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Abstract

In a dynamic network, the quickest path problem asks for a path
such that a given amount of flow can be sent from source to sink via
this path in minimal time. In practical settings, for example in evac-
uation or transportation planning, the problem parameters might not
be known exactly a-priori. It is therefore of interest to consider robust
versions of these problems in which travel times and/or capacities of
arcs depend on a certain scenario. In this article, min-max versions
of robust quickest path problems are investigated and, depending on
their complexity status, exact algorithms or fully polynomial-time ap-
proximation schemes are proposed.

Keywords: quickest path problem, robust network flows, optimization,
fptas, polynomial algorithms, multiple objective optimization

1 Introduction

The quickest path problem is a generalization of the shortest path problem
in dynamic networks in which flow units are assumed to take time to tra-
verse an arc. Given an amount of flow U and two nodes s and t, the goal of
the quickest path problem is to find an s-t-path with minimum transmission
time, that is the sum of the travel time from s to ¢ of this path and the num-
ber of repetitions to send all U flow units along this path. Applications of
this problem can be found in communication networks, transportation net-
works, and evacuation modeling [5, 7, 13]. The quickest path problem was
formally introduced by Chen and Chin [4] who also presented a polynomial-
time solution algorithm by reducing it to the shortest path problem in a
modified network. Other authors also derived polynomial-time algorithms
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for this problem [12, 17]. Numerous variants and extensions of the quickest
path problem have been considered, including all pairs quickest path prob-
lems [8, 10], the k-quickest path problem [3], and most reliable quickest path
problems [11, 19]. More information about quickest path problems can be
found in the survey of Pascoal et al. [16].

In practice, model parameters or objective function coefficients are often
uncertain or imprecise. This uncertainty can be dealt with by considering
different scenarios, each of which corresponds to a specified parameter com-
bination. There are two standard techniques to describe these scenarios. In
the interval data technique, each parameter can take values between a lower
and an upper bound. In the discrete scenario technique, each scenario for
the parameters is described explicitly. This article focuses on the latter case.
Kouvelis and Yu [9] propose min-max problems arising in the discrete sce-
nario case, where solutions with the best worst-case performance under all
scenarios are to be found. These min-max problems — as well as the related
min-max regret problems (cf. [9]) — are considered as robust optimization
problems. In min-max regret problems, solutions with the best worst-case
performance relative to the optimal solutions are sought.

Min-max and min-max regret versions of some network optimization
problems are examined in the articles [1, 9, 20]. In their survey about min-
max combinatorial optimization problems [1], Aissi et al. summarize com-
plexity results for robust shortest path, knapsack, and minimum spanning
tree problems. Pseudopolynomial algorithms and approximations are pro-
posed in their follow-up work [2]. There, a general approximation scheme for
min-max and min-max regret versions of combinatorial minimization prob-
lems is presented. For the min-max and min-max regret shortest path prob-
lem, pseudopolynomial algorithms (see also [20]) and fully polynomial-time
approximation schemes (assuming the number of scenarios to be constant)
are deduced. Since the quickest path problem generalizes the shortest path
problem, techniques similar to the ones used in [2] will be utilized in the
subsequent disquisition of the min-max quickest path problem.

This article addresses min-max versions of the quickest path problem
which — to the best of our knowledge — have not been examined yet. The
next section formally introduces the quickest path problem and its min-
max version. Since the objective function of the min-max quickest path
problem depends on two parameters, the three possible combinations of
scenario-dependent parameters are analyzed in this article: Section 3 ex-
amines robust quickest path problems with scenario-dependent capacities;
min-max quickest path problems with scenario-dependent travel times are
solved with pseudopolynomial algorithms and approximated polynomially
in Section 4; Section 5 treats the case, where capacities and travel times
are simultaneously uncertain. The article is concluded in Section 6 with



some future research ideas, especially on the min-max regret quickest path
problem.

2 Preliminaries

Let G = (N, A, 7,u) be a dynamic network with node set N, arc set A,
travel times 7;; € Zg, and capacities u;; € N for all arcs (i,5) € A. Let n
denote the number of nodes and m the number of arcs in GG, respectively.
The node set is assumed to subsume a source s € N and a sink t € N.
Let P denote the set of all s-t-paths in G. Travel time and capacity of a
path P € P are defined as 7(P) := > (; ep Tij and u(P) = min( jep uij,
respectively. For a given amount of flow U € N, the transmission time of an

s-t-path P is o(P) = 7(P) + [%-‘ The Quickest Path Problem asks for

an s-t-path with minimum transmission time, i.e. a solution of the problem
Hlinpep U(P).l

Lemma 1 (Rosen et al. [17]). The quickest path problem can be solved in
O(m? + mnlogn).

