Genomische Diversität und Evolution von Virulenzdeterminanten in *Streptococcus* spp.

Vom Fachbereich Biologie der Technischen Universität Kaiserslautern zur Verleihung des akademischen Grades "Doktor der Naturwissenschaften" genehmigte Dissertation

> von Dipl.-Biol. Yvonne Schähle

Datum der wissenschaftlichen Aussprache: 03.12.2010

Vorsitzender der Prüfungskommission: Herr Prof. Dr. John A. Cullum

- 1. Berichterstatterin: Frau Prof. Dr. Regine Hakenbeck
 - 2. Berichterstatter: Herr Prof. Dr. Ekkehard Neuhaus

Kaiserslautern, 2010 D 386

Die vorliegende Arbeit wurde am Lehrstuhl für Mikrobiologie des Fachbereichs Biologie der Technischen Universität Kaiserslautern unter der Leitung von Frau Prof. Dr. Regine Hakenbeck angefertigt.

Hiermit bestätige ich, Yvonne Schähle, die vorliegende Arbeit selbstständig und nur unter Verwendung der angegebenen Hilfsmittel und Quellen angefertigt zu haben.

Hamburg, den 22.09.10

Inhaltsverzeichnis

1.	EINLEITUNG	1
1.1	Die Gattung Streptococcus	1
1.1.1	Klassifizierung	2
1.1.2	Streptococcus mitis	6
1.1.3	Streptococcus oralis	6
1.1.4	Streptococcus pneumoniae	7
		_
1.2	Virulenzfaktoren von S. pneumoniae	7
1.3	Resistenz gegen β-Laktamantibiotika	10
1.3.1	Penicillin-Bindeproteine (PBP)	10
1.3.2	Horizontaler Gentransfer in <i>Streptococcus</i> spp.	11
1.4	Natürliche genetische Kompetenz in Streptococcus	12
1.4.1	Regulation der Kompetenz.	13
1.5	Zielsetzung dieser Arbeit	16
0		47
Ζ.		17
2.1	Bakterienstämme	17
2.1.1	Orale Streptokokken	17
2.1.2	Streptococcus pneumoniae	19
2.2	Oligonukleotide	19
23	Nährmedien	າງ
2.3	C-Modium (CnH8)	22
2.3.1	0-Medium	24
2.3.2	D-Blutagar	24
2.3.4	Nährmedien-Zusätze	24
		•
2.4	Mikrobiologische Methoden	25
2.4.1	Herstellung von Glycerinkulturen	25
2.4.2		20
2/3	4.2.1 Streptoronnen	25
2.4.0	Mikroskonie	26
245	Bestimmung der minimalen Hemmkonzentration (MHK)	26
2.	4.5.1 E-Test	27
2.	4.5.2 Plattenverdünnungsmethode	27
2.4.6	Transformation von S. pneumoniae und S. mitis	28
2.	4.6.1 Herstellung kompetenter Zellen	28
2.	4.6.2 Transformation	28
25	Arbeiten mit Nukleinsäuren	20
251	Isolierung chromosomaler DNA aus S pneumoniae	29 20
2.0.1	5.1.1 7ellivse	29
2	5.1.2 Phenol-Extraktion	29
2	5.1.3 Präzipitation der DNA	30
2.5.2	Isolierung chromosomaler DNA aus oralen Streptokokken	31
2.5.3	Agarose-Gelelektrophorese	32
2.5.4	DNA-Konzentrationsbestimmung	33

2.6 2.6.1	Polymerase-Kettenreaktion (Polymerase Chain Reaction, PCR) Reinigung von PCR-Produkten	34 36
2.7	DNA-Sequenzierung	36
2.8	MLST-Analyse	38
2.9	DNA-Techniken	39
2.9.1	Restriktionsverdau	39
2.9.2	2 Ligation von DNA-Fragmenten	40
2.9.3	Inverse Polymerase-Kettenreaktion (iPCR)	40
2.10	DNA-Microarray-Analyse	42
2.10	.1 Verwendete Oligonukleotid-Sets	42
2.	10.1.1 Das S. mitis B6-Oligonukleotid-Set	42
2.	10.1.2 Das S. pneumoniae R6/TIGR4-Oligonukleotid-Set mit Zusatzplatte	44
2.10	.2 Herstellung des Biochips	44
2.10	.3 Markierung der genomischen DNA mittels Fluoreszenz-Farbstoffen	46
2.10	.4 Hybridisierung	47
2.10	.5 Scannen des Biochips	49
2.10	.6 Computer-gestützte Analyse der Daten	50
2.11	Verwendete Computer-Programme und Datenbanken	51
2.12	Bezugsquellen	52
3.	ERGEBNISSE	53
Voralo	inhanda Canom Analyzan yan 00 aralan Strantakakkan laalatan	E 2
vergie	chende Genom-Analysen von 22 oralen Streptokokken-isolaten	55
3.1	Charakterisierung der oralen Streptokokken-Isolate	54
3.1.1	Auswahl der Stämme	54
3.1.2	2 MLST-Analyse der Stämme U-O12 und U-O16	54
3.1.3	B Die Stämme <i>S. mitis</i> M3 1 und M3 4	60
3.	1.3.1 Morphologie	60
3.	1.3.2 I ransformierbarkeit	62
3.1.4	MHK-wert-Bestimmung	64
3.2	DNA-Microarray-Analysen unter Verwendung des S. mitis B6-Oligonukleotid-Sets	66
3.2.1	Auswertung der Daten	68
3.	2.1.1 Hybridisierungsexperimente	68
3.	2.1.2 Loess-Normalisierung	/0
3.2.2	71	ten
3.	2.2.1 Klassifizierung der Gene	71
3.2.3	Globaler Vergleich der Teststämme mit S. mitis B6	75
3.	2.3.1 Unterschiede zwischen <i>S. mitis</i> und <i>S. oralis</i>	78
3.	2.3.2 Das Streptococcus spp"Kerngenom"	80
3.	2.3.3 <i>S. mitis</i> B6-spezifische Gene	87
3.3	DNA-Microarray-Analysen unter Verwendung des S. pneumoniae R6/TIGR4-	• -
		89
3.3.1	Giobaler Vergleich der Teststamme mit <i>S. pneumoniae</i>	89
3.	3.1.1 III 3. IIIIIIII B6 TENIENDE 3. pneumoniae K6/ LIGK4-Gene und Inr Vorkommen in anderer	1
0	Silepi0000000 Spp	93 02
3.		93
3.4	Vergleichende Analysen einzelner Gengruppen in Streptococcus spp.	97
3.4.1	Mobile und repetitive Elemente	97
	Line Prophago (JRG Lind Phagon-Vorwandto (Con_(Cluster	102

3.4.3	3 Antibiotika-Resistenzgene	108
3.4.4	4 Cholin-Bindeproteine	113
3.4.5	5 Oberflachenproteine mit LPx I G-Motiv	119
3.4.6	Virulenztaktoren im Überblick	123
3.5	Die Autolysin/Pneumolysin (lytA/ply)-Region in S. mitis U-O1 und S. mitis RSA4	127
3.5.1	Vergleich der Pneumolysin-Sequenzen von S. mitis U-O1 und S. mitis RSA4	134
3.5.2	2 Vergleich der lytA-Sequenzen von S. mitis U-O1 und S. mitis RSA4	136
4.	DISKUSSION	138
4.1	Genomische Diversität der oralen Streptokokken	138
	· · · · · · · · · · · · · · · · · · ·	
4.2	Gemeinsame "Kerngene" der oralen Streptokokken	141
4.3	Horizontaler Gentransfer innerhalb der Gattung Streptococcus und die Rolle bei der	
-	Evolution von S. pneumoniae	143
4.3.1	Mobile Elemente, Antibiotika-Resistenzgene und Phagen-verwandte Gen-Cluster	143
4.3.2	2 Virulenz-Gene	145
44	Evolution von Pathogenitätsfaktoren innerhalb der Gattung Streptococcus am Beisi	niel der
	Autolysin/Pneumolysin (<i>lytA/ply</i>)-Region	149
4.5	Ausblick	150
5.	ZUSAMMENFASSUNG	153
6		155
0.		155
7.	ANHANG	183
DANK	SAGUNG	184
LEBE	NSLAUF	185
		-
PUBLI	IKATIONEN	186

Tabellenverzeichnis

Tab. 2.1: Verwendete S. mitis-Stämme	
Tab. 2.2: Verwendete <i>S. oralis</i> Stämme	
Tab. 2.3: Verwendete <i>S. pneumoniae</i> -Stämme	19
Tab. 2.4: Oligonukleotide zur MLST-Analyse	20
Tab. 2.5: Oligonukleotide zur Amplifikation und Sequenzierung von ply	// <i>mly</i> 20
Tab. 2.6: Oligonukleotide zur Amplifikation und Sequenzierung der lyte	∛ <i>mly</i> -Region in <i>S. mitis</i> 21
Tab. 2.7: Zusammensetzung des C-Mediums	22
Tab. 2.8: Zusammensetzung der Einzelkomponenten	22
Tab. 2.9: Zusätze der Einzelkomponenten	23
Tab. 2.10 D-Agar	24
Tab. 2.11: Nährmedien-Zusätze	24
Tab. 2.12: Konzentrationsbereiche auf den E-Test-Streifen	27
Tab. 2.13: Lösungen zur Präparation chromosomaler DNA aus S. pne	<i>umoniae</i> 30
Tab. 2.14: Lösungen zur Präparation chromosomaler DNA aus oralen	Streptokokken31
Tab. 2.15: Reagentien für die Agarose-Gelelektrophorese	
Tab. 2.16: Reaktionsansatz bei Verwendung der RedGoldstar-Polyme	rase35
Tab. 2.17: Reaktionsansatz bei Verwendung der iProof-Polymerase	35
Tab. 2.18: PCR-Programm bei Verwendung der Goldstar-Polymerase	
Tab. 2.19: PCR-Programm bei Verwendung der iProof-Polymerase	
Tab. 2.20: Reaktionsansatz der Sequenzreaktion	
Tab. 2.21: Programm der Sequenzreaktion	
Tab. 2.22: Zur MLST-Analyse verwendete Haushaltsgene und Primerp	oaare39
Tab. 2.23: Restriktionsansatz	40
Tab. 2.24: Ligationsansatz iPCR	40
Tab. 2.25: Zur inversen PCR verwendete Restriktionsenzyme	
Tab. 2.26: Zusammensetzung des Spotting-Puffers	43
Tab. 2.27: Einstellungen des Spot Array Printing-Protokolls	45
Tab. 2.28: Ansatz zur Markierung von chromosomaler DNA	47
Tab. 2.29: Hybridisierungsprotokoll	
Tab. 2.30: Hybridisierungspuffer und Lösungen	
Tab. 3.1: Transformationseffizienzen von S. mitis M3 1 und M3 4 oh	ne CSP beziehungsweise
mit CSP	64
Tab. 3.2: Einteilung nach MHK	65

Tab. 3.3: Penicillin- und Cefotaxim-Resistenzprofil der oralen Streptokokken sowie von
S. pneumoniae R665
Tab. 3.4: In <i>S. oralis</i> im Vergleich zu <i>S. mitis</i> nicht hybridisierte Gene
Tab. 3.5: Das Streptococcus spp"Kerngenom"
Tab.3.6: S. mitis B6-spezifische Gene
Tab. 3.7: S. pneumoniae R6/TIGR4-spezifische Gene
Tab. 3.8: Hybridisierungssignale der Teststämme hinsichtlich ISSmi1 bis 5 aus <i>S. mitis</i> B6 97
Tab. 3.9: Hybridisierungssignale der Teststämme im Bezug auf Tn5801 aus S. mitis B699
Tab. 3.10: Hybridisierungssignale der Teststämme hinsichtlich der BOX- und RUP-Elemente
aus <i>S. mitis</i> B6101
Tab. 3.11: Hybridisierungssignale von S. mitis RSA4 und S. mitis U-O8 im Bezug auf Φ B6 102
Tab. 3.12: Hybridisierungssignale der Teststämme bezüglich der Phagen-verwandten Gen-
Cluster aus <i>S. mitis</i> B6105
Tab. 3.13: Hybridisierungssignale der Teststämme im Bezug auf das Aminoglykosid-Resistenz-
Cluster aus <i>S. mitis</i> B6109
Tab. 3.14: Hybridisierungssignale der Teststämme bezüglich der sechs PBP aus <i>S. mitis</i> B6112
Tab. 3.15: Hybridisierungssignale der Teststämme hinsichtlich der 22 CBP aus S. mitis B6114
Tab. 3.16: Hybridisierungssignale der Teststämme bezüglich der CBP aus S. pneumoniae
TIGR4 und R6115
Tab. 3.17: Hybridisierungssignale der Teststämme im Bezug auf die lic-Operons aus
S. pneumoniae R6/TIGR4118
Tab. 3.18: Hybridisierungssignale der Teststämme hinsichtlich der 18 LPxTG-Proteine aus
<i>S. mitis</i> B6
Tab. 3.19: Hybridisierungssignale der Teststämme im Bezug auf die LPxTG-Proteine aus
S. pneumoniae TIGR4 und R6121
Tab. 3.20: Hybridisierungssignale der Teststämme bezüglich der Virulenzgene aus
S. pneumoniae
Tab. 3.21: Hybridisierungssignale der Teststämme im Bezug auf S. mitis B6-Gene, die
Homologe zu Virulenzfaktoren von <i>S. pneumoniae</i> darstellen
Tab. 3.22: iPCRs zur Aufklärung der genetischen Organisation der lytA/ply-Region von S. mitis
RSA4131
ANHANG 183
Tab. 7.1: Genom-Vergleiche von S. mitis, S. oralis und S. pneumoniae R6 mittels des
<i>S. mitis</i> B6-Biochips
Tab 7.2: Das S. mitis Kornsonom"

- Tab. 7.2: Das *S. mitis*-"Kerngenom"
- Tab. 7.3: S. mitis B6-Gene, die mit keinem der S. mitis-Teststämme hybridisierten
- Tab. 7.4: Das "Kerngenom" von S. mitis B6 und S. oralis

- Tab. 7.5: S. mitis B6-Gene, die mit keinem der S. oralis-Teststämme hybridisierten
- Tab. 7.6: Gemeinsame Gene von S. mitis B6 und S. pneumoniae R6
- Tab. 7.7: S. mitis B6-Gene, die nicht mit S. pneumoniae R6 hybridisierten
- Tab. 7.8: *S. mitis* B6-Gene, die mit allen *S. oralis*-Teststämmen, jedoch nur vereinzelt mit *S. mitis* hybridisierten
- Tab. 7.9: *S. mitis* B6-Gene, die mit allen *S. mitis*-Teststämmen, jedoch nur vereinzelt mit *S. oralis* hybridisierten
- Tab. 7.10: *S. mitis* B6-Gene, die mit keinem der *S. mitis*-Teststämme, jedoch vereinzelt mit *S. oralis* hybridisierten
- Tab. 7.11: *S. mitis* B6-Gene, die mit keinem der *S. oralis*-Teststämme, jedoch vereinzelt mit *S. mitis* hybridisierten
- Tab. 7.12: Genom-Vergleiche der oralen Streptokokken-Spezies mittels des *S. pneumoniae* R6/TIGR4-Biochips
- Tab. 7.13: Das "Kerngenom" von S. pneumoniae R6/TIGR4 und S. mitis
- Tab. 7.14: Mit *S. mitis* B6 nicht hybridisierte *S. pneumoniae* R6/TIGR4-Gene und ihr Vorkommen in *Streptococcus* spp.

Abbildungsverzeichnis

Abb.	1.1: Auf MLST-Analysen basierender phylogenetischer Stammbaum von Streptococcus
:	spp5
Abb.	1.2: Virulenzfaktoren von <i>S. pneumoniae</i> 9
Abb.	1.3: Modell für die Evolution von Mosaik-pbp-Genen in S. pneumoniae
Abb.	1.4: Regulation der genetischen Kompetenz in <i>S. pneumoniae</i>
Abb.	2.1: Prinzip der inversen PCR41
Abb.	3.1: Lokalisierung der sieben MLST-Gene im Genom von S. pneumoniae R6
Abb.	3.2: Phylogenetischer Baum von Streptococcus spp. mit Eingliederung von U-O12 und
	U-O16 in die <i>S. oralis</i> -Gruppe56
Abb.	3.3: Phylogenetische Stammbäume von Streptococcus spp. für einzelne MLST-Gene 58
Abb.	3.4: Morphologische Unterschiede der Stämme S. mitis M3 1 und M3 4 bei Wachstum in
	Flüssigkultur61
Abb.	3.5: Zellmorphologie der Stämme <i>S. mitis</i> M3 1 und M3 462
Abb.	3.6: Wachstum von <i>S. mitis</i> M3 1 und M3 463
Abb.	3.7: Nicht normalisierte Scatter Plots der Fluoreszenzintensitäten
Abb.	3.8: Beispiel einer Global Loess-Normalisierung71
Abb.	3.9: Bestimmung der Hintergrund-Intensität
Abb.	3.10: Differenzierung der Gen-Cluster73
Abb.	3.11: Zusammenhang zwischen Schwellwert der linearen Diskriminante und Anzahl an
	Falsch-Positiven
Abb.	3.12: Genom-Vergleiche von S. mitis, S. oralis und S. pneumoniae R6 mittels eines
	S. mitis B6-spezifischen Oligonukleotid-Microarrays76
Abb.	3.13: Anteil gemeinsamer beziehungsweise B6-spezifischer kodierender Sequenzen bei
,	Vergleich der Genome aller untersuchten <i>Streptococcus</i> spp. mit dem von <i>S. mitis</i> B677
Abb.	3.14: Genom-Vergleiche der oralen Streptokokken-Spezies mittels eines S. pneumoniae
	R6/TIGR4-spezifischen Oligonukleotid-Microarrays91
Abb.	3.15: Anteil gemeinsamer beziehungsweise S. pneumoniae-spezifischer kodierender
	Sequenzen bei Vergleich der Genome aller untersuchten Streptococcus spp. mit dem von
	S. pneumoniae R6/TIGR492
Abb.	3.16: Organisation von Tn <i>5801</i> in <i>S. mitis</i> B698
Abb.	3.17: Genetische Organisation des Aminoglykosid-Resistenz-Clusters von S. mitis B6.109
Abb.	3.18: Genetische Organisation der lic-Operons aus S. pneumoniae R6 und S. oralis U-O5

Abb. 3.19: Vergleich der <i>dinF</i> -Region von <i>S. pneumoniae</i> R6 und <i>S. mitis</i> B6
Abb. 3.20: Vergleich der <i>lytA/ply</i> -Region von <i>S. pneumoniae</i> R6 und <i>S. mitis</i> U-O1130
Abb. 3.21: Sequenzierte Abschnitte der lytA/ply-Region aus S. mitis RSA4 im Vergleich zu
S. pneumoniae R6 und Alignment der "direct repeat"-Sequenzen von S. mitis B6, U-O1,
RSA4 sowie <i>S. pneumoniae</i> R6132
Abb. 3.22: IytA-Gene und flankierende Bereiche der temperenten Phagen aus S. mitis B6 und
<i>S. mitis</i> RSA4
Abb. 3.23: Alignment der Ply-Sequenzen von S. mitis U-O1 und S. mitis RSA4 sowie weiterer
S. mitis-Isolate
Abb. 3.24: Alignment der lytA-Sequenzen von S. mitis U-O1, S. mitis RSA4 und des RSA4-
Prophagen mit der "typischen" Sequenz von S. pneumoniae R6
Abb. 4.1: Genomische Variation der S. oralis-, S. mitis- und S. pneumoniae-Stämme bei
Verwendung des <i>S. mitis</i> B6-Chips139
Abb. 4.2: Genomische Variation der S. oralis- und S. mitis-Stämme bei Verwendung des
S. pneumoniae R6/TIGR4-Chips140
Abb. 4.3: Genetische Verwandtschaft von <i>S. pneumoniae</i> und <i>S. mitis</i>

Abkürzungsverzeichnis

A	Alanin
ABC	ATP-Binding-Cassette
ADP	Adenosindiphosphat
AS	Aminosäure(n)
ATP	Adenosintriphosphat
bp	Basenpaar(e)
BSA	Bovine Serum Albumine
С	Cytosin
CBP	Cholin-Bindeprotein
cfu	colony forming units
CGH	comparative genome hybridization
СРМ	Cytoplasmamembran
CSP	Competence Stimulating Peptide
CTP	Cytidintriphosphat
Ctx	Cefotaxim
СуЗ	Cyanine-3
Cy5	Cyanine-5
Da	Dalton
ddNTP	Didesoxynukleotidtriphosphat
DNA	Desoxyribonukleinsäure
dNTP	Desoxyribonukleotidtriphosphat
Doc	Desoxycholat
EDTA	Ethylendiamintetraessigsäure
FDR	False Discovery Rate
G	Guanin
GTP	Guanosintriphosphat
hmw	high molecular weight
ICE	integratives und konjugatives Element
iPCR	inverse Polymerase-Kettenreaktion
IS	Insertionssequenz
kb	Kilobase(n)
kDa	Kilodalton
lmw	low molecular weight

Μ	Molar
МНК	minimale Hemmkonzentration
MLSA	Multi Locus Sequence Analysis
MLST	Multi Locus Sequence Typing
mRNA	messenger RNA
Ν	Nephelo
n.d.	not determined
NCCLS	National Committee for Clinical Laboratory Standards
NGS	Next Generation Sequencing
ORF	open reading frame
р. А.	pro analysi
PBP	Penicillin-Bindeprotein
PenG	Penicillin G
рН	pondus Hydrogenii
PTS	Phosphotransferase-System
RH	Relative Humidity
RNA	Ribonukleinsäure
RNase	Ribonuklease
rpm	Umdrehungen pro Minute
rRNA	ribosomale Ribonukleinsäure
RT	Raumtemperatur
SDS	Sodium Dodecyl Sulfate
Ssb-Protein	single-stranded DNA binding-Protein
SSC	Saline Sodium Citrate
Т	Thymin
TAE	Tris-Acetat-EDTA
TE	Tris-EDTA
Tet	Tetracyclin
T _M	Schmelztemperatur
tRNA	transfer RNA
U	Units

1. Einleitung

Orale Streptokokken sind Teil der normalen Flora des Menschen. Sie leben als harmlose Kommensale in Mundhöhle und Oropharynx ihres Wirtes. Unter geeigneten Bedingungen können sie jedoch als opportunistische Pathogene Krankheiten wie Karies bis hin zu Endokarditis hervorrufen (Hamada & Slade, 1980; Douglas *et al.*, 1993; Dyson *et al.*, 1999). Im Gegensatz zu den meist freundlichen Kommensalen ist ihr naher Verwandter *Streptococcus pneumoniae* als humanpathogenes Bakterium weltweit für über 1,6 Millionen Todesfälle im Jahr verantwortlich (WHO, 2007). Bei 20 bis 60 Prozent aller Menschen lebt *S. pneumoniae* unauffällig im Nasenrachenraum. Das Bakterienwachstum wird durch die Konkurrenz mit anderen residenten Mikroorganismen und durch das Immunsystem des Wirtes eingeschränkt. Besonders bei immungeschwächten Personen verursacht *S. pneumoniae* Erkrankungen wie Pneumonie, Meningitis, Otitis media, Sinusitis und Bakteriämie.

Vergleiche auf DNA-Ebene ergaben überraschende Homologien zwischen *S. pneumoniae* und kommensalen Streptokokken (Hakenbeck *et al.*, 2001; Denapaite *et al.*, 2010). Inzwischen ist erwiesen, dass die genannten Spezies die Fähigkeit zum Austausch genetischer Information besitzen (Whatmore *et al.*, 2000; Hakenbeck *et al.*, 2001; King *et al.*, 2005), was innerhalb der Mitis-Gruppe-Streptokokken aufgrund ihrer natürlichen Kompetenz besonders geläufig ist. Genom-Sequenzierungen brachten mehrere Gene mit Mosaik-Struktur zum Vorschein: ein Hinweis auf horizontalen Gentransfer. Dieses "Teilen" von genetischem Material macht es zunehmend schwierig, die Grenzen zu bestimmen, die eine bestimmte Spezies definieren. Die vorliegende Arbeit leistet einen Beitrag zur Spezifizierung von Streptokokken der Mitis-Gruppe und zur Rolle von horizontalem Gentransfer für die Evolution von *S. pneumoniae*.

1.1 Die Gattung Streptococcus

Streptokokken (aus dem Griechischen: streptos = gewunden, coccus = Korn) zählen zu den grampositiven *Lactobacillales* (Milchsäurebakterien) und werden mit einem GC-Gehalt unter 50 Molprozent (mol%) dem *Clostridium*-Zweig der grampositiven Bakterien zugeordnet (Schleifer & Ludwig, 1995).

Streptokokken sind unbewegliche, nicht-sporulierende, runde bis ovoide Bakterien mit einem Zelldurchmesser von 0,5 bis 1,5 μ m. Typischerweise wachsen sie in Paaren (Diplokokken) oder in unterschiedlich langen Ketten. Vertreter dieser Gattung sind aerotolerante Anaerobier, das heißt ihnen fehlen Teile der Atmungskette, dennoch können sie in Anwesenheit von Sauerstoff wachsen. Des Weiteren fehlt ihnen die zur Reduktion von H₂O₂ benötigte Katalase. Streptokok-

ken betreiben die homofermentative Milchsäuregärung, deren Hauptprodukt Lactat ist. Da Streptokokken nur eine begrenzte Biosynthesefähigkeit besitzen, benötigen sie für ihr Wachstum ein komplexes Nährmedium, das neben einer Kohlenstoffquelle auch Aminosäuren, Peptide, Purine, Pyrimidine, Cholin und Vitamine enthält. Das Wachstum auf Festmedien erfordert den Zusatz von Blut oder Serum (Hardie & Whiley, 1995). Die optimale Wachstumstemperatur beträgt 37 °C.

Die Gattung *Streptococcus* umfasst eine Vielzahl heterogener Arten, die im Körper von Mensch und Tier anzutreffen sind. Die kommensalen Streptokokken, zu denen die oralen Streptokokken gehören, besiedeln als Teil der normalen Flora die Schleimhäute der Mundhöhle und der oberen Atemwege, den Verdauungs- und Urogenitaltrakt sowie die Haut des Menschen. Als opportunistische Pathogene können sie jedoch auch Krankheiten wie Karies, Endokarditis und Abszesse hervorrufen. Die Arten *S. pneumoniae*, *S. pyogenes* und *S. agalactiae* zählen zu den wichtigsten humanpathogenen Streptokokken (Hardie & Whiley, 1995; Patterson, 1991).

1.1.1 Klassifizierung

Wie bereits erwähnt, findet man unter den zur Zeit insgesamt 92 bekannten *Streptococcus*-Spezies (Park *et al.*, 2010) etliche Pathogene. Eine eindeutige Differenzierung der Stämme ist für die medizinische Diagnostik und Behandlung unerlässlich. Aufgrund der engen genetischen Verwandtschaft hat sich die korrekte Identifizierung und Klassifizierung dieser Organismen jedoch lange Zeit als nicht besonders trivial herausgestellt (Whiley & Beighton, 1998; Whatmore *et al.*, 2000; Mager *et al.*, 2003). Im Folgenden werden die verschiedenen Methoden vom Anfang bis zum heutigen Stand besprochen.

Die Art der Hämolyse auf bluthaltigen Festmedien wurde schon früh zur Differenzierung der Milchsäurebakterien verwendet (Brown, 1919). Hierbei werden drei verschiedene Formen unterschieden. Bei der β -Hämolyse, die zum Beispiel für *S. pyogenes* charakteristisch ist, sind die Bakterienkolonien von einer klaren Hämolysezone roter Blutkörperchen umgeben, die auf die Produktion von bestimmten Exotoxinen (Hämolysinen) zurückzuführen ist. In dieser Arbeit verwendete Streptokokken wie *S. pneumoniae, S. mitis* und *S. oralis* bilden dagegen einen grünen bis bräunlichen Lysehof, was durch eine unvollständige Lyse der Erythrozyten zustande kommt ("viridans" oder "vergrünende" Streptokokken). Diese Form der Hämolyse wird als α -Hämolyse bezeichnet. In der Literatur werden orale Streptokokken wie *S. mitis* und *S. oralis* demnach häufig als "viridans Streptokokken" bezeichnet. Allerdings ist diese Bezeichnung nicht ganz korrekt, da einige viridans Streptokokken-Arten nicht aus der Mundhöhle stammen (Facklam, 2002). Das Fehlen von hämolytischer Aktivität bezeichnet man als γ -Hämolyse. Da die Intensität der

Hämolyse von äußeren Faktoren wie der Art des verwendeten Blutes, der Medium-Zusammensetzung und den Wachstumsbedingungen der Bakterienzellen beeinflusst wird (Hardie & Whiley, 1995), erwies sich diese Form der Differenzierung jedoch nicht als besonders geeignet.

Ein wichtiger Schritt zur Klassifizierung der Streptokokken war die Etablierung serologischer Methoden, mit denen bestimmte Zellwand- und Oberflächen-Antigene erkannt werden. Je nach Existenz von spezifischen Kohlenhydrat-Antigenen, erfolgt die Einteilung in sogenannte Lancefield-Gruppen, die wiederum in Serotypen unterteilt werden (Lancefield, 1933). Allerdings gibt es auch bei dieser Art der taxonomischen Bestimmung gewisse Einschränkungen: Nicht alle Streptokokken haben ein eigenes Antigen, manche Antigene treten in mehreren Arten auf.

In den letzten Jahren haben vor allem molekularbiologische Methoden wie die DNA-DNA-Hybridisierung (Kilpper-Bälz *et al.*, 1985; Arbique *et al.*, 2004) und die 16S-rRNA-Sequenzanalyse (Bentley *et al.*, 1991) neue Erkenntnisse hinsichtlich der phylogenetischen Verwandtschaft vieler Organismen geliefert. Kawamura und Mitarbeiter unterteilten 1995 (Kawamura *et al.*, 1995) die Streptokokken in sechs große phylogenetische Gruppen: die Pyogenes-, die Anginosus-, die Mitis-, die Salivarius-, die Bovis- und die Mutans-Gruppe.

Zusätzlich werden weiterhin klassische phänotypische und physiologische Analysen durchgeführt. Im Gegensatz zu anderen α-hämolytischen Streptokokken zeigt *S. pneumoniae* eine gewisse Sensitivität gegenüber Optochin (Bowers & Jeffries, 1955) und lysiert in Gegenwart von Gallensalzen (Neufeld *et al.*, 1928) oder Detergentien. Dennoch bringen auch diese Methoden einige Probleme mit sich. Kommerziell erhältliche Kits, welche die Arten anhand physiologischer Reaktionen differenzieren, haben speziell im Falle der Mitis-Gruppe eine Genauigkeit von weniger als 80 % (Kawamura *et al.*, 1999). Selbst bei 16S-rRNA-Sequenzen kann die Homologie zwischen einigen dieser Spezies größer als 99 % sein (Kawamura *et al.*, 1995; Haanperä *et al.*, 2007; Park *et al.*, 2010).

Mittlerweile haben sich bestimmte Haushaltsgene als geeignete phylogenetische Marker zur Differenzierung von Klonen innerhalb einer Spezies erwiesen. Die "Multi Locus Sequence Typing" (MLST)-Analyse zur Identifizierung von *Streptococcus* spp. (Enright & Spratt, 1998; Hanage *et al.*, 2005) beruht auf DNA-Sequenz-Vergleichen von aktuell sieben "housekeeping"-Genen (Chi *et al.*, 2007). Sie stellt eine etablierte Standard-Methode zur Klassifizierung einer Vielzahl von pathogenen Bakterien wie zum Beispiel *S. pneumoniae* dar und wurde unter anderem auch im Rahmen dieser Arbeit zur Einteilung von oralen Streptokokken angewandt (Kapitel 2.8 und 3.1.2). Die 2009 beschriebene "Multi Locus Sequence Analysis" (MLSA) dient speziell der Klassifizierung von viridans Streptokokken (Bishop *et al.*, 2009). Da bereits ein Ein-Basenpaar-Unterschied detektiert werden kann, sind die mittels MLST/MLSA erhaltenen Ergebnisse sehr eindeutig. Zudem sammeln sich Mutationen in Haushaltsgenen relativ langsam an, sodass die Allel-Profile der entsprechenden Bakterien ausreichend stabil sind und die ge-

nannten Analysen effektiv angewandt werden können. Inzwischen existiert sowohl eine MLST-(www.mlst.net), als auch eine MLSA-Datenbank (www.emlsa.net) im Internet. Letztere beinhaltet speziell Gen-Sequenzen von viridans Streptokokken (Bishop *et al.*, 2009), während die MLST-Datenbank Sequenzen von sämtlichen Pathogenen einschließlich *S. pneumoniae*, *S. pyogenes* und *S. agalactiae* enthält.

Zu den oralen Streptokokken gehören aktuell fünf Gruppen: die Mutans-, die Salivarius-, die Sanguinis-, die Anginosus- und die Mitis-Gruppe (Whiley & Beighton, 1998; Facklam, 2002). Letztere beinhaltet die für diese Arbeit relevanten Spezies *S. mitis*, *S. oralis* und *S. pneumoniae*. Abb. 1.1 zeigt die anhand von MLST-Daten ermittelte enge genetische Verwandtschaft dieser drei *Streptococcus*-Arten.

Abb. 1.1: Auf MLST-Analysen basierender phylogenetischer Stammbaum von Streptococcus spp. (Chi et al., 2007). Gezeigt sind drei Untergruppen des Mitis-Zweiges: *S. pneumoniae, S. mitis* und *S. oralis.* Die Farbe der Punkte kennzeichnet die Herkunft der einzelnen untersuchten Stämme: gelb = Honkong, rot = Südafrika, grün = Spanien, weiß = Deutschland, schwarz = NCTC *S. mitis*. Referenzstämme, blau = Ungarn. Durch einen schwarzen Pfeil hervorgehoben ist *S. mitis* B6, der bisher einzige *S. mitis*-Stamm, dessen Genom-Sequenz vollständig entschlüsselt wurde (Denapaite et al., 2010). Einige Isolate besitzen *pbp2x*-Gene, die zu einer in *Streptococcus* spp. weit verbreiteten Hauptfamilie an Mosaik-*pbp2x* zählen (Abschnitt 1.3.2). Diese sind in Form von roten Balken hinter den entsprechenden Stämmen dargestellt. Der angegebene Maßstab ist ein Anhaltspunkt für die genetische Divergenz der Stämme.

Im Folgenden wird auf die Merkmale und Eigenschaften der in Abb. 1.1 dargestellten drei Gruppen eingegangen.

1.1.2 Streptococcus mitis

Bei S. mitis handelt es sich um einen kommensalen Bewohner der oberen Atemwege. Erstmals wurde diese Streptococcus-Art 1906 von Andrewes und Horder beschrieben. Zusammen mit zwölf weiteren Vertretern, einschließlich S. oralis und S. pneumoniae, zählt diese Spezies heute zur Mitis-Gruppe der grampositiven Bakterien. S. mitis zeigt keine serologische Reaktion mit den Lancefield-Antiseren (Hardie & Whiley, 1995), sodass eine Gruppierung in Lancefield-Gruppen nicht möglich ist. In seltenen Fällen kann S. mitis Krankheiten wie Endokarditis verursachen (Bourgault et al., 1979; Brandenburg et al., 1983; Van der Meer et al., 1991; Dyson et al., 1999). Zudem wurde S. mitis bereits aus dem Blut von neutropenischen Krebspatienten isoliert (Jacobs et al., 1995; Soto et al., 1998). Da kommensale Bakterien der Antibiotika-Behandlung ihres Wirtes mit ausgesetzt sind, existieren weltweit etliche resistente S. mitis-Isolate (Doern et al., 1996; Reichmann et al., 1997; Simões et al., 2010). In diesem Jahr wurde erstmals die vollständige Genom-Sequenz eines S. mitis-Isolates publiziert (Denapaite et al., 2010). Der entsprechende Stamm (S. mitis B6) ist in Abb. 1.1 durch einen schwarzen Pfeil hervorgehoben. S. mitis B6 ist ein hoch Penicillin- und multipel Antibiotika-resistentes Isolat (König et al., 1998; Hakenbeck et al., 1998), das anhand von Genom-Hybridisierungen (Hakenbeck et al., 2001) und MLST-Analysen (Chi et al., 2007) eindeutig als S. mitis eingestuft wurde. Als Besonderheit besitzt dieser Stamm einen 44 kb großen Prophagen namens ΦB6 (Romero et al., 2005; Denapaite et al., 2010). Der Stamm dient in der vorliegenden Arbeit als S. mitis-Referenz für genomische Vergleiche.

1.1.3 Streptococcus oralis

S. oralis wurde erstmals im Jahre 1983 von Bridge und Sneath beschrieben. Diese Gruppe zeichnet sich durch eine hohe phänotypische Heterogenität aus (Abb. 1.1), die auch auf genetischer Ebene bestätigt werden konnte (Kilpper-Bälz *et al.*, 1985). *S. oralis* besiedelt als Kommensaler die Schleimhäute der menschlichen Mundhöhle. Einige Stämme produzieren in Gegenwart von Saccharose bestimmte Exopolysaccharide. *S. oralis* kann als opportunistisches Pathogen in immungeschwächten Personen bestimmte Krankheiten hervorrufen. Zusammen mit *S. sanguinis* und *S. gordonii* ist *S. oralis* die häufigste Ursache für infektiöse Endokarditis (Douglas *et al.*, 1993). Genau wie *S. mitis* tritt *S. oralis* zudem im Blut von neutropenischen Krebspatienten auf (Jacobs *et al.*, 1995; Soto *et al.*, 1998) und auch im Falle von *S. oralis* werden zunehmend resistente Stämme isoliert (Reichmann *et al.*, 1997).

1.1.4 Streptococcus pneumoniae

Im Jahre 1881 wurde *S. pneumoniae* fast zeitgleich von George M. Sternberg in den USA und Louis Pasteur in Frankreich entdeckt (Pasteur *et al.*, 1881; Sternberg, 1882). *S. pneumoniae* kommt in den oberen Atemwegen von Mensch und Tier vor. Es sind inzwischen weltweit 92 verschiedene Serotypen von *S. pneumoniae* bekannt, die aufgrund der Zusammensetzung ihrer Kapsel unterschieden werden (Bentley *et al.*, 2006; Park *et al.*, 2007; Jin *et al.*, 2009). Im Gegensatz zu anderen Mitgliedern der Mitis-Gruppe kommt *S. pneumoniae* eine bedeutende Rolle bei der menschlichen Pathogenese zu. Stämme dieser Art sind die Hauptursache für Atemwegserkrankungen wie Pneumonie. Des Weiteren verursachen sie Hirnhautentzündung, Otitis media und Sepsis, wobei hier Kleinkinder und ältere Menschen besonders anfällig sind. Seit 2001 stehen die vollständigen Genom-Sequenzen des bekapselten, pathogenen Stammes *S. pneumoniae* TIGR4 (Tettelin *et al.*, 2001) sowie des weltweit zu Forschungszwecken eingesetzten, kapselfreien und somit apathogenen Laborstammes *S. pneumoniae* R6 zur Verfügung (Hoskins *et al.*, 2001). 2007 folgte die Publikation der Genom-Sequenz seines bekapselten Vorgängers D39 (Lanie *et al.*, 2007). *S. pneumoniae* R6 und TIGR4 fungieren in dieser Arbeit als *S. pneumoniae*-Referenz für genomische Vergleiche.

1.2 Virulenzfaktoren von S. pneumoniae

S. pneumoniae produziert eine Reihe an Virulenzfaktoren, die dem Pathogen eine Ausbreitung im Wirtsgewebe ermöglichen und dem Bakterium Zugang zur Submucosa und dem Blut verschaffen. Sie erleichtern die Adhärenz und Invasion spezifischer Wirtszellen und dienen zudem oftmals als Schutz vor der Abwehrreaktion des Wirtes. Zu diesen Virulenzdeterminanten zählen bestimmte Proteine, Enzyme, Toxine und Kohlenhydrat-Strukturen, die entweder aus der Zelle sezerniert werden beziehungsweise auf der Zelloberfläche des Bakteriums lokalisiert sind (Abb. 1.2). Auf eine Auswahl an *S. pneumoniae*-Virulenzfaktoren, die auch als mögliche Impfstoff-Antigene in Frage kommen, wird im Folgenden näher eingegangen.

Als wahrscheinlich wichtigster Faktor ist die **Polysaccharid-Kapsel** zu nennen. Aufgrund ihrer antiphagozytären Aktivität dient sie als Schutz vor dem Immunsystem des Wirtes (Jonsson *et al.*, 1985; Musher, 1992). Zudem verstärkt sie die Anheftung der Bakterien an das Wirtsgewebe und ist somit für die Besiedelung entscheidend (Nelson *et al.*, 2007).

Pneumolysin (Ply) stellt den vermutlich am besten untersuchten Virulenzfaktor von *S. pneumoniae* dar. Es gehört zur Familie der Poren-bildenden Toxine (Hämolysine), hat eine Molekulargewicht von 53 kDa und wird von den meisten klinischen Pneumokokken-Isolaten während der spät-exponentiellen Wachstumsphase exprimiert (Benton *et al.*, 1997). Lange Zeit ging man

davon aus, dass Ply lediglich im Zusammenhang mit der *lytA*-vermittelten Zell-Autolyse freigesetzt wird (Berry *et al.*, 1989). Inzwischen wurde jedoch gezeigt, dass Ply auch unabhängig von *lytA* freigesetzt werden kann (Balachandran *et al.*, 2001). Das Toxin bindet an Cholesterin, einen Bestandteil der Wirtszellmembran, und zerstört diese durch Porenbildung (Morgan *et al.*, 1995).

Ebenfalls in die Virulenz von S. pneumoniae involviert sind die Zelloberflächen-assoziierten Cholin-Bindeproteine (CBP). Sie sind über die nicht-kovalente Bindung einer Repeat-Region am C-Terminus des Proteins mit dem Phosphorylcholin der Pneumokokken-Zellwand verknüpft. Die Zahl an CBP variiert von 13 bis 16 je nach Pneumokokken-Stamm (Hakenbeck et al., 2009). Folgende spielen nachweislich bei der Virulenz eine Rolle: die vier Zellwandhydrolytischen Enzyme LytA, LytB, LytC und LytD sowie die beiden "pneumococcal surface"-Proteine A (PspA) und C (PspC). LytA bewirkt die Freisetzung von hochentzündlichen Zellwand-Degradationsprodukten und ist ebenso für die Freilassung von Ply aus dem Cytoplasma verantwortlich (Tuomanen, 1999; Berry & Paton, 2000). LytB, LytC und LytD sind für die Besiedelung des Nasopharynx von Bedeutung (Gosink et al., 2000). PspA inhibiert das Komplementsystem des Wirtes (Ren et al., 2003) und bindet an Komponenten des Immunsystems (Hammerschmidt et al., 1999). PspC fungiert als Adhäsin und erleichtert S. pneumoniae die Besiedelung menschlicher Epithelzellen (Zhang et al., 2000; Hammerschmidt et al., 1997). Des Weiteren verhindert PspC die Aktivierung des Komplementsystems des Wirtes (Jarva et al., 2002). Einige der beschriebenen CBP treten auch in kommensalen Streptococcus-Spezies wie S. mitis und S. oralis auf (Hakenbeck et al., 2009).

Eine weitere Familie von Pneumokokken-Oberflächenproteinen stellen die sogenannten **LPxTG-Proteine** dar. Das für diese Proteine charakteristische LPxTG-Motiv befindet sich am C-Terminus (Schneewind *et al.*, 1993) oder in einigen Fällen auch am N-Terminus (Comfort & Clubb, 2004) und dient als Erkennungssequenz für Sortase-Enzyme (Abb. 1.2). Diese katalysieren die kovalente Bindung des LPxTG-Threonins an das Pentaglycin des Zellwand-Peptidoglykans (Ton-That *et al.*, 1997). Auch innerhalb dieser Protein-Familie existieren etliche für die Virulenz von *S. pneumoniae* bedeutende Determinanten. Dazu zählt die Hyaluronidase, welche die im Bindegewebe und in der extrazellulären Matrix des Wirtes lokalisierte Hyaluronsäure abbaut (Linker *et al.*, 1955). Ebenfalls zu nennen sind die Neuraminidasen, welche N-Acetylneuraminsäure von Glykolipiden, Lipoproteinen und Oligosacchariden auf Wirtszelloberflächen und in Körperflüssigkeiten abspalten (Camara *et al.*, 1994; King *et al.*, 2004).

Lipoproteine wie zum Beispiel PsaA (<u>p</u>neumococcal <u>s</u>urface <u>a</u>dhesin A) sind für die Adhäsion von *S. pneumoniae* an Lungen- oder Endothelzellen wichtig. PsaA ist Teil eines Mangan-ABC-Transporters, in dem PsaA das Substrat-bindende Lipoprotein, PsaB das ATP-bindende Protein und PsaC die Permease darstellt (Dintilhac *et al.*, 1997). Mutationen in *psaA* bewirken, neben der beobachteten reduzierten Zelladhäsion, eine verminderte Virulenz der Pneumokokken und

eine erhöhte Empfindlichkeit gegenüber oxidativem Stress (Ogunniyi *et al.*, 2000; Berry & Paton, 1996; Marra *et al.*, 2002). Auch für die Lipoprotein-Komponenten PiaA und PiuA zweier zur Eisen-Aufnahme benötigter ABC-Transporter wurde gezeigt, dass sie in die Virulenz von *S. pneumoniae* involviert sind (Brown *et al.*, 2001; Jomaa *et al.*, 2005).

Vertreter der **nicht-klassischen Oberflächenproteine**, denen im Gegensatz zu den beschriebenen Oberflächenproteinen ein klassisches Anker-Motiv fehlt, sind ebenfalls für die Virulenz von Pneumokokken entscheidend. Zu nennen sind der "<u>p</u>neumococcal <u>a</u>dherence and <u>v</u>irulence"-Faktor A (PavA) sowie das glykolytische Enzym Enolase. PavA bindet an Fibronektin des Wirtes und vermittelt somit die Anheftung an Endothelzellen (Pracht *et al.*, 2005). Bei der Enolase handelt es sich um ein Plasmin(ogen)-bindendes Protein mit proteolytischer Aktivität gegenüber den Wirtszellen (Bergmann *et al.*, 2004). Es verstärkt nachweislich den Abbau der extrazellulären Matrix und des Wirts-Fibrins (Bergmann *et al.*, 2005).

Abb. 1.2 gibt einen Überblick über die besprochenen Virulenzfaktoren und ihre Lokalisierung in *S. pneumoniae*.

Abb. 1.2: Virulenzfaktoren von *S. pneumoniae* (aus Kadioglu *et al.*, 2008). Die Polysaccharid-Kapsel ist dunkelgrün, die Zellwand mittelgrün und die Zellmembran hellgrün eingezeichnet. Cytoplasma = grau. Einzelne, im Text besprochene Virulenzfaktoren wie Pneumolysin; die Cholin-Bindeproteine LytA, PspA und PspC; die LPxTG-Proteine Hyaluronidase (Hyl) und Neuraminidase; die Lipoproteine PsaA, PiaA und PiuA sowie die nicht-klassischen Oberflächenproteine Enolase (Eno) und PavA sind gezeigt.

1.3 Resistenz gegen β-Laktamantibiotika

Pneumokokken-Infektionen werden in der Regel mit β-Laktamantibiotika behandelt, da Streptokokken von Natur aus zu den Penicillin-empfindlichsten Bakterien überhaupt gehören (Klugman, 1990). β-Laktame binden an die für die Transpeptidierungsreaktion der Zellwandbiosynthese nötigen Enzyme, die sogenannten Penicillin-Bindeproteine (PBP), sodass keine Quervernetzung des Peptidoglykans stattfinden kann (Ghuysen, 1991).

Seit Anfang der achtziger Jahre treten weltweit gehäuft β -Laktamresistente *S. pneumoniae*-Isolate auf (Klugman, 1990). Auch bei den kommensalen Streptokokken, die der Antibiotika-Therapie als Teil der normalen Flora mit ausgesetzt sind, stellt die steigende Zahl an Antibiotika-resistenten Stämmen ein wachsendes Problem dar (Farber *et al.*,1983; Simões *et al.*, 2010). Die Resistenz wird durch Modifikationen in den Targetenzymen der β -Laktamantibiotika, den PBP, hervorgerufen (Hakenbeck, 1995). Die veränderten PBP besitzen eine verminderte beziehungsweise keine Affinität für diese Antibiotika, sodass die β -Laktame nur noch in geringem Maße beziehungsweise nicht mehr gebunden werden.

1.3.1 Penicillin-Bindeproteine (PBP)

Bei den PBP handelt es sich um membrangebundene Enzyme, die die späten Schritte der Zellwandbiosynthese katalysieren. Sie kommen in allen Peptidoglykan-bildenden Eubakterien vor, wobei jede Bakterienspezies über einen für sie charakteristischen Satz an PBP verfügt. Neben einer N- und C-terminalen Domäne enthalten diese sogenannten Multi-Domänenproteine eine Penicillin-bindende Transpeptidase-Domäne. Diese enthält drei wichtige konservierte Aminosäuremotive, die das aktive Zentrum der Enzyme bilden (Sauvage *et al.*, 2008).

PBP werden anhand ihres Molekulargewichts, Sequenz- und Strukturvergleichen sowie enzymatischer Studien in hochmolekulare (hmw, <u>high molecular weight</u>) und niedermolekulare (lmw, <u>low molecular weight</u>) PBP eingeteilt. Ausgehend von der Domänenstruktur und der katalytischen Aktivität der N-terminalen Region unterscheidet man hmw PBP der Klasse A und B (Goffin & Ghuysen, 1998, 2002; Macheboeuf *et al.*, 2006; Sauvage *et al.*, 2008).

S. pneumoniae besitzt sechs PBP: drei hmw PBP der Klasse A, PBP1a, PBP1b und PBP2a; zwei hmw der Klasse B, PBP2x und PBP2b sowie das Imw PBP3. Bei den anderen oralen Streptokokken, besonders bei *S. mitis*, kann die Anzahl an PBP stark variieren (Sánchez *et al.*, 2001). Die Stämme *S. mitis* B6 und *S. oralis* U-O5 jedoch, deren Genomsequenz kürzlich vollständig sequenziert wurde (Denapaite *et al.*, 2010; Hakenbeck, unveröffentlicht), enthalten Homologe zu allen sechs in *S. pneumoniae* identifizierten PBP.

1.3.2 Horizontaler Gentransfer in Streptococcus spp.

In resistenten klinischen S. pneumoniae-Isolaten findet man niederaffine PBP mit Mosaikstruktur, bei denen bestimmte Regionen durch homologe Seguenzbereiche ersetzt sind. Die Mosaikblöcke unterscheiden sich auf DNA-Ebene in bis zu 25 % von den korrespondierenden Sequenzen sensitiver Stämme, was zu etwa 10 % Unterschied auf Aminosäure-Ebene führt (Dowson et al., 1989; Laible et al., 1991; Martin et al., 1992). Inzwischen ist belegt, dass solche Mosaikgene das Ergebnis von Gentransfer- und Rekombinationsereignissen zwischen S. pneumoniae und kommensalen Streptococcus-Spezies sind (Dowson et al., 1993; Sibold et al., 1994; Chi et al., 2007). Bei Vergleich der pbp-Sequenzen von resistenten und sensitiven Streptokokken-Arten stellte sich heraus, dass auch in sensitiven Kommensalen wie S. mitis, S. oralis und S. sanguinis, pbp-Gene vorkommen, deren Nukleotid-Sequenz homolog zu den entsprechenden Mosaikgenen von resistenten S. pneumoniae-Stämmen ist. Darüber hinaus treten in genetisch unterschiedlichen S. pneumoniae-Klonen identische Mosaik-pbp-Gene auf, was auf einen Gentransfer innerhalb der Art hindeutet (Coffey et al., 1991). Ein gut untersuchtes Beispiel für den Gentransfer zwischen zwei Streptococcus-Arten oder innerhalb einer Art stellt eine weitverbreitete Hauptfamilie an Mosaik-pbp2x dar: Die Mosaikstruktur ist sequenzähnlich zu homologen Bereichen des pbp2x-Gens des sensitiven S. mitis M3-Stamms und unterscheidet sich in etwa 20 % von der entsprechenden S. pneumoniae R6-Sequenz (Sibold et al., 1994). Inzwischen wurden Sequenzen mit erstaunlich großer Ahnlichkeit zu dieser M3-Sequenz in vielen, auch genetisch unterschiedlichen resistenten S. pneumoniae sowie S. mitis und S. oralis gefunden (Abb. 1.1; Sibold et al., 1994; Chi et al., 2007).

Abb. 1.3 zeigt ein Modell zur Entwicklung von β-Laktam-Resistenz in *S. pneumoniae*. Demnach kam es in den *pbp*-Genen kommensaler Streptokokken zur Ansammlung spontaner Punktmutationen, bevor die relevanten Nukleotid-Sequenzen auf die natürlicherweise kompetenten Pneumokokken übertragen wurden. In *S. pneumoniae* erfolgten sekundäre Mutationen, die zu höheren Resistenzen oder speziell für die Pathogenität wichtigen Eigenschaften führten.

Abb. 1.3: Modell für die Evolution von Mosaik-*pbp*-Genen in *S. pneumoniae* (aus Chi *et al.*, 2007). Weißer Balken = *pbp*-Gen eines Penicillin-sensitiven *S. pneumoniae*-Isolats. Schwarzer Balken = homologes *pbp*-Gen eines Penicillin-sensitiven, kommensalen *S. mitis*. Mutationen, die zur Resistenz führen, sind als schwarze Striche eingezeichnet. Resistenz-relevante Regionen des veränderten *pbp*-Gens können durch genetische Transformation und homologe Rekombination von dem Kommensalen auf *S. pneumoniae* übertragen werden und zur Entstehung eines Mosaik-Gens führen. In *S. pneumoniae* kann es zu sekundären Mutationen kommen, die die Resistenz nochmals erhöhen.

Mosaikstrukturen wurden erstmals in *pbp*-Genen identifiziert (Dowson *et al.*, 1989). Demnach ist die Evolution dieser β-Laktam-Resistenzdeterminanten am besten untersucht. Allerdings treten in *S. pneumoniae* eine Reihe weiterer Loci auf, die auf horizontale, zwischenartliche Gentransfer-Ereignisse hinweisen. Beispielsweise handelt es sich bei den Kommensalen *S. mitis* und *S. oralis* vermutlich auch um Donorstämme zum Transfer von Fluoroquinolon-Resistenz-Genen (Balsalobre *et al.*, 2003). Des Weiteren variiert das in die Virulenz involvierte Neuraminidase-Gen *nanA* (Abschnitt 1.2) von *S. pneumoniae* sehr stark. Man findet Mosaikblöcke mit mehr als 30 % Unterschied auf Nukleotid-Ebene. Auch hier weisen Daten darauf hin, dass der Ursprung des Mosaikblocks unter anderem in *S. oralis* liegt (King *et al.*, 2005). Ebenso wird die Herkunft der in *S. pneumoniae* beobachteten Mosaikstrukturen bestimmter regulatorischer Kapsel-Gene innerhalb der Mitis-Gruppe vermutet (Varvio *et al.*, 2009).

1.4 Natürliche genetische Kompetenz in Streptococcus

Die innerhalb der Gattung *Streptococcus* weitverbreitete Eigenschaft der natürlichen Kompetenz ist für den gegenseitigen Austausch von genetischem Material von großer Bedeutung und trägt erheblich zur Vielfalt der Genotypen bei. Kompetenz bezeichnet einen physiologischen Zustand, in welchem Bakterien die Fähigkeit besitzen, exogene, hochmolekulare DNA aufzunehmen (Dubnau, 1999; Lorenz & Wackernagel, 1994).

In *S. pneumoniae* erfolgt die Induktion der Kompetenz beim Erreichen einer kritischen Zelldichte während der exponentiellen Wachstumsphase und dauert lediglich eine kurze Zeitspanne an (Morisson, 1997). In dieser Zeit wird exogene doppelsträngige DNA an die Zelloberfläche gebunden. Die DNA-Doppelstränge werden durch eine Endonuklease in zwei Einzelstänge getrennt, von denen ein Strang in 5' \rightarrow 3'-Richtung in kurze Oligonukleotide degradiert wird. Der zweite Strang wird in 3' \rightarrow 5'-Richtung linear in die Zelle aufgenommen (Méjean & Claverys, 1988) und durch ein <u>"single-stranded DNA binding"-Protein (Ssb) vor Angriffen durch Nukleasen geschützt (Morrison & Mannarelli, 1979). Anschließend werden homologe DNA-Fragmente durch Rekombinationsvorgänge über einen RecA-vermittelten Prozess in das Chromosom von *S. pneumoniae* integriert (Mortier-Barrière *et al.* 1998).</u>

1.4.1 Regulation der Kompetenz

In *S. pneumoniae* erfolgt die Regulation der Kompetenz über einen Quorum-Sensing-Mechanismus, an dem die fünf Gene *comAB* und *comCDE* beteiligt sind.

Das Peptid-Pheromon CSP (<u>c</u>ompetence <u>s</u>timulating <u>p</u>eptide) besteht aus 17 Aminosäuren und bewirkt die Induktion der Kompetenz (Havarstein *et al.*, 1995). Bei diesem Protein handelt es sich um das prozessierte Produkt des *comC*-Gens, das für ein 41 Aminosäure langes Vorläuferpeptid einschließlich eines N-terminalen Doppelglycin-Leader-Motivs kodiert (Pestova *et al.*, 1996). Der ABC-Transporter ComAB ist für die posttranslationale Modifizierung und den Export dieses Prä-Peptids zuständig (Hui *et al.*, 1995).

Unmittelbar stromabwärts von *comC* liegen die Gene *comD* und *comE*, wobei *comD* für eine Histidin-Kinase und *comE* für einen Response Regulator kodiert, die beide zusammen das Zwei-Komponenten-System ComD/E bilden (Pestova *et al.*, 1996). Die Histidin-Kinase ComD fungiert als Rezeptor für CSP und führt als Antwort auf das CSP-Signal eine Autophosphorylierung an einem spezifischen Histidinrest durch. Diese Phosphorylgruppe wird anschließend auf den Response Regulator ComE übertragen, welcher daraufhin die Induktion der Transkription der "frühen" Kompetenzgene durch Bindung an eine imperfekte Repeat-Sequenz in der Promotorregion der Gene bewirkt (Ween *et al.*, 1999). Zu den "frühen" Kompetenzgenen gehören unter anderem das *comAB*- und das *comCDE*-Operon selbst, wodurch die Synthese und Freisetzung von CSP verstärkt und die Menge an phosphoryliertem ComE in der Zelle erhöht wird (\rightarrow autokatalytisches System; Claverys & Havarstein, 2002). Zudem zählen zu den "frühen" Kompetenzgenen *comX1* und *comX2*, die für den alternativen Sigmafaktor ComX kodieren (Lee & Morisson, 1999; Luo & Morrison, 2003), sowie *comW*, dessen Genprodukt ComW den Sigmafaktor ComX stabilisiert und aktiviert (Luo *et al.*, 2004; Sung & Morrison, 2005). ComX bindet an eine als com- oder cin (<u>competence induced</u>)-Box bezeichnete konservierte Region im Promotorbereich der "späten" Kompetenzgene und aktiviert somit die Transkription dieser Gene. Zu den "späten" Kompetenzgenen gehören Gene, die für die DNA-Aufnahme, DNA-Prozessierung und DNA-Rekombination verantwortlich sind. Des Weiteren existieren etliche "späte" Gene, die für hypothetische Proteine mit unbekannter Funktion kodieren. Eine Übersicht über die Regulation der genetischen Kompetenz ist in Abb. 1.4 dargestellt.

Abb. 1.4: Regulation der genetischen Kompetenz in *S. pneumoniae.* Prä-CSP = Genprodukt von *comC* und Vorläuferpeptid des CSP; CSP = <u>competence stimulating peptide</u>. ComAB = ABC-Exporter; ComD = Histidin-Kinase; ComE = Response Regulator. *comM* kodiert für das Immunitätsprotein ComM, *comW* für den ComX-stabilisierenden Faktor ComW. ComX = alternativer Sigma-Faktor. *lytA* und *cbpD* kodieren für die Murein-Hydrolasen LytA und CbpD, *cibAB* für ein Zwei-Peptid-Bacteriocin, *cibC* für das Immunitätsprotein CibC. P = Phosphatrest, CPM = Cytoplasma-membran. Nähere Erläuterungen im Text.

Transkriptom-Studien haben gezeigt, dass etwa 124 Gene während der Kompetenz-Phase transkriptionell aktiviert werden (Dagkessamanskaia *et al.*, 2004; Peterson *et al.*, 2004). Von diesen sind jedoch lediglich etwa 25 % für die eigentliche Transformation relevant. Folglich scheint das Kompetenz-Regulon neben der Regulation der genetischen Transformation zusätzliche Funktionen zu besitzen. Deshalb wird die oben beschriebene ComX-abhängige, physiologische Phase inzwischen nicht mehr als Kompetenz, sondern neutraler, als X-Zustand bezeichnet (Claverys *et al.*, 2006). Beobachtungen, dass der X-Zustand auch durch die Gabe von sublethalen Antibiotika-Konzentrationen ausgelöst werden kann (Prudhomme *et al.*, 2006), lassen vermuten, dass es sich hierbei wahrscheinlich um eine globale Stressantwort von *S. pneumoniae* handelt.

Im X-Zustand ist nur ein geringer Teil der Zellen kompetent. Dieser exprimiert und sezerniert bestimmte lytische Enzyme sowie Bacteriocine und produziert gleichzeitig sogenannte Immunitätsproteine. Diese dienen den kompetenten Zellen als Schutz vor den eigenen lytischen Enzymen. Im Gegensatz dazu bilden die nicht-kompetenten Zellen keine Immunitätsproteine, sodass sie von den lytischen Enzymen der kompetenten Zellen angegriffen werden können. Ihre DNA wird ins Medium freigesetzt, von den kompetenten Zellen aufgenommen und homolog ins Genom rekombiniert. Dieses beobachtete Phänomen bezeichnet man als Allolyse oder auch "Brudermord" (Claverys & Havarstein, 2007; Claverys *et al.*, 2007; Guiral *et al.*, 2005).

An diesem Prozess sind das "frühe" Kompetenzgen *comM*, die fünf "späten" Kompetenzgene *cbpD*, *cibABC* und *lytA*, sowie das CSP-unabhängige, σ^{70} -regulierte Gen *lytC* beteiligt (Abb. 1.4). *comM* kodiert für das Immunitätsprotein ComM und bietet den kompetenten Zellen Schutz vor den Zellwand-Hydrolasen CbpD, LytA und LytC (siehe auch Abschnitt 1.2 \rightarrow Cholin-Bindeproteine). *cibA* und *cibB* kodieren für das Zwei-Peptid-Bacteriocin CibAB. Bei CibC handelt es sich um ein Immunitätsprotein, welches den kompetenten Zellen speziell Schutz vor dem Bacteriocin CibAB verleiht. CibAB und CbpD fungieren hierbei als putative Allolyse-Trigger-Faktoren, die nach ihrer Sekretion ins Medium die LytA- und LytC-vermittelte Lyse der nicht-kompetenten Zellen bewirken (Eldholm *et al.*, 2009; Eldholm *et al.*, 2010; Guiral *et al.*, 2005; Havarstein *et al.*, 2006; Moscoso & Claverys, 2004; Steinmoen *et al.*, 2002).

