
University of Kaiserslautern
Department of Computer Sciences
AG Software Engineering: Dependability
Prof. Dr.-Ing. habil. Peter Liggesmeyer

Fraunhofer-Institute for Experimental
Software Engineering IESE
Department of Component Engineering

Evaluation of a Model-Based Development
Process for Automotive Embedded Systems

Model-Based Development of an Adaptive Cruise Control
System

Diploma Thesis
Jonas Mitschang (jonas@mitschang.net)

August 14, 2009

Supervisor:
Prof. Dr.-Ing. habil. Peter Liggesmeyer

Dr.-Ing. Mario Trapp
Dipl. Inf. Donald Barkowski

Technische Universität Kaiserslautern - Postfach 3049 - 67653 Kaiserslautern

Hiermit erkläre ich, Jonas Mitschang, dass ich die vorliegende Diplomarbeit selbständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Jonas Mitschang,

Kaiserslautern, den 14. August, 2009

Abstract

Nowadays, vehicle control systems such as anti-lock braking systems, electronic stability
control, and cruise control systems yield many advantages. The electronic control units that
are deployed in this specific application domain are embedded systems that are integrated in
larger systems to achieve predefined applications. Embedded systems consist of embedded
hardware and a large software part. Model-based development for embedded systems offers
significant software-development benefits that are pointed out in this thesis.

The vehicle control system Adaptive Cruise Control is developed in this thesis using the
model-based software development process for embedded systems suggested in [BST09].
As a modern industrial design tool that is prevalent in this domain, Matlab/Simulink R© is
used for modeling the environment, the system behavior, for determining controller param-
eters, and for simulation purposes. Using an appropriate toolchain, the embedded code is
automatically generated.

The adaptive cruise control system could be successfully implemented and tested within
this short timespan using a waterfall model without increments. The vehicle plant and
important filters are fully deduced in detail. Therefore, the design of further vehicle control
systems needs less effort for development and precise simulation.

Accordingly, the groundwork has been laid for the development of additional control sys-
tems in future. Additionally, development time estimations are provided in this thesis for
different scenarios.

Keywords: Adaptive Cruise Control, Model-Based Software Development, Embedded
Systems, Automotive

Contents

1. Introduction 9

2. Related Work 13

3. Target System 17
3.1. CAN-bus . 18
3.2. Sensors . 18

3.2.1. Remote Control Receiver . 19
3.2.2. Wheel Speed Sensors . 20
3.2.3. Acceleration Sensors . 21
3.2.4. Rotation Sensor . 21
3.2.5. Distance Sensors . 22

3.3. Actuators . 22
3.3.1. Throttle . 23
3.3.2. Steering Servo . 24

3.4. Embedded Controller Board . 24
3.4.1. Hardware of the Controller Board 24
3.4.2. Software of the Controller Board 24

4. Model-Based Software Development Process for Embedded Systems 27
4.1. Requirements Analysis . 28

4.1.1. Powering on the System . 28
4.1.2. Enabling the Controller . 29
4.1.3. Disabling the Controller . 30
4.1.4. Adjust Desired Speed . 30
4.1.5. Brake . 31
4.1.6. Control Speed . 31

4.2. Functional Design . 34
4.2.1. Derivation of the Vehicle Plant . 35
4.2.2. Filter for the Wheel Speed Sensors 41
4.2.3. General Control Loop Theory . 44
4.2.4. PID Controller . 45

8 Contents

4.2.5. Control Speed . 49
4.2.6. Control Distance . 52

4.3. Software Architecture . 57
4.3.1. Static Structure . 58
4.3.2. Dynamic Structure and Dynamic Interaction 62

4.4. Software Design . 64
4.4.1. Structural Refinement . 65
4.4.2. Behavioral Design . 70
4.4.3. Platform Independent System Test 76
4.4.4. Platform-Specific Design . 82

4.5. Code . 85
4.5.1. Real-Time Workshop R© Embedded CoderTM 85
4.5.2. Integration and Compilation . 86

5. Evaluation of the Development Process 89
5.1. Time Distribution of the Overall Process 90
5.2. Normal Time Distribution for Domain Experienced Personnel 91
5.3. Estimated Time Distribution for Further Developments of Vehicle Control

Systems on the same Target Platform . 92

6. Conclusion and Future Work 95
6.1. Conclusion . 95
6.2. Future Work . 96

Bibliography 97

A. Necessary Real-Time Workshop R© Configuration Settings 105

B. Concept Car CAN Overview 107

C. Description of the Generated Files 109

D. Tracing Code Back to the Model 111

E. Summary of Files Generated by SimulinkTarget 113

F. Overview of the Simulink Main Function 115

1. Introduction

Nowadays, nearly all electronic devices contain embedded systems. A vast amount of all
processors and microcontrollers that are produced these days are applied in embedded
systems. They are becoming more and more important in today’s life in many ways. Not
only are they used in vehicles and airplanes, but also in everyday appliances like coffee
machines, mobile phones, and washing machines. Embedded systems are integrated in
larger systems which interact with the environment to achieve a set of predefined tasks or
applications. Embedded systems consist of embedded hardware and software [BS05]. The
interaction of this hard- and software is of fundamental importance.

Taking this vast number of different embedded systems into consideration, one can easily
imagine how time-consuming the development of those embedded systems is. On the one
hand, product cycles of embedded systems are short. This is specially the case in the
consumer section, where some devices are not even available for one year on the market.
On the other hand, the time to market pressure is overwhelmingly high. Each product
is manufactured in high quantities. Thus, one can conclude that many design problems
are solved in the software instead of the hardware because the software just needs to be
developed once and hardware is needed in every manufactured piece. Hence, those systems
are cheaper to produce which is a crucial advantage on the market. The drawback of this
hardware to software shift is that embedded system software complexity increases steadily.
Another cause of this are the extended functionalities that are needed to be successful on
the market. Furthermore, the required quality of those embedded systems has to meet
increasingly high standards. Thus, modern methods for hard- and software development
such as model-based development have to be used to fulfill the requirements in a given time
and with high reliability.

The scope of this thesis is the model-based software development of a car driver assis-
tance system using the model-based software development process for embedded systems
described in [BST09]. Key principle of model-based development is graphic modeling of
software in contrast to former textual programing. Model-based development of embedded
systems provides important benefits over conventional approaches: One does not have to
worry about implementing controllers textual in software as it was the case for traditional

10 1. Introduction

approaches. In contrary, the controllers are designed using special graphical and mathe-
matical representations. Those graphical models can easily be simulated without testing
them in the target platform. In the traditional approach, simulating code was not possible
at all, but using these representations, testing behavior is no longer a problem. Addition-
ally, designing and testing controllers can be done by domain experts like control systems
engineers and mechanical engineers. They prefer using their domain specific modeling tech-
niques like block diagrams for describing the behavior of filters and controllers. Therefore,
the responsibilities are much better distributed and the resulting system is likely to be of
higher quality.

The model-based development approach suggested in [BST09] consists of five phases: The
Requirements Analysis step, the Functional Design step, the Software Architecture step,
the Software Design step, and the Code step. As a advantage of the development of
embedded systems and in contrary to other model-based development approaches, the
Functional Design step is performed earlier in the process - as the first step after the
Requirements Analysis. Thus, errors can be identified and corrected in early development
stages by simulating the models. Accordingly, the overall development time and costs can
significantly be reduced. A further advantage of model-based development of embedded
systems is that one has the opportunity to reuse and extend the developed components.

In this thesis, the assistance system that is developed is an adaptive cruise control system.
Adaptive cruise control systems are cruise control systems with extended vehicle following
functionality. The adaptive cruise control system allows the vehicle to slow down when
another vehicle is approaching ahead. In contrary, cruise control systems are not able to
influence the vehicle brakes nor do they have sensors to detect vehicles ahead.

All phases of the development process are executed and described in detail to finally be
able to automatically generate executable code from the behavioral models. To construct
those behavioral models, the software Matlab/Simulink R© of the company The MathWorks
is used. The scientific target platform is a remote-controlled one-to-five scale concept car
of the Fraunhofer-Institute for Experimental Software Engineering. It is used to apply
software engineering techniques in a real environment.

This work is organized as follows: Chapter 2 gives an introduction of model-based software
development for embedded systems. Different design approaches that are used in my design
process are introduced. Afterwards, in chapter 3 the target embedded system is described
with its interfaces to the environment. The model-based software development process
for embedded systems is discussed in detail in chapter 4. This chapter is subdivided into
the different development process steps: First, the process starts with the requirements
analysis, discussed in chapter 4.1 and continues with the functional design phase in chapter

11

4.2 where domain expert knowledge is used. After the software architecture step in chapter
4.3 and the software design step in chapter 4.4, the system code is finally generated in
chapter 4.5. Chapter 5 gives an evaluation on the work by analyzing the whole process. At
last, chapter 6 summarises this work and provides an outlook on future work.

12 1. Introduction

2. Related Work

The goal of this diploma thesis is the model-based development of an embedded adaptive
cruise control system. Key principle of model-based development is graphic modeling of
software in contrast to former textual programing. All phases of model-based software
development use models that follow a strict syntax and may be understood as formal graphic
languages. Graphic representations provide higher levels of abstraction - comparable to the
transition from assembler to high-level language code.

As these models have a semantic, code may be generated from them. Different modelling
languages such as Unified Modeling Language (UML) or Matlab/Simulink R© [Mat04] are
used in the majority of cases. It is not sufficient to restrict to just one modeling language.
UML has its strengths in system architecture modeling, but it is not capable of modeling
continuous behavior. Thus, it can not model filters or controllers that in general make
intense use of continuous signals. In contrast Matlab/Simulink R© supports modeling of con-
tinuous systems, but shows weaknesses in modeling architecture and interactions between
components.

There are different approaches for model-based development of embedded systems. The
model-based development process that is described in [BST09] will be applied in this
diploma thesis. Is is especially suitable for design of automotive applications. It consists
of the following five phases:

1. Requirements Analysis : In the requirements analysis phase, one has to decide what
the system has to do and how well it does something. It is a predominantly tex-
tual document with additional diagrams, e.g. use case or sequence diagrams. It is
important to cover all functional requirements; non-functional requirements do not
matter.

2. Functional Design: Part of the functional design is to understand how the system may
work and how to implement functional parts of the system. In the functional design
phase, filters and controllers are developed including their simulation and determining
their properties and parameters. The functional design describes a complete data flow

14 2. Related Work

chain from the sensory input to the actuator output. When the functional design
phase is finished, the engineers know which values to measure (needed sensors) and
which actuators are needed. Domain experts use their modeling tools (e.g. Mat-
lab/Simulink R©) for creating the models and are able to test and verify them on
powerful computers.

3. In the Software Architecture phase of the model-based development process for em-
bedded systems the system is, dependent on the system complexity, structured into
different systems. For example the complexity can be distributed on different elec-
tronic control units. The system architecture in this case describes the topology of
the network connection of the different control units. The system software is dis-
tributed on the different units, nodes, or tasks. Static structure diagrams like the
UML composite structure diagrams are used for structuring the system. Dynamic
interaction diagrams like the UML sequence diagram show how external actors or
the environment interacts with the system. Internal interactions are not described
in the software architecture phase. In contrast to the functional design phase, where
domain experts like control systems engineers or mechanical engineers work on the
models, software engineers work on the software architecture models.

4. The Software Design phase is structured in the Structural Refinement step, the Be-
havioral Design step, and the Platform Specific Design step. In the Software Design
phase, the complex system-models are refined to a platform specific module level. In
normal cases, the refinement is performed until one is able to generate at least the
main part of the system code out of the models.

First, in the Structural Refinement step, the complex models from the Software Ar-
chitecture step are hierarchically refined into subcomponents allowing the software
engineer to apply the divide and conquer paradigm.

Second, in the Behavioral Design step, all behaviors of all subcomponents are modeled
in behaviour diagrams like state charts for state based behavior. Block diagrams (e.g.
Matlab/Simulink R©) are used for modeling continuous behavior. Sometimes hardware-
related modules may be directly implemented in code because it might be simpler to
write code for them instead of modeling them.

Finally, the Platform Specific Design step extends the architecture models to be able
to generate the code. In the Software Architecture phase, all models are platform
independent but now one needs to define how the models should be integrated into
the platform, e.g. bus systems or CAN message identifiers and codings. The software

15

has to be integrated completely into the existing hardware, e.g. IO-ports or analog
to digital converters.

5. After the design is finished, the Code phase begins. Code can now be automatically
generated from the refined models. Sometimes it is necessary to implement platform
code or operating system code to get the model code running. For example, the
operating system provides drivers for some hardware like CAN-bus, UART, and SD
card etc. The platform code passes the models in- and output ports to the operating
system (e.g. CAN messages).

Three different model classes are described in [BST09] (compare figure 2.1). Structural
models define the static structure of a system and are used for hierarchical step-by-step
decomposition of the system into components and subcomponents. They allow the soft-
ware engineer to apply the divide and conquer paradigm to reduce the problem complexity.
Examples of structural models are UML Composite Structure Diagrams that present struc-
tural levels of decomposition with connections between subcomponents.

Modeling Techniques

Structural Models Interaction Models Behavioral Models

Class Diag.

Component Diag.

Deployment Diag.

Commun. Diag.

Timing Diag.

Deployment Diag.

State Diag.

Block Diag.

Activity Diag.

Figure 2.1.: Modeling techniques classification.

Interaction models describe the precise data flow and semantic of the communication be-
tween components. Examples for interaction models are sequence diagrams and commu-
nication diagrams. Sequence diagrams define the temporal interaction between elements
of a system. They also describe interaction to the user or to external systems in the re-
quirements phase. Communication diagrams illustrate the structure of the communication.
They have less possibilities than sequence diagrams, but it is easier to show the structure
and the communication relations of a system. The temporal sequence is numbered and
may quickly get too complex on bigger systems.

Behavioral models describe the internal behavior of components, while interaction models
only describe the communication between components. In the described model-based de-
velopment process, behavioral models are used for code generation purposes and thus need

16 2. Related Work

a clear syntax and semantic. They have to specify the behavior of the modules uniquely
and in full detail.

• Activity Diagrams model algorithms by describing their control flow. They define se-
quences of actions, operations, conditions, and loops. Activity diagrams are strongly
related to code: Code elements are used for defining conditions and actions. They
do not provide a good abstraction that may be able to significantly reduce the com-
plexity of the behavioral model. For software engineers it is sometimes even easier
to implement the algorithm directly instead of modeling the algorithm in an activ-
ity diagram. Furthermore, it is often easier to understand the source code than to
understand the model.

• State Diagrams are important for modeling the behavior of embedded systems. As
embedded systems often have stated-based behavior. This behavior is often referred
to as automata: The current state and the automata outputs depend on the previous
state and the history of occurred inputs, state diagrams are a good way of modeling
embedded system behavior. The code generation can easily be achieved because the
models are very formal. State diagrams may also be hierarchical structured which
means that one composite state may have sub-states with its own transitions.

• Block Diagrams are used for modeling continuous behavior. State charts are not
able to model this type of data flow based continuous behavior needed for filters
and controllers (control flow versus data flow). Compared to electric circuits, inputs,
outputs, base elements, connections, and junctions are connected and thus provide
a well-defined functionality. In this diploma thesis, Matlab/Simulink R©will be used
for modeling continuous behavior with block diagrams. Matlab/Simulink R© provides
functions for creating subsystems and components out of models for reusing them
after they are simulated and tested and seem to work properly.

3. Target System

The target system of the development of the adaptive cruise control system is a 1:5 scale
remote-controlled concept car of the Fraunhofer-Institute for Experimental Software En-
gineering IESE. The car is an open scientific platform that is used for model-based de-
velopment approaches in education [CC]. A public wiki (http://conceptcar.iese.de)
exists for the concept car. Additionally, a subversion repository whose location and login
information can be found in the wiki is available.

Figure 3.1.: The concept car target platform of the Fraunhofer IESE.

The vehicle is - depending in ground conditions - capable of driving at a speed of up to
50 km

h
. The car is a drive-by-wire system that has SensorBoards and an ActuatorBoard

for interfacing sensors and actuators. Both board-classes use small 8-bit microcontroller
and communicate with each user using a bus system. The SensorBoards are described in
section 3.2. Furthermore, the ActuatorBoard is described in section 3.3. Additionally, an
embedded controller board that has more computational power (see chapter 3.4) is used
for processing the dataflow from SensorBoard to ActuatorBoard if desired.

18 3. Target System

The system can be operated in two different modes:

• Direct mode: The ActuatorBoard uses the CAN messages that are directly generated
by the SensorBoards, e.g. the remote control receiver. In this mode the concept
car behaves like it would have no drive-by-wire functionality: All PWM signals are
generated as if they were received at the SensorBoards.

• Processed mode: Different CAN identifiers are be used for the generation of the PWM
signals. This is the normal operation mode. In this mode, the controller (Matlab/Si-
mulink R©model) receives the messages of the SensorBoards, drives the model and
generates new CAN messages dedicated for the ActuatorBoard. This mode enables
the use of modern vehicle control systems like adaptive cruise control.

The CAN-bus is described in more detail in chapter 3.1. Chapter 3.2 enumerates all sensors
that are available on the concept car. Additionally, the actuators are described in chapter
3.3. Finally, chapter 3.4 pictures how models can be executed on the target platform and
how these models can interact with the rest of the system.

