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Abstract. We study the efficient computation of Nash and strong equi-
libria in weighted bottleneck games. In such a game different players
interact on a set of resources in the way that every player chooses a sub-
set of the resources as her strategy. The cost of a single resource depends
on the total weight of players choosing it and the personal cost every
player tries to minimize is the cost of the most expensive resource in her
strategy, the bottleneck value.
To derive efficient algorithms for finding Nash equilibria in these games,
we generalize a tranformation of a bottleneck game into a special con-
gestion game introduced by Caragiannis et al. [1]. While investigating
the transformation we introduce so-called lexicographic games, in which
the aim of a player is not only to minimize her bottleneck value but to
lexicographically minimize the ordered vector of costs of all resources in
her strategy.
For the special case of network bottleneck games, i.e., the set of resources
are the edges of a graph and the strategies are paths, we analyse different
Greedy type methods and their limitations for extension-parallel and
series-parallel graphs.

1 Introduction

A common concept in non-cooperative game theory is a Nash equilibrium [2].
In such a state no user can decrease her personal cost by unilaterally changing
to another strategy. This does not imply that users cannot improve by changing
their strategies simultaneously. Aumann [3] introduced strong equilibria, which
are also stable against deviations of coalitions of users.
Up to now, many different special models have been considered in literature. In
this paper we restrict ourselfes to symmetric graph theoretic and combinatorical
models explicitly, e.g., network or matroid games, where symmetric means that
the sets of possible strategies of all users are the same. In a network game on
a directed graph players choose paths from a source to a sink and in a matroid
game over some set of resources every player chooses a base of a given matroid.

Congestion games are a very common model considered in literature and were
introduced by Rosenthal [4]. In these games, every strategy consists of resources
with load dependend latency functions and the personal cost of a player is the
sum of the latency values of all resources in her strategy. These games always



have a Nash equilibrium [4].
While in the original work Rosenthal considered a finite number of users, each
one with the same positive weight, a game is called weighted if users may have
different weights and hence different impact. Then a latency function for a re-
source depends on the sum of the weights of the users choosing it. For that
case Fotakis et al. [6] showed that even symmetric weighted network congestion
games do in general not possess a Nash equilibrium, but the restriction to linear
latency functions does. Ackermann et al. [7] stated that in a weighted matroid
congestion game a Nash equilibrium can be found in polynomial time.

In contrast to congestion games we mainly consider bottleneck games here,
where the personal cost of a user is her bottleneck value, i.e., the value of the
most expensive resource in her strategy. Network bottleneck games have been
introduced in the literature by different authors under different names (e.g.,
bottleneck routing games by Banner and Orda [8], network load games by Cara-
giannis et al. [1],games of maximal congestion by Busch and Magdon-Ismail [9]).
Banner and Orda [8] established that every weighted network bottleneck game
admits a Nash equilibrium. Caragiannis et al. [1] independently proved the ex-
istence of Nash equilibria in weighted network bottleneck games with linear
latency functions. Harks et al. [10] and Sperber [11] independently generalized
these results by showing that every (even weighted) bottleneck game has an op-
timal strong equilibrium. The optimality here is w.r.t. the network bottleneck,
i.e., the maximal congestion on the edges of the network.
Caragiannis et al. [1] also gave a polynomial time algorithm to find a best Nash
equilibrium in unweighted network bottleneck games in all graphs with either
a single source or a single sink and linear latency functions. Harks et al. [12]
showed that strong equilibria can be found in many unweighted bottleneck games
in polynomial time by reducing the capacity on the resources with the help of
an oracle (e.g., for network games it computes a maximum flow). For weighted
bottleneck games it is NP-hard to find a best Nash equilibrium due to a result
for weighted congestion games on parallel links by Fotakis et al. [13], since in a
graph of parallel links, congestion and bottleneck objectives are the same. Ep-
stein et al. [14] established that on series-parallel graphs all Nash equilibria in
the unweighted network bottleneck game are optimal and Sperber [11] showed
that all Nash equilibria there are even strong equilibria.

A special case of bottleneck games are lexicographic games. Here, users try
to minimize the bottleneck value as well as the second most expensive value and
so on. A general procedure to compute optimal solutions was investigated by
Della Croce et al. [15].

1.1 Our Contribution

In this work we study atomic symmetric unsplittable bottleneck, lexicographic
and congestion games for unweighted and weighted users, respectively. These
games may be played on the same instance and differ from each other only by
the personal cost of the users.



In order to compute strong equilibria in unweighted bottleneck games we
investigate the algorithm of Caragiannis et al. [1] for network bottleneck games
with linear latency functions. We generalize it to general bottleneck games with
arbitrary non-decreasing functions and call it bottleneck congestion transforma-
tion. It maps an instance of a bottleneck or lexicographic game to a special
instance of a congestion game in such a way that all equilibria in the congestion
game with the special instance are also equilibria in the underlying bottleneck
or lexicographic game. With the help of this transformation we investigate the
connection between bottleneck, lexicographic and congestion games and show
how equilibria and optimal solutions in these games are related.

Furthermore, we show that for weighted network bottleneck games in exten-
sion-parallel as well as series-parallel graphs an easy Greedy method computes
a Nash equilibrium in polynomial time.

2 Preliminaries and Notation

A weighted game in our context is played by a finite number of k weighted
users U = (wj)j=1..k on a finite set of m resources E. We will identify users
with their weight and assume wj = 1 for all users j ∈ U for unweighted games.
Users cannot choose resources arbitrarily, but they have to follow certain rules:
In this symmetric unsplitable game, all users j ∈ U have the same set of feasible
strategies Sj = S ⊆ 2|E| and everyone has to choose a single strategy σj ∈ Sj

out of those. Note that we do not allow strategies to contain a resource more
than once since it results in equilibria that are not reasonable (see Appendix A
for more details). The common strategy set is given by S = (Sj)j=1..k.
For every resource e ∈ E there is a non-decreasing and non-negative latency
function ℓe : R≥0 −→ R≥0 that depends on the sum of the weights of the users
on this resource, which is also called load. When every user j ∈ U has choosen
a strategy σj ∈ Sj , σ = (σj)j=1..k ∈ S is called a strategy profile. Then the load
on resource e ∈ E is given by σe =

∑

j=1..k : e∈σj
wj . Hence, the latency on

resource e ∈ E for the strategy profile σ is given by ℓe(σe).
The users in our games have the goal to selfishly minimize their personal

cost cσj
(σ), while some government wants to minimize the social objective of

the game c(σ). So, a game is given by the personal costs of the users, a social
objective and an instance Γ = [E, U = (wj)j=1..k, S = (Sj)j=1..k, (ℓe)e∈E ].
It is not clear a priori if there is a situation, where all users and the government
can be satisfied. The government is satisfied, if the social objective of the strat-
egy profile is minimal and the resulting profile is called an optimal strategy.
We call a coalition of users C ⊆ U satisfied or happy with their strategies (σi)i∈C ,
if not all of them improve by changing their strategies simultaniously. More for-
mally: when all users i of the coalition C change from their stategies σi to other
strategy σ̃i ∈ Si, resulting in the new strategy profile (σ−C , σ̃C) ∈ S, then the
personal cost of at least one user j ∈ C does not decrease due to this change,
i.e., cσj

(σ) ≤ cσ̃j
(σ−C , σ̃C).

When all single users, i.e., coalitions of size 1, are happy with their strategies,



the strategy profile is called a Nash equilibrium. If even all coalitions of users
are happy with their strategies, then the strategy profile is called a strong equi-
librium. Since single users are coalitions of size one, every strong equilibrium is
also a Nash equilibrium.

