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Abstract

In a dynamic network, the quickest path problem asks for a path
minimizing the time needed to send a given amount of flow from source
to sink along this path. In practical settings, for example in evacuation
or transportation planning, the reliability of network arcs depends on
the specific scenario of interest. In this circumstance, the question of
finding a quickest path among all those having at least a desired path
reliability arises. In this article, this reliable quickest path problem is
solved by transforming it to the restricted quickest path problem. In
the latter, each arc is associated a nonnegative cost value and the
goal is to find a quickest path among those not exceeding a predefined
budget with respect to the overall (additive) cost value. For both,
the restricted and reliable quickest path problem, pseudopolynomial
exact algorithms and fully polynomial-time approximation schemes are
proposed.

1 Introduction

In dynamic networks, flow units take time to traverse an arc and, there,
the quickest path problem generalizes the shortest path problem. Given an
amount of flow U and two nodes s and t, the goal of the quickest path
problem is to find an s-t-path with minimum transmission time, that is the
total travel time from s to t of this path plus the number of repetitions
to send all U flow units along this path (cf. Chen and Chin (1990)). The
quickest path problem appears in communication networks, transportation
networks, and evacuation modeling (see, among others, (Cĺımaco et al., 2007;
Hamacher and Tjandra, 2002; Moore, 1976)). Polynomial time solution
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algorithms were established for this problem by reducing it to the shortest
path problem in a modified network (Chen and Chin, 1990; Rosen et al.,
1991).

Numerous variants and extensions of the quickest path problem have
been considered, including constrained quickest path problems (Chen, 1994),
robust quickest path problems (Ruzika and Thiemann, 2010), and extensions
of the quickest path problem to a stochastic-flow network (Lin, 2003).

In practice, operability of arcs in the network may be subject to their
reliability, i.e. the probability not to fail. To have a calculable probability of a
path’s functioning, it is of interest to comprise path reliability in the quickest
path problem. Quickest paths with reliabilities have been considered by
Xue (1998) and Bang et al. (2003). There, a most reliable quickest path
and a quickest most reliable path is sought which is to find a quickest path
among the most reliable ones in the first case and a most reliable among
the quickest paths in the latter case. In contrast, the reliable quickest path
problem considered in this article at hand is understood as finding a quickest
path among all paths with at least a desired path reliability predefined
by a decision maker. This problem generalizes the most reliable quickest
path problem, since it does not require the path to have the best possible
reliability.

If usage of an arc is associated with costs and a budget that is not to be
exceeded is given, the restricted quickest path problem is of interest. This
problem seeks for a quickest path among those paths which obey the budget
constraint. It is a generalization of the restricted shortest path problem
which has attracted great attention in the literature (Hassin, 1992; Lorenz
and Raz, 2001). Bang et al. (2004) considered the related Minimum Cost
Quickest Path Problem with Multiple Delay Bounds where a minimum cost
path among those paths not exceeding a given transmission time has to be
found.

This article is subsequently organized as follows. The next section intro-
duces the quickest path problem, defines its reliable and restricted variants
and depicts the equivalence of the two problems. In Section 3, the restricted
quickest path problem is solved with a pseudopolynomial algorithm and
approximated polynomially. Identical results are deduced for the reliable
quickest path problem. The last section gives a conclusion of the article.

2 Problem Definition

A dynamic network G = (N,A) with node set N and arc set A is equipped
with two kinds of parameters: capacities uij ∈ Z+ and travel times τij ∈ Z+

0

for all (i, j) ∈ A. The former limits the number of flow units that can
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enter arc (i, j) in a single time step, the latter is the time needed for a flow
unit to traverse arc (i, j). Let s, t ∈ N denote the source and sink node,
respectively. The number of nodes and arcs is denoted n and m, i.e., it is
n = |N | and m = |A|. Given an initial amount of flow U ∈ Z+, the Quickest
Path Problem seeks for an s-t-path P with minimum transmission time
σ(P ) := τ(P )+d U

u(P )e where τ(P ) :=
∑

(i,j)∈P τij and u(P ) := min(i,j)∈P uij
are the travel time and capacity of path P , respectively. Let P refer to the
set of all s-t-paths in G.