3.1. CAN-bus

As stated before, the vehicle utilizes a drive-by-wire system (see figure 3.2) that uses
controller-area network (CAN) bus for communication.

CAN-bus development has originally started in 1983 at the Robert-Bosch GmbH and de-
scribes an asynchronous serial bus system for communication between microcontrollers and
other devices [ZS08]. It is commonly used in automotive applications i.e. for engine control
units, transmissions, airbags, anti-lock braking, cruise control, audio systems, windows,
doors, and even mirror adjustment. The concept car CAN-bus is configured to a transfer
rate of one megabit. CAN protocol version 2.0A is used. Thus, CAN identifiers have a size
of eleven bits and in total, over two thousand different identifiers are supported [ZS08].

3.2. Sensors

The sensory part of the concept car drive-by-wire system is described in this section. Sen-
sory CAN message generated by sensors of this chapter, serve as input of my Matlab/Simu-

3.2. Sensors 19

SensorBoard 1 SensorBoard n

ActuatorBoard ControllerBoard

CAN-bus
Terminator

Figure 3.2.: Concept car drive by wire structure.

link R© [Mat04] model (see below). The concept car sensory party consists of a remote control
receiver (see chapter 3.2.1), wheel speed sensors (see chapter 3.2.2), acceleration sensors
(see chapter 3.2.3), rotation sensor (see chapter 3.2.4), and distance sensors (see chapter
3.2.5). There are also other sensors like battery voltage measurement or an emergency
receiver that are not taken into consideration in this diploma thesis.

3.2.1. Remote Control Receiver

An essential sensor on the vehicle is the receiver of the remote control. It consists of a
standard remote control receiver that outputs a pulse width modulation (PWM) signal
with a period of nominal 20ms (the used remote control produces a period of 17ms) and a
duty cycle of 5 % to 10 % (see figure 3.3).

An AT90CAN128 microcontroller [Atm08] from the Atmel Corporation samples the PWM
signal, converts it to an integer number, and sends it as CAN message over the CAN-bus
according to appendix B. The controller has an AVR core with 128 kb of flash memory and
four kilobytes of static random access memory [Atm08].

The receiver has two channels:

• First, the channel throttle controls the vehicle throttle (see chapter 3.3.1).

• Second, the channel steering controls the steering servo (see chapter 3.3.2).

20 3. Target System

Figure 3.3.: Pulse width modulation signal generated by the remote control receiver.

3.2.2. Wheel Speed Sensors

Each wheel of the vehicle has an attached wheel speed sensor. Black and white code
segments attached to the inner side of the wheels are used for determining the angular
velocity. The reflective optical sensor CNY70 (see figure 3.5) has a transistor output
[Tem97] that is connected to a pull-up resistor. It receives the signal of the segments. A
downstream operational amplifier processes the signal to generate a logic level signal for
acquisition on an AT90CAN128 microcontroller [Atm08]. The time between the period
of one black to white transitions is measured at a very high resolution (62.5 ns) and the
average is sent to the CAN-bus periodically (see appendix B).

Figure 3.4.: One wheel with its attached
black and white encoder strip.

Figure 3.5.: CNY70 reflective optical sensor
that is used for rotation speed
detection.

3.2. Sensors 21

3.2.3. Acceleration Sensors

A two-dimensional acceleration sensor of the type ADIS16006 provides longitudinal and
shear acceleration to the Matlab/Simulink R©model. The acceleration sensor has the follow-
ing properties:

The dual-axis accelerometer ADIS16006 is capable of measuring −5 g to 5 g at a resolution
of 1.9 mg at 60 Hz measurement rate [Ana07]. The maximum measurement range is ±8 g.
It has a built-in temperature sensor to mask out the temperature drift of the measurement
results. Acceleration data is periodically written to the CAN-bus (see appendix B) and
used in the Matlab/Simulink R©model calculate vehicle speed (see chapter 4.49) for accurate
calculation of the current vehicle speed.

Figure 3.6.: ADIS16100 rotary sensor and
ADIS16006 acceleration sensor.

Figure 3.7.: SensorBoard that sends accel-
eration and rotary data to the
CAN bus.

3.2.4. Rotation Sensor

The vehicle rotation along the yaw axis is measured using a rotation sensor of the type
ADIS16100. The dynamic range of the yaw rate sensor ADIS16100 is±300

◦

s
at a resolution

of 0.244
◦

s
[Ana09]. This sensor also provides temperature information for separating out

the temperature drift. Both ADIS sensors and a SD card for data logging purposes are
connected to a SPI (Serial Peripheral Interface) bus on the same SensorBoard.

22 3. Target System

3.2.5. Distance Sensors

Adaptive cruise control systems in the automotive area use radar sensors. For example,
LRR (long range radar) systems with 77GHz and 10mW pulses that achieve a measurement
range of up to 140 meters and have a typical opening angle of 4◦ are used. In our case
more convenient ultrasonic sensors of the type SRF02 from the company Devantech Ltd
are used. They achieve a measurement range of up to six meters using an ultrasonic wave
of 40 kHz [Dav09]. The sensor has an UART and an I2C interface.

Two of these sensors are used for reducing the probability of sensor break. They are con-
nected to a SensorBoard that evaluates both attached sensors and sends the measurement
results to the CAN-bus. Two sensors with two different I2C buses are used to make sure
that distance information will still be available even if one sensor or one bus fails.

Figure 3.8.: Two of those SRF02 distance sensors are used for measuring the distance to
the predecessor vehicle.

3.3. Actuators

As the concept car is an x-by-wire system, all actuators are controlled via CAN-bus. A
dedicated ActuatorBoard receives the CAN messages and generates PWM signals to drive
the throttle motor (see chapter 3.3.1) and the steering servo (see chapter 3.3.2). In the
near future, a third actuator will be added to the vehicle: hydraulic breaks.

As stated before, the ActuatorBoard is capable of working in two different modes. In
normal mode the CAN messages of the SensorBoards are used for generating the PWM
pulses. In contrary, in direct mode the CAN messages of the controller board are evaluated
instead.

3.3. Actuators 23

3.3.1. Throttle

The concept car gains its speed from the brushless motor 1930/9 LK from Lehner Motoren
Technik. The motor is air-cooled and drains a maximum of 50 ampere at a voltage of 21
volts and thus consumes 1.05 kW of electrical energy.

Figure 3.9.: Diagram of the brushless motor 1930/9 LK from Lehner Motoren Technik.

The motor is controlled by the brushless controller Power JAZZ 63V from Kontronik
GmbH :

• The controller is capable of delivering a continuous current of 120 ampere and a peak
current of 200 ampere for up to 15 seconds [Kon06].

• It is suitable for a voltage range of 13 volts to 63 volts and can drive motors at a
maximum speed of 150 thousand rotations per minute.

The brushless controller gets as input a PWM signal that is - in non-x-by-wire systems -
generated by the remote control receiver. In our drive-by-wire case the ActuatorBoard gen-
erates the PWM signals from the mode-specific (see page 18) CAN messages they receive.
The same applies to the steering servo.

24 3. Target System

3.3.2. Steering Servo

Steering is performed by a steering jumbo-servo that turns both front wheels. The steering
servo directly processes the PWM signal that is generated by the ActuatorBoard. Steering
is not relevant for the adaptive cruise control system and thus the steering system is not
examined in detail in this diploma thesis. Other vehicle control systems, for example
parking assistance systems, may modify the steering angle but this is not necessary for the
ACC system.

3.4. Embedded Controller Board

As shown in figure 3.2, the concept car has an embedded controller board that processes the
CAN messages to be able to run Matlab/Simulink R©models on the vehicle. This Controller-
Board has waste of memory and computational power. Compared to the SensorBoards
and the ActuatorBoard it is considerably faster and all model parts can be executed in one
place. First, chapter describes the ControllerBoard hardware. Second, chapter explains
the software part of this board.

3.4.1. Hardware of the Controller Board

The board is a development board from Olimex called SAM7-LA2 Development Board
for AT91SAM7EA2 ARM7TDMI-S Microcontrollers (see figure 3.10). The main part of
the development board is an Atmel AT91SAM7A2[Atm07] microcontroller that is based
on a 32 bit Acron Risc Machine 7 (ARM7) architecture from Acron with 16 kb internal
SRAM, two built-in UART interfaces, four CAN interfaces, and several other interfaces.
The board has the needed hardware to interface UART, CAN, SD-Card, JTAG, and other
devices directly. Additionally, it has 4 Mb of external SRAM (two SRAM chips, 2 Mb each)
and 1 Mb of external flash memory [Oli08].

3.4.2. Software of the Controller Board

The software part on this ControllerBoard consists of a bootloader and of the application
software that is to be model-based developed in this diploma thesis.

3.4. Embedded Controller Board 25

Figure 3.10.: Development board SAM7-LA2 from Olimex Ltd.

The bootloader is located on the external flash memory. It scans for a SD card and checks
if it finds an appropriate filesystem with the specific application file on it. If the file is
found on the card, it will be copied to the external SRAM and will be executed from there.
There is no multi-tasking operating system with syscalls or similar.

The application code that runs on the ControllerBoard is generated out of the Matlab/Si-
mulink R©model. It has to be combined with the libraries and drivers of the platform
code and operating system code. Combining and compiling the codes is done by the
Java program called SimulinkTarget (see chapter 4.5.2) and the ARM specific GNU/GCC
toolchain [GCC].

26 3. Target System

4. Model-Based Software Development
Process for Embedded Systems

In this chapter, the model-based development process for embedded systems is performed
and each step is described in detail: First, the process starts with the Requirements Analysis
to define what the system should exactly do (see chapter 4.1). It is important to define the
border between system and environment. Second, the process continues with the Functional
Design phase (see chapter4.2) where domain expert knowledge is used to design necessary
filters and feedback loop controllers. Third, in the Software Architecture phase (see chapter
4.3) software engineers start structuring and refining the system by applying the divide
and conquer paradigm. The results of this phase are hierarchic models that define the
component of the system. The input of the Software Architecture phase are the results
of the requirements analysis phase and the models of the functional phase. Fourth, in
the Software Design phase (see chapter 4.4) the components are further refined until the
complexity has reached a reasonable value. The transition of Software Architecture phase
to Software Design phase is smooth. Thus, one can not clearly mark out the boundaries of
both phases. Additionally, in the Software Design phase, all behaviors of all components
have to be defined and platform-specific clues have to be taken into consideration. Finally,
after the system is fully modeled, its code is generated (see chapter 4.5).

The advantage of this process is that the last phase, the code generation, is extremely short
and one does not have to worry about implementing and simulating controllers in software.
In most cases, simulating code would not be possible at all. Additionally, designing and
testing controllers can be done by domain experts who are not necessarily able to write
code. Therefore, the responsibilities are much better distributed and the resulting system is
likely to be of higher quality. Further advantages of model-based development of embedded
systems as described in [BST09] are that one has the opportunity to reuse and extend
the developed components. The overall of cost- and time-consumption is heavily reduced
because errors can be detected and corrected in early design phases.

28 4. Model-Based Software Development Process for Embedded Systems

4.1. Requirements Analysis

Requirements
Analysis

Functional
Design

Software
Architecture

Software
Design

Code

The first thing to do for developing an embedded system using the described approach is
the Requirements Analysis. The analysis is necessary to figure out what the requirements
of the system are and what the system should exactly do. But it is not important how the
systems completes its task. Sometimes making decisions is essential, but as they reduce
the solution space of the system, it should be avoided. For complex systems a requirements
management system (like Telelogic DOORS) can be used for the Requirements Analysis.
In this early phase, it is important to specify the requirements completely, unmistakably,
and unambiguously. If the requirements are incomplete, mistakable, or ambiguous and this
is realized in a later stage of the development process, the resulting changes could be cost-
and time-intensive.

In my case, the requirements are not very complex and thus I will use textual description of
the requirements in combination with UML use case diagrams and UML sequence diagrams
as described in chapter 2. The use case diagram is the most important diagram type for
the requirements analysis phase: On the one hand, it models all possibilities how the
user may interact with the system. On the other hand, it defines the boundaries of the
system[BJR08].

Figure 4.1 shows the use case diagram of the adaptive cruise control system that has to
be developed. One can see from the figure that the adaptive cruise control system has
six use cases: Power on system, enabling the controller, disabling the controller, adjusting
the desired speed, breaking, control speed with headway control, and control speed without
headway control. These use cases are described in detail in the following sections.

4.1.1. Powering on the System

The use case power on system pictures that the user can power on the system. Initially, the
system is not powered and none of the electric circuits is performing any task. By pressing
the power switch, the concept car is supplied with energy. After the system is powered,

4.1. Requirements Analysis 29

ACC_System

power on system

enable controller

adjust desired
speed

control speed

control speed with
headway control

control speed
without headway control

operational controls wheel speed

longitudinal acceleration

throttle

brake lever

distance signal

disable controller

brake

Figure 4.1.: Use case diagram for the adaptive cruise control system.

it is running and capturing the sensory inputs, but it will not control anything unless the
controller is enabled.

4.1.2. Enabling the Controller

After the system is powered, the controller is still disabled and does not modify the control
messages or the motor reaction. Unless the controller is enabled, the user is able to control
the vehicle in normal manner. When the controller is enabled, it gains control over the
motor torque and is able to influence the vehicle speed.

30 4. Model-Based Software Development Process for Embedded Systems

4.1.3. Disabling the Controller

On the other side, the user may disable the controller again. After the controller is disabled,
it will stop interacting with the motor or any other parts of the environment. Thus, normal
control over the vehicle is regained. Braking the car will also cause the controller to disable
if the controller is enabled.

4.1.4. Adjust Desired Speed

The use case adjust desired speed is used to initially setup or later change the desired
vehicle cruising speed. The precondition for adjusting the desired speed is that the system
is powered and the controller is enabled. Sequence diagram 4.2 describes this procedure in
detail. The first step for adjusting the desired speed is the determination of the current
vehicle speed. When the driver of the car operates the set speed control, the system uses
the calculated vehicle speed as a setpoint for the desired vehicle speed. Afterwards, this
speed is used for controlling the vehicle throttle.

Operational Controls Accelerometer Wheel Speed SensorACC System

acceleration

wheel_speed_raw

calculate current vehicle_speed

desired_speed

desired_speed = vehicle speed

{Controller is powered and enabled}

Figure 4.2.: Sequence diagram of the scenario adjust desired speed.

4.1. Requirements Analysis 31

4.1.5. Brake

The driver of the vehicle should be able to brake at any time. Figure 4.3 shows the sequence
diagram of the use case brake.

Operational Controls Brakes ThrottleACC System

brake

{No precondition; Always true}

brake

brake

disable controllers

Figure 4.3.: Sequence diagram of the use case brake.

The operational control of braking directly influences the motor since (at least at the
moment) the motor is used for braking and there are no additional brakes for the front
wheels (they are planned as near future extension of the concept car). The system has
to make sure that the outputs of the controller, that are directly addressed to the motor
controller, do never override the brake signals that are, for the reason mentioned above,
also directly addressed to the motor controller for braking purposes.

The system may be in different states of operating modes (cruise control, adaptive cruise
control, controller disabled), but when the brake lever is operated, the system has to brake
immediately and it automatically has to disable the speed controllers to make sure that the
vehicle does not re-accelerate unwanted after braking. After the controller is automatically
disabled, the controller may be re-enabled as described in 4.1.2.

4.1.6. Control Speed

The likely most important use case of the system is controlling speed. There are two different
operational modes for controlling the speed: with and without headway control. Depending

32 4. Model-Based Software Development Process for Embedded Systems

on whether there is a predecessor vehicle in front of the concept car and depending on how
big the distance between the two vehicles is, one of the sub use cases controls speed with
or without headway control will come into operation (see below).

The precondition for controlling speed whether with or without headway control is that
the system is powered and the controller is enabled as described in 4.1.2. Furthermore,
the desired speed has to be set as described in 4.1.4. In any case a minimum distance of
one meter to the predecessor vehicle should be kept. Additionally, the vehicle should never
travel faster than 105% of the desired speed.

Control Speed without Headway Control

If all preconditions (4.1.6) in the control speed without headway control operation mode are
met, the system will behave like a cruise control system. As long as the following additional
conditions are met, the system just acts as a simple speed controller:

• There is no predecessor vehicle in front of our vehicle.

• If there is a predecessor vehicle, it will at least be as fast as the desired speed of our
vehicle.

Normal cruise control systems just use the vehicles throttle to maintain steady speed and
normally they do not interact with the braking system. But in this thesis, as the throttle
and the brakes are (at the moment) the same actuator and driven by the same control
signal, I also use braking for controlling the vehicle speed as fast as possible towards the
desired speed.

Control Speed with Headway Control

If the conditions for speed control without headway control are not met - consequently - if
the following conditions are met, the operational mode control speed with headway control
(see figure 4.5) will be entered:

• There is a predecessor vehicle in front of our vehicle.

• The predecessor vehicle has the same speed or is slower than our car.

4.1. Requirements Analysis 33

loop

Engine ControllerAccelerometer Wheel Speed Sensor ACC Controller

calculate current vehicle_speed

determine desired_acceleration

acceleration

wheel_speed_raw

desired_acceleration

{Desired speed is set and controller is active
without headway control}

Figure 4.4.: Sequence diagram of the scenario cruise control (control speed without headway
control).

