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Abstract

We consider multiple objective combinatorial optimization problems in which the first objective is of arbitrary
type and the remaining objectives are either bottleneck or k-max objective functions. While the objective
value of a bottleneck objective is determined by the largest cost value of any element in a feasible solution,
the kth-largest element defines the objective value of the k-max objective. An efficient solution approach
for the generation of the complete nondominated set is developed which is independent of the specific
combinatorial problem at hand. This implies a polynomial time algorithm for several important problem
classes like shortest paths, spanning tree, and assignment problems with bottleneck objectives which are
known to be NP-hard in the general multiple objective case.
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1. Introduction

Combinatorial bottleneck problems have applications, for example, in project management, engineer-
ing design, traffic management, and software engineering. One or several bottleneck processes or bottleneck
components with restricted capacity or throughput limit the performance of the overall system, and thus
solutions are sought which minimize this bottleneck (min-max problems). In this article we consider combi-
natorial optimization problems with multiple objectives, one or several of which are bottleneck objectives or
k-max objectives that evolve as a natural generalization of bottleneck objectives.

More precisely, let E = {e1, . . . , en} be a finite set of n ∈ N different elements, and let X ⊆ P(E), where
P(E) denotes the power set of E . Furthermore, let c : E → Z denote a scalar cost function on the elements
of E . Then,

b(S) = max
e∈S

{c(e)}

defines a bottleneck objective function yielding the maximum cost coefficient of a feasible solution S ∈ X .
Minimizing a single bottleneck objective over the complete feasible set X is called a combinatorial bottleneck
problem (CBP). This problem is also frequently called min-max problem in the literature.

Now, let |S| ≥ m for some m ∈ {1, . . . , n = |E|} and all S ∈ X and let k ∈ {1, . . . , m} be arbitrary but
fixed. Then, a k-max objective function is defined by

g(S) = k -max
e∈S

{c(e)},

returning the kth largest cost coefficient among the elements of S (cf. also [1]). The corresponding mini-
mization problem over X is referred to as the k-max optimization problem (kMAX). For the case k = 1,
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the bottleneck and k-max objective coincide. Hence, Problem (kMAX) can be seen as a generalized version
of Problem (CBP). To clarify notation, we introduce the following convention concerning the notion of a
k-max objective: If we refer to an optimization problem involving at least one k-max objective, we speak
of a k-max problem and of a k-max objective. If a special instance of the objective is considered for a fixed
k ∈ {1, . . . , m}, we write k -maxe∈S{c(e)} or equivalently k -max(S).

In the following, let c1, . . . , cp : E → Z denote p different cost functions on the set E and let f : X → Z

denote an additional objective function of arbitrary type. Furthermore, let the functions fi : X → Z, i ∈ Ip,
correspond either to p bottleneck or p k-max objectives, where Ip = {1, . . . , p}. Then, a multiple objective
combinatorial optimization problem (MCOP) is given by

min F (S) = (f(S), f1(S), . . . , fp(S))#

s.t. S ∈ X ,
(MCOP)

where F : X → Zp+1 consists of (p+1) integer valued objective functions. In this context, the set E is called
ground set, the set X feasible set in the decision space and Y = F (X ) denotes the set of attainable outcomes
in the outcome space. Any S ∈ X is called a feasible solution. An instance of (MCOP) is denoted by
(E ,X , F ). Neglecting the objectives f1, . . . , fp defines a single objective instance (E ,X , f). If the involved
objective functions fi correspond to p bottleneck objectives, we refer to (MCOP) as a multiple objective
combinatorial bottleneck problem (MCBP). For the case of p k-max objectives, (MCOP) is called multiple
objective k-max optimization problem (MkMAX). As in the single objective case, (MCBP) is a special case
of (MkMAX), where (MCBP) can be obtained by choosing k1 = . . . = kp = 1.

Since there does not exist a canonical ordering on the Euclidean vector space Rp+1 if p ≥ 1, we use the
following concepts of componentwise orderings :

y1 ! y2 ⇐⇒ y1
i ≤ y2

i , i = 1, . . . , p + 1,

y1 ≤ y2 ⇐⇒ y1
i ≤ y2

i , i = 1, . . . , p + 1 and y1 (= y2,

y1 < y2 ⇐⇒ y1
i < y2

i , i = 1, . . . , p + 1.

