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Chapter 1

Introduction

1.1 Orthogonal Frequency Division Multiplexing

(OFDM)

Since Marconi first demonstrated wireless information transmission in 1895, until the

1990ies the foremost technique of radio communications has been single carrier (SC)

transmission. In SC systems the information to be transmitted is modulated onto a

single RF carrier. Historically, the modulation in SC systems was analog, whereas in

today’s radio systems digital modulation prevails. An alternative to SC transmission is

multi-carrier (MC) transmission, which appeared in literature probably for the first time

in 1946 [Bri46]. In MC systems [FK03, FK04], which are particularly suited for digital

modulation, the available transmission bandwidth is subdivided among a number NF of

subcarriers, and each of these subcarriers conveys only a part of the total information

to be transmitted. The subcarriers can be made orthogonal by suitably choosing their

frequency spacing and the duration they provide for the data elements. Then, the MC

system turns into the channel access scheme Orthogonal Frequency Division Multiplexing

(OFDM). In [vNP00] this scheme is comprehensively treated, and the main advantages of

OFDM transmission over SC transmission are set forth, namely simple implementation

and high flexibility. From [DPSB08] it becomes clear that OFDM is the favorite channel

access scheme for the evolution of today’s and for the design of future cellular mobile radio

systems. Already today OFDM enjoys wide acceptance in the worlds of Wireless Local

Area Networks (WLAN) [vNP00, HT01] and satellite communications [WJ08, HYW+09].

1.2 Requirement of power efficient radio communica-

tion systems

The proliferation of radio communication systems is still progressing in fast pace, and

because such systems increasingly penetrate our world, the involved power consumption no

longer can be considered a negligible quantity. It is true that the yearly power consumption

of a typical German mobile radio operator, which, according to a private communication,

amounts to ca. 500 GWh, constitutes only about 0.0013% of the total yearly consumption

of primary energy in Germany, which is about 4·103 TWh [Sta08]. Nevertheless, if it comes

to absolute energy values, it would be worthwhile to strive for energy reductions even in

the domain of “small” energies needed for radio communications. In doing so, two main
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aspects play a role. First, the transmit power required to achieve a certain transmission

quality should be as small as possible in order to reduce the interference to other radio links

and the electromagnetic pollution of the environment. Second, the ratio η of the required

transmit power and the primary, that is the DC power consumed by the transmit amplifier,

should be as large as possible. η is termed power efficiency [Cri02], and a high η is desirable

with respect to a long battery lifetime in mobile applications, to low cost amplifier designs,

and, of course, quite generally, to energy conservation. In the last decade a bundle of

approaches to reduce the required transmit power came up. These approaches include, on

the physical layer, refined modulation and FEC coding schemes, precoding, interference

mitigating techniques, and multi-antenna systems [DPSB08], and on the higher layers for

instance the schemes of multi-hops [HF05] and busy burst detection [OHA07]. Concerning

the power efficiency η of the transmit amplifiers, promising approaches resort to the

application of nonlinear schemes [Chi35, Cox74] in combination with measures to reduce

the Peak-to-Average-Power Ratio (PAPR) of the signals to by amplified.

An essential feature of real world OFDM symbols is their extension by a Cyclic Prefix

(CP) which enables cost efficient processing in the receiver by FFT [vNP00, BN10]. The

CP requires additional transmit energy and has an impact on the power spectral density

and the PAPR of the OFDM signals. The author is well aware of these facts. However, in

this thesis the CP is not considered with a view to keep the presentation of the proposed

schemes and the evaluation of the system performance simple. Nevertheless, said schemes

would easily lend themselves also to cases where the CP is included.

1.3 Goals of the thesis

The problem of power reductions in OFDM transmission has many faces and facets. A

few ones of those will be addressed in this thesis, namely

• combating the detrimental impact of the frequency selective fading of the radio

channels by data spreading with a view to reduce the transmit power required for

a certain transmission quality,

• reduction of the PAPR by Selective Data Mapping (SDM) in order to enhance the

power efficiency η of the transmit amplifiers, and

• joint optimization of pilot based channel estimation and data detection in order to

maximize transmission quality for a given transmit power.

In order to achieve a desired performance, OFDM transmission over frequency selective

fading radio channels requires a substantially larger transmit power than OFDM transmis-

sion over non-fading channels [Pro00]. Conventionally, each of the NF OFDM subcarriers
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of an OFDM symbol conveys as its complex amplitude a single data element. For the

case of frequency selective fading it was proposed to mitigate the impact of fading by

spreading each of said NF data elements over all NF OFDM subcarriers [BEL03, WZZ10].

However, we will see that this known approach to frequency diversity, which we term Full

Data Spreading (FDS), would render optimum, that is Maximum Likelihood (ML) data

detection [Wha71] prohibitively expensive. In the case of larger subcarrier numbers NF,

even FDS with suboptimum linear detection applying the Zero Forcing (ZF) or Minimum

Mean Square Error (MMSE) rationales [Wha71] would still be excessively expensive. As

a way out of this dilemma and in order to affordably seize the advantage of frequency

diversity by data spreading, we propose and evaluate in this thesis the scheme Partial

Data Spreading (PDS). In the case of unspread transmission, as mentioned above each of

the NF subcarriers of an OFDM symbol carries as its complex amplitude in a one-to-one

relation one data element. In the case of PDS, we subdivide the NF data elements into

Z = NF/N (1.1)

subsets of size N each. Then, we spread the N data elements of each of these subsets over

a subset of N of the NF OFDM subcarriers; therefore, we term N spreading factor. It will

be shown that by properly choosing N , depending on the designer’s requirements, PDS

allows a balanced compromise of performance and complexity. By signaling the chosen N ,

the transmitter can inform the receiver on-line, if PDS is utilized. Therefore, the optional

inclusion of PDS in existing and forthcoming OFDM transmission standards would entail

not more than a minor extension.

It should be mentioned that our scheme PDS has certain similarity with schemes

proposed in [ARDK07].

Concerning our goal of PAPR reduction, we set out from a scheme published in 1996

[BFH96, MS96]. In this scheme, the data vector constituted by the NF data elements

to be transmitted by an OFDM symbol is subjected in the transmitter to a selection of

different linear transformations characterized by diagonal mapping matrices; each such

transformation yields another mapped data vector. Then, for transmission, the one of

these mapped data vectors is selected which yields the smallest PAPR of the transmit

signal. For this scheme the term Selective Data Mapping (SDM) was coined [BFH96].

In the receiver, the mapping performed in the transmitter has to be undone based on

the knowledge about which mapping matrix has been selected. This knowledge has to

be forwarded from the transmitter to the receiver by signaling. In the thesis, we propose

and analyze different approaches to fruitfully combining the schemes SDM and PDS. The

PAPR reduction by SDM leads to OFDM symbols, the PAPR of which still depends on

the data content so that the power amplifier cannot be designed and optimized for a fixed
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maximum signal amplitude. We solve this problem by introducing, in addition to SDM,

a specific scheme of clipping and amplitude scaling, which we term Optimum Clipping

(OC).

In the receivers of OFDM transmission systems, the knowledge of the channel transfer

function (CTF) for the different subcarrier frequencies is required for demodulation. This

knowledge has to be made available to the receiver by sacrificing a certain portion of

the NF OFDM subcarriers for pilot transmission, which then are utilized for channel

estimation [vNP00, OA07]. Due to the mobility of radio stations, the radio channels

exhibit, as an undesired effect, fading which means that the CTF is time variant. In the

thesis we are interested in OFDM transmission over radio channels which fade so fast that

channel estimation has to be performed for each OFDM symbol anew. We investigate how

in this case the available total transmit power should be subdivided into partial powers for

the data carrying subcarriers and for the pilots in order to optimize transmission quality.

The obtained results allow the minimization of the total transmit power required for a

certain transmission quality.

This thesis basically focuses on point-to-point OFDM transmission systems. However,

the above mentioned subdivision of the data elements into N subsets typical of PDS can be

used to transform the point-to-point transmission into a multipoint-to-point transmission,

which we for instance encounter in the uplinks of mobile radio systems. This possible

extension of PDS is briefly touched in the thesis.

1.4 Structure of the thesis

The structure of the thesis complies with the goals formulated in Section 1.3. As the

basis of the investigations to be performed in the later chapters, we introduce in Chapter

2 a generic OFDM transmission system model; in this chapter the used data formats and

the considered radio channels are characterized. Chapter 3 is dedicated to combating the

frequency selectivity of radio channels by PDS for the case of uncoded transmission. In

Chapter 4 we extend the investigations of Chaper 3 by including the aspect of FEC encod-

ing. The topic of Chapter 5 is the combination of PDS with SDM with a view to reduce

the PAPR. In Chapter 6, we develop the above mentioned scheme OC, and we illustrate

its beneficial application in combination with non-linear transmit power amplifiers (PA).

Chapter 7 deals with the joint optimization of pilot based channel estimation and data

detection. In Chapter 8 we extend OFDM with PDS to multipoint-to-point transmission

systems, and in Chapter 9 we mention some open questions and give recommendations

for further research. Finally, Chapter 10 summarizes the thesis.

Throughout the thesis we adopt the usual assumption [vNP00] that the number NF
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of OFDM subcarriers is a power of two. Further, also the quantities Z and N in (1.1) are

assumed to be powers of two. Vectors are represented by bold face lower case letters, and

matrices by bold face upper case letters. Complex quantities are marked by underlining.

The superscript * designates complex conjugation. In the case of vectors and matrices,

the superscript T indicates transposition and the superscript H complex conjugate trans-

position. The symbol � designates the componentwise product (Schur product), and the

symbol ⊗ the direct product (Kronecker product) of vectors and matrices. With diag (·)
we designate a diagonal matrix the diagonal components of which are the components of a

vector in parentheses, with dg (·) a diagonal matrix the diagonal of which is the diagonal

of a matrix in parentheses, and with dg (·) a matrix obtained by nulling the diagonal

elements of a matrix in parentheses. The function floor (·) maps a real number to the

next smallest integer.
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Chapter 2

Generic OFDM transmission model

2.1 System structure

Essential for the practical operation of OFDM transmission are the Inverse Fast Fourier

Transformation (IFFT) on the transmit side and the Fast Fourier Transformation (FFT)

on the receive side. Further, in order to enable the application of the FFT on the receive

side, in the case of multipath radio channels the transmitted OFDM symbols have to be

extended by a cyclic prefix. These issues are treated in detail in [vNP00] and shall not

be deepened here. With regard to the investigations to be performed in this thesis, both

the Fourier operations and the insertion of the cyclic prefix can be skipped, and then

the OFDM system boils down to the generic structure shown in Fig. 2.1. This structure

is a time discrete equivalent low-pass model of the OFDM transmission system in the

frequency domain. Concerning the relations between bandpass and low-pass transforma-

tion, we refer to [SJ67]. The model of Fig. 2.1 consists of the six blocks mapper, radio

channel, noise adder, phase equalizer, detector, and demapper. In Fig. 2.1 we indicate

which of these blocks constitute the transmitter (Tx), the noisy radio channel (Nrc), and

the receiver (Rx). Later, depending on the investigations to be performed, the model of

Fig. 2.1 has to be extended by additional blocks and/or modified. In order to guarantee

orthogonality of the OFDM subcarriers, the system bandwidth B, the duration T of the

OFDM symbols and number NF of subcarriers have to fulfill the relation [vNP00]

BT = NF. (2.1)

2.2 Information vector and transmit vector

The information to be transmitted by each OFDM symbol is constituted by the binary

vector

u = (u1 · · ·unu · · ·uNu)
T , unu ∈ {0, 1} , (2.2)

of Nu information bits. We term this vector information vector. u of (2.2) can assume

Qu = 2Nu (2.3)

different realizations u{qu}, qu = 1 · · ·Qu. To each of these realizations, a value of the

superscript qu should be assigned. Many solutions to this task exist. In our solution, we
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u M (u)

mapper

t

h

radio channel

e

noise adder
nRx

rRx

ϕ

phase equalizer

r D (r)

detector

t̂ M−1
(
t̂
)

demapper

û

Tx

Nrc

Rx

}

}

}

Fig. 2.1. Frequency domain low pass model of OFDM transmission

assign to a realization of u given by the values of its Nu components unu the superscript

qu = 1 +

Nu∑

nu=1

2nu−1 · unu . (2.4)

In the model of Fig. 2.1 u is fed into the mapper, which, with the mapping operator

M (·), maps u on the complex discrete valued transmit vector

t = (t1 · · · tnF
· · · tNF

)T = M (u) (2.5)

of dimension NF equal to the number of OFDM subcarriers. The component tnF
of t

represents the complex amplitude of the transmitted OFDM subcarrier number nF.

t of (2.5) can be expressed as

t = x+jy (2.6)

by a real part transmit vector

x =(x1 · · · xnF
· · · xNF

)T (2.7)

and an imaginary part transmit vector
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y = (y1 · · · ynF
· · · yNF

)T. (2.8)

These two vectors are assumed to be independent of each other.

The NF components xnF
of x and ynF

of y are both taken from the discrete valued set

V = {v1 · · · vm · · · vM} (2.9)

of size M , which we assume to be a power of two. V determines the used modulation

alphabet. When the transmission system is operated, we assume that the components xnF

and ynF
take all M values vm of V with equal probability 1/M so that the mean square

magnitude of these components is

σt =

√
√
√
√ 1

M

M∑

m=1

v2
m. (2.10)

With the number NF of subcarriers and M of (2.9), each of the two vectors x and y can

take on

Q = MNF (2.11)

different realizations x{qx}, qx = 1· · ·Q , and y{qy}, qy = 1· · ·Q . Then, the number of

possible different realizations of t of (2.6) becomes

Q̃ = Q2 = M2NF . (2.12)

We assume that this number exactly equals the number Qu of (2.3) of the occurring

realizations u{qu}, qu = 1 · · ·Qu, of the information vector u of (2.2), that is

Q̃ = Q2 = M2NF = Qu = 2Nu ,

2NF log2 M = Nu.
(2.13)

Then, for each realization u{qu} of u a realization

t{q̃} = x{qx} + jy{qy} (2.14)

of t exists, and the assignment described by the mapping operator M (·) of (2.5) is a

unique one-to-one relation. Concerning the relation of the values of the superscripts qu of

u{qu} and q̃ of t{q̃}, we simply choose

q̃ = qu. (2.15)
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For the assignment of the superscripts qx and qy to the superscript q̃ in (2.14) many

options exist. From these, we choose the version

q̃ = q̃ (qx,qy) = qx + (qy−1) · 2Nu/2. (2.16)

The quantities q̃ , qx and qy in the single equation (2.16) are positive integers. Therefore,

for a given value q̃ we can solve this equation for the two superscripts qx and qy and obtain

qx = q̃ − floor
(
q̃/
(
2Nu/2 + 2−Nu/2

))
· 2Nu/2,

qy = 1 + floor
(
q̃/
(
2Nu/2 + 2−Nu/2

))
.

(2.17)

As just explained, the mapping operator M (·) has to assign to each realizations

u{qu}, qu = 1 · · ·Qu, of u of (2.2) a transmit vector t{q̃} of (2.14) with its real and imaginary

part vectors x{qx} and y{qy}, respectively. For a given modulation alphabet various options

exist to perform this assignment. In this thesis we consider the two modulation schemes

QPSK and 16QAM, and we now explain which mapping options we choose for these.

In the case of QPSK we have

M = 2, (2.18)

and from (2.13) follows

2NF = Nu. (2.19)

For (2.9) we choose

V = {−0.5, 0.5}. (2.20)

Then, (2.10) yields

σt = 1/2. (2.21)

For the mapping operator M (·) of (2.5) we write

M (u) = t = x+jy :

xnF
= 0.5 · (−1)unF

+1 ,

ynF
= 0.5 · (−1)

unF+NF
+1

,

nF = 1 · · ·NF.

(2.22)

In Table 2.1 we visualize (2.22) by listing the component values x1 and y1 of x and y,

respectively, versus the component values u1 and u1+NF
of u.

In the case of 16QAM we have

M = 4, (2.23)

and from (2.13) follows

4NF = Nu. (2.24)
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u1 u1+NF
x1 y1

0 0 −0.5 −0.5
0 1 −0.5 0.5
1 0 0.5 −0.5
1 1 0.5 0.5

Table 2.1. Visualization of the mapping operator M (·) of (2.22) for QPSK

u1 u2 u1+NF
u2+NF

x1 y1

0 0 0 0 −1.5 −1.5
0 0 0 1 −1.5 −0.5
0 0 1 0 −1.5 1.5
0 0 1 1 −1.5 0.5
0 1 0 0 −0.5 −1.5
0 1 0 1 −0.5 −0.5
0 1 1 0 −0.5 1.5
0 1 1 1 −0.5 0.5
1 0 0 0 1.5 −1.5
1 0 0 1 1.5 −0.5
1 0 1 0 1.5 1.5
1 0 1 1 1.5 0.5
1 1 0 0 0.5 −1.5
1 1 0 1 0.5 −0.5
1 1 1 0 0.5 1.5
1 1 1 1 0.5 0.5

Table 2.2. Visualization of the mapping operator M (·) of (2.27) for 16QAM

For (2.9) we choose

V = {−1.5,−0.5, 0.5, 1.5}. (2.25)

Then, (2.10) yields

σt =
√

5/2. (2.26)

For the mapping operator M (·) of (2.5) we write

M (u) = t = x+jy :

xnF
= 0.5 · (−1)u2nF−1+1 · 3(u2nF

+1)mod2,

ynF
= 0.5 · (−1)uNF+2nF−1+1 · 3(uNF+2nF

+1)mod2,

nF = 1 · · ·NF.

(2.27)

The mapping operator M (·) of (2.27) performs Gray coding [Pro00]. In Table 2.2 we

visualize (2.27) by listing the component values x1 and y1 of x and y, respectively, versus



2.3 Radio channel 11

the component values u1, u2, u1+NF
and u2+NF

of u.

Inspection of (2.22) and (2.27) reveals that the components xnF
of the real part vector

x are determined by the first Nu/2 components of u, whereas the components ynF
of the

imaginary part vector y are determined by the second Nu/2 components of u of (2.2).