The adaptive cruise control system is an extension of the cruise control system. The
speed control is extended by vehicle following or spacing control. The spacing between two
vehicles should be a time gap between one and two seconds. Normally, braking activity is
constrained to a maximum deceleration of 2m

s2
to 3m

s2
but in this thesis, as the concept car

has no occupants and the available distance sensors have a range of maximum six meters,
the car may brake with the full deceleration that is available. Thus, there is no need for
limiting the braking force to a specific value.

If the predecessor vehicle is lost, the adaptive cruise control system will revert back to
conventional cruise control with the driver requested speed.

34 4. Model-Based Software Development Process for Embedded Systems

loop

MotorAccelerometerWheel Speed Sensor ACC Controller

calculate current vehicle_speed

determine desired_acceleration

Distance Sensor

acceleration

wheel_speed_raw

distance_signal

determine distance_to_predecessor

desired_acceleration

{Desired speed is set and controller is active with headway control}

Figure 4.5.: Sequence diagram of the scenario adaptive cruise control.

4.2. Functional Design

Requirements
Analysis

Functional
Design

Software
Architecture

Software
Design

Code

The techniques used in the Requirements Analysis phase are not able of modeling control
technology or signal processing tasks. Therefore, in the Functional Design phase the func-
tional behavior of the system is focused. The Functional Design phase is task of domain
experts. Its input are the requirements and the outputs are controllers for all closed loops of
the system. Additionally, filters are implemented if preprocessing of sensory data needed.

Block diagrams, for example constructed in Matlab/Simulink R© [Mat04], are ideal for mod-
eling continuous behavior. The Functional Design phase should find suitable controller
parameters and should optimize them by extensive use of simulation.

4.2. Functional Design 35

As an adaptive cruise control system is developed in this thesis, the first thing that is
needed in the Functional Design phase is a vehicle plant (see chapter 4.2.1). The plant is
needed for simulation. Thus, no other controllers can be designed before the plant is known.
Second, as the wheel speed sensors generate noisy sensory data a filter is constructed for
converting the raw data into a reliable speed value in SI units (see chapter 4.2.2). The whole
design uses SI units to avoid errors that are caused by different units of the exchanged data.
Additionally, SI units have the advantage that one can easily understand the values that are
produced while simulating and debugging the system. In chapter 4.2.5, a speed controller is
designed. Before describing the speed controller, chapters 4.2.3 and 4.2.4 describe general
background of control loop theory and of PID controllers. The last step of the Functional
Design phase is the design of the distance controller in chapter 4.2.6.

4.2.1. Derivation of the Vehicle Plant

As the whole model including all controllers has to be simulated, the vehicle plant is needed
first. The plant should be as precise as possible and should map the reality as far as possible
to be sure that the simulation results match the real behavior. One is never able to model
a plant that matches the reality by 100 %, but as the used controllers are very robust, this
is no problem. Without any form of plant, no controller can be developed. Thus, finding
the plant is the first step for controller design.

Physical Derivation of the Plant

Let x be the distance which the vehicle has covered, the unit of x is meters and the
derivation of x with respect to time t is the vehicle speed measured in meters per second:

v = ẋ =
d

dt
x

The acceleration of the vehicle is the derivation of the speed with respect to time and is
measured in m

s2
:

a = v̇ = ẍ =
d2

dt2
x

To find the plant of the vehicle, one needs to figure out all forces which act upon the
vehicle[Kra08]. According to Newton’s second law of motion the resulting sum F of all

36 4. Model-Based Software Development Process for Embedded Systems

forces is directly related to the acceleration a of the car of the mass m. The unit of m is
kilogram:

F = m · a = m · ẍ⇒ ẍ =
F

m

1. The most important force FM is the force that results of the torque generated by the
motor. The drive train of the model car consists of motor, transmission, differential,
driving shaft, and wheels. FM will be positive if the motor controller gets the signal
for accelerating and it will be negative if the controller gets the signal for braking.

FM = α · τmax(rpm) · 44

20
· 77

20
· 1

r

The maximum torque of the motor τmax = 0.297 Nm is scaled by the coefficient
α. This coefficient is the throttle value set by the user and can be considered as
normalized torque of the motor (-1 to 1), which is set in the motor controller. The
maximum torque τmax(rpm) depends on the rotations per minute of the motor axis
and is a fixed function that only depends on the used motor. The τmax(rpm) function
will be deduced later (see page 39).

The fractions 44
20

and 77
20

are two transmissions, first the motor pinion to a bigger
gearwheel and second a V-belt. The last factor (1

r
) converts the torque to a force by

dividing by the wheel radius r = 62mm.

After the transmission ratio is known, one is also able to calculate the rotations per
minute of the motor:

rpm =
v

2 · π · r
· 44

20
· 77

20
· 60 s

1 min
The first fraction calculates the wheel rotations per second from the vehicle speed
v = ẋ and both following fractions calculate the motor rotations per second by taking
the transmission into consideration. The last factor just converts the value to the
expected unit. Thus, the force FM results to:

FM = α · τmax

(
ẋ

2 · π · r
· 44

20
· 77

20
· 60 s

1 min

)
· 20

44
· 20

77
· 1

r

2. The second force to examine is the force FΘ, which results of the slope of the ground.
The ground has the slope Θ and according to Newton’s second law of motion the
force to overcome the ground gradient is:

FΘ = m · g · sin Θ

Where g ≈ 9.81m
s2

is the gravitational acceleration and sin Θ is the vertical part of
the gravitational acceleration that has to be taken into consideration.

4.2. Functional Design 37

3. Wherever mass rolls on a surface, there exists a rolling resistance or rolling friction
that results into a rolling force that is directed against the movement of the vehicle.
This force is caused by the deformation of the surface and the objects. The friction
force FR is proportional to the gravitational force of the vehicle [Kra08]:

FR = cR · FN = cR · cos Θ ·m · g

The proportional constant is called roll coefficient and depends on the involved ma-
terials. Table 4.1 shows a list of rolling coefficients of different materials on several
surfaces. In our case a value of approximate 0.3 can be used as it is the value for

cR Description
0.0002 to 0.0010 Railroad steel wheel on steel rail
0.0025 Special Michelin marathon tires
0.005 Tram rails standard dirty with straights and curves
0.0055 Typical BMX bicycle tires used for solar cars
0.006 to 0.01 Low-resistance car tires on smooth road
0.010 to 0.015 Ordinary car tires on concrete
0.020 Car on stone plates
0.030 to 0.035 Ordinary car tires on tar or asphalt
0.055 to 0.065 Ordinary car tires on grass, mud, and sand

Table 4.1.: Table of compare-rolling resistance coefficients like described in [Kar00].

ordinary car tires on tar or asphalt.

4. The air resistance force Fa is proportional to the square of the speed ẋ:

Fa =
ρa
2
· cw · A · ẋ2

The proportionality factor is the product of the density of the air ρa ≈ 1.2 kg
m3 , the

drag coefficient cw and the projected abutting face A of the vehicle in m2. According
to figure 4.6, the drag coefficient can be expected to have a value of about cw ≈ 0.1.
The projected abutting face is approximately A ≈ 0.07m2 for the concept car. Thus,
the coefficient for the air resistance can be calculated and the air resistance force
results to: Fa = 0.0042 · ẋ2.

After determining all forces, the differential equation for the movement results to:

m · a = FM − FΘ − FR − Fa

⇒ m · ẍ = α · τmax(rpm)

r
· 20

44
· 20

77
−m · g · sin Θ− cR · cos Θ ·m · g − ρa

2
· cw · A · ẋ2

38 4. Model-Based Software Development Process for Embedded Systems

Shape Drag Coefficient

Sphere 0.47

Half-sphere 0.42

Cone 0.50

Cube 1.05

Angled
Cube

0.80

Long
Cylinder

0.82

Short
Cylinder

1.15

Streamlined
Body

0.04

Streamlined
Half-body

0.09

Shape Drag Coefficient

Figure 4.6.: Different drag coefficients.

⇒ ẍ =
1

m
·
[
α

(
τmax(rpm)

r
· 0.118

)
−
(
ρa
2
· cw · A

)
· ẋ2

]
− g (sin Θ + cR · cos Θ)

Finally, this formula of the vehicle plant can be modeled in Matlab/Simulink R© (see figure
4.7). Most of the dataflow connections between Matlab/Simulink R© blocks have annotations
for easier comprehensibility. Input 1 of the model is the normalized motor torque α (range
-1 to 1) that will immediately be converted to the nominal motor torque with unit Nm
by multiplying with the maximum torque τmax(rpm) at the current motor rotatory speed.
The rotations per minute are calculated from the vehicle speed output of the vehicle plant
as described on page 36.

The two transmissions of 20:44 and 20:77 result to an additional gain block of value 7.7.
After the last gain block of value 16.13 (1

r
) the edge holds the motor force in the SI

unit Newton. Now, the air resistance force will be subtracted, the force will be divided
by the vehicle mass m = 8.3 kg and finally, the gravitational and roll acceleration will
be subtracted. After doing all those steps, the edge holds the vehicle acceleration that
is integrated to get the vehicle speed. The speed could be integrated again to gain the
distance that our vehicle has covered.

Finally, I have to annotate that of course, the nominal plant of the vehicle that was derived
in this section differs from natural plant. There are still small factors that were not taken
into consideration like the rotating mass and the rotating friction of the wheels, gearwheels,
differential, V-belt, and the motor itself. But as all other factors have a greater impact
on the movement of the car, those factors may be neglected and will be eliminated by the
robust controllers [Kra08].

4.2. Functional Design 39

wheel diameter :
124 mm

vehicle
speed

2

vehicle
acceleration

1

vehicle mass [kg]

8.3

transmission

44/20 * 77/20

sin

motor torque (v)

speed torque [Nm]

g

9.81

c_R

0.03

air resistance
c_w * A * \roh / 2

0.0126

cos

Product

1
s

du/dt

1/r

1/0.062

slope [0..1]
2

motor _torque _normalized
[-1..1]

1

x'²

vehicle _force
[N] = [km*m/s²]

torque after
transmission

[Nm]

air resistance
force [N]

motor_force
[N]

x''[m/s 2̂]
x'
[m/s]

x'
[m/s]

gravitation
force and roll
resistance [N]

motor torque maximum [Nm]

motor_torque
[Nm]

Figure 4.7.: Matlab/Simulink R©model of the vehicle plant.

Motor Torque

As described on page 36, the maximum available motor torque is needed for a realistic
vehicle plant. Regardless which type of motor is used, all motors have different torques for
different rotation speeds. On the concept car, a brushless motor is used as described in
chapter 3.3.1.

Because brushless motors use a permanent magnet on the rotor, and user wire windings
on the stator, there is no need to use brushes and a commutator to switch the polarity
of the voltage on the coil [Hug08]. Instead a controller is needed (see chapter 3.3.1) for
alternating the current in the coils to continuously rotate the motor. The rotatory speed
of brushless motors is proportional to the frequency of this alternating current. The lack of
brushes means that these motors require less maintenance than the brushed direct current
motors.

40 4. Model-Based Software Development Process for Embedded Systems

In general brushless motors behave like approximated in figure 4.8. In low rotation areas
brushless motors can provide nearly full torque (about 0.3 Nm in this case) and in higher
operating areas the maximum torque decreases [Hug08]. When reaching the absolute full
maximum rotary speed (48700 1

min
in this case), the motor stops generating torque at all. As

stated before, diagram 4.8 just shows the general behavior of brushless motors in direction.

motor speed [%]

motor torque [%]

100%50%

0%

0%

50
%

10
0%

Figure 4.8.: General approximated rotational speed-time-diagram for brushless motors.

The accurate rotary-speed-torque-diagram for the concept car brushless motor cannot be
identified. Measuring the complete curve of the uses motor would have consumed too much
time. For this reason, the diagram for a really similar motor is used. The curve is shown
in figure 4.9. It is the diagram of the brushless motor Novak 3.5 R which is also a racing
motor with similar torque and rotations per minute. The curve of this diagram will be
used for approximating the torque of the deployed brushless motor. Calculating the rotary
speed of the motor is done using the vehicle speed value by taking into consideration wheel
diameter and transmissions (see page 36).

Finally, figure 4.10 shows the Matlab/Simulink R© block diagram for calculating the maxi-
mum available motor torque. First, the vehicle speed that is measured in m

s
is converted

in wheel rotary speed in min−1 by considering the wheel diameter. Afterwards, the value is
multiplied by the transmission ratio to get the motor rotary speed in min−1 that is fed into
a lookup table. The lookup table represents the brushless motor torque curve from figure
4.9 and returns a normalized value in the range of zero to one. This normalized value is
multiplied with the motors maximum torque for finally getting the rotary-speed dependent
maximum torque.

4.2. Functional Design 41

motor speed [%]

motor torque [Nm]

100%50%

0

0%

0.
15

0.
3

Figure 4.9.: Rotary-speed-torque-diagram for the brushless motor that is used on the con-
cept car.

torque
[Nm]

1

wheel rpm

60/(2*pi *0.062)

transmission

44/20 * 77/20

motor torque
maximum [Nm]

0.297

Motor torque (rpm)

speed
1 motor rpm

[min -̂1]
wheel

rpm [min -̂1]
[m/s]

Figure 4.10.: Matlab/Simulink R©model that calculates the available motor torque in depen-
dence upon the vehicle speed.

To sum up, the vehicle plant that is used for simulation and for finding controller parameters
is fully specified. As stated before, the next step in the Functional Design phase is designing
the filter for the wheel speed sensors.

4.2.2. Filter for the Wheel Speed Sensors

The signals that are generated by the wheel speed sensors are very noisy and need additional
processing for getting reliable values in SI units. Improving the quality of the sensor signals
is an important step because the subsequent controllers rely on these values. As described
in section 3.2.2 on page 20 the four wheel speed sensors just measure the time between
two ticks of the wheel encoder strips. The time is measured very accurate at a resolution
of 62.5 ns. The only processing that is performed on the results of the time-difference

42 4. Model-Based Software Development Process for Embedded Systems

measuring is building the average over 20 ms which is the measurement interval of the
SensorBoard that sends the wheel speed CAN messages.

The CAN messages can be captured using a CAN-to-USB interface and can be imported
into Matlab/Simulink R©. The CAN-to-USB interface was designed and constructed by
some fellow students and me while working for the formula student racing team KaRaT
(Kaiserslautern Racing Team, http://fs-kl.de). Because the interface was implemented
by ourselves, it was simple to add the Matlab/Simulink R© import functionality. Using the
small Matlab/Simulink R©model in figure 4.11, the sensory data can be plotted and the
calculate wheel speed component can be tested for getting the best results out of the noisy
sensory raw data.

calculate wheel _speed

wheel_raw wheel_rate [Hz]

To Plot

simout

Simulation Data

simin

Data Type Conversion

Convert

Figure 4.11.: Simulation model for the wheel speed sensors.

0 5 10 15 20 25 30 35

0

1

2

3

x 10
6

Time [s]

S
pe

ed
 R

aw
 [1

]

Figure 4.12.: Unprocessed wheel speed raw data.

Figure 4.12 shows the unprocessed wheel speed data for a wheel that spins at a specific
speed without touching the ground and rolling off slowly. As one can easily see, the data
is very noisy and sometimes there is no data at all in the 20 ms measuring interval for low
wheel speeds.

The biggest problem when evaluating the wheel speed sensors is that one can not decide if
the wheels are still spinning really slowly or if they are standing. If the wheel spins slow
enough, the sensor will not detect at least one black-white transition of the encoder strip

4.2. Functional Design 43

0 10 205 2015 25 35
0

2

4

6

8

10

Time [s]

S
pe

ed
 [m

/s
]

Figure 4.13.: Processed wheel speed data after conversion to rotations per second.

in an appropriate time span. This problem will occur if the black-white transitions takes
more than 20 ms which means more than the period of the wheel speed CAN message.

After trying different filters, I figured out that an infinite impulse response filter (see figure
4.14) with some specific switch cases would do a good job converting the raw wheel speed
data (time between black-white transitions) to the rotating rate of the wheel (measured in
Hertz). Caused by the limited scope of this diploma thesis, there was not more time for
further improvements of this filter.

wheel _rate
[Hz]

1

too slow

0

timer frequency

16000000

ticks per wheel

26

range

last value

0.4

current value

0.6

z

1

0.6

> 17e6
> 0

wheel _raw
1

wheel
[Hz]

ticks
[Hz]

Figure 4.14.: Matlab/Simulink R©model (calculate wheel speed) for processing the raw wheel
speed sensory data.

Multiplying the wheel rate with the circumference of the wheel results in the vehicle speed
in m

s
for this one wheel.

44 4. Model-Based Software Development Process for Embedded Systems

At this point of Functional Design, all necessary inputs (sensors) and outputs (actuators)
of the controller are available:

• Distance values arrive directly over the CAN-bus and just need to be multiplied by
0.01 for converting the unit of the values from centimeters to meters (3.2.5).

• Wheel speed sensors are provided by the filter of this chapter.

• Longitudinal acceleration is also directly available on the CAN-bus (3.2.3).

• Motor torque can directly be controlled over the CAN-bus. The ActuatorBoard (3.3.1)
receives the messages and controls the motor.

As all inputs and outputs are available and the plant is known, one can start developing a
speed controller and a distance controller right away.