In a bottleneck game the users try to minimize the latency of the most ex-
pensive resource in their strategy, i.e., the personal cost user j ∈ U wants to
minimize is defined as her bottleneck bσj

(σ) = maxe∈σj
ℓe(σe). The social ob-

jective is choosen to be the bottleneck of the game, i.e., the latency of the most
expensive resource of all of them: b(σ) = maxj∈U bσj

(σ).
In a lexicographic game users try to minimize not only their bottleneck, but also
the second most expensive resource and so on. More formally, let σj=(e1, . . . , eν)
be the strategy of user j ∈ U for some ν ∈ N and let π ∈ Symν be a permutation
s.t. ℓeπ(i)

(σeπ(i)
) ≥ ℓeπ(i+1)

(σeπ(i+1)
) for all i ∈ {1, . . . , ν−1}. Then the personal

cost of user j is her latency vector ℓ
ord

σj
(σ) =

(
ℓeπ(1)

(σeπ(1)
), . . . , ℓeπ(ν)

(σeπ(ν)
)
)
,

i.e., the ordered vector of latencies of all of her resources. The social objec-
tive is choosen to be the latency vector of the game ℓ

ord(σ), i.e., the ordered
vector of latencies of all resources as often as they are used by all users. Let
#e(σ) = |{j ∈ U | e ∈ σj}| be the number of users choosing resource e ∈ E.
Then

ℓ
ord(σ) =

(

ℓeπ(1)
(σeπ(1)

), . . . , ℓeπ(1)
(σeπ(1)

)
︸ ︷︷ ︸

#eπ(1)
(σ) entries

, ℓeπ(2)
(σeπ(2)

), .
︸ ︷︷ ︸

#eπ(2)
(σ)

. . . ., ℓeπ(m)
(σeπ(m)

)
︸ ︷︷ ︸

#eπ(m)
(σ)

)

,

where π is again a permutation s.t. the resources are ordered non-increasingly.
Note that the number #e(σ) of users choosing resource e is only important for
our definition of the social objective, whereas the load on the resource, σe, is the
value determining the latency values and hence the decision of a single user.
In order to minimize the latency vector we have to use some ordering on the whole
vector space. The natural choice for the lexicographic game is the lexicographic
order. Let x ∈ R

µ
≥0 and y ∈ R

ν
≥0 be two vectors and η = min {µ, ν}. Then

x<lex y, if there is some j ∈ {1, . . . , η} s.t. xj < yj and xi = yi for all i < j or
if xi = yi for all i ∈ {1, . . . , η} and µ < ν. If the two vectors may be equal, we
write x≤lex y. Analogously we define x>lex y as y <lex x and x≥lex y as y≤lex x.
In a congestion game, each user tries to minimize the sum of the latencies of
the resources in her strategy. So, the personal cost of user j ∈ U is defined as
the latency of her strategy : ℓσj

(σ) =
∑

e∈σj
ℓe(σe). For the social objective we

choose the latency of the game, i.e., the sum of the latencies of all resources used
by any user: ℓ(σ) =

∑

j∈U ℓσj
(σ) =

∑

e∈E #e(σ)ℓe(σe). Note that the personal
cost are summed up without a weight factor and thus the latencies on the edges
are weighted with the number of users #e(σ) but not the load σe.

2.1 Network Routing Games

A big part of this work deals with network (routing) games in directed graphs
G = (V,E), where V is the set of n vertices and E is the set of m directed edges.



For these games we introduce some special notation.
The set of strategies Sj , user j ∈ U can choose her strategy from, is the set of
s-t-paths P, where s is a common source vertex and t a common sink vertex.
The resources are the edges of the graph. For some path P , we denote by P [u, v]
the subpath of P from vertex u to vertex v. Since we only use this notation when
we consider elementary paths, i.e., paths that traverse all vertices at most once,
the subpath above is uniquely defined.
When all users have choosen their paths, the resulting flow f in the graph is
denoted by f = (fPj

)j=1..k, where fPj
= wj . Given such a flow, the load or

flow value on edge e ∈ E is given by fe =
∑

j=1..k,e∈Pj
fPj

. For constructive
approaches and some proofs it is helpful to have a notation for small changes
in the flow f . So, δPj

denotes one additional unit of load on path Pj and hence
f + w δPj

is a flow sending w + fPj
units of load on path Pj for user j.

For network games some methods use the structure of the graph. One of the
topologies in cosideration are series-parallel graphs: A single edge e = (s, t) is
defined to be series-parallel with source vertex s and sink vertex t. For i ∈ {1, 2},
let Gi be series parallel with source vertex si and sink vertex ti.
Then the graph S(G1, G2) obtained by identifying t1 as s2 is also defined to
be series-parallel with source vertex s1 and sink vertex t2 and is called a series
composition of G1 and G2.
The graph P (G1, G2) obtained by identifying s1 as s2 and t1 as t2 is again de-
fined to be series-parallel with source vertex s1 and sink vertex t1 and is called
a parallel composition of G1 and G2.
A graph is called extension-parallel, if it is series-parallel and every series com-
position is only an extension composition, i.e., it is given as a composition with
a graph consisting of a single edge: S(G1, e = (s2, t2)) or S(e = (s1, t1), G2).

3 Bottleneck Congestion Transformation

Caragiannis et al. [1] have shown that an optimal Nash equilibrium in the un-
weighted network bottleneck game in general graphs with linear latency functions
can be computed in polynomial time with the help of a transformation into a con-
gestion game with exponential latency functions on an expanded graph. In this
section we generalize their transformation by not restricting ourselfes to linear
latency functions or the network game scenario and showing that it computes
already optimal strong equilibria. We split the transformation into two parts:
first a tranformation of the latency functions and then a second transformation
to an expanded setting.

3.1 Induced Congestion Game

We start with a very general transformation that defines for every bottleneck
(BG) or lexicographic game (LG) a corresponding induced congestion game (iCG)
with the same strategies and exponential latency functions s.t. equilibria in iCG

are also equilibria in the original game.



s t

1

2

ℓe1(x) = (x/2)2

ℓe2(x) = x/2

(a) Instance BG

ℓe1(x) ℓe2(x) r(e1, x) r(e2, x)

w1=1 0.25 0.5 1 2
w2=2 1 1 3 3
w1+w2 2.25 1.5 5 4

(b) Latency values and exponents

s t

1

2

ℓ′e1(x) = Mr(e1,x)

ℓ′e2(x) = Mr(e2,x)

(c) Instance iCG

Fig. 1: Instance of a bottleneck game (a) and the induced congestion game (c), as
well as tabular with latency values and exponents for every possible load. Here,
we have a user of weight 1 and another one of weight 2. The basis is M = 2 and
the list of different latency values is L = (0.25, 0.5, 1, 1.5, 2.25).

The idea behind this transformation is the following: If a strategy of few resource
has a higher bottleneck value than a strategy of many cheap resources, then the
last one should also be cheaper in the induced congestion game. So, we scale the
latencies with the help of an exponential function to ensure this.
More formally:
Given a game with instance Γ = [E, U = (wj)j=1..k, S = (Sj)j∈U , (ℓe)e∈E ], the
congestion game with instance ΓiCG = [E, U, S, (ℓ′e)e∈E ] is called the induced
congestion game. It is given by the same data as the original instance except for
the latency functions. For resource e ∈ E the function is ℓ′e(x) = Mr(e,x), where
the basis M = max {|σi| | σi ∈ Sj for some j ∈ U} + 1 is a number larger than
the cardinality of every strategy. The exponent r(e, x) is a number s.t. resource
e with load x =

∑

j∈C wj for some C ⊆ U has the r(e, x)-th cheapest latency
value among all possible different latency values from the increasingly ordered
list L of the set {ℓe(x) | e ∈ E, x =

∑

j∈C wj for some C ⊆ U}. To understand
the notation we give a small example of the transformation for the case of a
network game in Fig. 1.

The latency functions for the induced congestion game are exponential func-
tions. So it is not clear whether efficient algorithms for this congestion game
exist. But we will show later on that the exponential character can be algo-
rithmically avoided for explicit computations for many interesting models (e.g.,
network or matroid games).

Because of the exponential character of the latency functions in the induced
congestion game we can formulate the following statement.

