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Abstract

Modern science utilizes advanced measurement and simulation techniques to an-
alyze phenomena from fields such as medicine, physics, or mechanics. The data
produced by application of these techniques takes the form of multi-dimensional
functions or fields, which have to be processed in order to provide meaningful
parts of the data to domain experts. Definition and implementation of such pro-
cessing techniques with the goal to produce visual representations of portions of
the data are topic of research in scientific visualization or multi-field visualization
in the case of multiple fields.

In this thesis, we contribute novel feature extraction and visualization tech-
niques that are able to convey data from multiple fields created by scientific
simulations or measurements. Furthermore, our scalar-, vector-, and tensor field
processing techniques contribute to scattered field processing in general and in-
troduce novel ways of analyzing and processing tensorial quantities such as strain
and displacement in flow fields, providing insights into field topology.

We introduce novel mesh-free extraction techniques for visualization of complex-
valued scalar fields in acoustics that aid in understanding wave topology in low
frequency sound simulations. The resulting structures represent regions with
locally minimal sound amplitude and convey wave node evolution and sound
cancellation in time-varying sound pressure fields, which is considered an impor-
tant feature in acoustics design.

Furthermore, methods for flow field feature extraction are presented that facil-
itate analysis of velocity and strain field properties by visualizing deformation of
infinitesimal Lagrangian particles and macroscopic deformation of surfaces and
volumes in flow. The resulting adaptive manifolds are used to perform flow field
segmentation which supports multi-field visualization by selective visualization
of scalar flow quantities.

The effects of continuum displacement in scattered moment tensor fields can be
studied by a novel method for multi-field visualization presented in this thesis.
The visualization method demonstrates the benefit of clustering and separate
views for the visualization of multiple fields.



Zusammenfassung

Wissenschaftliche Messungen und Simulationen erzeugen Daten, mit deren Hilfe
komplexe physikalische Zusammenhänge und Phänomene modelliert und analys-
iert werden können. Die hierdurch enstandene Menge an Felddaten kann ohne
Abstraktions- und Aufbereitungsmaßnahmen nur selten direkt interpretiert wer-
den. Ziel der Scientific Visualization ist es, eine hinreichende Abstraktionsmittel
durch die Definition und Extraktion von aussagekräftigen Datenmerkmalen zur
Verfügung zu stellen und diese angemessen visuell darzustellen. Visualisierung
für multiple Felder wird als Multi-Field Visualization bezeichnet.

In dieser Dissertation entwickeln wir neue Techniken zur Merkmalsextraktion
und Visualisierung mit Anwendung im Kontext der Multi-Field Visualisierung.
Zwar sind die vorgestellten Techniken in der Regel unabhängig von der vorhande-
nen Nachbarschaftsstruktur der Daten, dennoch betonen wir die Anwendbarkeit
der entwickelten Methoden in gitterfreien Datensätzen. Eine weitere mathema-
tische Gemeinsamkeit der Methoden besteht in der neuartigen Analyse und Ein-
bindung von Deformationsdaten in den Extraktions- und Visualisierungprozess.

Wir entwerfen eine neue gitterfreie Methode zur Extraktion generalisierter Ex-
trema in dreidimensionalen komplexwertigen Skalarfeldern. Diese Skalarfelder
sind das Resultat von niedrigfrequenten Akustiksimulationen, in denen Topolo-
gie und extremale Merkmale in Wellenstrukturen von großer Bedeutung sind.
Unsere Methode erlaubt es, Wellenknoten und Minimalamplituden in stehenden
und bewegten Wellen in komplexwertigen Schalldruckfeldern zu extrahieren und
visualisieren, was von zentralem Interesse im Gebiet des Akustikdesigns ist.

Desweiteren untersuchen wir Deformationen in Vektorfeldern. Die von uns
präsentierten Techniken zur Einbindung dieser Deformationstensoren in die in-
tegrale Vektorfeldvisualierung erlauben die Visualisierung vektorieller und ten-
sorieller Vektorfeldgrößen und liefern Informationen über Divergenz, Konvergenz
und Mischverhalten der untersuchten Strömungen. Eine vorgestellte Erweiterung
dieses Konzepts auf volumetrische Datensätze aus der Geophysik ermöglicht die
Segmentierung und selektive Visualisierung von Strömungsvorgängen in der Erd-
kruste. Zusätzlich stellen wir neue Ansätze zur adaptiven Generierung und Visu-
alisierung makroskopischer Deformationen von Gebiets- und Flächenstrukturen
vor.

Als verwandtes physikalisches Verhalten analysieren wir Verschiebungsdaten
in der Form von Momententensoren. Zur aussagekräftigen Darstellung der Mes-
sungsdaten entwickeln wir Multi-Field Visualiserungtechniken, die auf der Ver-
wendung gekoppelter Datenansichten basieren und die interaktive Analysen im
dreidimensionalen und projektiven Raum ermöglichen.
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1. Introduction

Scientific simulation and measurement techniques produce increasing amounts of
numerical data every day. To put a meaning to these sets of numbers and provide
domain experts with an intuitive visual understanding of their data sets is the
central motivation for the discipline of scientific visualization.
Data obtained from modern simulation and measurement techniques includes

large and complex data sets, covering diverse areas such as Computational Fluid
Dynamics (CFD) in mathematics and physics, (DT)-MRI data in medicine, and
stress or moment data in geology. Output of common scientific simulations is
usually not limited to a single, distinct data type, but consists of a number of
mappings into spaces of different dimensions. Examples of such fields are scalar
fields representing temperature or pressure and vector fields describing the ve-
locity of fluids. Additional related higher or lower dimensional fields may be
derived by mathematical transformations or combinations of the simulation out-
put. Thus, common data dimensions reach from single scalar valued fields over
n-dimensional vector fields to high-order tensor fields and combinations thereof
and confront experts with the problem of interpreting data of increasing reso-
lution, size and number. The challenge of visualizing data from multiple fields
comes from the need to present experts with a meaningful portion of this over-
whelming amount of data. One way to meet these requirements is the definition
of new features and extraction methods for different types of fields and domains,
especially in the context of new measurement and simulation techniques that
sample the data domain irregularly and in a mesh-free manner.
Central goal of feature definitions and new visualization methods is to compute

visual representations that allow an in-depth analysis of the simulation output.
As simulation processes often yield a black box behavior, new visualization tech-
niques can be used for a thorough analysis of underlying processes and parameter
identification.
Depending on the questions asked by domain experts, different portions of

a field’s data are relevant to the answer. Therefore, feature definitions can be
viewed as mathematical answers to abstract information descriptions. An exam-
ple of an interesting property in the context of vector field visualization is the
amount and quality of mixing performed by the underlying flow. Appropriate vec-
tor field features providing an insight into this property try to visually separate
distinct flow regions into regions of homogeneous flow, leading to the challenge of
constructing separation geometry or other visual metaphors that are both reason-
ably fast to compute and accurate in their representation of the analyzed mixing
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property. A common way to balance between accuracy and computation speed
is the use of spatially adaptive structures that dynamically adjust resolution or
structural complexity based on the local feature size or desired reconstruction
quality. This notion of adaptivity is especially important in irregularly sampled
data sets or scattered point sets in general, where local variation in sample den-
sity can be large. Important loci in scalar fields include regions where data values
are equal or locally extreme, whereas tensor field analysis is often concerned with
the extraction of degenerate manifolds. An important observation about scalar,
vector and tensor fields is the ability to gain information about these high order
fields by reducing them to a characteristic lower order representation and vice
versa. Therefore, not only the extraction of features in one field type is desired,
but the benefits to the analysis of other field types and accompanying feature
analogies are of great significance to visualization of multiple fields.

State-of-the-art feature extraction techniques are mostly concerned with regu-
larly sampled data or fields with a predefined neighborhood relationship between
adjacent sample points. These data sets leave room for new adaptive feature
extraction and reconstruction techniques that bear the possibility to produce re-
sults in manually or automatically defined levels of detail, as no neighborhood
size is pre-specified. Furthermore, analysis of related fields and feature definitions
is a promising topic in the area of multi-field visualization, as it not only allows
analysis of independent or related fields but facilitates the understanding of fields
by incorporating derived quantities into the visualization process.

In this dissertation we make the following contributions: We facilitate the anal-
ysis of three-dimensional wave node structures in simulated acoustics by extrac-
tion of minimum structures in complex-valued scalar fields [OMD+] in Chapter 4.
Our method generates adaptive (non-manifold) meshes by a new grid-less surface
growing technique, based on analysis of the Hessian matrix of the amplitude-field.
The developed method is applied to low frequency sound simulations and allows
(interactive) and time-varying visualization of wave node structures in three-
dimensional space. Results show amplitude and phase fields visualized as color
coded surface structures in real-world and synthetic data sets, demonstrating the
usefulness of visualization of pressure minima for acoustics engineering.

The importance of tensorial measures in fields, that is indicated in Chapter 4
is further emphasized by our work on strain in flow fields [OHBKH09b, OBH+]
in Chapter 5, where we develop methods to compute and visualize flow induced
strain along integral flow features. The resulting concepts enhance integral flow
visualization techniques by incorporating a neighborhood-aware measure into the
extraction and visualization process. Further, we devise techniques for strain
visualization in geophysical data sets. Our numerical results combining flow and
strain information show how strain measures in flow help understand mixing and
faulting properties of various flow simulation data sets.
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Challenges in integral flow field visualization as presented in Chapter 5 include
the extraction of integral flow geometry that samples the underlying flow field in
a sufficiently dense and reliable manner. To overcome limitations of static inte-
gral flow geometry, we introduce novel adaptive integral flow feature extraction
algorithms that are designed to work in scattered two- and three-dimensional
data sets [OHBKH09b, OHBKH09a] in Chapter 6. A benefit of the resulting
feature geometry is its use as segmentation geometry for multi-field visualization
as pointed out in the results section along with other advantages of our adaptive
extraction techniques.
We enhance state-of-the-art visualization techniques for moment tensor anal-

ysis and visualization [OBHHB11] in Chapter 7. The analyzed tensors contain
slip information related to shear strain that can be observed in flow fields. We
propose tensor clustering and visualization techniques that aid domain experts
in understanding the complex relationships between individual tensors in a scat-
tered data set. The presented results combine orientation based visualization and
tensor glyph display and facilitate interactive exploration and analysis of tensor
clusters.

In summary, the scientific contributions of this thesis are organized as follows:
Chapter 2 provides an background information on feature-based scientific visu-
alization of scalar-, vector-, and tensor fields from an application point-of-view.
Following this general introduction into the state-of-the-art, Chapter 3 defines
the necessary mathematical concepts, properties, and methods that are relevant
to the scope of this work and are used frequently throughout this thesis. Ordered
by increasing dimension of the governing field, Chapters 4 (scalar fields), 5,6 (flow
fields), and 7 (tensor fields) develop our novel methods by introducing specific
related work, methods and algorithms as well as results. This thesis is concluded
in Chapter 8. We give details about the scattered data approximation techniques
and voxelization methods used throughout this thesis in Appendix A and B.





2. Scientific Visualization

Scientific Visualization is a discipline that aims at creating insightful visual
representations of a given ”set of numbers” obtained from scientific measure-
ments or simulations. In contrast, visualization of meta-data or otherwise highly
abstract/non-spatial data is commonly termed Information Visualization.

The focus of this thesis lies almost exclusively on scientific visualization and the
branch of feature-based visualization in particular. Feature-Based Visualization
methods have the goal to create visual abstractions that convey one or more
important properties of the given data as identified by domain experts and stands
in contrast to direct visualization techniques that refrain from complex processing
of the field itself and visualize local properties of the data directly.

Given an abstract question (”Where are discontinuities in the data set?”) or
mathematical feature definition (”Where do first derivatives vanish?”), creating
an insightful feature-based visualization means to transform this definition into a
valid mathematical context, define feature extraction and processing techniques,
and finally produce a suitable visual representation of these meaningful parts
of the data set. In this work we therefore regard the visualization process as a
three-step pipeline as shown in Figure 2.1 and detailed in the following.

Figure 2.1.: Three-step pipeline of feature-based visualization and possible input
types.

1. Feature Definition: Given an abstract feature definition or question, this
step identifies mathematical properties and provides the necessary math-
ematical feature definition in order for the extraction process to be well-
defined. In general, the act of defining a feature corresponds to an informa-
tion reduction and densification step that serves to highlight contextually
important parts of the data set while hiding redundant information.
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2. Extraction: The concrete representation of the feature corresponds to the
solution of the mathematical description given in step one. The feature
extraction step is concerned with the definition of analytic or numerical
methods that allow explicit construction of a (geometric) feature represen-
tation.

3. Visualization: This step provides the user with an insightful visual depic-
tion of the (geometric) feature representation and is concerned with avoid-
ing ambiguities or occlusion and solves general problems related to human
perception.

Depending on the form of the given input, i.e. whether an initial mathematical
feature definition or representation is available a priori, the focus of the develop-
ment of a concrete visualization technique shifts substantially. As implied by the
role of domain knowledge in the abstract feature definition process, features are
highly application-specific. However, over the years of visualization research, a
set of feature types has proven to be especially helpful in answering a variety of
application questions.
Before giving an overview of these feature definitions for scalar-, vector-, and

tensor fields in the following sections, we first provide an introduction to the
concept of topology and topological features. We then present the relevant state-
of-the-art visualization techniques and concepts, and motivate important feature
and topology definitions for scalar-, vector- and tensor fields. These sections aim
at providing a high-level description of field visualization with focus on applica-
tion specific relevance. Detailed treatment of related work and feature definitions
are given in Chapter 4 and following.

2.1. Geometry and Topology

A mathematical concept with major impact on feature definitions in visualization
is given by the field of topology. Geometry and Topology are closely related
concepts in mathematics. While geometry is concerned with concrete properties
of space such as the length, shape, size and location of objects, topology as an
abstraction of classic geometry focuses on certain relative properties of space that
are invariant under transformations such as scaling and deformation. A simple
example of a question that can be answered using topological considerations and
that is independent of concrete shapes or lengths is the question if and how
things are ”connected”[RS05]. Therefore, topological features are often regarded
as providing an abstract view of the connectivity or ”adjacency” of space. While
mathematics defines topology on arbitrary sets, we limit the notion of topology
to concrete geometric entities in this thesis.
Similarity or equivalence in classic geometry is usually defined by the use of

element-based distance measures. Objects are regarded as similar if their differ-
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ence in shape with respect to a pre-defined metric falls below a certain threshold.
The notion of equivalence with respect to topology requires fundamentally dif-
ferent concepts and leads to the definition of topological spaces and homeomor-
phisms: In the case of this thesis, it is sufficient to note that euclidean space Rn,
as all metric spaces, is a topological space. For abstract definitions of topological
and metric spaces we refer to the literature [RS05]. Two topological spaces X ,
Y are topologically equivalent, if there exists a continuous one-to-one mapping
f : X → Y with continuous inverse f−1. Such a function is called a homeomor-
phism, and X ,Y are homeomorphic if such f exists. With this definition, we can
safely answer questions about similarity in object connectivity and distinguish
between pure geometry and topology of an object, as seen in Figure 2.2. Topo-
logical features in fields are features, that give an impression of connectivity in
the field and remain structurally stable for small perturbations of the field.

f
f

Figure 2.2.: Left: Two shapes that are topologically equivalent despite showing
dissimilar geometry. Right: Two topologically inequivalent shapes
that might be considered similar with respect to geometry.

Topology definitions on a given space can be used to perform simplifications
of the domain by identification of topologically relevant features and connected
components. Thus, data reduction and densification of visual information of com-
plex structures is achieved by limiting the visual representation to the topological
skeleton described by these connected components. As these topological features
and their graphs represent an important area of feature-based visualization, the
following sections provide details about general features as well as field topology
analysis.

2.2. Field Visualization

Some areas of scientific visualization are interested in depicting direct spatial
properties of the obtained data set such as shape and orientation, while visual-
ization of fields is mainly concerned with analytical, topological and numerical
properties of the represented function. For this reason, visualization of fields
is closely related to the area of mathematical analysis, as emphasized by the
mathematical definitions and concepts given in Chapter 3.
Goal of the following sections is to provide an abstract overview of the state-

of-the-art in related scientific field visualization techniques and to establish the
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relevant high-level scientific context of this thesis. In the following we differentiate
fields according to the dimension of their output. Each section gives a brief insight
into application areas of the respective field, (topological) feature motivation,
and visualization techniques. A more technical definition of the field and feature
properties is given in Chapter 3.

2.2.1. Scalar Fields

Scalar fields are the lowest dimensional form of general tensor fields, holding one
real or complex number per data point. In two-dimensional space, regular scalar
fields may be interpreted as (discrete) gray-scale images or regular height fields,
as seen in Figure 2.3. Consequently, the area of scalar field visualization is closely
related to the field of image processing [Ban08].

Figure 2.3.: Scalar field shown as gray-scale image and height-field.

2.2.1.1. Application Areas

Scientific data is usually produced either by real-world measurements or (numer-
ical) simulations, or is of purely synthetic nature. In the following, we present
application areas whose scalar-valued output has a strong impact on the visual-
ization community and are relevant to the remainder of this thesis.
A prominent source of scalar fields from real-world measurements are imaging

techniques in areas such as medicine with its Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI) [UH91, LL00] scanners which generate (vol-
umetric) density fields of the scanned subject. While the slices of the resulting
scalar fields representing individual two-dimensional scans can be viewed indi-
vidually with standard image viewers and parameters of medical scanners can be
changed to highlight different features of the scanned object, the need for auto-
matic or assisted detection of (three-dimensional) anomalies calls for advanced
feature extraction and visualization techniques.
While scalar fields are by-products of a wide range of simulation techniques

[Bat67], several physics simulations focus especially on scalar-valued output such
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as temperature and field strength. The particular class of sound simulations
[Sab22] is of special interest for this thesis, as seen in Chapter 4. General acoustics
simulations are concerned with the imitation of wave behavior in matter. The
sub-field of sound simulations concentrates on wave properties in gaseous matter
and implementations of these simulations serve as prediction tools for acoustics
engineering and design.

Given a specific room geometry, the central challenge of room acoustics simu-
lations is the construction of an impulse response filter for each pair of speaker
and listener positions. To fully describe the impulse response of a room, these
filters have to be reconstructed for a range of frequencies, as different materials
present in the room have different sound absorption and reflection properties. In
the course of these computations, a three-dimensional complex valued scalar field
is produced that keeps sound amplitude and phase values for a given input fre-
quency at densely sampled listener positions [Dei08]. Prominent features of these
output fields are of interest for acoustics engineering, as they allow parameter
optimization during the design process of acoustic environments.

2.2.1.2. Features of Scalar Fields

In medical applications, feature definitions generally target at the detection of
anomalies such as fractures or tumors [Ban08]. In practice, such features can
be found by performing a manual search for highlights, edges or discontinuities
in direct two-dimensional visualizations of slices of CT or MRI scans. For the
processing of volumes represented as stacks of medical scans, manual inspec-
tion however requires cumbersome slicing or region-of-interest selection to avoid
occlusion. If the feature can be described mathematically, this process can be
supported or automated by feature based visualization.

While discontinuities are of great interest in simulation data processing and
simulation verification as well, questions from domain experts often regard ana-
lytic and numerical properties or the general structure and topology of the field
[Ban08].

Fortunately analysis of (one-dimensional) scalar fields is a mathematically
well-known topic and has been studied extensively for centuries. Classic one-
dimensional function analysis yields a number of mathematical feature definitions
(see Figure 2.4), including features such as:

1. (local) extrema/critical points

2. plateaus

3. inflection points

4. discontinuities
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These definitions generalize to higher-dimensional scalar fields and can be used
to answer a broad field of application questions. In medicine, discontinuities in
the density field can indicate broken bones, highlights may imply tumors, and so
on [Ban08].

a b c d

f(x)

x

Figure 2.4.: One-dimensional scalar-valued function with inner maximum (a),
minimum (c), inflection point (b) and discontinuous derivative (d).

In addition to these features, higher-dimensional scalar field analysis requires
features that allow contouring or shape recognition. Typical feature definitions
for scalar field contouring highlight regions of constant function value, so called
level sets L (or isocontours/isosurfaces)

Lc = {x ∈ R
n|f(x) = c}, (2.1)

interval regions I
Iab = {x ∈ R

n|a < f(x) < b}, (2.2)

or locations that correspond to a certain behavior of derivatives:

Gab = {x ∈ R
n|a < ‖∇f‖ < b}. (2.3)

These outlines can be used for automatic detection of bone shapes, as shown
in Figure 2.5.

Figure 2.5.: X-Ray image of a broken bone. Right: Isocontour represents leg
outline, discontinuity shows bone fracture.

If a scalar field is interpreted as height-field, an interesting question is the shape
and location of valleys or height-ridges [Ebe96] which is studied in greater detail
in Chapter 4.
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Other interesting features of scalar fields may be defined on derived fields, such
as the gradient field. Features in these fields are detailed in the respective sections
of this thesis.

2.2.1.3. Scalar Field Topology

In the following, we assume that the scalar field is a Morse Function, meaning
that all critical points are true point-like features and non-degenerate. With
this assumption, topological features of a scalar field can be defined as locations
where the topology of adjacent level-sets changes for continuous variation of the
function value. The resulting topological skeleton is captured by Morse Theory
[Mil63], which allows decomposition of the scalar field by identification of regions
of influence of different extrema. This intuitive description of scalar field topol-
ogy is obtained by the observation of merging behavior of level-set contours on
terrain. If one continuously rises a virtual ”water-level” (function value) in a
two-dimensional height-field and tracks individual level-set contours, the three
following topology changes can be observed:

• Creation of new, disconnected level set contours: The water-level has tra-
versed the function value of a local minimum.

• Merging of previously disconnected level set contours: The water-level has
crossed the function value of a saddle.

• Vanishing of level set contours: The water-level has crossed the function
value of a local maximum.

Locations of these events are nodes of a topological graph that segments the field
into regions with identical level-set contour limits. A different interpretation of
this topological graph by means of the vector-valued gradient field is given in the
next section.

Figure 2.6 illustrates the graphical construction of scalar field topology for ris-
ing water-levels. This construction segments the data set into regions of influence
of the minima of the field. In real-world height-field or terrain analysis, these re-
gions have the meaning of catchment basins, which describe, where water flows
downhill to a common location. Analogously, regions of influence are obtained
for maxima. The intersection of both decompositions is a complete description of
the field topology. A related feature, that tracks topological changes in level-sets
is the Reeb graph or Contour tree of scalar fields [vKvOB+97], which is however
not of immediate relevance to the work covered in this thesis.
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Figure 2.6.: Two-dimensional example of function topology. Events where the
level-set topology changes are colored in blue (contour creation
event), green (contour vanishes) and red (contours merge). Ascend-
ing manifolds of the minima are highlighted as red and green regions.

2.2.1.4. Scalar Field Visualization Techniques

Direct visualization of scalar fields may be performed by the use of transfer func-
tions. In scalar field visualization, an n-dimensional transfer function maps values
from n scalar fields to a color space such as RGB(A):

f : Rn → R
4
RGBA

Transfer functions in volume rendering [Lev88, DCH88] can be designed to high-
light features such as isocontours or interval sets by assignment of high opacity
to respective function values. While application of transfer functions to two-
dimensional scalar fields results in flat images, three-dimensional scalar field
visualization usually relies on more complex visualization techniques such as
volume-slicing or ray-casting to avoid occlusion [Lev90, LL94] in the resulting
volume image. Other direct volume visualization techniques include rendering of
color-mapped point clouds or particle splatting [CM93].

As some feature definitions such as iso-contours and extremal structures nat-
urally produce surface or line-like scalar field features, it is often more conve-
nient to visualize a tessellated version of this geometry instead of applying a
transfer function filter to the whole data set. While early work was focused on
surface extraction in structures data sets [LC87], existing algorithms are able
to produce triangulations of isosurfaces in fields with arbitrary neighborhoods
[HSIW96, AG01]. Advantages of meshed feature visualization include the avail-
ability of texturing and shading techniques. However, without additional effort,
complex meshes have a tendency to occlude parts of the data set.
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2.2.2. Vector Fields

Vector fields extend the notion of scalar fields with directional information. A
common interpretation of vector-valued data takes vector magnitude and orienta-
tion as speed and direction of motion of infinitesimal particles in space. This view
facilitates modeling of natural phenomena such as wind or streams (see Figure
2.7).

Figure 2.7.: Example of a vector illustration denoting wind direction as ab-
stracted from a real-world measurement.

2.2.2.1. Application Areas

Some measurement techniques such as Optical Flow [HS81] estimation from video
data for traffic control and tracking or deformation measurements in physics and
mechanics [vdGW99] for material analysis and engineering produce vector fields.
However, vector field visualization is mainly dominated by the analysis of flow
fields resulting from Computational Fluid Dynamics (CFD) simulations [Bat67].
Computational fluid dynamics utilize fundamental laws of physics to model the

behavior of fluids. Using partial differential equations such as the Navier-Stokes
equations [Bat67], velocity of a fluid is coupled to (external) forces related to
pressure, fluid viscosity, gravity, and stresses acting on fluid elements. Solutions
of these Navier Stokes equations correspond to vector-valued flow fields. The in-
creasing need for accurate and flexible flow simulations is fueled by the construc-
tion of increasingly complex industrial mixing processes, and virtual prototyping
in aviation or the automotive industry. In virtual prototyping, visualization can
help in identifying beneficial or undesired aerodynamical properties before testing
real prototypes in expensive wind tunnel experiments.

2.2.2.2. Features of Vector Fields

As vector fields are frequently used to model flow, common feature related ques-
tions aim at answering the question of how matter is flowing in a global or local
sense.
A straight-forward attempt to answer this question is to trace the path of a

virtual particle as it is advected by the flow field. The resulting curve is a vector
field feature and is known as integral line. In higher dimensions, this feature can
easily be generalized by the advection of curves or surfaces [Hul92].
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More specific feature definitions are motivated by their importance to applica-
tions.
Since in aviation swirling motion has been identified as one of the key contrib-

utors to flight properties such as fuel consumption (drag) or lift, experts from
this field primarily interested in this type of spiraling motion of a fluid around a
center (-line). Such swirling flow is known as vortex.
In industrial mixing, however, relative fluid motion with an impact on mixing

quality is of central interest. This motivates the definition of features that char-
acterize regions of diverging or converging flow behavior and analysis of high and
low-strain regions in the flow field.
A universally meaningful feature of vector fields are areas where flow vanishes,

i.e. the magnitude of the vector field is locally zero. Presence of such critical
points facilitates extraction of topological graphs (see next section). Further-
more, a number of scalar-valued derived fields (vorticity, deviation, etc.) contain
meaningful features as well.

2.2.2.3. Vector Field Topology

The questions of which flow regions show similar behavior and desired knowl-
edge about flow convergence and divergence leads to the definition of vector field
topology. Vector field topology in a strict sense is only defined on stationary
vector fields. We therefore limit this section to the description of instantaneous
vector field topology and give a mathematical foundation of related concepts in
time-varying vector fields in Section 3.5.2.
As discussed in Chapter 3, scalar field and stationary vector field topology share

important characteristics. Topological vector field analysis partitions the domain
into integral lines that exhibit an identical limit behavior. In the literature, this
limit behavior is mathematically described by α (backward) and ω (forward)
limit-sets of integral lines s : R→ Rn (see [WS01]):

α(s) = {p ∈ R
n|∃(tn)

∞
n=0 ⊂ R, tn → −∞, limn→∞s(tn) = p}

ω(s) = {p ∈ R
n|∃(tn)

∞
n=0 ⊂ R, tn → −∞, limn→∞s(tn) = p}

Locations defined by these limit-sets either take the form of interior critical-
points of a vector field, cycles, or the boundary of the data set. To segment the
field into regions with homogeneous flow behavior, particle traces that emerge
from the same limit-set and lead to the same limit-set are grouped into the
same cell of the topological graph. An illustration of these zero-, one-, and two-
dimensional manifolds is shown in Figure 2.8. Edges in the topological graph are
separating integral flow features known as separatrices.
According to this definition, the topological graph of a gradient field coincides

with the Morse-Smale complex of its scalar field. However, due to the lack of
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A

B

C

Figure 2.8.: Topological graph of a two-dimensional vector field comprised of sep-
aratrices (black) and critical points with a rotating interior sink and
an interior saddle (yellow). Topological structures of the field include
zero-, one-, and two-dimensional manifolds: Two critical points, four
separatrices, and three regions inside and on the boundary of the
data set (A,B,C).

rotation in gradient fields, not all topological graphs of vector fields can be inter-
preted as Morse-Smale complexes of scalar fields.

In time-varying vector fields, snapshots of instantaneous vector field topology
allow the definition of stable features and merging or separating behavior of crit-
ical points over time also called bifurcations [TSH01b]. Practical applications of
these stationary views of time-varying vector fields are limited, however. In gen-
eral, critical points and separatrices of a vector field are referred to its topological
features. For small perturbations, the structure of the topological graph remains
stable.

2.2.2.4. Vector Field Visualization Techniques

Basic direct vector field visualization methods explicitly draw arrow-shaped vec-
tors at densely sampled positions in the field resulting in a cluttered view of the
complete field. Refinements of this method replace arrow-like vector representa-
tions by short streamlines or complex glyphs such as flow probes [dLvW93].

Instead of explicitly constructing vector icons at distinct positions in space,
related texture based methods such as Line Integral Convolution (LIC) [CL93]
produce a dense image of flow behavior by blurring a (noisy) input texture along
integral flow paths. Sophisticated use of transparency and volume-rendering tech-
niques additionally allows application of texture-based methods to volumetric
data sets [IG97].

Especially in time-varying fields, flow-advected Lagrangian particles or textures
serve the creation of insightful animations [KKKW05].
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With a few exceptions, where methods from illustrative mesh rendering were
applied to highlight characteristic features of integral surfaces [HGH+10], visual-
ization of tessellated integral features [GKT+08] usually draws on standard sur-
face rendering and transparency techniques to help convey the three-dimensional
structure of the field and minimize (self-) occlusion.

2.2.3. Second Order Tensor Fields

Tensor fields (here limited to second order tensors or matrices) in the context of
this thesis are used to denote changes or linear mappings between different vec-
tors. As such, they facilitate modeling of changes in shape, direction or position
such as deformation in mechanics (see Figure 2.9).
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Figure 2.9.: Illustration element deformation caused by application of directional
forces. Changes along x,y and z axes may be modeled as deformation
tensor.

2.2.3.1. Application Areas

Second order tensor fields are created by simulations and measurements from ar-
eas that are concerned with quantities describing diffusion, deformation, displace-
ment or directional anisotropy in general. In visualization, the most frequently
visited type of tensor field contains stress and strain tensors, representing the
direction and effects of (internal and external) forces on a given continuum.
In medicine, Diffusion-Tensor MRI (DT-MRI) [BJ02] is an imaging technique

used to measure directional information present in water diffusion. These mea-
surements are usually conducted on parts of the brain, where major diffusion
directions are governed by fiber directions. These anisotropy measurements pro-
duce symmetric 3 × 3 diffusion tensors on a voxel grid, whose main eigenvector
directions correspond to fiber directions. Visualization of this directional in-
formation can provide important insights into connectivity of structures in the
brain.
Application areas concerned with deformation and displacement are mainly

related to material sciences or physics, where significant effort is directed towards
modeling, simulating and predicting accurate object deformations. The study of
displacement is of great importance in (geo-)physics and mechanics. Derivation
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of methods to predict forces causing this displacement helps in understanding
surface and material behavior and faulting [Koy97].

2.2.3.2. Features of Tensor Fields

The fact that tensors are frequently used to model deformation or other multi-
linear maps on vectors puts emphasis on the need to analyze analytic properties
of this vector transformation.
Eigenvector directions of a matrix have the mathematical property of remaining

unchanged under the linear map described by the tensor. The eigenvector with
the largest absolute eigenvalue has a dominant meaning in tensor analysis. The
result of repeated mapping of an arbitrary vector (that is not an eigenvector)
converges to the direction given by this eigenvector [KC00]. Given the importance
of these characteristic quantities, it is not surprising that the majority of feature
definitions for second order tensor fields relies on eigen-decomposition and related
tensor properties such as singularities and degeneracies.
This decomposition of tensor fields into sets of eigenvector fields allows the

definition of hyper-streamlines and tensor-lines [DH92, DH93], which are integral
lines of these eigenvector fields. Parts of the literature distinguish between hyper-
streamlines and tensor-lines by allowing tensor-lines to follow eigenvector fields
smoothly without being forced to a designated eigenvector field, e.g. the major
eigenvector direction [WKL99]. This definition of tensor-lines facilitates stable
integration through almost isotropic regions.
Based on the concept of these integral lines, fibers are tracked in DT-MRI

tractography [BPP+00], where fiber-bundles and their crossings are regarded as
features. Like in vector field visualization, tensor field operator can produce fields
with scalar values such as the tensor determinant etc., whose feature correspond
to the feature definitions given in Section 2.2.1.2.

2.2.3.3. Tensor Field Topology

When tensors are modeling material deformation, discontinuities in displacement
or deformation behavior are of special interest to domain experts, as they are
cause of possible faulting [Koy97].
Tensor field topology analysis is a relatively new area of science when com-

pared to topological analysis of scalar- or vector fields and is mostly limited
to symmetric tensors, where eigenvector directions are pairwise orthogonal. A
topologically relevant feature in symmetric tensor fields that separates regions of
similar eigenvector behavior are regions, where the tensor is (partially) isotropic
[DH94]. At these locations, multiple eigenvalues are identical, preventing the
unique computation of all eigenvectors as illustrated in Figure 2.10.
Again, the concept of a topological skeleton along with separating manifolds is

transferred from scalar- and vector field topology and allows definition of separa-
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Figure 2.10.: Ellipsoids can be used to illustrate deformation mappings of sym-
metric tensors. Isotropic tensors do not have uniquely determined
eigenvector directions (left). Partially degenerate tensors allow
computation of one unique eigenvector direction (middle). Fully
anisotropic tensor has three unique eigenvector directions (right).

tion structures in tensor fields by construction of integral surfaces emanating from
these degenerate lines and degenerate points by advection of these features along
eigenvector directions. The resulting regions indicate homogeneous behavior of
the dominant eigenvector direction.