4.2.3. General Control Loop Theory

For controlling properties of a system, feedback loops are used. Figure 4.15 shows a simple
standard control system. The input r of the system is called setpoint. The output y is
the control variable. The output is measured (ym) and the difference between input and
measured output is calculated. It is called control difference e = r − ym. The controller
tries to regulate the control value u to a value that the controller difference e gets minimal
e→ 0 [Lun08].

Controller Plant

Disturbances

u

Measurements

r e y

−
ym

Figure 4.15.: A simple generic control loop.

The plant does not need to be known in detail and the measurements do not have to be
ideal (ym = y ⇔ transfer function = 1) as long as the controller is robust. Furthermore,
the influence of disturbances on the plant and on the measurements are minimised by the

4.2. Functional Design 45

controller. Disturbances in the case of adaptive cruise control systems or in the automotive
area in general may be slope, wind, other friction forces, or the load of the vehicle.

A commonly used controller for many applications is the proportional-integral-derivative
(PID) controller that is described in the next section and will also be used in this diploma
thesis for controlling speed and distance.

4.2.4. PID Controller

A proportional-integral-derivative controller is a generic control loop feedback mechanism
that is widely used in all application domains [Lun06]. This feedback mechanism is used in
this diploma thesis because of its leading advantages and the union of advantages of other
controllers:

• The most important property of controllers that are used in closed loop feedback is
stability. Stable controllers are controllers that do not exceed an output range after
a specific point of time. In particular, the stable closed loop does not start oscillating
for a long time. The PID controller will be stable with appropriate parameters,

• Taking a PD-controller into consideration, the PID controller inherits an important
property: speed. The derivative part of the PID controller ensures that the controller
will react quickly on changes of the input difference.

• The integral part of the controller ensures that the position error of the controller
for long control times will in any case approximate zero. This is a huge improvement
over a P or a PD-controller because both types have position errors.

• All of those properties make the PID controller a very robust and fault-tolerant
controller.

• Last but not least, the PID controller’s simple structure can easily be modeled in
modeling tools like Matlab/Simulink R© because just few blocks are used for getting
the desired functionality.

Figure 4.16 shows the block diagram of a generic PID controller. The input e is the control
error (or control derivation)) and the controller output u is called control value. e = r− y′
is the difference of set value and measured value and the output u is the set value that

46 4. Model-Based Software Development Process for Embedded Systems

u
1

Integrator

1
s

Kd

Ki

Kp

Derivative

du/dt

e
1

Figure 4.16.: PID controller block diagram.

will be set in the actuator. One can easily see that the controller is separated into three
parts:

• First, the proportional part that multiplies the control error with the proportional
constant Kp.

• Second, the integral part Ki to prevent the position error.

• And third, the derivative part Kd that increases the reaction speed of the controller.

All parts are added resulting to the control value u. Thus, the PID controller can be
represented by the following equation:

u(t) = Kp · e(t) +Ki ·
∫ t

0
e(τ)dτ +Kd ·

de(t)

dt

Sometimes controllers of this type are represented with a formula that includes time con-
stants:

u(t) = Kr ·
(
e(t) +

1

Ti
·
∫ t

0
e(τ)dτ + Td ·

de(t)

dt

)

In this thesis, the first representation is used. If time constants are determined, they are
instantaneously converted to the PID-coefficients using the following conversion formulas:
Kp = KR, Ki = KR

Ti
, and Kd = KR · Td.

To illustrate the impact of different PID controller parameters, figure 4.17 shows a PID
controller in a closed loop. Initially, the setpoint is set to zero and after 50 seconds a step
to the setpoint five is performed, while at time point 150 seconds, the setpoint is reduced
to one.

4.2. Functional Design 47

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140 160 180 200

V
al

ue

Time

setpoint
actual value [Kp=1.5 Ki=1.0 Kd=0.1]

actual value [Kp=3.0 Ki=10.0 Kd=0.4]

Figure 4.17.: PID controller response for different coefficients.

The graph shows two different PID controller setups:

K1 =

 Kp

Ki

Kd

 =

 1.5
1.0
0.1

 and K2 =

 3.0
10.0
0.4

In the step response of setupK2 (blue graph), one can easily see that the controller generates
overshoots. The control value overshoots by an amount of 20 % which would be too much
in case of an adaptive cruise control system. Assuming a setpoint of 100km

h
, the car would

speed up to 120 km
h

before slowing down to 100 km
h

again. For ACC systems, the controller
with setup K1 would be more sufficient because it has no overshoot at all, but it has the
disadvantage that reaching the desired value consumes more time. Consequently, finding
appropriate controller coefficients is an important topic in controller design.

According to [Chr05], for determining the controller coefficients Kp, Ki, and Kd different
approaches are known:

• The manual method does not require any math, but requires experienced personnel.
Several rules exist for how the closed loop reacts on change of the controller, e.g.
higher values for Kp imply improved dynamic behavior, but smaller values for Kp

reduce the position error. If the Kd part is too high, the system will get instable and
if the Ki part is too low, the system will keep its position error. Knowing those rules
experienced personnel is able to manually tune the controller.

• In this thesis the Ziegler–Nichols method will be used because not much experience
is needed and the parameters can be deduced by simulation. There is no need to test
parameters in the real system. It is a proven online method and does not require that
much experience like the manual method. In brief, this method assumes the controller

48 4. Model-Based Software Development Process for Embedded Systems

to be a pure proportional controller. The proportional constant is increased until
the systems gets critical stable (i.e. starts oscillating) [Chr05]. Using this critical
proportional coefficient and the associated oscillating frequency all parameters can
be calculated. This method is described in detail in chapter 4.2.5.

• In real closed loops that are not just simulated sometimes it is dangerous to provoke
a critical stable oscillation as used in the Ziegler-Nichols method to determine the
parameters. In this case and in the case of systems with bigger signal delays, the
Chien-Hrones-Reswick method is suitable. The method uses the step response,
the delay time Tu, and the compensation time Tg of the system for determining the
controller parameters. As this method is not used in this thesis, it is not described
in detail.

• Mathematical PID loop tuning induces impulses into the system, and then uses the
controlled system’s frequency response to design the PID loop values. The mathemat-
ical tuning method is recommended for loops with long response times (e.g. minutes)
because modifying parameters and re-testing the loop will consume too much time.

• According to [Chr05], nowadays industrial applications use PID tuning and loop
optimization software to ensure consistent results.

Anti-Windup Algorithm

An important part, that no digital controller with integral amount should be missing, is a
so-called anti-windup algorithm. When the actuator saturates, which is the case for high
control deviations, but the deviation still remains, then the PID controller integral amount
will continuously keep integrating the error. This results in high integrated error values
and is called integrator windup.

An anti-windup algorithm is used to prevent the integrator windup. Plenty of different
approaches exist and four of them are presented in [CB95]:

• Conditional Integration: Depending on different conditions such as controller error
and controller output the integration of the error is switched on and off.

• The Limited Integrator method is the simplest approach: Integration is just per-
formed until a specific value is reached.

4.2. Functional Design 49

• Tracking Anti-Windup is the classic approach. The structure is shown in block
diagram 4.18. This approach is used in this diploma thesis because the integrator
windup limit is handled in combination with the actuator saturation. If the over-
all controller output exceeds a specific maximum (saturation of the actuator), the
exceeding amount (unsaturated minus saturated controller output) will simply be
subtracted from the integrator input.

u
1

SaturationIntegrator

1
s

Kd

Ki

Kp

Derivative

du/dt

e
1

Figure 4.18.: A saturating PID controller with tracking anti-windup algorithm is used in
the adaptive control system for controlling speed and distance.

4.2.5. Control Speed

Figure 4.19 shows the Matlab/Simulink R©model for controlling the speed of the vehicle and
simulating the used PID controller.

vehicle plant

motor_torque_normalized [-1..1]

slope [0..1]

vehicle acceleration

vehicle speed

saturating pid

control deviation control value

To Workspace

simout

desired_speed

Scope

vehicle _speed

desired_speed

normalized motor torque

Figure 4.19.: Closed loop for finding the speed controller PID parameters.

50 4. Model-Based Software Development Process for Embedded Systems

The desired speed for simulation is generated by a signal builder component. First, the
control difference is calculated as difference of desired speed and vehicle speed. A saturating
PID controller (see figure 4.18) is attached to this controller difference. The output of this
PID controller directly represents the motor torque and is fed into the plant of the vehicle
as shown on page 39. The acceleration output of the vehicle plant is ignored as the vehicle
speed output is the only important output that is used for calculating the controller error.
This vehicle speed edge is used as feedback of the closed loop and is also displayed on
a scope in combination with the edge desired speed. To find appropriate PID controller
parameters Kp, Ki, and Kd, the Ziegler-Nichols method is used as described in the next
section.

Ziegler-Nichols Method for the Speed Controller

The Ziegler-Nichols method is used for setting up and tuning the PID controller. First,
the controller is threated as simple proportional controller. Thus, Kp 6= 0, Ki = 0 and
Kd = 0. Three meters per second is more than ten percent but that is no problem for the
Ziegler-Nichols method. Setpoint for the Ziegler-Nichols method is a step-function that
has a step width of the order of ten percent of the maximum setpoint range. This range is
proposed in [Chr05] but different step widths do not change the resulting values, it might
just take longer to find them. In this case, the input is a step from zero to three after one
second (see figure 4.20).

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3

desired_speed

Time (sec)

speed_closed_loop/Signal Builder : Step Function

Figure 4.20.: Matlab/Simulink R© signal builder block used as input for parameter determi-
nation of the Ziegler-Nichols method.

Starting from zero, the proportional coefficient Kp is slowly increased until the closed
loop starts oscillating (see figure 4.21 and figure 4.22). This state of the closed loop is
called critically stable. The corresponding coefficient is the so-called critical proportional
coefficient. In this case, the critical coefficient is Kpcrit = 3.5. Using this value, the closed
loop gets critically stable (see figure 4.23). The oscillating period is called critical period.
After finding Kpcrit , the critical period Tcrit is determined from figure 4.23: Tcrit = 1.6 s.

4.2. Functional Design 51

0 5 10 15 20

0

1

2

3

4

Time

Figure 4.21.: Initial closed loop response for
Kp = 0.1.

0 5 10 15 20

0

1

2

3

4

Time

Figure 4.22.: Closed loop response for Kp =
1.

0 10 20 30
2.363

2.364

2.365

Time

Figure 4.23.: Oscillating response for Kp =
3.5.

0 5 10 15

0

1

2

3

4

Time

Figure 4.24.: Response for parameters de-
termined with Ziegler-Nichols
method.

Using the Ziegler-Nichols method and according to table 4.2, the PID controller parameters
should be setup as follows:

Kp = 0.6 ·Kpcrit = 0.78 Ki = 2 · Kp

Tcrit
= 0.366 Kd = Kp · Tcrit ·

1

8
= 0.415

After using the PID parameters as described in table 4.2, the controller shows very fast
response times (see figure 4.24) but also slightly overshooting behavior. This overshooting
behavior is an undesirable behavior for a cruise control system because the controller allows
the car to drive faster than the user has requested. Because it is an overshoot of approximate
15 %, a car would travel at 11.5 km

h
instead of 10km

h
, which is more than allowed by the

Requirements Analysis phase.

PID parameter tuning is used for getting the most appropriate behavior for an adaptive
cruise control system. The Kp part has not been modified. Ki and Kd are manually tuned

52 4. Model-Based Software Development Process for Embedded Systems

Controller Kp Ki Kd

P 0.5 ·Kpcrit - -

PI 0.45 ·Kpcrit 1.2 · Kp

Tcrit
-

PD 0.55 ·Kpcrit - Kp · Tcrit · 0.15

PID 0.6 ·Kpcrit 2 · Kp

Tcrit
Kp · Tcrit · 1

8

Table 4.2.: Ziegler-Nichols rules for determining controller parameters [Chr05].

for getting better results: The values are slowly decreased and increased and the control
loop results are reviewed. After few iterations, figure 4.25 shows the tuned closed loop
response of the speed controller using Kpnew = Kp, Kinew = Ki · 0.7, and Kdnew = 0.042.
One can easily see that on the one hand the overshoot is not that far, but on the other
hand is takes longer to reach the final speed.

0 5 10 15

0

1

2

3

4

Time

Figure 4.25.: Closed loop step response of the speed controller after parameter tuning.

The controller is verified for different simulation scenarios in chapter 4.4.3 on page 76.
Hence, there is no further need to evaluate the controller behavior in this chapter.

4.2.6. Control Distance

The distance controller is used to control the spacing between two vehicles to a specific
value. In requirements phase was stated, that the time gap between two vehicles should be
one to two seconds. Additionally, the distance should never be less than one meter.

4.2. Functional Design 53

To control the distance between two vehicles, the first thing to do is to calculate the
desired distance Ldes. The distance controller uses the current vehicle speed to figure out
the desired distance between the vehicles. Literature states that a time gap of one to two
seconds between two vehicles is a common guideline value [Kra08]. Hence, 1.5 seconds will
be used in our case. For example, at a speed of 10 km

h
the desired distance will result to

∆x = 1.5s · 10km
h
≈ 4.2m. Another common value for the distance between two cars is

half the value on the speedometer. If the speedometer shows 10km
h

, the distance should be
around 10 m

2
= 5 m which is more than the previously calculated value. Thus, our assumed

time gap of 1.5 seconds seems to be a good value.

Accordingly, minimum spacing between two vehicles is calculated from the vehicle speed.
After the minimum distance is calculated, the component makes sure that the distance will
never be less than one meter even if the cars are not moving and thus the vehicle speed is
zero.

Ldes = min(1 m, ẋ · 1.5 s)

The resulting value is subtracted from the current distance to the vehicles predecessor to get
the spacing error δ that is considered as the control deviation. In simulation, the distance
value is calculated from the distance of the route that the two vehicles have covered (see
figure 4.26):

δ = x2 − x1 − Ldes

Where x1,2 are the distances that the two vehicles have covered. The deviation is fed into
a controller to get the desired motor torque.

vehicle plant

motor_torque_normalized [-1..1]

slope [0..1]

vehicle acceleration

vehicle speed

p controller

control deviation control value

desired time gap [s]

1.5

To Workspace

simout

pred. speed

Scope

Integrator

1
s

4

4
4predecessor speed

speed
difference
[m/s]

[s]

min_distance [m]

min_distance [m]

gap [m]

gap [m]

normalized
motor torque

vehicle _speed

vehicle _speed

Figure 4.26.: Closed loop for finding the distance controller parameter.

54 4. Model-Based Software Development Process for Embedded Systems

Figure 4.26 shows the closed loop for testing the distance controller. The distance x2 − x1

that is used in this closed loop is calculated from the two vehicle speeds:

x1 =
∫ t

0
ẋ1(τ)dτ , and x2 =

∫ t

0
ẋ2(τ)dτ

As one can also see in the figure, the control deviation results to:

δ =
∫ t

0
(ẋ2(τ)− ẋ1(τ)) dτ − 1.5 s · ẋ1

This deviation is fed into the distance controller, which is a proportional controller without
integral part because on the one hand the integral part would integrate an error also when
the controller is inactive. On the other hand, the closed loop already has an integral part
as one can see in the formula above. Thus, the positioning fault of the closed loop will
reach zero even if the controller has no integral part.

Ziegler-Nichols Method for the Distance Controller

Again, like for the speed controller, the controller parameter is determined in the Functional
Design step. Initially, the simulation start condition is configured like follows:

• Initial distance between the two vehicles is set to one meter (spacing between the
cars). This is achieved by setting the integrator of figure 4.26 to the specified value
one. Bigger values for the initial distance would also work but it would take longer
for the successor vehicle to catch up its predecessor.

• The concept car is initially not moving: ẋ1 = 0 m
s
. The speed setting can be modified

in the vehicle plant integrator. Setting the successor vehicle speed to less than the
predecessor vehicle speed makes sure that in the simulation the concept car does not
overtake its vehicle ahead.

• The predecessor vehicle is cruising at a constant speed of one meter per second. The
predecessor vehicle speed is defined in the signal builder.

Figure 4.27 shows the behavior of the closed loop under the described initial conditions for
a proportional controller with Kp = 1. The dotted cyan line that has a constant value of
1 is the speed of the predecessor vehicle and the green line shows the speed of the concept
car. The dotted blue line shows the distance of the two vehicles and the red line shows the
desired distance of the two vehicles. Hence, the goal of parameter tuning should be that

4.2. Functional Design 55

0 1 2 3 4 5 6 7 8 9 10
0

1

Time

Figure 4.27.: Closed loop using a proportional controller with Kp = 1.

0 1 2 3 4 5 6 7 8 9 10
0

1

Time

Figure 4.28.: Closed loop starts oscillating for a proportional coefficient of 2.5.

the current distance (dotted blue) is in any case bigger or equal than the current spacing
distance.

As described in the previous section, the Ziegler-Nichols method requires an increase in the
proportional coefficient of the P controller until the closed loop gets critical stable. For a
proportional value of Kpcrit = 2.5 the closed loop starts oscillating periodically (see figure
4.28). Figure 4.29 shows a zoomed view of the oscillations for determining of the critical
period Tcrit = 0.625 s.

6 8 10 12 14
1.499

1.4995

1.5

Time [s]

V
al

ue
 [m

]

Figure 4.29.: Zoomed view on the oscillation for determining the critical period.