Lemma 1. Let σ and σ̃ be strategy profiles of a bottleneck, lexicographic and
induced congestion game. Then for two strategies σo ∈ σ and σ̃o ∈ σ̃ it holds:

ℓ′σo
(σ) ≤ ℓ′σ̃o

(σ̃) ⇔ ℓ
ord

σo
(σ) ≤lex ℓ

ord

σ̃o
(σ̃) ⇒ bσo

(σ) ≤ bσ̃o
(σ̃).

The lemma shows that if a strategy is better for a user in the induced con-
gestion game, then it is also better in the underlying bottleneck game.

Corollary 1 (Equilibria in BG and LG can be computed in iCG). Let a
bottleneck or lexicographic game be given. A strategy profile σ is a (strong) Nash
equilibrium in the bottleneck game if it is a (strong) Nash equilibrium in the



induced congestion game. Furthermore, σ is a (strong) Nash equilibrium in the
lexicographic game if and only if it is a (strong) Nash equilibrium in the induced
congestion game.

From these statements it follows that (strong) Nash equilibria in the lexico-
graphic game are (strong) Nash equilibria in the bottleneck game. Furthermore,
it implies that every unweighted lexicographic game has a Nash equilibrium,
since every unweighted congestion game has one [4]. The converse of the first
statement in the corollary is in general not true, since the last implication of
Lemma 1 is not true in general (see Appendix B).
For the social objectives defined in this work it also holds:

Proposition 1 (Optima in LG are exactly optima in iCG). A strategy
profile σ is optimal in the lexicographic game, if and only if σ is optimal in the
induced congestion game.

We have seen so far that with the help of the transformation we can find
equilibria in the bottleneck game as equilibria in the induced congestion game.
One can even show that this methods always gives the socially best equilibria,
but not necessarily all bad ones. Moreover, some users may be better off in an
equilibrium that is worse than another one. For more details about that see
Appendix A.1.
The computation of equilibria in congestion games is also not so easy. But,
Fabrikant et al. [5] have shown that in network congestion games they can be
computed efficiently with the help of a minimum cost flow in an expanded graph.
In the next section we will generalize their method.

3.2 Expanded Induced Congestion Game

Here we generalize the second part of the transformation of Caragiannis et al. [1]
and state a method s.t. we can find a strong equilibrium in an unweighted bot-
tleneck game as an optimal solution of an expanded induced congestion game.

Given an instance of a game Γ = [E, U = {1, . . . , k} , S = (Sj)j∈U , (ℓe)e∈E ],

the congestion game with instance ΓeiCG = [Ẽ, U, S̃, (ℓ̃e)e∈Ẽ ] is called the ex-
panded induced congestion game:
For every resource e ∈ E we take k copies, called ẽj = [e, j] for all j ∈ U , i.e.,
one for every possible load number. We call all resources ẽj parallel to e and
denote this by ẽ = e. With this the set of resources can be written down explic-
itly as Ẽ = {ẽ | e ∈ E, ẽ = e}. Then we allocate constant latency values to every
resource equal to the latency function in the induced congestion game evaluated
at the corresponding load value. More formally, for the j-th copy of resource
e ∈ E the latency value is given by ℓ̃[e,j] = Mr(e,j), where the basis is a number
larger than the cardinality of every strategy multiplied with the number of users,
i.e., M = k max {|σi| | σi ∈ Sj for some j ∈ U} + 1. The exponents r(e, j) are
defined as for the induced congestion game.
The set of strategies is the same as in the original instance with the exception
that when two users would use the same resource in the original instance then
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ℓe1(x)=x2 ℓe2(x)=x+1

ℓe3(x)=2x ℓe4(x)=x3

ℓe5(x)=0

(a) Graph G for BG

s

u

v

t

ℓ̃ẽ1,1 = M2

ℓ̃ẽ1,2 = M5

ℓ̃ẽ2,1 = M3

ℓ̃ẽ2,2 = M4

ℓ̃ẽ3,2 = M5

ℓ̃ẽ3,1 = M3

ℓ̃ẽ4,2 = M6

ℓ̃ẽ4,1 = M2

ℓ̃ẽ5,2 = M1ℓ̃ẽ5,1 = M1

(b) Expanded graph G̃ for eiCG

ℓei(x) i = 1 2 3 4 5

x = 1 1 2 2 1 0
x = 2 4 3 4 8 0

r(ei, x) i = 1 2 3 4 5

x = 1 2 3 3 2 1
x = 2 5 4 5 6 1

(c) Latency values and exponents

Fig. 2: Illustration of the expansion process and all notation for the so called
Braess graph from (a). Note that paths here have to be resource disjoint to
paths of other users. Furthermore, k = 2, M = 7 and L = (0, 1, 2, 3, 4, 8).

they have to pick two different parallel resources in the expanded setting. So the
set of common strategies is given by

S̃ =
{

σ̃ = (σ̃1, . . . , σ̃k)
∣
∣
∣σ̃j = (ẽ1, . . . , ẽq) for j ∈ U, σj = (e1, . . . , eq) ∈ Sj ,

Ẽ ∋ ẽi = ei ∈ E, i ∈ {1, . . . , q} and |σ̃ẽ| ≤ 1 for all ẽ ∈ Ẽ
}

.

We call the strategy profile σ̃ constructed in the definition corresponding to the
strategy profile σ = (σ1, . . . , σk). In total, we ”take one parallel resource for
every user with the latencies from the induced congestion game” and ”do not
allow users to take common resources”. To understand the notation we give an
example in Fig. 2.

3.3 Relations of Games

Here we show what the transformation is good for.

Theorem 1 (Optima in eiCG or iCG are optimal SE in BG).

a) If σ is an optimal solution in the induced congestion game, then σ is an op-
timal strong equilibrium in the bottleneck game. Furthermore, if additionally
all latency values are different, i.e., ℓe(x) 6= ℓe′(y) for all e 6= e′ ∈ E and all
x, y ∈ N0, then σ is also a strong equilibrium in the lexicographic game and
hence a strong equilibrium in the induced congestion game.

b) If σ̃ is an optimal solution in the expanded induced congestion game, then
the corresponding strategy profile σ is an optimal strong equilibrium in the
bottleneck game. Furthermore, if additionally all latency values are different,
then σ is a strong equilibrium in the lexicographic game.



We see that in order to find an optimal strong equilibrium in a bottleneck
game it is enough to find optimal solutions in special congestion games. Further-
more, one can show that both congestion games we introduced have in general
different optimal solutions and equilibria (see Appendix A.2).

3.4 Application

In this section we show that with the help of the expanded bottleneck-congestion
tranformation, an optimal strong equilibrium in the unweighted network bottle-
neck and matroid game can be computed in polynomial time.

Network Routing Game. Given an unweighted network game on a general
graph G = (V,E) with general latency functions. The transformation constructs
an expanded graph G̃ = (V, Ẽ) with constant latency values. Then an optimal
solution in the congestion game with this instance is computed with a minimum
cost flow and decomposed into paths for the single users. This method gives an
optimal strong equilibrium in the unweighted network bottleneck game in poly-
nomial time when using a polynomial time minimum cost flow algorithm. In the
case of linear latency functions the algorithm works exactly as the one of Cara-
giannis et al. [1]. Hence, their method does not only compute Nash equilibria,
but also strong equilibria.

Matroid Game. The same procedure works also in a matroid game (see Acker-
mann et al. [7]). Here, the resources are resources of a matroid and the strategies
of the users are bases of the matroid. A special case here is the network setting,
where the resources are edges of an undirected graph and the bases are spanning
trees. Roskind and Tarjan [18] have shown that k minimum cost edge disjoint
spanning trees can be found in polynomial time and since they do not use any
structure of the tree except for the independence property their method can be
used for all matroids. This enables us to use the bottleneck congestion trans-
formation to find an optimal strong equilibrium as an optimal solution in the
expanded induced matroid congestion game in polynomial time.

4 Greedy Methods

We have already seen in the last section that strong equilibria in unweighted
network bottleneck games can be computed in polynomial time with the help of
a minimum cost flow algorithm. Now we show that that for special topologies it
can be done even faster.