Let S = {1,...,p}, p € N, be a set of scenarios. For each scenario
r € S, travel times 7/, € Zar and capacities uj; € N are assumed to be
given for all (i,7) € A. Analogously to the definition above, the travel time
of a path P € P in scenario r € S is defined as 7"(P) = 3 ; yep 7j), its
capacity is u"(P) = min( j)ep uj;, and its transmission time is o"(P) =

7" (P) + [%1 .

The goal of the min-max quickest path problem is to find an s-t-path
having the minimal worst case transmission time among all scenarios, i.e.,

(]

i "(P). 1
Py () W

In this article, three different types of dependency on scenario sets to-
gether with the min-max quickest path problem are considered. If the travel
time of each arc is fixed for all scenarios, i.e., it is Ti = Tij forall r € S
and (i,7) € A, but the capacities are scenario-dependent, the correspond-
ing quickest path problem is referred to as Q,. In the converse case that
capacities on every arc (i,j) € A are fixed to u;; for all scenarios, but the
travel times vary, the resulting quickest path problem is denoted by Q7. If

both, travel times and capacities, are assumed to be scenario-dependent,

n fact, 77(P) + [%P)—‘ — 1 represents the time needed to send U units of flow along
path P, starting at time 0. Since it is common practice in the literature to omit the
constant —1 and since this does not alter the optimal solution of the problem, it is also
omitted in this article.



the problem is named Qj,. Each of the corresponding min-max problems is
referred to as MIN-MAXQ with Q € {Q,, Q7, O}, respectively. If ambiguity
can be excluded, the solutions of MIN-MAXQ problems are simply referred
to as min-max quickest paths.

Some concepts of approximation algorithms for optimization problems
shall be briefly recalled next (cf. [14]). For an instance Z of a minimization
problem R, let opt(Z) be the optimal objective function value and x be a
feasible solution with objective function value val(x). Assume that opt(Z) >
0. For a constant ¢ > 1, = is a c-approximation of opt(Z), if val(z) <
c-opt(Z). An algorithm is a c-approximation algorithm for R, if for all
instances Z of R, it returns a c-approximative solution x. An optimization
problem has a fully polynomial-time approximation scheme (fptas), if for any
constant € > 0 it admits a (1 + ¢)-approximation algorithm with running
time polynomial both in the size of the input and in %

3 Scenario-Dependent Capacities

The min-max quickest path problem with scenario-dependent capacities and
fixed travel times is considered first and it is shown that it can be solved
by a single quickest path computation in a modified dynamic network using
aggregated arc capacities.

Consider the problem MIN-MAXQ,,. Define the dynamic network G™" =
(N, A, 7,u™") with u?;in = min,eg uj;. By definition, capacities are positive
integers for all scenarios and, thus, u3™ € N for all (4,5) € A. Hence, the
sets of feasible s-t-paths in G and G™™ coincide.

Lemma 2. Let Q be a quickest s-t-path in G™". Then, Q is a solution of
MIN-MAXQ,,.



Proof.

U
=min | 7(P) + - .
peP min u"
(.jep ¥
U
Pep min minu!,
(,j)ep reS Y
U
=min (7(P)+ | ————
PeP min min u!,
resS (ij)ep Y
U
= mj P —
PP 7(P)+ min u”(P)
res
7o
— mi P -
pip () + [ mex s )
inmax ( 7(P) + U_|
= minmax | 7 —_—
PEP res u"(P)

The last two equations are valid since u"(P) > 0 for all » € S and since
U>0. O

Corollary 1. MIN-MAXQ,, can be solved in O(m? + mnlogn).

Proof. Follows directly from Lemma 2 and Lemma 1. O

4 Scenario-Dependent Travel Times

The min-max quickest path problem with scenario-dependent travel times
and fixed capacities is considered next. Observe that for U = 1, the quickest
path problem reduces to a shortest path problem. This observation transfers
to the min-max version of the quickest path problem for U = 1. Thus,
MIN-MAX Q7 is at least as hard to solve as the corresponding shortest path
problem.