56 4. Model-Based Software Development Process for Embedded Systems

According to table 4.2, to use a proportional controller the parameter has to be set to half of
the value of the critical gain: Kp = 0.5 ·Kpcrit = 1.25. Figure 4.30 shows the behavior of the
closed loop for the estimated proportional gain. Additionally, the speed of the predecessor
vehicle is reduced by 50 percent after four seconds and is reseted to the original value after
eight seconds.

0 1 2 3 4 5 6 7 8 9 10
0

1

Time

Figure 4.30.: Final closed loop response of the distance controller.

Finding the distance controller parameter was the last thing to do in the Functional Design
step of the model-based embedded software development process. Now, all necessary inputs
and outputs of the system are sufficiently clear and all filters and controllers that will be
used are specified, simulated, and optimized. The results of this step are models for all
necessary controllers. The next step in the development process is the Software Architecture
step that depends on the results of this phase.

4.3. Software Architecture 57

4.3. Software Architecture

Requirements
Analysis

Functional
Design

Software
Architecture

Software
Design

Code

The functional behavior is now completely modeled by domain experts and now the task
of software engineers starts. Thus, in the Software Architecture phase, the actual software
development starts. The input of the Software Architecture phase are the results of the
requirements analysis phase and also the functional models of the domain experts of the
Functional Design phase. Output of the phase is a refined model of the system that is
consistent and free of errors.

Task of the Software Architecture phase is the structuring of the models. It is an important
phase in the model-based software development process for embedded systems: On the one
hand, the system is refined for making it better understandable and on the other hand,
the Software Architecture phase helps finding errors in the models. To achieve those two
points, different diagram types that ensure different views on the system are used.

The Software Architecture phase is the first phase that not only handles functional prop-
erties, but also non-functional properties of the system. Non-functional properties imply
a number of design decisions that include performance, memory consumption, reliability,
reusability, maintainability, extensibility, power consumption, and production cost. Many
of those non-functional properties influence each other and especially the production cost
depends on decisions of all other properties. Production cost is an important property
for embedded systems as embedded systems often have high quantities and thus a small
increase of production cost of one part will be a huge increase of the overall production
cost.

The Software Architecture phase is separated in the static structure part and the dynamic
structure part. Both parts are described in this chapter: The static structure (see chapter
4.3.1) helps to understand how the system is divided into components. The dynamic
structure (see chapter 4.3.2) defines how these components communicate with each other.

58 4. Model-Based Software Development Process for Embedded Systems

4.3.1. Static Structure

Decomposition of the System

The first thing to do in the Software Architecture phase is the static decomposition of the
system (see figure 4.31). The system is structured into three layers: the adaptive cruise
control application software, the platform software, and the operating system.

<<component>>
Application Software:

ACC_System

<<component>>
Platform_Sofware

<<component>>
Operating_System

Figure 4.31.: Structure of the complete adaptive cruise control embedded system.

1. The application software consists of the Matlab/Simulink R©models of the adaptive
cruise control system. It contains all controllers, filters, state machines, and especially
all modules that were developed and tested in the Functional Design phase.

2. The platform software handles the models in- and output ports by passing them to
the CAN-bus. Between two different types of semantics of the CAN messages can be
distinguished and all of them are differently handled by the platform software:

• Some messages need marshalling on the values on the CAN-bus for getting the
actual values in SI units. For example, the acceleration sensors have a measure-
ment range of −8g to 8g (where g is the gravitational acceleration) and as they
are 12 bit sensors, they produce values in the range of −2048 to 2047. Hence, the

4.3. Software Architecture 59

values on the CAN-bus have to be processed for getting the actual acceleration
a in m

s2
:

a =
8

2048
· x · 9.81

m

s2

This processing is performed by the platform software before passing the value
to the application software models.

• Other CAN messages are the messages that need intense preprocessing which
is done in the application software and is not part of the platform software.
The platform software in this case just passes the unprocessed values and the
application software runs filters or state machines for getting useful values in SI
units. One example for this type of messages are the wheel speed sensors that
are described in detail on page 20 with their filtering that is described on page
41.

3. The lowest layer of the adaptive cruise control system is the operating system. The
operating system provides drivers for the abstraction of the used hardware. Currently,
the concept car uses the following hardware for running the controllers:

• The CAN-bus may be the most important piece of hardware on the controller
board and is described in chapter three.

• SD card interface for storing the software on. The SD card is also used for debug-
ging purposes. A file allocation table (FAT) driver allows the use of filesystems
and thus easier access to the software binary and the log files on other systems
like personal computers.

• An universal asynchronous receiver/transmitter (USART) is used for debugging
purposes.

• Other low-level drivers allow the control of on-chip peripherals like I/O-ports,
interrupt controllers, and timers.

The operating system also takes care of the scheduling of the model components. At
the moment no multi-tasking operating system is used and all blocks and components
of the Matlab/Simulink R©model are executed sequentially with a fixed time interval
(see chapter 4.4.4 on page 82).

60 4. Model-Based Software Development Process for Embedded Systems

Component Decomposition

After the embedded system has been structured in several layers, the system itself, the
ACC System - will be segmented into its components as shown in the component decom-
position diagram 4.32. The decomposition is an UML class diagram that segments the
ACC System into the following sub-components:

• The UserInterface receives and evaluates the commands of the user. Enabling and
disabling the controller and setting the desired speed is detected by the user interface
as well as disabling the controller when receiving a brake signal.

• DataAcquisition is the component that receives all sensory input and calculates the
distance to the predecessor, the wheel speeds, and the vehicle speed and forwards the
results to the ACC Controller.

• The ACC Controller is the main component of the adaptive cruise control system.
It receives all control signals of the user interface and all pre-calculated values of the
data acquisition component and finally calculates the motor torque that should be
applied to the vehicle motor.

ACC_System

ACC_ControllerDataAcquisitionUserInterface

Figure 4.32.: Decomposition of the ACC System.

Type System

With the help of a type system (see figure 4.33) many errors can be avoided. For example,
if a component expects an input to be of the type m

s
but it actually is the type km

h
, the type

system will point out this complicated mistake. As stated before, all values of the models in
this thesis will be converted to SI units to avoid errors and to improve comprehensibility of
the simulation results. The types of all model inputs and outputs have to be determined

4.3. Software Architecture 61

<<signalType>>
BaseType

<<signalType>>
ActualValue

<<signalType>>
SetPoint

<<signalType>>
Speed
[m/s]

<<signalType>>
Distance

[m]

<<signalType>>
ReferenceSpeed

<<signalType>>
SetPoint_Speed

[m/s]

<<signalType>>
SetPoint_
Distance

[m]

<<signalType>>
SetPoint_

Acceleration
[m/s²]

<<signalType>>
WheelBased_

Speed

<<signalType>>
AccleroBased_

Speed

<<signalType>>
Longiudinal_
Acceleraion

[m/s²]

<<signalType>>
SetPoint_

Torque
[Nm]

Figure 4.33.: Type system of the adaptive cruise control system.

and one has to make sure that the type of an output fits the types of all connected inputs.
If the type differs, a type conversion has to be used like demonstrated in figure 4.11 on
page 42.

All types derive from the base type called BaseType. A distinction is drawn between values
that shall be used as control value (called SetPoint) and values that are measured (called
ActualValue). The set point values are distinguished into the following four types:

• SetPoint Speed is used for all data flow paths that are input to a speed controller and
is measured in m

s
.

• SetPoint Acceleration is the output of controllers and reflects the desired acceleration
of the vehicle. The SetPoint Acceleration values are of the type m

s2
.

• The acceleration is converted to a desired torque of the type SetPoint Torque that is
measured in Nm.

62 4. Model-Based Software Development Process for Embedded Systems

• Last, there is the need for a type that may be used as input of the distance controller:
SetPoint Distance [m].

The type ActualValue is divided into three sub-types:

• The Distance type uses the unit meters and is used for the dataflow paths that carry
the distance to the predecessor vehicle.

• Speed is measured in meters per second and distinguishes the ReferenceSpeed, the
WheelBased Speed, and the AcceleroBased Speed. The reference speed is the actual
speed of the concept car that may not be perfectly measured but e.g. with the use
of global positioning system (GPS) one may get good approximations. Calculating
the vehicle speed based upon the wheel speed sensors results in values of the type
WheelBased Speed. AcceleroBased Speed is the speed that results from integrating
over the acceleration sensors.

• Longitudinal Acceleration type is used for values that correlate with the longitudinal
acceleration of the vehicle. These values are measured in m

s2
.

Static Interaction

The composite structure diagram in figure 4.34 shows the static interaction between the sub-
components that were discussed earlier in this chapter. The composite structure diagram
clarifies the structure of the system by showing the dataflow starting at the system inputs
(sensors and user interfaces) and ending at the system outputs (actuators).

4.3.2. Dynamic Structure and Dynamic Interaction

Figure 4.35 shows the refined sequence diagram of the use case control speed with distance.
The diagram is similar to figure 4.5 but demonstrates a more technical view and shows the
interaction between all sub-components of the system. The first sequence diagram mainly
shows the interaction between the extern components and the system itself. As well as all
components are split into sub-components, all life lines of those components will be split
and connected in the appropriate way. This is needed for a better understanding of the
model and for recognition of incompleteness of the interactions.

4.3. Software Architecture 63

component ACC_System

:DataAcquisition

speed_FL_raw
speed_FR_raw
speed_RL_raw
speed_RR_raw

acceleration
distance1

:UserInterface
controls
throttle
brake

:ACC_Controller

user_action

distance_
to_pre

vehicle_speed

distance2

desired
torque

Figure 4.34.: Composite structure diagram of the adaptive cruise control system.

The component Wheel Speed Sensor is splitted into four life lines, while the Distance
Sensor is splitted into the two sensors. Consequently, distance and vehicle speed may
be calculated redundantly and sensory errors can be detected. The additional component
Data Acquisition is added to handle the sensory inputs. In this refined sequence diagram,
the complete dataflow from sensory input to actuator output is described.

64 4. Model-Based Software Development Process for Embedded Systems

loop

calculate current vehicle speed

determine desired acceleration

acceleration

wheel speed 1 to 4

distance1

determine distance to predecessor (redundant)

desired acceleration

vehicle speed

distance signal

calculate torque

Distance
Sensor 1

Wheel Speed
Sensor 1 to 4

Data
Acquisition

ACC
Controller Motor AccelerometerDistance

Sensor 2

distance2

{Desired speed is set and controller is active}

Figure 4.35.: Refined sequence diagram of the scenario Control speed with distance.

4.4. Software Design

Requirements
Analysis

Functional
Design

Software
Architecture

Software
Design

Code

There is a smooth transition from the Software Architecture phase to the Software Design
phase. Thus, one can not clearly mark out the boundaries of both phases. The Software

4.4. Software Design 65

Design phase takes the results of all previous phases as input. The output of this phase is
a complete behavioral model that can be used for the generation of the application code.

After the most important components are structured, one can start the Software Design
phase. This phase is divided into three steps: In the Structural Refinement step, the com-
ponents are further refined until the complexity reaches a reasonable value (see chapter
4.4.1). Afterwards, in the Behavioral Design step, all behaviors of all components are de-
fined (see chapter 4.4.2). Furthermore, these platform independent models are tested in
chapter 4.4.3. The Platform Specific Design step takes platform-specific clues into con-
sideration (see chapter 4.4.4). After the last step of this phase is finished, the code can
automatically be generated.

4.4.1. Structural Refinement

The task of the Structural Refinement step is the refinement of all components while they
are still too complex. This step is finished when there is no need to refine them anymore
and the complexity has reached a value that can easily be understood. This means, that
the behavior of the refined sub-components can be easily and flawlessly defined.

Static Decomposition

Figure 4.36 shows the static decomposition of the component ACC Controller that has
not been refined in the Software Architecture phase. The ACC Controller is divided into

<<component>>
ACC_Controller

<<component>>
Speed_Controller

<<component>>
State_Controller

<<component>>
Distance_Controller

Figure 4.36.: Decomposition of the component ACC Controller.

the three sub-components: Speed Controller, Distance Controller, and State Controller as
follows:

66 4. Model-Based Software Development Process for Embedded Systems

• Speed Controller : This component is responsible for controlling the speed of the
vehicle by influencing the motor torque in a way that minimizes the control difference
(desired speed - vehicle speed).

• The Distance Controller works in a similar way but instead controls the time gap of
1.5 seconds between two vehicles as defined in the Requirements Analysis phase (see
chapter 4.1). In any case, the distance should not be less than one meter.

• The State Controller determines, depending on the distance between the vehicles and
the speed of them, which controller to use.

As three sensory inputs are made available (see the Requirements Analysis phase) by the
system, the component DataAcquisition is also be divided into three sub-components (see
figure 4.37) for calculating these values:

• WheelSpeed Calculator : Filter that converts the wheel speed raw values to normal SI
unit values.

• VehicleSpeed Calculator : Calculates the vehicle speed from the wheel speeds and the
longitudinal acceleration.

• Distance Calculator : Gets two redundant distance values from two ultrasonic sensors
and combines them to one distance value.

<<component>>
DataAcquisition

<<component>>
Caclulate wheel_speed

<<component>>
Calculate

distance_to_predecessor

<<component>>
Calculate vehicle_speed

Figure 4.37.: Decomposition of the component DataAcquisition.

Static Interaction

The static interaction of the ACC Controller is shown in the composite structure diagram
4.38. One can see that the component gets the user interactions, the vehicle speed, and

4.4. Software Design 67

the distance to the predecessor as input. The output is the desired motor torque that
is directly forwarded to the CAN-bus. The vehicle speed is used in all sub-components.
The user interaction is just needed in the Speed Controller while the distance to the pre-
decessor vehicle is needed in the State Controller and the Distance Controller but not the
Speed Controller. Both controllers - the Speed Controller and the Distance Controller -
have their own motor torque as output and the State Controller decides depending on
the actual state which torque to forward to the ActorBoard for driving the motor. The
State Controller also handles the brake events and disables both torque controllers if the
brake lever is pulled or the controller is disabled or not yet enabled.

component ACC_Controller

<<component>>
:State_Controller

<<component>>
:Speed_Controller desired_

torque_
speed

vehicle_speed

distance_to_
predecessor

<<component>>
:Distance_
Controller

desired_
torque_
distance

UserInteraction

desired_
torque

distance_to_
predecessor

Figure 4.38.: Composite structure diagram of the component ACC Controller.

The composite structure diagram 4.39 shows the static interaction of the component DataAc-
quisition. The component has two main dataflows. On the one hand, the two distance sen-
sor values are forwarded to the Distance Calculator and the results are further forwarded
to the component boundaries of the data acquisition module. On the other hand, the four
wheel speed raw values are processed in the WheelSpeed Calculator sub-module and in
combination with the longitudinal acceleration, the vehicle speed can be calculated and
passed to the DataAcquisition module.

68 4. Model-Based Software Development Process for Embedded Systems

component DataAcquisition

<<component>>
:Calculate

vehicle_speed

<<component>>
:Calculate distance

to predecessor

distance1

longitudinal
acceleration

<<component>>
:Calculate

wheel_speed

distance2

vehicle_speed

distance_to_predecessor

speed_FL_raw
speed_FR_raw
speed_RL_raw
speed_RR_raw

speed_FL
speed_FR
speed_RL
speed_RR

Figure 4.39.: Static decomposition of the component DataAcquisition.

Dynamic Interaction

In the Dynamic Interaction step, in contrast to the Software Architecture phase, the life
lines are not just splitted into sub-components, but also new sequence diagrams may be
used for avoiding really high complexity of the diagrams. Instead of high complexity and
confusing diagrams, the interaction diagrams for the sub-components will be analyzed in
this thesis.

Sequence diagram 4.40 describes the dynamic interaction of the component Speed Con-
troller. The Speed Controller gets the current vehicle speed and the speed that the user
desires. Those two values are subtracted for getting the controller difference. The speed
controller contains a PID controller that calculates the control value (motor torque) out
of this controller difference. The control value is passed to the state controller as de-
sired torque speed which selects whether to use the torque of the Speed Controller or of the
Distance Controller for motor control.

The sequence diagram of the distance controller component is nearly the same as the
diagram of the Speed Controller component. The difference is that the distance controller
does not need the desired speed but instead the distance to the predecessor vehicle. It
calculates the desired time gap between the two vehicles (see chapter 4.2.6) and subtracts

4.4. Software Design 69

loop

ACC_Controller PID_Controller

calculate controller_difference

Speed_Controller

controller_difference

vehicle_speed

desired_speed

State_Controller

desired_torque

desired_torque_speed

desired_torque

calculate desired_torque

Figure 4.40.: Sequence diagram of the component Speed Controller.

the current distance to the predecessor for getting the controller difference. The rest equals
the Speed Controller.

Sequence diagram 4.41 shows the dynamic interaction of the component DataAcquisi-
tion. The sequence diagram illustrates how the component communicates with its sub-
components for calculating the vehicle speed and the distance to the predecessor. First, all
raw values of the four wheel speed sensors are converted to SI units and in combination of
the longitudinal acceleration the vehicle speed is calculated. Both distance sensor values
are combined to one distance value and this value and the vehicle speed value are forwarded
to the ACC Controller.