Following the Pareto concept of optimality, we say that a feasible point S1 ∈ X dominates a point S2 ∈ X
if F (S1) ≤ F (S2). If strict inequality holds for all p components, i.e., F (S1) < F (S2), then S1 strongly
dominates S2. If there does not exist any feasible point which dominates S ∈ X , we say that S is an efficient
solution of (MCOP). For the case that there exists no feasible point that strongly dominates S ∈ X , we
say that S is weakly efficient for (MCOP). If there is no S2 ∈ X , S2 (= S1, such that F (S2) ! F (S1), S1

is called strictly efficient. Note that strict efficiency is the multiple objective analogon to unique optimal
solutions for single objective problems. According to these definitions, the efficient set XE is defined by

XE = {S ∈ X : there exists no S̄ ∈ X with F (S̄) ≤ F (S)}.

Using the vector-valued mapping F , the image of XE is called the non-dominated set YN. In this context,
a point y2 ∈ Rp+1 is called dominated by y1 ∈ Rp+1 if y1 ≤ y2. Since the cardinality of the efficient set
may be of exponential size even though the size of the non-dominated set may be known to be bounded by
a polynomial, one is often interested in determining the complete set of non-dominated solutions YN and a
corresponding efficient representative from XE, rather than the complete set XE itself. In this context, any
subset X ′ ⊆ X is called a complete set of efficient solutions if f(X ′) = YN holds. Two efficient solutions
S1, S2 ∈ XE are called equivalent if F (S1) = F (S2). In addition, an efficient solution is called supported if
it can be obtained by optimizing a linear combination of the objectives involved with non-negative weights
over the feasible set X .

As shown in [2], given an appropriately chosen right-hand side vector ε ∈ Rp, solving the ε-constraint
problem

min f(S)

s.t. fi(S) ≤ εi, i = 1, . . . , p,

S ∈ X

(1)
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yields a solution which is weakly efficient for (MCOP). Moreover, a complete set of efficient solutions of
(MCOP) and the corresponding non-dominated set can be generated by solving a sequence of appropriate
ε-constraint problems. However, the number of problems which have to be solved to compute a complete
set of efficient solutions may grow exponentially in the size of the input data.

The remainder of this article is organized as follows. In Section 2 we present a detailed literature review
for solving single objective bottleneck as well as k-max optimization problems. In addition, we summarize
the results for the multiple objective bottleneck problem obtained for special classes of combinatorial opti-
mization problems. In Section 3 we present an algorithm that can be applied to solve both (MCBP) and
(MkMAX) based on sequential ε-constraint scalarizations. For (MCBP) we discuss an approach that solves
Problem (1) independently from any special class of combinatorial problem or the number of involved bot-
tleneck objectives. Based on the ideas developed in [1] for the single objective case, we re-model Problem (1)
for (MkMAX). This new model allows to solve Problem (1) more efficiently. We finally conclude the article
in Section 4 and present some more new research ideas related to the topic.

2. Literature Review

In the following, we briefly review the existing literature for solving (special classes of) combinatorial
bottleneck problems as well as single objective k-max optimization problems.

Frequently, combinatorial bottleneck problems with a single objective are solved by using the so-called
threshold algorithm that further builds the basis for a solution approach derived for the multiple objective
case in the next section. The idea of using this approach was already introduced by Edmonds and Fulkerson
[3] in the context of bottleneck extrema and was adopted by many other authors. Given a feasible solution
S ∈ X , all elements e ∈ E satisfying c(e) ≥ b(S) are deleted from the ground set E , and a new feasible
solution is determined. If such a solution S′ ∈ X exists, b(S′) can be seen as a threshold value for the
optimal objective value. All elements e ∈ E satisfying c(e) ≥ b(S′) can be removed from the ground set and
the feasibility problem is resolved. This procedure is iteratively repeated until no further feasible solution
can be found. Then, the last solution that has been feasible for the modified problem is also optimal for
(CBP) and its cost is the optimal objective value. Applying this procedure the threshold approach solves
Problem (CBP) in O(T log(|E|)) where T denotes the time to solve the corresponding feasibility problem.
However, there exist classes of combinatorial problems in which the bottleneck problem is proven to be
NP-complete in general (see, e.g., [4] for the traveling salesman problem).

