
Diploma Thesis

Context Modeling in the Domain of
Ambient Intelligent Production

Environments

A context engine to support adaptive user interfaces
using the example of the SmartMote

Kai Bizik
October 26, 2010

Supervisors:
Prof. Dr. Dr. h. c. H. Dieter Rombach

Dipl.-Inf. Kai Breiner
Dipl.-Inf. Marc Seißler*

AG Software Engineering: Processes and Measurement
Prof. Dr. Dr. h. c. H. Dieter Rombach
Technische Universität Kaiserslautern

Fachbereich Informatik

*Lehrstuhl für Produktionautomatisierung

iii

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Diplomarbeit mit dem Thema “Context
Modeling in the Domain of Ambient Intelligent Production Environments” selbstständig
und nur unter Zuhilfenahme der angegebenen Literatur angefertigt habe. Inhaltliche
oder wörtliche Zitate sind als solche gekennzeichnet und im Quellenverzeichnis aufge-
führt.

Kaiserslautern, October 26, 2010

Kai Bizik

v

Abstract

Context is that which surrounds, and gives meaning to, something else.

- The Free On-line Dictionary of Computing -

Ever since Mark Weiser’s vision of Ubiquitous Computing the importance of context has in-
creased in the computer science domain. Future Ambient Intelligent Environments will assist
humans in their everyday activities, even without them being constantly aware of it. Objects
in such environments will have small computers embedded into them which have the ability
to predict human needs from the current context and adapt their behavior accordingly. This
vision equally applies to future production environments. In modern factories workers and tech-
nical staff members are confronted with a multitude of devices from various manufacturers, all
with different user interfaces, interaction concepts and degrees of complexity. Production pro-
cesses are highly dynamic, whole modules can be exchanged or restructured. Both factors force
users to continuously change their mental model of the environment. This complicates their
workflows and leads to avoidable user errors or slips in judgement. In an Ambient Intelligent
Production Environment these challenges have to be approached.

The SmartMote is a universal control device for ambient intelligent production environments
like the SmartFactoryKL. It copes with the problems mentioned above by integrating all the
user interfaces into a single, holistic and mobile device. Following an automated Model-Based
User Interface Development (MBUID) process it generates a fully functional graphical user
interface from an abstract task-based description of the environment during run-time.

This work introduces an approach to integrating context, namely the user’s location, as an
adaptation basis into the MBUID process. A Context Model is specified, which stores location
information in a formal and precise way. Connected sensors continuously update the model with
new values. The model is complemented by a reasoning component which uses an extensible
set of rules. These rules are used to derive more abstract context information from basic sensor
data and for providing this information to the MBUID process. The feasibility of the approach
is shown by using the example of Interaction Zones, which let developers describe different task
models depending on the user’s location. Using the context model to determine when a user
enters or leaves a zone, the generator can adapt the graphical user interface accordingly.

Context-awareness and the potential to adapt to the current context of use are key re-
quirements of applications in ambient intelligent environments. The approach presented here
provides a clear procedure and extension scheme for the consideration of additional context
types. As context has significant influence on the overall User Experience, this results not only
in a better usefulness, but also in an improved usability of the SmartMote.

vii

Danksagung

An dieser Stelle möchte ich mich zunächst für die vielen Eindrücke bedanken, die ich im Rah-
men meiner Tätigkeit als wissenschaftliche Hilfskraft in den letzten Jahren in der AG Software
Engineering sammeln durfte. Die Mitarbeit an verschiedenen Projekten und die Einführung in
wissenschaftliche Arbeitsweisen waren und sind ein großer Erfahrungsgewinn.

Für die fachliche Betreuung der Diplomarbeit bedanke ich mich bei Herrn Dipl.-Inf. Kai
Breiner und Herrn Dipl.-Inf. Marc Seißler, die stets für Fragen zur Verfügung standen und mich
nicht nur im Rahmen dieser Arbeit betreut haben, sondern auch darüber hinaus Einblicke in
die Strukturen und Zusammenarbeit der Arbeitsgruppen ermöglicht haben.

Besonderer Dank gebührt auch meinen Eltern und Geschwistern, die mich während meines
Studiums in jederlei Hinsicht unterstützt haben. Ich genieße es sehr, einen solchen familiären
Rückhalt zu haben.

Weiterhin bedanke ich mich bei Herrn Friedemann Werner für das Korrekturlesen großer
Teile der Arbeit, auch noch kurz vor der Abgabe.

Danke auch allen guten Freunden, die ich während meines Studiums gefunden habe und die
mir während der Höhen und Tiefen dieser Zeit zur Seite standen.

Der abschließende Dank geht an die Mitglieder der FeG Nord, des Marburger Kreises und
allen, die mir in der Diplomarbeitsphase mit Verständnis, Zuspruch und Gebet geholfen haben.
Ich bin froh einen Gott zu haben, der mir solche Leute zur Seite stellt und auf den ich mein
Vertrauen setzen kann.

Kaiserslautern, October 26, 2010

Kai Bizik

Contents

Abstract v

Contents x

1. Introduction 1

2. Application Domain 3
2.1. Ambient Intelligence in Production Environments 3
2.2. SmartFactoryKL . 4
2.3. Model-based User Interface Development . 5

2.3.1. ConcurTaskTrees . 7
2.3.2. Room-Based Use Model . 8

2.4. SmartMote . 10

3. Goals and Course of Action 13

4. Context of Use 15
4.1. Definitions . 15

4.1.1. Context in Natural Language . 15
4.1.2. Context in Ambient Intelligent Environments 15
4.1.3. Context-awareness . 16

4.2. Examples of Context-aware Applications . 17
4.2.1. Working environment . 17
4.2.2. Memory Assistance . 19
4.2.3. Ambient Information Systems . 21

4.3. Classification of Context . 23
4.3.1. Primary and Secondary Context . 23
4.3.2. High and Low Context Types . 24
4.3.3. Additional classifications . 25

4.4. Summary . 26

5. Context Models and Frameworks 27
5.1. Modeling Approaches . 27

5.1.1. Key-Value . 27
5.1.2. Markup Scheme . 28
5.1.3. Graphical . 30
5.1.4. Object-oriented . 32
5.1.5. Logic-based . 33

x Contents

5.1.6. Ontologies . 33
5.2. Location models . 36
5.3. Frameworks . 39

5.3.1. Context Toolkit . 40
5.3.2. Hydrogen . 42
5.3.3. JCAF . 44

5.4. Other Context Frameworks and Middleware . 46
5.5. Summary . 49

6. Context Model 53
6.1. Requirements . 53
6.2. Model Details and XML Structure . 54

6.2.1. Points . 54
6.2.2. Object Positions and Position History 54
6.2.3. Objects . 55
6.2.4. Places and Zones . 58

7. A Context Engine for the SmartMote 61
7.1. Setup . 61
7.2. Software Requirements . 62

7.2.1. Context Model . 62
7.2.2. Reasoner . 62

7.3. Architectural Overview . 63
7.4. Components . 64

7.4.1. Model . 64
7.4.2. Sensors . 68
7.4.3. Reasoner . 69
7.4.4. Simulation and Control GUI . 71

8. Feasibility Demonstration 77

9. Conclusion and Future Work 81

A. Appendix xi
A.1. Context Model: XML Schema . xii
A.2. Example Ubisense XML File . xvi
A.3. Complete List of Packages and Classes . xvii

List of Figures xix

List of Tables xxi

List of Listings xxiii

Bibliography xxxiv

1. Introduction
During the last years the mainstream understanding of a computer has changed dramatically.
While the computer was usually pictured as a fixed apparatus with a mouse, keyboard and CRT
monitor during the 90s, users nowadays rely on a multitude of small, mobile devices. It is not
uncommon that one person uses a laptop, smartphone or personal digital assistant in addition
to his home computer (cf. Figure 1.1). Consumer products like MP3 players and eBook readers
have also become widely available and accepted. The variety and mobility of today’s devices
allow users to freely move their computational tasks from one environment to another. Most
mobile devices are able to connect to the internet via wireless communication. The notion of
“information at your fingertips” [Wei91] seems to be more up to date than ever before. The
advancing miniaturization will enable the emergence of Ambient Intelligent Environments in
which smart objects capture human needs and provide intelligent support for their everyday
activities. To be able to do this they need to know about their environment. Data collected
from sensors is used to adapt to the current Context of Use leading to an overall improvement
in the Human-Computer-Interaction (HCI).

Figure 1.1.: Trends in computing [Tra09,Wei20]

This is also true in the domain of industrial production. The multitude of devices in mod-
ern factories leads to complex workflows. In such highly distributed environments users have
to interact with many different devices from different manufacturers, all providing different
user interfaces that follow different interaction concepts and offer different look&feel. This
confrontation increases the likelihood of avoidable user errors [BMGM09]. The high degree of
flexibility poses a second challenge. Entire production modules can be removed, replaced or
reorganized [Z0̈9]. This can happen manually or automatically as a reaction to malfunctions.

2 1. Introduction

A self-organizing factory is able to structurally reorganize its modules to ensure the production
process. User interfaces and control concepts have to reflect these changes in an intuitive form.

The principle of Universal Control in combination with a Model-based User Interface Devel-
opment (MBUID) [Pue97] process can be used to meet these challenges. Combining the user
interfaces of available devices into a single and mobile Universal Control Device (UCD) helps
to minimize user errors and simplifies users’ workflows [BGSG10].

This work introduces a framework that provides context information for an MBUID process.
Using the example of the SmartMote, a universal control device for the SmartFactoryKL, it is
demonstrated how the current context of use can be utilized for the run-time adaptation of an
automatically generated user interface. This results in the ability to accurately represent the
current state of the environment which is summarized in the attribute of Real World Matching,
one of the main influence factors on the overall User Experience [Arn06].

The feasibility of the developed framework is demonstrated by implementing location-aware
behavior in the SmartMote. The abstract task model used in the SmartMote’s user interface
generation process allows the specification of different tasks according to geometrically defined
Interaction Zones. By acquiring the user’s current position from sensors and comparing it to the
geometric extents of these zones, the SmartMote is able to adapt its user interface consistently.
This can lead to the exclusion of tasks that are not accessible from the user’s current position.
The following scenario illustrates the usefulness of location-dependent adaptation:

Kai is an employee in the SmartFactoryKL. After a week of restful vacation, he
comes back to his working place. At the entrance, he picks up the SmartMote and
enters his credentials. The SmartMote recognizes him and builds its user interface
according to the preferences in his user profile. It seems that during his absence a
module has been replaced by a newer model. The SmartMote highlights the new
device in its navigation bar. Kai confirms the notification and begins his normal
work routine. After some time, the last production order finishes and there are
no further orders scheduled for today. Curious about the new device Kai decides
to inspect it more closely. He activates the SmartMote’s navigation routine and is
guided to its location. The new module has already been equipped with an NFC
tag, so Kai touches the marked point with the SmartMote and instantly the device
offers its full functionality in the user interface. Impressed by the new device’s
capabilities he decides to test a newly added feature. After refilling an empty feed
tray, he puts in an order for a few test samples. Unfortunately, the SmartMote
does not allow him to activate the commissioning module. Instead, a notification
informs him that he is standing in the safety zone of the module’s automatic robot
arm. After he clears the area, the SmartMote allows the start of the production.
Satisfied with the samples Kai walks into another room of the SmartFactoryKL

to have a chat with his colleagues. As he leaves, the SmartMote deactivates most
control elements and shows only a summary of the most critical parameters.

The scenario shows how a universal control device in an ambient intelligent, user-centered
environment can assist humans in their workflows. The SmartMote therefore not only provides
the anywhere, anytime computing, but also follows another principle of ambient intelligence:
Providing “the right thing at the right time in the right way” [HWM+03].

2. Application Domain

This chapter gives an overview over the application domain. First, Section 2.1 introduces the
term and characteristics of ambient intelligent production environments. Section 2.2 describes
the SmartFactoryKL, which understands itself as the first ambient intelligent factory worldwide.
Model-based user interface development and two approaches to model the underlying tasks
are explained in Section 2.3. Finally, Section 2.4 shows the practical application of these
technologies in the SmartMote prototype.

2.1. Ambient Intelligence in Production
Environments

The paradigm of ubiquitous computing was introduced by Mark Weiser in the early 90s. In his
vision, users are permanently surrounded by computers that integrate seamlessly in everyday
life. This constant background presence supports users’ activities without them being actively
aware of it. By pushing the technical aspects of computer usage to the background, users can
focus on their practical use. Such machines that fit into human environments will raise the
quality of life significantly [Wei91].

One step in Weiser’s direction is the concept of Ambient Intelligence. The ISTAG vision states
that humans will live in Ambient Intelligent Environments, “surrounded by intelligent interfaces
supported by computing and networking technology that is embedded in everyday objects
such as furniture, clothes, vehicles, roads and smart materials - even particles of decorative
substances like paint” [RVDA05]. Such an environment should be aware of human presence
and personalities and adapt its behavior according to users’ needs, thereby constantly learning
from their responses [RAS08]. The purpose to serve human needs drives the design of objects in
ambient intelligent environments. Aarts and Marzano identified five key characteristics [AM03]:

• Embedded : Similar to ubiquitous computing, devices are seamlessly integrated into ob-
jects. Technology is moved to the background.

• Context-aware: The devices are aware of persons and the current situation.

• Personalized : Not only do the devices support humans in general. They can be cus-
tomized to the special needs of specific persons.

• Adaptive: They change according to human responses.

• Anticipatory : The devices anticipate human needs without being explicitly told.

4 2. Application Domain

Of special interest in this thesis is the second point. Knowledge about the current surround-
ings can be used to filter available interaction options. While this may seem contradictory
at first, removing non-viable options greatly reduces the complexity of human-computer in-
teraction. Easy-to-operate devices are more likely to be accepted and therefore support the
human-centered approach as described in the embedded characteristic. Context information in
its broadest definition (cf. Section 4.1.2) is also a basis for the personalization, adaptation and
the anticipation of user needs.

The possible application areas of ambient intelligence are as diverse as today’s environments.
Research is done on many topics including Smart Homes, that explore possibilities for future
living spaces, Ambient Assisted Living with the goal of assisting elderly people in their home
environment, Ambient Assisted Working, which brings ambient intelligence to workplaces, and
many more. The focus of this thesis is on Ambient Intelligent Production Environments. While
no such environment exists in practice (yet), the next section introduces the SmartFactoryKL

as test bed and demonstration facility.

2.2. SmartFactoryKL

The SmartFactoryKL is the first test bed for ambient intelligent production environments
worldwide. Funded by the non-profit registered association “Technology Initiative SmartFac-
tory KL”, it has provided a platform for the demonstration and development of new tech-
nologies since 2005. Members of the initiative represent different sectors from industry and
research, including producers of factory equipment [Z0̈9]. The facility itself is located at Siegel-
bach / Kaiserslautern1 and operated by the German Research Center for Artificial Intelligence
(DFKI) [Deu16]. The demonstration area consists of a process engineering and a bulk goods
process (cf. Figure 2.1). Devices from various fabricators are used to demonstrate a procedural
process for the automatic bottling of liquid soap [Z0̈9].

(a) View on the process engi-
neering process [Tec16]

(b) Floor plan [Z0̈9] (c) The bulk goods process
[Tec16]

Figure 2.1.: The SmartFactoryKL. The demonstration area shows the liquid soap bot-
tling process.

1It will be moved to a site near the Technical University Kaiserslautern in 2011.

2. Application Domain 5

The vision of the SmartFactoryKL is to provide a plant which is

• arbitrarily modifiable and expandable (flexible),

• connecting components from multiple manufacturers (distributed, networked),

• enabling its components to perform context-related tasks autonomously (self-organizing)
and

• emphasizing user-friendliness (user-oriented). [Tec16,BGM+09]

A number of technologies support these goals. Wireless communication systems like WLAN,
Bluetooth, ZigBee, NFC and RFID are deployed in the facility. The permanent WLAN con-
nection enables mobile control of the devices in the piece goods part. Of special interest in this
thesis are the available positioning systems. Large parts of the factory floor are prepared with
an RFID grid. As the RFID tags are immovable and their position is known, a movable object
with an RFID reader can derive its position from the latest read RFID tag. The same goes for
a number of NFC tags which are mounted at the front of important modules. A commercial
three-dimensional positioning system based on ultrasonic waves is also deployed and enables
the retrieval of tags’ coordinates over WLAN via a webservice.

2.3. Model-based User Interface Development
Modeling is the “abstraction of a real system by removing the irrelevant details in the current
level of abstraction” [WFRS07,BRJ05]. It is apparent from this definition that a model does
not describe all attributes of real-world objects. Omitting unnecessary details in the abstraction
reduces the complexity of the description [DKM18]. As models are based on a formal syntax,
they can be checked for consistency and the absence of errors. This can be done automatically by
software tools. Finally, transformations are possible. Different models containing information
on the same real-world entity can be combined to generate a single model with richer content.
Models with rich content can be further abstracted or restructured. All of these operations
can be performed automatically, which eliminates the possibility of human errors during the
process.

Model-based User Interface Development (MBUID) utilizes these advantages. Multiple for-
mal models covering different aspects of the developed user interface (UI) are used to (semi-)
automatically generate the final UI. This is done by a series of model transformations where ab-
stract models are gradually transformed into more concrete models. Semi-Automatically means
that the transformations can be done by experts using respective software tools at design-time
or by a run-time process. MBUID provides several benefits. Abstracting from a concrete
implementation facilitates the maintaining of different versions of an application across mul-
tiple devices [CCT+03]. As additional effects, the UI can be verified and validated and the
consistency to older versions is maintained [CLC04].

Various MBUID systems use different models as a basis for the generation. While there is
no consensus on the final composition of the so-called Interface Model [Pue97], it is commonly
accepted that the core consists of at least the task, dialog and presentation models [LC04].
Dialog and presentation model are concrete models, which means that their elements can be

6 2. Application Domain

directly mapped to elements in the UI. While the dialog model describes the interaction between
the user and the UI, the presentation model contains information about the visual display of
components. The task model is an abstract model as its elements do not directly correspond
to GUI elements. A task model describes “the tasks (and sub-tasks) a user has to execute
to achieve a certain goal” [WFRS07]. Tasks are hierarchically structured and comprise the
activities necessary to fulfill the task.

The core interface model is sufficient for generating a functional static UI. However, the
requirements in ambient intelligent environment demand more. The vision states that interfaces
should adapt to the current situation. Hence, an additional model is required: the context
model, which contains information about external factors influencing the interaction. Figure
2.2 shows a simplified version of the Cameleon reference framework [CCT+03].

Figure 2.2.: Four levels of the simplified Cameleon framework [LVM+05]. The models
are translated according to the current context of use.

Each of the previously mentioned models is influenced by the current context of use. If the
circumstances change, the models need to be translated according to the new context of use.
This means that information about considered contexts has to be included in the models during
their development. They have to be context-sensitive. This enables a run-time process to derive
a context-insensitive representation for each individual context of use. While each individual
model may be context-sensitive, it suffices to embed context knowledge in the task model. The
final steps of an MBUID process including different contexts are shown in Figure 2.3. Task
models for every context of use are generated from the general task model. These individual
models are activated during run-time if the respective context applies.

Pribenau et al. present three approaches for the connection between context-sensitive and
context-insensitive parts of a task model [PLV01]:

• In a monolithic approach both parts are included in one task model.

2. Application Domain 7

Figure 2.3.: MBUID process including consideration of multiple contexts [WFRS07]

• The graph-oriented approach separates the two parts. Logical mapping between them is
done by general connections.

• The separation approach also splits the model into two parts, but the connections between
them are specialized and take the form of a decision tree.

The following sections introduce two notations for context-sensitive task modeling.

2.3.1. ConcurTaskTrees
The ConcurTaskTree notation (CTT) was introduced by Paterno et al. in 1997 [PMM97]. It
is the most commonly used task modeling approach in various domains. CTT uses a graph-
ical, tree-like representation in which nodes represent (sub-) tasks. The trees’ vertical levels
determine the current level of abstraction. A parent node is either decomposed or refined by its
children. The horizontal order defines temporal relations between tasks on the same level. Hor-
izontal dependencies control concurrency, synchronization, iteration and information passing
between neighboring nodes. CTT distinguishes four types of tasks:

• User tasks are executed solely by the user. Selecting a favorite dish from a menu is an
example. Data may be supplied by the system and the user may input a response.

• Application tasks are initiated and executed by the system without user interaction.

• Interaction tasks are activated by the user and resolved through user interaction with
the system.

• Abstract tasks are complex tasks that fall in none of the above categories.

Figure 2.4 shows an example CTT for checking the temperature using different scales. The
user selects the thermometer (e.g. in a graphical interface) and has the choice to select between
three different scales. The system converts the temperature to that scale and displays it for
the user to read.

The original CTT depicts a context-insensitive task modeling approach. Luyten, Clerckx
and Coninx proposed an extension that follows the graphical approach, but was inspired by
the decision trees used in the separation approach [CLC05, LC04]. A new type of node, the
Decision Node, is introduced. Decision nodes contain boolean expressions operating on context

8 2. Application Domain

data. During run-time the nodes are evaluated to true or false. For both cases connections to
either context-insensitive sub-trees or another decision node are defined. The decision node is
replaced by the root of the correct sub-tree or by the next decision node. After all decision
nodes have been resolved, the tree depicts a normal CTT for the current context of use.