2.2.3.4. Tensor Field Visualization Techniques

Direct tensor field visualization methods rely on modeling single tensors as tensor
glyphs. For symmetric tensors, the most basic glyph [PvWPS95] is an ellipsoid
whose main axes correspond to tensor eigenvectors scaled by eigenvalue magni-
tude. Other tensor glyphs facilitate visualization of asymmetric tensors and put
emphasis on different tensor properties to characterize and distinguish anisotropy
classes and eigenvector directions [Hab90, MSM96, Kin04]. Feature based tensor
field visualization is traditionally focused on vector field type visualizations of the
derived eigenvector fields, which results in the display of lines of principal curva-
ture/eigenvector directions with standard or enhanced vector field visualization
techniques (e.g.: [DH93, DH94, HFH+04]). Topology-based visualization tech-
niques create graph-like structures, whose geometry may be visualized directly,
or after simplification [TSH01a].

2.2.4. Multi-Field

Multi-field data contains multiple (related) fields of identical or different types
and dimensionality.

2.2.4.1. Application Areas

Multi-field visualization is relevant to virtually all application areas, as applica-
tions either directly produce multiple fields or one can derive multiple related
fields from the given single field data.
Computational fluid dynamics simulations are an example of the former type,

as they naturally generate a set of related fields (e.g: pressure, temperature,
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velocity) [Bat67]. In applications, where only one field is generated, analysis
of derived fields often helps in understanding problems at hand and identify
important relationships.

2.2.4.2. Multi-Field Features

The main insight that one hopes to gain by the extraction of features in multi-
field data is the identification of field interactions and relationships. Features in
multi-field data are either feature combinations or true multi-field features.
The first type of feature definition is obtained by combining existing feature

definitions of different field types. These feature combinations include common
boolean operators on existing feature definitions such as AND, OR and XOR
[KPI+03]. An example of such a feature is obtained by asking, where maxima
of multiple scalar fields coincide. Such feature definitions have in common that
the initial feature definition and extraction process is limited to a single field
and is followed by a post-processing step to obtain an instance of the combined
feature. Therefore, this type of feature definition is covered by previous sections
on scalar-, vector-, and tensor field features.
True multi-field features require data from all affected fields during the feature

extraction process. The parallel-vectors operator [PR99], is an example of such
a feature defining features as regions, where multiple-vector fields are parallel.

2.2.4.3. Multi-Field Visualization

Multi-Field visualization makes use of the visualization techniques presented in
previous sections. In general, multiple fields can be visualized by combining direct
visualization techniques (such as icons, glyphs and volume rendering) [KPI+03],
by a combination of feature-visualization techniques [UI08], or mixtures of these
[UIL+06].

With the increase of data and feature density in data sets that contain multiple
fields, special care has to be taken to avoid the occlusion of important features
of one or more fields. This thesis shows two ways of reducing visual occlusion,
namely region extraction/segmentation of a primary field and combination with
direct field visualization and the use of multiple linked views.

2.3. Field Representation

The digital nature of computers requires that a (piecewise) continuous n-dimen-
sional tensor-valued signal or field f : Ω ⊆ R

n → R
m1×···×mj is sampled at

discrete positions xi ∈ Ω during simulation or measurement. The resulting set of
points (pi, fi) with fi = f(pi) ∈ Rm1×···×mj represents the data available for post-
processing and visualization. While there are ways to record and store analog
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data, such data sets nowadays represent the exception to the rule in computer
science.

In most cases this point set is accompanied with concrete neighborhood in-
formation either for post-processing convenience or because the simulation tech-
niques used for creation of the data themselves rely on grids. These neighborhood
graphs or grids may be of one of the following two general types:

• structured (implicit, cartesian, curvilinear, . . . )

• unstructured (tetrahedral, hexahedral, mixed elements, . . . )

Scattered point sets on the other hand do not possess such an explicit computa-
tional mesh. Structured grids are composed of a single element type, e.g. cubes,
and their regular layout allows implicit storing of the neighborhood relation. Un-
structured grids may be composed of a number of different element types and
often consist of irregularly sized and oriented cells, which are necessary to rep-
resent complex geometry or adaptive point set densities, and require explicit
definition of the neighborhood data.

Reconstruction of a (continuous) field from the given point set at arbitrary
positions p ∈ Ω requires definition and evaluation of the neighborhood of p.
Consequently, the nature of the underlying grid structure has a central impact
on the type, performance, and mathematical properties of the available field
reconstruction methods.

2.4. Field Reconstruction

Given a discrete (discontinuous) field representation as point-set (pi, fi), the goal
of field reconstruction methods is to (re-)construct function values of the field
that are not provided by the given samples. This reconstructed function f may
either interpolate (f(pi) = fi ∀i) or approximate (∃i : f(pi) 6= fi) the set of
given function values. Commonly, the reconstruction function is expected to have
certain properties such as Cm continuity. It is important to note that interpola-
tion and approximation techniques generally do not generate ”new” information
about a field, as choice of interpolation method and parameters is non-unique in
all cases, where the interpolant of the original data is unknown.

In a grid-based field, function evaluation at point p amounts to locating the cell
that contains p along with choosing an appropriate element-based interpolation
or approximation method such as trilinear interpolation for cubes, barycentric in-
terpolation for tetrahedra, or higher-order grid-based techniques. As most parts
of this thesis either operate on scattered data or are independent of the under-
lying interpolation method, we do not go into further detail about grid-based
interpolation methods, but refer to the literature [LGS99].
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Scattered data may be approximated by grid-based methods after construction
of a tessellation. Without such a tessellation, the absence of a pre-defined neigh-
borhood relation prevents the use of element-based approximation techniques and
requires the definition of a neighborhood for the data set [Ami02]. The central
advantage of grid-less approximation is the independence of a computational grid,
i.e. that solutions are governed by the field’s value rather than by the choice and
characteristics of a (static) neighborhood structure. Moreover, concrete neighbor-
hood structures for a field may not be defined in a unique way (cf.: decomposition
of cubes into tetrahedra) and may have to change over time to adapt to transfor-
mations of the domain. However, as already mentioned, faithful reconstruction
of a data set is only possible if the same interpolation method is used during
creation, i.e. simulation of the phenomenon, and visualization of the data set.
Other scattered data approximation techniques are, for example, discussed in
[Wen04]. A large group of scattered data approximation methods falls into the
group of Radial Basis Function (RBF) approximation techniques [Wen04], which
use (euclidean) distance for neighborhood weighting purposes. The general form
of a RBF interpolant for a point set (pi, fi) is the linear combination of radial
functions

f(p) =
∑

i

ω(‖p− pi‖)vi

where ω : R → R is a radial function defining the degree of neighborhood
between point p and pi. The weights vi are determined by the chosen interpolation
or approximation conditions. In these scattered data approximation techniques,
neighborhood is defined by a distance metric and is otherwise independent of
other spatial properties of the data points.
Moving Least Squares as the main approximation technique used in this thesis

is closely related to RBF approximation. Appendix A gives a definition of MLS
and provides an overview of its mathematical and numerical properties.





3. Mathematical Definitions,

Properties, and Methods

The work presented in this thesis makes frequent use of several mathematical
definitions and properties from fields such as Linear Algebra and Differential Ge-
ometry. To set up a well-defined mathematical framework, the following sections
introduce the relevant mathematical fundamentals that are used throughout this
thesis and provide details of numerical computation methods, as found in the
literature [Ros00, LRK10, Gin09].

3.1. Notation and Prerequisites

If not explicitly stated otherwise, all definitions and properties given in the fol-
lowing assume n-dimensional euclidean space with scalars in R. As defined by
Einstein Notation, multiple occurrences of indices in a term of an equation denote
summation over the range of the index. If not defined otherwise, x, y, z and xi,
i ∈ N+ denote cartesian coordinates with points p = (x1 . . . xn)

T ∈ Rn. Norms
commonly denote the standard L2 norm.

3.2. Linear Algebra and Vector Calculus

Vector-spaces and linear mappings between them are studied in the field of Lin-
ear Algebra. Differentiation and integration of vector fields is covered by the
branch of mathematics known as Vector Calculus. Both areas of mathematics
play a major role in all parts of this thesis and facilitate formulation of the most
fundamental definitions of tensors and fields.

Definition 3.1 (Tensors, Scalars, Vectors) A tensor of order m in Rn1×...×nm

has
∏m

j=1 nj components ti1...im ∈ R, with indices ij ∈ {1, . . . , nj}. Tensors of or-
der 0, 1, and 2 are known as scalars, vectors, and matrices.

A tensor can be written as a n-dimensional array, whose size is indicated by
n1×· · ·×nm or Tn1×···×nm

in the following. In a more general definition of tensors,
individual components are allowed to be complex numbers in C. All tensors
covered in the context of this thesis are of order ≤ 2. This constraint includes
scalar, vector and typical stress or strain tensor fields. For an overview of the most
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basic tensor characteristics such as rank and determinant, we refer to standard
literature on linear algebra [Ros00] and focus on operators and properties of
immediate relevance to field visualization in the following.

3.2.1. Fields, Operators

Definition 3.2 (Tensor Field) A time-varying tensor field is represented as a
tensor-valued function

f : I ⊆ R× Ω → R
n1×...×nm

(t, p) 7−→ f(t, p)

defined in (n + 1)-dimensional space of time t ∈ I ⊆ R and euclidean space
Ω ⊆ Rn. For fixed t, f is a stationary or steady field.

Respective definitions are given for scalar- and vector fields.

Definition 3.3 (Isotropic and Deviatoric Components) A symmetric sec-
ond-order tensor Tn×n may be decomposed into an isotropic and a deviatoric part

T = Tiso + Tdev =
1

n

∑

i

tii · I +

(

T −
1

n

∑

i

tii · I

)

.

Tensors with a deviatoric component of 0n×n are isotropic, otherwise they are an-
isotropic. Mathematical operators from vector-calculus allow mapping between
tensor fields of different order and are important in the context of visualization
of multiple fields. A selection of important operators is presented in the fol-
lowing. Best known function operators from the field of calculus are related to
differentiation.

Definition 3.4 (Differential Operator ∇, Gradient) The differential oper-
ator in Rn denoted by ∇

∇ =
n
∑

j=1

∂

∂xj

ej

for canonical cartesian basis vectors ej is used to define the gradient

∇f =

(

∂f

∂x1
, . . . ,

∂f

∂xn

)

of a scalar-valued differentiable function f defined on Rn. For a scalar field f ,
∇f denotes the vector-valued gradient field.



Linear Algebra and Vector Calculus 25

The gradient of a scalar field at p is oriented along the direction of maximal
ascent of the function and is perpendicular to the tangent of the level set {p′ ∈
Rn|f(p′) = f(p)}. A gradient magnitude of zero is an indicator of an extremum
or a plateau in a scalar field. In general, differentiation of multi-variate tensor
fields of order n leads to a tensor field of order n+1. Thus, first order derivatives
can provide a notion of component-wise change in arbitrarily high order fields.
A generalization of the gradient definition is known as the Jacobian.

Definition 3.5 (Jacobian) The Jacobian of a differentiable vector field

v : Ω ⊆ R
n → R

m

p 7−→ (v1(p), . . . , vm(p))

is defined as

J =







∇v1
...
∇vm






=







∂v1
∂x1

. . . ∂v1
∂xn

...
...

∂vm
∂x1

. . . ∂vm
∂xn







and takes the form of a second order tensor field.

The Jacobian is is in general not a symmetric or square matrix. As the Jacobian
corresponds to component-wise derivation, its rows are gradient vectors of the
scalar fields v1, . . . , vm.

Definition 3.6 (Hessian) The Hessian of a twice-differentiable scalar field f is
a square matrix containing second order derivatives

H =









∂2f
∂x2

1

. . . ∂2f
∂x1∂xn

...
...

∂2f
∂x1∂xn

. . . ∂2f
∂x2

n









and is symmetric for f with continuous derivatives.

The Hessian of a scalar field corresponds to the Jacobian of its gradient field.
If the second derivatives are continuous, the Hessian matrix is a symmetric ma-
trix. Like any other second order tensor, the Jacobian and the Hessian define
linear mappings on vector spaces. Properties of these mappings are of great in-
terest for vector and tensor field analysis and visualization. Several mathematical
quantities allow characterization of these mappings.

Definition 3.7 (Eigenvalues, Eigenvectors) Eigenvectors ei of a second or-
der square tensor Tn×n are non-zero n-dimensional vectors, whose transformation
under the linear mapping defined by T degenerates to scaling:

T · ei = λi · ei.

Corresponding scalars λi are called eigenvalues of T .
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A n × n matrix has at most n distinct eigenvalues which are solutions to the
characteristic equation det(T −λ · I) = 0. A matrix is singular if one of its eigen-
values is 0 (det(T ) =

∏

i λi = 0). In the case of multiple identical eigenvalues
(tensor is (partially) isotropic), directions of the corresponding eigenvectors are
non-unique. Eigenvectors for distinct eigenvalues are linearly independent and
invariant with respect to scaling, including change of orientation. If all of its
eigenvectors are linearly independent, a matrix is diagonalizable. For symmetric
second order tensors they are orthogonal and eigenvectors as well as eigenval-
ues are real-valued. The concept of eigenvectors allows classification of tensors
according to their definiteness.

Definition 3.8 (Definiteness) A second order square tensor T ∈ Rn×n is def-
inite, if for all non-zero x ∈ Rn

xTTx > 0 (positive definite)

xTTx < 0 (negative definite).

T is semidefinite, if for all non-zero x ∈ Rn

xTTx ≥ 0 (positive semidefinite)

xTTx ≤ 0 (negative semidefinite).

If none of these cases apply, T is indefinite.

For symmetric matrices an equivalent definition of definiteness is given by the
signs of the eigenvalues. An operation related to eigenvalue decomposition that
can be applied to non-square tensors is given by the Singular Value Decomposition
(SVD) [MMH04] .

Definition 3.9 (Singular Values) Singular values of a second order tensor
Tn×n are the square roots of eigenvalues of T ·TH , where TH denotes the conjugate
transpose of T .

Eigenvectors of T · TH define an orthonormal basis for T (.). For symmetric
real matrices, these vectors are identical to the eigenvectors of T . Geometrically
speaking they correspond to the half-axes of an ellipsoid created by deformation
of a sphere by the mapping T . This interpretation suggests the use of singular
values to measure the effect of deformation. One such measure of deformation is
given by the Frobenius norm.

Definition 3.10 (Frobenius Norm) The Frobenius Norm of a second order
tensor T denoted as ||.|| corresponds to the square root of the trace of T · TH

||T || =
√

tr(T · TH)

In the following, tensor and tensor field refers to the space of second order
quadratic tensors in Rn×n.
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3.2.2. Numerical Methods

3.2.2.1. Numerical Differentiation

While interpolation or approximation methods may yield analytically differen-
tiable or integrable representations of fields, higher order analytic derivatives are
commonly not available, especially when low-order polynomials are used for re-
construction. Numerical differentiation methods allow approximation of these
derivatives.

Definition 3.11 (Difference Quotient) The first order forward difference quo-
tient of a function f at t is defined as

f(t+ h)− f(t)

h
.

The derivative of a function is the limit of the first order difference quotient for
h → 0. Therefore, this difference quotient approximates f ′ for small h. Higher
order derivatives may be approximated by according higher order difference quo-
tients, leading to increased number of required function evaluation.

3.2.2.2. Tensor Decompositions

If the roots of the characteristic polynomial p(λ) = det(T−λI) are difficult to find
analytically, i.e. p = 0 is complex to solve for λ (n > 3), one relies on numerical
methods to compute eigenvalues and -vectors. One such popular method is the
QR-decomposition with complexity in O(n3).
As pointed out, the square roots of the eigenvalues of a T · TH are the sin-

gular values of a matrix T . The eigenvectors of T · TH are the corresponding
left singular vectors, the eigenvectors of TH · T the right singular vectors. This
relationship allows numerical computation of singular values and vectors with
eigen-decomposition methods. Alternatively, the Singular Value Decomposition
provides a tensor decomposition that yields singular values and (left/right) sin-
gular vectors directly.

3.3. Continuum Mechanics

The field of Continuum Mechanics [LRK10] combines the mechanics of fluids
and solids on a macroscopic level, i.e. sizes of atomic elements are small with
respect to the size of the continuum. In this thesis, we focus on fluid motion as
well as kinematic forces leading to deformations and displacement. The following
sections concentrate on the physical interpretation of vector fields as velocity or
displacement fields and introduce necessary mathematical concepts and defini-
tions.
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3.3.1. Fluid Mechanics

Continuum mechanics allow the modeling of complex fluid behavior in the form
of (continuous) fields. Thus, research in Fluid Mechanics is concerned with the
mathematical modeling and analysis of forces in fluids, complex interactions, and
resulting quantities such as viscosity, density, and velocity. As a consequence,
simulation data from fluid dynamics commonly provides multiple tensor fields of
different order.

Definition 3.12 (Velocity Field, Flow Field) A vector field representing the
motion of a fluid is known as velocity field or flow field.

An exception to this definition is given by granular flow, which may by modeled
by vector fields as well. Generally, any differentiable vector-valued function can
be interpreted as describing particle motion. Fluid dynamics know two ways to
describe flow: The Eulerian and the Lagrangian view. While the Eulerian spec-
ification defines fluid flow as a time-varying vector field given at fixed positions
in space, the Lagrangian view specifies flow as the motion of particles. These
different concepts are reflected in fluid simulation meshes, where explicit grids
are commonly used for static Eulerian specification of flow and scattered point
sets of moving points are chosen to represent Lagrangian motion, allowing the
efficient modeling of free surfaces without the need of frequent remeshing of the
domain (see Figure 3.1).

Definition 3.13 (Particle Motion) A velocity field v : R× Rn → Rn describ-
ing the motion of a fluid particle with position x(t) ∈ Rn, t ∈ R is governed by
the ordinary differential equation (ODE)

dx(t)

dt
= v(t, x(t)). (3.1)

Figure 3.1.: Two different specifications of the same flow field at two subsequent
time steps. Left: Eulerian specification with velocity specified at
fixed positions in space. Right: Flow field specified at Lagrangian
particles (corresponding Eulerian grid shown in gray).

If t is constant/parametrizes a spatial dimension in Rn, the velocity field v(x) :=
v(t, x) is time-independent and represents steady flow. Otherwise it is a time-
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varying vector field. Thus, a time-varying vector field in Rn can be interpreted
as stationary field in Rn+1 [TS03].
For flow fields, scalar measures are defined that facilitate computation of local

flow behavior. The most notable scalar measures are able to quantify volume
change or rotation.

Definition 3.14 (Curl) The vector-valued rotation of a vector field v is known
as curl

curl(v) = ∇× v.

Fields with ∇× v = 0 are irrotational.

In two-dimensional vector fields, curl is a scalar quantity. Gradient fields are by
definition irrotational, as ∇ × (∇v) = 0. This constitutes a central difference
between general vector fields and gradient fields.

Definition 3.15 (Divergence) The trace of the Jacobian of a vector field v is
known as divergence

div(v) = ∇ · v =
∑

i

∂vi
∂xi

.

Fields with ∇ · v = 0 are divergence-free or incompressible.

Divergence serves as a measure of volume change in vector fields. As a con-
sequence, no fluid matter is created or destroyed in divergence-free flow fields.
Volume change and distortion are concepts closely related to strain and displace-
ment. The next section gives further details about the relationship between
displacement and flow fields.

3.3.2. Solid Mechanics

While forces acting upon fluids result in fluid motion as defined by the Navier-
Stokes equations, effects of forces on continuum bodies include deformation and
displacement. While some definitions of deformation are extended to rigid bodies,
we limit this notion in the following to bodies where deformation causes relative
geometric displacement [vdGW99], i.e. a change in shape. This section aims to
give an introduction to (flow induced) strain.

3.3.2.1. Deformation

Definition 3.16 (Displacement Function) In continuum mechanics, a dis-
placement function u maps each point p ∈ Ω ⊆ Rn within a continuum body Ω to
a position p′ ∈ Rn.

u : Ω ⊆ R
n → R

n
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Displacement functions are vector fields. A common requirement of displace-
ment functions is that domain and range are n-dimensional vector-spaces. The
Jacobian of u is known as displacement gradient.

Definition 3.17 (Strain) Strain is a measure denoting the relative geometric
displacement of positions in an object or medium.

In contrast to absolute geometric displacement, which leads to object translation
or rotation, relative geometric displacement within a body causes geometric de-
formation. This definition allows distinction of rigid and non-rigid behavior of
bodies.
Strain as measure of geometric displacement is directly related to first order

derivatives of the displacement function, as mentioned for volume change in flow
fields in the previous section.

Definition 3.18 (Lagrangian Strain Tensor) The Lagrangian Strain Tensor
for a differentiable displacement function u is defined as

eij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi
+

∂uk

∂xi

∂uk

∂xj

)

.

For small deformations ∂uk

∂xi

∂uk

∂xj
vanishes and the Lagrangian Strain Tensor can be

approximated by a linearization.

Definition 3.19 (Infinitesimal Strain Tensor) For a differentiable displace-
ment function u with ‖u‖ ≪ 1, ‖∇u‖ ≪ 1, the components of the second order
Infinitesimal Strain Tensor are defined as

ǫij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

.

Definition 3.20 (Infinitesimal Rotation Tensor) Similar to the infinitesi-
mal strain tensor, the Infinitesimal Rotation Tensor is defined as

rij =
1

2

(

∂ui

∂xj

−
∂uj

∂xi

)

.

This tensor describes a rotation around ∇×u and is therefore related to the curl
of vector fields.

This infinitesimal deformation tensor is a linearization of Lagrangian/Eulerian
strain. With these definitions, flow fields can locally be interpreted as a com-
bination of absolute and relative geometric displacement, leading to a change
in position and orientation as well as deformation of participating media. More
precisely, the flow Jacobian contains information of relative displacement and
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may be decomposed into the Infinitesimal Strain Tensor and the Infinitesimal
Rotation Tensor:

(∇u)ij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

+
1

2

(

∂ui

∂xj
−

∂uj

∂xi

)

(3.2)

Types of strain are traditionally classified by their effect into

• tensile strain: positive displacement along an object normal

• compressive strain: negative displacement along an object normal

• shear strain: displacement orthogonal to object normals

These definitions of strain are repeatedly used in the context of geophysical strain
analysis as defined in the following section.

3.3.3. Moments

In a physical setting, shear-type vector displacement in inelastic deformations
may cause surface faulting. Geoscience uses a mathematically well-founded way
of capturing these displacement discontinuities in the form of force couples in
moment tensors [Koy97]. While in classical mechanics, a moment is usually a
scalar or vector-valued quantity denoting a force and an arm length, the notion
of distinct force couples leads to the definition of a moment tensor.

Definition 3.21 (Force Couple) A force couple is a pair of parallel but oppos-
ing forces with equal magnitude.

Generally, a force couple results in rotational motion around an axis when the
forces are applied to different positions. A convenient form of notation for a
set of orthogonal force couples obtained by seismic measurements is the moment
tensor.

Definition 3.22 (Moment Tensor) The moment tensor M is a symmetric
second order tensor, whose components mij denote the magnitude of the moment
caused by the force couple in i-direction acting on the the j-direction.

The moment tensor is symmetric by construction, as the total angular moment
of a seismic source is zero (mij = mji).
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3.3.4. Numerical Methods

Fluid motion, strain, and deformation of a continuum are in practice computed on
a spatial discretization of the domain. Methods can either use explicit neighbor-
hood grids and are called Finite Element Methods (FEM) or Finite Volume Meth-
ods (FVM) [ZTTZ05], or may be mesh-free. Latter methods are termed Smoothed
Particle Hydrodynamics (SPH) or Finite Pointset Methods (FPM) [TK02] for
fluid dynamics and are of central interest in this thesis. In all techniques, PDEs
or ODEs are specified at discrete point positions to approximate the full system
equation.
In the case of strain or deformation computation, expensive discretization and

solution of complex systems can be avoided if the deformable object can be ap-
proximated as infinitesimal point.

3.4. Differential Geometry

Differential Geometry is a branch of geometry that defines configuration, shape,
and other properties of space by means of differential and integral calculus. For
vector field analysis, differential geometry provides means to define integral flow
features as discussed in the following.

3.4.1. Integral Features

Differential geometry allows the definition of geometric flow features that corre-
spond to solutions of initial value problems for the underlying ordinary differential
equations. For a class of ODEs these solutions are unique.

Definition 3.23 (Initial Value Problem, Solution) A solution to an initial
value problem (IVP) is a function x that satisfies an ordinary differential equation

dx

dt
= v(t, x(t))

with the initial condition x(t0) = x0.

Definition 3.24 (Lipschitz Continuity) A vector-valued function v : I ⊆ R×
Ω→ R

n is Lipschitz Continuous in Ω ⊆ R
n if there exists a non-negative c ∈ R

for arbitrary t ∈ R and p1, p2 ∈ Ω such that

‖v(t, p1)− v(t, p2)‖ ≤ c · ‖p1 − p2‖.

A function v is locally Lipschitz if it is Lipschitz Continuous in a neighborhood
of p for all p ∈ Rn.
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Lipschitz continuity guarantees that solutions to initial value problems of the
ODE exist and are unique. The weaker criterion of local Lipschitz continuity
guarantees that a local solution can be continued to the boundary of I × Ω.
As practical vector fields are defined on closed domains, this ensures existence
and uniqueness of solutions. These properties facilitate the definition of unique
integral flow features as solutions of ODEs.

Definition 3.25 (Integral Curve) The integral curve

x(t) = x0 +

∫ t

t0

v(τ, x(τ)) dτ

solving 3.1 with x0 = x(t0) ∈ R
n is a pathline in time-varying velocity fields v or

a streamline in steady flow.

Integral curves trace the path of an infinitesimal particle in velocity fields. Stream-
lines are by definition tangential to the (stationary) flow field and with the ex-
ception of cycles do not self-intersect. Pathlines are no longer tangential to the
flow field and may self-intersect. These definitions can be generalized to higher
dimensions.

Definition 3.26 (Integral Surface, Rake) The integral surface

S(s, t) = c(s) +

∫ t

t0

v(τ, S(s, τ))dτ

with a univariate seeding curve or rake c : I ⊆ R → Rn is a path surface in
time-varying velocity fields v or a stream surface in steady flow.

If c varies over time, this definition characterizes a generalized path surface. Path
surfaces are parametrized along the seeding curve and the time axis. Lines on
a path surface for fixed t are timelines. Higher-dimensional seeding geometry
generalizes these definitions to path volumes and time surfaces.
Another definition of integral lines and surfaces in time-varying flow fields is

given by streaklines and streak surfaces. A streakline is the locus of a set of
particles that are advected by a time-dependent flow field and emerge from a
pre-defined seeding location or rake.

Definition 3.27 (Streak Surface) The integral surface S defined by

S(r, s, t) = c(s) +

∫ t

t−r

f(S(r − (t− τ), s, τ), τ)dτ

is a streak surface at time t with particles emerging from points c(s) at an univari-
ate seeding curve c : [0, 1] → R3. Individual instances of particles are identified
by their age parameter r ∈ [0, t]. For constant s, S is a streakline.
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Similarly, streak surfaces can be used to model flow regions that pass through a
flow region by using backwards integration.

3.4.2. Numerical Methods

Analytic integration for the computation of flow trajectories is usually not pos-
sible for the given data. During numerical integration, the interval of an integral
is discretized into segments.

Definition 3.28 (Riemann Sum) The Riemann Sum of a given integral I =
∫ b

a
f(x)dx corresponds to a discretization of the interval [a, b] into n subintervals

[xi, xi+1] with x1 = a, xn = b, ti ∈ [xi, xi+1]

I∗ =

n
∑

i=1

hi · f(ti)

where hi = xi+1 − xi.

As the lengths of the sub-intervals approach 0, the Riemann Sum converges to
the integral. From a computational point-of-view, however, evaluation of the Rie-
mann Sum becomes unfeasibly expensive for n→∞ and approximation quality
undesirably inaccurate for large hi and non-linear f . Fortunately, there are a
number of numerical integration methods with provable error boundaries for dif-
ferent numbers of required function evaluations and approximation accuracy. A
common property of these integration methods presented in the following is their
approximation of the Taylor Series Expansion with low order derivatives.

Definition 3.29 (Taylor Series) The Taylor Series Expansion at x of a (lo-
cally) infinitely differentiable function f in the neighborhood of p is

Tp(x) =

∞
∑

i=0

f (i)(p)

i!
(x− p)i

where f (i) is the i-th derivative of f .

The Taylor Series defines function values in a neighborhood of an evaluation
point by function derivatives and can therefore be directly connected to initial
value problems. As high order derivatives are commonly not available for discrete
vector fields, approximation methods for this series try to replace higher order
derivatives by combinations of low order function derivatives.

Definition 3.30 (Euler Method) A first order numerical integration scheme
for univariate x : R→ Rn is given by the Euler Method

x(t + h) = x(t) + h · x′(t).
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The Euler Method is a linearization of the Taylor series expansion. The trun-
cation error (the remainder of the Taylor Expansion) per step lies therefore in
O(h2). With 1/h steps for one unit of the derivative, the error of the Euler
method is O(h) and the method is therefore a first order method. Higher order
approximation schemes, such as fourth-order Runge-Kutta methods reduce ap-
proximation order by approximation of higher function derivatives in the Taylor
series. Methods of numerical integration allow efficient iterative approximation
of integrals and therefore solution of IVP while constraining the mathematical
order of approximation errors. For an inappropriately large choice of h, however,
the error of high-order numerical integration schemes is still undesirably large.
A solution to this problem is the automatic selection of appropriate step-sizes h
during integration.

In general, adaptive integration schemes such as step-doubling or Runge-Kutta
4/5 [CK90] compute x(t+h) for different h or with varying approximation order
to estimate the current influence of h on the accuracy of trajectory reconstruction.
As long as the error (e.g.: angular deviation, see (3.3) between different evalua-
tions is too big, computations are repeated with a decreased stepsize h. While
leading to an increased number of field evaluations, accuracy of such adaptive
trajectories is higher in turbulent regions.

E(t; h0, h1) = 1− (x(t + h0)− x(t)) · (x(t+ h1)− x(t)) (3.3)

3.5. Field Topology

As introduced in Chapter 2 from an application point-of-view, field topology is
suitable to perform segmentation based on homogeneous field behavior. This
section concretizes previous high-level descriptions by providing a formal math-
ematical presentation of field topology.

3.5.1. Scalar Field Topology

Topology of a scalar field is strongly connected to the location of extremal function
values. Definition of higher-dimensional stationary points is directly related to
concepts from one-dimensional function analysis.

Definition 3.31 (Critical Points) A critical point x of a differentiable scalar
field f is defined by

∇f(x) = 0.

Critical points x of a scalar field may be classified according to the signs of
principal curvature of f at x.
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Definition 3.32 (Minimum, Maximum, Saddle) If the Hessian of a scalar
field is non-singular, a critical point is a (i) maximum, (ii) minimum or (iii)
saddle, if eigenvalue signs of the Hessian are (i) all negative, (ii) all positive,
(iii) negative and positive.

Critical points with singular Hessian mark flat spots and represent line-like de-
generate critical-points or (partial) plateaus. Figure 3.2 illustrates different types
of critical points.

Figure 3.2.: Three critical point configurations in scalar fields: Maximum, Mini-
mum, Saddle. Arrows indicate gradient direction.

Definition 3.33 (Ascending and Descending Manifolds) The set of all po-
sitions that lie on gradient lines starting in a critical point p are the ascending
manifold of p. The set of all positions that lie on gradient lines ending in a
critical point p are the descending manifold of p.

In two-dimensional scalar fields ascending and descending manifolds may be zero-
dimensional (the ascending manifold of a maximum is the position of the maxi-
mum itself), one-dimensional (the ascending manifolds of a saddle are separatri-
ces), or two-dimensional (ascending manifold of a source). In the context of scalar
fields, slope lines corresponding to manifolds of the saddles are often regarded as
ridges or valleys in the scalar height-field, as detailed in Chapter 4.

Definition 3.34 (Morse-Smale Complex) The Morse-Smale complex is the
intersection of all ascending and descending manifolds of a scalar field.

The Morse-Smale complex [Zom05] represents the topological graph of scalar
fields, whose edges are ascending and descending manifolds of saddle points.
Occasionally, discrete Morse Theory in combinatorics is known as the Theory of
Forman.

3.5.2. Vector Field Topology

Since topology analysis on scalar fields mainly operates on the scalar field’s gradi-
ent field, stationary vector field topology is closely related to scalar field topology.
However, there are notable differences between gradient field topology and gen-
eral vector field topology, which are detailed in the following sections.
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While attempts have been made to define topological graphs for time-varying
vector fields, vector field topology is so far only well-defined for stationary fields.
For this reason, the following sections distinguish between stationary vector field
topology and the related concept of hyperbolicity [Hal01] in time-varying vector
fields.

3.5.2.1. Stationary Vector Fields

In contrast to gradient fields, general vector fields may contain rotational com-
ponents. With this property in mind, the critical point definitions in scalar fields
carry over to vector fields.

Definition 3.35 (Critical Points) A critical point or stationary point x of a
vector field v is defined by

v(x) = 0.

To classify critical points x ∈ Rn in vector fields, the field is linearized at x as

v(x) = J · x+ b

where J is the Jacobian of v at x. Contrary to the Hessian of scalar fields, the
Jacobian can be asymmetric and its eigenvalues may be complex-valued due to
rotation. This rotation can create critical points whose neighborhood describes
a rotating motion such as rotating stars and closed trajectories.

Definition 3.36 (Cycle) A streamline x(t) is a cycle or a closed trajectory if
there exists a ∆t ∈ R such that

x(t + b∆t) = x(t) ∀b ∈ N.

These cycles are a special type of streamline limit set, which is not present in
gradient fields. In vector field topology attractors are called sinks, repulsors are
called sources. Ascending and descending manifolds are known as unstable and
stable manifolds in general vector fields.
A topological graph of the field is obtained by connecting saddles with critical

points. The resulting separating streamlines partition the field into regions of
similar flow behavior.

Definition 3.37 (Separatrices) A separatrix is a feature that separates differ-
ent regions of homogeneous flow behavior.

