
An Internet Based Software Process
Management Environment1

Frank Maurer

University of Calgary

maurer@cpsc.ucalgary.ca

Barbara Dellen

University of Kaiserslautern

dellen@informatik.uni-kl.de

1 Abstract
The paper presents a process-oriented view on knowledge management in software development.
We describe requirements on kno wledge management systems from a process-oriented
perspective, introduce a process modeling language MILOS and its use for knowledge
management. Then we explain how a process-oriented knowledge management system can b e
implemented using advanced but available information technologies.

2 Introduction
Work is goal directed and process-oriented: Companies have goals to be reached and procedures
to follow in pursuing these goals. The more efficient these procedures & processes are, the better
the company is able to prosper in the global market.

Improving the efficiency of software processes results in a reduction of time needed to perform
the task and o f costs. This business objective leads to approaches as lean management and
business process r eengineering & optimization. In o rder to fulfill t hese objectives, workflow
management approaches often are introduced in the e nterprise [GH-95]. The workflow
management coalition defines workflow management as:

“The automation of a business process, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set of procedural rules.”
[WFMC-96].

1 This paper is a slightly extended version of the paper “A Concept for an Internet-Based Process-Oriented
Knowledge Management Environment”, submitted to the KAW 98, Banff, Canada, April 1998.

Today, workflow management approaches are basically only used to support repetitive
administrative tasks whereas knowledge-intensive tasks are not supported. There a re several
reasons for this:

• The knowledge needed for executing the process is not explicitly described in the workflow
model.

• Current workflow approaches are not flexible e nough to adapt on the fly to changing
processes. Our work in the past years was addressing this problem.

Although workflow management has its limitations, it provides a process-oriented v iew on
software development. Compared to most KBS approaches that focus on kno wledge
representation instead o f the process, this is an advantage. KBS approaches on the other side
support the acquisition, structuring, and representation of knowledge. They can be used to build
up knowledge bases that are then incorporated into the software processes.

2.1 Managing the knowledge for software processes
Software development i s a knowledge-intensive process where highly educated people have to
cooperate to reach the business goal.

Although there were tremendous improvements in software engineering over the last decades,
basic problems remain:

• software development is expensive and time consuming

• software projects often run out of time and over budget

• time and cost estimations are error prune

Due to recent developments (e.g. the widespread u se of Internet t echnology), the pressure on
software engineers to deliver their products faster increases. These requirements lead to larger
development teams that often will be globally distributed. Major problems then are

• how to coordinate and manage the distributed work of the software engineers

• how to provide access to a project’s knowledge

• how to manage the experience gathered during past projects and make them usable for the
new ones

Workflow approaches for software development are the area of software process modeling and
enactment research. Technologies for supporting software development processes are often based
on the framework o f software process modeling [Ost-87, CK-92, AK-94, Ver-94]. Software
process models describe the activities carried out in software development as well as the products
to b e c reated and the resources & tools used. The models are a basis for a c ontinuous
improvement process (using the Capability Maturity Model) as well as the actual basis for the
coordination and the management of the software engineering activities [FH-93].

Understanding commonalties and d ifferences between p rocess types is a key factor f or better
process s upport. Process s upport i ncludes improved communication, guiding people when
performing processes, improving both processes and their results, and automating process steps
[RV-95].

Software process modeling and enactment i s one of the main areas in software e ngineering
research. Several frameworks have been developed (e.g. procedural [SOH-95], rule-based [KFP-
88, TKP-94, PSW-92], Petri net based [BFG-93a], object-oriented [CHL-94]).

Process-sensitive software e ngineering environments which support evolution o f executed
process models [CFF-93] are a focal point of current research, bu t t he results are still
immature [MP-93]. Several approaches to support t he e volution and flexibility of software
processes were developed [BFG-93b, BK-93, CNG-95, PEM-95]. None of these approaches is
supporting g lobally distributed software processes and their evolution (although work in this
direction is starting [Kai-97, Con-97]).

Published approaches on process evolution mainly deal with changing the enacted process model
so that it reflects the changed real world process. Automatically sending notifications about the
changed process/products over the Internet to the appropriate members of the global team is not
supported. To d etermine them, the system needs a kind o f understanding of the ca usal
dependencies between processes and products. Software change impact analysis [BA-96] deals
with causal relation between and in products.

Managing software process knowledge is also the goal of the experience factory approach [Bas-
89, BCR-94]. They distinguish b etween the organizational structure to manage the software
knowledge (the experience factory department) and the activities that have to be carried out to
build an experience factory.

In this paper, we give a process-oriented v iew on kno wledge-intensive tasks in software
development. In section 3, we define requirements on process-oriented knowledge management
systems. Section 4 d iscusses our process modeling language MILOS and explains how
knowledge is linked to generic software processes. The next section shows how this knowledge
can be incorporated into concrete projects. A concept for the architecture of a process-oriented
knowledge management system is described in Section 6. Section 7 gives an overview on the
state of implementation. In Section 8 we discuss related work. The last section gives a summary
of the paper.

3 Requirements on Process-Oriented
Knowledge Management Systems

In the future, the development of large software systems will be a typical t ask for virtual
enterprises. People with d ifferent knowledge a nd educational background (e.g. economics,
computer science, arts for interface design) will work on many locations all over the world
(including emerging market countries like India or Eastern Europe) and will have to work
together to fulfill the business needs.

