatible with the
aforemetioned observations.
As a matter of fact, the inherent properties of WSNs allow little space for compar-

isons: the system does not behave deterministically (observation a); the system is -by
definition- distributed, and the effects of the overhead are significantly large (observation
b); the probability of interferences, contention due to collisions, and message losses are
high (observation c); and, given the complexity of the system and its dynamic behavior,
exact analysis is not feasible unless important and restrictive simplifications are done
(observation d).
This being said, the timeliness notion has been used -and still is- in the vast majority

of real-time solutions for WSNs. The consequence is that in most cases, restrictive
assumptions are needed to grant the applicability of the method. Examples of such are:
◦ Error-free medium channel without interferences, transmission errors, or retransmis-

sions at MAC level (e.g. [Mizanian 09]);
◦ Constant bandwidth between any two nodes (i.e. durable strong links) (e.g. [Sahoo 07]);
◦ Perfect clock synchronization between nodes;
◦ Fixed routes, known hop-distance, or constant routing trees during network lifetime

(e.g. [Ergen 07]).
These assumption, among others (see section II.5), may be acceptable in specific

scenarios. However, their enunciation imply the loss of generality, which is often not
explicitly acknowledged and leads to misinterpretation.

III.2.2 A Generalized Notion of Timeliness

In this chapter, we explore a different approach to achieve a better alignment between
the network properties and the notion of timeliness. Instead of restraining the models
to fulfill idealized timeliness properties, we propose to adjust the concept of timeliness
to suit the particularities of WSNs. The motivation for a suitable timeliness notion is
listed following:
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◦ The capability of the timeliness notion to express constraints should not encourage
applications to demand unfeasible degrees of performance that the network is not
able to provide. Hence, given the unfeasibility of WSNs to guarantee strict deadlines,
applications should not be requested to express constraints at individual messages.
◦ Given the variability in the timely response, a notion of timeliness expressing only

success or failure (i.e. deadline met or not) is of limited value to WSNs. Rather, a
continuous function to embody the level of conformance –or deviation– with respect
to the timeliness constraints would contribute in a more significant way to elaborate
meaningful timeliness protocols.
◦ The enforcement of end-to-end timeliness is limited and variable at run-time. A

meaningful notion of timeliness should account for this variability as well as provide
means to express and evaluate it at run-time the level of fulfillment.
◦ A timeliness notion should be able to express not only explicit constraints but also

provide means to reflect the current state of the network, enabling the exploitation of
network trade-offs to adjust to feasible levels.

Taking into consideration these aspects, we propose a generalized timeliness notion
that allows expressing timeliness constraints in accordance with the particularities of
WSNs. The generalized notion does not restrain the applicability of timeliness protocols
to specific scenarios. However, if necessary, it stills provide means to express strict
constraints in particular cases where they are reasonable.
Timeliness constraints are expressed in terms of a sequence of messages instead of

individually. This avoids conflicts with the non-determinism associated to individual
delivery delays while it still provides means of expressing meaningful constraints. A
sequence of messages is a consecution of messages with one identifiable characteristic.
Unless otherwise stated, in the remaining of this thesis we will refer to a sequence of
messages as a series of messages following the exact same path from source to destination
(i.e. same end-to-end route). However, the interpretation is intentionally left open as
it can accommodate to the end-to-end requirements generated at different networking
layers (e.g. application, transport). Other possible uses include:

◦ series of messages with same source and destination, but not necessarily following the
same path;
◦ messages arriving at a common sink independently of their source or end-to-end path;
◦ series of messages sharing a portion of a path (i.e. sub-path) for a given time;
◦ any combination of the above with the additional constraint of belonging to a partic-

ular message kind (e.g. “urgent messages”, “alarm”).

The generalized notion does not only allow the expression of requirements in terms
of timeliness constraints, but also provides means to express the current timeliness
performance at run-time. This is particularly meaningful in large WSNs as well as in
deployments in which the conditions are not known at design-time, or in general when
the uncertainties of the environment do not allow predefined constraints.
The generalized notion of timeliness is composed of the following parts:
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1. A time interval (ti, tj) with tj > ti ≥ 0, which delimits the target end-to-end trans-
mission interval for a sequence of messages;

2. The level of confidence –as a constraint or an observation– on successful end-to-end
transmissions within the interval, expressed by means of a probability 0 ≤ p ≤ 1.

Note that the notion itself neither compels nor defines a particular method to ex-
ploit timeliness. The notion solely provides means of expression that enables multiple
opportunities towards meaningful timeliness approaches.
For a better understanding of the generalized timeliness notion, the following example

introduces a use-cases showing its potential. An extended application with a proposed
algorithm for the estimation of end-to-end latency is described in section III.3.

III.2.3 Use-Case Example

The following use-case describes the scenario of the example:

Use-case: Assume a medium size WSNs. All existing nodes in the network perform
the common task of monitoring certain environment variables. Under normal
conditions, the values are processed and periodically transmitted to a data collector
node (i.e. sink) at a low frequency. As long as the readings remain under a
given bound, timeliness performance is not relevant and a low energy consumption
profile is prioritized. However, if one of the nodes detects sample reading beyond
the bound, it increases its monitoring and transmission frequency. In this mode,
timeliness is prefered over energy consumption.
A sample application following this behavior is the monitoring of air quality in
areas exposed to contaminating agents (e.g. chemical factories). Under normal
conditions, regular sensing at long intervals suffices to provide an overview of
the air quality. However, if an escape of polluting elements occur, the timely
transmission of sensor readings become crucial. Note that for the sake of simplicity,
we do not consider life-critical emergencies but rather situations in which timely
reports are needed for contention purposes.

From the description of the use-case that two modes are implicitly defined: (a) normal
mode, with low frequency monitoring and low energy consumption scheme; and (b) alert
mode, with higher frequency monitoring and prefered timeliness communications.
With these constraints, it seems obvious that the application must operate in two dif-

ferent modes matching the two use-cases modes. From a timeliness point of view, mode
a) does not introduce any challenge. On the contrary, mode b) introduces timeliness
constraints which must be confronted.

Current Approach – Classic Timeliness Notion:

Following a classic real-time approach, these constraints are introduced in the system in
the form of message deadlines. The selection of values can be done in multiple ways, e.g.
expertise on the field, performance figures extracted from simulation runs, or analytical
deduction from the problem constraints. However, if the decisions are taken either based
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on expertise or through system models, there are a number of considerations that cannot
be made at design time and affect in great measure the timeliness performance of the
system. Namely:
◦ the environment conditions at run-time (e.g. radio connectivity due to interfering

noise, high traffic due to multiple nodes reporting events, etc);
◦ the topology of the network may have been altered, or even continuously reorganized

at run-time (e.g. reconfiguration of connected nodes, mobility, dying nodes, etc);
◦ routing paths from source to sink may be unknown at the instant of the event.
A conservative estimation of parameters increases the probability of satisfying the

timeliness constraints. However, since the worst case scenario is not bounded, guaran-
tees are unfeasible, and therefore at run-time end-to-end deadlines may or may not be
fulfilled.
Run-time adaptations of the network configuration (e.g. protocol parameters) can

improve the timeliness performance at run-time. However, the information provided by
the classic timeliness notion poorly contributes to explore the adequate trade-offs. If
timeliness constraints are satisfied, it is not trivial to decide whether a lower energy
consumption level will incur in deadline violations. On the hand, if the constraints are
not fulfilled, it is difficult to assess amending actions and to obtain the appropriate
set-points of operation.

Proposed Approach – Generalized Timeliness Notion:

With the generalized timeliness notion, the selection of adequate values for the timeliness
constraints is more flexible. At first, initial end-to-end time intervals are chosen following
a similar approach as with the classic notion. However, unlike the boolean information
expressed in the classic notion, the inclusion of an interval probability allows expressing
the tolerance of the system to unsatisfied constraints. Contrasting both parameters with
the run-time end-to-end delays distribution provides valuable information regarding the
deviation between the current and aimed performance.
If the timeliness constraints are not satisfied, the probability of messages arriving

within the interval is contrasted with the run-time measurement. Unlike using the classic
notion, the gap between the performance observed at run-time and the one demanded
at design-time is now measurable. Figure III.2 depicts one such situation. Note that
with the classic timeliness notion it is also possible to collect statistics with respect to
deadline misses with respect of a given interval. However, the information provided by
the end-to-end distribution allows for dynamically obtaining the probability of any such
interval as well as the interval for which a given probability is achieved.
Either if the system decides to perform network-level trade-offs or re-adjusts the con-

straints to feasible levels, the generalized timeliness notion reflects the adaptations in
a measurable manner. The contrast between the aimed timeliness and the run-time
performance introduces a feedback channel for the network trade-offs that make pos-
sible a fine coarse tuning of the operational set-points. In particular, it is possible to
apply lower set-points for other quality metric while keeping track that the timeliness
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Figure III.2: Example of unsatisfied timeliness constraints with the generalized notion.

performance remains within acceptable levels.
Figure III.3 depicts a simple adaptation consisting of increasing the bounds of the

target interval to achieve the aimed probability of success. In this case, no other actions
are taken to improve the timeliness performance (i.e. trade-offs to improve timeliness).
However, being able to estimate the probability for bounded end-to-end response time
will suffice in many application scenarios to provide satisfactory timeliness results.
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Figure III.3: Example of adaptation to the current network status with the generalized notion.

The adaptation depicted in III.3, shows that the left-side limit for the end-to-end
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interval is shifted to the right. While this does not necessarily make sense as a timeli-
ness constraint –i.e. constraining faster transmissions–, it does indeed provide valuable
information to the application with respect to the minimum transmission time. Thus,
any expectation of achieving message transmissions below this limit have a probability
of success of approximately 0.

III.3 Probabilistic estimation of end-to-end latency
Practical applications of the generalized timeliness notion depend on the capability of
calculating the run-time distribution function of the end-to-end delay. Unfortunately, a
purely analytical deduction of the distribution is not feasible –unless based on restrictive
abstraction models– due to the non determinism of WSNs. Nevertheless, in this section
we describe a good run-time estimation method with low demand of resources.
The end-to-end delay experienced by any message transmitted across a routing path

rp can be decomposed into the individual forwarding delays originated at each node
n ∈ rp. Therefore, the estimation of the end-to-end distribution is done in two steps.
First, we a analyze and characterize the distribution of the forwarding latency at each
intermediate hop. Second, we perform an approximate composition of the end-to-end
distribution for the entire end-to-end path. This procedure is continuously repeated at
run-time, hence adapting to the changing network status.

III.3.1 Notation

A WSN is represented as a graph G(N,L) formed by a set of nodes N and a set of
single-hop links L. Two nodes ni, nj ∈ N are directly connected at a given time if there
is a link l ∈ L, l = (ni, nj) such that ni and nj can send and receive messages from each
other. For the sake of simplicity, the time instance of variables that change over time
are only represented when they are significant to the analysis.
S ⊂ N is the subset of sinks. Sinks may outperform nodes with respect to resources

and energy availability.
A (routing) path rp is a sequence of nodes (hop1, hop2, ..hopq−1, hopq) ∈ N without

repetitions such that each pair li = (hopi, hopi+1) ∈ L, thus providing a multi-hop link
between n1 (source node) and nq (destination node). The length of a path is equal to
its number of links (|rphop1,hopq | = q).
We notate Φ as the effective end-to-end delay of a message (given an end-to-end path).

III.3.2 Calculation of one-hop forwarding latency

Let hop1, hop2 ∈ N be two nodes such that ∃l = (hop1, hop2) ∈ L. Then, we define
Dhop1 as the Random Variable (RV) which characterizes the latency δ experienced by a
message being forwarded from hop1 to hop2 and FDhop1

as the Cumulative Distribution
Function (CDF) such that FDhop1

(ε) = P (Dn ≤ ε); the probability that hop1 introduces
a delay of at most ε in forwarding a message.
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The forwarding latency δ is defined as the time interval between the message arrives
at a node tin –either because the application layer sets a new message to be sent,
or because the MAC layer receives a message which has to be forwarded–, and the
reception by the sender of an acknowledgment from the receiver tack. Note that this
calculation is pessimistic as it introduces the additional time due to the transmission of
the acknowledgment. For certain MAC protocols this might be negligible, but otherwise
it can be estimated as a constant ϕ ≥ 0. Therefore,

δ = tack − tin − ϕ (III.1)

The calculation of δ at hopi is computed every time it forwards a new message. The
sequence of values over time (i.e. δ0, .., δk), represents the samples of the RV Dhopi .
Note that in section III.3.3 we introduce a cumulative method to avoid storing the

whole sequence of values in the node.

III.3.3 End-to-end latency distribution
We describe the analysis of the end-to-end distribution in two steps: first, we analyze
the simple case with one single hop; and later on, the general case with |rp| > 1.

Simple case: one hop

In the simplest case, a message is forwarded by a single node. Let sender ∈ N be the
sender node and sink ∈ S the receiver. Let l = (sender, sink) be the link between them.
Thus, the end-to-end latency is equal to the forwarding latency of the only hop, which
is δsender. By definition, the end-to-end delay distribution De2e equals the forwarding
distribution Dsender, since |rp| = 1 with rp = {l}
The distribution function of De2e depends on many factors which are generally not

controllable: e.g. link quality, environmental noise, and most relevant: the underlaying
MAC protocol. These, unfortunately, complicate their characterization as it is not
feasible a priori to extrapolate the CDF. However, we can easily estimate the mean
value and variance of the forwarding latency of Dsender (µsender, σ2

sender). The estimation
of these values at run-time provide a rough indicator of the end-to-end distribution for
this particular case.
The sample mean x̄ and sample variance s2 are good estimators of µ and σ2. We

use the Exponential Weighted Moving Average (EWMA) [Burgstahler 02], [Goldoni 08]
to achieve low-resource-demanding run-time estimations (Equations III.2 and III.3).
EWMA generates two new variables x̄∗it and s2

it
∗, which are updated at each iteration

(noted as it) and approximate the mean and variance.

x̄∗it = αδit + (1− α)x̄∗it−1 (III.2)
s2
it
∗

= α(δit− x̄∗it)2 + (1− α)s2
it−1

∗ (III.3)
Equations III.2 and III.3 are computed at each hop every time a message is forwarded

through it, hence updating the local state information.
The parameter α (0 ≤ α ≤ 1) is set to weigh the actual measurements with respect

to the past trend. The discussion on the selection of its value follows in section III.3.5.
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General case: k hops

The end-to-end distribution of a multi-hop path is obtained by the composition of the
distributions of each intermediate hop. Despite the aforementioned unfeasibility in cal-
culating the exact end-to-end distribution, an approximation can be obtained with help
of the Central Limit Theorem (CLT) [Bulmer 67].
Central Limit Theorem: The classic CLT states that the sum of a number (k) of RVs

with approximately the same distribution, non-negative and mutually independent
tends to a Normal distribution N(µ, σ2).

The motivations to accept the conditions of the classic CLT, and in particular the
interdependency of the RV, are discussed in Section III.3.5.
Note that despite the CLT is commonly applied to larger number of samples (k > 20),

its approximation to the Normal distribution is already noticeable within the sum of
few RVs. An argumentation about good approximations for small sums of RVs is given
in [Korkmaz 03].
Hence, we define the RV Drp characterizing the end-to-end distribution of path rp as:

Drp =
∑
∀l∈rp

Dl (III.4)

and,

FDrp(τ) = P (Drp ≤ τ) (III.5)

And the parameters µrp and σ2
rp of Drp:

µrp ≈ x̄Drp =
∑
∀l∈rp

x̄l
∗
Dl

σ2
rp ≈ s2

Drp
=

∑
∀l∈rp

s2
l
∗
Dl

(III.6)

According to the CLT, the probability introduced in Equation III.5 converges to:

FZ(τ) =
1√
2π

∫ τ

−∞
e

y2

2 dy

Z =
Drp − µDrp

σDrp

(III.7)

III.3.4 Example of End-to-End Latency Estimation
The following example based on simulations illustrates the applicability of the end-to-
end estimations. The simulation set-up follows the description in VI.1.4. The sum of
parameters estimated at each hop of a routing path is defined as the pair ∆x̄,∆s2 . Under
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Figure III.4: Simulation results for scenario with |rp| = 5 and traffic parameter λ. Showing
PDFs of estimated distributions compared to the Normal distribution [N(0,1)].

static network conditions (i.e. assume a network snapshot), the distribution N(∆x̄,∆s2)
is representative of the effective distribution of the end-to-end latency of that path.
However, both the estimated and the real distributions are dynamically changing.

The network conditions are different every time that a message is being forwarded –
its distribution is not constant for the entire network lifetime–. Similarly, each time
a message is forwarded, the forwarder node updates its parameters x̄∗ and s2∗ which
induces a change in the estimated distribution.
Hence, for each instance it of a message going through the analyzed path we capture an

effective end-to-end delay Φt (i.e. measured in the experiment) and a set of parameters
∆it
x̄ ,∆

it
s2 (i.e. estimations), which are not directly comparable to those originated by

previous or following messages. Each pair of estimated and measured parameters can
be compared individually but they cannot be taken as samples of the same RV.
We define two tests to evaluate the accuracy of the estimations:

Test 1: Normalize each sample of the effective end-to-end distribution to the standard
Normal distribution N(0, 1). Given,

X ∼ N(µ, σ2)

then,
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Z =
X − µ
σ

Z ∼ N(0, 1).

This way, instead of comparing each individual sample to a N(µ, σ) with different
parameters, we can compare all samples against a N(0, 1). The expectation is that
the distribution of normalized samples approximates a N(0, 1).

Test 2: Compare the number of “hits” of each interval determined by the distance σ
from the center point (µ). This is known to be around 68%, 27%, 4.2% and
0.2% respectively for the intervals I1 = (−σ, σ), I2 = (−2σ,−σ) ∪ (σ, 2σ), I3 =
(−3σ,−2σ) ∪ (2σ, 3σ) and I4 = (−∞,−3σ) ∪ (3σ,∞) (see Figure III.51). If the
estimated distribution is accurate, the number of samples falling in each of these
intervals should approximately follow these proportions.

Example Simulation

The example simulated traffic messages from a sender node hop1 to a sink hopq with the
interference of cross-traffic coming from neighbor nodes as depicted in Figure III.6. The

1Figure generate in R, based on code from Petter Strandmark.
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results show ten simulation runs with different traffic parameters for a routing path of
5 hops. For a complete scenario description and extended results refer to chapter VI.