70 4. Model-Based Software Development Process for Embedded Systems

loop

calculate current wheel speeds

wheel speed 1, 2, 3, 4 raw

distance1,2

wheel_speed 1,2,3,4

Distance
Sensor 1,2

Wheel Speed
Sensor 1 to 4

WheelSpeed
Calculator

VehicleSpeed
Calculator

Distance
CalculatorAccelerometer

longitudional acceleration

calculate vehicle speed

ACC
Controller

calc dist

vehicle_speed

distance

Figure 4.41.: Sequence diagram of the component DataAcquisition.

4.4.2. Behavioral Design

After the static structure and the dynamic interaction of all components of the adaptive
cruise control system are defined, the behavior is the next thing to specify. All components
of ACC System, namely the ACC Controller and the DataAcquisition and the system itself
have to be fully specified.

4.4. Software Design 71

ACC System

The Behavioral Design of the ACC System (see figure 4.42) equals the static decomposition
(composite structure diagram) of the module. The diagram was strictly converted to a Mat-
lab/Simulink R© block diagram to get a defined semantic and to be able to generate code
from the model in the later design phases. The distances input of the ACC system (input
2) is a bus that actually holds two values. In the associated UML diagram, both sensory
inputs are shown as single inputs because UML is not capable of defining buses. The same
applies to the raw wheel speed input that combines all four wheel speed values.

motor _torque
1

DataAcquisition

distances

wheel_speeds_raw

acceleration

vehicle speed

distance to predecessor

ACC Controller

desired_speed

vehicle _speed

distance _to_predecessor

motor_torque

acceleration
4

wheel _speeds_raw
3

distances
2

desired_speed
1

Figure 4.42.: Block diagram of the component ACC System.

ACC Controller

After the structure of the ACC controller component was decomposed into its sub-com-
ponents, it is necessary to define its behavior now. Figure 4.43 shows the Matlab/Simu-
link R©model of the component. The block diagram looks similar to the composite structure
diagram of this component because it does not need any additional blocks other than
connecting its sub-components with each other. The main difference is that other than
the composite structure diagram, that was modeled in an UML drawing tool without
semantics, now code can be generated of the model using Real-Time Workshop R© Embedded
CoderTM and the appropriate toolchain.

Figure 4.44 shows the block diagram of the state controller. The task of the controller
is to select the torque of either the speed controller or the distance controller. The state
controller is simple and effective: It just selects the torque that has the lesser value. This
causes exactly the desired behavior:

72 4. Model-Based Software Development Process for Embedded Systems

motor _torque
1

State Controller

distance _to_predecessor

torque1

torque2

motor_torque

Speed Controller

desired_speed

vehicle _speed
motor_torque

Distance Controller

vehicle _speed

distance to predecessor [m]
motor_torque

distance _to_predecessor
3

vehicle _speed
2

desired_speed
1 engine_torque

speed controller

engine_torque
distance controller

Figure 4.43.: Matlab/Simulink R©model of the component ACC Controller.

• The vehicle will never accelerate faster than the Speed Controller suggests. If no
obstacle is in front of the concept car, the distance controller torque is set to 100
percent and the Speed Controller suggests a value less or equal than 100 percent and
thus is be selected by the state controller. Therefore, the concept car behaves as
desired in case of no obstacle in front of the car.

• The vehicle will also never decelerate slower than the distance controller suggests in
case of an obstacle. In this case, the Speed Controller desires to drive faster than the
distance controller and thus the speed controllers torque is bigger than the distance
controllers torque. Hence, the distance controller torque will be selected by the state
controller as motor torque. Finally, the concept car behaves as desired in case of an
obstacle.

The distance to the predecessor vehicle is not needed at all because this value is already
used for calculating the two torque inputs. Thus, the distance value is indirectly taken into
consideration. Probably, the state controller could still be optimized but caused by the
limited time of this thesis and the well simulation results the controller is used like shown
in picture 4.44.

motor _torque
1

MinMax

min

torque 2
3

torque 1
2

distance _to_predecessor
1

torque from speed controller

selected torque

torque from distance controller

Figure 4.44.: The state controller block diagram.

4.4. Software Design 73

Figure 4.45 shows the block diagram that defines the behavior of the speed controller
component. The component was reused from Functional Design phase: It subtracts the

motor _torque
1

saturating pid

control deviation control value

vehicle _speed
2

desired_speed
1

Figure 4.45.: Block diagram of the component SpeedController.

vehicle speed and desired speed for getting the controller difference. This difference is
used as input for a saturating PID controller (see 4.2.4 on page 48) and the output of the
controller is the motor torque.

The block diagram of the distance controller (see figure 4.46) looks similar to the diagram
of the speed controller but there are important differences. The distance controller uses

motor _torque
1

min _distance [m]

1

desired time gap [s]

1.5

P Controller

control deviation control valuemax

distance to predecessor [m]
2

vehicle _speed
1

distance _to_predecessor [m]

[m/s]

[s]
min_distance
by speed [m] [m]

Figure 4.46.: Block diagram of the component DistanceController.

the current vehicle speed for figuring out the desired distance between the vehicles as stated
in the Functional Design phase on page 52. The deviation between desired distance and
the actual distance is fed into a controller for getting the desired motor torque that leads
to an reduction of the distance error.

DataAcquisition

The DataAcquisition module behavior is described by figure 4.47. The component just
passes its inputs to its sub-modules that calculate the distance to the predecessor vehicle

74 4. Model-Based Software Development Process for Embedded Systems

and the vehicle speed. These sub-modules include calculating the distance to the prede-
cessor vehicle, calculating the wheel based vehicle speed, and calculating the vehicle speed.

distance to
predecessor

2

vehicle
speed

1calculate wheel _speed

wheel_speeds_raw wheel_speeds

calculate vehicle _speed

wheel_speeds

longitudinal_acceleration

vehicle _speed

calculate distance _to_predecessor

distances distance _to_predecessor

acceleration
3

wheel _speeds_raw
2

distances
1

Figure 4.47.: Block diagram of the component DataAcquisition.

Figure 4.48 shows the behavior of the component that calculates the distance to the pre-
decessor vehicle: This is simply done by selecting the smaller distance value of both. The
distance input is fed with an array of distance values (the concept car has two of them).
Those distance inputs are measured in the unit centimeters by the distance board. Firstly,
the unit is converted to meters for simpler usage later in the model. The following switch-
block converts negative input values that signal a distance of more than six meters to a
big value to indicate the controller that there is no obstacle in front of the car. The follow-
ing min-block uses the smallest distance value of all sensors as the distance to predecessor
value.

distance _to_predecessor
1

use smallest
distance

min

max distance
[m]

[10000 10000]

cm to m

0.01

Switch

distances
1 [cm]

<0 => no data

distances [m]

Figure 4.48.: Calculates the distance to predecessor.

Figure 4.49 shows the Matlab/Simulink R©model for calculating the vehicle speed from the
wheel speeds and the longitudinal vehicle acceleration. First, the number of sensors that

4.4. Software Design 75

deliver values is estimated by checking how many sensors are rotating. Sensors that are
standing are not considered in vehicle speed calculation but that is no problem because
it would not change the vehicle speed estimation whether they are counted or not. After
finding the number of rotating sensors, the sensor average is calculated by adding all sensor
values and dividing them by the number of sensors. The quotient is the wheel based vehicle
speed. Normally, the longitudinal acceleration could be used to improve the sensor quality
of the wheel speed sensors. Additionally, the possible slip of the wheels could be eliminated
from the sensor data. Caused by the limited time of this thesis, the longitudinal acceleration
is not taken into consideration in my case.

count # of working sensors

build average of
all working sensors

could be used for eliminating
wheel slip from sensory data

vehicle _speed
1

Switch
max

1

(0 0 0 0)

(1 1 1 1)

Add

longitudinal
acceleration

2

wheel _based_speeds
1

4

4
4

4

4

44

4

Figure 4.49.: Matlab/Simulink R©model calculate vehicle speed.

The last sub-component of the data acquisition module is the calculation of the wheel based
speeds of the car. This problem has already been solved in the Functional Design step by
introducing, simulating, and testing the infinite impulse filter on page 41. The filter is
simply reused without modifying it. Therefore, the filter has the behavioral block diagram
that is shown in figure 4.14 but as the input is a bus that carries four wheel values, the
filter is included four times into the model.

76 4. Model-Based Software Development Process for Embedded Systems

4.4.3. Platform Independent System Test

After defining the behavior of each sub-component, modeling the application layer of the
adaptive cruise control system is completed. Now, the whole system can be tested by
applying simulation test-cases to the system and reviewing how the system reacts. The
test cases are deduced from the use cases of the Requirements Analysis phase. Running
all possible tests of all use cases would exceed the scope of this thesis. Therefore, some
important scenarios are selected exemplary (see below). Figure 4.50 shows the top level
simulation scenario of the ACC system. The top level simulation model contains a Signal
Builder that is used to apply different scenarios to the ACC System-block. The motor
torque output of the ACC system is connected to the environment model and is displayed
on a scope in combination with vehicle speed, desired speed, and vehicle distance (the
distance that the vehicle has covered). The simulation results are also written to the simout
structure to be able to analyze and print the results from the Matlab main workspace.

simout

Simulation
Scenario

engine_torque

controller_active

desired_speed

distances

slope

Scope1
s

Environment Model

motor_torque

slope

simulated _vehicle _speed

acceleration

wheel_speeds_raw

ACC active

ACC System

desired_speed

distances

wheel_speeds_raw

acceleration

motor_torque

4

4

motor torque

desired speed

2

4

4
4

simulated vehicle speed

covered
distance

Figure 4.50.: Top level Matlab/Simulink R©model for simulation of the ACC system.

Figure 4.51 shows how the outputs of the simulation scenario signal builder are prepared
for use together with the ACC system component. The controller active output has to be
converted to a boolean. This edge decides if the controller should be enabled at all. With
the controller disabled, the environment model and the vehicle plant can be tested and
with the controller enabled - after making sure that the vehicle plant behaves like desired
- the ACC system controllers can be tested. The signal builder has two outputs for two
distance sensors. Those outputs are combined to one edge using a Mux block. In contrast,

4.4. Software Design 77

the edges for the motor torque (disabled ACC system), the desired vehicle speed (enabled
ACC system), and slope of the ground are connected directly to the system’s output.

slope
5 distances

4
desired_speed

3

controller _active
2 engine _torque

1

Simulation Signal Builder

controller_active

engine_torque

desired_speed

distance 1

distance 2

slope

boolean

2

Figure 4.51.: Preparing simulation scenario signals.

As stated before, deducing test cases for all use cases would exceed the scope of this diploma
thesis. For this reason, three different simulation scenarios are used exemplary to test the
vehicle plant and the controllers:

• First Scenario: Simulating the vehicle plant (see chapter 4.4.3).

• Second Scenario: Simulating the speed controller thus simulating cruise control (see
chapter 4.4.3).

• Third Scenario: Simulating the distance controller in combination with the speed
controller (see chapter 4.4.3). Thus, the complete adaptive cruise control system is
simulated.

Simulating the Vehicle Plant

The scenario that is used for simulation of the vehicle plant is shown in figure 4.52. The
scenario does not test a specific use case from Requirements Analysis phase but is used
to make sure that the plant works which is a precondition for all subsequent tests. The
controller is disabled the whole time. Hence, one can analyze the behavior of the vehicle
plant.

Initially, the normalized motor torque is negative (breaking) and after a short time the
torque is set to 50 percent of the maximum value. Figure 4.53 shows the reaction of the
system to the impressed simulation inputs.

78 4. Model-Based Software Development Process for Embedded Systems

-1
0
1

controller_active

acc_sim/Simulation .../Simulation Signal Builder : disabled

-1
-0.5

0
0.5

engine_torque

-1
0
1

desired_speed

-1
0
1

distance1

-1
0
1

distance2

0 5 10 15 20 25 30 35 40 45 50
0

0.02
0.04 slope

Time (sec)

Figure 4.52.: Signal builder for the scenario controller disabled i.e. testing the vehicle plant.

5 10 15 20 25 30

0

5

10

15

20

Time

desired speed [m/s]

normalized torque [1]

vehicle speed [m/s]

covered distance [m]

Figure 4.53.: Simulation results for the scenario controller disabled.

The vehicle starts accelerating quickly. After eight seconds, the slope value of the ground
increases to comparatively high value of five percent. Accordingly, the increase of the
speed is reduced. At time 31.6 seconds, the motor torque is set to -0.3 which indicates
weak breaking. Therefore, the car stops accelerating and stars decelerating. Consequently,
the vehicle plant seems to work as both inputs (motor torque and ground slope) of the
environment model were modified and the simulated vehicle behaved like expected.

4.4. Software Design 79

Simulating Cruise Control

This simulation scenario tests the use case control speed without headway control that was
defined in the Requirements Analysis phase (see chapter 4.1.6). In contrast to the previous
simulation, the controller active output of the signal builder for the cruise control scenario
is always true (see figure 4.54). Thus, the motor torque edge is not used. On the contrary,
the desired speed edge is used now.

0
1
2

controller_active

acc_sim/Simulation .../Simulation Signal Builder : CC

-1
0
1

engine_torque

0
1
2
3

desired_speed

-1
0
1

distance1

-1
0
1

distance2

0 5 10 15 20 25 30 35 40 45 50
0

0.02
0.04 slope

Time (sec)

Figure 4.54.: Signal builder for the scenario cruise control. Controllers are enabled but
there is no obstacle ahead.

After one second, the desired speed steps from 0 m
s

to 3 m
s
. The slope is still configured

as explained in the previous scenario. Both distance sensor values are configured to zero
which indicates that no obstacle is ahead. Figure 4.55 shows the cruise control simulation
results. After the desired speed is set, the controller sets the desired torque to hundred
percent. Consequently, the vehicle quickly accelerates towards the desired speed. One
second later, the vehicle speed is already more than 2.5 m

s
and the torque is reduced by the

speed controller to make sure not to overshoot.

In contrast to the previous simulation, the increase of the ground slope results to an increase
of the motor torque. Therefore, the vehicle speed does not change essentially and the
desired speed is still achieved. This is a huge difference to the original behavior without
cruise control and reflects the desired behavior.

80 4. Model-Based Software Development Process for Embedded Systems

2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

2.5

3

Time

desired speed [m/s]
normalized torque [1]
vehicle speed [m/s]
covered distance [m]

Figure 4.55.: Simulation results for the scenario cruise control.

Simulating Adaptive Cruise Control

This simulation scenario is used to tests the use case control speed with headway control
that was defined in the Requirements Analysis phase (see chapter 4.1.6).

The simulation scenario for simulating the adaptive cruise control system looks similar to
the scenario of the cruise control simulation. The only difference is that the simulated
distance sensors produce values different from zero. A cutting-in predecessor vehicle is
simulated by first signalling distance sensor 1 after 6.2 seconds and in the second place
distance sensor 2 after 7.3 seconds. As stated before, the maximum range of the distance
sensors is six meters. Thus, the sensors start generating values of six meters that decrease
as fast as our simulated vehicle catches up its predecessor (see figure 4.56). Both sensors
decrease until they reach a spacing distance of three meters between the two vehicles.

Figure 4.57 shows the specific simulation result for the cutting-in predecessor vehicle. Until
the predecessor appears, the result is the same as for the cruise control simulation. After
the predecessor is visible to the concept car, it brakes until it reaches a safe distance.
According to [Kra08], the distance controller was designed to keep a spacing of at least 1.5
times of the vehicle speed. The vehicle speed stabilizes to approximately two meters per
second which - in fact - is the appropriate traveling speed for the simulated distance of
three meters.

After about 17 seconds, the vehicle ahead gets out of sight, so the ACC system reverts
back to cruise control mode and accelerates in the known way until arriving the previously
set desired speed of three meters per second.

4.4. Software Design 81

0
1
2

controller_active

acc_sim/Simulation
.../Simulation Signal Builder : ACC

-1
0
1

engine_torque

0
1
2
3

desired_speed

-20
24
6

distance1

-20
24
6

distance2

0 5 10 15 20 25 30 35 40 45 50
0

0.02
0.04 slope

Time (sec)

Figure 4.56.: Signal builder for the scenario adaptive cruise control. Controllers are enabled
and there is an obstacle ahead.

5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

3

Time

desired speed [m/s]
normalized torque [1]
vehicle speed
covered distance

Figure 4.57.: Simulation results for the scenario adaptive cruise control.

To sum up the described three simulation scenarios, one can see that in all tested cases the
controllers behave like expected. Independent of external influences like slope, the desired
speed will be kept. In fact, if a predecessor vehicle is detected, the appropriate distance
will be kept to not endanger one of the vehicles. Additionally, switching between cruise
control and adaptive cruise control seems to be fully functional.

82 4. Model-Based Software Development Process for Embedded Systems

4.4.4. Platform-Specific Design

After modelling on the application layer is finished, the model is still platform independent.
It can be simulated as demonstrated in the previous chapter and code may be generated,
but the model is not able to be executed in the target platform. The code that can be
generated is just the application code and not the platform code.