By (2.22) or (2.27), respectively, to each realization u{qu} of u, a realization t{q̃} of t, a

realization x{qx} of x, and a realization y{qy} of y is assigned. Due to (2.4), (2.15) and

(2.17), this assignment also includes the superscripts qu, q̃ , qx and qy.

2.3 Radio channel

2.3.1 Delay discrete channel model and channel impulse response

(CIR) vector

In general, mobile radio channels are multipath channels. Having this physical situation

in mind, the obvious channel models would be delay domain models [Pät02]. Therefore,

we start channel modelling in the delay domain. Our channel models pertain to the

equivalent low pass domain.

With the system bandwidth B introduced in Section 2.1 we assume both at the trans-

mitter output and the receiver input ideal filters with the transfer function

G(f) = rect

(
f − B/2

B

)

. (2.28)

The impulse response corresponding to this transfer function is of the type sin x/x. There-

fore, an infinitely long sequence of input Dirac impulses may lead to a non-convergent

signal at the filter output [Fun79]. However, in the present thesis this convergence prob-

lem does not occur because each OFDM symbol can be represented by a finite number of

such impulses.

Due to Nyquist’s sampling theorem [Pro00], the channel impulse response (CIR) h(τ)

of the radio channel seen through these filters can be fully characterized by samples taken,

with

∆τ =
1

B
, (2.29)

at the delay instants

τw = (w − 1)∆τ, w = 1, 2 · · · , (2.30)

where we do not extend on the issue of causality. We express h(τ) as a function of the

delay τ , which is not the real time t. For the samples of h(τ) we introduce the symbols

h
w

= h(τw ). (2.31)
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These samples constitute a delay discrete model of the radio channel. (2.30) yields τ1

equal zero, which means that we assume a vanishing basic delay [Pät02] of the delay

discrete radio channel.

The physical structure of the radio channel is made up of reflecting and scattering

objects in the propagation environment [Pät02]. The larger the delay τw of (2.30), the

farther the corresponding objects from the transmitter and receiver, and the weaker the

contribution h
w

of the reflectors. Therefore, we can assume that for w larger than a

maximum value W typical of the propagation environment, the samples h
w

can be set

identically zero:

h
w
≡ 0 for w > W . (2.32)

We designate the W not identically vanishing samples h
w

as relevant samples. With these,

we can express the CIR as

h(τ) =
W∑

w=1

h
w

sin
( π

∆τ
(τ − (w − 1) ∆τ)

)

π

∆τ
(τ − (w − 1)∆τ)

. (2.33)

In principle, the extension of h(τ) of (2.33) along the τ−axis is infinite. However, with

Ts = W∆τ =
W

B
(2.34)

the magnitude of h(τ) rapidly decreases for

τ < 0 and τ > Ts, (2.35)

and, therefore, we take Ts of (2.34) as the duration of h(τ) of (2.33).

As a further issue, an OFDM transmission system should be designed in such a way

that the duration Ts of (2.34), which is equal to the required duration of the cyclic prefix

mentioned earlier, should not exceed the OFDM symbol duration T [vNP00]. Then, with

(2.1) and (2.34)

Ts =
W

B
≤ T =

NF

B
(2.36)

and

W ≤ NF (2.37)

should hold. Throughout this thesis, we assume that (2.37) is valid.

With the W relevant CIR samples h
w

we now form the vector
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h =



h
1
· · ·h

w
· · ·h

W

NF−W
︷ ︸︸ ︷

0 · · ·0





T

, W/NF ≤ 1, (2.38)

of dimension NF constituted by W leading, not identically vanishing elements h
w

of (2.31)

followed by NF − W zeros. We term h CIR vector.

2.3.2 Rayleigh fading

Due to the movements of the transmitter and/or the receiver in the propagation environ-

ment, the CIR vector h of (2.38) is time variant. As already mentioned earlier, this time

variance is termed fading. Fading is constituted by the concurrence of the two different

effects of slow and fast fading [vNP00]. The physical reasons behind slow fading are the

emergence of new and/or the disappearance of existing shadowing objects; the well-tried

countermeasure against slow fading is power control. Fast fading comes about by the con-

structive and/or destructive superposition of signals arriving at the receiver over different

paths. In the present thesis we only deal with fast fading.

At each instant of time t, the components h
w

of h take certain values, and these

values constitute a realization or a snapshot of h for said time instant. In this thesis

we set out from the usual assumption that within the duration T of the OFDM symbols

the CIR vector h can be considered constant, because otherwise the conventional OFDM

transmission scheme would fail [vNP00]. However, h may vary from OFDM symbol to

OFDM symbol. A measure of the speed of this time variance is the coherence time Tcoh

of the radio channel [Pät02]. Throughout this thesis we do not consider signal processing

schemes extending beyond the duration T of the individual OFDM symbols. Therefore,

our investigations rely on the fact that fading is present, however, they do not depend

on the value of Tcoh. When determining average performance measures as for instance

mean bit error probabilities by simulations, we consider sufficiently many independent

snapshots of the CIR vector h obeying the appropriate statistics.

In this thesis we resort to the frequently made assumption that the W elements h
w

of h of (2.38) are independent bivariate Gaussian quantities, even though we are aware

that this assumption simplifies the physics of real world radio channels. The magnitudes

of the quantities h
w

are Rayleigh distributed. As just explained, fading shall not become

manifest within the individual OFDM symbol. Such radio channels can be designated as

fading delay discrete Deterministic Gaussian Uncorrelated Scattering (DGUS) channels

[Pät02].
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With the variances

2σ2
h,w = E

{

h∗
w
h

w

}

= E
{

Re2
(

h
w

)}

+ E
{

Im2
(

h
w

)}

(2.39)

we obtain in the case of Rayleigh fading the bivariate Gaussian probability density func-

tions (PDF)

ph
w

(

h
w

)

=
1

2πσ2
h,w

exp

(

h∗
w
h

w

2σ2
h,w

)

(2.40)

of the components h
w

of h of (2.38). The vector

σ
2
h =



σ2
h,1 · · ·σ2

h,w · · ·σ2
h,W

NF−W
︷ ︸︸ ︷

0 · · ·0





T

(2.41)

is termed the power delay profile (PDP) of the radio channel [Pät02]. Due to the inde-

pendence of the components h
w
, the covariance matrix of h of (2.38), which we term CIR

covariance matrix, is the diagonal matrix

Rh = E
(
h hH

)
= 2diag

(
σ

2
h

)
=

2





















σ2
h,1 0 · · · · · · · · · · · · · · · 0

0
. . .

...
... σ2

h,w

...
...

. . .
...

... σ2
h,W

...
... 0

...
...

. . .
...

0 · · · · · · · · · · · · · · · · · · 0





















∈ CNF×NF.
(2.42)

The elements of σ
2
h of (2.41) have the mean

σ2
h =

1

W

W∑

w=1

σ2
h,w . (2.43)

As a measure of the total attenuation of the radio channel, the quantity 1/
(
2Wσ2

h

)
is

suited. In the bandpass domain the impulse response of the Rayleigh fading radio channel

has the mean energy 2Wσ2
h. Therefore, 2Wσ2

h is also known as channel energy. In the

case of a uniform PDP, each one of the W variances 2σ2
h,w of (2.39) takes on the value

2σ2
h.
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The larger the parameter W in h of (2.38), the more the radio channel spreads the

transmitted signal along the delay axis. The generally accepted quantitative measure for

this effect is the delay spread of the radio channel [Pät02], which with

PM =
W∑

w=1

σ2
h,w (2.44)

and

µ2M =
1

PM

W∑

w=1

w2σ2
h,w −

[

1

PM

W∑

w=1

wσ2
h,w

]2

(2.45)

is given by

TM = 2
√

µ2M. (2.46)

TM of (2.46) is a dimensionless quantity. With the OFDM symbol duration T , we obtain

from TM the delay spread

T
′

M =
T

NF
TM (2.47)

in time units. In the case of a uniform PDP, (2.44) to (2.46) yield the delay spread

TM =

√

W 2 − 1

3
. (2.48)

Due to (2.48), for W larger than one the delay spread TM is virtually proportional to W,

which is a plausible result.

2.3.3 Channel transfer function (CTF) vector and CTF matrix

In Subsections 2.3.1 and 2.3.2 we modelled the radio channel in the delay domain. How-

ever, in OFDM transmission we are primarily interested in the channel transfer function

(CTF) values hnF
, nF = 1 · · ·NF, of the radio channel for the NF frequencies of the differ-

ent OFDM subcarriers. This means that we, setting out from the delay domain channel

model of Subsections 2.3.1 and 2.3.2, have to generate a frequency domain channel model.

We stack the CTF values hnF
in the CTF vector, which results by Fourier transfor-

mation of the CIR vector h of (2.38) with the NF × NF Fourier matrix FNF×NF as

h =
(
h1 · · · hnF

· · ·hNF

)T
= FNF×NFh. (2.49)

Like the CIR vector h of (2.38), the CTF vector h of (2.49) is subjected to fading. Within

the individual OFDM symbol, h is, like h of (2.38), considered constant. However, the

realizations of h for time instants more than the OFDM symbol duration T apart may

differ from each other more or less. Snapshots of h sufficiently distant from each other
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along the time axis are independent.

With the CTF vector h of (2.49) we can form the CTF matrix

H = diag (h) ∈ C
NF×NF . (2.50)

In what follows, we aspire to express the CTF covariance matrix

Rh = E
{
hhH

}
(2.51)

of h of (2.49) by the delay domain quantities introduced in Subsection 2.3.2. To this end

we substitute h of (2.49) in (2.51) and obtain with the CIR covariance matrix Rh of (2.42)

Rh = E
{
hhH

}
= FNF×NFRh

(
FNF×NF

)H
. (2.52)

With the Fourier transform

κ =
(
κ1 · · ·κNF

)T
= FNF×NFσ

2
h (2.53)

of the PDP σ
2
h of (2.41) we can rewrite Rh of (2.52) and obtain the Hermitean Toeplitz

matrix

Rh = E
{
hhH

}
=

2√
NF















κ1 κ?
2 κ?

3 · · · · · · κ?
NF

κ2 κ1 κ?
2 κ?

3
. . .

...

κ3 κ2 κ1 κ?
2

. . .
...

... κ3 κ2 κ1
. . . κ?

3
...

...
. . . . . . . . . κ?

2

κNF
κNF−1 · · · κ3 κ2 κ1















. (2.54)

According to (2.54), the variances of all NF elements hnF
of h of (2.49) take the same

value. With σ2
h of (2.43) we can express this value as

2σ2
h = E

{
h∗

nF
hnF

}
=

2√
NF

κ1 = 2
W

NF

σ2
h. (2.55)

We observe from (2.55) that the channel energy expressed as 2NFσ2
h in the frequency

domain equals the channel energy expressed as 2Wσ2
h in the delay domain.

In the case of a uniform PDP and W equal to NF, Rh of (2.54) becomes a diagonal

matrix, which means that the CTF values hnF
of different OFDM subcarriers are uncor-

related. The more σ
2
h of (2.41) deviates from uniformity and the smaller W , the larger

the correlations of the CTF values hnF
. As a rule, the correlation decreases with increas-

ing frequency difference. A measure of the frequency difference for which the correlation
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becomes negligibly small is the coherence bandwidth Bcoh, which can be approximated

with T
′

M of (2.47) as [Pät02]

Bcoh =
1

T
′

M

. (2.56)

2.4 Noise

The noise introduced by the noise adder in the model of Fig. 2.1 is characterized by the

white bivariate Gaussian vector

nRx =
(
nRx,1 · · ·nRx,nF

· · ·nRx,NF

)T
, E
(∣
∣nRx,nF

∣
∣2
)

= 2σ2. (2.57)

We term the realizations of nRx sometimes noise snapshots. The bandpass equivalent of

nRx of (2.57) has the energy σ2 [SJ67].

2.5 Disturbed receive vector, data detection and

demapping

With the transmit vector t of (2.5) and with the CTF vector h of (2.49) we obtain at the

output of the radio channel in the model of Fig. 2.1 the undisturbed receive vector

e = h� t. (2.58)

Addition of the noise vector nRx of (2.57) to e of (2.58) in the noise adder yields at the

input of the phase equalizer the vector

rRx = h� t + nRx. (2.59)

We assume throughout this thesis that the receiver has gained the knowledge of h by

means of channel estimation [OA07]. With h of (2.49) we form the vector

ϕ =
(
exp (−j arg (h1)) · · · exp

(
−j arg

(
hnF

))
· · · exp

(
−j arg

(
hNF

)))T
. (2.60)

In the phase equalizer, rRx of (2.59) is elementwise multiplied with this vector. This

multiplication yields with the CTF magnitude vector

h =
(
|h1| · · ·

∣
∣hnF

∣
∣ · · ·

∣
∣hNF

∣
∣
)T

= (h1 · · ·hnF
· · · hNF

)T (2.61)

the vector

r =
(
r 1 · · · rnF

· · · rNF

)T
= h� t + ϕ � nRx (2.62)



18 Chapter 2: Generic OFDM transmission model

at the output of the phase equalizer. We term this vector the disturbed receive vector.

With

n = ϕ � nRx (2.63)

we can write (2.62) as

r =
(
r1 · · · rnF

· · · rNF

)T
= h � t + n. (2.64)

The magnitudes of the elements of ϕ of (2.60) are one. Therefore, like the noise vector

nRx of (2.57), also the noise vector n of (2.63) is bivariate Gaussian and white and can

be displayed as

n =
(
n1 · · ·nnF

· · ·nNF

)T
, E
(∣
∣nnF

∣
∣2
)

= 2σ2. (2.65)

In the receiver, r and h are known, whereas t and n are unkown.

In the detector in the model of Fig. 2.1, r of (2.64) is subjected to the detection

operation D (·), which determines under consideration of h of (2.61) the complex discrete

valued estimate

t̂ = (̂t1 · · · t̂nF
· · · t̂NF

)T = D(r) (2.66)

of t of (2.5), which, with Q̃ of (2.13), equals one of the Q̃ realizations t{q̃}, q̃ = 1 · · · Q̃, of

t. We term this realization t{q̃
′}.

The optimum detection operation would be Maximum Likelihood (ML) detection

[Wha71], which yields the ML estimate

t̂ = D(r) =
(
t̂1 · · · t̂nF

· · · t̂NF

)T
= t{q̃

′} =
(

t
{q̃ ′}
1 · · · t{q̃

′}
nF · · · t{q̃

′}
NF

)T

,

q̃′ = arg min
q̃=1···Q̃

{∣
∣h�t{q̃} − r

∣
∣
}

,
(2.67)

of t. With the real and imaginary part vectors

rR = Re (r) = (rR,1 · · · rR,nF
· · · rR,NF

)T, rI = Im (r) = (rI,1 · · · rI,nF
· · · rI,NF

)T , (2.68)

of r of (2.64), with the Q equal MNF realizations x{qx}, qx = 1· · ·Q , of the real part vector

x, and with the Q equal MNF realizations y{qy}, qy = 1· · ·Q , of the imaginary part vector

y, we can split up (2.67) into a real part ML detector

x̂ = D(rR) = (x̂1 · · · x̂nF
· · · x̂NF

)T = x{q ′
x} =

(

x
{q ′

x}
1 · · · x {q ′

x}
nF · · · x {q ′

x}
NF

)T

,

q ′
x = arg min

qx=1···Q

{∣
∣h�x{qx} − rR

∣
∣
}

,
(2.69)

and an imaginary part ML detector
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ŷ = D(rI) = (ŷ1 · · · ŷnF
· · · ŷNF

)T = y{q ′
y} =

(

y
{q ′

y}
1 · · · y{q ′

y}
nF · · · y{q ′

y}
NF

)T

,

q ′
y = arg min

qy=1···Q

{∣
∣h�y{qy} − rI

∣
∣
}

.
(2.70)

With vm of (2.9), we can further disintegrate (2.69) and (2.70) into the 2NF one dimen-

sional ML detectors
x̂nF

= vm′
x
,

m′
x = arg min

m=1···M
{|hnF

vm − rR,nF
|} ,

nF = 1 · · ·NF,

(2.71)

and
ŷnF

= vm′
y
,

m′
y = arg min

m=1···M
{|hnF

vm − rI,nF
|} ,

nF = 1 · · ·NF.

(2.72)

Obviously, ML detection becomes very inexpensive in this case.

The demapper in the model of Fig. 2.1 has the task to generate from the estimate t̂

of (2.67) with the inverse M−1 (·) of the mapping operator M (·) of (2.5) an estimate

û = M−1
(
t̂
)

= (û1 · · · ûnu · · · ûNu)
T (2.73)

of the transmitted information vector u of (2.2).

2.6 Bit error probabilities

The quality of the transmission can be characterized by bit error probabilities. Quite

generally, these are defined as the probabilities Pb of the events that the components ûnu

of the estimate û of (2.73) differ from the corresponding components unu of the transmitted

information vector u of (2.2). When determining these probabilities, different modes of

averaging can be chosen, which are listed in Table 2.3. In this table the subscripts of

E {·} indicate over which vectors averaging is performed. In Table 2.3 we also list the

corresponding signal-to-noise ratios (SNR). In column six of Table 2.3 we show how these

SNRs are determined by the chosen modulation scheme as well as by the characteristics

of the radio channel and the received noise. In the case of the last row of Table 2.3, we

have the SNR

γo =
2σ2

t σ
2
h

σ2
. (2.74)
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This is the gross mean SNR. With the size M of the set V of (2.9), the corresponding

gross mean SNR per bit would be

γb =
1

2 log2 M
γo =

1

log2 M

σ2
t σ

2
h

σ2
. (2.75)

Pb depends on the chosen detection operator D (·) and decreases with growing SNR γb.