While for many combinatorial problems on graphs and networks, like the shortest path, spanning tree
or the traveling salesman problem, it is quite easy to update the feasible set automatically by deleting
those nodes or edges whose costs exceed the current threshold value, there also exist combinatorial problems
in which the feasible set X cannot be updated in a straightforward and efficient way. Hence, discarding
infeasible solutions from X may not be an easy task. In this case, the threshold approach combined with a
cost modification scheme can be used to solve (CBP). Instead of deleting those elements from the ground
set that exceed the current threshold value, the corresponding cost coefficients are set to infinity (cf. also
[5]) and thus, solutions containing such elements are penalized.

Note that in the latter article, an alternative non-parametric transformation from (CBP) to a combi-
natorial problem with sum objective was suggested that only depends on the number of (different) cost
coefficients of c. In the early 1980s it was shown in [6] that an optimal solution of (CBP) can be com-
puted by solving an associated combinatorial problem with sum objective if an appropriate transformation
of the given cost function c is applied. Based on certain properties that have to be satisfied by such a
transformation, a whole class of suitable transformations is derived in this article.

The multiple objective bottleneck problem was studied by several authors for special classes of combi-
natorial problems involving at most three different bottleneck objectives. In the sequence of articles [7–10]
the subset of supported non-dominated solutions among the set of non-dominated solutions was numerically
analyzed for the linear assignment, the minimum spanning tree, the asymmetric traveling salesman and
the knapsack problem with either two or three bottleneck objectives or one sum and one or two bottleneck
objectives.
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Besides these articles there exist some publications that deal with the multiple objective shortest path
problem. Polynomial algorithms considering a sum and a bottleneck objective are presented in [11–14].
More recently, shortest path problems involving two bottleneck and a sum objective were analyzed in [15]
and [16]. The authors solved the triobjective problem by a similar approach as the one that we will present
for an arbitrary number of bottleneck objectives in Section 3.1. Furthermore, an efficient handling of the
bounds on the sequence of ε-constraint problems that has to be solved to generate a complete set of efficient
solutions is discussed in [16]. An improved and generalized version of this approach can be found in Section 3.

Algebraic sum problems involving a sum and a bottleneck objective are discussed in [17] and [18]. The
authors propose algorithms based on a biobjective approach that can be seen as special versions of the general
algorithm presented in Section 3.1. Finally, the notion of a k-max objective was already used in [19–21]
in the context of lexicographic bottleneck problems, and in [22] where lexicographic balanced optimization
problems are discussed. However, k-max optimization problems were discussed in [1] for the first time
explicitly. The authors present a bisection algorithm that is based on iteratively solving an associated sum
objective problem with binary cost coefficients, applicable to general combinatorial optimization problems
as defined in Section 1. A time bound of O(T log(|E|)) is stated for this approach, where T denotes the
time to solve the sum problem with binary costs. We further utilize the ideas presented in [1] to derive an
ε-constraint approach for Problem (kMAX) in Section 3.2.

3. The Algorithms

In this section we present algorithms that generate a complete set of efficient solutions for the multiple
objective bottleneck as well as k-max problems. As (MCBP) and (MkMAX) share many properties, we
discuss the proposed solution approach in a generalized framework at the beginning of this section, while
we go into futher details with respect to the involved ε-constraint subproblems in Sections 3.1 and 3.2 for
the bottleneck and k-max case, respectively.

Let f : X → Z denote an objective of arbitrary type, while the functions fi : X → Z, i ∈ Ip, correspond
either to p bottleneck or p k-max objectives as defined in Section 1. We consider an approach to solve
(MCOP) that is induced by solving a sequence of ε-constraint problems. Note that for fixed ε ∈ Rp the
non-dominated solution that is obtained by solving Problem (1) crucially depends on the chosen right hand
side components εi ∈ R, i ∈ Ip. In the worst case, an exponential number of ε-constraint problems has to
be solved to determine a complete set of efficient solutions.