Dieser als "Brudermord" bezeichnete Vorgang begünstigt zum einen die Ausbildung von genetischer Diversität (Claverys & Havarstein, 2007). Zum anderen trägt er, aufgrund der mit der Zelllyse assoziierten Freisetzung von Pneumolysin (Abschnitt 1.2) zur Virulenz von *S. pneumoniae* bei (Guiral *et al.*, 2005).

Auch in anderen *Streptococcus*-Arten der Mitis-Gruppe konnte das in die Kompetenz involvierte *comCDE*-Operon nachgewiesen werden (Havarstein *et al.*, 1997; Whatmore *et al.*, 1999). *S. mitis* B6 besitzt sogar den vollständigen Satz an Kompetenz-induzierten Lyse-Genen einschließlich *cibABC*, *comM* und *comW* (Denapaite *et al.*, 2010).

1.5 Zielsetzung dieser Arbeit

Generell wird angenommen, dass sich pathogene Bakterien durch den Erwerb von Virulenzdeterminanten aus kommensalen Spezies entwickelt haben (Raskin *et al.*, 2006). Die Möglichkeit, vollständige Genome zu entschlüsseln und darauf basierende DNA-Microarrays herzustellen, ist die Voraussetzung für ein detailliertes molekulares Verständnis der Evolution von Virulenz und Resistenz in *S. pneumoniae*.

Grundlage der vorliegenden Arbeit bildete die kürzlich aufgeklärte Genom-Sequenz des kommensalen *S. mitis* B6-Stammes (Denapaite *et al.*, 2010), anhand welcher ein spezifischer DNA-Microarray-Chip entwickelt wurde. Im ersten Teil der Arbeit wurden darauf basierend vergleichende genomische Hybridisierungen mit einer Sammlung von oralen, kommensalen *S. mitis*- und *S. oralis*-Isolaten durchgeführt. Ziel war es, das Ausmaß des horizontalen Gentransfers zu untersuchen und eine erste Analyse über gemeinsame "Coregene" sowie akzessorische Gene von *S. mitis* zu erlangen.

Im zweiten Teil der Studie wurde, ebenfalls mittels DNA-Microarray-Technologie, der direkte genomische Vergleich der kommensalen, oralen Streptokokken-Stämme mit dem humanpathogenen Bakterium *S. pneumoniae* durchgeführt. Im Mittelpunkt lag hierbei die Identifizierung von gemeinsamen sowie von *S. pneumoniae*-spezifischen Genen, wobei letztere Auskunft über das Pathogenitätspotenzial von *S. pneumoniae* geben können.

Der dritte Teil der Arbeit beschäftigt sich mit der Evolution von Virulenzdeterminanten in *S. pneumoniae* anhand eines konkreten Beispiels. Basis dieser Studie bilden zwei im Rahmen der Microarray-Analysen identifizierte *S. mitis*-Isolate, die genau wie *S. pneumoniae* im Besitz der Pneumolysin- (*ply*) und Autolysin-Gene (*lytA*) sind. Auf dem Genom von *S. pneumoniae* liegen diese Gene etwa 7 kb voneinander entfernt und werden von einem "direct repeat" flankiert (Hoskins *et al.*, 2001; Denapaite *et al.*, 2010). *S. mitis* B6 besitzt diese "Pathogenitätsinsel" nicht, dennoch enthält auch er an identischer Stelle wie *S. pneumoniae* einmal den genannten "direct repeat" im Genom (Denapaite *et al.*, 2010). Es galt nun zu klären, ob die beiden anderen *S. mitis*-Isolate hinsichtlich dieser Region genetisch ähnlich organisiert sind wie *S. pneumoniae*, um erste mögliche Erkenntnisse über die Evolution von Pathogenitätsfaktoren innerhalb der Gattung *Streptococcus* zu erlangen.

2. Material und Methoden

2.1 Bakterienstämme

2.1.1 Orale Streptokokken

In der vorliegenden Arbeit wurde eine Reihe von oralen *Streptococcus*-Isolaten (Tab. 2.1 und 2.2) mittels DNA-Microarrays näher charakterisiert.

Bei den *markierten Stämmen handelt es sich um klassische Referenzstämme, die bereits in früheren DNA-Chip-Analysen verwendet wurden (Hakenbeck *et al.*, 2001). *S. mitis* B6 stammt aus dem Blut eines an Bakteriämie erkrankten Kleinkindes und wurde im Kinderkrankenhaus Bochum isoliert; *S. mitis* B5 wurde aus dem Blut eines Kindes mit Herz-Defekt in einem Berliner Krankenhaus isoliert. Die Klassifizierung des südafrikanischen Isolats M3 wurde in den letzten Jahren mehrfach geändert. Erstmals wurde er bei Chalkley *et al.*, 1991 als *S. mitis* eingestuft, später jedoch aufgrund serologischer Untersuchungen am Statens Serum Institut in Kopenhagen als *S. oralis* klassifiziert (Kilian *et al.*, 1989). Frühere DNA-Chip- und jüngste MLST-Analysen zeigen jedoch deutlich, dass es sich bei M3 um die Art *S. mitis* handelt (Hakenbeck *et al.*, 2001; Chi *et al.*, 2007). Der NCTC-Stamm *S. mitis* 10712 gehört zu der National Collection of Type Cultures in Colindale, England und wurde ursprünglich im Wright Fleming Institut in London aus menschlichem Sputum isoliert.

Die untersuchten Stämme stammen aus Krankenhäusern verschiedener Länder und Kontinente (*S. mitis* RSA4 und *S. oralis* RSA40). Drei der neun spanischen Isolate (*S. mitis* SV5, SV10 und S658) wurden im Kinderkrankenhaus San Juan de Dios, Barcelona von Christina Latorre aus dem Nasen-Rachenraum gesunder Kinder isoliert. Die übrigen spanischen Vertreter stammen von erwachsenen Patienten des Hospital de Bellvitge, Barcelona und wurden von Josefina Liñares aus Blutproben isoliert (Liñares *et al.*, 1992). Die untersuchten Stämme aus Ungarn wurden von Dr. Anna Morton im Heim Pal Institut, Budapest isoliert und stammen aus der Nasenschleimhaut von gesunden Menschen. Die Bezeichnungen für die ungarischen Isolate sind in der Literatur nicht einheitlich, der U-O5-Stamm wird beispielsweise auch Hu-o5 beziehungsweise Hu5 genannt.

Stamm	Herkunft	relevanter Phänotyp	Referenz
<i>S. mitis</i> B6*	Deutschland, 1994	hoch β-Laktam- und multipel Antibiotika-resistent	König <i>et al.</i> , 1998
<i>S. mitis</i> B5*	Deutschland, 1994	β-Laktam-resistent	Reichmann <i>et al.</i> , 1997
<i>S. mitis</i> M3 1*	Südafrika, 1986-1987	kompetent, β-Laktam-sensitiv, krümeliges Wachs- tum in Flüssigkultur	Chalkley <i>et al.</i> , 1991; Hakenbeck, unver- öffentlict
<i>S. mitis</i> M3 4*	Südafrika, 1986-1987	kompetent, β-Laktam-sensitiv	Chalkley <i>et al.</i> , 1991; Hakenbeck, unver- öffentlicht
S.mitis NCTC10712*	Großbritannien, 1967	kompetent, β-Laktam-sensitiv	Colman, 1968
<i>S. mitis</i> RSA4	Südafrika, 1986-1987	β-Laktam-resistent	Chi <i>et al.</i> , 2007
S. mitis SV5	Spanien, 1992	β-Laktam-resistent	Bergmann, 2003
<i>S. mitis</i> SV10	Spanien, 1992	β-Laktam-sensitiv	Bergmann, 2003
S. mitis S658	Spanien, 1992	β-Laktam-sensitiv	Bergmann, 2003
S.mitis S697	Spanien, 1993	β-Laktam-resistent	Chi <i>et al.</i> , 2007
<i>S.mitis</i> U-O1	Ungarn, 1990-1992	β-Laktam-resistent	Chi <i>et al.</i> , 2007
S.mitis U-O8*	Ungarn, 1990-1992	β-Laktam-resistent	Reichmann <i>et al.</i> , 1997

Tab. 2.1: Verwendete S. mitis-Stämme

*klassische Referenzstämme

Tab. 2.2: Verwendete S. oralis Stämme

Stamm	Herkunft	relevanter Phänotyp	Referenz
S. oralis RSA40	Südafrika, 1989-1990	β-Laktam-resistent	Chi <i>et al.</i> , 2007
S. oralis S197	Spanien, 1993	β-Laktam-resistent	Carratalà <i>et al.</i> , 1995
S. oralis S476	Spanien, 1993	β-Laktam-resistent	Carratalà <i>et al.</i> , 1995
<i>S. oralis</i> S510	Spanien, 1993	β-Laktam-resistent	Bergmann, 2003
S. oralis S621	Spanien, 1993	β-Laktam-resistent	Chi <i>et al.</i> , 2007
S. oralis S711	Spanien, 1993	β-Laktam-resistent	Chi <i>et al.</i> , 2007
S. oralis U-O2	Ungarn, 1991-1992	β-Laktam-resistent	Reichmann et al., 1997

<i>S. oralis</i> U-O5*	Ungarn, 1990-1992	hoch β-Laktam- und multipel Antibiotika- resistent	Reichmann <i>et al</i> ., 1997	
S. oralis U-O12	Ungarn, 1990-1992	β-Laktam-resistent	Hakenbeck et al., 2001	
<i>S. oralis</i> U-O16	Ungarn, 1990-1992	β-Laktam-resistent	Hakenbeck et al., 2001	

*klassische Referenzstämme

2.1.2 Streptococcus pneumoniae

Die in dieser Arbeit verwendeten S. pneumoniae-Stämme sind in Tab. 2.3 aufgeführt.

Stamm	Genotyp	relevanter Phänotyp	Referenz
S. pneumoniae R6		kapselfreies R36A-Derivat,	Avery <i>et al.</i> , 1944
		kompetent,	Ottolenghi & Hotch- kiss,
		β-Laktam-	
		sensitiv	1962
R6-Derivate			
AmiA9	Punktmutation in <i>rpsL</i>	Str ^R	Sicard, 1964;
	$(K_{56} \to T)$		Salles, 1992

Tab. 2.3: Verwendete S. pneumoniae-Stämme

2.2 Oligonukleotide

Die in dieser Arbeit verwendeten Oligonukleotide sind in Tab. 2.4 bis Tab. 2.6 dargestellt. Die Synthese der Oligonukleotide erfolgte bei den Firmen MWG Biotech und Operon Biotechnologies. Die Stocklösungen hatten eine Konzentration von 100 pmol/µl in TE und wurden vor Gebrauch 1:10 in H₂O verdünnt. Stock- und Gebrauchslösungen wurden bei -20 °C gelagert.

Primer	Länge [bp]	Sequenz (5 \rightarrow 3 $^{\prime}$)	Т _м [℃]
aroE-up	17 →	GCCTTTGAGGCGACAGC	57,6
aroE-dn	23 ←	TGCAGTTCARAAACATWTTCTAA ¹	52,6
aroE-dn2	19 ←	TCCGACTCGGCAATCCTTG	58,8
gdh-up	20 →	ATGGACAAACCAGCNAGYTT ¹	55,3
gdh-dn	20 ←	GCTTGAGGTCCCATRCTNCC ¹	61,4
gki-up	20 →	GGCATTGGAATGGGATCACC	59,4
gki-dn	17 ←	TCTCCCGCAGCTGACAC	57,6
recP-up	20 →	GCCAACTCAGGTCATCCAGG	61,4
recP-dn	20 ←	TGCAACCGTAGCATTGTAAC	55,3
spi-up2	22 →	ACGCTTAGAAAGGTAAGTTATG	54,7
spi-dn2	23 ←	GGTTTCTTAAAATGTTCCGATAC	55,3
xpt-up	20 →	TTATTAGAAGAGCGCATCCT	53,2
xpt-dn	20 ←	AGATCTGCCTCCTTAAATAC	53,2
xpt-up2	23 →	CCACTACAACGGGAAATATTTGA	57,1
xpt-dn2	21←	AGGATAGATCCTGAGTACATG	55,9

Tab. 2.4: Oligonukleotide zur MLST-Analyse

Fett gedruckte Oligonukleotide wurden speziell für *S. mitis*- und *S. oralis*-Stämme designt. Die übrigen Primer-Sequenzen stammen von der MLST-Datenbank (<u>http://spneumoniae.mlst.net/misc/info.asp</u>). ¹Der IUPAC (International Union of Pure and Applied Chemistry) -Code wurde an bestimmten Stellen in der Sequenz übernommen und steht für alternative Nukleotide an dieser Position.

Tab. 2.5: Oligonukleotid	e zur Amplifikation	und Sequenzierung	α von <i>plv/ml</i> v
Tubi Lior Ongonanoona			, <i>p</i>

Primer	Länge [bp]	Sequenz (5 \rightarrow 3 $)$	T _M [℃]
ply-103_for ¹	18 →	GAGGGTAATCAGCTACCC	57,0
ply-705_rev ¹	18 ←	GACCAAAGGACGCTCTGC	62,0
15C ¹	25 →	GGAGGTAGAAGATGGCAAATAAAGC	63,0
15D ¹	28 ←	CTAGTCATTTTCTACCTTATCCTCTACC	62,0
Eco-mly_for ²	3 0 →	GTCAGGTCAATAATGTCCCAGCTAGAATGC	67,4
Eco-mly_rev ²	30 ←	AGCATCTACGCTGACTGTATAATAAATCTG	63,3
Huo1-mly-seq_for ³	30 →	CTCTGCGAATATCTGAAAGTTTATTTCTTG	61,9
Huo1-mly-seq-rev ³	30 ←	GCTAGATCCGGCTCTTCTATCATAAAGTTC	66,0
IP-Dra_for ⁴	22 →	TTTCAGATAATGGGCTAGTTTG	57,1
IP-Dra_rev ⁴	26 ←	CAAATAGAAATCGTCCGCTTACGCAC	64,6
IP-Hind_rev ⁴	29 ←	GTTACAACTCGGGCACCCGAACTTGGGTC	71,7
IP-mly_for ²	3 0 →	AAATGGGCAGGATTTGACGGCTCATTTTAC	66,0
IP-mly_rev ²	30 ←	ACTATCGTTGGTAGCCGTCACGGAAATATC	67,4
RSA4-mly_forward ⁴	25 →	CATATGTCTGGAGTAGACTGTCAAC	61,3
RSA4-mly-seq_for ⁴	30 →	CTCTGCGAATATCTGAAAGTTTATCTCTTG	63,3
RSA4-mly-seq_rev ⁴	28 ←	ACGTCTGGTCAAGAGGGCTGGTTTGAAG	69,0

¹Primer binden an die *S. pneumoniae* R6-, *S. mitis* RSA4- und *S. mitis* U-O1-Sequenz. ²Primer binden an die RSA4- und U-O1-Sequenz. ³Primer speziell designt für U-O1. ⁴Primer designt für RSA4.

Primer	Länge [bp]	Sequenz (5 \rightarrow 3 $^{\prime}$)	Т _м [℃]
dinF_for ¹	28 →	AGCAAGGTTTGGCTATGGGCTTGATGAG	67,5
ORF6_rev ⁵	30 ←	CCTTCGTAACGTCCTTCTGTAAAGGTTTCG	67,4
Huo1A_for ³	25 →	CATCCAACTGTACTTCTCACTATTC	61,3
Huo1A_revn ³	33 ←	GCACTATTGTATTCTAAGAAATCAATAGAAGAG	62,2
Huo1B_for ³	30 →	GAACAGATTTGCCTCAAGTCGGCGTGCAAC	70,1
Huo1B_rev ³	30 ←	TCCAAGACTTAGGAGTCAAGACTTCCTTAC	66,0
Huo1C_for ³	30 →	TTGACGATTGAAGCAGGATGGCAACAGAAC	67,4
Huo1C_rev ³	30 ←	CTTGAGATAGACTTGGCGCCCATAAGCAAC	68,7
Huo1D_for ³	25 →	CATATCTCACACTAACGAACTAAAC	59,7
Huo1D_rev ³	30 ←	GCAAGAAGAGTGGGATTATTCTCTAACAAG	64,6
Huo1E_for ³	31 →	TGCGAAGGTATTATCTCAGAGGAAATCAAC	64,6
Huo1E_rev ³	30 ←	TAATCCTTCTCCAAAGCTGACTGGTAAATC	64,6
Huo1F_for ³	30 →	AGAAGACTTGGTCAATCCTGTCTATGTTAC	64,6
Huo1F_rev ³	30 ←	ATACCTTATAGCGTCTACGATGTTGAACAC	64,6
Huo1G_for ³	30 →	TGGCAAGTAGTGATAGCTTTCTCCAAGTAG	66,0
Huo1G_rev ³	30 ←	GTCTGAGTGTACATACCAGGTGCCAGTATC	68,7
Huo1H_for ³	28 →	GTGCCTATGTTGCCCAATATTACATTGC	64,6
Huo1H_rev ³	29 ←	CAGTCTCTATATGTCCTTTTCATAAATAC	60,4
Huo1I_for ³	29 →	TTAGAATACAATAGTGCCTATAAGAACTG	60,4
Huo1-IB_for ³	30 →	ACTTGTGTTCTCCTCTTTAGTTTGGTCTTG	64,6
IP-dinF_for ⁴	27 →	CCCTCATCTGGGTTGCCATGACAGTTC	69,2
IP-dinF_rev ⁴	30 ←	ATAGCCTGCCCAAGGGATAATCAAGACCAC	68,7
IP-lytA_for ⁶	26 →	GGTCTTATCCCAAAGACAGGTTTGAG	64,6
IP-lytA_rev ⁶	26 ←	CAAGAGTCTTCGGCAAGCCTGCTTCG	69,3
LytA-fwd ¹	19 →	GAGACCTATGCAGCGGTTG	62,0
LytA-rev ¹	19 ←	CCATTTCGCCTGAGTTGTC	60,0
RSA4-lyt_f ⁴	26 →	AAGTTGTCTTAATCGATAAGGAGTAG	58,5
RSA4-LuedinF_r ⁴	25 ←	TTGTGAATAGGATTGACAAAGTCTG	58,1
RSA4-lytA_r ⁶	30 ←	GTCTTCATAGCACCCTCTGTGTCGAAATAG	66,8
RSA4-lytflank_f ⁶	29 →	GGTTTCTTGAAGAATAGGGAGGGAGAATC	65,3
RSA4-lytA_revers ⁴	24 ←	TACGACCATTACCGACTACGTGAG	62,7
RSA4-lytA_forwar ⁴	25 →	CCCTATCCTTATCTTGCCAAATGGG	63,0
RSA4-dinF-seq_re ⁴	30 ←	TCGTCATCGAGGTAGAAATAGCGGTCATGG	68,1
RSA4-hP1_for ⁴	28 →	GTGTATTATTGTAGCTGATTTAAAGATG	57,8
RSA4-1182_for ⁶	26 →	ATAAGCATTCTCCGATTGAGTTTGTG	60,1
R-lytA-Seq_for ⁶	25 →	GGGATACGGGTCAACGTGGTCTGAG	67,9
RSA4-Holin_for ⁶	29 →	GAGGCGGACTACCACTACAGAAAGAACCC	69,5

Tab. 2.6: Oligonukleotide zur Amplifikation und Sequenzierung der lytA/mly-Region in S. mitis

¹Primer binden an die *S. pneumoniae* R6-, *S. mitis* RSA4- und *S. mitis* U-O1-Sequenz. ²Primer binden an die RSA4- und U-O1-Sequenz. ³Primer speziell designt für U-O1. ⁴Primer designt für RSA4. ⁵Primer binden an die R6- und U-O1-Sequenz. ⁶Primer binden speziell an das Prophagen-*lytA* von RSA4 und flankierende Bereiche.

2.3 Nährmedien

2.3.1 C-Medium (CpH8)

Das semisynthetische Komplexmedium CpH8 (Lacks & Hotchkiss, 1960) dient der Kultivierung von Streptokokken-Stämmen. Soweit nicht anders angegeben, wurden alle in dieser Arbeit verwendeten *Streptococcus*-Stämme in diesem Medium angezogen. Die in Tab. 2.7 aufgeführten einzelnen Komponenten wurden getrennt hergestellt und unmittelbar vor Gebrauch des Mediums steril zusammenpipettiert. Die Zusammensetzung und die Zusätze der Einzelkomponenten sind in den Tab. 2.8 und Tab. 2.9 aufgelistet.

Komponente	Menge
PreC	400 ml
Supplement	13 ml
Glutamin (1mg/ml)	10 ml
Adams III	10 ml
2 % Pyruvat	5 ml
Phosphatpuffer pH 8,0	15 ml
5 % Hefeextrakt	9 ml

Tab. 2.7: Zusammensetzung des C-Mediums

Komponente	Menge
PreC	
Na-Acetat, wasserfrei	1,2 g
Casaminosäuren	5 g
L-Tryptophan	5 mg
L-Cystein	50 mg
H ₂ O	ad 1000 ml
pH 7,5 einstellen und autoklavieren	
Supplement	
3 in 1 Salts	60 ml
20 % Glukose	120 ml
50 % Saccharose	6 ml
Adenosin (2 mg/ml)	120 ml
Uridin (2 mg/ml)	120 ml
alle Komponenten einzeln autoklavieren	
und dann steril zusammenpipettieren	
	100
Adams I	160 mi
	40 ml
Asparagin	2 g

Tab. 2.8: Zusammensetzung der Einzelkomponenten

Cholinchlorid	0,2 g	
0,1 M CaCl ₂	1,6 ml	
H ₂ O	ad 1000 ml	
steril filtrieren und vor Licht schützen		
Phosphatpuffer pH 8,0		
1 M KH₂PO4	53 ml	
1 M K ₂ HPO4	947 ml	
autoklavieren		

Komponente	Menge
3 in 1 Salts	-
MgCl ₂ x 6 H ₂ O	100 g
CaCl ₂ , wasserfrei	0,5 g
0,1 M MnSO ₄ x 4 H ₂ O	0,2 ml
H ₂ O	ad 1000 ml
autoklavieren	
Adams I	
Biotin	0,15 mg
Nicotinsäure	150 mg
Pyridoxin-HCl	175 mg
Ca-Pantothenat	600 mg
I NIAMIN-HCI Riboflavin	160 mg
	70 mg
⊓20 storil filtrioron und vor Licht schützen	ad 1000 mi
Adams II	
FeSO ₄ x 7 H ₂ O	500 mg
CuSO ₄ x 5 H ₂ O	500 mg
Zn SO₄ x 7 H₂O	500 mg
MnCl ₂ x 4 H ₂ O	200 mg
HCI konz.	10 ml
H ₂ O	ad 1000 ml
steril filtrieren und vor Licht schützen	
2.3.2 M17-Medium

Speziell zur Anzucht der oralen Streptokokken wurde alternativ zum C-Medium auch M17-Medium (Difco Laboratories) verwendet. Dieses wurde nach Herstellerangaben angesetzt und nach dem Autoklavieren mit Glukose (40 %; Endkonzentration in M17-Medium 0,4 %) versehen.

2.3.3 D-Blutagar

Der D-Agar diente als Festmedium für die Kultivierung von Streptokokken. Die Zusammensetzung des D-Agars ist in Tab. 2.10 dargestellt. Der Agar wurde nach dem Autoklavieren auf zirka 50 ℃ abgekühlt und anschließend mit 3 % Schafsblut (Oxoid GmbH) versehen. Die Zugabe entsprechender Antibiotika erfolgte nach Bedarf.

Tab. 2.10 D-Agar	
Komponente	Menge
Glukose	1 g
Bactopepton	10 g
Neopepton	5 g
Hefeextrakt	1,25 g
NaCl	5 g
Tris	1,25 g
Agar	20 g
H ₂ O	ad 1000 ml

2.3.4 Nährmedien-Zusätze

Bei Bedarf wurden den Fest- und Flüssigmedien verschiedene Zusätze zugegeben (Tab. 2.11). Nach Herstellung der Stocklösungen und anschließender Sterilfiltration erfolgte die Lagerung bei -20℃.

Antibiotikum/ Substanz	Lösungsmittel	Konzentration der Stocklösung	Endkonzentration
Cefotaxim	H ₂ O	10 mg/ml	variabel
Penicillin G	H ₂ O	10 mg/ml	variabel

Tab. 2.11: Nährmedien-Zusätze

2.4 Mikrobiologische Methoden

2.4.1 Herstellung von Glycerinkulturen

Zur Konservierung der Stämme mussten Glycerinkulturen angelegt werden. Hierzu wurden in ein Cryoröhrchen (Greiner Bio-One GmbH) 200 µl steriles Glycerin (86 %) vorpipettiert und mit 1 ml einer exponentiell wachsenden Flüssigkultur (Nephelo 70-80) durch Vortexen vermischt. Die Kultur wurde in flüssigem N₂ schockgefroren und bei -80 °C gelagert. Anschließend wurden die Glycerinkulturen auf Blutagar-Platten ausgestrichen und über Nacht bei 37 °C inkubiert, um die Reinheit der Kulturen zu überprüfen.

2.4.2 Anzuchtbedingungen

2.4.2.1 Streptokokken

Zur Anzucht der Bakterienstämme wurden Vorkulturen angelegt. Dazu wurden die einzelnen Stämme aus Glycerinkulturen oder von Blutagarplatten in 6 ml frischem C-Medium angeimpft. *S. mitis* und *S. oralis*-Stämme wurden alternativ und je nach Experiment in 2-6 ml M17-Medium wachsen gelassen. Da *S. pneumoniae* die Eigenschaft hat, nach Erreichen der stationären Phase zu lysieren, mussten die Vorkulturen ins Eiswasserbad gestellt werden. Der Beginn der Inkubation bei einer Temperatur von 37 °C wurde mit einer Zeitschaltuhr so gesteuert, dass die Bakterienzellen am nächsten Morgen noch in der exponentiellen Wachstumsphase waren. Nach Verdünnung der Vorkultur in frischem, vorgewärmtem C- beziehungsweise M17-Medium (1:20) erfolgte eine erneute Inkubation ohne Schütteln bei 37 °C im Wasserbad.

Zum Wachstum auf Blutagarplatten wurden die Stämme – je nach Versuch – mit einem sterilen Glasstab beziehungsweise einer Impföse aus Glycerin- oder Flüssigkultur überimpft oder 100 µl einer Flüssigkultur mittels eines Drigalskispatels ausplattiert. Anschließend erfolgte eine Inkubation der Platten bei 37 °C im Brutschrank.

2.4.3 Wachstumsmessungen

Die Untersuchung des Wachstumsverhaltens der Streptokokken erfolgte mittels eines Nephelometers (Digital Unigalvo DS29, Diffusion Systems, London). Dieses misst die Lichtstreuung der Zellen (Nephelo, N).

Zur Erstellung von Wachstumskurven wurden 10 ml frisches, vorgewärmtes C-Medium 1:20 mit einer *Streptococcus*-Vorkultur beimpft und bei 37 °C im Wasserbad inkubiert. Die Nephelo-

Werte wurden alle 30 min abgelesen und gegen die Zeit auf halblogarithmisches Papier aufgetragen.

Die Berechnung der Wachstumsrate μ und der Generationszeit g erfolgte im linearen Bereich der Wachstumskurve mithilfe folgender Formeln:

 μ [min⁻¹] = (InX-X₀) / (t-t₀) g [min] = In2 / μ

mit

$$\label{eq:main_state} \begin{split} \mu &= Wachstumsrate \ [min^{-1}] \\ X &= Zellzahl \ zum \ Zeitpunkt \ t \ [N] \\ X_0 &= Zellzahl \ zum \ Zeitpunkt \ t_0 \ [N] \\ (t-t_0) &= Zeitdifferenz \ [min] \\ g &= Generationszeit \ [min]. \end{split}$$

2.4.4 Mikroskopie

Zur mikroskopischen Analyse der Streptokokken wurden 5 µl einer exponentiell wachsenden Kultur auf einen Objektträger gegeben, mit einem Deckglas bedeckt und unter ein Fluoreszenzmikroskop (Eclipse E600, Nikon) gelegt. Zur Einstellung der Fokussierungsebene wurde die 40-fache Vergrößerung gewählt. Die eigentliche Analyse der Bakterienzellen erfolgte mittels des 100-fach Objektivs unter Verwendung von Immersionsöl. Die Zellmorphologie wurde mit einer Kamera (CCD-1300B, VDS Vosskühler GmbH) dokumentiert.

2.4.5 Bestimmung der minimalen Hemmkonzentration (MHK)

Unter der minimalen Hemmkonzentration versteht man die Mindestkonzentration eines bestimmten Antibiotikums, bei der gerade kein Bakterienwachstum mehr erfolgt. Um die Resistenz der einzelnen Bakterienstämme zu untersuchen, wurden zwei verschiedene Methoden angewandt.

2.4.5.1 E-Test

Beim E-Test werden Antibiotika-Teststreifen (Oxoid GmbH) mit einem aufgebrachten Konzentrationsgradienten verwendet. In dieser Arbeit wurden zwei verschiedene Antibiotika getestet, die in Tab. 2.12 samt Konzentrationsbereich gezeigt sind.

[ab. 2.12: Konzentrationsbereiche auf den E-Test-Streifen		
Antibiotikum Konzentrationsbereich [µg/ml]		
Cefotaxim	0,015 - 256	
Penicillin G	0,015 - 256	

In eine große, viereckige Platte wurden 30 ml D-Blutagar gegossen. Auf der Platte wurden 100 µl der zu testenden Bakterienkultur (Nephelo 30) mittels eines Drigalskispatels ausplattiert und kurz angetrocknet. Die Teststreifen wurden dann mithilfe einer spitzen Pinzette luftblasenfrei auf die beimpfte Platte gelegt und diese anschließend bei 37 °C inkubiert. Die erste Auswertung erfolgte nach 24 Stunden, indem die MHK mithilfe der Skala auf dem Teststreifen und über die Ausdehnung des Hemmhofes abgelesen wurde. Nach 48 Stunden wurden die erhaltenen MHK-Werte nochmals überprüft.

2.4.5.2 Plattenverdünnungsmethode

Die Plattenverdünnungsmethode liefert genauere Ergebnisse als der E-Test, da engere Antibiotika-Konzentrationsbereiche untersucht werden können als die auf der Skala des E-Teststreifens vorgegebenen.

Hierzu wurden eine Reihe von Blutagarplatten gegossen, denen das zu testende β-Laktamantibiotikum (Cefotaxim und Penicillin G) in der entsprechenden Konzentration unmittelbar vor dem Gießen zugesetzt wurde. Die Bakterienzellen wurden in C-Medium bis zu einer Nephelo von 30 anwachsen gelassen und mittels eines sterilen Glasstabs auf die frisch gegossenen Blutagarplatten ausgestrichen. Die Inkubation der Platten erfolgte bei 37°C, die Auswertung sowohl nach 24 Stunden als auch nach 48 Stunden. Ein Wachstum weniger einzelner Kolonien oder ein feiner Bakterienfilm wurde nicht als Wachstum gezählt.

2.4.6 Transformation von S. pneumoniae und S. mitis

2.4.6.1 Herstellung kompetenter Zellen

Bei *S. pneumoniae* handelt es sich um ein natürlich kompetentes Bakterium, das in einer bestimmten Phase seines Wachstums in der Lage ist, DNA aufzunehmen (Tomasz & Hotchkiss, 1964). Der Laborstamm R6 weist bei einer Nephelo zwischen 20 und 50 seine höchste Kompetenz auf. Kompetenz wurde neben *S. pneumoniae* auch in anderen *Streptococcus*-Arten beobachtet. In dieser Arbeit wurden speziell von dem Stamm *S. mitis* M3 kompetente Zellen hergestellt und die Fähigkeit zur DNA-Aufnahme überprüft.

Zur Herstellung kompetenter Zellen wurden 12 ml vorgewärmtes C-Medium, das zusätzlich 108 μ l 8 %iges BSA enthielt, mit einer Vorkultur beimpft und im Wasserbad bei 37 °C inkubiert. Die anfängliche Nephelo sollte bei zirka N = 3 liegen. Von *S. pneumoniae* wurden bei einer Zelldichte von etwa N = 30, im Fall von *S. mitis* M3 bei einer Nephelo von N = 70 500 μ l Aliquots entnommen. Diese wurden jeweils mit 100 μ l sterilem Glycerin gemischt, in flüssigem N₂ schockgefroren und bei -80 °C aufbewahrt.

2.4.6.2 Transformation

Zur Transformation wurden 180 µl C-Medium, das zusätzlich 1,62 µl BSA (8 %) enthielt, mit 20 µl der auf Eis aufgetauten kompetenten Zellen vermischt. Um die Transformationseffizienz von S. mitis M3 zu erhöhen, wurden je nach Experiment 4 µl S. mitis B6-CSP (competence stimulating peptide; 10 ng/µl) zugesetzt. CSP bewirkt die Induktion der Kompetenz (Havarstein et al., 1995). Nach Zugabe von zirka 100-500 ng zu transformierender DNA erfolgte eine 30 Minuten lange Inkubation des Ansatzes bei 30°C im Wasserbad. In dieser Zeit findet die Aufnahme der DNA und die darauf folgende Rekombination mit dem Empfänger-Genom statt. Darauf folgte eine Inkubation bei 37°C für 2 Stunden, um die phänotypische Expression der Resistenz zu ermöglichen. Vom Transformationsansatz wurde eine Verdünnungsreihe erstellt und jeweils 100 µl der geeigneten Verdünnung auf Blutagarplatten mit beziehungsweise ohne Antibiotikum ausplattiert. Um gleich zu Beginn eine Aussage über den Erfolg des Experiments machen zu können, lief immer ein Transformationsansatz ohne DNA mit (Negativkontrolle). Von diesem Ansatz wurde ebenfalls eine Verdünnungsreihe erstellt und je 100 µl der geeigneten Verdünnungen auf Platten mit beziehungsweise ohne Antibiotikum ausplattiert. Die Platten wurden bei 37°C im Brutschrank für maximal zwei Tage inkubiert. Das Picken von Einzelkolonien möglicher Transformanten geschah mittels eines sterilen Glasstabs. Diese wurden zur Kontrolle

sowohl auf Blutagarplatten mit Antibiotikum (Selektionskonzentration) als auch auf Platten ohne Antibiotikum ausgestrichen.

2.5 Arbeiten mit Nukleinsäuren

2.5.1 Isolierung chromosomaler DNA aus S. pneumoniae

Die in dieser Arbeit angewandte Methode zur Isolierung der chromosomalen DNA basiert auf der Methode von Marmur (Marmur, 1961).

2.5.1.1 Zelllyse

Zur Isolierung der genomischen DNA wurden 6 ml einer *S. pneumoniae*-Kultur (N = 80) bei 8000 rpm für 10 Minuten abzentrifugiert (Biofuge Stratos, Heraeus Instruments). Nach Resuspension des Bakterienpellets in 100 μ l NaCl-Lösung (0,9 %) und Überführung in ein Eppendorf-Reaktionsgefäß wurde erneut bei 14.000 rpm 1 Minute zentrifugiert (Eppendorf Centrifuge 5415 D). Das erhaltene Pellet wurde anschließend in 180 μ l TE-Puffer durch Vortexen gelöst. Nach Zugabe von 20 μ l RNAse-Lösung wurde das Reaktionsgefäß in ein 37 °C Wasserbad gestellt. Die Zelllyse erfolgte durch Zugabe von 200 μ l 2%iger SDS-Lösung. Nach vorsichtigem Mischen wurde der Ansatz so lange bei 37 °C inkubiert, bis die Flüssigkeit leicht klar war. Nach Zusatz von 100 μ l Proteinase-K-Lösung musste der Ansatz weitere 10 Minuten bei 37 °C inkubiert werden, um eine Spaltung der in dem Lysat befindlichen Polypeptide zu ermöglichen.

2.5.1.2 Phenol-Extraktion

Um aus der DNA-Lösung Proteine zu entfernen, musste eine Phenol-Extraktion durchgeführt werden. Dazu wurden 500 µl Phenol (Roth), das eine denaturierende Wirkung besitzt, zu dem Ansatz pipettiert und dieser 30 Minuten auf dem Schüttler (Eppendorf Mixer 5432) gerüttelt. Zur Phasentrennung wurde das Gemisch für 3 Minuten bei 14.000 rpm zentrifugiert (Eppendorf Centrifuge 5415 C), die wässrige Oberphase mit der DNA abgehoben und in ein neues Reaktionsgefäß überführt.

In einem zweiten Schritt erfolgte die Zugabe von 500 µl eines Chloroform/Isoamylalkohol-Gemischs (24:1). Der Ansatz wurde weitere 10 Minuten auf dem Schüttler gerüttelt. Danach wurde erneut 3 Minuten lang bei 14.000 rpm zentrifugiert und die erhaltene Oberphase in ein neues Reaktionsgefäß überführt.

2.5.1.3 Präzipitation der DNA

Zur Konzentrierung und weiteren Reinigung der DNA fand eine Fällung mit reinem Isopropanol statt.

Die wässrige Lösung wurde mit 500 μ l Isopropanol versetzt und durch mehrmaliges Invertieren gemischt. Nach einer Inkubationszeit von 10 Minuten bei Raumtemperatur (RT) erfolgte eine Zentrifugation für 5 Minuten bei 14.000 rpm (Eppendorf Centrifuge 5415 D). Da die in der Lösung befindlichen Salze in Gegenwart von Isopropanol zur Kopräzipitation neigen, wurde das DNA-Pellet zweimal mit Ethanol (70 %) gewaschen und zirka 15 Minuten bei RT getrocknet. Danach wurden 100 μ l TE-Puffer zugegeben und die DNA über Nacht durch Inkubation bei 4°C gelöst.

Lösungen, die zur Isolierung der chromosomalen DNA aus *S. pneumoniae* verwendet wurden, sind in Tab. 2.13 aufgeführt.

Komponente	Konzentration / Menge	
NaCl	0,9 %	
autoklavieren		
TE Duffor		
	10	
EDIA	1 mM	
autoklavieren		
RNAse - Lösung		
Tris	10 mM	
NaCl	15 mM	
pH 7.5 einstellen, autoklavieren		
BNAse (Both)	10 ma/ml	
15 Min, bei 100 °C kochen	10 mg/m	
hei -20° C lagern		
SDS	2 %	
Proteinase K-Lösung (Roth)	20 mg/ml	
bei RT lösen, bei -20 °C lagern		
Chloroform/Isoamvlalkohol		
Chloroform/Isoamvlalkohol	48 ml	
Isoamylalkohol	2 ml	
Isoaniyianonon	2 111	
Ethanol	70 %	

Tab. 2.13: Lösungen zur Präparation chromosomaler DNA aus S. pneumoniae

2.5.2 Isolierung chromosomaler DNA aus oralen Streptokokken

Um bei *S. mitis* und *S. oralis* die Zelllyse zu ermöglichen, muss die Zellwand mithilfe von speziellen Enzymen abgebaut werden.

Zur Isolierung der chromosomalen DNA wurden 10 ml einer bewachsenen Kultur (N = 80-100) bei 8000 rpm für 10 Minuten abzentrifugiert (Biofuge Stratos, Heraeus Instruments). Nach Resuspension des Zellpellets in 1 ml Saline (0,9 % NaCl) und Überführen der Suspension in ein Eppendorf-Reaktionsgefäß folgte eine Zentrifugation von 1 Minute bei 14.000 rpm (Eppendorf Centrifuge 5415 D). Das erhaltene Pellet wurde in 180 μ l SaTE gelöst und mit 20 μ l RNAse versetzt. Zum Abbau der Zellwand wurden 90 μ l Lysozym, 5 μ l Mutanolysin und 200 μ l SDS zu dem Ansatz gegeben und dieser dann 30 - 35 Minuten bei 37 °C im Wasserbad inkubiert. Nach der Inkubation wurden 100 μ l Proteinase K zu dem Gemisch pipettiert und das Ganze erneut für 10 Minuten ins 37 °C-Wasserbad gestellt. Die genomische DNA wurde dann, wie in Abschnitt 2.5.1.2 beschrieben, durch Phenolextraktion gereinigt und einer Isopropanol-Präzipitation (2.5.1.3) unterzogen. Das Lösen des DNA-Pellets in 100 μ l TE-Puffer fand über Nacht bei 4 °C statt.

Die Materialien, die zur Isolierung der chromosomalen DNA aus oralen Streptokokken benötigt wurden, sind in Tab. 2.14 aufgelistet.

Lösung	Konzentration / Menge
NaCl	0,9 %
autoklavieren	
SaTE	
Tris-HCl pH 8,0	10 mM
EDTA	1 mM
Saccharose	6,7 %
autoklavieren	
RNAse-Lösung	
Tris	10 mM
NaCl	15 mM
pH 7,5 einstellen, autoklavieren	
RNAse A (Roth)	10 mg/ml
15 Min. bei 100℃ kochen	
Lysozym (Serva GmbH & Co.)	25 mg/ml in 25 mM Tris-HCl pH 8,0
Mutanolysin (Sigma GmbH)	5000 U/ml
SDS	2 %

Tab. 2.14: Lösungen zur Präparation	chromosomaler	DN/	A aus	s oralen	Streptokokken
	17				

Proteinase K-Lösung (Roth) bei RT lösen, bei -20 ℃ lagern	4 mg/ml
Chloroform/Isoamylalkohol	
Chloroform	48 ml
Isoamylalkohol	2 ml
Ethanol	70 %
TE-Puffer	
Tris-HCl, pH 8,0	10 mM
EDTA	1 mM
autoklavieren	

2.5.3 Agarose-Gelelektrophorese

Zur Auftrennung von DNA-Fragmenten nach ihrer Größe wurde die Agarose-Gelelektrophorese verwendet. Durch die Variation der Agarosekonzentration können lineare DNA-Fragmente der Größe 0,1-60 kb aufgetrennt werden (Sambrook *et al.*, 1989).

Die Separation der DNA erfolgte in der Regel in einem 0,8 beziehungsweise 1 %igem Gel, der Trennbereich für DNA-Fragmente liegt hier etwa bei 0,5-9 kb. Für kleinere Fragmente wurde eine Agarosekonzentration von 1,5 % beziehungsweise 2 % gewählt, sodass eine gute Trennung von 0,1-3 kb-Fragmenten erreicht werden konnte. Zur Herstellung des Gels wurden die Agarose in 100 ml TAE-Puffer (1x) durch Aufkochen in der Mikrowelle gelöst und in eine horizontale Gelkammer gegossen. Im Anschluss an die Polymerisation der Agarose wurde das fertige Gel in eine mit TAE-Puffer (1x) gefüllte Laufkammer gelegt und die Geltaschen mit jeweils 2 μ l Probe, 2 μ l Probenpuffer und 2 μ l H₂O beladen. Zur Bestimmung der Fragment-größen wurde im Allgemeinen die GeneRuler 1 kb DNA Leiter (Fermentas) aufgetragen. Bei kleineren Fragmenten wurde zusätzlich die GeneRuler 100 bp Leiter (Fermentas), bei größeren Fragmenten der λ DNA/*Hind*III Marker (Fermentas) verwendet. Der Lauf des Gels erfolgte bei einer Spannung von 80-130 V.

Nach der Elektrophorese wurde das Gel 20 Minuten in Ethidiumbromid, einem interkalierenden Fluoreszenzfarbstoff, gefärbt. Um den Kontrast zu erhöhen, erfolgte eine 5-minütige Entfärbung im Wasserbad. Anschließend wurde die DNA unter UV-Licht mit der Wellenlänge 254 nm auf einem Transilluminator sichtbar gemacht und zur Dokumentation mittels einer Video Copy Processor Kamera (P68E, Mitsubishi) fotografiert.

Zur Elution einzelner DNA-Fragmente aus Agarose-Gelen wurden Gele mit größeren Taschen gegossen, sodass der gesamte Reaktionsansatz (50-100 µl) aufgetragen werden konnte.

Zusätzlich wurden 2 µl des Reaktionsansatzes und ein geeigneter DNA-Marker in die Nachbartaschen pipettiert. Vor dem Lauf des Gels bei einer Spannung von 80 V wurde die Laufkammer stets mit frischen TAE-Puffer (1x) gefüllt. Um die DNA der zu eluierenden Probe nicht durch UV-Licht zu beschädigen, wurde die entsprechende Gelspur vor dem Färben ausgeschnitten und beiseite gelegt. Nach Färben des übrigen Gelfragments im Ethidiumbromidbad wurde der Bereich der gewünschten DNA-Bande unter langwelligem UV-Licht mittels eines Skalpells markiert. Anschließend wurden die Gelteile wieder zusammengelegt und die entsprechende Laufhöhe aus der Probenspur ausgeschnitten. Die Reinigung der DNA von der Agarose erfolgte mithilfe des PCR clean up Gel Extraction Kits (Macherey Nagel) nach Herstellerangaben.

Die verwendeten Materialien sind in Tab. 2.15 aufgeführt.

Fab. 2.15: Reagentien f Gelelektrophorese			
Komponente	Konzentration / Menge	_	
TAE-Puffer (50x)		_	
Tris	2 M		
EDTA	0,05 M		
Na-Acetat	0,25 M		
mit Essigsäure pH 7,8 einstellen			
vor Gebrauch 1:50 verdünnen			
DNA-Probenpuffer (6x)			
Glycerin	30 ml		
Xylen Cyanol FF	0,25 g		
Bromphenolblau	0,25 g		
H ₂ O	ad 100 ml		
Ethidiumbromid			
Stocklösung	10 mg/ml		
Gebrauchslösung	zirka 5 µg/ml		

2.5.4 DNA-Konzentrationsbestimmung

Die Konzentrationsbestimmung der DNA erfolgte mithilfe eines NanoDrop Spektralphotometers (ND-1000, NanoDrop Technologies) bei einer Wellenlänge von 260 nm. Zur Messung der Absorption wurde 1 µl Probe auf die Messoberfläche pipettiert.

Die Nukleinsäurekonzentration wird hierbei automatisch aus der OD bei 260 nm und einem für die DNA spezifischen Multiplikationsfaktor berechnet:

ds DNA [ng/
$$\mu$$
l] = OD₂₆₀ x 50

Der Reinheitsgrad der DNA-Präparation wurde ebenfalls überprüft. Aromatische Aminosäuren absorbieren bei einer Wellenlänge von 280 nm. Das E_{260}/E_{280} . Verhältnis zeigt an, ob die DNA durch Proteine verunreinigt ist und sollte bei sauberer DNA einen Wert von etwa 1,8 (Ausubel *et al.*, 1990) aufweisen.

2.6 Polymerase-Kettenreaktion (Polymerase Chain Reaction, PCR)

Die PCR ermöglicht es, enzymatisch von bestimmten DNA-Abschnitten millionenfach Kopien herzustellen, was als Amplifikation bezeichnet wird.

Im ersten Schritt erfolgt die thermische Denaturierung der zu amplifizierenden, doppelsträngigen DNA, sodass schließlich einzelsträngige Template-Moleküle entstehen. Im zweiten Schritt lagern sich synthetische Oligonukleotid-Primer, die als Startermoleküle für die Polymerase fungieren, an die komplementären Sequenzen der einzelsträngigen DNA an (Annealing). Durch die Wahl eines gegenläufig orientierten Primerpaares findet eine gezielte Amplifikation des Bereichs zwischen diesen beiden Primern statt. Im dritten Schritt fügt eine thermostabile DNA-Polymerase das entsprechende Desoxyribonukleotid (dATP, dGTP, dCTP oder dTTP) an das 3'-OH-Ende des Primers an und bewirkt somit die Neusynthese des DNA-Doppelstrangs (Elongation). Durch mehrfache Wiederholung dieses Zyklus wird eine exponentielle Amplifizierung der Matrize erreicht.

In dieser Arbeit wurden sowohl die RedGoldstarTM DNA-Polymerase (Eurogentec) aus dem thermophilen Bakterium *Thermus aquaticus* als auch die iProof High Fidelity DNA-Polymerase (Bio-Rad) für die PCR verwendet. Die iProof-Polymerase besitzt im Gegensatz zur Taq-Polymerase zusätzlich zur 5' \rightarrow 3'-Exonuclease-Aktivität eine 3' \rightarrow 5'-Exonuclease-Aktivität, auch Proofreading-Aktivität genannt. Die Fehlerrate der iProof-Polymerase beim Einbau von Nukleotiden ist laut Herstellerangaben um 50 mal niedriger als mit der Taq-Polymerase. Das Enzym kam also speziell dann zum Einsatz, wenn zum Beispiel bei gezielten Mutagenese-Experimenten beziehungsweise Klonierungen eine möglichst niedrige Fehlerrate bei der Synthese der PCR-Produkte notwendig war.

Die Zusammensetzungen der jeweiligen Reaktionsansätze sind in Tab. 2.16 und 2.17 aufgeführt.

Komponente	Menge (50 μl Ansatz)
Reaktionspuffer (10x)	5 μl
MgCl ₂ (25 mM)	8 μΙ
dNTP-Mix (10 mM)	2 μΙ
Forward-Primer (10 pmol/µl)	1 μΙ
Reverse-Primer (10 pmol/µl)	1 μΙ
Template-DNA ¹	1-5 μl
Goldstar DNA-Polymerase (2,5 U/µI)	0,5 μl
H ₂ O	ad 50 μl

Tab. 2.16: Reaktionsansatz bei Verwendung de	ler RedGoldstar-Polymerase
--	----------------------------

¹Bei Durchführung einer Colony-PCR wurden 400 μl einer Glycerinkultur bei 14.000 rpm 3 Min. lang abzentrifugiert und 1 μl des Pellets in die PCR eingesetzt.

Komponente	Menge (50 µl Ansatz)
HF-Reaktionspuffer (5x)	10 µl
dNTP-Mix (10 mM)	1 μΙ
Forward-Primer (10 pmol/µl)	1 μΙ
Reverse-Primer (10 pmol/µl)	1 μΙ
Template-DNA	1-5 μl
iProof-Polymerase (2 U/µI)	0,5 μl
H ₂ O	ad 50 μl

 Tab. 2.17: Reaktionsansatz bei Verwendung der iProof-Polymerase

Die Amplifikationen wurden in verschiedenen Thermocyclern (UNO Thermoblock, T1Thermocycler, Biometra) durchgeführt. Die gewählten PCR-Programme sind den Tab. 2.18 und 2.19 zu entnehmen.

Schritt		Temperatur	Dauer
1	initiale Denaturierung	94℃	2 Min.
2	Denaturierung	94 <i>°</i> C	30 Sek.
3	Annealing	T _M -5 ℃	30 Sek.
4	Elongation	72℃	1 Min./kb
die	e Schritte 2-4 wurden 30 x durchlaufen		
5	abschließende Elongation	72℃	10 Min
6	Pause	10℃	∞

T_M = Schmelztemperatur der verwendeten Oligonukleotide

Schritt	Temperatur	Dauer
1 initiale Denaturierung	98 <i>°</i> C	30 Sek.
2 Denaturierung	98 °C	10 Sek.
3 Annealing	T _M	30 Sek.
4 Elongation	72 <i>°</i> C	30 Sek./kb
die Schritte 2-4 wurden 30-35 x durchlaufe	en	
5 abschließende Elongation	72 <i>°</i> C	10 Min.
6 Pause	10 <i>°</i> C	×

Tab. 2.19: PCR-Programm bei Verwendung der iProof-Polymerase

 T_M = Schmelztemperatur der verwendeten Oligonukleotide

Bei Verwendung der Goldstar-Polymerase lag die Annealing-Temperatur 5°C unter der berechneten Schmelztemperatur (Tab. 2.4-2.6) der jeweiligen Primer. Bei Gebrauch der iProof-Polymerase entsprach die Annealing-Temperatur der Schmelztemperatur der eingesetzten Oligonukleotide.

Die Elongationszeit ist von der Größe des zu amplifizierenden Fragments abhängig, wobei die Goldstar-Polymerase eine Umsatzrate von 1 kb DNA/Min. hat. Mit der iProof-Polymerase lassen sich PCR-Produkte in kürzerer Zeit amplifizieren, ihre Umsatzrate liegt bei 1 kb DNA/15-30 Sek.

2.6.1 Reinigung von PCR-Produkten

Vor Einsatz der PCR-Produkte in weiteren enzymatischen Reaktionen mussten die DNA-Polymerase, Salze, überschüssige dNTPs und Primer aus dem PCR-Reaktionsansatz unter Verwendung von Molekularsiebsäulen (spin-columns) abgetrennt werden. Dies geschah mittels des PCR clean up Gel Extraction Kits (Macherey Nagel) nach Herstellerangaben.

2.7 DNA-Sequenzierung

Die Sequenzierung von PCR-Produkten wurde von der Seq-IT GmbH & Co. KG Kaiserslautern und zu Beginn der Arbeit im Nano + Bio Center der TU Kaiserslautern durchgeführt. Das verwendete System zur Bestimmung der Basensequenz der DNA beruht auf der Kettenabbruch-Methode nach Sanger (Sanger *et al.*, 1977).

Die Sequenzierung an der TU Kaiserslautern erfolgte mittels des ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kits Version 1.1 (Applied Biosystems). Dieser Mix enthält die Polymerase, die vier Desoxyribonukleotide (dNTPs) und die vier Didesoxyribonukleotide (ddNTPs), wobei jedes ddNTP mit einem unterschiedlichen Fluorophormolekül versehen ist. Die zu analysierende DNA dient hierbei als Matrize für die Synthese neuer DNA-Fragmente. Dazu muss die DNA in einem Denaturierungsschritt in eine einzelsträngige Form überführt werden. Nach Hybridisierung mit dem Sequenzierprimer synthetisiert eine DNA-Polymerase den zur Matrize komplementären Strang. Bei Einbau eines ddNTPs in den neu synthetisierten DNA-Strang kommt es zum Kettenabbruch, da die fehlende 3´-OH-Gruppe verhindert, dass ein weiteres Nukleotid angefügt werden kann.

Die Zusammensetzung des Sequenzreaktionsansatzes und das entsprechende Programm sind in den Tab. 2.20 und Tab. 2.21 gezeigt. Durchgeführt wurden die Sequenzreaktionen in den Thermocyclern UNO-Thermoblock beziehungsweise TGradient der Firma Biometra.

Komponente	Menge
Template-DNA (PCR-Produkt)	10-15 ng/100 bp
Primer (10 pmol/µl)	1 μl
BigDye-Terminator Mix	2 µl
H ₂ O	ad 10 µl

Tab. 2.20: Reaktionsansatz der Sequenzreaktion

So	chritt	Temperatur	Dauer	
1	initiale Denaturierung	96 <i>°</i> C	2 Min.	
2	Denaturierung	96 <i>°</i> C	30 Sek.	
3	Annealing	50 <i>°</i> C	15 Sek.	
4	Elongation	60 ℃	4 Min.	
die Schritte 2-4 wurden 25 x durchlaufen				
5	Pause	4℃	8	

Tab. 2.21: Programm der Sequenzreaktion

Die Aufreinigung der Sequenzreaktion und die Sequenzierung der Proben erfolgten im Nano + Bio Center der TU Kaiserslautern. Bei dem verwendeten Sequenziergerät handelt es sich um den ABI PRISM 3100 Genetic Analyzer, einem 16-Kapillar-Sequenzierer der Firma Applied Biosystems. Zur Auswertung der Sequenzen wurden folgende bioinformatischen Programme verwendet:

- Chromas Version 1.45; 1996-1998 Conor McCarthy, School of Health Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- Clone Manager Version 7.0, Scientific and Educational Software
- Phred Phrap Consed
- Datenbanken: <u>http://www.ncbi.nlm.nih.gov/BLAST/</u>

http://nbc11.biologie.uni-kl.de/

Um Sequenzvergleiche (Multiple Sequence Alignment) durchzuführen, wurde alternativ zum Programm Clone Manager auf folgende Internetadresse zugegriffen:

• http://bioinfo.genotoul.fr/multalin/multalin.html

2.8 MLST-Analyse

Bei der MLST-Analyse handelt es sich um eine Standardmethode zur Klassifizierung von Streptokokken-Spezies (Enright and Spratt, 1998; Hanage *et al.*, 2005, Chi *et al.*, 2007). Sie beruht auf Sequenz-Vergleichen von zirka 405-486 bp-Fragmenten der sieben Haushaltsgene *aroE*, *gdh*, *gki*, *recP*, *spi*, *xpt* und *ddl*.

In der vorliegenden Arbeit wurden interne Fragmente der oben genannten MLST-Gene – bis auf *ddl* – mittels PCR (Kapitel 2.6) amplifiziert und sequenziert (Kapitel 2.7). Die dazu verwendeten Primerpaare sind in Tab. 2.4 und 2.22 dargestellt. *ddl* wurde nicht in die Analysen mit einbezogen, da es sich als hoch variabel erwiesen hat (Enright and Spratt, 1999). Die 405-406 bp-Sequenzen der sechs MLST-Loci wurden miteinander verknüpft, sodass ein Contig mit einer Länge von 2758 bp erhalten wurde. Durch Vergleich mit den entsprechenden MLST-Sequenzen weiterer Streptokokken-Spezies wurde mithilfe der MEGA-Software Version 4.1 (Tamura *et al.*, 2007; Kumar *et al.*, 2008) die genetische Verwandtschaft ermittelt. Alle Sequenzen wurden als Protein-kodierende Daten behandelt. Zum "Bootstrapping" wurde eine Standard-Einstellung von 1050 Wiederholungen gewählt. Für alle weiteren Parameter blieben die vorgegebenen Standard-Eingaben bestehen. Das Ergebnis wurde in Form eines sogenannten MLST-Baums unter Verwendung des "Minimum Evolution"-Algorithmus dargestellt.

			Länge des	Position des
Gen	Primerpaar	Position der Primer*	internen	Fragments
	-		Fragments	im Gen
aroE	aroE-up**	85 → 101	405 bp	133-537
	aroE-dn ^{**}	$563 \rightarrow 541$		
	aroE-up	85 → 101		
	aroE-dn2	$584 \rightarrow 566$		
gdh	gdh-up	745 → 764	460 bp	840-1299
•	gdh-dn	1403 → 1384	·	
gki	gki-up	217 → 236	483 bp	295-777
	gki-dn	842 → 826		
recP	recP-up	58 → 77	450 bp	143-592
	recP-dn	627 ightarrow 608		
spi	spi-up2	-19 → 3	474 bp	74-547
•	spi-dn2	+6 → 599	·	
xpt	xpt-up**	$7 \rightarrow 26$	486 bp	46-531
	xpt-dn**	578 → 559		
	xpt-un2	-6 → 17		
	xpt-dn2	+661 → +641		

Tab. 2.22: Zur MLST-Analyse verwendete Haushaltsgene und Primerpaare

*Die angegebene Position der Primer entspricht der in *S. p.* R6 und bezieht sich auf das Haushaltsgen selbst. – , + zeigt die Position der Primer an, die up- beziehungsweise downstream des Haushaltsgens liegen. **Primer zur Amplifikation des U-O12 *aroE* und *xpt*.

2.9 DNA-Techniken

2.9.1 Restriktionsverdau

Bei Restriktionsendonukleasen handelt es sich um Enzyme, die DNA-Moleküle an bestimmten Positionen schneiden. Ihre Wirkung ist sehr spezifisch, das heißt sie schneiden nur ihre Zielsequenz. Diese ist in den meisten Fällen palindromisch und besteht aus vier, sechs oder acht Basen. Je nach Restriktionsenzym entstehen beim Verdau klebrige (sticky) oder glatte (blunt) Enden.

In dieser Arbeit wurden Restriktionsenzyme der Firmen New England Biolabs und Roche verwendet. Die Angaben über geeignete Puffer, Zugabe von BSA, Inkubationstemperatur und Hitzeinaktivierung sind den Herstellerangaben zu entnehmen. Soweit nicht anders empfohlen wurden die Reaktionsansätze (Tab. 2.23) bei 37 ℃ für 2 1/2 Stunden inkubiert und das Enzym anschließend 20 Minuten bei 65 °C hitzeinaktiviert. 1 µg der verdauten sowie die ungeschnittene DNA wurden zur Kontrolle auf ein Agarose-Gel aufgetragen (Abschnitt 2.5.3).

Tab. 2.23: Restriktionsan	satz	
Komponente	Menge	
Template-DNA	3-4 μg	
Puffer (10x)	2 µl	
Enzym (10 U/μl)	2 µl	
BSA (1 mg/ml)*	2 µl	
H ₂ O	ad 20 μl	

*BSA wurde zu dem Ansatz gegeben, wenn es laut Herstellerangaben erforderlich war.

2.9.2 Ligation von DNA-Fragmenten

Zur Ligation von DNA-Fragmenten wurde die T4-DNA-Ligase (New England Biolabs) verwendet. Diese katalysiert die Bildung von Phosphodiesterbindungen zwischen benachbarten 5´-Phosphat- und 3´-Hydroxylenden doppelsträngiger DNA-Moleküle.

Im Rahmen der inversen PCR (Abschnitt 2.9.3) wurde folgender Standardansatz gewählt:

Гаb.	2.24:	Ligationsansatz iPCR	

Komponente	Menge
DNA	100 ng
Ligationspuffer (10x)	2 μΙ
T4-DNA-Ligase (400 U/μl)	1 µl
H ₂ O	ad 20 µl

Die Ligation erfolgte über Nacht bei einer Temperatur von 16 ℃ im Wasserbad.

2.9.3 Inverse Polymerase-Kettenreaktion (iPCR)

Die inverse PCR wird zur Amplifikation von unbekannten Sequenzabschnitten up- und downstream eines bekannten Sequenzbereichs angewendet. Bei der Durchführung einer inversen PCR muss die chromosomale DNA zunächst mit einem geeigneten Restriktionsenzym in zirka 1000-4000 bp große Fragmente zerteilt werden, sodass diese noch gut amplifiziert werden können und ausreichend neue Sequenzinformationen liefern. Als Anhaltspunkt für die Auswahl der Enzyme diente in dieser Arbeit die Anzahl der Restriktionsschnittstellen im Genom von

S. pneumoniae R6 beziehungsweise *S. mitis* B6. Nach vollständiger Restriktion erfolgt die Religation der DNA-Moleküle. Hierbei muss die DNA-Konzentration so gering sein, dass eine ringförmige Selbstligation der Fragmente stattfinden kann. Die religierten Produkte dienen dann als Template für die eigentliche PCR (Kapitel 2.6), wobei die verwendeten Primer eine entgegengesetzte Orientierung aufweisen. Das PCR-Produkt enthält neben der bereits bekannten Sequenz die up- und downstream davon liegenden unbekannten Sequenzbereiche, die anschließend sequenziert werden können.

Das Prinzip der inversen PCR ist in Abb. 2.1 gezeigt.

Bekannte DNA-Sequenzen sind rot dargestellt, unbekannte DNA-Bereiche sind weiß gezeigt. Die DNA wird mittels eines geeigneten Restriktionsenzyms (RE) an den Stellen A und B geschnitten und anschließend religiert. Die eigentliche iPCR erfolgt mithilfe von entgegengesetzt orientierten Primern (rote Pfeile), sodass up- und downstream der bekannten DNA-Sequenz die unbekannte Sequenz amplifiziert werden kann. Nähere Erläuterungen im Text. Die zur inversen PCR verwendeten Restriktionsenzyme mit ihren relevanten Eigenschaften sind in Tab. 2.25 aufgelistet.

Enzym	Herkunft	Erkennungssequenz $(5' \rightarrow 3')^*$	Überhänge	Hersteller
Dral	Deinococcus radiophilus	TTT/AAA	blunt	Roche
<i>Eco</i> RI	Escherichia coli RY13	G/AATTC	5´	New England Biolabs
HindIII	<i>Haemophilus influenzae</i> R _d	A/AGCTT	5´	New England Biolabs
Munl	<i>Mycoplasma</i> spp.	C/AATTG	5´	Roche
Ndel	Neisseria denitrificans	CA/TATG	5´	New England Biolabs
Sapl	Saccharopolyspora spp.	GCTCTTCN/NNN	5´	New England Biolabs
Ssp <i>l</i>	<i>Sphaerotilus</i> spp.	AAT/ATT	blunt	New England Biolabs

Tab. 2.25: Zur inversen PCR verwendete Restriktionsenzyme

*Die Schnittstellen der Restriktionsenzyme in den Erkennungssequenzen sind mit / gekennzeichnet.