Figure III.6: Simple simulation scenario

Note that for the sake of simplicity, the process of building the routing path (i.e.
routing tree) is not considered in this example. The purpose of the simulations is to
evaluate the validity of the method and illustrate the process to obtain the end-to-end
delay distribution.
Figure III.7 shows the histogram of the distribution for the case of |rp| = 5. The

distributions are normalized and compared to the Probability Density Function (PDF)
of the standard Normal N(0, 1). Note that the depicted graphics are cropped at the
interval (−4, 4).
At first sight, two questions arise: the difference between the two curves at the central

point and the larger tail on the right side. Both effects are related to each other and
can be explained by the nature of the experiment measurements. In fact, the values
represented come from measured end-to-end delays. This necessarily introduces a tail
effect, as there is a clear limit on the possible values from the left side (i.e. time delays
cannot be negative) but none on the right side.
With respect to the range of absolute values, having a mean sample value of 6.5ms

very few messages achieved a delay less than or equal to 2ms and the distance between
the minimum value and the mean is approximately 5ms. However, on the right side,
this distance goes up to around 34ms, with a maximum value close to 40ms.
Note that the α parameter on the EWMA is, to some extent, responsible of this effect.

A lower α acts as a filter for higher sampled values and hence, reduces the tail on the
right side. However, this also affects the sample variance s2∗ as the estimated values
get closer to each other. Thus, low values of α introduce a distortion on the estimated
distribution which results in "thinner" curves. On the other hand, higher values of α
reduce the smoothing effect of the EWMA but produce a more accurate estimation of the
sample variance. This is reflected on the peak of the estimated distribution, although,
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Figure III.7: Example of estimated distribution after simulation.

at the same time, produces thicker distribution shape. Based on experience of previous
simulations [Serna Oliver 09a], we chose α = 0.9, which has provide accurate estimation
without introducing excessive distortions on the final distributions.
Figure III.8a and shows the probability density and cumulative distribution function

(i.e. PDF and CDF) of all cases with |rp| = 5 and variations in the cross traffic (λ
parameter).
Observe that accuracy increases proportionally to the cross-traffic parameters. This

is due to the fact that the higher the amount of messages going through the network,
the more frequently intermediate nodes refresh their local estimations. In other words,
if the traffic is too low, the estimated values at the arrival of a message loose accuracy
by the time the next message is received.
In figure III.8b, it is noticeable the “lower peak” described before from the point of view

of the estimated probability. The higher part of the curve is visibly below the reference
curve, which means that the estimation becomes pessimistic (i.e. the method will predict
a lower probability for delays above the expected end-to-end delay). However, the same
does not happen, except for the case of very low traffic, in the lowest part of the curve.
This means that the estimated probability for end-to-end delays below the expected
value do not over-estimate the capacity of the path.
Table III.1 present the results for the second test with the reference to the standard

Normal in brackets. Again, the tail effect is visible as the interval I4 receives significantly
more hits than expected. Similarly, interval I1 reflects a lower percentage of hits, which
agrees with the previous figures.
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Figure III.8: Results of simulation runs with different configuration parameters.

λ I1 I2 I3 I4

N(0,1) (68%) (27%) (4.2%) (0.2%)

30 66.5% (-1.5) 21.5% (-5.5) 6.8% (+2.6) 5.2% (+5)
60 62.2% (-5.8) 24.6% (-2.4) 7.1% (+2.9) 6.1% (+5.9)
120 61.1% (-6.9) 27.1% (+0.1) 7% (+2.8) 4.8% (+4.6)
480 53.3% (-14.7) 27% (=) 8% (+3.8) 7.7% (+7.5)
1200 50.8% (-17.2) 25.6%(-1.4) 11.9% (+7.7) 11.8% (+11.6)

Table III.1: Percentage of hits per σ-interval with path length 5. In brackets, deviation with
respect to N(0, 1).

III.3.5 Additional Notes

For the sake of clarity, some relevant details were omitted from the description of the
end-to-end estimation method. In the following paragraphs two of them are discussed.
A complete description of the scenario as well as the simulation environment and pa-
rameters are detailed in chapter VI.

Selection of an appropriate value α for EWMA

The exponential weight α controls the smoothing factor in Equations III.2 and III.3.
Lower values of α increase the stability of the measurements as they smooth the variation
due to small fluctuations with respect to the averaged value. This is the desired effect to
avoid imprecisions due to fluctuations on the sequence of measurements. On the other
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hand, large values of α tune the equations such that they adapt to changes and forget
the past values quickly.

Figure III.9: Hop latency with different values of α.

Figure III.9 shows the evolution of x̄∗ for different values of α during a short interval of
time extracted from the simulation results of the previous example. Despite the benefit
of the smoothing qualities of a low α for the calculation of x̄∗, it is not the case for
s2 (Equations III.2 and III.3). In the latter case, the variability of values needs to be
captured as it plays an important role in the estimation of the final distribution.
After performing extensive simulations [Serna Oliver 09a], we observed that it is more

beneficial to reflect the variability of the data in order to obtain accurate s2, than to
obtain a smoother value of x̄∗. Nevertheless, EWMA still proves effective to reduce the
effect of occasional overestimations of the forwarding delay – due to i.e. radio anomalies.
The experiments show that a large value of α close to 0.9 produces acceptable results
for most cases.

Assumptions on the conditions of the CLT

Message dependencies (i.e. E[Va, Vb] 6= E[Va] · E[Vb]]) might appear under certain cir-
cumstances. For instance, dependencies happen when a message m1 causes additional
delay to a message m2 which message m2 would not experience in isolation.
Other reasons for dependencies to happen are related to medium access policies (e.g.

back-offs) and buffer constraints (e.g. messages dropped due to buffer overflows). How-
ever, the typically low traffic of WSN reduces the probability of these conditions to
happen. Nevertheless, it is possible that during intervals of time with higher traffic load
the dependencies are reflected in the estimations.
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Literature presenting alternative variants of the CLT which relax the conditions of
inter-dependency exists (e.g. [Birkel 93]). However, the prerequisites of these refor-
mulated versions of the theorem impose new conditions which cannot be guaranteed
without detailed analytical models of the network.
Hence, dependencies are accounted for at run-time as the delay distribution introduced

by each hop is continuously estimated with the current timeliness performance. Thus,
the estimated parameters for a certain hop as well as the composed end-to-end delay
distribution vary for different network loads.
The spatial distribution of nodes and the typical low throughput of WSN minimize

the effects of transmission dependencies, and even in situations of high load, these are
not significant to the desired accuracy for the estimations. After performing simulations
[Serna Oliver 09a], we observed that the deviations due to dependencies are not relevant
in the general case as they may only arise in situations of very high network saturation.

III.4 Chapter summary
This chapter overviewed the essential flaws in application of the classic timeliness notion
in current real-time approaches for WSNs. In contrast to the classic notion, it presents a
generalized timeliness notion providing means to express meaningful timeliness in typical
WSNs without restraining the feasibility of methods.
As a proof of concept, the chapter introduces a probabilistic algorithm for the estima-

tion of end-to-end latency of message transmissions in WSNs. The estimation is based
on the generalized timeliness notion obtaining the distribution function of end-to-end
routing paths.



Chapter IV

Timeliness Trade-offs

The ultimate goal of a real-time method for Wireless Sensor Networks (WSN) is to
provide timely responses to selected events while fulfilling predefined Quality of Service
(QoS) requirements. However, defining the general objectives determining these require-
ments is not a trivial task. The generalized timeliness notion presented in chapter III
opens a new range of possibilities exploring QoS trade-offs as a means to fulfill timeliness
constraints while easing the specification of feasible objectives.
The new notion based on the distribution of end-to-end delays makes possible defining

flexible requirements allowing local and global run-time adaptations, which contribute
to enhancing the timeliness performance at particular moments. These adaptations may
allow pursuing realistic end-to-end timeliness based on adaptive QoS requirements, but
proper mechanisms to enforce the necessary adaptations as well as hooks allowing QoS
trade-offs must be established.
Specifying timeliness objectives in a WSN overcoming the potential clash between

feasible requirements and the limitations imposed by protocols and scenarios is not triv-
ial and may still require a certain amount of individual analysis for each deployment. In
particular, exercising trade-offs between timeliness and other QoS metrics introduces a
number of potential adaptations that real-time methods can exploit achieving satisfac-
tory QoS levels. The chapter is organized as follows:
Section IV.1 introduces the elemental considerations defining feasible timeliness ob-

jectives enabling meaningful QoS methods. The definition of these objectives and the
establishment of instruments to enable them are as important as providing means eval-
uating the qualities of the target system.
Section IV.2 analyzes the possibilities provided by the software and hardware plat-

forms to exploit local trade-offs.
Section IV.3 explores the definition of global timeliness trade-offs –in new or existing

real-time methods– taking into account the necessary parts having a significant impact
on the real-time performance. The analysis is centered on the aspects that influence
the applicability of the generalized timeliness notion and the exploitation of QoS trade-
offs. In doing so, the chapter explores the definition of abstract models for the analysis
of metrics as well as the impact of selected parameters, both from a global and local
domain perspective.
Finally, the chapter concludes with a summary.

53
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IV.1 Timeliness Quality of Service

For systems where a single metric dominates the perception of Quality of Service (QoS),
a simple optimization analysis leads to the optimal configuration of set-point providing
the maximized value for that metric. However, when the metrics of interest are several
it is often the case that a simple optimization criterion cannot satisfy the optimal values
for all metrics. In these cases, a multi-metric trade-off analysis produces a set of valid
configurations, each of them being optimal regardless of the optimal value corresponding
to each metric in isolation.
This chapter explores the application of multi-metric QoS analysis and in particular

of QoS trade-offs as means to approach timeliness in Wireless Sensor Networks (WSN).
The analysis focuses on trade-offs involving timeliness and at least one other metric of
interest, which –given the characteristics of WSNs– will in most cases be related to the
usage of energy. However, the analysis is valid for any other number of metrics. The first
step, consisting of defining an adequate QoS metric providing a qualitative evaluation
of timeliness, has been already addressed in the previous chapter, when introducing the
generalized timeliness notion. This section explores the definition of objectives leading
to feasible timeliness approaches.

IV.1.1 Definition of Timeliness Objectives

The particularities preventing strict real-time methods from being applied into WSNs
are at the same time a valid motivation to exploring QoS as a means to approach
timeliness. In particular, the tight relation between the cost in terms of resources and
the achieved performance, suggests a significant potential in the exploitation of QoS
mechanisms.
Aligning the QoS requirements with the network capacity of fulfilling them is a fun-

damental constraint that must be taken into account by any real-time method. In terms
of QoS requirements, it is important to consider the constraints imposed at run-time
by the scenario of deployment. Based on these constraints, the strictness of feasible
real-time requirements may vary and specific objectives that are not achievable in the
general case may become possible.
In most cases, the scenario itself plays a fundamental role in determining the real-time

capacity of a deployed system. Thus, incorporating details of the final deployment is
a crucial step defining the objectives of a real-time method. Not doing so may lead to
misleading goals as those described in section II.5 providing a false sense of achievement
with respect to timeliness performance.
For example, taking a single-hop deployment of a static WSN without strong energy

constraints, it is possible to imagine that bounded times for message delivery latencies
may be achievable. One such scenario fits in the characteristics of an in-door surveil-
lance system with nodes connected to the main power line and statically placed along
the surveilled area. With a careful selection of protocols and system components, the
combination of unconstrained transmission capacity and the presence of a powerful gate-
way in this single-hop set-up may allow nodes delivering messages in a timely manner.
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However, applying the exact same system configuration into a large multi-hop scenario
suffering of strong energy constraints may lead to unpredictable delays, reducing dras-
tically the chances of obtaining time-bounded communications.
Unfortunately, considering variables of one particular deployment is not always prac-

tical for the definition of general networking stacks and components. Creating ad-hoc
solutions may provide the best performance to particular scenarios, but in most cases the
benefits of such specific construction do not compensate the efforts involved in design-
ing, developing, and testing the final system. The compromise between the flexibility of
a method fulfilling timeliness requirements and the generality of the solution adapting
to any deployment scenario is not obvious and needs careful analysis.
There is no automated recipe to find the optimal definition of objectives given a net-

work set-up, or elseways a directive providing the optimum deployment set-up satisfying
a set of real-time objectives. Nevertheless, the following list profiles a guideline applying
to most WSNs which are worth considering.

Assumptions – Some of the existing real-time methods do not directly expose the
limitations that result from the assumptions they are based on, although a close
look to their constitution and the necessary conditions for their implementation
establish clear limitations to defining feasible timeliness objectives. Some of the
misleading assumptions that should be avoided or carefully considered in large
deployments are listed in section II.5.

QoS Metrics – Using proper quality metrics reflecting the performance of evaluative
criteria is crucial to achieving significant results. Although it may seem an obvious
remark, these metrics must be chosen with consideration to the variables that they
measure as well as their impact in the desired qualitative performance. It is often
the case that existing real-time methods produce optimal solutions measured by
inaccurately defined metrics. A similar analysis of that presented in chapter III
with respect to the timeliness metric may aid defining appropriate QoS metrics
for additional system variables.

Compatibility – Most real time methods are often tested independently and their per-
formance evaluated based on ideal conditions. However, complete solutions built
of individual components –e.g. networking stack– require a global evaluation that
may question their compatibility. Existing frameworks and middleware, explored
in section II.3.1, may offer solid approaches although their flexibility to exploit
QoS trade-offs are generally more limited.

Cross-optimizations – Fruit of the interaction between different layers and compo-
nents, new cross-layer and cross-component optimization chances may appear.
Exploring and taking advantage of these options can only benefit the construction
of solid timeliness solutions, although the risk of losing generality exists. Ex-
plicit cross-layer designs exposing selected optimization hooks that may or not be
exploited at other layers are certainly promising but require additional efforts.
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IV.1.2 Metrics and Parameters

The definition of network trade-offs requires a meticulous analysis of QoS metrics and
parameters. The domain at which these metrics are defined affects the ambit of appli-
cability of the related trade-offs. Hence, system-wide metrics must be defined in oder
to obtain global trade-offs.
The range of possible metrics in WSNs goes from those evaluation the energy efficiency

of radio communications to metrics quantifying the performance of network protocols
or full network stacks. Some metrics may be specific to particular application behavior,
such as quantifying the effects of multi-level algorithms or the scalability of a particu-
lar method. Others, characterize properties of the entire network, such as the overall
reliability or the network security.
The importance of choosing a consistent set of metrics coinciding with the evaluation

goals is crucial. In particular, there is a tight relation between the selected metrics and
the parameters enabling the trade-off analysis. The consideration of which parameters
enter in the trade-off analysis is guided by two complementary criteria. On one hand,
the impact that each parameter produces on the selected metrics is taken into account.
Parameters that do not contribute to changes in the metric at all or their impact is
insignificant are not interesting for the present analysis. On the other hand, the avail-
ability or suitability of the system to adjust their settings defines the degree at which
these can be operated. The nature of each parameter as well as the level at which the
analysis is conducted defines whether they are controllable or not. Those which cannot
be controlled cannot contribute to the definition of trade-offs, even though they may
still have a significant impact on the metrics.
The number of controllable parameters present in the hardware and software platforms

vary from one deployment to another. In particular, the networking stack provides im-
portant hooks to those parameters with the highest impact on timeliness. Nevertheless,
it is important to differentiate between controllable parameters that may be adjusted
at run-time (e.g. frequency of re-building a network tree) from those requiring a coor-
dinated network re-set to prevent malfunctions in the normal behavior (e.g. switching
radio channel). The former are particularly interesting for defining dynamic rules allow-
ing run-time trade-offs. The latter, on the other hand, need to be analyzed at design time
to determine a best start-up configuration maintained for the entire system life-time1.
Environmental parameters, such as the dimensions, profile, and meteorological condi-

tions of the area of deployment must be taken into account when exploring the system
set-up. These, and other parameters such as the mobility of nodes, network density,
or exposure to external sources of interferences, will determine the set of values that
controllable parameters can take.
As an example, defining two metrics as the average latency of end-to-end message

transmissions and the overall energy consumption of the entire network allows trading

1Note that in most cases it is possible to run a distributed algorithm forcing the adoption of new setting
for any given parameter. However, these methods produce a significant alteration of the normal
network behavior for a significant period of time similar to that of shutting down the network and
re-programing the configuration, which is –in essence– equivalent to re-starting the network. Hence,
in the context of this thesis applying such a method does not account for as a dynamic adjustment.
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off energy consumption against average timeliness at a global level. However, note that
the application of these trade-offs may lead to unexpected results unless the metrics are
precisely constructed. For instance, decreasing the average latency at a global level may
have the opposite effect on a subset of nodes. Similarly, the energy consumption may
be unevenly distributed among all sensor nodes after the application of the trade-off,
producing higher consumption in particular nodes in spite of the intended tendency.
Finding the right metric and exploring the correlation between the variable being

traded off and other side effects is also fundamental. It is important to account for the
effects of these two metrics on the global system performance. For example, reducing the
energy consumption may affect the transmission power leading to disconnected nodes,
or similarly increasing the transmission power may affect the interference range of nodes.

IV.1.3 System Models

Abstract models and simulation engines are valuable tools that speed up the analysis
o large systems. Choosing or building a proper set of models reflecting accurately the
involved subsystems may increase the accuracy while exploring the impact of parame-
ters. However, the elaboration of a reasonably accurate abstract model for analysis or
simulation research cannot be done arbitrarily.
It is very likely that many details from the original system escape during the elabora-

tion of models. Even though most of them could be incorporated to increase the model
accuracy, the level of complexity is often not practical for the abstraction and analysis
purposes. Choosing the right level of detail will have a significant influence in the qual-
ity of the results, and may allow a satisfactory calibration of the model as well as the
validation of the obtained set-points. Too little detail may hide important effects on
metrics, while too much may overload the analysis jeopardizing the abstraction process.