These separatrices are integral flow features and emerge from saddles, where they
are locally tangential to the eigenvectors of the linearized flow field. From these
saddle positions, they are integrated as streamlines from positions offset along
the direction of major and minor eigenvectors and are tangential to flow direction
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leading to a sink, source, or leaving the domain. Thus, separatrices are the stable
and unstable manifolds of saddle points. In a scalar field these lines follow the
direction of maximal ascent/descent and can give a notion of height ridge and
valley locations.

Saddles represent nodes of the topological graph located inside a vector field.
However, there are situations where vector field behavior suggests the existence
of separation processes outside of the field domain. A source of separatrices
that captures this behavior and is located on field boundaries are separation and
attachment structures.

Definition 3.38 (Separation and Attachment Lines) Separation lines and
Attachment lines are locations at field boundaries, where flow separates from or
attaches to the boundary.

Mathematically speaking, separation and attachment lines can be described
for the projection of the flow field onto the boundary. These locations p are
defined as positions, where the major or minor eigenvector of the Jacobian J of
the projected flow field v : Ω ⊂ Rn → Rn is orthogonal to the projected flow
direction:

v(p)|∂Ω · e{max,min}(J(p)|∂Ω) = 0

Like saddle points, these separation and attachment lines serve as starting points
for separatrix integration. Separatrices end at these positions, whereas neighbor-
ing integral flow lines and surfaces are deflected along the boundary.

3.5.2.2. Instationary Vector Fields

Concepts of scalar field and stationary vector field topology cannot be directly
transferred to time-dependent vector fields. While these methods can convey a
picture of instantaneous topology of a time-varying vector field, this graph does
not correlate with the limit behavior of time-varying flow. There are however ways
to identify hyperbolic structures in time-varying vector fields, which are presented
in the following but do generally not produce topological graphs. Lagrangian
Coherent Structures (LCS) represent regions in a time-varying vector field, where
particle trajectories show strong converging or diverging behavior. LCS are height
ridges in the Finite Time Lyapunov Exponent (FTLE) field [HY00].

Definition 3.39 (Finite Time Lyapunov Exponent) The Finite Time Lya-
punov Exponent field is a scalar-valued field derived from the velocity field, by
computing a flow map Φt

t0
(x) that maps flow particles x at time t0 to their respec-

tive positions in timestep t. The FTLE value at x then corresponds to the scaled
logarithm of the maximal singular value of ∇Φt

t0(x)
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σδ
t0
(x) =

1

|δ|
ln(
√

λmax(∇Φ
t0+δ
t0 (x)T · ∇Φt0+δ

t0 (x)))

where δ represents maximal advection time.

Consequently, the FTLE field models exponential deformation of a particle
neighborhood for a given advection time δ. High values in the forward FTLE
field (δ > 0) therefore indicate exponential divergence in the flow field, high
values in the backward FTLE field (δ < 0) express (forward) convergence of flow.
From this scalar field, LCS can be extracted as height ridges. Flat regions in the
FTLE field may be interpreted as regions with homogeneous flow behavior.

3.5.3. Tensor Fields

Tensor field topology is concerned with the analysis of eigenvector fields. More
particular, one is interested in the behavior of hyperstreamlines and tensor-lines.

Definition 3.40 (Hyperstreamline) A hyperstreamline of a tensor field is a
streamline that is tangential to one of the fields eigenvector fields.

Examination of the behavior of hyperstreamlines reveals regions in fields, where
such lines cross. These features (also known as umbilics) form the skeleton of
tensor field topology.

Definition 3.41 (Degenerate Points) A point in a tensor field, where at least
two of the eigenvalues are identical is called a degenerate point.

In three-dimensional space, these features form stable degenerate lines rather
than points if the field is partially isotropic [ZP04]. Topology of the complete
tensor field is then obtained by connecting degenerate features with separatrices
consisting of hyper-streamlines or hyperstreamsurfaces.

3.5.4. Numerical Methods

In non-analytic fields, location of critical points is performed numerically by
local root finding methods such as Newton-Iteration. In complex fields, this
is computationally expensive, with the additional challenge of guaranteeing to
find all critical points in scattered data sets. In gridded fields, root finding may
be performed cell-wise and (with appropriate interpolants) analytically.
The construction of a Morse-Smale complex in a normalized discrete scalar field

f can be achieved without the explicit extraction of critical points by performing
watershed segmentation of f and 1−f [ČDFP05]. The intersection of the resulting
watershed segmentation corresponds to an approximation of the discrete Morse-
Smale complex. However, a necessary condition for this approximation to model
the Morse-Smale complex is that f is a Morse function. This does not generally
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hold for discrete scalar fields. Fortunately, suitable pre-processing techniques can
enforce this condition [Ede01].
Separation and attachment lines are commonly extracted on cell-wise projec-

tions of the field on the tessellated boundary mesh of the data set. For this
matter, lines are approximated by segments created from intersections of these
lines with edges of boundary mesh elements [KHL99].
A major challenge is the detection and extraction of closed trajectories in flow

fields [WS01]. The detection of these structures requires highly accurate tracing
of trajectories as provided by high-order adaptive numerical integration schemes.
Separatrices that emerge from saddles are by definition integrated in the direc-

tion of flow convergence. This guarantees accurate approximation of separatrices
even in cases with low-order integration methods. The same holds for separatrices
that emerge from separation lines.



4. Complex Valued Scalar Fields -

Mesh-Free Valley Surfaces

This chapter is concerned with the extraction of valleys and ridges as generalized
extrema in complex-valued three-dimensional scalar fields. In the following sec-
tions we present a new region-growing based approach to the mesh-less extraction
of adaptive non-manifold valley and ridge surfaces that overcomes limitations of
previous approaches by decoupling extraction and triangulation of the surface.
Our algorithm allows the resulting valley surface skeleton to be extracted as a
connected structure rather than set of disconnected surfaces or point sets. As
our algorithm is inherently mesh-free and curvature adaptive, it is suitable for
surface construction in fields with an arbitrary neighborhood structure. To per-
form surface extraction, we analyze behavior of the derived Hessian and gradient
fields near degeneracies, which allows application of the maximal convexity ridge
definition. The decoupling of the extraction from the triangulation step as well as
the absence of a computational mesh allows a less constrained and more regular
surface construction than provided by previous methods.
The extraction of ridge and valley structures (also termed creases in the fol-

lowing) [Ebe96] has a long history in the field of image processing, where ridges
in the scalar intensity field represent extremal features such as highlights of an
image. However, crease line and surface extraction can be applied to a wide area
of visualization problems ranging from such topics as three-dimensional medical
imaging to time-dependent vector field analysis, where the loci of these general-
ized local minima and maxima facilitate topological analysis of field structures
in the context of FTLE ridges.
As an application for insightful visualization with valley surfaces, we choose

a low frequency acoustics simulation. The visualization results presented in this
chapter are a step towards understanding the nature of FEM solutions to the wave
equation of simulated acoustics, where regions of locally minimal pressure rep-
resent wave nodes and regions of sound cancellation. Therefore, the application
of the presented methods focuses on scalar pressure fields that are eigensolutions
of an FE model used in low frequency acoustics simulations. Due to its peri-
odic nature, the time-varying pressure field is represented by complex numbers
encompassing amplitude and phase shift, allowing the valley surface method to
visualize both stationary and time-varying topology of wave nodes in this field.
This provides an expressive visualization of wave node and anti-node structures
in simulated acoustics. As complex fields encode multiple time-varying scalar
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fields, namely amplitude and phase fields, feature extraction and visualization in
such fields is directly related to multi-field processing.
Our method contributes to the visualization area by presenting a novel region-

growing technique for the mesh-free extraction of curvature adaptive crease sur-
faces. We propose a three-dimensional seeding method that is not constrained
by triangulation needs and allows easy control of surface resolution. For surface
convergence, we analyze an analytical alternative to Newton iteration techniques.
Furthermore, we introduce a technique to connect maximal convexity ridges by
slope line integration to obtain non-manifold minimum structures. Researchers
from the field of acoustics benefit from the insights gained by applying our ex-
traction and visualization techniques to sound simulation data sets.
The second section of this chapter gives an overview of related work in the

fields of crease surface extraction and acoustics visualization. In Section 4.3, we
detail the mathematical foundations of crease surfaces before proposing our novel
extraction algorithm in Section 4.4. Section 4.5 introduces a novel application of
ridge line extraction, namely simulated acoustics, providing background knowl-
edge of the numerical examples shown in Section 4.6. Section 4.7 summarizes
this chapter and gives a short outlook on possible future work.

4.1. Related Work

In this section we present related work from the areas of crease extraction and
sound visualization.

4.1.1. Crease Extraction

Related work in the context of the crease extraction part of this work comes
from two different fields. The first topic is concerned with iso-surface extraction
techniques in arbitrary scalar fields. Work of the second field is focused on crease
line and surface extraction and its applications.
A first approach to mesh-free implicit surface reconstruction was introduced by

Hilton et al. in 1996 [HSIW96]. Their Marching Triangles algorithm is a region-
growing based approach to the construction of Delaunay triangulations of iso-
surfaces. More recent work such as the methods by Akkouche et al. [AG01] and Xi
et al. [XD08] make enhancements to this technique by creating curvature adaptive
semi-regular meshes of such manifold iso-surfaces. Related work using partial
differential equations to extract particle based isosurfaces from unstructured point
sets is given by Rosenthal et al. [RL08]. A similar approach that focuses on
an iso-surface curvature measure, heuristic edge lengths and front tracking was
presented by Araujo et al. in 2004 [dAJ04]. In 2007 Meyer et al. [MNKW07]
proposed the use of particle systems for isosurface extraction in reference space.
Their energy-based approach allows to sample isosurfaces adaptively according to
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surface measures such as curvature. All of these methods have in common that
they are limited to manifold iso-surface extraction and produce disconnected
point sets or have to impose certain constraints on surface extraction resulting
from desired properties of the final surface triangulation.

Work on crease structure extraction has conventionally focused on manifold re-
construction in uniform, hierarchical or structured grids. A well-known method
is the ”Marching Ridges” approach by Furst et al. [FP98], which is a Marching
Cubes related algorithm to extract height ridges in image data. While a number
of other techniques focus on the extraction of creases in images [Ebe96], more
general approaches have been published recently. Sadlo et al. [SP07] present
an approach with adaptive grid refinement for the visualization of Lagrangian
Coherent Structures of unsteady vector fields. Another method by Kindlmann
et al. [KTW06] introduces an alternative scheme to orient eigenvectors of the
Hessian matrices of scalar fields to extract creases in diffusion tensor MRI. A
first approach to cover non-manifold areas of crease structures in diffusion tensor
MRI is given by Schultz et al. [STS10], which improves over standard marching
cubes extraction techniques by reconstructing smooth surface boundaries. An-
other grid-based approach that focuses on the open nature of ridge surfaces was
recently introduced by Li et al. [LLP+10]. In grid-based methods the quality
of the triangulation is heavily dependent on the chosen grid and not curvature
dependent, reducing the overall accuracy and condition of the extracted surface
mesh.

While these techniques aim at obtaining surface triangulations, newer work
[KESW09] has brought the well-known concepts of energy based particle distri-
butions and scale space [Lin96, Dam99] to the field of three-dimensional ridge
visualization. Others [BT10] have recently proposed methods for GPU-based
extraction and visualization of (optimal-scale) ridges. While such GPU-based
techniques are commonly limited in accuracy, and restricted to certain data struc-
tures, they allow for interactive framerates. Methods for the detection and visu-
alization of ridge and valley lines on surface meshes [KK06, OBS04] are related to
crease extraction in scalar fields, while serving a different visualization purpose
and relying on fundamentally different extraction techniques.

Our work uses a continuous polynomial field approximation to generate curva-
ture adaptive sets of points that can be meshed due to neighborhood information
obtained during surface extraction. The resulting mesh can be used as basis for
further visualization techniques such as shading, texturing, and volume render-
ing. Additionally, we propose a method to include non-manifold regions into the
surface extraction process and emphasize the importance of valley surface extrac-
tion to a novel application area, namely visualization of complex valued acoustic
pressure fields.
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4.1.2. Sound Visualization

Sound visualization techniques processing simulation or real world measured data
mostly focus on wave propagation or scalar field visualization of values such as
pressure or other acoustic metrics. Data from acoustics simulations is commonly
available as continuous function representing wave or sound propagation or is
computed and stored at individual listener positions.

Visualization techniques for wave propagation are proposed in [YST02, PR05c,
PR05b] for two- and three-dimensional sound fields. In [BDM+05] sound propa-
gation is visualized by means of sound particle tracing. Lauterbach et al. [LCM07]
make use of frustum tracing to visualize and simulate sound propagation in game-
like room environments. The work by Tokita et al. [TY05] uses particle displace-
ments on a three-dimensional grid as basic visualization technique. In [PL03]
Pulkki et al. present an approach visualizing simulated edge diffraction with the
image source method. Funkhouser et al. [FCE+98] use visualization of sources
and listeners as well as sound paths for analysis and evaluation of their acoustic
modeling method. Khoury et al. [KFW98] represent the sound pressure levels
inside the room on color mapped slicing planes and analyze wave front propa-
gation with isosurfacing techniques. However, without the use of transparency
or volume rendering techniques these methods are limited in three dimensions
due to visual occlusion. Merimaa et al. [MLPK01] present a visualization of
directional room responses using two-dimensional plots depicting intensity and
propagation direction. Omoto et al. [OU04] present a circle-based visualiza-
tion metaphor that carries information about intensity and direction of incoming
sound waves for different receiver positions. Weyna [Wey05b, Wey05a] make use
of vector field integration methods to analyze acoustic flow fields in the vicinity
of sound obstacles. Stettner et al. [SG89] use icons and ray diagrams to visualize
sound metrics such as overall sound strength and clarity and definition. Monks
et al. [MOD00] show sound strengths for different source types by color mapping
listener positions and room geometry.

For a complete overview of existing sound visualization methods we refer to
[LN06, Dei08].

Our intention is to represent the topology of minimum structures of the room
response and visualize the results in complex valued scalar fields using our novel
valley surface reconstruction algorithm. This allows clear statements about wave
node properties and development. To our knowledge no such method has been
introduced before.
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4.2. Crease Surface Theory

Research has produced a number of different definitions and notions of local n-
dimensional minima, as regions with locally minimal amplitude are important for
a vast topic of applications from different fields. In this work, we make use of two
related ridge definitions. The first definition has its origins in image processing
and is given in [Ebe96]. Its features are known asmaximal convexity ridges as they
correspond to locations of maximal value along directions of maximal curvature
or convexity. This standard mathematical definition of feature points x on crease
structures of a twice continuously differentiable three-dimensional scalar field
f : Ω ⊆ R

3 → R with gradient ∇f and Hessian Hf is given in the following.
As this work focuses on the visualization of minimum structures, we refer to
valley structures in the following instead of creases in general. All definitions
and statements hold for ridges as well, which are the valleys of the negated scalar
field. Let λ1 < λ2 < λ3 be eigenvalues of Hf at x with corresponding eigenvectors
e1, e2, e3, then x is a point on a k dimensional valley, iff λk+1 > 0 and:

∇f(x) · ei = 0, ∀i > k. (4.1)

Geometrically speaking, such points lie on structures where the gradient of a the
scalar field is orthogonal to the field’s direction of maximum curvature. This fact
about the behavior of two vector fields has been employed in [PR99], where the
parallel vectors operator was used for extraction of such features. Equation (4.1)
classifies extrema, crease lines and crease surfaces as 0D, 1D, and 2D creases.
This definition does not allow branching of minimum structures.

This notion of generalized minima makes it obvious, why traditional methods
for iso-surface construction fail to extract creases. Firstly, there is no inherent
change in sign on opposing sides of the structure, as eigenvector fields and valley
surfaces generally lack orientation. Secondly, points on the same crease may vary
greatly in function value. There are however ways to locally orient eigenvectors to
find sign changes on edges of cells that do not contain a Hessian degeneracy (two
equal eigenvalues) [KTW06, FP98]. Combinatorical methods allow the handling
of degeneracies as well [STS10].

The second type of minimum structure definition is wide-spread in the field of
vector field topology [HH91] and terrain analysis and is based on slope- and sepa-
ration line extraction. As stated in Chapter 3, edges in the Morse-Smale complex
of a scalar field can be interpreted as ridge or valley structures. Compared to
watershed or slope line segmentation, maximal convexity definitions rely on local
properties of the field only and avoid the expensive steps of global explicit ex-
trema detection and streamline or stream surface computation. An informative
analysis regarding the differences between maximal convexity ridges, watersheds,
and slope line algorithms can be found in [KvD93, SWTH07, PS08].



46 Complex Valued Scalar Fields - Mesh-Free Valley Surfaces

4.3. Valley Surface Construction

Given the definition of maximal convexity ridges and slope lines, we define the
following steps for mesh-free valley surface extraction.

4.3.1. Extraction

The basic valley surface extraction algorithm relies on the maximum convexity
ridge definition and performs the following steps:

1. Place initial surface point

2. Seed neighboring points

3. Converge to valley surface

4. Merge points

5. Repeat from 2, until no free points left

These steps are extended as described in Section 4.3.2 to allow for non-manifold
structures in valley surfaces. In most of the steps, an approximation of the scalar
field along with its first and second derivatives is needed. We compute this data
by locally fitting a trivariate polynomial to the scalar data using theMoving Least
Squares technique, see Appendix A. Further details on the extraction steps are
given in the following sections.

4.3.1.1. Pre-Processing of the Data Set

Scattered scalar fields are pre-processed to facilitate fast local field approxima-
tions. We construct an uniform grid with a cell size corresponding to approxi-
mately 2.5 times the average point distance to speed up the process of data point
location. This basic grid resolution has shown to provide a good balance between
empty and overly filled cells in data sets with moderate changes in point distance.
We choose a similar value for the radius of our MLS kernel during continuous
field reconstruction, thus defining a basic scale for extrema detection. If a larger
scale is desired due to low point density or during convexity approximation, this
radius is increased and the number of adjacent cells covered by the support func-
tion used for approximation is enlarged. After this pre-processing step, valley
surface extraction may start.
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4.3.1.2. Initialization

As a starting point for region growing, we find an arbitrary surface point in
the domain of the scalar field f by performing Newton iteration along the main
direction of curvature e3. Iterations are started at centroids x of cells.

xi+1 = xi − e3
∇f · e3

λ3

(4.2)

As shown in [Ebe96], the normal n of a maximal convexity ridge is computed as

ni =
∑

j

e3j
∂f

∂xj∂xi

+
∑

j

∂e3j
∂xi

∂f

∂xj

(4.3)

where
∂e3j
∂xi

effectively requires third derivatives of f . Since the computation of
third derivatives requires approximation of the scalar field by cubic polynomials
or the use of finite differences, our convergence scheme uses e3 as rough approxi-
mation of the normal and only falls back to more accurate finite-difference normal
computation in cases of divergence during seeding (cf. 4.3.1.4). The initialization
phase is completed as soon as a first point of convergence was reached. This first
point serves as initial seed point of the surface and keeps e3 as initial normal
approximation. It acts as the initial parent to new points during the seeding
step.
Note that the valley surface extraction algorithm is restarted after the extraction
of a complete surface to find other disconnected surface structures in the data
set, as detailed in Section 4.3.1.6.

4.3.1.3. Point Seeding

Region growing is performed by point seeding. We choose a point p of the surface
that has not yet been source of seeding and create new neighboring child points
on equally distributed positions on a planar ellipse E around p

E(r1, r2, t) =

(

r1cos(t)
r2sin(t)

)

where r1, r2 ∈ R correspond to radii in direction of the major and minor axis of
the ellipse, as shown in Fig. 4.1. Throughout the rest of this paper, t ∈ [0, 2π]
is sampled by ∆t = 1

3
π, and axes of the ellipsoid are oriented such that one axis

points towards the parent point. This ellipsoid lies in the plane orthogonal to
the normal of p and represents a first linear approximation of the valley surface.
Axes lengths of the ellipsoid are determined by an approximation of valley surface
curvature. During the first seeding step of a surface, axes lengths are set to one
quarter of the grid cell size, as determined during loading of the data set.
We approximate the curvature at an arbitrary point p on the surface by analyz-

ing normal deviation between p and its parent p0. For that matter, we compute
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p
0

Δt

p

Figure 4.1.: Seeding on an ellipsoid around point p. A normal deviation between
p and its parent (red) leads to a scaled ellipsoid.

the radius of the circle passing through p, p0 and p′, where p′ is created by mirror-
ing the edge e = (p0, p) through the normal np0 as seen in Figure 4.2a. This form
of curvature approximation was used in [MS92] and has shown to be a valid and
robust way of obtaining a fast notion of surface curvature along e. Correspond-
ingly, we compute the surface curvature along an edge e⊥ orthogonal to e, where
e⊥ is obtained by projection of n × e onto the neighborhood triangle-fan (see
Figure 4.2b). According to Thales’ theorem, this radius of curvature computes
as:

r =
1

|curve|
=

∣

∣

∣

∣

(eT · e)

2.0 · (eT · np0)

∣

∣

∣

∣

(4.4)

Axes of the new seed ellipsoid used by p are scaled by a fraction of these two
curvature estimates to provide bi-directional surface adaptivity. Extremal edge
lengths are constrained to the magnitude of the data set cell size to avoid intensive
super- or sub-sampling. Numerical examples of the impact of curvature on edge
lengths is given in the results section of this chapter.

Figure 4.2.: Curvature approximation is performed on a two-dimensional projec-
tion of the surface. Curvature measure along e viewed from the
side (a) and bi-directional approximation for full surface adaptivity
viewed from above (b).

4.3.1.4. Converging to the Valley Surface

Points p placed on planar approximations of the surface during seeding do gen-
erally not lie on the real minimum surface. We therefore project these points to
locations on the true surface by using either one of the following two methods:
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(i) a standard Newton iteration along the direction of main curvature according
to (4.2), or

(ii) by moving to the minimum of a quadratic trivariate polynomial that ap-
proximates the scalar field.

The second method has a number of advantages over the first. Firstly, it
makes use of continuous polynomial field approximation and secondly, it generally
reduces the number of iterations performed until a point of convergence is reached.
The minimum of a quadratic trivariate polynomial at p can be found analytically.
Let

h(x, y, z) = c · (1 x y z x2 xy y2 yz z2 xz)T (4.5)

be such a polynomial approximating the scalar field with coefficient vector c ∈
R10, as obtained by polynomial approximation such as MLS. By restricting h to
positions on the line g(t) = p + t · e3 with t ∈ R, we obtain the analytically
differentiable univariate polynomial

(h ◦ g)(t) = c · (1 g(t)x g(t)y . . . g(t)xz)
T (4.6)

whose minimum lies on an approximation of the valley surface. Generally, this
scheme converges faster than the common Newton scheme, which is based on
linear approximations of the surface normal and field gradient. Divergence signals
a boundary of the valley surface.
If the starting points or approximations are chosen unwisely, these convergence

schemes have the common problems of local minima and divergence. This is an
additional motivation for the use of appropriate adaptive seeding step sizes in
areas with high curvature. We consider a point to have reached the valley surface
if

∣

∣

∣

∣

∇fT

‖f‖
· e3

∣

∣

∣

∣

< ǫ

indicates that the enclosed angle is close to zero, where ǫ typically takes values
of the order 10−10 − 10−4. In certain situations, points diverge or are otherwise
invalid, especially when leaving the domain of the data set or crossing one of the
boundaries described in 4.3.2. In this case, the corresponding point is reinitialized
with a position half way to its parent and the used iteration scheme is restarted
with a finite-difference approximation of the surface normal. This is repeated
until the point converges, or the distance to its parent falls below a pre-defined
minimum. This procedure guarantees smooth reconstruction of surface bound-
aries. Once all points have converged to the valley surface, we update normal
data of the parent point based on child positions to reflect the expected surface
(mesh) normal rather than the direction of main curvature.
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4.3.1.5. Merging of Points

The current surface point set contains a graph implicitly defined by the parent-
child neighborhood and the neighborhood relation between neighboring points on
seeding ellipsoids. To maintain a correct neighborhood graph with a curvature
adaptive point density, we merge new points with existing ones if the distance to
the closest existing point falls below a threshold θ. This threshold is empirically
chosen to be approximately 20% less than the distance to its parent. The more
recent point is abandoned and its parent connected to its merge partner as de-
picted in Figure 4.3.
These region growing steps are repeated for each new point that was not merged

Figure 4.3.: Seeding and merging after convergence with new neighborhood struc-
ture.

into the existing point structure. This surface growing approach avoids the need
of front tracking and splitting as well as detecting triangle overlaps and provides
a method for triangulation independent surface generation. While a non curva-
ture adaptive approach based on Newton iteration on a continuous scalar field
was presented in [KESW09], our approach avoids expensive inter-particle energy
function minimization, guides particle starting positions along an approximation
of the valley surface and provides means for surface meshing.

4.3.1.6. Independent Surfaces

Once growing of a distinct valley surface is completed, finding independent dis-
connected valley surfaces in other parts of the data set requires the search for
new seed points. As the highest reasonable reconstruction resolution is defined
by point densities in the data set, we limit search for new valley surfaces to cells
in the grid discretization that were not covered by existing valley surfaces. Our
tests have shown that this method recovers all valley surface structures in data
sets with moderate variety in point densities. If variation in point density is high,
these searches have to be performed in an according number of smaller cells.

4.3.1.7. Progressive Surface Generation

In contrast to other particle-based crease extraction methods, the dynamic and
local nature of our surface growing approach is suitable for interactive and pro-
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gressive surface extraction. Several steps of the aforementioned algorithm qualify
for optional user-input:

• Selection of a locally constrained seed region

• Selective surface growing

• Local surface refinement

Given the appropriate interaction tools, selective surface growing reduces to selec-
tion of existing surface points as new seed points and specification of a maximal
growth radius. The existing surface point graph does not require distinction
between user-selected and automatic seed points, as new surface structures are
automatically merged into the existing complex. The same holds for progres-
sive surface refinement, where selection of surface parts and level of curvature
adaptivity facilitates automatic refinement of the surface by seeding new points
around existing surface particles. Section 4.5.2 demonstrates the capability of
our algorithm to handle user-guided surface growing and refinement.

4.3.2. Non-Manifold Regions

Valley surfaces produced by the definitions and steps presented in the previ-
ous sections are maximal convexity ridges and are as such (disconnected) non-
branching surfaces. Points p on boundaries of valley surface defined by (4.1) are
characterized by one of the following properties:

(i) p is part of the data set boundary

(ii) λ3(p) = 0 (Hf(p) is singular)

(iii) λ2(p) = λ3(p) ((partial) umbilic point)

Boundaries of the second type are caused by a change in sign of main curvature.
The case of a singular Hessian, where λ3 = 0, can in fact indicate a minimum
rather than a local plateau that is missed by the compact support of common
scattered data approximation techniques. If our surface reaches a boundary of
this type during region-growing, such an event can be detected by increasing
the radius of the support function chosen for field approximation, thus giving a
notion of a different scale. This is continued until the maximal curvature value
is non-zero.
While the last type of boundary is a valid surface border according to (4.1),

it prevents extraction of general minimum regions, where λ2 > 0. Curvature
line configurations of these (partial) umbilic points [DH94] can be divided into
three classes, namely stars (trisector), monstars and lemons (wedges) [LHL+08].
From this classification, the trisector type is of main interest to the behavior of
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(a) (b)

Figure 4.4.: (a) Partial umbilic point where λ2 = λ3 (red) and point on oppos-
ing valley line (blue), where ∇f ⊥ e2 and ∇f ⊥ e3. Directions of
maximum curvature and surfaces are shown in black, gradient vec-
tors and iso lines in gray. (b) Maximal (blue) and minimal (red)
curvature lines around umbilic point. The star type of the umbilic
point separates convergence regions for the two valley lines shown in
gray, as indicated by the bold principal curvature lines. Black arrows
represent convergence directions.

our valley extraction algorithm. Figure 4.4a depicts a two-dimensional example
of gradient and valley line behavior in the vicinity of a star-type umbilic point.
The according star configuration with principal curvature lines and convergence
regions is shown in Figure 4.4b. Curvature line separation causes the maximal
convexity ridge to the left to end at a position, where λ2 = λ3.

A more general definition of 2D minimal structures [FKMP97] in three-dimen-
sional space that includes maximal convexity ridges requires that a point is a
local minimum with respect to at least one direction to be part of a general
valley surface. According to this definition the outlined point in Figure 4.4a,
which is placed past the umbilic point, continues to be a minimum with respect
to the vertical direction but fails to be a maximal convexity ridge point, as the
direction of main curvature is now horizontal. Extraction of points on these
general minimum surfaces conveys important information about the connectiv-
ity of (maximal convexity) minima in the data set. Our approach attempts to
resolve these situations by incorporating these points into the extracted valley
surface structure, comparable to connector structures defined in [FKMP97]. The
resulting structures allow for (branching) non-manifold valley surfaces.

4.3.2.1. Surface Branching

Regions where valley surface branching may occur are either valley lines or loci of
partial umbilic points (see Figure 4.4a). During surface growing, we approximate
valley lines by finding points on the valley surface with the additional constraints
that e2 > 0 and ∇f ⊥ e2. To converge to crease lines, we restrict the Newton
iteration step to a plane orthogonal to the direction of minimal curvature:
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xi+1 = xi −∇fp
||∇fp||

(Hf · ∇fp) · ∇fp
(4.7)

where ∇fp is the gradient projected to the plane of convergence. Again, this can
sped up in the case of quadratic approximation, where the field minimum on this
plane spanned by e2 and e3 can be found analytically. Partial umbilic points on
the other hand are identified as locations on the surface boundary, where λ2

λ3

>
1− δ and a change in main curvature direction was detected during convergence.
An numerical procedure for finding these stable degenerate lines in grid-based
fields is presented in [ZP04]. After identification of these branching locations,
the remaining challenge consists of correct connection of partial umbilics and
valley lines. To achieve this goal, we distinguish two cases:

If λ2 >> 0 close to the degenerate line, we extract the connector structure
by replacing λ3 in (4.2) by λ2. The resulting connector surface merges corre-
sponding crease lines with degenerate lines. This extraction technique is however
numerically not reliable in regions, where the field is flat in direction of medium
curvature, as this causes deviations in approximated medium curvature direction.

Crease lines on crease surfaces are related to separation and attachment lines
on general surfaces in vector fields. The criterion by Kenwright et al. [KHL99]
defines separation and attachment lines as locations, where the projected flow
field on a mesh is parallel to one of the projected Jacobian’s real eigenvectors. At
points on valley lines the gradient field is parallel to to the direction corresponding
to the minimal eigenvector of the Hessian of the scalar field. Therefore, such a line
feature on a crease surface represents a location, where gradient flow separates
or attaches to a valley surface. The existence of such a line feature suggests
the presence of a neighboring ridge structure in the direction of gradient flow
as shown in 4.4a. As points on these line features are sources of the gradient
field’s two-dimensional projection onto a plane orthogonal to the direction of
minimal curvature, they represent important features in the context of vector
field topology based separation line extraction.

During surface growing, one of two situations may occur: the surface may
approach the branching region and stop growing, as new child points fail to
converge due to a degenerate line boundary (surface on the left of Fig. 4.4a).
Alternatively, the surface may continue growing tangentially to the minimal and
medium curvature directions and cross the junction-like region.

If the first case occurs, the inverse gradient direction points towards the branch-
ing region and describes the direction of a flow separation line. We therefore
continue stepping along the negative gradient direction, as long as λ2 > 0 until
we meet the maximal convexity ridge at a crease line point. We constrain this
gradient descent to a plane orthogonal to the direction of minimal curvature, on
which the projected vector field degenerates to a source point, where the crease
line intersects the projection plane. We merge the created start and end posi-
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tions of these connector lines into the existing valley structure and update point
neighborhood relations accordingly.
The second case indicates a nearby valley surface and is used to seed a set

of points in the neighborhood to ensure that all nearby structures are recovered
by the extraction algorithm. Both situations are shown in Figure 4.5. Ascend-
ing gradient lines show divergence due to flow separation and are therefore not
suitable for surface merging.

Figure 4.5.: In non-manifold regions gradient descend (a) and gradient ascent
(b) is performed. The former method extracts minimal points along
slope-lines in non-manifold regions, as slope lines show converging
behavior. The latter method is used to find adjacent valley surfaces
and needs an additional convergence step to meet the valley surface
on the left.

There exists work on vector field topology that uses stream surfaces to pro-
duce similar topological structures. However, we find that flow based surface
integration is more suitable in the context of true vector fields than scalar field
visualization, where gradient directions close to separation structures often vary
substantially, leading to numerically unstable integration of many small gradient
stream surface parts. Furthermore, stream surface integration has the disadvan-
tage of favoring the gradient direction, which is unsuitable in the context of crease
surface extraction. Our approach uses a constrained gradient based surface inte-
gration in areas of ambiguous convexity only, as the gradient has a distinct and
consistent direction in these regions.

4.3.3. Triangulation

After surface extraction has created a point cloud representing a connected sur-
face graph, this neighborhood relation keeps important surface connectivity in-
formation for triangulation. Using this connectivity information, we triangulate
the final surface by creating local Delaunay triangles. This procedure follows
the principle of standard Delaunay meshing techniques on the manifold surface
parts. Hereby edge swapping has to ensure that crease lines form edges in the
triangulation.
After manifold triangulation, we identify opposing crease- and degenerate lines.

Starting with a crease point, we find its nearest neighbor in the surface graph
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on the edge of a triangulated part, i.e. a point close to a degenerate line. From
there, we create two point lists by moving in forward and backward direction
on the crease and opposing degenerate line, placing neighboring surface points
in the appropriate list for the crease- or its opposing line. The ribbon bound
by the two line sequences defined by these lists covers the corresponding non-
manifold region. This ribbon is triangulated using standard ribbon-triangulation
techniques by alternately stepping along the lines and creating triangles based
on a quality criterion such as minimal triangle edge length, see (Fig. 4.6 and
[Hul92]). Triangle creation for a ribbon stops as the ribbon ends or meets its
front in case of a cyclic ribbon.

Figure 4.6.: Crease line (blue) and degenerate line (red) are connected during the
ribbon triangulation step.