2.10 DNA-Microarray-Analyse

Die DNA-Hybridisierung mithilfe von Microarrays geht auf den in den 70er Jahren erfundenen Southern-Blot zurück. Im Vergleich zu diesem ermöglichen Microarrays die gleichzeitige Analyse einer Vielzahl von DNA-Molekülen auf kleinstem Raum, sodass ganze Genome auf unterschiedliche beziehungsweise gemeinsame Gene hin untersucht werden können. Allerdings wird jedes Gen lediglich durch ein 70mer Oligonukleotid auf dem Biochip repräsentiert, sodass nur hinsichtlich dieses Bereichs eine Aussage über mögliche Homologien zwischen zwei Genen getroffen werden kann. Die DNA-Microarray-Analyse gliedert sich in fünf Arbeitsschritte, die im folgenden näher erläutert werden: Herstellung des Biochips, Markierung der genomischen DNA mittels Fluoreszenz-Farbstoffen, Hybridisierung, Scannen des Biochips und Computer-gestützte Analyse der Daten.

2.10.1 Verwendete Oligonukleotid-Sets

2.10.1.1 Das S. mitis B6-Oligonukleotid-Set

Das in dieser Arbeit verwendete *S. mitis* B6-Oligonukleotid-Set wurde vom Nano + Bio Center der TU Kaiserslautern auf Basis des kürzlich in unserer Abteilung vollständig sequenzierten Genoms dieses Stammes designt; die Synthese erfolgte durch die Firma Operon Biotechnologies, Köln. Die synthetisierten Oligonukleotide haben eine Länge von 70 bp und weisen eine hohe Spezifität und Sensitivität auf. Im Vergleich zu kürzeren 20-25mer Oligonukleotiden ermöglichen 70mer Oligos es, dass jedes Gen lediglich durch ein einziges Oligonukleotid reprä-

sentiert wird. Das B6-Oligonukleotid-Set besitzt 1978 genspezifische Oligos, das heißt für alle annotierten Gene des B6-Genoms existiert jeweils ein Oligonukleotid. Zusätzlich sind in dem Set 461 für intergene Bereiche spezifische Oligos vorhanden. Des Weiteren verfügt das Set über 45 für RNA und fünf für repetitive Elemente spezifische Oligonukleotide. Stringenzkontrollen, deren Oligonukleotid-Sequenzen zu 70, 80, 90 beziehungsweise 100 % homolog zur entsprechenden B6-Sequenz sind, kommen insgesamt 48-mal im Set vor. Als Positivkontrollen dienen elf verschiedene Gene, darunter typische Haushaltsgene wie zum Beispiel aroE (Shikimat 5-Dehydrogenase) und *gdh* (Glukose-6-Phosphat Dehydrogenase), deren entsprechendes Oligo – bis auf eine Ausnahme – zusätzlich je 3-mal im Set enthalten ist. Folglich beträgt die Gesamtzahl an Positivkontrollen 31. Als Negativkontrollen fungieren vier Homo sapiens-spezifische Oligos, 16 zufällig gewählte Oligonukleotid-Sequenzen mit negativem BLAST-Ergebnis, ein insgesamt 28-mal enthaltenes 30mer Oligonukleotid, zehn je 2-mal vorhandene, künstliche SpotReport Alien Oligos inklusive 24 zugehörigen Stringenzkontrollen der Firma Stratagene, Heidelberg und Spotting-Puffer. Somit beinhaltet das B6-Oligonukleotid-Set insgesamt 92 Negativkontrollen. Die verwendeten Oligonukleotide sind zur Immobilisierung an den Biochip mit einer Amino-Gruppe am 5'-Ende versehen, die zur Bildung einer kovalenten Iminbindung (Schiff'sche Base) an Aldehyd- beziehungsweise Epoxid-modifizierte Oberflächen führt. Alle hier beschriebenen Oligonukleotide wurden in doppelter Ausführung auf den Glasträger gespottet.

Die Oligonukleotide lagen in sieben Mikrotiterplatten vor und wurden in Spotting-Puffer (Tab. 2.26) gelöst, sodass die Endkonzentration der Oligos 10 µM betrug. Die Lagerung der mit einer Adhäsionsfolie versiegelten Mikrotiterplatten erfolgte bei -20°C.

ab. 2.26: Zusammensetzung des Spotting-Puffers			
Komponente	Menge/Konzentration		
SSC (3x)			
NaCl	0,45 M		
Na-Citrat	45 mM		
pH 7 einstellen			
Betain	1,5 M		

Tah	2 26.	7usammensetzung	dae	Spotting-Puffers	
i av.	2.20.	zusammenseizung	ues	Spolling-Funers	

2.10.1.2 Das S. pneumoniae R6/TIGR4-Oligonukleotid-Set mit Zusatzplatte

Zusätzlich zu dem oben beschriebenen Satz an Oligonukleotiden wurde in der vorliegenden Arbeit das S. pneumoniae R6/TIGR4-Oligonukleotid-Set verwendet. Das Design des Sets erfolgte durch das Nano + Bio Center der TU Kaiserslautern, die Synthese durch die Firma Operon Biotechnologies in Köln. Bei den verwendeten Oligonukleotiden handelt es sich - genau wie beim S. mitis B6-Oligo-Set (Abschnitt 2.10.1.1) - um 70mere, die zur Kopplung an den Epoxid-beschichteten Glasträger am 5'-Ende einen Amino-C6-Linker besitzen. Alle im folgenden beschriebenen Oligonukleotide wurden in doppelter Ausführung auf den Biochip gespottet. Das S. pneumoniae R6/TIGR4-Oligonukleotid-Set enthält für jedes annotierte Gen des R6-Genoms ein Oligonukleotid. Das Set besteht aus insgesamt 2347 genspezifischen Oligonukleotiden, darunter befinden sich 309 oftmals als TIGR4-spezifisch bezeichnete Oligos. In rund 50 Prozent der Fälle weisen diese jedoch starke Homologien (≥ 80-100 %) zu entsprechenden Sequenzen in R6 auf, das heißt lediglich 155 dieser 309 Oligonukleotide sind tatsächlich TIGR4-spezifisch. Des Weiteren sind insgesamt 488 spezifische Oligos für intergene Regionen vorhanden, davon 328 für R6 und 160 für TIGR4. Außerdem beinhaltet das R6/TIGR4-Set 40 für RNA beziehungsweise 3 für repetitive Elemente spezifische Oligos sowie ein Oligonukleotid spezifisch für das pbp2x-Gen des multiresistenten 23F-Stammes S. pneumoniae 2349 (Reichmann et al., 1997). Zehn Positivkontrollen, 16 Stringenzkontrollen, zehn Alien-Kontrollen und 48 Negativkontrollen machen den Biochip komplett. Die verwendete Zusatzplatte enthält unter anderem Oligonukleotide für fünf kleine RNAs (aRNA1-5) sowie Stringenz-, Positiv- und Negativ-Kontrollen.

Die Oligonukleotide waren auf zehn Mikrotiterplatten (9 + 1 Zusatzplatte) aufgeteilt und wurden in Spotting-Puffer (Tab. 2.26) gelöst, sodass die finale Konzentration der Oligos 10 µM betrug. Die Platten wurden mit einer Adhäsionsfolie abgedeckt und bei -20 ℃ gelagert.

2.10.2 Herstellung des Biochips

Die Herstellung des Biochips erfolgte in dieser Arbeit nach der sogenannten "Kontaktmethode". Hierbei werden die Oligonukleotide in kleinsten Volumina durch Spotter-Nadeln (Pins) aufgenommen und mittels kapillarer Kräfte auf die Biochip-Oberfläche übertragen. Es kommt dabei zu einem direkten Kontakt zwischen Pin und Glasträger. Bewerkstelligt wird dieser Prozess durch einen Microarray-Spotter, ein spezielles Computer-gesteuertes Roboter-System. Die Spotter-Nadel kann in X-, Y- und Z-Achse bewegt werden und stellt somit den verlängerten, aber extrem miniaturisierten Robotorarm dar. Bei dem hier verwendeten Robotor handelt es sich um das SpotArray[™]24Microarray Spotting System der Firma PerkinElmer. Der Print-Kopf dieses Spotters ist mit 32 sogenannten "Splitted-Pins" (SMP3) versehen. Diese besitzen zur Aufnahme der Oligonukleotid-Lösung an ihrer Spitze eine Spalte, welche ein mehrmaliges sukzessives Spotten ermöglicht. Die Herstellung des Biochips wurde über die zugehörige SpotArray[™]-Software (PerkinElmer) gesteuert. Hierbei wurden die Mikrotiterplatten mit den Oligonukleotiden definiert, sodass letztlich jeder Spot einem Oligonukleotid zugeordnet werden konnte. Diese Information wurde als *.gal-File abgespeichert und für die spätere Auswertung der DNA-Microarray-Analysen herangezogen.

Vor Beginn des Spot-Vorgangs wurden die verspiegelten, Epoxid-beschichten Nexterion Hi-Sens (High Sensitivity) Glasträger (Schott AG) mit einem Diamantschreiber beschriftet, mittels einer Druckluftvorrichtung von Staubpartikeln befreit und in den Spotter gelegt. Die verwendeten Glasträger zeichnen sich im Vergleich zu unverspiegelten Slides durch eine deutlich höhere Signalausbeute aus. Als Blocking-Slides fungierten gewöhnliche Objektträger, die vor Gebrauch mit Ethanol und Druckluft gesäubert wurden. Auf diesen erfolgt nach Aufnahme der Oligo-nukleotid-Lösung in die "Splitted-Pins" der erste Spot, was die Entfernung von Restflüssigkeit an der Pin-Spitze bewirkt. Somit wird das Auftreten von unterschiedlich großen Spots auf dem Biochip vermieden. Die benötigten Mikrotiterplatten wurden etwa 10 Minuten bei Raumtemperatur aufgetaut, bei 800 x g 2 Minuten abzentrifugiert und in richtiger Reihenfolge gemäß Spotting-Protokoll in den Spotter gestellt. Restliche Platten wurden bis zum Plattenwechsel bei 4 °C gelagert. Das Frischwasser-Reservoir des Spotters wurde mit Reinstwasser aus einer GenPure-Wasseraufbereitungsanlage aufgefüllt und der Spot-Vorgang gestartet. Dieser fand bei einer relativen Luftfeuchtigkeit zwischen 50 und 70 Prozent statt. Die Einstellungen des Spot Array Printing-Protokolls sind in Tab. 2.27 gezeigt.

Parameter	B6-Oligo-Set	R6/TIGR4-Oligo-Set mit Zusatz	
Number of plates per plate change	4	3	
Read barcodes on plates	no	no	
Read barcodes on substrates	no	no	
Number of pre-prints after each sample load	10	10	
Pre-print spot spacing, center to center [µm]	500	390	
Number of times to print each spot within array	2	2	
Nominal spot diameter [µm]	150	150	
spot spacing, center to center [μm]	300	281	
Location on array on substrate	center	center	
Leave space for a barcode/label on bottom	yes	yes	
Printing approach velocity [mm/s]	10	10	
Printing departure velocity [mm/s]	10	10	
Printing overtravel [µm]	0	0	

Tab. 2.27: Einstellungen des Spot Array Printing-Protokolls

Printing dwell time [ms]	400	400
Sample load overtravel [µm]	100	100
Sample load dwell time [ms]	2500	2300
Substrate thickness [mm]	1,1	1,1
Maximum number of spots per sample load	120	120
Speed of printhead X - Y motion	fast	fast
Length of wash procedure [s]	6	6
Number of times to wash	4	4
Length of dry procedure after washing [s]	3	3
Do not print when humidity is outside of acceptable range	yes	yes
Minimum acceptable humidity [%RH] ¹	50	50
Maximum acceptable humidity [%RH] ¹	70	70
Control humidity level during printing procedure	yes	yes
target humidity level [%RH] ¹	65	65
Do not print when temperature is outside of acceptable range	yes	yes

¹RH = Relative Humidity

Nach Ablauf des Spot-Vorgangs wurden die bedruckten Slides 30 Minuten in einer feuchten Kammer bei Raumtemperatur inkubiert und anschließend 1 Stunde bei 85°C gebacken. Die vorübergehende Rehydrierung und das darauffolgende schnelle Trocknen der Oligonukleotide bewirken eine gleichmäßige Verteilung in den Spots sowie die Immobilisierung auf dem Glasträger. Die hergestellten Biochips wurden bis zur weiteren Verwendung dunkel bei Raumtemperatur gelagert.

2.10.3 Markierung der genomischen DNA mittels Fluoreszenz-Farbstoffen

Um die DNA des Teststammes von der des Referenzstammes nach erfolgter Hybridisierung (Abschnitt 2.10.4) unterscheiden zu können, mussten beide DNA-Populationen mit verschiedenen Fluoreszenz-Farbstoffen markiert werden. Dazu wurde die Methode des "Random Priming" angewandt. Hierbei erfolgt zunächst eine Denaturierung der doppelsträngigen DNA. Die Rehybridisierung beider Einzelstränge wird durch Abschrecken auf niedrige Temperaturen und durch Zugabe hoher Primer-Konzentrationen verhindert. Bei den verwendeten Random-Hexamer-Primern handelt es sich um eine Mischung von 6-mer Oligonukleotiden mit zufallsbedingter Sequenz, sodass statistisch gesehen jede Targetsequenz abgedeckt und das Annealing an jeder beliebigen Stelle erfolgen kann. Durch Einsatz des Klenow-Enzyms von *E. coli*, welches über eine $5' \rightarrow 3'$ -Polymerase- und eine $3' \rightarrow 5'$ -Exonuclease-Aktivität verfügt, werden im Elongationsschritt unmarkierte dNTPS sowie Cyanine-3- beziehungsweise Cyanine-5-modifizierte dCTPs in die DNA eingebaut. Cyanine-3 (Cy3) und Cyanine-5 (Cy5) sind gängige

Fluorophore, die sich hinsichtlich ihres Emissionsspektrums unterscheiden. Cy3 fluoresziert bei einer Wellenlänge von 570 nm (grün), Cy5 bei einer Wellenlänge von 670 nm (rot).

Die Isolierung der chromosomalen DNA der zu untersuchenden Stämme erfolgte wie unter 2.5.1 und 2.5.2 beschrieben. 4-5 μg der genomischen DNA wurden in einem Volumen von 11 μl (gegebenenfalls aufgefüllt mit TE-Puffer) eingesetzt und 10 Minuten bei 99 °C im Thermoblock (Eppendorf Thermomixer compact) denaturiert. Nach einer Inkubation von mindestens 10 Minuten auf Eis wurde folgender Ansatz zusammenpipettiert (Tab. 2.28).

ab. 2.20. Ansatz zur Markierung von chromosomaler DNA			
Komponente	Menge		
chromosomale DNA (4-5 μg)	11 μl		
dNTP-Mix (10x; 1mM dATP, dGTP,	2 µl		
dTTP und 0,5 mM dCTP)			
Random-Primer (3 µg/ml, Invitrogen)	2,7 µl		
Reaktionspuffer (10x)	2 µl		
Klenow-Enzym (9 U/µl, Invitrogen)	1,3 μl		
Cy3- beziehungsweise Cy5-dCTP (1 mM, PerkinElmer)	1 μΙ		

 Tab. 2.28: Ansatz zur Markierung von chromosomaler DNA

Der Markierungsansatz wurde über Nacht bei 37°C im Dunkeln inkubiert.

Am nächsten Tag wurde die Reaktion zunächst durch Zugabe von 3 µl EDTA (0,2 mM, pH 8) und 4 µl Natriumacetat (3 M, pH 5) abgestoppt. Anschließend erfolgte eine Ethanol-Präzipitation, um die markierte DNA von überschüssigen dNTPs, Primern und Enzym zu trennen. Hierzu wurde 1 ml eiskaltes Ethanol (100 %) zugegeben und die DNA 30 Minuten bei -20 °C gefällt. Nach einer Zentrifugation von 25 Minuten bei 20 000 rpm und 4 °C (Heraeus Sepatech Biofuge 28RS, Rotor HFA 28.1) wurde das DNA-Pellet mit 1 ml eiskaltem Ethanol (70 %) gewaschen und das Ganze 10 Minuten bei 4 °C inkubiert. Nach erneuter Zentrifugation für 10 Minuten bei 13 000 rpm und 4 °C wurde das Pellet in der Speedvac (Univapo 100 H) getrocknet und bis zur weiteren Verwendung bei -20 °C gelagert.

2.10.4 Hybridisierung

Die Bildung eines Duplexmoleküls aus zwei komplementären Nukleinsäure-Strängen wird als Hybridisierung bezeichnet. Die fluoreszenzmarkierte DNA (Abschnitt 2.10.3) bindet hierbei unter Ausbildung von Wasserstoffbrücken homologe Basen der auf den Glasträgern fixierten Oligonukleotide (Abschnitt 2.10.2). Die Hybridisierung erfolgte maschinell mittels eines Hybridisierungsautomaten der Firma Tecan (HS400). Vor der Hybridisierung wurde die Cy3-markierte Teststamm- und die Cy5-markierte Referenzstamm DNA-Probe in je 55 µl Hybridisierungspuffer (Nexterion Hyb; 1:1 mit Formamid gemischt) gelöst und 5 Minuten bei 95 °C denaturiert. Formamid vermindert hierbei die Stringenz der Bindung und somit die erforderliche Hybridisierungstemperatur, um eine möglichst spezifische Bindung zu erhalten. Die Teststamm- und die Referenzstamm-DNA wurden gemischt und weitere 5 Minuten bei 95 °C denaturiert. Nach erfolgter Prähybridisierung des bespotteten Glasträgers wurde die denaturierte Probe bei dem Schritt "Probeninjektion" (Tab. 2.29) auf den Biochip pipettiert. Die eigentliche Hybridisierung fand über Nacht statt und dauerte 16 Stunden, sodass sich ein Hybridisierungs-Gleichgewicht einstellen konnte. Im Anschluss an die Hybridisierung wurden im Rahmen des verwendeten Hybridisierungsprotokolls (Tab. 2.29) Stringenzwaschungen mit verschiedenen SSC-haltigen Puffern durchgeführt und der Microarray getrocknet. Der hybridisierte Biochip wurde bis zum Einscannen (Abschnitt 2.10.5) in der Stickstoffatmosphäre des Hybridisierungsautomaten unter Lichtausschluss aufbewahrt.

Die Zusammensetzung der verwendeten Hybridisierungspuffer ist in Tab. 2.30 gezeigt.

Komponente	Waschzeit [Sek.]	Einwirkzeit	Temperatur [℃]	Wiederholungen	
0,1 % SDS	30	30 Sek.	25		
H ₂ O	30		25		
Prähybridisierungspuffer	30	30 Min.	42		
Prähybridisierungspuffer	30		40		
Probeninjektion			40		
Hybridisierung*		16 Std.	40		
2x SSC / 0,1 % SDS	60	30 Sek.	30	1	
1x SSC	60	30 Sek.	30	1	
0,1 x SSC	60	30 Sek.	30		
Trocknen		3 Min.	30		

Tab. 2.29: Hybridisierungsprotokoll

*Die Hybridisierung erfolgte bei mittlerer Bewegungsfrequenz.

Komponente	Konzentration / Menge
0,1 % SDS	
10 % SDS	10 ml
H ₂ O	ad 1000 ml
20x SSC	
NaCl	3 M
Na-Citrat	0,3 M
	pH 7 einstellen
Dräherheidigigen um som uffer	
Pranybridisierungsputter	
(4X SSC, 0,1 % SDS, 0,1 mg/mi BSA)	100 ml
$\frac{10\% \text{ SDS}}{\text{BSA}}$	5 ml
H ₂ O	ad 500 mi
2x SSC / 0,1 % SDS	
20x SSC	100 ml
10 % SDS	10 ml
H ₂ O	ad 1000 ml
1x SSC	
20x SSC	50 ml
H ₂ O	ad 1000 ml
0,1x SSC	
20x SSC	5 ml
H ₂ O	ad 1000 ml

Tab. 2.30: Hybridisierungspuffer und Lösungen

2.10.5 Scannen des Biochips

Zum Scannen des Biochips wurde ein Laserscanner der Firma PerkinElmer (ScanArray 4000 Microarray Analysis System) verwendet. Dieser misst die Fluoreszenz der hybridisierten Targetmoleküle. Die Farbstoffe Cy5 beziehungsweise Cy3 werden hierbei mit Licht der Wellenlänge $\lambda = 633$ nm beziehungsweise $\lambda = 543$ nm angeregt und die Emission bei 670 nm beziehungsweise 570 nm gemessen.

Die Steuerung des Scannens erfolgte durch die ScanArray Express Software, Version 2.1. Mithilfe der EasyScan-Methode wurde der gesamte Biochip zunächst mit einer niedrigen Auflösung von 50 µM eingescannt. Dabei wurde die Photomultiplier-Tube-Stärke (PMT) so justiert, dass beide Fluoreszenzkanäle etwa gleiche Signalintensitäten lieferten. Mit den ermittelten PMT-Werten wurde der eigentliche Hauptscan bei einer Auflösung von 10 µm durchgeführt. Von jedem Kanal, welcher jeweils einem Fluorophor (Cy5 beziehungsweise Cy3) entspricht, wurde eine Bilddatei (*.tif) abgespeichert. Zur Visualisierung und Auswertung der Hybridisierungsergebnisse wurden beide Bilder in Falschfarben dargestellt und übereinander gelegt.

2.10.6 Computer-gestützte Analyse der Daten

Die Analyse der Bilddaten (*.tif) erfolgte mittels der EasyQuant-Methode der ScanArray Express Software, Version 2.1. Das Programm legt zunächst beide *tif-Dateien (Cy5 und Cy3) übereinander und erzeugt ein Überlagerungsbild (Composite). Nach Öffnen des zugehörigen *.gal-Files, welcher jedem Spot auf dem Biochip ein Oligonukleotid beziehungsweise Gen zuordnet, wurde durch den "Adjust Template and Register Images"-Befehl das Raster den aktuellen Spots auf dem Microarray angepasst. Zur Quantifizierung der gemessenen Cy5- und Cy3-Fluoreszenzintensitäten wurde die "Adaptive circle"-Einstellung der Software gewählt. Abweichende Subarray-Raster wurden gegebenenfalls manuell nachjustiert. ScanArray Express stellt die Ergebnisse der Quantifizierung zum einen als Gene Bar-Diagramm mit den Genen sowie den dazugehörigen Signalintensitäten und zum anderen als Streudiagramm (Scatter Plot) dar. Zur Visualisierung werden bei letzterem die erhaltenen Cy5und Cy3-Fluoreszenzintensitäten korrespondierender Spots gegeneinander aufgetragen. Das Ergebnis der Quantifizierung wurde als *.csv-File gespeichert und mit der Software Excel (Microsoft) weiterverarbeitet. In der Regel werden in der Abteilung Mikrobiologie der TU Kaiserslautern die Microarray-Daten nach der Global Loess-Methode normalisiert. Unter Normalisierung versteht man die Computer-unterstützte Datentransformation zur Korrektur systematischer Fehler, wie zum Beispiel unterschiedlich starke Fluoreszenz der Farbstoffe beziehungsweise unterschiedlich guter Einbau der Farbstoffe in die DNA. Anstelle der jeweiligen Intensitäten werden hierbei normalisierte Werte erzeugt und miteinander verglichen. Die Loess-Normalisierung beruht auf der Annahme, dass für die meisten Paare von Genen (g1 aus Organsimus 1 und g2 aus Organismus 2, wobei g1 und g2 ortholog sind) gilt, dass g1 und g2 in gleichem Ausmaß vorhanden sind beziehungs-weise gleich stark exprimiert werden. Diese Annahme konnte jedoch nicht auf die in der vorliegenden Arbeit durchgeführten Microarray-Analysen übertragen werden. Daher wurde ein neues Verfahren zur Auswertung der Microarray-Daten entwickelt, das detailliert im Ergebnisteil (Abschnitt 3.2.1 und 3.2.2) besprochen wird.

2.11 Verwendete Computer-Programme und Datenbanken

Folgende Computer-Programme, Datenbanken und Server wurden zur Analyse und Verarbeitung der Daten verwendet.

Computerprogramme:

- CloneManager Version 7.0, Scientific and Educational Software: Primer-Design; allgemeine Planung von PCR, Klonierungen und Restriktionen; Translation von Nukleotid-Sequenzen
- Artemis Version 8: Darstellung von Genomen, Lokalisierung des B6- beziehungsweise R6 Oligo-Sets im Genom von B6 beziehungsweise R6
- Chromas Version 1.45: Sequenzbearbeitung und Sequenzkontrolle
- Phred Phrap Consed: Sequenz-Assemblierung
- ScanArray Express Version 2.1, PerkinElmer: Microarray-Datenanalyse
- MEGA Version 4.1: Erstellung von MLST-Bäumen zur Verwandtschaftsanalyse von verschiedenen Spezies
- Origin Version 5.0, Microcal Software Inc: Graphische Darstellung von Wachstumskurven

Datenbanken und Server:

•	Literaturrecherche	http://www.ncbi.nlm.nih.gov/
•	BLAST	http://www.ncbi.nlm.nih.gov/BLAST/
•	Bioinformatische Anwendungen	http://nbc11.biologie.uni-kl.de/
•	MultAlin	http://bioinfo.genotoul.fr/multalin/multalin.html
•	Genom-Sequenzen	http://www.tigr.org/
•	MLST	http://www.mlst.net/

2.12 Bezugsquellen

Die Chemikalien wurden – soweit nicht anders vermerkt – in der Qualität p.A. von folgenden Firmen bezogen: Applichem, Darmstadt; Bio-Rad Laboratories GmbH, München; Difco Laboratories GmbH, Augsburg; Eurogentec, Köln; Fluka AG, Neu-Ulm; Invitrogen, Karlsruhe; MBI Fermentas GmbH, St. Leon-Rot; Merck AG, Darmstadt; New England Biolabs, Frankfurt; Roche, Mannheim; C. Roth GmbH & Co., Karlsruhe; Serva GmbH & Co., Heidelberg; Sigma GmbH, Deideshofen.

3. Ergebnisse

Vergleichende Genom-Analysen von 22 oralen Streptokokken-Isolaten

Penicillin-resistente orale Streptokokken stellen ein wichtiges genetisches Reservoir für die Antibiotika-Resistenz in S. pneumoniae dar. Studien weisen drauf hin, dass sich Penicillin-Resistenz primär in kommensalen Streptokokken entwickelt, bevor im Anschluss Resistenzrelevante Gene auf S. pneumoniae übertragen werden (Chalkley et al., 1991). Die Grundvoraussetzung, um horizontale Gentransfer-Ereignisse zwischen verschiedenen Arten aufspüren zu können, ist die Bestimmung der Spezies selbst. Allerdings hat sich die Klassifizierung der oralen Streptokokken als schwierig erwiesen: Kommerziell verfügbare Kits erlauben keine eindeutige Bestimmung, da die getesteten physiologischen Eigenschaften innerhalb dieser Spezies hoch variabel sind (Kawamura et al., 1999); 16S-rRNA Sequenzen liefern keine klaren Ergebnisse, weil die Sequenzen innerhalb dieser Art Homologien größer 99 % aufweisen können (Kawamura et al., 1995). Eine inzwischen allgemein anerkannte Standard-Methode zur Differenzierung von Klonen innerhalb einer Spezies ist die MLST-Analyse. Diese wird zur Klassifizierung einer Vielzahl von pathogenen Bakterien, einschließlich S. pneumoniae, angewandt (Enright and Spratt, 1998; Hanage et al., 2005, Bishop et al., 2009). Zudem wurden in einer früheren Arbeit MLST-Analysen eingesetzt, um eine umfassende Sammlung von oralen Streptokokken-Isolaten zu charakterisieren (Chi et al., 2007). Mit einem Teil dieser Stämme wurden im Rahmen dieser Arbeit vergleichende Genom-Analysen durchgeführt, zum einen unter Verwendung des S. mitis B6-Biochips (Kapitel 3.2) und zum anderen mittels des S. pneumoniae R6/TIGR4-Chips (Kapitel 3.3). Dabei wurden insgesamt zwölf S. mitis- und zehn S. oralis-Stämme aus verschiedenen Ländern und Kontinenten hinsichtlich ihrer Genom-Variation untersucht. Die verwendeten Stämme werden in den Kapiteln 2.1.1 und 3.1.1 detailliert vorgestellt. Von zwei ungarischen Isolaten (U-O12 und U-O16) lagen jedoch zu Beginn der Arbeit keine MLST-Daten vor. Aus diesem Grund mussten diese mittels MLST-Analysen zunächst eindeutig bestimmt werden (Abschnitt 3.1.2). Zudem wurde von zwei südafrikanischen S. mitis-Stämmen (M3 1 und M3 4) der Unterschied bezüglich ihrer Morphologie und genetischen Kompetenz eingehend untersucht (Abschnitt 3.1.3). Des Weiteren wurde vor Beginn der DNA-Microarray-Analysen zur weiteren Charakterisierung der Stämme von allen verwendeten Isolaten die MHK ermittelt, das heißt ihre Resistenz gegen verschiedene β-Laktamantibiotika. (Abschnitt 3.1.4).

3.1 Charakterisierung der oralen Streptokokken-Isolate

3.1.1 Auswahl der Stämme

Bereits in einer früheren Studie wurden MLST-Analysen zur Charakterisierung einer Streptokokken-Sammlung verwendet. Abb. 3.2 zeigt einen anhand dieser MLST-Analysen erstellten phylogenetischen Baum, der auf den Sequenzen von insgesamt 119 Streptococcus-Stämmen basiert (Chi et al., 2007). Darin sind drei Hauptgruppen von Stämmen zu sehen: S. pneumoniae, S. mitis und S. oralis, wobei die genetische Verwandtschaft zwischen der S. pneumoniaeund der S. mitis-Gruppe größer ist als zwischen der S. pneumoniae- und S. oralis-Gruppe. Speziell aus dieser Stamm-Sammlung wurden zehn S. oralis- sowie zwölf S. mitis-Isolate ausgewählt, um vergleichende Genom-Analysen mittels der DNA-Microarray-Technologie durchzuführen. Alle verwendeten Stämme sind in Abb. 3.2 mit einen farbigen Punkt markiert (S. pneumoniae = rot, S. mitis = gelb, S. oralis = grün). Sowohl von dem S. oralis- als auch dem S. mitis-Zweig, welche sich jeweils wiederum in drei Untergruppen unterteilen, wurden von jeder Untergruppe Stämme für die Genom-Vergleiche ausgewählt. Die spanischen S. oralis-Isolate S711, S621 und S476 stellen drei Vertreter einer klonalen Gruppe dar (Abb. 3.2). Ansonsten handelt es sich bei den Bakterienstämmen um eine ausgesuchte heterogene Mischung: Die Isolate stammen aus verschiedenen Ländern/Kontinenten (Abschnitt 2.1.1) und weisen unterschiedliche Resistenzprofile auf (Abschnitt 3.1.4). Als Kontrollstämme für die Microarray-Analysen dienten S. pneumoniae R6 und S. mitis B6, deren Genom-Sequenz vollständig entschlüsselt ist (Hoskins et al., 2001; Denapaite et al., 2010).

3.1.2 MLST-Analyse der Stämme U-O12 und U-O16

Bei den Stämmen U-O12 und U-O16 handelt es sich um ungarische Isolate, die im Heim Pal Institut, Budapest aus der Nasenschleimhaut von gesunden Menschen isoliert wurden. Mithilfe des api20 STREP-Kits (BioMérieux, Marcy l'Etoile), welches auf Enzym-Nachweisen und der Fermentation verschiedener Kohlenhydrate basiert, wurden die beiden Stämme bereits als *S. oralis* eingestuft. Diese Klassifizierung wurde zudem durch Genom-Vergleiche verifiziert (Hakenbeck *et al.*, 2001).

In der vorliegenden Arbeit wurde mit beiden Isolaten eine MLST-Analyse (Kapitel 2.8) durchgeführt. Dazu wurden interne Fragmente folgender sechs Haushaltsgene sequenziert: *aroE* (Shikimat-Dehydrogenase), *gdh* (Glukose-6-Phosphat-Dehydrogenase), *gki* (Glukose-Kinase), *recP* (Transketolase), *spi* (Signal Peptidase I) und *xpt* (Xanthin-Phosphoribosyltransferase). Der *ddl*-Locus (D-Alanin-D-Alanin Ligase) wurde nicht in die Untersuchungen mit einbezogen, da er sich, vermutlich aufgrund seiner chromosomalen Nähe zu dem Penicillin-Resistenz vermittelnden *pbp2b*-Gen, als hoch variabel erwiesen hat. Die Lokalisierung der sieben MLST-Gene im Genom von *S. pneumoniae* R6 sowie der verwendeten Primerpaare innerhalb der Haushaltsgene von R6 sind in Abb. 3.1 beziehungsweise Tab. 2.22 gezeigt. Die amplifizierten Fragmente hatten eine Länge von etwa 600 bp, sodass diese problemlos mit einem einzigen Primer in jede Richtung sequenziert werden konnten. Anschließend wurden die erhaltenen Sequenzen auf eine für jedes Gen definierte Länge von 405-486 bp zurechtgeschnitten (Tab. 2.22).

Abb. 3.1: Lokalisierung der sieben MLST-Gene im Genom von *S. pneumoniae* R6. Neben den sechs Haushaltsgenen *aroE*, *gdh*, *gki*, *recP*, *spi*, *xpt* ist auch *pbp2b* und seine Nähe zum Haushaltsgen *ddl* dargestellt. *S. p.* = *S. pneumoniae*.

Die 405-486 bp-Sequenzen der sechs Haushaltsgene von U-O12 und U-O16 wurden zu je einem 2758 bp-Contig aneinander gereiht und mit bereits bekannten Contigs von insgesamt 117 Stämmen aus der *S. pneumoniae-*, *S. mitis-* sowie der *S. oralis-*Gruppe (McGee *et al.*, 2001; Chi *et al.*, 2007) verglichen. Die anschließenden Analysen erfolgten mithilfe des Programms MEGA der Version 4.1 (Tamura *et al.*, 2007; Kumar *et al.*, 2008), wie in Abschnitt 2.8 be-schrieben. Der phylogenetische Baum wurde unter Verwendung des "Minimum Evolution"-Algorithmus erstellt (Abb. 3.2).

Abb. 3.2: Phylogenetischer Baum von *Streptococcus* spp. mit Eingliederung von U-O12 und U-O16 in die *S. oralis*-Gruppe. Aneinander gereihte Sequenzen der sechs MLST-Loci *aroE*, *gdh*, *gki*, *recP*, *spi* und *xpt* wurden verwendet, um mithilfe der MEGA-Software 4.1 Verwandtschaftsanalysen durchzuführen. Zum "Bootstrapping" wurde eine Standard-Einstellung von 1050 Wiederholungen gewählt. Stämme, mit denen im späteren Verlauf dieser Arbeit vergleichende Genom-Analysen durchgeführt wurden, sind durch farbige Punkte hervorgehoben: *S. pneumoniae* R6 = rot, Vertreter der *S. mitis*-Gruppe = gelb, Vertreter der *S. oralis*-Gruppe = grün. Die laut aktueller MLST-Analyse bestimmten *S. oralis*-Stämme U-O12 und U-O16 sind blau umrandet. Blaue Pfeile markieren jeweils einen klassischen Referenzstamm aus dem *S. pneumoniae*- (R6), *S. mitis*- (B6) und dem *S. oralis*- (U-O5) Zweig. Der angegebene Maßstab ist ein Anhaltspunkt für die genetische Divergenz der Stämme.

Die durchgeführten MLST-Analysen bestätigen vorherige Untersuchungen, dass es sich bei den Stämmen U-O12 und U-O16 um Vertreter des *S. oralis*-Zweiges handelt. Dieser unterteilt sich wiederum in drei Untergruppen, wobei sich *S. oralis* U-O12 und *S. oralis* U-O16 in dieselbe Untergruppe einordnen (Abb. 3.2).

In Abb. 3.3 sind die phylogenetischen Bäume für jedes einzelne Gen der insgesamt sechs MLST-Gene dargestellt. Das heißt hier wurden nicht wie im obigen Fall die Allel-Sequenzen zu einem 2758 bp-Contig hintereinander gereiht, sondern zum Beispiel die einzelnen 405 bp langen *aroE*-Sequenzen von allen 119 zur Stammbaum-Erstellung verwendeten Isolaten miteinander verglichen. Dies gibt eine Aussage darüber, ob tatsächlich alle untersuchten Allele von *S. oralis* U-O12 und U-O16 vom Oralis-Typ sind oder ob einige Allele eher Homologien zu einem anderen *Streptococcus*-Zweig aufweisen.

Abb. 3.3: Phylogenetische Stammbäume von *Streptococcus* spp. für einzelne MLST-Gene. Fortsetzung der Abbildung und Abbildungserklärung siehe nächste Seite.

Fortsetzung Abb. 3.3: Phylogenetische Stammbäume von Streptococcus spp. für einzelne MLST-Gene. Interne Fragmente der sechs MLST-Loci (*aroE, gdh, gki, recP,spi* beziehungsweise *xpt*) wurden verwendet, um mithilfe der MEGA-Software 4.1 Verwandtschaftsanalysen durchzuführen. Zum "Bootstrapping" wurde eine Standard-Einstellung von 1050 Wiederholungen gewählt. Farblich hervorgehoben sind die drei Hauptzweige *S. pneumoniae* (rosa), *S. mitis* (hellblau) und *S. oralis* (hellgrün). Innerhalb jedes Zwei ges ist je ein Referenzstamm durch einen farbigen Punkt markiert: *S. pneumoniae* R6 = rot, *S. mitis* B6 = gelb, *S. oralis* U-O5 = grün. Die laut aktueller MLST-Analyse bestimmten *S. oralis*-Stämme U-O12 und U-O16 sind durch einen blauen beziehungsweise pinken Punkt dargestellt sowie durch schwarze Pfeile hervorgehoben. Der angegebene Maßstab ist ein Anhaltspunkt für die genetische Divergenz der Stämme.

Wie aus Abb. 3.3 ersichtlich wird, weisen alle MLST-Allele der Stämme U-O12 und U-O16 starke Homologien zum *S. oralis*-Zweig auf, sodass sich beide Stämme in allen sechs Fällen eindeutig in die *S. oralis*-Gruppe eingliedern. Die Referenzstämme *S. pneumoniae* R6, *S. mitis* B6 und *S. oralis* U-O5 ordnen sich ebenfalls für alle sechs Gene eindeutig im Pneumoniae-, Mitis- beziehungsweise Oralis-Zweig ein.
3.1.3 Die Stämme S. mitis M3 1 und M3 4

S. mitis M3 stammt aus einer Sammlung klinischer Stämme, die zwischen 1986 und 1987 in Südafrika aus Blutproben, Zerebrospinalflüssigkeit und dem Nasenrachenraum isoliert wurden (Chalkley *et al.*, 1991). Aus der ursprünglich erhaltenen Kultur konnten zwei Kolonie-Varianten isoliert werden (*S. mitis* M3 1 und *S. mitis* M3 4), die sich hinsichtlich Morphologie und Transformierbarkeit voneinander unterscheiden (Hakenbeck, unveröffentlicht). M3 4 ist im Gegensatz zu M3 1 transformierbar. Man beobachtet beim Wachstum der Zellen in Flüssigmedium eine deutliche Trübung der Kultur. M3 1 hingegen wächst in Flüssigmedium krümelig, die Zellen setzen sich als Zellklumpen auf dem Reagenzglasboden ab. Mit beiden Isolaten sollten DNA-Microarray-Analysen durchgeführt werden, um eventuell Hinweise auf genetische Unterschiede zu erhalten. Vor Beginn der Genom-Vergleiche wurden zunächst die morphologischen Unterschiede ausführlich dokumentiert und die Transformierbarkeit der beiden Stämme nochmals überprüft.

3.1.3.1 Morphologie

Die Isolate *S. mitis* M3 1 und M3 4 wurden in C-Medium bis zu einer Zelldichte von N = 30 angezogen und das Aussehen der bewachsenen Flüssigkulturen an einem Makrostand (M-CXL-48-50, Synoptics Ltd., Syncroscopy) fotografisch (AF NIKKOR, Nikon) festgehalten (Abb. 3.4).

Abb. 3.4: Morphologische Unterschiede der Stämme *S. mitis* M3 1 und M3 4 bei Wachstum in Flüssigkultur. M3 1 wächst im Gegensatz zu M3 4 krümelig (rote Pfeile) und die verklumpten Bakterienzellen setzen sich in der Regel auf dem Reagenzglasboden ab. Um Unterschiede in der morphologischen Beschaffenheit der Stämme besser sichtbar zu machen, wurden die Kulturen kurz vor dem Fotografieren gevortext.

Danach wurde die Zellmorphologie der beiden Bakterienstämme mikroskopisch untersucht. Für jeden Stamm sind in Abb. 3.5 repräsentative Aufnahmen dargestellt.

Abb. 3.5: Zellmorphologie der Stämme *S. mitis* M3 1 und M3 4. Die Stämme wurden in C-Medium bis zu einer Zelldichte von N = 30 wachsen gelassen und bei 100-facher Vergrößerung im Phasen-kontrast-Mikroskop (Ölimmersion; Fluoreszenzmikroskop Eclipse E600, Nikon) fotografiert (CCD-1300B, Nikon).

Charakteristisch für *S. mitis* M3 1 ist das Wachstum in Ketten (4-13 Zellen pro Kette) mit anschließender Verknäulung. Neben dieser in starkem Ausmaß vorkommenden Ketten-Verklumpung treten einzelne Zellketten und Diplokokken auf. *S. mitis* M3 4 bildet im Gegensatz dazu mittellange Ketten aus bis zu 27 Zellen pro Kette, eine Verknäulung der Zellketten wie im Falle von M3 1 ist jedoch nicht zu beobachten.

3.1.3.2 Transformierbarkeit

S. mitis M3 4 zählt zu einer Reihe von *Streptococcus*-Spezies, die neben dem klassischen transformierbaren Organismus *S. pneumoniae* die Fähigkeit besitzen, exogene DNA aufzunehmen. Im Gegensatz zu *S. pneumoniae* R6 erreicht der Stamm seine kompetente Phase erst gegen Ende des exponentiellen Wachstums bei einer Zelldichte von etwa N = 70. *S. mitis* M3 1 hingegen konnte bislang nicht erfolgreich transformiert werden (Hakenbeck, unveröffentlicht).

Im Folgenden wurden die Unterschiede hinsichtlich des Kompetenz-Phänotyps der beiden Bakterienstämme nochmals überprüft. Dazu wurden, wie unter 2.4.6.1 beschrieben, von beiden Stämmen kompetente Zellen bei einer Nephelo von N = 70 hergestellt. Allerdings ist eine exakte Bestimmung der Zelldichte bei *S. mitis* M3 1 aufgrund seines krümeligen Wachstums nicht möglich. Zur Einschränkung von Messfehlern wurde die Kultur vor jeder Messung gründlich gevortext. Abb. 3.6 zeigt die Wachstumskurven von *S. mitis* M3 1 und M3 4 sowie den Zeitpunkt der jeweiligen Probenentnahme.

Abb. 3.6: Wachstum von *S. mitis* **M3 1 und M3 4.** Vorkulturen der Stämme wurden jeweils 1:20 in vorgewärmtes C-Medium + BSA überimpft und das Wachstumsverhalten mit dem Nephelometer verfolgt [N]. Bei einer Zelldichte von N = 70 wurden Aliquots zur Bestimmung der Transformationseffizienz entnommen (schwarzer Pfeil). Die Kurven stellen Beispiele aus zwei unabhängigen Versuchen dar. *S. mitis* M3 1 = schwarze Kurve, *S. mitis* M3 4 = rote Kurve.

Die Generationszeiten von *S. mitis* M3 1 und M3 4 sind nahezu identisch: M3 1 teilt sich etwa alle 26 Minuten, während M3 4 mit einer Generationszeit von 25 Minuten etwas schneller wächst.

Zur anschließenden Transformation der Zellen (Abschnitt 2.4.6.2) wurden 500 ng chromosomale DNA von *S. pneumoniae* AmiA9 eingesetzt, dessen Streptomycin-Resistenz ein hocheffizienter Marker zur Selektion von Transformanten ist. Bei *S. mitis* M3 handelt es sich genau wie im Falle von *S. pneumoniae* R6 um einen Streptomycin-sensitiven Stamm, sodass dieser Marker problemlos verwendet werden konnte. Die Transformationseffizienz wurde sowohl ohne Zugabe von CSP (aus *S. mitis* B6) als auch bei CSP-Zugabe (Endkonzentration 0,2 ng/µl) bestimmt. Als Negativ-Kontrolle lief jeweils ein Ansatz ohne DNA mit. Die Selektionskonzentration betrug 200 µg/ml Streptomycin. Das Ergebnis des Versuchs ist in Tab. 3.1 dargestellt und wurde in einem unabhängigen Experiment mit neu hergestellten kompetenten Zellen bestätigt.

Stamm	Zelldichte [N]	Transformanten [cfu/ml]	Lebendkeimzahl [cfu/ml]	Transformationseffizienz [%]
- CSP				
<i>S. m.</i> M3 1	70,2	1,23 x 10 ³	4,5 x 10 ⁸	0,0003
<i>S. m.</i> M3 4	70,7	3,65 x 10 ²	6,1 x 10 ⁷	0,0006
+ CSP				
<i>S. m.</i> M3 1	70,2	1,17 x 10 ³	1,0 x 10 ⁸	0,001
<i>S. m.</i> M3 4	70,7	1,45 x 10 ³	1,5 x 10 ⁸	0,001

Tab. 3.1: Transformationseffizienzen von *S. mitis* M3 1 und M3 4 ohne CSP beziehungsweise mit CSP

CSP = competence stimulating peptide, N = Nephelo, cfu = colony forming units, S. m. = S. mitis

Wie aus Tab. 3.1 ersichtlich wird, hat die chromosomale *S. pneumoniae* AmiA9-DNA sowohl erfolgreich in das Genom von *S. mitis* M3 4 als auch in das Genom von *S. mitis* M3 1 rekombiniert. Das heißt die mangelnde Kompetenz und die damit nicht mögliche Transformierbarkeit des Stammes M3 1 konnte bei der hier verwendeten Zelldichte nicht bestätigt werden. Ohne Zugabe von CSP ist die Transformationseffizienz des M3 4-Stammes mit 0,0006 % im Vergleich zur Effizienz von 0,0003 % des M3 1-Stammes um einen Faktor zwei erhöht. Bei Zugabe des Kompetenz-stimulierenden Peptids CSP weisen beide Stämme mit einem Wert von 0,001 % gleiche Transformationseffizienzen auf, wobei CSP bei M3 1 eine Steigerung der Effizienz um einen Faktor von etwa 3,5 und bei M3 4 eine zirka 1,7-fache Erhöhung bewirkt.

3.1.4 MHK-Wert-Bestimmung

Von allen für die Microarray-Analysen relevanten *Streptococcus*-Stämmen wurde die MHK für Penicillin und Cefotaxim mithilfe von E-Teststreifen (Abschnitt 2.4.5.1) ermittelt. Bei beiden ge-

testeten Antibiotika handelt es sich um β-Laktame, wobei Cefotaxim speziell zur Klasse der Cephalosporine gehört. Von einem Großteil der Stämme lagen bereits aus früheren Studien entsprechende Werte vor (Chi *et al.*, 2007; Hakenbeck *et al.*, 2001), welche zur Stamm-Überprüfung nochmals verifiziert werden sollten.

Nach Vorgaben des National Committee for Clinical Laboratory Standards (NCCLS) werden die Stämme als sensitiv, intermediär-resistent, resistent beziehungsweise hochresistent eingestuft. Die Einteilung der Stämme nach ihrer MHK ist in Tab. 3.2 angegeben und bezieht sich auf das Antibiotikum Penicillin.

Tab. 3.2: Einteilung nach MHK

MHK-Wert [µg/ml]	Einteilung
≤ 0,06	sensitiv
> 0,06 - 1	intermediär-resistent
> 1 - 2	resistent
> 2	hochresistent

Diese Einteilung wurde vom National Committee for Clinical Laboratory Standards (NCCLS) aufgestellt und gilt für Penicillin.

Die Ergebnisse der MHK-Wert-Bestimmung für die oralen Streptokokken-Isolate sind in Tab. 3.3 dargestellt, wobei die Stämme nach steigender Penicillin-Resistenz geordnet sind. Die Resultate früherer Arbeiten sind zum Vergleich mitaufgeführt.

Stamm	PenG [µg/ml]	PenG [µg/ml], Chi <i>et al</i> ., 2007	Ctx [µg/ml]	Ctx [µg/ml], Chi <i>et al.</i> , 2007
S. pneumoniae				
R6	0,01	0,01	0,02	0,02
S. mitis				
M3 1	0,016	0,03	0,008	0,02
M3 4	0,016	0,03	0,008	0,02
SV10	0,023	0,023	0,016	0,004
10712	0,032	0,03	0,012	0,015
S658	0,032	0,047	0,016	0,016
SV5	0,19-0,25	0,2	0,094	0,094
RSA4	2	2	0,5	n.d.
S697	4	4	1,5	2
U-O1	8	8	0,75	0,5
B5	8	8	0,75	1
U-08	12	6	6 - 12	6 - 12
B6	64	64	128	128

Tab. 3.3: Penicillin- und Cefotaxim-Resistenzprofil der oralen Streptokokken sowie von *S. pneumoniae* R6

S. oralis					
U-012	0,25	0,25*	0,25	n.d.	
U-O16	1,5	1,5*	0,25	n.d.	
S510	3	4	1,5	1,5	
RSA40	3	4	3	n.d.	
S476	4	2	3	3	
S711	4	2	3	3	
S621	4	4	8	8	
S197	8	8	8	8	
U-02	12	16	6	6	
11-05	> 32	32	4	4	

Die angegebenen Werte wurden insgesamt zweimal mit der E-Test-Methode bestimmt. PenG = Penicillin G, Ctx = Cefotaxim, n.d. = not determined. *Die Werte stammen aus Hakenbeck *et al.*, 2001.

Fünf Isolate (M3 1, M3 4, SV10, 10712 und S658) der untersuchten *S. mitis*-Gruppe weisen MHK-Werte von 0,008-0,032 μg/ml auf und sind somit β-Laktam-sensitiv. Alle fünf Stämme sind hinsichtlich ihrer Cefotaxim-MHK (< 0,02 μg/ml) sogar empfindlicher als der sensitive Labor-stamm *S. pneumoniae* R6. Das spanische Isolat SV5 zeigt bei einer Penicillin-MHK von 0,19-0,25 μg/ml kein Wachstum mehr und kann somit als intermediär-resistent eingestuft werden. Bei dem Stamm RSA4 handelt es sich um ein resistentes Isolat mit einer Penicillin-MHK von 2 μg/ml, während die Cefotaxim-MHK lediglich 0,5 μg/ml beträgt. Die übrigen fünf *S. mitis*-Stämme (S697, U-O1, B5, U-O8 und B6) werden mit Penicillin-MHK-Werten von 4-64 μg/ml als hochresistent bezeichnet. Die Isolate U-O8 und B6 weisen eine ebenso hohe Cefotaxim-Resistenz (MHK: 6-12 beziehungsweise 128 μg/ml) auf, wohingegen die Cefotaxim-MHK-Werte der restlichen drei Stämme nur 0,75-1,5 μg/ml betragen.

Innerhalb der *S. oralis*-Gruppe befinden sich ein intermediär-resistentes (U-O12, Penicillin-MHK: 0,25 μ g/ml) sowie ein resistentes Isolat (U-O16, Penicillin-MHK: 1,5 μ g/ml). Alle acht übrigen Stämme zeigen MHK-Werte > 2 μ g/ml und stellen somit hochresistente Vertreter des *S. oralis*-Zweiges dar.

3.2 DNA-Microarray-Analysen unter Verwendung des *S. mitis* B6-Oligonukleotid-Sets

Mit den unter 3.1 charakterisierten oralen Streptokokken-Isolaten wurden DNA-Microarray-Analysen mittels des *S. mitis* B6-Oligonukleotid-Sets (Abschnitt 2.10.1.1) durchgeführt. Bei der kommensalen Bakteriengruppe *Streptococcus mitis* handelt es sich um die nächsten Verwandten des bedeutsamen Krankheitserregers *S. pneumoniae* (Abb. 3.2). Von dem Stamm *S. mitis* B6 wurde kürzlich in der Abteilung Mikrobiologie der TU Kaiserslautern die Nukleotid-Sequenz des Chromosoms vollständig entschlüsselt (Denapaite *et al.*, 2010). *S. mitis* B6 wurde aus mehreren Gründen zur Genom-Sequenzierung ausgewählt: Laut früheren DNA-Chip-Analysen und jüngsten MLST-Daten gliedert sich der Stamm eindeutig in die Mitis-Gruppe ein (Hakenbeck *et al.*, 2001; Chi *et al.*, 2007). Das Isolat zeichnet sich durch eine hohe β-Laktam- und multiple Antibiotika-Resistenz aus (König *et al.*, 1998). Zudem können unter Laborbedingungen ohne weiteres Gene von *S. mitis* B6 auf *S. pneumoniae* übertragen werden (Hakenbeck *et al.*, 1998). Der angestrebte Vergleich des *S. pneumoniae*-Genoms mit dem kommensalen *S. mitis* B6-Genom dient letztendlich der Identifizierung von gemeinsamen sowie von Speziesspezifischen Genen, wobei letzteres Aufschluss über das Pathogenitätspotenzial von *S. pneumoniae* gibt.

Die Sequenzierung des Genoms war Grundvoraussetzung für die Entwicklung des in dieser Arbeit erstmals verwendeten *S. mitis* B6-Oligonukleotid-Sets und damit des ersten *S. mitis* Oligonukleotid-Microarrays überhaupt. Die B6 Genom-Information wurde in Form dieses Sets genutzt, um mit zwölf klinischen *S. mitis*- und zehn klinischen *S. oralis*-Isolaten, die sich hinsichtlich ihres Resistenzniveaus und ihres Herkunftslandes unterscheiden (Abschnitt 3.1.4 und 2.1.1), vergleichende Genom-Analysen durchzuführen. Ziel der Studie war es, das Ausmaß des horizontalen Gentransfers und somit die Genom-Variation innerhalb der *S. mitis*- und *S. oralis*-Gruppe zu untersuchen und eine Übersicht über gemeinsame "Kern"- sowie akzessorische Gene zu bekommen. Ein weiteres Ziel war der direkte Vergleich der kommensalen, oralen Streptokokken-Stämme mit *S. pneumoniae*, wobei hierzu DNA-Microarray-Analysen unter Verwendung des *S. pneumoniae* R6/TIGR4-Oligonukleotid-Sets durchgeführt wurden (Kapitel 3.3).

Zur DNA-Microarray-Analyse wurde von den insgesamt 22 oralen Streptokokken-Isolaten und *S. pneumoniae* R6, wie unter 2.5.2 beziehungsweise 2.5.1 beschrieben, die chromosomale DNA isoliert. Diese wurde dann mittels Fluoreszenzfarbstoffen markiert (Abschnitt 2.10.3). Die Cy3-gelabelte DNA des Teststammes wurde zusammen mit der Cy5-markierten DNA des Referenzstammes *S. mitis* B6 über Nacht auf einem gespotteten *S. mitis* B6-Biochip hybridisiert (Abschnitt 2.10.4). Danach wurden die insgesamt 22 Microarrays eingescannt (Abschnitt 2.10.5) und die Daten mittels spezieller Computerprogramme ausgewertet (Abschnitt 2.10.6). Anders als bei "Comparative Genome Hybridizations" (CGH) von Stämmen innerhalb von *S. pneumoniae* mussten für die Auswertung hier zusätzliche Schritte eingeführt werden. Diese werden im Folgenden detailliert besprochen.

3.2.1 Auswertung der Daten

3.2.1.1 Hybridisierungsexperimente

Um die Auswertung der Microarray-Daten auf eine quantitative Basis zu stellen, lassen sich üblicherweise Quotienten aus den ermittelten Fluoreszenzintensitäten korrespondierender Spots ermitteln. Die erhaltenen Fluoreszenzintensitäten beider Kanäle werden gegeneinander aufgetragen und als Streudiagramm (Scatter Plot) dargestellt. Von der Annahme ausgehend, dass die meisten Gene keine großen Fluktuationen in der relativen Fluoreszenz aufweisen, sollten die meisten Punkte auf einer Geraden liegen. Idealerweise ist diese Gerade als Winkelhalbierende dargestellt, was zum Beispiel durch die Global Loess-Normalisierung erreicht werden kann. Punkte, deren Position stark von dieser Gerade abweichen, repräsentieren Gene, die nur in einem Stamm vorkommen (Abb. 3.7 A). In der vorliegenden Arbeit wurden verschiedene *Streptococcus*-Stämme anhand des *S. mitis* B6-Chips miteinander verglichen. Erwartungsgemäß sollte die DNA des Referenzstammes *S. mitis* B6 bei Hybridisierung mit dem *S. mitis* B6-Biochip die stärksten Signale hervorbringen. Jedoch waren in der Tat von jedem untersuchten Teststamm die positiven Signale stärker als die Signale des Referenzstamms, unabhängig vom verwendeten Fluoreszenzfarbstoff. In Abb. 3.7 B ist ein typisches Scatter Plot-Beispiel dargestellt.

Abb. 3.7: Nicht normalisierte Scatter Plots der Fluoreszenzintensitäten. A: Streudiagramm nach Hybridisierung von Cy3-markierter *S. pneumoniae* R6-Transformanten-DNA und Cy5-markierter *S. pneumoniae* R6-DNA mit dem *S. pneumoniae* R6/TIGR4-Biochip. Rote Pfeile weisen auf Gene hin, die nur im R6-Stamm und nicht in der Transformante vorkommen. B: Streudiagramm nach Hybridisierung von Cy3-gelabelter *S. oralis* U-O5-DNA und Cy5-gelabelter *S. mitis* B6-DNA mit dem *S. mitis* B6-Biochip. Der linke rote Kreis beinhaltet *S. mitis* B6-spezifische Gene, der rechte rote Kreis gemeinsame Gene von U-O5 und B6. Nicht eindeutig zuzu-ordnende Spots befinden sich zwischen den beiden rot umrahmten Punktwolken. Cy3 = Cyanine-3; Cy5 = Cyanine-5.

Der gezeigte Hybridisierungseffekt war überraschend, da die designten Oligonukleotide des *S. mitis* B6-Biochips 100 % homolog zu den Genen des Referenzstammes *S. mitis* B6 sind und dieser somit am besten an den B6-Biochip binden müsste. Im betreffenden Teststamm hingegen kann jedes Oligo des *S. mitis* B6-Biochips entweder vorhanden sein oder fehlen. Nach jeder Hybridisierung waren im Scatter Plot zwei Punktwolken zu beobachten, die zum Teil überlappen (Abb. 3.7 B). Eine der Punktwolken beinhaltet hierbei *S. mitis* B6-spezifische während die andere gemeinsame Gene der beiden untersuchten Stämme umfasst. Von Vorteil bei der späteren Differenzierung der beiden Gen-Cluster war, dass sich die beiden Punktwolken doch relativ stark voneinander unterscheiden.

Gängige Methoden zur Analyse der Microarray-Daten konnten allerdings in den vorliegenden Fällen nicht angewendet werden. Da auch der Grund für den beschriebenen Hybridisierungseffekt nicht klar ist, konnte zudem kein mathematisches Modell für eine automatische Normalisierungs-Methode entwickelt werden. Deshalb wurden die erhaltenen Daten keiner Normalisierung unterzogen.

Eine mögliche Erklärung des Hybridisierungseffekts könnte ein Unterschied in der Hybridisierungseffizienz sein, welcher spezifisch für die DNA der betreffenden Stämme ist. Versuche, bei denen eine 3-fach höhere DNA-Menge des Referenzstammes *S. mitis* B6 im Vergleich zum stärker bindenden Teststamm eingesetzt wurde, hatten allerdings keinen Einfluss auf den beschriebenen Effekt. Eine weitere Möglichkeit wäre, dass sich die Durchschnittslängen der DNA-Fragmente aufgrund von DNA-Nukleasen in den Bakterienzellen voneinander unterscheiden. Hierbei haben Experimente gezeigt, dass der Hybridisierungseffekt durch Scheren der DNA zu einem gewissen Grad kompensiert werden kann, jedoch nicht vollständig (Daten nicht gezeigt).

Nicht bei allen durchgeführten Genom-Vergleichen lag der gleiche Hybridisierungseffekt vor, es gab gewisse Abweichungen. Die deutlichsten Unterschiede betrafen die Ausdehnung der Punktwolke der gemeinsamen Gene sowie die Lage dieser Punktwolke im Scatter Plot (Abb. 3.7 B). Aus diesem Grund musste bei jeder einzelnen Hybridisierung eine visuelle Kontrolle der Daten durchgeführt werden.

3.2.1.2 Loess-Normalisierung

Die Loess-Normalisierung beruht auf der Annahme, dass für die meisten Paare von Genen (g1 aus Organismus 1 und g2 aus Organismus 2, wobei g1 und g2 ortholog sind) gilt, dass g1 und g2 in gleichem Ausmaß vorhanden sind beziehungsweise gleich stark exprimiert werden (Ewens & Grant, 2001). Diese Voraussetzung war jedoch nicht bei den durchgeführten Genom-Vergleichen gegeben.

Die Loess-Normalisierung wird nicht auf den Cy3- beziehungsweise Cy5-Fluoreszenzintensitäten ausgeführt, sondern auf den logarithmierten Intensitäts-Verhältnissen (Ratios) und den logarithmierten Durchschnitts-Intensitäten eines Spots. Zur Normalisierung wird eine Regressionsgerade durch die Punktwolke gelegt (Abb. 3.8). Hierbei erhält man zu jedem Messwert m den transformierten Messwert m', indem man den Wert der Regressionskurve an dieser Stelle r subtrahiert:

mit

m´ = normalisierter Messwertm = nicht normalisierter Messwertr = Wert der Regressionskurve.

Auf diese Weise sind die logarithmierten Ratios nicht mehr von der Intensität abhängig.

Abb. 3.8: Beispiel einer Global Loess-Normalisierung (Nuhn, unveröffentlicht). A: MA-Plot vor Normalisierung. B: MA-Plot nach Normalisierung. Der Nullpunkt ist als gestrichelte rote Linie eingetragen. Die Regressionsgerade ist grün eingezeichnet. Nähere Erläuterungen im Text.

Da bei den durchgeführten Microarray-Experimenten alle unterschiedlichen Gene in eine Richtung abweichen, hätte auch die Lokalisierung der Loess-Regressionsgeraden Probleme bereitet. Eine Verschiebung der Geraden in eine Richtung wäre die Folge gewesen. Eine Loess-Normalisierung konnte somit an dieser Stelle nicht durchgeführt werden.