Globally distributed work processes have to deal with many problems arising from

• different languages & ontologies

• cultural differences

• different time zones

• different work ethics

• different legal systems

• different hard- and software requirements

Although these problems have sociological causes, some of them can be reduced or overcome
using advanced technologies. Some requirements imposed on software processes support systems
for the global virtual software enterprise are listed and briefly discussed in the following.

Requirement 1: Synchronous work support

Around the clock development requires that - at the end of the working day - the results of the day
have to be efficiently communicated to the co-worker in the next time zone who just starts to
work. This poses the requirement on modeling approaches, that m odels have to b e ea sily
understood and that an ov erview on the c hanges s ince the last day has to b e provided.
Nevertheless, synchronous communication b etween the team m embers will help in
communicating the current state of the work. Audio and video conferencing capabilities can be
used as well as s hared workspaces and d istributed meeting rooms. The technology for that i s
available but the costs for a wide spread use are still too high.

Requirement 2: Asynchronous work support

In globally distributed software development processes, people work asynchronously in different
locations and at different times. Therefore, a support system shall facilitate the coordination and
the management of the process. Process enactment support techniques - or, in a broader sense,
workflow management techniques - try to provide the right information to the right people at the
right tim e with the right t ools. They have to b e e xtended to support work ov er wide a rea
networks.

Requirement 3: Ubiquitous communication infrastructure

To reduce the problems in setting up a global team, a ubiquitous infrastructure has to be used.
Every team member has to be able to connect to the development process without effort.

Requirement 4: Transparent & fast access to process knowledge

For a smooth development process, every team member needs easy access to all relevant project
data (e.g. to-do lists, source c ode, requirement specifications, d efect reports etc.) as well as
generic knowledge (e.g. coding & documentation standards, effort estimation guidelines etc.).
This knowledge can be represented for human use or for use by KBS interpreters. Project data has
to be defined in a product model (which imposes a requirement on modeling tools to be open for
external access). Using WWW techniques, the access to data is transparent to the user: It does not
matter where the data is stored. Clearly, due to current bandwidth limitations, this is not the naked
truth: Accessing the data on a foreign server often needs much more (sometimes prohibitive) time
than accessing local information.

Requirement 5: Distributed configuration management

Configuration management systems are used to maintain several versions of a system and all the
information related to it. They are a basis for an orderly development process. Consequently, they
have to be extended for the virtual environment of globally distributed teams.

Requirement 6: Repository for ontologies

To ov ercome problems with d ifferent ontologies, a project repository has to b e provided that
defines commonly used terms. Using the Web as the medium, the repository should be organized
and maintained at several locations. The repository should be extended to provide an experience
base for software development storing generic process and p roduct m odels as well as metrics
gathered in past projects. These could then be used to improve cost and time estimations for new
projects.

Requirement 7: Flexibility of development processes

Most software process s upport environments require a c omplete, fine-grained p rocess model
before the execution starts. For large-scale software projects, that is not realistic: The project plan
needs to be refined and extended while the development is already in progress. In addition, there
will be no central project plan in globally distributed p rojects but t he will be plans at every
location which have to be coordinated. Using and extending knowledge-based techniques, project
planning and execution can be interlinked giving a greater flexibility to the people involved in the
project. Agent-oriented approaches may help to coordinate the plans of different locations.

Requirement 8: Proactive change notifications

The coordination of globally distributed processes will be improved if part of the task is done
automatically. Coordination p roblems often result from changes introduced into the process
because of new external requirements and/or erroneous assumptions. Explicit causal relations
between process information generate traceability and can be used by a system to proactively send
notifications to team members whose work is influenced by the change (e.g. a task may become
obsolete, interfaces of imported modules are changed and users of the interface get notifications).
To u se c hange notification mechanisms in worldwide distributed p rojects; “real” push
mechanisms have to be developed. A process enactment engine has to generate events and allow
clients to create event listeners.

4 The Process Modeling Language MILOS
To fulfill the stated requirements, we developed the new process modeling language MILOS and
are in the process of adapting our CoMo-Kit process engine to the new language. MILOS was
developed in cooperation with the working group of Prof. Rombach and integrates basic process
modeling and knowledge management concepts.

MILOS allows to represent knowledge about software development processes. The core notion of
MILOS is the process. Any other information is grouped around this notion: Products are inputs
or outputs for processes. Factual knowledge is linked to processes. In this sense, MILOS supports
a process-centered structuring of knowledge.

Knowledge needed to plan and execute includes

• Process, product and resource models

• Project plans & schedules

• Products developed within projects

• Project traces

• Background knowledge such as guidelines, business rules, studies etc.

MILOS offers several language concepts for defining measurement based process models, object
oriented product models and resource models. In the following we give a short overview over the
main MILOS concepts.

With MILOS product & resource models can be developed and integrated into process models.
For a new project, these kinds of models are the basis for the definition of project plans.

4.1 Product models
MILOS allows the specification of hierarchical, object-oriented product models. A product type
defines the structure of a set of products with the same behavior. A product type is either basic or
complex. Basic types are predefined and may b e integer, real, string, text, d ate, o r external
references such as a www page URLs or word documents. A complex type consists of one or
more typed subproducts and attributes. Complex product types define hierarchical type structures.
Complex product types can be specialized (IS-A relation).