More information is available if problems of the form (MCBP) and (MkMAX) are considered. Since for
each i ∈ {1, . . . , p} and S ∈ X , fi(S) takes at most n distinct values contained in the set ci(E) := {ci(e) :
e ∈ E}, all right hand side values are known in advance. Furthermore, their number is linearly bounded by
n. Since for each combination of right hand side components εi, at most one non-dominated solution exists,
this implies the following result:

Lemma 3.1 The cardinality of the non-dominated set of both (MCBP) and (MkMAX) is bounded by O(np).

Based on this observation, we derive a solution approach which determines a complete set of efficient
solutions for both problems (MCBP) and (MkMAX): we iteratively solve Problem (1) for all combinations
of right hand side values contained in the sets ci(E), i ∈ Ip, followed by a filter step to exclude weakly
efficient solutions that are not contained in the efficient set of the given problem.

To minimize the number of ε-constraint problems to be solved, we apply an efficient scheme to handle
the bounds that have to be set on the constraint functions f1, . . . , fp. Let ci : E → Z denote the cost
function associated to the objective fi, i = 1 . . . , p. Furthermore, let mi ∈ {1, . . . , n} correspond to the
number of different values contained in ci(E) and suppose that these are arranged in decreasing order, i.e.
ci
1 > ci

2 > . . . > ci
mi

for i ∈ Ip. We set A = {ν ∈ Rp : νi ∈ {1, . . . , mi}, i ∈ Ip} and consider the ε-constraint
problem

min f(S)

s.t. fi(S) ≤ ci
νi

, i = 1, . . . , p,

S ∈ X ,

(Aν)
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Algorithm 1 Threshold Algorithm for (MCOP)

Input: An instance (E ,X , (f, f1, . . . , fp)) of (MCOP)
Output: A complete subset X " ⊆ XE.
1: Set X " = ∅ and A = 1 ∈ Rm1×...×mp with index set A.
2: while A (= 0 do
3: Determine ν̄ = lexmin{ν ∈ A : aν (= 0}.
4: Call Algorithm 2 or Algorithm 3 to solve Problem (Aν̄), respectively.
5: if Problem (Aν̄) is feasible with optimal solution S" then
6: Determine ν" ∈ A, s.t. fi(S") = ci

ν!
i
, i ∈ Ip.

7: Set aν̃ = 0 for all ν̃ ∈ {ν ∈ A : ν̄ ! ν ! ν"} .
8: Update X " = X " ∪ {S"}.
9: else

10: Set aν̃ = 0 for all ν̃ ∈ {ν ∈ A : ν̄ ! ν}.
11: end if
12: end while
13: Filter X " for equivalent and dominated solutions.
14: return X ".

where ν ∈ A. We state:

Lemma 3.2 Let ν̄ ∈ A. Let S" be an optimal solution of Problem (Aν̄) and let ν" ∈ A such that fi(S") = ci
ν!

i

for i ∈ Ip. Then S" is also optimal for Problem (Aν) for all ν ∈ A satisfying ν̄ ! ν ! ν".

Proof. If ν̄ = ν", there is nothing to show. Otherwise, assume there exists ν ∈ A such that ν̄ ≤ ν ! ν"

and S" is not optimal for Problem (Aν), i.e. there exists S ∈ X satisfying f(S) < f(S"). However, since
S is feasible for Problem (Aν), this implies that fi(S) ≤ ci

νi
< ci

ν̄i
for all i ∈ Ip as the ci’s are sorted in

decreasing order. Hence, S is also feasible for Problem (Aν̄). This contradicts the optimality of S" for
Problem (Aν̄).

Lemma 3.2 implies that S", as an optimal solution of Problem (Aν̄), yields a lower bound on the optimal
function value of Problem (Aν) for all ν ∈ A satisfying ν̄ ≤ ν. This fact can be of interest whenever
Problem (Aν) is solved by applying an algorithm that is based on a branch and bound approach. For the
case that Problem (Aν̄) is infeasible, we state:

Lemma 3.3 Let ν̄ ∈ A. If Problem (Aν̄) is infeasible, then Problem (Aν) is also infeasible for all ν̄ ∈ A
satisfying ν̄ ! ν.