IV.1.4 Enforcing Timeliness

Generally, the larger amount of resources that are available to a sensor node, the higher
the chances that a smart algorithm succeeds increasing the system performance. In
particular, the more energy is available to the system –enabling e.g. higher transmission
power, multiple message transmissions, larger duty-cycles– the more likely a method
will succeed fulfilling the imposed timeliness requirements. However, how to enforce
this gain in timeliness performance is a question that depends in great measure on the
particular use of resources followed by the method.
The transformation of feasible timeliness objectives into the necessary QoS require-

ments does not suffice to ensuring the correct timely behavior of a WSN. It is also
necessary to introduce enough mechanisms to enforce fulfilling these requirements with-
out violating the fundamental system constraints. Many of the existing algorithms (e.g.
some explored in II.3.1) perform notably in achieving significant results at a low resource
cost. However, most of them fail to dynamically adapt their behavior achieving a fine
match between the user required timeliness performance and that achievable by the sys-
tem. In fact, the design of most methods focuses on providing a best-effort performance
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at a constantly low resource utilization. However, given that the dynamic properties of
WSNs introduce significant variability in the provided timeliness performance, it seems
more appropriate aiming at an unbalanced use of resources driven by the importance of
achieving timely communication at each moment.
One promising way to doing so in harmony with the unstable timely behavior of

WSNs is to apply selected trade-offs at precise instants of time. QoS trade-offs allow
defining relations between several metrics influencing the target QoS level to compensate
for the effects of the continuous variability of WSNs. The analysis of these relations
often show that effective timeliness trade-offs can be defined with a number of different
metrics. However, those related to the amount of energy consumed due to activity
level of physical devices (e.g. radio transmission, memory accesses, CPU computation)
represent the clear predominant metrics in WSNs producing a large impact on the overall
timeliness performance.
Although the relation between energy consumption and timeliness performance pro-

vides enough flexibility to establish significant trade-offs, a careful analysis must provide
the selected QoS set-points at which the improvement has a larger impact. The follow-
ing sections explore the definition of significant QoS trade-offs based on a generalized
system analysis.

IV.2 Analysis of Local Trade-offs

Taking advantage of network trade-offs is not a trivial task that can be done without
previously acquiring a deep knowledge of the target system. The particular parameters
or set-points conforming satisfactory trade-offs for a given system may not be valid for a
different one or may even produce undesirable results in different deployments. Hence,
a careful analysis of the entire system must precede in order to determine which are the
parameters and set-points producing a significant impact on the metrics of interest.
The level at which the trade-offs are first defined and later applied is another impor-

tant aspect deserving consideration. Local trade-offs involving the hardware platform,
firmware, and application levels are suitable to perform individual adjustments of the
operational parameters of each node. These could include the Operating System (OS)
functional configuration, application specific settings, or the use of specific hardware
modes. Global trade-offs, on the other hand, require a coordinated strategy establishing
system-wide set-points that may not necessarily produce a significant impact in one par-
ticular node. However, once applied to the whole system they produce a larger impact
reflected in the overall QoS level of the entire network.
With disregard of the level of applicability, defining QoS trade-offs requires the selec-

tion of a number of significant evaluative metrics. Being timeliness the main focus of
this thesis, it seems coherent to choose the overall energy consumption as a contrasting
metric to trade off with. Alternative options which may also contribute to significant set-
points include among others variants like the energy per useful bit or radio transmission
power, as well as transmitting or receiving time, and expected data rate.
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IV.2.1 Definition of Local Trade-offs
A simple definition of local QoS trade-offs may consider several operational modes for
the sensor node based on local configuration parameters conforming optimal set-points.
However, for the correct application of these mode-based trade-offs it is necessary that
the software and/or hardware platforms allow run-time adjustments of the parameters
defining these set-points. The provided support at the OS level is decisive handling
run-time configuration and accessing the necessary hooks to the hardware and com-
munication platform. For example, the Operating System Abstraction Layer (OSAL)
introduced in section II.2 and evaluated in detail in appendix A is designed to facilitate
these operations easing the exploitation of local and global trade-offs.
If the system does not allow run-time re-configuration of all parameters, statically-

defined set-points can be applied at design-time, although the effectivity of such an
approach may be reduced due to the dynamic variability of WSN. Exploring partial
trade-offs consisting of only those parameters in a set-point allowing run-time modifica-
tions may perform better and compensate for the variability in the system conditions.
In any case, local trade-offs are notably easier to define in comparison with global level

trade-offs. The main reason is that the cause and effect remain at the same visibility
level (i.e. the sensor node). Hence, the applicability of trade-offs at this level can be
defined as a set of local rules applied individually at each node.
The number of parameters that may be available to constitute trade-off set-points

depends very much on the application and platform specifics. However, these would
certainly include parameters concerning processor power modes, utilization of optional
computationally-complex algorithms (e.g. pre-processing of sensor readings), as well
as the frequency and duty cycle of tasks within the node. In case of using certain
sensors to monitor environmental variables, it is possible that the accuracy or granularity
of the sensed data can be adjusted adapting to the dynamic run-time needs. These
configurations could also be exploited while exploring local trade-offs.
Some of these controllable parameters which are not dependent on a particular plat-

form are discussed with more detail in the following sections.

IV.2.2 Duty Cycles and Software Modes
The main functionalities of a sensor node may be provided by a number of tasks2 that
may or may not run in a coordinated fashion. In fact, modern WSNs may allow multiple
applications running on the same platform. For example, it is not surprising to conceive
a scenario consisting of three core applications (e.g. monitoring, data processing, and
system diagnostic) running on top of the same platform.
In a multi-threaded OS (e.g. OSAL), it is not too complex to define a number of

software modes enlarging or shortening the activation frequency of each application task.
Some of these modes may even disable selected tasks and conform a series of execution
profiles with different processor demands. The activation of these modes at run-time

2In this context, task refers to a functional unit of work performed by the system (i.e. the sensor node),
with independence of its particular implementation, concurrent execution model, or interaction with
other entities.
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may allow the OS to enter in larger inactivity periods while enabling the activation of
lower power modes.
The trade-off –in this case between timeliness and energy consumption– consists of

adjusting the periods of running tasks so that the OS can switch to energy saving
profiles during larger idle times. The larger these periods are, the lowest the processor
consumption results, but consequently a larger latency in the execution of the system
tasks is expectable. Note, however, that this trade-off cannot be exercised arbitrarily
and could result in unaccomplished application requirements. It is the responsibility of
the application designer –with assistance of the field experts–, to explore and define valid
operation points as well as evaluate their performance with respect to the evaluation
metrics.

IV.2.3 Local Application of Trade-Offs
Local trade-offs present the advantage of not requiring coordination with external enti-
ties. The frequency of adaptation can be generally as high or low as required without
introducing excessive overhead in the system. However, this does not mean that the
application of local trade-offs can be arbitrarily organized. The integration between the
local decider and the system properties must be carefully established and the cost of
switching between valid configurations included in the decision process.
Applications themselves may provide different levels of flexibility with respect to their

inherent temporal constraints. The exploitation of this flexibility determines the bound-
aries within the operability range –from optimum timeliness performance to minimum
acceptable levels. These boundaries are fundamental to establishing adequate triggers
for possible QoS trade-offs and may help identifying possible application modes with
divergent timeliness requirements.
Two significant aspects that may present a certain correlation are the traffic gener-

ation patterns and the granularity of the sensed data. Applications running complex
algorithms may have the opportunity of choosing among different levels of data process-
ing. The impact of these decisions may reflect on the utilization of energy-expensive
resources (e.g. CPU, memory) as well as in the amount of necessary transmitted data.

Example

Consider the following example of a temperature sensor in a refrigerated truck with
three possible application modes as a simple scenario:
Mode 0 – In the simplest and less processing intense mode, the task in charge of de-

termining the temperature behaves as a switch. If the temperature goes above a
threshold the task reports high temperature, and analogously, it reports low tem-
perature if the temperature goes below a lower threshold. However, while the
temperature remains between both thresholds, no information at all is transmit-
ted.

Mode 1 – In the second mode, the same task keeps a history of temperature readings
and based on a linear regression estimation predicts the way in which tempera-
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ture changes over time. If the prediction shows an increasing or decreasing trend
that could violate the temperature regulations, the task calculates the necessary
correcting factor which will be transmitted to the actuators in charge. This action
continues periodically and the compensation is transmitted regularly forcing the
temperature to converge towards the desired level.

Mode 2 – In the most demanding mode, the task does not only acquire and control the
temperature, but it is also responsible for producing a detailed log of fluctuation
of the temperature level. In this case, if the content of the refrigerated truck has
been exposed to inadequate temperature levels the information processed by the
task is crucial to determining the consequences. Hence, in addition to the control
described in mode 1, periodic messages are transmitted to report the current
temperature level.

An application with the above modes qualifies for a local trade-off analysis as described
in this section. In particular, the selection of modes 0, 1 or 2 may be triggered at run-time
in response to the importance of controlling the truck temperature at each given instant
of time. It is presumable that certain goods may require a less strict control than others.
For example, different kinds of foods may require different ranges of temperature, being
some of them particularly sensitive to temperature fluctuations while others tolerate
certain variability. Hence, trading off accuracy in the temperature control at selected
times produces lower CPU and memory utilization as well as less transmitted messages,
which altogether results in a lower energy consumption.
Another aspect that can influence the local energy consumption at a sensor node is the

application of data aggregation techniques. For example, extending the above example,
it is conceivable that more temperature sensors will be present in a refrigerated truck
(e.g. [Andersson 10]). Hence, assuming a multi-hop topology, nodes may be able to
append their readings while forwarding other messages. Note that appending may be
as simple as adding bytes to a message body or as complex as processing the data into
average values or applying other sort of algorithms.
In a similar direction, data compression may reduce significantly the size of transmit-

ted messages, although it is generally expensive in terms of required processing power
as well as memory utilization. Nevertheless, the balance between the energy spent in
these algorithms and the reduction in transmitted bits is another option to take into
account for local trade-offs.

IV.3 Analysis of Global Trade-offs
Network or system-wide trade-offs comprise global QoS parameters whose repercussion
domain affects the quality performance of the entire system rather than individual nodes.
Defining network trade-offs requires an extensive system analysis that is often not

affordable in real deployments. Hence, the utilization of abstract models is in this case
particularly beneficial. However, characterizing an complete WSN with the right amount
of detail in accurate abstract models is a complex process.
This chapter explores an adequate methodology to reduce the complexity and achieve
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a satisfactory analysis of network trade-offs.

IV.3.1 Application Modes and Models

Section IV.2 introduced local application modes to exploit the flexibility of different ap-
plication demands at selected instants of time. An analogy can be made with respect to
the global network application and system-wide trade-offs. For example, the application
of a surveillance WSN in secured premises may have different requirements depending
on a predefined time schedule (e.g. monitor intrusion outside office hours vs passive
maintenance tasks during working time). Taking advantage of such operational modes,
the network can be configured using specific set-points optimizing the selected metrics
for each case (e.g. latency during monitoring vs energy saving in maintenance mode).
The identification of these modes require a knowledge of many aspects regarding the

sensor network. The application experts may provide valuable assistance identifying
significant use-cases taking into account details of the running application(s) as well as
domain specific properties. There is a close relation between these use-cases and the
application modes that will drive the trade-off analysis.
Once the different behavioral use-cases are defined, the correspondent application

modes can be sketched as depicted in figure IV.1. Note that in some cases, if their
impact on the metrics of interest is reduced, several use-cases may converge into the
same application mode.

Figure IV.1: Application Modes and Application Models

Application modes can be directly converted into abstract models (e.g. simulation
models) that will drive the trade-off analysis. During the process, it is important to
consider which parameters need to be modeled. In particular, controllable and environ-
ment parameters that will conduct the definition of set-points.
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Calibration of Models and Analysis of Trends

Using on abstract model to explore to a large extent possible network trade-offs has
the advantage of not having to bother about most of the problems regarding real de-
ployments. Moreover, it helps isolating the interactions from one abstraction layer to
another (e.g. between different networking layers), which helps identifying potential
trade-offs. However, it is difficult to validate the accuracy of specific set-points if the
models are not validated against the real system.
The validation of models is a key step to properly defining effective trade-offs. De-

pending on the system complexity and application characteristics these set-points may
or may not reflect the behavior of the system. A set of runs on a low-scale test-bed may
help calibrating the models as well as identifying their accuracy [Rousselot 09].
Figure IV.2 shows an example of model calibration identifying the difference between

experimental runs on a test-bed and simulation results. The figure depicts the measure-
ments taken in two experiments, one via simulations and the other from a real-test bed.
The metric of interest is the mean transmission latency of a short network experiment
with respect to the radio transmission power. It is clear that although the tendency of
both experiments show correlation, the validity of the simulation results is not accurate
enough to define absolute values for each set-point.
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Figure IV.2: Validation of Simulated Models and Identification of Trends

For simple scenarios governed by few parameters it is possible that the validation
process shows a significant match between simulations and test-bed runs. However, for
complex scenarios with multiple parameters it is not unexpected that the accumulated
inaccuracies of abstract models lead to uncalibrated results.
For some of these cases, it may be sufficient to apply a correction factor to the set-

points obtained via simulations. However, finding out these factors may require multiple
calibration rounds with different scenario set-ups.
For other cases, the interrelation of unknown factors and hidden details from simula-

tions and the real test-bed will prevent from applying a correction factor. However, the
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tendencies or trends between both sets of set-points may suffice to provide significant
information with respect to the correlation of metrics.
The analysis of trends consists on determining relations between metrics in spite of

the absolute value for each simulated set-point. Validating these tendencies towards real
test-beds is less influenced by the lack of detail and particularities of the real deployment.
A series of experiments producing a small number of points in the axis of interest may
suffice to extrapolate with satisfactory accuracy the correlation between metrics. For
instance, an uncalibrated model may not be able to provide the exact values for the
optimum transmission power, but may still provide a proportional notion of how much
does latency decrease at each increment of the parameter.
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Figure IV.3: Analysis of trends for the impact of two parameters in the mean end-to-end
latency.

Once this correlation has been established, the direction of trends can be defined at
different granularities. For instance, a simple model may determine that the correlation
between metrics can be one of three possible: positive, negative, or neutral. Complex
models may include additional relations such as exponential, linear, cubic, and others.
These trends are suitable for establishing trade-offs based on the relative impact of

each parameter on the different metrics. Instead of forcing a fixed set-point, exercising
trade-offs is performed by adjusting the relative value of the interesting parameters.
In most cases, this trend-based trade-off models will lead to sub-optimal solutions un-
less feedback is collected while exercising the trade-off. However, collecting run-time
feedback may be costly and not always efficient.

IV.3.2 Analysis of Set-Points
Figure IV.4 depicts the analysis of set-points that will lead to the definition of network
trade-offs. Provided that the necessary abstract models have been created, the following



IV.3. Analysis of Global Trade-offs 65

step is to determine the configuration space for the analysis of parameters. A complete
analysis of the entire configuration space –either by simulation or analytically driven–
may be unfeasible as the required computation effort expands rapidly with the number
of parameters. Even for a small number of parameters, these can allow enough flexibility
in the range of acceptable values that the available research efforts result overflowed.
Further, a reduction of the configuration space is recommended in order to limit the
magnitude of datasets to manageable sizes.
Several techniques may be used to limit the amount of values being tested for each

parameter as well as shortening the analysis time. A particular one acknowledged to
produce satisfactory results consists of first coarse distribution of values including the
extremes with subsequent repetitions at a finer level around those particular areas show-
ing interesting points. Nevertheless, this technique does not prevent from a pre-filtering
of less interesting values based on the expectations and designer criteria.
At this point, each application mode is represented by one or several set-points.

Whether these are absolute or indicative of a trend depends on the confidence gained
with respect to the accuracy of the models during the calibration phase. Absolute
set-points may be already collected as trade-offs, each of them producing a particular
impact on the metrics. Trends provide relative information regarding the impact of one
parameter on one or several metrics.

Figure IV.4: Analysis of Set-Points
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IV.3.3 Application of Global Trade-Offs

Wether absolute set-points or ralative trends are defined, the correct application of global
trade-offs may require additional mechanisms in order to guarantee consistency of the
network configuration. In particular, certain global parameters may not allow at a given
time different values for several nodes. For example, the waking up schedule of some
Medium Access Control (MAC) protocols needs to be unanimous or the communication
may not be possible.
A simple but effective solution to this problem consists of setting up those parameters

offline. In doing so, the trade-off is reduced to finding an appropriate set-point that
optimizes the metrics for the general case, although it is difficult to estimate if the effect
will remain positive for the entire network life-time. Nevertheless, other parameters
controllable at run-time may be available to compensate for the network dynamics and
valid set-point with unconstrained parameters may still produce satisfactory results.
On the contrary, a distributed algorithm can guarantee that certain parameters are

set uniformly across the network. For example, setting an instant of time to provoke
the change while keeping a safe fall-back scenario if the communication is not successful
after the change. Such examples may be necessary in the case of selecting different
radio channel or extending the wake-up periods in MAC protocols. The algorithm must
ensure that either all nodes switched to the new set-point or the configuration is reverted
to the original situation.

IV.3.4 Monitoring of Global Metrics

Local trade-offs are relatively easy to apply and their consequences are immediately seen.
However, another challenging issue with respect to global trade-offs is the observation
of their effects at a system-wide level.
Although global metrics are properly defined to reflect these changes, their evaluation

at run-time may be unfeasible or demand unreasonable amounts of resources. For exam-
ple, monitoring the average energy consumption of a network may require each sensor
node to report its actual consumption before and after the application of a global trade-
off. However, by doing so the network traffic pattern is affected with the consequence
of interfering the measured values.
It may be the case that some effects of applying network-wide trade-offs are visible

at an individual node. For instance, noticing a change in the forwarding latency if the
MAC duty cycle has been modified. However, the global effect of these changes may
only be perceivable at a global level.
Generally, unconstrained nodes are the perfect entities to monitor these changes. In

particular, sinks (also gateways or data-collectors) will be aware of global changes in
the timeliness responsiveness and other time related variables. Other values concerning
energy consumption metrics may require specific monitoring mechanisms or network
statistic collectors, although either way these services will most likely be triggered by
the sink itself.
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IV.4 Chapter summary
This chapter extended the generalized notion of timeliness developed along chapter III
with the exploration of timeliness QoS. The core of this chapter explored the definition
and application of local and global QoS trade-offs and detailed a step-by-step method-
ology to analyze the most suitable system set-points.