Definition 1. A layered network is a network G = (N, A) with the following
two properties:

e There exists a partition N = {s} U Ny U Ny U ... U N U {t} with
NinN; =0,i # j.



e Arcs only exist from s to Ny, from Ni to t, and from N; to N;iq for
1=1,...,k—1.

Let A == max{|N;|,i = 1,...,k}, A is called the width of the layered net-
work.

Yu and Yang [20] show that the min-max shortest path problem is NP-
hard for layered networks of width 2 with 2 scenarios. The following corollary
is an immediate consequence of this result.

Corollary 2. MIN-MAXQ" is NP-hard, even in layered networks of width 2
and with 2 scenarios.

Recall that the task in the min-max shortest path problem is to solve
minpep max,qcs 7" (P). Let B be an upper bound on the value of the shortest
s-t-path for any scenario r € S. Aissi et al. [2] state a pseudopolynomial
algorithm for the min-max shortest path problem relying on this bound.

Lemma 3. [Aissi et al. [2]] The min-maz shortest path problem for p sce-
narios can be solved in O(n?BP~1).

4.1  Pseudopolynomial Algorithm for MIN-MAXQ"

Assume that there are [ different capacity values u; < us < ... < u; on the
arcs of G, [ < m. For w > 0, define the network G(w) = (N, A(w), T, u),
with A(w) == {(4,5) € A : u;; > w}. By definition, G(1) = G and every
s-t-path in G(w) carries at least w flow units.

Lemma 4. Let P* be a min-max quickest s-t-path in G. Then, P* is a
min-maz shortest s-t-path in G(u(P*)).

Proof. Let @ be an arbitrary s-t-path in G(u(P*)). Then, u(Q) > u(P*).
Since P* is a min-max quickest s-t-path, it is

max (H"(P*) + L(}Um)D - gg%?e?( )+ [U(U D

(0 ﬁ

Since u(P*) < u(Q), it holds max,ecs 7" (P*) < max,es 7" (Q). O

Lemma 5. Let P; be a min-max shortest s-t-path in G(u;),j =1,...,1. Let

Py, € argminmax o’ (P;). (2)
j=1,...1 T€S

Then, Py is a min-maz quickest s-t-path in G.



Proof. Assume P is a min-max quickest s-t-path in G. By definition, u(P) €
{ui,...,w}, so assume u(P) = uj, for some jo € {1,...,l}. Due to Lemma
4, P and Pj, are min-max shortest s-t-paths in G(uj,), i.e., it is

"(P; ) = T(P).
max 7" (Fio) = max'(P)

By definition of G(uj,), it is w(Pj,) > u(P) and, thus,

max " (P) + Mgﬂ <mas7 () + |y |

Assumption (2) implies

max o' (Py) < maxo"(P)
res res

which shows that Py is a min-max quickest s-t-path in G. ]

Corollary 3. MIN-MAXQT can be solved in O(mn?BP~1).

Proof. Lemma, 5 is constructive for the min-max quickest s-t-path. At most

m min-max shortest path problems have to be solved, each of which requires
O(n?BP~1) time. O

4.2 Fully Polynomial-Time Approximation Scheme for MIN-MAX Q"

For the min-max shortest path problem, the following approximation result
was published in Aissi et al. [2].

Lemma 6. [Aissi et al. [2]] The min-max shortest s-t-path problem for p

. . . . . p+1
scenarios admits an fptas running in time O (”p_l )
&

A similar approximation result can be proved for MIN-MAX Q.

Lemma 7. Let € > 0. Let P; be a (1 + €)-approzimation of the min-maz
shortest s-t-path in G(u;) for all j =1,...,1. Let

U
P, € argmin max (TT P;) + [-D .
j=l,.1 T€S (5) u(P;)

Then, Py is a (14 ¢)-approzimation of the min-max quickest s-t-path in G.