In order to characterize the overall performance of our transmission systems, we resort in

the later simaulations to the case of the last row of Table 2.3. This means that we will

determine

Pb =
1

Nu

E
n,u,h

{

(û − u)T (û − u)
}

(2.76)

depending on γb of (2.75).

unu n u h
Pb SNR

1 × 1

Nu

(û− u)T (û− u)

NF∑

nF=1

|tnF
|2h2

nF

NF∑

nF=1

|nRx,nF
|2

2 × × 1

Nu

E
n

{

(û− u)T (û− u)
}

NF∑

nF=1

|tnF
|2h2

nF

2NFσ2

3 × × × 1

Nu

E
n,u

{

(û− u)T (û− u)
}

σ2
t

NF∑

nF=1

h2
nF

NFσ2

4 × × × × 1

Nu

E
n,u,h

{

(û− u)T (û− u)
} 2σ2

t σ
2
h

σ2

Table 2.3. Definitions of bit error probabilities Pb and SNRs

averaging over

2.7 Continuous time representation of OFDM symbols

in the equivalent low pass domain

In this section we present an expression for the continuous time complex envelopes s (t)

of the OFDM symbols. With the NF × NF Fourier matrix

FNF×NF ∈ C
NF×NF , (2.77)
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t of (2.5) yields the discrete time representation

s =
(
s1 · · · snF

· · · sNF

)T
=
(
FNF×NF

)−1
t (2.78)

of the complex envelope. With the duration T of the OFDM symbols given by (2.36) and

under the assumption of a sufficiently large OFDM subcarrier number NF, the complex

envelope s (t) rapidly decays to zero for |t| larger than T/2. Then, with the components

snF
of s of (2.78) and ∆τ of (2.29) the complex envelope can be expressed as

s (t) = rect

(
t

T

) NF∑

nF=1

snF

sin
( π

∆τ
(t − (nF − 1) ∆τ)

)

π

∆τ
(t − (nF − 1) ∆τ)

. (2.79)
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Chapter 3

Combating frequency selectivity of radio

channels by partial data spreading

3.1 Preliminary remarks

3.1.1 Impact of Rayleigh fading

In order to illustrate the detrimental impact of Rayleigh fading, we consider as examples

OFDM transmission with QPSK data modulation over an AWGN radio channel on the

one side and over a Rayleigh fading radio channel on the other side. We assume that, with

σ2
h of (2.43), both channels have the same channel energy 2Wσ2

h. Then, the (constant)

SNR per bit of the AWGN radio channel becomes equal to the (average) SNR per bit γb of

(2.75) of the Rayleigh fading radio channel. In the technically interesting region of low bit

error probabilities Pb, the dependence of these probabilities on γb for the transmissions

over said two channels is well approximated by [Pro00]

Pb =







1

2
erfc

(√
γb

)
(AWGN channel) ,

1

2

[

1 −
√

γb

1 + γb

]

(Rayleigh fading channel) .
(3.1)

Fig. 3.1 shows Pb of (3.1) versus γb, and it becomes evident that Rayleigh fading substan-

tially impairs the transmission quality. In the present Chapter 3 we aspire to mitigate

the impact of Rayleigh fading by data spreading for uncoded OFDM transmission. In

Chapter 4 the combination of PDS with FEC encoding is dealt with.

3.1.2 Frequency diversity by data spreading

A well known measure against the detrimental impact of frequency selectivity consists in

transmitting one and the same data in parallel on different frequencies over the frequency

selective channel [Pro00]. If for these frequencies the variations of the CTF values of

the channel are sufficiently independent, then the receiver can improve the transmission

quality by averaging over the different transmissions. This approach to combating the

detrimental impact of frequency selectivity is termed frequency diversity. In the context of

OFDM transmission it was proposed [WZZ10] to achieve frequency diversity by spreading

each one of the NF components tnF
of the transmit vector t of (2.5) occuring at the

output of the the mapper over all NF OFDM subcarriers. Because in this case all NF
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Fig. 3.1. Pb of (3.1) versus γb for the AWGN channel and the Rayleigh fading channel

OFDM subcarriers are employed for each component tnF
, we term this approach Full

Data Spreading (FDS). The more independent the components hnF
of the CTF vector

h of (2.49), that is the larger W in (2.38) and the delay spread TM of (2.48), the larger

the frequency diversity benefit to be expected from data spreading. Therefore, W can be

considered a measure of the frequency diversity potential of the radio channel. In the case

W equal one, according to (2.53) to (2.55) the components hnF
of h of (2.49) are fully

correlated so that data spreading does not offer any frequency diversity advantage.

In order to perform FDS, we extend the generic model of Fig. 2.1 as shown in Fig. 3.2

by a block termed spreader. This block is characterized by an in general complex valued

spreading matrix

S ∈ C
NF×NF (3.2)

and transforms the original transmit vector t of (2.5) into the transmit vector

t̃ = S t, (3.3)

which we term spread transmit vector, and which is then fed into the radio channel. With

a view to achieve FDS, S has to be a full matrix, because only then each component tnF
of

t of (2.5) is spread over all NF OFDM subcarriers. The columns of the spreading matrix
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S have the role of signatures assigned to the individual components tnF
. The signatures

of different components tnF
should be as different as possible from each other. Therefore,

it is advisable that S is unitary, and an NF×NF Walsh-Hadamard matrix WNF×NF would

be an obvious choice for S [WZZ10]. In this case, the spreading matrix would be real

valued. The concept of FDS can be considered a special version of code division multiple

access (CDMA) as described in [Kle96].

u M (u)

mapper

t
S

spreader

t̃

h

radio channel

e
nRx

noise adder

rRx

ϕ

phase equalizer

r D (r)

detector

t̂ M−1
(
t̂
)

demapper

û

Tx

Nrc

Rx

}

}

}

Fig. 3.2. Model of OFDM transmission with FDS

With the exception of the spreader, the transmission models of Figs. 2.1 and 3.2 are

identical. However, in the case of Fig. 3.2 the detection operator D (·) not only needs the

knowledge of the CTF magnitude vector h of (2.61), but also of the employed spreading

matrix S in order to enable detection. In the case of FDS, we obtain for the disturbed

receive vector instead of (2.64) now

r = h�t̃ + n = diag (h)S t + n, (3.4)

and instead of (2.67) the ML estimate would now read

D(r) = t̂=
(
t̂1 · · · t̂nF

· · · t̂NF

)T
= t{q̃

′} =
(

t
{q̃ ′}
1 · · · t{q̃ ′}

nF · · · t{q̃ ′}
NF

)T

,

q̃′ = arg min
q̃=1···Q̃

{∣
∣diag (h)St{q̃} − r

∣
∣
}

.
(3.5)

In (2.67) t{q̃} is componentwise multiplied with the CTF magnitude vector h, whereas
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in (3.5) t{q̃} has to be multiplied to the matrix diag (h)S, which is a full and in general

complex valued matrix. Therefore, in contrast to (2.69) to (2.72), we cannot split up (3.5)

correspondingly. This means that ML detection would be quite complex. In the case of

larger subcarrier numbers NF, even suboptimum linear detection of r of (3.4) by the Zero

Forcing (ZF) or Minimum Mean Square Error (MMSE) schemes [Wha71, Kle96] would

still be prohibitively expensive. If we choose, as above mentioned, the Walsh-Hadamard

matrix WNF×NF as a in this case real valued spreading matrix, then the matrix diag (h)S

in (3.5) would be real valued, and ML estimation could at least be split up in analogy to

(2.69) and (2.70) into one ML estimator each for the real part and imaginary part vectors

x and y of (2.7) and (2.8), respectively; this would somewhat reduce the computational

expense of ML detection in the case of FDS.

(3.5) describes the detection operator D (·) of the ML detector in the structure of Fig.

3.2. This operator compares the Q spread and channel distorted transmit vectors t with

the disturbed receive vector r of (3.4). Instead of (3.5) three equivalent alternative inner

structures of the ML detector marked by the subscripts eq, ds, and eq,ds are possible.In

the case of the first alternative, we subject the disturbed receive vector r of (3.4) prior to

detection to channel equalization. This yields the vector

req = (diag (h))−1
r =S t + (diag (h))−1

n
︸ ︷︷ ︸

.

neq

(3.6)

The covariance matrix of the noise vector neq in (3.6) reads

Rneq
=

















2σ2

h2
1

0 · · · · · · 0

0
. . .

...
...

2σ2

h2
nF

...

...
. . . 0

0 · · · · · · 0
2σ2

h2
NF

















(3.7)

and is a diagonal matrix with in general unequal diagonal elements. Then, ML detection

of req of (3.6) is given by [Wha71]

Deq

(
req

)
= t̂eq=

(
t̂ eq,1 · · · t̂ eq,nF

· · · t̂ eq,NF

)T
= t{q̃

′} =
(

t
{q̃ ′}
1 · · · t{q̃

′}
nF · · · t{q̃

′}
NF

)T

,

q̃′ = arg min
q̃=1···Q̃

{(
St{q̃} − req

)H
R−1

neq

(
St{q̃} − req

)}

.
(3.8)

In the case of the second alternative, we subject the disturbed receive vector r of (3.4)
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prior to detection to despreading, which yields the despread receive vector

rds = S−1r = S−1diag (h)S t + S−1n
︸ ︷︷ ︸

.

nds

(3.9)

Because the spreading matrix S is unitary, the covariance matrix of noise vector nds in

(3.9) reads

Rnds
= 2σ2INF×NF (3.10)

and is proportional to the unit matrix. Consequently, in analogy to (3.5) the ML estimate

would now read

Dds(rds) = t̂ds=
(
t̂ds,1 · · · t̂ds,nF

· · · t̂ds,NF

)T
= t{q̃

′} =
(

t
{q̃ ′}
1 · · · t{q̃ ′}

nF · · · t{q̃ ′}
NF

)T

,

q̃′ = arg min
q̃=1···Q̃

{∣
∣S−1diag (h)S t{q̃} − rds

∣
∣
}

.
(3.11)

In the case of the third alternative, the disturbed receive vector r of (3.4) is channel

equalized and despread prior to detection, which yields the vector

req,ds = S−1 (diag (h))−1
r =t + S−1 (diag (h))−1

n
︸ ︷︷ ︸

.

neq,ds

(3.12)

The covariance matrix of noise vector neq,ds in (3.12) becomes

Rneq,ds
=
(
S−1
)

















2σ2

h2
1

0 · · · · · · 0

0
. . .

...
...

2σ2

h2
nF

...

...
. . . 0

0 · · · · · · 0
2σ2

h2
NF

















(
S−1
)H

, (3.13)

which is a fulll matrix. Now, the ML estimate would read similarly to (3.8)

Deq,ds

(
req,ds

)
= t̂eq,ds=

(
t̂eq,ds,1 · · · t̂ eq,ds,nF

· · · t̂ eq,ds,NF

)T
= t{q̃

′} =
(

t
{q̃ ′}
1 · · · t{q̃ ′}

nF · · · t{q̃ ′}
NF

)T

,

q̃′ = arg min
q̃=1···Q̃

{(
t{q̃} − req,ds

)H
R−1

neq,ds

(
t{q̃} − req,ds

)}

.

(3.14)

These three alternatives lead to the same system performance. As a topic of future

research, these alternatives could be evaluated with respect to their computational com-

plexity. In what follows, we rely on the ML estimator of (3.5).
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3.2 Concept of partial data spreading (PDS)

In order to overcome the complexity problem of FDS pointed out in the last section and

to yet affordably seize the advantage of frequency diversity by data spreading, we revisit

and further intensively investigate in this chapter the scheme of Partial Data Spreading

(PDS), the basics of which can be found in [ARDK07]. As the crux of PDS, we use instead

of a full spreading matrix S typical of FDS a block diagonal spreading matrix. With Z of

(1.1) we choose Z diagonal blocks of dimensions N ×N each. For said blocks we propose

the N ×N Walsh-Hadamard matrix WN×N so that we arrive with the Z ×Z unit matrix

IZ×Z at the real valued spreading matrix

S = IZ×Z ⊗ WN×N . (3.15)

We term WN×N partial spreading matrix. Each of the Z blocks of S spreads a subvector

t(z) = x(z)+jy(z) =
(

t
(z)
1 · · · t (z)

n · · · t (z)
N

)T

,

t
(z)
n = tn+(z−1)N ,

z = 1 · · ·Z,

(3.16)

of t of (2.5) termed partial transmit vector into a vector

t̃
(z)

=
(

t̃
(z)
1 · · · t̃ (z)

n · · · t̃ (z)
N

)T

= WN×N t(z), z = 1 · · ·Z, (3.17)

which we term partial spread transmit vector. We designate the parameter N in (3.15)

to (3.17) as sperading factor, and we assume that N is a power of two. Due to (3.15), the

spreading operation of (3.3) now disintegrates into Z partial spreading operations, and

hence we term this approach PDS. The Z partial spread transmit vectors t̃
(z)

of (3.17)

yield the total spread transmit vector

t̃ =

(

t̃
(1)T · · · t̃(z)T · · · t̃(Z)T

)T

. (3.18)

3.3 Transmission model

The transmission model of PDS is depicted in Fig. 3.3. This model is obtained by

supplementing the transmission model of Fig. 3.2 by an interleaver on the transmit side

and by a corresponding deinterleaver on the receive side. By interleaving we aspire that

the N components t̃
(z)
n of each partial spread transmit vector t̃

(z)
of (3.17) are commonly

transmitted by N OFDM subcarriers with frequencies as far apart from each other as

possible. In this way each partial spread transmit vector t̃
(z)

attains maximum benefit
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of frequency diversity. In the present Section 3.3 we consider the interleaver and the

deinterleaver quite generally by the operators I(N ,Z ) (·) and
(
I(N ,Z )

)−1
(·), respectively.

We indicate by the superscripts (N ,Z ) that the interleaving operator depends on the

chosen spreading factor N and on the parameter Z, the latter resulting with N and NF

from (1.1). In the following Section 3.4 the operators I(N ,Z ) (·) and
(
I(N ,Z )

)−1
(·) will be

specified in detail.

u

mapper

M (u)
t

spreader

S
t̃

interleaver

I(N ,Z )
(
t̃
)

t̃i

radio channel

h
e

nRx

noise adder

rRx

ϕ

phase equalizer

r

deinterleaver

I(N ,Z )−1

(r)
r′

detector

D (r′)
t̂

demapper

M−1
(
t̂
) û

Tx

Nrc

Rx

}

}

}

Fig. 3.3. OFDM transmission model incorporating PDS

The interleaver transforms the spread transmit vector t̃ of (3.18) into the interleaved

spread transmit vector

t̃i = (̃t i,1 · · · t̃i,nF
· · · t̃i,NF

)T = I(N ,Z )
(
t̃
)

= I(N ,Z ) (S t) . (3.19)

With this vector, we obtain for the disturbed receive vector instead of (3.4) now

r = h � t̃i + n = h � I(N ,Z )
(
t̃
)

+ n = h�I(N ,Z ) (S t) + n. (3.20)

r of (3.20) is fed into the deinterleaver, which yields at its output the “deinterleaved”
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version
r′ = I(N ,Z )−1

(r) =

I(N ,Z )−1

(h) � I(N ,Z )−1

(

I(N ,Z )
(
t̃
)
)

+ I(N ,Z )−1

(n) =

I(N ,Z )−1

(h) � t̃+I(N ,Z )−1

(n)

(3.21)

of r of (3.20). We recognize that in (3.21) the “deinterleaved” versions

h′ = (h ′
i,1 · · ·h′

i,nF
· · ·h′

i,NF
)T = I(N ,Z )−1

(h) (3.22)

of the CTF magnitude vector h of (2.61) and

n′ = I(N ,Z )−1

(n) (3.23)

of the noise vector n of (2.65) occur. With these, (3.21) can be rewritten as

r′ = h′ � t̃+n′ = diag(h′)S t+n′. (3.24)

The application of PDS has also implications for the detection operator D(·), which will

be specified in Section 3.5.

3.4 Interleaver and deinterleaver

We now specify the interleaving and deinterleaving operators I(N ,Z ) (·) and
(
I(N ,Z )

)−1
(·),

respectively, introduced in Section 3.3. To this end we consider the vector

x = (x 1 · · ·xnF
· · ·xNF

)T (3.25)

and arrange its NF elements in the N × Z matrix

X =












x 1 x2 x 3 · · · xZ

xZ+1
xZ+2

xZ+3
· · · x 2Z

x2Z+1 x 2Z+2 x 2Z+3 · · · x 3Z
...

...
...

. . .
...

x(N−1)Z+1 x(N−1)Z+2 x(N−1)Z+3 . . . xNF












, (3.26)

where N and Z fulfil (1.1). Then, we take as the interleaved version of x the vector

xi = (x i,1 · · ·xi,nF
· · ·xi,NF

)T = I(N ,Z ) (x) = vec (X) . (3.27)
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For deinterleaving, we arrange the NF elements of the interleaved vector xi of (3.27) in

the Z × N matrix

Xi =












x i,1 x i,Z+1 x i,2Z+1 · · · x i,(N−1)Z+1

x i,2 x i,Z+2
x i,Z+2 · · · x i,(N−1)Z+2

x i,3 x i,2Z+3 x i,2Z+3 · · · x i,(N−1)Z+3
...

...
...

. . .
...

x i,Z x i,2Z x i,3Z . . . x i,NF












, (3.28)

and then obtain the deinterleaved version

x =
(
I(N ,Z )

)−1
(xi) = vec (Xi) (3.29)

of xi.

In order to improve understandability, we visualize in Fig. 3.4 the process of PDS and

interleaving. The parameters chosen in this figure are NF equal 32 and N equal four.

3.5 Data detection

3.5.1 Introduction of partial vectors in the receiver, and partial

detection

In (3.16) we split up the transmit vector t of (2.5) into Z partial transmit vectors t(z).

Analoguously, the vectors r′, h′, t̃ and n′ occuring in (3.24) can be split up into Z partial

vectors

r′(z) =
(

r ′(z)
1 · · · r ′(z)

n · · · r ′(z)
N

)T

,

r ′(z)
n = r′n+(z−1)N ,

z = 1 · · ·Z,

(3.30)

h′(z) =
(

h ′(z)
1 · · ·h ′(z)

n · · · h ′(z)
N

)T

,

h′(z)
n = h′

n+(z−1)N ,

z = 1 · · ·Z,

(3.31)

t̃
(z)

=
(

t̃
(z)
1 · · · t̃ (z)

n · · · t̃ (z)
N

)T

,

t̃
(z)
n = t̃n+(z−1)N ,

z = 1 · · ·Z,

(3.32)

and
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Fig. 3.4. Visualization of PDS and interleaving, NF = 32, N = 4
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n′(z) =
(

n ′(z)
1 · · ·n ′(z)

n · · ·n ′(z)
N

)T

,

n ′(z)
n = n′

n+(z−1)N ,

z = 1 · · ·Z,

(3.33)

respectively. With these and under consideration of (3.15), (3.24) falls apart into Z partial

equations

r′
(z)

= h′(z)�t̃
(z)

+ n′(z)
=diag

(

h′(z)
)

WN×N t(z) + n′(z)
, z = 1 · · ·Z . (3.34)

With the real valued matrix

A(z) =












a1,1 · · · a1,n · · · a1,N

...
. . .