4.1 Extension-Parallel Graphs

In a network of parallel links the bottleneck game and the congestion game coin-
cide. Furthermore, this network is equivalent to scheduling on parallel machines.
Here, one just has to choose iteratively the cheapest edges (Greedy strategy)
starting with the users with the biggest weight (LPT-rule from scheduling, see



s v t

ℓe1(x) = x ℓe3(x) = 3x

ℓe2(x) = 2x ℓe4(x) = 4x

(a) Graph with latencies

s v t

3

4 4

(b) Greedy

s v t

1 3

2 4

(c) Nash equilibrium

Fig. 3: Shows that the naive Greedy approach fails in series-parallel graphs.
Solid (red) and dashed (blue) lines give the paths of the two users. Numbers
are latency values on the edges for the given flow values. In the flow in (b), the
dashed user can improve, which results in the flow of (c).

e.g., Koutsoupias et al. [17]).
Since general graphs may consist of many paths from the source to the sink and
these may have a different number of edges each, we need some additional no-
tation. We call a path with minimal bottleneck value a shortest bottleneck path
or a narrowest path. In acyclic graphs and hence especially in extension-parallel
graphs, these can be computed directly with the help of a topological sorting
in linear time. To do so, one introduces distance labels d(vj) for all vertices vj ,
j ∈ {1, . . . , k}, sorted by a topological sorting, with the recursion:

d(v1) = 0, d(vj) = min
{
max

{
d(vi), ℓ(vi,vj)

∣
∣ (vi, vj) ∈ E

}}
(1)

for j ∈ {2, . . . , k}. Note that every edge is taken into account only once.
Our algorithm routes the users one after the other in non-ascending order

of their weights, i.e., starting with the heaviest ones. It iteratively computes a
narrowest path w.r.t. the latency values that result from the load of the users
already routed and the current user. We call this method GreedyLPT.

Theorem 2 (GreedyLPT finds a NE). In an extension-parallel graph the
GreedyLPT algorithm finds a Nash equilibrium for the weighted network bot-
tleneck game in time O(km+ k log k).

In the unweighted case sorting of the users is not necessary and hence this
summand in the running time is canceled. Furthermore, Epstein et al. [14] showed
that Nash equilibria in series-parallel graphs are optimal and Sperber [11] showed
that they are even strong equilibira. Since extension-parallel graphs are always
series-parallel we get the following result:

Corollary 2 (Greedy finds an optimal SE). In an extension-parallel graph
GreedyLPT finds an optimal strong equilibrium for the unweighted network
bottleneck game in time O(km).

4.2 Series-Parallel Graphs

The Greedy method of the last section does not work in non-extension-parallel
graphs as can be seen in the example from Figure 3. The example motivates a
modified approach, which takes into account the second, third and so on most



expensive edges, too. So we need lexicographically shortest paths (see e.g., [20]).
For a s-t-path P = (e1, e2, . . . , ed) of length d ∈ N the ordered latency vector
of this path is defined to be ℓ

ord

P (f) =
(
ℓeπ(1)

(feπ(1)
), . . . , ℓeπ(d)

(feπ(d)
)
)
, where π

is a permutation in the symmetric group Symd on d elements s.t. the numbers
in the vector are ordered non-increasingly, i.e., ℓeπ(i)

(feπ(i)
) ≥ ℓeπ(i+1)

(feπ(i+1)
)

for all i ∈ {1, . . . , d− 1}. Path P is called a lexicographically shortest path in G,
if it has the lexicographic minimal ordered latency vector among all s-t-paths.
To compute those, the distance labels are not bottlenecks of the subpaths, see
Equation (1), but ordered latency vectors, i.e.,

d(vj) = min
{
sort

(
d(vi), ℓ(vi,vj)

) ∣
∣ (vi, vj) ∈ E

}
,

where sort is a sorting operator that sorts all the numbers from the vector d(vi)
and the single additional number ℓ(vi,vj) non-increasingly and outputs a sorted
vector, e.g., sort ((4, 1), 3) = (4, 3, 1). Since the comparison here is a lexicograph-
ical one and requires time O(n) in acyclic graphs, the total complexity for com-
puting a lexicographically shortest path is O(mn).

The algorithm for computing equilibria here is just a little modification of
GreedyLPT. Instead of a narrowest path it uses a lexicographically shortest
path. Hence, we call it GreedyLPT-Lex.

Theorem 3 (GreedyLPT-Lex finds a NE). In a series-parallel graph the
GreedyLPT-Lex algorithm finds a Nash equilibrium for the weighted network
bottleneck game in time O (k(m n+ log k)).

Corollary 3 (GreedyLex finds an optimal SE). In a series - parallel graph
GreedyLPT-Lex finds an optimal strong equilibrium for the unweighted network
bottleneck game in time O(kmn).

In this unweighted case with linear latency functions, one can also use the
algorithm of Caragiannis et al. [1]. It computes a minimum cost flow in an
expanded series-parallel graph (see the section about eiCG), which can be done
in time O(k m n+ k m log(k m)) by using a Greedy method as Bein et al. [16]
showed. However, we do not need the restriction to linear latency functions and
the expanded graph and get a small improvement in the running time.

We know from Valdes et al. [19] that every acyclic (directed) graph that
is not series-parallel contains a subgraph that is homeomorphic to the Braess
graph. The example from Fig. 4 shows that the lexicographic Greedy method
does not work on non-series-parallel graphs.
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columns, the expression is the constant latency function. In the last colum the
solid (red), dashed (blue) line give one user each. This flow is a Nash equilibrium
in the bottleneck game, but not in the induced congestion game. Here M = 3.

Appendix
Here we give additional examples and statements that are mentioned but not
shown explicitly in the paper.

A Examples for Bottleneck Congestion Transformation

The example of a network game from Fig. 5 (a-c) shows why strategies that
use resources more than once are excluded for bottleneck games. The reason
is that these would give Nash equilibria that are practically not meaningful.
The example also shows that these equilibria cannot always be found with the
bottleneck congestion transformation. This also happens without strategies that
contain resources more than once as the example from Fig. 5 (d-f) shows.

A.1 Quality of Equilibria

We have seen in the example from Fig. 5 that not all Nash equilibria in our
bottleneck games can be found by knowing the appropriate equilibria in the
induced congestion games. Luckily, we find the best equilibria with this method:

Proposition 2. Given a bottleneck game and a (strong) Nash equilibrium σ

with ordered vector of user bottlenecks given by b
ord(σ) = (bj)j∈U . Then there is

a (strong) Nash equilibrium σ̃ in the induced congestion game with ordered vector
of user bottlenecks in the bottleneck game given by b

ord(σ̃) = (b̃j)j∈U ≤lex b
ord(σ).

Proof. If σ is a Nash equilibrium in the lexicographic game, we are done. So
assume that it is not. So there are users that can improve by changing their
strategy. In every improvement step, the vector of the users latency values de-
creases lexicographically. After a finite number of changes the resulting strategy
profile, called σ̃, is a Nash equilibrium in the lexicographic game. So, this σ̃ is a
Nash equilibrium in the bottleneck game and the vector of all user bottlenecks
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given by the number of parallel edges; in the expanded setting it is at most 1.
In (c) and (e), the upper most edge has the first number as an exponent, the
second edge the second number and so on.

is lexicographically not higher than before.
The result for strong equilibria follows along the same lines. ⊓⊔

This statement implies that the transformation method always finds the so-
cially best equilibria w.r.t. the lexicographic social objective. But, there may be
users that are worse off in the lexicographically better equilibrium (see Fig. 6).

A.2 Relations of Games

Many other implications than those in Theorem 1 are not true. For example,
optimal solutions in the expanded induced congestion game are not optimal in
the induced congestion game and vice versa (see Fig. 7). Furhermore, strong
equilibria in the two congestion games do not coincide in general and might be
non-optimal (Fig. 8).