Chapter V

A Timeliness Aware Routing Protocol

The application of the generalized notion of timeliness at run-time as well as the es-
timation of the end-to-end delay distribution require support from the network stack.
Existing protocols can be easily adapted to express the timeliness performance by means
of the generalized notion presented in chapter III. Similarly, the estimation of the end-
to-end latency distribution can be embedded into routing protocols providing run-time
estimations of path distribution delays.
This chapter presents an approach to a simple routing protocol consisting of a modified

classic tree routing protocol, which generates paths based on the generalized timeliness
notion. Each hop performs the local calculations as shown in section III.3, which are
used to determine the best forwarding neighbor based on a routing tree. The sink
periodically broadcast control messages to reconstruct the tree and collects information
regarding the end-to-end delay distributions.
The purpose of this chapter is not to elaborate a complete protocol covering all im-

portant routing aspects, but rather to introduce the concepts elaborated throughout
the thesis into a simple demonstrative protocol. Following the same ideas exposed along
this chapter, the same adaptation may be done to more sophisticated protocols.
The content of this chapter is organized as follows:
Section V.1 overviews the basics of routing protocols based on rooted-trees.
Section V.2 describes the timeliness-aware routing protocol (TARP) embedding the

estimation of the end-to-end latency distribution. The section details the amount of
resources required by the protocol.
Section V.3 presents a simple extension to the protocol adapting it to multi-path and

multi-sink scenarios.
Finally, the chapter concludes with a summary.

69
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V.1 Introduction to Tree-Routing
A rooted tree is a directed graph in which one vertex (i.e. node) is designated the root
and the connecting edges are directed towards (or away from) it. The relation between
connected nodes tells wether they are child or parents. A child is connected to its parent
which is closer to the root. A parent is a child itself with respect to the node that it
connects in direction to the root. Similarly, a child may be a parent to other nodes.
The exception to these relations are the root node, which does not have parent, and
any node without children, which is called a leaf. Figure V.1 depicts these concepts
graphically.

Figure V.1: Example of a rooted tree.

Rooted trees (trees from now on) are often used for the elaboration of routes in multi-
hop networks. For each data collector (i.e. sink) a routing tree is maintained with the
root set on the sink and the edges symbolizing the communication links between nodes.
The criteria to choose among multiple parents are typically related to the quality of the
link.
One of the advantages of such a routing protocol is that the logical tree can be dis-

tributed among the network components. Thus, none of the individual nodes knows the
complete constitution of the tree, but only the reference to its parent. When commu-
nication is required, the source node forwards its messages to the known parent, which
in response propagates them one level up –forwarding the messages to its own parent.
Following the same principle, messages are forwarded hop by hop until reaching the sink
(i.e. tree root).
Although it is a fairly simple mechanism, a routing protocol based on this technic has

to consider a number of aspects, among others:
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Tree building – The procedure to begin the construction of a network tree is normally
triggered by the sink (or sinks). A common way of doing so is by broadcasting
a sequenced message (e.g. ’HELLO’ ). Upon reception, each child will annotate
the source as its parent and proceed broadcasting a similar message with its own
address on the headers. To prevent network flooding, the sequence is maintained
so that the message is discarded if multiple receptions occur.
This process is typically repeated at a certain frequency to allowing new nodes to
join the tree and the re-incorporation of disconnected nodes.

Validity of parents – As time passes, some of the links between nodes may become
invalid (e.g. due to mobility or external factors). The protocol should contemplate
a safe bound for the validity of the referred parents, which in most cases depends
on the specific network set-up (e.g. existence of mobile nodes or mobile obstacles,
exposure to nature phenomena, and others). After the expiration of this time-out,
the parent is invalidated and a the tree must be re-constructed.

Active vs passive re-building – When a node is left without a parent –either due to
the invalidation by time-out or because of not having received any of the broadcast
messages– there are two alternative approaches to follow. On one hand, the node
may become active and broadcast the pertinent control message forcing a re-
construction of the network tree (e.g. ’BUILD-TREE REQUEST’). On other
hand, it may stay passive and wait for the sink to initiate the next periodic tree
re-build round.

Selection of parent – Tree-building messages are generated at first by the sink and
then forwarded by each of its children nodes. Hence, any given hop may receive
several copies of the same message coming from different sources (e.g. one from
each child, depending on the radio coverage). This is an effect of sharing a common
medium with multiple paths from any given node to the sink.
There are multiple possible criteria to select which of the multiple received mes-
sages comes from the most suitable path. A common approach consists of choosing
the parent as the forwarder of the first received copy, as it proved to lead the fastest
path. Other strategies may delay the decision and relay on the highest received
signal strength (RSSI) among all candidates. Alternatively, complex methods may
keep a history of “best candidates” and base their decision not only on the current
iteration but also on previous references.

V.2 Timeliness Aware Tree-Routing Protocol (TARP)

Based on a simple tree-routing protocol as described in section V.1, the following adapta-
tions introduce the estimation of the end-to-end latency using the tree-building messages
generated at the sink. The overhead in terms of communication is reduced to a few addi-
tional bytes appended to the regular tree-building messages. The memory requirement
is limited to a pair of local variables for the local estimation of forwarding latency plus
two additional variables for the storage of the path estimated latency.
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V.2.1 Local Calculations
The computation of the local estimation of parameters for the distribution of forwarding
latency is divided in the following steps:
(a) Upon transmission of a message, each hop calculates its forwarding latency as shown

in equation III.6 (chapter III).
(i) The routing layer receives notifications from the MAC layer whenever new

messages or acknowledgements of reception (ACK) arrive.
(ii) Locally, the timestamps of each transmitted message are stored until reception

of an ACK.
(iii) The node performs the estimation of its own forwarding latency as shown in

section III.3 upon notification of an ACK.
(b) The results are stored in a set of local variables shown in table V.1, whose value is

updated after a new message is forwarded.

Local Estimation Variables
Variable Type
Iteration (it) (int)
Local x̄it∗ (int)
Local s2

it
∗ (float)

Exponential factor (α) [constant]

Table V.1: Required local variables for the estimation algorithm.

V.2.2 Initial Protocol Adaptations
The first adaptation to the tree-routing protocol embeds the estimation of the end-to-
end latency in the process of building a routing tree. The description of this process is
as follows:
(a) The procedure to establish a routing tree is started at the sink by periodically

broadcasting ’BUILD-TREE’ messages with a sequence number and end-to-end
estimation fields as shown in table V.2.

(b) Upon reception of one such message the receiver checks the sequence number and
compares it with the stored variables:
(i) if it is less than the last sequence seen, it means that a newer broadcast message

arrived, hence this message is old and can be discarded.
(ii) if it is greater than the last sequence seen, it stores the three parameters (see

table V.3).
(iii) if it is equal to the last sequence seen, the node evaluates the parameters with

the local variables. Only if the new parameters show improvement with respect
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to the old ones the table is updated. Otherwise the message is discarded.
(c) If the message has not been discarded, the source address is taken from the headers

and annotated as the parent node. Following, the message is prepared to be re-
broadcast:
(i) the header is updated to contain the address of the new sender,
(ii) the estimation variables are updated adding the local forwarding estimation

of this node,
(iii) the sequence number is left untouched.

(d) The updated message is broadcast, and the process repeats until the distributed-tree
is formed.

Following this procedure, a ’BUILD-TREE’ message carries the end-to-end distribu-
tion parameters from the sink to the each other node on the tree. Hence, nodes get an
estimation of the end-to-end delay distribution to that particular sink. This information
is made available to the application layer to contrast the timeliness requirements against
real run-time estimations.

Header Payload
Sequence Number Estimated x̄∗it Estimated s2

it
∗

— (int) (int) (float)

Table V.2: Format of a ’BUILD-TREE’ message.

The protocol does not rely on the latency of a single message, nor static metrics like
the distance to the sink, for the selection of the parent nodes. Instead, it generates
routes based on actual timeliness performance calculated at run-time.

Protocol Variables
Variable Type
Last Seen Seq. Num. (int)
Path x̄∗ (int)
Path s2∗ (float)
Parent node (address)

Table V.3: Required local variables for the tree-routing protocol.

V.2.3 Evaluation of Best Path
During the distributed formation of a routing tree, it may be necessary to evaluate
several routing paths with different estimated parameters (x̄∗, s2∗). There are two
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alternative variants for the selection of the best candidate: on one hand, the path
showing the shorter average delay (x̄∗), which proves to be faster on average; on the
other hand, the path with shorter variance (s2∗), which proves to be more stable.
The presented protocol takes the decision based on a combination of both parameters.

The intended result is to select the path with the shorter expected end-to-end delay.
Looking at the Normal distribution (see figure III.5), nearly 68% of the values are
expected to fit within the interval (−σ, +σ). Hence comparing the upper limit of this
interval (i.e. x̄∗ + s∗) from both paths, the one closer to 0 is preferred. Figure V.2
depicts the area of interest.

Figure V.2: Limits of the interval with nearly 68% of points in a Normal distribution N(µ, σ2).

Note that for the simplicity of the calculation the comparison is done between x̄∗+s2∗.
Given that the calculation is done to find out which of the intervals is closer to 0, the
difference between using s2∗ or s∗ does not affect the result.

V.3 Multi-Path Extension

The original design of the timeliness-aware protocol assumed a network with one single
sink. Hence, a single record for the information regarding the forwarding node (i.e.
parent) and the estimated variables suffice. As an extension to the protocol, this section
describes a multi-path and multi-sink extension.
The extension handles multiple paths to the same sink and multiple sinks indistinctly.

The information for each one of them is stored in a separate data-record stored in local
memory as shown in table V.4. The maximum amount of records that each node can
store depends on a configurable setting that determines the memory utilization of the
protocol.
When a node receives a ’BUILD-TREE’ message from any of the sinks, it identifies

the immediate source (i.e. last forwarder) as well as the original source (i.e. sink that
originated the message). With these two parameters, it searches in the table for any
matching record.
The procedure depends on the result of this search with respect to the pair (sink,

parent):

1. (match, match): if both fields match, then the data record is updated as it is the
same path with updated values,
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Protocol Data Record
Variable Type
Sink (address)
Parent node (address)
Last Seen Seq. Num. (int)
Path x̄∗ (int)
Path s2∗ (float)
Age (timestamp)

Table V.4: Variable record for the extension to multi-path and multi-sink.

2. (match, no match): a new path for one of the sinks is found. If there is no free
position in the table, the record is updated with the new path. Otherwise a new
record is inserted,

3. (no match, match): an already existing parent is part of a new path to another
sink. In this case, a new record is inserted. The data of the old record cannot be
updated as it refers to a different end-to-end path,

4. (no match, no match): if none of the records matches any of the indexes, a new
record is entered in an empty entry or replacing an old entry if none is available.

If a new entry has to be inserted and there is none available, the protocol selects the
oldest entry in the table to be replaced. This is done by checking the age field, which is
updated after insertion and every time that the record is updated.
Selecting the appropriate node to forward messages to is done by choosing the entry

in the table with the parameters better adjusting to the traffic criteria. The selection of
an an appropriate parent connecting to the addressed sink requires a simple search on
the table. In the case of multiple entries, the protocol my decide which one matches the
intended performance. For instance, a node sending both urgent and regular messages
may select different paths for each kind based on the estimated parameters.
The limitation on the number of multiple paths and sinks that this method can handle

is bounded by the amount of memory used by the protocol. The more available memory
the larger amount of entries may be stored. However, a large number of entries may
introduce higher overhead in handling the table. This extension has been tested for
small tables of 3 to 5 entries for which the overhead was practically negligible.

V.4 Chapter summary
This chapter introduced a timeliness aware routing protocol based on the concepts
already introduced along this thesis. This protocol provides continuous estimations of
the end-to-end timeliness performance and made them available the applications layer.
The latency information allows the application determining whether the end-to-end
requirements can be achieved with the current network conditions and enabling the
exploitation of trade-offs if necessary.





Chapter VI

Evaluation

This chapter presents an evaluation of the main concepts introduced along the thesis.
A number of scenarios evaluating different aspects are described and implemented. The
evaluation is carried out by means of both simulation tools and small-scale test-bed
experiments. The core of this chapter focuses on the evaluation of the routing protocol
described in chapter V and provides hints for the application of the trade-off concepts
presented in chapter IV.
The chapter is organized as follows:
Section VI.1 overviews the evaluation environments and the scenarios that serve as

a basis for the evaluation process. These scenarios are conceived taking into account
properties extracted from real deployments as well as small set-ups to validate specific
network aspects. The section introduces the real test-bed platform as well as the sim-
ulation environment in which the evaluation experiments are conducted. A description
of both platforms, including implementation and configuration details is also presented.
Section VI.2 summarizes the results obtained during the evaluation process. The

section is divided into two parts, corresponding to the results obtained by simulation
runs, and the correspondent figures from a number of controlled test-bed experiments.
Section VI.3 concludes the evaluation chapter with a discussion regarding the pre-

sented results. The results and figures presented in section VI.2.2 are commented and
compared with the simulations in section VI.2.1.
Finally, the chapter concludes with a summary.
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VI.1 Evaluation Environments
This chapter elaborates a detailed evaluation of the main concepts presented in this
thesis. The evaluation is driven by two complementary methods, based respectively on
the use of simulation tools as well as a number of small-scale test-beds carried out in
a lab deployment. This section describes both evaluation environments as well as the
scenarios in which the experiments are conducted for both cases.

VI.1.1 Description of Simulation Environment and Tools
The definition of simulation models used on the evaluation of the work presented in this
thesis is based on the Omnet++ framework [Varga 01], [Community 10] and related
tools. OMNeT++ is a modular simulation framework –free for academic and non-profit
use– written in C++ and specifically designed for network simulations. The modular
architecture allows the development of independent models supporting domain-specific
functionalities.
Among these modular frameworks, the Mobility Framework (MF) [Koepke 10] is in-

tended to support wireless and mobile simulations within the OMNeT++ environment.
The framework provides support for node mobility, dynamic connection management
and wireless channel models.
Omnet++ versions 3.3 to 4.1 and the Mobility Framework version 2.01 constitute the

core of the simulation environment in which the evaluation of this thesis is based.
The evaluation of simulations results is done by comparing the measured end-to-end

delay of messages with the estimated distribution. The timeliness perception at the
application (µ, σ2) is recorded into the transmitted messages. Upon reception of each
message at the sink, the final end-to-end delay experienced by the message is normalized
with respect to these values. This allows the comparisons of streams of messages with
different estimated parameters, which may change continuously due to the network
activity.

VI.1.2 Description of Test-Bed Platform and Lab Deployment
The set-up for the evaluation on small-scale test-beds is motivated by the EU Framework
6 IST Project ”Wirelessly Accessible Sensor Populations” (WASP) [Consortium 10a].
The project dedicated a significant number of resources to the implementation of soft-
ware and firmware modules for the BSN hardware platform [ICL 10]. The lab-experiments
carried out for the evaluation of this thesis are based on this platform and part of the
modules implemented within WASP.
The main characteristics and components of BSN nodes2 are listed following:
• board size 19mm× 30mm

• TI MSP430 [msp 04] 16-bit ultra low power RISC processor

1Part of the work presented in this thesis was originated over MF v.2.0 for Omnet++ 3.x, and later
ported to MF 2.04 for Omnet++ 4.x.

2The test-bed platform described in this section corresponds to the BSN node v.3.
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• 48KB flash/ 10KB RAM
• 8 channels 12-bits ADC
• 2 channels DAC
• 2 USART
• TI CC2420 [cc2 08] radio transceiver
• Communication range of ca. 50m (indoors) and ca. 125m (outdoors)
• Fitted with a miniaturized chip antenna
• 4MB external EEPROM

The BSN platform is distributed in so called development kits. Each kit consists of
one USB programming board, one sensor board, one battery board, one prototype board
and a pair of BSN nodes.
The WASP tool-chain [Consortium 10b], developed within WASP as a compilation of

tools and utilities for the development of software for Wireless Sensor Networks (WSN),
provides sufficient resources for developing, testing and debugging the implemented
software modules. The Operating System Abstraction Layer (OSAL), implemented on
top of MANTIS OS [Bhatti 05] as described in detail in appendix A, provided the link
between the software and hardware platforms.

VI.1.3 Description of Network Stack Protocols

As far as possible, the repertory of protocols in charge of the communication in both
evaluation environments was chosen to be equivalent. The WASP project provided a
valuable set of protocols and simulation models that facilitated this goal without having
to compromise the objectives of this work.
The network stack deployed in the test-bed experiments coincides partially with the

HC-stack 3. Omnet++ models for the main components of this stack are also available
within the project consortium for the evaluation based on simulations. These validated
models are calibrated to reflect with accuracy the behavior of the original protocols.
A brief description of the protocols constituting the network stack follows:

CC2420 – This IEEE 802.15.4 compliant RF transceiver [cc2 08] is documented in
chapter II. The transceiver is part of the BSN node architecture deployed in
the evaluation experiments. The simulations included a validated Omnet++
model reproducing accurately the behavior of this Radio Frequency (RF) chip
[Rousselot 09].

WiseMAC – WiseMAC [El-Hoiydi 04] is an energy-efficient MAC protocol based on
synchronized preamble sampling specially designed for WSNs. In WiseMAC, all
sensor nodes independently sample the medium at a constant period (Tw). If the
medium is busy, the node listens until a data frame is received or the medium
becomes free. To guarantee the reception of messages, a wake-up preamble of size
Tw is transmitted in front of every message. After the reception of a message, a

3Internally labeled as “HC-Stack” for being applied on the herd-control scenario [Lokhorst 07].
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node will try to synchronize its wake-up interval to that of the transmitter, hence
waking up short before the transmission of a new frame.
The evaluation documented in this chapter is carried out with an Omnet++ model
and a software implementation of WiseMAC. In both cases, the configuration of
parameters was chosen to present an equivalent behavior.

FTSP – [Maróti 04] describes the Flooding Time Synchronization Protocol (FTSP),
which uses low communication bandwidth providing a robust synchronization
mechanism. FTSP produces periodic flooding of synchronization messages, and
implicit dynamic topology update utilizing MAC-layer time-stamping and error
compensation including clock skew estimation.

TARP – Chapter V introduced the timeliness aware routing protocol designed to eval-
uate the applicability of concepts presented in this thesis. A model of this protocol
is used for the evaluation in the simulation environment in Oment++. For the
test-bed experiments, parts of the protocol were introduced in the test-bed imple-
mentation validating the scenarios.

VI.1.4 Description of Scenarios
The evaluation carried out in this chapter is based on two main scenarios evaluated
under a diversity of parameter configurations. Both scenarios are implemented in the
two complementary evaluation environments and the results are presented in section
VI.2.

Scenario 1: Linear Network

The first simple evaluation scenario consists of a linear network of i hops as depicted in
figure VI.1.