...

an,1 an,n an,N

...
. . .

...

aN,1 · · · aN ,n · · · aN ,N












= diag
(

h′(z)
)

WN×N =












h′(z)
1 0 · · · · · · 0

0
. . .

...
... h′(z)

n

...
...

. . . 0

0 · · · · · · 0 h′(z)
N












WN×N ,

(3.35)

which we term partial system matrix, (3.34) can be rewritten as

r′
(z)

= h′(z)�t̃
(z)

+ n′(z)
=A(z)t(z) + n′(z)

, z = 1 · · ·Z . (3.36)

From each partial receive vector r′(z) of (3.36), an estimate

t̂
(z)

=
(

t̂
(z)

1 · · · t̂(z)

n · · · t̂(z)

N

)T

(3.37)

of the corresponding partial transmit vector t(z) of (3.16) has to be determined. Keeping

this partitioning in mind, the detector in the model of Fig. 3.3 has to be given the inner

structure shown in Fig. 3.5. This structure consists of the three blocks splitter, partial

detector, and desplitter. The splitter has the task to split up the vector r′ of (3.24) into

the Z partial vectors r′(z) of (3.30). As indicated in Fig. 3.5, the block partial detector

occurs, with Z of (1.1), in a Z−fold multitude. With the size M of the set V of (2.9),

each of the Z partial transmit vectors t(z) of (3.16) can assume
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R = M2N (3.38)

different realizations t(z){r}, r = 1 · · ·R. The zth partial detector performing the detection

operation D(z) (·) has the task to determine out of the R realizations t(z){r}, r = 1 · · ·R,

an estimate t̂
(z)

of the sent partial transmit vector t(z).

r′

splitter

r′

r′(1) · · · r′(Z)

r′(z)

D(z)
(
r′(z)

)

partial
detector

t̂
(z)

desplitter

t̂

t̂
(1) · · · t̂(Z)

t̂

D (r′)

Fig. 3.5. Inner structure of detector in the OFDM transmission model of Fig. 3.3

In the desplitter, the Z estimates t̂
(z)

are composed to the estimate

t̂ =
(

t̂
(1)T · · · t̂(z)T · · · t̂(Z)T

)T

(3.39)

of t of (2.5). Finally, by demapping we obtain the estimate

û = M−1
(
t̂
)

(3.40)

of the transmitted information vector u of (2.2).

Analoguously to (3.16), the information vector u of (2.2) and its estimate û of (3.40)

can be split up into the Z partial vectors

u(z) =
(

u
(z)
1 · · ·u(z)

n′ · · ·u(z)
N ′

)T

,

N ′ = Nu/Z,

u
(z)
n′ = un′+(z−1)N ′ ,

z = 1 · · ·Z,

(3.41)

and
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û(z) =
(

û
(z)
1 · · · û(z)

n′ · · · û(z)
N ′

)T

,

N ′ = Nu/Z,

û
(z)
n′ = ûn′+(z−1)N ′ ,

z = 1 · · ·Z,

(3.42)

respectively. As already indicated in connexion with (2.76), the bit error probability

results by averaging. In the case of PDS with uncoded transmission over Rayleigh fading

channels, the bit error probabilities P
(z)
b of all Z partial estimates û(z) take the same value

Pb, that is

P
(z)
b = Pb, z = 1 · · ·Z. (3.43)

Due to this insight, it is sufficient to consider in the simulations only one of the Z partial

transmission chains from u(z) of (3.41) to the estimate û(z) of (3.42). In this way the

expense of the simulations can be significantly reduced.

In what follows we consider three different detection schemes, namely Maximum Like-

lihood (ML), Minimum Mean Square Error (MMSE) and Zero Forcing (ZF) detection

[Wha71, Kle96, Pro00]. In order to discern the estimates obtained for the different detec-

tion schemes, we mark these estimates by the subscripts ML, MMSE and ZF, respectively.

3.5.2 ML detection

In order to obtain the ML estimate t̂
(z)

ML of t(z) of (3.16), r′(z) of (3.36) has to be checked

against all R possible realizations t(z){r}, r = 1 · · ·R, of t(z). With A(z) of (3.35) the

realization t(z){r ′} chosen as the ML estimate is determined by [Wha71]

t̂
(z)

ML =
(

t̂
(z)

ML,1 · · · t̂
(z)

ML,n · · · t̂
(z)

ML,N

)T

= t(z){r ′},

r′ = arg min
r=1···R

{∣
∣
∣A(z)t(z){r} − r′(z)

∣
∣
∣

}

.
(3.44)

Because the system matrix A(z) in (3.44) is real valued, we can in analogy to (2.69) and

(2.70) split up the ML detector of (3.44) into an real and imaginary part ML detector.

We introduce the real and imaginary part vectors

r′
(z)
R =

(

r′
(z)
R,1 · · · r′

(z)
R,n · · · r′

(z)
R,N

)T

=

Re
(

r′(z)
)

= A(z)x(z) + Re
(

n′(z)
)

,
(3.45)

and
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r′
(z)
I =

(

r′
(z)
I,1 · · · r′

(z)
I,n · · · r′

(z)
I,N

)T

=

Im
(

r′(z)
)

= A(z)y(z) + Im
(

n′(z)
)

,
(3.46)

of r′(z) of (3.36) and the number

S = MN (3.47)

possible realizations x(z){sx}, sx = 1· · ·S , and y(z){sy}, sy = 1· · ·S , of the real and imagi-

nary part vectors x(z) and y(z) of t(z) of (3.16). Then, (3.44) can be split up into two ML

detectors which yield the estimates

x̂
(z)
ML = D

(

r
(z)
R

)

= D
(

r
(z)
R,1 · · · r

(z)
R,n · · · r

(z)
R,N

)T

=

x(z){s′x} =
(

x
(z){s′x}
1 · · · x (z){s′x}

n · · · x (z){s′x}
N

)T

,

s′x = arg min
sx=1···S

{∣
∣
∣A(z)x(z){sx} − r

(z)
R

∣
∣
∣

}

,

(3.48)

and

ŷ
(z)
ML = D

(

r
(z)
I

)

= D
(

r
(z)
I,1 · · · r

(z)
I,n · · · r

(z)
I,N

)T

=

y(z){s′y} =

(

y
(z){s′y}
1 · · · y (z){s′y}

n · · · y (z){s′y}
N

)T

,

s′y = arg min
sy=1···S

{∣
∣
∣A(z)y(z){sy} − r

(z)
I

∣
∣
∣

}

,

(3.49)

of x(z) and y(z), respectively.

ML detection as described above immediately gives discrete valued estimates of the Z

partial transmit vectors t(z), which then, by desplitting and demapping, give the estimate

û of u of (2.2). In the case of PDS, ML detection is less expensive than in the case of

FDS. Nevertheless, ML detection encounters computational limits also in the case of PDS

for larger spreading factors N . For N equal NF, PDS would turn into FDS.

3.5.3 MMSE detection

The computational limits of PDS with ML detection mentioned above do not exist if we

resort to PDS with MMSE detection. MMSE detection is a linear scheme, which has to

be followed by quantization. We now adapt the scheme of MMSE detection [Kle96] to our

OFDM transmission concept with PDS. Like in the case of ML detection, see (3.48) and

(3.49), also the MMSE detector could be split up into real and imaginary part detectors.

However, this obvious aspect will not be set forth in what follows.
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We introduce the covariance matrix

R
(z)
t = E

{

t(z)t(z)H
}

(3.50)

of the partial transmit vector t(z) of (3.16), and

R
(z)
n′ = E

{

n′(z)
n′(z)H

}

(3.51)

of the partial noise vector n′(z) of (3.33). The averaging E {·} has to be performed in

(3.50) over many realizations of the partial transmit vector t(z) of (3.16), and in (3.51)

over many snapshots of the partial noise vector n′(z) of (3.33).

In a first step, MMSE detection yields with r′(z) of (3.36), R
(z)
t of (3.50) and R

(z)
n′ of

(3.51) the continuous valued estimate [Wha71, Kle96]

t̂
(z)

MMSE,cont =
(

t̂
(z)

MMSE,cont,1 · · · t̂
(z)

MMSE,cont,n · · · t̂
(z)

MMSE,cont,N

)T

=
(

A(z)TR
(z)−1

n′ A(z) + R
(z)−1

t

)−1

A(z)TR
(z)−1

n′ r′(z)
(3.52)

of the partial transmit vector t(z) of (3.16). Substitution of r′(z) of (3.36) in (3.52) yields

t̂
(z)

MMSE,cont =
(

A(z)TR
(z)−1

n′ A(z) + R
(z)−1

t

)−1

A(z)TR
(z)−1

n′

(
A(z)t(z) + n′(z)

)
=

(

A(z)TR
(z)−1

n′ A(z) + R
(z)−1

t

)−1

A(z)TR
(z)−1

n′ A(z)t(z)+
(

A(z)TR
(z)−1

n′ A(z) + R
(z)−1

t

)−1

A(z)TR
(z)−1

n′ n′(z).

(3.53)

For the matrix expression in the third row of (3.53) we now write

(

A(z)TR
(z)−1

n′ A(z) + R
(z)−1

t

)−1

A(z)TR
(z)−1

n′ A(z) = T(z). (3.54)

We further rewrite the matrix expression in the last row of (3.53) under consideration of

(3.54) as
(

A(z)TR
(z)−1

n′ A(z) + R
(z)−1

t

)−1

A(z)TR
(z)−1

n′ =

T(z)A(z)−1

= N(z).
(3.55)

With (3.54) and (3.55) we can rewrite (3.53) as [Kle96]

t̂
(z)

MMSE,cont = T(z)t(z) + N(z)n′(z) = dg
(

T(z)
)

t(z)

︸ ︷︷ ︸

+ dg
(

T(z)
)

t(z)

︸ ︷︷ ︸

+N(z)n′(z)

︸ ︷︷ ︸
.

t(z)
u i(z) n

(z)
e

(3.56)
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In (3.56) we indicate that the estimate t̂
(z)

MMSE,cont is constituted by three continuous valued

vectorial components, namely the vector

t(z)
u = dg

(

T(z)
)

t(z), (3.57)

which is the useful content of t̂
(z)

MMSE,cont, the vector

i(z) = dg
(

T(z)
)

t(z), (3.58)

which represents the interference contained in t̂
(z)

MMSE,cont, and the vector

n(z)
e = N(z)n′(z)

, (3.59)

which stands for the effective noise in the estimate t̂
(z)

MMSE,cont of (3.56) [Kle96].

In the context of this thesis, we assume that the N components t
(z)
n of the partial

transmit vector t(z) are independent so that the covariance matrix of (3.50) becomes with

σt of (2.10)

R
(z)
t = 2σ2

t I
N×N . (3.60)

The operation I(N ,Z )−1

(n) with I(N ,Z )−1

(·) of (3.28) and (3.29) does not alter the statis-

tical properties of the bivariate white Gaussian noise vector n of (2.65). Therefore, we

can assume that the covariance matrix of (3.51) reads

R
(z)
n′ = 2σ2IN×N . (3.61)

With the covariance matrices of (3.60) and (3.61) the expressions (3.54) and (3.55) can

be simplified as follows:

T(z) =

(

A(z)TA(z) +
σ2

σ2
t

IN×N

)−1

A(z)TA(z) (3.62)

and

N(z) = T(z)A(z)−1

=

(

A(z)TA(z) +
σ2

σ2
t

IN×N

)−1

A(z)T . (3.63)

By substituting of A(z) of (3.35) in (3.62) and invoking the principle of Eigenvalue de-

composition (EVD) [Mar87], we obtain
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T(z) =
















WN×N
















h′(z)2

1 +
σ2

σ2
t

0 · · · · · · 0

0
. . .

...
... h′(z)2

n +
σ2

σ2
t

...

...
. . . 0

0 · · · · · · 0 h′(z)2

N +
σ2

σ2
t
















WN×N
















−1

×

WN×N












h′(z)
1 0 · · · · · · 0

0
. . .

...
... h′(z)

n

...
...

. . . 0

0 · · · · · · 0 h′(z)
N












2

WN×N =

WN×N

























h ′(z)2

1

h ′(z)2

1 +
σ2

σ2
t

0 · · · · · · 0

0
. . .

...

...
h ′(z)2

n

h ′(z)2

n +
σ2

σ2
t

...

...
. . . 0

0 · · · · · · 0
h ′(z)2

N

h ′(z)2

N +
σ2

σ2
t

























WN×N .

(3.64)
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For (3.63) we get with the system matrix A(z) of (3.35) and T(z) of (3.64)

N(z) = WN×N

























h ′(z)2

1

h ′(z)2

1 +
σ2

σ2
t

0 · · · · · · 0

0
. . .

...

...
h ′(z)2

n

h ′(z)2

n +
σ2

σ2
t

...

...
. . . 0

0 · · · · · · 0
h ′(z)2

N

h ′(z)2

N +
σ2

σ2
t

























WN×N×

WN×N












h ′(z)
1 0 · · · · · · 0

0
. . .

...
... h ′(z)

n

...
...

. . . 0

0 · · · · · · 0 h′(z)
N












−1

=

WN×N
























h ′(z)
1

h ′(z)2

1 +
σ2

σ2
t

0 · · · · · · 0

0
. . .

...

...
h ′(z)

n

h ′(z)2

n +
σ2

σ2
t

...

...
. . . 0

0 · · · · · · 0
h ′(z)

N

h ′(z)2

N +
σ2

σ2
t
























.

(3.65)
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In what follows, we will show that the useful partial vector of (3.57) can be written

with a real valued positive scaler a(z) as

t(z)
u = dg

(

T(z)
)

t(z) = a(z)t(z). (3.66)

We will further show that the diagonal matrix consisting of the diagonal elements of

the covariance matrix of the interference vector i(z) of (3.58) can be expressed with the

interference variance σ
(z)2

i as

dg
(

E
{

i(z)i(z)H
})

=

dg
(

dg
(

T(z)
)

E
{

t(z)t(z)H
}

dg
(

T(z)H
))

=

2σ2
t dg

(

dg
(

T(z)
)

dg
(

T(z)H
))

= 2σ
(z)2

i IN×N .

(3.67)

Finally, we will show that the diagonal matrix consisting of the diagonal elements of the

covariance matrix of the effective noise vector n
(z)
e of (3.59) can be expressed with the

noise variance σ
(z)2

ne as

dg
(

E
{

n
(z)
e n

(z)H

e

})

=

dg
(

N(z)E
{

n′(z)n′(z)H
}

N(z)H
)

= 2σ2dg
(

N(z)N(z)H
)

= 2σ
(z)2

ne IN×N .
(3.68)

In what follows, we derive expressions for the determination of the three quantities a(z),

σ
(z)2

i and σ
(z)2

ne occurring in (3.66), (3.67) and (3.68), respectively.

First, we address the determination of a(z) in (3.66). Inspection of (3.64) reveals that

all N diagonal elements of the matrix T(z) take the same real value
1

N

N∑

n=1

h ′(z)2

n

h ′(z)2

n + σ2/σ2
t

so that we can rewrite (3.66) as

t(z)
u =

1

N

N∑

n=1

h′(z)2

n

h ′(z)2

n + σ2/σ2
t

t(z) (3.69)

and obtain

a(z) =
1

N

N∑

n=1

h ′(z)2

n

h ′(z)2

n + σ2/σ2
t

. (3.70)

Concerning the determination of σ
(z)2

i in (3.67), we write with T(z) of (3.64) and a(z) of

(3.70)
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dg
(

T(z)
)

= T(z) − dg
(

T(z)
)

= T(z) − a(z)IN×N = WN×N×
























h ′(z)2

1

h ′(z)2

1 +
σ2

σ2
t

− a(z) 0 · · · · · · 0

0
. . .

...

...
h ′(z)2

n

h ′(z)2

n +
σ2

σ2
t

− a(z) ...

...
. . . 0

0 · · · · · · 0
h ′(z)2

N

h ′(z)2

N +
σ2

σ2
t

− a(z)

























WN×N =

WN×N×





























(
1 − a(z)

)
h ′(z)2

1 − a(z) σ
2

σ2
t

h ′(z)2

1 +
σ2

σ2
t

0 · · · · · · 0

0
. . .

...

...

(
1 − a(z)

)
h ′(z)2

n − a(z) σ
2

σ2
t

h ′(z)2

n +
σ2

σ2
t

0
...

...
. . . 0

0 · · · · · · 0

(
1 − a(z)

)
h ′(z)2

N − a(z) σ
2

σ2
t

h ′(z)2

N +
σ2

σ2
t






























×

WN×N .

(3.71)

With dg
(

T(z)
)

of (3.71) we can write in (3.67)

dg
(

dg
(

T(z)
)

dg
(

T(z)H
))

=
1

N

N∑

n=1

((
1 − a(z)

)
h ′(z)2

n − a(z)σ2/σ2
t

h ′(z)2

n + σ2/σ2
t

)2

IN×N (3.72)
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so that we obtain

σ
(z)2

i = σ2
t

1

N

N∑

n=1

((
1 − a(z)

)
h ′(z)2

n − a(z)σ2/σ2
t

h ′(z)2

n + σ2/σ2
t

)2

. (3.73)

With N(z) of (3.65) we can write in (3.68)

N(z)N(z)H =

WN×N



















h ′(z)
1

h ′(z)2

1 + σ2/σ2
t

0 · · · · · · 0

0
. . .

...

...
h ′(z)

n

h ′(z)2

n + σ2/σ2
t

...