B Proofs for Bottleneck Congestion Transformation

Here we give the proofs for all statements in the section about the bottleneck
congestion transformation together with the statements itself.
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Lemma 1. Let σ and σ̃ be strategy profiles of a bottleneck, lexicographic and
induced congestion game. Then for two strategies σo ∈ σ and σ̃o ∈ σ̃ it holds:

ℓ′σo
(σ) ≤ ℓ′σ̃o

(σ̃) ⇔ ℓ
ord

σo
(σ) ≤lex ℓ

ord

σ̃o
(σ̃) ⇒ bσo

(σ) ≤ bσ̃o
(σ̃).

Proof. Let σ and σ̃ be strategy profiles of the games and let σ0 ∈ σ and σ̃0 ∈ σ̃.
We start with the equivalence:

=⇒ : Let ℓordσ0
(σ)>lex ℓ

ord

σ̃0
(σ̃) and assume that ℓ′σ0

(σ) ≤ ℓ′σ̃0
(σ̃), Furthermore,

let ℓ
ord

σ0
(σ) =

(
ℓe1(σe1), . . . , ℓeµ(σeµ)

)
and ℓ

ord

σ̃0
(σ̃) = (ℓẽ1(σ̃ẽ1), . . . , ℓẽν (σ̃ẽν )) for

some µ, ν < M . Let ρ be choosen in such a way that ℓei(σei) = ℓẽi(σ̃ẽi) for all
i ∈ {1, . . . , ρ− 1} and ℓeρ(σeρ) > ℓẽρ(σ̃ẽρ) or ρ = ν+1. Hence, for the numbers r
in the exponents of the induced latency functions ℓ′ it holds r(ei, σei) = r(ẽi, σ̃ẽi)
for all i ∈ {1, . . . , ρ− 1} and r(eρ, σeρ) > r(ẽρ, σ̃ẽρ) or r(eρ, σeρ) ≥ 0 for ρ =
ν + 1. Because of the ordering of the resources for all j ∈ {ρ+ 1, . . . , ν} it
holds r(ẽj , σ̃ẽj ) ≤ r(ẽρ, σ̃ẽρ) ≤ r(eρ, σeρ)− 1. So, we can calculate the difference
between the latencies of the two strategies:

ℓ′σ0
(σ)− ℓ′σ̃0

(σ̃) =
∑

e∈σ0

ℓ′e(σe)−
∑

ẽ∈σ̃0

ℓ′ẽ(σ̃ẽ) (2a)

=Mr(eρ,σeρ ) +

µ
∑

j=ρ+1

M
r(ej ,σej

)

︸ ︷︷ ︸

≥ 0

−
ν∑

j=ρ
︸︷︷︸

M
r(ẽj ,σ̃ẽj

)

︸ ︷︷ ︸

≤M
r(eρ,σeρ )−1

<M summands

(2b)

> Mr(eρ,σeρ ) −M Mr(eρ,σeρ )−1 = 0. (2c)

In (a) we plug in, in (b) the first ρ terms cancel and the others can be split up
as discussed above. This gives a contradiction to our assumption.

⇐= : Let ℓ
ord

σ0
(σ)≤lex ℓ

ord

σ̃0
(σ̃) and denote the resources again with µ, ν <

M s.t. ℓordσ0
(σ) =

(
ℓe1(σe1), . . . , ℓeµ(σeµ)

)
and ℓ

ord

σ̃0
(σ̃) = (ℓẽ1(σ̃ẽ1), . . . , ℓẽν (σ̃ẽν )).If

the two vectors coincide lexicographically, i.e., ℓordσ0
(σ) = ℓ

ord

σ̃0
(σ̃), then by the

definition of the lexicographic order it holds that the vectors are really equal, i.e.,



ℓ
ord

σ0
(σ) = ℓ

ord

σ̃0
(σ̃). So µ = ν and for all i ∈ {1, . . . , µ} it holds ℓei(σei) = ℓẽi(σ̃ẽi)

and hence r(ei, σei) = r(ẽi, σ̃ẽi). So, ℓ
′
σ0
(σ) = ℓ′σ̃0

(σ̃).If the two vectors are not

equal, i.e., ℓordσ0
(σ)<lex ℓ

ord

σ̃0
(σ̃), we can use the calculation above with swapped σ

and σ̃ and get ℓ′σ0
(σ) < ℓ′σ̃0

(σ̃).
Now we prove the last implication:
=⇒ : Since the first element in the ordered vector of the latencies of all

resources must be the bottleneck, i.e., there is e1 ∈ σ0 s.t. bσ0
(σ) = ℓe1(σe1) and

there is ẽ1 ∈ σ̃0 s.t. bσ̃0
(σ̃) = ℓẽ1(σ̃ẽ1) it follows immediately that bσ0

(σ) ≤ bσ̃0
(σ̃).
⊓⊔

The converse of the last implication is wrong, since (3, 2)>lex(3, 1) does not
imply 3 > 3, but the equivalence is also true for equality or strict inequality, i.e.,

ℓ′σ0
(σ) =

(<)
ℓ′σ̃0

(σ̃) ⇐⇒ ℓ
ord

σ0
(σ) =

(<lex)
ℓ
ord

σ̃0
(σ̃).

Proposition 1. (Optima in LG are exactly optima in iCG) A strategy
profile σ is optimal in the lexicographic game, if and only if σ is optimal in the
induced congestion game.

Proof. Let σ∗ = (σ∗
j )j=1..k be an optimal solution of the lexicographic game

with latency vector ℓord(σ∗) =
(
ℓ∗1, . . . , ℓ

∗
µ∗

)
. Then for any other strategy profile

σ with latency vector ℓord(σ) = (ℓ1, . . . , ℓµ) we have ℓ
ord(σ)≥lex ℓ

ord(σ∗).
If strict inequality holds then there is ν, the first index where the two vectors
differ, i.e., ℓi = ℓ∗i for all i < ν and ℓν > ℓ∗ν or µ > ν = µ∗. We name r = r(e, σe)
for some e ∈ E with ℓe(σe) = ℓν . With #e = #e(σ) and #∗

e = #e(σ
∗) we can

calculate the difference between the objectives of both strategies:

ℓ′(σ) − ℓ′(σ∗) (3a)

=
∑

e∈E

#e

ℓe(σe)>ℓν

Mr(e,σe) +
∑

e∈E

#e

ℓe(σe)=ℓν

Mr(e,σe)
︸ ︷︷ ︸

=Mr

+
∑

e∈E

#e

ℓe(σe)<ℓν

Mr(e,σe)

︸ ︷︷ ︸

≥ 0

(3b)

−
∑

e∈E

#∗
e

ℓe(σ∗
e )>ℓν

Mr(e,σ∗

e ) −
∑

e∈E

#∗
e

ℓe(σ∗
e )=ℓν

︸ ︷︷ ︸

Mr(e,σ∗

e )
︸ ︷︷ ︸

=Mr

≤
∑

e∈E
ℓe(σe)=ℓν

#e−1

−
∑

e∈E

#∗
e

ℓe(σ∗
e )<ℓν

︸ ︷︷ ︸

Mr(e,σ∗

e )
︸ ︷︷ ︸

≤Mr−1

≤
∑

e∈E

|σ∗
e | ≤

k∑

j=1
|σ∗

j |<M

(3c)

> Mr −M Mr−1 = 0. (3d)

In (b) we split ℓ′(σ) in three terms and in (c) we split ℓ′(σ∗) the same way. The
first terms of (b) and (c) cancel and the others can be estimated as discussed
above. The second term always exists in (b), but not necessary in (c) if there
is no edge with cost ℓν there. Then the third term in (c) is needed to compare
both sums.



If the two vectors are the same, then the difference above is zero. We see that σ∗

is not worse than any strategy profile σ and hence σ∗ is optimal in the induced
congestion game.