Based on a given product model, products that contain general and specific project knowledge of
a company can be specified. The underlying product model defines the structure and the type of
that knowledge. A main mechanism for associating knowledge to entities in the process model is
using external references to the knowledge. This is further explained in the Section 6.1.

4.3 Process Models
Within process models activities and their interrelationship are described.

A process is defined by a description of the process goal, a set of conditions, process attributes,
the products needed to plan and to execute the process, a set of alternative methods to reach the
process goal, the products to be produced and resource allocations.

Methods are e ither complex o r atomic. Complex methods refine a process into on e ore more
subprocesses whereas the application of an atomic method results in the production of products
that are the outputs of the process.

Inputs of a process may either be products, that are produced by other processes during project
enactment or predefined products taken from generic process models. Here the process view and
the knowledge view in MILOS are integrated.

Process models are generic descriptions of the general way of the course of projects. The models
have to be specialized and customized within the projects.

Every process is associated with a set of roles and qualifications which are needed to perform the
task (e.g. the process “Implement Class” is associated with the qualifications “Java knowledge
available” and the role “Programmer”).

4.4 Resource Models
Resource models allow assigning roles and qualifications to p roject t eam members. Roles and
qualifications can be specialized. These models describe knowledge needed by project managers
to find appropriate people for a task.

In Table 1 you can find a summary of the basic language concepts of MILOS.
Concept Description

process Set of activities that have to be executed in order to reach a given goal.
condition A condition controls the e xecution o f a project plan. We distinguish

between preconditions and postconditions.
product type The description of type and structure of a class of products.
product A product i s an information un it of a given p roduct type, for example a

document or a piece of code.
product reference Product references s tand for the type of products that are used and/or

produced by a process or a method. We distinguish between products that
are c onsumed for planning, consumed for execution, produced, and
modified.

produce This parameter type stands for a product of a given type that is produced by
an atomic method of a process.

consume for planning Product reference that describes the read only access to a product within the
planning of a process.

consume for execution Product reference that describes the read only access to a product during
the execution of a process.

product mapping Defines the product flow within the process/method hierarchy.
method Problem solving method to reach a process goal.
atomic method Leaf within the process/method h ierarchy. It produces or modifies a

product.
complex method Problem solving method that refines a process into on e or more

subprocesses.
attribute Attributes are properties of processes, products, methods and resources.
product attribute Attribute of a product.
process attribute Attribute of a process.
resource Resources are used for the execution of the project. We distinguish between

two types of resources: agents and tools.
resource attribute Attribute of a resource.
role A predefined resource attribute. It describes the task of a resource within an

organization.
qualification A predefined resource attribute. It describes a skill of a resource.
tool A program that supports activities.
agent A human or machine that carries out activities within a process.
precondition A condition that has to be valid to carry out a process.
postcondition A condition that has to be valid after a process has been executed.

Table 1: MILOS’s representation primitives

5 Project Plans: Customized Process Models
Process models are generic, reusable descriptions how to execute projects and are part of the
organizational knowledge. They may be for instance stored within an experience factory. For a
given p roject t hese models have to b e a dapted to p roject specific needs. We ca ll t he project
specific models project plans. A project plan can be composed of some different process models.
For instance, the test processes of a project plan are taken over from a model for testing, whereas
the general course of action is taken over from a waterfall model.

Customizing process models to project plans is part of project planning. Using generic process
models, even inexperienced project managers are able to come up with a plan according to the
company’s quality standards and procedures. In general, the project starts using an initial plan that
defines the general course of action and the first project steps. Customizing extends over the
project start. On base of the results of early project activities (for example information gathering
activities) parts of the plan are further customized during project execution.

We developed techniques to support (a) plan refinement (b) plan adaptation and (c) error
correction du ring project execution. Methods define possible plan refinements. Selecting a
method during execution results in a refined plan. Plan adaptation takes place when the definition

of the plan is changed, for example when requirements change or within optimization tasks. Plan
adaptation allows, for example, to add n ew processes to the plan, change the process
decomposition, change the order of process execution, and change task delegations.

A least, p lanning errors may be detected and have to b e corrected if the project i s already in
execution. Changing the plan may affect project execution, if the changed parts of the plan have
already been executed and work has been done. For this, our system supports project execution by

• identifying affected processes, results (products) and resources,

• informing affected developers and manager about the change,

• informing them about further consequences of the change,

• tracing the reasons for the change, and

• (automatically) returning to a consistent project state.

Based on AI planning techniques, we developed execution mechanisms that allow to change
planning decisions, that propagate the effects of changes through the plan and that notify affected
project members. For a detailed description see for [DMP-97].

Changes and adaptations may be located within (local) project plan as well as in the process and
product models. This causes two problems:

• When should the change in a process model result i n the change of derived p roject plans?
[BK-95] propose in their work a solution o f the problem for a reduced set of modeling
concepts.

• How to identify the parts of a derived p roject plan, that are a ffected from t he c hange,
especially if the project plan widely differs from the original process model.

Determining if a concrete project plan (or parts of it) shall be stored as a generic model is also an
open issue.

6 Proposed Architecture of the System
We now want to discuss the proposed architecture from three perspectives. First, we illustrate the
architecture from a point of view showing where specific kinds of knowledge reside. Then we
discuss a user’s view on the system. At last, we concentrate on the technical perspective.