4.4. Application

In the field of simulated acoustics, valley surfaces contain important information
about the structure of the field, wave behavior as well as general sound properties.
In standing waves, valley surfaces describe node regions, i.e. areas of sound
cancellation where the amplitude value is virtually zero. Valley surfaces in moving
waves are able to visualize time-varying regions of minimal amplitude, as well as
areas where the maximal amplitude of an oscillating system possesses a minimum,
as demonstrated in Section 4.5. These capabilities allow the scientific analysis
and optimization of acoustic room properties and make valley surfaces a powerful
tool for acoustics visualization.
Sound simulations provide domain experts with numerical representations of

sound attributes such as sound pressure, amplitude and phase that allow an anal-
ysis of acoustic properties of the underlying geometry and medium. This data is
either evaluated at specific listener positions, or given at a comparatively dense
set of evaluation points that can be used to reconstruct a continuous field repre-
sentation. Important input parameters for such simulations are geometric shapes,
reflection/absorption coefficients for participating materials and frequency, am-
plitude and location information for the simulated sound sources. Wave-based
acoustics deals with the numerical solution of the wave equation. For sufficiently
low frequencies, simulations based on finite element discretization techniques can
be applied to real world examples, as a comparatively low grid resolution does
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already provide aliasing free accurate sampling of waves. Higher frequencies in-
crease computational complexity significantly and are therefore not suited for fast
FEM calculations. In this context frequencies are classified as low with respect to
a given environment if the product of characteristic domain extensions/lengths
and frequency is sufficiently low. Consequently, low frequencies in a concert-hall
sized environments commonly fall below the hearing threshold of human ears,
leading to the fact that low frequency analysis in acoustics is usually focused on
studio-sized rooms.

A number of different discretization and modeling techniques such as Func-
tional Transform Method (FTM), Finite Difference Time Domain (FDTD), and
Finite Element Method (FEM) may be used to solve the wave equations for ei-
ther one specific, or a whole spectrum of frequencies at different parts of the
data set domain. FTM [TR03] is originally limited to simple geometry, but al-
lows dense computation in the parameter domain. FTM was extended to more
complex geometry and applied to sound wave propagation by Petrausch et al.
[PR05c, PR05a] and [RNM09], where an analytical solution of the Partial Differ-
ential Equations is computed on the GPU. Finite differences simplify the solution
of the time dependent wave equation in FDTDmethods [Bot95] and yield sampled
pressure and velocity fields for a range of different frequencies. Sound pressure
values at positions throughout a volume with high geometrical complexity may
be obtained by FEM [Bra03, Ihl98], which solve ordinary differential equations at
grid points, depending on absorption coefficients of different materials in the data
set. The high number of unknowns in these systems of ODEs requires state-space
reduction models [DBM+06] to provide a solution in real time.

We use output of an FEM simulation that provides us with a complex valued
sound pressure field encoding amplitude and phase shift values at points of an
irregularly sampled data set for a given low frequency wave.

4.5. Results

4.5.1. Application to Sound Visualization

The first test geometry for our low frequency visualizations is a small completely
tiled reference room with two doors and a radiator on one side. In Figure 4.7 the
room geometry and the finite element mesh used for the simulation is shown. The
sound source in this case is the membrane of the loudspeaker which is visible in
the corner of the room. Complex pressure values are available at approximately
21000 positions throughout the room. The second test room is an artificial L-
shaped room with a sound source centered at its shorter end. It consists of
about 220000 sample points. The data sets are virtually noise free and require
no pre-smoothing to reduce high frequency clutter during extrema extraction as
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is common in the field of image processing. The results shown in the following
map scalar quantities for color mapping purposes to hue in HSV space.

Figure 4.7.: Geometry and FEM mesh of the simulated room.

Amplitude values of the complex pressure field give a stationary view of the sound
pressure distribution in the rooms. Hereby, the amplitude value

A(x) =
√

im(x)2 + re(x)2

at a given point x corresponds to the maximal amplitude of the oscillating system
at that position. For stationary waves, position of the node structure does not
change over time. Instationary waves, however, have moving locations of minimal
amplitude over time. For a time-dependent view of the pressure distribution in
instationary fields, we animate the oscillating field based on the complex eigen-
modes:

p(x, φ) = re(x) · cos(φ) + im(x) · sin(φ), φ ∈ [0, 2π] (4.8)

For a phase shift of

∆φ = cos−1(im(x)/A(x)) = sin−1(re(x)/A(x)),

this equation takes the form of a sine wave

p(x, φ) = A(x) · sin(φ+∆φ)

with a maximum of |p(x, .)| = A(x), as visualized by a stationary view of the
field. Resulting visualizations for different φ are shown in Figure 4.8, showing
how amplitude minima evolve in the moving wave of the oscillating system for
a frequency of 169 Hz and walls with high reflection coefficients. For the given
example, the valley surface structures perform a rotation along the vertical axis.
Corners, where amplitudes are generally high are untouched by the valley sur-
faces, an observation that verifies our visualization technique. The evolution
of valley structures over time provides means to analyze wave propagation and
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Figure 4.8.: Sequence of 8 non-manifold valley surfaces (∆φ = π
8
, π ∈ [π

8
, π]),

depicting node structures in an animated wave field. Color coding
shows curvature magnitude. Pictures are volume-renderings of vox-
elized surface geometry.

sound cancellation for chosen frequencies. For a standing wave, no change in the
valley can be observed, as its nodes are stationary complexes.
In order to give a spatio-temporal insight into what happens in a simulated

room, nodes at different time steps can be accumulated as shown in Figure 4.9.
To allow for volume-renderings and to facilitate different operations on this sur-
face set for multi-field visualization purposes, we perform mesh voxelization on
all individual surfaces, see Appendix B. While resulting set of voxels may be ren-
dered using volume-rendering approaches and suitable transfer functions, more
interesting results are achieved by the application of boolean operations on these
voxel sets. Intersection operators allow the definition of multi-field features by
highlighting minima that persist over time or selective slicing-plane based visu-
alizations. The obtained visualizations show that regions far away from surface
positions maintain high amplitudes over the whole oscillation cycle, while cer-
tain inner regions maintain a low amplitude throughout the whole cycle. Our
three-dimensional depiction of these minimal structures allows the detailed in-
spection of inner wave structures, while reducing the amount of visual clutter
and data that is prevalent in direct scalar- or gradient field visualization. Analy-
sis of low amplitude regions over time allow optimization of room layout to avoid
the appearance of undesired amplitude minima at listener positions. This is an
advantage of time-varying valley surface extraction that is hard to achieve using
conventional sound visualization techniques.
The stationary view of the same field is depicted in Figure 4.10, where extraction
was performed directly on the amplitude values of the complex pressure field, thus
giving an impression of where maximal amplitudes over time are minimal. In a
standing wave, a stationary minimum surface of zero amplitude corresponds to
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Figure 4.9.: Accumulated surfaces for 169 Hz with high reflection coefficients ren-
dered as transparent surfaces. Valley surfaces are colored by time-
step. Distinct regions of non-zero amplitude are found near corners
of the simulated room. The resulting surface meshes can be rendered
directly or be voxelized for volume rendering and boolean operations.
Bottom row shows slicing plane and persistent minima obtained from
surface voxelization.

wave-nodes. From an application side, this conveys important information about
noise cancellation and wave topology. To give an impression of point distribution
and mesh adaptivity, we render surface points as circles scaled according to the
neighborhood radius used during seeding. Circles are colored according to size.
Figure 4.11 displays the same situation for 137 Hz. We map different values to
color to further emphasize properties of the valley surfaces. A manifold valley
surface extraction in the l-shaped room example for 85.8 Hz is given in Figure
4.12 and compared to standard direct field visualization methods. It can clearly
be seen that isovalue based methods do not capture all minima, as scalar values
of minima can vary over the range of the data set.

Our results prove that analysis of simulated acoustics can benefit greatly from
the use of valley surface visualization. The spatio-temporal visualization tech-
nique, for example, allows a target driven optimization of room acoustics if ap-
plied to different frequency bands. In acoustic design, localizing regions with low
sound amplitude in both moving and stationary waves is essential for auditorium
layout. With the corresponding simulation techniques, minima extraction may
serve acoustic engineering in larger environment such as concert halls medium fre-
quency ranges as well. The combined display of multiple fields in spatio-temporal
visualization and in phase-based color coding further aids the understanding of
field properties.
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Figure 4.10.: Non-manifold mesh for a stationary view at 169 Hz. A non-manifold
surface of minimal amplitude separates anti-nodes of the pressure
field. Visualization techniques include point glyphs (left), direct
mesh rendering (middle) and volume rendering of voxelized geome-
try (right). Color is mapped to curvature magnitude.

Figure 4.11.: Non-manifold mesh for a stationary view at 137 Hz. Part of the
final surface triangulation with curvature dependent triangle sizes is
shown, indicating a merging of triangulation fronts. Color mapping
of amplitude values shows that the amplitude on most parts of the
valley surface is virtually 0.

4.5.2. Evaluation

Figure 4.13 shows a comparison of a common grid-based extraction technique to
our approach. The grid-based result is obtained from a modified version of the
Marching Cubes based surface extraction with eigenvector orientation according
to [KTW06] that operated on a tetrahedral mesh directly. Compared to our
approach, it does not extract branching regions as seen in Figure 4.18 (b) and
is not curvature dependent. For better comparison, we used the same curvature
approximation technique in both cases, namely quadratic Moving Least Squares
fitting. However, computation times of our approach are usually both higher
due to repeated field evaluation during point convergence and depend directly
on the complexity of the field, as it has an immediate influence on surface point
numbers. Additionally, performance is dependent on the chosen scattered data
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Figure 4.12.: Stationary disconnected valley surfaces for 85.8 Hz. Our region-
growing algorithm extracted approximately 10000 points, giving an
impression of three-dimensional wave nodes. Mesh coloring allows
identification of regions with different phase values. Color on seed-
ing ellipses represents average axis length and indicates refined mesh
structures around highly curved areas. Conventional visualization
methods such as thresholded volume rendering of amplitudes around
0 (right) make it hard to capture and analyze all minima.

approximation method and kernel size. We note that our technique recovers
all true valley surface parts, while the grid-based approach creates false surface
segments, by connecting independent valley points if different valleys cross the
same cell of the mesh and is especially prone to noise in scalar field values.
The creates additional surface parts have to be considered noise and need to be
removed in a post-processing step. This difference becomes more obvious in noisy
data sets as illustrated in Figure 4.14.

Figure 4.13.: Result of grid-based valley surface extraction with orientation crite-
rion from [KTW06] and our approach (right). Our approach shows
accurate boundary representation and uniform curvature dependent
particle distributions, leading to a well-conditioned final triangula-
tion.

Changing the influence of curvature on edge sizes during seeding facilitates
easy control of mesh resolution prior to extraction as shown in Figure 4.16. Low
resolution meshes show rough edges (see Figure 4.18 (a)) and may incorrectly
merge different valley surface structures in case of unbounded edge lengths as seen
in Figure 4.17 for a synthetic sinusoidal data set, while offering a way to quickly
compute and identify valley structures. This fact is utilized for interactive surface
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Figure 4.14.: Original valley surface and valley surface cores resulting from the
addition of (5% and 10%) synthetic noise. Geometry of surface
parts with low curvature magnitude indicated by color mapping is
affected more strongly than parts with high curvature magnitude.
A comparison to marching-cubes based surface extraction in the
highly noisy case reveals differences in small scale noise caused by
false positives and negatives during linear edge interpolation.

creation and refinement as described in Section 4.3.1.7. Figure 4.15 demonstrates,
how interactive growing of low-res surfaces and subsequent refinement may be
used for selective data exploration. The localized nature of these operations
allows interactive update of the valley surface.

Tables 4.1 and 4.2 present computation times for a selection of mesh accu-
racy settings. The shown computation times were measured on a 2.16 Ghz Intel
Core 2 Duo with 4 GB memory for the manifold extraction scheme. Tracing
of accurate slope lines in the data sets increased computation times by a factor
of approximately 5 due to repeated field evaluation during line integration. We
observe that lod settings have a noticeable impact on mesh extraction times and
mesh quality, whereas increasing the convergence parameter ǫ decreases the num-
ber of iterations performed during Newton iteration and therefore computation
times but does not have a noticeable impact on mesh properties, as long as the
value of ǫ is sufficiently close to 0. To compare the performance of the standard
Newton iteration procedure to our proposed analytical minimum finding method,
we have conducted the same computations with both methods (see Table 4.2).
As expected, the analytical method profits from polynomial approximation and
increases speed of convergence. To evaluate accuracy of the final surface, we
compare surface mesh normals with ridge normal as computed by a difference
quotient approximation of (4.3). While the resulting average normal deviations
as listed in Table 4.3 do not provide information about the correctness of point
locations of the extracted surface (this is guaranteed by choice of ǫ), it gives an
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Figure 4.15.: Our surface growing approach allows selective surface construction
and refinement. This facilitates interactive and progressive surface
construction. Left two columns show user guided surface growing,
right column shows interactive surface refinement of a surface color
coded with phase. In the given example, the user is provided with a
view-aligned cylindrical selection tool to mark regions for refinement
or growing. Visual highlighting of selected regions is performed by
OpenGL stencil-buffering.

Data set high res medium res low res

L-shape 112s 4780 pts 66.8s 3040 pts 56.4s 1760 pts
137Hz 48s 4270 pts 15.9s 1310 pts 12.2s 880 pts

Table 4.1.: Extraction times and point numbers for different levels of detail using
ǫ = 1e−8 and constrained Newton iteration for the examples shown in
Figures 4.11 and 4.16.

insight into correct surface meshing and connectivity. The obtained values con-
firm that the extracted meshes are highly parallel to the true ridge surfaces. In
cases of noisy data sets, surface quality is reduced due to less accurate curvature
and ridge normal computations.

4.6. Summary and Discussion

We have introduced a new method for the mesh-free extraction and triangulation
of valley and ridge surfaces that is able to create curvature adaptive non-manifold
structures. For this purpose, we have analyzed the behavior of derived eigenvec-
tor and gradient fields, which allows extraction of maximal convexity ridges.
The presented results show an improvement over the state of the art, as they
allow accurate extraction of such features in scalar fields with arbitrary neigh-
borhood structure. Moreover, the expressiveness of our approach in practical
applications was pointed out in frequency-dependent complex valued pressure
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Figure 4.16.: Various versions of the same valley surface structure are obtained by
varying the lod parameter. From left to right: low, medium and high
resolution. Neighborhood icons colored by average axis length and
surface triangulation show a significant decrease in point number
and density around highly curved areas, as lower levels of details
are chosen.

Data set high res medium res low res

L-shape 19s 2000 pts 12.5s 1300 pts 12.1s 1000 pts
137Hz 25s 2900 pts 13.6s 1700 pts 5.9s 700 pts

L-shape 31s 2000 pts 20s 1300 pts 16s 1000 pts
137Hz 27s 2900 pts 15s 1700 pts 6.5s 700 pts

Table 4.2.: Extraction times and point numbers for the examples shown in Fig-
ures 4.11 and 4.16 for different levels of detail using ǫ = 2e−4 with
quadratic minimum finding (top rows) and constrained Newton iter-
ation (bottom rows).

fields from acoustic simulations. The extraction of node structures in these fields
has proven to convey important and insightful information in both stationary
and periodic time-varying cases. Amplitude and phase fields are conveyed by a
combination of feature extraction and color coding. Furthermore, we show how
the visualization of a set of periodic scalar fields by valley surface operations can
help in understanding the time-varying behavior of the system. These multi-
field visualization methods are based on components of the complex scalar field
and are able to show features in amplitude and phase fields and can provide
a spatio-temporal display of the time-varying system. For the visualization of
multiple-fields in time-varying sound simulations, voxelization techniques help to
perform binary operations on sets of single-field features and are able to yield
occlusion-free multi-field visualizations.
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Figure 4.17.: Top row: Standard cell-based surface extraction and extraction with
our method and appropriate level-of detail. For an appropriate
choice of level-of-detail, valley surface meshes created by mesh-free
and cell-based surface extraction are identical in noise free datasets.
Bottom row: For inappropriate choice of level-of-detail, neighboring
particles converge to different valley surfaces, resulting in jagged and
ill-conditioned surface meshes. Coloring corresponds to curvature
magnitude.

Data set high res (+ 5% noise) low res (+ 5% noise)

169Hz 0.121◦ 0.176◦ 0.123◦ 0.177◦

137Hz 0.048◦ 0.14◦ 0.067◦ 0.142◦

Table 4.3.: Accuracy of surface approximation reflected as average deviation be-
tween mesh normal and ridge normal for points on the surface mesh
(ǫ = 1e−6). As expected noise and reduction of surface resolution have
a negative influence on surface accuracy.

One topic of future research is the automatic detection of bifurcations, i.e.
events where the wave structure changes when sliding through the time or fre-
quency range. Another interesting question is the possible parallelization and
accurate porting of mesh-less algorithms to the GPU.
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(b)(a)

Figure 4.18.: (a) As the resolution of surface extraction is decreased, curved areas
start showing edge artifacts due to the lack of curvature adaptiv-
ity and increased edge lengths. Phase color-mapping shows a clear
transition between regions on the surface corresponding to differ-
ent phase values. (b) Stationary mesh for 137 Hz with triangulated
non-manifold regions color coded by phase. A zoom into a relevant
region shows mesh elements created by the ribbon-triangulation pro-
cedure.



5. Strain in Flow Fields

The impact of tensorial measures and strain on flow analysis is often underes-
timated in the field of flow visualization. However, the increasing popularity
of Finite Time Lyapunov Exponent maps in flow visualization emphasizes the
importance of such strain measures, which is confirmed by a variety of research
results that have been published on efficient extraction and visualization of FTLE
maps and corresponding LCS [GGTH07, GWT+08] in the last years.
These techniques build upon the fact that mixing processes form a part of flow

simulations that are of direct significance to practical applications. The quality of
mixing performed in a flow field is an abstract measure that is hard to capture by
a single feature definition. While local properties of the flow such as divergence
are fast to compute, they do not give an insight into the overall behavior of the
field. Strain measures, however, may be combined to represent a more global
view of the mixing process.
In the following sections, we present a new method for the efficient and accu-

rate computation of flow induced strain and show its use in grid-less time-varying
vector fields. This method examines deformations of infinitesimal particles by in-
tegration of strain tensors along individual integral lines of flow fields rather than
relying on flow maps created by the advection of multiple neighboring particles.
The created visualization techniques for time-varying integral lines do not only
convey strain magnitude, but strain directions and anisotropy as well. Therefore,
expressiveness of the resulting strain tensors includes the notion of FTLE maps
and allows conclusions about convergence and divergence in flow fields.
While FTLE-like measures have been applied to a number of application fields

for flow simulation such as aerodynamics and industrial mixing, we present how
this flow induced strain analysis can help examine geophysical flow data. The
evolution of strain and development of material anisotropy in mantle flow fields
convey important information about geophysical properties of underlying geom-
etry. We compute time-varying strain vector fields that build the foundation for
a number of feature extraction and visualization techniques. The proposed field
segmentation, clustering, histograms, and improved multi-volume visualization
techniques facilitate a simpler and more intuitive understanding of strain in such
flow fields, than provided by previous methods such as 2D line plots and slicing.
We present applications of our approach to both an artificial time varying flow
data set and a real world example of stationary flow in a subduction zone and
discuss the challenges of processing these geophysical data sets as well as the
insights gained.
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In the following sections we first introduce the concept of strain advection
along individual integral lines and present numerical challenges before introducing
a concrete application where we use the resulting concepts and definitions for
segmentation and analysis of geophysical mantle flow data.

5.1. Strain Advection

For the computation of FTLE maps [GGTH07], a set of neighboring particles
is traced through the flow field for a finite amount of time. The gradient of
the resulting flow map conveys important information about the convergence
and divergence of these particle trajectories [Hal01]. We propose techniques for
the accurate computation of similar continuum deformations by accumulation of
strain tensors along individual integral lines, as illustrated in Figure 5.1. In the
following sections we make use of the notion that second-order square tensors
are able to represent strain information in the form of volume deformations as
stated in Chapter 3, and detail the computation of localized strain tensors along
individual integral lines.

Figure 5.1.: Flow map computation for FTLE generation is based on particle
set advection (left). For small particle neighborhoods, a comparable
notion of deformation can be obtained by strain accumulation along
a single particle trajectory (right).

5.1.1. Computation

In order to simplify notational and algorithmic complexity, we restrict the de-
scription of strain advection in the following to individual particle traces, i.e.
strain along a stream- or pathline as investigated in the context of Eulerian flow
fields in [AD85] or for stationary vector-fields in [Obe08], before presenting novel
generalizations to sets of particle traces in the form of fully adaptive streaklines.

5.1.1.1. Strain Accumulation

Given a sequence of discrete positions [x(t0), x(t1), ...] along a particle trace, the
deformation tensor D defining the mapping from an initially spherical particle
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neighborhood at x(t0) to a deformed shape at x(t) = x(ti+1) is computed by
accumulation of strain information along the particle trace:

Dx0
(t) =

(

i
∏

j=0

exp(S(x(tj)) · (tj+1 − tj))

)

·Dx0
(0) (5.1)

with an initially isotropic shape or neighborhood model Dx0
(0) = I. The relative

displacement tensor of the field at x(tj) is S(x(tj)). The change in shape over
an interval [tj , tj+1] along the trace [x(tj), x(tj+1)] is captured by the matrix
exponential exp(S(x(tj) · (tj+1 − tj))), as defined for a general matrix A by

exp(A ·∆t) =

∞
∑

i=0

1

i!
Ai ·∆ti (5.2)

corresponding to the solution of the concrete linear ODE

dDx0
(t)

dt
= S ·Dx0

(t) (5.3)

with Dx0
(t0) = I. This mathematical relation is depicted in Figure 5.2.

In the following, we briefly show how the flow Jacobian is used as a linearization
of this notion along streamlines. As the Jacobian describes relative displacement
with respect to the canonical directions, it keeps all information necessary to
observe rotating or shearing deformations.

v
0

v
1

s(t)

s(t+Δt)
v(s(t))

Figure 5.2.: Illustration of transformation of neighborhood vector for Euler-
integrated integral line.

Given a differentiable velocity field v : Rn → R
n and a streamline s : I ⊆ R→

Rn, the flow Jacobian J ∈ Rn×n on s describes transformation of neighborhoods
along s. A vector v0 ∈ Rn at s(t) ∈ Rn is transformed into v1 ∈ Rn at s(t+∆t) ∈
Rn by the mapping:

v1 = v0 + (J(s(t)) · v0) ·∆t (5.4)

For non-adaptive, Euler-integrated streamlines ∆t = 1 holds for two subse-
quent points on the streamline, since each step of integration advances the stream-
line by v(s(.)), see Figure 5.2. This equation describes a first order approximation
or linearization of the flow field at s(t). To extend this vector mapping to a in-
finitesimal neighborhood around positions on s, we make use of tensor notation.
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Representation of a number of vectors wi ∈ Rn defined in the neighborhood of
a point as a tensor with columns corresponding to wi

Dn×n =



w1 . . . wn



 (5.5)

allows simultaneous transformation of multiple vectors and application of (5.4)
to a local neighborhood:

D1 = D0 + (J ·D0) ·∆t

⇔ D1 = (I + J ·∆t) ·D0

⇔ Dn+1 =
n
∏

i=0

(I + Ji ·∆t) ·D0

⇔ Dn+1 =
n
∏

i=0

(

1
∑

j=0

1

j!
J j
i ·∆tj

)

·D0

As expected, this equation contains a linearization of (5.2). The deformed
volume at step n is therefore defined by the initial tensor and an accumulation
of all transformations prior to step n. Consequently, strain accumulation along
n segments of an integral line requires multiplication of n square matrices. It
is important to note that the use of the Jacobian, i.e. the matrix of first order
spatial derivatives, for this form of strain computation in time-varying fields
requires ∆t << 1 and low turbulence with respect to time in order to avoid
approximation errors. Otherwise, derivation with respect to time is required.

5.1.1.2. Multiplication Scheme

After line integration and construction of the sequence of displacement tensors
Mi := (I +∆t∇v), they need to be accumulated to describe a univariate defor-
mation along the integral line. We present a product length based matrix mul-
tiplication scheme to both reduce the resulting numerical errors and the space
needed for matrix storage. A simple example of the general multiplication idea
is shown in Figure 5.3. Compared to the canonical approach, the multiplication
graph shown has a multiplication depth of O(logn) rather than O(n), therefore
reducing the accumulated multiplication error. As prior tensor data is constantly
updated by matrix-product information results during the multiplication process,
storage usage is optimized.
For a given sequence of n matrices, we construct an array of size n of sorted sets
Si of quadruplets. Such a quadruplet holds the following information:
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Figure 5.3.: Matrix multiplication scheme showing direction of multiplication,
storage target and indices of accumulated tensors.

i position in matrix sequence
start lowest index of matrix in product
end highest index of matrix in product
length length of product

The initial distribution of quadruplet sets in the array for the given example
is: [{(0, 0, 0, 1)}, {(1, 1, 1, 1)}, {(2, 2, 2, 1)}, {(3, 3, 3, 1)}, ...]. Sets in the array are
sorted by the length parameters of their members. The multiplication scheme
works as shown in the following pseudo code:

1: while ∃ quadruplet k, k.start 6= 0 do
2: for each quadruplet i do
3: j = first quadruplet of Si.end+1

4: if isMinSum(i.length + j.length) then
5: Mj.i = Mj.i ·Mi.i

6: Remove quadruplet j
7: Insert l = (j.i, i.start, j.end, j.length + i.length) into Si.start

8: end if
9: end for

10: end while

This scheme guarantees in every step that the pair with lowest total product
length is multiplied and therefore reduces the depth of the multiplication tree
to a minimum. While this leads to an increased number of matrix multiplica-
tions, compared to the straightforward approach, it avoids excessive accumula-
tion of multiplication errors. Constant complexity due to mapping and queuing
of quadruplet sets ensures that the computational overhead produced by the
quadruplet data structure stays on a minimum.
Example of the scheme for a sequence of four tensors:

{(0, 0, 0, 1)}, {(1, 1, 1, 1)}, {(2, 2, 2, 1)}, {(3, 3, 3, 1)}
{(0, 0, 0, 1), (1, 0, 1, 2)}, {}, {(2, 2, 2, 1)}, {(3, 3, 3, 1)}
{(0, 0, 0, 1), (1, 0, 1, 2)}, {}, {(2, 2, 2, 1), (3, 2, 3, 2)}, {}
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{(0, 0, 0, 1), (1, 0, 1, 2), (2, 0, 2, 3)}, {}, {}, {(3, 2, 3, 2)}, {}
{(0, 0, 0, 1), (1, 0, 1, 2), (2, 0, 2, 3), (3, 0, 3, 4)}, {}, {}, {}, {}

This scheme is suitable for long particle traces as well as large sets of compar-
atively short particle traces, as created by adaptive line integration.

5.1.2. Strain Along Streaklines

Streaklines are connected sequences of particles released in a time-dependent flow
field. Rather than representing the trace of an individual particle, they consist
of a set of particles that follow different pathlines, as illustrated in Figure 5.4.

p
0

p
0

Figure 5.4.: For identical seed points p0, pathlines (left) and streaklines (right)
may vary substantially in the same flow field. Particle-traces for
individual particles on the streakline are pathlines shown in gray.

While the mathematical foundation of strain deformation stays the same as
with pathlines, the scheme of matrix-accumulation changes in adaptive streak-
lines. The sequence of tensors needed to define a particle deformation is in prac-
tice obtained by following a discrete particle through time and accumulating its
Jacobians. As accuracy requires the generation of adaptive streaklines, leading to
the insertion and removal of particles during line advection, not all particle-traces
have the same length.

Particles which are created at the streakline seeding position start with an
initial tensor as used in pathline strain accumulation. Tensor traces of deleted
particles simply end, if the particle is deleted. Special care has to be taken
while processing traces of particles, that were inserted during adaptive streakline
generation. As initializing these particle traces with an identity matrix leads
to inconsistent deformation information, a pre-deformed initial state has to be
approximated from the deformation data present in the streakline. For this mat-
ter, we interpolate this initial state from tensor data available at neighboring
particles:

T r
0 = (1− w)T r−l1

p + wT r+l2
q

where r is the index of the newly inserted particle. The particles r − l1 and
r + l2 are the nearest left and right neighbors, that have not been inserted in
this time step (i.e: p, q > 0). T0 is calculated by euclidean distance based linear
interpolation of the two accumulated tensors. Componentwise interpolation of
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tensors is the most basic way of constructing intermediate tensor representations.
If a consistent interpolation of eigenvector directions is desired, intermediate ten-
sors can be constructed by more complex interpolation schemes [HSNHH10]. The
tensor accumulation scheme is restricted to one time step in the stationary case
and is therefore only required to evaluate one matrix sequence. In addition to
the increased need of memory, a streakline occupies multiple time steps and pro-
duces a large amount of comparatively short tensor sequences for recently seeded
particles.

5.2. Related Work

Work related to the scope of this chapter can be found in two different areas.
The first set of related work originates from the field of visualization and is
centered on visualization of vector and tensor fields and is in parts related to
strain analysis. The second field is related to geophysics, where certain basic
techniques are utilized for visual analysis of flow data. Even though the focus of
papers from the latter set is mostly not on expressive visualization techniques of
geophysical properties, but on geophysical analysis, we list them to provide the
means of a comparison to common visualization techniques in this application
area.

5.2.1. Visualization

Local flow properties such as velocity or divergence can be mapped to the radius
of integral flow lines to produce streamtubes [USM96]. Other line-based defor-
mation approaches visualize local magnitudes such as angle of rotation to ribbon
like structures known as streamribbons [USM96]. A method that uses deforma-
tions of spheres to display local data along streamlines was presented in 1994 by
Brill et al. [BHD+94]. However, these mapping methods are usually applied to
local information of the field and do not incorporate univariate functions such
as accumulated deformation along an integral line. We show how this can be
achieved with glyphs in stationary and time-dependent datasets. Since the work
of Haller [Hal01] strain magnitude is widely regarded as suitable quantity to rep-
resent hyperbolicity in flow fields. These regions of extremal strain are commonly
visualized as extrema in the FTLE field [GGTH07]. In contrast to our work, these
visualizations do however not convey strain direction and are computed on sets
of trajectories rather than on single integral flow lines. In the last years, strain
segmentation has received increased attention in vector field visualization by the
definition of various Eulerian and Lagrangian strain measures, which have been
used to segment flow fields into strain and vortex regions based on the magni-
tude of these components [SWTH07]. Related research in tensor field visualiza-
tion and Diffusion Tensor Imaging in particular [ZMB+03, STS07, RJF+09], uses
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anisotropy clustering based on tensor invariants with varying distance measures.
For a state-of-the-art report on volume visualization we refer to [EHK+04].

5.2.2. Geophysics

In geophysics, analysis of Lattice Preferred Orientation or grain orientation [ZK95]
obtained from mantle flow simulations of subduction zones [JB10, WSMG06] is
commonly performed by manual inspection of generic visualizations resulting
from techniques such as slicing and arrow plot visualization [JB10] of instanta-
neous Infinite Strain Axis directions [JB10, KR02]. While these visualization
methods are generally available and easy to implement, they suffer from loss of
dimension and lack a homogeneous field impression. The need of manual param-
eter adjustment such as slicing plane orientation and position favors overlooking
of features during visual inspection.
A first attempt at computing and interpreting grain orientations from time-
varying flow simulations was done in [MvKK02] by the integration of strain along
particle tracers. The resulting two-dimensional strain orientation field is visual-
ized using line plots and temperature based coloring and serves as basis for further
manual analysis and segmentation. Work with focus on visualization of geophysi-
cal flow with analysis of heat and critical point development is given by [EYD02].
A natural two-dimensional watershed-like visualization of grain orientations is
given by optical micrographs with polarized light [ZK95] and is the result of pho-
tographing physically sliced material samples in lab experiments.

5.3. Strain Field Analysis

In the following, we introduce the presented technique to the visualization com-
munity by performing flow induced strain computation to construct a dense strain
field in geophysical flow and present techniques for efficient flow analysis.

5.3.1. Motivation

Geophysics suffers from a lack of specific visualization techniques and requires the
definition and development of alternative and tailor-made visualization methods.
In geophysics, movement of our planet’s inner structure is approximated by flow
simulation of large sections of the Earth’s mantle with high viscosity at varying
temperatures. Not only is viscosity highly different from what is usual in other
domains of flow simulation, but the same holds for time-scales. To be able to
observe significant movements, time-scales of up to several thousand years have
to be considered. As the point of interest shifts away from classic flow field illus-
tration such as integral structure and vortex core extraction towards visualization
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of more general continuum mechanics, applicability of generic flow visualization
techniques is rather limited. In the concrete application of geophysics, we are
concerned with upper mantle flow in zones, where tectonic plates sink into lower
regions of the Earth’s mantle when converging towards each other (see Figure
5.5a). These subduction zones are of high importance to geologists and subject
to intensive seismic analysis. While flow simulation models used in geophysics
commonly provide users with a multitude of information on flow direction, tem-
perature, viscosity and stress tensors, the obtained stress and strain values play a
major role in the visual analysis of mantle properties, as they convey important
information about seismic anisotropy and material alignment.
Our work aims at improving three-dimensional analysis of strain orientation in

subduction zones by integrating a combination of feature extraction and field pro-
cessing techniques with novel methods of strain segmentation and visualization.
As a consequence, our work contributes both to the application field of geo-
physics by providing an intuitive and interactive visualization for flow induced
strain analysis as well as to the visualization community by introducing novel
methods for non-directed strain axis field segmentation, cluster visualization and
selective multi-volume visualization of scalar fields.

5.3.2. Strain in Geophysical Flow Data

Subduction zones are seismically active regions of the upper mantle, where dif-
ferent tectonic plates meet. Over time-scales of millions of years rocks within the
Earth deform viscously and flow like a fluid. Convection as the main force causing
movement of tectonic plates is caused by heat emission of the core, radioactivity,
and cooling effects present in subduction zones.
One of the main challenges of modern geophysics that is related to the Earth’s

interior is the inability to directly measure mantle flow direction and magni-
tude. The availability of such flow characteristics in response to subduction slab
movement can provide important information about rheology of mantle rocks,
composition of the mantle, and interplay between mantle flow and properties of
tectonic plates [Bil08].