Figure VI.1: Evaluation scenario 1: Linear network composed of one sender node (n) gener-
ating periodic traffic at rate ∆ and one sink (s) separated by a number of hops (hi, 1 ≤ i ≤ 4).

In this set-up, the routing path is manually fixed (i.e. static) and only the traffic
generated by the sender node (n) towards the sink (s) is present. The main purpose
of such an scenario is to validate the end-to-end distribution algorithm presented in
chapter III exploiting the generalized timeliness notion, as well as to demonstrate the
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validity of the assumptions with respect to the distribution of the measured end-to-end
latency.

Scenario 2: Routing Path with Cross-Traffic

The second scenario is a variant of the previous with the addition of cross-traffic. Figure
VI.2 depicts the scenario.

Figure VI.2: Evaluation scenario 2: Routing path of length k with nodes logically connected
to two neighbors generating cross-traffic with exponential time between packets λ. Sender node
(n) transmitting periodic traffic to sink (s) at rate ∆.

The routing path in this scenario follows the logical hierarchy depicted in figure VI.2.
Hence, each hop of the analyzed route has to forward cross-traffic of two additional
neighbors as well as its own. These messages are forwarded towards the sink (s) along
with control messages evaluating the end-to-end latency (i.e. those generated in n). The
traffic generated at each neighbor node follows an exponential distribution simulating
cross-traffic coming from multiple sources, while n generates messages periodically.
This topology is representative of the section of a WSN with multiple arbitrary traffic

sources. Note that the logical connection between hops (i.e. parents and children) does
not limit the interference range and potential collisions between physically nearby nodes.
Hence, as in a real deployment, ongoing parallel transmissions may be affected between
neighboring nodes.
The configuration of this scenario considered three parameters, namely: path length

(|rp|); period of messages generated in n (T ); and, mean inter-arrival time for cross-
traffic generated in the neighbor nodes (λ). The following list shows the range of pa-
rameters considered for the evaluation of this scenario:

• path length: |rp| = {5, 10},
• n generating periodic messages transmitted to s with period T = 30s,
• messages aggregate the estimated parameters at each intermediate link (Equation

III.6).
• α = 0.9
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• each hop in the path has two neighbors simulating cross traffic following a Poisson
distribution with parameter λ = {30s, 60s, 120s, 480s, 1200s},
• distance between nodes following a uniform distribution with range 8 to 20 meters.

VI.2 Evaluation Results
This section presents the most significative results obtained in multiple experiments
performed according to the previously described evaluation methods. As the number
of figures and results is large enough to overload this chapter, some of them have been
moved to appendix B together with additional examples complementing the evaluation.

VI.2.1 Evaluation of Simulated Scenarios
With the aid of simulation tools, a large number of scenarios with multiple combinations
of parameters and conditions were tested. The following are some of the results that
validate the use of the generalized timeliness notion and the timeliness aware routing
protocol.

Simulations Scenario 1

Parameter Value
WiseMAC Sample Period 250ms
Transmitted Messages 100000
Time Between Messages 30s
Topology Scenario 1

Table VI.1: Summary of set-up for the simulation experiment as described in scenario 1.

Following the topology described in scenario 1 and the set-up summarized in table
VI.1, figure VI.3 shows the probability density function (PDF) obtained by multiple
simulation runs.
Figure VI.3b depicts the estimated cumulative distribution function of the same ex-

periment. Both figures, illustrate the relation between the bounds of the time interval
and the achieved probability. Note that both factors are directly dependent on each
other.
With the availability of this information at run-time, an application is able to estimate

the end-to-end latency based on the current network status. In the scenario depicted in
these figures, nearly 80% of the messages arrive at the sink in less than 1 second. This
information is already a valuable indicator for the end-to-end latency. However, note
that the distribution estimation is dynamically changing at run-time, adapting to the
evolution of the network, the environment, and traffic load.
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Figure VI.3: Distribution of end-to-end latency in a simulation experiment following the
topology of scenario 1 (PDF and CDF).

The estimation provides additional information that can be exploited in the execution
of network-wide trade-offs. As detailed in chapter III, the interval (x̄−s, x̄+s) contains
approximately 68% of the values. Hence, observing the evolution of x̄ and s2 before and
after the application of network trade-offs it is possible to evaluate the real effects of the
applied set-points, validating at run-time the parameter values obtained with the use
of abstract models (e.g. as introduced in chapter IV).
Appendix B includes an extended example based on this scenario performing a com-

parison between the generalized and classic timeliness notions.

Simulation of Scenario 2

Table VI.2 summarizes the set-up for multiple experiments performed according to the
description of scenario 2. This experiments show the relation between cross-traffic and
the distribution of the end-to-end latency. The set-up includes situations with low traffic
as well as examples approaching the point of saturation.
For convenience, the figures are grouped according to the cross-traffic parameter. A

compact view of these results can be found in appendix B.
The analysis of each case shows interesting behaviors of the estimation algorithm.

Figure VI.4, depicting the results for simulations with low cross-traffic (λ = 1200s) is
significantly different depending on the path length. The accuracy of the curve showing
the end-to-end estimation in the scenario with larger path length (|rp = 10| is notably
better than that of the shorter path (|rp = 5|).
On one hand, the larger path increases the number of links contributing with their

local estimations, which –as discussed in chapter III– produces better estimations based
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Parameter Values
WiseMAC Sample Period 250ms
Transmitted Messages 100000
Period of Control Messages 30s
Parameter for Cross-Traffic {30s, 60s, 120s, 480s, 1200s}
Path length {5− hops, 10− hops}
Topology Scenario 2

Table VI.2: Summary of set-up for the simulation experiment as described in scenario 2.

on the Central Limit Theorem (CLT). On the other hand, note that as the number
of hops increase the number of neighbors in the scenario is proportionally larger, and
therefore the generated cross-traffic increases influencing the estimation. In this case,
the impact of more traffic is reflected in a more accurate estimation due to the higher
frequency at which the measurements are updated.
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Figure VI.4: Estimated PDF and CDF corresponding to scenario 2 with λ = 1200s and
|rp| = 5 and 10.

Figures VI.5 and VI.6 show two cases with a medium traffic load. Both estimations
are notably accurate with respect to the reference distribution N(0, 1). In both cases,
the traffic is high enough to update sufficiently often the link forwarding estimation at
each hop, contributing to the correct estimation of the end-to-end distribution.
The small error with respect to the reference curve (N(0, 1)) is due to the tail effect

already mentioned in chapter III. The presence of a physical limit for the fastest possible
transmission time introduces a minimum bound on the left side of the curve which is not
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present on the other side. Hence, the deviation on the transmission time of a message
is not equal in both sides of the central average value, introducing the asymmetry
responsible for this tail.
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Figure VI.5: Estimated PDF and CDF corresponding to scenario 2 with λ = 480s and |rp| = 5
and 10.

Figures VI.7 and VI.8 represent the other extreme with respect to the traffic load.
In both cases, the amount of traffic approaches the network capacity, degrading the
accuracy of the estimated distribution. In these cases, the number of hops contributed
in a negative way as observed in figure VI.7. One of the reasons for this effect is the
same increase in the network load for larger paths mentioned before, which explains
that the result for |rp = 5| still produces an acceptable level of accuracy.
Another reason for this decrease in the obtained accuracy for scenarios close to network

saturation lies in the higher amount of missed acknowledgments. When an acknowledg-
ment is missed, the forwarder node considers that the message was not received, and
hence proceeds with its retransmission. However, during these experiments it was de-
tected that in many cases the message was properly delivered and the receiver continued
forwarding it further away. The result is that the calculated latency of the message at
the sender node is notably worse than the real delay experienced by the message. Such
phenomena are expected to happen in WSNs, and this result shows that measures must
be taken to counterbalance their effects in networks with high traffic loads.
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Figure VI.6: Estimated PDF and CDF corresponding to scenario 2 with λ = 120s and |rp| = 5
and 10.
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Figure VI.7: Estimated PDF and CDF corresponding to scenario 2 with λ = 60s and |rp| = 5
and 10.

VI.2.2 Test-Bed Evaluation

For the validation of the previous simulation work, a number of test-bed runs were
carried out. Due to physical and practical limitations, these runs were divided into a
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Figure VI.8: Estimated PDF and CDF corresponding to scenario 2 with λ = 30s and |rp| = 5
and 10.

Parameter Test-Bed 1 Test-Bed 2
WiseMAC Sample Period 250ms 250ms
Transmitted Messages 1000 500ms
Time Between Messages 8s 10s
Topology Scenario 1: 2 hops Scenario 1: 3 hops

Table VI.3: Summary of the set-up for the test-bed experiment

number of small lab experiments with the purpose of analyzing the latency of messages
and its distribution patterns.

End-to-end Latency

Figure VI.9 shows the end-to-end latency for a test-bed run with 1000 messages trans-
mitted in a 2-hop network following the topology depicted in scenario 1. A different
500-messages run in a 3-hop network is plotted in figure VI.10. Table VI.3 summarizes
the test-bed set-ups for both experiments.
Note that despite the initial peaks, both figures show a similar behavior. Even though

both networks are small, the figures show a significant variability in the achieved end-
to-end delay. As expected, for short experiments with low traffic levels, the latency
appears to be approximately centered around a constant average transmission time and
the variability behaves as if it were bounded.
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Figure VI.9: End-to-end latency for a 1000 messages test-bed run in a 2-hop network as in
scenario 1

Nevertheless, even though the conditions of these experiments were favorable for a
successful result, the number of packet losses is relatively high. Figures VI.11 and VI.12
show the packet loss curve with respect to the transmission of messages. Note that the
distribution of packet losses is approximately constant (i.e. increasing linearly) and it
is not caused by a temporal anomaly affecting the transmission.
This large number of packet losses is not unusual in WSNs and most of them are due

to radio irregularities, collisions, or transmission errors. This motivated the inclusion of
a simple algorithm taking account for the index of packet losses in TARP. The protocol
performs a selection of the most suitable path for the timely transmission of messages
evaluating the packet-loss index together with the end-to-end estimations. Note that
any deployment exposed to realistic scenarios will suffer from this same issue, which
in the experiments performed during this analysis was significantly stressed if mobile
nodes or weak links were present.
One of the lessons that can be extracted from this initial evaluation is that the ap-

plication of network trade-offs should take into account the packet loss index (or else,
the delivery ratio) and perform run-time adjustments based on the observed network
behavior. The large variability observed in this metric during additional runs of these
set-ups –in practically identical conditions– suggests that the performance in larger de-
ployments can be severely affected if only the metrics of interest (e.g. timeliness, energy
consumption) are taken into account. In some cases, it was observed that a selection
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Figure VI.10: End-to-end latency for a 500 messages test-bed run in a 3-hop network as in
scenario 1
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Figure VI.11: Packet loss for a 1000 messages test-bed run in scenario 1
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Figure VI.12: Packet loss for a 500 messages test-bed run in scenario 1

based on the fastest path resulted in a large amount of messages being lost. However,
as the Quality of Service (QoS) metrics of interest did not reflect the delivery ratio, this
was not initially detected as a bad choice.

Distribution of End-to-End Latency

The following figures show the evaluation of the end-to-end latency distribution of 1000
messages transmitted through a network of 2, 3, and 4 hops following the topology of
scenario 1. As before, the network stack is composed of WiseMAC at the MAC layer,
FTSP as time synchronization layer and simplified version of TARP as routing protocol.
In all set-ups, nodes were placed at selected relative distances trying to minimize the

impact of the interference range. However, being a real test-bed, many uncontrollable
radio anomalies may have been registered. Nevertheless, after a considerable amount of
time (e.g. 1000 messages) the condition appeared stable and significantly representative.
For the experiments, the nodes were connected via USB ports to regular desktop com-

puters running GNU/LINUX. The connection allowed debugging messages and traces
to be displayed on the screen for further analysis.
For the sake of simplicity, the following figures show only the cumulative distribution

function for the experiments in test-beds of 3 and 4 hops. However, appendix B includes
the missing figures in section B.3.
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Figure VI.13: Histogram and probability density function of end-to-end latency for a 1000-
messages test-bed run in a 2-hop network as in scenario 1.

The Probability Density Function (PDF) of the estimated end-to-end distribution
in comparison with the reference distribution N(0, 1) shows an accurate match in all
figures. The small error between the two lines accounts for a deviation which in most
cases remains below 5%. This small inaccuracy is negligible for the application of the
estimation method and particularly for the application of network trade-offs based on
the relative evolution of the estimated distribution (i.e. analysis of trends).

VI.3 Evaluation Discussion
In TARP, the information carried out by control messages with respect to the estimated
end-to-end distribution is made available to the application. Hence, the application
updates its perception of the timeliness performance at regular intervals. Within one of
such intervals, the application expectations are that the end-to-end delay distribution
of the transmitted stream of messages follows the estimated distribution.
This information is not only exploitable by the application itself, but also a valuable

run-time indicator of the changes on the timeliness performance. Hence, trade-off adap-
tations involving the timeliness metric can be based not only on the offline analysis of
set-points, but also take into consideration the current network performance evaluated
at run-time.
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Figure VI.14: Cumulative distribution function of end-to-end latency for a 1000-messages
test-bed run in a 2-hop network as in scenario 1.

The evaluation of scenarios presented in this chapter shows that in both environments
the method produces satisfactory results. The experiments evaluated on a simple test-
bed showed that the estimation algorithm is accurate on a real implementation, which in
some cases exceeded the performance observed in simulations. Despite significant efforts
were put to minimize the difference between abstract models and the real platform, this
outperformance shows that in some cases the simulation models were slightly pessimistic.
The overhead introduced by this method is minimal as it takes advantage of the

transmission of regular messages for the estimation of local forwarding delays. The
timeliness aware protocol presented in chapter V is based on a tree-routing algorithm,
although the adaptation of different routing strategies is possible with limited efforts.
Additional experiments were carried out during the evaluation of the work presented

in this thesis. Some of the most representative are included in appendix B.

VI.4 Chapter summary
This chapter presented the evaluation of concepts introduced in the thesis. Simulations
and deployed test-beds validate the concepts and provide a graphic evaluation of the
accuracy of the end-to-end distribution method presented in chapter III. The method
is evaluated under a number of scenarios configured according to a meaningful variety
of parameters. The timeliness aware routing protocol introduced in chapter V proves
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Figure VI.15: Cumulative distribution function of end-to-end latency for a 1000-messages
test-bed run in a 3-hop network as in scenario 1.

to perform accurate estimations of the distribution of end-to-end latency at a negligi-
ble cost, hence enabling the application of network trade-offs with dynamic run-time
information regarding the timeliness performance.
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Figure VI.16: Cumulative distribution function of end-to-end latency for a 1000-messages
test-bed run in a 4-hop network as in scenario 1.



Chapter VII

Conclusions

This chapter concludes the work presented along the thesis with an overview of the main
contributions and final remarks.

VII.1 Overview of Main Contributions

The work presented in this thesis offers an alternative timeliness approach to WSNs.
In doing so, it develops a generalized timeliness notion adapting to the particularities
of WSNs. The new conceptual notion allows defining feasible real-time objectives with-
out incurring in misleading system assumptions over-constraining the applicability of
methods.
Exploring QoS trade-offs between timeliness and other significant QoS metrics, the

core of this thesis is centered in the definition and application of local and global trade-
offs. The association between timeliness and other related metrics enables the definition
of alternative set-points influencing the quality performance of the network at selected
instants of time.
A simple routing protocol embedding these concepts constitutes a proof for the validity

of the presented concepts.
The main contribution of this thesis can be divided into three categories:

VII.1.1 Timeliness Notion

Chapter II overviewed the current state-of-the-art with particular interest in the state of
real-time networking protocols. The appreciation of significant inconsistencies regarding
the assumptions and objectives of existing real-time methods motivated the analysis
of common misconceptions and misleading assumptions restricting the applicability of
current real-time methods in realistic scenarios. Section II.5 contributes with a series of
recommendations concluding the analysis of a number misconceptions identified within
the analyzed literature.
Chapter III presented an alternative timeliness notion adapting to the particularities

of WSNs. The generalized timelines notion is by itself a contribution as it opens a new
range of possibilities to defining timeliness approaches. The main strength of this notion
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falls upon the capacity of defining timeliness aware methods without incurring in the
above-mentioned misleading assumptions.
As a proof of concept for the potential of the generalized notion, chapter III includes

an algorithm estimating the end-to-end latency distribution of routing paths.

VII.1.2 Trade-off Analysis
The contribution in chapter IV starts with the analysis of local and global trade-offs.
The chapter explores the definition of set-points based on the analysis of abstract models
under a number of possible application modes. The analysis of set-points and trends de-
fines the possibilities to exercise run-time network trade-offs, provided that the necessary
hooks are available.
Chapter V describes a simple routing protocol based on the trade-off analysis as well

as the generalized timeliness notion.

VII.1.3 Operating System
In addition to the contributions regarding network communications, this thesis also
contributes in the definition of the OSAL. This level of abstraction allows a unified
Operating System (OS) enabling a wider flexibility in the exploitation of local trade-offs
and the definition of portable applications.

VII.2 Final Remarks
During the evaluation of the work presented in this thesis a large number of test-bed
and simulation runs were carried out. The difficulties in finding a reasonable balance
between the results observed from small test-bed deployments and simulated scenarios is
well worth a mention in the final remarks. In particular, a significant amount of time and
efforts were dedicated to match the characteristics of the two evaluation environments
and make sense of the results obtained. In some cases this mismatch was a valuable clue
in the process of debugging, but not only the simulation models were fixed according
to the results obtained in real deployments. Anecdotically, thanks to the debugging
possibilities included in the simulation environment, it was possible to detect a number
of bugs in the test-bed implementation.



Appendix A

OSAL: An Operating System Abstraction
Layer

The establishment of proper control mechanisms for the hardware platform into software
frameworks brings up a number of portability issues. Operating System Abstraction
Layer (OSAL) [Schoofs 09], [Serna Oliver 10c] has been designed to address these issues
and diminish the conflicts between different software and hardware platforms. In partic-
ular, it addresses the discrepancies among different Operating System (OS) with respect
to their functional Application Programming Interfaces (API), hardware configuration
mechanisms, resource management and handling of peripherals.