6.1 Knowledge Structuring Perspective
Based on the ideas and requirements described above, we propose a three tier system architecture
(see Figure 1). This architecture allows to distinguish between

• reusable process models,

• knowledge needed for a specific project, and

• knowledge & data created during project execution.

Knowledge is distributed over the three tiers. Within each tier, the knowledge is structured in a
process-oriented fashion: Knowledge is linked to processes to be carried out in the course of the
project. Instead of searching in the whole body of knowledge available in the system, the user

working on a specific task sees links to the knowledge associated with this task.

Figure 1: Three-tier architecture

6.1.1 Generic Process Models
The first tier handles generic and reusable process models and associates generic knowledge to
the entities of the process model. Knowledge may be stored in several forms:

• Concrete knowledge c hunks for human u se, are stored URL references pointing to HTML
pages or other files containing information in specific document formats. Access to this can be
guaranteed u sing standard web mechanisms of binding file types to specific a pplications.
Portability and cross-platform access is s upported as long as the mapping of f ile types to
applications are valid and the application software is available on the client platform.

• Formalized knowledge bases can be accessed and incorporated into the project execution in
two ways. First, b y downloading the KBS as a file a nd starting it on the c lient side. This
requires the KBS interpreter on the client side and the association of the file type with the KBS
interpreter application. Second, running KBS interpreter on the server side is an alternative.
This requires the KBS to have a Web interface. A communication infrastructure between the
KBS and the project enactment engine would even allow for transferring results from the KBS
to the project execution. So, p rocess-oriented kno wledge structuring is a natural way for
integrating KBS approaches into software development.

• Predefined queries are used when the knowledge c hunk can no t be defined explicitly. The
query describes the knowledge needed intentionally. We ca n at l east distinguish b etween
several kinds of queries:

• Database queries: To access knowledge stored in a relational database, the process
model has to contain SQL queries that return the appropriate result.

• Information retrieval requests: Unstructured information can b e acce ssed u sing
information retrieval technology. The request may be posted to a special IR server or to
one of the public web search engines.

• CBR requests: Case-based reasoning technology integrates structured and unstructured
queries. It allows for similarity-based qu eries on structured d ata whereas relational
databases mainly support Boolean queries and IR systems work with unstructured data.

During project enactment, the access to generic process models and the associated knowledge is
restricted to read only.

6.1.3 Project Specific Process Models (Project Plans)
The second tier contains project specific process descriptions. Using the single representation
trick (known from machine learning), the mapping of generic process models to project specific
process descriptions is easy: We use the same representation for both tiers and are able to copy
generic models to a project. Then the generic descriptions are c ustomized to b e used in the
specific project.

Copying models from the first tier to the second tier is easy. Open problems surely exist:

• which parts of a process model shall be copied (selection)

• how to determine that a generic model can be reused in a given situation

• how to support the customization and adaptation process

One of our students currently works on the first questions: Defining attributes for parts of process
models that allow to select t hem i n concrete projects using a similarity-based case retrieval
algorithm.

Project plans contain the knowledge about t he tasks to b e done and the knowledge related to
them. They are a basis for project enactment and coordination. Using a process enactment engine
in a project, a project plan is the basis for actively guiding human users in their work.

6.1.4 Dynamic Project Data
The third tier handles dynamic knowledge which is the core of a flexible process engine2: The
state of the work p rocess and its tasks, do -do lists for its users, the products created du ring
process enactment, causal relationships between process entities, etc.

The knowledge stored in this tier is created during process execution: it is the output of the work
processes. In software development processes this includes e.g. requirements s pecifications,
design documents, design rationales, traceability matrixes, source code etc.

The third tier provides - beside a product-oriented view - also a process-oriented view on the data
created during task enactment. User are able to access information based on the processes carried
out and they can follow the information flow in the project (thereby tracing where and by whom a
specific information was used).

6.2 User scenarios
The users are working with the system from different perspectives and with different goals. The
system allows to model and to access generic models and project plans. It provides to-do agendas
for the users involved in the project. Furthermore the user can access background information of a
project via an information assistant. In this section we give a short insight how users may work
with the system.

Figure 2 shows the graphical i nterface for describing the information flow w ithin a process
model. The editors for defining the process decomposition and for editing product and resource

2 In this paper, we do not discuss the design and implementation of our workflow engine and its unique features.
Detailed information can be found at [DMP-97] or at the web site http://wwwagr.informatik.uni-kl.de/~comokit

models are omitted.

Figure 2: Information flow editor

The interface for defining project plans will look similar. In addition, the user will have access to
the model library from where he can copy suited models.

For project execution, the system provides workspaces for managers, developers, and planners.
The workspaces are very powerful, because they provide the user with relevant project data, guide
them through their tasks, and automatically start required tools.

Figure 3 shows the workspace of Mr. Holz, who is actually executing an atomic method. His task
is to develop an interface component in Java based on an OMT specification. The left window
(A) shows him the documents he can access and he has to produce in order to solve the task.
Clicking on the document symbols, customized editors to edit t he products are a utomatically
opened. In this example, a postscript viewer on the OMT specification (B) and an editor to edit
the component (C) have been opened. After finishing the work, the task window and dependent
tools will be closed by the system.