5.3.2.1. Background

In geophysics, the analysis of mantle flow pattern and preferred material align-
ment are closely related, as one observation can be used to approximate properties
of the other.
In contrast to mantle flow directions, the preferred material alignment direc-

tions can be obtained directly from seismic measurements. Geophysical measure-
ments of seismic wave propagation in the Earth’s mantle can be used to infer
the alignment of crystals of seismically anisotropic material and approximate di-
rection of mantle flow patterns. As polarized seismic waves arrive at sensors at
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different times depending on the bulk alignment in the mantle, observed differ-
ences in the propagation speed allow computation of the fastest seismic axis in
regions of the mantle. Geographical plots of these fast-axes serve as approxi-
mation of mantle flow directions [RS94]. In general, such seismic anisotropy is
caused by deformation occurring in the upper mantle and causes the creation of
preferred orientations in the crystal lattice.
Direct measurement of mantle flow direction is generally not possible and re-

quires the use of numerical simulations instead. Numerical simulations of mantle
flow and the analysis of accompanying material orientation patterns allow geo-
physicists to predict seismic wave propagation properties caused by earthquakes
or artificial sources. Consequently, the relationship between deformation, mantle
flow, and material alignment is of central interest in geophysics. This relation-
ship depends on a number of other factors as pointed out in [KJKS08]. When
neglecting microscopic influence on material orientation such as recrystallization,
these directions of preferred alignment may be approximated by deformations
caused by macroscopic external forces such as strain induced by the flow field
[WSMG06]. As significant shearing or anisotropy is required to cause detectable
material alignment, the magnitude of stretching is an important quantity as well.
Conventional visualization methods used for mantle flow and material align-

ment analysis in geophysics have limited previous studies, as they generally do
not allow semantic linking of seismic lattice preferred orientation with numerical
simulations of mantle flow in a three-dimensional setting. Consequently, most
studies have made simplifications and focused on two-dimensional map slices or
cross sections of the stretching directions (see Figure 5.6), ignoring inherently
three-dimensional effects, or interpreting only large-scale patterns [CBS07, JB10,
MvKK02].
During data set analysis, geophysicists have to identify regions with different

strain orientation as well as regions with high anisotropy manually to make esti-
mations about predicted seismic wave propagation. The inevitable requirement
of manual plane alignment as well as visual ambiguities and clutter resulting from
common visualization methods based on slicing complicates data set analysis. We
aim at developing methods to assist and support geophysicists in their analysis
of seismic anisotropy and mantle flow. Consequently, the proposed visualization
methods presented in the next sections mainly rely on the data provided by the
velocity vector field and the accompanying stress tensor data.

5.3.2.2. Data Format

Mantle flow simulation data in this work is given on an irregularly spaced curvi-
linear grid in a geographic coordinate system and represents mantle flow in a
small section of Earth as seen in Figure 5.5a. For computational reasons, we
transfer this geometric data in a pre-processing step from locally rotated geo-
graphic coordinate systems to a global Cartesian coordinate system according to
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Figure 5.5.: (a) Two-dimensional illustration of possible data set locations in ge-
ographic coordinates. One section of the data set contains a subduc-
tion zone in the upper mantle.
(b) Point transformation is performed before cell-wise interpolation.
This avoids incorrect cell identification and allows interpolation in
geographic coordinate space.

standard coordination transformation rules. The neighborhood relation between
data points is not affected by these mappings. Cells of the data set are identi-
fied by indices (i, j, k) with irregular spacings in longitude, latitude and radius
direction. To guarantee correct cell identification and avoid errors that would
occur when evaluating field values in the now distorted neighborhood grid, po-
sitions during field evaluation in R3 are mapped back into the curvilinear grid.
The correct surrounding cell of the evaluation point is subsequently identified by
binary search in the grid intervals of longitude, latitude and radius as illustrated
in Figure 5.5b. Cell based interpolation is performed in local geographic space.

Figure 5.6.: Currently used slicing techniques in geophysics are able to show flow
direction and magnitude by color coding (hue space) (left) and grain
orientation (right).

5.3.3. Strain Field Computation

The general notion of a strain field as used in this work is that of a vector field
whose orientation corresponds to the direction of main deformation of Lagrangian
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particles. To compute this deformation, we release isotropic particles at regions
of inflow and deform them along their path according to strain in the flow field as
introduced in a previous section. The strain direction is then computed from the
resulting anisotropic shapes. These strain axes approximate preferred material
alignment in geophysics caused by macroscopic external forces.

Simulations of the geodynamic model commonly return flow, temperature, vis-
cosity and symmetric stress data. The stress-strain relationship of non-Newtonian
fluids is non-linear, and strain at different stress levels exhibits varying behavior
such as viscous or plastic deformation. If the model of stress-strain relationship
is known, the strain rate tensor field can be accurately obtained from the input
stress field and given viscosity, which lie around 1020 Pa · s for rock deformation.
In current geophysical simulations, a viscous flow model is assumed.
In a more general case, the infinitesimal strain rate tensor may be computed by
decomposing the velocity gradient of the flow field into a rotational antisymmet-
ric and a symmetric part. For a three-dimensional vector field v : R3 → R3, the
velocity gradient may be approximated by finite differences and decomposed into
the strain tensor and rotation tensor as defined in Chapter 3.

Once the data set is mapped to Cartesian coordinates, we perform strain anal-
ysis with a desired level of detail according to the following steps:
A uniform three-dimensional Cartesian grid with a user specified voxel resolution
is imposed on every time step of the data set. In time-varying data sets pathlines
are integrated such that every voxel in 4D is traversed at least once. Particles
traveling along these integral lines are subject to strain forces and thus change
from a spherical to a deformed shape. The main axes of these strain ellipsoids de-
fine an orientation field that approximates material directions at arbitrary points
in time of the flow simulation. We subsequently segment the resulting strain
axes field using different techniques to highlight distinct strain regions. Details
on these segmentation steps are given in later sections.

5.3.3.1. Uniform Discretization

Geological data sets usually contain a large number of data points and field types
to capture a meaningful section of the Earth’s mantle. As our time-varying strain
mapping method requires that every cell of the final strain field grid is traversed
by at least one pathline, we let the user choose a resolution for this discretization
to reduce computational complexity and support interactivity. Thus, we assume
in the succeeding sections that the data set is superimposed by a Cartesian grid
of l ×m × n voxels vi per time step t. Resolution of the final strain orientation
field is bound to the resolution of this discretization step, i.e. strain orientations
are given per voxel by evaluation of the strain direction of the particle closest to
the voxel center in space and time.
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5.3.3.2. Pathline Integration

Strain orientation at a given point p in space and time is computed by accumu-
lating strain information along a particle path that ends in p. As our method
produces strain orientation values per voxel similar to other image based visual-
ization techniques like FTLE, it has to be guaranteed that every four-dimensional
voxel vti is traversed by at least one such particle path. To satisfy this require-
ment, one particle path, i.e. one pathline, is started at the centroid of every voxel
v0i and integrated with an adaptive 4th-order Runge-Kutta integrator [TGE97]
until it leaves the data set or reaches the last time step. During traversal voxels vti
are marked with the line and position index of the pathline, if a four-dimensional
floating point rasterization [Bre65] of the pathline crosses the voxel.
New pathlines are started at all unmarked vti and integrated in forward and back-
ward direction. After this stage of the algorithm, every voxel is traversed by at
least one pathline. Furthermore, every voxel knows the index of the traversing
pathline as well as the closest preceding discrete position on that line as illustrated
in Figure 5.7.
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Figure 5.7.: Illustration of two-dimensional line rasterization. The highlighted
cell knows line (0) and position index (3).

5.3.3.3. Orientation Field Computation

Let ptx : R → R3 denote the pathline with starting position ptx(t) = x. Under
the assumptions that a pathline pt0x0

crosses a given position xt at time t and
that initial particle shapes are isotropic, strain orientation at xt is defined as the
direction of the major axis of the deformed particle at pt0x0

(t) = xt.
Again, length and direction of the major axis of the deformed neighborhood

Dt0
x0
(t) at xt are given by the square root of the maximum eigenvalue and the

corresponding eigenvector of Dt0
x0
(t)T ·Dt0

x0
(t).

Based on these definitions and the information collected during particle tracing,
it is feasible to compute the desired strain axis orientation field for arbitrary time
steps. Values of the desired strain axis orientation field are computed at the
center of every voxel vti by evaluating (5.1) at the closest point on a pathline
that crosses this voxel and interpolating it in a nearest neighbor fashion. The
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direction of the major axis represents our strain axis orientation at vti , magnitude
of the field corresponds to the largest eigenvalue of DT ·D.

5.3.3.4. Stationary Strain Fields

Unlike the Lagrangian strain analysis presented in the preceding sections, geo-
physicists often simplify grain orientation computation by analyzing instanta-
neous strain distributions. Further reasons to work with stationary flow fields
are the large time-scales as well as missing availability of time-varying data sets.
The concept of infinite strain axis analysis [KR02] facilitates local strain axis
computation that successfully approximates a complicated Lagrangian strain ad-
vection in many real world situations. Thus, the instantaneous strain orientation
field is calculated as a local approximation of the asymptotic major axis of the
strain ellipsoid after an infinite amount of constant strain.
The methods described later in this chapter are suitable for analysis of the re-
sulting infinite strain orientation fields.

5.3.4. Strain Field Segmentation

As the main direction of strain corresponds to expected lattice preferred ori-
entation, strain segmentation in the context of this work focuses on this direc-
tion only [ZTW06], rather than on other tensor properties [LGALW09]. The
set of strain orientations in a given time step defines a non-directed vector field
g : R3 → R3. This strain field contains valuable information about approximated
material alignment and strain states. Seismic analysis is concerned with identi-
fying lattice preferred orientations and deducing appropriate mantle movement.
In the following we present two criteria for strain segmentation to aid analysis of
important grain orientation properties. Positions with non-unique strain orienta-
tions in the case of isotropic deformation are in the following treated as separate
group, i.e. they exhibit maximal dissimilarity to other strain orientations.

5.3.4.1. Orientation Segmentation

To allow analysis of regions of grain orientation discontinuities, we capture rapid
changes in grain orientation or by computing the Frobenius norm of the Jacobian
of the normalized gradient field g∗ = g

‖g‖
:

fo(p) =

√

√

√

√

3
∑

i=0

3
∑

j=0

(

∂g∗i (p)

∂xj

)2

(5.6)

Due to the normalization of g, fo(x, y, z) represents a measure of angular de-
viation of the strain axis field g in a neighborhood of p. Thus, maxima of fo
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describe regions with a sudden change in strain orientation. We approximate the
Jacobian by difference quotients with locally oriented strain axis directions.

The voxel grid together with values of fo creates a three-dimensional scalar
valued image that can be used as basis for domain segmentation. One such
image based segmentation technique is known as watershed segmentation and its
capability to extract locally maximal structures fits our need of feature extraction
[RM00]. To filter small scale noise, we apply an anisotropic diffusion filter [PM90]
to the image contents that preserves prevailing edges while smoothing small scale
noise and perform a watershed segmentation using ITK [ITK05]. As common in
ridge-based segmentation techniques, parameters of this watershed segmentation
allow user-guided definition of minimal ridge height.

The resulting three-dimensional image contains full segmentation information
for a given ridge strength and could be rendered using conventional direct volume
rendering. However, without further processing, these methods are highly non-
interactive and fail to convey important boundary information. A solution to
these issues is the extraction of individual geometric volumes from the watershed
image and is presented in the next section.

5.3.4.2. Alignment Segmentation

A second important property of strain fields is the degree of alignment between
strain and velocity direction. This is especially important in areas, where one
of the two fields is used to derive information about the other, as is the case in
seismic analysis of grain orientations. For this matter, we map g to a scalar field
representing the angular difference between strain and velocity:

fa(x, y, z) = acos

(

|g(x, y, z)Tv(x, y, z)|

||g(x, y, z)||||v(x, y, z)||

)

(5.7)

Segmentation of the range of fa induces a segmentation on the strain field itself.
A segmentation of the strain field with respect to fa is performed by applying
thresholding to the range of fa, thus subdividing the alignment interval [0, π/2]
into smaller segments. In contrast to FTLE visualization, where segmentation
or highlighting of strain magnitude is desired, fa can be used to separate flow
parallel deformation from flow orthogonal regions of deformation. Additional
visualization techniques as detailed in the next section allow incorporation of
classic FTLE visualization techniques into segmented data sets. High values of
fa indicate a strong divergence between strain and flow direction and can serve
as hint how to interpret measured grain orientation in corresponding regions of
the data set.
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5.4. Visualization

Visualization of a strain field requires fundamentally different techniques than
the visualization of individual traces of deformed particles. We present methods
for glyph based individual trace visualization and techniques that allow complete
strain field visualization.

5.4.1. Trace Visualization

When inspecting single particle traces, concrete strain and shape properties are
of central interest. For this reason, we use data provided by accumulated defor-
mation tensors to visualize the shape of implicitly defined volumes along time-
varying integral lines, as previously proposed for strain deformation in stationary
fields [Obe08]. We specify an initial neighborhood shape that is deformed along
particle paths by application of the linear mappings defined by (5.1). The initially
isotropic neighborhood is chosen to be

M0 =



w1 w2 w3



 = r · I

with r > 0 ∈ R, which implicitly defines a spherical glyph S as illustrated in
Figure 5.8.
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Figure 5.8.: Initially spherical neighborhood S is transformed into an ellipsoid.

Matrices Mi, i ∈ {0, ..., n} in the particle trace correspond to a linear mapping
of vectors wj ∈ Rn on this sphere. While Mi is generally not symmetric, the ellip-
soidal shaped resulting from a linear mapping of the sphere are point symmetric.
The resulting ellipsoids can be rendered efficiently by linear transformation of pre-
computed sphere geometry. While these ellipsoids are simple, when compared to
other tensor glyphs [Kin04], they convey most important tensor characteristics
such as anisotropy and major, medium, and minor strain directions. Furthermore,
more complex tensor glyphs tend to quickly lose characteristic shape features
when viewed from a distance.
Besides visualizing strain directions, we wish to quantify the effects of strain

on a given particle. For ellipsoidal volumes in incompressible flow, the deviation
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from an isotropic shape can be measured by computation of the quotient between
axes lengths. As stated in Chapter 3, the Singular Value Decomposition allows
computation of these axes for asymmetric tensors such as the ones generated
during strain accumulation. Singular values of matrices Mn×n correspond to
half-axes lengths of the implicitly defined ellipsoids.
Thus, the quotient between the smallest and the greatest non-zero singular

value is a valid measure of maximal directional anisotropy. This quotient is
directly mapped to hue in HSV space to show anisotropy magnitude, as seen in
Figure 5.14.

5.4.1.1. Finite Integration Lengths

As ω is a direct indicator of the degree of deformation of a spherical volume, a
value close to zero can be used to identify positions in the tensor sequence, where
associated ellipsoids start to degenerate to flat or line-like shapes. Once such
a position is found, subsequent matrix multiplications are redone with a reset
initial tensor M0, thus resizing any subsequent volumes. Whether one chooses
to use this information for resizing is however application dependent, since even
degenerate volumes might deform back to ellipsoidal objects, as long as the tensor
data is valid, i.e. columns of the tensors are linearly independent. If a global finite
integration constant is chosen, logarithms of the resulting strain magnitudes for
a set of integral lines correspond to scaled FTLE values.

5.4.2. Strain Field Visualization

Glyph based visualization method are generally not suited for dense visualization
of three-dimensional data. This insight and the fact that strain field analysis in
the context of this work is concerned with macroscopic field segmentation requires
the definition of alternative visualization techniques.
During strain field segmentation we identified several requirements for visual-

ization of strain volumes. A visualization technique for strain analysis in mantle
flow fields should be able to convey the following properties:

• show strain volume boundaries

• illustrate strain orientation and magnitude

• show relative flow directions

In three-dimensional data sets common challenges in the context of visualiza-
tion are information overload, visual occlusion and clutter. In contrast to common
strain visualization techniques that focus on glyph or hyper-streamline techniques
[HJYW03] to visualize full tensor information, the techniques presented in this
work combine visualization of major strain axis direction and field segmentation.
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We propose visualization techniques to overcome these challenges, while focusing
on depiction of mentioned properties of the data set.

5.4.2.1. Strain Lines

When neglecting field segmentation, the obtained strain field for one instance
in time corresponds to a typical eigenvector field as obtained from tensor data
such as DT-MRI and represents a general non-oriented vector field. Similar to
streamline based visualization, this field type allows extraction of integral lines
along strain directions. To visualize strain directions for a given time step of
the simulation, we integrate a uniformly spaced set of lines Li that are locally
tangential to the direction of strain. These strain lines are then rasterized into
a three-dimensional texture, with opacity and color at a position p = (x, y, z)
defined by

Rgba(p) =









2 · fa(p)/π
0

1− 2 · fa(p)/π
||g(p)|| ·maxi(ω(d(p, Li)))









(5.8)

where d returns the distance between a point and a given line and ω(d) = e−
d2

r2

is a spherical kernel function with constant radius r. A volume rendering of
the resulting three-dimensional strain texture produces pictures comparable to
volume LIC [CL93], where strain magnitude/FTLE values are mapped to opacity
and color to the degree of alignment between flow and strain direction.

5.4.2.2. Multi-Volume Visualization

The distinct regions in image space as obtained by the methods described in
the previous section, are sets of voxels and as such represent geometric volumes
that segment the present data set into separate sections. To visualize both strain
orientations and boundary shapes of segmentation geometry, transparent render-
ing of these volumes is required. Correct rendering of segmentation geometry in
the form of transparent boundary surfaces may be performed by methods such
as depth-peeling [Eve01] or order dependent rendering. However, when com-
bining this visualization with a volume rendering of internal strain orientation,
one quickly runs into problems with respect to correct transparency rendering
[RTF+06]. As a consequence, we propose a multi-volume visualization technique
related to the work proposed in [HBH03] for consistent and interactive rendering
of both internal strain and segmentation geometry based on volume slicing.
A subvolume Vi defines a binary mapping on the data set, classifying individual

voxel centers as interior or exterior, and keeps information about its bounding box
extensions (dx, dy, dz), position pe in R3 and relative position pv in discrete voxel
space (see Figure 5.10a). We store values of this binary map mi : R

3 → {0, 1} as
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three-dimensional mask in the form of alpha values of a RGBA texture, where en-
tries of the RGB vector in the vicinity of volume boundaries represent geometric
normals of the volume geometry, as seen in Figure 5.10a. While masks repre-
senting a disjoint decomposition of the field can be stored in a common texture,
we decide to use separate mask textures to avoid invalid normal interpolations
between neighboring volumes. Bounding-box attributes pe, pv, and d are stored
as separate vectors. Trilinear interpolation on mi yields a representative volume
definition for an isovalue of 0.5.
Utilizing this data and the well-known Marching Cubes (MC) algorithm, we
perform the following steps for slicing-based [EHK+04] selective multi-volume
visualization:

1. Embed volume set into a virtual bounding box to determine sampling dis-
tance and consistent scalar values.

2. Determine view dependent distance values and propagate scalar values to
bounding box corners for MC slicing (see Figure 5.10b).

3. Compute MC slice geometry tj for all volume boxes and isovalue iso =
dmax −∆d.

4. For every tj : pass corresponding volume mask, position and triangulation
data to shader.

5. Repeat from 3. with iso = iso−∆d

Slice geometry for a volume Vi obtained in step 3 is processed in a fragment
shader as described in Algorithm 5.9 with corresponding mask and position data.
Embedding the volume representations (e.g: bounding boxes) into a global con-
text allows consistent propagation of scalar values in step 2. Line 5 of the shader
algorithm ensures that only that part of the slicing geometry which lies within the
corresponding subvolume is drawn, i.e. all geometry and volume information out-
side is clipped by an isovolume [WEE02] in the fragment shader. Isovalue stepping
together with ”z-less or equal” depth buffer testing guarantees view-dependent
and consistent back to front rendering of volumes with correct transparency pro-
cessing, see Figure 5.10c. To highlight region boundaries, volume boundaries
are phong-shaded with pre-computed normals. We note that MC slicing can be
based on an arbitrarily complex geometric representation of the volume to avoid
execution of the shader on redundant fragments, rather than performing it on the
complete individual volume bounding box. Making use of all available texture
units can reduce the number of volume mask texture swapping, and further re-
duce computation times. This novel multi-volume visualization technique allows
arbitrary selection and positioning of individual parts of the volumetric data set,
has the advantage of preventing classic z-fighting issues when using pre-sorted tri-
angulated geometry, and avoids expensive sorting or intersection computations,
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allowing highly interactive framerates.

Figure 5.9.: Pseudo code for pixel shader.

1: EXTERN tex3Dstrain, tex3Dmask, pv, pe, d
2: INTERN fragpos //3d fragment position

3: pos← (fragpos− pe)./d; //position in mask texture
4: maskval ← RGBA(tex3Dmask, pos);
5: if maskval.a > 0.5 —— outsideBB(pos) then
6: discardFragment();
7: else
8: if maskval.a > 0.5− ǫ then
9: phong(maskval.rgb); //shade border of volume

10: else
11: c← RGBA(tex3Dstrain, (fragpos− pe) + pv);
12: drawFragment(c);
13: end if
14: end if

./ denotes component wise division

Interaction As the proposed multi-volume visualization method allows selec-
tive display and transformation of parts of the data set, we implement picking of
single volumes. To realize color based picking in OpenGL, we extract geometric
triangulations of volume boundaries as depicted in Figure 5.11. In contrast to the
multi-volume visualization method presented in the previous section, this geom-
etry is used for fast picking operations only and is not used for final visualization
of the data set.
To provide a clearer look at volume boundaries, we give the user control over

volume positioning by making use of the explosion metaphor, allowing volume
positions to change according to a force driven concept.
Let c0i = ci be the bounding-box center of strain volume i ∈ {1, . . . , n}. Itera-

tive evolution of volume centers is governed by:

ck+1
i − cki = h

1
∑n

j ω(j, i)

n
∑

j

ω(j, i)
(cki − ckj )

||cki − ckj ||

where h > 0 controls explosion step size and ω is a distance based weighting func-
tion. Visual distinction between different strain volumes is aided by color coding.
For non-strongly interleaved volume sets this positioning concept provides bet-
ter views at volume and boundary shapes. In addition to position control, color
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(a)

dmin

maxd

(b) (c)

Figure 5.10.: (a) Subvolumes in the data set define masks, positions in R2

and (static) positions in voxel space p1v = (1/16, 1/16), p2v =
(1/16, 6/16), and p3v = (10/16, 6/16), as indicated by black corners.
3D texture mask stores normal information and binary relation, as
shown for the upper right volume.
(b) View dependent scalar- and isovalue propagation for MC slicing.
(c) Changed positions in R3 still allow correct multi-volume visual-
ization, when consistent slicing is applied. Extracted slice geometry
for one isovalue is highlighted.

Figure 5.11.: Two-dimensional illustration of the steps of geometric volume ex-
traction from a watershed image: 1. Region selection 2. Region
masking 3. Isosurface extraction on the dual grid (resulting isocon-
tour shown in gray).

based picking facilitates manual selection and toggling of volume display. These
approaches allow a clear look at strain volume boundaries both by direct render-
ing of volume geometry, as well as positioning and selection of individual volumes.
Additionally, transparency of volume boundaries is a free, user controlled param-
eter and interactive adjustment of volume transparency does not only give a
clearer look at otherwise hidden volume boundaries due to the reduction of oc-
clusion, but enables the user to have a look at interior properties of the volume
by revealing strain lines.

5.4.2.3. Strain Histograms

While previously presented methods give a localized view of strain orientations, a
more global view of these orientations and their segmentation is desired in strain
analysis as well. An established display method for global segmentation analysis
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in the field of image processing are histograms. Histograms in image analysis
perform interval clustering on the image range to visualize the relative frequency
of certain color or intensity ranges. Fortunately, this form of binning is not lim-
ited to scalar fields, but may be generalized and adapted to higher dimensional
data types such as vector fields. Three-dimensional spherical histograms have
recently been used to illustrate global vector field behavior in time series data
[GJL+09]. We use a similar technique for spherical histogram construction in our
non-directed strain axis field.

Sphere Parametrization Previous histogram methods use a uniform parame-
trization in spherical coordinate space to obtain bin intervals, leading to a high
variation in bin domain sizes. Bin areas around the pole are degenerate and min-
imal, whereas areas along the equator are comparatively large (see Figure 5.12).
This variation is opposed to the desire to use histograms as a consistent density
measurement and visually cannot be fully compensated by scaling of bin heights.
As a result of these observations, we prefer an almost equidistant parametrization
of the sphere as given by icosahedron subdivision. The resulting sphere subdi-
vision resembles a geodesic dome consisting of almost equilateral triangles, thus
allowing uniform data binning of almost identical base area. Further advantages
of this parametrization are consistent triangular bin shapes in contrast to mixed
rectangular and triangular shapes as shown in Figure 5.12.

Figure 5.12.: Uniform parametrization (left) and two different levels of icosahe-
dron subdivision.

Data Binning The orientation information of the strain axis field is reflected
in the spherical histogram by mapping the height of right prisms to the number
of orientation vectors pointing to its base triangle. This construction leads to
a point-symmetric histogram in the case of non-directed vector fields. Volume
membership information gathered during strain field segmentation is mapped
to the histogram by the use of volume colors. , where each volume is assigned a
distinct hue from HSV color-space with maximal saturation. During data binning,
final color for a bin b is mixed according to strain volume membership. For this
matter, we average all contributing color vectors of the base triangle in L∗a∗b∗
space. The resulting color is transformed to HSV-space and saturation magnitude
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is divided by the number of volumes with significant contribution to the bin. This
step ensures that visually unsaturated colors correspond to mixtures of multiple
volumes, whereas saturated colors reflect dominant contributions of one volume.
This guarantees that mixed colors do not accidentally correspond to original
volume colors. These color finding steps are illustrated in Figure 5.13. We note
that we limit initial volume colors to colors with high value components in HSV
space to guarantee that a decrease in saturation leads to visually distinct colors.

H

S

L*a*b*

Figure 5.13.: Steps of bin coloring.

A histogram with a number of small distinctly colored regions with homoge-
neous color indicates that strain variation within single volumes is small.

Interaction The spherical histogram associated with the data set responds
to user selections in volume visualization mode. Contribution of orientation vec-
tors located in hidden volumes, i.e. volumes with toggled visibility, are removed
from the histogram bins. Fast computation times during histogram updates are
guaranteed by storing volume contributions for every individual bin and volume
during initial histogram construction. Removal of certain volume contribution
in bin height and color can thus be performed quickly without triggering a full
recomputation of the histogram. Reduced histograms enable the user to quickly
observe strain orientations in a more local and focused context.

5.5. Results and Application

We start by presenting results from the visualization of individual particle traces
in general flow fields. If not stated otherwise, scalar valued quantities such as
velocity or strain magnitude are mapped to hue in HSV space.
Figures 5.14-5.16 show practical results of tensor deformations in two- and

three-dimensional cases. The visualizations indicate a mixing and disturbing
motion near the flow obstacle. This is due to no-slip properties of the boundary
surface. Specification of the starting points for stream- and streakline integration
should either be done manually to analyze specific regions of the flow field, or can
be done automatically in a uniform fashion to give an overall impression of the
mixing properties of a certain flow field. In contrast to FTLE methods, strain
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ellipsoids allow the analysis of strain directions. For line or surface-like integral
flow features, our method is able to to convey information about tangential and
orthogonal strain. For example, Figure 5.16 shows prevalent strain in direction
of the streakline, which is confirmed by streak surface refinement in the same
direction as seen in Chapter 6. The resulting visualizations display data from
multiple fields, namely the flow field and the derived strain tensor field. Over
time (or space), the shape of deformed tensors tends to lose expressive power as it
may degenerate to long or flat shapes. In such cases different points on the surface
have low topological correspondence and strongly diverging trajectories. If this
occurs a reset of the initial matrix of the following matrix sequence can produce
a better visualization of the desired properties and resulting strain magnitudes
are comparable to FTLE values.

Figure 5.14.: Four 2D streaklines integrated past a spherical-obstacle. High res-
olution of lines gives a homogeneous impression, while low point
resolution gives a good impression of general deformation proper-
ties.

This remainder of this section discusses both inherent visualization capabilities
of the presented strain analysis method as well as visualization benefits. Due to
the difference in strain field computation, we present results of stationary flow
fields separately from the ones obtained in time-varying strain analysis.

5.5.1. Instantaneous Flow

The given instantaneous flow field covers a portion of a model of the southern
Alaska subduction zone where the Pacific plate subducts beneath Alaska. Sub-
duction slab geometry is approximated by temperature isosurfaces. This model
has flow that is drawn in perpendicular to the top of the slab (poloidal flow)
and flow around the edges of the slab (toroidal flow). An interesting feature
is a region of slab-parallel (along the subducting plate surface in a horizontal
plate) stretching surrounded by stretching that is caused by the poloidal flow
and sinking of the slab. This region of slab-parallel stretching corresponds to the
observations of seismic fast axis with similar alignment. This is an important
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Figure 5.15.: 3D streakline with ellipsoids in a sequence of four consecutive time
steps. Clinching, stretching as well as rotational behavior over time
and space can be observed. Coloring indicates areas with heavily
deformed volumes.

Figure 5.16.: Deformation in time-varying surface-like structures can give an in-
sight into complex tangential and orthogonal strain behavior.

example of stretching and lattice preferred orientation that is perpendicular to
the dominate flow direction of the mantle [JB10].

The data set consists of around 5.7 million points carrying velocity, tem-
perature, viscosity and stress information. Furthermore, a pre-computed set
of infinite strain axis direction, as described in Section 5.3.3.4, is provided.
Data set extensions are [23◦, 29◦] for co-latitude [205◦, 220◦] for longitude and
[5971 km, 6321 km] for radius. Results of our segmentation method on a 1003

voxel grid show expressive segmentation of the infinite strain axis field, identifying
important features such as aforementioned slab parallel stretching (purple lateral
volume in Figure 5.17). Figures 5.17 and 5.18 show the benefit of interactive pick-
ing and volume explosion. Further visual improvement is gained by transparent
rendering of volume boundaries, providing a look at inner strain directions. We
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note that our volume visualization of the segmented data set with fully opaque
volume boundaries visually corresponds to a triangulation based visualization.
Figure 5.19 shows a comparison of different voxel resolutions. We conclude that
low resolution fo segmentation of strain orientation fields give a rough approxi-
mation of strain segmentation while generally producing more volumes than high
resolution versions. Moreover, volume segmentations converge as the resolution
increases towards the inherent data set resolution.

Figure 5.17.: Different fo volumes in a 1003 voxel grid. Volume masks of the first
and last images were smoothed with a 3× 3 Gaussian kernel. User
selection of different volumes allows a clear look at inner segmenta-
tion, where strain segmentation coincides with slab geometry.

Figure 5.18.: Top view of Alaska data set. Mantle geometry shown in gray is
modeled by a temperature isosurface. Explosion style rendering
of fo strain volumes provides a better look at volume boundaries.
Additional transparent rendering reduces occlusion.

5.5.2. Time-Varying Flow

The second data set is a small region of a test model used to study the dynamic
process of the detachment or break off of part of a sinking tectonic plate from the
plate at the surface, as seen in Figure 5.20. In this test case, the sinking tectonic
plate is comparatively young with an age of around 20-30 million years, which
means that it is fairly thin and weak compared to older tectonic plates. Therefore
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Figure 5.19.: Strain volume extraction for different grid resolutions (from left to
right: 703,903,1003). Lower resolutions yield different segmenta-
tions while reducing segmentation times. However, boundary shape
is approximated well in all resolutions. For higher resolutions, fo
segmentation solutions converge.

the sinking plate rapidly sinks vertically. The flow of the mantle around the slab
is again dominated by two components: poloidal flow and toroidal flow, as seen
in Figures 5.20 and 5.21.

The time-varying data set provides 10 time steps of around 310000 points each.
The total simulation covers around 2.4 million years with step sizes of an average
of 270000 years.

Figure 5.21 shows a volume visualization of rasterized strain lines by reducing
opacity of volume boundaries to 0. High strain magnitude is observed in imme-
diate proximity of the slab. The stretching orientations and opacity encoding of
magnitude show that the maximum stretching occurs where regions of poloidal
and toroidal flow merge. Our visualization conveys convergence and divergence
flow properties, as regions with dominant opacity correspond to Lagrangian Co-
herent Structures in FTLE fields. In regions with strong alignment between flow
and strain (red) strain lines correspond to streamlines, whereas flow is orthogonal
to strain in blue regions. This color coding can be used to identify relative flow
directions. A visualization of two fo subvolumes that does not make use of strain
line opacity mapping is show in Figure 5.22. While strain orientations are clearly
depicted in the final result, no information about magnitude is conveyed.

Figure 5.23 is a visualization of four selected fo subvolumes of this data set.
Homogeneous and consistent strain orientations can be seen on lateral parts of the
slab path both in the volume display as well as in the histograms. Discontinuities
in strain orientation develop mainly along paths of vortex cores. These prominent
strain volumes are picked and visualized in Figure 5.24, where localized histogram
information gives an insight into expected seismic anisotropy for different regions.
Besides discontinuities along the sides of the slab, a horizontal discontinuity is
created where flow is pulled down behind the sinking slab.
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Results obtained by alignment segmentation are given in Figures 5.25 and
5.26. Strong disagreement in flow and strain alignment as extracted in Figure
5.25 is observable along outer regions of flow vortices and underneath the slab.
Figure 5.26 shows 4 fa segments and a selection of two volumes with weak and
medium alignment. In contrast to fo segmentation, histograms in alignment
based segmentation show no clear segmentation in orientation space.

Figure 5.20.: Sinking slab in test data set. Velocity magnitude is highest along
the path of the slab, while slow rotating flow is observed along its
sides.

Figure 5.21.: Volume visualization of strain lines with fully transparent volume
boundaries. Transparent discontinuities in the volume visualization
are caused by small spaces between adjacent volumes.

From a performance point-of-view we note that for low resolution voxel grids (<
503) in the time-varying data set approximately 80% of computation time is spent
on pathline integration. This percentage increases for higher voxel resolutions and
more time-steps and can be observed in all FTLE-like flow analysis systems that
utilize dense integral line generation.
Our results show that the presented extraction and visualization techniques are

suitable for strain based analysis of time-varying and stationary flow. The ex-
amples analyzed in this work demonstrate that geophysical flow analysis benefits
from these techniques by providing means of grain orientation discontinuity and
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Figure 5.22.: Two subvolumes generated by fo segmentation and according his-
togram with turned off strain line opacity mapping.

flow alignment visualization, thus allowing detailed conclusions about the quality
and confidence into flow reconstruction from grain orientation and formation of
separate material sections.