Proof. Let @ be a solution of MIN-MAXQT in G. There is some jy € {1,...,1}
with uj, = u(Q). Due to Lemma 4, @) is a min-max shortest path in G(uj,).
Thus,



With u(Pj,) > u(Q), it follows

w7 + | s | < (kD maxr (@ + | i

res u(Pjo) re (@)
U
< (1 " — .
<+ (mpm @+ 7]
Using the definition, one concludes that Py is a (1 +¢)-approximation of the
min-max quickest s-t-path. O

Corollary 4. MIN-MAXQ" admits an fptas running in (’)(”Z,}il)
Proof. Using that Lemma 7 is constructive for a (1 + ¢)-approximative so-
lution of MIN-MAXQT, the complexity follows directly from Lemma 6. 0

5 Scenario-Dependent Travel Times and Capacities

Consider the problem with travel times and capacities both being scenario-
dependent. Obviously, the corresponding min-max problem subsumes the
problems MIN-MAXQ" and, thus, it is NP-hard due to Corollary 2.

To solve MIN-MAX Q7 , a related multiple objective optimization problem
is introduced. It will be shown that a (1 + ¢)-approximation of the efficient
set (i.e. the optimal set) of this multiple objective optimization problem
yields a (1 + e)-approximation of MIN-MAXQ7,. Before proving this result,
some basic concepts from multiple objective optimization are stated next.
The book of Ehrgott [6] provides a more detailed introduction on this topic.

Let minge x (fl(x), R fp(m)) be a multiple objective optimization prob-
lem with feasible solution set X and objective functions f!,..., fP to be
minimized simultaneously. Note that there is no canonical ordering de-
fined on RP. A “better-than”-relation implying an optimality concept has
therefore to be defined. Given two solutions z,y € X, x dominates y if
ff(x) < fr(y) for all r € {1,...,p} with at least one strict inequality. A
solution x € X is efficient if z is not dominated by some y € X. The set
of efficient solutions is denoted by Xg. A solution x is weakly efficient if
there is no y € X such that f"(y) < f"(z) for all » € {1,...,p}. The set
of weakly efficient solutions is called the weakly efficient set. For € > 0,
a (1 + €)-approximation of the efficient set X, is a subset of X such that
for all 2/ € Xp there is some x € X, with f"(z) < (1 +¢)f"(2') for all
re{l,...,p}.

Consider the following multiple objective optimization problem with
2p = 2|S| objective functions:

(MOP) min (Tl(P), LLII(]PJ .., TP(P), L;(]P)D :

8



In this auxiliary problem, it is X = P. Therefore, the notation Pr and
P. is used to refer to the set of efficient paths of MOP and to a (1 + ¢)-
approximation of Pg, respectively.

Obviously, every solution of MIN-MAX Q) is weakly efficient for MOP. For
the converse case, the following is true.

Lemma 8. There is at least one optimal solution of MIN-MAXQ;], which is
efficient for MOP.

Proof. Assume () is an optimal solution of MIN-MAXQ)], not being efficient
for MOP. Then, there is an efficient path P € Pg which dominates @, i.e.,

T"(P) < 7"(Q) and {url(]P)—‘ < {%W for all r € S and there is a j € S

with 77(P) < 77(Q) or {uf(JP) uj[(]Q)—" Therefore, for all r € S, it holds

[<l

and, as a consequence, it is

(70 o) < (@ o)

Thus, P solves MIN-MAX Q). O

Lemma 9. Fore > 0, let P: be a (14 €)-approzimation of the efficient set
for MOP. If P; can be constructed in time polynomial in the input size and
1/e, then MIN-MAXQ], admits an fptas.

Proof. Assume @ solves MIN-MAX Q) and is efficient for MOP (Lemma 8).
Then, there is a P € P, with

T"(P) < (14¢)7"(Q) forallrT e S and

hf(]PJ < (1+e) [uf(]@w for all r € S.

Then,

1o (P + | s

e () MUP)D snglite) ( " LMU@ D
0 v

\Lz
5
+
I
1
IN

-D forall r € S.




Thus, P is a (1+ ¢)-approximation of (). Since P, can be constructed in
time polynomial in the input size and in 1/e, the size of P. must bounded by
a polynomial of the same size and, thus, P can be found in time polynomial
in the input size and 1/¢. O

It remains to be shown that P, for MOP has a computation time com-
plexity bounded by a polynomial in the input size and 1/e.

For each scenario r € S, let uj < wuj < ... <u; be the distinct capacities
in this scenario with [, < m. For k, € {1,...,l.}, r € S, consider the
network G(ky, ..., kp) with arcs A(k1, ..., k) == {(i,j) € A uj; > ukr:vr €
S}. Denote by Py, ..k, the set of all s-t-paths in G(k,. .., k). Consider the
multiple objective shortest path problem minpep, (Tl(P>, . ,TP(P))

and compute a (1 + &)-approximation of the efficient set f LeRe o1 this

problem.