It is necessary to extend the structural models by platform-specific aspects as demonstrated
in figure 4.58. There are different methods for triggering components:

component ACC_Controller

<<component>>
:State_Controller

<<component>>
:Speed_Controller

desired_
acceleration_

speed
<<dataflow>>

desired_speed
<<dataflow>>

vehicle_speed
<<dataflow>>

distance_to_
Predecessor
<<dataflow>>

<<component>>
:Distance_
Controller

desired_
acceleration_

disance
<<dataflow>>

UserInteraction
<<message>>

desired_
acceleration

<<dataflow>>

Trigger = periodical
Period = 20ms

Trigger = periodical
Period = 20ms

Figure 4.58.: Platform specific composite structure diagram of the component ACC Con-
troller.

1. Whenever a message arrives.

2. When the input value changes.

3. Periodically.

In this case, the components will be triggered periodically with a given period of 20 ms
because the sensory data of all sensors is received with the same speed. One has to make
sure that special hardware restrictions of the used embedded systems are considered. For
example, many embedded systems do not have floating-point units and thus using emulated

4.4. Software Design 83

floating-point calculations will slow down the whole system. If fix-point calculations were
used instead, the system could run much faster.

In the system, that is developed in the diploma thesis, the embedded hardware (ARM7)
does not have a floating-point unit, but single precision floating-point calculations will
nevertheless be used because sufficient computational power is available for the desired
controller step time. By using floating-point calculations instead of fix-point calculations
there will be no special restrictions to the value range of the variables. For example,
when using 32 bit fix-point values with 16 bit integer part and 16 bit fractional part,
values in the range of 0 to 216 − 2−16 ≈ 65535.99998 can be represented at a resolution of
2−16 ≈ 0.0000152, which is a resolution of at least four fraction digits. Therefore, single
precision floating point numbers are used in the Platform Specific Design of this system.

vehicle _speed
3

steering _out
2

throttle _out
1

torque to PWM

in out

speed
[mm/s]

1000

PWM to torque

in out

Max Speed

13.8

Data Type Conversion

Convert

ACC System

desired_speed

distances

wheel_speeds_raw

acceleration

motor_torque

vehicle _speed

longitudinal
acceleration

9

wheel _in4
8

wheel _in3
7

wheel _in2
6

wheel _in1
5

distance 2
4

distance 1
3

steering_in
2

throttle _in
1

steering PWM signal is not influenced

throttle
lever 0..1

desired_speed [m/s]
distances

wheel_speeds_raw

longitudinal
acceleration

Figure 4.59.: Platform model for using the ACC system on the concept car.

Now, after the adaptive cruise control system has been fully described on platform level,
the system has to be integrated into the hardware, the CAN-bus in this case. Each CAN
telegram needs its own input and output port. Figure 4.59 shows nine input ports and two
output ports. Two distance input ports are combined using a Mux -block to one distances
edge as input for the ACC System. The same is done for the four wheel speed raw edges.
The steering signal is directly connected from input port to output port for modifying

84 4. Model-Based Software Development Process for Embedded Systems

the CAN identifier for the actuator board. Because the throttle input and output ports
are unprocessed, they have to be converted to an useful value range using two simple
components:

• Figure 4.60 is used for the conversion of CAN messages containing the PWM values
to a throttle value in the range 0 to 1 for acceleration. Negative values represent the
users desire to break.

out
1rc_min

-93

rc_max

255

in
1

throttle
lever 0..1

Figure 4.60.: Simple component that converts the incoming PWM CAN messages to nor-
malized throttle.

• In contrast to the previous component, figure 4.61 shows the converter that is used
for the inverse operation. Normalized throttle values are converted back to PWM
values for using them in the outgoing CAN telegrams.

out
1

throttle _min

0

throttle _max

200

Saturation

in
1

int32

int32

single

int32
single

int32 int32

Figure 4.61.: The desired throttle is converted into appropriate CAN messages.

4.5. Code 85

4.5. Code

Requirements
Analysis

Functional
Design

Software
Architecture

Software
Design

Code

After all steps that have been taken, the Code phase begins. The input for this phase
is the platform specific behavioral model of the Software Design phase. The output is
the finished source code that can be compiled and executed in the target system. A vast
benefit of the used model-based design approach is the short Code phase. Code generators
are used for generating the system’s code. As stated before, code generators are used for
generating mainly the application code from the models. Nowadays, generators are able
to generate efficient and platform independent application code, but they are not able to
generate the platform code and operating system code [BST09]. Integration of operating
system code, platform code, and application code is mostly done manually because the
output of the code generator is mainly a template that still has to be integrated to be able
to be executed.

In this thesis, the application code generation is performed by Real-Time Workshop R© Em-
bedded CoderTM in chapter 4.5.1. Afterwards, the integration of application-, platform-,
and operating system code is done with the support of an additional tool in chapter 4.5.2.

4.5.1. Real-Time Workshop R© Embedded CoderTM

In this thesis the code generator Real-Time Workshop R© Embedded CoderTM is utilized. It
is able to generate efficient C code from Matlab/Simulink R© and Stateflow R© models [Mat].

Before being able to start the generation process, Real-Time Workshop R© has to be con-
figured appropriately: See appendix A for configuration details. After configuration is
finished correctly, the source code is generated from the model. The continuous dataflow
of the behavioral models is converted to source code. Appendix C describes in detail which
files are generated and what they are used for.

86 4. Model-Based Software Development Process for Embedded Systems

Simulink
Model

Application
Code

Code

Real-Time Workshop SimulinkTarget

ELF

arm-gcc

Binary

acc.mdl

acc.elfacc.bin

acc.c

arm-objcopy

Figure 4.62.: Generating an executable ARM binary from a Matlab/Simulink R©model.

4.5.2. Integration and Compilation

After the application code files are generated, they have to be combined with platform code
and operating system code. The generated files and the model file are fed into the Java
program called SimulinkTarget developed by Donald Barkowski of the Fraunhofer IESE.
SimulinkTarget merges the generated code with the operating system and platform code
and compiles a stand-alone binary image (see figure 4.62). As the generated files and their
contents do not need to be reviewed (at least as long as the toolchain and the platform are
working properly) the detailed information is described in appendices: The source that is
generated by SimulinkTarget is described in appendix E. Furthermore, appendix F shows
the exemplary contents of the main function that is generated by SimulinkTarget. To be
able to compile ARM binaries out of the generated source code, an ARM toolchain is
needed. In this thesis, the free GNU Compiler Collection[GCC] toolchain is used.

After successful compilation, the generated image file has to be copied into the root direc-
tory of a SD card and the card has to be plugged into the card reader slot of the Olimex
SAM7-LA2 board [Oli08]. The bootloader on the ARM7 board will search for the image file
and will copy it to the microcontroller static memory. From where it will be executed.

Finally, the model-based software development process for embedded systems is finished.
As one can see, the Code phase of the process is short and robust. This is one of the major
advantages of the used approach.

Before being able to test the whole system on the target platform, the concept car had to
be set up properly. A new revision of SensorBoards and ActuatorBoard were designed and
soldered and their code was reworked. The wheel speed sensors and the distance sensors
had to be attached to the car. Severe communication issues of the CAN bus had to be

4.5. Code 87

fixed to make sure that no CAN telegrams were dropped and thus, the concept car did not
misbehave.

88 4. Model-Based Software Development Process for Embedded Systems

5. Evaluation of the Development
Process

Model-based development of embedded systems as described in [BST09] provides great
advantages over the traditional textual approach. These enormous benefits were described
in this thesis. This chapter gives an evaluation on the described development process and
its sub-steps. On the whole, it is informative to see the temporal distribution of all process
steps.

As the model-based development of this vehicle control system was my first development
in this domain, the effort that was put in each step might not be representative. Chap-
ter 5.1 provides a reflection on the development and analyzes the overall effort for this
development. Afterwards, chapter 5.2 pictures the relative distribution of consumed time
of all process steps under the precondition that the system will be constructed by experi-
enced personnel with domain knowledge. Finally, an estimation of effort distribution for
further developments of vehicle control systems on the same target platform is presented
(see chapter 5.3).

90 5. Evaluation of the Development Process

5.1. Time Distribution of the Overall Process

Initially, I would like to provide a reflection on the development process. The model-based
development of the adaptive cruise control system was my first software development in
this domain. Additionally, I experienced some problems while setting up the platform
and building the necessary toolchain. Taking these preconditions into consideration, this
chapter analyzes the overall time consumption of all process steps. The time that was
used to solve the problems is included although these issues are not directly related to the
development process itself. Table 5.1 shows the time that was consumed by each step:

Phase Time (days)

Requirements Analysis 3
Functional Design 25
Software Architecture 5
Software Design 14
Code 36

Table 5.1.: Time consumption of each process step under the given preconditions.

4%

30%

6%
17%

43%
Requirements Ana-
lysis
Functional Design
Software Archi-
tecture
Software Design
Code

Figure 5.1.: Time distribution of the different process phases.

The Requirements Analysis phase took not much time because the adaptive cruise con-
trol systems complexity is not that big (see figure 5.1). The Software Architecture phase
was relatively short for the same reason. The Function Design phase took much more time
because two feedback loop controllers and one filter were developed. As I was relatively un-
experienced in Matlab/Simulink R© and just knew the basics, I had to learn the details first.
All controllers and filters had to be parameterized, simulated, and tuned. Additionally, the
vehicle plant was physically deduced in detail to be able to run realistic simulations and

5.2. Normal Time Distribution for Domain Experienced Personnel 91

tune parameters in the model. The Software Design phase took about 17 % of the whole
time. The Structural Refinement step and Platform Specific Design step consumed less
time than the Behavioral Design step because in the behavioral design step, the behavior
of the whole system was modeled and simulated. In this step, plenty of block diagrams
were modeled, partially modified, and reused from the Functional Design step.

Last but not least, the Code step consumed by far the most time because enormous effort
was made to achieve that the platform executes the produced binary image as expected.
Initially, the microcontroller that executes the model had problems to receive the CAN
telegrams properly. Additionally, the ARM specific toolchain was setup with several issues
concerning linking and floating-point emulation. Fixing such issues set me back but finally
the model can be executed properly.

Normally, the Code phase should be much shorter as this is the main advantage of model-
based software development. Therefore, the previous view on the development process is a
little bit distorted and normally the results would look slightly different. These differences
are described in the next chapter.

5.2. Normal Time Distribution for Domain Experienced
Personnel

As described before, this chapter analyzes the time distribution for personnel that is expe-
rienced in developing systems in this target domain. All activities that were not directly
related to the process are not taken into consideration in this chapter.

Figure 5.2 shows the estimation of the time-distribution for the development process. The
first thing that one can see is the vast reduction of the Code step of the model-based
process. Putting aside all the problems that I encountered while trying to generate the
binary images and run them in the target system leads to a really short Code phase - as
expected for model-based development. When combining platform code with the generated
application code is done by a specific tool (SimulinkTarget in my case), the code phase may
just consist of generating the application code in Matlab/Simulink R© and running this tool.
The output of the tool is the properly compiled binary. Thus, there is no need to touch
code at all and the Code phase may be even shorter than in the pie chart 5.2.

Additionally, as I am not a domain expert of vehicle control systems or control theory in
general, the Functional Design phase should take less time of the overall process than it

92 5. Evaluation of the Development Process

Requirements Ana-
lysis
Functional Design
Software Archi-
tecture
Software Design
Code

Figure 5.2.: Time distribution estimation under the precondition of experienced personnel
and domain experts.

took in my case. I had to figure out some basics like the applied anti-wind-up algorithm.
This consumed time that a control systems engineer could have saved.

5.3. Estimated Time Distribution for Further
Developments of Vehicle Control Systems on the
same Target Platform

After describing the previous distributions, there is one final estimation left over: Figure
5.3 shows the estimation of the time-distribution for the model-based development of a
second vehicle control system using the same approach on the same target platform - the
concept car of the Fraunhofer IESE. As the precondition for the following considerations is
that the development target platform is the Fraunhofer IESE concept car and the control
system is unspecified, the resulting numbers are just speculative.

As the code generation process is stable now and the proper execution on the target platform
is ensured, the Code step should consume - in contrast to my preparatory work - by far the
least time of all process steps. The Code step is simply reduced to building the code from
Real-Time Workshop R© Embedded CoderTM and additionally executing SimulinkTarget as
described in chapter 4.5.2.

Additionally, the absolute time of the Functional Design step is reduced for two reasons:
On the one hand, the vehicle plant is fully deduced now and thus no more effort has to
be put into this part - regardless of which vehicle control system has to be developed. On
the other hand, the wheel speed data processing is already working. Most of all driver

5.3. Estimated Time Distribution for Further Developments of Vehicle Control Systems
on the same Target Platform 93

Requirements Ana-
lysis
Functional Design
Software Archi-
tecture
Software Design
Code

Figure 5.3.: Effort estimation for the model-based development of a second vehicle control
system in the Same Domain.

assistance systems need the vehicle speed as input. Thus, the DataAcquisition component
output that describes the vehicle speed can be connected to all vehicle control systems.
The wheel speed raw processing may still be optimized and tuned but for most systems
the deduction of a wheel speed filter is no longer required.

Pie chart 5.3 emphasizes one of the advantages of the used approach: The Code phase is
extremely short and no software engineer nor a control systems engineer needs to worry
about how to implement and simulate controllers and filters. This is done in the early
Functional Design phase for detecting and correcting errors earlier. Therefore, the overall
cost- and time-consumption is reduced.

94 5. Evaluation of the Development Process

6. Conclusion and Future Work

6.1. Conclusion

The task of this diploma thesis was to develop an adaptive cruise control system using
a specific model-based development process for embedded systems [BST09]. The system
that was developed runs on a remote-controlled one-to-five-scale concept car. The used
approach simplified the development of the vehicle control system by assuring that the
controllers could be tested in early design phases. As the Functional Design step is pro-
cessed immediately after the Requirements Analysis phase, I was able to detect and correct
errors in the vehicle plant and in the controllers in this early design phase.

First, the requirements of the adaptive cruise control systems were analyzed. Afterwards,
the vehicle plant was physically deduced to enable detailed simulation of all controllers.
This deduced plant was tested using several scenarios. A wheel speed sensor filter was
designed to transfer the noisy raw wheel speed data into a reliable vehicle speed value.
Two controllers were developed: The speed controller that controls the vehicle to a defined
set-speed was modeled and simulated. The distance controller that makes sure that the
concept car never comes too close to the vehicle ahead was constructed.

After the controller parameters were tuned, the ACC system architecture was analyzed and
all components were decomposed to reduce their complexity. The static decomposition and
the dynamic communication, were defined. Afterwards, the behavior of all components was
described and the controllers were added to the ACC system. Using the fully designed sys-
tem, the complete adaptive cruise control functionality was simulated in different scenarios
to make sure that the system behaved like expected from the requirements analysis phase.
The working system was adapted considering platform specific modifications like timings,
input-ports, and output-ports. Finally, code was generated from this modified model by
Real-Time Workshop R© Embedded CoderTM. The generated code was merged with the
platform specific code. Using an ARM toolchain, the appropriate binary was successfully
generated.

96 6. Conclusion and Future Work

After code generation, different tests were performed with the target platform. All tests
were passed and the adaptive cruise control system appears to work properly.

By using the described development process for embedded systems, I was able to develop
a whole adaptive cruise control system in a top-down design approach. Although running
this waterfall model without using any iterations, the system is fully functioning in the end.
This seems to be the benefit of the applied model-based development process [BST09].

As an advantage of model-based software development approaches, the vehicle plant and
controllers that were developed in this diploma thesis can be reused and extended in future
systems.

6.2. Future Work

Extensions of the developed adaptive cruise control system are conceivable: Dynamic Set
Speed Type ACC systems use the global positioning system to determine the positions of
speed sign from a database to decide the maximum available speed to travel at. Cooperative
ACC Systems increase reliability because the vehicles may communicate with each other.
This leads to faster travel speeds as the needed time gap between two vehicles can be
reduced to half a second. One could also imagine ACC systems that look the ground slope
up from a database to improve controller qualities.

As the concept car just uses the brushless controller to break at the moment, the decel-
eration is not optimal. In future, hydraulic front-wheel brakes should be added to the
vehicle to make sure that the deceleration is sufficiently large to escape from risky situa-
tions. Those hydraulic brakes may individually be controlled. Thus, the concept car would
have three actuators attached to the CAN bus that can be used to break. Therefore, the
braking models have to be adapted and oversteering could be actively suppressed.

The estimated distribution of time for personnel that is experienced in developing systems
in this target domain could be verified. Analyzing a development process with domain
experts and comparing the resulting distribution with the values figured out in this thesis
could be interesting.

There are plenty driver assistance systems that may also be be developed using this model-
based approach for embedded systems. After the preparatory work of this thesis, the
development of further systems will be much simpler because the vehicle plant can be
reused and controllers and filters can be extended.

Bibliography

[Ana07] Analog Devices, Inc. ADIS16006 Dual-Axis Accelerometer Data Sheet, A edition,
December 2007.

[Ana09] Analog Devices, Inc. ADIS16100 Yaw Rate Gyroscope Data Sheet, D edition,
December 2006-2009.

[Atm07] Atmel Corporation. AT91SAM7A2 Microcontroller Data Sheet, B edition, March
2007.

[Atm08] Atmel Corporation. AT90CAN128 Microcontroller Data Sheet, H edition, August
2008.

[BJR08] Grady Booch, Ivar Jacobson, and Jim Rumbaugh. OMG Unified Modeling Lan-
guage Specification. Object Management Group, Inc., 1.3 edition, August 2008.