Figure 3: User interfaces

For coordination tasks each workspace provides a window that displays incoming notifications
relevant for the work of the workspace owner (see Figure 4). If he wants to know more about the
context of the notification, he can start t he information a ssistant. This web-based component
navigates the user trough the project plan and provides background information about the project
state, decisions and their rationales, and the developed products. Figure 5 shows a screenshot of
the information assistant.

6.3 Technical Perspective
In this s ection, we describe how a process-centered kno wledge management system can b e
designed which fulfills the requirements stated in Section 3. We also discuss design alternatives
for building the system and explain why we use a specific technology. The whole system is being
built using state of the art information technology that is in industrial use.

Figure 4: Project coordination

To fulfil Requirement 3 (Ubiquitous communication infrastructure), Internet technology is clearly
the way to go. The Internet - and, in the future, the Internet II - will provide this infrastructure to
lesser costs than po int t o po int (satellite) lines. In fact, the wide spread u se of Internet-based
communication as well as the increasing speed o f its introduction to a “ standard” working
environment make it the obvious and cost-effective choice for global teams. Internet-based virtual
private networks create a secure environment for work groups based on encryption techniques.
Current problems, e.g. bandwidth, latency, quality of service guarantees, will be overcome with
the broad introduction o f Internet II and the new protocols. Internet access is more or less
available in every workplace - or will be in the next couple of years. To be able to access process
and/or project i nformation, the only widely available c ross-platform environment i s the web.
Other environments are e ither r estricted to on e platform or use proprietary communication
protocols that are not supported in every company. To be able to build up virtual corporations, we
decided for a common denominator: TCP/IP and Web browsers.

Figure 5: Information assistant

Ubiquitous access to process information also means that every entity needs to have an unique
identity and that by using this identity a user is able to access the information (we omit a
discussion of security issues here). URLs are the means of the Web allowing to access distributed
information. Using URLs an object may be located on an arbitrary computer in the Internet. In
addition, Web browsers are able to associate file types with application programs and start them
automatically when a document of that type is loaded from an URL. Therefore we decided to use
URLs as the unique identifiers of the objects handled by our system and are implementing Java
based u ser interfaces for manipulating the objects that are not stored in files. One possible
extension would b e to u se URL addresses for every object stored in the c onfiguration

management and u se http as the protocol t o access versions of an ob ject stored on arbitrary
configuration management servers.

Storing information p ersistently, several t echnologies can b e used: File systems, relational
databases and ob ject-oriented d atabases. File systems are restricted concerning version
management, transaction support, and replication support. On the other hand they are ea sily
accessible by (commercial) web servers. Databases support transactions and - often - replication
of data. Relational databases only support table-oriented structures. More complex data structures
are supported by object-oriented databases. Therefore, they are the means of choice for software
process s upport (which is our main application area). Using OODBMS technology, we a re
implementing a c onfiguration management system t hat allows to store a rbitrary versions of
products. We will extend this to support distributed configuration management using the built-in
capabilities of the OODBMS GemStone (Requirement 5).

Resulting from t he remarks above, we ca n d efine a first architecture for process s upport
environments (Figure 6). The Internet i s the backbone for the distributed system. Client
computers access process data using Web browsers. Process models, project plans and dynamic
project data are stored in a central object-oriented database with additional information stored in
files. The database server supports project execution b y implementing a process engine that
handles to-do lists for team members and by providing access to all project data.

Figure 6: Centralized management of process knowledge

The problem with this architecture is that – due to the low bandwidth available on some Internet
links – it does not always fulfil Requirement 4 (fast access to p rocess knowledge) and
Requirement 5 (distributed configuration management). These problems can b e overcome by
using proxies, caches and replication techniques that bring the information nearer to the end user.
The process s upport system i s then responsible for providing transparency by caching or
replicating process data at different locations. Figure 7 shows an appropriate system architecture.

Figure 7: Cached/replicated & distributed management of process knowledge

The next question to b e a nswered is how to implement t his distributed architecture. Several
frameworks for distributed system implementation were developed in the last couple of years.
The main competitors in the market are now:

• OSF Distributed Computing Environment (DCE)

• DCOM from Microsoft

• OMG Common Object Request Broker Architecture (CORBA)

• Java Remote Method Invocation (Java RMI)

The DCE is based on a procedural approach and not state of the art anymore because of the wide
spread u se of object-oriented technology and implementation languages. DCOM is desktop-
centered and dominated by a single company (Microsoft). In addition, it is currently restricted to
Windows NT environments (failing to meet Requirements 3 and 4). CORBA is a mature standard
developed by a consortium of more than 700 companies. It is platform and language independent
(fulfilling Requirement 3 and 4). Several implementations are available since the early nineties –
making it a c omparable mature basis. Java RMI is rather new but gets a lot of interest from
companies. It i s platform i ndependent (as far as Java is) but it i s language dependent. In the
future, Java RMI is expected to be built on top of CORBA. For our implementation, we decided
to use a mixture of Java RMI and CORBA. CORBA allows building wrappers around legacy
systems and integrating them i nto the process enactment environment. Java RMI supports the
migration o f objects over networks and therefore is a basis for implementing replication
mechanisms.

We use Java applets to reduce the problem of distributing (project specific) software tools to team
members whereas CORBA allows object-based communication between tools.