5.6. Summary and Discussion

We conclude that integration of flow induced strain along integral lines facili-
tates the analysis of mixing along particle trajectories. We presented accurate
treatment and computation of particle deformations and demonstrated the use of
ellipsoid based deformation visualization in time-varying data sets. The result-
ing deformation data can be interpreted as a localized version of FTLE, as was
shown in a follow-up work by Kasten et al. [KPH+09]. Strain ellipsoids are an
expressive tool for multi-field visualization if not only flow direction and particle
trajectories, but strain field properties are to be visualized as well.

We have presented a method for automatic strain analysis in three-dimensional
flow data and its application to the field of geophysics. Gridded pathline inte-
gration and strain accumulation in connection with mapping of the major strain
axis field allows image based segmentation of the underlying orientation field. To
analyze main strain directions in distinct strain volumes, we proposed the combi-
nation of transparent multi-volume visualization with picking and color mapped
spherical histograms. This provides the user with the possibility to quickly iden-
tify the main strain directions and variance of a set of volumes.

Our work contributes to the geophysics community by providing an inher-
ently three-dimensional view of the data and supporting automatic strain based
analysis and segmentation. The methods developed in this work to extract and
visualize regions with uniform stretching directions together with the magnitude
of stretching provide means to identify regions with potentially strong material
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Figure 5.23.: Selection of prominent fo feature regions. Volume rendering conveys
the impression of phong shaded solid geometry as well as transpar-
ent volumes with interior strain lines. Explosion and volume se-
lection allow an unobstructed view at volume boundaries. Further
global and selective strain analysis is aided by spherical histogram
visualization.

alignment. The developed visualization techniques are able to extract and show
the geometry and locations of discontinuities and rapid changes in the derived
strain field, the magnitude and orientation of the stretching, and the relative be-
havior of mantle flow within each region. This combined visualization is a major
improvement over previous visualization techniques, as it allows linking of ma-
terial alignment with flow directions as well as clear depiction of discontinuities.
Identification of regions with uniform material orientations and visualization of
magnitude and direction of strain can be used for the prediction of seismic fast
axis orientations that are expected to be observed at the surface and can serve
as basis to compare simulation data to seismic measurements and link material
orientation to mantle flow direction. This information facilitates iterative com-
parison of numerical models and seismic observations and allows determination
of flow patterns in the mantle.

The contributions of our work to the visualization community are the devel-
opment of a robust and expressive visualization technique with focus on interior
and boundary information representation for flow induced strain in both instan-
taneous and time-varying flow fields, created by novel strain extraction and seg-
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Figure 5.24.: Evolution of prominent fo features and histograms over time. His-
togram information conveys the fact that strain in the two lateral
regions is orthogonal to strain directions in the center. Segmenta-
tion indicates that discontinuities in material alignment are formed
along paths of the vortex cores and remain stable over a number of
timesteps.

mentation methods and selective volume visualization techniques. The resulting
visualization is able to convey information about two related fields: The strain
direction and magnitude field and relative velocity information.
While we have demonstrated the applicability and expressiveness of strain anal-

ysis in geophysics, there are many other application areas that can benefit from
a sophisticated strain field analysis. Besides extending and evaluating the ap-
plicability of our methods to other application areas, directions of future work
in the field of geophysics may include incorporation of user defined or simulated
seismic waves into the segmented field to directly illustrate the expected impact
of volume boundaries and strain direction on wave propagation.
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Figure 5.25.: Evolution of fa region with maximal deviation between strain and
flow direction. Maximal orthogonal strain is observed along frontal
lateral parts of the slab and weak orthogonal strain in lateral parts.

Figure 5.26.: Solid and transparent rendering of two fa alignment segments in
different time steps. Strain histogram and strain lines show non-
homogeneous strain directions in all volumes. Strong alignment of
flow and strain directions is observed along the path of slab move-
ment, whereas disalignment prevails in lateral regions.



6. Unsteady Flow Segmentation

The concept of continuum deformation in the form of deformation analysis for in-
finitesimal particles can be transferred to a macroscopic view, where the behavior
and spatio-temporal evolution of large particle sets is of interest. In unsteady flow,
particle sets that are continuously released into the flow field describe streaklines
and streak surfaces. Generation and rendering of integral curves and surfaces
in simulated flow fields is a well-established technique in the area of vector field
visualization, where the homogeneous visual properties of their geometry allow
an in-depth analysis of the behavior of connected components of flow fields. Be-
sides giving an impression of general flow behavior, tessellated integral features
are suited for field segmentation.
In visualization (topological) segmentation of stationary flow fields is a well-

covered topic, relying on the extraction of adaptive separatrices [OKHBH09]. In
the following sections, we develop novel techniques for the segmentation of two-
and three-dimensional time-varying flow fields by means of adaptive integral flow
features. In comparison to curve and surface definitions where merely the trace
of a specific single particle or curve is tracked, as is the case in path surfaces,
the definition of streak lines and surfaces is capable of visualizing phenomena
such as smoke and dye-advection, efficiently showing the movements of distinct,
continuously seeded regions over time. In practice, they may be used to visualize
material boundaries in mixing processes or, more general, a time-varying analogon
of the stationary separatrix definition, leading to a concept related to stationary
vector field topology. Therefore, streak lines and surfaces form the basis for
(topological) area and volume segmentation in time-dependent vector fields.
In two-dimensional flow fields, integration of closed adaptive and boundary-

integrated streak-lines at material interfaces facilitate the segmentation of the
flow domain into streak areas for means of multi-field visualization. Multi-field
visualization benefits from streak area extraction as it allows selective application
of transfer functions.
In three-dimensional data sets, adaptive generation of streak surfaces poses

additional challenges. While efficient methods to adaptively generate integral
surfaces in stationary vector fields and some generalizations like adaptive time
surfaces are state-of-the-art, there are no known methods for fully adaptive streak
surface generation as presented in this chapter. An important application of
surface feature extraction is the visualization of separation topology in three-
dimensional data sets what, due to the absence of adaptive streak surfaces, has
been limited to the stationary vector field case so far.
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The major challenge of adaptive streak surface construction is the high com-
plexity of mesh refinement arising from the new time dimension of the well-known
advancing front definition introduced by Hultquist [Hul92]. In every time step
of a time-varying velocity field, not only a front of a few streamlines or parti-
cle traces needs to be examined, but the whole surface has to be analyzed with
respect to adaptivity measures. We solve the problem of adaptive streak sur-
face integration with the help of MLS approximation for particle advection as
well as surface estimation and refinement based on Delaunay meshes. Again, the
presented test data sets are mesh-less and obtained from grid-less FPM. Delau-
nay meshing helps to approximate surface particle densities and provides a basic
triangulation for visualization. The challenge of time coherent surface genera-
tion and rendering is overcome by surface particle integration, adaptive particle
tracing, and look back methods.

In the following sections we establish a notion of the state-of-the-art in adaptive
integral flow feature extraction, provide details about advection of individual
particles before detailing refinement and segmentation techniques for two- and
three-dimensional flow fields.

6.1. Related Work

Feature based topological segmentation of two-dimensional flow fields has been
examined in [LL99] by Leeuw and Liere, who use a critical-point approach for seg-
mentation purposes, what we try to avoid in this work. In [WTS+07], generalized
streaklines are seeded at moving singularities. Adaptive placement of streaklines
for texture-based flow visualization is introduced in [SMA00]. More recent work
than the one presented in this chapter implements adaptive streaklines on the
GPU [CPK09].

For three-dimensional fields, adaptive (stream-) surface generation in station-
ary flow fields was introduced by the work of Hultquist [Hul92] in 1992, whose
well-known advancing-front concept has led, among other things, to the develop-
ment of sophisticated methods for path surface integration in time-varying flow
fields [GKT+08, STWE07]. The work by Krüger et al. [KKKW05] represents
the most direct way of streak generation and visualization, namely by the use
of large particle systems being influenced by the surrounding flow field. The
absence of a triangulated mesh does however limit these point sets to discontin-
uous representations. Operations such as surface intersections are not possible
without further effort. Funck et al. [vFWTS08], Cuntz et al. [CKRW08], and
Weiskopf et al. [Wei04] introduced work on smoke surfaces and particle level set
advection, focusing on the visualization of non-adaptive streak surface like struc-
tures. The first of these papers triangulates the particle system for visualization
purposes and is therefore closer to our method, as far as visualization techniques
are concerned.
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Examples for MLS based surface approximation in the context of surface mesh
reconstruction and refinement from point clouds are given by the work of Alexa
et al. [ABCO+01] and Mederos et al. [MVdF03].

Delaunay type mesh refinement of static point sets has been the topic of multi-
ple papers such as the work of Chew et al. [Che93] and Chen et al. [CB97]. Both
approaches use incremental mesh construction by either building a constrained
Delaunay triangulation or by transforming common Delaunay algorithms to a
new parametric space. Contrary to this work, the nature of our problem allows
us to make use of an existing time-varying triangulation, thus eliminating the
need for complete mesh reconstruction and facilitating the incorporation of mul-
tiple Delaunay triangulations into the particle insertion process. Parallel to the
publication of the work described in the following sections, a similar approach
to adaptive streak surface generation was proposed by Krishnan et al. [KGJ09].
Their approach however refrains from performing curvature dependent refinement
and uses highly resolved time axes for surface refinement.

In the following sections we briefly present the used particle advection scheme
and establish a notion of the definition and importance of adaptivity for inte-
gral flow feature generation. Furthermore, we give details about the integration
of adaptive streaklines and transfer these concepts into three-dimensional space
by proposing a novel adaptive streak surface generation technique. The results
demonstrate the expressiveness of flow segmentation performed by these adaptive
flow features.

6.2. Particle Advection

A requirement for the generation of artifact free streaklines and surfaces is the
accurate advection of particles in unsteady flow fields. Since particle advection
is a well-covered topic in unsteady flow visualization literature [KKKW05], we
limit this section to a brief discussion of the techniques used in this work.

Based on the sampling frequency of the data set with respect to the time
axis, a discrete time-dependent dataset can provide more or less visual coherency
between adjacent time steps. In unsteady particle advection, particle data of time
step t − 1 has to be propagated to the next time step t and particle positions
need to be advected to their respective new positions in t according to the velocity
values obtained from vector field evaluation. To compensate possible artifacts in
poorly time resolved data sets or data that has a high curvature in time, special
care has to be taken during vector field approximation. While adaptive Runge-
Kutta approximation schemes can determine the step size or order of integration
k used during particle advection, the necessary interpolation between adjacent
time steps that needs to be performed, if k > 1 often introduces artifacts if the
degree of interpolation is too low, as in (6.1).
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where f(p, t− 1 + j
k
) is the velocity of a particle with position p and integration

order k during the j-th step of advection from t− 1 to t. This scheme subdivides
the time interval [t− 1, t] into k time intervals with linearly interpolated velocity
fields. To reach a sufficient accuracy, we determine k for every particle individu-
ally by comparison of angular deviation between velocity vectors resulting from
consecutive vector field evaluations. This approach has a similar effect on ac-
curacy as adaptive integration of streamlines with Runge-Kutta or comparable
methods in the stationary case. Higher order integration methods such as cubic
Hermite interpolation, which take into account f(p, t−2), f(p, t−1), f(p, t), and
f(p, t + 1) for particle advection from t − 1 to t double the number of required
field evaluations and require more time-steps to be present in system memory,
but tend to yield more accurate particle tracing.

6.3. Adaptivity

Our notion of streaklines and surfaces in the following does not include discon-
nected particle sets, but requires a continuous representation in the form of curve
or surface geometry. The construction of such geometry and connectivity in-
formation facilitates and requires the discussion of adaptivity in integral flow
features.

In a dataset with an equidistant timeline, n particles are generated at each
time step at a seeding structure and subsequently advanced through time and
space. Therefore, an ideal or true streakline or surface in a flow field is obtained
for n→∞. However, an increase of particle numbers causes significant increase
in computation times caused by the increased number of field evaluations that
are necessary for particle advection. Furthermore, even high-resolution integral
flow features can yield highly varying distributions of particles in regions with
high divergence, which is often undesired for accuracy reasons.

Without the insertion of new particles during curve and surface evolution, the
geometric representation of the integral feature diverges strongly from the true
feature in regions of turbulent flow, as distances between neighboring streak-
particles increase. Methods for adaptive streakline and surface refinement aim
at resolving these issues by heuristic insertion of particles during advection. Fur-
thermore, particle deletion in oversampled flow regions reduces computational
complexity of particle set advection.
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6.3.1. Insertion of Particles

Numerical integration of non-adaptive curves and surfaces reveals two problems
that lead to inaccurate representation of the true feature:

1. Segment Lengths: Large distances between neighboring particles of a streak-
line or surface increase the risk of missing important flow features, as neigh-
boring particles might pass on different sides of turbulent flow features.
Such excessive element lengths on the geometric representation are often
caused in situations, where particles traverse regions of strong divergence
or flow regions with large strain magnitude orthogonal to the geometry
tangent.

2. Line Smoothness: Distinct peaks in the geometric representation of the
curve or surface represent regions, where particle traces behave differently
from their neighbors. These regions are of high importance for the visual
representation and integration accuracy.

Both situations indicate regions, where the flow field is not accurately sampled
with particle pathlines. In both cases, additional particles have to be inserted
at positions near the questioned regions in order to maintain a given particle
resolution and guarantee a satisfyingly smooth representation of the flow feature.

6.3.2. Deletion of Particles

Insertion of particles in turbulent flow tends to increase particle number expo-
nentially. For this reasons, the removal of particles needs to be incorporated into
the feature generation process to reduce computational costs. Robust particle
deletion has to obey the rules of conservativity. Therefore, particles should not
be deleted if small perturbations in the resulting geometry lead to re-insertion
of new particles, as this increases computational overhead and reduces overall
accuracy.

6.4. Adaptive Streak Areas

We present techniques for adaptive streakline integration in two-dimensional flow
fields and along boundary geometry, whose segmentation capabilities result in
flow segments called streak areas. This work is motivated by the challenges posed
by time-dependent vector fields to the problem of curve and surface extraction.
We demonstrate, how the geometry of the resulting integral flow features is well
suited for the segmentation of flow fields. In the two-dimensional case, traditional
approaches to the extraction of separation geometry depend on separation line
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or entry-/exit point tracking. In the following sections, we present a technique to
integrate adaptive streaklines along boundary geometry to avoid the tracking of
separation geometry and incorporate the boundary into the integration process.
We furthermore present a texture based visualization method to display time-
varying streak areas.

6.4.1. Streakline Integration

As indicated by the streakline definition given in Chapter 3, streaklines are gen-
erated by releasing and advecting a stream of Lagrangian particles into a flow
field. To find a balance between fast computation of low-resolution streaklines
and accuracy of high-resolution curves as detailed in section 6.3, we propose the
following refinement techniques:

6.4.1.1. Refinement

The adaptivity criteria introduced in Section 6.3 imply the insertion and deletion
of particles at positions throughout the streakline.

Insertion of Particles We use the following thresholding criteria to decide
whether to insert a particle between two neighbors i, j in time step t:

• Distance based : if ||pti − ptj || > ǫd, with ǫd being a threshold which is a cer-
tain fraction bigger than the initial distance between two newly generated
particles, insert ptk at ptk =

1
2
(pti + ptj).

• Angle based : if ∠(pi, pj, pk) > ǫa, insert particles pt−1
r , pt−1

s at pt−1
r =

1
2
(pt−1

i + pt−1
j ) and pt−1

s = 1
2
(pt−1

j + pt−1
k ).

Angle-based refinement is only performed on segments, whose length exceeds
a minimal user-defined threshold value. While these criteria adjust particle sam-
pling in a correct manner, they are not able to guarantee a certain accuracy with
respect to the true streakline in flow fields with low resolutions on the time axis.
In these cases, accuracy can be increased by inserting particles in a prior time-
step t−n if distance or smoothness criteria are violated in time-step t. We detail
and extend these refinement techniques for the three-dimensional case as detailed
later in this chapter.

Deletion of Particles As for particle insertion, we define distance and angle-
based threshold for particle removal. We delete a particle p, if the total distance
to its neighbors falls below a given threshold (e.g: 1

2
ǫd) and the angle enclosed

by its neighbors is greater than 120◦, i.e. we do not lose details in the geometric
representation. Choice of these thresholds comply with the rule of conservativity
given in Section 6.3.
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6.4.1.2. Boundary Integration

Another reason for us to propose grid-less methods for vector field approximation
is the property of MLS to allow integration of stream- and streaklines on boundary
geometry with no-slip condition, as velocities approximated this way generally
do not evaluate to zero at the boundaries of the dataset. This behavior is desired
when a true segmentation of the vector field is to be obtained and this form
of approximation is compatible with the interpretation of simulation results. A
major challenge during streakline integration is the process of boundary fitting,
i.e. the event in time, when parts of a streakline first meet with geometry of the
boundary object as illustrated in Figure 6.1.

Figure 6.1.: A segment of a streakline is fitted to boundary geometry, after an
intersection was detected.

Our fitting algorithm works as follows:
If a segment ptip

t
j of the streakline detects an intersection with boundary geometry,

one of the following cases might occur. a) both particles penetrate the boundary
of the dataset b) one particle penetrates the boundary object c) no particles
penetrate the boundary object (as shown in Figure 6.1). In cases a) and b), the
particles that penetrated the boundary surface are relocated to the intersection
between their paths and the boundary surface and advanced to the appropriate
updated position and the algorithm proceeds with case c) if there is no direct line
of sight between these new positions. In case c), the intersection points of the line
ptip

t
j with geometry are examined. If these intersection points lie on neighboring

boundary elements, the common vertex is added to the streakline. If this is not
the case, a new point is inserted half-way between pt−1

i and pt−1
j in the previous

time step, and the algorithm is repeated for the new left and new right segment
at the current time step. In our tests, this algorithm converged in less than 3
iterations.
A more straightforward approach might consider connecting the two points

according to the shortest connection along the boundary object with respect to
their corresponding intersection points, without inserting a new point in the pre-
vious time step. This however does not always produce correct and unambiguous
results, especially in the case of big time steps and obstacles with a low resolution.
The movement along boundaries is performed as described in [OHBKH09b],

with the additional requirement to keep track of the fraction of the current path
length spent on the boundary object to correctly advance each particle to a new
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position on the boundary. Particles on boundary are released, if their velocity is
virtually parallel to the boundary’s normal, thus indicating a separating behavior.

6.4.1.3. Field Segmentation

The presented methods allow the generation of streaklines at user-specified po-
sitions throughout the dataset. Their capability to integrate along boundary
makes them capable to indicate separating or, if integrated backwards, attaching
behavior along their path, thus avoiding the necessity to track and match sep-
aration and attachment points throughout the whole dataset to obtain seeding
locations for separating lines, when initial material boundaries are known. For
specified initial material boundaries, streakline geometry represents the evolution
of material interfaces over time and provides a time-varying segmentation of the
flow field. This notion allows us to perform image-based domain segmentation
for visualization purposes.
For this matter, we enclose the data set by a texture of arbitrary but sufficient

resolution and use Bresenham’s line algorithm [Bre65] to plot both the boundary
of the dataset and the traces of streak- and streamlines. In a second step, all
empty areas to the left and right of a streak- or streamline are filled and colored in
a distinct color, using a simple recursive 4-neighborhood seeding algorithm. The
dataset is then overlaid with the resulting texture, visualizing a segmentation
into areas of similar flow (see Figure 6.11) or materials, termed streak areas in
the following.

6.5. Adaptive Streak Surfaces

The following sections generalize and extend the notion of adaptive streak geom-
etry in time-varying flow fields to three-dimensional fields.

6.5.1. Streak Surfaces

In the three-dimensional case, stream surfaces are replaced by streak- or timeline
based surfaces [GKT+08], which are still the topic of active research, as adaptivity
measures during integration require an immense amount of additional processing,
since a local approach to adaptivity as in [Hul92] is no longer feasible. In contrast
to stream surfaces, streak surfaces are generally no longer tangential to the flow
field and need to be updated or refined at their whole range during integration.
Streak surfaces describe a truly three-dimensional complex in time and space,
whereas stream surfaces are only two-dimensional in space. This increase of com-
plexity prevents the use of classic approaches to adaptivity such as the concept
introduced by Hultquist [Hul92].
Figure 6.2 illustrates a sequence of triangulations of three consecutive time

steps of a streak surface. At the rake shown in blue, 15 particles are seeded at
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equidistant positions. The problem exhibited by non-adaptive approaches can be
identified as the far too uniform particle distribution, preventing the accurate and
smooth representation of folds. One has to note that in the discrete case a single
streak surface consists of a number of consecutive static surfaces obtained in
different time steps of the surface. Depending of the time resolution of the data
set, coherency between consecutive surfaces might be low, producing a rough,
jagged animation during rendering of the streak surface.

Figure 6.2.: Triangulations of a non-adaptive streak surface in three consecutive
time steps.

6.5.2. Surface Generation

6.5.2.1. Algorithm Outline

Our algorithm to generate adaptive streak surfaces consists of five basic stages
that are repeated for every time step of surface integration:

1. Generate new particles at the rake and insert them into the existing mesh

2. Concurrently advect all particles of the surface to their new positions

3. Restore the Delaunay property of the surface mesh by edge flipping

4. Determine curvature of the surface at every surface particle by MLS ap-
proximation

5. Adapt resolution by insertion and advection of new particles in current and
previous time steps

These steps are described in detail in the following.

6.5.2.2. Particle Birth

Let t ∈ [t0, t1] be the current time step. The basic representation of a streak
surface usually consists of a set of particles that are advected through the flow
field, being seeded at a predefined rake. Based on a user-defined resolution, we
release a set of particles at equidistant positions along the rake. While the given
resolution does directly influence the number of seed positions at the rake, the
magnitude of the velocity field indirectly governs the number of particle rows
that are generated and advected at the rake. If n particles with a seed distance
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of d are seeded at the rake, where the distance traveled in one time step at an
arbitrary position on the rake is l := ||f(.)|| · ∆t, we release m = l

d
particles at

every seeding position, leading to a total of n×m new particles.
Let T be a given triangulation in time step t of the particles released in [t0, t).
We link the n×m new particles based on their neighborhood in parameter space
(s, t) and connect this new triangulation to the first row of particles in T , as
shown in Figure 6.3.
Consequently we obtain a fully connected particle-based streak surface, whose
triangular mesh is used for surface approximation, refinement and visualization
of the surface, as explained in the following sections. As a result, particles on
a streak surface do not only carry spatial information, but provide data about
the (s, t) parametrization of the surface, that can be used for the generation
of texture coordinates, as well as normal and neighborhood information. It is
important to point out that the basic definition, computation and visualization
of a streak surface does not require the availability of connectivity information
between particles. As described in the next sections, the triangulation created
during particle birth is an auxiliary construct to reduce the computational effort
for surface approximation and particle density calculations. While it only rep-
resents a linear approximation of the true streak surface, it can additionally be
used for basic surface visualization.

Figure 6.3.: The triangulation of the recently seeded particles is linked to the old
mesh. Note that the old mesh is still located at its position in time
step i− 1 until corresponding particles are advected.

6.5.2.3. Particle Advection

The particle advection scheme introduced in Section 6.2 reduces path deviations
in data sets with large time steps and improves visual coherence. A mapping
of the order of integration k onto a streak surface is shown in Figure 6.4. As
individual particles from surfaces of consecutive time steps are matched in our
data structure, storing not only the final position of an advected particle, but
reusing the k intermediate ones obtained from field integration during streak
surface visualization facilitates the rendering of smooth surface animations even
in data sets with low time resolution. In these computations, the magnitude
of the smoothing length r of the weighting function used in MLS during vector
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Figure 6.4.: A simple streak surface is color-mapped with the integration order
k ∈ [1, 16]. Order of integration is mapped to the hue spectrum
from 0◦ to 240◦, with red being the maximum. As can be seen, even
adjacent particles might need a highly different number of vector field
evaluations.

field evaluation is inversely related to the point density of the data set. This
point density is usually either an output value of the CFD simulation itself, or
has to be determined on the fly by k-nearest neighbor computations or similar
methods. We use MLS for vector field approximation because of its independence
of a computational grid and because it is used as interpolant by the simulation
that generated our test data sets.
To speed up the advection process, particle locality is used for efficient data
set caching and parallel particle advection. We impose a rectangular grid on
the surface clustering particles into independent sets and delegate the according
computations from (6.1) to different CPU cores.
If a particle of the surface leaves the boundaries of the data set during advection,
the particle itself and adjacent mesh elements are deleted, efficiently trimming
the streak surface.

6.5.2.4. Delaunay Meshing

As mentioned before, the increased dimensionality of streak surfaces has a direct
influence on the adaptivity methods that can be used. Hultquist’s approach of in-
serting streamlines at a single curve-like consistent front cannot be generalized to
the insertion of streaklines at a one-dimensional front of the streak surface. The
two-dimensional character of the generalized front definition for streaklines re-
quires the insertion of refinement structures on arbitrary positions of the surface.
This fact virtually rules out the exclusive refinement along time- and streaklines
of the surface, as most interior refinement points would miss these grid lines.
Thus, we use a Delaunay type progressive mesh to define criteria for particle
insertion.
Various work on the construction of Delaunay type surfaces from point clouds
has been published over the years. For example, Gopi et al. [GKS00] use a pro-
jective local Delaunay mesh for surface reconstruction. The underlying particle
concept of streak surfaces suggests the use of point cloud reconstruction methods
to obtain a surface mesh. However, the evolving property of the streak surface
mesh facilitates topologically correct (re-) meshing in a certain time step based
on connectivity information given by prior time steps as well as triangle, edge,
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and node matching over multiple time steps.
The mesh structure of the previous time step generally loses its Delaunay prop-
erties as particles are advected, if corners of adjacent triangles describe different
paths through the flow field, as illustrated in Figure 6.5. Since we want to esti-
mate particle distributions using circumcircle properties for mesh refinement in
a later step of the algorithm, it is important to have a well conditioned trian-
gulation avoiding skinny triangles. Therefore, we choose to impose Delaunay’s
mesh properties on the triangulation of our surface, as the minimal circumra-
dius property is a direct indicator of particle density. The availability of a mesh
on the current particle set greatly simplifies construction of a curved Delaunay
mesh, since this fact makes it possible to use local edge flipping instead of global
mesh construction algorithms such as line-sweep. Moreover, reusing the previous
particle connectivity allows matching of non-flipped edges as well as triangles of
different time steps.

Figure 6.5.: A uniform grid of a non-adaptive streak surface gets deformed, pro-
ducing ill-conditioned triangles of bad aspect ratios.

An edge of a mesh is flippable, if it is shared by two triangles and its flipped
counterpart is not already part of the mesh , see also [DZM07]. Let e = (b, c) be a
flippable edge shared by the two triangles ∆1 = (a, b, c) and ∆2 = (d, c, b). We flip
e, if the sum of the angles α at a and β at d exceeds π, resulting in ∆′

1 = (a, d, b)
and ∆′

2 = (c, d, a), satisfying local Delaunay properties. This flipping procedure,
having been shown to converge for curved surfaces by Dyer et al. [DZM07], is
repeated until the mesh contains no more flippable edges. If non-flippable edges of
tetrahedral structures of the curved triangle mesh remain after all flippable edges
have been swapped, see Figure 6.6, we collapse the corresponding tetrahedra by
removing the particle at its tip. Such tetrahedra generally represent noise in
the form that they indicate a particle that evades the path of the streak surface
and has earlier been inserted at a wrong position. After this step, our surface
mesh is usually Delaunay conform, with exceptions to rare special cases of non-
flippable edges. We avoid insertion of additional particles on the surface to obtain
a mesh that fully satisfies Delaunay properties as proposed in [DZM07] to reduce
the resulting computational overhead that is needed to advect the new particles
through the vector field. In these special cases we allow our mesh to be locally
non Delaunay, as the according triangles are commonly not badly shaped due
to the fact of mesh deformation of large parts of the surface in every step of
integration.
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Figure 6.6.: Edges of a tetrahedral structure on the curved surface mesh cannot
be flipped without changing the underlying topology and creating
holes.

6.5.2.5. Curvature Approximation

We determine local geometric complexity of the streak surface by measuring its
local curvature. Curvature at a point p of a bivariate surface S is described by
the maximal and minimal curvature of the curves on S that result from inter-
secting S with planes through p containing the surface-normal vector at p. These
curvature values are called principal curvatures and is used in the following as an
indicator of whether to refine the mesh of the surface.
For adaptive particle insertion we need to know both a parametric form of the
surface, as well as its local curvature at every particle of the surface. Instead
of handling these tasks by two different approximation techniques, we use one
weighted Least Squares approximation to both obtain a valid surface represen-
tation as well as to calculate the according local curvature. We compute local
surface approximation at a particle p based on particle offsets from a local tan-
gential plane with vertex normal np as shown in Figure 6.7, resulting in a new
set of projected data points (p′i = (xi, yi), di) that are approximated by a scalar-
valued bivariate quadratic MLS. If the surface is to be approximated at a particle

Figure 6.7.: Two-dimensional illustration of a MLS curve approximation, MLS
curve is shown in red (left) and three-dimensional analogon with a
particle neighborhood-level of one (right).

p, we assemble surrounding particles pi by a neighborhood search along the edges
of the mesh up to a neighborhood distance of two, as the bivariate quadratic
LSE that has to be solved for a MLS approximation requires the data of at least
six non-collinear points. The smoothing length r of the weighting function used
during MLS approximation is chosen in a way, such that w(p, p′j) = ǫ with p′j
being the neighboring particle that is farthest away from p. This MLS surface
representation defines every point on a surface by its orthogonal distance to the
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tangential plane.
The eigenvalues of the Hessian of this polynomial approximation represent the
principal curvatures c1 and c2. The Hessian of a bivariate scalar function takes
the form of a 2×2 matrix, which can easily be calculated using a parametric form
of the approximating MLS polynomial [KK06]. We use the maximum absolute
curvature

c = max(||c1||, ||c2||)

as a measure of local feature size, which has proven to lead to good results in
other applications, see [dAJ04]. Figure 6.8 shows a simple streak surface colored
according to maximum absolute curvature. While Moving Least Squares for

Figure 6.8.: Maximum absolute curvature as hue color-map on a streak surface.
Red color shows regions of high curvature, blue indicates planar sec-
tions.

surface approximation is computationally more expensive than to simply use the
piecewise linear representation of the surface described by the mesh itself, it both
reduces errors in the particle insertion step, as explained in the next section and
gives a more accurate notion of the surface curvature, by filtering small noise due
to its approximating behavior.

6.5.2.6. Particle Insertion

The general notion of adaptivity is to sample a surface according to its geomet-
ric complexity, meaning that regions of high curvature need more samples to
be represented accurately than regions that are almost planar. In the context
of parametric or implicit surface modeling, curvature-dependent particle density
control is often handled by minimization of an energy function [MGW05]. In our
case the availability of a correct coarse mesh as well as the absence of a gradient-
definition requires different adaptivity measures.
The crucial step of streak surface adaptivity is the correct insertion of new par-
ticles at positions throughout the surface. The most accurate way of adaptively
inserting particles is the insertion of a particle in the appropriate first time-step
t0, whenever an ill-conditioned particle-density is detected at an arbitrary later
time step t1. This method does however require the computationally inefficient
advection of all newly inserted particles from t0 til t1. We therefore prefer to in-
sert new particles directly into the evaluated time step or few of its predecessors.
Given the computed curvature at a particle p, we are able to decide whether to in-
sert new particles in the immediate neighborhood of p. Figure 6.5 demonstrates,
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why refinement purely along time- and pathlines is not desired in the context of
streak surfaces, since right angles between such lines are not maintained over time
and such a skewed global coordinate frame is not suitable for balanced control of
particle densities. We therefore use the local feature size in form of the curvature
at a position p to directly describe the desired maximal allowed distance between
two neighboring particles:

rc =
b

max(||c1||, ||c2||)

where b controls the impact of curvature on the degree of mesh refinement and is
commonly chosen be a value between zero and one. Circumradii of all triangles
adjacent to p are compared to rc, if a circumradius exceeds this threshold, and is
larger than a pre-defined minimum triangle size, a new particle is inserted on the
according triangle. We commonly limit the minimum triangle size to a size a few
magnitudes smaller than the data set resolution to avoid numerical instabilities
and oversampling. As our underlying mesh is mostly Delaunay conform and
therefore satisfies the smallest circumcircle property, the circumradius of triangles
is a valid measurement of particle density at a specific region.
Particle insertion itself poses the question of how to find the optimal position
of insertion. On planar Delaunay meshes, one would choose the circumcenter
of a triangle as location and handle point insertion in a simple way: Remove
all triangles, whose current circumcircle includes the newly placed point and
connect vertices of the resulting polygon with the new point. The resulting mesh
again satisfies the Delaunay property. However, on curved surfaces this method
yields several problems. Location of the circumcenter of obtuse triangles is not
trivial, as the circumcenter is located outside of the triangle, thus requiring a
search on neighboring triangles and even performing intersection operations, if
the surface bends. Moreover, the point-in-circumcircle property does not work as
expected from the planar case for both the common projected-circumcircle and
the circumsphere definition on curved surfaces, if the point is not inserted on the
piecewise linear representation of the surface. These considerations motivate our
approach of particle insertion.
Once a triangle with a too large circumradius is detected, the according new
particle is either inserted at the centroid of this triangle or on one of its edges.
More precisely, we subdivide the longest edge of the triangle if the circumcenter
is located outside of the triangle or the triangle itself is a boundary element of the
surface. The problem caused by an invalid insertion of particles at the centroid of
a boundary triangle is depicted in Figure 6.9, where the quality of the aspect-ratio
of the boundary triangle is degraded significantly. These two types of particle
insertion lead to well conditioned triangles with smaller circumcircle size as soon
as the Delaunay property of the mesh is restored in the mesh at the next time
step.
This insertion scheme yields adaptive streak surfaces but tends to introduce
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Figure 6.9.: Circumradius of the triangle adjacent to the boundary edge (red)
increases after particle insertion, as the boundary edge cannot be
flipped to produce better conditioned triangles. Such cases are
avoided by splitting of boundary edges.

errors in the particle insertion positions that lead to further surface deviations
during advection, even if newly inserted particles are offset according to the
local MLS approximation of the surface as computed in the previous step of our
algorithm. To avoid these artifacts, we introduce the concept of looking back
at a history of lb > 0 previous instances of concerned triangles or edges. If
a triangle (edge) tri1 is bound to be refined in time step t1, we find matching
triangles (edges) in time steps ti ∈ [t1 − lb + 1, t1 − 1] and insert particles into
according triangles in ti, until either step t1 − lb+ 1 is reached, the curvature of
the surface at the corresponding position in ti falls below a given minimum, or
no matched preceding triangle exists and cannot be created by edge flips. These
m newly inserted particles describe an ordered sequential set of points [p0, pm−1]
located on the linear representation of the individual surfaces [St1−m, St1 ]. As
these particles need to lie on the same pathline, positions of particles pi, with
0 < i ≤ m− 1 are offset according to the position of pi−1 after one full time step
of particle advection.