3.2.2 Etablierung einer neuen Methode zur Computer-gestützen Analyse der DNA-Microarray-Daten

3.2.2.1 Klassifizierung der Gene

Um aus der Datenmenge die Gene von Interesse zu ermitteln, mussten zwei Schritte durchlaufen werden. Als erstes wurden die Oligonukleotide identifiziert, an die keine DNA gebunden hatte. Die entsprechenden Spots wurden dann in die weiteren Analysen nicht mehr mit einbezogen. Danach wurde ein Diskriminator gesucht, welcher die relevanten Gene von den übrigen Genen trennen sollte. Bei den durchgeführten Analysen waren zum einen die *S. mitis* B6spezifischen Gene und zum anderen die Gene, die Teststamm und Referenzstamm gemeinsam haben, von Interesse. Bei dem gesuchten Diskriminator handelt es sich um eine Gerade, die durch den Ursprung geht. Die Diskriminante wird somit eindeutig durch den Winkel, den sie mit der X-Achse bildet, beschrieben. Die Gerade unterteilt die Scatter Plot-Ebene in zwei Halbebenen. In der einen Halbebene waren alle Spots vertreten, bei denen es sich um gemeinsame Gene handelt. Die andere Halbebene enthielt Spots, welche *S. mitis* B6-spezifische Gene darstellen.

Erste Diskriminante: Entfernen des Hintergrund-Rauschens

Im ersten Schritt erfolgte die Trennung der Spots mit einem Signal für hybridisierte DNA von Spots, die lediglich ein Hintergrund-Rauschen aufwiesen. Die Intensität des Hintergrund-rauschens kann hierbei von Biochip zu Biochip variieren. Aus diesem Grund mussten die Intensitäten, die für die Hintergrund-Spots typisch waren, von Fall zu Fall bestimmt und anschließend alle Spots mit diesen Intensitätswerten aus den weiteren Analysen entzogen werden.

Die Spots, die ausschließlich Hintergrund-Intensitäten aufwiesen, sind im Scatter Plot in der Nähe des Ursprungs zu sehen (Abb. 3.9).

Abb. 3.9: Bestimmung der Hintergrund-Intensität. A: Streudiagramm nach Hybridisierung von *S. oralis* U-O5-DNA und *S. mitis* B6-DNA mit dem *S. mitis* B6-Biochip. Gezeigt sind Intensitätswerte bis 1000. Rot umrandet sind die Spots, welche lediglich Hintergrund-Signale aufweisen. B: Histogramm der einzelnen Spot-Abstände vom Ursprung. Das dargestellte Histogramm dient der Schwellwert-Ermittlung zur Trennung von Spots mit Hintergrund-Intensität (untere Klammer + Pfeil) von Spots mit einem Signal für hybridisierte DNA (obere Klammer + Pfeil).

Die Punkte mit Hintergrund-Signal wurden folgendermaßen definiert: Für jeden Spot wurde der Abstand zum Koordinaten-Ursprung berechnet und aus diesen Abständen ein Histogramm erstellt. Die Spots, die kein Signal gegeben haben, waren in diesem Histogramm durch geringe Abstände (Intensitäten) erkennbar. Daraus ließ sich dann ein Schwellwert ableiten, anhand dessen die betreffenden Spots rausgefiltert werden konnten.

Zweite Diskriminante: Trennung der beiden Gen-Cluster voneinander sowie den nicht zuzuordnenden Genen

In Abb. 3.7 B sind zwei unterschiedliche Gen-Cluster zu sehen. Durch die Anordnung der Punktwolken lag es nahe, die zwei Cluster durch eine lineare, durch den Ursprung verlaufende Diskriminante zu trennen. Da die beiden Punktwolken jedoch überlappen, war eine eindeutige Trennung nicht möglich. Um den Winkel der linearen Diskriminante zu bestimmen, war eine für die Auswertung geeignetere Darstellung der Punkte-Verteilung erforderlich. Deshalb wurde für jeden Punkt im Scatter Plot der Winkel berechnet, den er mit der X-Achse bildet. Anschließend wurde ein Histogramm unter Berücksichtigung dieser Winkel erstellt (Abb. 3.10).

Abb. 3.10: Differenzierung der Gen-Cluster. A: Streudiagramm nach Hybridisierung von Cy3-gelabelter *S. oralis* U-O5-DNA und Cy5-gelabelter *S. mitis* B6-DNA mit dem *S. mitis* B6-Biochip. Cy3 = Cyanine-3; Cy5 = Cyanine-5. B: Histogramm der einzelnen Spot-Winkel mit der X-Achse. Das dargestellte Histogramm dient der Schwellwert-Ermittlung zur Differenzierung von gemeinsamen (1. Hügel, unterer roter Pfeil), *S. mitis* B6-spezifischen (2. Hügel, oberer roter Pfeil) und nicht zuzuordnenden Genen.

Im Histogramm der Winkel sind deutlich die zwei Häufungen von Punkten zu erkennen, die je einer Punktwolke im Scatter Plot entsprechen. Die Ausläufer überlappen hier ebenso wie die Punktwolken im Scatter Plot. Zwischen den zwei Punkt-Hügeln befindet sich ein Tal, wobei der tiefste Punkt des Tals dem Winkel entspricht, bei dem die Punkt-Dichte der beiden Punktwolken minimal ist. Die Trennung der Punkte an dieser Stelle führt zu zwei gut geteilten Punktwolken. Nun konnte dieser tiefste Punkt im Histogramm als Winkel der linearen Diskriminante mit der X-Achse gewählt werden. Allerdings musste hier die Zahl der Falsch-Positiven, die bei der Bestimmung des Winkels für die lineare Diskriminante auftraten, berücksichtigt werden. Zur besseren Veranschaulichung sind in Abb. 3.11 die Einzelfunktionen eines Histogramms dargestellt.

Abb. 3.11: Zusammenhang zwischen Schwellwert der linearen Diskriminante und Anzahl an Falsch-Positiven. Es wird angenommen, dass die Winkel der Gene, die beide Spezies gemeinsam haben, einer bestimmten Verteilung folgen (blau gepunktete Linie). *S. mitis* B6-spezifische Gene hingegen zeigen eine andere Verteilung (pink gestrichelte Linie). Die Summe (grüne, durchgezogene Linie) der beiden erwähnten Einzelfunktionen führt letztendlich zum Endbild des Winkel-Histogramms. Zur Bestimmnug der B6-spezifischen Gene wird an einer bestimmten Position ein Winkel für die lineare Diskriminante gewählt (senkrechter roter Balken), wobei alle Gene mit einem größeren Winkel als B6-spezifisch bezeichnet werden. Für die "False Discovery Rate" (FDR) gilt: FDR = A / B, mit A = Fläche A und B = Fläche B.

Wie man in Abb. 3.11 deutlich sehen kann, unabhängig von der Wahl des Winkels, befinden sich unter den B6-spezifischen immer auch eine bestimmte Menge an gemeinsamen Genen. Hierbei handelt es sich um Falsch-Positive. Die Wahl eines größeren Winkels verringert zwar die Zahl an Falsch-Positiven, erhöht aber auch die Zahl der Falsch-Negativen. Zur eindeutigeren Definition von B6-spezifischen, gemeinsamen und nicht klar zuzuordnenden Genen wurden zwei lineare, mit unterschiedlichen Winkeln durch den Ursprung verlaufende Diskriminanten gewählt. Die Spots im Scatterplot, die einen kleineren Winkel mit der X-Achse bilden als die erste Diskriminante zur Definition der B6-spezifischen Gene und einen größeren als die

zweite Diskriminante zur Definition der gemeinsamen Gene, stellen die nicht zuzuordnenden Gene dar.

3.2.3 Globaler Vergleich der Teststämme mit S. mitis B6

Das entschlüsselte *S. mitis* B6-Genom enthält insgesamt 2100 "open reading frames" (ORFs), von denen 2028, einschließlich rRNAs, tRNAs und repetitiven Elementen, in Form von 70mer Oligos auf dem B6-Biochip vertreten sind. Die Genom-Vergleiche wurden auf Basis dieses Chips mit DNA von 21 oralen Teststämmen durchgeführt, darunter zehn *S. mitis*- und zehn *S. oralis* Stämme. Von dem Stamm *S. mitis* M3 wurden zwei Varianten verwendet, die sich morphologisch voneinander unterscheiden (3.1.3). Als Referenz wurde der Stamm *S. pneumoniae* R6 in die Analysen miteinbezogen. Die Ergebnisse der vergleichenden Genom-Hybridisierungen der *S. mitis*-Stämme und des *S. pneumoniae* R6-Stammes sind auf der EBI (<u>E</u>uropean <u>B</u>ioinformatics <u>I</u>nstitute)-Homepage in der ArrayExpress-Datenbank unter dem Zugangscode E-MEXP-2497 hinterlegt.

Über 10 % des B6-Genoms besteht aus mobilen Elementen wie Transposasen, Insertionssequenzen (IS), integrativen und konjugativen Elementen (ICEs) sowie Phagen-Clustern. Die diesbezüglich erhaltenen Ergebnisse der Genom-Studien werden in den Kapiteln 3.4.1 bis 3.4.3 näher besprochen. Für alle weiteren Analysen wurden mobile Elemente sowie RNA-kodierende Gene aus den Daten extrahiert; die Anzahl der *S. mitis* B6 ORFs betrug somit 1684 (siehe Tab. 7.1 im Anhang).

Die Ähnlichkeit der Teststämme zu *S. mitis* B6 wurde untersucht. 75 bis 87 % der 1684 B6-Gene hybridisierten mit *S. mitis*-DNA, während lediglich 37 bis 68 % der Oligonukleotide ein positives Hybridisierungssignal für die *S. oralis*-DNA aufwiesen (Abb. 3.12). Innerhalb der Mitis-Gruppe hat das Isolat *S. mitis* M3 1 auf Genom-Ebene die geringste Ähnlichkeit zu B6 (75 %), wohingegen *S. mitis* B5 die größte Homologie zum B6-Stamm aufweist (87 %). Im Falle der Oralis-Gruppe besitzt das spanische Isolat S476 die geringste Ähnlichkeit zu *S. mitis* B6 (37 %), der Stamm S711 hingegen mit 68 % die größte Ähnlichkeit. Die DNA des Referenzstamms *S. pneumoniae* R6 hybridisierte zu 72 % mit den *S. mitis* B6-Oligos. Folglich sind die Genome der untersuchten *S. mitis*-Isolate und auch des *S. pneumoniae* R6-Stamms relativ ähnlich zu dem von *S. mitis* B6, wohingegen sich die *S. oralis*-Genome in stärkerem Ausmaß von diesem unterscheiden.

Abb. 3.12: Genom-Vergleiche von *S. mitis, S. oralis* und *S. pneumoniae* R6 mittels eines *S. mitis* B6spezifischen Oligonukleotid-Microarrays. A: Für jeden Teststamm ist die Anzahl der Gene mit einem positiven Hybridisierungssignal (\geq 80 % Homologie) für die nach Abzug der mobilen Elemente und RNAkodierende Gene insgesamt 1684 *S. mitis* B6-Oligos gezeigt. *S. mitis* = gelb, *S. pneumoniae* R6 = rot, *S. oralis* = grün. B: Schematische Darstellung der Prozentzahl an Genen mit hoher Ähnlichkeit zum *S. mitis* B6-Genom innerhalb der *S. mitis*- (gelb) und *S. oralis*-Gruppe (grün). *S. pneumoniae* R6 = rot.

972 (58 %) der insgesamt 1684 B6-Oligonukleotide hybridisierten mit allen *S. mitis*-Stämmen. Diese Gene stellen das "Kerngenom" dar. Lediglich 62 Oligos (4 %) hybridisierten mit keinem der *S. mitis*-Stämme, das heißt scheinen B6-spezifisch zu sein. Im Falle von *S. oralis* gaben 450 (27 %) B6-Oligonukleotide ein positives Hybridisierungssignal für alle getesteten Stämme, 323 (19 %) hybridisierten in keinem Fall mit *S. mitis* B6. Bei *S. pneumoniae* R6 wiesen 1218 (72 %) der B6-Oligos ein positives Hybridisierungssignal und 406 (24 %) Oligos kein Hybridisierungssignal auf. Eine komplette Auflistung der einzelnen Gene befindet sich im Anhang dieser Arbeit in den Tab. 7.2 bis 7.7.

Da die Genom-Information von *S. pneumoniae* R6 schon lange vorliegt (Hoskins *et al.*, 2001) stellt dieser Stamm im Rahmen der Microarray-Analysen eine wichtige Kontrolle dar. Laut Be-

rechnung der "Coverage" (Homologie der 70mer Oligos zur Teststamm-DNA in Prozent) sollten 1245 Oligonukleotide des B6-Chips positiv (Homologie ≥ 80 %) an die *S. pneumoniae* R6 DNA binden. In der Tat zeigen, wie bereits erwähnt, 1218 Oligos signifikante Hybridisierungssignale für die R6-DNA (Abb. 3.12), das heißt die Fehlerrate des Chips beträgt lediglich 2 %.

In Abb. 3.13 ist für alle untersuchten *S. mitis*- und *S. oralis*-Isolate die Länge der gemeinsamen kodierenden Sequenz mit *S. mitis* B6 und der B6-spezifischen Sequenz angegeben. Die angezeigten Zahlen repräsentieren allerdings mit großer Wahrscheinlichkeit nur einen Minimumwert, aufgrund der nicht eindeutig zuzuordnenden Gene.

Abb. 3.13: Anteil gemeinsamer beziehungsweise B6-spezifischer kodierender Sequenzen bei Vergleich der Genome aller untersuchten *Streptococcus* spp. mit dem von *S. mitis* B6. Das zirkuläre B6-Genom abzüglich mobiler Elemente und RNA-kodierender Gene ist als weißer Kreis dargestellt (1662 Kilobasen (kb)). A: Gemeinsame kodierende Sequenzen aller *S. mitis*-Stämme mit *S. mitis* B6 in kb = gelb. B: Gemeinsame kodierende Sequenzen aller *S. oralis*-Isolate mit *S. mitis* B6 in kb = grün. Der Anteil an B6-spezifischen kodierenden Sequenzen ist für jeden Vergleich jeweils orange eingezeichnet.

Die in Abb. 3.13 gezeigten Berechnungen beziehen sich auf das "Kerngenom" aller untersuchten *S. mitis*-Isolate beziehungsweise auf gemeinsame Gene zwischen *S. mitis* B6 und allen getesteten Vertretern der *S. oralis*-Gruppe. Letztere zeigt auf DNA-Ebene erwartungsgemäß weniger Ähnlichkeit zu *S. mitis* B6 als die Mitglieder des *S. mitis*-Clusters. Die Zahl an B6spezifischen kodierenden Sequenzen ist in *S. mitis* im Vergleich zu *S. oralis* deutlich geringer.

3.2.3.1 Unterschiede zwischen S. mitis und S. oralis

Anhand der oben ermittelten Daten können die Gene herausgestellt werden, die die Mitis-Gruppe von der Oralis-Gruppe differenzieren (Tab. 3.4). Hierzu wurden die 972 *S. mitis* "Coregene" mit den *S. mitis* B6-Oligos verglichen, die in keinem Fall mit der DNA der *S. oralis* Stämme hybridisierten. Demnach besitzen alle untersuchten *S. mitis*-Isolate, im Gegensatz zu *S. oralis*, die in die Kompetenz involvierten Gene *comB* (smi_0065), *cglA* (smi_0205) und *coiA* (smi_0980). *comB* zählt zu den "frühen", an der Regulation der Kompetenz beteiligten Genen, während *cglA* eine Rolle bei der DNA-Aufnahme zukommt und es sich somit um ein "spätes" Kompetenzgen handelt (Pestova & Morrison, 1998). Die Funktion von *coiA* bleibt bislang ungeklärt. Des Weiteren unterscheiden sich die beiden *Streptococcus*-Arten durch das Vorhandensein beziehungsweise Fehlen der Antibiotika-Efflux-Pumpen PmrA (smi_0973) und smi_1835 sowie einer Reihe weiterer putativer ABC-Transporter. Zudem zeigen die Vertreter der Oralis-Gruppe keinerlei Homologie zu dem in den meisten Eubakterien, einschließlich *S. pneumoniae* und *S. mitis*, konservierten Zellteilungsprotein Div1B (smi_1447).

Allerdings ist an dieser Stelle anzumerken, dass negative Hybridisierungssignale nicht ausschließen, dass die jeweiligen Gene in *S. oralis* vorhanden ist. Es besteht ebenso die Möglichkeit, dass die entsprechenden Nukleotid-Sequenzen variabel sind.

In Tab. 3.4 sind die insgesamt 53 Gene, die laut Microarray-Analysen den Mitis-Zweig von der Oralis-Gruppe unterscheiden, aufgeführt und je nach Funktion farblich hinterlegt. Der Farbcode-Schlüssel befindet sich am Ende der Tabelle.

Gen-Nr. S. mitis B6	Gen	Produkt
smi_0008		conserved hypothetical protein
smi_0010		putative MesJ/Ycf62 family protein
smi_0031		conserved hypothetical protein
smi_0065	comB	competence factor transport protein ComB
smi_0142		conserved hypothetical protein
smi_0197	рср	pyrrolidone-carboxylate peptidase (5-oxoprolyl-peptidase)
smi_0200		conserved hypothetical protein
smi_0205	cglA	competence protein
smi_0233	rluA1	23S rRNA pseudouridine synthase
smi_0256		ABC transporter, ATP-binding protein

Tab. 3.4: In S. oralis im Vergleich zu S. mitis nicht hybridisierte Gene

smi_0257		conserved hypothetical protein
smi_0258		histidine kinase
smi_0275	adhP	alcohol dehydrogenase, propanol-preferring, COG1064
smi_0327		putative ABC transporter, substrate binding protein
smi_0329		ABC-type uncharacterized transport system, ATPase component COG1101
smi_0534		Conserved hypothetical protein
smi_0579		ABC transporter, permease
smi_0583		Chromosome replication initiation protein/membrane attachment protein
smi_0588		Conserved hypothetical protein
smi_0646		Conserved hypothetical protein
smi_0672		Cytidylate kinase
smi_0707		Conserved hypothetical protein
smi_0711		Na ⁺ /H ⁺ antiporter
smi_0741		Conserved hypothetical protein
smi_0751		ABC transporter, ATP-binding protein
smi_0752		Conserved hypothetical protein
smi_0832		conserved hypothetical protein
smi_0838	gor	Glutathione-disulfide reductase
smi_0859		putative phosphatase
smi_0973	pmrA	multi-drug resistance efflux pump
smi_0980	coiA	competence protein CoiA
smi_0991	dnaG	DNA primase
smi_0997		conserved hypothetical protein
smi_0997 smi_1074		conserved hypothetical protein conserved hypothetical protein
smi_0997 smi_1074 smi_1075		conserved hypothetical protein conserved hypothetical protein ABC transporter, membrane-spanning protein
smi_0997 smi_1074 smi_1075 smi_1089		conserved hypothetical protein conserved hypothetical protein ABC transporter, membrane-spanning protein conserved hypothetical protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178		conserved hypothetical protein conserved hypothetical protein ABC transporter, membrane-spanning protein conserved hypothetical protein putative A/G-specific adenine glycosylase
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186		conserved hypothetical protein conserved hypothetical protein ABC transporter, membrane-spanning protein conserved hypothetical protein putative A/G-specific adenine glycosylase conserved hypothetical protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202		conserved hypothetical protein conserved hypothetical protein ABC transporter, membrane-spanning protein conserved hypothetical protein putative A/G-specific adenine glycosylase conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202 smi_1383		conserved hypothetical protein conserved hypothetical protein ABC transporter, membrane-spanning protein conserved hypothetical protein putative A/G-specific adenine glycosylase conserved hypothetical protein conserved hypothetical protein ArsC family protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202 smi_1383 smi_1410		conserved hypothetical protein conserved hypothetical protein ABC transporter, membrane-spanning protein conserved hypothetical protein putative A/G-specific adenine glycosylase conserved hypothetical protein ArsC family protein conserved hypothetical protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202 smi_1383 smi_1410 smi_1447	div1B	conserved hypothetical proteinconserved hypothetical proteinABC transporter, membrane-spanning proteinconserved hypothetical proteinputative A/G-specific adenine glycosylaseconserved hypothetical proteinconserved hypothetical protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202 smi_1383 smi_1410 smi_1582	div1B	conserved hypothetical protein conserved hypothetical protein ABC transporter, membrane-spanning protein conserved hypothetical protein putative A/G-specific adenine glycosylase conserved hypothetical protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202 smi_1383 smi_1410 smi_1582 smi_1734	div1B	conserved hypothetical protein conserved hypothetical protein ABC transporter, membrane-spanning protein conserved hypothetical protein putative A/G-specific adenine glycosylase conserved hypothetical protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202 smi_1383 smi_1410 smi_1582 smi_1734 smi_1809	div1B cbiQ	conserved hypothetical proteinconserved hypothetical proteinABC transporter, membrane-spanning proteinconserved hypothetical proteinputative A/G-specific adenine glycosylaseconserved hypothetical proteinconserved hypothetical proteinABC transporter permease
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202 smi_1383 smi_1410 smi_1447 smi_1734 smi_1809 smi_1818	div1B cbiQ	conserved hypothetical proteinABC transporter, membrane-spanning proteinconserved hypothetical proteinputative A/G-specific adenine glycosylaseconserved hypothetical proteinconserved hypothetical protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202 smi_1383 smi_1447 smi_1582 smi_1734 smi_1818 smi_1833	div1B cbiQ	conserved hypothetical protein ABC transporter, membrane-spanning protein conserved hypothetical protein putative A/G-specific adenine glycosylase conserved hypothetical protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202 smi_1383 smi_1410 smi_1582 smi_1734 smi_1809 smi_1833 smi_1833	div1B	conserved hypothetical protein Conserved hypothetical protein ABC transporter, membrane-spanning protein conserved hypothetical protein putative A/G-specific adenine glycosylase conserved hypothetical protein conserved hypothetical protein ArsC family protein conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein ABC transporter permease conserved hypothetical protein ABC transporter, ATP-binding protein, multidrug export
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202 smi_1383 smi_1410 smi_1447 smi_1734 smi_1809 smi_1818 smi_1833 smi_1835 smi_1861	div1B cbiQ	conserved hypothetical proteinABC transporter, membrane-spanning proteinconserved hypothetical proteinputative A/G-specific adenine glycosylaseconserved hypothetical proteinconserved hypothetical proteinABC transporter permeaseconserved hypothetical proteinconserved hypothetical protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202 smi_1383 smi_1410 smi_1582 smi_1734 smi_1809 smi_1818 smi_1833 smi_1836 smi_1861 smi_1862	 div1B cbiQ cbiQ cbiQ cbiQ 	conserved hypothetical protein ABC transporter, membrane-spanning protein conserved hypothetical protein putative A/G-specific adenine glycosylase conserved hypothetical protein ABC transporter permease conserved hypothetical protein ABC transporter, ATP-binding protein, multidrug export conserved hypothetical protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1178 smi_1186 smi_1202 smi_1383 smi_1410 smi_1582 smi_1734 smi_1809 smi_1818 smi_1833 smi_1835 smi_1861 smi_1873	Image: state stat	conserved hypothetical protein ABC transporter, membrane-spanning protein conserved hypothetical protein putative A/G-specific adenine glycosylase conserved hypothetical protein ABC transporter permease conserved hypothetical protein ABC transporter, ATP-binding protein, multidrug export conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein
smi_0997 smi_1074 smi_1075 smi_1089 smi_1178 smi_1186 smi_1202 smi_1383 smi_1410 smi_1582 smi_1734 smi_1809 smi_1818 smi_1833 smi_1833 smi_1833 smi_1833 smi_1833 smi_1835 smi_1861 smi_1873 smi_1914	Image: state stat	conserved hypothetical proteinABC transporter, membrane-spanning proteinconserved hypothetical proteinputative A/G-specific adenine glycosylaseconserved hypothetical proteinconserved hypothetical protein

Die angegebene Gen-Nr. entspricht den annotierten "open reading frames" (ORFs) in *S. mitis* B6 (Denapaite *et al.,* 2010). Die angezeigten Gene sind je nach Funktion farblich in folgende Kategorien eingeteilt:

- Replikation, Rekombination und Reparatur
- Nukleotid-Transport und -Stoffwechsel
- Posttranslationale Modifikation, Protein-Umsatz, Chaperone
- Translation
- Abwehr-Mechanismen
- Kohlenhydrat-Transport und -Stoffwechsel
- mögliche Funktion

- intrazelluläre Gene, Sekretion
- Zellwand-/Membran-Biogenese
- anorganischer Ionen-Transport und -Stoffwechsel
- Signaltransduktions-Mechanismen
- Energie-Erzeugung und -Umsatz
- Kontrolle des Zellzyklus, Mitose und Meiose

Neben diesen in Tab. 3.4 aufgelisteten, klaren Unterschieden zwischen *S. mitis* und *S. oralis* existieren etliche variable Gene, die beispielsweise in allen untersuchten *S. oralis*-Isolaten, aber lediglich in einigen *S. mitis*-Stämmen vorkommen und umgekehrt. Ebenso gibt es Gene, die in keinem weiteren *S. mitis* außer B6, jedoch vereinzelt in *S. oralis* auftreten und umgekehrt. Die betreffenden Gene sind im Anhang in den Tab. 7.8 bis 7.11 aufgeführt.

3.2.3.2 Das Streptococcus spp.-,,Kerngenom"

Auf Basis der in dieser Arbeit durchgeführten vergleichenden Genom-Analysen kann ein Eindruck über das "Kerngenom" der Streptokokken gewonnen werden. Von den nach Abzug der mobilen Elemente und RNA-kodierenden Gene insgesamt 1684 *S. mitis* B6-Oligonukleotiden zeigten 386 (23 %) ein positives Hybridisierungssignal für alle untersuchten 22 *Streptococcus*-Stämme. Darunter befinden sich eine Reihe von Genen, die für Enzyme des Kohlenhydratstoffwechsels kodieren, darunter Glykolyseschlüssel-Enzyme wie die Phosphofructokinase (smi_1004), Aldolase (smi_0695) und Pyruvat-Kinase (smi_1005) sowie die zur Milchsäuregärung benötigte Lactat-Dehydrogenase (smi_1006). Des Weiteren konserviert sind MLST-Gene wie die Transketolase (smi_0227) und die Glukose-Kinase (smi_1478). Etwa 20 % der "Coregene" kodieren für hypothetische Proteine. Zudem enthält das "Coregenom" Gene wie *murC* (smi_1502) und *murE* (smi_1512), die eine Rolle bei der Zellwand-Biosynthese spielen. Neben weiteren für die Replikation, Rekombination und Reparatur von DNA relevanten Genen sowie dem Hitzeschock-Gen *dnaK* (smi_0355) beinhaltet das "Kerngenom" zahlreiche als Virulenzfaktoren diskutierte Gene. Ein detaillierter Vergleich hinsichtlich der Virulenzfaktoren wird in den Kapiteln 3.4.4 bis 3.4.6 durchgeführt.

In Tab. 3.5 sind alle anhand der Hybridisierungsdaten ermittelten Gene des *Streptococcus* spp.-"Kerngenoms" aufgelistet und je nach Funktion farblich hinterlegt. Der Farbcode-Schlüssel befindet sich am Ende der Tabelle. .

Tab.	3.5: C)as	Streptococcus sr	–	Kerngen	om"
	0.0. 5	uo		·p. "		0

Gen-Nr. S. mitis B6	Gen	Produkt
smi_0002	dnaN	DNA polymerase III, beta subunit
smi_0003		conserved hypothetical protein
smi_0006	mfd	transcription-repair coupling factor
smi_0007		conserved hypothetical protein
smi_0011	hgt	hypoxanthine guanine phosphoribosyltransferase
smi_0012	ftsH	cell-division protein
smi_0048	poll	DNA-directed DNA polymerase
smi_0049		conserved hypothetical protein
smi_0050		conserved hypothetical protein
smi_0051	aspC1	aspartate aminotransferase
smi_0052		conserved hypothetical protein
smi_0064	comA	transport ATP-binding protein ComA
smi_0066	purC	phosphoribosylaminoimidazole-succinocarboxamidesynthetase
smi_0067	purL	phosphoribosylformylglycinamide synthetase
smi_0068	purF	amidophosphoribosyl transferase
smi_0069	purM	phosphoribosylformylglycinamide cyclo-ligase
smi_0072	purH	phosphoribosylaminoimidazolecarboxamideformyltransferase
smi_0076	purB	adenylosuccinate lyase
smi 0079	bgaC	beta-galactosidase 3
	PTS-EIIB	phosphotransferase system sugar-specific EIIB component
smi 0082	PTS-EIID	PTS system, IID component
	PTS-EII	phosphotransferase system sugar-specific EII component
	galM	aldose-1-epimerase (mutarotase)
	ilvD	dihvdroxvacid dehvdratase
smi 0114		conserved hypothetical protein
smi 0115		conserved hypothetical protein
smi 0118	hisS	histidyl-tRNA synthetase
smi 0127	aspS	aspartyl-tBNA synthetase (aspartate-tBNA ligase)
smi 0130	malA	malA-protein
smi 0131	malD	malD-protein ABC transporter membrane-spanning permease - maltose/maltodextrin
smi 0132	malC	malc-protein, ABC transporter membrane-spanning permease - matose/maltodextrin
smi 0133	malX	malX-protein, ABC transporter substrate-binding protein - maltose/maltodextrin
smi 0134	malM	4-alpha-olucanotransferase (amvlomaltase)
smi 0135	malP	maltodextrin phosphorylase
smi 0136	rrmA	23S rBNA m1G745 methyltransferase
smi 0139	tvrS	tvrosvl-tBNA svnthetase 1
smi 0143	danD	2.3.4.5-tetrahydropyridine-2-carboxylate N-succinvltransferase-related protein
smi 0144	hinO	similar to several hippurate bydrolases and amino acid amidobydrolases; can be a peptidase too
smi 0150	araS	arginyl-tRNA synthetase(argininetRNA ligase) (ARGRS)
smi 0159	codA	putative cytidine/deoxycytidylate deaminase family protein
smi 0192		conserved hypothetical protein
smi 0193	thrC	threonine synthase
	tat	tRNA-guanine transglycosylase (guanine insertion enzyme)
 smi 0206	calB	competence protein
 smi 0208	calD	competence protein
	tktA	transketolase
 smi 0228		Preprotein translocase subunit
smi 0232	gapA	olvceraldehvde 3-phosphate dehvdrogenase
smi 0237	secE	preprotein translocase secE component, COG0690
		response regulator
smi 0263	fusA	elongation factor G
	polC	DNA polymerase III. alpha subunit
smi 0266	pepS	aminopeptidase
smi 0277	1 -r -	xanthine/uracil permease family protein
smi_0280	sulB	dihydrofolate synthetase
smi 0281	sulC	GTP cyclohydrolase
smi 0289	aspC2	aspartate aminotransferase
	,	conserved hypothetical protein
smi 0296		conserved hypothetical protein
smi 0299		conserved hypothetical protein
		VI 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.

smi 0302	purR	activator of purine biosynthetic genes
smi 0325	amiF	ABC transporter ATP-binding protein - oligopentide transport
smi 0331	ann <u>-</u>	conserved hypothetical protein
smi_0001		
smi_0336	verD	
smi_0337	XCID	
smi_0007		
smi_0330	10111	ribecomal small subunit peoudouriding systhese A
siii_0339	ISUAZ	noosonial small subunit pseudoundine synthase A
siii_0340	pop 4	dutemul eminopontidese
siii_0342	реря	
smi_0343		
SmI_0346	рдк	pnospnoglycerate kinase
smi_0349	ginA	
smi_0355	dnaK	class I heat-shock protein (molecular chaperone)
smi_0357	dnaJ	dnaJ protein, Heat-shock protein (activation of DnaK)
smi_0360		conserved hypothetical protein
smi_0375		Conserved hypothetical protein
smi_0377		Nucleic-acid-binding protein implicated in transcription termination, putative
smi_0379	IF2	Translation initiation factor
smi_0380	rbfA	Ribosome-binding factor A
smi_0383		conserved hypothetical protein
smi_0384		conserved hypothetical protein
smi_0400	rpoE	DNA-dependent RNA Polymerase, delta subunit (RNAP delta factor)
smi_0401	pyrG	CTP synthase (UTPammonia ligase)
smi_0404		Conserved hypothetical protein
smi_0405		Phenylalanyl-tRNA synthetase, beta subunit, putative
smi_0480	ssbB	Single-stranded DNA-binding protein
smi_0481	groES	CH10_SMI 10 kDa chaperonin (Protein Cpn10)
smi_0482	groEL	CH60_SMI 60 kDa chaperonin (Protein Cpn60)
smi_0486		Uncharacterized domain/protein associated with RNAses G and E
smi_0514		Transcriptional regulator, MarR family
smi_0516		ABC transporter, permease
smi_0522		Conserved hypothetical protein
smi_0527		Xanthine permease
smi_0530	exoA	Exodeoxyribonuclease III
smi_0536		ABC transporter, ATP-binding domain/permease protein, lipid/multidrug/protein-type ABC exporter
smi_0537		ABC transporter, ATP-binding domain/permease protein, lipid/multidrug/protein-type ABC exporter
smi_0538		conserved hypothetical protein
smi_0540		conserved hypothetical protein
smi_0541		Anthranilate synthase component I
smi_0542		Anthranilate synthase component II (glutamine amido-transferase)
smi_0543		Anthranilate phosphoribosyltransferase
smi_0545		N-(5'-phosphoribosyl)anthranilate isomerase (PRAI)
smi 0546		Tryptophan synthase, beta subunit
smi 0547		Tryptophan synthase alpha chain
		Conserved hypothetical protein
smi 0573		Thioredoxin
smi 0592		Phosphopantetheinvl transferase (holo-ACP synthase, Acvl Carrier Protein Synthase
smi 0593		Alanine racemase
emi 0504		Branch migration of Holliday junctions, junction-specific DNA helicase.ATP-dependent DNA helicase, recG
smi_0594	mmsA	homolog
smi_0616	murF	UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelateD-alanyl-D-alanyl ligase
smi_0627	ileRS	IsoleucyI-tRNA synthetase
smi_0629		2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (Phosphoglyceromutase)
smi_0634	psaA	Manganese ABC transporter substrate-binding lipoprotein precursor (Pneumococcal surface adhesin A)
smi_0643	dtd	D-tyrosyl-tRNA(Tyr) deacylase
smi_0653	thrRS	Threonyl-tRNA synthetase, threonine-tRNA ligase
smi_0661		Putative 1-acylglycerol-3-phosphate O-acyltransferase
smi_0665		Conserved hypothetical protein
smi_0666		Conserved hypothetical protein
smi_0667		Conserved hypothetical protein
smi_0676	truA	tRNA pseudouridine synthase A
smi_0677		Phosphomethylpyrimidine kinase, putative

smi_0679	pepQ	X-Pro dipeptidase
smi_0680		Cobyric acid synthase
smi_0682		Oxidoreductase, pyridine nucleotide-disulfide class I, Mercury (II) reductase
smi_0685	exp9	Superfamily II DNA and RNA helicases, putative ATP-dependent RNA helicase, DEAD-box family
smi_0690	vexp1	ABC transporter, permease
smi_0691	vex2	ABC transporter ATP-binding protein
smi_0692	vexp3	ABC transporter, permease
smi_0695		Fructose-bisphosphate aldolase class-II
smi_0701	-	ABC transporter, ATP-binding protein
smi_0703		ABC-type transporter, permease protein
smi_0709		Conserved hypothetical protein
smi_0713	queA	S-adenosylmethionine:tRNA ribosyltransferase-isomerase, (Queuosine biosynthesis protein)
smi_0714		N-acetylglucosamine-6-phosphate isomerase
smi_0716	hpr	Hpr(Ser) kinase/phosphatase,
smi_0719		Conserved hypothetical protein
smi_0728		regulatory protein Spx
smi_0731	•	conserved hypothetical protein
smi 0734		ABC transporter permease - phosphate transport
smi 0739		putative transcriptional regulator
smi 0740		Alpha-acetolactate decarboxylase
smi 0742	murB	UDP-N-acetylenolpyruvoyldlucosamine reductase
smi 0745	potC	ABC-transporter, spermidine/putrescine transport system, permease component II
	, alaRS	Alanvl-tRNA synthetase
smi 0758	aroC	Chorismate synthase. (5-enolpyruyylshikimate-3-phosphate phospholyase)
smi 0763	aroA	3-Enolpyruvylshikimate-5-phosphate synthetase. 3-phosphoshikimate 1-carboxyvinyltransferase
smi 0764		Shikimate kinase
smi 0767	licD3	required for phosphorylcholine incorporation in teichoic and lipoteichoic acids
smi 0773	thrA	Homoserine debydrogenase
smi 0774	thrB	Homoserine kinase
smi 0814	adhA	alutamate dehydrogenase
smi 0815	pvrD2	dibydroorotate debydrogenase
smi 0817	sodA	superoxide dismutase
smi 0819	000/1	conserved hypothetical protein
smi 0826		Conserved hypothetical protein
smi 0830	trmD	tRNA (quanine-N(1)-)-methyltransferase
smi 0833	anne	hypothetical protein
smi 0840	salX	ABC transporter. ATP-binding protein
smi 0845	oun t	short chain dehydrogenase
smi 0849		conserved hypothetical protein
smi 0851	ciaB	response regulator
smi 0863	olari	conserved hypothetical protein
smi 0865	clnE	ATP-dependent Clp protease ATP-binding subunit
smi 0873	rniA	Rihose-5-nhosnhate enimerase
smi 0874	deoB	Phosphonentomutase DeoB
smi 0876	0000	
smi 0879	deoD	Purine-nucleoside phosphorylase DeoD
smi 0881	flaR	DNA topology modulation protein FlaB
smi 0897	narF	DNA topoisomerase IV subunit B
smi 0905	parC	Topoisomerase IV subunit A
smi_0908	pulo	conserved hypothetical protein
smi 0915		ABC transporter ATP-binding protein
smi 0916	•	conserved hypothetical protein
smi 0917		
smi 0918		Nifl L family protein
smi 0919		conserved hypothetical protein
smi_0922	tufΔ	Translation elongation factor TI
smi_0922		
0.111_00000	cnsY	Transcription requilator 1 VSB tamuv
smi 0936	cpsY proA	transcription regulator, LysR family Gamma-dutamyl phosphate reductase
smi_0936	cpsY proA tmk	Gamma-glutamyl phosphate reductase
smi_0936 smi_0938	cpsY proA tmk bolB	Gamma-glutamyl phosphate reductase Thymidylate kinase
smi_0936 smi_0938 smi_0939 smi_0948	cpsY proA tmk holB gid	Gamma-glutamyl phosphate reductase Thymidylate kinase DNA polymerase III, delta' subunit Gid NAD(EAD)-utilizing enzyme possibly involved in translation
smi_0936 smi_0938 smi_0939 smi_0948 smi_0949	cpsY proA tmk holB gid	Gamma-glutamyl phosphate reductase Thymidylate kinase DNA polymerase III, delta' subunit Gid NAD(FAD)-utilizing enzyme possibly involved in translation

smi_0950	frr	Ribosome recycling factor
smi_0953		PhoH family protein
smi_0956	celB	Competence protein CelB
smi_0959	infC	translation initiation factor IF-3
smi_0962		lactoylglutathione lyase
smi_0965	pyrD1	dihydroorotate dehydrogenase
smi_0967	pavA	adherence and virulence protein A
smi_0968		conserved hypothetical protein
smi_0969	dgkA	Diacylglycerol kinase
smi_0975	secG	membrane protein involved with protein export SecG
smi_0977	ssrA	SsrA-binding protein
smi_0985	ррс	Phosphoenolpyruvate carboxylase
smi 0992	rpoD	DNA-dependent RNA Polymerase sigma factor rpoD
 smi 1004	pfkA	6-phosphofructokinase I
	, pvkF	Pyruvate kinase I: fructose-stimulated
smi 1006	ldh	L-lactate dehydrogenase
smi 1009		putative formate/nitrate transporter
smi 1010		O-acetylhomoserine sulfhydrylase
smi 1011		conserved hypothetical protein
smi 1012	truB	tRNA nseudouridine synthase B
smi_1014	vseA	evodeovvribonuclease VII. Jarge subunit
smi_1015	vseB	exodeoxyribonuclease VII, small subunit
smi_1017	736D	encourse with a state in a suburn
siii_1017	10 cA/	DNA repair protein Bach
smi_1019	lech	CTR hinding protein Leo A
siii_1021	lepA	err-binding protein Lepa
smi_1024		putative PTS system, IIC component
Smi_1026	lacA	Galactose-6-phosphate isomerase, LacA subunit
smi_1028	lacc	l agatose-6-phosphate kinase
smi_1029	lacD	l agatose 1,6-diphosphate aldolase
smi_1042	nrdF	ribonucleoside-diphosphate reductase 2, beta subunit
smi_1043	nrdE	Ribonucleoside-diphosphate reductase 2, alpha subunit
smi_1045	ptsH	phosphocarrier protein HPr
smi_1046	ptsl	Phosphoenolpyruvate-protein phosphotransferase, PTS enzyme I
smi_1056	mutT	Mutator mutT protein
smi_1057	pyrC	Dihydroorotase
smi_1062	rnhB	ribonuclease HII
smi_1063		GTP-binding protein
smi_1105		conserved hypothetical protein
smi_1123	glyA	Serine hydroxymethyltransferase
smi_1126	hemK	putative protoporphyrinogen oxidase
smi_1127	prfA	Peptide chain release factor I
smi_1129	tdk	Thymidine kinase
smi_1132	dapA	dihydrodipicolinate synthase
smi_1133	asd	aspartate-semialdehyde dehydrogenase
smi_1143		Metal binding protein AcdA.
smi 1150		histone-like protein
		conserved hypothetical protein
smi 1159	eno	enolase
smi 1173	pamA	Phosphoglucomutase
smi 1192	fhs	Formatetetrahydrofolate ligase
smi_1201	uvrB	Exonuclease ABC - subunit B
smi_1201	alnP	ABC transporter membrane spanning permease - glutamine transport
smi_1200	gini alnO	ABC transporter ATP-binding protein - dutamine transport
emi 1204	emo	chromosome condensation and segregation SMC protoin
smi_1209		GMD reductore
omi_1214	yuac IouD	aivii icuuliase 2 icopropulmalato dobudrataco emall cubunit
Sifil_1214	ieuD IeuD	o-isopropylimalate dehydratase sinali suburili
smi_1217	ieuB	3-isopropylinalate denydrogenase
smi_1222	topA	DINA topoisomerase I
smi_1233	carB	carbamoyi-phosphate synthase, large subunit
smi_1234	carA	carbamoyi-phosphate synthase, small subunit
smi_1235	pyrB	aspartate carbamoyltransterase
smi_1236	pyrR	Transcriptional attenuation of the pyrimidine operon/uracil phosphoribosyltransferase (bifunctional protein)

smi_1237	nth	endonuclease III (DNA repair), DNA-(apurinic or apyrimidinic site) lyase
smi_1242	lemA	Cytoplasmic membrane protein LemA
smi_1252	ffh	signal recognition particle protein Ffh
smi_1255		conserved hypothetical protein
smi_1256		putative hydrolase
smi_1269	fld	Flavodoxin
smi_1296	lysS	Lysyl-tRNA synthetase
smi_1308	atpC	Proton-translocating ATPase, F1 sector, epsilon-subunit
smi_1309	atpD	Proton-translocating ATPase, F1 sector, beta-subunit
smi_1313	atpF	Proton-translocating ATPase, FU sector, subunit b
smi_1342	guaA	GMP-synthase
smi_1347		putative glycerol uptake facilitator paralog
SMI_1351		conserved hypothetical protein
siiii_1352	nifS	putative hydrolase
smi_1357	fru A	PTS system fructors specific IIPC component
smi_1358	fruR	Fristose_1-phosphate kinase
smi_1376	IIUD	conserved hypothetical protein
smi_1377	fms	
smi 1379	trxA	thioredoxin reductase
smi 1380		conserved hypothetical protein
smi 1384	oat	Methylated-DNA[protein]-cvsteine S-methyltransferase
smi 1387	hlyIII	hemolysin III
	nox	NADH oxidase
smi_1392		conserved hypothetical protein
smi_1395	glyS	Glycyl-tRNA synthetase beta subunit
smi_1396	glyQ	Glycyl-tRNA synthetase alpha subunit
smi_1400	metK	S-adenosylmethionine synthetase
smi_1402	rheB	ATP-dependent RNA helicase
smi_1403		conserved hypothetical protein
smi_1404	ptsG	PTS glucose-specific enzyme IIABC component
smi_1411	livF	ABC transporter ATP-binding protein - branched chain amino acid transport
smi_1417	clpP	ATP-dependent CLP protease proteolytic subunit
smi_1418	upp	Uracil phosphoribosyltransferase
smi_1427	pmi	mannose-6-phosphate isomerase
smi_1430	_	conserved hypothetical protein
smi_1431	spxB	pyruvate oxidase
smi_1434		putative transcriptional regulator
Smi_1445	murG	MurG undecaprentil BR MurNAc pontapontide UDPGIeNAc GleNAc transferaça
siii_1440	murD	Murd Undecaptenty-FF-MuriNAC-pentapeptide-ODFGicNAC GicNAC transferase
smi_1449	tvnA	TypA predicted membrane GTPase involved in stress response
smi_1461	iypn	Transcriptional regulator LysR family
smi_1475	miaA	tRNA isopentenvlovrophosphate transferase
smi 1478	alk	Glucose kinase
smi 1483	giit	conserved hypothetical protein
smi 1491		NAD+ synthetase
 smi_1492		nicotinate phosphoribosyltransferase
smi_1502	murC	UDP-N-acetylmuramate-alanine ligase
smi_1512	murE	UDP-N-acetylmuramyl tripeptide synthase MurE
smi_1516		inorganic pyrophosphatase/exopolyphosphatase
smi_1517		conserved hypothetical protein
smi_1522	ssbA	Single-stranded DNA-binding protein
smi_1525	asnS	Aspartyl/asparaginyl-tRNA synthetase
smi_1530		conserved hypothetical protein
smi_1550		Phosphoglucosamine mutase
smi_1555		conserved hypothetical protein
smi_1558		conserved hypothetical protein
smi_1559	clpX	ATP-dependent Clp protease ATP-binding subunit clpX
smi_1564		I riose phosphate isomerase
smi_1567		Adenine phosphoribosyltransterase
smi_1577		conserved hypothetical protein

smi_1581	uvrC	excinuclease, subunit C	
smi_1587	recJ	Single-stranded DNA-specific exonuclease	
smi_1588		ABC-type polar amino acid transport system, ATPase component, putative glutamine transport	
smi_1589		ABC-type amino acid transporter, substrate-binding protein	
smi_1591		ABC-type amino acid transporter, membrane-spanning permease	
smi_1592		ABC transporter ATP-binding protein, putative multiple sugar transport	
smi_1593		conserved hypothetical protein	
smi_1594		conserved hypothetical protein	
smi_1595	cysS	cysteinyl-tRNA synthetase	
smi_1616		Glycosyl hydrolases family 32	
smi_1623		serine/threonine phosphatase	
smi_1627	rpoZ	DNA-dependent RNA Polymerase, omega subunit	
smi_1628		guanylate kinase	
smi_1630		conserved hypothetical protein	
smi_1632		conserved hypothetical protein	
smi_1637		putative nicotinic acid mononucleotide adenylyltransferase	
smi_1640		conserved hypothetical protein	
smi_1663		peptide chain release factor 3	
smi_1665	gatC	glutamyl tRNA-GIn amidotransferase C subunit	
smi_1666	gatA	glutamyl-tRNA(GIn) amidotransferase, A subunit	
smi_1667	gatB	glutamyl tRNA-GIn amidotransferase chain B	
smi_1679	fabB	predicted FabB 3-oxoacyl-(acyl-carrier-protein) synthase	
smi_1683	acpP	acyl carrier protein	
smi_1687		aspartate kinase	
smi_1689	serS	seryl-tRNA synthetase	
smi_1720	shetA	exfoliative toxin A	
smi_1745		phosphomevalonate kinase	
smi_1747		mevalonate kinase	
smi_1761	dexB	glucan 1,6-alpha-glucosidase	
smi_1769	mraW	S-adenosyl-methyltransferase mraW	
smi 1770		putative transcriptional regulator	
smi_1774	дро	gluthatione peroxidase	
smi_1774 smi_1800	gpo natA	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export	
smi_1774 smi_1800 smi_1803	gpo natA pheS	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain	
smi_1774 smi_1800 smi_1803 smi_1807	gpo natA pheS	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821	gpo natA pheS	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein conserved hypothetical protein	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825	gpo natA pheS ilvB	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein conserved hypothetical protein acetolactate synthase, large subunit	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1832	gpo natA pheS ilvB	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1832 smi_1837	gpo natA pheS ilvB	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1832 smi_1837 smi_1839	gpo natA pheS ilvB recA	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1832 smi_1837 smi_1839 smi_1846	gpo natA pheS ilvB recA rpoC	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1832 smi_1837 smi_1839 smi_1846 smi_1847	gpo natA pheS ilvB recA rpoC rpoB	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit	
smi_1774 smi_1800 smi_1807 smi_1821 smi_1825 smi_1832 smi_1837 smi_1839 smi_1846 smi_1847 smi_1852	gpo natA pheS ilvB recA rpoC rpoB proS	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase	
smi_1774 smi_1800 smi_1807 smi_1821 smi_1825 smi_1832 smi_1837 smi_1839 smi_1846 smi_1852 smi_1852 smi_1852 smi_1872	gpo natA pheS ilvB recA rpoC rpoB proS leuS	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1832 smi_1837 smi_1839 smi_1846 smi_1847 smi_1852 smi_1872 smi_1879	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1832 smi_1837 smi_1839 smi_1846 smi_1847 smi_1852 smi_1872 smi_1879 smi_1883	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA infA	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit translation initiation factor 1 (IF-1)	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1832 smi_1839 smi_1839 smi_1846 smi_1847 smi_1852 smi_1872 smi_1879 smi_1883 smi_1884	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA infA adk	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit translation initiation factor 1 (IF-1) adenylate kinase	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1822 smi_1832 smi_1839 smi_1846 smi_1847 smi_1852 smi_1872 smi_1879 smi_1883 smi_1884 smi_1909	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA infA adk nrdG	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit translation initiation factor 1 (IF-1) adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1822 smi_1832 smi_1839 smi_1846 smi_1847 smi_1852 smi_1852 smi_1879 smi_1883 smi_1883 smi_1884 smi_1909 smi_1911	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA infA adk nrdG	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit translation initiation factor 1 (IF-1) adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1832 smi_1837 smi_1839 smi_1846 smi_1847 smi_1852 smi_1852 smi_1879 smi_1883 smi_1884 smi_1909 smi_1911 smi_1918	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA infA adk nrdG	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit translation initiation factor 1 (IF-1) adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1832 smi_1837 smi_1839 smi_1846 smi_1847 smi_1852 smi_1872 smi_1879 smi_1883 smi_1884 smi_1909 smi_1911 smi_1918 smi_1920	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA infA adk nrdG	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit translation initiation factor 1 (IF-1) adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein conserved hypothetical protein	
smi_1774 smi_1800 smi_1803 smi_1807 smi_1821 smi_1825 smi_1832 smi_1837 smi_1839 smi_1846 smi_1847 smi_1852 smi_1872 smi_1879 smi_1883 smi_1884 smi_1909 smi_1911 smi_1918 smi_1920 smi_1924	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA infA adk nrdG	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase leucyl-tRNA synthetase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein	
smi_1774 smi_1800 smi_1807 smi_1807 smi_1821 smi_1825 smi_1832 smi_1837 smi_1839 smi_1846 smi_1852 smi_1872 smi_1873 smi_1883 smi_1884 smi_1909 smi_1911 smi_1920 smi_1924 smi_1928	gpo natA pheS iIvB recA rpoC rpoB proS leuS rpoA infA adk nrdG	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase leucyl-tRNA synthetase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein conserved hypothetical protein	
smi_1774 smi_1800 smi_1807 smi_1807 smi_1821 smi_1825 smi_1837 smi_1839 smi_1846 smi_1852 smi_1879 smi_1883 smi_1884 smi_1909 smi_1911 smi_1920 smi_1924 smi_1928	gpo natA pheS iIvB recA rpoC rpoB proS leuS rpoA infA adk nrdG	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit translation initiation factor 1 (IF-1) adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein conserved hypothetical protein	
smi_1774 smi_1800 smi_1807 smi_1807 smi_1821 smi_1825 smi_1837 smi_1839 smi_1846 smi_1852 smi_1879 smi_1883 smi_1884 smi_1909 smi_1911 smi_1920 smi_1924 smi_1929 smi_1951	gpo natA pheS iIvB recA rpoC rpoB proS leuS rpoA infA adk nrdG	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase leucyl-tRNA synthetase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein aminopeptidase P conserved hypothetical protein DNA-3-methyladenine glycosylase I metal-dependent protease	
smi_1774 smi_1800 smi_1807 smi_1807 smi_1821 smi_1825 smi_1837 smi_1839 smi_1846 smi_1852 smi_1879 smi_1883 smi_1909 smi_1911 smi_1920 smi_1924 smi_1928 smi_1951 smi_1959	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA infA adk nrdG	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit translation initiation factor 1 (IF-1) adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein conserved hypothetical protein protein DNA-3-methyladenine glycosylase I metal-dependent protease conserved hypothetical protein	
smi_1774 smi_1800 smi_1807 smi_1807 smi_1821 smi_1825 smi_1827 smi_1837 smi_1846 smi_1852 smi_1852 smi_1852 smi_1847 smi_1883 smi_1909 smi_1911 smi_1920 smi_1924 smi_1928 smi_1929 smi_1951 smi_1959 smi_1960	gpo natA pheS iIvB recA rpoC rpoB proS leuS rpoA infA adk nrdG	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit translation initiation factor 1 (IF-1) adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein conserved hypothetical protein putative hydrolase	
smi_1774 smi_1800 smi_1807 smi_1807 smi_1821 smi_1825 smi_1827 smi_1837 smi_1846 smi_1852 smi_1852 smi_1852 smi_1847 smi_1883 smi_1919 smi_1920 smi_1921 smi_1928 smi_1929 smi_1951 smi_1959 smi_1960 smi_1961	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA infA adk nrdG pepP tag	gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta-subunit prolyl-tRNA synthetase leucyl-tRNA synthetase leucyl-tRNA synthetase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein conserved hypothetical protein adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein conserved hypothetical protein DNA-3-methyladenine glycosylase I metal-dependent protease conserved hypothetical protein putative hydrolase NAD/FAD-binding enzyme GidA	
smi_1774 smi_1800 smi_1807 smi_1807 smi_1821 smi_1825 smi_1827 smi_1837 smi_1846 smi_1852 smi_1852 smi_1879 smi_1883 smi_1909 smi_1911 smi_1920 smi_1928 smi_1929 smi_1951 smi_1959 smi_1960 smi_1961 smi_1962	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA infA adk nrdG pepP tag	gluthatione peroxidase gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit translation initiation factor 1 (IF-1) adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein conserved hypothetical protein DNA-3-methyladenine glycosylase I metal-dependent protease conserved hypothetical protein putative hydrolase NAD/FAD-binding enzyme GidA conserved hypothetical protein	
smi_1774 smi_1800 smi_1807 smi_1807 smi_1821 smi_1825 smi_1827 smi_1837 smi_1846 smi_1852 smi_1879 smi_1879 smi_1883 smi_1909 smi_1911 smi_1920 smi_1928 smi_1929 smi_1951 smi_1959 smi_1960 smi_1961 smi_1962 smi_1963	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA infA adk nrdG pepP tag gidA trmU	gluthatione peroxidase gluthatione peroxidase ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit translation initiation factor 1 (IF-1) adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein conserved hypothetical protein putative hydrolase NAD/FAD-binding enzyme GidA conserved hypothetical protein KNA methyl transferase	
smi_1774 smi_1800 smi_1807 smi_1807 smi_1821 smi_1825 smi_1827 smi_1837 smi_1839 smi_1846 smi_1852 smi_1879 smi_1883 smi_1884 smi_1909 smi_1911 smi_1912 smi_1920 smi_1921 smi_1923 smi_1924 smi_1925 smi_1951 smi_1951 smi_1951 smi_1951 smi_1951 smi_1951 smi_1953 smi_1960 smi_1961 smi_1962 smi_1963 smi_1982	gpo natA pheS ilvB recA rpoC rpoB proS leuS rpoA infA adk nrdG pepP tag gidA trmU	ABC transporter ATP-binding protein, Na+ export Phenylalanyl-tRNA synthetase, alpha chain conserved hypothetical protein acetolactate synthase, large subunit putative transcriptional regulator conserved hypothetical protein RecA protein DNA-dependent RNA Polymerase, beta-prime subunit DNA-dependent RNA Polymerase, beta subunit prolyl-tRNA synthetase leucyl-tRNA synthetase leucyl-tRNA synthetase DNA-dependent RNA polymerase, alpha subunit translation initiation factor 1 (IF-1) adenylate kinase NrdD activating enzymeanaerobic ribonucleoside-triphosphate reductase activator conserved hypothetical protein conserved hypothetical protein putative hydrolase NAD/FAD-binding enzyme GidA conserved hypothetical protein tRNA methyl transferase putative nucleoside-diphosphate sugar isomerase	

smi_1990		conserved hypothetical protein	
smi_2024	adcA	ABC zinc transporter, metal-binding lipoprotein	
smi_2025	adcB	ABC zinc transporter permease	
smi_2026	adcC	ABC zinc transporter ATP-binding protein	
smi_2029	dltC	D-alanyl carrier protein DCP	
smi_2030	dltB	transport protein DItB	
smi_2045	clpC	ATP-dependent Clp protease, ATP-binding subunit	
smi_2048	tauA	ABC transportersubstrate-binding protein, nitrate/sulfonate/bicarbonate transport	
smi_2049	tauC ABC transporter permease, nitrate/sulfonate/bicarbonate transport		
smi_2050		conserved hypothetical protein	
smi_2052		conserved hypothetical protein	
smi_2058	comFA	putative helicase ComFA	
smi_2060	cysK	cysteine synthase	
smi_2061	tsf	elongation factor TS	
smi_2075	guaB	inosine monophosphate dehydrogenase	
smi_2077		ABC transporter, ATP-binding domain	

Die angegebene Gen-Nr. entspricht den annotierten "open reading frames" (ORFs) in *S. mitis* B6 (Denapaite *et al.*, 2010). Die angezeigten Gene sind je nach Funktion farblich in folgende Kategorien eingeteilt:

- Replikation, Rekombination und Reparatur
- Nukleotid-Transport und -Stoffwechsel
- Posttranslationale Modifikation, Protein-Umsatz, Chaperone
- Translation
- Aminosäure-Transport und -Stoffwechsel
- Abwehr-Mechanismen
- Kohlenhydrat-Transport und -Stoffwechsel
- unbekannte Funktion
- Coenzym-Transport und -Stoffwechsel
- mögliche Funktion
- intrazelluläre Gene, Sekretion
- Transkription
- Zellwand-/Membran-Biogenese
- anorganischer Ionen-Transport und -Stoffwechsel
- Signaltransduktions-Mechanismen
- Energie-Erzeugung und -Umsatz
- Kontrolle des Zellzyklus, Mitose und Meiose
- Sekundärmetabolit-Biosynthese, -Transport und -Abbau
- Lipid-Transport und -Stoffwechsel

3.2.3.3 S. mitis B6-spezifische Gene

Nach Vergleich der insgesamt 22 *Streptococcus*-Genome mittels DNA-Microarray-Analysen konnten insgesamt 46 *S. mitis* B6-Oligonukleotide identifiziert werden, die mit keinem der untersuchten Stämme hybridisierten. Das heißt lediglich 3 % der Gene scheinen B6-spezifisch zu sein, darunter Cholinbinde-Protein Cbp1 (smi_0037), die zwei LPXTG-Proteine smi_1537 und smi_1538 sowie das für eine V-Typ ATPase kodierende *ntp*-Cluster (smi_0800 - smi_0807). Letzteres ist allerdings bereits in *S. pneumoniae* TIGR4 beschrieben (Tettelin *et al.*, 2001; Brü-

ckner *et al.*, 2004). Bei einem Großteil der B6-spezifischen Gene (43 %) handelt es sich um hypothetische Proteine mit unbekannter Funktion.

In Tab. 3.6 sind die anhand der Hybridisierungsdaten ermittelten B6-spezifischen Gene aufgeführt und – falls bekannt – nach Funktion farblich hinterlegt. Der Farbcode-Schlüssel befindet sich am Ende der Tabelle.

Gen-Nr. S. mitis B6	Gen	Gen-Produkt	
smi_0037	cbp1	choline binding protein Cbp1	
smi_0043		conserved hypothetical protein	
smi_0044		conserved hypothetical protein, authentic frameshift	
smi_0523	dpnIIA	DNA adenine methyltransferase	
smi_0524	dpnIIB	DNA adenine methyltransferase, (Adenine-specific methyltransferase DpnIIB)	
smi_0525		hypothetical protein	
smi_0526		Type II restriction enzyme DPNII homolog	
smi_0637		Permease, putative	
smi_0638		HesA/MoeB/ThiF family protein	
smi_0792		transcriptional regulator	
smi_0793	nanE	N-acetylmannosamine-6-phosphate epimerase	
smi_0795		putative sodium:solute symporter family protein	
smi_0798		putative transcriptional regulator	
smi_0800	ntpl	V-type H+-ATPase, subunit I	
_smi_0801	ntpK	V-type H+-ATPase, subunit K	
_smi_0803	ntpC	V-type H+-ATPase, subunit C	
_smi_0804	ntpF	V-type H+-ATPase, subunit F >> beschrieben in S. pneumoniae	
_smi_0805	ntpA	V-type H+-ATPase, subunit A	
_smi_0806	ntpB	V-type H+-ATPase, subunit B	
_smi_0807	ntpD	ATP synthase, subunit D	
smi_0886	merA	mercuric reductase	
smi_0898		hypothetical protein	
smi_0900		hypothetical protein	
smi_0942		putative site-specific DNA methylase	
smi_0943		conserved hypothetical protein	
smi_0944		putative site-specific DNA methylase	
smI_0945		conserved hypothetical protein	
smI_0946		conserved hypothetical protein	
SMI_0947		conserved hypothetical protein	
Smi_1100			
Smi_1109			
SIII_112			
smi_1145			
smi_1243		nypolitelical protein	
smi 1248		hypothetical metain	
smi 1249		nutative Adenine-specific DNA methylase	
smi 1250		hypothetical protein	
smi 1251		putative helicase	
smi 1397	•	hypothetical protein	
smi 1537		putative N-acetyl-beta-hexosaminidase	
smi 1538		cell wall surface anchor family protein	
smi 1973		ABC transporter ATP-binding protein	
smi 1975	•	hypothetical protein	
smi_1976		conserved hypothetical protein	
smi_2039		conserved hypothetical protein	

Tab.3.6: S. mitis B6-spezifische Gene

Die angegebene Gen-Nr. entspricht den annotierten "open reading frames" (ORFs) in *S. mitis* B6 (Denapaite *et al.*, 2010). Die angezeigten Gene sind je nach Funktion (falls bekannt) farblich in folgende Kategorien eingeteilt:

- Replikation, Rekombination und Reparatur
- Kohlenhydrat-Transport und -Stoffwechsel
- Coenzym-Transport und -Stoffwechsel
- mögliche Funktion
- Transkription
- Zellwand-/Membran-Biogenese

- anorganischer Ionen-Transport und -Stoffwechsel
- Energie-Erzeugung und -Umsatz

3.3 DNA-Microarray-Analysen unter Verwendung des *S. pneumoniae* R6/TIGR4-Oligonukleotid-Sets

In einer weiteren Studie wurden mit den unter 3.1 beschriebenen 22 oralen Streptokokken-Isolaten DNA-Microarray-Analysen mittels des *S. pneumoniae* R6/TIGR4-Oligonukleotid-Sets (Abschnitt 2.10.1.2) durchgeführt. Ziel war der direkte genomische Vergleich der kommensalen, oralen Streptokokken-Stämme mit dem humanpathogenen Bakterium *S. pneumoniae*. Der Fokus lag hierbei auf der Identifizierung von gemeinsamen sowie von *S. pneumoniae*-spezifischen Genen, wobei letztere Hinweise über Pathogenitäts-relevante Faktoren geben können. Die Genome von *S. pneumoniae* R6 und *S. pneumoniae* TIGR4 enthalten eine Reihe von Genen, die in *S. mitis* B6 nicht vorhanden sind. Das *S. pneumoniae* R6/TIGR4-Oligonukleotid-Set liefert somit im Vergleich zum *S. mitis* B6-Oligo-Set zusätzliche Informationen über das akzessorische Genom von *S. mitis* und *S. oralis*.