Proof. If ν̄ = ν, there is nothing to show. Otherwise, assume there exists ν ∈ A such that ν̄ ≤ ν and
Problem (Aν) is feasible, i.e. there exists S ∈ X satisfying fi(S) ≤ ci

νi
for all i ∈ Ip. But since ν̄ ≤ ν and the

ci’s are sorted in decreasing order, this further implies that fi(S) ≤ ci
ν̄i

for all i ∈ Ip, i.e. S is also feasible
for Problem (Aν̄) which yields a contradiction.

Applying the results of Lemma 3.2 and Lemma 3.3 we can derive an efficient scheme that efficiently
reduces the number of subproblems that have to be solved to calculate a complete set of efficient solutions
for (MCOP). For multidimensional matrices A, Z ∈ Rm1×...×mp , let A = 1 and Z = 0 denote the matrices
having coefficients of ones and zeros only, i.e. aν = 1 and zν = 0 for all ν ∈ A. We use the coefficients of the
matrix A as an indicator whether the corresponding ε-constraint problem that is uniquely defined by the
position of a coefficient in A has to be solved or not. For ν ∈ A, aν = 1 means that Problem (Aν) has still
to be solved during the course of the algorithm, while aν replaced by the corresponding entry zν implies
that Problem (Aν) does not have to be solved due to Lemmas 3.2 and 3.3.

An algorithmic description of our approach can be found in Algorithm 1. Depending on the given
optimization problem (MCBP) or (MkMAX), either Algorithm 2 or Algorithm 3, described in Subsection 3.1
and Subsection 3.2, is called to solve Problem (Aν). As an ε-constraint approach is used to solve the given
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optimization problem, a filtering for equivalent and dominated solutions has to be performed at the end of
the algorithm. This can be done, e.g., as described in [16] for the triobjective shortest path problem with
two bottleneck objectives.

Theorem 3.4 Algorithm 1 is correct and solves (MCOP) in O(np · T ), where n is the number of elements
contained in the ground set, p is the number of involved bottleneck or k-max objectives and T denotes the
time to solve the associated subproblems applying Algorithm 2 and Algorithm 3, respectively.

This result shows that the class of multiple objective combinatorial optimization problems with one gen-
eral and several bottleneck and k-max objectives can be solved in polynomial time (if T is polynomial) even
though this is in general not possible for the corresponding multiple objective combinatorial optimization
problems with more than one general objective function. This property of (MCBP) and (MkMAX) will be
further analyzed in the subsequent subsections.

3.1. Multiple Objective Bottleneck Problems

We now focus on the efficient solution of the ε-constraint problem (Aν) in the case of bottleneck objectives.
The method suggested generalizes the solution approaches for some combinatorial problems involving at most
two bottleneck objectives reviewed in Section 2. In contrast to these articles, we present an algorithm that
can be applied to any combinatorial optimization problem with an arbitrary number of bottleneck objectives
and an additional objective function f of arbitrary type. In the following we discuss the special properties
of Problem (Aν) for the case that the objectives f1, . . . , fp correspond to p bottleneck objectives b1, . . . , bp.

Let the right hand side of Problem (Aν) be given by arbitrary but fixed values ci
νi

for ν ∈ A and i ∈ Ip.
We consider the ith constraint which is formally given by bi(S) ≤ ci

νi
. Obviously, this constraint implies

that a solution S ∈ X is feasible if and only if its maximum cost coefficient with respect to the cost function
ci is at most ci

νi
. Hence, as for the single objective case, ci

νi
can be treated as a threshold value for the cost

coefficients contained in the set ci(E).
Since for many combinatorial problems the feasible set X is not given explicitly, the elimination of all

elements from the ground set satisfying ci(e) > ci
νi

(to enforce the constraint bi(S) ≤ ci
νi

) may not be
conducive. As in the single-objective case, we therefore suggest a slightly different approach for the solution
of Problem (Aν). We assume in the following that the objective function f depends on a given cost function
w on the elements of the ground set E . To indicate this dependency, we replace f by fw.