Assume that for each arc (i, j) ∈ A a reliability rij ∈ (0, 1] is given,
which describes the probability that this arc is operational. For a path
P ∈ P,

∏
(i,j)∈P rij is called the path reliability and expresses the probability

of a path’s functioning. Let R ∈ (0, 1] denote the desired minimum path
reliability. The Reliable Quickest Path Problem asks for the quickest path
that has a path reliability of at least R:

min σ(P )

s. t. P ∈ P∏
(i,j)∈P

rij ≥ R. (1)

Note that the constraint (1) is equivalent to
∑

(i,j)∈P ln(1/rij) ≤ ln(1/R).
Since x 7→ ln(1/x) is a bijective mapping from (0, 1] to [0,∞), the reliable
quickest path problem is equivalent to the Restricted Quickest Path Problem,
where cost values cij ∈ R+

0 for all arcs (i, j) ∈ A and a budget C ∈ R+
0 are

given and the goal is to find a quickest s-t-path with cost not exceeding the
budget C:

min σ(P )

s. t. P ∈ P

c(P ) :=
∑

(i,j)∈P

cij ≤ C.

Solutions of the restricted and reliable quickest path problem are referred
to as restricted quickest paths and reliable quickest paths, respectively.

Given ε > 0, an s-t-path Q is a (1 + ε)-approximation of the restricted
quickest path P ?, if c(Q) ≤ C and σ(Q) ≤ (1 + ε)σ(P ?). Accordingly, Q
is a (1 + ε)-approximation of the reliable quickest path P̃ , if

∏
(i,j)∈Q rij ≥

R and σ(Q) ≤ (1 + ε)σ(P̃ ). A minimization problem is said to admit a
fully polynomial-time approximation scheme (FPTAS), if there is a (1 + ε)-
approximation algorithm with running time polynomial in the input size
and in 1/ε for all instances of the problem (cf. (Papadimitriou and Steiglitz,
1982)).
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3 Algorithms

The restricted quickest path problem generalizes the restricted shortest path
problem: find an s-t-path P with minimum travel time τ(P ) in the set of all
paths with costs c(P ) at most C (Hassin, 1992). A restricted quickest path
for U = 1 obviously defines a restricted shortest path. Since the restricted
shortest path problem is known to be NP-hard (Garey and Johnson, 1979),
this applies to the restricted quickest path problem, too. For the restricted
shortest path problem on directed acyclic networks, a pseudopolynomial al-
gorithm has been developed by Hassin (1992) who also proposed an FPTAS.
Lorenz and Raz (2001) suggested an improved FPTAS for general directed

networks with running time O(mn2

ε log n
ε ).

These algorithms for the restricted shortest path problem require the
budget C to be a nonnegative integer. The integer restriction can be avoided
by adding a super source S to N and an artificial arc (S, s) to A with τSs = 0,
uSs = ∞ and cost cSs = C − bCc. Then, a restricted shortest S-t-path
with budget dCe refers to a solution of the corresponding restricted s-t-path
problem with budget C.

Hassin’s exact algorithms for the restricted shortest path problem on
directed acyclic networks are only described for travel times and costs both
being integral. However, examining Algorithm B in (Hassin, 1992) reveals
that this algorithm only operates on the integer valued travel times. Thus,
the arc costs are not required to be integral and, hence, the algorithm is
capable of computing exact solutions for restricted shortest path problems
as considered in this article. The algorithm has computational complexity
O(mB) where B is an upper bound on the optimal value of the restricted
shortest path problem (e.g. the sum of all arc travel times). The general-
ization of this algorithm for arbitrary directed networks runs in O(nmB)
(Lorenz and Raz, 2001).

For k ≥ 0 let G(k) be the network with arc set A(k) := {(i, j) ∈ A : uij ≥
k}. For a restricted quickest path problem, the corresponding restricted
shortest path problem in G(k) for k ≥ 0 is defined on the same cost values
and budget constraint.

Lemma 1. Let Q be a solution of the restricted quickest path problem. Then,
Q solves the corresponding restricted shortest path problem in G(u(Q)).