Die DNA-Microarray-Analyse wurde, wie unter 2.10 beschrieben, vollzogen. *S. pneumoniae* R6 diente bei allen Hybridisierungen als Referenzstamm. Auch im vorliegenden Fall wurden die Daten nach der in Abschnitt 3.2.2 besprochenen Methode ausgewertet.

3.3.1 Globaler Vergleich der Teststämme mit S. pneumoniae

Dieselben zwölf Isolate der Mitis-Gruppe sowie zehn Isolate der Oralis-Gruppe wurden über Comparative Genome Hybridizations (CGH) mittels des *S. pneumoniae* R6/TIGR4-Chips auf Genom-Ebene verglichen. Das kombinierte *S. pneumoniae* R6/TIGR4-Oligonukleotid-Set (Abschnitt 2.10.1.2) enthält 2391 spezifische 70mer Oligonukleotide, einschließlich rRNAs, tRNAs und repetitiven Elementen. Letztere umfassen über 3 % des *S. pneumoniae*-Genoms (Martin *et al.*, 1992; Oggioni & Claverys, 1999). In die folgenden Analysen wurden – analog zu Kapitel 3.2 – mobile Elemente und RNA-kodierende Gene nicht miteinbezogen. Die Anzahl der *S. pneumoniae* ORFs betrug nach Abzug der oben genannten Elemente und Gene 2180 (siehe Tab. 7.12 im Anhang).

Die Homologie der einzelnen Teststämme zu *S. pneumoniae* wurde auf Genom-Ebene untersucht: 45 bis 69 % der 2180 *S. pneumoniae*-Gene hybridisierten mit *S. mitis*-DNA, wohingegen nur 22 bis 41 % der Oligonukleotide ein positives Hybridisierungssignal für die *S. oralis*-DNA gaben (Abb. 3.14). Somit handelt es sich bei *S. mitis* RSA4 um den zu *S. pneumoniae* R6 ähnlichsten Vertreter der untersuchten Mitis-Gruppe (69 %), während *S. mitis* 10712 innerhalb dieser Gruppe mit 45 % die wenigsten Homologien zu R6 aufweist. Im Falle des getesteten Oralis-Zweiges zeigt das ungarische Isolat U-O5 mit 41 % die meisten Homologien zu R6, U-O16 mit 22 % die wenigsten. Der Stamm *S. mitis* B6 stellt in diesem Experiment aufgrund der entschlüsselten Genom-Sequenz eine wichtige Kontrolle dar. Laut Berechnung der "Coverage" (Homologie der 70mer Oligos zur Teststamm-DNA in Prozent) müssten 1387 der insgesamt 2180 *S. pneumoniae* R6/TIGR4-Oligonukleotide signifikant (Homologie \ge 80 %) an die *S. mitis* B6-DNA binden. Tatsächlich hybridisieren 1094 von den ermittelten 1387 positiven Genen signifikant mit der *S. mitis* B6-DNA (Abb. 3.14). Der Fehler liegt hier bei 21 % und ist im Vergleich zum B6-Chip (3.2.3) um einen Faktor 10 erhöht. Eine Erklärung hierfür wäre, dass generell bei Verwendung des *S. pneumoniae* R6/TIGR4-Biochips eine deutlich höhere Zahl an nicht eindeutig zuzuordnenden Genen beobachtet werden konnte als bei Gebrauch des *S. mitis* B6-Chips.

Abb. 3.14: Genom-Vergleiche der oralen Streptokokken-Spezies mittels eines *S. pneumoniae* R6/TIGR4-spezifischen Oligonukleotid-Microarrays. A: Für jeden Teststamm ist die Anzahl der Gene mit einem positiven Hybridisierungssignal (\geq 80 % Homologie) für die nach Abzug der mobilen Elemente und RNA-kodierende Gene insgesamt 2180 *S. pneumoniae* R6/TIGR4-Oligos gezeigt. *S. mitis* = gelb, *S. oralis* = grün. B: Schematische Darstellung der Prozent-Zahl an Genen mit hoher Identität zum *S. pneumoniae* R6/TIGR4-Genom innerhalb der *S. mitis*- (gelb) und *S. oralis*-Gruppe (grün).

Über das "Coregenom" von *S. pneumoniae* und *S. mitis* konnte folgender Eindruck gewonnen werden: 546 (25 %) der insgesamt 2180 *S. pneumoniae* R6/TIGR4-Oligonukleotide hybridisierten mit allen getesteten *S. mitis*-Stämmen (Anhang Tab. 7.13), lediglich 202 Oligos (9 %) mit keinem der *S. mitis*-Isolate. Die Prozentzahl an homologen Genen zwischen *S. pneumoniae* und *S. mitis* ist also im Vergleich zur Zahl an gemeinsamen Genen bei *S. mitis* (58 %) deutlich verringert (Abschnitt 3.2.3). Im Falle von *S. oralis* wiesen 299 (14 %) R6/TIGR4-Oligonukleotide ein positives Hybridisierungssignal auf, 615 (28 %) hybridisierten nicht mit *S. oralis.* Der *S. pneumoniae* – *S. oralis*-Genom-Vergleich liefert auch hier etwa um die Hälfte niedrigere Werte als der Vergleich von *S. mitis* B6 und *S. oralis* (27 % homologe Gene, s. 3.2.3). Grund für die im Allgemeinen niedrigere Zahl an gemeinsamen Genen bei diesen Analysen ist die entferntere

Verwandtschaft des Referenzstammes *S. pneumoniae*, auf welchem der verwendete Biochip basiert (Abb. 3.2).

In Abb. 3.15 ist für die Vertreter der Mitis- beziehungsweise Oralis-Gruppe die ungefähre Kilobasen-Zahl an gemeinsamer kodierender Sequenz mit *S. pneumoniae* R6/TIGR4 beziehungsweise an ausschließlich *S. pneumoniae*-spezifischer Sequenz gezeigt. Die dargestellten Zahlenwerte repräsentieren jedoch wahrscheinlich nur ein Minimum aufgrund der nicht eindeutig als gemeinsam beziehungsweise B6-spezifisch zuzuordnenden Gene.

Abb. 3.15: Anteil gemeinsamer beziehungsweise *S. pneumoniae*-spezifischer kodierender Sequenzen bei Vergleich der Genome aller untersuchten *Streptococcus* spp. mit dem von *S. pneumoniae* R6/TIGR4. Das zirkuläre *S. pneumoniae*-Genom abzüglich mobiler Elemente und RNA-kodierender Gene ist als weißer Kreis dargestellt. Der Gesamtanteil an kodierender Sequenz beträgt demnach 1874 Kilobasen (kb). A: Gemeinsame kodierende Sequenzen aller *S. mitis*-Stämme mit *S. pneumoniae* R6/TIGR4 in kb = gelb. B: Gemeinsame kodierende Sequenzen aller *S. oralis*-Isolate mit *S. pneumoniae* R6/TIGR4 in kb = grün. Der Anteil an *S. pneumoniae*-spezifischen kodierenden Sequenzen ist für jeden Vergleich jeweils orange eingezeichnet.

Wie in Abb. 3.15 zu sehen ist, weisen die Vertreter der Mitis-Gruppe mit 494 kb gemeinsamer kodierender Sequenz im Vergleich zu den untersuchten Isolaten des Oralis-Zweiges mit 290 kb die größte Homologie zu *S. pneumoniae* R6/TIGR4 auf. Der Anteil an *S. pneumoniae*-spezifischen kodierenden Sequenzen erhöht sich von *S. mitis* zu *S. oralis* um einen Faktor 3.

Eine Erklärung für die gemachten Beobachtungen ist die im Vergleich zu *S. oralis* nähere Verwandtschaft der *S. mitis*-Stämme zu *S. pneumoniae*.

3.3.1.1 In *S. mitis* B6 fehlende *S. pneumoniae* R6/TIGR4-Gene und ihr Vorkommen in anderen *Streptococcus* spp.

Um einen Eindruck über die Evolution von *S. pneumoniae* und seinen nahen kommensalen Verwandten zu erlangen, wurden speziell die R6/TIGR4-Gene herausgestellt, welche in *S. mitis* B6 laut Microarray-Analyse nicht vorhanden sind, jedoch vereinzelt positive Signale in den übrigen oralen Streptokokken-Isolaten zeigen. Darunter befinden sich für Stoffwechselwege wie die Riboflavin- und Thiamin-Biosynthese relevante Gene (spr0161 bis spr0164 und spr0630 bis spr0638), das Zwei-Komponentensystem TCS06 (spr1997, spr1998) sowie einige in die Virulenz involvierte Gene. Letztere Gruppe beinhaltet die an der Zelloberfläche lokalisierten Proteine StrH (SP0057), ZmpC (SP0071), CbpJ (SP0378) und IgA (spr1042) sowie Pneumolysin (spr1739) und Teile des Eisen-Aufnahme-Systems PiaA/PiuA (spr1684 bis spr1687). Eine detaillierte Auflistung dieser insgesamt 415 Gene befindet sich in Tab. 7.14 im Anhang der vorliegenden Arbeit. Da die Tabelle auf den mittels Microarray-Technologie durchgeführten Ge-

vorliegenden Arbeit. Da die Tabelle auf den mittels Microarray-Technologie durchgeführten Genom-Vergleichen beruht, enthält sie auch Gene, die in *S. mitis* B6 durchaus Homologe aufweisen, allerdings weniger als 80 % Homologie zu den R6/TIGR4-Oligos zeigen. Hierbei wären zum Beispiel die für die Penicillin-Bindeproteine kodierenden *pbp* sowie die in die Zelllyse involvierten Gene *lytA* und *lytC* zu nennen.

3.3.1.2 S. pneumoniae R6/TIGR4-spezifische Gene

Anhand der Genom-Vergleiche von insgesamt 22 oralen Streptokokken-Isolaten mit dem von *S. pneumoniae* konnten insgesamt 154 *S. pneumoniae* R6/TIGR4-spezifische Gene identifiziert werden. Das heißt 7 % der *S. pneumoniae* R6/TIGR4-Oligonukleotide hybridisierten mit keinem der untersuchten Stämme, außer mit der Referenz *S. pneumoniae* R6 selbst. Unter den ermittelten Pneumokokken-spezifischen Genen befinden sich diskutierte Virulenzfaktoren wie die Hyaluronidase (spr0286), Cholinbinde-Protein PspA (SP0117) sowie PcpA (spr1945). Auf die einzelnen Virulenzfaktoren wird in den Kapiteln 3.4.4 bis 3.4.6 im Detail eingegangen. Des Weiteren fehlt den meisten getesteten oralen Streptokokken vermutlich die Polysaccharid-Kapsel: *cps*2H (spr0315), *cps*2J (spr0317) und *cps*2K (spr0318) des *S. pneumoniae*-Kapsel-Clusters sind eindeutig in keinem der Stämme vorhanden. Auch die übrigen Oligonukleotide für die Kapsel-Biosynthese-Gene zeigen bis auf vier Ausnahmen (spr0320-spr0323) bei keinem der 22

Teststämme positive Hybridisierungssignale. Allerdings sind die betreffenden Oligos (spr0314, spr0316, spr0319 und spr0320) nicht in Tab. 3.7 aufgeführt, da in wenigen Ausnahmen (bei maximal drei Teststämmen) das Hybridisierungssignal nicht eindeutig zuzuordnen war. Bei einer Reihe weiterer *S. pneumoniae*-spezifischer Gene handelt es sich um bestimmte Zucker-Transporter (Phosphotransferase-System (PTS)- beziehungsweise ABC-Transporter), über die Hälfte der *S. pneumoniae*-spezifischen Gene (55 %) kodieren für hypothetische Proteine mit unbekannter Funktion.

In Tab. 3.7 sind die anhand der Hybridisierungsdaten ermittelten *S. pneumoniae*-spezifischen Gene aufgelistet und nach Funktion farblich hinterlegt. Der Farbcode-Schlüssel befindet sich am Ende der Tabelle.

Gen-Nr. S. p. TIGR4	Gen	Gen-Produkt
SP0076		hypothetical protein
SP0117		pneumococcal surface protein A
SP0135		glycosyl transferase, putative
SP0329		hypothetical protein, interruption
SP0470		hypothetical protein
SP0594		hypothetical protein, fusion
SP0635		hypothetical protein
SP0691		hypothetical protein
SP0696		hypothetical protein
SP0810		hypothetical protein
SP1036		hypothetical protein
SP1150		hypothetical protein
SP1211		hypothetical protein
SP1339		hypothetical protein
SP1345		hypothetical protein
SP1892		hypothetical protein
Gen-Nr. S. p. R6	1	
spr0070	trkH	Trk transporter membrane-spanning protein - K ⁺ transport
spr0107		Hypothetical protein
spr0108		Conserved hypothetical protein
spr0111		Hypothetical protein
spr0112		Hypothetical protein
spr0113		Hypothetical protein
spr0114		Hypothetical protein
spr0115		Hypothetical protein
spr0117		Hypothetical protein
spr0135	epsG	Glycosyltransferase involved exopolysaccharide (EPS) synthesis
spr0136	glycosyltransferase	Glycosyl transferase, family 2
spr0138		Hypothetical protein
spr0141		Hypothetical protein
spr0142		Hypothetical protein
spr0167		Conserved hypothetical protein
spr0286	hysA	Hyaluronate lyase precursor (hyaluronidase/hyase)
spr0287	kdgA	2-keto-3-deoxy-6-phosphogluconate aldolase
spr0288	kdgK	2-keto-3-deoxygluconate kinase
spr0289		Hypothetical protein
spr0291	PTS-EII	Phosphotransferase system sugar-specific EII component
spr0292	ugl	Unsaturated glucuronyl hydrolase
spr0294	PTS-EII	Phosphotransferase system sugar-specific EII component
spr0295	PTS-EII	Phosphotransferase system sugar-specific Ell component
spr0296		Conserved hypothetical protein
spr0315	cps2H	The type 2 capsule locus of Streptococcus pneumoniae
spr0317	cps2J	The type 2 capsule locus of Streptococcus pneumoniae
spr0318	cps2K	The type 2 capsule locus of Streptococcus pneumoniae
spr0325		Hypothetical protein

Tab. 3.7: S. pneumoniae R6/TIGR4-spezifische Gene

spr0349	cbpG-truncation	Choline binding protein G, truncation
spr0356	mtlA	Mannitol PTS EII
spr0357		Conserved hypothetical protein
spr0358	mtlF	Mannitol-specific enzyme IIA component
spr0359	mtlD	Mannitol-1-phosphate 5-dehydrogenase
spr0360		Hypothetical protein
spr0389		Hypothetical protein
spr0405		Hypothetical protein
spr0416		Hypothetical protein
spr0417		Conserved hypothetical protein
spr0419		Hypothetical protein
spr0420	xyIR	Xylose repressor protein
spr0421	PTS-EII	Phosphotransterase system sugar-specific Ell component
spr0423	P15-Ell	Phosphotransierase system sugar-specific Ell component
spr0424		Phosphotopalaciosidase
spr0425	rio-eli	Phosphotransierase system sugar-specific Ell component
spr0447	hedS	Type Leite specific deexyribenuclease chain S
spr0450	hedB	Fight Type I site-specific deoxyliboliticlease chain S
spr0470	nouri	Hypothetical protein
spr0491		Hypothetical protein
spr0505	PTS-FII	Phosphotransferase system sugar-specific Ell component
spr0506	balH	6-phospho-beta-glucosidase
spr0510	- .	Hypothetical protein
spr0560		Hypothetical protein
spr0606		Hypothetical protein
spr0609	ABC-NBD-truncation	ABC transporter ATP-binding protein - unknown substrate, truncation
spr0610	ABC-NBD-truncation	ABC transporter ATP-binding protein - unknown substrate, truncation
spr0618		Hypothetical protein
spr0681		Hypothetical protein
spr0693		Conserved hypothetical protein
spr0761		Conserved hypothetical protein
spr0799		Hypothetical protein
spr0806		Hypothetical protein
spr0807		Conserved hypothetical protein
spr0851		Hypothetical protein
spr0897		Hypothetical protein
spr0910	phtE-truncation	Pneumococcal histidine triad protein E precursor, truncation
spr0933	150.055	Hypothetical protein
spr0934	ABC-SBP	ABC transporter substrate-binding protein - iron transport
spr0935	ABC-MSP	ABC transporter membrane-spanning permease - iron transport
spr0937	ARCINED	APC transporter ATP binding protein iron transport
spr0930	ABC-NBD	Abc transporter ATF-binding protein - from transport
spr0933		Hypothetical protein
spr0942	ccrB	Low similarity to site-specific recombinase
spr0961	rffD	UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase
spr0962		Conserved hypothetical protein
spr0963		Hypothetical protein
spr0964		Hypothetical protein
spr0965		Hypothetical protein
spr0966		Conserved hypothetical protein
spr0967		Conserved hypothetical protein
spr0968		Hypothetical protein
spr0969	nikS	Nikkomycin biosynthesis protein, carboxylase
spr0970		Conserved hypothetical protein
spr1056		Hypothetical protein
spr1091		Hypothetical protein
spr1184		Hypothetical protein
spr1188	cad	Cytidine deaminase
spr1190		Hypothetical protein
spr1192	appC	ABC transporter membrane-spanning permease - oligopeptide transport
spr1193	app8	ABC transporter memorane-spanning permease - oligopeptide transport
spr1 194	αμμη	Conserved hypothetical protein
spr1203	snsA-truncation	Choline hinding protein
spr1285	spn/R-truncation	Type II restriction endonuclease uncharacterized truncation
spr1286	spnIR-truncation	Type II restriction endonuclease, uncharacterized, indication
spr1292	spinit danoadon	Conserved hypothetical protein
spr1293	ABC-NBD	ABC transporter ATP-binding protein - unknown substrate
spr1294		Hypothetical protein
spr1296		Hypothetical protein
spr1345		Hypothetical protein
spr1347		Hypothetical protein
---------	--------------------	---
spr1365	atpB	Proton-translocating ATPase, F0 sector, subunit a
spr1378	ABC-MSP-truncation	ABC transporter, truncation
spr1379	ABC-MSP-truncation	ABC transporter, truncation
spr1380	ABC-MSP-truncation	ABC transporter, truncation
spr1537		Hypothetical protein
spr1549		Hypothetical protein
spr1550		Conserved hypothetical protein
spr1610		Hypothetical protein
spr1653		Hypothetical protein
spr1710	msmG	ABC transporter membrane spanning permease - multiple sugars
spr1712	msmE	ABC transporter substrate-binding protein - multiple sugars
spr1752		Hypothetical protein
spr1765		Hypothetical protein
spr1767	cyIM	CyIM protein, cytolytic toxin system
spr1768		Conserved hypothetical protein
spr1769		Hypothetical protein
spr1771	nisP	Subtilisin-like serine protease
spr1829	nadC	Probable nicotinate-nucleotide pyrophosphorylase
spr1830		Conserved hypothetical protein
spr1831		Hypothetical protein
spr1833	bgl2	Beta-glucosidase
spr1834	ptcC	Phosphotransferase system system, cellobiose-specific IIC component
spr1835	ptcB	Phosphotransferase system system, cellobiose-specific IIB component
spr1836	ptcA	Phosphotransferase system system, cellobiose-specific IIA component
spr1892		Conserved hypothetical protein
spr1893	phoP pnpR	Response regulator
spr1895	pstS	ABC transporter substrate-binding protein - phosphate transport
spr1896	pstC	ABC transporter membrane-spanning permease - phosphate transport
spr1897	pstA	ABC transporter membrane-spanning permease - phosphate transport
spr1899	phoU	Negative regulator of pho regulon for phosphate transport
spr1945	рсрА	Choline-binding protein
spr1955	arcA-truncation	Arginine deiminase, truncation
spr1956	arcA-truncation	Arginine deiminase, truncation
spr1957	arcB	Ornithine transcarbamoylase
spr1958	arcC	Carbamate kinase
spr1960		Conserved hypothetical protein

Die angegebene Gen-Nr. entspricht den annotierten "open reading frames" (ORFs) in *S. pneumoniae* TIGR4 (Tettelin *et al.*, 2001) beziehungsweise *S. pneumoniae* R6 (Hoskins *et al.*, 2001). Die angezeigten Gene sind je nach Funktion (falls bekannt) farblich in folgende Kategorien eingeteilt:

- Replikation, Rekombination und Reparatur
- Nukleotid-Transport und -Stoffwechsel
- Posttranslationale Modifikation, Protein-Umsatz, Chaperone
- Aminosäure-Transport und -Stoffwechsel
- Abwehr-Mechanismen
- Kohlenhydrat-Transport und -Stoffwechsel
- unbekannte Funktion
- Coenzym-Transport und -Stoffwechsel
- mögliche Funktion
- Transkription
- Zellwand-/Membran-Biogenese
- anorganischer Ionen-Transport und -Stoffwechsel
- Signaltransduktions-Mechanismen
- Energie-Erzeugung und -Umsatz
- Lipid-Transport und -Stoffwechsel

3.4 Vergleichende Analysen einzelner Gengruppen in Streptococcus spp.

3.4.1 Mobile und repetitive Elemente

Mobile und repetitive Elemente machen über 6 % des *S. mitis* B6- sowie über 3 % des *S. pneumoniae* R6 beziehungsweise TIGR4-Genoms aus (Denapaite *et al.*, 2010; Hoskins *et al.*, 2001; Tettelin *et al.*, 2001). Bei der vollständigen Sequenzierung des B6-Genoms in der Abteilung Mikrobiologie der TU Kaiserslautern konnten insgesamt 63 Insertionssequenzen (IS) identifiziert werden. Darunter fünf neue, noch nicht in anderen *Streptococcus*-Spezies beschriebene Elemente: ISSmi1 bis ISSmi5. ISSmi1 gehört zur IS30 Familie und liegt mit 43 Kopien in sehr großer Zahl im B6-Genom vor. Mit ISSmi1 verwandt (56 % Homologie der Transposasen auf Aminosäure-Ebene) und ebenfalls zur IS30 Familie gehörend ist ISSmi3. Die Anzahl der Kopien beträgt zwei. ISSmi2 liegt insgesamt in vier Kopien vor, wobei eine davon im Prophagen ΦB6 lokalisiert ist. Das Transposase-Gen von ISSmi2 besitzt als Besonderheit kein Stop-Codon. Die übrigen neuen IS-Elemente ISSmi4 und ISSmi5 liegen jeweils einmal im B6-Genom vor und gehören zur IS66- beziehungsweise ISL3 Familie.

Tab. 3.8 zeigt die Hybridisierungsergebnisse der 21 oralen Streptokokken-Isolate und des Referenzstammes *S. pneumoniae* R6 bezüglich der erstmals in *S. mitis* B6 beschriebenen fünf IS-Elemente.

IS-Element	B5	U-08	SV5	S658	10712	U-01	S697	SV10	M3 4	RSA4	M3 1	R6	S711	U-02	S510	RSA40	U-012	S197	U-016	U-05	S621	S476
ISSmi1																						
ISSmi2																						
ISSmi3																						
ISSmi4																						
ISSmi5																						

Tab. 3.8: Hybridisierungssignale der Teststämme hinsichtlich ISSmi1 bis 5 aus S. mitis B6

Die S. mitis -Stämme sind hellgelb, die S. oralis-Isolate hellgrün hinterlegt. S. pneumoniae R6 = orange.

signifikante Hybridisierungssignale mit dem *S. mitis* B6-Target-Oligo

keine Hybridisierung mit dem S. mitis B6-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)

□ nicht eindeutig zuzuordnende Spots

ISSmi1 ist laut Tab. 3.8 in allen untersuchten Stämmen nicht vorhanden und bleibt somit weiterhin *S. mitis* B6-spezifisch. Das Oligonukleotid für ISSmi2 hingegen hybridisierte eindeutig

mit der DNA von zwei Vertretern der Mitis-Gruppe: *S. mitis* B5 und U-O8. ISSmi3 tritt offenbar in *S. mitis* RSA4 auf und das Oligo für ISSmi4 zeigt signifikante Signale bei Hybridisierung mit der DNA von *S. mitis* U-O1 und *S. pneumoniae* R6. Letzteres wird zudem durch aktuelle BLAST-Ergebnisse bestätigt: Das ISSmi4-spezifische 70mer Oligo zeigt 90 % Homologie zur putativen Transposase E von *S. pneumoniae* R6 (spr0719). Ebenso wie ISSmi1 scheint ISSmi5 nach den durchgeführten Analysen eine Besonderheit von *S. mitis* B6 zu sein: Keiner der Teststämme weist signifikante Hybridisierungssignale mit dem ISSmi5-Target-Oligo auf und die nicht eindeutig zuzuordnenden Spots liegen eher an der Grenze zu B6-spezifisch (Daten nicht gezeigt). Generell fällt auf, dass die fünf erstmals in *S. mitis* B6 entdeckten Insertionssequenzen ausschließlich bei Vertretern der Mitis-Gruppe auftreten und in keinem der getesteten *S. oralis*-Isolate beobachtet werden konnten.

Des Weiteren wurde im Rahmen des *S. mitis* B6-Genom-Projekts ein putativ konjugatives Transposon entdeckt, das die Tetracyclin-Resistenzdeterminante *tetM* trägt (Denapaite *et al.*, 2010). Dieses Element hat eine Größe von etwa 25 kb und zeigt 99 % Homologie zu dem erstmals in *Staphylococcus aureus* Mu50 beschriebenen Transposon Tn*5801* (Kuroda *et al.*, 2001). Tn*5801* zählt zur Gruppe der integrativen und konjugativen Elemente (ICE) (Burrus *et al.*, 2002) und unterscheidet sich somit stark von traditionellen Transposons: Die Replikation und Übertragung auf andere Bakterien erfolgt demnach ähnlich wie bei Plasmiden. Das *tetM*-Gen ist in *S. pneumoniae* weit verbreitet, allerdings nicht in Verbindung mit dem oben beschriebenen Transposon. Somit handelt es sich bei *S. mitis* B6 um den bis dahin ersten *Streptococcus*-Stamm, bei dem das genannte ICE Bestandteil des Genoms ist.

In Abb. 3.16 ist die Organisation von Tn*5801* (smi_1318 bis smi_1341) dargestellt. Tab. 3.9 zeigt die entsprechenden Hybridisierungsergebnisse der untersuchten *Streptococcus*-Stämme.

Abb. 3.16: Organisation von Tn5801 in S. mitis B6. "Open reading frames" (ORFs) sind in Form von grauen Pfeilen dargestellt, die spezifische Integrationsstelle des Transposons ist grün eingezeichnet. Bei letzterer handelt es sich um eine 20 bp lange Sequenzwiederholung (AAAAGTGCAATAAAAGTGCA) am 5⁻ (*attL*) sowie am 3⁻Ende (*attR*) des Transposons. Die Gene zwischen *attL* und *attR* bilden das zirka 25 kb große ICE Tn5801. ORF 1-17 = Gene für hypothetische Proteine mit unbekannter Funktion, Reg = mögliche Transkriptionsregulatoren, TM-AS-Transporter = putativer Transmembran-Aminosäure-Tansporter, ZW-Hydrolase = putative Zellwand-Hydrolase, *tetM* = Tetracyclin-Resistenzgen, *pnpA* = putative Polyribonukleotid-Nukleotidyltransferase, Rec = "site-specific" Rekombinase, *guaA* = GMP-Synthase.

ICE Tn <i>5801</i> *	B5	U-08	SV5	S658	10712	U-01	S697	SV10	M3 4	RSA4	M3 1	R6	S711	U-02	S510	RSA40	U-012	S197	U-016	U-05	S621	S476
OBE 2						1																
ORF 3						1																
ORF 4																						
ORE 5						1																
ORF 6																						
ORF 7																						
Reg																						
ORF 8																						
ORF 9																						
ORF 10																						
ORF 11																						
ORF 12																						
ATP/GTP-																						
Bindeprotein																						
TM-AS-																				1		
Transporter				-																		
ZW- Hydrolase																						
OBE 13																						
tetM																						
ORF 14																						
Rea																						
ORF 15																						
ORF 16																						
pnpA																						
ORF 17																						
Rec																						

Tab. 3.9: Hybridisierungssignale der Teststämme im Bezug auf Tn 5801 aus S. mitis B6

*Die Bezeichnung der einzelnen ORFs von Tn*5801* entspricht der aus Abb. 3.16: ORF 2-17 = Gene für hypothetische Proteine mit unbekannter Funktion, Reg = mögliche Transkriptionsregulatoren, TM-AS-Transporter = putativer Transmembran-Aminosäure-Tansporter, ZW-Hydrolase = putative Zellwand-Hydrolase, *tetM* = Tetracyclin-Resistenzgen, *pnpA* = putative Polyribonukleotid-Nukleotidyltransferase, Rec = "site-specific" Rekombinase. Die *S. mitis*-Stämme sind hellgelb, die *S. oralis*-Isolate hellgrün hinterlegt. *S. pneumoniae* R6 = orange.

signifikante Hybridisierungssignale mit dem S. mitis B6-Target-Oligo

keine Hybridisierung mit dem S. mitis B6-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)

□ nicht eindeutig zuzuordnende Spots

Wie Tab. 3.9 zu entnehmen ist, besitzt *S. mitis* B5 als einziger von allen untersuchten Isolaten große Teile des Transposons Tn*5801*. Lediglich zwei Gene am 5´-Ende von Tn*5801* (ORF 2 und 3) und das erste Gen downstream von *tetM* (ORF 14) weisen keine Homologien zu *S. mitis* B6 auf. Diesbezügliche Untersuchungen im Rahmen einer Diplomarbeit ergaben, dass sich anstelle von ORF 2 und 3 zwei weitere mobile Elemente (ISS-Sa2; IS3-Spn1) sowie eine Pepti-

dase der U32-Familie in *S. mitis* B5 befinden (Rumm, 2009; Daten unveröffentlicht). Der neu entdeckte Bereich in *S. mitis* B5 hat eine Länge von etwa 3 kb und ist somit etwas kleiner als ORF 2 und ORF 3, welche zusammen 3981 bp in *S. mitis* B6 ausmachen. Nähere Informationen über die Unterschiede der beiden Stämme hinsichtlich des Gens downstream von *tetM* (ORF 14) liegen bislang nicht vor.

Neben *S. mitis* B5 hybridisierten weitere zehn Stämme mit dem *tetM*-spezifischen 70mer Oligonukleotid: *S. mitis* SV5, S658, U-O1, S697, SV10 sowie *S. oralis* U-O2, RSA40, S197, U-O16, U-O5. Zudem fällt auf, dass diese neben *tetM* ebenfalls signifikante Hybridisierungssignale bezüglich des ATP/GTP-Bindeprotein-Oligonukleotids aufwiesen. Von allen mit Ausnahme von vier Stämmen (*S. mitis* S658, S697 und *S. oralis* RSA40, U-O16) wurden bereits in früheren Studien Tetracyclin-Resistenzprofile erstellt, welche die durchgeführten Microarray-Analysen bestätigen: Die genannten Isolate sind eindeutig Tetracyclin-resistent (Reichmann *et al.*, 1997; Bergmann, 2003; Scheller, 2005). *tetM* ist bei Pneumokokken häufig auf konjugativen Transposons der Tn*916* – Tn*1545* Familie (Clewell *et al.*, 1995) beziehungsweise auf Plasmiden lokalisiert. Dies trifft wahrscheinlich auf alle in dieser Arbeit als Tetracyclin-resistent identifizierten Streptokokken – bis auf *S. mitis* B5 – zu. Bei letzterem handelt es sich zusammen mit *S. mitis* B6 um einen der ersten bekannten *Streptococcus*-Stämme, bei dem *tetM* in Verbindung mit Tn*5801* verbreitet wurde.

Repetitive Elemente wie BOX und RUP (<u>repeat unit of pneumococcus</u>) wurden erstmals in *S. pneumoniae* in den 90er Jahren nachgewiesen (Martin *et al.*, 1992; Claverys & Martin, 1998; Oggioni & Claverys, 1999). Die Rolle dieser Elemente ist bislang nicht geklärt. BOX-Elemente setzen sich aus einer variablen Anzahl der drei Untereinheiten boxA (59 bp), boxB (45 bp) und boxC (50bp) zusammen. Im Gegensatz dazu besteht RUP lediglich aus einer 107 bp-Einheit und wird anhand der Sequenz in vier verschiedene Subtypen (RUPA, RUPB1, RUPB2 und RUPC) eingeteilt. Möglicherweise handelt es sich bei RUP um ein IS-Derivat, dessen Transaktivierung durch die IS630-Spn1-Transposase vermittelt wird (Oggioni & Claverys, 1999). Sowohl den BOX- als auch den RUP-Sequenzen wird vorausgesagt, stabile Stammschleifen-Strukturen auszubilden. Da die Elemente meist in intergenen Bereichen lokalisiert sind, wird diesen Sekundär-Strukturen eine potenzielle regulatorische Funktion bezüglich der Expression von Nachbargenen zugesagt. *S. mitis* B6 besitzt insgesamt 103 BOX- und drei RUP-Elemente. Tab. 3.10 zeigt die Hybridisierungsergebnisse der 21 oralen Streptokokken-Isolate und des Referenzstammes *S. pneumoniae* R6 bezüglich der BOX- und RUP-Elemente aus *S. mitis* B6.

repetitives Element	B5	U-08	SV5	S658	10712	U-01	S697	SV10	M3 4	RSA4	M3 1	RG	S711	U-02	S510	RSA40	U-012	S197	U-016	U-05	S621	S476
boxAB																						
boxBC																						
rup1																						
rup2																						
rup3																						

Tab. 3.10: Hybridisierungssignale der Teststämme hinsichtlich der BOX- und RUP-Elemente aus *S. mitis* B6

boxAB und boxBC stehen für die drei BOX-Untereinheiten boxA, B und C. rup1, rup2 und rup3 entsprechen den RUP-Subtypen RUPA, B und C. Die *S. mitis*-Stämme sind hellgelb, die *S. oralis*-Isolate hellgrün hinterlegt. *S. pneumoniae* R6 = orange.

signifikante Hybridisierungssignale mit dem S. mitis B6-Target-Oligo

keine Hybridisierung mit dem S. mitis B6-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)

nicht eindeutig zuzuordnende Spots

Laut Tab. 3.10 besitzen alle untersuchten Vertreter der *S. mitis*-Gruppe sowie *S. pneumoniae* R6 zu *S. mitis* B6 homologe BOX-Elemente. Wie in den meisten Fällen bestehen diese aus den drei Modulen boxA, boxB und boxC, worauf die positiven Hybridisierungssignale sowohl bei boxAB als auch bei boxBC hinweisen. Von zehn getesteten *S. oralis*-Stämmen weisen sechs Isolate (U-O2, RSA40, U-O12, S197, U-O16, S476) signifikante Hybridisierungssignale für box-AB auf und wiederum drei davon zusätzlich positive Signale für boxBC (U-O2, RSA40, U-O16). RUP-DNA liegt – im Gegensatz zu den BOX-Elementen – lediglich in sechs *S. mitis*-Stämmen vor: B5 enthält RUP-Elemente vom Subtyp C (rup3), während U-O8, S658 und RSA4 RUP-DNA vom Subtyp A (rup1) besitzen. *S. mitis* S658 zeigt zusätzlich noch signifikante Hybridisierungs-signale für RUP vom Subtyp B (rup2), genau wie *S. mitis* 10712 und U-O1.

Bei allen untersuchten *S. oralis*-Stämmen sowie bei *S. pneumoniae* R6 konnten keine zu *S. mitis* B6 homologen RUP-Elemente gefunden werden.

3.4.2 Der Prophage ΦB6 und Phagen-verwandte Gen-Cluster

Im Rahmen der vollständigen Genom-Sequenzierung von *S. mitis* B6 stellte sich heraus, dass dieser Stamm von einem 44 kb großen, temperenten Bakteriophagen infiziert wurde (Denapaite *et al.*, 2010). Die Phagen-Partikel weisen eine *Myoviridae*-Morphologie auf (Romero *et al.*, 2004), das heißt sie besitzen ikosaedrische Kapside sowie kontraktile Schwanzteile. Interessanterweise handelt es sich bei dem neu entdeckten Prophagen namens ΦB6, neben dem Phagen EJ-1 aus *S. pneumoniae* (Díaz *et al.*, 1992), um den bislang einzigen in Streptokokken beschriebenen Myovirus.

Die Integrationsstelle von ΦB6 befindet sich im *ssbB*-Gen von *S. mitis* B6, welches für das Einzelstrang-Bindeprotein SsbB kodiert. Dies führt im *S. mitis* B6-Genom zu einer Unterbrechung von *ssbB* am 5´-Ende und könnte möglicherweise eine Erklärung für die fehlende Transformierbarkeit des Stammes sein.

Genom-Vergleiche der 22 *Streptococcus*-Spezies mit dem Genom von *S. mitis* B6 ergaben, dass zwei der Isolate (*S. mitis* RSA4 und *S. mitis* U-O8) zum Prophagen ΦB6 verwandte Gene besitzen. Tab. 3.11 zeigt die Hybridisierungsresultate dieser beiden Stämme hinsichtlich ΦB6 (smi_0407 bis smi_0479). ORFs mit bekannter Funktion sind farblich in die für temperente Phagen charakteristischen Einheiten für Lysogenie, DNA-Replikation, DNA-Verpackung, anschließende Morphogenese und Lyse der Wirtszelle eingeteilt. Der Farbcode-Schlüssel befindet sich am Ende der Tabelle.

98 Ф	Gen	Gen-Produkt	S. mitis RSA4	S. mitis U-O8
smi_0407	int	integrase		
smi_0408		conserved hypothetical protein		
smi_0409		putative repressor		
smi_0410		conserved hypothetical protein		
smi_0411	gp37	phage protein		
smi_0412		conserved hypothetical protein		
smi_0413		hypothetical protein		
smi_0414		hypothetical protein		
smi_0415		conserved hypothetical protein		
smi_0416		hypothetical protein		
smi_0417		conserved hypothetical protein		
smi_0418		hypothetical protein		
smi_0419		conserved hypothetical protein		
smi_0420		conserved hypothetical protein		

Tab. 3.11: Hybridisierungssignale von S. mitis RSA4 und S. mitis U-O8 im Bezug auf ΦB6

smi 0421		ATPase involved in DNA replication initiation		
smi 0422		putative helicase		
smi 0423		conserved hypothetical protein		
smi 0424		bifunctional DNA primase/polymerase		
 smi_0425		putative ATPase		
smi 0426		conserved hypothetical protein		
smi 0427		conserved hypothetical protein		
smi 0428		hypothetical protein		
smi 0429		conserved hypothetical protein	-	
smi 0430	Pi3	prophage Pi3 protein		
smi 0431		conserved hypothetical protein		
smi 0432		conserved hypothetical protein		
smi 0433		conserved hypothetical protein		
smi 0434		type II DNA modification methyltransferase		
smi 0435		DNA-binding protein		
smi 0436		hypothetical protein		
smi 0437		conserved hypothetical protein		
smi 0438		transcriptional regulator		
smi 0439		transcriptional regulator AbrB family		
smi_0440		conserved hypothetical protein		
smi_0441	tRNA-Tvr-2	tBNA-Tvr		
smi 0442		small terminase		<u> </u>
smi 0443		terminase large subunit		
smi_0444		nutative Ser protein kinase		
smi_0445		NAD ⁺ -asparagine ADP-ribosyltransferase		
smi_0446		hypothetical protein		
smi_0447		conserved hypothetical protein		
smi_0448		conserved hypothetical protein		
smi_0440		conserved hypothetical protein		
smi_0440		hypothetical protein		
smi_0450		nypolitelical protein		
smi_0452		main cansid protein Gn31-like protein		
smi_0453		hypothetical protein		
smi_0454		hypothetical protein		
smi_0455		hypothetical protein		
smi_0456	Pi2	prophage pi2 protein		
smi_0457	1 12	hypothetical protein		
smi_0458		hypothetical protein		
smi_0450		sheath tail protein		
smi_0460		core tail protein		
smi_0461		conserved hypothetical protein		
smi_0462		tail length tane measure protein		
smi_0463		uncharacterized protein containing LysM domain		
smi_0464		conserved hypothetical protein		
smi_0465		hypothetical protein		
smi_0405		hypothetical protein		
smi_0400		uncharacterized homolog of phage Mu protein cp47		
smi_0407		hypothetical protein		
emi 0/60		tail fibor protoin		
smi_0409				
smi_0471		hypothetical protein		
smi_0471		consorved hypothetical protein		
3111_0472				

smi_0473		conserved hypothetical protein	
smi_0474		conserved hypothetical protein	
smi_0475		conserved hypothetical protein	
smi_0476		hypothetical protein	
smi_0477		antiholin	
smi_0478	lytA	N-acetylmuramoyl-L-alanine amidase LytA	
smi_0479	tnpB	transposase, ISSmi2	

Die angegebene Gen-Nr. entspricht den annotierten ORFs in S. mitis B6 (Denapaite et al., 2010).

Farbcode-Schlüssel bzgl. der Hybridisierungssignale von S. mitis RSA4 und S. mitis U-O8:

- signifikante Hybridisierungssignale mit dem *S. mitis* B6-Target-Oligo
- keine Hybridisierung mit dem S. mitis B6-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)

nicht eindeutig zuzuordnende Spots

Farbcode-Schlüssel des ΦB6-Genoms (smi_0407 bis smi_0479):

- Lysogenie
- Replikation
- transkriptionelle Regulatoren
- Tyrosin-spezifische tRNA
- Verpackung
- Morphogenese
- Lyse
- IS-Element ISSmi2
- D ORFs mit unbekannter Funktion

Wie Tab. 3.11 zu entnehmen ist, kodiert die ΦB6-DNA für insgesamt 71 Proteine. Darunter befinden sich das Autolysin LytA (smi_0478) sowie das bereits unter 3.4.1 beschriebene IS-Element ISSmi2 (smi_0479). Des Weiteren existiert ein Gen, welches für eine Tyrosinspezifische tRNA kodiert (smi_0441). Diese könnte möglicherweise positive Auswirkungen auf die Translationseffizienz von *S. mitis* B6 haben.

S. mitis RSA4 weist im Vergleich zu *S. mitis* U-O8 weit über doppelt so viele signifikante Hybridisierungssignale im Bezug auf die ΦB6-Phagenregion auf: Zahlreiche Homologien sind speziell bei den Genen für die DNA-Verpackung (smi_0442, smi_0443) und Morphogenese der Phagenpartikel (smi_0451 bis smi_0470) zu beobachten. *S. mitis* U-O8 hingegen zeigt Homologien zu den die DNA-Replikation betreffenden Genen (smi_0434, smi_0435). Beiden Stämmen gemeinsam sind die positiven Signale für ein Phagen-Strukturprotein (smi_0470) und die in die Bakterienzelllyse involvierten Proteine Antiholin (smi_0477) und LytA (smi_0478).

Mit *S. mitis* RSA4 wurde im Rahmen dieser Arbeit ein weiterer Mitis-Stamm identifiziert, der von einem temperenten Phagen infiziert wurde. Bereits aus früheren Studien ist bekannt, dass *S. mitis* U-O8 einen temperenten Phagen beherbergt. Dieser wurde von Romero *et al.* 2004 – ebenso wie Φ B6 – isoliert, vorläufig charakterisiert und mit dem Namen Φ HER betitelt. Die Virionen sind vom *Siphoviridae*-Typ, das heißt sie setzen sich aus einem Kopf- und einem flexiblen

Schwanzteil zusammen. Die anhand der Microarrays gemachten Beobachtungen bestätigen die Ergebnisse von Romero *et al.*: die Strukturproteine von *S. mitis* B6 und *S. mitis* U-O8 unterscheiden sich stark voneinander, sodass bei den für die Morphogenese relevanten Genen keine positiven Hybridisierungssignale zu sehen sind. Im Gegensatz dazu sind sich die *lytA*-Gene von *S. mitis* B6 und *S. mitis* U-O8 mit einer Nukleotid-Identität von 87 % sehr ähnlich, was auch bei den Hybridisierungsresultaten sichtbar wird. Das Gleiche gilt für das Antiholin-Gen: Bis auf eine interne 169 bp-Deletion sind beide Gene sehr homolog zueinander, was die Microarray-Ergebnisse bestätigen.

Neben dem Prophagen Φ B6 liegen im Genom von *S. mitis* B6 weitere sieben Phagenverwandte Gen-Cluster vor (Denapaite *et al.*, 2010). Zusammen mit Φ B6 machen sie über 4 % des *S. mitis* B6-Genoms aus. Sie zeigen Homolgien zu bestimmten Pneumophagen wie zum Beispiel *S. pneumoniae* EJ-1 (Díaz *et al.*, 1992) oder Phagen-Überbleibseln aus *S. pneumoniae* Hu19A-6 und *S. pneumoniae* 70585. Fünf der sieben Cluster sind mit Genen assoziiert, die für intakte beziehungsweise degenerierte Integrasen und Rekombinasen kodieren. Keines der Phagen-Cluster ist mit vermutlichen Virulenzgenen assoziiert, wie es bei *Staphylococcus aureus* beschrieben ist (Baba *et al.*, 2008).

Tab. 3.12 gibt einen Überblick über die Hybridisierungssignale der 21 oralen Streptokokken-Isolate sowie des Referenzstammes *S. pneumoniae* R6 hinsichtlich der sieben Phagenverwandten Gen-Cluster aus *S. mitis* B6.

Phagen-verwandte Gen-Cluster	B5	N-08	SV5	S658	10712	U-01	S697	SV10	<mark>M3</mark> 4	RSA4	<mark>M3</mark> 1	R6	S711	U-02	S510	RSA40	U-012	S197	U-016	U-05	S621	S476
0096																						
0097																						
0098																						
0099																						

Tab. 3.12: Hybridisierungssignale der Teststämme bezüglich der Phagen-verwandten Gen-Cluster aus *S. mitis* B6

0100												
0177												
0178												
0179												
0180												
0181												
0182												
0183					 	 	 	 				
0184						 						
0185												
0105		 			 	 	 	 				
0100												
0107						 						
0100												
0189												
0190	 	 	 		 	 	 	 	 	 		
0191	 				 	 	 	 				
1260						 						
1261												
1262												
1263												
1366												
1367												
1368												
1369												
1370												
1371												
1272												
15/2	 	 		 	 	 		 	 	 		
1505												
1506		 		 		 	 	 	 	 		
1781						 						
1782						 						
1783						 	 					
1784												
1785												
1786												
1787												
1788												
1789												
1790												
1791												
1792												
1793												
1794												
1795												
2000												
2000												
2001												
2002												
2003						 						
2004												
2005												
2006												
2007												

2008											
2009											
2010											
2011											
2012											
2013											
2014											
2015											
2016											
2017											

Die sieben Phagen-verwandten Gen-Cluster sind abwechselnd grau und weiß hinterlegt. Die angegebene Zahl entspricht den annotierten ORFs in *S. mitis* B6 (Denapaite *et al.*, 2010). Die *S. mitis*-Stämme sind hellgelb, die *S. oralis*-Isolate hellgrün hinterlegt. *S. pneumoniae* R6 = orange.

- signifikante Hybridisierungssignale mit dem S. mitis B6-Target-Oligo
- keine Hybridisierung mit dem S. mitis B6-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)
- nicht eindeutig zuzuordnende Spots

S. mitis RSA4 scheint, ebenso wie *S. mitis* B6, das erste Phagen-verwandte Gen-Cluster vollständig zu besitzen: smi_0096 bis smi_0100 zeigen bei Hybridisierung mit *S. mitis* RSA4-DNA eindeutig signifikante Hybridisierungssignale (Tab. 3.12). Weitere Isolate, die Relikte dieses Phagen-Clusters beinhalten, sind die Mitis-Stämme U-O1, SV5, S658, 10712, S697 und U-O8.

Im Falle der zweiten Gen-Gruppe (smi_ 0177 bis smi_0191) weist von allen untersuchten Teststämmen lediglich *S. mitis* SV10 in elf von 15 ORFs positive Hybridisierungssignale auf. Auch Überbleibsel des dritten Clusters (smi_1260 bis smi_1263) scheinen in diesem Stamm vorhanden zu sein, während *S. mitis* U-O1 zu allen dieser vier genannten Gene Homologien zeigt.

Gen-Cluster Nummer vier (smi_ 1366 bis smi_1372) tritt neben *S. mitis* B6 vermutlich vollständig in *S. mitis* B5 sowie *S. mitis* U-O8 auf. Des Weiteren hybridisieren die entsprechenden Oligos teilweise mit *S. mitis* SV5-, *S. mitis* U-O1- und *S. oralis* S711-DNA.

Smi_1505 und smi_1506 weisen positive Signale bei Hybridisierung mit *S. mitis* B5 und *S. oralis* U-O16 auf.

Die Gene zu Beginn des sechsten Phagen-verwandten Clusters (smi_1781 bis smi_1795) sind anscheinend in *S. mitis* U-O8, B5 und SV5 vorhanden. Einzelne positive Signale treten bei *S. mitis* 10712, *S. mitis* RSA4 sowie *S. oralis* U-O2, U-O16 und U-O5 auf.

Große homologe Bereiche zu der letzten Phagen-relevanten Gen-Gruppe aus *S. mitis* B6 (smi_ 2000 bis smi_2017) liegen in den Mitis-Isolaten B5 und SV10 sowie in den Oralis-Stämmen S510, U-O12 und U-O8 vor. Vereinzelt zeigen auch Isolate wie *S. mitis* S658, 10712, U-O1, M3 4, RSA4 und M3 1 sowie *S. oralis* U-O2 und S197 signifikante Signale für diese Region. Zusammenfassend lässt sich sagen, dass die Stämme *S. mitis* B5, U-O8, U-O1, SV10 und RSA4 sowie *S. oralis* S510 und U-O12 in mindestens einem der sieben Fälle größere, zu den Phagen-Clustern verwandte Bereiche aufweisen. Zudem scheinen von den untersuchten *Streptococcus*-Stämmen vorwiegend die Mitis-Isolate Phagen-Reste in ihr Genom integriert zu haben. *S. pneumoniae* R6 besitzt keinerlei Homologien zu den beschriebenen Phagen-verwandten Regionen aus *S. mitis* B6, was neben den durchgeführten Microarray-Experimenten auch durch BLAST-Ergebnisse bestätigt wurde.

3.4.3 Antibiotika-Resistenzgene

Wie mehrfach erwähnt, handelt es sich bei S. mitis B6 um ein hoch β-Laktam- und multipel Antibiotika-resistentes Isolat. Neben dem bereits unter 3.4.1 besprochenen putativen Transposon Tn5801, welches die Tetracyclin-Resistenzdeterminante tetM trägt, besitzt der B6-Stamm eine Reihe von Aminoglykosid-Resistenzgenen. Im Rahmen der vollständigen Aufklärung des S. mitis B6-Genoms wurde ein 25 kb großes Gen-Cluster gefunden, welches vier Aminoglykosid-Resistenzdeterminanten beinhaltet (Denapaite et al., 2010). Darunter befindet sich ein Gen für das bifunktionale Enzym AacA-AphD, das normalerweise in Tn4001-ähnlichen Elementen in Genomen beziehungsweise Plasmiden von Gram-positiven Kokken auftritt (Culebras & Martínez, 1999). AcaA-AphD weist eine Aminoglykosid-Acetyltransferase und Phosphotransferase-Aktivität auf. Zudem liegen in dessen Nachbarschaft die drei Gene aphA, sat und aadE, welche für eine Aminoglykosid-3'-Phosphotransferase, eine Streptothricin-Acetyltransferase sowie eine Aminoglykosid-6-Adenyltransferase kodieren. aphA, sat und aadE findet man häufig in Verbindung mit dem Transposon Tn 5405 und dem Plasmid pJH1 in Staphylokokken und Enterokokken (Derbise et al., 1996; Werner et al., 2001). Diese vier in die Aminoglykosid-Resistenz involvierten Gene werden von etlichen Clostridien-Homologen flankiert. Zudem existieren angrenzende Regionen, die homolog zu Bacillus cereus, Streptococcus salivarius und Abiotrophia defectiva sind.

In Abb. 3.17 ist die genetische Organisation des Aminoglykosid-Resistenz-Clusters (smi_1690 bis smi_1719) schematisch dargestellt. Tab. 3.13 zeigt analog dazu die Hybridisierungsergebnisse der untersuchten *Streptococcus*-Stämme.

Abb. 3.17: Genetische Organisation des Aminoglykosid-Resistenz-Clusters von *S. mitis* B6 (aus Denapaite *et al.*, 2010). Der 25 kb große DNA-Doppelstrang ist in Form eines hellgrauen Balkens dargestellt. ORFs sind als waagerechte Pfeile eingezeichnet. Die das Cluster flankierenden Gene *serS* und *shetA* kodieren für eine Seryl-tRNA-Synthetase beziehungsweise ToxinA. Pfeile innerhalb des Clusters: grün = die in die Aminoglykosid-Resistenz involvierten Gene *aacA-aphD*, *aphA*, *sat* und *aadE*; schwarz = IS-Elemente und Rekombinasen; schraffiert = *S. mitis* B6-spezifische hypothetische Gene. Die unteren dicken schwarzen Linien markieren Regionen, die zu Genen der angegebenen Spezies homolog sind. Die roten Pfeile links und rechts stehen für repetitive Sequenzen (boxA und boxAC). Nähere Erläuterungen im Text.

AG-Resistenz-Cluster*	B5	U-O8	SV5	S658	10712	U-01	S697	SV10	M3 4	RSA4	M3 1	RG	S711	U-O2	S510	RSA40	U-012	S197	U-O16	U-05	S621	S476
serS																						
1690																						
1691																						
1692																						
1693																						
1694																						
1695																						
1696																						
1697																						
1698																						
1699																						
1700																						
1701																						
1702																						
1703																						
aacA- aphD																						
1705																						
1706																						

Tab. 3.13: Hybridisierungssignale der Teststämme im Bezug auf das Aminoglykosid-Resistenz-Cluster aus *S. mitis* B6

1707											
aphA											
sat											
aadE											
1711											
1712											
1713											
1714											
1715											
1717											
1718											
1719											
shetA											

*Die Bezeichnung und farbliche Markierung der ORFs entspricht der in Abb. 3.17: die flankierenden Gene *serS* und *shetA* des in grau dargestellten AG-(Aminoglykosid) Resistenzclusters (smi_1690 bis smi_1719) sind weiß hinterlegt. Schwarz markiert: IS-Elemente und Rekombinasen; grün hervorgehoben: *aacA-aphD*, *aphA*, *sat* und *aadE*. Die angegebenen Zahlen entsprechen der Gen-Nr. der annotierten ORFs in *S. mitis* B6 (Denapaite *et al.*, 2010). Die *S. mitis*-Stämme sind hellgelb, die *S. oralis*-Isolate hellgrün hinterlegt. *S. pneumoniae* R6 = orange.

signifikante Hybridisierungssignale mit dem *S. mitis* B6-Target-Oligo

keine Hybridisierung mit dem *S. mitis* B6-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)

nicht eindeutig zuzuordnende Spots

Die drei Aminoglykosid-Resistenzgene *aphA*, *sat* und *aadE* wurden bereits 2007 von Cerdá *et al.* in viridans Streptokokken identifiziert. Laut früheren Studien sind die Isolate *S. mitis* SV5 und SV10 sowie *S. oralis* S197, S711 und U-O5 Streptomycin-resistent (Bergmann, 2003; Scheller 2005). Jedoch besitzt keiner der untersuchten *Streptococcus*-Spezies Homolgien zu den drei Genen (Tab. 3.13). Das Gleiche gilt für *aacA-aphD*: Auch hier weist keiner der Teststämme signifikante Hybridisierungssignale hinsichtlich dieser Resistenzdeterminante auf. Im Gegensatz dazu sind die flankierenden Gene *serS* und *shetA* bei allen getesteten *S. pneumoniae-*, *S. mitis*-und *S. oralis*-Vertretern konserviert. Des Weiteren treten vereinzelt innerhalb des Resistenz-Clusters positive Signale für IS-Elemente, Rekombinasen und hypothetische Proteine auf.

Neben dem beschriebenen 25 kb-Cluster enthält *S. mitis* B6 zwei weitere putative Aminoglykosid-Modifikationsenzyme: eine Aminoglykosid-6´-N-Acetyltransferase (smi_1111) und eine verkürzte Streptomycin-Adenyltransferase (smi_0904). Das Oligonukleotid smi_1111 hybridisiert signifikant mit der *S. oralis* S197-DNA, während smi_0904 eindeutig an die *S. oralis* S711-DNA bindet (Daten nicht gezeigt). Das bedeutet, dass die genannten modifizierenden Enzyme unter anderem für die Aminoglykosid-Resistenz der beiden Stämme verantwortlich sind. Die übrigen als resistent beschriebenen Isolate tragen vermutlich andere Aminoglykosid-Resistenzdeterminanten in ihrem Genom. β-Laktam-Resistenz wird in Streptokokken durch Modifikationen in den Targetenzymen der β-Laktamantibiotika, den Penicillin-Bindeproteinen (PBP), hervorgerufen. Untersuchungen haben gezeigt, dass alle fünf hochmolekularen PBP von *S. mitis* B6 als niedrig-affine Varianten vorkommen (Hakenbeck *et al.*, 1998). Aktuelle Sequenzanalysen ergaben jedoch, dass das B6-PBP1b innerhalb der Penicillin-Binde-Domäne an Position 567 ein Stopcodon enthält und somit nicht vollständig translatiert wird (Denapaite *et al.*, 2010). Dies erklärt die Tatsache, dass PBP1b in den vorherigen Studien (Hakenbeck *et al.*;1998) laut SDS-Gel als nieder-affin eingestuft wurde. Eine weitere Modifikation liegt bei PBP2a aus *S. mitis* B6 vor: Der C-Terminus ist um zwei Aminosäuren verlängert, da sich am 3'-Ende von *pbp2a* das unter 3.4.1 beschriebene IS-Element ISSmi1 integriert hat.

Bei Vergleich mit den entsprechenden *pbp*-Genen Penicillin-sensitiver *S. pneumoniae*-Isolate unterscheiden sich *S. mitis* B6 *pbp2a* und *pbp3* lediglich zu 2 bis 10 % auf Nukleotid-Ebene von diesen. Die Gene *pbp1a* und *pbp2b* hingegen besitzen eine Mosaik-Struktur: Der Unterschied zur *pbp*-Nukleotid-Sequenz sensitiver Pneumokokken beträgt 3 bis 29 %. Das Gleiche gilt für *pbp1b* und *pbp2x*: auch hier liegen Mosaik-Strukturen vor. Die Blöcke weisen 19 bis 25 % Unterschied zur vergleichbaren sensitiven *S. pneumoniae*-Sequenz auf.

pbp2x von *S. mitis* B6 gehört zu einer Hauptfamilie von Mosaik-*pbp2x*, die in *Streptococcus* spp. beschrieben wurde (Chi *et al.*, 2007). Es handelt sich hierbei um einen Mosaikblock, der sequenzähnlich ist zu homologen Bereichen des *pbp2x*-Gens des sensitiven *S. mitis* M3 und sich in etwa 20 % von der entsprechenden *S. pneumoniae* R6-Sequenz unterscheidet (Sibold *et al.*, 1994). Inzwischen wurden Sequenzen mit erstaunlich großer Ähnlichkeit zu dieser M3-Sequenz in vielen, auch genetisch unterschiedlichen resistenten *S. pneumoniae* sowie *S. mitis* B6. Die Hybridisierungsresultate der 21 oralen Streptokokken-Isolate sowie des Referenzstammes *S. pneumoniae* R6 hinsichtlich der PBP sind in Tab. 3.14 aufgeführt.

РВР	B5	U-08	SV5	S658	10712	U-01	S697	SV10	M3 4	RSA4	M3 1	R6	S711	U-02	S510	RSA40	U-012	S197	U-016	U-05	S621	S476
pbp1a																						
pbp1b																						
pbp2x																						
pbp2a																						
pbp2b																						
pbp3*																						

Tab. 3.14: Hybridisierungssignale der Teststämme bezüglich der sechs PBP aus S. mitis B6

*niedermolekulares Penicillin-Bindeprotein (PBP). Die *S. mitis*-Stämme sind hellgelb, die *S. oralis*-Isolate hellgrün hinterlegt. *S. pneumoniae* R6 = orange.

signifikante Hybridisierungssignale mit dem S. mitis B6-Target-Oligo

keine Hybridisierung mit dem *S. mitis* B6-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)

nicht eindeutig zuzuordnende Spots

Die Hybridisierungssignale des sensitiven Vergleichsstamm *S. pneumoniae* R6 spiegeln das oben beschriebene wider: Aufgrund der großen Homologie der *pbp2a*- und *pbp3*-Gene von R6 und *S. mitis* B6 ist in diesen beiden Fällen in Tab. 3.14 ein positives Signal zu sehen. Die übrigen vier PBP unterscheiden sich stark voneinander, sodass keine Bindung der R6-DNA an das entsprechende *S. mitis* B6-Target-Oligo erfolgt.

15 der 21 oralen *Streptococcus*-Isolate zeigen große Ähnlichkeit zu *pbp2x* von *S. mitis* B6 (Tab. 3.14). Das weist darauf hin, dass das *pbp2x*-Gen dieser Stämme zur oben erläuterten Mosaik-*pbp2x*-Hauptfamilie gehört. Die *pbp2x*-Sequenzen von elf dieser 15 Stämme wurden bereits in früheren Studien analysiert und bestätigen das Ergebnis der DNA-Microarray-Experimente (Chi *et al.*, 2007).

S. mitis B5 scheint hinsichtlich all seiner PBP sehr homolog zu *S. mitis* B6 zu sein, gefolgt von den Stämmen *S. mitis* U-O8, U-O1 und S697, die mit mindestens fünf B6-Target-Oligos hybridisieren. Die geringste Ähnlichkeit innerhalb des Mitis-Zweiges weisen die sensitiven Stämme S658 und 10712 auf. Generell besitzen die Vertreter der Mitis-Gruppe mehr Homologien zu den B6-PBP als die Mitglieder der Oralis-Gruppe. Bei letzterer treten ausschließlich signifikante Hybridisierungssignale bei *pbp2x* sowie *pbp2b* auf.