Figure 2.4.: Example in CTT: Check temperature in different scales

2.3.2. Room-Based Use Model
The Useware2 Markup Language (useML) was originally designed for the systematic develop-
ment of interactive devices [Reu03]. It is an XML-based, hierarchical approach in which a Use
Model is defined by multiple Use Objects. Use objects in turn are a composition of Elementary
Use Objects of which five different kinds are defined: change, trigger, select, enter and inform
(cf. Figure 2.5).

Figure 2.5.: Original Use Model structure [BGM+09]

The original specification has been extended multiple times to include temporal relations,
user roles and personas [MG08]. The third-generation UseML has made the biggest contribution
towards context-sensitivity. Görlich provided the possibility to model spatial relations. The
result is called Room-Based Use Model (RUM) [G0̈9]. Figure 2.6 shows the overall structure.
Organizational Rooms may contain other organizational rooms (based on spatial or logical

2Useware is a collective term for all hardware and software components that are required for the use
of a system [Use19]

2. Application Domain 9

Figure 2.6.: The Room-Based Use Model. Device Compounds may include Interac-
tion Zones to model different behavior depending on the user’s position
[BGM+09]

10 2. Application Domain

containment) and device compounds. The point of interest in this thesis is the possibility to
specify Interaction Zones. This concept was originally used for informal communication in
smart working environments (cf. [SRP+03] and Section 4.2.3) and enables the specification of
different use models depending on the user’s position.

The advantage of useML over CTT is the elementary use objects’ level of detail. The in-
teraction between the user and the system can be described on a fundamental level in useML,
which is more suitable for a consistent MBUID process [MG08]. The downside of useML is
the integration of many extensions directly into the model. It follows the monolithic approach,
which can lead to large and complex models.

2.4. SmartMote
The SmartMote is a universal control device for the SmartFactoryKL. It uses an MBUID
process to handle the complexity of ambient intelligent production environments. Based on a
RUM of the SmartFactoryKL, a run-time process generates the user interface. The principle of
Universal Control is used to handle the complexity stemming from differences in the interaction
concepts of devices from multiple manufacturers. The user is presented a holistic view of his
environment and can control all devices from a single, mobile TabletPC. The mobile communi-
cation is thereby handled via bluetooth. A Function Model integrated into the RUM provides
communication information on two levels [BMGM09]: On device level, the model describes the
initiation and structure of the device’s communication protocol. The elementary use objects
contain links to this information, which finally activate the communication.

Figure 2.7 shows the generated user interface. Device compounds and devices are contained
in the navigation bar on the left side of the screen. Selecting a device triggers its use model
to be shown on the right. Currently, each elementary use object is mapped to one widget
in the graphical user interface (GUI). The GUI is functional and can be used to control the
SmartFactoryKL. Improvement of the relatively simple visual appearance is part of ongoing
research. Steps towards the integration of usability patterns are already taken (cf. Figure
2.8) [SKD+10].

The SmartMote is already context-aware in the sense that it is able to adapt to changes
in the environment. The task model file is continuously polled for changes. The provision
of a new model file, for example via an USB stick, is possible during run-time. The new
model is then automatically detected and its changes are reflected in the UI. The detection of
malfunctioning or non-present devices with the help of the function model is also implemented.
Devices that are specified with a valid function model in the RUM, but cease to answer to
bluetooth requests are removed from the navigation bar. The adaptation can occur in three
modes: ad-hoc, by notification or by confirmation. A recently conducted pilot study favors
the confirmation approach, but only the final study will show definite results [BGSG10]. All
adaptation mechanisms aim at keeping the user interface consistent to the real environment,
always focusing on the user’s needs and abilities.

2. Application Domain 11

Figure 2.7.: Current SmartMote GUI with debug information at the bottom

Figure 2.8.: SmartMote GUI with integrated use of usability patterns

3. Goals and Course of Action

Goals
The automatic MBUID generation process of the SmartMote is based on the Room-Based Use
Model (RUM), which allows the specification of Interaction Zones. Figure 3.1 shows the part
of interest. Device Compounds may be an aggregation of Interaction Zones with different Use
Models. Which use model is currently active in the device compound is determined by the
location of the user.

Figure 3.1.: Detail of the RUM specification. Device Compounds may be a aggregation
of Interaction Zones

The goal of this work is to develop the infrastructure necessary to sense, store and provide
information about the user’s location. Three aspects must be considered:

• A context model has to be developed that stores geometric information about the user,
objects in the environment and the zones as they are only modeled in a symbolic way in
the RUM.

• Existing sensor systems must be integrated which sense the current user position and
provide them to the model.

• A reasoner component has to be developed, which derives the user’s position from in-
coming sensor data, determines the currently active zones (i.e. the zones containing the
current user position) and filters the RUM accordingly.

14 3. Goals and Course of Action

The developed system should also be extensible in a way that allows the integration of additional
context types. In general, the system should provide answers to the following questions:

• What is the current position of the user and the SmartMote?

• Where was the SmartMote during the last n seconds?

• Which interaction zones are currently active?

Structure
The remainder of this thesis is structured as follows. Chapter 4 examines the general notion
of context, context definitions, its uses and how context can be classified. Existing approaches
to context modeling in general and with a focus on location models are examined in Chapter
5. A discussion of possibilities to manage the context and frameworks with the ability to
support multiple context-aware applications is also included in this chapter. The results from
the analysis are used as a basis for the definition of a formal context model in Chapter 6.
The developed context engine for the SmartMote and detailed implementation information are
described in Chapter 7. The feasibility of the developed system is demonstrated in Chapter
8, which describes the test of the modified SmartMote in the SmartFactoryKL. Finally, a
summary and prospect for future work is given in Chapter 9.

4. Context of Use

In this chapter the notion of context is formally introduced. Both the origin of context and
its transfer to the computer science domain are discussed in Section 4.1. Some examples of
context-aware applications are given in Section 4.2. These include context in their application
logic, but do not model it explicitly or embed it in an MBUID process. Finally, some context
classification attempts are provided in Section 4.3 which also motivates the use of context
reasoners. Section 4.4 summarizes the results.

4.1. Definitions
During the research of context-awareness authors have come up with a number of different
definitions. While most of them have a common basis, they also differ in many details. A clear
definition of the terms used in this thesis is mandatory. The word “context” itself has meaning
in natural language and has been transfered to the computer science domain. This section
introduces important definitions and gives a brief historical review over their development.

4.1.1. Context in Natural Language
Context in natural language is used to refer to the circumstances of an entity or in which an
event happens. Furthermore, the semantic meaning of a sentence may only become clear from
its context. Synonyms for context in natural language are situation, background, setting or
surroundings. The first definition given by the Merriam-Webster online dictionary summarizes:

“The parts of a discourse that surround a word or passage and can throw light on
its meaning”
[Mer07]

Context is necessary to choose the correct meaning of an expression. The word ’state’ may
describe a political community with a government or the condition of an object such as solid,
liquid and vapor. Different domains introduce additional meanings. The medical state describes
a patients vital functions whereas the state of an object in computer science describes the values
of its internal variables at a specific time. Context can therefore be seen as a filter on the set
of possible meanings.

4.1.2. Context in Ambient Intelligent Environments
The second and more general definition of context in the Merriam-Webster online dictionary
also constitutes the linked nature of context information:

16 4. Context of Use

“The interrelated conditions in which something exists or occurs”
[Mer07]

The complexity of context makes it hard to give a clear definition. The term has been defined
from different perspectives and to different extents during the last two decades. Initially,
many researchers tried to grasp the nature of context by enumerating properties of users’ or
applications’ environments that seemed relevant. The probably earliest definition was given by
Schilit, Adams and Want:

“Three important aspects of context are: where you are, who you are with, and
what resources are nearby. [...] Context includes lighting, noise level, network
connectivity, communication costs, communication bandwidth. and even the social
situation.”
[SAW94].

Chen et al. extended this enumeration to also include the Time Context, such as time of day,
week, month and season of the year [CK00]. Brown et al. refer to context as “location, time
of day, season of the year, temperature, and so forth” [BBC97]. All of these definitions include
important aspects of context, but are still limited to listing the notions. Later definitions try
to catch context on a more abstract level. Dey et al. gave a more general definition that is
widely accepted and comprehensive:

“Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications
themselves.”
[ADB+99]

This understanding of context as practically any information from an application’s or user’s
environment is slightly constrained in the definition by Wurdel et al.:

“The context of use is any information that can be used to characterize the situation
of the environment, the user and the device of a software system, which is regarded
as relevant for the interaction of the system and the user.”
[WFRS07]

Because of its generality and applicability, the rest of this work understands context according
to Dey and Abowd’s definition, but focuses on information relevant to the interaction between
user and context-aware system.

4.1.3. Context-awareness
After discussing various approaches to defining context, the concept of context-awareness can be
introduced. In general, an application or system is called context-aware if it adapts its behavior
to changes in context. Sometimes, the terms context-sensitive, context-enabled, context-aware
computing or situation-aware are used synonymously. Consistent to their understanding of
context Schilit, Adams and Want define context-aware systems:

4. Context of Use 17

“Such contex-aware systems adapt according to the location of use, the collection
of nearby people, hosts, and accessible devices as well as to changes to such things
over time.”
[SAW94]

This and other previous definitions were analyzed by Dey and Abowd [ADB+99]. They dis-
tinguish between two categories: using context and adapting to context. The definition of
Salber et al. falls into the first category. They define the aim of context-aware computing as
“to provide maximal flexibility of a computational service based on a real-time sensing of [...]
context” [SDA98]. Definitions from the second category are more dynamic. Brown describes
context-aware devices as devices that “automatically provide information and/or take actions
according to the user’s present context” [Bro98]. Based on their study of these early definitions,
Dey and Abowd provide their understanding of context-awareness:

“A system is context-aware if it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task.”
[ADB+99]

4.2. Examples of Context-aware Applications
This section introduces some examples of context-aware applications. The examples demon-
strate how and which aspects of context have been used in working environments, for memory
assistance and in information systems. This list is, of course, not complete, but gives an exem-
plary overview over context-aware applications. Classification schemes for the notions used of
context are introduced in Section 4.3.

4.2.1. Working environment
Context-aware applications can assist employees in their everyday work. Context can be used
to detect resources. For example, a print command issued from a mobile device, could automat-
ically be forwarded to the nearest printer. Considering social situations is another possibility.
Calls could be rejected or directed to an answering machine if the callee is currently in a meet-
ing. ActiveBadge and PARCTab are two pioneer systems that were introduced in the early 90s.
They were the first location-aware systems for working environments.

ActiveBadge

The ActiveBadge system [WHFaG92] was developed by Olivetti Research Ltd. which was ac-
quired by AT&T in 1999 and became the AT&T Laboratories Cambridge. It is the first com-
mercial system for tracking user locations. Employees submit their location by wearing a badge
visibly at their body. Figure 4.1 shows the four generations of active badges. As the prefix ac-
tive implies, the badges are periodically sending out a unique infra-red (IR) signal. A network
of IR-receivers is able to receive these signals. A central server polls the receivers for “sightings”
of the badges and maintains a central register of badge locations. It is therefore possible to
track users with a temporal resolution of 15 seconds. The badges require batteries that last

18 4. Context of Use

Figure 4.1.: ActiveBadge generations from the AT&T Laboratories Cambridge Archive
[Ame13]

about one year. The system is very user-friendly as IR-signals are reflected by walls and other
obstacles, so that users can be tracked even if there is no direct line of sight between the badge
and the next sensor (e.g. when the badge is worn at the belt and the user is sitting at a table).
The initial application of the system was designed as an aid for telephone receptionists. The
receptionist could display a list of all staff members, their last known location and a probability
value indicating the certainty of the information. This field showed a percentage below 100%
if the user was moving. After five minutes without detection it switched to the time of the
last sighting, after 24 hours to the last day and after one week of absence to “AWAY”. Further-
more, it was possible to query the system for a specific location, other badges in the vicinity
of a target and the history of a single badge. The system was later extended to automatically
forward calls to the nearest phone of the employee. Another application was the automatic
unlocking of doors. People stopped wearing the badges with the upcoming of mobile phones.
It is interesting to know that the badges themselves make use of context data. They have a
light-dependent component that can turn the IR-signal off to conserve battery power.

PARCTab

Researchers at the Xerox Palo Alto Research Center (PARC) developed the PARCTab system,
which is based on mobile personal digital assistants (PDA) that communicates via infrared
data-packets to a network of IR-sensors [SAG+93]. The primary goal is to shift the execu-
tion of resource-intensive programs to remote computers. The PARCTab therefore works as
a terminal station. The necessary continuous connection to the IR-network is facilitated by
the possibility to seamlessly switch cells, i.e. taking the PDA from one room to another does
not break the connection. The PDA itself has three different buttons and a touch sensitive

4. Context of Use 19

display with a resolution of 128x64 pixels (cf. Figure 4.2). Applications that can be executed
from the PARCTab include a dictionary, calendar and weather forecasts acquired from the
internet. While the main goal is to facilitate mobility, the PARCTab also includes context-
aware behavior. It is possible to forward an active workstation session to the nearest available
computer. A collaborative drawing board for multiple PARCTabs in one room has also been
realized [SAW94]. Finally, access to virtual objects is implemented. Files in the UNIX file
system are associated with rooms. Users can deposit files or notes in a specific room that are
presented to others who access the file system in the same room at a later time.

Figure 4.2.: The Xerox PARCTab [Xer13]

4.2.2. Memory Assistance
Memory assistance systems help users to remember things they did not consider important
at the time of occurrence or supply information that is important in the current situation.
They capture facts, notes, decisions, conversations and more types of data from one or multiple
persons and provide them at a later time. Context can help to filter and sort the saved
information according to the user’s needs in his current situation. Context can also be used as
a trigger for the capturing.

Stick-e-Notes

Brown et al. introduced what they call a stick-e-note [BBC97]. It follows the Post-it-note
metaphor. Post-it-notes are used to write short pieces of information and stick them to your
monitor or any other place where you frequently see them and thus are reminded of their
content. They are also used to deposit short messages for other people. For example, a note
saying “back in five minutes” on your door informs visitors of your status. In stick-e-note terms,
this would mean that you define the content (the text “back in five minutes”) of a note, add the
target context (“location: my door, situation: I am absent”) and save it as stick-e-note. Any
visitor, whose context matches the note’s context, is then shown the content. This approach

20 4. Context of Use

can also be used to record a history of notes for later review. For example, you could record
information and pictures of a touristic tour as stick-e-notes and review the whole trip at a later
time or even publish the complete history as a website. The system originally used mobile
devices like PDAs with GPS coordinates and a relatively limited set of context information,
but was later extended into a framework to support context-aware applications [Bro96].

DUMMBO

The Dynamic Ubiquitous Mobile Meeting Board (DUMMBO) was built at the Georgia Institute
of Technology. Brotherton et al. wanted to create a prototype for the capturing of sponta-
neous, unplanned and informal activities that take place around a whiteboard [BAT98]. Their
argumentation is that people involved in an activity often neglect the recording of events. Par-
ticipants may not pay full attention, underestimate the importance of an event, may be too
engaged in the activity or simply may be not equipped with the means to take notes because
of the spontaneous nature of the activity. In research labs or lecture rooms, it is not untypical
to spontaneously engage in a discussion about the latest project. Sketches and notes are often
made on a nearby whiteboard. DUMMBO is able to digitize what is written on its surface.
Two microphones at the top edges are able to record speech in front of the board. Figure 4.3
shows the front and back of the board.

(a) Front view of DUMMBO. Aside from the
markers no extra controls are required.

(b) Audio mixer and recording equipment at the
back. The setup can be rolled from one location
to another.

Figure 4.3.: The DUMMBO setup

The whole setup is mobile and can be rolled from one location to another. Context informa-
tion is used as a trigger and filter. To start a session, users simply have to draw something on
the board. From this point on, everything that happenes on the board as well as everything
spoken in front of it is recorded. A session ends if the noise level stays below a threshold for
a fixed amount of time. The second use of context applies when browsing the list of recorded
sessions. It can be filtered by time, length and participating members. The board has a web-
interface for playing back the sessions and showing what the board looked like at a specific
time during the session.

4. Context of Use 21

4.2.3. Ambient Information Systems
Ambient information systems are pieces of calm technology [WB95]. Their main purpose is to
display non-critical information without disrupting the user. Email-notifications, for example,
usually do not require immediate attention by the user. Displaying a pop-up window whenever
a new email arrives might disturb the user’s workflow, because his attention is drawn away from
his current task. Mankoff et al. define ambient displays as “abstract and aesthetic peripheral
displays portraying non-critical information on the periphery of a user’s attention” [MDH+03].
Some of these devices just unobtrusively display context information like the weather conditions
outside a building or the latest stock prices, but many are also context-aware themselves. The
displayed information and notification level can adapt according to changes in the environment
[TLG07]. The following two examples show, how awareness of location and user interest can
influence the display of information.

Hello.Wall

The Hello.Wall system [PRS+03,SRP+03] was developed as part of the Ambient Agoras project
[PSR+04]. The wall consists of 124 cells, each containing an LED cluster and a short-range
transponder. The wall can show different light patterns, depending on the identity and distance
of people passing by (cf. Figure 4.4(a)). The authors consider it to be an atmospheric influence
in work environments. As the light patterns are personalized, the conveyed information has
encoded character. While initiated members can read the information, visitors or other persons
might just perceive it as a decorative element. The wall can also interact with mobile devices
called “viewports” (cf. Figure 4.4(b)).

(a) Front-view of the Hello.Wall in ambient
mode

(b) The viewport used to interact with the
wall

Figure 4.4.: The Hello.Wall system consisting of 124 LED cells and hand-held viewports
[Fra14]

These hand-held devices can be used to interact with the wall. As each individual cell
has a transponder they can be addressed individually. Cells are able to contain general data,

22 4. Context of Use

personalized messages or they can trigger an application on the viewport. This process is called
“borrowing” the viewport. For example, a company-wide survey where the viewport functioned
as voting device was realized this way. To be able to detect nearby persons, RFID sensors are
used. They cover two ranges and the authors therefore introduce three zones of interaction
as shown in Figure 4.5. The ambient zone is defined as the space not covered by the sensors.
People passing by without being detected, experience only generic light-patterns. The next
zone is the notification zone. If an individual passes by at this distance, notifications are shown
via light-patterns. Depending on the application, the user is able to interact with the wall
at this distance using his viewport. The closest zone is the interaction zone. Users in this
proximity are enabled to interact with the individual cells. While the interaction zones are
based on user proximity in three stages, the concept can be generalized to consider arbitrary
coordinates. The room-based user model from Section 2.3.2 makes use of this idea.

Figure 4.5.: Three interaction zones based on user proximity [SRP+03]

AuraOrb

AuraOrb is a notification system that uses context information to determine user interest in
the appliance [AVSC06]. Altosaar et al. approach the problem of multiple systems trying to
catch users’ attention. In modern workplaces many different systems use a wide spectrum of
means to draw user attention: A pop-up window on the computer screen notifies about new
messages, a blinking icon in the task tray indicates instant messenger activity, an alarm on the
mobile organizer reminds of the next meeting and at the same time the phone is ringing. In
this enumeration only the phone call might require immediate action by the user. AuraOrb is
envisioned to integrate all the non-critical notifications in one device and only display them,
if the user initially expresses interest in the orb. The authors use eye contact as a primary
context information to determine the object of current user interest. In the demonstration
setup both the computer screen and AuraOrb were equipped with eye contact sensors. This
enables the system to determine if the user is just working on the computer, looking at the

4. Context of Use 23

orb or none of both. This influences AuraOrb’s notification level. Three operating states are
possible: ambient, semi-foreground and foreground. If no notification is available, the orb stays
in ambient mode and is completely unobtrusive. When a notification arrives, the orb begins to
emit an ambient glow (as shown in Figure 4.6(a)). Subsequent notifications trigger no further
reaction, the glow is maintained. If the user decides to retrieve the notifications by looking at
the orb, they are displayed in a ticker-like format on the orb’s surface (Figure 4.6(b)). Similar
to an answering machine. AuraOrb is also touch-sensitive. A single “touch” on the surface
while it shows a message skips to the next one and a “double touch” opens the corresponding
application with the message details on the user’s workstation.

(a) AuraOrb signaling available notifications by
an ambient glow

(b) AuraOrb with full user attention displaying
the header text of a notification

Figure 4.6.: AuraOrb in the modes semi-foreground and foreground [AVSC06]

4.3. Classification of Context
In addition to the general definition of context in ambient intelligence, classifications can help
to form an understanding of context. The examples given in the previous section show the
variety of possible applications. Categorizations help identifying single types of context and its
properties, both of which should be considered when developing a context-aware system. This
section gives an overview of different categorization approaches that researchers have come up
with.

4.3.1. Primary and Secondary Context
Dey and Abowd characterize context as two-tiered system [ADB+99]. In their opinion, the four
context types location, identity, time and activity are primary context types. They are used
more frequently and are thus more important than the other types. The authors characterize
context-aware applications as systems that “look at the who’s, where’s, when’s and what’s
(that is, what the user is doing) of entities and use this information to determine why the
situation is occurring” [ADB+99]. Primary context may also be used to indicate second-level
or secondary context types. For example, a given identity (a person) may be linked to many

24 4. Context of Use

related attributes like height, eye color and friends. So, the primary context of one identity may
be used to find secondary context of this entity and primary context of other entities (the list of
friends contains other identities). A combination of first-level context may also be necessary to
conclude a second-level context. The example Dey and Abowd use is a weather forecast, which
requires both location and time. With the help of this classification, developers can structure
context types in their work. This can help to identify additional context types, but also to
filter out redundant secondary context types, so that only those remain which are relevant for
the primary context.