Proof. Let P be a restricted shortest path in G(u(Q)). Then, τ(P ) ≤ τ(Q),
u(P ) ≥ u(Q), c(P ) ≤ C, and c(Q) ≤ C. Since Q is a restricted quickest
path, it is

τ(Q) +

⌈
U

u(Q)

⌉
≤ τ(P ) +

⌈
U

u(P )

⌉
.
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It follows that τ(Q) ≤ τ(P ) and, hence, Q is a restricted shortest path in
G(u(Q)).

Theorem 1. Let u1, . . . , ul be the distinct capacities in G. For each uj,
j = 1, . . . , l, let Pj be a restricted shortest path in G(uj). Let

Pk ∈ argmin
j=1,...,l

σ(Pj).

Then, Pk solves the restricted quickest path problem.

Proof. Let Q be a solution of the restricted quickest path problem. Let
uj0 = u(Q) and consider the network G(uj0). According to Lemma 1, Q
is a restricted shortest path in G(uj0). Therefore, it is τ(Pj0) = τ(Q) and
u(Pj0) ≥ u(Q). Thus,

σ(Pk) ≤ τ(Pj0) +

⌈
U

u(Pj0)

⌉
≤ τ(Q) +

⌈
U

u(Q)

⌉
and, hence, Pk is a restricted quickest path.

Corollary 1. The restricted quickest path problem can be solved in O(nm2B).

Proof. A restricted quickest path can be found by solving l restricted short-
est path problems, see Theorem 1. Since l ≤ m, the computational com-
plexity follows directly from that of the restricted shortest path problem.

For ε > 0, a (1 + ε)-approximation of the restricted shortest path is a
path obeying the budget constraints and having a travel time within a factor
(1 + ε) of the optimal travel time.

Theorem 2. Let ε > 0 and let u1, . . . , ul be the distinct capacities in G.
For each uj, j = 1, . . . , l let Pj be a (1 + ε)-approximation of the restricted
shortest path in G(uj). Let

Pk ∈ argmin
j=1,...,l

σ(Pj).

Then, Pk is a (1 + ε) approximation of the restricted quickest path.

Proof. Let Q be a solution of the restricted quickest path problem and let
uj0 = u(Q). Then, Q is a restricted shortest path in G(uj0) due to Lemma
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1 and from definition it is τ(Pj0) ≤ (1 + ε)τ(Q). With u(Pj0) ≥ u(Q) it
follows that

τ(Pj0) +

⌈
U

u(Pj0)

⌉
≤ (1 + ε)τ(Q) +

⌈
U

u(Q)

⌉
≤ (1 + ε)

(
τ(Q) +

⌈
U

u(Q)

⌉)
.

Corollary 2. The restricted quickest path problem admits an FPTAS run-
ning in O(m

2n2

ε log n
ε ).

Proof. Using Theorem 2, at most m (1 + ε)-approximations of restricted

shortest paths have to be computed, each of which takes O(mn2

ε log n
ε )

(Lorenz and Raz, 2001).

As shown in Section 2, the reliable and restricted quickest path prob-
lems are equivalent. Thus, the reliable quickest path problem is also NP-
hard. Further, the results on pseudopolynomial and approximation algo-
rithms arise from the corresponding results for the restricted quickest path
problem.

Corollary 3. The reliable quickest path problem can be solved in O(nm2B).
Moreover, the reliable quickest path problem admits an FPTAS running in
O(m

2n2

ε log n
ε ).

4 Conclusion

Two variants of the quickest path problem are investigated. The reliable
quickest path problem is of interest in dynamic networks where arcs may
have a probability of failure. The goal of this problem is to find a quick-
est path among those having at least a desired path reliability predefined
by a decision maker. With a parameter transformation, it is shown that
the reliable quickest path problem is equivalent to the restricted quickest
path problem, where cost values are given for all arcs and the goal is to
find a quickest path among those not exceeding a predefined budget. A
pseudopolynomial exact algorithm and an FPTAS are proposed for both
problems. Since the problems are NP-hard, the presented algorithms are
the best achievable.
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