A.1 Abstraction of the Operating System
OSAL is an abstraction layer designed to be placed on top of an OS, which translates
system primitives from the original operating system into an unified API. Thus, appli-
cation builders are able to use a common API which has the advantage of dramatically
reducing portability efforts in later deployments. Experience shows that after the first
implementation, porting OSAL to new platforms requires a relatively small effort com-
pared to a large scale deployment [Serna Oliver 10c].
OSAL achieves minimal footprint and execution overhead by using advanced com-

pilation tools and techniques. Among others, function-level linking, in-line functions
and extensive use of preprocessor macros to provide light function wrappers for the OS
native primitives.
The main goals of OSAL include the unification of basic data types and structures,

a common API of the system primitives and return codes, extension or implementation
of non-compliant or missing primitives, and abstraction of specific OS and hardware
initialization procedures.

A.1.1 OSAL API
OSAL API covers the basic needs to develop applications in the domain of sensor net-
works. This chapter presents the representative parts of its design with appropriate
examples for each case.

97



98

OS Initialization

Start-up initialization is one the most system-dependent features in any OS. For exam-
ple, FreeRTOS [RTE 09] leaves this responsibility to the entry function, which normally
creates some tasks before calling vTaskStartScheduler() to trigger the OS sched-
uler. This primitive does not return, and hence the initial task itself is permanently
suspended.
In contrast, MANTIS OS initializes the scheduler before calling the application-

defined entry function (void start()), where any additional required task can be
created.
OSAL defines a initialization function (wos_main()) which always runs after the

scheduler has been initialized. Any task created in this function will be scheduled
immediately.
Table A.1 summarizes the initialization procedure for the three systems.

Tasks

The OSAL API unifies the way in which parameters are given to the OS and the par-
ticularities of each individual system.
Creating a task using OSAL is done with the primitive:

wos_task_create(thread_func, NULL)

The second parameter can be either NULL or a pointer to an initialized task_attr_t
structure that allows specifying stack size and priority explicitly.

Synchronization

Primitives to ensure mutual exclusion between concurrent tasks are frequently used in
embedded OS. OSAL provides support for mutex, semaphores and message queues,
which cover most application requirements with respect to synchronization and inter-
task communication.
Table A.11 shows the primitives for mutex handling of the two analyzed OSs for

comparison with the OSAL API. Note that the FreeRTOS synchronization API has
several critical drawbacks (e.g. impossibility to immediately wake up a thread of the
same priority which was waiting for a semaphore). For this reason, we developed an
additional Advanced Synchronization Framework with similar syntax which solved these
issues.
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Mantis OS

void start() {
// Application initialization code
// Application main thread

}

FreeRTOS

void MainThread() {
// Application main thread
vTaskDelete(xTaskGetCurrentTaskHandle());

}
int main() {

vPortInitialize();
// Application initialization code
xTaskCreate(MainThread, NULL, main_stack_size,

NULL, main_priority, NULL );
vTaskStartScheduler();
return 0;

}

OSAL

wos_status wos_main(void) {
// Application initialization code
// Application main thread
return MAKE_STATUS(WOS_SUCCESS);

}

Table A.1: System initialization of an empty application in MANTIS OS, FreeRTOS and
OSAL

Software Timers

Software timers are of special importance in sensor network systems as they allow im-
plementation of time-outs as well as periodic execution of functions, which are essential
to any networking protocol. Efficient implementations use hardware timer interrupts to
callback a given timer function. This, however, implies a number of limitations due to
the execution within an interrupt context (ISR). Namely, that interrupts are disabled
while a software timer handler is running and the current task context is undefined,
invalidating the use of blocking functions.
The following example shows how software timers are handled in OSAL:

timer_t timer;
wos_timer_create(&timer, period, hdl_funct, context);
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Mantis OS

mos_mutex_t mtx;
mos_mutex_init(&mtx);
mos_mutex_lock(&mtx);
mos_mutex_unlock(&mtx);

FreeRTOS

xQueueHandle mtx = xQueueCreateMutex()
xSemaphoreTake(mtx);
xSemaphoreGive(mtx);

OSAL

wos_mutex_t mtx;
wos_mutex_init(&mtx);
wos_mutex_lock(&mtx);
wos_mutex_unlock(&mtx);

Table A.2: Synchronization primitives in MANTIS OS, FreeRTOS and OSAL

wos_timer_destroy(&timer);

Note that FreeRTOS does not originally support software timers. The implementation
of this functionality on top of FreeRTOS was necessary before porting the OSAL API.

A.1.2 Message Handling

Efficient handling of messages is vital to sensor applications. OSAL unifies the most
relevant aspects regarding radio transmissions of messages, namely message structures,
buffers and radio API.

Packet Buffers

As different OS use different structures for packet buffers (e.g. some of them are fixed-
size, some support variable length), OSAL provides a unified preprocessor macro allow-
ing to declare a structure which specifies its name and the desired size.
For example, OSAL provides procedures to declare packet buffers and structures both

for sending and receiving packets (i.e. DECLARE_PACKET(name, max_size)). Par-
ticular constrains may appear due to native restrictions on the underlaying OS. For
instance, the parameter max_size must be checked and a compilation error raised if
its value exceeds the maximum supported size by the OS.
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Radio API

The radio API is a subset of OSAL which abstracts internal structures and the man-
agement of data packets. Packet buffers can be both of fixed or variable size, and
can contain (or not) several internal fields. The goal of the radio API is to abstract
platform-specific details from the user and to provide a transparent interface for dealing
with packets.
Particular attention has been given to the buffer management for radio transmission

and reception. For example, MANTIS OS copies incoming packets into a fixed system-
maintained buffer (i.e. a packet is always received in the same place and then can be
copied by the application). OSAL provides a preprocessor macro, which enables direct
access to the system buffers, avoiding costly and unnecessary memory operations.
MANTIS OS provides relatively inconvenient API for sending and receiving radio

packets. A packet should be contained in a fixed-size buffer structure with a field
sizedirectly set by the primitive caller. A typical scenario involving sending some
fixed-structure packets using MANTIS API is the following:

struct VerySimpleMessage {
unsigned long OrderNumber;

};
comBuf buf;
buf.size = sizeof(VerySimpleMessage);
((VerySimpleMessage *)buf.data)->OrderNumber = n;
com_send_IFACE_RADIO(&buf);

OSAL provides a more convenient object-oriented API for sending radio packets,
reducing the previous code to the following:

EnclosingPacket<VerySimpleMessage> buf;
buf->OrderNumber = n;
Radio::SendPacket(buf);

Moreover, OSAL hides all OS-specific low-level details, such as fixed-size buffers, which
enables straight forward portability among different OS.

A.1.3 Build System
Developing almost every embedded application starts with setting up the build environ-
ment. One of the goals of the OSAL is to simplify build system-related tasks as much
as possible.
The steps required to build an application differ for the two analyzed OSs. Under

MANTIS OS, the user needs to create an automake file to generate a Makefile,
which must be re-generated when new sources are added. No built-in debug/release
configuration support is provided, although this can be done by editing the generated
Makefile. Generally, a typical automake file consists of 3− 4 lines.
FreeRTOS does not provide a build system itself. Hence, users should manually create



102

Makefile and specify all involved sources and build flags. A typical FreeRTOS-based
application Makefile consists of around 50 lines.
This work explored the possibilities of GNU make to provide a simple building sys-

tem for OSAL. As a result, in includes a number of scripts which dramatically reduce
the build system-related complexity, as shown in the following makefile example of
building a simple application:

WOSMAKE_ROOT = ../../../../makesystem
include $(WOSMAKE_ROOT)/Makeapp.lazy

In this case, the binary file name and the source list is automatically generated based
on current directory name and contents. Alternatively, it is possible to specify this
information explicitly:

WOSMAKE_ROOT = ../../../../makesystem
wosapp_objects = my_obj1.o my_obj2
wosapp_image = my_binary

Note that the OSAL build system automatically supports switching between MANTIS
and FreeRTOS, as well as between DEBUG and RELEASE configurations, requiring no
makefile or source file modifications.

A.2 Evaluation

The OSAL has been successfully implemented on top of MANTIS OS and FreeRTOS as
part of the EU funded project WASP [Consortium 10a] with the internal name WASP
OS API (WOS). Complete documentation on the design and implementation process
is publicly available and periodically updated in [Serna Oliver 10b] as well as in public
deliverables under Work Package 3 in [Consortium 10a].

A.2.1 Code and Memory Footprint Overhead

This section presents the evaluatuon of the overhead on the executable code size and the
memory footprint of initialized and non-initialized memory.It identifies the overhead of
each basic primitive and extrapolate the run-time overhead based on the composition of
these measurements. The implementation ensures that no additional run-time overhead
exists due to the abstraction layer.
The evaluation is based on a number of sample applications to easily identify when and

why overhead was generated comparing four OS configurations: MANTIS OS, MANTIS
OS + OSAL, FreeRTOS, and FreeRTOS + OSAL.
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OS Initialization Overhead

Table A.4 shows the evaluation of the start-up initialization functions in Table A.1. In
this example we compare the byte sizes for the compiled code in RELEASE and TRACE
modes. In the latter, OSAL initializes the tracing framework (mutex and some buffers),
responsible for the additional overhead compared to the former.
The difference between the two modes is due to the availability of debug tracing as, e.g.

wos_dbg_print("Bug!");. This allows inserting debugging lines that only produce
binary code in TRACEmode, resulting in no overhead when compiling in RELEASEmode.
Our evaluation shows a minimal overhead of 22 bytes in Mantis OS and 40 bytes in

FreeRTOS due to the initialization process with much lower overhead on the memory
footprint in RELEASE mode. Note that the impact of the TRACE configuration is
relatively small, enabling the use of debugging primitives at a reasonable cost.
Starting from the synchronization example, we will use the OSAL initialization func-

tion for both raw RTOS and OSAL-based builds to filter out the constant initialization
overhead and to track only the changes implied by using OSAL API instead of raw
RTOS API.

Task Handling Overhead

The evaluation of the overhead added to the task handling primitives considers the
code shown in table A.3. Table A.5 shows that the overhead is mostly the same as for
previous sample which is caused by the initialization functions. To distinguish between
startup-related overhead and other types of overhead, we change the FreeRTOS and
MANTIS samples to use the OSAL initialization while directly calling the original OS
primitives. The modified code is shown in Table A.10.
Note that when FreeRTOS is used, OSAL wraps all thread functions in an own func-

tion that calls vTaskDelete() after a thread function has returned. This produces a
constant 6 byte overhead plus 2 bytes for each task being created.
Further examples in the rest of this section, do not include the initialization overhead

in order to provide a better overview of the the isolated overhead of each evaluated
functionality.

Synchronization overhead

The evaluation of the overhead of synchronization primitives is done by comparing the
footprint sizes of a relatively small program that performs iterative mutex testing, as
shown in Table A.11.
Table A.8 shows that OSAL does not introduce any overhead for MANTIS OS, and

that the only overhead for FreeRTOS are the already mentioned 6 bytes plus 2 additional
bytes for each task created, which are due to the task function wrapping. Therefore, the
synchronization API itself does not produce any additional overhead, neither in code
size nor in memory footprint.
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Timers Overhead

The evaluation of the overhead introduced in software timers is done comparing the
footprint sizes for a sample application registering three timer handlers which increase
one of three static variables. Again, as OSAL functions are simple inline wrappers
around the native OS calls, no overhead is produced as shown in Table A.7.

Radio API Overhead

With respect to the radio API, Table A.12 shows a simple application sending a sequence
of short messages. Since FreeRTOS does not directly support radio interfacing this part
only evaluates this feature with MANTIS OS. Table A.9 shows that the usage of OSAL
primitives does not increment the footprint, hence incurring in no additional overhead
due to OSAL.

A.2.2 Evaluation Overview
Table A.13 summarizes the additional overhead introduced by OSAL for each of the
analyzed functionalities. Note that the overhead, measured in bytes, is accounted for
each of the referred functions in isolation (e.g. ignoring the overhead due to initializa-
tion). The total additional overhead of a complex application depends on the number
of tasks and other resources created, although our analysis shows that it is negligible
with respect to the overall footprint of a real application.
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Mantis OS

#include <mos.h>
#include <msched.h>
#include <led.h>
#define DEFAULT_STACK_SIZE 128

void thread1(void) {}
extern "C"
void start(void) {

mos_thread_new( thread1, DEFAULT_STACK_SIZE,
PRIORITY_NORMAL);

}

FreeRTOS

#include "FreeRTOS_all.h"

void thread2(void *) {
vTaskDelete(xTaskGetCurrentTaskHandle());

}
void thread1(void *) {

FreeInitialThreadStack();
xTaskCreate(thread2, NULL, 64, NULL, 1, NULL);
vTaskDelete(xTaskGetCurrentTaskHandle());

}
int main() {

FreeRTOS_InitializeForWASP();
xTaskCreate(thread1, NULL, 64, NULL, 1, NULL);
vTaskStartScheduler();

}

OSAL

#include <wos/task.h>
#include <wos/led.h>

void thread1(void) {}
wos_status wos_main(void) {

wos_task_create(thread1, NULL);
return MAKE_STATUS(WOS_SUCCESS);

}

Table A.3: Simple application example creating one empty task
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Size Mem-I Mem-NI
MANTIS 9048 20 534
MANTIS+OSAL(R) 9056 (+8) 20 534
MANTIS+OSAL(T) 9070 (+22) 20 544 (+10)
FreeRTOS 4448 46 114
FreeRTOS+OSAL(R) 4474 (+24) 46 114
FreeRTOS+OSAL(T) 4488 (+40) 46 116 (+2)

Table A.4: Overhead introduced by OSAL in system initialization functions (see Table A.1)
compiled in different modes: TRACE (T) and RELEASE (R).

Size Mem-I Mem-NI
MANTIS 9066 20 534
MANTIS+OSAL 9074 (+8) 20 534
FreeRTOS 4480 46 114
FreeRTOS+OSAL 4510 (+30) 46 114

Table A.5: Overhead introduced by OSAL in task creation functions (see Table A.3).

Size Mem-I Mem-NI
MANTIS 9088 20 544
MANTIS+OSAL 9088 20 544
FreeRTOS 4518 46 116
FreeRTOS+OSAL 4526 (+8) 46 116

Table A.6: Overhead introduced by OSAL in task creation functions with original OS primitives
(see Table A.3).

Size Mem-I Mem-NI
MANTIS 10842 20 679
MANTIS+OSAL 10842 20 679
FreeRTOS 6974 46 210
FreeRTOS+OSAL 6974 46 210

Table A.7: Overhead introduced by OSAL in a sample timer application.
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Size Mem-I Mem-NI
MANTIS 11324 32 639
MANTIS+OSAL 11324 32 639
FreeRTOS 6974 58 164
FreeRTOS+OSAL 6986 (+12) 58 164

Table A.8: Overhead introduced by OSAL in synchronization functions (see Table A.11).

Size Mem-I Mem-NI
MANTIS 11498 22 633
MANTIS+OSAL 11498 22 633

Table A.9: Overhead introduced by OSAL in a sample message sending application (see Ta-
ble A.12).

Mantis OS

#include <wos/task.h>
#define DEFAULT_STACK_SIZE 128

void thread1(void) {}
wos_status wos_main(void) {

mos_thread_new(thread1, DEFAULT_STACK_SIZE,
PRIORITY_NORMAL);

return MAKE_STATUS(WOS_SUCCESS);
}

FreeRTOS

#include <wos/task.h>

void thread2(void *) {
vTaskDelete( xTaskGetCurrentTaskHandle());

}
wos_status wos_main(void) {

xTaskCreate(thread2, NULL, 64, NULL, 1, NULL);
}

Table A.10: Modified simple application example creating one empty task with original OS
primitives
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#include <wos/task.h>
// ...
static wos_mutex_t s_TestMutex;
static int s_Busy = 0;
static int s_Error = 0;
static int s_Iter = 0;
static int s_Threads = 0;
#define MAX_SLEEP_T 100

void thread_body(void) {
int i;
wos_mutex_lock(&s_TestMutex);
s_Threads++;
wos_mutex_unlock(&s_TestMutex);
for (i = 0;;i++) {

wos_mutex_lock(&s_TestMutex);
if (s_Busy) {

WOS_LED_ON(RED);
wos_dbg_print("Bug!");
s_Error = 1;

}
s_Busy = 1;
wos_sleep(((unsigned)rand()) % MAX_SLEEP_T);
s_Iter++;
s_Busy = 0;
wos_mutex_unlock(&s_TestMutex);

}
}
wos_status wos_main(void) {

wos_mutex_init(&s_TestMutex);
wos_task_create(thread_body, NULL);
wos_task_create(thread_body, NULL);
wos_task_create(thread_body, NULL);
for (;;) {

wos_dbg_printf("Iteration: %5d;
threads: %d; error: %d\n",
s_Iter, s_Threads, s_Error);

}
return MAKE_STATUS(WOS_SUCCESS);

}

Table A.11: Sample OSAL application using synchronization primitives.
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struct VerySimpleMessage {
unsigned long OrderNumber;

};
using namespace WOS::Radio;
wos_status wos_main(void) {

wos_radio_init();
EnclosingPacket<VerySimpleMessage> buf;
for (unsigned long n = 1;;n++) {

buf->OrderNumber = n;
wos_dbg_printf("Sending... (%ld)", n);

WOS_LED_ON(GREEN);
Radio::SendPacket(buf);
wos_dbg_printf("done\n");
WOS_LED_OFF(GREEN);
wos_sleep(100);

}
return MAKE_STATUS(WOS_SUCCESS);

}

Table A.12: Sample OSAL application sending a sequence of short messages containing in-
creasing numbers.

MANTIS OS FreeRTOS
Function (a) (b) (c) (a) (b) (c)
Initialization +8 0 0 +24 0 0
Tasks 0 0 0 +8 0 0
Mutex 0 0 0 +12 0 0
Timers 0 0 0 0 0 0
Messages 0 0 0 - - -

Table A.13: Summary of overhead introduced by OSAL (in bytes) in (a) code size, (b)
initialized memory, and (c) non initialized memory.





Appendix B

Extended results

B.1 Additional Example
This example is based on a typical Wireless Sensor Network (WSN) with a routing path
of length q-hops as depicted in figure III.6. Each hop in the path is logically connected to
two additional neighbors through in the routing tree. Note that the physical interference
range is not limited by the logical connection and –as it happens in real deployments–
interferences between nearby transmitting nodes may occur.
Following this set-up, figure B.1 shows the probability density function (PDF) ob-

tained by simulation of a routing path of length 5. Each node on the network (including
those forming the path) generated traffic with a time between messages following an
exponential distribution with parameter λ = 15s.
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Figure B.1: Expressing timeliness by means of the end-to-end latency distribution (PDF and
CDF).