3.4.4 Cholin-Bindeproteine

Bei Cholin-Bindeproteinen (CBP) handelt es sich um Oberflächenproteine, die eine wichtige Rolle bei der Virulenz von S. pneumoniae und der Interaktion mit der Wirtszelle spielen (Cundell et al., 1995). CBP wurden ebenfalls in kommensalen Streptokokken wie S. mitis und S. oralis gefunden (Ronda et al., 1991; Moscoso et al., 2005; Hakenbeck et al., 2009; Denapaite et al., 2010). Ein Vertreter dieser Kommensalen ist S. mitis B6, welcher mit 22 CBP, im Vergleich zu S. pneumoniae R6 (12 CBP) beziehungsweise TIGR4 (14 CBP), eine erstaunlich hohe Zahl an CBP besitzt (Denapaite et al., 2010). Darunter befinden sich Homologe zu den fünf in die Murein-Hydrolyse und Tochterzellteilung von S. pneumoniae involvierten CBP LytA (ФВ6assoziiert), LytB, LytC, LytD1 und CbpD. Letzteres ist speziell essenziell für die Kompetenzinduzierte Zelllyse in S. pneumoniae (Kausmally et al., 2005). LytA verursacht in den meisten kompetenten S. pneumoniae-Zellen die Lyse von nicht-kompetenten Zellen (Allolyse) und sorgt dabei für die Freisetzung des Virulenzfaktors Pneumolysin (Guiral et al., 2005). Zudem existieren Cbp12 und Cbp13 mit einer putativen Endo-β-N-Acetylglucosaminidase-Domäne sowie ein CbpF-Homolog, welches in S. pneumoniae die LytC-Aktivität nachweislich in vivo und in vitro hemmen kann (Molina et al., 2009). Den übrigen S. mitis B6-CBP konnte bislang keine eindeutige Funktion zugeordnet werden. Die pathogentitätsrelevanten S. pneumoniae-CBP PspA, PspC und PcpA fehlen in S. mitis B6.

In Tab. 3.15 und Tab. 3.16 sind die Hybridisierungssignale der untersuchten *Streptococcus*-Spezies im Bezug auf die CBP aus *S. mitis* B6 beziehungsweise *S. pneumoniae* dargestellt. Anzumerken ist, dass die Oligonukleotide so gewählt wurden, dass sie spezifisch für die variablen Regionen der *cbp*-Gene sind und nicht in den repetitiven Sequenzen liegen, die für die Cholin-Bindedomäne kodiert.

СВР	B5	U-08	SV5	S658	10712	U-01	S697	SV10	M3 4	RSA4	M3 1	RG	S711	U-02	S510	RSA40	U-012	S197	U-016	U-05	S621	S476
cbp1																						
cbp2																						
cbp3																						
cbp4																						
cbpl																						
cbp5																						
lytA*																						
cbp6																						
cbp7																						
lytD2																						
lytD1																						
lytB																						
cbp8																						
cbp9																						
cbp10																						
cbp11																						
lytC																						
cbp12																						
cbp13																						
cbpF																						
cbp14																						
cbpD																						

Tab. 3.15: Hybridisierungssignale der Teststämme hinsichtlich der 22 CBP aus S. mitis B6

*Phagen-assoziiert. CBP = Cholin-Bindeprotein. Die *S. mitis*-Stämme sind hellgelb, die *S. oralis*-Isolate hellgrün hinterlegt. *S. pneumoniae* R6 = orange.

signifikante Hybridisierungssignale mit dem S. mitis B6-Target-Oligo

keine Hybridisierung mit dem S. mitis B6-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)

nicht eindeutig zuzuordnende Spots

СВР	B5	U-08	SV5	S658	10712	U-01	S697	SV10	M3 4	RSA4	M3 1	BG	S711	U-02	S510	RSA40	U-012	S197	U-016	U-05	S621	S476
cbpl																						
pspA ¹																						
cbpJ																						
pspA ¹																						
cbpF																						
cbpF*																						
cbpF*																						
рсрС																						
hypo																						
lytD ¹																						
<i>lytB</i> ¹																						
pspC*																						
<i>lytC</i> ¹																						
<i>lytA</i> ¹																						
pcpA ¹																						
pspC ¹																						
cbpD ¹																						

Tab. 3.16: Hybridisierungssignale der Teststämme bezüglich der CBP aus *S. pneumoniae* TIGR4 und R6

CBP = Cholin-Bindeprotein. Die *S. mitis*-Stämme sind hellgelb, die *S. oralis*-Isolate hellgrün hinterlegt. Weiß markierte CBP = *S. pneumoniae* TIGR4, orange markierte CBP = *S. pneumoniae* R6. ¹Rolle bei Virulenz; *verkürztes Gen. hypo = *lytC*-ähnlich, in R6 allerdings als hypothetisch annotiert.

signifikante Hybridisierungssignale mit dem *S. pneumoniae*-Target-Oligo

keine Hybridisierung mit dem S. pneumoniae-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)

nicht eindeutig zuzuordnende Spots

Wie bereits erwähnt, kommen in *S. mitis* B6 insgesamt sechs Homologe zu den CBP aus *S. pneumoniae* R6 sowie *S. pneumoniae* TIGR4 vor: LytA, LytB, LytC, LytD1, CbpD sowie CbpF. Bei Hybridisierung mit dem *S. mitis* B6-Chip zeigt *S. pneumoniae* R6 in vier von diesen sechs Fällen positive Signale (*lytA, lytB, lytD1* und *cbpD*, siehe Tab. 3.15). Zusätzlich treten signifikante Hybridisierungssignale bei *cbp9* und *cbp11* auf. Aktuelle BLAST-Ergebnisse bestätigen dieses Ergebnis, die entsprechenden B6-Oligonukleotide weisen mindestens 84 % Homologie zur *S. pneumoniae* R6-DNA auf. Bei *lytC* und *cbpF* sind keine positiven Signale zu beobachten, die Homologie der B6-Oligos zu *S. pneumoniae* R6 liegt hier laut BLAST bei unter 60 %.

Neben *S. pneumoniae* R6 weisen weitere fünf Stämme positive Hybridisierungssignale für das in *S. mitis* B6 Phagen-assoziierte *lytA* auf: *S. mitis* U-O8, U-O1, M3 4, M3 1 und RSA4 (Tab. 3.15). Die beiden Mitis-Stämme U-O8 und RSA4 wurden bereits in Abschnitt 3.4.2 als

116

Träger von Phagenpartikeln beschrieben. Auch hier ist lytA Bestandteil des Phagengenoms. Auf die lytA/ply-Region von S. mitis U-O1 und RSA4 wird in Kapitel 3.5 näher eingegangen. Generell sind innerhalb der Mitis-Gruppe mehr den S. mitis B6-CBP ähnliche CBP zu beobachten als in der Oralis-Gruppe (Tab. 3.15). S. mitis B5 scheint mit vermutlich 17 CBP-Homologen ein ähnliches Set an CBP zu besitzen wie S. mitis B6. Des Weiteren weisen folgende Mitis-Stämme bei mindestens 50 % der B6-CBP positive Signale auf: U-O8, 10712, SV5 und U-O1. Die geringsten Gemeinsamkeiten sind innerhalb des Oralis-Zweiges aufzufinden, die Zahl an signifikanten Hybridisierungssignalen bewegt sich hier zwischen null (U-O2) und fünf (S711). Darunter befinden sich überwiegend Homologe zu Cbp5, Cbp9 und CbpF. Im Falle von S. oralis U-O2 könnte man annehmen, dass bei diesem Stamm kein Phosphorylcholin in der Zellwand vorkommt und somit auch die CBP fehlen. In Tab. 3.16 zeigt U-O2 allerdings ein eindeutig positives Signal für cbpF. S711 besitzt zusammen mit U-O5 als einziger S. oralis-Stamm ein CbpD-Homolog, während alle getesteten S. mitis-Isolate eindeutig positive Signale hinsichtlich dieses CBPs aufweisen. Das Gleiche gilt für cbp5: Auch hier zeigen alle untersuchten Mitis-Stämme signifikante Hybridisierungssignale. Keiner der im Rahmen dieser Arbeit getesteten oralen Streptokokken bindet signifikant an die *cbp1-*, *cbp2-* und *cbp14-*Oligos, sodass es sich hierbei wahrscheinlich um B6-spezifische Gene handelt (vgl. Tab. 3.6). cbp2 und cbp14 werden allerdings in Tab. 3.6 nicht aufgeführt, da ein bis zwei Stämme existieren, bei denen die Signale im Grenzbereich liegen.

In Tab. 3.16 fungiert *S. mitis* B6 als Kontrollstamm. Laut BLAST-Ergebnissen sollte die B6-DNA in sechs von 17 Fällen signifikante Hybridisierungssignale auf dem *S. pneumoniae* R6/TIGR4-Chip hervorbringen. Für vier dieser CBP können eindeutig positive Spots beobachtet werden (*cbpl* aus *S. pneumoniae* TIGR4, *cbpF*, *lytB* und *cbpD*). Die Hybridisierung mit den hypo- und *lytD*-Oligos liefert kein klares Ergebnis (Tab. 3.16), allerdings ergeben BLAST-Analysen der R6-Oligonukleotide mit *S. mitis* B6 eine Ähnlichkeit von mindestens 84 %. Homologe zu PspA, CbpJ, PspC und PcpA fehlen in *S. mitis* B6, sodass hier keine signifikanten Signale zu erwarten sind. In den übrigen sieben Fällen liegt die Homologie der *S. pneumoniae* R6-Oligonukleotide zur B6-DNA bei unter 80 %, sodass ebenfalls keine positiven Spots aufleuchten.

Bei den weiteren 21 Teststämmen treten vereinzelt positive Hybridisierungssignale bezüglich der *S. pneumoniae* R6/TIGR4-CBP auf. Alle Vertreter des Oralis-Zweiges sowie *S. mitis* B5, U-O8, S697, M3 4 und M3 1 binden signifikant an das *cbpF*-Oligo (Tab. 3.16). Über die Hälfte der getesteten Isolate weist starke Homologien zu *cbpJ* aus *S. pneumoniae* TIGR4 auf, welches genau wie *cbpI* in *S. pneumoniae* R6 nicht vorhanden ist. Kein Vertreter der Oralis-Gruppe zeigt Homologien zu den Murein-Hydrolasen LytA, LytB, LytC, LytD und CbpD, was auch schon bei Hybridisierung mit den entsprechenden B6-Oligos deutlich wurde (Tab. 3.15). Diese Beobachtung wird durch verschiedene Studien bestätigt, bei denen bisher bis auf eine Ausnahme

bei keinem Vertreter des Oralis-Zweiges ein *lytA*-Homolog im Genom identifiziert werden konnte (Whatmore *et al.*, 2000; Kilian *et al.*, 2008). Genau wie *S. mitis* B6 scheint keiner der untersuchten oralen *Streptococcus*-Spezies Homologe zu den Virulenzfaktoren PspA, PspC und PcpA zu besitzen. Bei diesen drei CBP handelt es sich somit vermutlich um *S. pneumoniae*-spezifische (vgl. Tab. 3.7) und eine Rolle bei der Pathogenität spielende Proteine. *pspA* aus *S. pneumoniae* R6 und *pspC* sind jedoch in Tab. 3.7 nicht gezeigt, da jeweils ein Stamm existiert, bei dem die Signale nicht eindeutig zuzuordnen sind.

In *S. pneumoniae* sind mehrere Operons in den Cholin-Metabolismus involviert. Dazu zählen der *lic1*- und der *lic2*-Locus. *lic1* setzt sich aus insgesamt fünf Genen zusammen: *tarl* (spr1148), *tarJ* (spr1149), *licA*, *licB* und *licC*. LicABC ist für die Cholin-Aufnahme und -Aktivierung erforderlich, während TarlJ für die Bildung von aktiviertem Ribitol benötigt wird. Das *lic2*-Operon besteht aus den drei Genen *tacF* (spr1150), *licD1* und *licD2*. LicD1 und LicD2 sind für das Anhängen von Phosphorylcholin-Resten an die Teichonsäure-Vorläufer von *Streptococcus* verantwortlich. Bei TacF handelt es sich vermutlich um eine Flippase, die für den Transport dieser Teichonsäure-Untereinheiten über die Cytoplasma-Membran zuständig ist (Damjanovic *et al.*, 2007). Zudem existiert in *S. pneumoniae* R6 ein ORF (spr1225), welches als *licD1*-Paralog und in TIGR4 als *licD3* annotiert ist (Hoskins *et al.*, 2001; Tettelin *et al.*, 2001). Die Funktion des im Weiteren als *licD3* bezeichneten ORFs ist bislang nicht geklärt.

Bei Vergleich der *lic*-Regionen von *S. pneumoniae* R6 und *S. oralis* U-O5, dessen vorläufige Genom-Sequenz zur Verfügung steht (Abt. Mikrobiologie, unveröffentlicht), wurden einige Unterschiede festgestellt (Abb. 3.18). *S. oralis* U-O5 besitzt im Gegensatz zu R6 keinen *lic2*-Locus. Stattdessen enthält U-O5 das Gen *lic*D4, welches auf Proteinebene am C-Terminus zirka 30 % Ähnlichkeit zu LicD1 und LicD2 aufweist. In entgegengesetzter Orientierung befindet sich *tacF*, dessen Genprodukt in *S. oralis* möglicherweise sowohl Cholin-haltige als auch Teichonsäuren ohne Cholin über die Cytoplasmamembran transportieren kann. Letzteres wird durch die Tatsache bestätigt, dass in *S. oralis* generell sowohl das Wachstum in Cholin-haltigem als auch in Cholin-freiem Medium beobachtet wurde (Horne & Tomasz, 1993). In *S. pneumoniae* hingegen ist Cholin im Nährmedium für das Bakterienwachstum essenziell (Rane & Subbarow, 1940; Tomasz, 1967).

Abb. 3.18: Genetische Organisation der *lic*-Operons aus *S. pneumoniae* R6 und *S. oralis* U-O5. ORFs sind in Form von farbigen Pfeilen dargestellt. Gleiche Farben der Pfeile bei R6 und U-O5 bedeuten, dass die jeweiligen ORFs sehr homolog zueinander sind. Gene mit unbekannter Funktion sind im Falle von *S. pneumoniae* R6 durch die entsprechenden "spr"-Nummern gekennzeichnet. Bei *S. oralis* U-O5 sind ORFs mit unbekannter Funktion als orf2, 4 und 5 bezeichnet, wobei sich die Zahl durch die Position des ORFs innerhalb des *lic*3-Operons ergibt. Nähere Erläuterungen im Text.

Tab. 3.17 zeigt die Hybridisierungssignale der untersuchten *Streptococcus*-Spezies hinsichtlich der *lic*-Regionen aus *S. pneumoniae* R6/TIGR4.

<i>lic</i> -Locus	B5	U-08	SV5	S658	10712	U-01	S697	SV10	M3 4	RSA4	M3 1	B6	S711	U-02	S510	RSA40	U-012	S197	U-016	U-05	S621	S476
licC																						
licB																						
licA																						
tarl																						
tarJ																						
tacF																						
licD1																						
licD2																						
1221																						
1222																						
1223																						
1224																						
licD3																						

Tab. 3.17: Hybridisierungssignale der Teststämme im Bezug auf die *lic-*Operons aus *S. pneumoniae* R6/TIGR4

Die drei *lic*-Regionen sind abwechselnd grau und weiß hinterlegt. Die angegebenen Zahlen entsprechen der Gen-Nr. der annotierten ORFs in *S. pneumoniae* R6 (Hoskins *et al.*, 2001) und stehen für Gene mit unbekannter Funktion. Die *S. mitis*-Stämme sind hellgelb, die *S. oralis*-Isolate hellgrün hinterlegt.

- signifikante Hybridisierungssignale mit dem *S. pneumoniae*-Target-Oligo
- keine Hybridisierung mit dem S. pneumoniae-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)
- □ nicht eindeutig zuzuordnende Spots

Tab. 3.17 spiegelt das oben beschriebene deutlich wider: Im Gegensatz zu zwei Drittel der *S. mitis*-Isolate zeigen alle untersuchten *S. oralis*-Stämme keinerlei positive Signale bei Hybridisierung mit den Oligonukleotiden des *lic*2-Locus. Das Gleiche gilt für die Gene spr1221 bis spr1224: Auch hier scheinen keinerlei Homologien bei *S. oralis* vorzuliegen. Im Fall von *lic*D3 dagegen besitzen – bis auf U-O16 – alle Vertreter der Oralis-Gruppe eindeutig signifikante Hybridisierungssignale. Alle getesteten *S. mitis*-Isolate weisen starke Homologien zum *lic*1-Locus auf, während bei *S. oralis* vereinzelt positive Signale zu beobachten sind. *licA* von *S. oralis* scheint sich stark von *S. pneumoniae* zu unterscheiden, das entsprechende Oligo hybridisiert nicht beziehungsweise nur schwach mit der *Oralis*-DNA. Die Mitis-Stämme S697, M3 4, RSA4 und M3 1 zeigen, ähnlich wie *S. oralis*, keine Homologien zum *lic*2-Locus sowie spr1221 bis spr1224. Alle Vertreter des Mitis-Zweiges binden, bis auf eine Ausnahme, eindeutig an das *lic*D3-Oligonukleotid.

3.4.5 Oberflächenproteine mit LPxTG-Motiv

LPxTG-Proteine spielen, ebenso wie die unter 3.4.4 beschriebenen CBP, eine bedeutende Rolle beim Infektionsverlauf von pathogenen Bakterien wie S. pneumoniae. LPxTG-Proteine sind, im Gegensatz zu den CBP, über eine kovalente Bindung mit der Bakterienzellwand assoziiert. Dies geschieht nach Abspaltung der LPxTG-Sequenz durch eine Transpeptidase, die als Sortase bezeichnet wird. S. pneumoniae R6 besitzt insgesamt 13, S. pneumoniae TIGR4 19 und S. mitis B6 18 Oberflächenproteine mit charakteristischem LPxTG-Motiv (Hoskins et al., 2001; Tettelin & Hollingshead, 2004; Denapaite et al., 2010). Zehn der 18 B6-Proteine stellen Homologe zu den S. pneumoniae-Proteinen dar. Darunter befinden sich NanA und MonX. Die Neuraminidase NanA aus S. mitis B6 besitzt eine zentrale SialidaseA-Domäne, die ebenfalls in den meisten S. pneumoniae vorkommt, sowie B6-spezifische N- und C-terminale Domänen mit unbekannter Funktion. Das Serin-reiche Protein MonX ("Monster"; 4776 Aminosäuren) zählt zusammen mit dem LPxTG-Protein smi 1002 (4138 Aminosäuren) zu den größten Proteinen von S. mitis B6. MonX kommt in vielen weiteren Streptococcus-Spezies vor, unter anderem in S. gordonii. Dort wurde es als Thrombozyten-Bindeprotein beschrieben, das für die orale Kolonisierung wichtig sein könnte (Takamatsu et al., 2005; Takamatsu et al., 2006). Weitere bekannte Homologe zu den entsprechenden Proteinen aus S. pneumoniae sind die Zinkmetalloprotease ZmpB, die Serin-Protease PrtA, die β-Galactosidase BgaA sowie die Alkalin-Amylopullulanase PulA. Die Immunoglobulin A1-Protease IgA und die Hyaluronidase HysA fehlen in S. mitis B6, IgA-Aktivität wurde jedoch bereits, im Gegensatz zur Hyaluronidase-Aktivität, in einer Reihe von S. mitis-Isolaten nachgewiesen (Kilian et al., 2008). Neben den

genannten Oberflächenproteinen enthält *S. mitis* B6 eine Reihe von LPxTG-Proteinen mit neuen repetitiven Sequenzen variierender Länge. Dreien dieser B6-spezifischen LPxTG-Proteine (smi_0810, smi_0979 und smi_1306) wird eine Anordnung in bedeutenden Coiled-Coil Strukturen (Lupas *et al.*, 1991) vorhergesagt, von denen alle Lysin- und Alanin-reiche Sequenzwiederholungen besitzen. In zwei Proteinen (smi_1002 und smi_1064) sind verwandte Prolin-reiche Repeats zu finden.

In den Tab. 3.18 und 3.19 sind die Hybridisierungssignale der untersuchten *Streptococcus* spp. bezüglich der LPxTG-Proteine aus *S. mitis* B6 beziehungsweise *S. pneumoniae* dargestellt.

LPXTG-Proteine	B5	U-08	SV5	S658	10712	U-01	S697	SV10	M3 4	RSA4	M3 1	R6	S711	U-O2	S510	RSA40	U-012	S197	U-016	U-05	S621	S476
0091																						
0345																-						
nanA																						
prtA																						
0810																						
0979																						
1002																						
1064																						
1306																						
1317																						
1398																						L
zmpB																						
1531																						
bgaA																						
1537																						
1538																						
monX																						
pulA																						

Tab. 3.18: Hybridisierungssignale der Teststämme hinsichtlich der 18 LPxTG-Proteine aus *S. mitis* B6

Die angegebenen Zahlen entsprechen der Gen-Nr. der annotierten ORFs in *S. mitis* B6 (Denapaite *et al.*, 2010) und stehen für Gene mit unbekannter Funktion. Die farbliche Hinterlegung der Zahlen bedeutet, dass in *S. pneumoniae*, neben den genannten (*nanA*, *prtA* usw.), entsprechende Homologe existieren. Diese sind in Tab. 3.19 in identischer Farbe dargestellt. Die *S. mitis*-Stämme sind hellgelb, die *S. oralis*-Isolate hellgrün hinterlegt. *S. pneumoniae* R6 = orange.

- signifikante Hybridisierungssignale mit dem *S. mitis* B6-Target-Oligo
- keine Hybridisierung mit dem *S. mitis* B6-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)

□ nicht eindeutig zuzuordnende Spots

LPxTG-Proteine	B5	U-O8	SV5	S658	10712	U-01	S697	SV10	M3 4	RSA4	M3 1	BG	S711	U-O2	S510	RSA40	U-012	S197	U-O16	U-05	S621	S476
<i>zmpC</i> ¹																						
0462																						
0463																						
0464																						
monX																						
strH																						
0075																						
pulA																						
hysA ¹																						
0328																						
0440																						
prtA ¹																						
bgaA																						
<i>zmpB</i> ¹																						
iga ¹																						
nanA ¹																						
1403																						
htrA ¹																						

Tab. 3.19: Hybridisierungssignale der Teststämme im Bezug auf die LPxTG-Proteine aus *S. pneumoniae* TIGR4 und R6

Die angegebenen Zahlen entsprechen der Gen-Nr. der annotierten ORFs in *S. pneumoniae* TIGR4 beziehungsweise *S. pneumoniae* R6 (Tettelin *et al.*, 2001; Hoskins *et al.*, 2001) und stehen für Gene mit unbekannter Funktion. Die ORFs von TIGR4 sind oberhalb der dicken schwarzen Linie gezeigt, die von R6 unterhalb dieser Linie. Die farbliche Hinterlegung der Zahlen bedeutet, dass in *S. mitis* B6, neben einigen genannten (*monX*, *pulA* usw.), entsprechende Homologe existieren. Diese sind in Tab. 3.18 in identischer Farbe dargestellt. ¹Rolle bei Virulenz. Die *S. mitis* Stämme sind hellgelb, die *S. oralis*-Isolate hellgrün hinterlegt.

- signifikante Hybridisierungssignale mit dem S. pneumoniae-Target-Oligo
- keine Hybridisierung mit dem S. pneumoniae-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)
- □ nicht eindeutig zuzuordnende Spots

Wie bereits erwähnt, besitzt *S. mitis* B6 insgesamt zehn Homologe zu den LPxTG-Proteinen aus *S. pneumoniae*. Neun davon weisen eindeutig Homologien zu *S. pneumoniae* R6 auf: smi_0091, smi_0345, NanA, PrtA, ZmpB, smi_1531, BgaA, smi_1538 und PuIA (Denapaite *et al.*, 2010). MonX hingegen fehlt in R6, ist jedoch in *S. pneumoniae* TIGR4 beschrieben (Tettelin *et al.*, 2001). Laut Tab. 3.18 zeigt *S. pneumoniae* R6 nur in vier dieser neun Fälle positive Hybridisierungssignale (smi_0091, smi_0345, smi_1531, *puIA*). BLAST-Ergebnisse mit der 70mer-

Oligonukleotid-Sequenz der übrigen fünf LPxTG-Homologe ergaben Homologiewerte kleiner gleich 60 % und erklären die fehlende signifikante Hybridisierung.

Die DNA aller untersuchter Teststämme, mit Ausnahme der DNA von *S. mitis* RSA4, hybridisiert signifikant mit dem *S. mitis* B6-*pulA*-Oligo (Tab. 3.18). Innerhalb der Mitis-Gruppe binden die Stämme B5 und U-O8 mit sieben positiven Signalen am häufigsten an die entsprechenden B6-Target-Oligos und scheinen unter anderem Homologe zu smi_0345, *zmpB*, smi_1531 sowie *monX* zu besitzen. Die Vertreter der Oralis-Gruppe zeigen, im Vergleich zum Mitis-Zweig, mit maximal zwei signifikanten Hybridisierungssignalen deutlich weniger Homologien zu den Oligos für die LPxTG-Proteine aus *S. mitis* B6.

In Tab. 3.19 fungiert *S. mitis* B6 als Kontrollstamm. Laut BLAST-Ergebnissen der *S. pneumoniae* R6/TIGR4-Oligonukleotid-Sequenzen gegen die B6-DNA sollten in fünf von 18 Fällen signifikante Hybridisierungssignale auf dem *S. pneumoniae* R6/TIGR4-Chip zu sehen sein. Vier dieser fünf Oligonukleotide zeigen eindeutig positive Spots: spr_0075, *pulA*, *prtA* und spr_1403. Die Hybridisierung mit dem Oligo für die Serin-Protease HtrA (<u>high-t</u>emperature <u>r</u>equirement A) liefert kein klares Ergebnis (Tab. 3.19), allerdings ergaben die BLAST-Analysen eine Ähnlichkeit von mindestens 96 %. Homologe zur Zinkmetalloprotease ZmpC, den hypothetischen Proteinen SP0462 bis SP0464, der β -N-Acetyl-Hexosaminidase StrH, der Hyaluronidase HysA sowie der Immunoglobulin A1-Protease IgA, fehlen in *S. mitis* B6, sodass hier keine signifikanten Signale zu erwarten sind.

Generell fällt auf, dass bei Verwendung des *S. pneumoniae* R6/TIGR4-Chips deutlich mehr positive Signale innerhalb der Oralis-Gruppe auftreten (Tab. 3.19). Das deutet an, dass hier eine größere Homologie zu den LPxTG-Proteinen aus *S. pneumoniae* besteht als zu *S. mitis* B6. Im Fall von *bgaA*, *iga* und spr_0328 (Ausnahme U-O12) binden die DNAs von allen untersuchten *S. oralis*-Isolaten an die genannten Oligonukleotide. U-O5 zeigt als Mitglied des Oralis-Zweiges mit insgesamt fünf signifikanten Hybridisierungssignalen die meisten Homologien zu *S. pneumoniae*.

Mit Ausnahme von *S. mitis* 10712 hybridisieren alle Vertreter der Mitis-Gruppe signifikant mit *htrA* (Tab. 3.19). Von den zwölf untersuchten *S. mitis*-Isolaten besitzen die Stämme S697, M3 4 und M3 1 mit insgesamt sieben positiven Signalen die größte Ähnlichkeit zu den LPxTG-Proteinen aus *S. pneumoniae*, gefolgt von U-O8 mit sechs signifikanten Signalen. U-O8 weist zudem als einziger von allen getesteten Stämmen eindeutig positive Spots für die LPxTG-Proteine ZmpC und MonX aus *S. pneumoniae* TIGR4 auf. Bezüglich der in Tab. 3.19 dargestellten Proteine mit LPxTG-Motiv aus TIGR4 fällt allgemein auf, dass hier eine sehr große Zahl an nicht eindeutig zuzuordnenden Spots vorliegt.

Zusammenfassend lässt sich sagen, dass in den untersuchten oralen Streptokokken Homologe zu den meisten LPxTG-Proteinen aus *S. mitis* B6 beziehungsweise *S. pneumoniae* zu finden

sind (Tab. 3.18 und Tab. 3.19). Lediglich bei zwei hypothetischen Proteinen (smi_0810 und smi_1538) sowie der putativen N-Acetyl-β-Hexosaminidase (smi_1537) handelt es sich vermutlich um B6-spezifische Proteine. Auch die in die Virulenz von *S. pneumoniae* involvierte Hyaluronidase HysA (Chapuy-Regaud *et al.*, 2003) konnte in keinem der oralen Streptokokken gefunden werden und bestätigt somit bisherige Studien (Kilian *et al.*, 2008; Leegaard *et al.*, 2010).

3.4.6 Virulenzfaktoren im Überblick

Neben den in S. pneumoniae und S. mitis B6 reichlich vorhandenen CBP (Abschnitt 3.4.4) und LPxTG-Proteinen (Abschnitt 3.4.5) existieren eine ganze Reihe weiterer in die Pathogenese von S. pneumoniae involvierte Faktoren. Dazu zählen die an der Zelloberfläche von S. pneumoniae lokalisierten Lipoproteine sowie die nicht-klassischen Oberflächenproteine, denen ein typisches Leader-Peptid fehlt. Die erste Gruppe beinhaltet die zwei Peptidyl-Prolyl-Isomerasen PpmA (putative proteinase maturation protein A) und SIrA, den Mangan-Transporter PsaA (pneumococcal surface adhesin A), die Oligopeptid-Transporter AmiA, AliA und AliB sowie das Eisen-Aufnahme-System PiaA/PiuA. Die zweite Gruppe bilden das PavA-Protein (pneumococcal adherence and virulence factor A) und die beiden Glykolyse-Enzyme Enolase sowie GADPH. Bis auf PiaA/PiuA besitzt S. mitis B6 Homologe zu allen genannten Lipo- und nichtklassischen Oberflächenproteinen (Denapaite et al., 2010). Alternativ ist in B6 ein Siderophor-Eisen-Aufnahme System namens TatA/C (twin-arginine translocation; Berks et al., 2005) zu finden, dessen Signalpeptid zwei charakteristische Argininreste enthält. Innerhalb der Gattung Streptococcus wurde das TAT-Transport-System bisher nur in S. thermophilus und S. sanguinis gefunden (Bolotin et al., 2004; Xu et al., 2007). Aus Pseudomonas und Yersinia ist bekannt, dass es sich bei über TAT ausgeschiedenen Proteinen um wichtige Virulenzdeterminanten handelt (Voulhoux et al., 2001; Lavander et al., 2006).

Einen weiteren bedeutenden Virulenzfaktor stellt die Polysaccharid-Kapsel von *S. pneumoniae* dar, die Schutz vor den Makrophagen des Wirtes bietet. Das Kapsel-Cluster *cps* hat in *S. pneumoniae* D39, dem Parentalstamm von *S. pneumoniae* R6, eine Größe von etwa 19 kb und wird von den konservierten Genen *dexB* sowie *aliA* flankiert. Der unbekapselte R6-Stamm trägt in diesem Cluster eine 7,5 kb-Deletion (Iannelli *et al.*, 1999). In *S. mitis* B6 ist das *cps*-Cluster nicht vorhanden, zwischen *dexB* und *aliA* befinden sich lediglich zwei Gene: *glf*, welches für eine UDP-Galactopyranose-Mutase kodiert und im *cps*-Cluster einer Reihe von Pneumokokken vorkommt, sowie ein *aliB*-ähnliches ORF (smi_1760), welches für einen nichtfunktionalen Oligopeptid-Transporter kodiert.

Pneumolysin, ein starkes Cytolysin, kommt in nahezu allen Pneumokokken-Isolaten vor. Auch in einigen *S. mitis* wurde ein *ply*-Homolog gefunden, welches als Mitilysin bezeichnet wird (Jefferies *et al.*, 2007). Das *S. mitis* B6-Genom enthält jedoch kein *ply*-Homolog (Denapaite *et al.*, 2010).

Weitere nachweislich in die Virulenz von *S. pneumoniae* involvierte Enzyme sind die Superoxid-Dismutase SodA (Yesilkaya *et al.*, 2000), die Pyruvat-Oxidase SpxB (Spellerberg *et al.*, 1996) und die NADH-Oxidase Nox (Auzat *et al.*, 1999). Homologe zu den drei Proteinen treten auch in *S. mitis* B6 auf.

In den Tab. 3.20 und 3.21 sind die Hybridisierungssignale der untersuchten Streptokokken-Spezies hinsichtlich der wichtigsten Virulenzfaktoren aus *S. pneumoniae* beziehungsweise der entsprechenden Homologe aus *S. mitis* B6 gezeigt.

Virulenzgene	B5	U-O8	SV5	S658	10712	U-01	S697	SV10	M3 4	RSA4	M3 1	B6	S711	U-O2	S510	RSA40	U-012	S197	U-016	U-05	S621	S476
ppmA																						
sIrA																						
psaA																						
amiA																						
aliA																						
aliB																						
piaA																						
piaB																						
piaC																						
piaD																						
piuB																						
piuC					_																	
										1												
piuA																						
pava																						
eno																						
gapA⁵																						
cps2A										_												
cps2H																						
cps2l																						
cps2J																					_	
cps2K																						
cps2P																						
cns2M			_												_							

Tab. 3.20: Hybridisierungssignale der Teststämme bezüglich der Virulenzgene aus S. pneumoniae

cpsN												
cpsO												
ply			_									
sodA												
spxB												
nox												

Die im Text behandelten Virulenzfaktor-Gruppen sind abwechselnd grau und weiß hinterlegt. ¹*eno* = Enolase; ²*gapA* = GADPH. Die *S. mitis*-Stämme sind hellgelb, die *S. oralis*-Isolate hellgrün hinterlegt. Nähere Erläuterungen im Text.

- signifikante Hybridisierungssignale mit dem S. pneumoniae-Target-Oligo
- keine Hybridisierung mit dem S. pneumoniae-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)
- nicht eindeutig zuzuordnende Spots

Virulenzgen-Homologe RSA40 J-012 0712 **RSA4** SV10 U-08 J-02 S510 1-01 U-05 S658 U-01 **S697** S197 S476 S711 4 S621 SV5 13, ЯЗ R6 B5 ppmA sIrA psaA amiA aliA aliB tatA tatC pavA eno¹ gapA² 1758* glf 1760** sodA spxB nox

Tab. 3.21: Hybridisierungssignale der Teststämme im Bezug auf *S. mitis* B6-Gene, die Homologe zu Virulenzfaktoren von *S. pneumoniae* darstellen

Die im Text behandelten Virulenzfaktor-Gruppen sind abwechselnd grau und weiß hinterlegt. ¹*eno* = Enolase; ²*gapA* = GADPH; **aliA*-ähnlich, ***aliB*-ähnlich, die angegebenen Zahlen entsprechen der Gen-Nr. der annotierten ORFs in *S. mitis* B6 (Denapaite *et al.*, 2010). Die *S. mitis*-Stämme sind hellgelb, die *S. oralis*-Isolate hellgrün hinterlegt. *S. pneumoniae* R6 = orange. Nähere Erläuterungen im Text.

- signifikante Hybridisierungssignale mit dem S. mitis B6-Target-Oligo
- keine Hybridisierung mit dem *S. mitis* B6-Target-Oligo (ORF im Teststamm nicht vorhanden oder stark verändert)
- nicht eindeutig zuzuordnende Spots

S. mitis B6 fungiert in Tab. 3.20 als Referenzstamm. Laut BLAST-Ergebnissen mit den 70mer-Oligonukleotid-Sequenzen der hier aufgeführten 31 Virulenzfaktoren sollte die B6-DNA in neun Fällen signifikant an die entsprechenden Oligos binden. Dies trifft mit Ausnahme von pavA zu (Tab. 3.20). Keinerlei Bindung erfolgt an die Oligos des Eisen-Aufnahme-Systems PiaA/PiuA, des Kapsel-Clusters und des Pneumolysins, da, wie bereits erwähnt, Homologe zu diesen Pneumokokken-Virulenzdeterminanten in S. mitis B6 fehlen. Die Homologie zu den amiA-, aliAund aliB-Oligonukleotiden liegt unter 80 % und erklärt somit die fehlenden positiven Signale. Die übrigen getesteten oralen Streptokokken-Isolate scheinen, bis auf einige Ausnahmen, ein ähnliches Set an Homologen zu S. pneumoniae-Virulenzgenen zu besitzen, wie S. mitis B6 (Tab. 3.20). Auf die Ausnahmen wird im Folgenden eingegangen: S. mitis SV5, S658 und 10712 sowie S. oralis U-O2 und S510 hybridisieren im Gegensatz zu S. mitis B6 weitestgehend mit den piuBCDA-spezifischen Oligos. Interessanterweise bindet auch keiner dieser Stämme an das in B6 alternativ vorkommende TAT-Transport-System (Tab. 3.21). S. mitis B5, U-O8 und S658 sowie alle untersuchten S. oralis (Ausnahmen S510 und RSA40) zeigen vereinzelt signifikante Hybridisierungssignale bezüglich des Kapsel-Clusters. Die Stämme S. mitis U-O1 und RSA4 weisen als einzige Teststämme positive Signale für den bedeutenden Virulenzfaktor

Pneumolysin auf (siehe auch Kapitel 3.5). Des Weiteren liegt innerhalb der Oralis-Gruppe keinerlei Homologie zu den *ppmA*-, *slrA*- und *pavA*-Oligonukleotiden aus *S. pneumoniae* vor (Tab. 3.20). Stattdessen sind etliche positive Signale hinsichtlich der entsprechenden *S. mitis* B6-Oligos zu beobachten (Tab. 3.21).

BLAST-Ergebnissen zufolge sollten bei Hybridisierung der *S. pneumoniae* R6-DNA mit den 17 Virulenzgen-spezifischen Oligonukleotiden aus *S. mitis* B6 neun signifikante Signale zu sehen sein (Tab. 3.21). Dies ist bei acht Genen eindeutig der Fall: *slrA, psaA, pavA, eno, gapA, sodA, spxB* und *nox*. Die Hybridisierung mit dem Oligo für die Peptidyl-Prolyl-Isomerase PpmA liefert kein klares Ergebnis, allerdings ergaben die BLAST-Analysen eine Ähnlichkeit von mindestens 86 %. Keinerlei Bindung erfolgte an die *tatA/C*-Oligos, was das Fehlen dieses "twin-arginine"-Translokationssystems im R6-Genom bestätigt. In den übrigen sechs Fällen liegt die Homologie der *S. mitis* B6-Oligonukleotide zur R6-DNA bei unter 80 %, sodass ebenfalls keine positiven Spots aufleuchten.

Die neben *S. pneumoniae* R6 insgesamt 21 untersuchten Streptokokken-Isolate zeigen in weit über 50 % der Fälle signifikante Signale bei Hybridisierung mit den in Tab. 3.21 aufgelisteten B6-Chip-Oligos. *S. mitis* B5, U-O8 und RSA4 sind dem B6-Stamm bezüglich der Pneumokokken-Virulenz-Gen-Homologe am ähnlichsten. Unterschiede treten zu den B6-Lipoproteinen AliA und AliB, dem TAT-Transport-System sowie smi_1758 bis smi_1760 auf. Speziell an *aliA* und *tatC* bindet keines der getesteten *S. oralis*-Isolate. Alle Vertreter der Oralis-Gruppe hybridisieren signifikant mit dem *amiA*-Oligonukleotid aus *S. mitis* B6, während alle Mitglieder des MitisZweiges, bis auf U-O8, nicht an dieses Oligo binden. Sieben von zehn Oralis-Stämmen weisen eindeutig positive Signale für PpmA aus *S. mitis* B6 auf. Im Falle des R6/TIGR4-Chips war hier innerhalb der Oralis-Gruppe kein signifikantes Hybridisierungssignal zu beobachten (Tab. 3.20).

Zusammenfassend lässt sich sagen, dass ein Großteil der oralen Streptokokken-Isolate hinsichtlich der Virulenzgene aus *S. pneumoniae* genetisch ähnlich organisiert ist wie der *S. mitis* B6-Stamm. Die meisten Stämme besitzen Homologe zu den Lipoproteinen PpmA, SIrA und PsaA sowie den nicht-klassischen Oberflächenproteinen PavA, Enolase und GADPH (Tab. 3.20 und Tab. 3.21). Zusammen mit den unter 3.4.4 und 3.4.5 beschriebenen CBP und LPxTG-Proteinen enthalten die untersuchten *Streptococcus* spp. somit eine große Zahl an Virulenzdeterminanten, die eine Rolle bei der Kolonisierung des Wirtes und der Adhärenz an die Wirtszelle spielen. Zudem weisen viele Isolate eine hohe Identität zu dem "twin-arginine"-Translokationssystem tatA/C aus *S. mitis* B6 auf (Tab. 3.21). Nur fünf Stämme besitzen alternativ Homologien zu Teilen des Eisen-Aufnahme-System PiaA/PiuA aus *S. pneumoniae* (Tab. 3.20). Allen mit Ausnahme von zwei Isolaten fehlt genau wie *S. mitis* B6 ein Pneumolysin-Homolog (Tab. 3.20). Ebenfalls in keinem der oralen Streptokokken-Spezies zu finden sind die CBP PspA, PspC und PcpC (Tab. 3.16) sowie die Hyaluronidase HysA mit LPxTG-Motiv (Tab. 3.19).

Im Gegensatz zu *S. mitis* B6 deuten vereinzelt einige Mitis- und Oralis-Isolate auf die Expression einer Polysaccharid-Kapsel hin, was schon in einer Reihe von oralen Streptokokken nicht ausgeschlossen wurde (Bergströmm *et al.*, 2000; Yoshida *et al.*, 2006; Kilian *et al.*, 2008).

3.5 Die Autolysin/Pneumolysin (*lytA/ply*)-Region in *S. mitis* U-O1 und *S. mitis* RSA4

Auf dem Genom von *S. pneumoniae* liegen die Gene, die für das Autolysin LytA und das Pneumolysin Ply kodieren, etwa 7 kb voneinander entfernt. *lytA* ist Teil des Kompetenz-Regulons in *S. pneumoniae*. Die Induktion von *lytA* bewirkt die Freisetzung von Pneumolysin aus dem Bakterium in die extrazelluläre Umgebung und hat somit Einfluss auf die Virulenz von *S. pneumoniae* (Lock *et al.*, 1992; Guiral *et al.*, 2005). Die *lytA/ply*-Region wird von einer 94 bp langen, gleichgerichteten Sequenzwiederholung ("direct repeat") flankiert, welche wiederum in sich selbst eine gegenläufige Sequenzwiederholung ("inverted repeat") aufweist (Denapaite *et al.*, 2010). In *S. mitis* B6 fehlt diese "Pathogenitätsinsel": *lytA* ist ein neues Allel und Teil des Φ-B6-Phagengenoms, ein Pneumolysin-Homolog existiert in diesem Stamm nicht (Denapaite *et al.*, 2010). Dennoch ist die oben beschriebene 94 bp-Sequenzwiederholung einmal im B6-Genom vorhanden. Sie deckt – ebenso wie in *S. pneumoniae* – das 3'-Ende des *dinF*-Gens

sowie stromabwärts liegende Sequenzen ab. Vermutlich stellen diese Repeats die Integrationsstelle der *lytA/ply*-Region dar. Auch die Anwesenheit von verkürzten IS-Elementen innerhalb dieser Region könnte ein Hinweis darauf sein.

Abb. 3.19 zeigt einen Vergleich der dinF-Region von S. pneumoniae R6 und S. mitis B6.

Abb. 3.19: Vergleich der *dinF*-Region von *S. pneumoniae* R6 und *S. mitis* B6 (aus Denapaite *et al.*, **2010).** In *S. pneumoniae* R6 ist zwischen *dinF* und spr1738 eine 10416 bp lange *lytA/ply*-Insel vorhanden. Die flankierenden Bereiche enthalten links und rechts gleichgerichtete Sequenzwiederholungen (RL = "repeat left" beziehungsweise RR = "repeat right"), die wahrscheinlich die Integrationsstelle der Insel darstellen. In *S. mitis* B6 fehlt die *lytA/ply*-Region, allerdings ist genau wie bei R6 am 3´-Ende von *dinF* (smi_1838) ein 94 bp-"direct repeat" zu finden. Schwarze Pfeile = konservierte Gene in *S. pneumoniae* R6 und *S. mitis* B6; graue Pfeile = *S. pneumoniae lytA* und *ply*; kleine Kreise = BOX-Elemente; kleines Rechteck = RUP-Element; lange Rechtecke = "direct repeats". Nähere Erläuterungen im Text.

Die Organisation der *dinF*-Region aus *S. mitis* B6 findet man in einer Reihe weiterer *Streptococcus*-Spezies, darunter *S. mitis* 10712 und *S. mitis* U-O8 sowie *S. oralis* U-O5 (Hakenbeck, unveröffentlicht). *S. mitis* U-O8 enthält ebenso wie *S. mitis* B6 einen Prophagen und auch hier ist *lytA* Bestandteil des Phagengenoms (Romero *et al.*, 2004; vgl. 3.4.2).

Von einigen *S. mitis*-Stämmen ist bekannt, dass sie ein Pneumolysin-Homolog – genannt Mitilysin – besitzen (Jefferies *et al.*, 2007). Zudem existieren innerhalb des Mitis-Clusters Isolate, die sowohl das *ply*- als auch das *lytA*-Gen enthalten (Whatmore *et al.*, 2000; Kearns *et al.*, 2000; Kilian *et al.*, 2008). Im Rahmen der in dieser Arbeit durchgeführten Microarray-Analysen wurden ebenfalls zwei Isolate identifiziert, die sowohl für das *ply*- als auch für das *lytA*spezifische Oligonukleotid positive Signale aufwiesen: *S. mitis* U-O1 und *S. mitis* RSA4 (vgl. Tab. 3.20, 3.15 und 3.16). Um einen Eindruck über die Evolution dieser beiden Virulenzgene in *Streptococcus* spp. zu erlangen, wurde die *lytA/ply*-Region dieser Isolate einer ausführlichen Sequenzanalyse unterzogen.

Zunächst wurde zur Bestätigung der Microarray-Ergebnisse sowohl das *lytA*- als auch das *ply*-Gen aus den beiden *S. mitis*-Stämmen U-O1 und RSA4 amplifiziert. Dies geschah mittels der beiden Primerpaare LytA-fwd und LytA-rev sowie 15C und 15D (Jefferies *et al.*, 2007). In *S. pneumoniae* R6 beträgt die Gesamtlänge von *lytA* 957 bp, die von *ply* 1416 bp. Das amplifizierte *lytA*-Fragment hatte eine Größe von 472 bp, das von *ply* 1427 bp. Zur Sequenzierung der insgesamt vier PCR-Produkte wurden die gleichen Oligonukleotide wie zur Amplifikation verwendet. Die erhaltenen Sequenzen bestätigten, dass *S. mitis* U-O1 und *S. mitis* RSA4 *lytA*- und *ply*-Homologe besitzen.

Im nächsten Schritt wurde überprüft, ob *lytA* und *ply* ähnlich wie bei *S. pneumoniae* R6 organisiert sind. Dazu wurde anhand der konservierten Sequenzbereiche aus *S. pneumoniae* R6 und TIGR4 sowie *S. mitis* B6 und *S. oralis* U-O5 ein mögliches "Universal"-Primerpaar designt (dinF_for und ORF6_rev), welches der Amplifikation der Gene zwischen *dinF* und dem ORF mit unbekannter Funktion (spr1738 in R6) dienen sollte (Abb. 3.20). In *S. mitis* B6, in dem die *lytA/ply*-Insel fehlt, hat das PCR-Produkt eine Länge von 1000 bp.

Die amplifizierte 6043 bp-Sequenz aus *S. mitis* U-O1 wurde vollständig anhand der sogenannten "primer walking"-Methode doppelsträngig sequenziert.

Die genetische Organisation der 6 kb U-O1-Region ist in Abb. 3.20 im Vergleich zu *S. pneumo-niae* R6 dargestellt.

Abb. 3.20: Vergleich der *lytA*/*ply*-**Region von** *S. pneumoniae* **R6 und** *S. mitis* **U-O1.** Der bei *S. pneumoniae* **R6** eingerahmte Bereich fehlt in *S. mitis* **U-O1**. Die Primer zur Amplifikation der *lytA*/*ply*-Insel und die erhaltenen PCR-Produkte samt Größe sind grün eingezeichnet. Blaue Pfeile = flankierende Gene der *lytA*/*ply*-Region; rote Pfeile = *lytA* beziehungsweise *ply* ; schwarze Pfeile = Gene mit unbekannter Funktion; weiße Pfeile = verkürzte IS-Elemente 1381; kleine Kreise = BOX-Elemente; kleines Rechteck = RUP-Element; lange Rechtecke = "direct repeats". *S. p. = S. pneumoniae*, *S. m. = S. mitis*; kb = Kilobasen. Nähere Erläuterungen im Text.

Wie Abb. 3.20 zeigt, ist die *lytA/ply*-Region von *S. mitis* U-O1 genetisch ähnlich organisiert wie in *S. pneumoniae* R6 und wird ebenfalls von der 94 bp langen, gleichgerichteten Sequenzwiederholung flankiert. Diese unterscheidet sich nur in wenigen Basenpaaren von dem "direct repeat" in *S. pneumoniae* R6, die allerdings den "inverted repeat" etwas zu beeinträchtigen scheinen (Abb. 3.21 B). Bei U-O1 fehlt zwischen *lytA* und *ply* ein etwa 5 kb großes DNA-Fragment, das heißt die beiden Gene liegen lediglich zirka 2 kb voneinander entfernt. In diesem Bereich liegen in *S. pneumoniae* hypothetische Proteine und Transposasen. Zudem besitzt *S. mitis* U-O1 innerhalb dieser Region keine BOX-, RUP- und IS-Elemente.

S. mitis RSA4 lieferte ein etwa 650 bp großes PCR-Produkt, das allerdings nur *dinF*-Sequenzen enthielt; offenbar hybridisierte der Primer ORF6_rev auch an Sequenzen innerhalb von *dinF*. Zur Aufklärung der *lytA/ply*-Region aus *S. mitis* RSA4 wurde daher eine neue Strategie angewandt. Da aus den oben beschriebenen Experimenten sowohl *lytA*- und *ply*-Sequenzen als auch Teile des 3'-Endes von *dinF* vorlagen, wurde von diesen drei Genen ausgehend die

Methode der inversen PCR (iPCR, Kapitel 2.9.3) eingesetzt. Anhand der Restriktionskarte von *S. pneumoniae* R6 (Hoskins *et al.*, 2001) und *S. mitis* B6 (Denapaite *et al.*, 2010) wurden Restriktions-Endonukleasen ausgewählt, die für die iPCR geeignet erschienen. Von einer Reihe getesteter Enzyme lieferten im Falle von *lytA* und *dinF Sap*I beziehungsweise *Mun*I positive Ergebnisse, bei *ply* führten *Nde*I und *Eco*RI zum Erfolg. Allerdings lieferten die iPCRs von *dinF* und *lytA* nur geringe Mengen von PCR-Produkten, die auch bei mehrfacher Wiederholung des Experiments nicht wieder amplifiziert werden konnten. Zudem wurden nur Sequenzen von schlechter Qualität erhalten.

Tab. 3.22 gibt einen Überblick über die Primerpaare mit denen die unbekannten Sequenzabschnitte amplifiziert wurden und zeigt die Größe der amplifizierten PCR-Produkte.

Reaktion	iPCR ausgehend von	Restriktionsenzym	Primerpaar	Größe PCR- Produkt
1.	lytA	Sapl	IP-lytA_for IP-lytA_rev	3000 bp
2.	ply	Ndel	IP-mly_for IP-mly_rev	1200 bp
3.		<i>Eco</i> RI	IP-mly_for Eco-mly_rev	1600 bp
4.	dinF	Munl	IP-dinF_for IP-dinF_rev	3500 bp

Tab. 3.22: iPCRs zur Aufklärung der genetischen Organisation der *lytA/ply*-Region von *S. mitis* RSA4

Die Sequenzierung der erhaltenen PCR-Produkte erfolgte mit den zur Amplifikation verwendeten Primerpaaren und mit neuen Primern. Anhand der von *ply* ausgehenden iPCRs (2 + 3; Tab. 3.22) gelang die Sequenzierung eines insgesamt 2800 bp-Bereichs, welcher die vollständige *ply*-Sequenz und dessen nähere Umgebung beinhaltet (Abb. 3.21).

Die Sequenzierung der Region downstream von *dinF* (4; Tab. 3.22) lieferte ein überraschendes Ergebnis: Wie auch bei *S. pneumoniae* R6 ist hier ein *lytA*-Homolog lokalisiert (Abb. 3.21), allerdings unterscheidet sich die Sequenz von dem bereits zuvor mit den Oligonukleotiden LytA-fwd und LytA-rev amplifizierten *lytA*-2-Gen, ein Hinweis darauf, dass zwei *lytA*-Allele in RSA4 vorkommen. Von dem insgesamt 3500 bp-Produkt konnten aufgrund der oben beschriebenen Schwierigkeiten lediglich 2400 bp sequenziert werden.

Die von *lytA*-2 ausgehende iPCR (1; Tab. 3.22) bestätigte diesen Befund. Zudem gelang auch hier teilweise die Sequenzierung der flankierenden Bereiche (Abb. 3.22). Genau wie bei der von
dinF ausgehenden iPCR (4; Tab. 3.22) konnten nur 2400 bp des 3000 bp-Produkts sequenziert werden. Die Sequenz upstream von *lytA*-2 besitzt auf Nukleotid-Ebene 85 % Identität zum Antiholin-Gen (smi_0477) aus *S. mitis* B6, die downstream von *lytA*-2 96 % Identität zu smi_1181, welches für eine anorganische Polyphosphat ADP/NAD-Kinase kodiert. Beides sind Indizien, dass das RSA4-*lytA*-2 mit dem Prophagen assoziiert vorliegt, der in der Hybridisierung mit dem B6-Microarray sichtbar wurde (Abschnitt 3.4.2), und dass die Integrationsstelle des Phagen wahrscheinlich innerhalb beziehungsweise in der Nähe des smi_1181-Homologs zu finden ist. Die Abbildungen 3.21 und 3.22 geben einen Überblick über die sequenzierten Bereiche der *lytA*-1/*ply*-Region aus *S. mitis* RSA4 und dessen Prophagen-*lytA*-2-Gen.

Abb. 3.21: Sequenzierte Abschnitte der *lytA/ply*-Region aus *S. mitis* RSA4 im Vergleich zu *S. pneumoniae* R6 und Alignment der "direct repeat"-Sequenzen von *S. mitis* B6, U-O1, RSA4 sowie *S. pneumoniae* R6. A: Die Primerpaare zur inversen PCR sind als blaue beziehungsweise rote Dreiecke eingezeichnet. Gestrichelte grüne Linien und grüne Fragezeichen deuten auf bisher fehlende Sequenzinformation hin. Blaue Pfeile = flankierende Gene der *lytA/ply*-Region; rote Pfeile = *lytA* (*lytA*-1) beziehungsweise *ply*; schwarze Pfeile = Gene mit unbekannter Funktion; weiße Pfeile = verkürzte IS-Elemente 1381; kleine Kreise = BOX-Elemente; kleines Rechteck = RUP-Element; lange Rechtecke = "direct repeats". *S. p. = S. pneumoniae, S. m. = S. mitis*; kb = Kilobasen. Nähere Er-läuterungen im Text. B: Die beiden Pfeile markieren den "inverted repeat" innerhalb der "direct repeat"-Sequenz, zutreffende Nukleotide sind unterstrichen. Zur *S. mitis* B6-Sequenz identische Nukleotid-Positionen sind als Punkte dargestellt. Variationen der Nukleotid-Sequenzen im Vergleich zu B6 sind gezeigt. RR = rechter "direct repeat"; RL = linker "direct repeat".

Wie Abb. 3.21 A und B zu entnehmen ist, besitzt *S. mitis* RSA4 genau wie *S. pneumoniae* R6, *S. mitis* B6 sowie *S. mitis* U-O1 am 3'-Ende von *dinF* und stromabwärts davon einen "direct repeat". Diese Sequenzwiederholung stellt wahrscheinlich die Integrationsstelle für die *lytA/ply*-Insel dar und legt die Vermutung nahe, dass sich auch im Falle von RSA4 die Insel zwischen dem *dinF*-Gen und dem spr_1738-Homolog integriert hat. Allerdings endet die Sequenz-information kurz vor dem vermuteten Repeat downstream von *ply*. Zudem bleibt die Organisation der Gene zwischen *lytA*-1 und *ply* und damit die exakte Entfernung beider Gene ungeklärt. Wie auch bei *S. pneumoniae* R6 sind mindestens zwei BOX-Elemente innerhalb der RSA4-*lytA*-1/*ply*-Region lokalisiert.

Abb. 3.22: *lytA*-Gene und flankierende Bereiche der temperenten Phagen aus *S. mitis* B6 und *S. mitis* RSA4. Die eingerahmten ORFs sind Bestandteil der Bakteriophagen-Genome. smi_0477 und *lytA* (*lytA-2*) kodieren für das in die Bakterienzelllyse involvierte Antiholin beziehungsweise Autolysin. ISSmi2 = in *S. mitis* B6 entdecktes IS-Element (Denapaite *et al.*, 2010). Blaue Pfeile = bakterielle DNA, wobei *ssbB* für ein Einzelstrang-DNA-Bindeprotein kodiert und das smi_1181-Homolog für eine anorganische Polyphosphat ADP/NAD-Kinase. Rote Dreiecke = Primerpaare zur inversen PCR. *S. m. = S. mitis*; kb = Kilobasen. Nähere Erläuterungen im Text.

Abb. 3.22 zeigt das *lytA*-2-Gen und flankierende Bereiche des *S. mitis* RSA4-Stammes, welches Teil des Prophagen-Genoms ist. Zum Vergleich ist das 3´-Ende von ΦB6 dargestellt. Stromaufwärts von *lytA* befinden sich in beiden Fällen Antiholin-Gene (smi_0477). Downstream

ist im Fall von Φ B6 eine Kopie des IS-Elements ISSmi2 lokalisiert. Die Integrationsstelle von Φ B6 liegt innerhalb des *ssbB*-Gens, welches für ein Einzelstrang-DNA-Bindeprotein kodiert. Der temperente Phage aus *S. mitis* RSA4 hat sich anscheinend im intergenen Bereich zwischen *lytA*-2 und dem smi_1181-Homolog beziehungsweise innerhalb smi_1181 selbst integriert.

Zusammenfassend lässt sich sagen, dass das Isolat *S. mitis* RSA4 neben einem *ply*-Homolog zwei *lytA*-Gene (*lytA*-1 und *lytA*-2) besitzt, wovon *lytA*-1 – ähnlich wie bei *S. pneumoniae* R6 und *S. mitis* U-O1 – downstream von *dinF* liegt. *lytA*-2 befindet sich mit großer Wahrscheinlichkeit innerhalb des temperenten Phagen dieses Stammes und kann mit dem Primerpaar LytA-fwd / LytA-rev amplifiziert werden.

3.5.1 Vergleich der Pneumolysin-Sequenzen von S. mitis U-O1 und S. mitis RSA4

Ein Vergleich der *ply*-Sequenzen der beiden *S. mitis*-Stämme mit den kürzlich analysierten Ply-Sequenzen anderer *S. mitis*-Isolate (Jefferies *et al.*, 2007) und *S. pneumoniae-ply* wies einige charakteristische Unterschiede auf, die sich auch auf der Aminosäure-Ebene bemerkbar machen (Abb. 3.23).

S. p. R6	1 MANKAVNDFILAMNYDKKKLLTHQGESIENRFIKEGNQLPDEFVVIERKKRSLSTNTSDISVTATNDSRLYPGALLVVDETLLENNPTLLAVDRAPMTYSIDLPGLASSDSFLQVEDPSNSSVRGAVNDL
S. m. COL15	1 .T
S. m. R75I	1
S. m. R7511	1
S. m. R76	1 .T
S. m. R77	1 .T
S. m. 990123	1 .T
S. m. QH17	1
S. m. U-01	1 .T
S. m. RSA4	1 .T
S. p. R6	131 LAKWHQDYGQVNNVPARHQYEKITAHSMEQLKVKFGSDFEKTGNSLDIDFNSVHSGEKQIQIVNFKQIYYTVSVDAVKNPGDVFQDTVTVEDLKQRGISAERPLVYISSVAYGRQVYLKLETTSKSDEVE
S. m. COL15	131
S. m. R751	131R.
S. m. R75II	131
S. m. R76	131
S. m. R77	131
S. m. 990123	131
S. m. QH17	131R.
S. m. U-01	131
S. m. RSA4	131
S. p. R6	261 AAFEALIKGVKVAPQTEUKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITUDELSYDHQGKE
S. p. R6 S. m. COL15	261 AAFEALIKGVKVAPQTEUKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261
S. p. R6 S. m. COL15 S. m. R75I	261 AAFEALIKGVKVAPQTEWKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261
S. p. R6 S. m. COL15 S. m. R751 S. m. R7511	261 AAFEALIKGVKVAPQTEWKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261
S. p. R6 S. m. COL15 S. m. R751 S. m. R7511 S. m. R76	261 AAFEALIKGVKVAPQTEUKQILDNTEVKAVILGGDPSSGARVVTGKVDNVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261
S. p. R6 S. m. COL15 S. m. R751 S. m. R7511 S. m. R76 S. m. R77	261 AAFEALIKGVKVAPQTEWKQILDNTEVKAVILGGDPSSGARVVTGKVDNVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261
S. p. R6 S. m. COL15 S. m. R75I S. m. R75II S. m. R76 S. m. R77 S. m. 990123	261 AAFEALIKGVKVAPQTEWKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261
S. p. R6 S. m. COL15 S. m. R75I S. m. R75II S. m. R76 S. m. R77 S. m. 990123 S. m. QH17	261 AAFEALIKGVKVAPQTEWKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261
S. p. R6 S. m. COL15 S. m. R75I S. m. R75I S. m. R76 S. m. R77 S. m. 990123 S. m. Q117 S. m. U-01	261 AAFEALIKGVKVAPQTEWKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261 Y 261 <
S. p. R6 S. m. COL15 S. m. R751 S. m. R751 S. m. R75 S. m. R77 S. m. 990123 S. m. QH17 S. m. U-01 S. m. R524	261 AAFEALIKGVKVAPQTEWKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261 Y
S. p. R6 S. m. COL15 S. m. R75I S. m. R75 S. m. R76 S. m. R77 S. m. 990123 S. m. QH17 S. m. U-01 S. m. R544	261 AAFEALIKGVKVAPQTEWKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261 Y 261 <
S. p. R6 S. m. COL15 S. m. R75I S. m. R75I S. m. R76 S. m. R77 S. m. 990123 S. m. QH17 S. m. U-01 S. m. R5A4 S. p. R6	261 AAFEALIKGVKVAPQTEUKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITUDELSYDHQGKE 261 Y. 27 Y. 281 VLTPKANDRNGQDLTAHFTTSIPLKGNVRNLSVKIRECTGLANENWRTVYEKTDLPLVRKRTISIWGTTLYPQVEDKVEND
S. p. R6 S. m. COL15 S. m. R751 S. m. R751 S. m. R76 S. m. P77 S. m. 990123 S. m. QH17 S. m. U-01 S. m. R5A4 S. p. R6 S. m. COL15	261 AAFEALIKGVKVAPQTEUKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITUDELSYDHQGKE 261 Y. 391 VLTPKAWDRNGQDLTAHFTTSIPLKGNVENLSVKIRECTGLAWEWWRTVYEKTDLPLVRKRTISIWGTLYPQVEDKVEND 391 VLTPKAWDRNGQDLTAHFTTSIPLKGNVENLSVKIRECTGLAWEWWRTVYEKTDLPLVRKRTISIWGTLYPQVEDKVEND
S. p. R6 S. m. COL1S S. m. R75II S. m. R75II S. m. R76 S. m. 990123 S. m. 04117 S. m. U-01 S. m. R5A4 S. p. R6 S. m. COL1S S. m. R75I	261 AAFEALIKGVKVAPQTEWKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261 Y 391 Y 391 Y 391 Y 391 Y 391 Y 391 <
S. p. R6 S. m. COL15 S. m. R75I S. m. R75I S. m. R77 S. m. 990123 S. m. QH17 S. m. QH17 S. m. COL15 S. m. R5A4 S. p. R6 S. m. COL15 S. m. R75I S. m. R75I S. m. R75I	261 AAFEALIKGVKVAPQTEUKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITUDELSYDHQGKE 261 261 261 261 261 261 261 261 261 261
S. p. R6 S. m. COL15 S. m. R751 S. m. R751 S. m. R76 S. m. P77 S. m. 990123 S. m. QH17 S. m. 0-01 S. m. R5A4 S. p. R6 S. m. COL15 S. m. R7511 S. m. R7511 S. m. R7511 S. m. R76	261 AAFEALIKGVKVAPQTEUKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261 261 261 261 261 261 261 261 261 261
S. p. R6 S. m. COL15 S. m. R75I S. m. R75I S. m. R76 S. m. R77 S. m. 990123 S. m. QH17 S. m. U-01 S. m. R5A4 S. p. R6 S. m. R75I S. m. R75I S. m. R76 S. m. R76 S. m. R77	261 AAFEALIKGVKVAPQTEWKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYIWDELSYDHQGKE 261 Y 391 Y 391 <t< th=""></t<>
S. p. R6 S. m. COL15 S. m. R751 S. m. R76 S. m. R77 S. m. 990123 S. m. Qf17 S. m. U-01 S. m. R5A4 S. p. R6 S. m. COL15 S. m. R751 S. m. R751 S. m. R77 S. m. 990123	261 AAFEALIKGVKVAPQTEVKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITWDELSYDHQGKE 261 Y 391 <
S. p. R6 S. m. COL15 S. m. R75I S. m. R75I S. m. R75 S. m. 990123 S. m. QH17 S. m. QH17 S. m. R5A4 S. p. R6 S. m. COL15 S. m. R75I S. m. P0123 S. m. QH17 S. m. QH17	261 AAFEALIKGVKVAPQTEUKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITUDELSYDHQGKE 261 261 261 261 261 261 261 261 261 261
S. p. R6 S. m. COL15 S. m. R75I S. m. R75I S. m. R75 S. m. 990123 S. m. QH17 S. m. 990123 S. m. R5A4 S. p. R6 S. m. COL15 S. m. R75I S. m. R75I S. m. R75I S. m. R77 S. m. 990123 S. m. QH17 S. m. QH17 S. m. U-01 S. m. D-01	261 AAFEALIKGVKVAPQTEUKQILDNTEVKAVILGGDPSSGARVVTGKVDHVEDLIQEGSRFTADHPGLPISYTTSFLRDNVVATFQNSTDYVETKVTAYRNGDLLLDHSGAYVAQYYITUDELSYDHQGKE 261

Abb. 3.23: Alignment der Ply-Sequenzen von *S. mitis* U-O1 und *S. mitis* RSA4 sowie weiterer *S. mitis*-Isolate (Jefferies *et al.*, 2007) mit der Sequenz von *S. pneumoniae* R6. Zur R6-Sequenz identische Aminosäure-Positionen sind als Punkte dargestellt. Variationen der Proteinsequenzen im Vergleich zu R6 sind gezeigt und orange hinterlegt. Striche bedeuten, dass die vollständige Sequenzinformation nicht vorliegt (*S. m.* R75II). Zahlen geben die entsprechenden Aminosäure-Positionen an. *S. p. = S. pneumoniae*; *S. m. = S. mitis*.