Let ν ∈ A be arbitrary but fixed. Instead of removing the elements from E that do not satisfy the
constraint bi(S) ≤ ci

νi
, we define a modified cost function w̃ : E → w(E) ∪ {+∞}, where

w̃(e) =

{

w(e), if ci(e) ≤ ci
νi

∀i ∈ {1, . . . , p},

+∞, otherwise.
(2)

Based on this modified cost function w̃, we solve the unconstrained single objective combinatorial optimiza-
tion problem which is given by (E ,X , fw̃).

Lemma 3.5 If the optimal objective value of the instance (E ,X , fw̃) is finite, the solution obtained is both
feasible as well as optimal for Problem (Aν) with respect to the considered right hand side values ci

νi
, where

i ∈ Ip. Otherwise, Problem (Aν) is infeasible.

Proof. Let S denote the optimal solution of the instance (E ,X , fw̃), and let fw̃(S) < ∞. By construction of
w̃ we have that ci(e) ≤ ci

νi
for all e ∈ S and i ∈ Ip. Hence, S is feasible for Problem (Aν) and fw̃(S) = fw(S).

Suppose that S is not optimal for Problem (Aν). Then there exists S" ∈ X with fw(S") < fw(S) satisfying
bi(S") ≤ ci

νi
for all i ∈ Ip which means that ci(e) ≤ ci

νi
for all e ∈ S" and i ∈ Ip. Hence, fw̃(S") = fw(S") <

fw(S) = fw̃(S) which contradicts the optimality of S for the instance (E ,X , fw̃).
On the other hand, if the optimal objective value for the instance (E ,X , fw̃) is not finite, there does

not exist any feasible solution satisfying ci(e) ≤ ci
νi

for all i ∈ Ip simultaneously. Hence, Problem (Aν) is
infeasible.
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Algorithm 2 Algorithm for solving Problem (Aν) for (MCBP)

Input: An instance (E ,X , (fw, b1, . . . , bp)) of (MCBP) and an index vector ν ∈ A.
Output: An optimal solution S" of Problem (Aν).
1: for all e ∈ E do
2: if ci(e) ≤ ci

νi
for all i ∈ {1, . . . , p} then

3: Set w̃(e) = w(e).
4: else
5: Set w̃(e) = +∞.
6: end if
7: end for
8: Solve the unconstrained problem (E ,X , fw̃) → S".
9: return S".

As a result of Lemma 3.5, Problem (Aν) can be solved without explicitly deleting elements from the
ground set E . After a simple modification of the costs of the given cost function (2), an unconstrained
problem with objective fw̃ has to be solved. This approach is summarized in Algorithm 2.

Corollary 3.6 Algorithm 1 in combination with Algorithm 2 is correct and solves (MCBP) in O(np · T ),
where n is the number of elements contained in the ground set, p is the number of bottleneck objectives and
T denotes the time to solve the unconstrained combinatorial problem with objective function fw̃.

Proof. The result follows immediately from Theorem 3.4 and Lemma 3.5.

Theorem 3.4 implies that (MCBP) is solvable in polynomial time if the single objective problem (E ,X , fw)
is. For the case that the objective fw corresponds to a sum objective, this property is satisfied for many
classes of combinatorial problems like shortest path, spanning tree and assignment problems, to mention
only some examples.

3.2. Multiple Objective k-max Problems

Analogous to Subsection 3.1 we are interested in solving Problem (Aν) where ν ∈ A for the case that
the p given objective functions correspond to the k-max objectives g1, . . . , gp. In contrast to the bottleneck
case there is no obvious way to handle the side constraints gi(S) = ki -max(S) ≤ ci

νi
for the case that ki > 2

efficiently, since elements e ∈ E with c(e) > ci
νi

may be contained in a feasible solution of Problem (Aν). To
overcome this difficulty, we apply a similar auxiliary construction as it is used to solve the single objective
k-max problem presented in [1]. In more detail, we relate each k-max objective to a binary sum objective.