On the other hand, let σ be a non-optimal strategy profile in the lexicographic
game. Then there is an optimal strategy σ∗, which is really better than σ. Hence,
there is again an index ν for the calculation above. Then σ∗ is also better in the
induced congestion game and hence σ cannot be optimal there. ⊓⊔

B.1 Main Theorem

Theorem 1. (Optima in eiCG or iCG are optimal SE in BG)

a) If σ is an optimal solution in the induced congestion game, then σ is an op-
timal strong equilibrium in the bottleneck game. Furthermore, if additionally
all latency values are different, i.e., ℓe(x) 6= ℓe′(y) for all e 6= e′ ∈ E and all
x, y ∈ N0, then σ is also a strong equilibrium in the lexicographic game and
hence a strong equilibrium in the induced congestion game.

b) If σ̃ is an optimal solution in the expanded induced congestion game, then
the corresponding strategy profile σ is an optimal strong equilibrium in the
bottleneck game. Furthermore, if additionally all latency values are different,
then σ is a strong equilibrium in the lexicographic game.

Proof. We start with the first part of item a). So, let σ = (σj)j∈U be some
decomposition of an optimal strategy in the induced congestion game.

Claim: σ is a strong equilibrium in the bottleneck game.
Assume that this is wrong. Then there is some coalition C consisting of users
j ∈ C with their strategies σj and bottlenecks bj = bσj

(σ), who can improve
by changing to other strategies σ∗

j with new bottlenecks b∗j = bσ∗

j
(σ∗) < bj .

This results in a new strategy σ∗ = (σ∗
j )j∈U = (σ−C , σ

∗
C), where σ∗

C = (σ∗
j )j∈C .

W.l.o.g. let the first user have the highest bottleneck value of all the users of the

coalition in σ, i.e., b1 = max
{

bj

∣
∣
∣ j ∈ C

}

. Furthermore, let e1 ∈ σ1 be a resource

on which the highest bottleneck value is attained, i.e., ℓe1(σe1) = b1. Let E be the
set of resources used by the users of the coalition in σ, i.e., E = {e ∈ σj | j ∈ C}.
For those resources we have σe > 0. Denote #e = #e(σ) and #∗

e = #e(σ
∗).

We discuss three types of resources:

i) Resources that are not used by users of the coaltion and have a high latency,
i.e., e ∈ E\E with ℓe(σe) ≥ b1. The load of these edges does not change
when users of the coalition change their strategies, because no user of the
coalition has load on such a resource in σ and no one wants to go to such a
resource. So #∗

e = #e and hence ℓe(σ
∗
e ) = ℓe(σe) and r(e, σ∗

e ) = r(e, σe) for
these resources.

ii) The most expensive bottleneck resources used by users of the coalition, i.e.,
e ∈ E with ℓe(σe) = b1. All of these will be left by at least one member of the
coalition, because these users have to improve their bottleneck values when
they change their strategies. Hence the load and latency of these resources



will decrease, i.e., σ∗
e ≤ σe − 1, ℓe(σ

∗
e ) < ℓe(σe) and so for the exponent it

holds: r(e, σ∗
e ) < r(e, σe) = r.

iii) For all other resources, i.e., e ∈ E with ℓe(σe) < b1, the load may change due
to the change of the coalition, but the latency does not increase to b1 and
hence, it is really smaller than b1. So the exponents are smaller than r, i.e.,
r(e, σ∗

e ) < r.

Note that the numbers r(e, x) are fixed when the resources, latencies and users
are given and do not depend on any strategy choices.

With this we can compare the cost of the new strategy σ∗ with the old
strategy σ in the induced congestion game.

ℓ′(σ∗) =
∑

e∈E\E

#∗
e

ℓe(σe)≥b1

ℓ′e(σ
∗
e )

︸ ︷︷ ︸

= ℓ′e(σe)

+
∑

e∈E

#∗
e

ℓe(σe)=b1

Mr(e,σ∗

e )
︸ ︷︷ ︸

≤Mr−1

+
∑

e∈E

#∗
e

ℓe(σe)<b1

Mr(e,σ∗

e )
︸ ︷︷ ︸

≤Mr−1

(4a)

≤
∑

e∈E\E

#e

ℓe(σe)≥b1

ℓ′e(σe) +
∑

e∈E

#e

ℓe(σe)=b1

ℓ′e(σe) +
∑

e∈E

#e

ℓe(σe)<b1

ℓ′e(σe)

︸ ︷︷ ︸

= ℓ′(σ)

(4b)

−
∑

e∈E

#e

ℓe(σe)=b1

ℓ′e(σe)

︸ ︷︷ ︸

≥Mr, since e1∈E
with ℓe1 (σe1

)=b1

−
∑

e∈E

#e

ℓe(σe)<b1

ℓ′e(σe)

︸ ︷︷ ︸

≥ 0

+
∑

e∈E

#∗
e

︸ ︷︷ ︸

Mr−1

=
k∑

j=1
|σ∗

j |<M

(4c)

< ℓ′(σ) − Mr + M Mr−1 = ℓ′(σ). (4d)

In Equation (a) we split in the three cases discussed above. The first term in (b)
in the same as the first one in (a). Furthermore, we add the last two terms and
substrackt them again in line (c). The last summand in (c) is not less than the
two last terms in (a). So, σ∗ would have less cost than a minimum cost strategy,
which is a contradiction to our assumption. Hence, σ is a strong equilibrium in
the bottleneck game.

Claim: σ is also optimal in the bottleneck game.
Assume, this is wrong. Then there must be some strategy σ∗ with a smaller
bottleneck value, i.e., b(σ∗) < b(σ). So there are some resources e∗0 ∈ σ∗ and
e0 ∈ σ on which the bottleneck values are attained, i.e., ℓe∗0 (σ

∗
e∗0
) = b(σ∗) <

b(σ) = ℓe0(σe0). Hence, the maximal exponent of the new strategy is really
smaller than the one of the old strategy, i.e., r(e∗0, σ

∗
e∗0
) < r(e0, σe0) = r. Then

ℓ′(σ∗) =
∑

e∈E

#∗
e M

r(e, σ∗

e )
︸ ︷︷ ︸

≤Mr−1

≤
k∑

j=1

∑

e∈σ∗

j

︸ ︷︷ ︸

Mr−1

<M summands

< Mr ≤
∑

e∈E

#e M
r(e, i) = ℓ′(σ),

which again is a contradiction to the fact that σ is a minimum cost strategy in
the induced congestion game. Hence, σ is an optimum in the bottleneck game.



Now we show that an optimal solution of the induced congestion game is
also a strong equilibrium in the lexicographic game if all latency values are
different. The argumentation is up to small changes very similar to the one for
the bottleneck game. Let σ = (σj)j∈U be some decomposition of an optimal
strategy in the induced congestion game.

Claim: σ is a strong equilibrium in the lexicographic game.
Assume that this is wrong. Then there is some coalition C of users j ∈ C,

their strategies σj and latency vectors ℓordj = ℓ
ord

σj
(σ) =

(

ℓ
(j)
1 , . . . , ℓ

(j)
µj

)

of length

µj ∈ N, who can improve by changing to other strategies σ∗
j with new latency

vectors ℓ
ord

j

∗
= ℓ

ord

σ∗

j
(σ∗) =

(

ℓ
(j)
1

∗
, . . . , ℓ

(j)
µ∗

j

∗)

<lex ℓ
ord

j of length µ∗
j ∈ N. This

results in a new strategy σ∗ = (σ∗
j )j∈U = (σ−C , σ

∗
C), where σ∗

C = (σ∗
j )j∈C .

W.l.o.g. let ℓ1 be the highest latency value that decreases due to the change of
the coalition and ℓ∗2 the hightest latency value to which some latency decreased
due to the change of the coalition. Since every resource has different latency
values, i.e., ℓe(x) 6= ℓe′(y) for all e 6= e′ ∈ E and all x, y ∈ N0, the most expensive
resource some user left, must be really more expensive than the most expensive
value she and all other users joined, i.e., ℓ1 > ℓ∗2. This is the only point, where
we need this assumption and the statement of the theorem is wrong without
some statement that ensures that the overall latency vector really drops. Now,
it follows for all e ∈ E with ℓe(σ

∗
e ) > ℓ∗2 that ℓe(σ

∗
e ) = ℓe(σe). Furthermore, let

e1 be a resource with high latency in the beginning, i.e., ℓe1(σe1) = ℓ1 and e∗2
be a resource with high latency in the new strategy, i.e., ℓe∗2 (σ

∗
e∗2
) = ℓ∗2. Since

ℓe1(σe1) > ℓe∗2 (σ
∗
e∗2
), it holds again that r = r(e1, σe1) > r(e∗2, σ

∗
e∗2
) = r∗.