4.3.2. High and Low Context Types
The report of Chen and Kotz [CK00] includes a differentiation between high and low context
types. Low context types can be acquired directly by physical sensor hardware whereas high-
level context is derived from the refinement and combination of low-level context. Low-level
context is characterized by a simple structure and includes information like the current time of
day as measured by an internal clock or the noise level registered by a microphone. The two
authors make no distinction between sensors included in context-aware devices and remotely
available sensors. Specifically, the identified low-level context types are:

Location Location can be sensed in many ways. Chen and Kotz distinguish two kinds of
location sensing. The first requires the users to actively supply their location to the
system. This can happen by a fingerprint sensor at the entrance to each room, sliding a
badge at a sensor when entering or leaving or by monitoring on which workstation the
user is logged in. This relies on the cooperation of the user and is only accurate if the
user remembers to supply the information regularly. The second kind senses the location
passively and mostly continuously. This usually requires the user to carry some kind of
tracking device. Outdoors, the Global Positioning System (GPS) may be used. Typical
for locating cellphones is the Cell of Origin-method which uses the user’s base station
as a reference point. Another possibility to sense the location is via multilateration (also
known as hyperbolic positioning) which uses the time difference of arrival (TDOA) to
calculate a position by measuring the flight-time of a signal to at least three different
receivers with known positions. Location-sensing is always subject to inaccuracy.

Time Time is usually obtained by a built-in clock. In addition to the current time of day, the
date, season of the year, etc. may be of interest.

Nearby objects If not only the location of the user but also of objects is recorded, a list of
objects in direct vicinity can be determined and used.

Network bandwidth The available network bandwidth is important if many devices share a
communication channel. In ambient intelligent environment this is frequently the case
as wireless communication like WLAN and Bluetooth is limited to a fixed number of
frequencies.

Orientation Many of today’s mobile devices are equipped with orientation sensors. These can
sense the orientation of the device in relation to the ground (e.g. to switch a display

4. Context of Use 25

to landscape view if turned) or they sense the geographical direction of view (like a
compass).

Other Additional low-level context includes sensors for lighting, vibration, temperature, sound,
pressure and more.

High-level context builds on top of low-level context. By taking the data from multiple low-
level sensors into account, more general facts like “current activity” or “user’s mood” can be
deduced. This task is often carried out by a reasoning process on the model. The challenge
is to overcome the inaccuracy and ambiguity of low-level data. While low-level context is
structurally simple and continuous, high-level context tends to be complex and discrete. In
many works this distinction is implicitly included. For example, Hofer et al. call the categories
physical and logical [HWM+03].

With this distinction explained the process of reasoning can be introduced as “to automati-
cally deduce further, previously implicit facts from explicitly given context information” [Ay07].
This process can be executed as a part of the internal application logic like in the examples
described above, or it can be realized as a separate component which is then called a reasoner.
Encapsulating the reasoner as a separate component provides benefits regarding its extensibility
and reusability. Chapter 5 discusses several approaches with separated reasoning.

4.3.3. Additional classifications

Three-dimensional model

Schmidt et al. [SAT+99] divide context into three equally important dimensions. The result is
a three-dimensional space using Environments, Self and Activity as axes (cf. Figure 4.7). In
contrast to the previously described classifications, Schmidt et al. do not differentiate between
abstraction levels, but define context as any “knowledge about the user’s and IT device’s state”
[SAT+99].

Source-based

Another possibility to classify context data is by source. In their research on imperfect context
information [HI04] they provide four possible sources of context information: sensors, human
users and derivation from other types. Consistently, they divide context information into
categories:

• Sensed context is acquired from sensors and usually frequently changing,

• Static context is permanently available and never changes,

• Profiled context is acquired directly from the users (e.g. in form of profiles) or from his
application (e.g. from a history of last user actions),

• Derived context is concluded by combining information of the other three types.

26 4. Context of Use

Figure 4.7.: Three-dimensional context classification

4.4. Summary
Context-awareness is a key feature of applications in ambient intelligent production environ-
ments. Stemming from natural language, context describes the entirety of circumstantial data
that influences the human-computer-interaction. The examples presented demonstrate the
usefulness of context in today’s working environments, for memory assistance and for ambient
information systems. While these applications make use of context inherently in their appli-
cation logic, they consider only facets of context. Extending their abilities to include more
context data always requires additional effort and changing the source code. The reusability is
therefore limited. The classification schemes showed that some context types are more impor-
tant than others. Especially the location of users, objects and devices is of primary interest.
The classifications also showed the necessity to combine and abstract low-level sensor data to
more meaningful contexts.

The following chapter introduces different approaches to context modeling and reasoning
which aim at providing more reusable and extensible software architectures. The separation
of context modeling from the application logic follows the separation of concerns principle and
makes context-aware applications easier to understand and to maintain [Dij20].

5. Context Models and Frameworks
The examples described in Section 4.2 use context data as an integral part of their internal pro-
gram design and application logic. This integrated approach results in additional development
cost for new applications because each one has to map the considered environmental context
data to suitable internal structures. Managing the context data has to be done by each applica-
tion on its own. This is sufficient for small and non-networked devices which use context only in
a limited way and which are not likely to change their scope of considered context information
over time. But in highly interconnected environments this design leads to incompatibility in
the communication between applications. The lack of standards for the exchange of internally
represented context information hinders the interaction between such devices.
In this section different modeling approaches and frameworks for the management of context are
discussed. The general idea is to encapsulate context information in a separate, application-
independent model. Decoupling the context management from the applications ensures the
model’s extensibility, facilitates the use of a reasoner (cf. Section 4.3.2) and enables its use in
MBUID processes (cf. Section 2.3).

5.1. Modeling Approaches
For applications to make full use of context information, they have to be represented in a
model. On the formal basis of a context model standardized access and communication is
possible. The context model therefore specifies the data structures and extension possibilities
for applications. This has substantial influence on the handling of context data. Chen and
Kotz [CK00] identified six modeling approaches that were later defined more precisely in a
survey by Strang et al. [SLP04]. They differ in their structure and presentation of the modeled
data. Each approach has its own advantages and disadvantages which make them suitable for
different situations. The following section is based on this classification and gives an overview
over the six approaches and example members of the respective class.

5.1.1. Key-Value
Key-value pairs are the simplest approach to modeling. In this approach, each piece of infor-
mation is assigned to a key value. While the information may change, the key always stays
the same. for example to store the current user position a sensor with access to the model
would instruct it to store the three Cartesian coordinate values (3.0,2.0,5.0) with the keys
(“user_pos_x”, “user_pos_y”, “user_pos_z”). Another client can then retrieve the coordi-
nates by querying the model with only the keys. This method is very easy to implement. Its
simple nature is also of advantage when handling large data sets. The Berkeley-DB [OBS99]
makes use of the good reproduction and workload properties of key-value-pairs in database

28 5. Context Models and Frameworks

management systems. Already Schilit et al. [SAW94] used this approach to provide context
information. While the simplicity makes the implementation very easy, there are also disadvan-
tages that make this approach less attractive for context modeling. First, the saved data lacks
structure. While it is possible to introduce a type system for values (e.g. the value associated
with the key “user_pos_x” has to be of type float), advanced concepts like references between
values need additional effort and introduce new complexity into the system. This approach
also requires accessors to have an implicit shared knowledge. To retrieve the user position, the
client has to know that it is saved in the keys “user_pos_*”. The model itself provides no
means to discover the correct keys. This means that developers of context-aware applications
using the key-value modeling approach need an implicit shared knowledge of the keys used.

5.1.2. Markup Scheme

Markup scheme models are composed of markup-tags annotated with attributes. The contents
of markup tags may contain other tags recursively which results in an hierarchical tree-structure.
Typical representatives of this category are profiles. Usually a serialization of a variant of the
Standard Generic Markup Language (SGML) [Wor07], the superclass of all markup languages
(such as XML), is used to structure profile information in a standardized way. Some of these
profiles are defined as extensions to the Composite Capabilities / Preferences Profile (CC/PP)
[Wor08a] and the User Agent Profile (UAProf) [Ope08], which in turn are vocabulary extensions
of the Resource Description Framework (RDF) [Wor08c]. CC/PP and UAProf aim at describing
the delivery context of mobile devices. The idea is to tailor delivered contents according to the
clients’ capabilities, which are described in a profile and provided by a client when it requests
content items from the server. So the operator of a web site may for example decide to deliver a
simple plain text menu instead of a graphics-heavy implementation if the client profile indicates
low screen resolution and CPU power. Listing 5.1 shows an example CC/PP profile for a mobile
client with limited screen resolution.

CC/PP describes a basic vocabulary with a range of example resources. Application de-
velopers and device producers are encouraged to expand the vocabulary. One CC/PP and
UAProf extension is the CC/PP Context Extension by Indulska et al. [IRRH03]. They include
additional context-relevant information like location, network characteristics, application re-
quirements and session information. While they conclude that their approach is capable of
being used in context-aware infrastructures, they also understand that complex context rela-
tions are difficult to capture and non-intuitive due to the underlying CC/PP.
The Stick-e-Notes described earlier (see Section 4.2.2) use an SGML derivative for the storage
of context-dependent descriptions. This format later evolved into ConteXtML [Rya08]. It de-
fines a protocol for exchanging field notes and other data between mobile clients and a central
server. Clients communicate with the server by using ConteXtML documents over HTTP con-
nections. Such documents may include both the client’s current context and a required context.
In the current context, clients provide information about aspects of their current environment
including location, velocity and details of people involved in the mobile task. The required
context represents the client’s “context of interest” and effectively defines a filter on the server’s
database. A client could for example require all field notes regarding a specific zone of interest.
ConteXtML also supports basic boolean expressions built into the scheme. Listing 5.2 show a

5. Context Models and Frameworks 29

1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#"
3 xmlns:ccpp="http://www.w3.org /2006/09/20 - ccpp -schema#"
4 xmlns:ex="http://www.example.com/schema#">
5

6 <rdf:Description rdf:about="http://www.example.com/profile#MyProfile">
7 <rdf:type rdf:resource="http://www.w3.org /2006/09/20 - ccpp -schema#Client -

profile" />
8

9 <ccpp:component >
10 <rdf:Description rdf:about="http://www.example.com/profile#

TerminalHardware">
11 <rdf:type rdf:resource="http://www.example.com/schema#HardwarePlatform"

/>
12 <ex:displayWidth >320</ex:displayWidth >
13 <ex:displayHeight >200</ex:displayHeight >
14 </rdf:Description >
15 </ccpp:component >
16

17 </rdf:Description >
18 </rdf:RDF >

Listing 5.1: CC/PP profile example

ConteXtML query. The <spatial> and <person> tags at the top provide context information
of the client. After that, the <require>-part requests all notes recorded by persons with the
first name “Andy”.

1 <context session="new">
2 <person role="user" first="Kai" last="Bizik" />
3 <spatial proj="UTM" zone="32 -412" datum="Euro 1950 (mean)">
4 <point x="245" y="635" z="12" />
5 </spatial >
6 <require >
7 <note>
8 <person role="recorder" first"Andy" />
9 </note>

10 </require >
11 </context >

Listing 5.2: ConteXtML example [Rya08]

Another approach is the Centaurus Capability Markup Language (CCML) [KVH+01]. Kagal
et al. created an infrastructure and communication protocol for wireless services. Mobile clients
can connect to the nearest Centaurus System (CS) via short-range communication. The CS
itself is part of a larger communication network with many other systems. Each CS holds a list
of registered services, that is forwarded to the mobile clients and continually updated. Clients
can then select an available service, enter the necessary parameters and let the CS execute the
service on behalf of the client. CCML is used as a service interface description language in the
communication between CS and client as well as in the communication between the CS nodes.
While CCML is mainly used as a communication interface, the authors already envisioned a
more intelligent brokering of services that takes the location of the mobile device into account
and orders the service list accordingly.

30 5. Context Models and Frameworks

The biggest advantage of markup schemes lies in their versatility and availability on many
platforms. The ability to universally structure information is a very strong argument for using
them in distributed environments. As their structure can be described in scheme definitions,
automatic validation of the whole or of parts of the model is easy. Managing markup models
is facilitated by a number of available software tools. For the popular XML different query
languages like XPath [Wor08d] and XQuery [Wor08e] as well as transformation languages like
XSLT [Wor08b] are available that can be used to easily query or transform the contained data.
One drawback is that unambiguity and and incompleteness of information have still to be
handled proprietary by the applications.

5.1.3. Graphical
A very well known tool for modeling is the Unified Modeling Language (UML) [Obj08]. UML
diagrams have a strong graphical orientation and are often used in software development pro-
cesses. Due to their universal structure, they can be used in a wide range of domains. They
have also been used to model context. Bauer [Bau03] uses UML extensions to model context
specific aspects in air traffic control (ATC). Figure 5.1 shows his UML diagram modeling the
part of his context that includes flight trajectories and possible conflicts between aircrafts.

Figure 5.1.: UML model in air traffic control [Bau03]

Another graphics oriented context model is the extension of Object Role Modeling (ORM) by
Henricksen et al. [HIR03]. ORM [ORM08] is originally a fact-oriented tool for system analysis
at conceptual level with a strong focus on intuitive handling and on using natural language
for easy understandability. Henricksen et al. extended ORM to capture context-specific needs
like histories or uncertainties of information. Figure 5.2 shows the full capabilities of their
extension.

5. Context Models and Frameworks 31

(a) Static Fact Type (b) Profiled Fact Type

(c) Sensed Fact Type (d) Derived Fact Type

(e) Temporal Fact Type (f) Fact Dependency

(g) Quality Annotation

Figure 5.2.: Extended ORM with new fact types [HIR03]

32 5. Context Models and Frameworks

The basic modeling concept in ORM is the fact. Entity types are shown as ellipses, simple
values that do not need a reference scheme as dashed ellipses. Fact types are shown as sequences
of role boxes, where each box is connected to an entity type. The extension allows fact types
to be categorized as static or dynamic. Static facts remain unchanged as long as their entity
types exist (e.g. “Device id is of type d ”). Dynamic facts are further categorized by their
source as profiled, sensed or derived. The other extensions include the capturing of temporal
facts (“Person x was engaged in activity y for three hours”), dependencies on facts (“If person
x engages in another activity, their location is likely to change.”) and quality annotations (how
fresh or accurate a fact is). This type of modeling is especially useful for deriving an Entity
Relationship (ER) model from it, which can be used as a basis for a relational database layout.
Henricksen et al. provide methods to map their extensions to ER-models. However, they do not
provide any software tools to manage context models with extended ORM-diagrams. This is
also a general problem with other graphical modeling methods. While there are sophisticated
software tools for well known languages like UML and ORM, the use of extensions beyond
the standard capabilities implies additional adjustments in the modeling software. Graphics-
oriented models also need to be transformed for automatic use. Devices need a serialized
version of the diagrams to communicate. For this purpose, instances of graphical models are
usually serialized in more machine-readable formats like XML. However, if the necessary tools
are provided, graphical diagrams are a very intuitive and natural way of modeling. Graphical
approaches are used mainly for human structuring purposes.

5.1.4. Object-oriented

Object-oriented models aim to retain the basic paradigms of object orientation: Encapsulation,
reusability and inheritance. Structurally related context information is encapsulated in an
object’s internal state and can only be accessed by its public interface. Therefore the exact
details of data processing are hidden from the clients. This is ideal for refining low-level data
from sensors to a useful degree of abstraction. Schmidt et al. [SAT+99,SBG99] use an object-
oriented approach in the TEA-project’s1 layered context architecture (Fig. 5.3).

Figure 5.3.: TEA context architecture [SAT+99]

1Technology for Enabling Awareness [Esp08]

5. Context Models and Frameworks 33

So-called Cues are the linking layer between raw sensor data and the context recognition
layer. They are regarded as time-dependent functions that collect sensor data from physical
and logical sensors. Then they perform statistical analyses before the next layer concludes the
definite context situations from their output. Each cue collects data from exactly one sensor,
but sensors may provide their data to multiple cues. Also, each cue has a defined symbolic or
sub-symbolic output with an infinite or finite set of possible values acting as the Cue’s inter-
face. The “Applications and Scripting” layer at the top provides mechanisms for applications
to include context information. Three scripting primitives have been implemented that can be
used to trigger application-specific actions upon entering, leaving or while in a context2.
Object oriented context models are well suited for the use in distributed environments. The
model can easily be extended by new information types (classes) or updated information (ob-
ject) and the interfaces ensure a sufficient level of formality. Validation is usually done by a
compiler (structural level) and a runtime environment (instance level). The drawback is that
all participating clients need to use the same programming language or have to serialize the
information for exchange.

5.1.5. Logic-based
Logic-based modeling is the most formal approach to context modeling. It usually consists
of basic facts (axioms), expressions and rules that define on which conditions (combination of
basic expressions) a concluding fact may be derived. The process of concluding by defined sets
of rules is also known as inferencing or reasoning. Changes in the environment are reflected in
the model by adding, removing or updating the facts and respective rules.
One example of a context model based on logic is given by Bacon et al. [BBH97]. Their model
is based on an ER-model of the environment and aims at supporting a variety of multimedia
applications such as forwarding an active user session to the nearest workstation. Clients can
register with the model by providing event templates. The parameters of these templates may
contain wildcards. The clients are notified if there is a change in the specified range of interest
specified by the template. Their system is implemented in Prolog and also supports direct
logical queries. Listing 5.3 shows an example of a logic based query. The lines one to five
declare basic facts (such as “John Bates is a person”), line 6 defines a rule for determining if
a person has access to a video-capable workstation in the same room. The last line is the
query that - in this case - would evaluate to the boolean value true. Logic based models are
well suited for applications in the domain of artificial intelligence. But they are also the least
intuitive way of modeling and resource intensive - especially in models with a high number of
rules.

5.1.6. Ontologies
Ontologies represent knowledge by formally defining the relations between terms. The term
“ontology” itself stems from philosophy in which it describes a theory about the nature of exis-

2A single context in their definition is basically an abstract description of a use situation. Their system
models context as a two-dimensional vector that contains many contexts and a probability value
indicating how likely the respective situation currently applies.

34 5. Context Models and Frameworks

1 person(john.bates)
2 workstation(britten)
3 has_video(britten)
4 room(t15)
5 location(john.bates ,t15)
6 video_in_room(P) :- location(P,L), location(W,L), workstation(W), has_video(W)
7 video_in_room(john.bates)

Listing 5.3: Example query of a logic based context model in Prolog [BBH97]

tence. “Ontology refers to the discipline that deals with existence and the things that exist. In
computer science things that ‘exist’ are those which can be represented by data” [Ay07]. The
typical ontology used in computer science consists of a taxonomy and a set of inference rules.
Similar to inheritance concepts in object oriented programming, the taxonomy defines classes
and relations between their members. For example a “student” may be one type of “person” and
be related to a “research group”. Inference rules add additional power to ontologies. Supported
by the idea of the Semantic Web [LHL01], different languages for describing ontologies like RDF
Schema(RDF-S), the DARPA Agent Markup Language (DAML) and the Ontology Interchange
Language (OIL), which were later joined and then superseded by the Web Ontology Language
(OWL) emerged.
An early example of research using ontologies to model context information is the work of
Öztürk and Aamodt [OA97]. In their psychological studies they explored the difference be-
tween recall and recognition regarding several circumstances in combination with contextual
information. They were confronted with the necessity to merge knowledge from different do-
mains and chose ontologies because of their formality as solution approach. They describe the
application of their approach in clinical case-based reasoning and problem solving.
The Aspect Scale Context (ASC) is another ontological context-model. Strang et al. [SLPF03]
use it as a core part in their “Context Ontology Language” (CoOL). ASC provides support for
specifying the model’s core and an arbitrary number of sub-concepts and facts. Different Scales
of one Aspect must be connected by an “IntraOperation”. So the specification of equivalences
between scales is possible3. Figure 5.4 shows ASC’s core classes and relations. The modular
design was chosen with the aim to enable context sharing and reuse in ubiquitous computing
systems.

The Context Ontology (CONON) approach by Wang et al. [WZGP04] is based on the same
idea. The focus here is also on knowledge reusing and sharing. CONON uses OWL as de-
scription language and consists of an Upper Ontology containing location, user, activity and
computational entity as core classes and a Lower or Domain-Specific Ontology. The specific
ontology is a collection of ontologies defining complementing details and features of each sub-
domain.
A very comprehensive ontology is the Standard Ontology for Ubiquitous and Pervasive Appli-
cations (SOUPA) by Chen et al. [CPFJ04]. It heavily relies on OWL’s import capabilities
to extend the SOUPA Core. With the help of modular component vocabularies it intends to

3For example the Aspect “Temperature” may have the scales “Celsius” and “Kelvin” with an IntraOp-
eration to convert between them.