Our tests have shown that this leads to a great reduction of noise artifacts in
later time steps, that are caused by deviating paths of particles that were inserted
at poorly approximated positions.

Curvature as well as circumradius properties can be used for the removal of
particles as well. In the case that a particle p has a sufficiently small curvature, i.e.
the surface is almost planar, and all adjacent triangles have small circumradii, it
is valid to remove the concerned particle without losing any details in the surface
representation. In realistic applications such as the test data sets shown in the
next section such situations do hardly occur.

6.6. Results

Figure 6.10 shows the benefits of streakline adaptivity measures in a planar
dataset with approximately 3.000 points. Significant improvements in streak-
line accuracy can be observed. Area deformations near the same flow obstacle
are shown in Figures 6.11 and 6.12. Initial starting positions for streaklines were
set manually in a symmetric fashion. In practice, these points are defined by
the input material distribution and should be an application specific output of
the simulation. The inner area in the periodic flow of Figure 6.12 is caused by
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a single boundary-integrated streakline, which was started in the middle of the
entry region of the simulation. As indicated by a comparison of the Figures
6.11 and 6.12, such streaklines allow a more detailed view of the mixing pro-
cess. Figure 6.13 demonstrates the benefit of flow segmentation to multi-field
visualization. Visual complexity of scalar field visualization is reduced by selec-
tive application of transfer-functions. Scalar values are again mapped to hue in
HSV space. This benefit becomes more evident in three-dimensional data sets
as shown in Section 6.5.1. The main drawback of boundary streaklines is the
computational cost of their integration, since during every integration step inter-
section tests with boundary have to be computed and particles are traced along
boundary elements. The factor of increased computation time depends strongly
on the complexity of the boundary object. In the shown datasets, a factor of less
than 2 was observed.

Figure 6.10.: Comparison between non-adaptive (red) and adaptive streakline
(green) with identical point seeding frequency. Angle- and distance-
based refinement criteria improve streakline accuracy in regions with
high turbulence.

Figure 6.11.: Visualization of streak areas in a sequence of three time steps. Bend-
ing, stretching, thinning and thickening deformations in all areas are
visible. Area analysis near the right border of the dataset provides
information about output material distributions.
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Figure 6.12.: Visualization of periodic streak areas in a Karman vortex street
with boundary streakline. Periodicity, frequency and form of the
deformations give an impression of the final material composition.

Figure 6.13.: Segmentation allows multi-field visualization by the direct visual-
ization of scalar quantities such as vorticity.

In the following we present numerical examples of adaptive streak surface inte-
gration in different data sets generated by a point based, grid-less CFD simula-
tion [TK02]. The first data set consists of about 25.000 particles simulating flow
around a cylindrical obstacle with ellipsoidal profile. Dimensions of the obstacle
as well as velocity of the fluid were chosen specifically to yield a high Reynolds
number, leading to a three-dimensional Von Kármán vortex street and a low time
resolution. The resulting disturbed flow structures have optimal properties to ob-
serve the quality of our adaptive streak surface integration approach. Figure 6.15
depicts six non-consecutive time steps of adaptive streak surface integration in
this first data set. Near the vortex structures, the surface mesh has a high cur-
vature and needs to be sampled accordingly. Highly twisted and folded surface
structures in the Von Kármán vortex street demonstrate the robust refinement of
our approach. The surface in the last time step shown consists of around 110.000
particles.
The second data set contains a spherical obstacle, approx. 26.000 flow particles
and fluid flow with a Reynolds number close to the one from data set one. Both
data sets have a low resolution in the time dimension to demonstrate the robust-
ness of artifact avoidance by utilization of our look back strategy. In contrast
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to the first data set, absence of a distinguished direction on the obstacle leads
to aperiodic, intensively folded flow structures, see Figure 6.16. To give an im-
pression of how accurately surfaces generated by the adaptive integration scheme
and the Delaunay mesh refinement method introduced in this work represent
the ”real” surface, we show comparisons between high-resolution non-adaptive
meshes and adaptive surfaces in the two Figures 6.21 and 6.22. The former
illustrates how the folds of a high-resolution mesh are correctly refined and rep-
resented by an adaptive surface with only half as many triangles as an equivalent
non-adaptive surface. Efficient distribution of particle densities can be observed
in Figure 6.22, where the adaptive version of a streak surface clearly has a par-
ticle distribution of better quality than a non-adaptive surface with an equal
number of points. Figure 6.17 shows an example of flow segmentation performed
by surface voxelization as described in Appendix B. This shows, how streak
surface based flow segmentation contributes to multi-field visualization by allow-
ing selective application of transfer functions. We emphasize that generation of
adaptive streak-surfaces followed by subsequent voxelization usually generates
more accurate volume representations than comparable texture based advection
techniques. The techniques for strain computation and visualization presented
in Chapter 5 can be used for multi-field visualization and analysis of relative and
absolute strain directions along the streak surface, as shown in Figure 6.18. Sta-
tistical error measurements are shown in Figure 6.14a. The measured two-sided
surface mesh error is computed with respect to (6.2).

E(S1, S2) =
1

|P1|+ |P2|

(

∑

p∈P1

d(p, S2) +
∑

q∈P2

d(q, S1)

)

(6.2)

where S1 and S2 are the meshes of two streak surfaces at the same time step with
according point sets P1 and P2. It is important to note that, as d computes the
minimal distance of a point to a surface mesh, error values for the same point sets
usually differ if the mesh is changed. While small features in the error curves of
Figure 6.14a may therefore be caused by flipped edges, the overall benefit gained
from reducing the minimal surface resolution and increasing the number of look
back steps is clearly visible. The plotted exemplary measurements were taken
at different time steps of a data set that was scaled to fit into a unit cube and
represent absolute per particle error when comparing the according surface to a
high resolution ground truth streak surface. The shown measurements represent
15 consecutive time-steps of a surface evolving under extreme stretching and
turbulence conditions - a representative scenario that requires reliable surface
reconstruction techniques to produce accurate streak surfaces.
In addition to the direct impact of our adaptivity approach on particle counts

and distributions, the reduced number of particles does influence the computa-
tion times of surfaces as well. We show a representative graph of particle number
development in a surface generated in the ellipsoidal data set in Figure 6.14b.
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(a) (b)

Figure 6.14.: (a) Error statistics for different levels of adaptivity and look back.
(b) Chart of the number of triangles (in multiples of 1.000) in the
first 22 time steps of the streak surface shown in Figure 6.15. Dark
blue refers to the adaptive streak surface, light blue to the non-
adaptive streak surface, that has an approximately identical number
of triangles at step 22.

Method Advection Delaunay Adaptivity
non-adaptive 1.768.470 2.865 0

adaptive, 0.002, 2 lb 790.890 1.155 9.081

Table 6.1.: Exemplary measurements of total streak surface generation times in
milliseconds for 25 time steps of data set one with 20× parallel par-
ticle advection. Final particle number is approx 40.000 for both ap-
proaches.
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The triangle count for the adaptive surface shows exponential growth as long as
the surface is completely inside the domain of the data set and is not trimmed.
Exponential growth is stopped as soon as parts of the surface leave the data set.
Integrals of the depicted curves are directly proportional to the time spent for
total particle advection. From the given graph, it is clearly visible that adaptive
streak surfaces require the advection of a larger number of particles to reach the
same final number. Due to better distribution of particle densities, an adaptive
surface with the same number of particles generally represents a better approxi-
mation of the real surface. The previously mentioned assumption about particle
advection time is verified by measurements during surface integration. The total
time spent for adaptivity measures is a combination of computation times for
surface and curvature approximation as well as particle insertion. In our tests
only a percentage of less than 2% of the total surface generation time was con-
sumed by the adaptivity method, even if particle advection was performed 20
times in parallel. As adaptive integration schemes commonly requires multiple
evaluations of the vector field for every particle, the amount of time dedicated to
particle advection is much higher than the one used up by mesh refinement, thus
noticeably speeding up the integration process. Further improvements on this
performance can be made by parallelization of the mesh refinement algorithm.
While in our tests generation of adaptive surfaces was in average 4 times faster
than creation of equivalent higher resolved surfaces, when using 10× parallel
particle advection, it is difficult to obtain meaningful absolute time comparisons
(cf. Table 6.1), as speed-up is highly dependent on the method of vector field
approximation and flow complexity. In general, the relative speed-up gained by
adaptive surface generation is proportional to the complexity of flow and field
evaluation methods.
For insightful visualization of generated surfaces, we utilize several known vi-

sualization techniques. Four of these techniques are displayed in Figure 6.19.
While the first picture showing a standard particle based visualization of the sur-
face is not capable of conveying the impression of a homogeneous surface, it gives
an insight into adaptive particle distributions. Particle density and connectiv-
ity information are shown by a direct wire-frame representation of the Delaunay
construct as used in the second frame. Shading and texturing techniques are ap-
plied to the solid Delaunay triangulation based surface visualizations. We use a
simple axis-based triangle pre-sorting approach for transparent surface rendering
as shown in the last two frames. Texturing allows the rendering of streak- or
timeline like parts of the surface, former is shown in frame four.
These renderings of streak surfaces have in common that the Delaunay con-

struct used for density estimation is used directly for surface visualization, leading
to a simple and fast visualization allowing the analysis of adaptivity properties.
For high quality surface rendering, one would typically use a smooth interpola-
tion of the surface point set and a much finer resolved triangle grid to get rid of
fine discontinuities of the simple linear representation.
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Figure 6.15.: A sequence of six time steps in a three-dimensional Von Kármán
vortex street produced by test data set number one. The extracted
surface is colored with respect to time, with purple showing the
particles generated at time t0 and red being used for new particles.
Details of twisting folding, and stretching are visible.

Figure 6.16.: Transparent rendering of a non-adaptive and an adaptive streak
surface with the same seeding resolution extracted from test data
set number two. The spherical obstacle produces aperiodic distur-
bances.

To illustrate the use of the methods introduced in this chapter in a real appli-
cation, we present an example of an adaptive evolving mesh being equivalent to
a streak surface without a seeding rake in Figure 6.20. The application is con-
cerned with stirring of a fluid at high temperature and consists of a cylindrical
barrel and two rotating wheels with four attached mixing poles. The extracted
mesh segments the fluid in a stirring simulation into two separate volumes, giving
an impression of how our approach to adaptive streak surfaces can be used to
separate regions of different flow as done in vector field topology.

6.7. Summary and Discussion

This chapter has introduced methods for adaptive modeling of macroscopic flow
deformations. The proposed streak areas and streak surfaces facilitate accurate
segmentation of time-varying flow fields for two- and three-dimensional fields.
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Figure 6.17.: Volume voxelization of a closed deformable mesh is used for volume
rendering of flow vorticity magnitude (mapped to hue). Such flow
segmentation allows multi-field visualization. Flow segmentation by
adaptive meshes allows selective application of transfer functions to
scalar-valued flow quantities. Observed extremal values of vorticity
at the boundary of the segmentation can be seen to be related to
mesh deformation in later timesteps.

While adaptivity measures reduce the amount of expensive field evaluations and
particle numbers, especially the three-dimensional case requires robust geometry
processing. Flow field segmentation reduces visual complexity of direct scalar
field visualization.

Streak-area generation inherently avoids intersection of streaklines and by-
passes the problem of entry/exit point tracking by the integration of streaklines
on boundary geometry. An advantage of segmentation techniques is the possibil-
ity to use segmentation information in a multi-field visualization context. The
adaptivity and integration methods developed in this section can be generalized
to advect arbitrary material boundaries through the flow field.

Furthermore, we have introduced an approach to fully adaptive streak surface
integration. Our method is based on MLS approximation for the evaluation of the
vector field and surface as well as curvature approximation. For particle insertion
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Figure 6.18.: Strain integration along streak-surface border reveals strain direc-
tion. Resulting multi-field visualization indicates high strain or-
thogonal to the streak surface after the flow obstacle. High strain
values highlight regions that require highly accurate particle advec-
tion to avoid surface artifacts. The shown streak surface is colored
with respect to seeding time.

we utilized the circumradius properties of a Delaunay type evolving mesh, which
is restructured after every time step to restore Delaunay properties. The distinc-
tion between two types of particle location during insertion avoid the generation
of triangles with bad aspect ratios. A look back strategy during particle insertion
further reduces approximation errors. The results demonstrate the accurate, ro-
bust, and fast integration of adaptive streak surfaces generated by our method.
Moreover we have presented results in a real world application of a mixing pro-
cess, illustrating the suitability for practical flow analysis and topology-based
visualization. The methods introduced in this work are portable to other fields
of visualization where moving or evolving meshes are concerned, such as the
concept of unsteady flow volumes presented by Becker et al. [BML95]. Common
approaches to the extraction of vector field topology of fluid flows [WTS09] based
on the use of stream surfaces as three-dimensional separatrices in the stationary
case can be generalized to vector field topology methods in non-stationary fields
by the application of streak surfaces for segmentation of time-varying volumes.
Future work on the topic of adaptive streakline and surface construction may

include the utilization of improved spatial clustering for further parallelization of
the generation process as well as the integration of vector field singularities into
the streak surface generation process. Furthermore, the ability of streakline and
surfaces to sample flow fields accurately is an interesting property that can be
used for flow analysis and segmentation [OHBH10] and allows definition of dense
flow statistics.
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Figure 6.19.: One time step of streak surface integration shown in four differ-
ent visualization techniques for surface rendering. Techniques are:
Surface particles rendered as shaded points, wire-frame triangula-
tion, solid transparent triangulation, and texture mapping showing
streakline structures.

Figure 6.20.: Refinement mesh in a stirring simulation.
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Figure 6.21.: Triangulations of an adaptive (top) and a high-resolution non-
adaptive streak surface passing a spherical obstacle. Triangle counts
in the time step shown evaluate to approximately 20.000 and 45.000.
The adaptive surface yields a highly diverse particle density, while
accurately representing fold-like features.

Figure 6.22.: Triangulations of an adaptive (top) and a non-adaptive streak sur-
face with approximately 110.000 triangles each. The non-adaptive
version shows less optimal particle distributions and regions with
low mesh resolution.



7. Tensor Fields - Scattered

Moment Tensor Data

Instead of being a derived quantity from flow simulations, the displacement data
processed in this chapter is based on real-world measurements obtained during
earthquakes. Data is available in the form of moment tensors which model surface
displacement. In contrast to previous chapters, where visualizations of multiple
fields are combined in one visual representation, the methods developed in this
chapter use separate views of the same data set to convey multi-field data. In
the following sections we are concerned with the visualization of scattered tensor
data that represents moments in geophysical data sets.
Seismic earthquakes in geoscience are a comparatively less known source of

tensor data when compared to applications from medical data visualization, such
as DT-MRI. Due to the measurement technique, that places seismic sensors at
locations close to points of interest such as known or suspected faults, the gener-
ated moment tensors are represented as scattered set of symmetric second order
tensors describing earthquake point sources leading to displacement of the earth’s
surface.
This scattered tensor field carries valuable information for earthquake and fault

analysis such as magnitude, type, wave polarity and fault orientation. We present
novel tensor glyphs to visualize these properties and extract meaningful tensor
features in individual moment tensors. Interpolation in moment tensor fields is
a challenging task, as different source types, such as artificial explosions, natural
shear dislocation, and volcanic eruptions have to be treated separately. To over-
come this problem, we introduce novel moment tensor clustering and averaging
methods as well as accompanying visualization techniques. Tensors of resulting
clusters can be combined and averaged into one representative glyph, which addi-
tionally contributes to the quality of glyph-based field visualization by reducing
visual occlusion and clutter. In our work, the spatial nature of the information
conveyed by placing tensor glyphs at positions of measurements is complemented
by a visualization of the overall orientation data present in the moment tensors
in the form of a hemisphere stereographic projection. This allows us to depict
clustering and orientation not only in three-dimensional but also in the projective
space of orientations. Furthermore, we provide interaction methods to intuitively
match data between both spaces. While the presented methods may be used for
the illustration of stress tensors in general, they have been applied to different real
world moment tensor data sets to produce the results presented in this chapter.
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The main contributions of the following chapter to the visualization community
are novel moment tensor clustering and averaging techniques, polarity glyphs and
slip geometry for visualization of indefinite tensors, and linked spherical projective
and spatial visualization techniques for scattered moment tensor analysis.

Section 7.1 provides an overview of existing work in the field of tensor visual-
ization and moment tensors in special. In Section 7.2, we give an introduction to
basic properties, types and sources of moment tensors. Section 7.3 proposes new
glyph techniques to highlight important characteristics of moment tensors before
introducing tensor based clustering and averaging in Section 7.4. We built upon
these findings, to describe properties and interaction techniques of the two spaces
used for visualization of scattered moment data in Section 7.5. Results are given
in Section 7.6, whereas Section 7.7 concludes this chapter.

7.1. Related Work

Most tensor field visualization techniques [WH06] focus on either local proper-
ties of individual tensors or global behavior of the tensor field. Visualization of
local attributes of the tensors is commonly achieved by utilizing shapes, icons
or glyphs to depict relevant tensor properties, as done by superquadric glyphs
[Kin04], Reynolds glyphs [MSM96] or others, whereas methods that need a global
topology-based analysis of the field make use of streamline extraction along ten-
sor eigenvectors [DH92]. These techniques usually assume a densely sampled field
or uniform treatment of tensors. Most recently the use of superquadric glyphs
for the visualization of indefinite tensors was proposed in [SK10]. However, the
shape of these tensors alone is not able to convey positive and negative definite
regions of the tensor. To depict moment tensors, Ohtsu et al.[OS04] use VRML
and simple plane glyphs. These glyphs are limited to the display fault plane
and movement directions. Another publication in the area of moment tensor
visualization [NJP05] uses dense display of shapes on a regular grid to depict
eigenvector directions and magnitude. However, they do not use explicit cluster-
ing or occlusion reduction techniques. In general, when tensor fields are sampled
in a significantly dense manner or allow straight-forward interpolation of tensors,
a global view of the data can be achieved by dense or intelligent glyph placing
[HSH07]. In contrast to these methods, we aim at giving a global view of tensor
properties in a scattered data set, while avoiding the drawback of classic tensor
interpolation. In the context of clustering, Rohlfing et al. [RSP07] make use of
diffusion-tensor k-means clustering based on probability distributions to allow
averaging and interpolation between DT-MRI scans. Regarding moment tensors,
similarity measures based on the inner matrix product [Wil93] have been used
for simple cluster identification; derived clustering techniques are used in a semi-
automatic manner in this work. Currently, the tensor visualization community
has mainly focused on processing and analysis of diffusion tensors. We intro-
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Figure 7.1.: (a) Vector couple corresponding to myx. (b) Force dipoles in ro-
tated coordinate system corresponding to pure shear. The stippled
lines represent the two possible fault plan orientations. (c) Standard
beachball representation of the situation in (b).

duce methods that are not specific to diffusion tensors, but aim at improving
moment tensor data analysis. However, the concepts introduced in this work are
applicable to a variety of symmetric second-order tensor fields.

7.2. The Moment Tensor

Seismic sensors allow the recording and processing of waves emitted during earth-
quakes, indicating surface displacement along faults. A mathematically well-
founded way of capturing these displacement discontinuities of the earth’s surface
is their representation as force couples in moment tensors [AR80], see Chapter 3.
The seismic moment tensor M is a symmetric second order 3× 3 tensor. Tensor
components mij denote the magnitude of the moment caused by the force couple
in i-direction acting on the the j-direction. Figure 7.1 (a) illustrates one of nine
possible force couples. The vanishing angular moment in the seismic source im-
plies symmetry, i.e. mij = mji. In the following sections we present fundamental
properties of such moment tensors.

7.2.1. Fault Representation

An important information represented by moment tensors is the orientation of
displacement discontinuities or fault planes in the earth’s mantle. Due to sym-
metry, a moment tensor M can be diagonalized by rotation into its eigenvector
system, with entries on the diagonal corresponding to its eigenvalues. For pure
slip along a plane, M has eigenvalues λ1 < λ2 < λ3 with λ1 = −λ3 and λ2 = 0,
indicating vanishing displacement in a direction orthogonal to a faulting plane,
see (7.1). As only one force couple contributes to displacement, such moment
tensors are therefore known to be pure double-couple (DC) tensors.

MDC =





λ1 0 0
0 λ2 0
0 0 λ3



 =





−λ3 0 0
0 0 0
0 0 λ3



 (7.1)
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In the rotated principal axis coordinate system, where −λ3 = mDC
xx and λ3 =

mDC
zz , the corresponding eigenvector directions e1 and e3 represent two perpen-

dicular force dipole directions of opposing orientation, as shown in Figure 7.1 (b).
Due to displacement magnitude and direction, possible fault plane directions are
rotated by 45◦ with respect to the principal axis directions. This results in two
possible plane orientations, where one corresponds to the true fault plane and the
other is an auxiliary plane. Only analysis of further seismic activities can help
select the true fault plane direction from these two orthogonal candidate planes.

7.2.2. Moment Tensor Decomposition

Due to measurement errors, complex faulting behavior, and other sources, eigen-
values of real-world moment tensors do not always have the properties described
in 7.2.1 and do generally not represent pure double-couple tensors. A tensor de-
composition proposed in[KR70] allows measurement of the contribution of a pure
double-couple and other sources. According to this decomposition, a diagonalized
tensor M consists of the following components:

M = Miso+Mdev = Miso+aMdc+bMclvd = Miso+a





−1 0 0
0 0 0
0 0 1



+b





−1 0 0
0 −1 0
0 0 2





where Miso is the isotropic part of the tensor and Mdev the deviatoric part,
which is decomposed into a double-couple component Mdc and a compensated
linear vector dipole (CLVD) component Mclvd, with a and b depending on the
eigenvalues of M . While this is not the only valid moment tensor decomposition,
it allows classification of moment tensors into seismic events that belong to the
following groups:

• Highly isotropic: Force signatures caused by (artificial) explosions or im-
plosions are isotropic.

• Mainly DC: Ideal faulting corresponds to slip along a single fault plane.

• Large CLVD components: Slipping along multiple faults, planar movement,
or volcanic activities lead to high CLVD parts.

As presented in a later section, this classification allows predictions about mo-
ment tensor glyph shapes. During data analysis or processing, moment ten-
sors are often represented by an approximating best double-couple, neglecting
isotropic or CLVD contributions.
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7.2.3. Moment Tensor Properties

In contrast to tensor data caused by man-made explosions, moment tensors de-
rived from wave emissions of natural causes are usually traceless tensors, since
these movements cause no changes in volume. Therefore, positive wave polarity or
displacement along one direction is always accompanied by negative displacement
along another direction, as indicated by opposing signs in the tensor eigenvalues.
As a consequence, such moment tensors are indefinite:

∃v,w : vT ·M · v > 0 ∧ wT ·M · w < 0 (7.2)

with v, w ∈ R3. This important property of the quadratic form qM(v) = vT ·M ·v
can be used directly for tensor visualization, as detailed in the next section.

M0 =

√

1

2

∑

ij

m2
ij

Mw =
2

3
log10M0 − 10.7 (7.3)

As additional quantities derived from moment tensor data, the seismic moment
M0 and the resulting moment magnitude Mw defined by (7.3) provide means to
measure the size of an earthquake.

7.3. Moment Tensor Glyphs

As described earlier, tensor glyphs are the preferred way to visualize well-defined
properties of individual properties. Beachball glyphs as shown in Figure 7.1 (c)
for a pure double-couple are the classic way to depict fault plane orientations of
moment tensors in geoscience, where a circle is shaded according to wave polar-
ity. Black indicates tensional, white compressional forces. Fault plane candidates
can be perceived from the glyphs, as they are aligned with the borders between
black/white quadrants. Positive (negative) definite tensors yield completely black
(white) glyphs, while CLVD moment tensors lead to non-orthogonal shading of
the glyphs. Most publications focus on the depiction of the double-couple compo-
nent of a moment tensor to identify prevailing fault plane orientations. However,
neither do these glyphs convey clear information about relative amplitudes of
waves even when the shapes are scaled by M0 or Mw to show earthquake mag-
nitude, nor do they always provide a clear look at slip directions. We overcome
these drawbacks by exploiting the fact that most moment tensors are indefinite
and carry important information in their quadratic form. The glyphs developed
in the following are capable of visualizing important tensor features such as local
tensor definitness and slip geometry.
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Figure 7.2.: Standard beachball and glyph shape offsets according to qM . The
shape of the resulting glyph conveys direction and magnitude infor-
mation.

7.3.1. Polarity Glyphs

For positive definite diffusion tensors, several authors [ÖM03] have proposed
to visualize M by extracting and rendering the implicit glyph qM(v) = c or
qM−1(v) = c for a constant c ∈ R+, thus depicting scaling and diffusion proper-
ties of the tensor. In contrast to these methods, we use the quadratic form qM to
modulate a basic glyph shape to visualize wave polarity and amplitude of indefi-
nite tensors. The final glyph shape is desired to allow distinction between sources
with different wave polarities, directions, absolute and relative amplitudes. Given
an arbitrary unit vector in spherical coordinates v(θ, φ) ∈ R3, qM(v) represents
the signed magnitude of the force couple in direction of v. For v = ei, i ∈ {1, 2, 3},
the quadratic form evaluates to the corresponding eigenvalue. Motivated by these
properties, vertices of an isotropic mesh can be modified to produce the desired
glyphs, as seen in Figure 7.2:

1. Create a spherical mesh S with radius r

2. Compute qM(v/||v||) for every vertex v ∈ S

3. Displace mesh points v by dM(v) = c · qM (v/||v||) · v
||v||

Both r and c are determined by the desired scaling preferences described in
the following. For a given set of moment tensors, seismic moments and therefore
extremal values of qM may vary strongly. The straightforward approach to yield
consistent glyph scaling over a set of moment tensors is to choose c = r

maxM (|qM |)

and fix r to a constant value over the data set. This way relative differences
in glyph shape displacements dM are equivalent to relative differences in seismic
moments. Furthermore, glyphs shapes do not self intersect, as ||dM(v)|| ≤ r holds
for all M . While this method accurately and consistently reflects force magni-
tudes by glyph displacements, glyphs with comparatively small wave amplitudes
degenerate to sphere-like shapes as observable in Figure 7.3 (a), as earthquake
magnitudes are reflected in glyph silhouettes directly. As a second method, we
choose c = r

maxv(|qM |)
with r proportional toMw for every glyph individually. This
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(a) (b)

Figure 7.3.: (a) Glyphs scaled according to method one (top row) and method
two (bottom row). Texturing shows orientation of the best double-
couple. (b) Basic rotated mesh and glyph of a tensor with large
CLVD component, showing double-couple and polarity shading.

results in glyphs that show accurate force and displacement ratios within a glyph
and represent differences in earthquake magnitude between glyphs by uniform
scaling. The advantage of latter method is that directions and polarity of maxi-
mal forces within a glyph are depicted more clearly. A drawback of this uniform
scaling in three dimensions is, however the ambiguity of size and distance, which
requires earthquake magnitude to be mapped to an additional visual parameter
such as color.

7.3.1.1. Visualization

Following the shading convention of beachball glyphs, we make use of texturing
to either highlight the best double-couple of a glyph by appropriate shading of
the quadrants, or map positive and negative polarity to different colors. Figure
7.3 (b) shows examples of both shading types. Polarity based shading allows easy
identification of tensors with large isotropic or CLVD components. We note that
spherical meshes are rotated prior to vertex displacement, to ensure that high
resolution poles of the discretized mesh coincide with the direction of e2. This
allows accurate texturing of the region where the four quadrants meet. All glyphs
are shaded and textured using pixel shaders to avoid visual artifacts resulting
from low resolution meshes and aid in conveying glyph shape properties such
as curvature. When compared to classic beachball renderings, polarity glyphs
are able to not only represent fault plane orientation but CLVD and isotropy
fractions and absolute displacement magnitudes as well.

7.3.2. Slip Geometry

As noted by Haller [Hal01, Hal05] in the context of flow vortices, indefinite matri-
ces describe a partition of local space into sections with attracting and repelling
flow behavior. The polarity glyphs introduced in the last section encode this at-
tracting and repelling behavior in the context of wave propagation and force orien-
tation by shading surface areas accordingly. To convey the full shape of this flow
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Figure 7.4.: Slip geometry glyphs for high CLVD and high DC tensors (left) and
geometry glyphs rendered together with polarity glyphs (right).

separation or fault geometry, we propose a method to extract slip geometry GS

of a tensor directly. For a given indefinite tensor, the quadratic form qM defines a
unique scalar field on the unit-sphere, with a zero set {v|qM(v) = 0} correspond-
ing to the closed boundary between regions of inflow and outflow or opposing
force directions. In moment tensor data, this boundary indicates slip geometry.
To extract this geometry, we discretize the unit-sphere uniformly along its spheri-
cal coordinates θ and φ. The resulting grid cells [i∆θ, (i+1)∆θ]×[j∆φ, (j+1)∆φ]
are quads in spherical coordinate space and thus qualify for standard isocontour
extraction techniques. For the isovalue of qM(v) = 0, performing the standard
Marching Quads algorithm on these cells yields a connected set of lines on the
unit-sphere. Slip geometry triangles are created by connecting these line segments
with the origin of the unit sphere. These triangles are a valid representation of
GS, as qM(w) = 0 holds for all w with vT · w

||w||
= 1.

As isotropic tensors do not contain a distinct direction of slip, we only apply this
method to anisotropic tensors, as common in real world data sets.

7.3.2.1. Visualization

Visualizations of GS for different moment tensors are shown in Figure 7.4. High-
lighted rendering of glyph boundaries helps distinguish different slip geometry
types. Slip and polarity glyph types complement each other when combined.
Pure double-couple tensors produce two perpendicular flat sphere segments as
expected, whereas CLVD tensors produce more complex geometries due to dif-
ferent contributions of a number of double-couple fault planes to the final shape
of the glyph. In contrast to beachball or polarity glyphs, this extracted geometry
gives a clear look at interior displacement discontinuities. Highest information
density is reached when combined with transparent polarity glyphs.

7.4. Clustering and Averaging

The presented glyphs facilitate a local visualization and analysis of scattered mo-
ment tensor fields. As straight-forward interpolation of scattered moment tensors
is not feasible due to the loss of important tensor properties when mixing different
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source types, tensor grouping or averaging has to rely on additional clustering
steps. For an insightful visualization of the complete tensor field, several reasons
motivate the averaging and clustering of multiple tensors into subsets. A first
reason is given by visual occlusion that frequently appears in regions with a high
density of seismic activities being represented by large and dense groups of mo-
ment tensor glyphs. A second reason is the fact that accumulations of spatially
close moment tensors commonly represent similar faulting mechanisms. Similar
faulting mechanisms may be summarized into an abstract average seismic event,
thus reducing information overload. Another reason for moment tensor cluster-
ing is the identification of locations and properties of frequently active seismic
sources. In the following, we present a selection of moment tensor similarity
measures and introduce a novel tensor clustering method along with an averag-
ing procedure, allowing efficient computation and visualization of tensor clusters.

7.4.1. Similarity Measures

For diffusion tensors, a number of metrics were proposed over the last decades
[PSB10]. Among others, Kagan[Kag91] and Willemann[Wil93] present similarity
measures for moment tensors. While Kagan defines similarity between moment
tensors as the minimum angle needed to transform one double-couple into another
by rotation, Willemann uses the inner tensor product to define similarity on the
full tensor rather than the best double-couple. In the following we summarize
both approaches and introduce modifications to allow source-type clustering.

7.4.1.1. Double-Couple Rotation

The double-couple orientation of a moment tensor is fully described by the
eigenvector system of the tensor. For a fixed ordering of eigenvectors such
as ex, ey, ez ≃ e1, e2, e3, this orthogonal system can be converted into a unit-
quaternion[BH87] representation Q = (cos(α/2), sin(α/2) · q) = (q0, q1, q2, q3)
by:



e1 e2 e3



 =





q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23





This right-handed (left-handed) coordinate system is not unique but results
in 4 different quaternions depending on choice of eigenvector signs, from which
one commonly chooses the solution with minimal rotation angle to the canonical
coordinate frame. For quaternions QM , QN of two moment tensors, the minimal
angle of rotation between double-couples of M and N corresponds to

αmin(M,N) = 2 · cos−1(maxq((QM · q ·Q
−1
N )0)) (7.4)
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Figure 7.5.: Two moment tensors describing different earthquakes with identical
fault geometry. αmin = Π, α̂min = 0, S = Π and Ŝ = 0.

where q ∈ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, and (.)0 corresponds to
the scalar component q0 of a quaternion. This distance function αmin can be
used to define a similarity measure on double-couples. Thus, when neglecting
CLVD and isotropic components of moment tensors, this defines a metric on the
approximating double-couples of arbitrary moment tensors (with the exception
of isotropic tensors).
We modify this distance function to not only serve as a similarity measure on
seismic wave propagation of earthquakes, but as well on fault geometry, see Fig-
ure 7.5. After computing αmin, we repeat computation of αmin with swapped
directions e1 and e3 in the coordinate system of one of the two moment tensors.
The overall minimal angle α̂min of both computations is equal to the minimal
angle needed to rotate one fault plane system into the other, as illustrated in
Figure 7.5. While slipping directions of moment tensors that are similar to each
other with respect to α̂min may have opposing directions, this measure identifies
moment tensors based on similarity of fault geometry.