Let ν ∈ A and i ∈ Ip. We use ci
νi

∈ ci(E) as a threshold value and assign binary weights to each element
e ∈ E by setting

wνi
(e) =

{

0, if ci(e) ≤ ci
νi

,

1, if ci(e) > ci
νi

.

The new ith auxiliary function fνi
: X → N is then given by

fνi
(S) =

∑

e∈S

wνi
(e).

Instead of solving Problem (Aν) directly, we consider the auxiliary problem

min f(S)

s.t. fνi
(S) ≤ ki − 1, i = 1, . . . , p,

S ∈ X ,

(Bν)

where νi ∈ {1, . . . , mi} is uniquely determined by the right hand side value ci
νi

of Problem (Aν) for all i ∈ Ip.
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Algorithm 3 Algorithm for solving Problem (Aν) for (MkMAX)

Input: An instance (E ,X , (f, g1, . . . , gp)) of (MkMAX) and an index vector ν ∈ A.
Output: An optimal solution S" of Problem (Aν).
1: for All e ∈ E do
2: for All i = 1 to p do
3: if ci(e) ≤ ci

νi
then

4: Set wνi
(e) = 0.

5: else
6: Set wνi

(e) = 1.
7: end if
8: end for
9: end for

10: Solve the auxiliary problem given by Problem (Bν) → S".
11: return S".

Problem (Bν) can be interpreted as follows: For each i ∈ Ip, the side constraint fνi
(S) ≤ ki−1 introduces

an additional knapsack constraint to the single objective combinatorial optimization problem with objective
function f . These side constraints can be seen as counters on the cardinality of the most expensive elements
from E with respect to the given cost functions c1, . . . , cp which are contained in a feasible solution. For
fixed νi only up to ki−1 of these most expensive elements with respect to the cost function ci are allowed to
be included in a feasible solution, where threshold value ci

νi
indicates which elements have to be considered

as “expensive” and which not. Hence, Problem (Bν) can further be seen as a multiple choice version of the
considered combinatorial optimization problem. We state:

Theorem 3.7 Problem (Aν) is infeasible if and only if Problem (Bν) is infeasible. S" is optimal for
Problem (Aν) if and only if it is optimal for Problem (Bν).

Proof. Since the objectives of Problem (Aν) and Problem (Bν) coincide, it suffices to show that S ∈ X is
feasible for Problem (Aν) if and only if S is feasible for Problem (Bν). So, let S be feasible for Problem (Aν),
i.e.

gi(S) = ki -max
e∈S

{ci(e)} ≤ ci
νi

for all i ∈ Ip.

This implies that at maximum ki − 1 elements e ∈ S satisfy ci(e) > ci
νi

, i.e. fνi
(S) =

∑

e∈S wνi
(e) ≤ ki − 1

for all i ∈ Ip. Hence, S is also feasible for Problem (Bν).
Conversely, let S be feasible for Problem (Bν). For fixed i ∈ Ip this implies that fνi

(S) =
∑

e∈S wνi
(e) ≤

ki − 1, and S contains at maximum ki − 1 elements e ∈ E satisfying ci(e) > ci
νi

for all i ∈ Ip. Hence,
gi(S) = ki -max(S) ≤ ci

νi
, and S is also feasible for Problem (Aν).

Theorem 3.7 implies that we can find an optimal solution for Problem (Aν) by solving Problem (Bν).
Furthermore, Theorem 3.7 can be used to directly relate optimal solutions of Problem (Bν) to efficient
solutions of (MkMAX) and vice versa. In order to prove efficiency for optimal solutions of Problem (Bν),
uniqueness of the optimal solution for this problem yields a sufficient condition (cf. [2]). From the results in
[2] for the general ε-constraint problem it follows:

Corollary 3.8 It holds:

1. Let Sν be an optimal solution of Problem (Bν) for some ν ∈ A. Then Sν is a weakly efficient solution
of (MkMAX).

2. Let Sν be a unique optimal solution of Problem (Bν) for some ν ∈ A. Then Sν is a strictly efficient
solution of (MkMAX).