Requirements 2 (asynchronous work support) will be fulfilled u sing our published workflow
management approach [DMP-97, Mau-97]. Our approach focuses on methods and techniques that
increase the flexibility of workflow management by alternating project planning and p roject

execution steps (Requirement 7). In addition, we developed an approach that supports project
coordination by automatically sending change notifications to appropriate team members. This
functionality is based on traceability relations that are generated automatically using knowledge
contained in process models [MP-94, DKM-96]. Our current approach to traceability is somehow
limited: It only generates causal relationships between p rocess data based on generic process
notions (processes, process decomposition, and information flow). One of our students, Quan Li,
currently develops a framework that allows to define domain-specific traceability relations using
event-condition-action rules [ACT-96]. The extended framework fulfils Requirement 8 as soon as
the notifications - which currently are only distributed in a local area network - are distributed
over the Internet.

Product models specify the structure and relationships of (software development) products. In that
sense, they describe the ontology of the domain - although they are not formally specified using
logical representations (e.g. Ontolingua, KIF, o r terminological l ogic). Using the restricted
expressiveness of object-orientation, our system is neither able to automatically classify instances
nor can it build up inheritance hierarchies automatically. On the other side, ob ject-oriented
approaches s upport t he definition o f arbitrary methods for objects. In ou r opinion, this is an
advantage - from a system implementation point of view - compared to the use of terminological
languages.

Requirement 1 (Synchronous work support) is not i n the focus of our research. Therefore, we
decided to u se a vailable technology for incorporating this functionality into ou r environment.
Microsoft’s NetMeeting and Netscape’s Conference tools allow for audio and/or video
conferencing over the Internet as well as shared whiteboards and/or shared applications (although
this functionality currently is restricted to Windows PCs).

Figure 8 gives an overview over the architecture of the process knowledge manager.

The core component of the manager manages objects and provides (unique) names for the objects
of the system. For every object, it handles multiple versions. It is able to return the current version
of all objects stored. It also provides access to versions.

The project plan manager stores and provides access to all process-related information such as
processes, p rocess decompositions, resource a ssignments, etc. The c omponent i s central for
handling all process-related information of the project plan and has to support the retrieval of the
current plan information as well as old versions.

The dependency management component stores instantiated patterns of change dependencies of
the project t hat are used to p ropagate a nd to no tify affected agents about changes that occur
during project execution.

The resource pool component basically manages a list of all team members (acting agents). For
every team member, it maintains a calendar that stores on which days she is available for working
in projects.

The workflow engine is a highly dynamic component and responsible for storing and accessing
the current state of the project, e.g. the state of the tasks, the availability of inputs, references to
the locked and finished outputs, and responsibilities for processes. The workflow engine closely
interacts with the (static) project plan management component as well as with the resource pool.

The data on the server are accessed by a RMI interface. It provides a facade around the low-level
details of the communication between the editors and the server objects.

The client side consists of a set of project planning editors, and editors that support the agent’s
work during project execution.

The project planning editor component i s a graphical user interface that allows to edit project
plans based on the modeling language MILOS. The plans are stored within the project plan
management component.

The a gent editor component i s a graphical user interface that allows to edit agents and their
properties (name, password, etc.), to edit the calendar of an agent to define when he is available
to work on processes, to show the to do list of an agent and enter the result of process execution,
and to login to the system. All editors s upport arbitrary Undo/Redo sequences.

Figure 8: The process knowledge manager

7 State of Implementation
The whole idea of the paper is to present a concept for an Internet-based and process-centered
knowledge management environment. Currently, the system i s under development and not yet
fully implemented. Nevertheless, ou r CoMo-Kit prototype implementation covers most of the
future system’s functionality (see Section 6.2) BUT is restricted to local area networks and
supports only a restricted set of MILOS modeling primitives.

CoMo-Kit was developed using the OODBMS GemStone/S and Visualwave for Smalltalk as the
programming environment. GemStone/S data definition language and data manipulation language
is a Smalltalk dialect. Therefore, we are able to prototype systems in the Visualwave environment
and than transfer part of the implementation into the GemStone database (gaining distribution
over local area networks and transaction management).

The implemented p rototype supports process modeling and p rocess enactment. It contains a
traceability component that generates causal relations based on process models and uses these to
send change notifications to appropriate users.

We currently are in the process of re-designing and re-implementing all user interfaces as Java
applets. An initial prototype that allows to model t he information flow in p rocesses will be
available in February 1998. The re-implemented user interfaces are Internet-enabled and support
the access to a centralized database that stores all project information.

In addition, a c omplete re-implementation o f a MILOS-based p rocess modeling and p rocess
enactment environment i s undertaken as a joint effort of the groups of Dr. Richter and Dr.
Rombach (both University of Kaiserslautern, Germany) and Dr. Maurer (University of Calgary,
Canada).

8 Related Work
Software process modeling and process enactment approaches are discussed in the introduction to
the paper. The same holds for workflow management. Here we will only discuss other work in
knowledge management.

Work in knowledge management is influenced from several perspectives. On the one side, there
is the organizational perspective that discusses how companies can o rganize their knowledge
management [HSK-96]. Often these approaches concentrate on human resource aspects [SC-96].

[Sim-96, DGA-96] discuss the problem of acquiring the knowledge for knowledge management
systems.

Knowledge management for distributed enterprises is discussed in [GNA-96]. The authors show
how the web can b e utilized for knowledge management. Their approach do es not explicitly
model the work process.