7.4.1.2. Full Tensor Similarity

In contrast to the double-couple similarity measure described above, this distance
function is not restricted to approximating double-couples, but operates on the
full moment tensor data. For two second order square tensors M ,N with

∑

i λ
2
i =

2, the inner tensor product

M ·N =
∑

ij

mij · nij (7.5)

is a natural measure of tensor similarity. Values of the product are limited to
the interval [−2, 2] with M ·M = 2 and M · −M = −2. A function

S(M,N) = cos−1

(

M ·N

2

)

(7.6)

defines a distance between arbitrary normalized moment tensors M and N . S
is maximal for opposing moment tensor pairs, i.e. for moment tensor pairs with
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identical orientation in the eigenvector system and opposite eigenvalue signs. We
again propose a modified similarity measure by identifying moment tensors with
identical fault orientations. For this matter, we replace M ·N by |M ·N | in the
computation of S to yield a new distance measure Ŝ with similar properties as
α̂min as indicated in Figure 7.5. In contrast to α̂min, this distance function is
able to operate on purely isotropic tensors as well. Aside from this fact, choice
of the similarity measure is based on whether to include CLVD components into
the clustering algorithm or not. If the data is suspected to contain a lot of noise,
causing pure double-couple sources to include incorrect CLVD components, the
first measure might therefore be preferred over the latter.

In the following the four presented distance functions are used to realize in-
teractive and automatic tensor clustering. It is important to note that both
presented distance measures ignore the magnitude of the seismic moment either
by using the eigenvector system directly, or by operating on normalized tensors.

7.4.2. Clustering

Clustering commonly serves to group and identify similarities in arbitrary data
sets, where its data reduction and information densification properties make it
a prime candidate to be applied to cluttered tensor glyph visualizations. In the
context of this work, tensor clusters have to fulfill two properties. Firstly, tensors
in a cluster have to be significantly similar to each other, secondly clusters should
be constrained to a local neighborhood to avoid grouping of spatially separate
tensors. A clustering of objects based on a similarity measure fulfilling the first
property is given by the Quality-Threshold Clustering algorithm [HKY99]. To
satisfy the second property, we propose a Distance-Quality-Threshold Clustering
algorithm utilizing a minimum spanning tree representation of each cluster.

7.4.2.1. Distance-Quality-Threshold Clustering

Our DQT-Clustering algorithm is a modified version of the classic QT-Clustering
method that additionally imposes euclidean distance constraints on the final clus-
ters. Input parameters of the clustering algorithm are a distance function d such
as αmin, a threshold ǫd that specifies the maximal allowed distance in similarity
between two members of a cluster and a euclidean distance threshold ǫe defin-
ing the maximal euclidean distance between nearest neighbors of a cluster. The
clustering algorithm takes the following form:

1. Let U denote the set of unclustered tensors and CC the set of clusters.

2. Choose a tensor M ∈ U , starting a new candidate cluster CM = {M}.
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3. Add argminP∈U/CM
(maxN∈CM

(d(P,N))) to CM , untilmaxN∈CM
(d(P,N)) >

ǫd for all P ∈ U/CM .

4. Build a euclidean minimum spanning tree for CM .

5. Remove all parts of CM that are connected to M by an edge larger than ǫe.

6. Repeat from 2 with newM , until all tensors in U have generated a candidate
cluster.

7. Pick the largest candidate cluster and add it to CC . Remove its members
from U . Clear all candidate clusters.

8. Repeat from 2, until U = ∅.

When execution of the algorithm has finished, CC contains non-overlapping
tensor clusters. With exception of steps four and five, this clustering algorithms
is identical to the standard QT method. In step three the point P that minimizes
the maximal distance to all members of the candidate cluster CM is added to the
set, if maxN∈CM

(d(P,N)) > ǫd. This guarantees complete linkage clustering, i.e.
the maximal distance with respect to d between two arbitrary members of a clus-
ter is limited by ǫd. To minimize computational complexity, we pre-compute d
for pairs of moment tensors during loading of the data set, thus ensuring reduced
computation times during clustering.
While these steps yield clustering in the space of tensor similarity, they do not
impose constraints on euclidean space, resulting in clusters that are distributed
over large parts of the scattered tensor field. To enforce spatial locality of mo-
ment tensor clusters, we introduce a cluster splitting method based on minimum
spanning trees. For a set of objects in euclidean space, a euclidean minimum
spanning tree corresponds to a tree representation of the set with a minimal total
of edge lengths among all trees that can be constructed from that set. We con-
struct the minimum spanning tree for a candidate cluster using Prim’s algorithm.
By removing objects from the cluster that are connected to M by edges exceed-
ing the pre-defined threshold ǫe, cluster locality is guaranteed, as illustrated by
Figure 7.6 (a). Connectivity information gathered in this tree-building process is
saved for visualization purposes.

7.4.3. Tensor Averaging

Clusters obtained by the described method facilitate local tensor averaging while
excluding tensors of strongly dissimilar types, leading to an accurate representa-
tion of a closed set of moment tensors. Given a cluster of moment tensors Mi, we
compute a representative tensor Ma by averaging of eigenvector directions and
eigenvalues of cluster members. For Mi, i ∈ {1, .., n} with ordered eigenvectors
ei1, e

i
2, e

i
3, eigenvectors of Ma evaluate to



Clustering and Averaging 137

M
l > εe

(a) (b) (c)

Figure 7.6.: (a) Minimum spanning tree for a set of points in R2. Parts of the
tree are removed, as connecting edges exceed ǫe. (b) Metaball radius
for a selected node with underlying extended cluster bounding box.
(c) Illustration of final cluster outline.
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(7.7)

with individual eigenvectors ei oriented according to a chosen right-hand coor-
dinate system implied by (e01, e

0
2, e

0
3). Eigenvectors of isotropic sources are omit-

ted; corresponding eigenvalues are averaged similarly. If α̂min or Ŝ was used
during clustering, ei1 and ei3 may be swapped during the averaging process to cor-
respond to the directions of e01 and e03. From this eigenvector system, the average
pseudo moment tensor is reconstructed by solving

Ma ·



ea1 ea2 ea3



 =



λa
1 · e

a
1 λa

2 · e
a
2 λa

3 · e
a
3



 . (7.8)

Glyphs of these average tensors show an accurate representation of average fault
plane directions and polarity magnitudes. For source type clustering we limit
display of average tensors to slip geometry glyphs, as wave polarity is neglected
during that type of clustering. The representative glyph of a cluster is placed
at the position of an edge of the minimum spanning tree that is closest to the
centroid of the cluster’s bounding box.

7.4.3.1. Cluster Visualization

While classic ways of visualizing object clusters by distinct object colors or shapes
allow visual distinction of clusters, they often fail to convey a homogeneous repre-
sentation of a cluster and rely on the visual presence of cluster members. Cluster
outlining techniques avoid these problems. We propose a cluster outlining tech-
nique based on implicit metaball [Bli82, LAG01] shapes to allow consistent cluster
visualization in the absence of cluster members.
Based on the minimum spanning tree skeleton obtained during clustering, infor-
mation about moment tensor connectivity in a cluster is available and can be
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used in the process of visualization. For cluster outline generation we center an
energy function

f(pi, p) = max

(

0,

(

1−
||p− pi||

2

r2i

)3
)

(7.9)

at every member tensor position pi with a radius ri corresponding to the maxi-
mal length of adjacent edges in the minimum spanning tree, as seen in Figure 7.6
(b). This energy function has similar properties as the commonly used Gaussian
function, but has an important advantage in evaluation speed. The accumulation
of energy functions in a cluster yields a three-dimensional scalar field, that serves
as basis for isovolume extraction. For discretization purposes, the cluster is en-
closed by an axis aligned bounding box that has been enlarged by maxi(ri) into
the canonical coordinate axes and sampled by a uniform grid, see Figure 7.6 (b).
Scalar values s(.) at grid node positions gj are evaluated as s(gj) =

∑

i f(pi, gj).
We use the standard Marching Cubes technique to extract a triangulated isovol-
ume for a value of 0.6 in the resulting uniformly sampled scalar field. Hereby,
empirical choice of isovalue and choice of the ri produce a connected outline of
the cluster.
A rendering of this isovolume geometry may be used for direct cluster visualiza-
tion. However, we restrict rendering of these isovolumes to their view dependent
silhouettes to provide a clear look at the cluster contents. To achieve this, we
make use of the OpenGL stencil buffer to mask out irrelevant parts of the isovol-
ume:

1. Choose a cluster C with |C| > 1.

2. Clear the stencil buffer bits to 1.

3. Draw the triangulated isovolume of C to the stencil buffer only, setting
covered bits to 0.

4. Draw an enlarged version of the isovolume with shading and coloring to
pixels where the stencil buffer is 1.

5. Repeat from 1 until all desired clusters are drawn.

An enlarged version of the isovolume used during rendering in step 4 is obtained
by displacing isovolume vertices along their normals. As a result of this rendering
technique, a view dependent outline of the cluster is drawn, providing a clear
view at inner parts of the cluster, while depicting the silhouette of the cluster.
An illustration is given in Figure 7.6 (c). These outlines provide a visual clue
about cluster dimensions, even if no cluster members are drawn.
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Figure 7.7.: Depiction of stereographic mapping (left) and an example of a map-
ping showing longitudinal and equatorial lines along with major and
minor eigenvector directions of a set of moment tensors (right).

7.5. Interactive Visualization

In the previous sections, we have described methods to visualize and cluster
scattered moment tensor fields in R3. This section details how to enhance visu-
alization of such fields by the addition of an interactive projective rendering of
the data set.

7.5.1. Stereonet Display

Lower hemisphere stereographic projections, or stereonets are angle preserving
projective mappings that are frequently used in geoscience to analyze orientations
of moment tensor data. A generalized stereographic projection for a projection
point P on the unit-sphere maps points Pi on the unit-sphere surface to the inter-
section point of the line gi(t) = P+t(P−Pi) with the plane orthogonal to (O−P )
going through the origin. This mapping is undefined for P and is restricted to
the hemisphere opposite to P in the following. An illustration of the mapping
process along with a concrete example of a projected hemisphere are shown in
Figure 7.7. To give a global impression of fault directions and moment tensor
orientations, we extend the three-dimensional rendering context by a viewport
showing such a stereonet type visualization. We render moment tensor orienta-
tions as points on the unit-sphere corresponding to minor and major eigenvector
directions of the tensors. Major eigenvector directions are traditionally rendered
as filled, minor eigenvector directions as empty dots. Due to orthogonality, the
double-couple and fault plane directions of a moment tensor are uniquely defined
by these two positions. As we detail in the results section, this view allows de-
tailed cluster analysis of moment tensor orientations, while incapable of clearly
depicting spatial information.

7.5.2. Interaction

To make full use of combined three-dimensional and projective display of a scat-
tered moment tensor field, we provide both views with a list of interaction capa-
bilities:
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• Highlighting: When pointing at an eigenvector position in the stereographic
view, both corresponding eigenvector directions are highlighted and con-
nected to the sphere origin by line drawing while rendering a projected
double-couple watermark in the background of the stereonet. The corre-
sponding glyph in the three-dimensional view is highlighted by color and
size changes to allow for easy matching of orientation and position and
glyph display in R3.

• Selection: Users are able to use mouse based multiple tensor selection in
both views to select, highlight or hide tensors. Affected glyphs and eigen-
vectors are highlighted, or hidden in both views.

• Parameter Selection: We provide the user with means to select the desired
distance function for clustering, adjust ǫe, ǫd and change glyph type dis-
play as well as coloring (earthquake magnitude, CLVD fraction, isotropic
fraction).

• Similarity Querying: Right click on a tensor M highlights all tensors N
(glyphs and projected eigenvector directions) that satisfy d(M,N) < ǫe for
the currently selected distance function and threshold.

• Clustering: Users can initiate clustering, toggle the display of individual
cluster outlines, cluster members or representatives in both views.

All interaction methods aim at improving visual matching between the stere-
ographic and the three-dimensional view of the data. Furthermore, they are
designed to allow manual data exploration and analysis.

7.6. Results

In the following, we present results obtained by applying the methods described
in this work to real world data sets. We visualize two data sets containing mo-
ment tensor data obtained during earthquakes in Chile and Tonga. Figure 7.8
gives an impression of standard beachball based moment tensor visualization to-
gether with a stereonet projection with fixed projection point and slab geometry
display. As indicated by the color legend shown in the figure, visualization of
scalar quantities is performed in HSV color space. The same figure shows a basic
color based clustering visualization using polarity glyphs. Polarity glyphs facil-
itate easy identification of wave propagation directions and CLVD tensors, by
conveying magnitudes and directions by tensor shapes. The alternative render-
ing of the stereonet as a list view, showing one stereonet for each cluster, allows
uncluttered visualization of different clusters in projective space. Watermarking
using average double-couple improves perception of fault directions in stereonet
display. In general, the stereonet display gives an insight into the distribution
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of positive and negative wave propagation directions which is further aided by
polarity glyph display. This view-based multi-field visualization facilitates in-
dependent but semantically linked analysis of eigenvector directions and tensor
entities and follows a different principle than single-view multi-field visualization
techniques. As opposed to latter methods, multi-view techniques reduce visual
occlusion between different fields, but rely heavily on interaction to visualize local
field relationships.

Figure 7.9 shows the benefit of information reduction by clustering. Clusters
may be visualized by average tensors, outlines, cluster members or a combina-
tion of these. Cluster representatives are highlighted by color and size to be
distinguishable from regular cluster members. The selected distance function
(double-couple rotation) shows clear and correct clustering in both projective
and three-dimensional space. Cluster outlines show information about spatial lo-
cation and extension of frequent earthquake sources while not hiding individual
earthquake sources.
Similarity querying as shown in Figure 7.10 is useful for quick identification of
similar earthquake sources. Compared to clustering, it does not restrict its solu-
tion to local regions, but highlights tensors in all regions of the data set as made
obvious by a single highlighted moment tensor at the further end of the data
set. While display of all clustering data such as outlines, and cluster members,
as seen in Figure 7.10, may lead to a cluttered view if no manual selection is
performed, it can be used to gain a quick overview of the structure of a moment
tensor data set. For cluster outlining in stereographic space, the minimum span-
ning tree is not created in three-dimensional euclidean space, but corresponds to
a minimum spanning tree on the surface of the sphere, connecting eigenvector
directions along geodesic lines of the sphere. This tree commonly leads to two
cluster outlines per cluster, separating major and minor eigenvector directions,
as seen in Figures 7.9 and 7.10.
Figure 7.11 shows a selection of visualization settings for a small moment tensor
cluster including outline visualization. The depicted average tensor is scaled to
be distinguishable from regular cluster members. Correct averaging results pro-
duce a well-aligned representative glyph. Correct cluster outlining is performed
for arbitrary viewing angles. In contrast to the other presented results, which
show the Chile data set, Figure 7.12 compares the standard beachball visual-
ization technique applied to the Tonga data set with our approach, yielding a
far less cluttered view of the fault data. It additionally shows visual feedback
produced during orientation highlighting. In the presented data sets, clustering
of moment tensors as well as geometry construction took less than a second on a
PC with standard hardware (Intel Core 2 Duo @ 2 Ghz) and does not limit in-
teractivity for small or medium sized data sets. For bigger data sets with a large
number of tensors, clustering methods based on QT clustering need additional
optimizations, which are outside of the scope of this work.
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Figure 7.8.: Standard display settings with fixed projection point and beachball
glyphs colored according to moment magnitude (left). Visualization
of clusters by polarity glyph coloring and a projective cluster-list
showing double-couple orientation of cluster averages as watermarks
(right).

Figure 7.9.: View dependent stereonet projection along with cluster selection
and outlining in R3 and stereonet view. The representative glyph
is displayed along with cluster members (left). Replacing cluster
members by their respective cluster averages leads to a simplified and
decluttered view of the tensor field and shows locations of frequent
and similar seismic activities (right).
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Figure 7.10.: After user selection, tensors similar to a selected moment tensor are
highlighted (left). Visualization of all identified clusters by outlining
in projective and three-dimensional space (right).

Figure 7.11.: A close up view of a cluster with outlining. Display of cluster mem-
ber or the representative glyph can be toggled by the user (left).
Correct outlining is preserved if changing the viewing angle (right).
Display of slip geometry in a cluster allows a clearer look at geo-
metrical segmentation in the form of fault planes and displacement
discontinuities. Furthermore, the conic shape supports analysis of
wave propagation directions and angles.

Figure 7.12.: Comparison of cluster averaging and polarity glyph display with
classic unclustered beachball visualization (left). Moment tensor
highlighting in stereonet view identifies related wave propagation
directions and uses watermarking for fault plane orientation display
(right).
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7.7. Summary and Discussion

In this chapter we have introduced visualization techniques that aid the visual
analysis of scattered moment tensor data. We combine novel glyph-based vi-
sualization techniques with stereonet based projective-renderings to obtain in-
teractive visualizations in three-dimensions and projective space of eigenvector
orientations. Glyph shapes and texturing facilitates the classification of individ-
ual earthquake sources by conveying prominent features of the bilinear form of
the tensor. A new clustering technique operating in moment and euclidean space
allows the efficient reduction of redundant information, leading to less cluttered
and more structured visualizations. The created clusters can be used as guide to
identify similar earthquake mechanisms or sources and introduce structure in the
otherwise sparsely sampled scattered tensor field.
Various interaction techniques allow the direct connection of information from

projective and three-dimensional space and are a crucial part of the multi-view
visualization process. All presented methods lead to a higher information density
than existing techniques and improve over the state of the art by conveying data
properties such as definiteness that were previously hidden or hard to distinguish.
Direction of future work may include the incorporation of further user preferences
into the clustering process as well as enhanced display of additional geological
information such as mantle geometry.



8. Conclusions

In this thesis we have developed novel feature extraction and segmentation tech-
niques for scalar-, vector-, and tensor fields and emphasized their capability to
perform multi-field visualization. The majority of the presented extraction tech-
niques are based on scattered point sets and require the processing of derived
tensorial quantities of the respective fields.

We have contributed a novel method for grid-less crease structure extraction in
three-dimensional vector fields and have shown its use in complex-valued scalar
fields from low frequency acoustics. Core crease structures are defined as maximal
convexity ridges as revealed by eigen-decomposition of the Hessian of the scalar
field. The extraction technique is based on curvature adaptive region growing and
point convergence and was extended to extract non-manifold regions in the wave
node structure. Multi-field visualization in this context focused on the display
of amplitude and phase values obtained from the complex-valued scalar field as
well as spatio-temporal display of multiple complex fields. Presented numerical
results demonstrated the benefit of wave node analysis for acoustics design and
engineering.

Furthermore, we investigated the effect and visualization of flow induced strain
in unsteady flow fields. We extract and visualize strain tensors along integral flow
lines by accumulating relative displacement given by the flow Jacobian. The re-
sulting localized strain computations include strain notions as given by FTLE
methods. The novel extraction and segmentation methods developed in this
thesis demonstrated how the obtained strain information conveys relevant in-
formation in geophysical flow simulations. Resulting feature definitions allow
multi-field visualization of the flow and strain tensor fields.

The effect of strain and displacement in a macroscopic context on integral flow
feature extraction led to the definition of new adaptive streakline and streak
surface generation techniques. We proposed distance and curvature based geom-
etry refinement and discuss accuracy and artifact handling in three-dimensional
surface generation. We used this adaptive geometry representation as bound-
ary definition of flow segmentation, which facilitates the application of selective
multi-field visualization.
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New methods for the clustering and multi-field visualization of quantities re-
lated to geometric displacement, so called moment tensors from geophysical earth-
quake measurements were introduced, that facilitate semi-automatic interactive
analysis of scattered tensor fields. Direct tensor visualization was performed by
tensor glyphs that highlight indefiniteness of moment tensors by coloring and
shape, whereas visualization of the derived scattered eigenvector field was car-
ried out in orientation space in the form of stereonet displays.

With this thesis we have advanced the state of the art in visualization for
scalar-, vector-, and tensor fields by the introduction of mesh-less and adaptive
feature extraction techniques. Furthermore, we have developed new methods for
the incorporation of derived fields such as strain and displacement into the vi-
sualization process, which allows for novel multi-field visualization techniques.
We have emphasized the importance of strain and other tensorial measures for
feature-based field analysis and developed techniques for single- and multi-view
visualization of multiple fields. The presented numerical results demonstrate ap-
plicability and expressiveness of the introduced methods in areas such as sound
simulation, industrial mixing, and geoscience.

For the analysis of strain in fields and scattered field approximation techniques,
a number of challenges remain. The capability of strain to model convergence,
divergence and hyperbolicity in general makes it a suitable tool for topological
analysis of flow fields and adaptive modeling of flow features. In visualization,
the incorporation of directional information in the visualization and analysis of
FTLE fields is a promising topic of future work. We expect that a large group
of existing visualization techniques can benefit from the incorporation of such
derived and related field data.



A. Moving Least Squares

Least squares fitting allows polynomial approximation of discrete data. The main
approximation technique used in this work, Moving Least Squares (MLS) [Lev98],
is a generalization of Least Squares Approximation. In the following, we give a
brief introduction into the mathematical background of MLS approximation and
state the challenges resulting from the use of MLS as scattered data approxima-
tion technique.

A.1. Definition

Least squares fitting provides a method to compute functions that minimize the
squared distance to a given set of n discrete data points (pi, fi). If a local approx-
imation of the data is desired, the classic Least Squares scheme may be gener-
alized to the Weighted Least Squares method by the introduction of a weighting
function ω with local support, see [Nea04]. A polynomial function f with given
degree that satisfies the weighted least squares condition at a point of evaluation
p = (x y z)T is defined by (A.1).

min

{

n
∑

i

ω(p, pi)||f(pi)− fi||
2

}

(A.1)

The scheme obtained from moving the Weighted Least Squares over the domain
of the data set to yield a continuous approximation of the field, is called Moving
Least Squares approximation. For appropriately continuous ω, the global field
reconstruction function is continuous as well.

A.2. Properties

This section aims at clarifying relevant reconstruction properties of MLS fitting
such as accuracy and derivative computation. For a detailed review of properties
of polynomial approximation and Radial Basis Functions (RBF), we refer to
[Wen04].
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A.2.1. Accuracy

Reconstruction properties of MLS depend heavily on the chosen weighting func-
tion. In the case of ω being a two-dimensional Gaussian function, changes in the
variance parameter, shape or radius of the smoothing function have great impact
on the output with respect to scale space and reconstruction detail. Common
exponential weighting functions of the general form

ω(p, pi) = a · e
||p−pi||

2

r2 + b

for example, yield different results for a varying smoothing length r. Hereby, an
increased smoothing length leads to less detailed but smoother reconstructions.
Thus, the reconstructed functions are highly sensitive to changes in smoothing
length, as too small radii may introduce noise or lead to singular systems, and
too large radii blur important features of the field and reduce reconstruction
accuracy. Especially in data sets with inhomogeneous particle densities, choice of
the appropriate smoothing radius has an influence on the reconstructed function
and is also a major factor contributing to increased computation times.

A.2.2. Complexity

One of the main reasons why grid-less approximation techniques are outperformed
by grid-based methods is the computationally expensive gathering and weighting
step of particle neighbors that fall within the support region of the weighting
function. In the case of linear MLS with a polynomial of the general form f(p) =
c · (1 x y z)T , the following linear system of equations needs to be solved for c:






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
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fi (A.2)

To avoid a singular system, this linear three-dimensional MLS needs at least
4 non-collinear points pi in the neighborhood of p. We note that the symmetric
matrices resulting from a product of base-vectors on the left side of (A.2) is inde-
pendent of the point of evaluation and is completely determined by the position
of a data point pi. Following this observation, matrix creation can be relocated
to a pre-processing step, pre-computing one such matrix for each data point,
thus removing the expensive matrix creation step from approximation. Compu-
tational complexity of this LSE is drastically increased by degree or dimension
elevation of domain or range of the data set. So does quadratic three-dimensional
approximation already require solving a 10 × 10 system once per dimension of
fi. It is notable that MLS matrices of higher order include those of lower or-
der. Advantages of MLS over other scattered data approximation techniques are
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Derivative Value
∂f
∂x

= c1 + 2 · x · c3 + y · c4
∂f
∂y

= c2 + x · c4 + 2 · y · c5
∂2f
∂2x

= 2 · c3
∂2f
∂2y

= 2 · c4
∂2f
∂x∂y

= c4

Table A.1.: Derivative lookup table for f(p) = c · (1 x y x2 xy y2)T .

mathematical simplicity, and ease of control over polynomial degree and approx-
imation error.

A.2.3. Derivatives

Polynomial approximation allows fast computation of function derivatives. A
polynomial of degree n allows analytic differentiation of the approximated func-
tion up to the nth derivative. In practice, computation of these continuous deriva-
tives consist of a simple table lookup for known dimension and function degree.
An example of a lookup table is given in Table A.1 for two-dimensional quadratic
approximation.

A.3. Challenges

In this work, we overcome a number of challenges of robust and efficient MLS-
based field approximation as described in [OHBKH11]. In the following, we
briefly describe the most relevant problems:

Fast neighbor identification For fast neighborhood identification during the
weighting process in MLS approximation [MG91, IL05], we sort field points into
an implicit uniform grid structure with cell sizes corresponding to the diameter of
the support of the used weighting function. During field evaluation, only points
located in the 9 or 27-neighborhood of the cell containing the evaluation point are
used for construction of the LSE, thus ensuring locality during data evaluation.

Visibility querying Neighborhood identification is not fully captured by the
radial function used for MLS approximation, as flow obstacles might separate
points that fall within the same neighborhood circle [BKF+96]. To resolve this
issue, the neighborhood test has to be accompanied by a visibility test. For this
matter, we implemented a binary ray-boundary intersection test that is performed
between the evaluation point and neighbor candidates during point neighborhood
gathering.
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Furthermore, the correct use of weighted approximation techniques requires
considerable effort with respect to weighting function design and parameter choice
to allow faithful reconstruction of the approximated function and is still topic of
active research. In cases, where we use MLS, we either choose the weighting
function that corresponds to the kernel used in the simulation or give additional
motivation for the choice made.



B. Voxelization

Voxelization is a discretization or sampling technique, that converts a given ob-
ject into a volumetric representation of sets of volume elements, so-called voxels.
There are two different approaches to geometry voxelization. The first class of
algorithms is based on three-dimensional polygon rasterization that is performed
on the CPU, the second class uses current graphics hardware to obtain a voxel
representation of input geometry.

B.1. GPU Voxelization

While consumer graphics hardware allows efficient rasterization for two-dimen-
sional texturing, direct rendering to volumetric textures is currently not sup-
ported. Therefore, the common technique to obtain volume renderings of ge-
ometry is to slice the object into n view-aligned slices and create a layered 3d
texture from this set of two-dimensional rasterizations [FC00]. Implementations
on state-of-the-art consumer hardware is able to achieve new-interactive framer-
ates for high-resolution voxel grids [ZCEP07]. Generally, these methods however
require to render geometry at least n times and leads to problems when rendering
faces that are parallel to the viewing direction [ED06]. Additionally, the number
of available slices in z-direction is limited, especially if voxelization is not only
desired to produce voxel masks, but is used to rasterize additional quantities such
as normals or color.

B.2. CPU Voxelization

CPU based voxelization techniques are technically only limited by the amount
of memory. In general, a combination of the following steps [KS87] is performed
triangle-wise to voxelize a generic triangulated mesh:

• Determine axis-aligned plane p with maximal area of triangle projection.

• Rasterize projected triangle edges on p.

• Scan-line fill the triangle interior on the plane

• Transform 2D rasterization into 3D space by applying correct z-values.
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Figure B.1 illustrates the steps of triangle voxelization. Steps 2-4 can be per-
formed with fast integer arithmetic. In addition to pure voxelization, additional
quantities given at triangle vertices such as color or triangle normals can be in-
terpolated during edge rasterization and scan-line filling to provide intermediate
values at all voxels. It is important to note that for triangle edges the resulting
voxelization has to be independent of the chosen initial projection plane to ensure
that voxelization of neighboring triangles does not contain holes.

Figure B.1.: Steps of voxelization include projection, line rasterization, scan-line
conversion, and depth propagation.

B.3. Volume Voxelization

If the goal of voxelization is to produce volume representations from mesh geom-
etry, a filling step has to be performed after voxelization of the mesh boundary
to mark the interior of the volume. For convex volumes with manifold boundary,
this can be implemented by scan-line conversion of volume slices. A general-
ization of scan-line conversion to tetrahedra allows fast volume voxelization of
tetrahedral volumes [KS87]. If the volume is concave or defined by multiple in-
tersecting boundary meshes this requires additional effort [FC00, Lla07]. In the
following we give details about volume voxelization based on flood filling. This
concept of volume voxelization requires to voxelize volume boundaries in a first
step , followed by a second step of recursive flood filling and classification of
regions.
Let S be a set of boundary meshes in Ω ⊆ R3. A boundary mesh f with the

vector field fn defining mesh normals implies a segmentation of space into regions
f 0, f+, f− by

f 0 = {x ∈ Ω|∃y, z : y ∈ N(x) ∧ (y = f(z) + fn(z) · ǫ) ≡ (y = f(z)− fn(z) · ǫ)}

f+ = {x ∈ Ω|∃y, z : y ∈ N(x) ∧ y = f(z) + fn(z) · ǫ}/f
0

f− = {x ∈ Ω|∃y, z : y ∈ N(x) ∧ y = f(z)− fn(z) · ǫ}/f
0

where N(x) is the set of points that are connected to x without crossing one of the
boundaries defined in S. An illustration of the different sets is given in Figure B.2.
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In practice, regions of the texture are classified during flood filling, based on pixel
adjacency to voxelized boundaries. This volume voxelization strategy requires the
incorporation of normal information during the boundary voxelization process. If
a newly filled voxel is adjacent to a voxelized boundary, the voxel is classified as
interior or exterior based on these normal directions stored in boundary voxels.
Classification of single voxels is propagated to all voxels of the filled volume to
determine classification of the volume into f 0, f+, or f−.
After classification of all parts of the complete voxel volume, the volume interior

is defined by logic operations on these predicates, as illustrated in Figure B.2 for
f− ∧ g− ∧ h−.

f

g

h f
+

f
-

f0

Figure B.2.: Illustration of region classification for voxel filling of a volume defined
by f− ∧ g− ∧ h−. Pixels that are defined as inside w.r.t. a mesh are
marked in blue, outside pixels in red, ambiguous regions in orange.
In this example, the intersection of all interior voxels is defined as
the desired volume output.
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[ÖM03] E. Özarslan and T. H. Mareci. Generalized diffusion tensor imaging
and analytical relationships between diffusion tensor imaging and
high angular resolution diffusion imaging. Magnetic Resonance in
Medicine, 50:955–965, 2003.



Bibliography 167

[OMD+] H. Obermaier, J. Mohring, E. Deines, M. Hering-Bertram, and
H. Hagen. On mesh-free valley surface extraction with applica-
tion to low frequency sound simulation. IEEE Transactions on
Visualization and Computer Graphics (submitted).

[OS04] M. Ohtsu and M. Shigeishi. Theory and application of moment
tensor analysis in AE. Proceedings of the Third International Con-
ference on Emerging Technologies in NDT, pages 19–26, 2004.

[OU04] A. Omoto and H. Uchida. Evaluation method of artificial acous-
tical environment: Visualization of sound intensity. Journal of
Physiological Anthropology and Applied Human Science, 23:249–
253, 2004.

[PL03] V. Pulkki and T. Lokki. Visualization of edge diffraction. Acoustics
Research Letters Online (ARLO), 4(4):118–123, 2003.

[PM90] P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12:629–639, 1990.

[PR99] R. Peikert and M. Roth. The parallel vectors operator - a vector
field visualization primitive. In IEEE Visualization Proceedings,
pages 263–270, 1999.

[PR05a] S. Petrausch and R. Rabenstein. Efficient 3d simulation of wave
propagation with the functional transformation method. In 18th
Symposium of Simulation Technique, ASIM, pages 323–330, Er-
langen, Germany, September 2005.

[PR05b] S. Petrausch and R. Rabenstein. Highly efficient simulation and
visualization of acoustic wave fields with the functional transfor-
mation method. In Simulation and Visualization, pages 279–290,
Otto von Guericke Universität, Magdeburg, March 2005.

[PR05c] S. Petrausch and R. Rabenstein. Simulation of room acoustics via
block-based physical modeling with the functional transformation
method. In Workshop on Applications of Signal Processing to Au-
dio and Acoustics (WASPAA), pages 195–198, New Paltz, New
York, October 2005.

[PS08] R. Peikert and F. Sadlo. Height ridge computation and filtering
for visualization. In Proceedings of IEEE Pacific Visualization
Symposium, pages 119–126, 2008.



168 Bibliography

[PSB10] O. Pasternak, N. Sochen, and P. J. Basser. The effect of metric
selection on the analysis of diffusion tensor mri data. NeuroImage,
49(3):2190–2204, 2010.

[PvWPS95] F.J. Post, T. van Walsum, F.H. Post, and D. Silver. Iconic tech-
niques for feature visualization. In Proc. of IEEE Conference on
Visualization, 1995, pages 288–295, 464, 1995.

[RJF+09] P. R. Rodrigues, A. Jalba, P. Fillard, A. Vilanova, and B. M. ter
HaarRomeny. A multi-resolution watershed-based approach for
the segmentation of diffusion tensor images. MICCAI Workshop
on Diffusion Modelling, pages 161–172, 2009.

[RL08] P. Rosenthal and L. Linsen. Smooth surface extraction from un-
structured point-based volume data using PDEs. IEEE Transac-
tions on Visualization and Computer Graphics, 14(6):1531–1546,
2008.

[RM00] J. B. T. M. Roerdink and A. Meijster. The watershed transform:
Definitions, algorithms and parallelization strategies. Fundamenta
Informaticae, 41:187–228, 2000.

[RNM09] N. Raghuvanshi, R. Narai, and L. C. Ming. Efficient and accu-
rate sound propagation using adaptive rectangular decomposition.
IEEE TVCG, 15(5):789–801, September/October 2009.

[Ros00] H. E. Rose. Linear algebra: a pure mathematical approach.
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