5. Context Models and Frameworks 35

Figure 5.4.: Aspect-Scale-Context Model [SLPF03]

represent intelligent agents with associated beliefs, desires and intentions, time, space, events
and user profiles. The often neglected inclusion of policies for security and privacy issues is
also considered. The authors demonstrate one of the greatest advantages of the ontological
approach by extending the SOUPA Core with a number of ontologies that were developed to
support other pervasive computing scenarios. The standard OWL mapping constructs (e.g.
owl:equivalentClass and owl:equivalentProperty) are used to map to the vocabulary ex-
tensions. Thus, the interoperability between SOUPA applications and applications based on
other ontologies is ensured. An overview over SOUPA is shown in Figure 5.5. The ontolo-
gies already imported by Chen et al. include the Friend-Of-A-Friend ontology, DAML-Time,
the spatial ontologies from OpenCyc, Regional Connection Calculus (RCC), COBRA-ONT,
MoGATU BDI and the Rei policy ontology4.

Figure 5.5.: SOUPA Ontology with SOUPA Core and SOUPA Extension

4The full list with references can be acquired from [CPFJ04]

36 5. Context Models and Frameworks

With the rising interest in ontological modeling and the availability of OWL as description
language, a number of tools have been developed to support the work with ontologies. Pro-
tégé [Sta08] is a graphical editor, Jena [Jen08] provides an API to access OWL ontologies in
Java and Racer [HMHW08] is an inference engine that can be integrated into Protégé and Jena.
Ontologies are a very powerful modeling tool that support a wide range of applications. How-
ever, their power comes at the cost of poor scalability. While the specification and serialization
of ontologies is relatively easy in languages like OWL, the inferencing is based on logic and
mostly realized as external reasoning component. The authors of the ASC-model even require
a conversion from CoOL in F-Logic [KLW95]. Their argument, that this is not a real disad-
vantage of their system because comparable approaches have similar requirements [SLPF03],
hints at a general drawback. The observations made by Wang et al. with CONON also confirm
the low performance. They conducted empirical tests with different computers and variously
sized ontologies. The response time of their system ranged up to about eight seconds. Their
recommendation is to use ontologies only in non-time-critical scenarios [WZGP04]. In ad-
dition, vocabulary extensions are not always completely compatible with existing ontologies.
While integrating other ontologies into the SOUPA Extension, Chen et al. described that
they had to make structural adaptations, because a direct mapping was not sufficient for some
concepts [CPFJ04].

5.2. Location models
The inclusion of location data was one of the first aspects of context awareness (cf. Section
4.1.2). In smart production environments with self-organizing modules awareness of compo-
nents’ positions in the room and in relation to other objects is of vital importance. Becker
and Dürr introduce a classification of context models in ubiquitous computing [BD05]. They
describe different properties of coordinates. In general, geometric and symbolic coordinates can
be distinguished.

• Geometric coordinates are given as coordinate tuples relative to a reference system. The
World Geodetic System 1984 (WGS84) is an example for a global reference system. It can
be used to specify locations anywhere on this planet. Cartesian coordinates, in contrast,
are often used locally (e.g. within one room), because the calculations for distance and
the relative position of objects is less complex. Geometric coordinates allow spatial
reasoning, such as the distance to the next-nearest object or the overlapping of areas.

• Symbolic coordinates define positions with the help of symbolic identifiers. Room numbers
and street names are symbolic coordinates. Spatial relationships between two symbolic
positions are not defined by default. Only with additional knowledge topological infor-
mation can be derived. For example, if the areas described by symbolic coordinates are
pairwise disjoint, it can be concluded that two objects with different coordinates are not
adjacent to each other.

Following the authors’ argumentation, a location model has to support queries for (a) a spe-
cific position, (b) the n nearest objects to a given position (nearest neighbor query) and (c)
interconnections between locations. Based on these queries, Becker and Dürr describe, what a
location model should provide:

5. Context Models and Frameworks 37

• Object positions in the form of geometric and symbolic coordinates as well as one or
multiple local and global reference systems.

• A distance function to determine the distances between modeled objects.

• Topological relations, namely spatial containment (for range queries) and spatial connec-
tions (for navigation).

• Optionally, the orientation of objects.

The final taxonomy contains four types of symbolic location models and two hybrid (sym-
bolic/geometric) types. The following enumeration mostly follows the authors’ argumentation
in [BD05].

Set-based

Set-based location models are based on a set C of symbolic coordinates. This set describes the
entirety of known positions. Locations spanning multiple coordinates are modeled as subsets
of C. Figure 5.6 shows a floor plan as an example.

Figure 5.6.: Example for a set-based location model: Floor plan with symbolic coordi-
nates [BD05]

In such a model containment relations can be determined by calculating the intersection of
two sets, but only a rudimentary qualitative expression concerning the distance between two
coordinates can be made. Statements like “a and b are twice as far from each other than c and
d” cannot be evaluated. Set-based location models have the least expressive power.

Hierarchical

In hierarchical models the set of known coordinates is ordered according to the spatial con-
tainment relation. The topmost location is therefore the symbolic coordinate “everywhere”.
Traversing the set means excluding locations. If the areas are pairwise disjoint, the hierarchi-
cal model depicts a tree-based structure. Extending the previous example, a building could
be modeled by containing several floors with different rooms. As this kind of model is based

38 5. Context Models and Frameworks

on spatial inclusion, range queries are naturally supported. In hierarchical models, intercon-
nections between locations cannot be modeled and therefore distance has still only qualitative
character.

Graph-based

Graph-based models are based on a directed graph G = (V,E), where the coordinates define the
graph’s vertices V . Edges between vertices are added if a direct topological connection exists
between the corresponding locations. Therefore the modeling of the “connected to” relation can
be regarded as intrinsic. The distance between two locations a and b can be measured as the
length l of the shortest path P = (a, p1, p2 . . . pl−1, b) from a to b. Additionally, the edges may
be weighted to model transport costs or distances, which allows graphical algorithms to find
shortest paths according to the weights used. Nearest neighbors are also easy to determine.
Range queries are possible, but the range itself needs to be defined. For example an upper
bound for the distance can function as criterion. The resulting query would return all locations
whose distance from the base location does not exceed the limit. What graph-based models
lack is the possibility to explicitly model containment relations.

Combined

The advantages of set- and graph-based location models can be combined. In the set-based part
of a combined model locations are modeled as subsets of the superset containing all symbolic
coordinates. On this part, range queries can easily be executed as described above. The graph-
based part overlays the sets. Here, locations are connected if a physical connection in the real
world exists (like a door between rooms, stairs between floors, etc.). Figure 5.7 shows the
previous floor plan example enhanced with a directed graph to model access paths. Nearest
neighbors, distances and even navigational applications are executed on the graphical part of
the model.

Figure 5.7.: Example combined location model: Floor plan with access paths as directed
graph [BD05]

5. Context Models and Frameworks 39

Subspaces

This is the first hybrid location model. The basis is still a symbolic location model as described
above. But a hybrid model also contains the geometric extent of each location. This extent can
be noted with respect to a global coordinate system (like WGS84) or locally with limited scope.
Subspaces are then created by anchoring coordinate systems in other coordinate systems. A
building could be modeled by giving an anchor point for each floor (like the position of a
staircase) and then using relative coordinates for the rooms on each floor. This provides a
better clustering of the model as coordinates in the same local system can be compared easily
while the translation from local into global coordinates remains possible. Therefore no sacrifices
concerning the expressiveness are made. On the contrary, models that are structured this way
are usually easier to read by humans.

Partial subspaces

Partial subspaces are equivalent to normal subspaces with the exception that not all locations
need to have associated geometric coordinates. This is a very flexible approach, as the level of
detail can be easily varied. For example, a coordinate system spanning the whole plant grounds
could be used as the topmost reference system. When searching a person in a small building,
it might then be sufficient to know the building’s entrance coordinates and the room number.
In this case only the entrance’s geometric coordinates have to be known.

5.3. Frameworks

The encapsulation of context information in a separate, formal model is the first step towards
better reusability. While the modeling approach technology has a substantial influence on
the formal representation and therefore the storing of context data, there is also the aspect
of managing it. Managing is the process of acquiring context data from sensors, saving it in
the context model, internally transforming the model to ensure the up-to-dateness of basic
and derived data, distributing it between connected members of the context-aware system and
providing convenient means for accessing it. Ideally, a platform-independent infrastructure
handles these details transparently from the applications. Such an infrastructure stands “in the
middle” between sensors and the applications built on top of it. It embodies an abstraction
layer and is therefore called middleware. This layer may be composed of multiple interacting
systems as shown in Figure 5.8, but it does not need to be so. It is interesting to note that
applications making use of the middleware do not necessarily need to know all systems. They
can rely on discovery mechanisms or on locally available data.

The following frameworks explore some of the described aspects in greater detail. They were
proposed to facilitate the creation of context middleware and context-aware applications. This
selection was chosen because of the variety in the approaches. The Context Toolkit tries to
transfer the widely used concept of widgets from the domain of graphical user interfaces (GUI)
into context modeling. Hydrogen addresses some problems with the toolkit’s approach that
result from the mobile nature of many context-aware devices. The Java Context Awareness

40 5. Context Models and Frameworks

Figure 5.8.: Basic principle of context middleware

Framework is an event-based system that abandons parts of the platform-independence but
can be extended during runtime.

5.3.1. Context Toolkit

Salber et al. presented the object-oriented Context Toolkit that was developed at the Georgia
Institute of Computing [SDA99]. They transferred the concept of widgets from the domain
of graphical user interface programming to context modeling. GUI widgets are available for a
large number of frequently needed solutions: Selecting a file, triggering an action or choosing
from a range of options. The authors try to convey the main benefits - transparency, reusability
and abstraction - of GUI widgets to context modeling. The same way GUI widgets separate
applications from the details of the underlying system (cf. Figure 5.9), context widgets separate
applications from context acquisition details.

Context widgets have a state and a behavior. One example could be an RFIDTagData widget
in the SmartFactoryKL. Its state would consist of variables for its location, the last read
data string of passing RFID tags and the last time an RFID tag was detected. The standard
behavior would be to read all data from an tag as soon as it comes into range, to update
the variables accordingly and then to notify registered listeners of the change. The widget
approach is very flexible as new widgets can be added without interfering with the rest of the
system. The distributed nature of ambient intelligent environments was also taken into account
by allowing the widgets themselves to be distributed. One single widget may be composed of
a number of sub-components of three types: Generators, Interpreters and Servers. So, while
the application programmers perceive a single widget, in reality the widget’s functionality

5. Context Models and Frameworks 41

Figure 5.9.: Abstraction concept of GUI widgets

may be distributed over different systems. The RFIDTagData widget would typically contain a
Generator component that handles the hardware details and connection to the RFID reading
device. Similar to the Cue concept of the TEA-project (see Section 5.1.4) Interpreters are used
to convert low-level sensor data to a semantically meaningful representation. For example a
FillLevel widget could contain a generator component, that supplies the weight of passing
soap bottles from a scale integrated into the conveyor, and use an interpreter to convert these
values into one of the three states “no bottle present”, “bottle empty” and “bottle full”. Finally,
Server components act as an aggregator. They collect, store and interpret other widgets’
information. In the example above a BottleState widget could combine the results of the
other two and only clear an application to start filling the currently passing bottle if it is empty
and the data on its RFID-tag holds an according instruction. The whole example is shown in
Figure 5.10.

The authors demonstrate the toolkit’s feasibility by implementing two prototypes and re-
modeling one existing application. Some advanced features like preserving historical context
data and supporting a heterogeneous environment with a standard communication mechanism
(e.g. “XML over HTTP”) are already considered in the design. But there are also weaknesses.
The perhaps most important ones are the lack of a discovery mechanism for new resources and
the problems arising from unreliable networks. If an application loses the connection to a wid-
get or widget components lose contact with each other, the subscriptions to status notifications
have to be restored manually. This is not unlikely to happen with mobile clients, especially
in areas with lots of wireless networks and high interference levels. Applications relying on
remotely available widgets cease to function on connection loss.

42 5. Context Models and Frameworks

Figure 5.10.: Example of an context architecture built with the context toolkit

5.3.2. Hydrogen

Some weaknesses of the Context Toolkit are addressed by Hydrogen [HWM+03]. Hydrogen is
designed for the exclusive use on mobile devices. All three layers of an instance of the framework
run completely on one mobile device. The author’s focus lies on taking the resource restric-
tions and the ad-hoc nature of communication in ubiquitous systems into account. Hydrogen
is therefore a very lightweight (low resource consumption) and robust (against network discon-
nections) framework. A mechanism for context sharing with other devices running Hydrogen
has also been proposed. The framework’s architecture is shown in Figure 5.11.

The Adaptor Layer fetches sensor information, possibly performing first evaluations of the
raw data, and then forwarding it to the next layer. Each sensor is queried by only one Adap-
tor, thus avoiding conflicting access. The Adaptors themselves are reusable objects that can
be queried by many instances of the framework. These queries and the distribution of sensed
data is handled by the Management Layer. The Context Server is located in this layer. It
stores all gathered information about the environment and provides the necessary means for
applications to access it. Both, asynchronous queries and synchronous subscription-based re-
trieval are supported. The Management Layer also has the ability to share sensed contexts
with other devices in range. Naturally the authors classify context data as local or remote. The
exchange of context data via peer-to-peer communication enables the inclusion of information
in the applications’ logic that local sensors alone do not provide. Whenever another device is
encountered, there can be a mutual exchange of information. Thus, a local representation of
the remote device’s context is established and can be used in combination with the local model.
By default, the framework distinguishes between five types of context: Time, Location, Device,

5. Context Models and Frameworks 43

Figure 5.11.: Three-tier architecture of the Hydrogen framework [HWM+03]

User and Network. The framework is written in Java and the context types are represented as
Java objects. The class hierarchy is shown in Figure 5.12.

Extending the framework with new types of context is done by adding Java objects which
extend the ContextObject class and implement two abstract methods, namely toXML() and
fromXML(). XML is used as exchange format on the Management Layer and in the communica-
tion between non-Java applications and the Context Server. While Java applications can easily
use existing classes for the retrieval of context information from the Context Server, developers
need to implement their own routines to interpret the received XML data in other languages.
The authors demonstrate the feasibility of their approach with a reference implementation of
a context-aware postbox that adapts transmitted data according to screen size and network
bandwidth.

The use of a locally running framework provides benefits regarding the availability of context
information. Context that has been sensed before is available even if the sensors that originally
provided the information have been disconnected. Hydrogen clearly takes the right steps in
this direction. However, the sharing of context is still an open issue. The exact details, which
instance shares what data with whom and how frameworks communicate their specific range
of interest, are not clear. The problem of conflicting data is also only mentioned briefly. In
an ad-hoc network infrastructure with occurring disconnects it is likely that two devices that
just connected have different local representations of remote context data. This can happen
because the remote context was sensed at different points in time or because of inaccuracy (two
temperature sensors at the same location will always sense slightly different temperatures).
Hofer et al. recognize this problem, but give no solution. They do not consider sensors that
are not integrated into the local device either. A number of sensor systems are supplied with
support for wireless communication but without the possibility to integrate additional software.
The connection of an Adaptor to such a system stays vulnerable to disconnects.

44 5. Context Models and Frameworks

Figure 5.12.: Hydrogen’s class hierarchy [HWM+03]

5.3.3. JCAF
The Java Context Awareness Framework (JCAF) [Bar05] is a Java-based framework. It forgoes
the interoperability with other programming languages and focuses on the management of
context information as Java objects. In return, it can make full use of already existing Java
concepts like Remote Method Invocation (RMI). Additionally, it can use the serialized form of
Java objects without the need to deal with other formats or any markup languages. The goal
of JCAF is to provide a lightweight, event-based and secure system with an expressive, but
compact set of interfaces.

JCAF is distinctive in three ways: First, it has a loosely-coupled, service-oriented infrastruc-
ture. Distributed context services cooperate in a peer-to-peer manner. Second, the framework
is extensible at run-time. Services, monitors, actuators and clients can be added to a running
system. And third, the JCAF-API5 provides expressive interfaces which developers need to
extend the framework with application-specific behavior. JCAF’s general runtime architecture
is similar to the previous two approaches (cf. Fig. 5.13).

The Sensor and Actuator layer is responsible for collecting, pre-processing and forwarding
sensor data. The Service Layer contains multiple cooperating Context Services that derive
high-level context information from the sensor data and provide client access via the Context
Service API. Finally, the Client Layer contains the context-aware applications. The right-
hand side of Figure 5.13 shows the internal structure of a context service. Entities are the
main components that abstract context information is associated with. They are contained in
the Entity Container which controls their lifecycle. Transformers and Aggregators are small
application-specific Java programs developers can add to the Transformer Repository at run-

5Application Programming Interface

5. Context Models and Frameworks 45

Figure 5.13.: JCAF Runtime Architecture [Bar05]

time. Other clients can then query the repository, for example in case a context information
has to be transformed from one format into another. Access to the whole context service is
regulated by an Access Control component. It implements authentication based on the Java
Authentication and Authorization Service (JAAS). The access is restricted by a coarse-grained
role-based control mechanism, which labels context information as secure if its source is a
trusted Context Monitor. The Service API supports three query methods: Clients can access
the entities by following a request-response schema, by subscribing as Entity Listener to specific
entities or by subscribing to all entities of a specific type. Entities and their context information
as well as items in the Transformer Repository are remotely available. All connections drawn
in Figure 5.13 are remote connections realized with Java RMI.

JCAF follows the object-oriented approach to context modeling. Information is modeled
by extending generic classes. The whole class diagram is shown in Figure 5.14. The im-
portant interfaces are Entity, Context, Relation and ContextItem. The abstract classes
GenericEntity, GenericContext, GenericRelation and AbstractContextItem implement
these interfaces and can be specialized by developers to add additional types. An entity is the
representation of a physical entity in the real world (e.g. a person). One Entity is associated
with exactly one Context. A single Context is composed of Relations to multiple ContextItems.
The lowermost row in Figure 5.14 contains examples for the various types. With this struc-
ture, it is possible to model that the person Kai (which is an entity) is Located (relation) at
“Room 32-412” (ContextItem). The EntityListener interface contains the contextChanged()
method which is called if the context of an observed entity changes. JCAF has been evaluated
and used in a number of projects [Bar05].

JCAF covers many issues, the Context Toolkit and Hydrogen do not. The exclusion of
programming languages other than Java enables the usage of RMI and serialized objects, which
greatly facilitates the communication between services. With the integration of authentication
and authorization via JAAS, JCAF also provides security between connected services - an

46 5. Context Models and Frameworks

Figure 5.14.: JCAF’s context model as UML diagram [Bar05]

issue neglected by most frameworks. The currently simple role-based security mechanism is
only a minor drawback as it can be replaced by other mechanisms like Access Control Lists
(ACL) with little effort. One real weakness is the absence of a discovery mechanism. The
Context Services do cooperate in a peer-to-peer fashion, but a list of available services has to be
supplied at startup. A dynamically changing network topology will introduce further concerns
if the context data of a single entity is stored across multiple systems. The synchronization
of such data is not trivial. The ContextItem interface also enforces items to implement the
getAccuracy() method for quality indication. This is, however only a numerical value between
one and zero. This might be insufficient because it does not contain any meta-data of how the
value was calculated. Finally, the services provide no framework-wide means to access the
history and contexts from previous points in time. In one project, this was solved by adding a
designated History Service that monitored entities of interest and remembered every change in
their context.

5.4. Other Context Frameworks and Middleware
With the ongoing research in context-awareness the number of available context models and
frameworks is continually increasing. A detailed discussion of all approaches goes beyond the
scope of this thesis. The following section briefly outlines additional interesting approaches to
context-aware systems. Especially ontological and very comprehensive approaches that require
a whole network of servers dedicated to managing, are too resource-intensive for a context
engine on a mobile device. For details, the reader is referred to the respective sources and the
surveys in [BCQ+07,BDR07].

ACTIVITY In [KO04] the authors introduce a novel concept for modeling context. During
their analysis of existing approaches they discovered that the research on context often concen-

5. Context Models and Frameworks 47

trates on isolated elements like the location and their influence on context-aware applications.
The relation between these elements and their effect on ambient environments have been ne-
glected. They propose a context model based on Activity Theory, which allows the description
of key influences on human activities. Consistently, they regard context as the set of influences
that affect the users’ intentions while performing a task. Context is modeled in a triangular
structure based on the original activity theory approach (cf. Fig. 5.15). Unfortunately, no
formal definition of the model is given.

Figure 5.15.: Activity Theory structure as context model

CoDAMoS The Context-Driven Adaptation of Mobile Devices project uses an ontological
and extremely general context model [PvdBW+04]. The two-layered model is used in the
PACE middleware [HIMB05]. The four main entities are: (a) user as central concept in many
context-aware systems, (b) environment as description of the users’ surroundings, (c) platform
as description of the used devices’ capabilities, (d) service as available functionality in the
environment. It is expressed in the Web Ontology Language (OWL).

Nexus Many context-aware systems are coarse-grained or use constraints tailored to the
applications’ requirements to keep the complexity and performance acceptable. In contrast to
these approaches, the Nexus Platform [DR03] aims to provide a shared global and detailed
context model. Partial models from various providers are federated into a spatial world model.
The platform consists of three tiers. On the lowest level, the Service Tier contains Context
Servers. They hold partial models with information about their environment. A Context Server
has to implement a specific interface, but is not limited concerning its data representation or
internal structure. Context Servers register with an Area Service Register, that is part of the
Federation Tier. Federation or Nexus Nodes broker between applications and Context Servers.
Such nodes analyze application queries, determine which Context Servers are able to answer the
query, forward the (partial) queries to these servers, compose the answers into a consistent view
and return it to the application. Nexus nodes may also provide so-called value-added services
that make use of the federated model. One example is the combination of basic events into
complexer ones: A service monitors the position of persons on a friend-list and fires an event if
two of them meet [DR03]. The whole system uses location as a primary modeling dimension.
Large-scale models of streets and buildings with a backing relational database are as feasible
as small-scaled sensor systems. The large scale and high level of detail demand a sophisticated
computing infrastructure to provide the necessary resources.