Die Pneumolysin-Sequenz der Mitis-Isolate unterscheidet sich an 13 Aminosäure-Positionen von der entsprechenden *S. pneumoniae* R6-Sequenz. Die Protein-Sequenz von *S. mitis* U-O1 ist 100 % identisch zu der von *S. mitis* 990123. Auch *S. mitis* RSA4 weist an den für die *S. mitis*-Stämme charakteristischen Positionen Aminosäure-Substitutionen auf. Alle gezeigten Ply-Sequenzen enthalten die konservierte Tryptophan-reiche Schleife in der Nähe des C-Terminus des Proteins, welche für Mitglieder der Cholesterin-abhängigen Cytolysin-Familie typisch ist. Zudem ist in allen Stämmen das VPARMQYE-Motiv an Position 144 bis151 zu finden, welches für die hämolytische Aktivität sowie die Porenbildung dieser Protein-Familie wichtig ist (Kirkham *et al.*, 2006).

Aus früheren Studien ist bekannt, dass innerhalb der *Streptococcus*-Gruppe sogenannte "typische" und "atypische" *lytA*-Allele vorkommen (Whatmore *et al.*, 2000; Obregón *et al.*, 2002; Llull *et al.*, 2006). Für *S. pneumoniae* charakteristisch ist die Löslichkeit in 1 % Deoxycholat (Doc). Verantwortlich für diese Zelllyse ist die "typische" N-Acetylmuramoyl-L-Alanin-Amidase LytA. Im Gegensatz zu *S. pneumoniae* lysieren andere α-hämolytische Streptokokken wie zum Beispiel *S. mitis* nicht bei Zugabe von 1 % Doc. Aus diesem Grund wird unter anderem der Doc-Löslichkeits-Test als Unterscheidungsmerkmal zwischen Pneumokokken und oralen Streptokokken angewandt (Lund & Henrichsen, 1978). Inzwischen ist gezeigt, dass einige in 1 % Doc-unlösliche Streptokokken-Isolate durchaus *lytA*-Allele besitzen (Obregón *et al.*, 2002). Allerdings weisen diese am 3´-Ende eine 6 bp-Deletion auf und werden deshalb als "atypisch" bezeichnet (Díaz *et al.*, 1992; Obregón *et al.*, 2002). Die resultierende Deletion von zwei Aminosäuren sowie die Vielfalt an Punktmutationen in *lytA* führen zur Inaktivierung des Enzyms und somit zur fehlenden Löslichkeit der Isolate in 1 % Doc (Obregón *et al.*, 2002; Romero *et al.*, 2004).

Bei den bisher untersuchten *lytA*-Genen temperenter *S. pneumoniae*-Phagen handelt es sich um "typische" *lytA*-Allele (Obregón *et al.*, 2003; Obregón *et al.*, 2003; Romero *et al.*, 1990), während im Fall von *S. mitis*-infizierenden Prophagen sowohl "typische" als auch "atypische" *lytA*-Allele beschrieben sind (Romero *et al.*, 2004; Díaz *et al.*, 1992; Romero *et al.*, 2004).

	10	20	30	40	50	60	70	80	90	100	110	120	130	140
S. p. R6 B6-Phage S. spp. 1504 S. m. U-01 S. m. RSA4 RSA4-Phage	* ATGGAAATTAATG TGA G G G	* rgagtaaatta Càg.c	* AAGAACAGATT .C.TGC.	* TTGCCTCAAG7 GATT	* TCGGCGTGCAA	* CCATATAGGO T.TCC.T.	* 	* CACACTCAACT .C	* GGGAATCCG LTC.GA LCC.GT LCC.GT LCCC	* CATTCAACCG A.CG. A.CG. A.CG.	* FACAGAATGA CTC .GA .GA .TA	* AGCCGGATTATC GCC. GTCC. GTCC. GTCC.	* CACTGGCGGAA ACA.A .T.ACA.A .T.ACA.A .T.ACA.A	* G T T
S. p. R6 B6-Phage S. spp. 1504 S. m. U-01 S. m. RSA4 RSA4-Phage	150 * AGAATTAGGTTTT TC.TGC TGCC TGCC TGCC	160 * TTCTCGCACAT TTTG. TTG. TAG. TTG.	170 * TTGTTGGGAAC 	180 * CGGTTGCATC <i>I</i> TC.TG.T. TC.TG.T. TC.TG.T. TC.T.T.	190 * ATGCAGGTAGG	200 * GACCTGTTGAT CÅÅ.(210 * TAATGGTGCC GAATG	220 * TGGGACGTTGC	230 * GGGGCGGTTG	240 * GAATGCTGAGJ 	250 * ACCTATGCAG GGTC. GGTC. GGTC	260 * CGGTTGAACTC .AT. AA AA	270 * GATTGAAAGCC T.	280 * :ATTCAA GA.T GA.T GA.T
S. p. R6 B6-Phage S. spp. 1504 S. m. U-01 S. m. RSA4 RSA4-Phage	290 * CCAAAGAAGAAGAGTT AT	300 * CATGACGGACT GAA TCTT TCTT G.AT.	310 * FACCGCCTTTJ TTC TTC 	320 * .TATCGAACTC	330 * CTTACGCAATC G. T. A. C. G. T G G	340 * TAGCAGATGJ C. G. A.C.	350 * AAGCAGGTTT .G. TGA. .G. TGA. 	360 * GCCGAAAACGO GT. AT. AA. AA.	370 * TTGATACAG	380 * GGAGTTTAGC ACGACGJ CTGAJ ACGACGJ ACGACGJ	390 * TGGAATTAAA ATCG ATCG ATCG ATCG ATC	400 * ACGCACGAGT. . A	410 * 	420 * **********************************
S. p. R6 B6-Phage S. spp. 1504 S. m. U-01 S. m. RSA4 RSA4-Phage	430 T CCARACAACCACT GG.TGTA GG.TTA.T. TGA. T.	440 * CAGACCACGTT GCA TA TA	450 * rgacccttato 	460 * * * * * * * * * * * *	470 * CTAAATGGGGG G	480 * G	490 * GAGCAGTTTA 	500 * AGCATGATATT GA G G GA	510 * TGAGAACGGC 	520 * TTGACGATTGJ C. AGGAGC C. AGGCGC	530 * AAACAGGCTG GA GA GA T	540 * GCAGAAGAATO AC. ACC ACC	550 * CACACTGGCTA .TAC .TAC .TAC	560 *
S. p. R6 B6-Phage S. spp. 1504 S. m. U-01 S. m. RSA4 RSA4-Phage	CGTACATTCAGAC TA.AGA TCT TC TC TC TC	580 # GGCTCTTATCC A T T G	590 * CAAAAGACAAG T T T G.	*	* ATCAATGGCAC GC G.AT G.AT G.AT	* TTGGTACTAC CT CT T	530 TTTTGACAGT CG.C G. G.	540 * TCAGGCTATAT	GCTTGCAGA	CCGCTGGAGGJ	570 # AAGCACACAG. T. T. T.	ACGGCAACTGC	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *
S. p. R6 B6-Phage S. spp. 1504 S. m. U-01 S. m. RSM4 RSM4-Phage	710 * CAGGCGAAATGGC	720 * TACAGGCTGGA G	730 *	740 * 	750 * GTACTATTTCA 	760 * * TG 	770 * STGCCATGAA T .CT	780 * GACAGGCTGGC A	790 * .TCAAGTACA	800 * AGGACACTTGO G G G C	810 * STACTACTTA TC.T TC.T TC.T TC.T	820 * GACGCTAAAGJ CG.C.GA TAG.C.A TAG.C.A TAG.C.A	830 * TAA TG.A TG.A TG.A TG.A	840 * GTATCA
S. p. R6 B6-Phage S. spp. 1504 S. m. U-01 S. m. RSA4 RSA4-Phage	850 * AATGCCTTTATCC. TCG.A. G.A G.A G.A	860 * AGTCAGCGGAC C.T .AAAT .AAAT .AAAT .CA	870 * CGGAACAGGCT TAAG.A T T	880 * TGGTACTACCT 	890 * TCAAACCAGAC TGAT GAT TGAT TGAT	900 * GGAACACTGO 	910 * GCAGACAGGC A. A.AA A. A.AA A.	920 * CAGAATTCACJ G T T.GT G.T	930 * LGTAGAGCCA CT CT 'AA.T TT	940 * GATGGCTTGAT . A. . A. . C. T. . A.	950 * ITACAGTAAA TACT .A	ATAA GG		

Abb. 3.24: Alignment der *lytA*-Sequenzen von *S. mitis* U-O1, *S. mitis* RSA4 und des RSA4-Prophagen mit der "typischen" Sequenz von *S. pneumoniae* R6. Zum Vergleich ist auch die "typische" *lytA*-Sequenz des *S. mitis* B6-Prophagen sowie die "atypische" Sequenz des Streptokokken-Stammes 1504 gezeigt. Zur R6-Sequenz identische Nukleotid-Positionen sind als Punkte dargestellt. Variationen der Nukleotid-Sequenzen im Vergleich zu R6 sind gezeigt. Striche bedeuten im Falle des RSA4-Phagen, dass die vollständige Sequenzinformation am 5´-Ende nicht vor liegt. Zahlen geben die entsprechenden Nukleotid-Positionen an. Die für "atypische" *lytA*-Sequenzen charakteristische 6 bp-Deletion (Position 864-869) ist ebenfalls durch Striche gekennzeichnet. *S. p. = S. pneumoniae*; *S.* spp. = *Streptococcus* Spezies; *S. m. = S. mitis*.

Ein Sequenz-Vergleich (Abb. 3.24) zeigt, dass es sich bei *lytA* aus *S. mitis* U-O1 und *S. mitis* RSA4 um die "atypische" 951 bp-Version handelt: An den Nukleotid-Positionen 864 bis 869 fehlen im Vergleich zur 957 bp langen "typischen" *lytA*-Sequenz sechs Basenpaare. Im Gegensatz dazu besitzt der temperente Prophage aus *S. mitis* RSA4 ebenso wie der *S. mitis* B6-Phage "typische" *lytA*-Allele ohne die 6 bp-Deletion. Insgesamt weisen die *lytA*-Gene von *S. mitis* U-O1 und RSA4 81 % Identität zur *S. pneumoniae* R6-Sequenz auf, während das *lytA* des RSA4-Prophagen zu 85 % identisch ist.

4. Diskussion

In der vorliegenden Arbeit wurden vergleichende Genom-Hybridisierungen ("Comparative Genome Hybridizations", CGH) dazu genutzt, eine angesichts ihres Herkunftlandes und Resistenzprofils heterogene Sammlung von oralen *S. mitis*- und *S. oralis*-Isolaten miteinander zu vergleichen. Hauptziel war es, Hinweise über die Zusammensetzung des Genpools zu erlangen, der verwandten Pathogenen wie *S. pneumoniae* zum Erwerb von Virulenz- und Resistenz-Determinanten zur Verfügung steht. Ein Großteil der in dieser Arbeit untersuchten Stämme war zu einem früheren Zeitpunkt bereits anhand von MLST-Analysen genotypisch charakterisiert worden (Chi *et al.*, 2007). Die CGH wurden zum einen mittels des *S. mitis* B6-Chips und zum anderen mittels des *S. pneumoniae* R6/TIGR4-Chips durchgeführt. Der erste Teil der Diskussion befasst sich mit der genomischen Diversität der untersuchten Stämme und der Identifizierung eines gemeinsamen "Coregenoms". Zudem wird speziell auf die Gene eingegangen, die das Pathogen *S. pneumoniae* zum heutigen Standpunkt klar von den kommensalen Streptokokken unterscheiden beziehungsweise die Gene, die im Laufe der Evolution erworben wurden. Zu letzteren zählt vermutlich auch die im zweiten Teil der Diskussion zu besprechende *lytA/ply* -"Pathogenitätsinsel", die sowohl in *S. mitis* als auch in *S. pneumoniae* auftritt.

4.1 Genomische Diversität der oralen Streptokokken

Die nah verwandten Spezies *S. pneumoniae*, *S. mitis* und *S. oralis* sind geprägt von einer Historie der taxonomischen Verwechslung. Etliche Studien belegen, dass zwischen Mitgliedern dieses Zweiges homologe Rekombinationsereignisse vorkommen (Dowson *et al.*, 1989; Laible *et al.*, 1991; Hakenbeck *et al.*, 2001; Dowson *et al.*, 1993; Stanhope *et al.*, 2005) und zu nicht eindeutig differenzierbaren, sogenannten "Fuzzy"-Spezies führen können (Hanage *et al.*, 2005). Speziell in der klinischen Diagnostik ist die korrekte Identifizierung der *Streptococcus*-Arten von Interesse. Inzwischen hat sich von sämtlichen genotypischen Methoden zur Klassifizierung von nah verwandten oralen Streptokokken-Isolaten die MLST-Analyse als besonders geeignet erwiesen (Enright & Spratt, 1998; Chi *et al.*, 2007; Bishop *et al.*, 2009; Leegaard *et al.*, 2010; Simões *et al.*, 2010).

Auch von den *S. mitis*- und *S. oralis*-Stämmen, deren genomische Varianz in der vorliegenden Arbeit analysiert wurde, lagen MLST-Daten vor (Chi *et al.*, 2007). Sowohl die Ergebnisse der vergleichenden Genom-Hybridisierung anhand des *S. mitis* B6- als auch des *S. pneumoniae* R6/TIGR4-Biochips zeigen eine eindeutige Einteilung der Stämme in *S. mitis* und *S. oralis* (Abb. 3.12 und Abb. 3.14). Die Klassifizierung der Arten stimmt hierbei in allen Fällen mit den Resultaten der MLST-Studien überein (Abb. 3.2) und zeigt, dass sowohl MLST-Analysen als auch CGH als geeignete Methoden zur Differenzierung zwischen *S. mitis*, *S. oralis* und *S. pneumoniae* eingesetzt werden können. Unterschiede zwischen MLST und CGH traten bei den drei *S. oralis*-Stämmen S476, S621 und S711 auf, die laut MLST-Analysen einer klonalen Gruppe angehören (Abb. 3.2). Entsprechend der CGH unterscheidet sich allerdings S711 vor allem bei Verwendung des *S. mitis* B6-Chips stark von den beiden anderen Stämmen (Abb. 3.12). Für eine Klärung müssten die MLST-Daten eventuell überprüft werden; im Detail können solche Unterschiede letztendlich nur über Genom-Sequenzierungen getroffen werden.

Die globalen Vergleiche der kommensalen Streptokokken-Genome untereinander beziehungsweise mit *S. pneumoniae* R6/TIGR4 bestätigen nochmals das beobachtete hohe Maß an Variation: Innerhalb der Art *S. mitis* liegen die Unterschiede bei 13 bis 25 % (87 bis 75 % positive Gene, Abb. 4.1), *S. pneumoniae* unterscheidet sich in 28 bis 55 % von *S. mitis* (72 bis 45 % positive Gene, Abb. 4.1 und Abb. 4.2), gefolgt von *S. oralis*, welche 32 bis 63 % Unterschied zu *S. mitis* (68 bis 37 % positive Gene, Abb. 4.1) beziehungsweise 59 bis 78 % Unterschied zu *S. pneumoniae* aufweisen (41 bis 22 % positive Gene, Abb. 4.2).

Abb. 4.1: Genomische Variation der *S. oralis-*, *S. mitis-* und *S. pneumoniae-*Stämme bei Verwendung des *S. mitis* B6-Chips. Die Prozentzahl an Genen mit hoher Identität zum *S. mitis* B6-Genom (abzüglich mobiler Elemente und RNA-kodierender Gene) ist angezeigt. Die gestrichelte Linie deutet den fließenden Übergang zwischen den drei *Streptococcus-*Arten an. *S. mitis* = gelb, *S. pneumoniae* = rot, *S. oralis* = grün.

Abb. 4.2: Genomische Variation der *S. oralis*- und *S. mitis*-Stämme bei Verwendung des *S. pneumoniae* R6/TIGR4-Chips. Die Prozentzahl an Genen mit hoher Identität zum *S. pneumoniae* R6/TIGR4-Genom (abzüglich mobiler Elemente und RNA-kodierender Gene) ist angezeigt. Die gestrichelte Linie deutet den fließenden Übergang zwischen den Arten an. *S. mitis* = gelb, *S. oralis* = grün.

Diese Ergebnisse unterstützen die These, dass es zwischen den beiden kommensalen Spezies und S. pneumoniae einen fließenden Übergang gibt und eine klare Art-Grenze nicht gegeben ist (Hakenbeck et al., 2001). Ebenfalls konnte jetzt gezeigt werden, dass die genomische Variation zwischen individuellen S. mitis- beziehungsweise S. oralis-Stämmen nicht vom genetischen Abstand zu S. mitis B6 oder S. pneumoniae abhängig ist, der über MLST-Analyse generiert wurde (Abb. 3.2, Abb. 3.12 und Abb. 3.14) und auch nicht mit der geographischen Herkunft der Isolate in Zusammenhang gebracht werden kann (Abschnitt 2.1.1, Abb. 3.12 und Abb. 3.14). Häufige Gentransfer-Ereignisse gelten als Ursache für die genomische Varianz innerhalb dieser transformierbaren Spezies (Fraser et al., 2007; Hanage et al., 2009). Dadurch kann es auch innerhalb der Mitis-Gruppe gelegentlich zum horizontalen Gentransfer zwischen zwei Arten (Hanage et al., 2009) kommen, was die exakte Spezifizierung der Streptokokken zusätzlich erschwert. Dass die inter-artliche Ausbreitung eines Gens über Kontinente hinweg möglich ist, wurde eindrucksvoll am Beispiel einer Familie an Mosaik-PBP2x beschrieben, die sowohl im S. pneumoniae- als auch im S. mitis- und S. oralis-Cluster auftritt (Chi et al., 2007). Solche Ereignisse sind für die Entstehung neuer Resistenz- und Virulenz-Phänotypen mitverantwortlich und haben erheblichen Einfluss auf die bakterielle Evolution.

Auf konkrete, die genomische Diversität der oralen Streptokokken betreffende Beispiele wird in den Kapiteln 4.3 und 4.4 näher eingegangen.

4.2 Gemeinsame "Kerngene" der oralen Streptokokken

Das in dieser Arbeit ermittelte "Kerngenom" der drei untersuchten Streptokokken-Spezies besteht aus insgesamt 386 Genen. Darunter fallen neben etlichen für den Grundstoffwechsel der Bakterienzelle relevanten Genen interessanterweise auch eine Reihe von nachgewiesenen S. pneumoniae-Virulenzfaktoren (Tab. 3.5). Zu nennen sind die Zelloberflächenproteine PsaA (smi_0634), PavA (smi_0967), Enolase (smi_1159) und GADPH (smi_0232) (Bergmann & Hammerschmidt, 2006) sowie die Superoxid-Dismutase SodA (smi_0817; Yesilkaya et al., 2000), die Pyruvat-Oxidase SpxB (smi 1431; Spellerberg et al., 1996) und die NADH-Oxidase Nox (smi 1390; Auzat et al., 1999). Diese Virulenzdeterminanten repäsentieren vermutlich das für die erfolgreiche Kolonisierung des Wirtes notwendige minimale Set an Genen und scheinen auch im Falle der kommensalen Streptokokken für die Interaktion mit der Wirtszelle erforderlich zu sein. Dennoch reichen die genannten Gene anscheinend nicht aus, um Krankheiten bei den kommensalen S. mitis und S. oralis auszulösen. Diese sind – wie auch aus einer Reihe weiterer Studien bekannt – durchaus im Besitz einiger Virulenzfaktoren (Hakenbeck et al., 2001; Jefferies et al., 2007; Kilian et al., 2008; Denapaite et al., 2010; Leegaard et al., 2010), verursachen jedoch im Gegensatz zu S. pneumoniae in der Regel keine Erkrankungen. Letztendlich resultiert vermutlich erst das Zusammenspiel mehrerer unterschiedlicher Virulenzdeterminanten in einem pathogenen Phänotyp, wie wir ihn von S. pneumoniae kennen. Gerade die Pneumokokken-Virulenzgene erschienen anfänglich zur Diskriminierung zwischen S. pneumoniae und den anderen viridans Streptokokken geeignet, sodass beispielsweise Gene wie psaA (Morisson et al., 2000) und sodA (Kawamura et al., 1999) bei molekularen Detektionsmethoden auf PCR-Basis als Target verwendet wurden. Wie die jetzige Studie jedoch bestätigt, besitzen auch die nahe verwandte Arten S. mitis und S. oralis Homologe der S. pneumoniae-Virulenzdeterminanten, die zum Teil sogar dem hier identifizierten Streptokokken-"Kerngenom" angehören (Tab. 3.5). Neben den zu den aufgeführten Streptokokken-"Coregenen" gehörenden Virulenzfaktoren existieren einige weitere in die Pathogenität von S. pneumoniae involvierte Gene, die vereinzelt in S. mitis oder S. oralis auftreten und zu einer Modulation des Pathogenitätspotenzials der jeweiligen Stämme beitragen können. Diese werden in Abschnitt 4.3 im Detail besprochen.

Bei Verwendung des *S. mitis* B6-Chips konnte neben diesem "Gesamt-Kerngenom" der 22 untersuchten oralen Streptokokken eine erste Analyse des *S. mitis*-"Kerngenoms" durchgeführt werden (Abschnitt 3.2.3). Dieses beinhaltet insgesamt 972 Gene (Tab. 7.2), von denen bemerkenswerterweise 911 (94 %) ebenfalls in *S. pneumoniae* R6 vorhanden sind. Die Ergebnisse bestätigen somit die in Abb. 4.3 gezeigte sehr nahe Verwandtschaft dieser beiden Spezies, der auch in anderen Analysen belegt wurde (Chi *et al.*, 2007; Kilian *et al.*, 2008; Bishop *et al.*, 2009; Denapaite *et al.*, 2010).

Abb. 4.3: Genetische Verwandtschaft von *S. pneumoniae* und *S. mitis* (aus Denapaite *et al.*, 2010). Der dargestellte phylogenetische Baum basiert auf MLST-Analysen (Chi *et al.*, 2007). Die Zahlen 1 bis 4 kennzeichnen die vier ermittelten *S. mitis*-Subgruppen. Einzelne *S. pneumoniae*- beziehungsweise *S. mitis*-Stämme sind angegeben und durch schwarze Punkte hervorgehoben.

Im Gegensatz dazu unterscheidet sich *S. oralis* wesentlich mehr von *S. mitis* (Kilian *et al.*, 2008; Do *et al.*, 2009), was durch die CGH-Analysen nochmals verdeutlicht wurde. Von den *S. mitis/S. pneumoniae* gemeinsamen 911 Genen sind weniger als die Hälfte laut CGH bei *S. oralis* nachweisbar (Tab. 7.4), und von dem *S. mitis-*"Kerngenom" hybridisierten nur 41 % mit allen *S. oralis*. Bei all diesen Berechnungen muss allerdings beachtet werden, dass lediglich nicht-variable, hochkonservierte Gene mittels Microarray-Technologie als "Kerngene" definiert wurden. Möglicherweise gehören weit mehr Gene zum in dieser Arbeit identifizierten *Streptococcus* spp.- "Kerngenom", blieben aber aufgrund ihrer Varianz unerkannt.

4.3 Horizontaler Gentransfer innerhalb der Gattung *Streptococcus* und die Rolle bei der Evolution von *S. pneumoniae*

4.3.1 Mobile Elemente, Antibiotika-Resistenzgene und Phagen-verwandte Gen-Cluster

Der zu den CGH-Analysen verwendete Stamm S. mitis B6 stellt ein eindrucksvolles Beispiel für Genom-Modifikation durch den Erwerb von Genen und Gen-Clustern aus anderen Quellen dar (Denapaite et al., 2010). Zu nennen sind hierbei mobile Elemente wie das für die Tetracyclin-Resistenz verantwortliche konjugative Transposon Tn5801 (Abschnitt 3.4.1), das Aminoglykosid-Resistenz-Cluster (Abschnitt 3.4.3) sowie die große Zahl an Phagen-verwandten Gen-Clustern (Abschnitt 3.4.2). Tn5801 wurde im Jahre 2001 in Staphylococcus aureus Mu50 beschrieben (Kuroda et al., 2001). Mit Sequenzierung des S. mitis B6-Genoms wurde erstmals das Vorkommen dieses Elements in einem Streptococcus-Stamm bekannt (Denapaite et al., 2010). In S. mitis B6 hat sich Tn5801 innerhalb einer 20 bp-Sequenz downstream des guaA-Gens integriert, welches für eine GMP-Synthase kodiert. In allen bisher sequenzierten Pneumokokken-Genomen ist diese Zielsequenz nicht vorhanden, was möglicherweise eine Erklärung für das Fehlen des Transposons in S. pneumoniae darstellt. Neben S. mitis B6 wurde im Rahmen dieser Arbeit anhand der CGH-Analysen ein weiterer S. mitis-Stamm identifiziert, der große Teile des Tetracyclin-Resistenz-vermittelnden Transposons besitzt (Tab. 3.9). Möglicherweise kann dieses durch Konjugation erworben werden. Wesentlich häufiger ist bei den untersuchten S. mitis- und S. oralis-Stämmen ein Signal nur für das tetM-Gen detektierbar (Tab. 3.9), das bei Pneumokokken meist auf konjugativen Transposons der Tn916 – Tn1545 Familie liegt (Clewell et al., 1995; Croucher et al., 2009).

In keinem der untersuchten Streptokokken detektierbar und daher eine Besonderheit von *S. mitis* B6 scheint das Aminoglykosid-Resistenz-Cluster zu sein, welches homologe Bereiche zu *Clostridium, Enterococcus, Staphylococcus, Bacillus, Abiotrophia* und *Streptococcus saliva-rius* sowie einige IS-Elemente aufweist (Abb. 3.17; Denapaite *et al.*, 2010). In keinem der aktuell veröffentlichten mikrobiellen Genome treten die vier in die Aminoglykosid-Resistenz involvierten Gene *aphA, sat, aadE* und *aacA-aphD* in der in B6 vorhandenen Konstellation auf. Obwohl *aphA, sat* und *aadE* bereits in viridans Streptokokken beschrieben sind (Cerdá *et al.*, 2007), konnte bei den CGH-Analysen mit den oralen Streptokokken keine Ähnlichkeit zu diesen Genen festgestellt werden (Tab. 3.13). Allerdings konnten aus einem *S. aureus*-Isolat die drei Gene *aacA-aphD* sowie *aphA* und *aadE* mittels PCR amplifiziert werden (Fatholahzadeh *et al.*, 2009; Yadegar *et al.*, 2009), wobei der genomische Kontext nicht geklärt ist.

Neben dem Prophagen ΦB6 befinden sich im *S. mitis* B6-Genom sieben weitere Phagenverwandte Cluster, von denen sechs mit vollständigen oder degenerierten Integrasen beziehungsweise Rekombinasen assoziiert sind (Denapaite *et al.*, 2010). Keines der Cluster enthält Paraloge möglicher Virulenzgene, wie es aus *S. aureus* bekannt ist (Baba *et al.*, 2008). Bei den durchgeführten Genom-Vergleichen wurden vorwiegend Mitis-Stämme identifiziert, die ebenfalls Phagen-Reste ins Genom integriert haben (Tab. 3.12). Es ist denkbar, dass die oralen Streptokokken von einigen Phagen-Produkten profitieren, ähnlich wie es für den temperenten Pneumokokken-Phagen ΦMM1 beschrieben wurde. Der Erwerb von ΦMM1 führte demnach zur verstärkten Adhäsion von *S. pneumoniae* an eukaryotische Wirtszellen (Loeffler & Fischetti, 2006). Generell scheint die Infektion von Pneumokokken- beziehungsweise *S. mitis*-Stämmen durch Bakteriophagen eher vorzukommen als die Infektion von *S. oralis*-Isolaten. In einer Studie wurde für 76 % der klinischen *S. pneumoniae*-Isolate gezeigt, dass sie im Besitz eines Prophagen beziehungsweise von Phagen-Überbleibseln sind (Ramirez *et al.*, 1999). Zudem liegen Sequenzanalysen von Phagen-infizierten *S. mitis*-Stämmen vor (Romero *et al.*, 2004; Denapaite *et al.*, 2010). Ein Phagen-infiziertes *S. oralis*-Isolat ist bislang nicht beschrieben. Interessanterweise sind im Genom von *S. mitis* B6 fünf neue, noch nicht in anderen Streptokokken-Arten beschriebene IS-Elemente vorhanden (Denapaite *et al.*, 2010): ISSmi1 bis ISSmi5. Allerdings haben die CGH gezeigt, dass ISSmi2 bis ISSmi4 durchaus im Genom

einiger weniger *S. mitis*-Stämme und in keinem *S. oralis*-Stamm lokalisiert sind (Tab. 3.8). Das mit 43 Kopien in sehr großer Zahl vorliegende ISSmi1 tritt in keinem der oralen Teststämme auf (Tab. 3.8) und wurde lediglich einmal in *S. mitis* NCTC12261 gefunden (Denapaite *et al.*, 2010). Dies lässt vermuten, dass die Ausbreitung von ISSmi1 während der Evolution des *S. mitis* B6-Stammes stattgefunden hat.

Die Evolution der β-Laktam-Resistenz-vermittelnden Mosaik-*pbp*-Gene stellt ein Paradebeispiel für horizontalen Gentransfer dar und ist gut untersucht (Hakenbeck, 1999; Chi et al., 2007). Drei der sechs PBP aus S. mitis B6 besitzen im Vergleich zu den PBP Penicillin-sensitiver S. pneumoniae-Isolate Mosaikstrukturen: PBP1a, PBP2x und PBP2b. Auch PBP1b ist mit 25 % Unterschied auf Nukleotid-Ebene stark verändert (Hakenbeck et al., 1998). Im Gegensatz dazu unterscheiden sich deren flankierende Regionen, sowie pbp2a und pbp3 lediglich in 2 bis 10 % von den entsprechenden S. pneumoniae-Sequenzen. Die einzige Ausnahme bildet das ftsL-Gen upstream von pbp2x, welches 23 % Unterschied zur S. pneumoniae-Sequenz aufweist (Denapaite et al., 2010). Über zwei Drittel der Teststämme zeigen große Ähnlichkeit zum B6pbp2x (Tab. 3.14), welches zu einer Hauptfamilie von Mosaik-pbp2x zählt, die in Streptococcus spp. vorkommt (Abschnitt 1.3.2; Chi et al., 2007). Sehr ähnliche Sequenzen treten in den Mosaikblöcken dieser PBP2x-Familie resistenter Stämme auf. Diese Sequenzen lassen sich von PBP2x sensitiver S. mitis-Isolate ableiten. Des Weiteren treten innerhalb der Oralis-Gruppe signifikante Signale bezüglich des B6-pbp2b-Oligos auf, innerhalb der Mitis-Gruppe sind vereinzelt für jedes pbp-Oligonukleotid positive Signale zu finden (Tab. 3.14). Mit großer Wahrscheinlichkeit sind einige Mosaik-PBP der kommensalen, resistenten Teststämme, einschließlich

S. mitis B6, das Ergebnis von lateralen Gentransfer-Ereignissen, die beim Erwerb der Penicillin-Resistenz zustande kamen.

4.3.2 Virulenz-Gene

Eine wichtige Rolle bei der Virulenz von *S. pneumoniae* wurde den CBP zugewiesen (Cundell *et al.*, 1995), was gleichzeitig auch die Bedeutung der Cholin-haltigen Teichonsäuren unterstreicht (Abschnitt 1.2). Mehrere Operons sind in den Cholin-Metabolismus von Pneumokokken involviert: der *lic1*- und der *lic2*-Locus, die beide für das Bestücken der Teichonsäuren mit Cholin verantwortlich sind (Damjanovic *et al.*, 2007) sowie der *lic3*-Locus (Abb. 3.18). Diese Operons konnten auch in *S. mitis* B6 (Denapaite *et al.*, 2010) und weitestgehend in den untersuchten Mitis-Isolaten nachgewiesen werden (Tab. 3.17). Das weist darauf hin, dass Cholin in der Zellwand dieser Isolate vorhanden ist. Aufgrund der etwas anderen Organisation des *lic3*-Operons sowie des Fehlens des *lic2*-Locus (Abb. 3.18; Tab. 3.17; Abt. Mikrobiologie, unveröffentlicht; Kharat *et al.*, 2008) ist zumindest im Fall einiger *S. oralis* zu vermuten, dass sowohl Cholin-haltige als auch Teichonsäuren ohne Cholin über die Cytoplasmamembran transportiert werden können. Im Gegensatz zu *S. pneumoniae* ist bei einigen *S. oralis* somit ein Cholinunabhängiges Wachstum möglich (Horne & Tomasz, 1993).

Aufgrund der Tatsache, dass Cholin sowohl in der Zellwand von S. oralis als auch von S. mitis auftritt, ist die Entdeckung von CBP in diesen Spezies nicht sonderlich überraschend (Ronda et al., 1991; Moscoso et al., 2005; Hakenbeck et al., 2009; Denapaite et al., 2010). Alle in dieser Arbeit untersuchten oralen Streptokokken sind laut CGH-Analysen im Besitz von CBP (Tab. 3.15 und Tab. 3.16). Die Oligonukleotide wurden speziell so ausgewählt, dass sie spezifisch für die variablen Regionen der cbp-Gene sind und nicht in den repetitiven Sequenzen liegen, die für die Cholin-Bindedomäne kodieren. Die beobachteten hohen Identitäten in den variablen Bereichen der CBP-Homologe weisen darauf hin, dass die Funktionen dieser CBP auch in den Kommensalen gut konserviert sind und sich somit nicht im Zusammenhang mit der Pathogenese von S. pneumoniae entwickelt haben. In S. mitis liegen in vier Fällen LytA-Homologe vor (Tab. 3.15 und Tab. 3.16), die nachweislich bei der Hälfte der betroffenen Stämme – ähnlich wie im Falle des Referenzstammes S. mitis B6 – Phagen-assoziiert sind (Romero et al., 2005; Denapaite et al., 2010). Zu nennen sind hier die Vertreter S. mitis U-O8 (Romero et al., 2005) und S. mitis RSA4 (Abschnitt 3.4.2; Abb. 3.22). Neben LytA konnten bei keinem der Oralis-Stämme Homologien zu den Zellwand-Hydrolasen LytB, LytC, LytD und CbpD festgestellt werden (Tab. 3.15 und Tab. 3.16). Eine Ausnahme stellt S. oralis U-O5 dar, der laut Microarray-Analysen ein positives Signal bezüglich des S. mitis B6-CbpD-Oligos zeigt (Tab. 3.15). Die vollständige Genom-Sequenzierung des Stammes *S. oralis* U-O5 ergab, dass dieser sogar zwei CbpD-Homologe und zudem ein LytB-Homolog besitzt (Hakenbeck, unveröffentlicht).

Eine Besonderheit des pathogenen Bakteriums S. pneumoniae scheinen die drei CBP PspA, PspC und PcpA zu sein. Für diese drei CBP wurde nachgewiesen, dass sie eine wichtige Rolle bei der Virulenz von S. pneumoniae spielen (Ren et al., 2003; Hammerschmidt et al., 1999; Kerr et al., 2006; Zhang et al., 2000; Hammerschmidt et al., 1997; Dave et al., 2001; Jarva et al., 2002). Keines der untersuchten kommensalen Isolate zeigt positive Signale hinsichtlich der genannten CBP (Tab. 3.16), was durch zahlreiche Studien an weiteren Mitgliedern der Mitis- und Oralis-Gruppe bestätigt wird (Hakenbeck et al., 2001; Leegaard et al., 2010; Simões et al., 2010; Denapaite et al., 2010). Es liegen mehrere Hinweise vor, dass diese Gene in S. pneumoniae eingebracht wurden und sich dann weiter entwickelt haben. Beispielsweise grenzt das pcpA-Gen in S. pneumoniae an ein IS1318-Element an, einschließlich degeneriertem orfA-Gen. In S. mitis B6 fehlt pcpA und IS1318 ist intakt (Hakenbeck et al., 2009). Zudem findet man in mehreren S. pneumoniae-Stämmen IS-Elemente, die das pspC-Gen flankieren (lannelli et al., 2002). pspC und dessen benachbarte Gene ersetzen in S. pneumoniae eine Region, die in S. mitis (Denapaite et al., 2010) stark konserviert ist. Ähnliches wurde bezüglich der pspA-Region von S. pneumoniae festgestellt (Hollingshead et al., 2000; Hakenbeck et al., 2009). Folglich kann im Fall der Pneumokokken von einem Erwerb der pcpA-, pspC-und pspA-Region über Gentransfer ausgegangen werden. Generell wird bei der Evolution von pathogenen Mikroorganismen der sukzessive Import von Virulenzgenen aus anderen Quellen als wahrscheinlich angesehen (Raskin et al., 2006)

Ein *S. mitis* B6-spezifisches CBP scheint Cbp1 zu sein. Keines der untersuchten Streptokokken-Isolate zeigt Homologien zu diesem CBP (Tab. 3.15). Interessanterweise liegen starke Ähnlichkeiten zwischen den C-terminalen Cholin-Bindedomänen von PcpA und PspA sowie Cbp1 vor (Denapaite *et al.*, 2010), was auf einen evolutionären Zusammenhang dieser CBP hindeutet.

Neben den CBP kommen in *S. pneumoniae* eine Reihe von Virulenz-relevanten LPxTG-Proteinen vor. Darunter sind die Neuraminidase NanA (King *et al.*, 2004), die Immunoglobulin A1-Protease IgA (Weiser *et al.*, 2003) sowie die Hyaluronidase HysA (Chapuy-Regaud *et al.*, 2003). NanA-Homologe wurden auch in *S. mitis* B6 (Denapaite *et al.*, 2010) und anhand der durchgeführten CGH-Analysen in zwei weiteren Isolaten der Mitis-Gruppe gefunden (Tab. 3.18). Für das in Pneumokokken sehr stark variierende *nanA*-Gen wurde – ähnlich wie für die *pbp*-Gene – gezeigt, dass sie unter anderem durch Rekombination mit oraler Streptokokken-DNA entstanden sind (King *et al.*, 2005). Es haben Rekombinations-Ereignisse mit mehreren Donor-Stämmen stattgefunden, wovon es sich bei einem nachweislich um *S. oralis* handelt (King *et al.*, 2005). In der vorliegenden Arbeit konnte kein *S. oralis*-Stamm identifiziert werden, der positive Signale hinsichtlich des *nanA*-Oligonukleotids aufweist. IgA-Homologe treten in allen untersuchten *S. oralis*-Stämmen sowie bei einigen Mitgliedern der Mitis-Gruppe auf (Tab. 3.19). Diese Erkenntnis deckt sich mit vorherigen Studien, in denen bei über 50 % der *S. mitis*-Stämme IgA-Aktivität sowie *iga*-Gene nachgewiesen wurden (Kilian *et al.*, 2008; Simões *et al.*, 2010; Leegard *et al.*, 2010). Auch für *S. oralis* wurde bereits das Vorhandensein von IgA-Aktivität beziehungsweise IgA-Homologen bestätigt (Kilian *et al.*, 2008; Hakenbeck *et al.*, 2001), allerdings scheint das *iga*-Gen an einer anderen Stelle im Genom lokalisiert zu sein als im Falle von *S. pneumoniae* und *S. mitis* (Kilian *et al.*, 2008). Im Gegensatz dazu befinden sich die *iga*-Gene von *S. pneumoniae* und – soweit bekannt – von *S. mitis* im selben genetischen Kontext, abgesehen von einem gelegentlich zusätzlich auftretenden *iga*-Paralog namens *zmpD* (Kilian *et al.*, 2008).

In keinem der untersuchten oralen Streptokokken konnten Hyaluronidase-Homologe gefunden werden (Tab. 3.19), was durch bisherige Berichte über fehlende Hyaluronidase-Aktivitäten in *S. mitis* (Kilian *et al.*, 2008), CGH-Analysen anderer Arbeitsgruppen (Leegaard *et al.*, 2010; Simões *et al.*, 2010) sowie die Genomsequenz von *S. mitis* B6 (Denapaite *et al.*, 2010) gestützt wird. Deshalb kann bei *hysA* von einem entscheidenden Faktor für die Pathogenität von *S. pneumoniae* ausgegangen werden. Das *hysA*-Gen liegt in *S. pneumoniae* auf einer großen "Pathogenitätsinsel", die an ein IS200-ähnliches Gen einschließlich vieler in den Zucker-Stoffwechsel involvierter Gene angrenzt. Die Hyaluronidase begünstigt die Ausbreitung der Pneumokokken im Wirt, indem sie die im Bindegewebe und der extrazellulären Matrix lokalisierte Hyaluronsäure abbaut (Linker *et al.*, 1955).

Ein weiteres mögliches Virulenzgen, welches Teil des akzessorischen Genoms von *S. pneumoniae* ist, stellt das Serin-reiche LPxTG-Protein dar (Tettelin *et al.*, 2001). *S. mitis* B6 besitzt ebenfalls dieses hier MonX genannte Protein (Denapaite *et al.*, 2010), zudem wurde es in über der Hälfte der untersuchten *S. mitis*-Stämme gefunden (Tab. 3.18).

Vereinzelt zeigen einige Stämme Homologien zu *piuA* (Tab. 3.20), Teil des in *S. pneumoniae* beschriebenen, offenbar Virulenz-assoziierten Eisen-Aufnahme-Systems PiaA/PiuA (Brown *et al.*, 2001; Jomaa *et al.*, 2005). Im Gegensatz dazu ist *piaA* vermutlich ein Pneumokokkenspezifisches Gen, das auf einer sogenannten "Pathogenitätsinsel" liegt und dort zu 100 % konserviert ist (Brown *et al.*, 2001; Whalan *et al.*, 2006). Die *piuA*-Allele von *S. mitis* und *S. oralis* weisen über 70 % Nukleotid-Identität zu den entsprechenden *S. pneumoniae*-Allelen auf (Whalan *et al.*, 2006), sodass hier homologe Rekombinationsereignisse durchaus denkbar sind. Die CGH-Analysen deuten ebenfalls bei einzelnen *S. mitis*- und *S. oralis*-Isolaten auf das Vorhandensein von Genen für eine Polysaccharid-Kapsel hin (Tab. 3.20). Dies wurde bereits für eine Reihe von oralen Streptokokken gezeigt (Bergström *et al.*, 2000; Yoshida *et al.*, 2006; Kilian *et al.*, 2008) und – ähnlich wie bei den PBP und bestimmten Virulenzdeterminanten – werden orale Streptokokken als Donor-Stämme für die Evolution von Kapselgenen diskutiert (Varvio *et al.*, 2009). Zusammenfassend lässt sich sagen, dass mit der Seguenzierung des S. mitis B6-Genoms die Charakterisierung eines S. mitis-Stammes gelungen ist, der etliche Gene und Gen-Cluster aus anderen Quellen erworben hat (Denapaite et al., 2010). Dies unterstreicht nochmals die Tatsache, dass Bakterien auf verschiedene Arten untereinander DNA austauschen, was letztendlich zu Genom-Modifikationen führt. Anhand der CGH-Analysen konnten Gene identifiziert werden, die in S. mitis B6 fehlen, aber vereinzelt in den übrigen Kommensalen und S. pneumoniae auftreten (Tab. 7.14). Dazu zählen unter anderem die oben besprochene Immunoglobulin A1-Protease IgA, das Eisen-Aufname-System PiaA/PiuA sowie Teile des Kapsel-Clusters. Dennoch sind konkrete Rückschlüsse auf die Evolution von S. pneumoniae an dieser Stelle nicht möglich. Folgende Theorien bezüglich der Evolutionsgeschichte von S. pneumoniae wurden bisher vorgeschlagen: Kilian und Mitarbeiter gehen davon aus, dass es sich bei dem Vorfahren der Pneumoniae-Mitis-Pseudopneumoniae-Gruppe um ein Pneumokokken-ähnliches Bakterium gehandelt hat, welches alle Virulenz-assoziierten Eigenschaften besaß. Die kommensalen Streptokokken haben sich anschließend aus diesem Pathogen durch Genom-Reduktion entwickelt, was das vereinzelte Vorkommen von S. pneumoniae-Virulenzgenen bei den Kommensalen erklären würde (Kilian et al., 2008). Allerdings konnte diese These nach Auflösung der vollständigen Genom-Sequenz des S. mitis B6-Stammes und Vergleich mit den Sequenzen von S. pneumoniae R6 sowie TIGR4 nicht bestätigt werden: In S. mitis B6 sind wesentlich weniger verkürzte Gene zu finden als in S. pneumoniae. Zudem sind in S. pneumoniae R6 und TIGR4 Überbleibsel von B6-Homologen zu finden (Denapaite et al., 2010). Diese Entdeckung stützt wiederum die Theorie, dass es sich bei S. pneumoniae um einen spezialisierten S. mitis-Klon handelt. Mittels MLST-Analysen erstellte phylogenetische Stammbäume ergaben, dass das S. mitis-Cluster aus vielen verschiedenen Abstammungslinien besteht, während die Pneumokokken-Stämme ein enges Cluster aus klonalen Gruppen bilden (Abb. 4.3; Chi et al., 2007; Bishop et al., 2009). Jede einzelne dieser Abstammungslinien ist von einem möglichen Vorfahr so entfernt, wie es bei S. pneumoniae der Fall ist. Neben diesen MLST-Analysen zeigen auch die vergleichenden Genom-Hybridisierungen die sehr nahe Verwandtschaft von S. mitis und S. pneumoniae (Abschnitt 4.2), sodass bei S. pneumoniae wahrscheinlich von einem spezialisierten S. mitis-Klon auszugehen ist.

Generell wird angenommen, dass pathogene Bakterien durch den Erwerb von Virulenzgenen aus kommensalen Spezies hervorgegangen sind (Raskin *et al.*, 2006). Gerade bei den natürlicherweise kompetenten Streptokokken führt der Austausch von genetischem Material vermutlich nicht nur zu Mosaik-Genen, sondern sogar zu ganzen Mosaik-Genomen (Chi *et al.*, 2007; Hanage *et al.*, 2005; Hanage *et al.*, 2006). Die beobachtete genomische Diversität der oralen Streptokokken (Abschnitt 4.1) stimmt mit dieser Vorstellung überein.

Nach den durchgeführten CGH konnten einige Pneumokokken-spezifische Gene herausgestellt werden, die mit Virulenz in Zusammenhang gebracht werden. Dazu zählen die Cholin-

Bindeproteine PspA, PspC und PcpA, die Hyaluronidase HysA sowie die PiaA-Komponente des Eisen-Aufnahme-Systems PiaA/PiuA. Da diese Virulenzdeterminanten oftmals von IS-Elementen flankiert werden und häufig auf sogenannten "Pathogenitätsinseln" liegen, kann von einem sukzessivem Import dieser Gene aus anderen Quellen ausgegangen werden, wie es bereits von Raskin und Mitarbeitern für die Evolution von pathogenen Mikroorganismen postuliert wurde (Raskin *et al.*, 2006). Die Tatsache, dass kommensale Streptokokken durchaus Homologe zu einigen *S. pneumoniae*-Virulenzfaktoren besitzen, aber dennoch selten pathogen sind, lässt vermuten, dass Interaktionen zwischen allen in *S. pneumoniae* vorhandenen Virulenzdeterminanten letztendlich Pathogenität bewirken. Eine entscheidende Rolle kommt hiermit sicherlich den besprochenen Pneumokokken-spezifischen Virulenzgenen zugute.

4.4 Evolution von Pathogenitätsfaktoren innerhalb der Gattung Streptococcus am Beispiel der Autolysin/Pneumolysin (*lytA/ply*)-Region

Die Gene für das Autolysin LytA und das Pneumolysin Ply liegen auf dem Genom von S. pneumoniae zirka 7 kb voneinander entfernt und werden von einem 94 bp langen "direct repeat" flankiert. Diese sogenannte "Pathogenitätsinsel" fehlt im S. mitis B6-Genom, dennoch besitzt der Stamm an gleicher Stelle wie S. pneumoniae einmal die genannte 94-bp Sequenzwiederholung (Abb. 3.19; Denapaite et al., 2010). Im Gegensatz zu S. mitis B6 konnten inzwischen einige S. mitis-Stämme identifiziert werden, die ein Pneumolysin-Homolog besitzen (Jefferies et al., 2007). Zudem findet man in einigen Isolaten des Mitis-Clusters sowohl Ply als auch LytA-Homologe (Whatmore et al., 2000; Kearns et al., 2000; Kilian et al., 2008). Dies trifft auch auf zwei Isolate der in dieser Arbeit untersuchten Streptokokken-Sammlung zu (Abschnitt 3.5). Eine ausführliche Sequenzanalyse der lytA/ply-Region dieser Isolate ergab, dass die Region in beiden Mitis-Stämmen vermutlich ähnlich organisiert ist wie in S. pneumoniae R6 (Abb. 3.20 und 3.21). Speziell von S. mitis U-O1 gelang die vollständige Sequenzierung der lytA/ply-Region, während im Fall von S. mitis RSA4 weiterhin bestimmte Sequenzinformationen fehlen (Abb. 3.21). Im U-O1-Stamm wird die Insel ebenfalls von einer 94 bp langen, gleichgerichteten Sequenzwiederholung flankiert, die sich lediglich in wenigen Nukleotiden vom "direct repeat" in S. pneumoniae R6 unterscheidet. Das Gleiche gilt für den Stamm RSA4 (Abb. 3.21 B). In allen Fällen stellt der "direct repeat" wahrscheinlich die Integrationsstelle der lytA/ply-Insel dar. Im Vergleich zu S. pneumoniae R6 fehlt in S. mitis U-O1 zwischen lytA und ply ein etwa 5 kb großes DNA-Fragment, welches in S. pneumoniae für hypothetische Proteine und Transposasen codiert (Abb. 3.20). Möglicherweise spielen diese hypothetischen Proteine neben lytA und ply eine entscheidende Rolle bei der Pathogenität von S. pneumoniae. Für akzessorische genetische Elemente, die Virulenzdeterminanten kodieren, wurde dies schon von Raskin und

Mitarbeitern vorgeschlagen (Raskin et al., 2006). Das IS-Element IS1381 liegt in S. pneumoniae ebenfalls in diesem Bereich und wurde lange Zeit für Pneumokokken-spezifisch gehalten. Allerdings konnte dieses IS-Element inzwischen in mehreren Mitis-Stämmen nachgewiesen werden (Kilian et al., 2008). S. mitis U-O1 scheint IS1381 jedoch nicht im Genom zu enthalten. Zusammenfassend lässt sich sagen, dass die lytA/ply-Insel wahrscheinlich vor der Evolution von S. pneumoniae aus S. mitis vermutlich durch eine Transposition in das S. mitis-Genom gelangt ist. Alle Pneumokokken sind im Besitz der lytA/ply-Region während lediglich einige wenige S. mitis-Isolate diese "Pathogenitätsinsel" in ihrem Genom enthalten (Whatmore et al., 2000; Neeleman et al., 2004; Kearns et al., 2000; Jefferies et al., 2007; Kilian et al., 2008). Das in S. pneumoniae in dieser Region zusätzlich vorhandene 5kb-Fragment spricht für die Evolution von S. pneumoniae aus einem S. mitis-Klon und kann daher als Argument gegen die von Kilian und Mitarbeitern postulierte These angesehen werden (Kilian et al., 2008). An dieser Stelle ebenfalls von Interesse ist die Tatsache, dass bis auf ein bis drei Ausnahmen bisher kein S. oralis-Isolat beschrieben ist, dass im Besitz von LytA- und/oder Ply-Homologen ist (Whatmore et al., 2000; Suzuki et al., 2005; Kilian et al., 2008). Das wird zudem durch die in dieser Arbeit durchgeführten CGH-Analysen bestätigt (Tab. 3.15, Tab. 3.16 und Tab. 3.20). Des Weiteren konnte bislang auch das IS1381-Element in keinem S. oralis nachgewiesen werden (Kilian et al., 2008).

Generell wird angenommen, dass es sich bei LytA um ein Phagen-Derivat handelt. Sequenz-Vergleiche des bakteriellen *lytA*-Gens mit dem *lytA* von Bakteriophagen ergaben, dass zwischen diesen Genen Rekombinations-Ereignisse stattgefunden haben, die zu einer gewissen – wenn auch begrenzten – genetischen Diversität des Streptokokken-*lytA*-Gens geführt haben (Whatmore & Dowson, 1999). Dies wird auch durch das in dieser Arbeit erstellte Nukleotid-Sequenz-Alignment verdeutlicht, in dem vereinzelt *lytA*-Mosaikstrukturen auftreten (Abb. 3.24). Die *lytA*-Gene von *S. mitis* U-O1 und RSA4 weisen 81 % Identität zur *S. pneumoniae* R6-Sequenz auf, während das *lytA* des in RSA4 vorhandenen Prophagen (Abschnitt 3.4.2) zu 85 % identisch ist. Der Ursprung von Ply, welches in den bisher identifizierten *S. mitis* durchaus auch hämolytisch aktiv ist (Whatmore *et al.*, 2000), konnte bislang nicht geklärt werden.

4.5 Ausblick

In der vorliegenden Arbeit wurden globale Genom-Vergleiche von oralen Streptokokken-Isolaten dazu genutzt, einen Eindruck über die genomische Diversität der Stämme zu erlangen. Die dazu verwendeten CGH-Analysen erwiesen sich zur Differenzierung zwischen *S. mitis*, *S. oralis* und *S. pneumoniae* als geeignet und bestätigten ein hohes Maß an genetischer Variation, das sich schon in früheren Arbeiten abzeichnete (Hakenbeck *et al.*, 2001; Hanage *et al.*, 2005; Bishop *et al.*, 2009). Ursache hierfür sind horizontale Gentransfer-Ereignisse innerhalb der Gattung *Streptococcus* (Fraser *et al.*, 2007; Hanage *et al.*, 2009), wobei speziell der Erwerb von Resistenz- und Virulenzdeterminanten im Fokus dieser Arbeit stand. So konnte neben *S. mitis* B6 mit *S. mitis* B5 ein weiterer Tetracyclin-resistenter Stamm identifiziert werden, der im Besitz großer Teile des konjugativen Transposons Tn*5801 (tetM*) zu sein scheint (Tab. 3.9). Lediglich zwei Gene am 5'-Ende von Tn*5801* und das erste Gen downstream von *tetM* weisen laut CGH-Analysen keine Homologien zu *S. mitis* B6 auf. Nachdem die Organisation des 5'-Endes inzwischen im Rahmen einer Diplomarbeit geklärt wurde (Rumm, 2009; Daten unveröffentlicht), wäre des Weiteren die Sequenzierung des unterschiedlichen Bereichs downstram von *tetM* von Interesse. Möglicherweise sind auf dem konjugativen Transposon Tn*5801* aus *S. mitis* B5 weitere Antibiotika-Resistenzdeterminanten lokalisiert.

Mit der Entdeckung, dass die zwei *S. mitis*-Isolate U-O1 und RSA4 im Besitz der Virulenzfaktoren Pneumolysin (Ply) und Autolysin (LytA) sind, war die Basis für die Untersuchung der Evolution dieser Faktoren mittels DNA-Sequenzierung dieser Region geschaffen (Abschnitt 3.5). Von dem Stamm *S. mitis* RSA4, der neben Ply sowohl ein chromosomal kodiertes *lytA*-1als auch ein Prophagen-assoziiertes *lytA*-2-Allel enthält (Abschnitt 3.5), fehlen weiterhin bestimmte Sequenzinformationen innerhalb dieser Region (Abb. 3.21). Diese gilt es zu klären. Zudem könnten weitere beschriebene Stämme des Mitis-Clusters, die im Besitz von *lytA* und *ply* sind (Kilian *et al.*, 2008; Whatmore *et al.*, 2000), zu Studien bezüglich der Evolution der *lytA/ply-*"Pathogenitätsinsel" herangezogen werden.

Im Rahmen dieser Arbeit wurden zwei *S. mitis*-Isolate identifiziert, die zum Prophagen Φ B6 verwandte Gene besitzen: der bereits oben erwähnte RSA4-Stamm und *S. mitis* U-O8 (Abschnitt 3.4.2). In *S. mitis* B6 befindet sich die Integrationsstelle des Phagens innerhalb des *ssbB*-Gens (Denapaite *et al.*, 2010), welches für ein Einzelstrang-DNA-Bindeprotein kodiert. Der temperente Prophage aus *S. mitis* RSA4 hat sich wahrscheinlich innerhalb beziehungsweise in der Nähe des smi_1181-Homologs integriert (Abb. 3.22), das für eine anorganische Polyphosphat ADP/NAD-Kinase kodiert. Es wäre interessant zu sehen, ob die Integrationsstelle des bereits von Romero und Mitarbeitern vorläufig charakterisierten Prophagen aus *S. mitis* U-O8 (Romero *et al.*, 2004) ebenfalls in *ssbB* liegt, oder ob es sich um einen anderen (verwandten) Phagen zu Φ B6 handelt.

Generell wurde durch die in dieser Arbeit durchgeführten CGH-Analysen an oralen Streptokokken-Isolaten eine genetische Plattform geschaffen, die immer wieder zu bestimmten Genbetreffenden Fragestellungen herangezogen werden kann. Hier wäre es durchaus denkbar, weitere CGH-Analysen mit zusätzlichen *Streptococcus*-Stämmen durchzuführen, um beispielsweise die Studien-Ergebnisse angesichts der Größe des ermittelten Streptokokken"Coregenoms" zu festigen (Abschnitt 3.2.3.2 und Abschnitt 4.2). Die so durchgeführten Analysen bieten eine hervorragende Grundlage für die Auswahl von *S. mitis*- und *S. oralis*-Stämmen zur vollständigen Sequenzierung der einzelnen Genome, um eine möglichst große Diversität innerhalb dieser Spezies zu erfassen. Die sogenannten "Next Generation Sequencing"-Methoden (NGS; Bonetta, 2006) machen – im Vergleich zur klassischen Sequenzierung nach Sanger (Sanger *et al.*, 1977) – verhältnismäßig kostengünstige Sequenzierungen in immer kürzerer Zeit möglich und sind zudem aufgrund der optimierten Protokolle für einen hohen Probendurchsatz hervorragend geeignet.

5. Zusammenfassung

Die kommensalen, in der Mundhöhle lebenden Bakterien-Arten *S. mitis* und *S. oralis* zählen zusammen mit dem humanpathogenen Bakterium *S. pneumoniae* zu den Streptokokken der Mitis-Gruppe (Kawamura *et al.*, 1995). Mitglieder dieser phylogenetischen Gruppe besitzen nachweislich die Fähigkeit zum Austausch von genetischem Material (Whatmore *et al.*, 2000; Hakenbeck *et al.*, 2001; King *et al.*, 2005), was durch die natürliche Kompetenz dieser Streptokokken-Spezies begünstigt wird. Das Ergebnis sind Gene mit Mosaikstruktur – ein Indiz für horizontalen Gentransfer. Als Reservoir für solche, in *S. pneumoniae* auftretende Mosaikstrukturen wurde der Genpool der verwandten, kommensalen Streptokokken identifiziert. Demnach werden Resistenz- und Virulenz-determinierende Sequenzen über Gentransfer und homologe Rekombination auf Pneumokokken übertragen (Dowson *et al.*, 1993; Sibold *et al.*, 1994; King *et al.*, 2005; Chi *et al.*, 2007).

Die vorliegende Arbeit befasst sich mit der Spezifizierung von Streptokokken der Mitis-Gruppe. Hierzu wurden mit einer ausgewählten heterogenen Sammlung von oralen S. mitis- und S. oralis-Isolaten vergleichende Genom-Hybridisierungen mittels des kürzlich entwickelten S. mitis B6-Biochips (Denapaite et al., 2010) durchgeführt. Zentraler Aspekt dieser Untersuchungen war die erstmalige Analyse eines gemeinsamen "Kerngenoms" aller untersuchten oralen Streptokokken sowie des S. mitis-"Kerngenoms". Letzteres beinhaltet insgesamt 972 Gene, von denen ein bemerkenswert großer Teil (94 %) auch in S. pneumoniae vorhanden ist. Dies belegt eindeutig die sehr nahe Verwandschaft von S. mitis und S. pneumoniae (Chi et al., 2007; Kilian et al., 2008; Bishop et al., 2009; Denapaite et al., 2010) und stützt die Evolutionstheorie, dass sich S. pneumoniae aus einem spezialisierten S. mitis-Klon entwickelt hat (Denapaite et al., 2010). Das erstmals ermittelte "Gesamt-Kerngenom" von S. mitis, S. pneumoniae und S. oralis ist mit 386 Genen wesentlich kleiner. Wie die vorliegenden Daten demonstrieren, enthält es eine Reihe von nachgewiesenen S. pneumoniae-Virulenzfaktoren. Die Tatsache, dass S. mitis und S. oralis im Gegensatz zu S. pneumoniae meist apathogen sind, suggeriert, dass in S. pneumoniae erst das Zusammenspiel mehrerer unterschiedlicher Virulenzdeterminanten den bekannten, krankheitserregenden Phänotyp bewirkt.