The rest of the argumentation and of the calculation are nearly the same as
in the bottleneck case, when we replace the high bottleneck value b1 by the high
latency value ℓ1. In the case ii), not all of the high values have to decrease, but
then we do not have to add and subtrackt them in the calculation. With this,
one can show that σ∗ would have less cost than a minimum cost strategy in the
induced congestion game, which is a contradiction to our assumption. Hence, σ
is a strong equilibrium in the lexicographic game.

Next we show part b). This is very similar to item a), but for the expanded
setting. Let σ = (σj)j∈U be some decomposition of the strategy σ corresponding
to an optimal strategy σ̃ in the expanded induced congestion game. Note that
in this expanded game the latencies ℓ̃ẽ of all resources ẽ ∈ Ẽ of the expanded
setting are constant and do not depend on the load.

Claim: σ is a strong equilibrium in the bottleneck game.
The argumentation here is exactly the same as in part a). We assume that the
strategy σ is not a strong equilibrium in the bottleneck game. Then there is some
coalition C consisting of users j ∈ C with their strategies σj and bottlenecks bj =
bσj

(σ), who can improve by changing to other strategies σ∗
j with new bottlenecks

b∗j = bσ∗

j
(σ∗) < bj . This results in a new strategy σ∗ = (σ∗

j )j∈U = (σ−C , σ
∗
C),

where σ∗
C = (σ∗

j )j∈C . W.l.o.g. let the first user have the highest bottleneck value

of all of the users of the coalition in the beginning, i.e., b1 = max
{

bj

∣
∣
∣ j ∈ C

}

.

Furthermore, let e1 ∈ σ1 be a resource on which the first bottleneck value is



attained, i.e., ℓe1(σe1) = b1. Since the order is kept by the latencies and their
exponents in the expanded induced congestion game, r = r(e1, σe1) the highest
exponent and ℓ̃ẽ1 is the highest latency of all users of the coalition in the be-
ginning in the expanded setting. Here, ẽ1 = e1 is one of the most expensive of
the parallel resources corresponding to e1. Let E be the set of resources used by
the users of the coalition in the beginning, i.e., E = {e ∈ σj | j ∈ C}. For those
resources we have σe > 0 and hence σ̃[e,i] = 1 for all i ∈ {1, . . . , σe}, i.e., the
first σe parallel resources [e, i] in eiCG corresponding to e in the expanded game,
while for all resources ẽ ∈ Ẽ it holds σ̃ẽ ∈ {0, 1}.

We have the same three types of resources as in part a), but the calculation
is a little bit different, because we have to calculate in the expanded setting:

ℓ̃(σ̃∗) =
∑

ẽ∈Ẽ

σ̃∗
ẽ

ẽ = e∈E\E
ℓe(σe)≥b1

ℓ̃ẽ +
∑

ẽ∈Ẽ

σ̃∗
ẽ

ẽ = e∈E
ℓe(σe)=b1

ℓ̃ẽ +
∑

ẽ∈Ẽ

σ̃∗
ẽ

ẽ = e∈E
ℓe(σe)<b1

ℓ̃ẽ (5a)

≤
∑

ẽ∈Ẽ

σ̃ẽ

ẽ = e∈E\E
ℓe(σe)≥b1

ℓ̃ẽ +
∑

e∈E
ℓe(σe)=b1

σe−1∑

i=1

Mr(e,i) +
∑

e∈E
ℓe(σe)<b1

σ∗

e∑

i=1

Mr(e,i)

r(e, i)≤ r−1

(5b)

≤
∑

ẽ∈Ẽ

σ̃ẽ

ẽ = e∈E\E
ℓe(σe)≥b1

ℓ̃ẽ +
∑

e∈E
ℓe(σe)=b1

σe∑

i=1

Mr(e,i) +
∑

ẽ∈Ẽ

σ̃ẽ

ẽ = e∈E
ℓe(σe)<b1

ℓ̃ẽ

︸ ︷︷ ︸

= ℓ̃(σ̃)

(5c)

−
∑

e∈E
ℓe(σe)=b1

Mr(e,σe)

︸ ︷︷ ︸

≥Mr

−
∑

ẽ∈Ẽ

σ̃ẽ

ẽ = e∈E
ℓe(σe)<b1

ℓ̃ẽ

︸ ︷︷ ︸

≥ 0

+
∑

e∈E
ℓe(σe)<b1

σ∗

e∑

i=1
r(e, i)≤ r−1

︸ ︷︷ ︸

≤
k∑

j=1
|σ∗

j |<M

Mr(e,i)
︸ ︷︷ ︸

≤Mr−1

< ℓ̃(σ̃) − Mr + Mr = ℓ̃(σ̃). (5d)

In Equation (a) we split in the three cases discussed above and in (b) we include
the relations between σ and σ∗ from the three cases. The first and last term in
(b) are the same as the first and last one in (c). The second term from (b) is split
in the second and fourth one from (c). Furthermore, we add and substrackt the
third (and fifth) term in (c). So, σ̃∗ would have less cost than a minimum cost
strategy of the expanded induced congestion game, which is a contradiction to
our assumption. Hence, σ must be a strong equilibrium in the bottleneck game.

Claim: σ is also optimal in the bottleneck game.
Assume, this is wrong. Then there must be some strategy σ∗ with a smaller
bottleneck value, i.e., b(σ∗) < b(σ). So there are some resources e∗0 ∈ σ∗ and
e0 ∈ σ on which the bottleneck values are attained, i.e., ℓe∗0 (σ

∗
e∗0
) = b(σ∗) <



b(σ) = ℓe0(σe0). Hence, the maximal exponent of the new strategy is really
smaller than the one of the old strategy, i.e., r(e∗0, σ

∗
e∗0
) < r(e0, σe0) = r. Then

ℓ̃(σ̃∗) =
∑

e∈E

σ∗

e∑

i=1

Mr(e, i)
︸ ︷︷ ︸

≤Mr−1

≤
k∑

j=1

∑

e∈σ∗

j

︸ ︷︷ ︸

Mr−1

<M summands

< Mr ≤
∑

e∈E

σ̃ẽ

σe∑

i=1

Mr(e, i) = ℓ̃(σ̃),

which again is a contradiction to the fact that σ is a minimum cost strategy and
hence σ is an optimum.

Claim: σ is a strong equilibrium in the lexicographic game.
We can do the same argumentation and the same computation as in part a).
Of cource, we have to replace b1 by ℓ1 again. Then we receive a contradiction
to σ̃ being a minimum cost strategy. Hence, σ is a strong equilibrium in the
lexicographic game. ⊓⊔

B.2 Application

Given an unweighted network game on a general graph G = (V,E) with general
latency functions. The instance is transformed to an expanded graph G̃ = (V, Ẽ)
with constant latency values. Then a minimum cost flow is computed and de-
composed into paths for the single users.

Theorem 4. The algorithm described above computes an optimal strong equi-
librium in the unweighted network bottleneck game. This is done in polynomial
time when using a polynomial time minimum cost flow algorithm.

Proof. Correctness follows directly from Theorem 1.

Running time and recources: The construction of G̃ = (V, Ẽ) with
∣
∣
∣Ẽ

∣
∣
∣ = km

can be done in polynomial time O(km) and also requires only polynomial space,
although, the latency functions are all exponential. This is because they all have
the same basis M and an integral exponent. So, comparing a path P consisting
of l ≤ m edges in a flow f in G with a single edge e′ in a flow f ′ that is a
little bit more expensive than the most expensive edge of the path, it holds
r(e, fe) ≤ r(e′, f ′

e′)− 1 and hence we have

∑

e∈P

Mr(e,fe) ≤ mMr(e′,f ′

e′
)−1 < Mr(e′,f ′

e′
).