48 5. Context Models and Frameworks

CoBrA The Context Broker Architecture [CFJ03] provides clients with context information
in localized smart spaces like intelligent meeting rooms. A hierarchical system of computers
maintains a shared model of the current context, effectively providing a knowledge repository
for clients within the space. The architecture is assumed to be always accessible, which relieves
resource-limited devices of the responsibility to store and process complex context information.
Clients entering a smart space send a URL with their own policy to the room’s broker. The
broker then receives the policy and shares the contained data with other clients. CoBrA also
covers privacy aspects. Clients can specify detailed rules about the usage of their data. The
use of a stationary infrastructure alleviates the management of complex context models, but
limits the quality of information. Only facts about clients registered with the system can be
regarded as reliable.

P2PC The Peer-to-Peer Coordination Framework [CF03] specializes on supporting mobile
ad-hoc environments with frequently changing devices. The framework contains a middleware
that handles the automatic discovery of other devices and the sharing of context. Context
is perceived as a collection of attributes describing a situation. The authors do not give an
example or proof of feasibility, but experiences from the framework influenced the later proposal
of P2P patterns [FHM+08].

MUSIC In [RWK+08] the authors present a context model as a result of the European
IST project called Self-Adapting Applications for Mobile User in Ubiquitous Computing Envi-
ronments (MUSIC) [MUS07]. It incorporates many special characteristics of context such as
incompleteness, ambiguity, uncertainty and temporal aspects. The decisive difference to other
approaches is the use of Model-Driven-Development (MDD) to facilitate the ease of develop-
ment. Three layers are defined in their architecture: The Conceptual, Exchange and Functional
layer. The exchange and functional layers are similar to previous approaches. The exchange
layer deals with exchanging context data in various formats like XML, JavScript Object Notation
(JSON) or Comma Separated Values (CSV), whereas the latter refers to the actual implemen-
tation of the model’s representation in different languages like Java or .NET. The conceptual
layer consists of a context meta-model defined in UML and a context ontology in OWL. In
the meta-model context information is abstracted by context elements which may be composed
of context values and corresponding metadata. Elements, values and metadata correspond to
a Dimension (cf. Fig 5.16). Thus, different context scopes can be determined that cluster
context information belonging to the same domain. For example, the group “Location” could
comprise values like “Longitude”, “Latitude”, “Room number” and “Accuracy”. The meta-model
is complemented by the MUSIC context ontology. It uses a two-level hierarchical approach in
which a top-level ontology is refined by a more specific underlying ontology. The inclusion of
a meta-model and usage of MDD enables the automatic generation of objects holding context
information. As different representations are formally defined, transformations and automatic
equivalence checking is possible.

5. Context Models and Frameworks 49

Figure 5.16.: The MUSIC context meta-model [RWK+08]

5.5. Summary

The decision, which context modeling technique should be used, has to be based on the demands
of the ambient intelligent system. This section summarizes the identified modeling approaches.
The following list states and justifies criteria for the selection. It most widely follows the
argumentation by Strang et al. [SLP04].

Distributed Composition Ubiquitous systems lack a central instance which is responsible for
managing context data. The ideal context model facilitates the distributed storage and
composition [SLP04].

Partial Validation As a result of the distributed composition, there will probably be no point
in time and space where the context model is completely and consistently stored on one
single device. It is therefore necessary to be able to partially validate the model on both
the structure and on the instance level [SLP04].

Richness and Quality of Information The accuracy and quality of sensor data and derived
high-level context is subject to changes over time. The model has to include quality and
richness indication [SLP04,EHL01].

Incompleteness and Ambiguity At any given point in time context data is usually incomplete
or ambiguous. This is often the result of sensor inaccuracy. Context models should
provide mechanisms for handling incomplete or ambiguous data [SLP04,HI04].

Level of Formality Context facts and relationships have to be stored in a precise and traceable
manner. A high level of formality supports this [SLP04].

50 5. Context Models and Frameworks

Tool Support For developers to make full use of the context model, software tool support is
required. This is especially true if large models are created, because software tools can
be used for validating the model.

Performance A small memory footprint and resource-efficient reasoning is desirable for any
context model. High demands in this part may prevent the context model’s use on
devices with low memory and computing power.

Context History Previous user decisions can be used to predict his likely future needs [MJM09].
The modeling technique has to make it as easy as possible for developers to store and
access previous context information.

Table 5.1 summarizes the six modeling approaches from Section 5.1. As with most require-
ments, they can never be completely fulfilled at the same time. There are always trade-offs
between different requirements. For example, high performance can only be achieved by con-
straining the expressive power in terms of the richness and incompleteness requirements. A high
level of formality usually leads to better machine-readability at the cost of human-readability.

The Key-Value approach is the simplest and most performant modeling technique, but also
needs the most implicit knowledge as the structure itself imposes no semantics to the data saved.
As there is no concept of annotating the key-value pairs, quality, incompleteness and history are
hard to model. Structure is an advantage of markup languages like XML. They are very flexible
and supported by many software tools and platforms which makes them ideal for the use in
distributed environments. The partial validation is possible due to the possibility to include
schema definitions. Still, the ambiguity and incompleteness handling cannot be considered
intrinsic to the model and have to be handled by the application. Graphical approaches are the
most intuitive way of modeling. Their strength lies in supporting human structuring processes.
However, to be used automatically, they have to be serialized in a machine-readable format,
which is usually again a markup language. They also require a specialized software tool to
be used efficiently. Object-oriented context models have a sufficient level of formality and
are well suited for the use in distributed environments. The tool support depends on the
programming language used, but is usually adequate. Validation is done by compilers and
runtime environments. Problems arise if different programming languages are used in a single
environment. This heterogeneity implies the use of standardized serialization formats. Models
based on logic are the most formal approach and mostly used in AI-systems. Their major
problem is their poor performance and high resource demand. Ontologies are a very powerful
and formal modeling approach. With the standardization of the Web Ontology Language
(OWL), software tools have become available for modeling and reasoning. This approach
facilitates the building of shared knowledge as extensions to the vocabulary are relatively easy.
As with logic-based models, the reasoners are complex and high computing power is necessary.

Location models can contain symbolic and geometric coordinates. Out of the discussed sym-
bolic models the combined (graphical and set-based) approach provides most flexibility. Queries
for distances, nearest neighbors and spatial containment are possible on a qualitative level. To
further improve the level of detail and to provide greater accuracy of distance calculations the
symbolic models can be extended with geometric coordinates. The resulting hybrid model al-
lows the use of arbitrary geometric area definitions. Partial subspaces provide a variable level

5. Context Models and Frameworks 51

Key-Value Markup Graphical Object-
oriented

Logical Onto-
logical

Composition - + - ++ ++ ++
Validation - ++ - + - ++
Quality – - + + - +
Ambiguity – - - + - +
Formality - + + + ++ ++
Tools - ++ - ++ – +
Performance ++ ++ * ++ – –
History – - + + + ++

Legend

++ The modeling approach fully supports this requirement
+ The modeling approach partially supports this requirement
- The modeling approach hinders this requirement
– The modeling approach does not support this requirement

Needs to be transformed into another representation before automatic
processing

Table 5.1.: Different modeling techniques’ degree of fulfillment concerning context
requirements

of detail while the constraint of normal subspaces (all symbolic coordinates must also have
known geometric extends) leads to models in which exact and quantitative statements about
the spatial relationships between all coordinates can be made.

The Context Toolkit and Hydrogen frameworks have been analyzed in [BDR07]. All three
frameworks aim at supporting a broad spectrum of context-aware applications. The Context
Toolkit is a widget-based, distributed framework that makes high use of encapsulation and
abstraction principles, but lacks a discovery mechanism and handling of disconnections in an
unreliable network. Hydrogen runs completely on the context-aware device and compensates
for connection losses with local data. Unfortunately, mainly local sensors are considered and
the sharing of (possibly ambiguous) context data is an open issue. The Java Context Aware-
ness Framework is well-tested and includes access control mechanisms. The communication
benefits from the use of Java libraries and serialized objects, but interoperability with other
programming languages is abandoned.

6. Context Model

Before describing the implementation and details of the context engine, this chapter formally
introduces the context model which is based on XML. The whole schema can be reviewed
in Appendix A.1. XML was chosen because of its interoperability, the available tool-support
and its expressive power on the structural level. Furthermore, object-oriented handling of the
XML tree is possible with the help of XMLBeans, which will be discussed in Chapter 7. The
context model does not claim to follow a generic modeling approach. The focus of this thesis
is on the development of the necessary infrastructure to handle context in the SmartMote, not
on providing a universal context (meta-) model. Therefore this model focuses on location as
a primary context type. It complements the interaction zone definitions in the RUM which
are only defined by symbolic coordinates. While not being merged in a single model, the
combination of RUM and context model provides all benefits of a hybrid location model as
described in Section 5.2. After stating the requirements the individual context elements are
discussed.

6.1. Requirements

The context model has to fulfill the following requirements:

(R1) It must be able to store geographic location information.

(R2) Objects of interest are: one single SmartMote and an arbitrary number of Ubisense and
NFC tags. The positions of these objects must be modeled.

(R3) A history of last known positions of objects must be maintained. The history may
be limited to a number of newest entries. Entries may contain an optional timestamp
attribute.

(R4) The model must be able to store different kinds of zones and their geometric extents.

Two restrictions must be noted. First, the model considers only a single room. This assump-
tion is also made by the SmartMote in general and fits the conditions of the SmartFactoryKL,
in which all modules are located in one hall and on the same floor. If more rooms should be
added, a transformation of the context model’s coordinates is necessary. Second, the num-
ber of SmartMote devices is also limited to one. Multiple UCDs have not been tested in the
SmartFactoryKL but may be an aspect of future work.

54 6. Context Model

6.2. Model Details and XML Structure
Figure 6.1 shows the top levels of the model’s XML schema. The root element is of the
XML complex type TContext, which is subdivided into two second-level types: TObjects and
TPlaces. The following sections describe each XML type in more detail starting with points
as basic geometric entities.

Figure 6.1.: Root element with children TObjects and TPlaces

6.2.1. Points
Points (cf. Figure 6.2) are represented by the XML type TPoint. They are the most basic
modeled geometric entity. The three coordinates X, Y and Z are absolute cartesian coordinates
with the Ubisense coordinate system being the reference system. Points are the only types in
the context model containing definite values for coordinates. Points must also have a unique
id, so that other elements may refer to them. This has two advantages: First, it removes
redundancy from the model and second, it facilitates the transformation of all coordinates if a
new reference system is introduced, because they are clustered at one place. Points also save a
list of references to other places in which they are contained in their containedInCoordinates
attribute. This list is used by the reasoner to determine the currently active interaction zones.

6.2.2. Object Positions and Position History
The TPositionHistory (cf. Figure 6.3) depicts the “position memory” of an object. Its children
nodes are references to existing points. The optional attribute maxItems contains an upper
limit for the length of the list and therefore determines the length of the memory. The reasoner

6. Context Model 55

Figure 6.2.: XML type TPoint

contains a rule that deletes the oldest list elements if a new one would exceed the limit (cf.
Section 7.4.3). The references are of the type TPointReference and contain a timestamp and
the id of the referenced TPoint instance in their attributes time and pointID.

Figure 6.3.: XML types TPositionHistory and TPointReference

6.2.3. Objects
In accordance with the second requirement (R2), the TObjects type holds one TSmartMote and
two lists of TUbisenseTag and TNFCTag children with arbitrary size (cf. Figure 6.5). Each of
these types holds one position history as described above. The remaining individual features
of each type are discussed below.

SmartMote

In addition to the position history, the SmartMote has two attributes: id which contains
its unique identifier and ubisenseTagID which contains a reference to a Ubisense tag. The

56 6. Context Model

underlying assumption is that the SmartMote device is attached to exactly one Ubisense tag
(cf. Section 7.1). To determine the SmartMote’s position, the reasoner has to know the id of
the tag.

Ubisense Tags

Ubisense tags may have an additional non-unique designation in their name element. This
information does not need to be modeled at design-time, because the Ubisense system provides
it together with the tag’s position.

NFC Tags

NFC tags store further information about the factory module they are attached to. The records
contain strings following the data structure described in [Kha09]. The fields are: Firma (com-
pany), Geraetetyp (device type), Geraetetyp_Id (device type id), Geraetenummer (device
number), Geraete_Id (device id), Geraete_Name (device name), Modul_Name (module name)
and Modul_Nummer (module number). For simulation purposes a minimalistic editor has been
implemented in Java that can store and retrieve the records from NFC tags (cf. Figure 6.4).
Currently, MiFare [MIF25] cards with 1 or 4 kB space are used as tags, but the card reader and
software are able to handle other types as well. One exception concerns the position history
of NFC tags. As their position is static and previously known, the histories of NFC tags must
contain a valid point reference from the beginning. Only the timestamp is updated during
run-time and tags without known position are ignored by the reasoner.

Figure 6.4.: Minimalistic editor to write and read NFC tags

6. Context Model 57

Figure 6.5.: XML types TObjects, TSmartMote, TUbisenseTag and TNFCTag

58 6. Context Model

6.2.4. Places and Zones
Geometric positions and zones are modeled as children of TPlaces (cf. Figure 6.7). TPoints
is simply composed of points as described above. Geometric zones (i.e. the geometric ex-
tents of interaction zones) are modeled as children of TCoordinates. Currently, the context
model distinguishes three different types of zones: Blocks (TBlock), rings (TRing) and arcs
(TCircleSegment). The zones are defined as basic two-dimensional shapes with a height value
instead of three-dimensional objects. This is consistent with the scenario as factories (and
buildings in general) are usually divided into floors. As zones in the context model are ref-
erenced by the interaction zones in the RUM, a unique identifier for each one is mandatory.
Figure 6.6 shows an example of how the zones are defined in the model and what they look
like. The types in detail are:

• Blocks are based on a simple rectangular basis. They are defined by two points which
must have the same z-coordinate and a height. Blocks are already sufficient for many
purposes, because the Ubisense coordinate axes are aligned according to the modules.

• Rings have a source point, an inner and an outer radius. They offer the best use to model
range-dependent behavior.

• Arcs are defined by a starting- and endpoint as well as an opening angle. Arcs are the
best solution to model perspective-dependent behavior, for example if a screen must be
watched that gets too blurred if the angle is too high.

(a) Block (b) Ring (c) Arc

Figure 6.6.: Three types of interaction zones and their representation in the context
model

6. Context Model 59

Figure 6.7.: XML types TPlaces, TPositions, TCoordinates, TBlock, TRing and
TCircleSegment

7. A Context Engine for the
SmartMote

This chapter introduces the developed context engine for the SmartMote. After describing the
setup, requirements are stated which the individual components should satisfy. The architec-
ture, software approaches used and implementation details form the rest of the chapter.

7.1. Setup

This section describes the hard- and software components used. As an abstract RUM of the
SmartFactoryKL has already been created in [G0̈9], the different modules and properties of the
devices in the factory are not specifically mentioned.

Hardware

The SmartMote currently runs on a “Slimbook P230” [Pac22]. This TabletPC is equipped with
integrated Bluetooth and WLAN which makes it ideal for mobile use. It also has sufficient
computing power to run the Java-based software and therefore provides a good compromise
between screen size, weight, battery power and performance. Its touch-sensitive screen can be
operated by simple finger touch or with the help of a stylus.

Unfortunately, the SmartMote is not equipped with an RFID or NFC reader. As tags for both
systems are installed at fixed locations in the SmartFactoryKL (cf. Section 2.2) and should be
used as location input, an external reader is used. The “ACR122” NFC reader [Adv22] provides
NFC functionality via a USB cable. At the moment, RFID sensing is not implemented, but
the integration of RFID at a later time works analogously to the NFC system.

For the three-dimensional sensing of locations, a commercial ultrasonic positioning system
is used. The Ubisense [Ubi22] sensors are integrated into the factory infrastructure. The
position of Ubisense tags is sensed continuously and can be acquired from a web-service over
the permanently available WLAN. Appendix A.2 shows an example XML file that is returned
by the webservice. Each Ubisense tag has a unique identification number with the help of which
its record in the XML tree can be found.

Until alternative hardware with integrated NFC, RFID and Ubisense capability is available,
the tags and the reader have to be externally attached to the TabletPC. This is a drawback of
the current demonstrator, but has no influence on the underlying principles.

62 7. A Context Engine for the SmartMote

Software and Development Environment
The original SmartMote software and the introduced context engine are written in Java version
1.6 [Jav22]. The eclipse IDE [Ecl22] was used for editing Java sourcecode and all necessary
XML schema and model files. For accessing the NFC reader in Java, the JPCSC library [Lin22]
is used. The run-time access to XML data is provided by Xmlbeans [Apa22], which binds types
from an XML schema to Java types. More details on this can be found below.

7.2. Software Requirements
With the available hard- and software in mind, requirements for the context engine can be
presented. They are ordered component-wise, which also corresponds to the engine’s Java
package structure.

Ubisense Sensors

(R5) The Ubisense sensor system has to poll the Ubisense service over WLAN at least once
per second.

(R6) If data has been retrieved, it must be parsed and stored in the model together with the
time of retrieval.

NFC Sensors

(R7) The NFC sensor system has to connect to to the NFC reader, establish a handle and
wait for an NFC contact.

(R8) If an NFC tag is read, the data must be parsed and, if it matches the NFC data scheme
(cf. Section 6.2.3), be stored in the model together with the time of retrieval.

7.2.1. Context Model
(R9) The model component must maintain an instance of the XML schema.

(R10) It must also provide suitable access mechanisms for clients.

(R11) A notification system must be implemented that notifies registered listeners of changes
in the model. Clients must be allowed to subscribe to changes on specific (existing) data
and to all current and future values of a specific type (type-based subscription).

7.2.2. Reasoner
(R12) The reasoner has to provide a set of rules that operate on the model.

(R13) It must be ensured that rules can be added and removed at run-time without compro-
mising the model’s integrity.

7. A Context Engine for the SmartMote 63

(R14) A rule must be implemented that derives the position of the SmartMote from available
sensor data. A statistical process should correct possible inaccuracy with the help of the
last known positions.

(R15) The reasoner must maintain a list of currently active interaction zones. SmartMote
position changes have to trigger an update of this list.

(R16) If the list of active zones changes, the RUM has to be filtered accordingly and and the
GUI generator has to be notified of the change.

7.3. Architectural Overview
Figure 7.1 shows a conceptual overview over the the context engine. The whole system is
sensor-driven, which means that the arrival of new sensor data triggers all subsequent actions.
The following steps are an example sequence of events that are triggered by an NFC contact:

Figure 7.1.: Conceptual overview over the context engine

1. The NFC reader recognizes an NFC tag.

2. The sensor component reads the data contained on the tag and checks if it has the
correct type and structure. After parsing the data, the sensor component updates the
tag’s corresponding record and timestamp in the model.

64 7. A Context Engine for the SmartMote

3. The new position entry triggers a rule in the reasoner. The rule determines that the
SmartMote position should be updated with the new position. It fetches the updated
tag’s location (static context) and writes a new entry into the SmartMote’s position
history.

4. Another rule is triggered that listens for new positions in general. It examines coordinates
and compares them to the interaction zones. It attaches a list of active zones to the
positions entry.

5. The reasoner is notified and fetches the list of active zones. If it differs from the last one,
the RUM is filtered according to the new set of zones. This leads to a GUI update.

7.4. Components
After giving a general overview over the engine a detailed description of each individual com-
ponent is given. Figure 7.2 shows a UML diagram of the core classes. The complete package
and class list can be reviewed in Appendix A.3.

The GUI generation process from the task model is described in [Mas08]. Its main interface
to the context engine is the DataManager class in the package agse.gabigui.data. This class
manages the RUM representation. The Reasoner hooks into the DataManager and fetches the
RUM object1 Internally the reasoner manages two instances of the RUM. After acquiring the
context-sensitive RUM from the DataManager the reasoner makes a copy, on which it applies
its set of filters. If the filters change at a future point in time, not the whole RUM has to be
transformed again, but only the changed parts. The resulting context-insensitive RUM is then
sent back to the DataManager.

7.4.1. Model
The model is included in the agse.gabigui.context.model package. The main class is the
ContextModelManager. Before discussing its implementation, this section starts with the de-
scription of XMLBeans and how it is used to get an object-oriented representation of the XML
tree.

The XMLBeans Approach

XMLBeans is a technology for binding XML types to Java. Figure 7.3 illustrates its concept.
The Schema Compiler (scomp) generates a set of Java interface- and class-definitions. This type
system can then be used to derive an object tree that corresponds to the schema. The generated
classes possess get- and set-methods for their contents, attributes and children. The object
representation can be serialized to or loaded from an XML document. The Java type system
can also be used to validate both representations, which occurs automatically when loading a
document. These operations can also be performed on single elements and parts of the XML

1XMLBeans is also used with the RUM, which means fetching the RaumbasiertesBenutzungsModell
class as root element is sufficient to get access to the whole task model.