3. If S" is an efficient solution of (MkMAX), then there exists ν ∈ A such that S" is optimal for
Problem (Bν).
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The algorithmic consequence of Theorem 3.7 for (MkMAX) is summarized in Algorithm 3. The algo-
rithm computes an optimal solution for Problem (Aν) by means of Problem (Bν). To shorten the algorithmic
presentation, the case that Problem (Bν) is infeasible is not treated separately in Algorithm 3. It is assumed
that Algorithm 3 returns a special solution S" indicating that Problem (Bν) and hence Problem (Aν) is
infeasible. Similar to Corollary 3.6 we state:

Theorem 3.9 Algorithm 1 in combination with Algorithm 3 correctly determines the set of non-dominated
solutions YN of (MkMAX) in O(np · T ), where T denotes the maximum time for solving the Problem (Bν)
in each iteration of the algorithm.

Proof. The result follows immediately from Theorem 3.4 in combination with Theorem 3.7.

Theorem 3.9 states a theoretical time bound that is independent from any special class of combinatorial
problems. Since constrained versions of polynomially solvable single objective combinatorial optimization
problems are often NP-hard problems (even if the minimum spanning tree (cf. [23]) or the shortest-path
problem (cf. [4]) is considered), Problem (Bν) is NP-hard to solve in general. However, due to the simple
binary structure of the auxiliary sum objectives fνi

(i ∈ Ip) it may be possible to derive algorithms that can
solve this special type of problem in polynomial time depending on the considered class of combinatorial
problems. In this case, also (MkMAX) is solvable in polynomial time due to Theorem 3.9.

To give an example, we consider the biobjective minimum spanning tree problem, where one of the two
objective functions is given as a k-max objective. Let a connected graph G = (V, A) be given, where V and
A denote the set of nodes and the set of edges of G, respectively. Furthermore, let f and g1 = k1 -max(S)
denote an arbitrary sum objective and a k-max objective, respectively, where k1 ∈ {2, . . . , |V |−1}. To solve
Problem (Bν) efficiently, we use the algorithm proposed in [24] to solve matroid intersection problems. The
authors stated a time bound of O(m + n log(n)) for their approach, where |V | = n and |A| = m. Applying
this result to Theorem 3.9 we conclude:

Corollary 3.10 The biobjective minimum spanning tree problem on a connected graph G = (V, A) with a
sum objective and a k-max objective can be solved in O(m2 + mn log(n)), where |V | = n and |A| = m.

4. Conclusions and Future Research

In this article we considered general multiple objective combinatorial optimization problems with one
arbitrary and one or several additional bottleneck or k-max objective functions. An efficient solution ap-
proach based on the iterative solution of ε-constraint scalarizations was presented which is independent
of the specific combinatorial problem considered. The solution of the resulting subproblems is discussed
both for the bottleneck and the k-max case, leading to a polynomial time algorithm for several important
cases like shortest paths, spanning tree and assignment problems in the bottleneck case, and spanning tree
problems in the k-max case.

The k-max case is particularly interesting since the involved ε-constraint problems correspond to con-
strained versions of the respective combinatorial problems which are often NP-hard to solve. In this context,
however, the constraints have some specific (binary) structure which may allow polynomial time solution
methods . Further research should focus on other specific problem classes like shortest paths or knapsack
problems to see whether a polynomial time solution is also possible in other cases.

Furthermore, the complexity of the overall algorithm can possibly be improved by implementing “warm
start recursions”, i.e. by using the solution of a previous iteration of Algorithm 3 as a “warm start solution”
for the next ε-constraint problem to solve. Since only a few values of the involved cost coefficients change,
the former optimal solution is either feasible for the new problem, or it could at least provide a good bound
on the optimal objective value of the new subproblem that has to be solved.

Alternatively, neighborhood search techniques (based on a simple exchange of items) could be used to
find efficient solutions for the associated multiple objective problem with binary objectives that correspond
to optimal solutions of Problem (Bν). However, if such an approach is applied, it must be guaranteed that
the set of efficient solutions is connected with respect to the considered swap operation, i.e. all efficient
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solutions can be constructed by simple swaps involving efficient solutions only. Note that this property fails
for many classes of combinatorial problems in general (cf. [25]). However, due to the simple structure of the
involved binary objectives, connectedness may hold for the efficient set in this context (cf. [26]).
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