[BS05] B. Bouyssounouse and J. Sifakis. Embedded Systems Design. Springer Berlin /
Heidelberg, 2005.

[BST09] K. Berns, B. Schürmann, and M. Trapp. Eingebettete Systeme: Systemgrundlagen
und Entwicklung eingebetteter Software. 2009.

[CB95] D.P. Atherton C. Bohn. An analysis package comparing PID anti-windup strate-
gies. 1995.

[CC] Concept Car of the Fraunhofer IESE. http://conceptcar.iese.de.

[Chr05] D. Christen. Praxiswissen der chemischen Verfahrenstechnik, Einstellregeln für
Industrielle Regler. Springer Berlin Heidelberg, 2005.

[Dav09] Davantech Ltd. SRF02 Distance Sensor Data Sheet, 2009.

98 Bibliography

[GCC] GNU Compiler Collection. http://www.gnu.org - Free Software Foundation.

[Hug08] J. Hugh. Automating Manufacturing Systems with PLCs. 2008.

[Kar00] N. Karim. How Tires Work. 2000.

[Kon06] Kontronik GmbH. Power JAZZ 63V Manual, D edition, October 2006.

[Kra08] U. Kramer. Kraftfahrzeugführung. Carl Hanser Verlag München, 2008.

[Lun06] J. Lunze. Regelungstechnik 2: Mehrgrößensysteme, Digitale Regelung. Springer
Berlin Heidelberg, 2006.

[Lun08] J. Lunze. Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und En-
twurf einschleifiger Regelungen. Springer, Berlin, 7 edition, August 2008.

[Mat] The MathWorks, Inc. Real-Time Workshop - Generate C Code from Simulink
Models and Matlab Code.

[Mat04] The MathWorks, Inc. Simulink. Simulation and Model-Based Design, 2004.

[Oli08] Olimex Ltd. SAM7-LA2 Development Board Users Manual, A edition, July 2008.

[Tem97] Temic Semiconductors. CNY70 Reflective Optical Sensor Data Sheet, A2 edition,
December 1997.

[Tra05] M. Trapp. Modeling the Adaptive Behavior of Adaptive Embedded Systems. PhD
thesis, TU Kaiserslautern, 2005.

[ZS08] Werner Zimmermann and Ralf Schmidgall. Bussysteme in der Fahrzeugtechnik -
Protokolle und Standards. Vieweg+Teubner, 3rd edition, 2008.

List of Tables

4.1. Table of compare-rolling resistance coefficients like described in [Kar00]. . . 37
4.2. Ziegler-Nichols rules for determining controller parameters [Chr05]. 52

5.1. Time consumption of each process step under the given preconditions. . . . 90

D.1. System hierarchy for the ACC model. 111

100 List of Tables

List of Figures

2.1. Modeling techniques classification. 15

3.1. The concept car target platform of the Fraunhofer IESE. 17
3.2. Concept car drive by wire structure. 19
3.3. Pulse width modulation signal generated by the remote control receiver. . . 20
3.4. One wheel with its attached black and white encoder strip. 20
3.5. CNY70 reflective optical sensor that is used for rotation speed detection. . 20
3.6. ADIS16100 rotary sensor and ADIS16006 acceleration sensor. 21
3.7. SensorBoard that sends acceleration and rotary data to the CAN bus. . . . 21
3.8. Two of those SRF02 distance sensors are used for measuring the distance to

the predecessor vehicle. 22
3.9. Diagram of the brushless motor 1930/9 LK from Lehner Motoren Technik. 23
3.10. Development board SAM7-LA2 from Olimex Ltd. 25

4.1. Use case diagram for the adaptive cruise control system. 29
4.2. Sequence diagram of the scenario adjust desired speed. 30
4.3. Sequence diagram of the use case brake. 31
4.4. Sequence diagram of the scenario cruise control (control speed without head-

way control). 33
4.5. Sequence diagram of the scenario adaptive cruise control. 34
4.6. Different drag coefficients. 38
4.7. Matlab/Simulink R©model of the vehicle plant. 39
4.8. General approximated rotational speed-time-diagram for brushless motors. 40
4.9. Rotary-speed-torque-diagram for the brushless motor that is used on the

concept car. 41
4.10. Matlab/Simulink R©model that calculates the available motor torque in de-

pendence upon the vehicle speed. 41
4.11. Simulation model for the wheel speed sensors. 42
4.12. Unprocessed wheel speed raw data. 42
4.13. Processed wheel speed data after conversion to rotations per second. 43
4.14. Matlab/Simulink R©model (calculate wheel speed) for processing the raw wheel

speed sensory data. 43

102 List of Figures

4.15. A simple generic control loop. 44
4.16. PID controller block diagram. 46
4.17. PID controller response for different coefficients. 47
4.18. A saturating PID controller with tracking anti-windup algorithm is used in

the adaptive control system for controlling speed and distance. 49
4.19. Closed loop for finding the speed controller PID parameters. 49
4.20. Matlab/Simulink R© signal builder block used as input for parameter determi-

nation of the Ziegler-Nichols method. 50
4.21. Initial closed loop response for Kp = 0.1. 51
4.22. Closed loop response for Kp = 1. 51
4.23. Oscillating response for Kp = 3.5. 51
4.24. Response for parameters determined with Ziegler-Nichols method. 51
4.25. Closed loop step response of the speed controller after parameter tuning. . 52
4.26. Closed loop for finding the distance controller parameter. 53
4.27. Closed loop using a proportional controller with Kp = 1. 55
4.28. Closed loop starts oscillating for a proportional coefficient of 2.5. 55
4.29. Zoomed view on the oscillation for determining the critical period. 55
4.30. Final closed loop response of the distance controller. 56
4.31. Structure of the complete adaptive cruise control embedded system. 58
4.32. Decomposition of the ACC System. 60
4.33. Type system of the adaptive cruise control system. 61
4.34. Composite structure diagram of the adaptive cruise control system. 63
4.35. Refined sequence diagram of the scenario Control speed with distance. . . . 64
4.36. Decomposition of the component ACC Controller. 65
4.37. Decomposition of the component DataAcquisition. 66
4.38. Composite structure diagram of the component ACC Controller. 67
4.39. Static decomposition of the component DataAcquisition. 68
4.40. Sequence diagram of the component Speed Controller. 69
4.41. Sequence diagram of the component DataAcquisition. 70
4.42. Block diagram of the component ACC System. 71
4.43. Matlab/Simulink R©model of the component ACC Controller. 72
4.44. The state controller block diagram. 72
4.45. Block diagram of the component SpeedController. 73
4.46. Block diagram of the component DistanceController. 73
4.47. Block diagram of the component DataAcquisition. 74
4.48. Calculates the distance to predecessor. 74
4.49. Matlab/Simulink R©model calculate vehicle speed. 75
4.50. Top level Matlab/Simulink R©model for simulation of the ACC system. . . . 76
4.51. Preparing simulation scenario signals. 77
4.52. Signal builder for the scenario controller disabled i.e. testing the vehicle plant. 78

List of Figures 103

4.53. Simulation results for the scenario controller disabled. 78
4.54. Signal builder for the scenario cruise control. Controllers are enabled but

there is no obstacle ahead. 79
4.55. Simulation results for the scenario cruise control. 80
4.56. Signal builder for the scenario adaptive cruise control. Controllers are en-

abled and there is an obstacle ahead. 81
4.57. Simulation results for the scenario adaptive cruise control. 81
4.58. Platform specific composite structure diagram of the component ACC Con-

troller. 82
4.59. Platform model for using the ACC system on the concept car. 83
4.60. Simple component that converts the incoming PWM CAN messages to nor-

malized throttle. 84
4.61. The desired throttle is converted into appropriate CAN messages. 84
4.62. Generating an executable ARM binary from a Matlab/Simulink R©model. . 86

5.1. Time distribution of the different process phases. 90
5.2. Time distribution estimation under the precondition of experienced person-

nel and domain experts. 92
5.3. Effort estimation for the model-based development of a second vehicle control

system in the Same Domain. 93

104 List of Figures

A. Necessary Real-Time
Workshop R©Configuration Settings

Before being able to start the code generation, Real-Time Workshop R©has to be configured
appropriately. In the Model Explorer section Configuration are some configuration options
to take care of:

• Configuration section Solver : The ode3 (Bogacki-Shampine) solver is used as fixed-
step type with 20 ms sample time. This sample time will later be used as interval for
the generated code that calls the model_step-function.

• Section Hardware Implementation: The device vendor in this diploma thesis is ARM
compatible and the device type has to be set to ARM 7 with a native word size of 32
bit. Byte ordering is set to little endian and emulation hardware is set to none.

• The Real-Time Workshop section has plenty configuration options. Thus, it is struc-
tured into different tabs:

– Tab General :

∗ System target file: ert.tlc

∗ Language: C

∗ Compiler optimization level: Optimizations on (faster runs)

∗ Generate makefile: Disabled

– Tab Interface:

∗ Target function library: GNU99 (GNU)

106 A. Necessary Real-Time Workshop R©Configuration Settings

∗ Floating-point numbers: Enabled

∗ Non-finite numbers: Enabled (used for e.g. integrator saturation)

∗ Continuous time: Enabled

∗ GRT compatible call interface: Disabled

∗ Single output/update function: Enabled

∗ Interface: None

– Tab Templates : The only important thing in this tab is to deselect the op-
tion whether to generate an example main program. The main program will
automatically be generated when adding input- and output ports etc.

B. Concept Car CAN Overview

CAN identifiers that are used on the concept car.

ID Source Interval Description

0x025 SensorBoard 1 20ms PWM signal steering
0x008 SensorBoard 1 20ms Wheel speed front left
0x00b SensorBoard 1 20ms Wheel speed rear right
0x022 SensorBoard 2 20ms PWM signal throttle
0x009 SensorBoard 2 20ms Wheel speed front right
0x00a SensorBoard 2 20ms Wheel speed rear left
0x010 InertialBoard 20ms Longitudinal acceleration
0x011 InertialBoard 20ms Shear acceleration
0x012 InertialBoard 20ms Rotation speed
0x125 ControllerBoard 20ms Processed steering signal
0x122 ControllerBoard 20ms Processed throttle signal
0x400 all boards - Error code

108 B. Concept Car CAN Overview

C. Description of the Generated Files

The following source files are automatically generated from the platform specific Matlab/Si-
mulink R©model acc.mdl by Real-Time Workshop R© Embedded CoderTM:

• acc.c: This file is the main file. This file contains all behavioral code for the whole
model. First, acc_initialize initializes the whole model including its working
variables, non-finite constants, the solver, states, input-, and output-ports. After
the model is properly initialized, inputs may be written to the input ports (e.g.
acc_U.throttle_in) and the step function acc_step may be called subsequently.
When the step function returns, the output values may be read from the output
structure acc_Y (e.g. acc_Y.throttle_out).

• acc.h: Defines all necessary structures for the adaptive cruise control system. The
most important structure is the Parameters_acc that is used for giving the data
values of file acc_data.c the appropriate semantics. The file acc.h also describes a
list of assignments of system indices (e.g. <S1>) to the systems names (e.g. acc/ACC
System) for tracing the generated code back to the model (see below).

• acc_data.c: Contains all parameters of all blocks (e.g. saturation limits of integra-
tors) and constants of the model. Over 30 constants are used in the ACC System.

• acc_private.h: Macro definitions for simplified model access.

• autobuild.h: Not used.

• rt_nonfinite.c and rt_nonfinite.c: Support for non-finite numbers like Inf (∞),
NaN, and -Inf (−∞).

• rtwtypes.h: Contains basic type definitions like boolean types, integer, and floating
point types but also complex number types in different formats.

110 C. Description of the Generated Files

• acc_types.h: Type definitions for non-basic types that are used and defined in the
ACC system model.

• rt_defines.h: Contains common mathematical definitions like constants (π, ln(10),
e. . .) and simple functions (abs, max, min . . .).

D. Tracing Code Back to the Model

The generated code includes comments that allow one to trace back to the appropriate
location in the model. The basic format is <system>/block_name, where system is the
number of the component. The numbers are uniquely assigned by Matlab/Simulink R©.
block_name is the name of the block inside this system. Table D.1 shows the hierarchic
list of all systems.

System ID Hierarchic system name
<Root> acc

<S1> acc/ACC System

<S2> acc/PWM to torque

<S3> acc/torque to PWM

<S4> acc/ACC System/ACC Controller

<S5> acc/ACC System/DataAcquisition

<S6> acc/ACC System/ACC Controller/Distance Controller

<S7> acc/ACC System/ACC Controller/Speed Controller

<S8> acc/ACC System/ACC Controller/State Controller

<S9> acc/ACC System/ACC Controller/Distance Controller/controller

<S10> acc/ACC System/ACC Controller/Speed Controller/controller

<S11> acc/ACC System/ACC Controller/State Controller/too near

<S12> acc/ACC System/DataAcquisition/calc distance_to_predecessor

<S13> acc/ACC System/DataAcquisition/calc wheel_speed

<S14> acc/ACC System/DataAcquisition/calc vehicle_speed

Table D.1.: System hierarchy for the ACC model.

The Matlab hilite_system command may be used to trace the generated code back to
the model (e.g. hilite_system(’<S1>/block1’)).

112 D. Tracing Code Back to the Model

E. Summary of Files Generated by
SimulinkTarget

In the Code phase, the tool SimulinkTarget creates an output directory in the format
CODEGEN_$DATE_$TIME and produces the following merged file tree into this folder:

CODEGEN_09-07-24_02-09-43

+--include

| +--base: at91sam7a2_adc.h at91sam7a2_can.h sdc.h global.h at91sam7a2_usart.h

| | at91sam7a2_exceptions.h at91sam7a2_interrupts.h at91sam7a2_wt.h

| | at91sam7a2_pdc.h at91sam7a2_pio.h ssc.h global.h delay.h

| | at91sam7a2_pwm.h at91sam7a2_spi.h at91sam7a2_timers.h fat16.h

| +--usr: acc.h acc_private.h acc_types.h autobuild.h log.h debug_ports.h

| | rt_defines.h rt_nonfinite.h rtlibsrc.h messageIDs.h process.h

| | rtw_continuous.h rtw_solver.h rtwtypes.h main.h

| +--util: util.h

+--lds: elf32-littlearm-boot.lds elf32-littlearm-usr.lds

+--src

| +--base: at91sam7a2_adc.c at91sam7a2_can.c delay.c at91sam7a2_exceptions.c

| | at91sam7a2_pdc.c at91sam7a2_pio.c fat16.c at91sam7a2_interrupts.c

| | at91sam7a2_pwm.c at91sam7a2_spi.c sdc.c at91sam7a2_wt.c

| | at91sam7a2_timers.c at91sam7a2_usart.c ssc.c

| +--boot: crt0_gnu.S main.c

| +--usr: acc.c acc_data.c debug_ports.c log.c main.c messageIDs.c

| | processOutputs.c rt_nonfinite.c processInputs.c

| +--util: util.c

+--makefile

The two folders called base contain low level drivers for analog digital converter, CAN,
delay routines, exception handling, multi media card, filesystem (FAT16), PWM module,
interrupt handling, general purpose input/output, timers, and USART. The folder boot

contains the necessary init code for starting up the ARM microcontroller (memory con-
troller, heap, stack etc.) to be able to execute C code. Afterwards, the main function is
called by this boot code. The files that were generated by Real-Time Workshop R© Embedded
CoderTM (see list on page C) end up in the directory usr and additional files are created
by SimulinkTarget in this location:

114 E. Summary of Files Generated by SimulinkTarget

• processInputs.c handles incoming CAN messages and evaluates them for loading
them into the input data structure.

• processOutputs.c is the opposite: It periodically reads the values from the output
structure and sends the appropriate CAN telegram.

• debug_ports.c and log.c can be used for debugging output ports to a file on the
SD card filesystem.

• main.c is the central file that is called on startup (compare listing F.1). Initially, the
main function initializes the used hardware: PIO, USART, interrupts, CAN, LED,
logging, and last but not least the timer that will signal an interrupt periodically
with the interval that was specified in the solver configuration. After everything
has been initialized the main loop periodically processes the CAN inputs, calls the
Matlab/Simulink R© step function, and processes the outputs in an infinite loop.

F. Overview of the Simulink Main
Function

Listing F.1: Main function created by SimulinkTarget.

// main function

int main() {

// initialize controller hardware

at91sam7a2_pio_init();

at91sam7a2_usart_init(NULL);

at91sam7a2_interrupts_init();

at91sam7a2_timers_config_as_alarm(INTERVAL, &can_send_msg);

at91sam7a2_timers_config_freerun();

util_config_led(LED);

util_clear_led();

// initialize CAN module 0 (wired on olimex board)

AT91SAM7A2_CAN_MODULE *can = at91sam7a2_can_init(0);

at91sam7a2_can_configure_receiver(can,CAN_RECEIVE_CH,0x101,0xffff,8);

// initialize simulink solver and parameters and register CAN IDs

simulink_init();

at91sam7a2_can_register_ids(messageIDs);

// infinite control loop

while (1) {

// can_send_msg flag is set in ISR

if (can_send_msg) {

can_send_msg = 0;

// process the system inputs

process_inputs();

// most important: call the step function of the Simulink solver

simulink_step(0);

// send resulting CAN telegrams

process_outputs(can);

} } }