7. A Context Engine for the SmartMote 65

Figure 7.2.: Core classes of the context engine

66 7. A Context Engine for the SmartMote

document. Another advantage is that the object tree can be queried via the XPath and XQuery
standards. The results of such queries are Java objects. This approach therefore combines
the advantages of markup languages and object orientation as described in Chapter 5. The
generated classes and interfaces are contained in the agse.gabigui.context.model.generated
package. This fulfills requirement (R9).

Figure 7.3.: XMLBeans approach: A compiled schema is the basis for object-oriented
processing.

Observer Extension

Requirement (R11) poses a problem for XMLBeans. The generated Java classes do not im-
plement any notification or callback mechanisms. Access to the model works on a query-basis
only. To implement the required observer pattern functionality [GHJV09], additional effort is
required. Fortunately, XMLBeans provides two extension mechanisms which can be used to
add the functionality needed. First, custom methods can be added to the generated interfaces.
During run-time a call to such a method is forwarded to a static helper class with the source
object as an additional parameter. The XMLBeansChangeEmitter interface is shown below.

1 public interface XMLBeansChangeEmitter {

7. A Context Engine for the SmartMote 67

2 public void addModelChangeListener(
3 XmlObjectChangeListener modelChangeListener);
4

5 public void removeModelChangeListener(
6 XmlObjectChangeListener modelChangeListener);
7

8 public boolean hasModelChangeListeners ();
9

10 public void fireModelChangeEvent(TContext model , XmlObject source ,
11 int action , boolean isAttribute , QName name , Object oldValue ,
12 Object newValue);
13 }

All objects generated by XMLBeans implement this interface. It is therefore possible to reg-
ister XmlObjectChangeListeners on the model values. The second feature is called PrePostSet-
Feature. Whenever a value of an object is changed by a call to one of its set-methods, a static
helper method is notified. This happens at the beginning of the set-method and at the end.
By comparing the object’s state, the helper method can calculate the exact changes and call
the fireModelChangeEvent on the source object which then notifies all registered listeners.
The type-based subscription mechanism is also implemented with the help of this feature. All
necessary extensions are encapsulated in the agse.gabigui.context.model.xmlbeanshelper
package. For easier handling of the observer functionality, the class ModelChangeAdapter has
been created. Clients extending this class can register themselves to values in the model and
then get notified of changes.

1 public class ModelChangeAdapter implements XmlObjectChangeListener {
2 public void nodeCreated(TContext model , XmlObject source , QName name ,
3 XmlObject newNode) {
4 }
5

6 public void nodeDeleted(TContext model , XmlObject source , QName name ,
7 XmlObject oldValue) {
8 }
9

10 public void nodeUpdated(TContext model , XmlObject source , QName name ,
11 Object oldValue , Object newValue) {
12 }
13

14 public void attributeSet(TContext model , XmlObject source , QName name ,
15 Object newValue) {
16 }
17

18 public void attributeUnset(TContext model , XmlObject source , QName name ,
19 Object oldValue) {
20 }
21

22 public void attributeUpdated(TContext model , XmlObject source , QName name ,
23 Object oldValue , Object newValue) {
24 }
25 }

The XMLBeansHelper class also contains a static main method which starts the compilation
with all necessary parameters for the extension. It is therefore not necessary to download and
run the command line program scomp if the XML schema changes. Users can start the compiler
from within the eclipse IDE. The generated Java source files are automatically saved to the
agse.gabigui.context.model.generated package.

68 7. A Context Engine for the SmartMote

Access and Synchronization

The last open requirement is (R10) and concerns the access to the model. While it would
be possible to grant clients concurrent access to the model, it is not advisable. XMLBeans is
thread-safe, but only on an atomic level. Listing 7.1 shows an example of adding a new point
to the list of positions. After line 2 the new point instance exists and can be accessed by other
threads. At this point, the id attribute is not yet set and the X, Y and Z fields contain the
standard values of “0.0”. This can lead to inefficiency if derived values have to be recalculated
or even worse, to faulty behavior.

1 TPositions pos = getPositions ();
2 TPoint point = pos.addNewPoint ();
3 // The new point now exists but has only default values
4 point.setId("point1");
5 point.setX (1.0d);
6 point.setY (1.0d);
7 point.setZ (0.5d);

Listing 7.1: Adding a new point

The solution is provided by the Command Pattern [GHJV09]. Instead of executing code
directly on the model (cf. Figure 7.4(a)), clients create a ModelTask that contains the code
and place it in the ContextModelManager’s queue (cf. Figure 7.4(b)). The manager fetches
individual tasks from the head of the queue and executes them on the model. A new task is only
fetched if the previous one finished its execution. The ModelTask interface is very simplistic:

1 public interface ModelTask {
2

3 public void executeOnModel(TContext model);
4

5 }

The ContextModelManager provides two methods for supplying tasks: The first places the
tasks in the queue asynchroneously whereas the second also blocks until the task has been
executed. It must be noted that it is still possible for listeners to get triggered during the
execution of a task. Listeners may react to changes immediately or they can place a task in
the queue themselves.

1 public class ContextModelManager {
2

3 public static final void executeModelTask(final ModelTask task) {
4 ...
5 }
6

7 public static final void executeAndWaitForModelTask(final ModelTask task) {
8 ...
9 }

10 }

7.4.2. Sensors
The agse.gabigui.context.sensors.nfc and ubisense packages contain the sensor compo-
nents. The responsible classes are NFCReader and UbiSenseReader respectively.

7. A Context Engine for the SmartMote 69

(a) Clients simultaneously execute their code on
the model

(b) Clients place their tasks in a queue, only one
task at a time is executed

Figure 7.4.: Principle of synchronized access by using a command queue

Upon startup the NFCReader searches for available NFC hardware. Currently only the
“ACR122” model is supported. After establishing an exclusive connection, the NFCReader waits
for incoming NFC data. If an NFC tag is detected and data received, it is parsed according
to the standard (cf. Section 6.2.3). Finally, a model task is created and placed in the model’s
task queue to write the new value to the model.

The UbiSenseReader is an active component that polls the Ubisense service once per sec-
ond. The service is available via HTTP from a fixed URL, which can be specified in a global
configuration file. Appendix A.2 shows an example of the delivered XML document. The XML
document is parsed and if it contains new position data for a tag (lastSeenOn tag) a model
task is created and scheduled for execution to update the tag’s position.

7.4.3. Reasoner

The reasoner is located in the agse.gabigui.context.reasoning package. It mediates between
the context engine and the GUI generator and handling both, the transformation of the RUM
to its context-insensitive form and the operation on the context model. Aspects of interest are
how additional rules can be added, which rules are already defined and how the transformation
is performed.

70 7. A Context Engine for the SmartMote

Rules

Most rules extend or at least use a ModelChangeListener to react to changes in the model.
Rules have to implement the Rule interface, which defines to methods:

1 public interface Rule {
2

3 public void prepareModel(TContext contextModel);
4 public void disconnectFromModel(TContext contextModel);
5

6 }

Rules can be added during run-time using the reasoner’s addRulemethod. The prepareModel
method is called as soon as the rule is registered and the reasoner is started (or already run-
ning). Rules are provided with a reference to the model and should add listeners to values of
interest. They can also make use of the type-based subscription. As requirement (R13) states,
rules should also be removable during run-time. This is ensured by the disconnectFromModel
method. It is called if a rule is removed from the reasoner via its removeRule method and
should de-register all listeners and opened connections to the model. Developers are currently
required to do this manually. While this allows for a maximum of freedom, it also poses a risk
if a developers forget to de-register some parts of their rules. In summary, the development
of rules should be handled with care and tested thoroughly. Four rules have already been
implemented:

MaxItemsRule This rule operates on all TPositionHistory elements whose maxItems at-
tribute is greater than 2. If a child element is added to such a history and the number of
children exceeds the attribute value the rule deletes the oldest entries from the history
until the constraint is satisfied.

PointReferenceCounterRule This rule keeps track of points and references. It has a counter
for each TPoint instance that indicates the number of references pointing to it. If the
counter reaches zero, the point is deleted to keep the model lean. There is a trade-off
between model complexity and CPU load. If a point is removed by this rule and added
again at a later time, the list of zones that contain the point must be calculated again.
In scenarios with lots of zones and objects, it might be more efficient to deactivate this
rule and keep the points in the model.

PointsContainedInRule While the previous two rules were management rules to keep the model
lean, this is the first rule that is needed for the RUM filtering. It is activated whenever
a new point or a new zone is added or removed. It fetches the coordinates of affected
points and the geometry of the zones to calculate the containment relations. This rule is
responsible for keeping the containedInCoordinates attribute of TPoint instances up
to date.

SmartMoteLocationRule The second filtering rule and most important one. The SmartMote-
LocationRule determines the SmartMote’s position. It uses a simple approach depicted
in Figure 7.5. Basically, the NFC tag information is regarded as more accurate and has
priority over the Ubisense location. If Ubisense information is used, the rule calculates

7. A Context Engine for the SmartMote 71

the average of the last n values. This is a parameter that can be set in a global config-
uration file. A value of 3 has proven to be a good compromise between actuality and
smoothing.

Figure 7.5.: Decision process of the SmartMoteLocationRule

Updating the RUM

The reasoner itself is registered as a listener on the SmartMote position history. If its loca-
tion changes, the reasoner fetches the according TPoint instance and reads the list of zones
in which the point is contained from its containedInCoordinates attribute. If the list dif-
fers from the one previously read, the RUM filter is updated. To do this, the reasoner has
to know which interaction zone in the RUM corresponds to which geometric zone in the con-
text model. This is done by using Uniform Resource Identifiers (URI) [BLFM23] to link
from the RUM to the context model. Bedienzone (Interaction zone) nodes in the RUM have
a child element Koordinaten (coordinates) containing an URI to link to external resources.
Specifically, the reasoner searches these entries for a fixed prefix like “http://wwwagse.cs.uni-
kl.de/smartmote/contextmodel/zones/”. The part following this prefix designates the id at-
tribute of the geometric zone in the context model. After the reasoner identified the active
zone of a Geraeteverbund (device compound) in the RUM, this zone’s use models become
direct descendants of the Geraeteverbund as shown in Figure 7.6. It is also possible to define a
default zone, that is picked if no other zone is active, using the keyword “DEFAULT” instead of
an id. The transformation results in a RUM representation without interaction zones. Finally,
the reasoner notifies the GUI generator of the changed RUM.

7.4.4. Simulation and Control GUI
For simulating the SmartFactoryKL environment the UbiSenseSimulator class has been im-
plemented which is able to provide random position data to the UbiSenseReader. When polled
for values, the simulator slightly changes the coordinates of the Ubisense tags to simulate a
random path through the factory hall.

72 7. A Context Engine for the SmartMote

Figure 7.6.: RUM transformation: The children of an active interaction zone become
direct descendants of the parent device compound. All other zones are
discarded.

A control GUI has also been implemented for testing and visualizing the model’s current
values. It consists of two parts: An overview over the factory layout and an interface containing
control elements for the modules, including the sensors and reasoner. Figure 7.8 shows the
layout window. The black areas are covered by factory modules. The status label at the bottom
shows the current pixel and Ubisense coordinates corresponding to the mouse cursor’s position.
Figure 7.7 shows the control window. The available features of the individual components are
as follows:

• View options: The view options control the visual appearance of the layout windows and
which components are shown.

– Show SmartFactory layout : Shows or hides the layout window.

– Show point grid : Overlays the layout with a point grid.

– Show points present in the model : The PointReferenceCounterRule may remove
point instances from the model if they are no longer referenced. With this option
activated the layout view shows which points are currently contained in the model.

– Show SmartMote: Shows the current SmartMote position as green circle.

– Show UbiSense: Shows all Ubisense tags’ current positions as blue circles.

– Show NFC tags: Shows all NFC tags’ positions as orange circles.

• Ubisense: This panel provides options for controlling the Ubisense sensor component.

7. A Context Engine for the SmartMote 73

– The status label indicates whether the Ubisense sensor component is currently run-
ning and which source it fetches data from.

– The start / stop button activates or deactivates the Ubisense sensors. The NFC
component and the reasoner have the same button and can be started and stopped
during run-time.

– A list of all available Ubisense tags’ unique id attribute is shown in the drop-down
field. Individual tags can be selected from the list.

– With the help of the “Set tag position” button, the position of individual tags can
be set manually. The position of the tag currently selected in the drop-down field
is set on the next mouse click in the layout view.

• NFC : The NFC panel works analogously to the Ubisense panel with the difference that
NFC positions cannot be set manually because the location of NFC tags is considered to
be static data. The “Simulate tag contact” button sets the timestamp of the selected tag
to the current time.

• Reasoner : In addition to dynamically starting and stopping the reasoner, which is useful
to demonstrate the effect of registered rules, the available geometric zones can be visual-
ized. Selecting a zone from the list and clicking the “Show / Hide selected zone” button
causes the layout view to show the zone.

• Snapshot : With the help of the “Save snapshot” button it is possible to save snapshots of
the context model to any folder as an XML document. The “Change snapshot directory”
button can be used to change this folder. The filename is automatically determined by
the current time.

All of the values and options update if the positions change or new objects are added to the
model. The GUI can therefore be used effectively for testing and simulation.

74 7. A Context Engine for the SmartMote

Figure 7.7.: Control GUI with options to control the individual components

7. A Context Engine for the SmartMote 75

Figure 7.8.: Factory overview. The positions of the Ubisense tags and the SmartMote
are continually updated.

8. Feasibility Demonstration
To prove the feasibility of the modified SmartMote and test the system under real-world con-
ditions an experiment in the SmartFactoryKL was conducted. The goal was to see if

• the sensors behave according to the specification.

• the Ubisense system can provide reliable position data or if there are any “blind spots”
where the statistical correction cannot compensate for inaccurate sensor data.

• the zone types are correctly implemented and offer location-dependent behavior.

• the GUI reacts fast enough to zone changes or if there are delays during the update
process.

To test the sensors, the SmartMote was carried to various locations in the factory. The sensed
Ubisense location as well as the derived SmartMote position was observed on the control GUI.
For the third point a context model containing different zones for the “mixing” module was
created. The RUM’s device compound entry for this module was extended to include two
interaction zones pointing to the zones in the context model and one default zone. The zone
nearest to the mixing module was defined as an arc and is shown in Figure 8.1(a). For this zone
all available functionality was allowed. The second zone (cf. Figure 8.1(b)) comprised most
of the modules and the majority of the factory hall in a block. The task model for this zone
allowed only to read parameters, but not to set them. The default zone contained an empty use
model. The figures on the next pages show the user’s view, the control GUI and the generated
SmartMote GUI in different situations.

Unfortunately, it became clear during simulations that the new GUI version with included
usability patterns was not able to handle updates in the task model efficiently. It took up to
three seconds until the GUI adapted and even then it “forgot” the activated device compound
and the user had to select it again from the navigation bar. The test was therefore performed
with the original version of the GUI [Mas08] which performed very well.

The test showed that the Ubisense location information can be considered accurate. While
there were some areas in which the location tended to deviate from the real position, the
correction could always produce a sufficiently accurate position. The value for the statistical
smoothing was reduced from the initial 10 to 3. The rest of the test also progressed without
errors. The user could wander through the factory and the GUI adapted according to the
defined zones with a delay of about two seconds at maximum. The integration of the context
engine into the SmartMote can therefore be rated as a success.

78 8. Feasibility Demonstration

(a) Nearest zone, defined as arc

(b) Middle zone comprising most of the modules

Figure 8.1.: Three zones were used in the test. The third zone is the default and defined
implicitly. Any location not included in the first two zones is part of the
default zone.

8. Feasibility Demonstration 79

(a) The layout GUI on the SmartMote and a view on the mixing module
in the background

(b) The corresponding generated GUI. The module offers full functionality
in this zone.

Figure 8.2.: User and SmartMote are in the nearest zone.

80 8. Feasibility Demonstration

Figure 8.3.: The generated GUI shows read-only parameters. Setting parameters is dis-
abled from the second zone.

Figure 8.4.: No interaction at all is allowed from the default zone.

9. Conclusion and Future Work

Conclusion
The goal of this work was to develop an infrastructure for the context-based adaptation of
the SmartMote. After introducing the SmartFactoryKL, its universal control device (UCD),
the SmartMote, and considering the special properties of ambient intelligence the notion of
context and context-awareness was formally introduced. Examples of context-aware devices
were given to show the wide area of possible applications. The classifications discussed led to
the observation that some context types are more important than others and that low-level
context from sensors can be refined to high-level information about the situation. Existing
approaches for separating context from the application logic in a context model were examined.
Especially the advantages and shortcomings of different modeling techniques and the properties
of different location models were inspected.

The primary contribution of this thesis is the development of a formal context model and a
run-time architecture for reasoning on this model to support context-adaptation in the Smart-
Mote’s model-based user interface development process (MBUID). Using the SmartFactoryKL

as an example of ambient intelligent production environments, the model considers the loca-
tion of various objects and the geometric extents of three types of zones. Through the provided
access mechanisms, two sensor technologies are connected to the model. The Ubisense and
NFC components continuously update the model with up-to-date location information. As the
model is based on XML, the specialized XMLBeans tool can be used to bind the XML schema
to Java types. This combines the interoperability of markup languages with the performance
of object-oriented modeling. The XMLBeans compiler is then extended with a notification
mechanism that allows clients to react to changes in the model. Future additions to the model
can be made by extending the XML schema without affecting the existing components.

The developed reasoner component is based on the context model. With an internal set of
rules that operate on the model it is possible to derive high-level context data from current
and previous sensor input. Four rules were defined, two to keep the model from becoming too
overloaded with unnecessary information and two to enrich it with high-level context informa-
tion. Combining the available information it is possible to determine a list of zones the user is
currently in. Rules are based on a simple interface so that it is easy for developers to create and
add their own rules. Rules can be added and removed during run-time. Overall, the system
provides a clear and extensible architecture for integrating context into the MBUID process.

The feasibility of the approach has been demonstrated using the concept of interaction zones.
The Room-based Use Model (RUM) allows the specification of different task models depending
on the zones the user is currently in. To support this scenario, the reasoner also mediates
between the previous MBUID process and the context model. Using the zone information from
the context model the reasoner transforms the RUM from its context-sensitive form (including

82 9. Conclusion and Future Work

all zone definitions) to a context-insensitive form corresponding to the current context of use
(including only the task models of active zones). For the first time it is possible to adapt the
SmartMote GUI not only to the set of available devices, but also to the location of the user.

The system has been successfully tested in the SmartFactoryKL, which means scenarios
like the one given in the introduction are possible. The reduction of complexity in ambient
intelligent production environments has therefore been further improved. It is now not only
possible to control all devices from a single mobile device, but also to exclude tasks that are not
viable from the user’s current location. These improvements have taken the SmartMote one step
further towards the vision of a human-centered ambient intelligent production environment.

Future Work
While the feasibility of the engine has been shown and the system has been tested in the
SmartFactoryKL, the expected positive impact on usability and safety can be evaluated in
future studies.

From an conceptual view, the RUM provides chances for improvement. The monolithic
approach, in which all context-sensitive information is included in one model, leads to a hardly
manageable model. Especially the creation of such a complex model becomes harder and more
error-prone if many situations are considered. A separation into different models could facilitate
their construction.

Some obstacles with XMLBeans also arose. While XMLBeans provides a reliable transfor-
mation from XML to Java, the resulting object tree contains no backward references. Accessing
a parent node is only possible by switching to an XML representation or by traversing the tree
again from the root. Future improvements will also be made to support the context engine
together with the pattern-based MBUID process.

As there is now an infrastructure for the handling of context available, additional context-
dependent behavior can be integrated. Developing more location-based functionality as well as
considering more types of context like noise levels, user preferences or device profiles could be
the goal of future projects. Providing context-sensitive support of users’ workflows by predicting
their next steps and tasks that they need to perform next is also a possibility.

Finally, the restriction of exclusive access to the resources could be lifted. The SmartMote
currently assumes that only one universal control device has access to the factory. Allowing
multiple UCDs opens up new topics of interest. Tasks from a local task model could be
performed in cooperation with other users. The distribution of tasks to multiple devices raises
new questions regarding the intelligent sharing of contextual data as well.