The artificial load was set to simulate the effects of cross-traffic on a segment of a
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big network. Additional control messages were generated periodically every 30s at the
source of the path and its end-to-end delay captured upon their arrival at the sink.

This scenario was simulated by means of the network simulator Omnet++ [Varga 01]
[Community 10] and Mobility Framework [Koepke 10]. The chosen MAC protocol was
Wisemac [El-Hoiydi 04] and the radio model followed the specifications of a CC2420
transceiver [cc2 08]. The routing path was manually fixed for this experiment and all
messages in the network were directed to the sink.

In this example, the timeliness requirements correspond to the interval (4s, 8s). Hence,
the area bellow the pdf curve represents the probability of end-to-end delays to fall within
the interval. At run-time, it is possible to analyze the percentage of messages from a
sequence fulfilling this timeliness requirement.

Figure B.1b depicts the estimated cumulative distribution function of the same ex-
periment with an additional line illustrating the classic strict timeliness notion (dl).
The probability of fulfilling the timeliness requirements is highlighted and represents
approximately 60%.

Both figures, illustrate the relation between the bounds of the time interval and the
achieved probability. Note that both factors are directly dependent of each other.

B.2 Compact Representation of End-To-End Distribution in
Scenario 2

Figures B.2 and B.3 present a compact view of the evaluation of scenario 2 analyzed in
detail in chapter VI. For a description of the scenario and detailed analysis refer to the
chapter.
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Figure B.2: Estimated PDF and CDF corresponding to scenario 2 with |rp| = 5hops.
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Figure B.3: Estimated PDF and CDF corresponding to scenario 2 with |rp| = 10hops.

Table B.1 extends the results for the second test introduced in chapter III for the case
of |rp| = 10 with the reference to the standard Normal in brackets. Refer to the chapter
for a detailed description of the test.
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λ I1 I2 I3 I4

N(0,1) (68%) (27%) (4.2%) (0.2%)
30 55.7% (-12.3) 30.1% (+3.1) 11% (+6.8) 3.2% (+3)
60 62.4% (-5.6) 24.9% (+2.1) 9.2% (+5) 3.5% (+3.3)
120 62% (-6) 27.1% (+0.1) 7.4% (+3.2) 3.6% (+3.4)
480 61.4% (-6.6) 28.5% (+1.5) 6.9% (+2.7) 3.2% (+3)
1200 60.7% (-7.3) 28.9% (+1.9 ) 7.6% (+3.4) 2.8% (+2.6)

Table B.1: Percentage of hits per σ-interval with path length 10. In brackets, deviation with
respect to N(0, 1).

B.3 Extended Test-Bed Evaluation of Scenario 1
Figures B.4, B.5, B.6, B.7, B.8, and B.9 extend the test-bed evaluation of scenario 1
presented in chapter VI. Refer to the chapter for a detailed description of the scenario
and experiments.
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Figure B.4: Histogram and probability density function of end-to-end latency for a 1000-
messages test-bed run in a 2-hop network as in scenario 1.
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Figure B.5: Cumulative distribution function of end-to-end latency for a 1000-messages test-
bed run in a 2-hop network as in scenario 1.
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Figure B.6: Histogram and probability density function of end-to-end latency for a 1000-
messages test-bed run in a 3-hop network as in scenario 1.
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Figure B.7: Cumulative distribution function of end-to-end latency for a 1000-messages test-
bed run in a 3-hop network as in scenario 1.
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Figure B.8: Histogram and probability density function of end-to-end latency for a 1000-
messages test-bed run in a 4-hop network as in scenario 1.
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Figure B.9: Cumulative distribution function of end-to-end latency for a 1000-messages test-
bed run in a 4-hop network as in scenario 1.

B.4 Additional Evaluation Scenario: Arbitrary Network
Deployment

This additional scenario is motivated from an elderly care use-case extracted from the
WASP project [Lokhorst 07]. The goal of the depicted application is to provide automa-
tized monitoring and medical assistance for elderly people living in a care house. Sensor
nodes are attached to the patients and monitor their general health and well being, with
special interest in aspects related to mobility and temperature.
The description of the scenario is as follows:

• approximately 20 to 30 patients living in the same home,
• nodes equipped with two sensors each: a 3D accelerometer and a temperature

sensor,
• local processing of data is possible. The amount of transmitted data depends

on the operational mode. In normal mode, nodes process their data locally and
transmit at a low frequency (e.g. few messages per minute), whereas in the special
monitoring mode the processing is much limited and messages are sent at a higher
frequency (e.g. one message per second).

The configuration of parameters is derived from the elderly care scenario as follows:

• dimensions of a living room of approximately 20× 10 meters,
• 30 nodes operating in normal mode, one in the special monitoring mode,
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• sink is placed in one of the corners of the room,
• message payload is 64 bytes,
• traffic parameters as follows:

– in normal mode: messages transmitted with a time between messages follow-
ing an exponential distribution with parameter λ = 30s,

– in special monitoring mode: messages transmitted periodically with period
T = 1s,

– control messages periodically broadcast by the sink with period T = 60s,
The following use-case provides a better understanding of the scenario.

Use-case example

Assuming a patient recovering from a major fall, the information from the accelerometer
is constantly transmitted to monitor the patient’s mobility. The locomotion analysis
processes the accelerometer data, which acquires samples at a frequency ranging between
20 and 50Hz. Data aggregation is done locally to reduce the amount of traffic up to
1 message per second. Other nodes, of patients which do not require such special
monitoring, process the sampled data by means of a local algorithm which generates an
output at a much lower frequency (e.g. few messages per minute).

B.4.1 Simulation Results

Parameter Simulation 1 Simulation 2
WiseMAC Sample Period 50ms 50ms

Topology Scenario 3 Scenario 3

Table B.2: Summary of the set-up for the simulation experiments

Figures B.10 and B.11 show the normalized distributions (histogram and cdf) of a
series of 5 simulations of the described scenarios, each of them limited to 100000 messages
and one full day of simulated time. The standard distribution N(0, 1) is plotted for
comparison on each figure, which are cropped on the interval (−4, 4) to highlight the
relevant area. Nevertheless, only a few values exceeded the cropping point on the right
side, following the expected behavior described in chapter III.
The application running on the sender node receives continuous information regarding

the end-to-end timeliness performance. Hence, it can determine whether the probabil-
ity of the following stream of messages to arrive within an acceptable time interval is
satisfactory or not. In the latter, the application is made aware of the situation and can
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Figure B.10: Evaluation of the Normalized end-to-end distribution histogram vs. PDF of
N(0, 1)
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Figure B.11: Evaluation of the Normalized end-to-end distribution CDF vs. CDF N(0, 1)
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take adaptive measures (i.e. trade-off energy to perform more complex computations
and reduce the amount of traffic).
Note that given the scenario, the length of routing paths remain most of the time

between 2 and 3 hops. Comparing Figures III.4 and B.10, it is noticeable that the
length of the path has an impact on the accuracy of the method. However, the results
obtained for paths as short as two or three hops underline the usefulness of the method.
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Glossary

Application Programming Interface
An Application Programming Interface (API) is an interface implemented by a
software program to enable its interaction with other softwares. 17, 97, 98, 100–
104

application specific integrated circuits
Application specific integrated circuits (ASIC) are non general-purpose ICs cus-
tomized for a particular use. 10

Carrier Sense Multiple Access
Carrier Sense Multiple Access is a channel-access scheme in which multiple nodes
access a shared medium. Before transmitting, nodes perform a carrier sense oper-
ation and proceed only if the medium is free. 6, 20, 21

Central Limit Theorem
The Central Limit Theorem is a theorem stating that the sum of a multiple R.V.
following the same distribution tends to converge into a R.V. normally distributed.
For a formal definition see e.g. [Bulmer 67]. 45, 52, 84

Cumulative Distribution Function
The cumulative distribution function shows the probability of an event being less
or equal than a certain value. For a formal definition see e.g. [Bulmer 67]. 43, 44,
49

Earliest Deadline First
Earliest Deadline First is a scheduling strategy selecting tasks for execution based
on their assigned deadline. 2, 20

Exponential Weighted Moving Average
Exponential Weighted Moving Average refers to an averaging method introducing
an exponential factor (0 ≤ α ≤ 1). The weight of a new sample (δ) on the
exponential average (x̄) at time t is calculated as follows: x̄t = αδ + (1− α)x̄t−1.
44, 48, 50, 51
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field programmable gate array
Field programmable gate array (FPGA) are ICs made of programmable logic com-
ponents that can be reprogrammed after manufacturing. 7, 10

Frequency Division Multiple Access
Frequency Division Multiple Access is a channel-access scheme which divides the
spectrum into non-overlapping frequency ranges. 20

Integrated Circuit
An integrated circuit is a hardware system commonly referred as a “chip”. 10

Medium Access Control
Medium Access Control refers to the network layer responsible of establishing the
communication between two neighbor nodes. Typical duties of this layer include
carrier sensing and collision detection/avoidance. 3, 6, 17, 19–21, 66

micro controller
Micro-Controllers (µC) are hardware systems typically composed of a CPU, mem-
ory and a number of registers and I/O devices embedded into a single IC. 7, 10,
14, 15

Mobile Ad-Hoc Network
A Mobile Ad-Hoc Networks is a self-configuring network made of mobile devices
connected by wireless links. 5

Operating System
The Operating System is a software (or firmware) layer providing an interface
between the system hardware and the applications. 1, 9, 16–18, 31, 58–60, 96–98,
100–104, 135

Operating System Abstraction Layer
Operating System Abstraction Layer (OSAL) is an abstraction layer implemented
to unify the API of different OS. 8, 17, 59, 79, 96–104, 136

Probability Density Function
The probability distribution function of a R.V. defines the probability of a certain
event to happen. For a formal definition see e.g. [Bulmer 67]. 48, 49, 91

Quality of Service
Quality of Service refers to the quantitative evaluation of one or several qualitative
metrics of a system. iii, 7, 9, 22–26, 31, 36, 53–61, 67, 90, 95, 135, 136, 139

Radio Frequency
Radio Frequency refers to the transmission of radio signals through the air. 6, 10,
12, 14, 79
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Random Access Memory
Random Access Memory is kind of memory technology allowing access to non-
sequential data fields. 12

Random Variable
Random Variable are statistical variables representing a succession of stochastic
events. 43–46

Rate Monotonic
Rate Monotonic is a scheduling strategy selecting the priority of tasks based on
their periodicity. 2

Read Only Memory
Read Only Memory is a kind of memory that cannot be erased or rewritten. 12

Real-Time System
Real-Time Systems are hardware or software systems in which the correctness of
the results is subject to predefined timeliness constraints. 1, 2, 18, 34, 37

Hard Real-Time Systems are RTS in which the violation of their timeliness con-
straints could result on fatal consequences. 2, 36

Soft Real-Time System are RTS in which the violation of their timeliness con-
straints produces the degradation of the system performance, although they do
not necessarily result in fatal consequences. 2

Time Division Multiple Access
Time Division Multiple Access is a channel-access scheme used especially in wire-
less communication (for example, most 2G mobile-phone standards). 6, 19–21,
28

Virtual Machine
Virtual Machines (VM) are software environments emulating the behavior of hard-
ware systems (e.g. JAVA VM). 18, 23

Wireless Sensor Network
A Wireless Sensor Network is constituted by a number of sensor nodes commu-
nicating with an ad-hoc infrastructure running at least one common application
in a collaborative manner. iii, 1, 3–7, 9, 10, 12–14, 16, 18–23, 25, 26, 29–31, 33,
35–40, 43, 51–59, 61, 62, 79, 81, 85, 88, 95, 111, 135, 139





Summary

Chapter I

This chapter presents a short introduction to the areas of research explored in this thesis.
The purpose is to position the reader with respect to the organization and content of
this thesis.

Chapter II

This chapter overviews the necessary background to further developing the contents of
this thesis. Through its sections, it presents a prospective analysis of the state-of-the-art
and exposes the main open issues and points of interest with respect to real-time and
Wireless Sensor Network (WSN).
The chapter covers the architecture of typical WSNs including aspects from the soft-

ware and hardware platform as well as the Operating System (OS). Further, it surveys
the main aspects regarding real-time and the existing state-of-the-art with respect to
the networking protocols. Following, the chapter brings up the essential terminology
regarding Quality of Service (QoS) and establishing a solid meaning for terms with
divergent interpretations.
The chapter concludes with an enumeration of common misconceptions and mislead-

ing practices in current real-time methods for WSN.

Chapter III

This chapter explores the implications of the commonly adopted notion of timeliness in
current real-time approaches for WSNs. In contrast to the classic notion, it presents a
generalized timeliness notion providing means to express meaningful timeliness in typical
WSNs without restraining the feasibility of methods.
As a proof of concept, the chapter introduces a probabilistic algorithm for the estima-

tion of end-to-end latency of message transmissions in WSNs. The estimation is based
on the generalized timeliness notion obtaining the distribution function of end-to-end
routing paths.
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Chapter IV

The core of this chapter explores the definition and application of local and global QoS
trade-offs and details a step-by-step methodology to analyze the most suitable system
set-points. First, it introduces the elemental considerations defining feasible timeliness
objectives enabling meaningful QoS methods. The definition of these objectives and
the establishment of instruments to enable them are as important as providing means
evaluating the qualities of the target system. Further, it analyzes the possibilities pro-
vided by the software and hardware platforms to exploit local trade-offs. Finally, the
chapter explores the definition of global timeliness trade-offs –in new or existing real-
time methods– taking into account the necessary parts having a significant impact on
the real-time performance. In doing so, the chapter explores the definition of abstract
models for the analysis of metrics as well as the impact of selected parameters, both
from a global and local domain perspective.

Chapter V

The concepts previously introduced in this thesis are put together into a simple routing
protocol as a proof of concepts. This chapter presents an approach to a simple routing
protocol consisting of a modified classic tree routing protocol, which generates paths
based on the generalized timeliness notion. Each hop performs the local calculations as
shown in chapter III, which are used to determine the best forwarding neighbor based
on a routing tree. The sink periodically broadcast control messages to reconstruct the
tree and collects information regarding the end-to-end delay distributions.

Chapter VI

This chapter presents an evaluation of the main concepts introduced along the thesis.
A number of scenarios evaluating different aspects are described and implemented. The
evaluation is carried out by means of both simulation tools and small-scale test-bed
experiments. The core of this chapter focuses on the evaluation of the routing protocol
described in chapter V and provides hints for the application of the trade-off concepts
presented in chapter IV.

Chapter VII

This chapter concludes the work presented in this thesis and overviews the main achieve-
ments and meaningful contributions.

Appendices

Appendix A describes in extension the Operating System Abstraction Layer (OSAL),
which is already introduced in section II.2. The appendix goes in depth with details
that did not fit in the main body of the thesis as well as an extensive evaluation of the
overhead introduced by OSAL.
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Appendix B contains additional or extended results an figures that due to their ex-
tensions or their similarity where not placed in their respective sections.





Zusammenfassung

Wireless Sensor Networks (WSN) sind dynamisch angeordnete Netzwerke, die typischer-
weise aus einer großen Anzahl von beliebig verteilten Sensorknoten bestehen, die alle
gemeinsam mindestens eine kollektive Aufgabe erfüllen. Restriktionen wegen omniprä-
senter Ressourcenknappheit und der starken Abhängigkeit von unkontrollierbaren Um-
welteinflüssen sind die Hauptcharakteristiken dieses Netzwerktyps. Diese Besonderhei-
ten führen zu schwerwiegenden Einschränkungen der Anwendbarkeit von klassischen
Echtzeitmethoden, die darauf abzielen Timeliness Garantien zu geben.
Existierende Lösungen aus der Echtzeitforschung tendieren dazu Konzepte und Me-

thoden anzuwenden, die ursprünglich nicht für diese Art von Systemen entworfen wur-
den. Dabei führt die Idealisierung typischer Anwendungsszenarien und das Ignorieren
essentieller Einschränkungen zu einigen irreführenden Praktiken, die wiederum zu Er-
gebnissen mit beschränkter Validität in der realen Welt führen.
Die Entschärfung des Konflikts zwischen WSNs einerseits und den klassischen Echt-

zeitzielsetzungen andererseits beginnt mit einer Revision der grundlegenden Prinzipien
bereits existierender Herangehensweisen. Auf diese Art und Weise präsentiert die vor-
liegende Dissertation einen alternativen Denkansatz, der auf einem generalisierten und
den speziellen Bedürfnissen von WSNs angepassten Timeliness Verständnis basiert. Die-
se neue konzeptionelle Vorstellung bildet die Prämisse zur Definition von brauchbaren
Echtzeitzielvorstellungen die einen neuen Bereich von Möglichkeiten eröffnen, der durch
die idealisierten Vorstellungen bisher nicht abgedeckt wird.
Der Schwerpunkt dieser Dissertation besteht aus der Definition und der Anwendung

von Quality of Service (QoS) Kompromissen zwischen Timeliness einerseits und ande-
ren signifikanten QoS-Maßstäben andererseits. Die Analyse von lokalen und globalen
Kompromissen definiert eine Schritt-für-Schritt-Methodik, die es erlaubt die Korrela-
tionen zwischen diesen Qualitätsmaßstäben zu identifizieren. Diese Assoziation schafft
die Voraussetzung zur Definition von alternativen Konfigurationen (set points), die die
Performance des Netzwerkes zu bestimmten Zeitpunkten beeinflussen.
Nach Einführung der Grundlagen werden die oben erwähnten Konzepte als Mach-

barkeitsnachweis für die ausführliche Analyse in einfache Routingprotokolle eingebettet.
Extensive Evaluierungen unter realistischen Bedingungen wurden sowohl in Simulati-
onsumgebungen als auch in echten Testumgebungen durchgeführt um die Konsistenz
dieses Denkansatzes zu validieren.
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Kapitel I

Der Kern von Echtzeitsystemen (RTS) entwickelt sich aus den Determinismusgrundsät-
zen und der Berechenbarkeit der Zeit. Prozessorterminierung, Betriebssysteme (OS) und
Anwendungssynchronisation sind Beispiele relevanter Probleme, die derzeit in diesem
Forschungsgebiet bearbeitet werden. Andererseits verfolgen WSNs Direktkommunika-
tion in Umgebungen mit wesentlichem Unsicherheitsfaktor. Energiesparende Kommu-
nikation und hohe Skalierbarkeit sind die wichtigsten Faktoren, die die Forschung auf
diesem Gebiet antreiben.
Das Verbinden dieser beiden grundsätzlich divergierenden Forschungsgebiete ist keine

einfache Angelegenheit, da es bedeutende Versuche erfordert, die Einschränkungen und
Grenzen jedes Gebiets sowie ihr Anpassungsvermögen zu verstehen. Dieses Kapitel stellt
die Grundlagen anhand eines kurzen Überblicks über die Grundbegriffe zu jedem Gebiet
vor.
Das Kapitel gliedert sich wie folgt: Teil I.1 stellt die Grundlagen von RTS, und die

zugehörigen Begriffe vor. Teil I.2 folgt mit einer kurzen Einführung der Eigenschaften
und grundsätzlichen Betrachtungen von WSNs. Am Ende des Kapitels gibt Teil I.3 einen
kurzen Abriss über den Aufbau dieser Doktorarbeit.