Because of the calculation above there is no need to use the full information
about the new latency function. Whenever one path has a lexicographic larger
vector of non-increasingly ordered latency values, it is more expensive. For this
comparison, we only need the exponents and if the highest exponents are equal,
the number how often they appear. So, the amount of information needed for
comparing is in O(m). With this, every operation in a minimum cost flow algo-
rithm can be done in polynomial time. Computing the flow in the normal graph
G and path decompositions can also be done in polynomial time. ⊓⊔



Algorithm 1: GreedyLPT

Input : Extension-parallel graph G = (V,E), k users U = (wj)j=1..k, latency
functions (ℓe)e∈E

Output : Nash equilibrium f

1 sort users by their weight s.t. wj ≥ wj+1 for all j ∈ {1, . . . , k − 1};
2 set f = ∅ and ℓ̄e = ℓe(w1);
3 for q = 1, . . . , k do

4 find a narrowest path P in the graph G w.r.t. the latency values (ℓ̄e)e∈E ;
5 set f = f + wq δP and ℓ̄e = ℓe(fe + wq+1) for all e ∈ E;

Theorem 5. Given an unweighted matroid game. Then the transformation to
eiCG and the algorithm from Roskind and Tarjan [18] compute an optimal strong
equilibrium in polynomial time.

Proof. Follows along the very same lines as for the network game. The only point
where the latency functions are needed in the algorithm of Roskind and Tarjan
[18] is the sorting of the resources in the beginning. Since the basis of the func-
tions is always M , it is enough to compare the exponents and this can be done
in linear time. So, in fact, we do not even need the exponential transformation,
because the order of the latencies is not affected by the transformation. ⊓⊔

C Proofs for Greedy Methods

Here we give the proofs for all statements about the Greedy methods.

Theorem 2. (GreedyLPT finds a NE) In an extension-parallel graph the
GreedyLPT algorithm finds a Nash equilibrium for the weighted network bot-
tleneck game in time O(km+ k log k).

Proof. Observe that the latency values ℓ̄ used by GreedyLPT are the same as
the real latency functions ℓ for the given load in the network.
Correctness is shown by induction on the number of users k:
k = 1: Greedy chooses a narrowest path w.r.t. the latency that results from
the weight of the first user, so she cannot improve.
k → k+ 1: Let f be a Nash flow in G for k users and let P be a narrowest path
for a new user k + 1 with weight w and bottleneck value b = bP (f + w δP ), all
found by GreedyLPT. Now, assume that f + w δP is not a Nash flow.
Then there is a user j ∈ {1, . . . , k} with weight wj ≥ w on her path Pj , who
can improve her bottleneck value bj = bPj

(f +w δP ) by unilateraly changing to

another path P̃j with bottleneck value b̃j = bP̃j
(f +w δP −wj δPj

+wj δP̃j
) < bj .

Since user j was satisfied before the new user was added to path P , all of her
edges with latency equal to the bottleneck value (bottleneck edges) Bj ⊆ E must
also be in P and hence b ≥ bj .

We show now that user k + 1 would also have been able to choose path P̃j .
Since she has no higher weight than user j, her bottleneck value will not be
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Fig. 9: Illustration of notation and structure of the graph. Solid (red) path P ,
dashed (blue) path Pj and dotted (green) path P̃j . Dashed-dotted, gray lines are
”forbidden” in extension-parallel graphs.

higher than the one of user j on this new path and hence choosing this path
would be also an improvement, which is a contradiction.

Paths in extension parallel graphs may differ at most once since otherwise
there is a subgraph homeomorphic to the easiest series-parallel graph that is not
extension-parallel (see Milchtaich1). So, let u be the unique vertex, where path
P̃j leaves path Pj and v be the unique vertex, where path P̃j enters path Pj .
Since all old bottleneck edges Bj are in Pj ∩ P and none of them is in the new

path P̃j , P̃j and Pj have to differ between u and v. Hence, there cannot be any
path from s to u or from v to t that does not coincide with Pj between these
vertices. This holds especially for path P and is the crucial point that is not true
in general graphs. So, all three paths coincide between s and u and between v

and t, i.e., P [s, u] = P̃j [s, u] = Pj [s, u] and P [v, t] = P̃j [v, t] = Pj [v, t] and differ

between u and v, i.e., P [u, v]∩ P̃j [u, v] = ∅ and Pj [u, v]∩ P̃j [u, v] = ∅ (see Figure
9).

Hence the number of users on P̃j is the same for the flow routing the new user

to path P̃j instead of P while all other users stay, resulting in the flow f +w δP̃j
,

and the flow rerouting user j from path Pj to path P̃j while all other users keep
their strategy, resulting in the flow f +w δP −wj δPj

+wj δP̃j
. Since the weight

of the new user is not higher than the weight of user j, i.e., w ≤ wj , the load

on path P̃j is not higher in the first flow and hence the bottleneck is not higher

there. So, with the results above, i.e., b̃j < bj ≤ b, we have in total:

bP̃j
(f + w δP̃j

) ≤ bP̃j
(f + w δP − wj δPj

+ wj δP̃j
) = b̃j < bj ≤ b

and hence the new user could have choosen path P̃j in the beginning. This is a
contradiction to the fact that P is a shortest bottleneck path in the algorithm.

The important steps for the running time are sorting of the users, time
O (k log k) and computing of k narrowest paths, each one in time O (m+ n). ⊓⊔

Theorem 3. (GreedyLPT-Lex finds a NE) In a series-parallel graph the
GreedyLPT-Lex algorithm finds a Nash equilibrium for the weighted network
bottleneck game in time O (k(m n+ log k)).

1 I. Milchtaich, Network topology and the efficiency of equilibrium, Games and Eco-
nomic Behavior 57 (2), pp. 321346 (2006)
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Fig. 10: Illustration of notation and structure of the graph. Solid (red) path P and
dashed (blue) path Pj with dashed (blue) subpath S containing the expensive
edges e, ē and the prefered dotted (green) route S′.

Proof. The latency values ℓ̄ used in the algorithm give rise to exactly the same
values as the latency functions ℓ from G.
Correctness is shown by induction on the number of users k:
k = 1: GreedyLPT-Lex chooses a lexicographic shortest path, so the single
user cannot improve.
k → k+1: Let f be a Nash flow in G for k users and let P be a lexicographically
shortest path for user (k + 1) with weight w and bottleneck value b = bP (f +
w δP ), all found by GreedyLex. Assume that f + w δP is no Nash flow. Then
there is a user j ∈ {1, . . . , k − 1} with weight wj ≥ w on her path Pj , who can
improve her bottleneck value bj = bP (f +w δP ) by changing some path segment
S of her path to another subpath S′. Since user j was satisfied before the new
user was added to path P , all bottleneck edges must also be in P and so b ≥ bj .
Let e be the first and ē be the last bottleneck edge on Pj and hence on S∩P ∩Pj .

The new path segment S′ leaves path Pj before edge e in a vertex u and
enter Pj after edge ē in a vertex v that also P traverses, since otherwise G would
not be series-parallel (see Figure 10). Thus, the notation S = Pj [u, v] is justified
and Pj [u, v] ∩ S′ = ∅, P [u, v] ∩ S′ = ∅.
Since user j changes from S to S′, we know

bj = bS(f + w δP ) > bS′(f + w δP + wj δS′ − wj δS).

The (k+1)-th user cannot be better off than user j, i.e., b ≥ bj , and has weight
w ≤ wj . Changing her flow from P [u, v] to S′ would result in a bottleneck on
this subpath of

bS′

(
f + w δP + w δS′ − w δP [u,v]

)
≤ bS′ (f + w δP + wj δS′ − wj δS) < b.

So the (k + 1)-th user did not choose the lexicographically shortest path, which
is a contradiction to our assumption.

The important steps for the running time are sorting of the users, time
O (k log k) and computing of k lexicographic shortes paths, each one in time
O (mn). ⊓⊔