A. Appendix

xii A. Appendix

A.1. Context Model: XML Schema

1 <?xml version="1.0" encoding="UTF -8"?>
2 <schema targetNamespace="generated.model.context.gabigui.agse"

elementFormDefault="qualified" xmlns="http://www.w3.org /2001/ XMLSchema"
xmlns:smctx="generated.model.context.gabigui.agse">

3

4 <element name="Context" type="smctx:TContext"></element >
5

6 <complexType name="TContext">
7 <sequence maxOccurs="1" minOccurs="1">
8 <element name="Objects" type="smctx:TObjects" maxOccurs="1" minOccurs="

1"></element >
9 <element name="Places" type="smctx:TPlaces" maxOccurs="1" minOccurs="1"

></element >
10 </sequence >
11 </complexType >
12

13 <complexType name="TObjects">
14 <sequence maxOccurs="1" minOccurs="1">
15 <element name="SmartMote" type="smctx:TSmartMote" maxOccurs="1"

minOccurs="1"></element >
16 <element name="NFCTag" type="smctx:TNFCTag" maxOccurs="unbounded"

minOccurs="0"></element >
17 <element name="UbisenseTag" type="smctx:TUbisenseTag" maxOccurs="

unbounded" minOccurs="0"></element >
18 </sequence >
19 </complexType >
20

21 <complexType name="TSmartMote">
22 <sequence maxOccurs="1" minOccurs="1">
23 <element name="PositionHistory"
24 type="smctx:TPositionHistory" maxOccurs="1" minOccurs="1">
25 </element >
26 </sequence >
27 <attribute name="id" type="ID" use="required"></attribute >
28 <attribute name="ubisenseTagID" type="IDREF"></attribute >
29 </complexType >
30

31 <complexType name="TPositionHistory">
32 <sequence maxOccurs="1" minOccurs="1">
33 <element name="PointReference" maxOccurs="unbounded" minOccurs="0" type

="smctx:TPointReference"></element >
34 </sequence >
35 <attribute name="maxItems">
36 <simpleType >
37 <restriction base="int">
38 <minExclusive value="2"></minExclusive >
39 </restriction >
40 </simpleType >
41 </attribute >
42 </complexType >
43

44 <simpleType name="TType">
45 <restriction base="string">
46 <enumeration value="static"></enumeration >
47 <enumeration value="sensed"></enumeration >
48 <enumeration value="derived"></enumeration >
49 <enumeration value="dynamic"></enumeration >
50 <enumeration value="profiled"></enumeration >
51 </restriction >
52 </simpleType >

A. Appendix xiii

53

54

55 <complexType name="TNFCTag">
56 <sequence maxOccurs="1" minOccurs="1">
57 <element name="PositionHistory"
58 type="smctx:TPositionHistory" maxOccurs="1" minOccurs="1">
59 </element >
60 <element name="Firma" type="string" maxOccurs="1" minOccurs="1"></

element >
61 <element name="Geraetetyp" type="string" maxOccurs="1" minOccurs="1"></

element >
62 <element name="Geraetetyp_Id" type="string" maxOccurs="1" minOccurs="1"

></element >
63 <element name="Geraetenummer" type="string" maxOccurs="1" minOccurs="1"

></element >
64 <element name="Geraete_Id" type="string" maxOccurs="1" minOccurs="1"></

element >
65 <element name="Geraete_Name" type="string" maxOccurs="1" minOccurs="1">

</element >
66 <element name="Modul_Name" type="string" maxOccurs="1" minOccurs="1"></

element >
67 <element name="Modul_Nummer" type="string" maxOccurs="1" minOccurs="1">

</element >
68 </sequence >
69 <attribute name="id" type="ID" use="required"></attribute >
70 </complexType >
71

72 <complexType name="TUbisenseTag">
73 <sequence maxOccurs="1" minOccurs="1">
74 <element name="Name" type="string" maxOccurs="1" minOccurs="1"></

element >
75 <element name="PositionHistory" type="smctx:TPositionHistory" maxOccurs

="1" minOccurs="1"></element >
76 </sequence >
77 <attribute name="id" type="ID" use="required"></attribute >
78 </complexType >
79

80 <complexType name="TPlaces">
81 <sequence maxOccurs="1" minOccurs="1">
82 <element name="Coordinates" type="smctx:TCoordinates" maxOccurs="1"

minOccurs="1"></element >
83 <element name="Positions" type="smctx:TPositions" maxOccurs="1"

minOccurs="1"></element >
84 </sequence >
85 </complexType >
86

87 <complexType name="TCoordinates">
88 <sequence maxOccurs="1" minOccurs="1">
89 <element name="Block" type="smctx:TBlock" maxOccurs="unbounded"

minOccurs="0"></element >
90 <element name="Ring" type="smctx:TRing" maxOccurs="unbounded" minOccurs

="0"></element >
91 <element name="CircleSegment" type="smctx:TCircleSegment" maxOccurs="

unbounded" minOccurs="0"></element >
92 </sequence >
93 </complexType >
94

95 <complexType name="TBlock">
96 <sequence maxOccurs="1" minOccurs="1">
97 <element name="SourceVertex" type="smctx:TPointReference"
98 maxOccurs="1" minOccurs="1">
99 </element >

100 <element name="DestinationVertex"

xiv A. Appendix

101 type="smctx:TPointReference" maxOccurs="1" minOccurs="1">
102 </element >
103 <element name="Height" type="double" maxOccurs="1" minOccurs="1"></

element >
104 </sequence >
105 <attribute name="id" type="ID" use="required"></attribute >
106 </complexType >
107 <complexType name="TPointReference">
108 <attribute name="time" type="dateTime"></attribute >
109 <attribute name="pointId" type="IDREF"></attribute >
110 </complexType >
111

112 <complexType name="TRing">
113 <sequence maxOccurs="1" minOccurs="1">
114 <element name="CenterBottomVertex"
115 type="smctx:TPointReference" maxOccurs="1" minOccurs="1">
116 </element >
117 <element name="InnerRadius" type="double" maxOccurs="1" minOccurs="1"><

/element >
118 <element name="OutterRadius" type="double" maxOccurs="1" minOccurs="1">

</element >
119 <element name="Height" type="double" maxOccurs="1" minOccurs="1"></

element >
120 </sequence >
121 <attribute name="id" type="ID" use="required"></attribute >
122 </complexType >
123

124 <complexType name="TCircleSegment">
125 <sequence maxOccurs="1" minOccurs="1">
126 <element name="CenterBottomVertex"
127 type="smctx:TPointReference" maxOccurs="1" minOccurs="1">
128 </element >
129 <element name="OutterBottomVertex"
130 type="smctx:TPointReference" maxOccurs="1" minOccurs="1">
131 </element >
132 <element name="Height" type="double" maxOccurs="1" minOccurs="1"></

element >
133 <element name="Angle" type="int" maxOccurs="1"
134 minOccurs="1">
135 </element >
136 </sequence >
137 <attribute name="id" type="ID" use="required"></attribute >
138 </complexType >
139

140 <complexType name="TPositions">
141 <sequence maxOccurs="1" minOccurs="1">
142 <element name="Point" type="smctx:TPoint" maxOccurs="unbounded"

minOccurs="0"></element >
143 </sequence >
144 </complexType >
145

146 <complexType name="TPoint">
147 <sequence maxOccurs="1" minOccurs="1">
148 <element name="X" type="double" maxOccurs="1"
149 minOccurs="1">
150 </element >
151 <element name="Y" type="double" maxOccurs="1"
152 minOccurs="1">
153 </element >
154 <element name="Z" type="double" maxOccurs="1"
155 minOccurs="1">
156 </element >
157 </sequence >

A. Appendix xv

158 <attribute name="id" type="ID" use="required"></attribute >
159 <attribute name="containedInCoordinates" type="IDREFS"></attribute >
160 </complexType >
161 </schema >

xvi A. Appendix

A.2. Example Ubisense XML File

1 <ArrayOfUbisenseObject >
2 <UbisenseObject >
3 <Id>Id1</Id>
4 <Name>Name1 </Name>
5 <X>39.307106 </X>
6 <Y>3.977844 </Y>
7 <Z>1.3933041 </Z>
8 <LastSeenOn >0001 -01 -01 T00:00:00 </LastSeenOn >
9 </UbisenseObject >

10 <UbisenseObject >
11 <Id>Id2</Id>
12 <Name>Name2 </Name>
13 <X>8.380611 </X>
14 <Y>38.08979 </Y>
15 <Z>1.0</Z>
16 <LastSeenOn >0001 -01 -01 T00:00:00 </LastSeenOn >
17 </UbisenseObject >
18 <UbisenseObject >
19 <Id>Id3</Id>
20 <Name>Name3 </Name>
21 <X>33.177 </X>
22 <Y>47.199135 </Y>
23 <Z>1.8</Z>
24 <LastSeenOn >0001 -01 -01 T00:00:00 </LastSeenOn >
25 </UbisenseObject >
26 </ArrayOfUbisenseObject >

A. Appendix xvii

A.3. Complete List of Packages and Classes

List of Figures

1.1. Trends in computing [Tra09,Wei20] . 1

2.1. The SmartFactoryKL. The demonstration area shows the liquid soap bottling
process. 4

2.2. Four levels of the simplified Cameleon framework [LVM+05]. The models are
translated according to the current context of use. 6

2.3. MBUID process including consideration of multiple contexts [WFRS07] 7
2.4. Example in CTT: Check temperature in different scales 8
2.5. Original Use Model structure [BGM+09] . 8
2.6. The Room-Based Use Model. Device Compounds may include Interaction Zones

to model different behavior depending on the user’s position [BGM+09] 9
2.7. Current SmartMote GUI with debug information at the bottom 11
2.8. SmartMote GUI with integrated use of usability patterns 11

3.1. Detail of the RUM specification. Device Compounds may be a aggregation of
Interaction Zones . 13

4.1. ActiveBadge generations from the AT&T Laboratories Cambridge Archive [Ame13] 18
4.2. The Xerox PARCTab [Xer13] . 19
4.3. The DUMMBO setup . 20
4.4. The Hello.Wall system consisting of 124 LED cells and hand-held viewports [Fra14] 21
4.5. Three interaction zones based on user proximity [SRP+03] 22
4.6. AuraOrb in the modes semi-foreground and foreground [AVSC06] 23
4.7. Three-dimensional context classification . 26

5.1. UML model in air traffic control [Bau03] . 30
5.2. Extended ORM with new fact types [HIR03] . 31
5.3. TEA context architecture [SAT+99] . 32
5.4. Aspect-Scale-Context Model [SLPF03] . 35
5.5. SOUPA Ontology with SOUPA Core and SOUPA Extension 35
5.6. Example for a set-based location model: Floor plan with symbolic coordinates

[BD05] . 37
5.7. Example combined location model: Floor plan with access paths as directed

graph [BD05] . 38
5.8. Basic principle of context middleware . 40
5.9. Abstraction concept of GUI widgets . 41
5.10. Example of an context architecture built with the context toolkit 42

List of Figures xix

5.11. Three-tier architecture of the Hydrogen framework [HWM+03] 43
5.12. Hydrogen’s class hierarchy [HWM+03] . 44
5.13. JCAF Runtime Architecture [Bar05] . 45
5.14. JCAF’s context model as UML diagram [Bar05] 46
5.15. Activity Theory structure as context model . 47
5.16. The MUSIC context meta-model [RWK+08] . 49

6.1. Root element with children TObjects and TPlaces 54
6.2. XML type TPoint . 55
6.3. XML types TPositionHistory and TPointReference 55
6.4. Minimalistic editor to write and read NFC tags 56
6.5. XML types TObjects, TSmartMote, TUbisenseTag and TNFCTag 57
6.6. Three types of interaction zones and their representation in the context model . 58
6.7. XML types TPlaces, TPositions, TCoordinates, TBlock, TRing and TCircleSeg-

ment . 59

7.1. Conceptual overview over the context engine . 63
7.2. Core classes of the context engine . 65
7.3. XMLBeans approach: A compiled schema is the basis for object-oriented pro-

cessing. 66
7.4. Principle of synchronized access by using a command queue 69
7.5. Decision process of the SmartMoteLocationRule 71
7.6. RUM transformation: The children of an active interaction zone become direct

descendants of the parent device compound. All other zones are discarded. . . . 72
7.7. Control GUI with options to control the individual components 74
7.8. Factory overview. The positions of the Ubisense tags and the SmartMote are

continually updated. 75

8.1. Three zones were used in the test. The third zone is the default and defined
implicitly. Any location not included in the first two zones is part of the default
zone. 78

8.2. User and SmartMote are in the nearest zone. 79
8.3. The generated GUI shows read-only parameters. Setting parameters is disabled

from the second zone. 80
8.4. No interaction at all is allowed from the default zone. 80

List of Tables

5.1. Different modeling techniques’ degree of fulfillment concerning context require-
ments . 51

Listings

5.1. CC/PP profile example . 29
5.2. ConteXtML example [Rya08] . 29
5.3. Example query of a logic based context model in Prolog [BBH97] 34

7.1. Adding a new point . 68

Bibliography
[ADB+99] Gregory Abowd, Anind Dey, Peter Brown, Nigel Davies, Mark Smith, and Pete

Steggles. Towards a Better Understanding of Context and Context-Awareness. In
Hans-W Gellersen, editor, Handheld and Ubiquitous Computing, volume 1707 of
Lecture notes in computer science, pages 304–307. Springer Berlin / Heidelberg,
1999.

[Adv22] Advanced Card Systems Ltd. ACR122U NFC Contactless Smart Card
Reader, Last Checked: 2010/10/22. http://www.acs.com.hk/index.php?pid=
product&id=ACR122U.

[AM03] Emile Aarts and Stefano Marzano. The new everyday, Views on ambient intel-
ligence. 010 Publ., Rotterdam, 2003.

[Ame13] American Telephone and Telegraph Corporation. Laboratories Cambridge
Archives - The Active Badge, Last checked: 2010/10/13. http://www.cl.cam.
ac.uk/research/dtg/attarchive/thebadge.html.

[Apa22] Apache XMLBeans. XMLBeans Project Homepage, Last checked: 2010/10/22.
http://xmlbeans.apache.org/.

[Arn06] Henrik Arndt. Integrierte Informationsarchitektur, Die erfolgreiche Konzeption
professioneller Websites. X.media.press. Springer and Springer-Verlag Berlin Hei-
delberg, Berlin, Heidelberg, 2006.

[AVSC06] Mark Altosaar, Roel Vertegaal, Changuk Sohn, and Daniel Cheng. AuraOrb:
using social awareness cues in the design of progressive notification appliances.
In Proceedings of the 18th Australia conference on Computer-Human Interaction:
Design: Activities, Artefacts and Environments, pages 159–166. ACM, Sydney,
Australia, 2006.

[Ay07] Feruzan Ay. Context Modeling and Reasoning using Ontologies. Berlin, 2007.

[Bar05] Jakob E. Bardram. The Java Context Awareness Framework (JCAF) – A Service
Infrastructure and Programming Framework for Context-Aware Applications. In
HansW. Gellersen, Albrecht Schmidt, and RoyWant, editors, Pervasive Comput-
ing (vol. 3468), volume 3468 of Lecture notes in computer science, pages 98–115.
Springer-Verlag GmbH, Berlin Heidelberg, 2005.

[BAT98] Jason A. Brotherton, Gregory D. Abowd, and Khai N. Truong. Supporting
capture and access interfaces for informal and opportunistic meetings, Georgia
Tech Technical Report GIT-GVU-99-06, 1998.

http://www.acs.com.hk/index.php?pid=product&id=ACR122U
http://www.acs.com.hk/index.php?pid=product&id=ACR122U
http://www.cl.cam.ac.uk/research/dtg/attarchive/thebadge.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/thebadge.html
http://xmlbeans.apache.org/

xxvi Bibliography

[Bau03] Joseph Bauer. Identification and Modeling of Contexts for Different Information
Scenarios in Air Traffic. Diploma Thesis, Technische Universität Berlin, Berlin,
2003.

[BBC97] P. J. Brown, J. D. Bovey, and Xian Chen. Context-aware applications: from
the laboratory to the marketplace, Personal Communications, IEEE. Personal
Communications, IEEE DOI - 10.1109/98.626984, 4(5):58–64, 1997.

[BBH97] J. Bacon, J. Bates, and D. Halls. Location-Oriented Multimedia. Personal
Communications, IEEE, 4(5):48–57, 1997.

[BCQ+07] Cristiana Bolchini, Carlo A. Curino, Elisa Quintarelli, Fabio A. Schreiber, and
Letizia Tanca. A Data-Oriented Survey of Context Models. ACM SIGMOD
Record, 36(4):19–26, 2007.

[BD05] Christian Becker and Frank Dürr. On location models for ubiquitous computing.
Personal and Ubiquitous Computing, 9(1):20–31, 2005.

[BDR07] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on
context-aware systems. Int. J. Ad Hoc Ubiquitous Comput., 2(4):263–277, 2007.

[BGM+09] Kai Breiner, Daniel Görlich, Oliver Maschino, Gerrit Meixner, and Detlef Züh-
lke. Run-Time Adaptation of a Universal User Interface for Ambient Intelligent
Production Environments. In Julie A. Jacko, editor, Human-computer interac-
tion, volume 5613 of Lecture notes in computer science, pages 663–672. Springer,
Berlin, 2009.

[BGSG10] Kai Breiner, Volkmar Gauckler, Marc Seissler, and Gerrit Meixner. Evaluation
of user interface adaptation strategies in the process of model-driven user inter-
face development. In Proceedings of the 5th International Workshop on Model-
Driven Development of Advanced User Interfaces. International Workshop on
Model Driven Development of Advanced User Interfaces (MDDAUI-2010), lo-
cated at CHI 2010, April 10, Atlanta„ GA, United States. CEUR-Proceedings,
2010.

[BLFM23] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986 - Uniform Resource
Identifier (URI): Generic Syntax, Last checked: 2010/10/23. http://tools.
ietf.org/html/rfc3986.

[BMGM09] Kai Breiner, Oliver Maschino, Daniel Görlich, and Gerrit Meixner. Towards
automatically interfacing application services integrated in a automated model
based user interface generation process. In Gerrit Meixner, Daniel Görlich, K.
Breiner, H. Hußmann, A. Pleuß, S. Sauer, and J. Van den Bergh, editors, 4th
International Workshop on Model Driven Development of Advanced User Inter-
faces. International Workshop on Model Driven Development of Advanced User
Interfaces (MDDAUI-2009), February 8, Sanibel Island„ Florida, United States,
volume 439 of CEUR Workshop Proceedings, ISSN 1613-0073. CEUR Workshop
Proceedings (Online), 2009.

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

Bibliography xxvii

[BRJ05] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide (UML), The Ultimate Tutorial from the original Designers -
Covers UML 2.0. Addison Wesley, 2005.

[Bro96] P. J. Brown. The Stick-e Document: a Framework for Creating Context-aware
Applications. In Proceedings of EP’96, Palo Alto, pages 259–272, 1996.

[Bro98] P. Brown. Triggering information by context. Personal and Ubiquitous Comput-
ing, 2(1):18–27, 1998.

[CCT+03] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent
Bouillon, and Jean Vanderdonckt. A Unifying Reference Framework for multi-
target user interfaces, Computer-Aided Design of User Interface. Interacting with
Computers, 15(3):289–308, 2003.

[CF03] Ekaterina Chtcherbina and Marquart Franz. Peer-to-peer coordination frame-
work (p2pc): Enabler of mobile ad-hoc networking for medicine, business, and
entertainment. In Proceedings of International Conference on Advances in In-
frastructure for Electronic Business, Education, Science, Medicine, and Mobile
Technologies on the Internet, 2003.

[CFJ03] Harry Chen, Tim Finin, and Anupam Joshi. An Intelligent Broker for Context-
Aware Systems. In IN ADJUNCT PROCEEDINGS OF UBICOMP, 2003.

[CK00] Guanling Chen and David Kotz. A survey of context-aware mobile computing
research, Dartmouth Computer Science Technical Report TR2000-381, 2000.

[CLC04] Tim Clerckx, Kris Luyten, and Karin Coninx. The mapping problem back and
forth: customizing dynamic models while preserving consistency. In TAMODIA
’04: Proceedings of the 3rd annual conference on Task models and diagrams,
pages 33–42, New York, NY, USA, 2004. ACM.

[CLC05] Tim Clerckx, Kris Luyten, and Karin Coninx. Generating Context-Sensitive
Multiple Device Interfaces from Design. In Robert Jacob, Quentin Limbourg,
and Jean Vanderdonckt, editors, Computer-Aided Design of User Interfaces IV,
pages 283–296. Springer Netherlands, 2005.

[CPFJ04] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. SOUPA: Standard On-
tology for Ubiquitous and Pervasive Applications. In Imrich Chlamtac, editor,
Proceedings of MobiQuitous 2004, pages 258–267. IEEE Service Center, Piscat-
away, NJ, 2004.

[Deu16] Deutsches Forschungszentrum für Künstliche Intelligenz GmbH. German Re-
search Center for Artificial Intelligence, Last checked: 2010/10/16. http:
//www.dfki.de/.

[Dij20] Edsger W. Dijkstra. E.W. Dijkstra Archive: On the role of scientific thought
(EWD447), Last checked: 2010/10/20. http://www.cs.utexas.edu/users/
EWD/transcriptions/EWD04xx/EWD447.html.

http://www.dfki.de/
http://www.dfki.de/
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html

xxviii Bibliography

[DKM18] Martin Dr. Kempa and Zoltán Ádám Mann. Model
Driven Architecture - Gesellschaft für Informatik e.V., Last
checked: 2010/10/18. http://www.gi-ev.de/no_cache/service/
informatiklexikon/informatiklexikon-detailansicht/meldung/
model-driven-architecture-117.

[DR03] Frank Dürr and Kurt Rothermel. On a Location Model for Fine-Grained Geo-
cast. In UbiComp 2003: Ubiquitous Computing, volume 2864 of Lecture notes in
computer science, pages 18–35. Springer Berlin / Heidelberg, 2003.

[Ecl22] Eclipse Foundation Inc. Eclipse IDE Homepage, Last checked: 2010/10/22.
http://eclipse.org/.

[EHL01] M. Ebling, G. D. H. Hunt, and H. Lei. Issues for context services for pervasive
computing, Middleware 2001 Workshop on Middleware for Mobile Computing,
Heidelberg, 2001.

[Esp08] Esprit project 26900. Technology for Enabling Awareness, Last checked:
2010/09/08. http://www.teco.edu/tea/.