Kapitel II

Bevor man sich den wichtigen Errungenschaften in einem Forschungsgebiet zuwendet,
ist es erforderlich, den aktuellen Stand der Technik zu verstehen. Daher stellt dieses Ka-
pitel anhand von maßgeblichen wissenschaftlichen Veröffentlichungen und zugehörigen
Quellen einen Überblick über den Stand der Technik auf dem Gebiet der WSNs vor.
Das Kapitel gliedert sich wie folgt:
Teil II.1 stellt kurz die Architektur von Sensorknoten und ihre einzelnen Bauteile vor.

Ziel ist es, die Hauptquellen des Energieverbrauchs eines typischen Sensorknotens zu
identifizieren.
Teil II.2 untersucht, wie die Bauteile und Ressourcen durch das OS verwaltet werden.

Er gibt einen allgemeinen Überblick über bestehende OSs und stellt die Grundlagen
einer theoretischen Abstraktionsschicht für das OS vor.
Nachdem die Hardware- und Firmware-Aspekte des Sensorknotens abgehandelt wur-

den, untersucht Teil II.3 die Echtzeitaspekte des aktuellen Stands der Technik. Dieser
Part ist in zwei Teile aufgeteilt, die sich intensiv jeweils mit Echtzeitkommunikationspro-
tokollen (Teil II.3.1) bzw. Echtzeit-Frameworks und -Middleware (Teil II.3.2) beschäf-
tigen. Aus praktischen Gründen und für ein besseres Verständnis der weiteren Aus-
führungen dieser Arbeit wurde das Schwerpunkt auf Echtzeit- und timelinesssbezogene
Protokolle gelegt.
Der Zweck von Teil II.4 ist es, die grundlegenden Begriffe bezüglich QoS einzuführen.

Insbesondere werden hier grundlegende Definitionen und Terminologien entwickelt, die
in dieser Arbeit verwendet werden. Dadurch wird die Möglichkeit von Verwechslungen
mit Begriffen vermindert, die häufig Gegenstand unterschiedlicher Interpretationen sind.
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WSNs bilden ein aufstrebendes Gebiet der Forschung, das Eigenschaften aus vielen
anderen Bereichen verbindet bzw. sich diese mit ihnen teilt. Allerdings gibt es eine große
Zahl von inhärenten Eigenschaften, die große Herausforderungen darstellen und denen
individuell begegnet werden muss. Aus diesem Grund untersucht Teil II.5 die wichtigsten
Eigenschaften und identifiziert gemeinsame irreführenden Annahmen sowie die damit
verbundenen Konsequenzen. Schließlich endet das Kapitel mit einer Zusammenfassung.

Kapitel III

Die inhärenten Eigenschaften der in Kapitel II eingeführten WSNs bilden ein ungün-
stiges Umfeld für die Durchsetzung der Echtzeit-Bedingungen. Die Unmöglichkeit mit
Hilfe eines typischen Netzwerkstacks zeitgebundene Punkt-zu-Punkt-Übertragungen zu
gewährleisten, kollidiert jedoch mit dem erstrebten Ziel durchgehend exakter Verzöge-
rungen.
Grundlegende Aspekte legen nahe, dass alternative Ansätze untersucht werden müs-

sen, wenn besondere Timeliness garantiert werden muss. Diese Ansätze erfordern eine
wesentliche Änderung der Ziele sowie die Etablierung geeigneter Annahmen für typische
WSNs.
Dieses Kapitel bietet eine eingehende Analyse der wesentlichen Fehler in den Gleich-

zeitigkeitsansätzen, die zurzeit in WSNs genutzt werden. Darüber hinaus erforscht sie im
Detail einen neuen Weg, sich garantierter Timeliness zu nähern in Übereinstimmung mit
den auferlegten Eigenschaften und Einschränkungen eines typischen WSN. Das Kapitel
ist wie folgt organisiert:
Bevor sich das Kapitel den Einzelheiten widmet, regelt Teil III.1 die Terminologie

sowie grundlegende Definitionen, die in der weiteren Arbeit verwendet werden.
Abschnitt III.2 ist in zwei Teile gegliedert. Zunächst wird der sehr erweiterte klassi-

sche Begriff der Gleichzeitigkeit im Bereich der WSN analysiert, indem die Grenzen und
grundlegenden Mängel identifiziert werden. Ausßerdem stellt er eine allgemeine Darstel-
lung von Gleichzeitigkeit vor, mit deren Hilfe besondere Gleichzeitigkeit in typischen
WSNs ausgedrückt werden kann, ohne ihre Anwendbarkeit zu vernachlässigen. Der all-
gemeine Begriff unterscheidet sich von dem klassischen in Bezug auf die Anforderungen
und Annahmen. Des Weiteren eröffnet er einen alternativen Weg, um Timeliness zu
garantieren.
Als Beweis der Machbarkeit des Konzepts präsentiert Abschnitt III.3 einen wahr-

scheinlichkeitstheoretischen Algorithmus zur Abschätzung der durchgehenden Verzöge-
rung bei Nachrichtenübertragungen in WSNs. Diese Methode basiert auf der allgemeinen
Darstellung der Timeliness und ermöglicht die Verteilungsfunktion der durchgehenden
Routing-Pfade mit zufriedenstellender Genauigkeit vorauszusagen. Schließlich endet Ka-
pitel III mit einer Zusammenfassung.
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Kapitel IV
Das ultimative Ziel einer Echtzeit-Methode für WSNs ist rechtzeitiges Antworten auf
ausgewählte Ereignisse und gleichzeitig die Erfüllung vorher definierter QoS-Anforderungen
zu gewährleisten. Doch die allgemeinen Ziele zu definieren, in denen diese Anforderungen
festgelegt werden, ist keine triviale Aufgabe. Der in Kapitel III vorgestellte allgemeine
Begriff der Timeliness eröffnet ein neues Spektrum an Möglichkeiten, QoS Trade-offs
als ein Mittel zur Erfüllung der Timelinessseinschränungen zu erforschen, während die
Spezifikation bereits realisierbarer Ziele vereinfacht wird.
Die neue Vorstellung, die auf der Verteilung durchgängiger Verzögerungen basiert,

ermöglicht eine flexible Definition der Anforderungen lokaler und globaler Laufzeit-
Anpassungen, was zur Verbesserung der Pünktlichkeit in bestimmten Momenten bei-
trägt. Diese Anpassungen können die Verfolgung realistischer durchgängiger Timeliness
zulassen, die auf adaptiven QoS-Anforderungen basiert. Allerdings müssen geeignete
Mechanismen sowie Interfaces, die QoS-Trade-offs ermöglichen, entwickelt werden, um
die notwendigen Anpassungen durchzusetzen. Die Spezifikation der Zielvorstellungen
von Timeliness in einem WSN, das den potentiellen Konflikt zwischen realisierbaren
Anforderungen und die Einschränkungen durch Protokolle und Szenarien überwindet,
ist nicht trivial und erfordert nach wie vor ein gewisses Maß an individueller Analyse der
jeweiligen Anwendung. Insbesondere führt das Abwägen von Trade-offs zwischen Gleich-
zeitigkeit und anderen QoS-Metriken zu einer Reihe von potentiellen Anpassungen, die
Echtzeit-Methoden ausnutzen und dabei zufriedenstellende QoS-Ebenen erreichen.
Das Kapitel ist wie folgt gegliedert:
Teil IV.1 stellt die elementaren Überlegungen vor, welche die Zielvorstellung von Time-

liness definieren und aussagekräftige QoS-Methoden ermöglichen. Die Definition dieser
Ziele und die Entwicklung von Instrumenten, die dies ermöglichen ist ebenso wichtig wie
das Bereitstellen von Mitteln, um die Qualität des Zielsystems zu bewerten.
Abschnitt IV.2 analysiert die Möglichkeiten, die Software- und Hardware-Plattformen

bereitstellen, um lokale Trade-offs zu nutzen.
Abschnitt IV.3 erforscht die Definition von allgemeinen Trade-offs zur Timeliness in

neuen bzw. bestehenden Echtzeit-Methoden unter Berücksichtigung der Teile, die er-
hebliche Auswirkungen auf die Echtzeit-Performance haben. Die Analyse konzentriert
sich auf die Aspekte, die die Anwendbarkeit der allgemeinen Vorstellung von Timeli-
ness und die Ausnutzung von QoS-Trade-offs beeinflussen. Dabei untersucht das Kapi-
tel die Definition von abstrakten Modellen für die Analyse von Kennzahlen sowie die
Auswirkungen der gewählten Parameter, sowohl aus allgemeiner wie auch aus lokaler
Domain-Perspektive.
Schließlich endet das Kapitel mit einer Zusammenfassung.

Kapitel V
Die Anwendung des verallgemeinerten Begriffs von Gleichzeitigkeit zur Laufzeit als auch
die Schätzung der durchgängigen Verzögerungsverteilung benötigt Unterstützung aus
dem Netzwerkverbund. Bestehende Protokolle können einfach angepasst werden, um die
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Pünktlichkeitsleistung mittels des in Kapitel III vorgestellten verallgemeinerten Begriffs
auszudrücken.
Ebenso kann die Schätzung der durchgängigen Verzögerungsverteilung in die Routing-

Protokolle eingebettet werden und bietet Laufzeit-Schätzungen der Pfadverteilungver-
zögerungen.
Dieses Kapitel präsentiert ein einfaches Routing-Protokoll, bestehend aus einem mo-

difizierten klassischen Baum-Routing-Protokoll. Dieses generiert Wege, die auf dem all-
gemeinen Begriff der Timeliness basieren.
Jeder Sprung führt die lokalen Berechnungen wie in Teil III.3 gezeigt durch, die ver-

wendet werden, um die besten weiterleitenden Nachbarn zu bestimmen, die auf einem
Routing-Baum basieren. Die Senke sendet in regelmäßigen Abständen Kontrollnachrich-
ten, um den Baum zu rekonstruieren und sammeln Informationen über die durchgängi-
gen Verzögerungsverteilungen.
Der Zweck dieses Kapitels ist es nicht, ein vollständiges Protokoll über alle wichtigen

Routing-Aspekte zu erarbeiten, sondern die in dieser Arbeit entwickelten Konzepte zur
Demonstration in ein einfaches Protokoll zu integrieren. Anhand der gleichen Ideen,
die in diesem Kapitel vorgestellt werden, kann die gleiche Anpassung an komplexere
Protokolle durchgeführt werden.
Der Inhalt dieses Kapitels ist wie folgt gegliedert:
Teil V.1 gibt einen Überblick über die Grundlagen von Routing-Protokollen, die auf

Routing-Bäumen basieren.
Teil V.2 beschreibt das sich der Timeliness bewusste Routing-Protokoll (TARP), in

das die Schätzung der durchgängigen Verzögerungsverteilung eingebettet ist. Es wird
detailliert die Menge der Ressourcen aufgelistet, die das Protokoll benötigt.
Eine einfache Erweiterung des Protokolls, die umMulti-Path- und Multi-Sink-Szenarien

erweitert wurde, wird in V.3 vorgestellt.
Kapitel V endet schließlich mit einer Zusammenfassung.

Kapitel VI
Dieses Kapitel stellt eine Bewertung der wichtigsten Konzepte vor, die in dieser Arbeit
eingeführt werden. Eine Reihe von Szenarien, welche die verschiedenen Aspekte bewer-
ten, wird beschrieben und implementiert. Die Auswertung erfolgt sowohl mit Hilfe von
Simulationswerkzeugen als auch anhand kleiner Experimente in Testumgebungen. Der
Kern dieses Kapitel konzentriert sich auf die Auswertung des Routing-Protokolls aus Ka-
pitel V und liefert Hinweise für die Anwendung der Trade-off-Konzepte, die in Kapitel
IV vorgestellt werden.
Das Kapitel ist wie folgt gegliedert:
Teil VI.1 gibt einen Überblick über die Bewertungsumgebungen und die Szenarien, die

als Grundlage für die Evaluierungsprozesse dienen. Diese Szenarien sind so konzipiert,
dass sie die Eigenschaften, die von realen Einsätzen sowie kleinen Set-ups extrahiert
werden, berücksichtigen, um spezifische Netzwerk-Aspekte zu validieren. Der Abschnitt
stellt die eigentliche Testumgebungsplattform sowie die Simulationsumgebung vor, in
denen die Bewertungsexperimente durchgeführt wurden. Eine Beschreibung der beiden
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Plattformen, einschließlich der Implementierungs- und Konfigurationseinzelheiten, wird
ebenfalls vorgestellt.
Die Ergebnisse, die im Auswertungsprozess gewonnen wurden, werden in Teil VI.2

zusammengefasst. Der Abschnitt ist in zwei Teile gegliedert, entsprechend der Ergeb-
nisse aus den Simulationsläufen als auch entsprechend der Zahlen aus einer Reihe von
kontrollierten Testumgebungsexperimenten.
In Teil VI.3 schließt das Bewertungskapitel mit einer Diskussion über die vorgestellten

Ergebnisse. Die Ergebnisse und Zahlen aus Teil VI.2.2 werden kommentiert und mit den
Simulationen aus Teil VI.2.1 verglichen.
Kapitel VI endet schließlich mit einer Zusammenfassung.

Kapitel VII
Das Kapitel kompletiert diese Arbeit mit einer Übersicht über die wichtigsten Fort-
schritte und bedeutendsten Beiträge.

Appendix A
Die Einrichtung von Mechanismen für eine ordnungsgemäße Kontrolle der Hardware-
Plattform in die Software-Frameworks wirft eine Reihe von Fragen zur Portabilität auf.
Der Operating System Abstraction Layer (OSAL) wurde entwickelt, um diese Probleme
anzugehen und Konflikte zwischen verschiedenen Software-und Hardware-Plattformen
zu vermindern. Insbesondere spricht sie die Diskrepanzen an zwischen den verschie-
denen OS hinsichtlich ihrer funktionellen Application Programming Interfaces (API),
Hardware-Konfigurationsmechanismen, Ressourcenmanagement und Handhabung von
Peripheriegeräten.

Appendix B
Dieser Anhang enthält zusätzliche oder erweiterte Ergebnisse und Zahlen, die aufgrund
ihrer Erweiterungen oder ihrer Gleichartigkeit nicht in den jeweiligen Abschnitten er-
wähnt wurden.




	Preface
	Publications
	Introduction
	Introduction to Real-Time Systems
	Tasks, Scheduling and System Models
	Real-time Networks

	Introduction to Wireless Sensor Networks
	Typical Applications
	Design Principles
	Ad-hoc multi-hop communication
	Hardware, firmware, and software

	Thesis outline

	Overview of the State-of-the-Art
	Architecture of Sensor Nodes
	Typical Hardware Components
	Main Sources of Energy Consumption

	Operating systems
	Thread-based Operating Systems
	Component-based Operating Systems
	Virtual Machines

	Real-Time Aspects
	Real-Time Communication Protocols
	Real-Time Frameworks and Middleware

	Principles of Quality of Service
	General Misconceptions
	Misleading Real-Time Objectives
	Common Protocols Assumptions
	Imprecise Evaluation Criteria
	Considerations

	Chapter summary

	Timeliness in Wireless Sensor Networks
	Definition of Timeliness
	End-to-End Timeliness
	Timeliness as a Qualitative Metric in WSN

	Notions of Timeliness
	Classic Real-Time Notion of Timeliness
	A Generalized Notion of Timeliness
	Use-Case Example

	Probabilistic estimation of end-to-end latency
	Notation
	Calculation of one-hop forwarding latency
	End-to-end latency distribution
	Example of End-to-End Latency Estimation
	Additional Notes

	Chapter summary

	Timeliness Trade-offs
	Timeliness Quality of Service
	Definition of Timeliness Objectives
	Metrics and Parameters
	System Models
	Enforcing Timeliness

	Analysis of Local Trade-offs
	Definition of Local Trade-offs
	Duty Cycles and Software Modes
	Local Application of Trade-Offs

	Analysis of Global Trade-offs
	Application Modes and Models
	Analysis of Set-Points
	Application of Global Trade-Offs
	Monitoring of Global Metrics

	Chapter summary

	A Timeliness Aware Routing Protocol
	Introduction to Tree-Routing
	Timeliness Aware Tree-Routing Protocol (TARP)
	Local Calculations
	Initial Protocol Adaptations
	Evaluation of Best Path

	Multi-Path Extension
	Chapter summary

	Evaluation
	Evaluation Environments
	Description of Simulation Environment and Tools
	Description of Test-Bed Platform and Lab Deployment
	Description of Network Stack Protocols
	Description of Scenarios

	Evaluation Results
	Evaluation of Simulated Scenarios
	Test-Bed Evaluation

	Evaluation Discussion
	Chapter summary

	Conclusions
	Overview of Main Contributions
	Timeliness Notion
	Trade-off Analysis
	Operating System

	Final Remarks

	OSAL: An Operating System Abstraction Layer
	Abstraction of the Operating System
	OSAL API
	Message Handling
	Build System

	Evaluation
	Code and Memory Footprint Overhead
	Evaluation Overview


	Extended results
	Additional Example
	Compact Representation of End-To-End Distribution in Scenario 2
	Extended Test-Bed Evaluation of Scenario 1
	Additional Evaluation Scenario: Arbitrary Network Deployment
	Simulation Results


	Bibliography
	Glossary
	Summary
	Zusammenfassung