Ein weiteres Ziel war die Analyse der genomischen Varianz der *S. mitis*- und *S. oralis*-Stämme. Neben dem *S. mitis* B6-Chip wurde der *S. pneumoniae* R6/TIGR4-Chip zur vergleichenden Genom-Analyse eingesetzt. Die Ergebnisse dieser globalen Untersuchungen weisen auf eine große genomische Diversität innerhalb der Mitis-Gruppe hin und bestätigen das Fehlen einer klaren Art-Grenze zwischen *S. mitis*, *S. oralis* und *S. pneumoniae* (Hakenbeck *et al.*, 2001). Ursache für diese genomische Varianz sind inner- und inter-artliche Gentransfer-Ereignisse innerhalb dieser transformierbaren Spezies, die neben Antibiotika-Resistenzgenen wie den *pbp* auch bestimmte Virulenzgene betreffen.

Besonderes Interesse galt der Identifizierung von Pneumokokken-spezifischen Virulenzgenen, wobei an dieser Stelle die Cholin-Bindeproteine PspA, PspC und PcpA, die Hyaluronidase HysA sowie die PiaA-Komponente des Eisen-Aufnahme-Systems PiaA/PiuA zu nennen sind. Zum ersten Mal konnten entscheidende, das Pathogenitätspotenzial betreffende Unterschiede zu den meist nicht krankheitserregenden Kommensalen herausgestellt werden.

Einen weiteren wichtigen Punkt der Arbeit bildeten zwei *S. mitis*-Isolate, für die im Rahmen der Microarray-Analysen gezeigt wurde, dass sie im Besitz der Pathogenitätsfaktoren Pneumolysin (Ply) und Autolysin (LytA) sind. Beide Gene wurden lange Zeit für *S. pneumoniae*-spezifisch gehalten, liegen auf dem Genom von *S. pneumoniae* zirka 7 kb voneinander entfernt und werden von einem 94 bp langen "direct repeat" flankiert (Denapaite *et al.*, 2010). Eine ausführliche Sequenzanalyse der *lytA/ply*-Region ergab in beiden Fällen eine genetisch ähnliche Organisation wie in *S. pneumoniae* R6. Zudem konnte gezeigt werden, dass einer der beiden *S. mitis*-Stämme neben dem chromosomal kodierten *lytA* ein zweites Prophagen-assoziiertes *lytA*-Allel besitzt. Die Tatsache, dass im Gegensatz zu *S. mitis* alle Pneumokokken die "Pathogenitäts-insel" in ihrem Genom enthalten, bestätigt die oben besprochene Evolutionstheorie: Die *lytA/ply*-Insel wurde vermutlich vor der Evolution von *S. pneumoniae* aus *S. mitis* erworben, wobei der 94 bp "direct repeat" mit großer Wahrscheinlichkeit die Integrationsstelle darstellt.

6. Literaturverzeichnis

Alam S., Brailsford S.R., Adams S., Allison C., Sheehy E., Zoitopoulos L., Kidd E.A., Beighton D. (2000): Genotypic heterogeneity of *Streptococcus oralis* and distinct aciduric sub-populations in human dental plaque. *Appl Environ Microbiol* **66**(8):3330-6

Andrewes F.W. and Horder J. (1906): A study of the streptococci pathogenic for man. *Lancet* 2: 708-713

Arbique J.C., Poyart C., Trieu-Cuot P., Quesne G., Carvalho M.d.G.S., Steigerwalt A.G., Morey R.E., Jackson D., Davidson R.J., Facklam R.R. (2004): Accuracy of phenotypic and genotypic testing for identification of *Streptococcus pneumoniae* and description of *Streptococcus pseudopneumoniae* sp. *nov. J Clin Microbiol* **42**(10):4686-96

Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. (1990): Current Protocols is Molecular Biology. Green Publishing Associates and Wiley – John Wiley ans Sons, New York

Auzat I., Chapuy-Regaud S., Le Bras G., Dos Santos D., Ogunniyi A. D., Le Thomas I., Garel J. R., Paton J. C. ,Trombe M. C. (1999): The NADH oxidase of *Streptococcus pneumoniae*: its involvement in competence and virulence. *Mol Microbiol* **34**:1018–1028

Avery O.T., MacLeod C.M., McCarty M. (1944): Studies on the chemical nature of the substance inducing transformation of pneumococcal types. *J Exp Med* **79**: 137-158

Baba T., Bae T., Schneewind O., Takeuchi F., Hiramatsu K. (2008): Genome sequence of *Staphylococcus aureus* strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. *J Bacteriol* **190**(1):300-10

Balachandran P., Hollingshead S.K., Paton J.C., Briles D.E. (2001): The autolytic enzyme lytA of *Streptococcus pneumoniae* is not responsible for releasing pneumolysin. *Journal of Bacteriology* **183**(10):3108–3116

Balsalobre L., Ferrándiz M.J., Liñares J., Tubau F., de la Campa A.G. (2003) : Viridans group streptococci are donors in horizontal transfer of topoisomerase IV genes to *Streptococcus pneumoniae*. *Antimicrob Agents Chemother* **47**:2072–81

Bentley R.W., Leigh J.A., Collins M.D. (1991): Intrageneric structure of *Streptococcus* based on comparative analysis of small-subunit rRNA sequences. *Int J Syst Bacteriol* **41**(4):487-94

Bentley S.D., Aanensen D.M., Mavroidi A., Saunders D., Rabbinowitsch E., Collins M., Donohoe K., Harris D., Murphy L., Quail M.A., Samuel G., Skovsted I.C., Kaltoft M.S., Barrell B., Reeves P.R., Parkhill J., Spratt B.G. (2006): Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2(3):e31

Bergmann S., Hammerschmidt S. (2006): Versatility of pneumococcal surface proteins. *Microbiology* **152**:295–303

Bergmann S., Rohde M., Hammerschmidt S. (2004): Glyceraldehyde-3-phosphate dehydrogenase of *Streptococcus pneumoniae* is a surface-displayed plasminogen-binding protein. *Infect Immun* **72**(4):2416–2419

Bergmann S., Rohde M., Preissner K.T., Hammerschmidt S. (2005): The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. *Thromb Haemost* **94**:304–311

Bergmann C. (2003): Epidemiologie eines Mosaikgens: pbp2x in β -Laktam-sensitiven und - resistenten oralen Streptokokken aus Spanien. Dissertation, Universität Kaiserslautern

Bergströmm N., Jansson P. E., Kilian M., Sorensen U. B. S. (2000): Structure of two cell wall-associated polysaccharides of a *Streptococcus mitis* biovar 1 strain: a unique teichoic acid-like polysaccharide and the O antigen, which is a C-polysaccharide in common with pneumo-cocci. *Eur. J. Biochem* **267**:7147-7157

Berks B.C., Palmer T., Sargent F. (2005): Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. *Curr Opin Microbiol* **8**:174–181

Berry A.M., Paton J.C. (1996): Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of *Streptococcus pneumoniae*. *Infect Immun* **64**(12):5255-62

Berry A.M., Paton J.C. (2000): Additive attenuation of virulence of *Streptococcus pneumoniae* by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. *Infect Immun* **68**(1):133-40

Berry A.M., Yother J., Briles D.E., Hansman D., Paton J.C. (1989): Reduced virulence of a defined pneumolysin-negative mutant of *Streptococcus pneumoniae*. *Infection & Immunity* **57**:2037–2042

Bertani G. (1951): Studies of lysogenesis, I. The mode of phage liberation by lysogenic *Escherichia coli. J Bacteriol* **62**: 293-300

Bethe G., Nau R., Wellmer A., Hakenbeck R., Reinert R.R., Heinz H.P., Zysk G. (2001): The cell wall-associated serine protease PrtA: a highly conserved virulence factor of *Streptococcus pneumoniae*. *FEMS Microbiol Lett.* **205**(1):99–104

Bishop C.J., Aanensen D.M., Jordan G.E., Kilian M., Hanage W.P., Spratt B.G. (2009): Assigning strains to bacterial Spezies via the internet. *BMC Biol.* **7**:3

Blue C.E., Paterson G.K., Kerr A.R., Berge M., Claverys J.P., Mitchell T.J. (2003): ZmpB, a novel virulence factor of *Streptococcus pneumoniae* that induces tumor necrosis factor alpha production in the respiratory tract. *Infection And Immunity*, **71**: 4925-4935

Bolotin A., Quinquis B., Renault P., Sorokin A., Ehrlich S.D., Kulakauskas S., Lapidus A.,
Goltsman E., Mazur M., Pusch G.D., Fonstein M., Overbeek R., Kyprides N., Purnelle B.,
Prozzi D., Ngui K., Masuy D., Hancy F., Burteau S., Boutry M., Delcour J., Goffeau A., Hols
P. (2004): Complete sequence and comparative genome analysis of the dairy bacterium *Streptococcus thermophilus. Nat Biotechnol.* 22:1554-1558

Bonetta L. (2006). Genome sequencing in the fast lane. Nat Methods 3: 141-147

Bourgault A.M., Wilson W.R., Washington J.A. II (1979): Antimicrobial susceptibilities of Spezies of viridans streptococci. *J Infect Dis.* **140**:316–324

Bowers E.F., Jeffries L.R. (1955): Optochin in the identification of *Streptococcus pneumoniae*. *J Clin Pathol.* **8**:58–60

Brandenburg R.O., Giuliani E.R., Wilson W.R., Geraci J.E. (1983): Infective Endokarditis - a 25-year overview of diagnosis and therapy. *J Am Coll Cardiol.* **1**:280–291

Bridge P. D., Sneath P.H. (1983): Numerical taxonomy of *Streptococcus. J. Gen. Microbiol.* **129:**565-597

Brown J.S., Gilliland S.M., Holden D.W. (2001): A *Streptococcus pneumoniae* pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. *Mol Microbiol.* **40**:572–585

Brown J.H. (1919): The use of blood agar for the study of streptococci. Monograph No.9

Brückner R., Nuhn M., Reichmann P., Weber B., Hakenbeck R. (2004): Mosaic genes and mosaic chromosomes - genomic variation in *Streptococcus pneumoniae*. *Int J Med Microbiol*. **294**:157–168

Burrus V., Pavlovic G., Decaris B., Guédon G. (2002): Conjugative transposons: The tip of the iceberg. *Mol Microbiol.* **46**:601–610

Camara M., Boulnois G.J., Andrew P.W., Mitchell T.J. (1994): A neuraminidase from *Streptococcus pneumoniae* has the features of a surface protein. *Infect Immun.* **62**(9):3688–3695 **Carratalà J., Alcaide F., Femandez-Sevilla A., Corbella X., Lińares J., Gudiol F.** (1995): Bacteremia due to viridans streptococci that are highly resistant to penicillin: increase among neutropenic patients with cancer. *Clin Infect Dis* **20**:1169-73

Cerdá P., Goni P., Millan L., Rubio C., Gomez-Lus R. (2007): Detection of the aminoglycosidestreptothricin resistance gene cluster ant(6)-sat4-aph(3')-III in commensal viridans group streptococci. *Int Microbiol.* **10**:57–60

Chalkley L., Schuster C., Potgieter E., Hakenbeck R. (1991): Relatedness between *Streptococcus pneumoniae* and viridans streptococci: transfer of penicillin resistance determinants and immunological similarities of penicillin-binding proteins. *FEMS Microbiol Lett* **69(1):** 35-42

Chapuy-Regaud S., Ogunniyi A. D., Diallo N., Huet Y., Desnottes J. F., Paton J. C., Escaich S., Trombe M. C. (2003): RegR, a global Lacl/GalR family regulator, modulates virulence and competence in *Streptococcus pneumoniae*. *Infect Immun* **71** 2615–2625

Chi F., Nolte O., Bergmann C., Ip M., Hakenbeck R. (2007): Crossing the barrier: evolution and spread of a major class of mosaic *pbp2x* in *S. pneumoniae*, *S. mitis* and *S. oralis. Int J Med Microbiol.* **297**:503–512

Chiavolini D., Memmi G., Maggi T., Iannelli F., Pozzi G., Oggioni M.R. (2003): The three extra-cellular zinc metalloproteinases of *Streptococcus pneumoniae* have a different impact on virulence in mice. *BMC Microbiol.* **3**:14

Claverys J.P., Håvarstein L.S. (2002): Extracellular-peptide control of competence for genetic transformation in *Streptococcus pneumoniae*. *Front Biosci* **7**: 1798–1814

Claverys J.P., Håvarstein L.S. (2007): Cannibalism and fratricide: mechanisms and raisons d'être. *Nat Rev Microbiol.* **5**(3):219-29

Claverys J.P., Martin B. (1998): Competence regulons, genomics and streptococci. *Mol Microbiol.* **29**(4):1126-7 **Claverys J.P., Prudhomme M., Martin B.** (2006): Induction of competence regulons as a general response to stress in gram-positive bacteria. *Annu Rev Microbiol* **60**: 451–475

Claverys J.P., Martin B., Håvarstein L.S. (2007): Competence-induced fratricide in streptococci. *Mol Microbiol.* **64**(6):1423-33

Clewell D.B., Flannagan S.E., Jaworski D.D. (1995): Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. *Trends Microbiol.* **3**(6):229-36

Coffey T.J., Dowson C.G, Daniels M., Zhou J., Martin C., Spratt B.G., Musser J.M. (1991): Horizontal transfer of multiple penicillin-binding protein genes and capsular biosynthetic genes in natural populations of *Streptococcus pneumoniae*. *Mol Microbiol* **5(9)**: 2255-2260

Colman G. (1968): The application of computers to the classifiation of streptococci. *J Gen Microbiol* **50**: 149-196

Comfort D., Clubb R.T. (2004): A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. *Infect Immun* **72**(5):2710-22

Croucher N.J., Walker D., Romero P., Lennard N., Paterson G.K., Bason N.C., Mitchell A.M., Quail M.A., Andrew P.W., Parkhill J., Bentley S.D., Mitchell T.J. (2009): Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Spain23F ST81. *J Bacteriol.* **191**(5):1480-9

Culebras E., Martínez J.L. (1999): Aminoglycoside resistance mediated by the bifunctional enzyme 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase. *Front Biosci.* **4**:D1–D8

Cundell D.R., Gerard N.P., Gerard C., Idanpaan-Heikkila I., Tuomanen E.I. (1995): *Streptococcus pneumoniae* anchor to activated human cells by the receptor for platelet-activating factor. *Nature* **377**(6548):435-8 Dagkessamanskaia A., Moscoso M., Hénard V., Guiral S., Overweg K., Reuter M., Martin B., Wells J., Claverys J.P. (2004): Interconnection of competence, stress and CiaR regulons in *Streptococcus pneumoniae*: competence triggers stationary phase autolysis of *ciaR* mutant cells. *Mol Microbiol.* **51**(4):1071-86

Damjanovic M., Kharat A.S., Eberhardt A., Tomasz A., Vollmer W. (2007): The essential *tacF* gene is responsible for the choline-dependent growth phenotype of *Streptococcus pneumoniae*. *J Bacteriol.* **189**(19):7105-11

Dave S., Brooks-Walter A., Pangburn M.K., McDaniel L.S. (2001): PspC, a pneumococcal surface protein, binds human factor H. *Infect Immun.* **69**(5):3435-7

Denapaite D., Brückner R., Nuhn M., Reichmann P., Henrich B., Maurer P., Schähle Y., Selbmann P., Zimmermann W., Wambutt R., Hakenbeck R. (2010): The genome of *Streptococcus mitis* B6--what is a commensal? *PLoS One* **5**(2):e9426

Derbise A., Dyke K.G., el Solh N. (1996): Characterization of a *Staphylococcus aureus* transposon, Tn5405, located within Tn5404 and carrying the aminoglycoside resistance genes, *aphA-3* and *aadE*. *Plasmid* **35**(3):174-88

Díaz E., López R., García J.L. (1992): EJ-1, a temperate bacteriophage of *Streptococcus* pneumoniae with a *Myoviridae* morphotype. *J Bacteriol.* **174**(17):5516-25

Díaz E., López R., García J.L. (1992): Role of the major pneumococcal autolysin in the atypical response of a clinical isolate of *Streptococcus pneumoniae*. *J Bacteriol* **174**(17):5508-15

Dintilhac A., Alloing G., Granadel C., Claverys J.P. (1997): Competence and virulence of *Streptococcus pneumoniae*: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. *Mol Microbiol* **25**(4):727-39

Do T., Jolley K.A., Maiden M.C., Gilbert S.C., Clark D., Wade W.G., Beighton D. (2009): Population structure of *Streptococcus oralis. Microbiology* **155**(Pt 8):2593-602

Doern G.V., Ferraro M.J., Brueggemann A.B., Ruoff K.L. (1996): Emergence of high rates of antimicrobial resistance among viridans group streptococci in the United States. *Antimicrob Agents Chemother.* **40**(4):891-4

Dowson C.G., Hutchison A., Brannigan J.A., George R.C., Hansman D., Liñares J., Tomasz A., Smith J.M. and Spratt B.G. (1989): Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of *Streptococcus pneumoniae*. *Proc Natl Acad Sci U S A* 86(22): 8842-8846

Dowson C.G., Hutchison A., Spratt B.G. (1989): Extensive re-modelling of the transpeptidase domain of penicillin-binding protein 2B of a penicillin-resistant South African isolate of *Strepto-coccus pneumoniae*. *Mol Microbiol*. **3**(1):95-102

Dowson C.G., Hutchison A., Spratt B.G. (1989): Nucleotide sequence of the penicillin-binding protein 2B gene of *Streptococcus pneumoniae* strain R6. *Nucleic Acids Res* **17**(18):7518

Dowson C.G., Coffey T.J., Kell C., Whiley R.A. (1993): Evolution of penicillin resistance in *Streptococcus pneumoniae*; the role of *Streptococcus mitis* in the formation of a low affinity PBP2B in *S. pneumoniae*. Mol Microbiol. **9**(3):635-43

Dubnau D. (1999): DNA uptake in bacteria. Annu Rev Microbiol. 53:217-44

Dyson C., Barnes R.A., Harrison G.A. (1999): Infective Endokarditis: an epidemiological review of 128 episodes. *J Infect.* 38(2):87-93

Eldholm V., Johnsborg O., Haugen K., Ohnstad H.S., Håvarstein L.S. (2009): Fratricide in *Streptococcus pneumoniae*: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. *Microbiology* **155**(Pt 7):2223-34

Eldholm V., Johnsborg O., Straume D., Ohnstad H.S., Berg K.H., Hermoso J.A., Håvarstein L.S. (2010): Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide. *Mol Microbiol.* **76**(4):905-17 Enright M.C., Spratt B.G. (1998): A multilocus sequence typing scheme for *Streptococcus pneumoniae*: identification of clones associated with serious invasive disease. *Microbiology* **144** (Pt 11):3049-60

Enright M.C., Spratt B.G. (1999): Extensive variation in the *ddl* gene of penicillin-resistant *Streptococcus pneumoniae* results from a hitchhiking effect driven by the penicillin-binding protein 2b gene. *Mol Biol Evol* **16**(12):1687-95

Ewens W.J., Grant G.R. (2001): Statistical methods in bioinformatics: an introduction. Springer, New York

Facklam R. (2002): What happened to the streptococci: overview of taxonomic and nomenclature changes. *Clin Microbiol Rev* **15**(4):613-30

Farber B.F., Eliopoulos G.M., Ward J.I., Ruoff K.L., Syriopoulou V., Moellering R.C. Jr. (1983): Multiply resistant viridans streptococci: susceptibility to beta-Laktam antibiotics and comparison of penicillin-binding protein patterns. *Antimicrob Agents Chemother* **24**(5):702-5

Fatholahzadeh B., Emaneini M., Feizabadi M.M., Sedaghat H., Aligholi M., Taherikalani M., Jabalameli F. (2009): Characterisation of genes encoding aminoglycoside-modifying enzymes among meticillin-resistant *Staphylococcus aureus* isolated from two hospitals in Tehran, Iran. *Int J Antimicrob Agents* **33**:264–265

Fränkel A. (1886): Die Micrococcen der Pneumonie. Zeitschrift für klinische Medizin, Berlin **10**:426-449. Zeitschrift für klinische Medizin, Berlin **11**:437-458

Fränkel A. (1886): Bakteriologische Mitteilungen. Zeitschrift für klinische Medizin 10:401-461

Fraser C., Hanage W.P., Spratt B.G. (2007): Recombination and the nature of bacterial speciation. *Science* **315**(5811):476-80

Ghuysen J.-M. (1991): Serine β-Laktamases and penicillin-binding proteins. *Annu Rev Microbi- ol* **45**: 37-67

Goffin C. and Ghuysen J.-M. (1998): Multimodular penicillin-binding proteins: An enigmatic family of orthologs ans paralogs. *Microbiol Mol Biol Rev* **62(4):** 1079-1093

Goffin C. and Ghuysen J.-M. (2002): Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillinsusceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. *Microbiol Mol Biol Rev* **66(4)**: 702-738

Gosink K.K., Mann E.R., Guglielmo C., Tuomanen E.I., Masure H.R. (2000): Role of novel choline binding proteins in virulence of *Streptococcus pneumoniae*. *Infect Immun* **68**(10):5690-5

Grebe T., Paik J. and Hakenbeck R. (1997): A novel resistance mechanism against β -Laktams in *Streptococcus pneumoniae* involves CpoA, a putative glycosyltransferase. *J Bacteriol* **179**(10): 3342-3349

Guenzi E., Gasc A.M., Sicard M.A. and Hakenbeck R. (1994): A two-component signaltransducing system is involved in competence and penicillin susceptibility in laboratory mutants of *Streptococcus pneumoniae*. *Mol Microbiol* **12**(3): 505-515

Guiral S., Mitchell T.J., Martin B., Claverys J.P. (2005): Competence-programmed predation of noncompetent cells in the human pathogen *Streptococcus pneumoniae*: genetic requirements. *Proc Natl Acad Sci* **102**(24):8710-5

Haanperä M., Jalava J., Huovinen P., Meurman O., Rantakokko-Jalava K. (2007): Identification of alpha-hemolytic streptococci by pyrosequencing the 16S rRNA gene and by use of VI-TEK 2. *J Clin Microbiol* **45**(3):762-70

Hakenbeck R., Briese T., Chalkley L., Ellerbrok H., Kalliokoski R., Latorre C., Leinonen M., Martin C. (1991): Antigenic variation of penicillin-binding proteins from penicillin-resistant clinical strains of *Streptococcus pneumoniae*. *J Infect Dis* **164**(2):313-9 Hakenbeck R., Briese T., Chalkley L., Ellerbrok H., Kalliokoski R., Latorre C., Leinonen M., Martin C. (1991): Variability of penicillin-binding proteins from penicillin-sensitive *Streptococcus pneumoniae*. *J Infect Dis* **164**(2):307-12

Hakenbeck R., Briese T., Laible G., Martin C., Schuster C. (1991): Penicillin-binding proteins in *Streptococcus pneumoniae*: alterations during development of intrinsic penicillin resistance. *J Chemother* **3**(2):86-90

Hakenbeck R. (1995): Target-mediated resistance to beta-Laktam antibiotics. *Biochem Pharmacol* **50**(8):1121-7

Hakenbeck R., König A., Kern I., van der Linden M., Keck W., Billot-Klein D., Legrand R., Schoot B., Gutmann L. (1998): Acquisition of five high-Mr penicillin-binding protein variants during transfer of high-level beta-Laktam resistance from *Streptococcus mitis* to *Streptococcus pneumoniae*. *J Bacteriol* **180**(7):1831-40

Hakenbeck R. (1999): beta-Laktam-resistant *Streptococcus pneumoniae*: epidemiology and evolutionary mechanism. *Chemotherapy* **45**(2):83-94

Hakenbeck R., Balmelle N., Weber B., Gardès C., Keck W., de Saizieu A. (2001): Mosaic genes and mosaic chromosomes: intra- and interSpezies genomic variation of *Streptococcus pneumoniae*. Infect Immun **69**(4):2477-86

Hakenbeck R., Madhour A., Denapaite D., Brückner R. (2009): Versatility of choline metabolism and choline-binding proteins in *Streptococcus pneumoniae* and commensal streptococci. FEMS *Microbiol Rev* **33**(3):572-86

Hamada S., Slade H.D. (1980): Biology, immunology, and cariogenicity of *Streptococcus mutans*. *Microbiol Rev* **44**(2):331-84

Hammerschmidt S., Talay S.R., Brandtzaeg P., Chhatwal G.S. (1997): SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. *Mol Microbiol* **25**(6):1113-24 Hammerschmidt S., Bethe G., Remane P.H., Chhatwal G.S. (1999): Identification of pneumococcal surface protein A as a lactoferrin-binding protein of *Streptococcus pneumoniae*.*Infect Immun* 67(4):1683-7

Hanage W.P., Kaijalainen T., Herva E., Saukkoriipi A., Syrjänen R., Spratt B.G. (2005): Using multilocus sequence data to define the pneumococcus. *J Bacteriol* **187**(17):6223-30

Hanage W.P., Fraser C., Spratt B.G. (2005): Fuzzy Spezies among recombinogenic bacteria. *BMC Biol* **3**:6

Hanage W.P., Fraser C., Tang J., Connor T.R., Corander J. (2009): Hyper-recombination, diversity, and antibiotic resistance in pneumococcus. *Science* **324**(5933):1454-7

Hardie J.M. and Whiley R.A. (1995): The genus *Streptococcus*. In *The genera of lactic acid bacteria* (Hrsg. Wood B.J.B. and Holtzapfel W.H.). Blackie Academic & Professional, Vol 2, S. 55-124

Håvarstein L.S., Coomaraswamy G. and Morrison D.A. (1995): An unmodified heptadecapeptide pheromone induces competence for genetic transformation in *Streptococcus pneumoniae*. *Proc Natl Acad Sci USA* **92**(24): 11140-11144

Håvarstein L.S., Diep D.B. and Nes I.F. (1995): A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. *Mol Microbiol* **16**(2): 229-240

Håvarstein L.S., Hakenbeck R. and Gaustad P. (1997): Natural competence in the genus *Streptococcus*: evidence that streptococci can change pherotype by interSpezies recombinational exchanges. *J Bacteriol* **179**(21): 6589-6594

Håvarstein L.S., Martin B., Johnsborg O., Granadel C., Claverys J.P. (2006): New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. *Mol Microbiol* **59**(4):1297-307

Hiller N.L., Janto B., Hogg J.S., Boissy R., Yu S., Powell E., Keefe R., Ehrlich N.E., Shen K., Hayes J., Barbadora K., Klimke W., Dernovoy D., Tatusova T., Parkhill J., Bentley S.D., Post J.C., Ehrlich G.D., Hu F.Z. (2007): Comparative genomic analyses of seventeen *Streptococcus pneumoniae* strains: insights into the pneumococcal supragenome. *J Bacteriol* 189(22):8186-95

Hollingshead S.K., Becker R., Briles D.E. (2000): Diversity of PspA: mosaic genes and evidence for past recombination in *Streptococcus pneumoniae*. *Infect Immun* **68**(10):5889-900

Holmes A.R., McNab R., Millsap K.W., Rohde M., Hammerschmidt S., Mawdsley J.L., Jenkinson H.F. (2001): The pavA gene of *Streptococcus pneumoniae* encodes a fibronectinbinding protein that is essential for virulence. *Mol Microbiol* **41**(6):1395-408

Horne D.S., Tomasz A. (1993): Possible role of a choline-containing teichoic acid in the maintenance of normal cell shape and physiology in *Streptococcus oralis*. *J Bacteriol* **175**(6):1717-22

Hoskins J., Alborn W.E. Jr., Arnold J., Blaszczak L.C., Burgett S., DeHoff B.S., Estrem S.T., Fritz L., Fu D.J., Fuller W., Geringer C., Gilmour R., Glass J.S., Khoja H., Kraft A.R., Lagace R.E., LeBlanc D.J., Lee L.N., Lefkowitz E.J., Lu J., Matsushima P., McAhren S.M., McHenney M., McLeaster K., Mundy C.W., Nicas T.I., Norris F.H., O'Gara M., Peery R.B., Robertson G.T., Rockey P., Sun P.M., Winkler M.E., Yang Y., Young-Bellido M., Zhao G., Zook C.A., Baltz R.H., Jaskunas S.R., Rosteck P.R. Jr., Skatrud P.L., Glass J.I. (2001): Genome of the bacterium *Streptococcus pneumoniae* strain R6. *J Bacteriol* 183(19):5709-17

Hui F.M., Zhou L., Morrison D.A. (1995) : Competence for genetic transformation in *Streptococcus pneumoniae*: organization of a regulatory locus with homology to two lactococcin A secretion genes. *Gene* **153**(1):25-31

Iannelli F., Pearce B.J., Pozzi G. (1999): The type 2 capsule locus of *Streptococcus pneumoniae. J Bacteriol* **181**(8):2652-4

Iannelli F., Oggioni M.R., Pozzi G. (2002): Allelic variation in the highly polymorphic locus *pspC* of *Streptococcus pneumoniae*. *Gene* **284**(1-2):63-71
Jacobs J.A., Schouten H.C., Stobberingh E.E., Soeters P.B. (1995): Viridans streptococci isolated from the bloodstream. Relevance of Spezies identification. *Diagn Microbiol Infect Dis* **22**(3):267-73

Jarva H., Janulczyk R., Hellwage J., Zipfel P.F., Björck L., Meri S. (2002): *Streptococcus pneumoniae* evades complement attack and opsonophagocytosis by expressing the *pspC* locus-encoded Hic protein that binds to short consensus repeats 8-11 of factor H. *J Immunol* **168**(4):1886-94

Jefferies J., Nieminen L., Kirkham L.A., Johnston C., Smith A., Mitchell T.J. (2007): Identification of a secreted cholesterol-dependent cytolysin (mitilysin) from *Streptococcus mitis*. *J Bacteriol* **189**(2):627-32

Jin S.D., Kim Y.M., Kang H.K., Jung S.J., Kim D. (2009): Optimization of capsular polysaccharide production by *Streptococcus pneumoniae* type 3. *J Microbiol Biotechnol* **19**(11):1374-8

Jomaa M., Yuste J., Paton J.C., Jones C., Dougan G., Brown J.S. (2005): Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of *Streptococcus pneumoniae*. *Infect Immun* **73**(10):6852-9

Jonsson S., Musher D.M., Chapman A., Goree A., Lawrence E.C. (1985): Phagocytosis and killing of common bacterial pathogens of the lung by human alveolar macrophages. *J Infect Dis* **152**(1):4-13

Kadioglu A., Weiser J.N., Paton J.C., Andrew P.W. (2008): The role of *Streptococcus pneumoniae* virulence factors in host respiratory colonization and disease. *Nat Rev Microbiol* **6**(4):288-301

Kausmally L., Johnsborg O., Lunde M., Knutsen E., Håvarstein L.S. (2005): Choline-binding protein D (CbpD) in *Streptococcus pneumoniae* is essential for competence-induced cell lysis. *J Bacteriol* **187**(13):4338-45

Kawamura Y., Hou X.G., Sultana F., Miura H., Ezaki T. (1995): Determination of 16S rRNA sequences of *Streptococcus mitis* and *Streptococcus gordonii* and phylogenetic relationships among members of the genus *Streptococcus. Int J Syst Bacteriol* **45**(2):406-8

Kawamura Y., Whiley R.A., Shu S.E., Ezaki T., Hardie J.M. (1999): Genetic approaches to the identification of the mitis group within the genus *Streptococcus*. *Microbiology* **145** (Pt 9):2605-13

Kearns A.M., Wheeler J., Freeman R., Seiders P.R., Perry J., Whatmore A.M., Dowson C.G.. (2000): Pneumolysin detection identifies atypical isolates of *Streptococcus pneumoniae*. *J Clin Microbiol* **38**:1309–1310

Kerr A.R., Paterson G.K., McCluskey J., Iannelli F., Oggioni M.R., Pozzi G., Mitchell T.J. (2006): The contribution of PspC to pneumococcal virulence varies between strains and is accomplished by both complement evasion and complement-independent mechanisms. *Infect Immun.* **74**(9):5319-24

Kharat A.S., Denapaite D., Gehre F., Brückner R., Vollmer W., Hakenbeck R., Tomasz A.. (2008): Different pathways of choline metabolism in two choline-independent strains of *Strepto-coccus pneumoniae* and their impact on virulence. *J Bacteriol* **190**(17):5907-14

Kilian M. Mikkelsen L., Henrichsen J. (1989): Taxonomic study of viridans streptococci: description of *Streptococcus gordonii* sp. nov., and emended description of *Streptococcus sanguis* (White and Niven 1946), *Streptococcus oralis* (Bridge and Sneath 1982), and *Streptococcus mitis* (Andrewes and Horder 1906). *Int J Syst Bacteriol* **39**:471-484

Kilian M., Poulsen K., Blomqvist T., Håvarstein L.S., Bek-Thomsen M., Tettelin H., Sørensen U.B. (2008). Evolution of *Streptococcus pneumoniae* and its close commensal relatives. *PLoS One* **3**(7):e2683

Kilpper-Bälz R., Wenzig P., Schleifer K.H. (1985): Molecular relationships and classification of some viridans streptococci as *Streptococcus oralis* and emended description of *Streptococcus oralis* (Bridge and Sneath 1982). *Int J Syst Bacteriol* **34**(4): 482-488

King S.J., Hippe K.R., Gould J.M., Bae D., Peterson S., Cline R.T., Fasching C., Janoff E.N., Weiser J.N. (2004): Phase variable desialylation of host proteins that bind to *Streptococ-cus pneumoniae* in vivo and protect the airway. *Mol Microbiol* **54**(1):159-71

King S.J., Whatmore A.M., Dowson C.G. (2005): NanA, a neuraminidase from *Streptococcus pneumoniae*, shows high levels of sequence diversity, at least in part through recombination with *Streptococcus oralis*. *J Bacteriol* **187**(15):5376-86

Kirkham, L. A., A. R. Kerr, G. R. Douce, G. K. Paterson, D. A. Dilts, D. F. Liu, and T. J. Mitchell. (2006): Construction and immunological characterization of a novel nontoxic protective pneumolysin mutant for use in future pneumococcal vaccines. *Infect Immun* **74**:586-593

Klugman K.P. (1990): Pneumococcal resistance to antibiotics. Clin Microbiol Rev 3(2):171-96

König A., Reinert R.R., Hakenbeck R. (1998): *Streptococcus mitis* with unusually high level resistance to beta-Laktam antibiotics. *Microb Drug Resist* **4**(1):45-9

Kumar S., Nei M., Dudley J., Tamura K. (2008): MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. *Brief Bioinform* **9**(4):299-306

Kuroda M., Ohta T., Uchiyama I., Baba T., Yuzawa H., Kobayashi I., Cui L., Oguchi A., Aoki K., Nagai Y., Lian J., Ito T., Kanamori M., Matsumaru H., Maruyama A., Murakami H., Hosoyama A., Mizutani-Ui Y., Takahashi N.K., Sawano T., Inoue R., Kaito C., Sekimizu K., Hirakawa H., Kuhara S., Goto S., Yabuzaki J., Kanehisa M., Yamashita A., Oshima K., Furuya K., Yoshino C., Shiba T., Hattori M., Ogasawara N., Hayashi H., Hiramatsu K. (2001): Whole genome sequencing of methicillin-resistant *Staphylococcus aureus. Lancet* **357**:1225–1240

Laible G., Spratt B.G., Hakenbeck R. (1991): InterSpezies recombinational events during the evolution of altered PBP2x genes in penicillin-resistant clinical isolates of *Streptococcus pneumoniae*. *Mol Microbiol* **5**(8): 1993-2002

Lancefield R.C. (1933): A serological differentiation of human and other groups of haemolytic streptococci. *J Exp Med* **57**: 571-595

Lanie J.A., Ng W.L., Kazmierczak K.M., Andrzejewski T.M., Davidsen T.M., Wayne K.J., Tettelin H., Glass J.I., Winkler M.E. (2007): Genome sequence of Avery's virulent serotype 2 strain D39 of *Streptococcus pneumoniae* and comparison with that of unencapsulated laboratory strain R6. *J Bacteriol* **189**(1):38-51

Lavander M., Ericsson S.K., Broms J.E., Forsberg A. (2006): The twin arginine translocation system is essential for virulence of *Yersinia pseudotuberculosis*. *Infect Immun* **74**:1768–1776

Lee M.S. and Morrison D.A. (1999): Identification of a new regulator in *Streptococcus pneumoniae* linking quorum sensing to competence for genetic transformation. *J Bacteriol* **181**(16): 5004-5018

Leegaard T.M., Bootsma H.J., Caugant D.A., Eleveld M.J., Mannsåker T., Frøholm L.O., Gaustad P., Høiby E.A., Hermans P.W. (2010): Phenotypic and genomic characterization of pneumococcus-like streptococci isolated from HIV-seropositive patients. *Microbiology* **156**(Pt 3):838-48

Liñares J., Pallares R., Alonso T., Perez J.L., Ayats J., Gudiol F., Viladrich P.F. and Martin R. (1992): Trends in antimicrobial resistance of clinical isolates of *Streptococcus pneumoniae* in Bellvitge Hospital, Barcelona, Spain (1979-1990). *Clin Infect Dis* **15**(1): 99-105

Linker A., Meyer K., Weissmann B. (1955): Enzumatic formation of monosaccharides from hyaluronate. *J Biol Chem* **213**(1):237–248

Lund E., Henrichsen J. (1978): Laboratory diagnosis, serology and epidemiology of *Strepto*coccus pneumoniae. Methods Microbiol **12**:241-262

Llull D, López R, García E. (2006): Characteristic signatures of the *lytA* gene provide a basis for rapid and reliable diagnosis of *Streptococcus pneumoniae* infections. *J Clin Microbiol* **44**(4):1250-6

Lock R.A., Hansman D., Paton J.C. (1992): Comparative efficacy of autolysin and pneumolysin as immunogens protecting mice against infection by *Streptococcus pneumoniae*. *Microb Pathog* **12**(2):137-43

Loeffler J.M., Fischetti V.A. (2006): Lysogeny of *Streptococcus pneumoniae* with MM1 phage: improved adherence and other phenotypic changes. *Infect Immun* **74**:4486–4495

Lorenz M.G., Wackernagel W. (1994): Bacterial gene transfer by natural genetic transformation in the environment. *Microbiol Rev* **58**(3):563-602

Luo P., Morrison D.A. (2003): Transient association of an alternative sigma factor, ComX, with RNA polymerase during the period of competence for genetic transformation in *Streptococcus pneumoniae*. *J Bacteriol* **185**(1):349-58

Luo P., Li H., Morrison D.A. (2004): Identification of ComW as a new component in the regulation of genetic transformation in *Streptococcus pneumoniae*. *Mol Microbiol* **54**(1):172-83

Lupas A., Van D.M., Stock J. (1991): Predicting coiled coils from protein sequences. Science.
252:1162–1164

Macheboeuf P., Contreras-Martel C., Job V., Dideberg O., Dessen A. (2006): Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. *FEMS Microbiol* **30**(5):673-91

Mager D.L., Ximenez-Fyvie L.A., Haffajee A.D., Socransky S.S. (2003): Distribution of selected bacterial Spezies on intraoral surfaces. *J Clin Periodontol* **30**(7):644-54

Marmur J. (1961): A procedure for the isolation of desoxyribonucleic acid from microorganisms. *J Mol Biol* **3**: 202-218

Marra A., Lawson S., Asundi J.S., Brigham D., Hromockyj A.E. (2002): In vivo characterization of the *psa* genes from *Streptococcus pneumoniae* in multiple models of infection. *Microbiology* **148**(Pt 5):1483-91 Martin C., Briese T. and Hakenbeck R. (1992): Nucleotide sequences of genes encoding penicillin-binding proteins from *Streptococcus pneumoniae* and *Streptococcus oralis* with high homology to *Escherichia coli* penicillin-binding proteins 1a and 1b. *J Bacteriol* **174(13)**: 4517-4523

Martin C., Sibold C. and Hakenbeck R. (1992): Relatedness of penicillin-binding protein 1a genes from different clones of penicillin-resistant *Streptococcus pneumoniae* isolated in South Africa and Spain. *EMBO J* **11(11)**: 3831-3836

McGee L., McDougal L., Zhou J., Spratt B.G., Tenover F.C., George R., Hakenbeck R., Hryniewicz W., Lefévre J.C., Tomasz A., Klugman K.P. (2001): Nomenclature of major antimicrobial-resistant clones of *Streptococcus pneumoniae* defined by the pneumococcal molecular epidemiology network. *J Clin Microbiol* **39**(7):2565-71

Méjean V., Claverys J.-P. (1988): Polarity of DNA entry in transformation of *Streptococcus* pneumoniae. *Mol Gen Genet* **213**(2-3): 444-448

Mitchell T.J., Andrew P.W., Saunders F.K., Smith A.N., Boulnois G.J. (1991): Complement activation and antibody binding by pneumolysin via a region of the toxin homologous to a human acute-phase protein. *Mol Microbiol* **5**(8):1883-8

Molina R., González A., Stelter M., Pérez-Dorado I., Kahn R., Morales M., Moscoso M., Campuzano S., Campillo N.E., Mobashery S., García J.L., García P., Hermoso J.A. (2009): Crystal structure of CbpF, a bifunctional choline-binding protein and autolysis regulator from *Streptococcus pneumoniae*. *EMBO Rep* **10**(3):246-51

Morgan P.J., Hyman S.C., Rowe A.J., Mitchell T.J., Andrew P.W., Saibil H.R. (1995): Subunit organisation and symmetry of pore-forming, oligomeric pneumolysin. *FEBS Lett* **371**(1):77-80

Morrison K.E., Lake D., Crook J., Carlone G.M., Ades E., Facklam R., Sampson J.S. (2000): Confirmation of *psaA* in all 90 serotypes of *Streptococcus pneumoniae* by PCR and potential of this assay for identification and diagnosis. *J Clin Microbiol* **38**(1):434-7 **Morrsion D.A.** (1997): Streptococcal competence for genetic transformation: regulation by peptide pheromones. *Microb Drug Resist* **3**:27-37

Morrison D.A., Mannarelli B. (1979): Transformation in pneumococcus: nuclease resistance of desoxyribonucleic acid in the eclipse complex. *J Bacteriol* **140**(2): 655-665

Mortier-Barriere I., DeSaizieu A., Claverys J.-P., Martin B. (1998): Competence-specific induction of *recA* is required for full recombination proficiency during transformation in *Streptococcus pneumoniae*. *Mol Microbiol* **27**(1): 159-170

Moscoso M., Claverys J.P. (2004): Release of DNA into the medium by competent *Streptococcus pneumoniae*: kinetics, mechanism and stability of the liberated DNA. *Mol Microbiol* **54**(3):783-94

Moscoso M., Obregón V., López R., García J.L., García E. (2005): Allelic variation of polymorphic locus *lytB*, encoding a choline-binding protein, from streptococci of the mitis group. *Appl Environ Microbiol* **71**(12):8706-13

Musher D.M. (1992): Infections caused by *Streptococcus pneumoniae*: clinical spectrum, pathogenesis, immunity, and treatment. *Clin Infect Dis* 1992 **14**(4):801-7

Neeleman C., Klaassen C.H., Klomberg D.M., de Valk H.A., Mouton J.W. (2004): Pneumolysin is a key factor in misidentification of macrolide-resistant *Streptococcus pneumoniae* and is a putative virulence factor of *S. mitis* and other streptococci. *J Clin Microbiol* **42**(9):4355-7

Nelson A.L., Roche A.M., Gould J.M., Chim K., Ratner A.J., Weiser J.N. (2007): Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. *Infect Immun.* **75**(1):83-90

Neufeld F., Schnitzer R., in Kolle W., von Wassermann A. (1928): Handbuch der pathogenen Mikroorganismen. Gustav Fischer, Jena **Obregón V., García P., García E., Fenoll A., López R., García J.L.** (2002): Molecular peculiarities of the *lytA* gene isolated from clinical pneumococcal strains that are bile insoluble. *J Clin Microbiol* **40**(7):2545-54

Oggioni M.R., Claverys J.P. (1999): Repeated extragenic sequences in prokaryotic genomes: a proposal for the origin and dynamics of the RUP element in *Streptococcus pneumoniae*. *Microbiology* **145** (Pt 10):2647-53

Oggioni M.R., Memmi G., Maggi T., Chiavolini D., Iannelli F., Pozzi G. (2003): Pneumococcal zinc metalloproteinase ZmpC cleaves human matrix metalloproteinase 9 and is a virulence factor in experimental pneumonia. *Mol Microbiol* **49**(3):795-805

Ogunniyi A.D., Folland R.L., Briles D.E., Hollingshead S.K., Paton J.C. (2000): Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with *Streptococcus pneumoniae*. Infect Immun **68**(5):3028-33

Ottolenghi E., Hotchkiss R.D. (1962): Release of genetic transforming agent from pneumococcal cultures during growth and disintegration. *J Exp Med* **116**: 491-519

Park I.H., Pritchard D.G., Cartee R., Brandao A., Brandileone M.C., Nahm M.H. (2007): Discovery of a new capsular serotype (6C) within serogroup 6 of *Streptococcus pneumoniae*. *J Clin Microbiol* **45**(4):1225-33

Park H.K., Yoon J.W., Shin J.W., Kim J.Y., Kim W. (2010): *rpoA* is a useful gene for identification and classification of *Streptococcus pneumoniae* from the closely related viridans group streptococci. *FEMS Microbiol Lett* **305**(1):58-64

Pasteur L., Chamberland C., Roux E., Thuillier L. (1881) : Sur la rage. *Comptes rendus de l'Académie des sciences*, Paris, **92** : 1259-1260

Patterson M.J. (1991): *Streptococcus*. In *Medical Microbiology*. Baron, S. (Hrsg.). Churchill Livingstone, New York, USA

Pestova E.V., Morrison D.A. (1998): Isolation and characterization of three *Streptococcus pneumoniae* transformation-specific loci by use of a *lacZ* reporter insertion vector. *J Bacteriol* **180**(10):2701-10

Pestova E.V., Håvarstein L.S., Morrison D.A. (1996): Regulation of competence for genetic transformation in *Streptococcus pneumoniae* by an auto-induced peptide pheromone and a two-component regulatory system. *Mol Microbiol* **21**(4): 853-862

Peterson S.N., Sung C.K., Cline R., Desai B.V., Snesrud E.C., Luo P., Walling J., Li H., Mintz M., Tsegaye G., Burr P.C., Do Y., Ahn S., Gilbert J., Fleischmann R.D., Morrison D.A. (2004): Identification of competence pheromone responsive genes in *Streptococcus pneumoniae* by use of DNA microarrays. *Mol Microbiol* **51**(4):1051-70

Pracht D., Elm C., Gerber J., Bergmann S., Rohde M., Seiler M., Kim K.S., Jenkinson H.F., Nau R., Hammerschmidt S. (2005): PavA of *Streptococcus pneumoniae* modulates adherence, invasion, and meningeal inflammation. *Infect Immun* **73**(5):2680-9

Price K.E., Camilli A. (2009): Pneumolysin localizes to the cell wall of *Streptococcus pneumoniae*. *J Bacteriol* **191**(7):2163-8

Prudhomme M., Attaiech L., Sanchez G., Martin B., Claverys J.P. (2006): Antibiotic stress induces genetic transformability in the human pathogen *Streptococcus pneumoniae*. *Science* **313**(5783):89-92

Ramirez M., Severina E., Tomasz A. (1999): A high incidence of prophage carriage among natural isolates of *Streptococcus pneumoniae*. *J Bacteriol* **181**(12):3618-25

Rane L., Subbarow Y. (1940): Nutritional Requirements of the Pneumococcus: I. Growth Factors for Types I, II, V, VII, VIII. *J Bacteriol* **40**(5):695-704

Raskin D.M., Seshadri R., Pukatzki S.U., Mekalanos J.J. (2006): Bacterial genomics and pathogen evolution. *Cell* **124**:703–714

Reichmann P., König A., Liñares J., Alcaide F., Tenover F.C., McDougal L., Swidsinski S., Hakenbeck R. (1997): A global gene pool for high-level cephalosporin resistance in commensal *Streptococcus* Spezies and *Streptococcus pneumoniae*. *J Infect Dis* **176**(4): 1001-1012

Ren B., Szalai A.J., Thomas O., Hollingshead S.K., Briles D.E. (2003): Both family 1 and family 2 PspA proteins can inhibit complement deposition and confer virulence to a capsular serotype 3 strain of *Streptococcus pneumoniae*. *Infect Immun* **71**(1):75-85

Romero P., López R., García E. (2004): Characterization of LytA-like N-acetylmuramoyl-Lalanine amidases from two new *Streptococcus mitis* bacteriophages provides insights into the properties of the major pneumococcal autolysin. *J Bacteriol* **186**(24):8229-39

Romero P., López R., García E. (2004): Genomic organization and molecular analysis of the inducible prophage EJ-1, a mosaic myovirus from an atypical pneumococcus. Virology **322**(2):239-52

Ronda C., García J.L., López R. (1991): Teichoic acid choline esterase, a novel hydrolytic activity in *Streptococcus oralis. FEMS Microbiol Lett* **64**(2-3):289-94

Salles C., Creancier L., Claverys J.P., Méjean V. (1992) : The high level streptomycin resistance gene from *Streptococcus pneumoniae* is a homologue of the ribosomal protein S12 gene from *Escherichia coli. Nucleic Acids Res* **20**: 6103

Sambrook J., Fritsch E.F., Maniatis T. (1989): Molecular cloning, a laboratory manual. CSH Press, New York, 2. Auflage

Sánchez M., Vicente M.F., Cercenado E., de Pedro M.A., Gómez P., Moreno R., Morón R., Berenguer J. (2001): Diversity among clinical isolates of penicillin-resistant *Streptococcus mitis:* indication for a PBP1-dependent way to reach high levels of penicillin resistance. *Int Microbiol* 4(4):217-22

Sanger F., Nicklen S., Coulson A.R. (1977): DNA sequencing with chain-terminating inhibitors. *Proc Nat Acad Sci U S A* 74(12): 5463-5467 Sauvage E., Kerff F., Terrak M., Ayala J.A., Charlier P. (2008): The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. *FEMS Microbiol Rev* **32**(2):234-58

Schleifer K.H., Ludwig W. (1995): Phylogenetic relationship of lactic acid bacteria. In *The genera of lactic acid bacteria*. Wood B.J.B., Holzapfel W.H. (Hrsg.). Blackie Academic and Professional

Schneewind O., Mihaylova-Petkov D., Model P. (1993): Cell wall sorting signals in surface proteins of gram-positive bacteria. *EMBO J* **12**(12):4803-11

Sibold C., Henrichsen J., König A., Martin C., Chalkley L., Hakenbeck R. (1994): Mosaic *pbpX* genes of major clones of penicillin-resistant *Streptococcus pneumoniae* have evolved from *pbpX* genes of a penicillin-sensitive *Streptococcus oralis*. *Mol Microbiol* **12**(6): 1013-1023

Sicard A.M. (1964): A new synthetic medium for *Diplococcus pneumoniae*, and its use for the study of reciprocal transformations at the *amiA* locus. *Gen* **50**: 31-44

Simões A.S., Sá-Leão R., Eleveld M.J., Tavares D.A., Carriço J.A., Bootsma H.J., Hermans P.W. (2010): Highly penicillin-resistant multidrug-resistant pneumococcus-like strains colonizing children in Oeiras, Portugal: genomic characteristics and implications for surveillance. *J Clin Microbiol* **48**(1):238-46

Soto A., McWhinney P.H., Kibbler C.C., Cohen J. (1998): Cytokine release and mitogenic activity in the viridans streptococcal shock syndrome. *Cytokine* **10**(5):370-6

Spellerberg B., Cundell D.R., Sandros J., Pearce B.J., Idanpaan-Heikkila I., Rosenow C., Masure H.R. (1996): Pyruvate oxidase, as a determinant of virulence in *Streptococcus pneumoniae*. *Mol Microbiol* **19**(4):803-13

Spratt B.G. (1994): Resistance to antibiotics mediated by target alterations. *Science* **264**(5157):388-93

Stanhope M.J., Walsh S.L., Becker J.A., Italia M.J., Ingraham K.A., Gwynn M.N., Mathie T., Poupard J.A., Miller L.A., Brown J.R., Amrine-Madsen H. (2005): Molecular evolution perspectives on intraspecific lateral DNA transfer of topoisomerase and gyrase loci in *Streptococcus pneumoniae*, with implications for fluoroquinolone resistance development and spread. *Antimicrob Agents Chemother* **49**(10):4315-26

Steinmoen H., Knutsen E., Håvarstein L.S. (2002): Induction of natural competence in *Streptococcus pneumoniae* triggers lysis and DNA release from a subfraction of the cell population. *Proc Natl Acad Sci USA* **99**(11):7681-6

Sternberg G.M. (1882): A fatal form of septicaemia in the rabbit, produced by the subcutaneous injection of human saliva. Johns Hopkins University. *Studies from the biological laboratory* **2**(2): 183-200

Sung C.K., Morrison D.A. (2005): Two distinct functions of ComW in stabilization and activation of the alternative sigma factor ComX in *Streptococcus pneumoniae*. *J Bacteriol* **187**(9):3052-61

Suzuki N., Seki M., Nakano Y., Kiyoura Y., Maeno M., Yamashita Y. (2005): Discrimination of *Streptococcus pneumoniae* from viridans group streptococci by genomic subtractive hybridization. *J Clin Microbiol* 43(9):4528-34

Takamatsu D., Bensing B.A., Cheng H., Jarvis G.A., Siboo I.R., López J.A., Griffiss J.M., Sullam P.M. (2005): Binding of the *Streptococcus gordonii* surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibalpha. *Mol Microbiol* 58:380–392

Takamatsu D., Bensing B.A., Prakobphol A., Fisher S.J., Sullam P.M. (2006): Binding of the streptococcal surface glycoproteins GspB and Hsa to human salivary proteins. *Infect Immun* **74**:1933–1940

Tamura K., Dudley J., Nei M., Kumar S. (2007): MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol Biol Evol* **24**(8):1596-9 **Tettelin H., Hollingshead S. K. (2004)**: Comparative genomics of *Streptococcus pneumoniae*: intrastrain diversity and genome plasticity. In *The Pneumococcus*, pp. 15–29. Edited by E. I. Tuomanen, T. J. Mitchell, D. A. Morrison & B. G. Spratt. Washington, DC: American Society for Microbiology

Tettelin H., Nelson K. E., Paulsen I. T., Eisen J.A., Read T.D., Peterson S., Heidelberg J., DeBoy R.T., Haft DAS HEIßT, Dodson R.J., Durkin A.S., Gwinn M., Kolonay J.F., Nelson W.C., Peterson J.D., Umayam L.A., White O., Salzberg S.L., Lewis M.R., Radune D., Holtzapple E., Khouri H., Wolf A.M., Utterback T.R., Hansen C.L., McDonald L.A., Feldblyum T.V., Angiuoli S., Dickinson T., Hickey E.K., Holt I.E., Loftus B.J., Yang F., Smith H.O., Venter J.C., Dougherty B.A., Morrison D.A., Hollingshead S.K., Fraser C.M. (2001): Complete genome sequence of a virulent isolate of *Streptococcus pneumoniae*. *Science* 293: 498–506

Tomasz A., Hotchkiss R.D. (1964): Regulation of the transformability of pneumococcal cultures by macromolecular cell products. **Proc Natl Acad Sci USA 51**:480-487

Tomasz A. (1967): Choline in the cell wall of a bacterium: novel type of polymer-linked choline in Pneumococcus. *Science* **157**(789):694-7

Ton-That H., Faull K.F., Schneewind O. (1997): Anchor structure of staphylococcal surface proteins. A branched peptide that links the carboxyl terminus of proteins to the cell wall. *J Biol Chem* **272**(35):22285-92

Tuomanen E. (1999): Molecular and cellular biology of pneumococcal infection. *Curr Opin Microbiol* **2**(1):35-9

Van der Meer J.T.M., van Vianen W., Hu E., van Leeuwen W.B., Valkenburg H.A., Thompson J., Michel M.F. (1991): Distribution, antibiotic susceptibility and tolerance of bacterial isolates in culture-positive cases of Endokarditis in The Netherlands. *Eur J Clin Microbiol Infect Dis* 10:728–734

Varvio S.L., Auranen K., Arjas E., Mäkelä P.H. (2009): Evolution of the capsular regulatory genes in *Streptococcus pneumoniae*. *J Infect Dis* **200**(7):1144-51

Voulhoux R., Ball G., Ize B., Vasil M.L., Lazdunski A., Wu L.F., Filloux A. (2001): Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. *EM-BO J* 20:6735–6741

Ween O., Gaustad P., Håvarstein L.S. (1999): Identification of DNA binding sites for ComE, a key regulator of natural competence in *Streptococcus pneumoniae*. *Mol Microbiol* **33**(4):817-27

Weiser J.N., Bae D., Fasching C., Scamurra R.W., Ratner A.J., Janoff E.N. (2003): Antibodyenhanced pneumococcal adherence requires IgA1 protease. *Proc Natl Acad Sci USA* **100**(7):4215-20

Werner G., Hildebrandt B., Witte W. (2001): Aminoglycoside-streptothricin resistance gene cluster *aadE-sat4-aphA-3* disseminated among multiresistant isolates of *Enterococcus faecium*. *Antimicrob Agents Chemother* **45**(11):3267-9

Whalan R.H., Funnell S.G., Bowler L.D., Hudson M.J., Robinson A., Dowson C.G. (2006): Distribution and genetic diversity of the ABC transporter lipoproteins PiuA and PiaA within *Streptococcus pneumoniae* and related streptococci. *J Bacteriol* **188**(3):1031-8

Whatmore A.M., Barcus V.A., Dowson C.G. (1999): Genetic diversity of the streptococcal competence (*com*) gene locus. *J Bacteriol* **181**(10):3144-54

Whatmore A.M., Efstratiou A., Pickerill A.P., Broughton K., Woodard G., Sturgeon D., George R., Dowson C.G. (2000): Genetic relationships between clinical isolates of *Streptococccus pneumoniae*, *Streptococccus oralis*, and *Streptococcus mitis*: characterization of "Atypical" pneumococci and organisms allied to *S. mitis* harboring *S. pneumoniae* virulence factor-encoding genes. *Infect Immun* **68**(3):1374-82

Whiley R.A., Beighton D. (1998): Current classification of the oral streptococci. *Oral Microbiol Immunol* **13**(4):195-216

Xu P., Alves J.M., Kitten T., Brown A., Chen Z., Ozaki L.S., Manque P., Ge X., Serrano M.G., Puiu D., Hendricks S., Wang Y., Chaplin M.D., Akan D., Paik S., Peterson D.L.,

Macrina F.L., Buck G.A. (2007): Genome of the opportunistic pathogen *Streptococcus sanguinis. J Bacteriol* **189**:3166–3175

Yadegar A., Sattari M., Mozafari N.A., Goudarzi G.R. (2009): Prevalence of the genes encoding aminoglycoside-modifying enzymes and methicillin resistance among clinical isolates of *Staphylococcus aureus* in Tehran, Iran. *Microb Drug Resist* **15**:109–113

Yesilkaya H., Kadioglu A., Gingles N., Alexander J.E., Mitchell T.J., Andrew P.W. (2000): Role of manganese-containing superoxide dismutase in oxidative stress and virulence of *Streptococcus pneumoniae*. *Infect Immun* **68**(5):2819-26

Yoshida Y., Ganguly S., Bush C.A., Cisar J.O. (2006): Molecular basis of L-rhamnose branch formation in streptococcal coaggregation receptor polysaccharides. *J Bacteriol* **188**:4125–4130

Zhang J.R., Mostov K.E., Lamm M.E., Nanno M., Shimida S., Ohwaki M., Tuomanen E. (2000): The polymeric immunoglobulin receptor translocates pneumococci across human naso-pharyngeal epithelial cells. *Cell* **102**(6):827-37

7. Anhang

Danksagung

Ganz herzlich danken möchte ich an dieser Stelle:

Frau Prof. Dr. Regine Hakenbeck für die Ermöglichung meiner Doktorarbeit, die wissenschaftliche Betreuung sowie die Förderung und Unterstützung während dieses gesamten Zeitraums,

Herrn Prof. Dr. Ekkehard Neuhaus für die Bereitschaft zur Übernahme der Zweitkorrektur,

Herrn Prof. Dr. John Cullum für die Übernahme des Promotionsvorsitzes,

Frau Dr. Dalia Denapaite für die sehr gute wissenschaftliche Betreuung, die wertvollen Diskussionen und Anregungen, die ständige Hilfsbereitschaft und Aufmunterung – auch aus der Ferne,

Herrn Dr. Patrick Maurer für die angenehme Arbeitsatmosphäre im gemeinsamen Büro, die hilfreichen Tipps und zahlreichen Diskussionen sowohl wissenschaftlicher als auch privater Natur,

Michael Nuhn für die sehr gute Hilfe bei der Beantwortung bioinformatischer Fragen,

allen Mitarbeitern und Mitarbeiterinnen im Labor für die gute Zusammenarbeit und Hilfsbereitschaft,

allen Mitgestaltern des legendären Sommers 2008 ©,

meinen Freunden Ilka, Mirza, Katya und Michèle für die unvergessliche gemeinsame Zeit und die Unterstützung in jeder Lebenslage,

meiner Familie für das immerwährende Interesse an meiner Arbeit, das geduldige Zuhören und die permanente Unterstützung,

Andreas für die Entscheidung in unserer Abteilung Diplomarbeit zu machen ☺ – danke für die wunderschöne Zeit, die ich seitdem mit Dir verbringen durfte, Deine Unterstützung, Deine Geduld und Dein Verständnis.

Lebenslauf

Persönliche Daten

Name:	Yvonne Nadine Schähle
Geburtsdatum:	04.03.1980
Geburtsort:	Saarlouis
Familienstand:	ledig
Staatsangehörigkeit:	deutsch

Schulbildung

1986-1990	Grundschule Merzig-Hilbringen (Saar)
1990-1992	Gesamtschule Mettlach-Orscholz (Saar)
1992-1999	Peter-Wust-Gymnasium Merzig (Saar)
	Abschluss: Allgemeine Hochschulreife

Hochschulbildung

10/1999-09/2000	Studium der historisch orientierten Kulturwissenschaften
	an der Universität des Saarlandes
10/2000-10/2005	Studium der Biologie an der TU Kaiserslautern
	Abschluss: Diplom
	Hauptfach: Mikrobiologie
	Nebenfächer: Pflanzenphysiologie, Biochemie
	Diplomarbeit am Lehrstuhl für Mikrobiologie unter der Leitung von Frau
	Prof. Dr. Regine Hakenbeck mit dem Thema: "Selektionierbarkeit und
	Gentransfer von PBP1a in Streptococcus pneumoniae"
Seit 11/2005	Wissenschaftliche Mitarbeiterin zur Promotion am Lehrstuhl für Mikrobio-
	logie der TU Kaiserslautern unter der Leitung von Frau Prof. Dr. Regine
	Hakenbeck

Publikationen

Denapaite D., Brückner R., Nuhn M., Reichmann P., Henrich B., Maurer P., Schähle Y., Selbmann P., Zimmermann W., Wambutt R., Hakenbeck R. (2010): The genome of *Streptococcus mitis* B6--what is a commensal? *PLoS One* **5**(2):e9426