Define the set

,,,,, kp

po=) | P

r€S kre{l,...,l-}

Lemma 10. P; can be constructed in time polynomial in the input size and
1/e.

Proof. Each of the approximations Pf 1R can be constructed in time poly-

nomial in the input size and 1/¢ due to the work of Papadimitriou and

Yannakakis [15]. The number of combinations of ki, ...,k is
H I, < H m =mP
res res

and, thus, the time complexity for the construction of P. is bounded by a
polynomial in the input size and 1/¢. O

Lemma 11. Given e > 0, P- is a (1 + €)-approxzimation of the efficient set
for MOP.

Proof. Let P be an efficient solution of MOP. Then there are ulfl, . ,u’;p

with [u%—‘ = [U"[(]?)W forallr € S. Consider the network G := G(ki, ..., kp).

~~~~~

there exists a Q@ € Py, ..k, with 77(Q) < 77(P) for all 7 € S with strict

inequality for at least one r € S. It is u"(Q) > u"(P) for all € S and thus

{%W < hf(%)w for all » € S. This implies that @ dominates P for MOP

which is a contradiction.

10



By definition, there exists Q € P. N Pfl""’kp with 7(Q) < (14¢)7" (F)

for all » € S. Since @ is a path in é, it is " (Q) > u"(P) for all r € S and,

thus,
U U U
< — | < (1+¢ [l for all » € S.
@] = lem] <0+ om
Hence, Q approximates P within a factor of (1 + ¢) for MOP. O

Let 72X e the ratio of the maximum to the minimum travel time in all
scenarios.

Corollary 5. MIN-MAXQ], admits an fptas running in time
-1
+1 nlognTlll&X p
B —)

Proof. Tsaggouris and Zaroliagis [18] show that (1 + €)-approximations of
the efficient sets for multiple objective shortest path problems can be con-

structed with computation time O (nm (nlog (nT™ax) /e)P~1) .

The size of these (1 + ¢)-approximations of the efficient sets is bounded by
O (nm (nlog (m'max)/s)p_l). Thus, the complexity to compute a (1 4+ ¢)-
approximation of MIN-MAXQ)], follows from Lemma 10. 0

Note that this result also implies an fptas for MIN-MAXQ", yet with a
running time worse than the one of the algorithm presented in Section 4.

6 Conclusion and Future Research

This article introduces min-max versions of the well-known quickest path
problem. Several different scenario-dependent parameter configurations are
examined. For uncertain capacities, an algorithm is proposed with compu-
tational complexity similar to that of the quickest path problem. In the
case of scenario-dependent travel times, the min-max quickest path prob-
lem is shown to be NP-hard and a pseudopolynomial algorithm as well as a
fully polynomial-time approximation scheme is derived. A fully polynomial-
time approximation scheme is also proposed for the min-max quickest path
problem with scenario-dependent capacities and travel times.

Future research might address a related problem, the so-called Min-Max
Regret Quickest Path Problem. Let z" := minpep o (P) denote the optimal
objective function value for scenario r € S. The Min-Max Regret Quickest
Path Problem is minpep max,cg (67 — 2") . Here, a path P € P minimizing
the maximum relative error (“regret”) among all scenarios is demanded.

11



Some of the techniques used in this article directly carry over to the
corresponding min-max regret versions. The min-max regret version of Q,,
can be solved exactly in polynomial time by a single quickest path compu-
tation in a modified network using a similar technique applied in Section 3
for the corresponding min-max problem. Since the min-max regret shortest
path problem is NP-hard (Yu and Yang [20]), the min-max regret version of
Q7 is also an NP-hard problem. It can be solved in pseudopolynomial time
combining the pseudopolynomial algorithm for the min-max regret shortest
path problem of Aissi et al. [2] with arguments similar to those of Section
4.1.

The existence of approximation schemes for the min-max regret prob-
lem with scenario-dependent travel times as well as with scenario-dependent
travel times and capacities is still open since the ideas and techniques used
in this article cannot be directly applied due to the existence of the additive
term 2" in this case.

Further research should also concentrate on robust versions of other (dy-
namic) network flow problems, including maximum (dynamic) flows, quick-
est flows, and minimum cost flows.
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