...
. . . 0

0 · · · · · · 0
h ′(z)

N

h ′(z)2

N + σ2/σ2
t



















2

WN×N .
(3.74)

All diagonal elements of this matrix assume the same value
1

N

N∑

n=1

(

h ′(z)
n

h ′(z)2

n + σ2/σ2
t

)2

.

Therefore, we obtain from (3.68) with (3.74)

σ(z)2

ne
= σ2 1

N

N∑

n=1

(

h ′(z)
n

h ′(z)2

n + σ2/σ2
t

)2

. (3.75)

a(z) of (3.70) is in general not equal one. Therefore, the useful constituent t(z)
u of (3.66)

of the estimate t̂
(z)

MMSE,cont is biased. By scaling of t(z)
u with a(z) of (3.70) we arrive at the

unbiased continuous valued version

t
(z)
u,unbiased = t(z)

u /a(z) (3.76)

of t(z)
u . Finally, quantization of t

(z)
u,unbiased of (3.76) with the quantization operator Q (·)

determined by the Voronoi regions [FJ89] given by the set V of (2.9) yields the discrete

valued estimate

t̂
(z)

= Q
(

t
(z)
u,unbiased

)

(3.77)

of t(z) of (3.16). In the special case of QPSK data modulation, the scaling of (3.76) would

not be necessary, because only the signs of the real and imaginary parts of the components

of t
(z)
u,unbiased play a role.

σt of (2.10), a(z) of (3.70), σ
(z)2

i of (3.73) and σ
(z)2

ne of (3.75) yield the effective signal-
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to-noise-plus-interference ratio (SNIR) [Kle96]

γ
(z)
MMSE,effect =

a(z)2σ2
t

σ
(z)2

ne + σ
(z)2

i

(3.78)

of the components t̂
(z)

MMSE,cont,n of the estimate t̂
(z)

MMSE,cont of (3.52). From (3.78) results

with the size M of the set V of (2.9) the effective SNIR

γ
(z)
b,MMSE,effect =

1

2 log2 M
· a(z)2σ2

t

σ
(z)2

ne + σ
(z)2

i

(3.79)

per bit. By the attribute “effect” in the subscripts of the SNIRs of (3.78) and (3.79), we

indicate that these SNIRs determine the error probabilities.

Under the assumptions that the interference vector i(z) of (3.58) is bivariate Gaussian

and that the effective SNIR per bit of (3.79) is sufficiently large, we obtain for the bit

error probabilities the expressions [HCC+01]

P
(z)
b

(

γ
(z)
b,MMSE,effect

)

=







1

2
erfc

(√

γ
(z)
b,MMSE,effect

)

for QPSK,

3

8
erfc

(√

0.4γ
(z)
b,MMSE,effect

)

for 16QAM.
(3.80)

The assumption of a Gaussian i(z) is not exactly fulfilled, because the partial data vectors

t(z) of (3.16) are discrete valued. However, in Subsubsection 3.6.3.1 we will show by a

simulation example that this assumption is justified.

γ
(z)
b,MMSE,effect of (3.79), and, therefore, the bit error probability P

(z)
b

(

γ
(z)
b,MMSE,effect

)

of

(3.80) hold for the case of averaging over many snapshots of t(z) and of n′(z) for a given

snapshot of the CTF magnitude vector h′(z) of (3.31). Therefore, (3.79) and (3.80) corre-

spond to the case of row three of Table 2.3. In the case of Rayleigh fading radio channels

considered in this thesis, averaging of P
(z)
b

(

γ
(z)
b,MMSE,effect

)

of (3.80) over sufficiently many

snapshots of the CTF magnitude vector h′(z) yields, with the pdf pγb

(

γ
(z)
b,MMSE,effect

)

of

γ
(z)
b,MMSE,effect of (3.79), the mean bit eror probability

Pb =

∫ ∞

0

P
(z)
b

(

γ
(z)
b,MMSE,effect

)

pγb

(

γ
(z)
b,MMSE,effect

)

d
(

γ
(z)
b,MMSE,effect

)

. (3.81)

Following the argument presented at the end of Subsection 3.5.1, and as indicated by

omitting the superscript (z) of Pb, of (3.81) holds likewise for all Z partial information

vectors u(z) of (3.41) and, in order to describe the system performance, should be depicted
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versus the mean SNIR per bit

γb =

∫ ∞

0

pγb

(

γ
(z)
b,MMSE

)

d
(

γ
(z)
b,MMSE

)

. (3.82)

The pdf pγb

(

γ
(z)
b,MMSE,effect

)

in (3.81) is determined by the chosen modulation scheme

as well as by the parameters W in (2.38) and γo of (2.74).

3.5.4 ZF detection

In order to obtain the continuous valued ZF estimate of t(z), we have to omit in (3.52)

the matrix R
(z)−1

t , which yields with r′(z) of (3.34)

t̂
(z)

ZF,cont =
(

t̂
(z)

ZF,cont,1 · · · t̂
(z)

ZF,cont,n · · · t̂
(z)

ZF,cont,N

)T

=
(

A(z)TR
(z)−1

n′ A(z)
)−1

A(z)TR
(z)−1

n′ r′(z) =

A(z)−1

r′(z) = t(z) + A(z)−1

n′(z),

(3.83)

and we recognize that the continuous valued ZF estimate is free of interference. Therefore,

we obtain instead of (3.62) and (3.70)

T(z) = IN×N (3.84)

and

a(z) = 1, (3.85)

respectively. Further, (3.65) yields

N(z) = WN×N

















1

h′(z)
1

0 · · · · · · 0

0
. . .

...
...

1

h′(z)
n

...

...
. . . 0

0 · · · · · · 0
1

h′(z)
N

















, (3.86)

and we get instead of (3.74)
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N(z)N(z)H =

WN×N

















1

h′(z)
1

0 · · · · · · 0

0
. . .

...
...

1

h′(z)
n

...

...
. . . 0

0 · · · · · · 0
1

h′(z)
N

















2

WN×N .
(3.87)

All diagonal elements of this matrix assume the value
1

N

∞∑

n=1

1

h′(z)2

n

. Then, we obtain instead

of (3.75) now

σ(z)2

ne
= σ2 1

N

N∑

n=1

1

h′(z)2

n

. (3.88)

Finally, with a(z) of (3.85) and σ
(z)
ne of (3.88) the effective SNRs

γ
(z)
ZF,effect =

σ2
t

σ
(z)2

ne

(3.89)

and

γ
(z)
b,ZF,effect =

1

2 log2 M
· σ2

t

σ
(z)2

ne

(3.90)

follow. With γ
(z)
b,ZF,effect of (3.90) the calculation of the bit error probabilities

P
(z)
b

(

γ
(z)
b,ZF,effect

)

and Pb can be performed as outlined in the last two paragraphs of Sub-

section 3.5.3.

It is well known [Kle96] that the MMSE detector boils down to the ZF detector for a

sufficiently small noise variance σ2. In our case “sufficiently small” means that in (3.70),

(3.73) and (3.75)

σ2/σ2
t � h′(z)2

n for all n = 1 · · ·N (3.91)

should hold. Then, (3.70) and (3.75) turn into (3.85) and (3.88), respectively, and σ
(z)2

i

(3.73) characterizing the interference vanishes. Even if σ2/σ2
t is so small that, when

averaging over many channel snapshots of h′(z) of (3.31), (3.91) is fulfilled, then in the case

of the assumed Rayleigh fading radio channels, channel snapshots with component values

h′(z)2

n far below this average may occur. This has the effect that for those channel snapshots

the equivalence of MMSE and ZF detection would come about only at particularly small

values of σ2/σ2
t .
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3.5.5 Matched Filter (MF) bound

PDS has the benefit that the frequency diversity offered by the radio channel can be cost

efficiently exploited. However, the signal separation required in the receiver when using

PDS has a negative impact on the system performance. In the present section we aspire,

in a theoretical study, to separate out this negative impact so that only the benefit of

frequency diversity offered by PDS remains. The adequate approach is the determination

of the MF bound [VB00].

We consider the detection of the N components x
(z)
n of the real part vector x(z) and

y
(z)
n of the imaginary part vector y(z) of t(z) of (3.16). In general, the bit error probabil-

ities of practical detection schemes lie above the MF bound. This bound is obtained by

considering the receive vectors caused by each of the N components x
(z)
n of x(z) and y

(z)
n

of y(z) of t(z) of (3.16) separately, and by feeding each of these vectors into a matched

filter. We express the system matrix of (3.35) by its N column vectors as

A(z) =
(

a
(z)
1 · · ·a(z)

n · · ·a(z)
N

)

,

a
(z)
n =

(

a
(z)
1,n · · ·a

(z)
n,n · · ·a(z)

N ,n

)T

.
(3.92)

Then, we can write the real part receive vector caused by the component x
(z)
n as

r′
(z)
R,n = a(z)

n x (z)
n + Re

(

n′(z)
)

, (3.93)

and the imaginary part receive vector caused by the component y
(z)
n as

r′
(z)
I,n = a(z)

n y (z)
n + Im

(

n′(z)
)

. (3.94)

With these two vectors we obtain for the components x
(z)
n and y

(z)
n the continuous valued

MF estimates

x̂
(z)
MF,cont,n =

(

a
(z)T

n a
(z)
n

)−1

a
(z)T

n r′
(z)
R,n =

(

a
(z)T

n a
(z)
n

)−1

a
(z)T

n

(

a
(z)
n x

(z)
n + Re

(

n′(z)
))

=

x
(z)
n +

(

a
(z)T

n a
(z)
n

)−1

a
(z)T

n Re
(

n′(z)
)

(3.95)

and

ŷ
(z)
MF,cont,n =

(

a
(z)T

n a
(z)
n

)−1

a
(z)T

n r′
(z)
I,n =

(

a
(z)T

n a
(z)
n

)−1

a
(z)T

n

(

a
(z)
n y

(z)
n + Im

(

n′(z)
))

=

y
(z)
n +

(

a
(z)T

n a
(z)
n

)−1

a
(z)T

n Im
(

n′(z)
)

,

(3.96)

respectively. Quantization of x̂
(z)
MF,cont,n of (3.95) and ŷ

(z)
MF,cont,n of (3.96) with the quan-

tization operator Q (·) determined by the Voronoi regions [FJ89] given by the set V of
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(2.9) yields the discrete valued estimates x̂
(z)
MF,n and ŷ

(z)
MF,n of the components x

(z)
n and y

(z)
n ,

respectively.

With the components h ′(z)
n of the partial CTF vector h′(z) of (3.31) we can determine

the quantity

α
(z)2

h =
1

N

N∑

n=1

(

h ′(z)
n

)2

, (3.97)

which with σ2 of (2.57) yields the variance

σ
(z)2

MF =
σ2

α
(z)2

h

(3.98)

of the noise terms
(

a
(z)T

n a
(z)
n

)−1

a
(z)T

n Re
(

n′(z)
)

and
(

a
(z)T

n a
(z)
n

)−1

a
(z)T

n Im
(

n′(z)
)

in (3.95)

and (3.96), respectively. Finally, with σ2
t of (2.10) and σ

(z)2

MF of (3.98) the SNR becomes

γ
(z)
MF =

σ2
t

σ
(z)2

MF

. (3.99)

With γ
(z)
MF of (3.99) the calculation of the bit error probabilities P

(z)
b

(

γ
(z)
MF

)

and Pb can

be performed as outlined in the last two paragraphs of Subsection 3.5.3.

3.5.6 Unspread transmission

As a reference system for our scheme OFDM transmission with PDS we consider in Section

3.6 also the bit error probability Pb of unspread OFDM transmission over the Rayleigh

fading radio channel; PDS degenerates to unspread transmission if we set the spreading

factor N equal one. We will choose QPSK modulation, and then we can, with the SNR

γb per bit of (2.75), immediately resort to row two of (3.1).

3.6 Quantitative evaluations

3.6.1 Preliminary remarks

In the present section we verify and illustrate the performance of OFDM transmission

with PDS for the above introduced schemes of ML, MMSE and ZF detection by the

results of computer simulations. The simulations are performed for QPSK modulation as

defined by (2.18) to (2.22) and for

NF = 128 (3.100)
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OFDM subcarriers. In the simulations we set out from given parameter values γb of

(2.75) and from sufficiently many realizations of the information vector u of (2.2) and of

the CTF vector h of (2.49).

3.6.2 Performance comparison of the schemes ML, MMSE and

ZF detection

In Fig. 3.6 we depict Pb of (3.81) versus γb of (3.82) for the case of PDS with ML detection

as described by (3.44) with the spreading factor N equal four. For ML detection Figs.

3.6a and 3.6b show two curves each, namely curves marked with WH-PDS, which stands

for Walsh-Hadamard PDS, and curves marked with F-PDS, which stands for Fourier PDS.

At the moment only the curves marked with WH-PDS are of interest. In Section 3.8 we

will return to the curves marked with F-PDS.

The channel parameter W introduced in (2.38) is given the value four in Fig. 3.6a

and 128 in Fig. 3.6b. In Fig. 3.6 we consider as references also unspread transmission

as well as PDS with MMSE and ZF detection, and the MF bound for PDS. As to be

expected, the curves for all four schemes lie above the MF bound. Unexpectedly, PDS

with ZF detection performs worse than unspread transmission. ML detection gives the

best result, however, it is only marginally superior to MMSE detection. In the case W

equal four of Fig. 3.6a the radio channel has a lower diversity potential than in the case

W equal 128 of Fig. 3.6b, and, therefore, one would expect that in the latter case the

performance would be better. However, we recognize that the curves in Figs. 3.6a and

3.6b are virtually identical; this means that with the spreading factor N equal four the

diversity potential of the case W equal 128 cannot be fully utilized by PDS.

In the case of the MF bound in Fig 3.6, the mutual interference is neglected. Therefore,

the inclination of the curve of the MF bound fits together with the corresponding diversity

order equal four. However, in the cases of ZF, MMSE and ML detections, a loss of diversity

gain occurs because a price has to be paid for dealing with the mutual interference.

In Section 3.7 the diversity gains of PDS and conventional diversity characterized by

independent interference-free channels are compared.

3.6.3 Detailed investigation of MMSE and ZF detection

3.6.3.1 SNIR and SNR

In a first step, we illustrate in Figs. 3.7a to p the performance of the schemes MMSE and

ZF detection based on the cdf of the SN(I)R γMMSE,effect of (3.78) and γZF,effect of (3.89) for

W equal 128 and for the parameter values N and γo of (2.74) listed in Table 3.1. We omit

the superscript (z ), because the cdf is identical for all values z = 1...Z. As a reference
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we include in Fig. 3.7 also the cdf of the SNR for the case of unspread transmission.

With a view to achieving good system performance, the variance of the SN(I)R should be

small, and the mean SN(I)R should be large. In Fig. 3.7, a small variance of the SN(I)R

manifests itself in a steep slope of the cdf, and the more the cdf is situated to the right,

the larger the mean of the SN(I)R. By inspection of Figs. 3.7a to p we recognize the

following tendencies, which become more explicit with increasing spreading factor N :

• The variance of the SN(I)R is smallest for PDS with MMSE detection and largest

for unspread transmision, whereas PDS with ZF detection lies in the middle.

• The mean SN(I)R is smallest for PDS with ZF detection and largest for unspread

transmission, whereas PDS with MMSE detection has a position in between.

Fig. 3.7 a b c d e f g h
N

γo/dB 7 10 13 16 7 10 13 16

Fig. 3.7 i j k l m n o p
N

γo/dB 7 10 13 16 7 10 13 16

Table 3.1. Parameters N and γo choosen in Figs. 3.7a to p

2 8

32 128

When using γ
(z)
b,MMSE,effect of (3.79) for determining the bit error probability

P
(z)
b

(

γ
(z)
b,MMSE,effect

)

of (3.80), we assume that the interference vector i(z) of (3.58) is bivari-

ate Gaussian. In Fig. 3.8 we depict as an example the pdf pi(z)

(∣
∣
∣i

(z)
∣
∣
∣

)

of
∣
∣
∣i

(z)
∣
∣
∣ obtained by

computer simulation for the parameters W equal 128, N equal eight and γo equal 10 dB;

this pdf has a variance σ
(z)2

i equal to 0.0058. In the same figure we also show a Rayleigh

pdf with the same variance 0.0058. We observe that both curves differ only marginally so

that the assumption of a bivariate Gaussian i(z) is justified.

3.6.3.2 Bit error probability Pb

In view of the good performance of MMSE data detection, we now focus on this detection

scheme in detail and investigate, how Pb of (3.81) depends on N for a given γb of (3.82)

and given parameter values W in (2.38). Fig. 3.9 illustrates for the example γb equal 16

dB that Pb decreases with increasing W and N . However, for values N going beyond 4W,

Pb remains virtually constant. Therefore, we term

Nmax = 4W (3.101)

the maximum reasonable spreading factor.
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NF = 128, PDS with N = 4
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Fig. 3.9. Pb versus N for PDS with MMSE detection; γb = 16dB, with W as parameter
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In Fig. 3.10 we depict Pb versus γb with W as the curve parameter. We choose N

equal 4W with exception of the curves for W equal one and 128, where we choose N equal

W ; for W equal 64, where we choose N equal 2W . The curve with the parameter value

W equal one in Fig. 3.10 describes also the performance of unspread transmission for any

value of W from one to 128. We recognize that PDS only bears fruit for W larger than

one, and that the benefit of PDS increases with W , that is with an increasing diversity

potential of the radio channel.
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Fig. 3.14.γb/dB
Fig. 3.10. Pb versus γb with W as parameter for PDS with MMSE detection,
NF = 128; W = 1 and W = 128 : N = W ; W = 64 : N = 2W ; else N = 4W

3.6.3.3 Plausibilty explanation of the maximum reasonable spreading factor

With the components of the NF × NF Fourier matrix

F =
1√
NF
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and the components h
w

of the CIR vector h of (2.38), the components of the CTF vector

h follow from (2.49) as

hnF
=

W∑

w=1

h
w
e
−j

2π
NF

(w−1)(nF−1)
, nF = 1 · · ·NF. (3.103)

In (3.103) the subcarrier indices nF can be considered discrete valued subcarrier frequen-

cies. To (3.103) corresponds with the continuous valued frequency ν the CTF

h (ν) =

W∑

w=1

h
w
e
−j

2π
NF

(w−1)ν
, ν ∈ [0, NF]. (3.104)

From this CTF we obtain the components of the CTF vector h according to

hnF
= h (ν)

∣
∣
ν=nF−1

, nF = 1 · · ·NF. (3.105)

In the expressions (3.70), (3.73), and (3.75) for a(z), σ
(z)2

i , and σ
(z)2

ne , respectively, the

magnitude squares h2
nF

occur. To the sequence of values h2
nF

, nF = 1 . . .NF, corresponds

the function

h2(ν) =
(

W∑

w=1

(

hr,w cos

(
2π

NF
(w − 1) ν

)

+ hi,w sin

(
2π

NF
(w − 1) ν

)))2

+
(

W∑

w=1

(

hr,w sin

(
2π

NF

(w − 1) ν

)

+ hi,w cos

(
2π

NF

(w − 1) ν

)))2

.