Several authors developed tools for managing different aspects and representation formalisms
over the web [GS-96, FFR-96, Kre-96]. None of these is explicitly representing work processes
(which - in our opinion - are the glue that holds several products together).

[ABH-96] integrates information retrieval and knowledge management. Although their approach
also deals with work processes, they do not represent them explicitly so that the processes can be
changed on the fly.

9 Summary
In this paper we described requirements on and a concept for an Internet-based process-centered
knowledge management environment. The e nvironment structures knowledge a round work
processes: In the center of our representation are processes. Linked to a process, the user can find
methods (describing ways how to perform t he process to reach its goals), p roducts (input and
outputs to the process), factual knowledge in the form product instances (often implemented as
web references), and knowledge about the qualifications needed to perform the process.

The process-centered structure of the system has the following advantages:

• Processes are „natural“ entities for managers and team members: they are well used to thinking
about the process (e.g. for project planning).

• For their daily work, people don’t need knowledge per-se but t he knowledge they need for
performing specific task. A process-centered kno wledge management system associates
explicitly the task with the knowledge needed for it.

• By linking web references to task, the lost in hyperspace problem is reduced because the user
immediately finds the knowledge needed instead of being forced to browse to relevant pages.

A process engine that guides the human u sers in their daily work interprets the e xplicit
description of processes. This guidance is especially useful for new employees because they lack
the knowledge about the standard procedures of a company.

10 Acknowledgements
We thank our colleagues Harald Holz, Boris Koetting, and Gerd Pews for fruitful discussion about the future redesign
of our CoMo-Kit system. Sascha Schmitt currently is developing a prototypical interface of CoMo-Kit to the Web
and testing the c oncepts described in this paper. We thank him for providing the screenshots of the Java a pplet
supporting project planning over the Web.

11 References
[ABH-96] Andreas Abecker, Ansgar Bernardi, Knut Hinkelmann, Otto K , Michael Sintek: Towards a Well-

Founded Technology for Organizational Memories, AAAI Spring Symposium on Artificial Intelligence in
Knowledge Management, AAAI Technical Report, Stanford, 1996

[ACT-96] ACT-NET Consortium. The Active Database Management System Manifesto: A Rulebase of ADBMS
Features. ACM Sigmod Record 25(3): 40-49, 1996.

[AK-94] J. Armitage, M. Kellner. A conceptual schema for process definitions and models. In D. E. Perry, editor,
Proceedings of the Third International Conference on the Software Process, p. 153–165. IEEE Computer
Society Press, 1994.

[BFG-93a] S. Bandinelli, A. Fuggetta, S. Grigolli. Process Modeling-in-the-large with SLANG. In IEEE Proceedings
of the 2nd International Conference on the Software Process, Berlin (Germany).

[BFG-93b] S. Bandinelli, A. Fuggetta, C. Ghezzi. Process Model Evolution in the SPADE E nvironment. IEEE
Transactions on Software Engineering. Special Issue on Process Evolution, December 1993.

[BK-95] Douglas P. Bogia a d Simon M. Kaplan. Flexibility and Control for Dynamic Workflows in the wOrlds
Environment. Proceedings of the Conference on Organizational Computing Systems, November 1995

[Bas-89] V. R. Basili, "The Experience Factory: packaging software experience," in Proceedings of the Fourteenth
Annual Software Engineering Workshop, NASA Goddard Space Flight Center, Greenbelt MD 20771, 1989.

[BCR-94] V. R. Basili, Gianluigi Caldiera, and H. Dieter Rombach, "Experience Factory," in Encyclopedia of
Software Engineering (John J. Marciniak, ed.), vol. 1, pp. 469--476, John Wiley Sons, 1994.

[BK-93] I. Ben-Shaul, G. Kaiser: Process Evolution in the Marvel Environment, 8th International Software Process
Workshop : State of the Practice in Process Technology, March 1993.

[BA- 96] S. Bohner, R. Arnold: Software Change Impact Analysis, IEEE Computer Society Press, 1996
[BLR-95] A. Br ckers, C. Lott, H. Rombach, M. Verlage: MVP–L language report version 2. Technical Report

265/95, Department of Computer Science, University of Kaiserslautern, Germany, 1995.
[CHL-94] R. Conradi, M. Hagaseth, J.O. Larsen, M. Nguyen, G. Munch, P. Westby, W. Zhu: EPOS: Object-Oriented

and Cooperative Process Modeling. In PROMOTER book: Anthony Finkelstein, Jeff Kramer and Bashar A.
Nuseibeh (Eds.): Software Process Modeling and Technology, 1994, p. 33-70.Advanced Software Development
Series, Research Studies Press Ltd. (John Wiley).

[CFF-93] R. Conradi, C. Fernstr m, A. Fuggetta. A conceptual framework for evolving software processes. ACM
SIGSOFT Software Engineering Notes, 18(4): 26–35, October 1993.