[FHM+08] Alois Ferscha, Manfred Hechinger, Rene Mayrhofer, Ekaterina Chtcherbina, Mar-
quart Franz, Marcos dos Santos Rocha, and Andreas Zeidler. Bridging the Gap
with P2P Patterns, 2008.

[Fra14] Fraunhofer Gesellschaft. Integrated Publication and Information Systems In-
stitute - Material Repository, Last checked: 2010/10/14. http://www.ipsi.
fraunhofer.de/ambiente/material/pictures/.

[G0̈9] Daniel Görlich. Laufzeit-Adaption von Benutzungsschnittstellen für Ambient-
Intelligence-Umgebungen mittels raumbasierter Benutzungsmodelle, PhD-Thesis,
volume 20 of Fortschritt-Berichte pak Mensch-Maschine-Interaktion. Techn.
Univ., Kaiserslautern, 2009.

[GHJV09] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns, Elements of reusable object-oriented software. Safari Tech Books Online.
Addison-Wesley, Boston, 37th print. edition, 2009.

[HI04] K. Henricksen and J. Indulska. Modelling and using imperfect context informa-
tion, Proceedings of the Second IEEE Annual Conference on Pervasive Comput-
ing and Communications Workshops, 2004.

[HIMB05] Karen Henricksen, Jadwiga Indulska, Ted McFadden, and Sasitharan Balasubra-
maniam. Middleware for Distributed Context-Aware Systems. In Robert Meers-
man and Zahir Tari, editors, On the Move to Meaningful Internet Systems 2005:
CoopIS, DOA, and ODBASE, volume 3760 of Lecture notes in computer science,
pages 846–863. Springer Berlin / Heidelberg, 2005.

http://www.gi-ev.de/no_cache/service/informatiklexikon/informatiklexikon-detailansicht/meldung/model-driven-architecture-117
http://www.gi-ev.de/no_cache/service/informatiklexikon/informatiklexikon-detailansicht/meldung/model-driven-architecture-117
http://www.gi-ev.de/no_cache/service/informatiklexikon/informatiklexikon-detailansicht/meldung/model-driven-architecture-117
http://eclipse.org/
http://www.teco.edu/tea/
http://www.ipsi.fraunhofer.de/ambiente/material/pictures/
http://www.ipsi.fraunhofer.de/ambiente/material/pictures/

Bibliography xxix

[HIR03] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Generating Con-
text Management Infrastructure from High-Level Context Models. In 4th Inter-
national Conference on Mobile Data Management (MDM) - Industrial Track,
21-24 January 2003, Melbourne, Australia, pages 1–6, 2003.

[HMHW08] Volker Haarslev, Ralf Möller, Kay Hidde, and Michael Wessel. Renamed Abox
and Concept Expression Reasoner, Last checked: 2010/09/08. http://www.sts.
tu-harburg.de/~r.f.moeller/racer/.

[HWM+03] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger,
Josef Altmann, and Werner Retschitzegger. Context-Awareness on Mobile De-
vices - the Hydrogen Approach. In Ralph H. Sprague, editor, Proceedings of
the 36th Annual Hawaii International Conference on System Sciences, volume 9,
pages 292a–292a. IEEE Computer Soc., Los Alamitos, Calif., 2003.

[IRRH03] Jadwiga Indulska, Ricky Robinson, Andry Rakotonirainy, and Karen Henricksen.
Experiences in Using CC/PP in Context-Aware Systems. In Ming-Syan Chen,
Panos Chrysanthis, Morris Sloman, and Arkady Zaslavsky, editors, Mobile Data
Management, volume 2574 of Lecture notes in computer science, pages 247–261.
Springer Berlin, Heidelberg, 2003.

[Jav22] Java-Homepage, Last checked: 2010/10/22. http://www.oracle.com/
technetwork/java/index.html.

[Jen08] Jena. A Semantic Web Framework for Java, Last checked: 2010/09/08. http:
//jena.sourceforge.net/.

[Kha09] Nadeem Khan. Identifikation und automatisierte Auswahl von Interaktions-
geräten mittels Near Field Communication in einem mobilen Bedienszenario im
industriellen Umfeld. Kaiserslautern, 2009.

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. Journal of the ACM, 42(4):741–843, 1995.

[KO04] Manasawee Kaenampornpan and Eamonn O’Neill. Modelling Context: An Ac-
tivity Theory Approach. In Panos Markopoulos, Berry Eggen, Emile Aarts, and
James L. Crowley, editors, Ambient Intelligence, volume 3295 of Lecture notes in
computer science, pages 367–374. Springer Berlin / Heidelberg, 2004.

[KVH+01] Lalana Kagal, Vlad Korolev, Harry Chen, Anupam Joshi, and Timothy Finin.
Centaurus: A Framework for Intelligent Services in a Mobile Environment. In
Makoto Takizawa, editor, Proceedings of the 21th International Conference on
Distributed Computing Systems Workshops, 16 - 19 April 2001, Mesa, Arizona,
pages 195–201. IEEE Computer Society, Los Alamitos, Calif., 2001.

[LC04] Kris Luyten and Karin Coninx. Dynamic User Interface Generation for Mo-
bile and Embedded Systems with Model-Based User Interface Development. PhD
Thesis, transnationale Universiteit Limburg, 2004.

http://www.sts.tu-harburg.de/~r.f.moeller/racer/
http://www.sts.tu-harburg.de/~r.f.moeller/racer/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://jena.sourceforge.net/
http://jena.sourceforge.net/

xxx Bibliography

[LHL01] Berners Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
pages 34–43, 2001.

[Lin22] Linuxnet.com. MUSCLE - Linux Smart Card Development, Last checked:
2010/10/22. http://www.linuxnet.com/middle.html.

[LVM+05] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon,
and Víctor López-Jaquero. USIXML: A Language Supporting Multi-path Devel-
opment of User Interfaces. In Rémi Bastide, Philippe Palanque, and Jörg Roth,
editors, Engineering Human Computer Interaction and Interactive Systems, vol-
ume 3425 of Lecture notes in computer science, pages 200–220. Springer-Verlag
GmbH, Berlin Heidelberg, 2005.

[Mas08] Oliver Maschino. A Strategy for Automated Generation of Graphical User In-
terfaces based on the Useware Markup Language in the Domain of Intelligent
Production Environments. PhD thesis, Technische Universität Kaiserslautern,
Kaiserslautern, 2008.

[MDH+03] Jennifer Mankoff, Anind K. Dey, Gary Hsieh, Julie Kientz, Scott Lederer, and
Morgan Ames. Heuristic evaluation of ambient displays. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 169–176.
ACM, Ft. Lauderdale, Florida, USA, 2003.

[Mer07] Merriam-Webster Inc. Merriam-Webster Online Dictionary, Last Checked:
2010/10/07. http://www.m-w.com.

[MG08] Gerrit Meixner and Daniel Görlich. Aufgabenmodellierung als Kernelement eines
nutzerzentrierten Entwicklungsprozesses für Bedienoberflächen. In Workshop
”Verhaltensmodellierung: Best Practices und neue Erkenntnisse”, Fachtagung
Modellierung. Berlin. o.A., 2008.

[MIF25] MIFARE.net. MIFARE 4k Product Homepage, Last checked: 2010/10/25. http:
//mifare.net/products/smartcardics/mifare_standard4k.asp.

[MJM09] Nazir A Malik, Muhammad Younus Javed, and Umar Mahmud. Estimating User
Preferences by Managing Contextual History in Context Aware Systems. Journal
of Software, 6(4):571–576, 2009.

[MUS07] MUSIC Project. MUSIC Project, Last Checked: 2010/10/07. http://www.
ist-music.eu/.

[OA97] Pinar Öztürk and Agnar Aamodt. Towards a Model of Context for Case-Based
Diagnostic Problem Solving. In Proceedings of the First International and In-
terdisciplinary Conference on Modeling and Using Context (CONTEXT-97), 4-6
February, 1997, Rio de Janeiro, Brazil, pages 198–208, 1997.

[Obj08] Object Management Group. Unified Modeling Language, Last checked:
2010/09/08. http://www.uml.org/.

http://www.linuxnet.com/middle.html
http://www.m-w.com
http://mifare.net/products/smartcardics/mifare_standard4k.asp
http://mifare.net/products/smartcardics/mifare_standard4k.asp
http://www.ist-music.eu/
http://www.ist-music.eu/
http://www.uml.org/

Bibliography xxxi

[OBS99] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In Proceedings of the
FREENIX track, 1999 USENIX annual technical conference, June 6 - 11, 1999,
Monterey, California, USA, pages 183–192, 1999.

[Ope08] Open Mobile Allicane (OMA). UAProf Specification, Last checked:
2010/09/08. http://www.openmobilealliance.org/tech/affiliates/wap/
wap-248-uaprof-20011020-a.pdf.

[ORM08] ORM Foundation. Object Role Modeling, Last checked: 2010/09/08. http:
//www.ormfoundation.org/.

[Pac22] PaceBlade Technology. Paceblade, Last checked: 2010/10/22. http://www.
paceblade.com/site/desktopdefault.aspx.

[PLV01] Costin Pribeanu, Quentin Limbourg, and Jean Vanderdonckt. Task Modelling for
Context-Sensitive User Interfaces. In Chris Johnson, editor, Interactive Systems:
Design, Specification, and Verification, volume 2220 of Lecture notes in computer
science, pages 49–68. Springer Berlin / Heidelberg, 2001.

[PMM97] Fabio Paterno’, Cristiano Mancini, and Silvia Meniconi. ConcurTaskTrees: A
Diagrammatic Notation for Specifying Task Models. In Steve Howard, editor,
Human-computer interaction, pages 362–369. Chapman & Hall, London, 1997.

[PRS+03] Thorsten Prante, Carsten Röcker, Norbert Streitz, Richard Stenzel, and Carsten
Magerkurth. Hello.Wall – Beyond Ambient Displays. In In Adjunct Proceedings
of Ubicomp, pages 277–278, 2003.

[PSR+04] Thorsten Prante, Richard Stenzel, Carsten Röcker, Norbert A. Streitz, and
Carsten Magerkurth. Ambient agoras: InfoRiver, SIAM, Hello.Wall. In CHI
’04 extended abstracts on Human factors in computing systems, pages 763–764.
ACM, Vienna, Austria, 2004.

[Pue97] A. R. Puerta. A model-based interface development environment, Software,
IEEE. Software, IEEE DOI - 10.1109/52.595902, 14(4):40–47, 1997.

[PvdBW+04] Davy Preuveneers, Jan van den Bergh, Dennis Wagelaar, Andy Georges, Pe-
ter Rigole, Tim Clerckx, Yolande Berbers, Karin Coninx, Viviane Jonckers, and
Koen de Bosschere. Towards an Extensible Context Ontology for Ambient In-
telligence. In Panos Markopoulos, editor, Ambient intelligence, volume 3295 of
Lecture notes in computer science, pages 148–159. Springer, Berlin, 2004.

[RAS08] Carlos Ramos, Juan Carlos Augusto, and Daniel Shapiro. Ambient Intelligence
- the Next Step for Artificial Intelligence, Intelligent Systems, IEEE. Intelligent
Systems, IEEE, 23(2):15–18, 2008.

[Reu03] Achim Reuther. useML - systematische Entwicklung von Maschinenbediensys-
temen mit XML, Univ., Diss.–Kaiserslautern, 2003., volume 8 of Fortschritt-
Berichte pak. Techn. Univ., Kaiserslautern, 2003.

http://www.openmobilealliance.org/tech/affiliates/wap/wap-248-uaprof-20011020-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-248-uaprof-20011020-a.pdf
http://www.ormfoundation.org/
http://www.ormfoundation.org/
http://www.paceblade.com/site/desktopdefault.aspx
http://www.paceblade.com/site/desktopdefault.aspx

xxxii Bibliography

[RVDA05] G. Riva, Francesco Vatalaro, F. Davide, and M. Alcaniz, editors. Ambient In-
telligence: The Evolution of Technology, Communication and Cognition Towards
the Future of Human-computer Interaction, The Evolution of Technology, Com-
munication and Cognition Towards the Future of Human-computer Interaction.
IOS Press, 2005.

[RWK+08] Roland Reichle, Michael Wagner, Mohammad Ullah Khan, Kurt Geihs, Jorge
Lorenzo, Massimo Valla, Cristina Fra, Nearchos Paspallis, and George A. Pa-
padopoulos. A comprehensive context modeling framework for pervasive com-
puting systems. In René Meier, editor, Distributed applications and interopera-
ble systems, volume 5053 of Lecture notes in computer science, pages 281–295.
Springer, Berlin, 2008.

[Rya08] Nick Ryan. ConteXtML, Last checked: 2010-09-08. http://www.cs.kent.ac.
uk/projects/mobicomp/fnc/ConteXtML.html.

[SAG+93] Bill N. Schilit, Norman Adams, Rich Gold, Michael M. Tso, and Roy Want. The
ParcTab Mobile Computing System, 1993.

[SAT+99] Albrecht Schmidt, Kofi Aidoo, Antti Takaluoma, Urpo Tuomela, Kristof van
Laerhoven, and Walter van de Velde. Advanced Interaction in Context. In Hans-
Werner Gellersen, editor, Handheld and ubiquitous computing, volume 1707 of
Lecture notes in computer science, pages 89–101. Springer, Berlin, 1999.

[SAW94] B. Schilit, N. Adams, and R. Want. Context-Aware Computing Applications.
In Proceedings of the First Workshop on Mobile Computing Systems and Ap-
plications (WMCSA), December 8-9, 1994, Santa Cruz, California, USA, pages
85–90, 1994.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-W Gellersen. There is more to con-
text than location. Computers & Graphics, 23(6):893–901, 1999.

[SDA98] D. Salber, A. K. Dey, and G. D. Abowd. Ubiquitous Computing: Defining an
HCI Research - Agenda for an Emerging Interaction Paradigm, 1998.

[SDA99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit:
aiding the development of context-enabled applications. In Marian H. Williams,
editor, The CHI is the limit, pages 434–441. ACM, New York, NY, 1999.

[SKD+10] M. Seissler, K. Breiner, P. Diebold, C. Wiehr, and Gerrit Meixner. SmartMote -
Ein HCI-Pattern-basiertes universelles Bediengerät für intelligente Produktion-
sumgebungen. In Proceedings of USEWARE 2010. USEWARE - Nutzergerechte
Gestaltung technischer Systeme (USEWARE-2010), October 13-14, Baden-
Baden, Germany. VDI Wissensforum, 2010.

[SLP04] Thomas Strang and Claudia Linnhoff-Popien. A Context Modeling Survey. In
Workshop on Advanced Context Modelling, Reasoning and Management, The
Sixth International Conference on Ubiquitous Computing (UbiComp), 2004, Not-
tingham ,England, 2004.

http://www.cs.kent.ac.uk/projects/mobicomp/fnc/ConteXtML.html
http://www.cs.kent.ac.uk/projects/mobicomp/fnc/ConteXtML.html

Bibliography xxxiii

[SLPF03] Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank. CoOL: A Con-
text Ontology Language to Enable Contextual Interoperability. In Jean-Bernard
Stefani, editor, Distributed applications and interoperable systems, volume 2893
of Lecture notes in computer science, pages 236–247. Springer, Berlin, 2003.

[SRP+03] Norbert Streitz, Carsten Röcker, Thorsten Prante, Richard Stenzel, and Daniel
van Alphen. Situated Interaction with Ambient Information: Facilitating Aware-
ness and Communication in Ubiquitous Work Environments. In International
Conference on Human-Computer Interaction (HCI International 2003), 2003.

[Sta08] Stanford Center for Biomedical Informatics Research. Protégé ontology editor,
Last checked: 2010/09/08. http://protege.stanford.edu/.

[Tec16] Technologie-Initiative SmartFactoryKL e.V. SmartFactory-KL, Last checked:
2010/10/16. http://www.smartfactory.de/.

[TLG07] Martin Tomitsch, Andreas Lehner, and Thomas Grechenig. Towards a Taxonomy
for Ambient Information Systems. In Proceedings of the Workshop for Ambient
In Systems at the 5 th International Conference on Pervasive Computing (PER-
VASIVE 2007, 2007.

[Tra09] Marcus Trapp. Generating user interfaces for ambient intelligence systems, In-
troducing client types as adaptation factor, Univ., Diss.–Kaiserslautern, 2008.,
volume 26 of PhD Theses in experimental software engineering. Fraunhofer IRB-
Verl., Stuttgart, 2009.

[Ubi22] Ubisense - Ubisense, Last checked: 2010/10/22. http://www.ubisense.net/
en/.

[Use19] Useware Forum, Last checked: 2010/10/19. http://www.uni-kl.de/pak/
useware/index_engl.html.

[WB95] Mark Weiser and John Seely Brown. Designing calm technology. PowerGrid
Journal, 1, 1995.

[Wei20] Mark Weiser. Ubiquitous Computing, Last checked: 2010/10/20. http://www.
ubiq.com/hypertext/weiser/UbiHome.html.

[Wei91] Mark Weiser. The computer for the 21st century. Scientific American, 265(3):66–
75, 1991.

[WFRS07] Maik Wurdel, Peter Forbrig, T. Radhakrishnan, and Daniel Sinnig. Patterns for
Task- and Dialog-Modeling. In Julie A. Jacko, editor, Interaction design and
usability, volume 4550 of Lecture notes in computer science, pages 1226–1235.
Springer, Berlin, 2007.

[WHFaG92] Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The active
badge location system. ACM Trans. Inf. Syst., 10(1):91–102, 1992.

http://protege.stanford.edu/
http://www.smartfactory.de/
http://www.ubisense.net/en/
http://www.ubisense.net/en/
http://www.uni-kl.de/pak/useware/index_engl.html
http://www.uni-kl.de/pak/useware/index_engl.html
http://www.ubiq.com/hypertext/weiser/UbiHome.html
http://www.ubiq.com/hypertext/weiser/UbiHome.html

xxxiv Bibliography

[Wor07] World Wide Web Consortium (W3C). Standard Generalized Markup Language
(SGML), Last Checked: 2010/09/07. http://www.w3.org/MarkUp/SGML/.

[Wor08a] World Wide Web Consortium (W3C). Composite Capabilities / Preference Pro-
files, Last checked: 2010/09/08. http://www.w3.org/Mobile/CCPP/.

[Wor08b] World Wide Web Consortium (W3C). Extensible Stylesheet Language Transfor-
mations, Last checked: 2010/09/08. http://www.w3.org/TR/xslt20/.

[Wor08c] World Wide Web Consortium (W3C). Resource Description Framework, Last
checked: 2010/09/08. http://www.w3.org/TR/rdf-primer/.

[Wor08d] World Wide Web Consortium (W3C). XML Path Language, Last checked:
2010/09/08. http://www.w3.org/TR/xpath20/.

[Wor08e] World Wide Web Consortium (W3C). XML Query, Last checked: 2010/09/08.
http://www.w3.org/XML/Query/.

[WZGP04] Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng Pung. Ontology
Based Context Modeling and Reasoning using OWL. In IEEE Computer Society,
editor, Proceedings of the Second IEEE Annual Conference on Pervasive Com-
puting and Communications Workshops. IEEE Computer Society, Los Alamitos,
Calif., 2004.

[Xer13] Xerox. PARCTab Picture Gallery, Last checked: 2010/10/13. http://nano.
xerox.com/parctab/pics.html.

[Z0̈9] Detlef Zühlke. SmartFactory - A Vision becomes Reality. In Keynote Papers of
the 13th IFAC Symposium on Information Control Problems in Manufacturing
(INCOM 09). IFAC Symposium on Information Control Problems in Manufac-
turing (INCOM-09), 13th, June 3-5, Moscow, Russian Federation. ICS / RAS,
2009.

http://www.w3.org/MarkUp/SGML/
http://www.w3.org/Mobile/CCPP/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/xpath20/
http://www.w3.org/XML/Query/
http://nano.xerox.com/parctab/pics.html
http://nano.xerox.com/parctab/pics.html

	Abstract
	Contents
	Introduction
	Application Domain
	Ambient Intelligence in Production Environments
	SmartFactoryKL
	Model-based User Interface Development
	ConcurTaskTrees
	Room-Based Use Model

	SmartMote

	Goals and Course of Action
	Context of Use
	Definitions
	Context in Natural Language
	Context in Ambient Intelligent Environments
	Context-awareness

	Examples of Context-aware Applications
	Working environment
	Memory Assistance
	Ambient Information Systems

	Classification of Context
	Primary and Secondary Context
	High and Low Context Types
	Additional classifications

	Summary

	Context Models and Frameworks
	Modeling Approaches
	Key-Value
	Markup Scheme
	Graphical
	Object-oriented
	Logic-based
	Ontologies

	Location models
	Frameworks
	Context Toolkit
	Hydrogen
	JCAF

	Other Context Frameworks and Middleware
	Summary

	Context Model
	Requirements
	Model Details and XML Structure
	Points
	Object Positions and Position History
	Objects
	Places and Zones

	A Context Engine for the SmartMote
	Setup
	Software Requirements
	Context Model
	Reasoner

	Architectural Overview
	Components
	Model
	Sensors
	Reasoner
	Simulation and Control GUI

	Feasibility Demonstration
	Conclusion and Future Work
	Appendix
	Context Model: XML Schema
	Example Ubisense XML File
	Complete List of Packages and Classes

	List of Figures
	List of Tables
	List of Listings
	Bibliography