(3.106)

As approximations of said expressions for a(z), σ
(z)2

i and σ
(z)2

ne , we can substitute the

summations in (3.70), (3.73), and (3.75) by integrals, which for instance in the case of z

equal one yields

a(1) =
1

N

N∑

n=1

h ′(1)2
n

h′(1)2
n + σ2/σ2

t

≈
∫ NF

0

h2 (ν)

h2 (ν) + σ2/σ2
t

dν,

(3.107)

σ
(1)2

i = σ2
t

1

N

N∑

n=1

((
1 − a(1)

)
h ′(1)2

n − a(1)σ2/σ2
t

h ′(1)2
n + σ2/σ2

t

)2

≈

σ2
t

∫ NF

0

((
1 − a(1)

)
h2 (ν) − a(1)σ2/σ2

t

h2 (ν) + σ2/σ2
t

)2

dν

(3.108)

and
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σ
(1)2

ne = σ2 1

N

N∑

n=1

(

h ′(1)
n

h′(1)2
n + σ2/σ2

t

)2

≈

σ2
∫ NF

0

(
h (ν)

h2 (ν) + σ2/σ2
t

)2

dν.

(3.109)

With increasing N the differences between the summation results and the correspond-

ing integrals of (3.107) to (3.109) decrease. If N goes beyond the maximum reasonable

spreading factor Nmax introduced in Subsubsection 3.6.3.2, the differences becomes negli-

gible. Nmax depends on the fine structure of the function h2(ν) of (3.106). The larger W ,

the more explicit this fine structure, and the larger Nmax. For N equal to or larger than

Nmax, the SNIR γ
(z)
MMSE,effect of (3.78) converges to the value γ

(z)
MMSE,effect,∞.

In Fig. 3.11 we depict γ
(z)
MMSE,effect/γ

(z)
MMSE,effect,∞ versus N for a large ensemble of

channel snapshots, where we choose NF equal 128 and γb equal 16 dB. Fig. 3.11a holds

for W equal two and Fig. 3.11b for W equal four. For N smaller than Nmax, the ratio

γ
(z)
MMSE,effect/γ

(z)
MMSE,effect,∞ is far away from one, and it converges to one when N approaches

Nmax. This statement is corroborated by Fig. 3.12, which shows the average and standard

deviation of γ
(z)
MMSE,effect/γ

(z)
MMSE,effect,∞ versus N with the same parameters as in Fig 3.11.

Fig. 3.12a holds for W equal two and Fig. 3.12b for W equal four.

To conclude, the value Nmax of (3.101) observed in Fig. 3.9 can be plausibly explained

by the above argument.

3.6.4 Error statistics

In Figs. 3.6, 3.9 and 3.10 we consider the mean bit error probabilitiy Pb of (2.76) versus

the mean SNR per bit of γb of (2.75). As explained in Section 2.6, for obtaining these

results averaging has to be performed over many snapshots of the information vector u

of (2.2) and the CTF vector h of (2.49).

We now address the quality of data detection in an OFDM transmission system with

PDS for a single snapshot of the CTF vector h of (2.49). For such a snapshot, the

Z partial system matrices A(z) of (3.35) occuring in (3.44), (3.52) and (3.83) play an

important role. The farther away these matrices from singularity, that is the smaller

their Eigenvalue spread [HJ85], the better the quality of detection [Kle96]. Partial system

matrices A(z) far from/close to singularity are termed well/ill conditioned.

Let us now consider the estimate û(z) of the partial information vector u(z) averaged

over many snaphots of u and h. In the case of PDS, all Nu components û
(z)
nu of the estimate

û(z) benefit or suffer more or less equally from the well or ill conditioned partial system

matrix A(z). Therefore, the bit errors of the estimate û(z), if there are any, are prone to

occur in bursts. This burstyness is illustrated in Table 3.2 by an example. This example
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holds for NF equal 128, N equal four, W equal 128, γb equal 10 dB, and ML detection.

In the table we show the probabilities

pe (e) = Prob
(
û(z) contains e bit errors

)
(3.110)

observed for unspread transmission and transmission with PDS. The values in Table 3.2

yield for the bit error probability

Pb =
1

8

8∑

e=1

e · pe (e) (3.111)

in the case of unspread transmission the value 0.0231 and in the case of PDS the con-

siderably smaller value 0.0077, which clearly shows the benefit of PDS. However, a closer

inspection of Table 3.2 reveals that in the case of unspread transmission the probabilities

pe (e) of (3.110) monotonously decrease with increasing e, which is not true in the case of

PDS. The fact that the probability pe (e) may increase with decreasing e is a manifestation

of the bursty error behavior of PDS.

number e of
bit errors in u(z) unspread PDS

0 0.8425 0.9722
1 0.1322 0.0067
2 0.0231 0.0147
3 0.0020 6.5832e-004
4 1.6875e-004 0.0054
5 1.0313e-005 6.9219e-005
6 3.1250e-007 1.5832e-004
7 0 4.6094e-006
8 0 5.4062e-005

Table 3.2. pe (e) of (3.110) for unspread transmission and PDS; NF = 128, N = 4,
W = 128, γb = 10dB

probability pe (e)

3.7 PDS versus conventional diversity

We consider QPSK transmission over L independent parallel Rayleigh fading radio chan-

nels without mutual interference [Pro00]. With the mean SNR γ
b

per channel output and

bit we form the quantity

µ =

√
γ

b

1 + γ
b

. (3.112)

Then, the average bit error probability becomes [Pro00]



62 Chapter 3: Combating frequency selectivity of radio channels by partial data spreading

Pb =

(
1 − µ

2

)L L−1∑

l=0

(

L − 1 + l

l

)(
1 + µ

2

)l

. (3.113)

Fig. 3.13 shows Pb of (3.81) versus γb of (3.82) for W equal 128 with the spreading

factor N equal one to 128 as the curve parameter for the case of MMSE detection. As a

reference, Pb of (3.113) with L equal one to eight as the curve parameter is also included.

As expected, Pb decreases with increasing values N and L. However, for the same values

N and L conventional diversity performs better than PDS, because PDS is degraded by

the necessity to deal with mutual interference.
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3.8 Generalization to other partial spreading matrices

The Walsh-Hadamard matrix WN×N employed in (3.17) as the partial spreading matrix

for PDS has the following two properties:

1. The matrix is unitary,

2. All N2 matrix elements have the same magnitude 1/
√

N .

If we would substitute in (3.17) as the partial spreading matrix another N × N matrix

featuring the just mentioned two properties, then also for this spreading matrix all the
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results obtained in Sections 3.5 and 3.6 for MMSE and ZF detection would hold. This

would even be true if the elements of this other matrix would be complex valued. In this

case, we would obtain instead of the real valued partial system matrix A(z) of (3.35) now a

complex valued partial system matrix A(z), and whenever in the expressions in Section 3.5

the matrix A(z) occurs, we now should write A(z). An example of an alternative partial

spreading matrix exhibiting the two above mentioned properties would be the N × N

Fourier matrix FN×N [BEL03, Myu07]. We term the two cases of employing the Walsh-

Hadamard matrix WN×N or the Fourier matrix FN×N as partial spreading matrices for

PDS briefly as WH-PDS or F-PDS, respectively. Because the Walsh-Hadamard matrix

is a real-valued matrix with all its elements being ±1/
√

N , it is particularly suited for

a low-complexity inplementation, which made it the most common spreading matrix for

multi-carrier spread spectrum (MC-SS) transmission systems.

Whereas WH-PDS and F-PDS perform equivalently in the cases of MMSE and ZF

detection, we found that this is not true in the case of ML detection in combination

with QPSK modulation. Rather, in this case WH-PDS performs significantly worse than

F-PDS. This is illustrated in Fig. 3.6. The reason for this poorer performance of WH-

PDS is the following: With a certain probability partial transmit vectors t(z) of (3.16)

occur, which are orthogonal to all but one row of the partial spreading matrix WN×N of

WH-PDS. Such partial transmit vectors t(z) lead to spread partial transmit vectors t̃
(z)

of (3.17) having only one non-zero component, and, therefore, being radiated with a very

low transmit energy. Such a low transmit energy entails a high bit error probability Pb.

3.9 Computational complexity

Adapting the argumentation of [OA07] to PDS with QPSK modulation for the cases of

ML and MMSE detection yields the computational complexities O
(

NF

N
4N
)

and O(NFN2),

respectively. These are depicted versus N in Fig. 3.14. Obviously, for larger values of

the spreading factor N the complexity of ML detection by far exceeds the complexity of

MMSE detection.

The Walsh-Hadamard and Fourier transformations can be inplemented as fast

Hadamard transformation (FHT) and fast Fourier transformation (FFT), respectively.

By adapting the argumentations of [CT65, FA76] to PDS, Walsh-Hadamard PDS only

requires NF log2 N complex additions, whereas Fourier PDS requires 2NF log2 N com-

plex additions and NF log2 N complex multiplications. Therefore, the additionally re-

quired arithmetic operations of Fourier PDS amount to NF log2 N complex additions and

NF log2 N complex multiplications. In Fig. 3.15 we depict the number of these additional

operations versus the spreading factor N for QPSK modulation and NF equal 128.
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Chapter 4

Combination of PDS with FEC encoding

4.1 Preliminary remarks

In Chapter 3 we consider OFDM transmission utilizing PDS without FEC encoding.

In the present Chapter 4 we extend the concept of OFDM transmission with PDS by

the inclusion of FEC encoding. As a particularly interesting aspect of the following

investigations, we address the beneficial utilization of reliability information [Fri95, GB10]

in a soft input FEC decoder [Fri95, GB10] of the receiver, and we show by means of an

example how this information can be generated.

4.2 System model

In what follows, we assume the reader to be familiar with the contents of Chapter 3 and

go into particulars only as far as additional aspects play a role. In order to include FEC

encoding, we supplement the system model of Fig. 3.3 as shown in Fig. 4.1 by an FEC

encoder and a code interleaver on the transmit side, and by a code deinterleaver and an

FEC decoder on the receive side.

The FEC encoder in the model of Fig. 4.1 is characterized by the coding operator

C (·) and transforms the binary information vector u of (2.2) into the binary code vector

c = (c1 · · · cnc · · · cNc)
T = C (u) , cnc ∈ {±0.5} , (4.1)

of dimension Nc, which we assume to be a power of two. The components unu of the

information vector u of (2.2) stem from the set {0, 1}. With a view to generate reliability

information in the receiver and to utilize it in a soft input FEC decoder as will be later

explained in this chapter, we take the components cnc of the code vector c of (4.1) from

the binary set {±0.5}.
With the coding rate Rc of the FEC code, the dimensions Nu of u of (2.2) and Nc of

c of (4.1) are related by

Nc = Nu/Rc. (4.2)

Concerning the gross mean SNR per bit, we now obtain with the coding rate Rc instead

of (2.75)

γb =
1

Rc log2 M

σ2
t σ

2
h

σ2
. (4.3)
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The number of possible realizations of the code vector c of (4.1) is

Qc = 2Nc, (4.4)

and we term these realizations c{qc}, qc = 1 · · ·Qc. In order to introduce redundancy, the

coding operator C (·) employs only a subset of these possible realizations of c.

We assume that Qc of (4.4) equals the number Q̃ of (2.13) of possible realizations of

the transmit vector t of (2.5), that is we have

Qc = 2Nc = Q̃ = M2NF ,

Nc = 2NF log2 M.
(4.5)

Prior to being mapped onto the transmit vector t, we subject the code vector c of (4.1)

to a code interleaving operation. With the number Z of PDS subsets and the dimension

Nc of c of (4.1) we introduce in analogy to (1.1) the relation

Z = Nc/Nz, (4.6)

which determines for given values Z and Nc the integer Nz. The code interleaver in

the model of Fig. 4.1 is characterized by the code interleaving operator I(Nz,Z )
c (·). This

operator transforms the code vector c into the interleaved code vector ci according to the

scheme

C =












c1 c2 c3 · · · c2Z

c2Z+1 c2Z+2 c2Z+3 · · · c4Z

c4Z+1 c4Z+2 c4Z+3 · · · c6Z

...
...

...
. . .

...

c(Nz−2)Z+1 c(Nz−2)Z+2 c(Nz−2)Z+3 . . . cNc












,

ci = (ci,1 · · · ci,nc · · · ci,Nc)
T = I(Nz,Z )

c (c) = vec (C) .

(4.7)

To each possible realization c{qc} of c of (4.1) corresponds a realization c
{qc}
i of ci of (4.7).

Concerning the further signal processing, the interleaved code vector ci takes in the

model of Fig. 4.1 the same position as the information vector u in the model of Fig. 3.3.

In the mapper of the model of Fig. 4.1, ci of (4.7) is mapped on the transmit vector t

by applying the procedures introduced in (2.18) to (2.22) for QPSK modulation, and in

(2.23) to (2.27) for 16QAM modulation.

With a view to perform PDS, as already shown in (3.16), t is split up into Z partial

transmit vectors t(z). To each of these corresponds with ci of (4.7) a partial interleaved

code vector
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û

Rx

Fig. 4.1. OFDM transmission model incorporating PDS and FEC encoding

}

}

}

F
ig.

4.1.



68 Chapter 4: Combination of PDS with FEC encoding

ci
(z) =

(

c
(z)
i,1 · · · c(z)

i,nz
· · · c(z)

i,Nz

)T

,

Nz = Nc/Z,

c
(z)
i,nz

=

{

ci,nz+(z−1)Nz/2 for nz ≤ Nz/2,

ci,nz+(z−2)Nz/2+Nc/2 for nz > Nz/2
,

z = 1 · · ·Z.

(4.8)

In the receiver, estimates

ĉ
(z)
i =

(

ĉ
(z)
i,1 · · · ĉ(z)

i,nz
· · · ĉ(z)

i,Nz

)T

(4.9)

of the partial interleaved code vectors ci
(z) of (4.8) are determined by resorting to ML,

MMSE or ZF detection as shown in Section 3.5. From the estimates ĉ
(z)
i of (4.9) results

the estimate

ĉi =
(

ĉ
(1)T

i · · ·ĉ(z)T

i · · · ĉi
(Z )T

)T

(4.10)

of ci of (4.7). Finally, as indicated in the model of Fig. 4.1, code deinterleaving and FEC

decoding yield the estimate û of the transmitted information vector u of (2.2).

An issue not yet addressed up top now are the above described inclusions of an FEC

code interleaver in the transmitter and of an FEC code deinterleaver in the receiver in the

model of Fig. 4.1. As explained in Subsection 3.6.4, all N components of the estimate

t̂
(z)

of the partial transmit vector t(z) are equally affected by the good or ill condition

of the corresponding partial system matrix A(z) of (3.35). Therefore, as shown by an

example in Table 3.2, the bit errors associated with the estimate t̂
(z)

tend to be bursty.

It is well known that certain FEC encoding schemes are particularly sensitive to burst

errors [Fri95]. In order to break up such burst errors, as shown in the system model of

Fig. 4.1, the code vector c of (4.1) is subjected to the code interleaving of (4.7) before

being fed into the mapper.

For each of the Nc components ĉi,nc of the estimate ĉi of (4.10) delivered by the

demapper in the system model of Fig. 4.1, we can introduce the probability

pnc = Prob (ĉi,nc 6= ci,nc), nc = 1 · · ·Nc, (4.11)

of the event that the estimated component ĉi,nc differs from the transmitted component

ci,nc. With these probabilities, which have the character of error probabilities, we can

form the vector [HH89, Fri95, GB10]

w = (w1 · · ·wnc · · ·wNc)
T ,

wnc = ln

(
1 − pnc

pnc

)

, nc = 1 · · ·Nc,
(4.12)
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which we term reliability vector. With this vector, the hard decided estimate ĉi occurring

at the demapper output can be transformed by a soft bit generator, as shown in the

system model of Fig. 4.2, into the soft estimate [HH89, Fri95, GB10]

ĉi,soft = (ĉi,soft,1 · · · ĉi,soft,nc · · · ĉi,soft,Nc)
T = w � ĉi (4.13)

of ci of (4.7). Deinterleaving of ĉi,soft of (4.13) yields the soft estimate

ĉsoft = (ĉsoft,1 · · · ĉsoft,nc · · · ĉsoft,Nc)
T = I(Nz,Z )−1

c (ĉi,soft) , ĉsoft,nc
∈ R, (4.14)

of c of (4.1), which then is forwarded to the soft input FEC decoder [Fri95, GB10] in

order to deliver the estimate û of u of (2.2).

It should be mentioned that the reliability vector w of (4.12) depends on the outcome

of the individual estimation of ci and is not, like for example the bit error probability Pb

of (2.76), a quantity characterizing the mean overall system performance.

4.3 Case study

4.3.1 System characteristics and parameters

In order to verify and illustrate the scheme of OFDM transmission with PDS and FEC

encoding, we perform computer simulations. We consider a system with the following

characteristics:

• QPSK modulation given by (2.18) to (2.22),

• number of OFDM subcarriers

NF = 128, (4.15)

• channel parameter introduced in (2.38)

1 ≤ W ≤ 128, (4.16)

• number of PDS subsets

Z = 32, (4.17)

• ML detection of (3.44) complemented by the generation of reliability information as

explained in Section 4.2,
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• termineated convolutional FEC encoding [VO79, Fri95] with the code rate

Rc =
1

2
(4.18)

and with the generator polynomials

g1(x) = 1 + x + x2,

g2(x) = 1 + x2,
(4.19)

and

• soft input Viterbi FEC decoding [Fri95, GB10] .