[Con-97] R. Conradi: Cooperative Agents in Global Information Space, http://www.idi.ntnu.no/~cagis/
[CNG-95] G. Cugola, E. Di Nitto, C. Ghezzi, M. Mantione. How to d eal with deviations during process model

enactment. In Proceedings of the 17th Int. Conf. on Software Engineering (ICSE 17), 1995.
[CK-92] B. Curtis, M. Kellner, J. Over: Process modeling. Communications of the ACM, 35(9): 75–90, Sep 1992.
[DKM-96] B. Dellen, K. Kohler, F. Maurer: Integrating Software Process Models and Design Rationales,

Proceedings Knowledge-Based Software Engineering KBSE-96, IEEE press, 1996.
[DMP-97] B. Dellen, F. Maurer, G. Pews: Knowledge-based techniques to increase the flexibility of workflow

management, Data & Knowledge Engineering Journal, Vol. 23 No. 3, page 269-295, September 1997.
[DGA-96] Rose Dieng, Alain Giboin, Christelle Amerg , Olivier Corby, Sylvie Despr s, Laurence Alpay, Sofiane

Labidi, St phane Lapalut: Building of a Corporate Memory for Traffic Accident Analysis, Proc. KAW-96,
Banff, Canada, 1996.

[FFR-96] Adam Farquhar, Richard Fikes, James Rice: The Ontolingua Server: a Tool for Collaborative Ontology
Construction, Proc. KAW-96, Banff, Canada, 1996.

[GNA-96] Brian R. Gaines, Douglas H. Norrie, Andrew Z. Lapsley, Mildred L.G. Shaw: Knowledge Management
for Distributed Enterprises, Proc. KAW-96, Banff, Canada, 1996.

[GS-96] Brian R. Gaines, Mildred L. G. Shaw: A Networked, Open Architecture Knowledge Management System,
Proc. KAW-96, Banff, Canada, 1996.

[GH-95] D. Georgakopolous, M. Hornick, An Overview of Workflow Management: From Process Modeling to
Workflow Automation Infrastructure, in: Distributed and Parallel Databases 3, (1995) 119-153.

[HSK-96]G. van Heijst, R. van der Spek, E. Kruizinga, Organizing Corporate Memories, Proc. KAW-96, Banff,
Canada, 1996.

[KFP-88]G.E. Kaiser P.H. Feiler, S.S. Popovich: Intelligent Assistance for Software Development and Maintenance
(IEEE Software, May 1988).

[Kai-97] G. Kaiser: OzWEB, http://www.psl.cs.columbia.edu/ozweb.html, 1997.
[Kre-96] Rob Kremer: Toward a Multi-User, Programmable Web Concept Mapping "Shell" to Handle Multiple

Formalisms, Proc. KAW-96, Banff, Canada, 1996.
[Mau-97] F. Maurer: CoMo-Kit: Knowledge Based Workflow Management, Proceedings Workshop on Knowledge

Management, AAAI Spring Symposium, pages 106-110, 1997.
[MP-93] N. Madhavji, M. Penedo. Guest editor’s introduction. IEEE Transactions on Software Engineering,

19(12):1125–1127, December 1993. Special Section on the Evolution of Software Processes.
[MP-94] F. Maurer, J. Paulokat: Operationalizing Conceptual Models Based on a Model of Dependencies, in: A.

Cohn (Ed.): ECAI 94. 11th European Conference on Artificial Intelligence, pages 508-515, John Wiley & Sons,
Ltd, 1994.

[Ost-87] L. Osterweil, Software Processes are Software Too, Proceedings of the Ninth International Conference of
Software Engineering, Monterey CA, March 1987, pp. 2-13.

[PEM-95] G. P rez, K. Emam, N. Madhavji: Customizing Software Process Models. In Proceedings of the 4th
European Workshop on Software Process Technology, pp. 70 -78, Springer, 1995.

[PSW-92] B. Peuschel, W. Sch fer, S. Wolf: A Knowledge-based Software Development Environment Supporting
Cooperative Work. In International Journal on Software Engineering and Knowledge Engineering, 2(1): 79-
106,1992.

[RV-95] H.-D. Rombach, M. Verlage. Directions in software process research. In M. V. Zelkowitz, editor, Advances
in Computers, vol.41, pages 1–63. Academic Press, 1995.

[SC-96] M. Sierhuis, W. J. Clancey: Knowledge, Practice, Activities and People, AAAI Spring Symposium on
Artificial Intelligence in Knowledge Management, AAAI Technical Report, Stanford, 1996.

[Sim-96] G le Simon: Knowledge Acquisition and Modeling For Corporate Memory: Lessons Learnt from
Experience, Proc. KAW-96, Banff, Canada, 1996.

[SOH-95] S. Sutton, L. Osterweil, D. Heimbigner: APPL/A: a language for software process programming, IEEE
Transactions on SE and Methodology, Vol. 4, No. 3, p. 221-286, 1995.

[TKP-94] A. Tong, G. Kaiser, S. Popovich, A Flexible Rule-Chaining Engine for process Based Software
Engineering, 9th Knowledge-Based Software Engineering Conference, September 1994

[Ver-94] M.Verlage, Multi-view modeling of software processes, in: B. C. Warboys, ed., Proc. Third European
Workshop on Software Process Technology, (Springer Verlag, 1994) 123-127.

[VDMM-96] M. Verlage, B. Dellen, F. Maurer, J. M ch: A synthesis of two software process support approaches,
Proceedings 8th Software & Engineering and Knowledge Engineering (SEKE-96), USA, June 1996.

[WFMC-96] Workflow Management Coalition: Terminology & Glossary,
http://www.aiai.ed.ac.uk/WfMC/DOCS/glossary/glossary.html