With the above system characteristics, we obtain the system parameters listed in Table

4.1.

designation quantity

dimension of u Nu = 2NF log2 M = 256
number of occurring realizations of u Qu = 2Nu = 2256

dimension of t, x, y, h, h NF = 128

size of set V M = 2

number of possible realizations of t, Q̃ = M2NF = 2256

number of possible realizations of x, y Q = MNF = 2128

number of PDS subsets Z = NF/N = 32

dimension of t(z), x(z), y(z) N = 4

number of possible realizations of t(z) M2N = 256

number of possible realizations of x(z), y(z) S = MN = 16
dimension of c Nc = 2NF log2 M = 256

number of possible realizations of c Qc = 2Nc = 2256

dimension of c(z) Nz = Nc/Z = 8

number of possible realizations of c(z) MNz = 256

Table 4.1. System parameters used in the case study

4.3.2 Mathematical description

The gross average SNR per bit of (4.3) becomes with the system characteristics and

parameters introduced in Subsection 4.3.1

γb =
1

Rc log2 M

σ2
t σ

2
h

σ2
=

2σ2
t σ

2
h

σ2
. (4.20)
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The real and imaginary part vectors x(z) and y(z) of the partial transmit vector t(z) of

(3.16) have the S equal 16 possible realizations

x(z){sx} =









x
(z){sx}
1

x
(z){sx}
2

x
(z){sx}
3

x
(z){sx}
4









= −0.5 ×









(−1)floor(sx/(8+1))

(−1)floor(2sx/(8+ 1
2))

(−1)floor(4sx/(8+ 1
4))

(−1)floor(8sx/(8+ 1
8))









, sx = 1 · · ·16, (4.21)

and

y(z){sy} =









y
(z){sy}
1

y
(z){sy}
2

y
(z){sy}
3

y
(z){sy}
4









= −0.5 ×









(−1)floor(sy/(8+1))

(−1)floor(2sy/(8+ 1
2))

(−1)floor(4sy/(8+ 1
4))

(−1)floor(8sy/(8+ 1
8))









, sy = 1 · · ·16, (4.22)

respectively. By (4.21) and (4.22), to each superscript sx or sy the corresonding realiza-

tions of the real and imaginary part vectors x(z) and y(z), respectively, are determined.

ML detection as described in (3.48) and (3.49) yields the estimate x(z){s′x} of the

transmitted real part vector x(z){sx} and the estimate y(z){s′y} of the transmitted imaginary

part vector y(z){sy}. For a given r′
(z)
R of (3.45) observed in the receiver, we obtain with

P (z)
x =

1

4π2σ4

16∑

sx=1

exp

(

−| r′(z)
R − h′(z) �

(
W4×4x(z){sx}

)
|2

2σ2

)

(4.23)

the probability

p
(z)
x,sx =

1

Px
p
r′

(z)
R |x(z){sx}

(

r′
(z)
R | x(z){sx}

)

=

1

P
(z)
x

1

4π2σ4
exp

(

−| r′(z)
R − h′(z) �

(
W4×4x(z){sx}

)
|2

2σ2

)

, sx = 1 · · ·16,

(4.24)

of the event that the transmitted realization of the real part transmit vector x(z) is x(z){sx}.

Analogously, we obtain for a given r′
(z)
I of (3.46) observed in the receiver with

P (z)
y =

1

4π2σ4

16∑

s=1

exp

(

−| r′(z)
I − h′(z) �

(
W4×4y(z){sy}

)
|2

2σ2

)

(4.25)
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the probability

p
(z)
y,sy =

1

P
(z)
y

p
r′

(z)
R |y(z){sy}

(

r′
(z)
R | y(z){sy}

)

=

1

P
(z)
y

1

4π2σ4
exp

(

−| r′(z)
R − h′(z) �

(
W4×4y(z){sy}

)
|2

2σ2

)

, sy = 1 · · ·16,

(4.26)

of the event that the transmitted realization of the imaginary part vector y(z) is y(z){sy}.

If we compare the real and imaginary part vectors x(z){s′x} and y(z){s′y} obtained by ML

detection following (3.48) and (3.49) with the transmitted real and imaginary part vectors

x(z){sx} and y(z){sy}, then zero, one, two, three of four elements of the estimates x(z){s′x}

and y(z){s′y} may be erroneous. In order to quantitatively describe the error situation, we

introduce the error coefficients

fn (s′x, sx) =

[

floor

(
s′x

17 · 2−n

)

+ floor
( sx

17 · 2−n

)]

mod2 =
{

0, if component x
(z){s′x}
n of x(z){s′x} is correct,

1 else,

n = 1 · · · 4,

(4.27)

and
gn

(
s′y, sy

)
=

[

floor

(
s′y

17 · 2−n

)

+ floor
( sy

17 · 2−n

)]

mod 2 =
{

0, if component y
(z){s′y}
n of y(z){s′y} is correct,

1 else,

n = 1 · · · 4.

(4.28)

For illustration we list in Table 4.2 fn (s′x, sx) of (4.27) versus s′x and sx; for instance, in

the case s′x equal 11 and sx equal 14 the elements x2
(z){s′x}, x3

(z){s′x} and x4
(z){s′x} of the

estimate x(z){s′x} would be in error. Now, with the error coefficients fn (s′x, sx) of (4.27)

and gn

(
s′y, sy

)
of (4.28) we obtain the partial error probabilities

p(z)
x,n = Prob

(

x (z){s′x}
n 6= x (z){sx}

n

)

=
1

Px

16∑

sx=1

fn (s′x, sx) p
r′

(z)
R |x(z){sx}

(

r′
(z)
R | x(z){sx}

)

, n = 1 · · ·4,

(4.29)

and

p(z)
y,n = Prob

(

y
(z){s′y}
n 6= y (z){sy}

n

)

=
1

Py

16∑

sy=1

gn

(
s′y, sy

)
p
r′I

(z)|y(z){sy}

(

r′I
(z) | y(z){sy}

)

, n = 1 · · ·4.

(4.30)
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0,0,0,0 1 2 3 4 5 6 7 8
1 0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1 0,1,0,0 0,1,0,1 0,1,1,0 0,1,1,1
2 0,0,0,1 0,0,0,0 0,0,1,1 0,0,1,0 0,1,0,1 0,1,0,0 0,1,1,1 0,1,1,0
3 0,0,1,0 0,0,1,1 0,0,0,0 0,0,0,1 0,1,1,0 0,1,1,1 0,1,0,0 0,1,0,1
4 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0
5 0,1,0,0 0,1,0,1 0,1,1,0 0,1,1,1 0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1
6 0,1,0,1 0,1,0,0 0,1,1,1 0,1,1,0 0,0,0,1 0,0,0,0 0,0,1,1 0,0,1,0
7 0,1,1,0 0,1,1,1 0,1,0,0 0,1,0,1 0,0,1,0 0,0,1,1 0,0,0,0 0,0,0,1
8 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0
9 1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1
10 1,0,0,1 1,0,0,0 1,0,1,1 1,0,1,0 1,1,0,1 1,1,0,0 1,1,1,1 1,1,1,0
11 1,0,1,0 1,0,1,1 1,0,0,0 1,0,0,1 1,1,1,0 1,1,1,1 1,1,0,0 1,1,0,1
12 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0
13 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1 1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1
14 1,1,0,1 1,1,0,0 1,1,1,1 1,1,1,0 1,0,0,1 1,0,0,0 1,0,1,1 1,0,1,0
15 1,1,1,0 1,1,1,1 1,1,0,0 1,1,0,1 1,0,1,0 1,0,1,1 1,0,0,0 1,0,0,1
16 1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0

Table 4.2.

s′xsx

0,0,0,0 9 10 11 12 13 14 15 16
1 1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1
2 1,0,0,1 1,0,0,0 1,0,1,1 1,0,1,0 1,1,0,1 1,1,0,0 1,1,1,1 1,1,1,0
3 1,0,1,0 1,0,1,1 1,0,0,0 1,0,0,1 1,1,1,0 1,1,1,1 1,1,0,0 1,1,0,1
4 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0
5 1,1,0,0 1,1,0,1 1,1,1,0 1,1,1,1 1,0,0,0 1,0,0,1 1,0,1,0 1,0,1,1
6 1,1,0,1 1,1,0,0 1,1,1,1 1,1,1,0 1,0,0,1 1,0,0,0 1,0,1,1 1,0,1,0
7 1,1,1,0 1,1,1,1 1,1,0,0 1,1,0,1 1,0,1,0 1,0,1,1 1,0,0,0 1,0,0,1
8 1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0
9 0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1 0,1,0,0 0,1,0,1 0,1,1,0 0,1,1,1
10 0,0,0,1 0,0,0,0 0,0,1,1 0,0,1,0 0,1,0,1 0,1,0,0 0,1,1,1 0,1,1,0
11 0,0,1,0 0,0,1,1 0,0,0,0 0,0,0,1 0,1,1,0 0,1,1,1 0,1,0,0 0,1,0,1
12 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0
13 0,1,0,0 0,1,0,1 0,1,1,0 0,1,1,1 0,0,0,0 0,0,0,1 0,0,1,0 0,0,1,1
14 0,1,0,1 0,1,0,0 0,1,1,1 0,1,1,0 0,0,0,1 0,0,0,0 0,0,1,1 0,0,1,0
15 0,1,1,0 0,1,1,1 0,1,0,0 0,1,0,1 0,0,1,0 0,0,1,1 0,0,0,0 0,0,0,1
16 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0

Table 4.3. Visualization of the error coefficients f1 (s′x, sx) ,f2 (s′x, sx) ,f3 (s′x, sx) ,f4 (s′x, sx)
and g1

(
s′y, sy

)
,g2

(
s′y, sy

)
,g3

(
s′y, sy

)
,g4

(
s′y, sy

)

s′xsx

2
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In order to introduce PDS, the interleaved code vector ci of (4.7) is according to (4.8)

split up into Z equal 32 partial interleaved code vectors

c
(z)
i =

(

c
(z)
i,1 ,c

(z)
i,2 , c

(z)
i,3 , c

(z)
i,4 , c

(z)
i,5 , c

(z)
i,6 , c

(z)
i,7 , c

(z)
i,8

)T

, z = 1 · · ·32, (4.31)

of dimension Nz equal eight each. In the case of the chosen modulation scheme QPSK,

the components of the real and imaginary part vectors x(z) and y(z) are related to the

components of the partial interleaved code vector c
(z)
i of (4.31) according to

x(z) =









x
(z)
1

x
(z)
2

x
(z)
3

x
(z)
4









=









c
(z)
i,1

c
(z)
i,2

c
(z)
i,3

c
(z)
i,4









(4.32)

and

y(z) =









y
(z)
1

y
(z)
2

y
(z)
3

y
(z)
4









=









c
(z)
i,5

c
(z)
i,6

c
(z)
i,7

c
(z)
i,8









. (4.33)

Due to (4.32) and (4.33), we obtain with the error probabilities p
(z)
x,n and p

(z)
y,n of (4.29) and

(4.30), respectively, the error probabilities

p(z)
nz

= Prob
(

ĉ
(z)
i,nz

6= c
(z)
i,nz

)

= p(z)
x,nz

, nz = 1 · · · 4, (4.34)

and

p(z)
nz

= Prob
(

ĉ
(z)
i,nz

6= c
(z)
i,nz

)

= p
(z)
y,nz−4, nz = 5 · · ·8, (4.35)

of the eight components ĉ
(z)
i,nz

of the estimate ĉ
(z)
i of c

(z)
i . With these error probabilities,

we can determine the partial reliability vector [GB10]

w(z) =
(

w
(z)
1 · · ·w (z)

nz · · ·w (z)
Nz

)T

,

w
(z)
nz = ln

(

1 − p
(z)
nz

p
(z)
nz

)

, nz = 1 · · ·Nz, Nz = 8.
(4.36)

Finally, the Z partial reliability vectors w(z) of (4.36) are composed to the total reliability

vector

w =
(

w(1)T · · ·w(z)T · · ·w(Z )T
)T

(4.37)
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to be used in (4.13).

We also determine the MF bound for the case of FEC encoded OFDM transmission

with PDS and utilization of reliability information. In doing so, we refer to the consider-

ations made in Subsection 3.5.5. With the elements vm of the set V of (2.9) we designate

the transmitted component of x(z) as

x (z){mx}
n = vmx (4.38)

and the MF estimate of this component as

x̂
(z)
MF,n = vm′

x
. (4.39)

With σ
(z)2

MF of (3.98) and r′
(z)
R,n of (3.93) we introduce

P (z)
x,n =

1
√

2πσ
(z)
MF

2∑

m=1

exp

(

−
| r′(z)

R,n − a
(z)
n vm |2

2σ
(z)2

MF

)

, (4.40)

and then obtain the error probability

p(z)
x,n = Prob

(

x̂
(z)
MF,n 6= x (z){mx}

n

)

=
1

P
(z)
x,n

1√
2πσ

(z)
MF

exp

(

−
| r′(z)

R,n − a
(z)
n vmx |2

2σ
(z)2

MF

)

. (4.41)

In analogy to (4.38) to (4.41) we can write with r′
(z)
I,n of (3.94)

y (z){my}
n = vmy , (4.42)

ŷ
(z)
MF,n = vm′

y
, (4.43)

P (z)
y,n =

1
√

2πσ
(z)
MF

2∑

m=1

exp

(

−
| r′(z)

I,n − a
(z)
n vm |2

2σ
(z)2

MF

)

, (4.44)

and

p(z)
y,n = Prob

(

ŷ
(z)
MF,n 6= y (z){my}

n

)

=
1

P
(z)
y,n

1√
2πσ

(z)
MF

exp

(

−
| r′(z)

I,n − a
(z)
n vmy |2

2σ
(z)2

MF

)

. (4.45)

Now, with the error probabilities p
(z)
x,n of (4.41) and p

(z)
y,n of (4.45) we can determine the

reliability vector w following the expressions (4.34) to (4.37).
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4.3.3 Simulation results

In order to verify the proposed scheme of OFDM transmission with PDS, FEC encoding

and ML detection, we determine the bit error probablity Pb of (2.76) depending on the

mean gross SNR per bit γb of (4.20). We resort to Walsh-Hadamard PDS.

Fig. 4.3 holds for the normalized delay spread W equal 128, and we demonstrate

the benefits of the proposed measures code interleaving (CI) and utilization of reliability

information (URI). We see a curve each for the four cases

• No CI, no URI (case 1).

• No CI, but URI (case 2).

• CI, but no URI (case 3).

• CI & URI (case 4).

Case 4 concerns our proposed transmission scheme, and we recognize in Fig. 4.3 that in

this case the performance is the best. Case 1 exhibits the worst performance, and the

other two cases perform in between of the worst and the best case. For Pb equal 10−5, the

best case shows an impressive superiority of more than 5 dB over the second best case.

In Fig. 4.4 we depict Pb versus γb with the normalized delay spread W of (2.38)

as the curve parameter. We use CI & URI. For W equal 16 and 128, the solid curves

apply for PDS, and the dashed curves for unspread transmission. We recognize that,

for such relatively large values of W , PDS offers a distinct advantage over unspread

transmission. For example, this advantage amounts to 3 dB for W equal 128 at Pb equal

10−6. For smaller values W as for instance four or one, transmission with PDS and

unspread transmission show virtually the same performance, see the dash-dotted curves

in Fig. 4.4. From the simulation results shown in Fig. 4.4 we can conclude that PDS

is advantageous as long as W is significantly above the spreading factor N , whereas this

advantage vanishes more and more if W approaches N . In order to further illustrate this

situation, we refer to Fig. 4.5. In this figure we depict the value γb of (4.20) required

to achieve the bit error probability Pb equal 10−6 versus the channel parameter W for

transmission with PDS and for unspread transmission. The benefit offered by PDS in the

case of larger values W is obvious.

In Fig. 4.6 we depict the MF bound of FEC encoded OFDM transmission with PDS

and URI with the curve parameter W . As indicated in Fig. 4.6, the simulations reveal

that, for a given W , all curves for N equal to or larger than W coincide. This is due to

the fact that by N equal W the diversity potential of the radio channel is fully exploited

so that a further increase of N beyond W would not bear fruit. Finally, we show in
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Fig. 4.7 the MF bound of FEC encoded OFDM transmission with URI and with the

curve parameter W for the two cases PDS with N equal four and unspread transmission.

The comparison of Figs. 4.4 and 4.7 shows that PDS with ML detection outperforms

unspread transmission only if N is larger than W , whereas in the case of the MF bound,

PDS outperforms unspread transmission already for N equal W , because in this case the

mutual interference is neglected.
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no CI, no URI (case 1)

no CI, URI
(case 2)

CI, no URI
(case 3)

CI & URI
(case 4)

Fig. 4.3. Pb versus SNR γb, influence of CI and URI; W = 128, N = 4
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Fig. 4.4. Pb versus the SNR γb; CI & URI; ML detection; parameter W ; N = 4
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Fig. 4.6. MF bound of Pb versus SNR γb; parameter W ; CI & URI
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Chapter 5

PAPR reduction by combining Partial Data

Spreading with Selective Data Mapping (SDM)

5.1 Preliminary remarks

As already mentioned in Chapter 1, the channel access scheme OFDM has a number

of advantages [vNP00]. However, the large PAPR of the OFDM symbols hampers the

applicability of power efficient transmit amplifiers, which usually are non-linear, and,

therefore, should be operated with signals of low PAPR in order to avoid distortions. In

the transmission model of Fig. 2.1 the complex envelope s (t) of an OFDM symbol is

given by (2.79), and its PAPR is defined as

po =

max
t∈{−T/2···T/2}

(
|s (t)|2

)

1

T

∫ T/2

−T/2
|s (t)|2 dt

. (5.1)

In order to express po of (5.1) by the transmit vector t of (2.5), this vector is subjected

to a ko − fold oversampled inverse fast Fourier transformation (IFFT) with the (koNF)×
(koNF) Fourier matrix

F(koNF)×(koNF) ∈ C
(koNF)×(koNF). (5.2)

This yields the discrete time low pass equivalent

s =
(
s1 · · · skonF

· · · skoNF

)T
=
(

F(koNF)×(koNF)
)−1



tT, 0 . . . 0
︸ ︷︷ ︸

(ko−1)NF zeros





T

(5.3)

of the OFDM symbol corresponding to t. With a sufficiently large ko we can express the

PAPR of (5.1) by the components skonF
of s of (5.3) as

po = koNF

max
ns∈{1···koNF}

(∣
∣sns

∣
∣2
)

(s)H
s

. (5.4)

Our simulations revealed that an oversampling factor ko equal to four would be sufficiently

large in the sense that, with larger values of ko, (5.3) and (5.4) would yield virtually the

same PAPR as for ko equal to four. Therefore, all the simulation results presented in this

chapter are generated for

ko = 4. (5.5)
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Mapping (SDM)

The vectors t and s of an OFDM symbol and, therefore, its PAPR po depend on the

carried information vector u of (2.2). In PAPR reduction research [HL05], po of (5.4)

is determined for many realizations of u. The Complementary Cumulative Distribution

Function (CCDF) of the PAPR is used as the performance measure. For the simulations

of this chapter, we consider QPSK modulation given by (2.18) to (2.22) and set NF

equal 128. Fig. 5.1 depicts the CCDF of po of (5.4). We recognize that the value at

Prob (po ≥ abscissa) = 10−3 is approximately 11 dB. This means that the power amplifier

has to be operated with a severe back-off in order to avoid distortions, and, consequently,

with a very low power efficiency η. In order to overcome this problem, in the last 15 years

some schemes of PAPR reduction were proposed and investigated [HL05]. A promising

one of these is Selective Data Mapping (SDM) [BFH96, MS96, OO03].
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Fig. 5.1. CCDF of the PAPR po for the original OFDM symbols; NF = 128
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In order to present conventional SDM [BFH96], we extend the transmission model of

Fig. 2.1 on the transmit side by a phase factor set selector and a phase shifter, and on

the receive side by an inverse phase shifter. Fig. 5.2 shows this extended transmission

model.
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û

Tx

Nrc

Rx

}

}

}

Fig. 5.2. OFDM transmission model with conventional SDM

SDM takes advantage of the fact that the PAPR of an OFDM signal is very sensitive to

phase shifts of the OFDM subcarriers. PAPR reduction by SDM is achieved by applying

a number of U vectorial sets

p{u} =
(

p{u}
1

· · · p{u}
nF

· · · p{u}
NF

)T

,
∣
∣
∣p{u}

nF

∣
∣
∣ = 1, u = 1 · · ·U, (5.6)

of NF phase factors p{u}
nF

to the original OFDM subcarriers and determining the PAPR

resulting for each of these sets. Then, the set yielding the lowest PAPR is selected for

transmission. We term the U sets of phase factors briefly phase factor sets.

In the transmission model with conventional SDM of Fig. 5.2, the original transmit

vector t of (2.5) is multiplied componentwise by all U phase factor sets p{u} of (5.6) to

yield the U alternative transmit vectors

t{u} = p{u} � t, u = 1 · · ·U. (5.7)

Each vector t{u} of (5.7) is subjected to oversampled IFFT with the Fourier matrix
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F(koNF)×(koNF) of (5.2), which yields the U discrete time low pass equivalents

s{u} =
(

s
{u}
1 · · · s{u}

koNF

)T

=
(

F(koNF)×(koNF)
)−1



t{u}T

, 0 . . . 0
︸ ︷︷ ︸

(ko−1)NF zeros





T

, u = 1 · · ·U, (5.8)

of the U OFDM symbols corresponding to t. For each of the U discrete time low pass

equivalents s{u} of (5.8) we determine the PAPR

p{u} = koNF

max
ns∈{1···koNF}

(∣
∣
∣s

{u}
ns

∣
∣
∣

2
)

(s{u})
H
s{u}

, u = 1 · · ·U. (5.9)

Finally, the phase factor set yielding the lowest PAPR is selected for transmission. We

designate this set as

p{ũ} =
(

p{ũ}
1

· · · p{ũ}
nF

· · · p{ũ}
NF

)T

, (5.10)

and with p{u} of (5.9) its superscript is given by

ũ = arg min
u=1···U

{
p{u}} . (5.11)

The key to the scheme SDM is how to generate the U phase factor sets p{u} of (5.6)

and select the optimum set p{ũ} of (5.10) and (5.11). The phase factor set selector in the

model of Fig. 5.2 has the task to determine and select the optimum phase factor set p{ũ}.

The inner structure of the phase factor set selector and its functionality become evident

in a self-explanatory manner from Fig. 5.3. In this figure, the operators F−1 (·) and

P (·) represent the inverse Fourier transformation and the determination of the PAPR,

respectively.

In conventional SDM [BFH96], the NF components p{u}
nF

of each of the U phase factor

sets p{u} are taken from the quaternary set

p{u}
nF

∈ {1, j, −1, −j} . (5.12)

Then, only integer multiples of π/2 occur as phase shifts which has the advantage that

the U phase factor sets p{u} can be applied without any multiplications [BFH96]. With

the components p{u}
nF

of the phase factor sets given by (5.12), in total

Rp = 4NF (5.13)

different realizations of the phase factor sets are possible. With respect to system com-
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plexity, the number U of used phase factor sets has to be far below Rp of (5.13), that

is

U � Rp. (5.14)

In what follows, we choose the components p{u}
nF

of each of the U considered phase factor

sets p{u} randomly from the quaternary set (5.12).

In the model of Fig. 5.2, the inverse phase shifter on the receive side has to undo the

phase shifts introduced by phase factor set p{ũ} in the transmitter. To this purpose, as

indicated in the model of Fig. 5.2, the superscript ũ of (5.11) has to be signaled from

the transmitter to the receiver. It is assumed that the receiver has the knowledge of

all U possible phase factor sets p{u}. Then, the receiver can generate the inverse phase

factor set p{ũ}−1

, which is then used in the inverse phase shifter to remove the phase shifts

introduced in the transmitter. The inner structure of the inverse phase shifter is shown

in Fig. 5.4.
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R
(
r{ũ}

)

ũ (from transmitter)

phase

factor sets
used in Tx

p{ũ}

invert
phase

factor set

p{ũ}−1

r{ũ} • r

Fig. 5.4. Inner structure of inverse phase shifter in the transmission model of Fig. 5.2

In Fig. 5.5 we show the CCDF of the PAPR for conventional SDM [BFH96] with the

parameter U . For U equal one, SDM is disabled, and we obtain the CCDF of po of (5.4)

as shown is Fig. 5.1. For U equal 128, the PAPR performance is improved by about 4 dB

as compared to po of (5.4). The larger the number U of employed phase factor sets p{u},

the more the PAPR can be reduced. However, as already mentioned above, U cannot

be chosen arbitrarily large, because the complexity of the OFDM transmission system

increases with increasing U . In addition, with increasing U more and more transmission

resources are consumed for signaling the superscript ũ of (5.11) to the receiver, which

decreases the useful data rate.

5.2 PAPR reduction by PDS

In Chapter 3, PDS is introduced to enable frequency diversity similar to the one offered

by spread spectrum techniques [BWW99]. In the present section we address the issue

that PDS can, besides introducing frequency diversity, also offer a PAPR reduction.

We resort to the transmission model of Fig. 3.3. Under consideration of what is said

in Section 3.8, we take into account in the present Section 5.2 and in the next Section 5.3

both Walsh-Hadamard PDS and Fourier PDS.
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Oversampled IFFT yields now with the interleaved spread transmit vector t̃i of (3.19)

instead of (5.3) the discrete time low pass equivalent

s̃ =
(
s̃1 · · · s̃koNF

)T
=
(

F(koNF)×(koNF)
)−1



t̃
T

i , 0 . . . 0
︸ ︷︷ ︸

(ko−1)NF zeros





T

. (5.15)

Substituting s̃ of (5.15) in (5.4) yields the PAPR of OFDM transmission with PDS.

Figs. 5.6a and b depict the CCDF of the PAPR for OFDM transmission with Walsh-

Hadamard PDS and Fourier PDS, respectively, with the spreading factor N as the curve

parameter. For N equal one, PDS degenerates to the unspread case, which also represents

the original OFDM signal, whereas PDS turns into FDS for N equal NF. We observe that

Walsh-Hadamard PDS and Fourier PDS offer a PAPR reduction of approximately 1 dB

and 3.5 dB, respectively, as compared to the original OFDM signal, and that the PAPR

performances improve with increasing N . The reason for this dependence on N is that

high envelope peaks are more and more evened out, the more the spreading matrix S

goes from a block diagonal structure to a full matrix. Fourier PDS is superior over

Walsh-Hadamard PDS. With increasing N this superiority increases because the OFDM

symbols obtained by Fourier PDS become more and more similar to QPSK modulated

OFDM symbols with their inherently low PAPR.
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Fig. 5.6. CCDF of the PAPR for PDS with parameter N ; NF = 128
a) Walsh − Hadamard PDS
b) Fourier PDS
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5.3 Combination of PDS with SDM

5.3.1 System model

Figs. 5.5 and 5.6 quantitatively show that the two conceptually totally different schemes

SDM and PDS have the potential of a PAPR reduction. This observation raises the

question if, by combining these two schemes, their PAPR reduction potentials could be

simultaneously utilized in the sense of a synergy. In the present section we study such

combinations, for which we coin the acronym PDS-SDM.

In order to obtain the scheme PDS-SDM, we extend the transmission model of Fig.

3.3 on the transmit side by a phase factor set selector and a phase shifter, and on the

receive side by an inverse phase shifter. There are three different options where to place

the phase shifter in the transmitter. These options are illustrated in Figs. 5.7 to 5.9, and

we designate them as cases I, II and III.

With the U phase factor sets p{u} of (5.6) we obtain at the input of the radio channel

for said cases I, II and III instead of the interleaved spread transmit vector t̃i of (3.19)

the U transmit vectors

t̃
{u}
i =







I(N ,Z )
(
S
(
p{u}�t

))
, case I,

I(N ,Z )
((

p{u})� (S t)
)
, case II,

p{u} �
(
I(N ,Z ) (St)

)
, case III,

u = 1 · · ·U. (5.16)

For each of these transmit vectors we can determine in analogy to (5.8) and (5.9) a

discrete time low pass equivalent s{u} and a PAPR p{u}, respectively. Finally, we obtain

the optimum phase factor set p{ũ} according to (5.10) and (5.11).

5.3.2 Simulation results

In Fig. 5.10 we show the CCDF of the PAPR for the cases I, II and III introduced in

Subsection 5.3.1 for NF equal 128. Fig. 5.10a holds for Walsh-Hadamard PDS and Fig.

5.10b for Fourier PDS. The chosen parameter values are N equal 128 and U equal 128.

As a reference we include in this figure also the curve for conventional SDM. We recognize

that the PAPR performances of cases II, III and conventional SDM coincide, whereas

case I for Walsh-Hadamard PDS and Fourier PDS outperforms the other two cases by

approximately 0.5 dB and 2 dB, respectively. From this finding we conclude that the

scheme PDS-SDM case I should be chosen by the system designer. Therefore, in the

following simulation results we restrict ourselves to only considering PDS-SDM case I and

do not explicitly mention this in the following.
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Fig. 5.10. CCDF of the PAPR for cases I, II and III of PDS − SDM, and for
conventional SDM; N = 128, NF = 128, U = 128
a) Walsh − Hadamard PDS
b) Fourier PDS
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In Figs. 5.11 and 5.12 we depict the CCDF of the PAPR for PDS-SDM and for

conventional SDM with U as the parameter. Fig. 5.11 holds for N equal four and Fig.

5.12 for N equal 32. Figs. 5.11a and 5.12a concern the case of Walsh-Hadamard PDS, and

Figs. 5.11b and 5.12b the case of Fourier PDS. Figs. 5.13a and b show the CCDF of the

PAPR for the case of Walsh-Hadamard FDS-SDM and Fourier FDS-SDM, respectively;

FDS results if we set N equal NF. Also in Fig. 5.13 we include curves for conventional

SDM.

Fig. N U

5.11 4 1,4,32,128
5.12 32 1,4,32,128
5.13 128 1,4,32,128

Table 5.1. Parameter values N and U in Figs. 5.11 to 5.13

By inspection of Figs. 5.11 to 5.13 we can draw the following conclusions concerning

the PAPR performance:

• PDS-SDM and FDS-SDM outperform conventional SDM,

• this superiority of PDS-SDM and FDS-SDM increases with increasing spreading

factor N ,

• the PAPR performance of PDS-SDM and FDS-SDM as well as conventional SDM

improves with increasing parameter U,

• the advantage of Fourier PDS-SDM over Walsh-Hadamard PDS-SDM increases with

increasing spreading factor N .

Let us assume that the PAPR should not exceed a given value. Then, the curves in Figs.

5.11 to 5.13 show that in order to keep this value, PDS-SDM and FDS-SDM require a

smaller parameter value U than conventional SDM. This is an advantage of PDS-SDM and

FDS-SDM over conventional SDM. In PDS-SDM the number of IFFTs to be performed

in the phase factor set selector of Fig. 5.3 as well as the transmission resources required

to signal the chosen ũ to the receiver are smaller than in the case of conventional SDM.

Additionally, as mentioned above, Fourier PDS can do with even smaller parameters than

Walsh-Hadamard PDS because of the lower PAPR.
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Fig. 5.11. CCDF of the PAPR for PDS − SDM and for conventional SDM with U
as parameter; N = 4, NF = 128

a) Walsh − Hadamard PDS
b) Fourier PDS
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Fig. 5.12. CCDF of the PAPR for PDS − SDM and for conventional SDM with U
as parameter; N = 32, NF = 128
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5.3.3 Plausible explanations of the simulation results

In Sections 5.1 and 5.2 we found that the PAPR performance of OFDM transmission

can be improved by conventional SDM and by PDS, respectively. In Subsection 5.3.1

we introduced the three different cases I, II and III of combining SDM with PDS. By

simulations it turned out that PDS-SDM case I is beneficial, whereas PDS-SDM case II

and III show no improvement as compared to conventional SDM. In the present subsection

we support these findings by some plausible explanations. We only consider the Walsh-

Hadamard PDS. To this purpose we determine for many snapshots of the information

vector u of (2.2) the PAPR po of (5.4) and the PAPRs

• pPDS of PDS,

• pSDM of conventional SDM, and

• pI,II,III of PDS-SDM cases I, II and III, respectively.

In Figs. 5.14 to 5.17 we represent each of said snapshots by a point in a Cartesian

coordinate system, where the horizontal axis depicts po and the vertical axis depicts the

appertaining values pPDS, pSDM or pI,II,III, respectively.

Fig. 5.14 concerns pPDS for different parameter values N . We recognize that with

increasing N the center of gravity of the clouds of points has the tendency to move more

and more below the bisector line.

Figs. 5.15 to 5.17 hold for pI,II,III and pSDM for U equal 128 and N equal four, 32 and

128. We recognize that the center of gravity of the clouds of points with increasing N

moves towards the horizontal axis, and that for PDS-SDM case I this center lies closest

to the horizontal axis.

We now explain why the PAPR performances of conventional SDM and of PDS-SDM

case II and III are virtually the same, whereas PDS-SDM case I shows a better PAPR

performance. The reason is that in the cases of conventional SDM and PDS-SDM case

II and III a number of U different versions of a quasi Gaussian signal are PAPR-wise

evaluated, whereas in the case of PDS-SDM case I first the PAPR reduction offered by

SDM as shown in Fig. 5.5 is exploited, and then, in addition, the PAPR is further

decreased by PDS as shown in Fig. 5.6.
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Chapter 6

Enhancing the power efficiency of transmit

amplifiers by Optimum Clipping

6.1 Some fundamentals of transmit power amplifiers

An important component of each radio transmission system is its transmit power amplifier

(PA), which can be characterized by its gain G and its power efficiency η. With the RF

input power Pin and the RF output power Pout of the PA, the gain is defined as [RAC02]

G (Pin) =
Pout

Pin

. (6.1)

In (6.1) we indicate that G in general depends on Pin. This means that the PA is non-

linear, and, therefore, when signals of non-constant envelope are amplified, these are sub-

jected to undesired distortions including the generation of out-of-band power [LCCP10].

However, having in mind the features of real world PAs [LvdTV01], we assume in our

investigations that the PA is partly linear in the sense that G is constant as long as Pin

does not exceed an upper limit Psup. This partial linearity can be expressed as

G (Pin) = Go = const for Pin ≤ Psup. (6.2)

Go and Psup are design parameters of the PA.

In order to produce a desired RF output power Pout, the PA requires a certain DC

input power PDC, which is only partly transformed into RF output power. The power

efficiency of the PA is defined as the ratio [RAC02]

η (Pin) =
Pout

PDC
=

GPin

PDC
(6.3)

and should be as large as possible. In (6.3) we indicate that η, like G of (6.1), in general

depends on Pin. However, whereas we assume a constant G equal Go of (6.2) as long as

Pin does not exceed Psup, the power efficiency η (Pin) of (6.3) is considered to depend on

the input power Pin even if this power does not exceed Psup. An alternative efficiency

definition which we, however, do not consider in this thesis would be the power added

efficiency (PAE) [LvdTV01]

ηPAE (Pin) =
Pout − Pin

PDC
. (6.4)

As important requirements in PA design, the linearity condition of (6.2) should be ful-
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filled, and large values of η of (6.3) should be achieved. With a view to comply with these

two requirements, a number of PA structures have been proposed [Bou08]. These include

the PA schemes Envelope Elimination and Restoration (EER), Envelope Tracking (ET),

Linear Amplification using Non-linear Components (LINC), as well as Doherty Modula-

tion (DM). It is claimed that for the time being the Doherty PA is the most promising

scheme [JW07, Bou08] for both handset devices and mobile radio base stations. There-

fore, in the quantitative evaluations of the present chapter we choose a specific Doherty

PA developed by Ansoft Corporation [KJS03] as an exemplary PA. In Fig. 6.1 we depict

the gain G and the output power Pout of this PA versus its input power Pin. We recognize

that the PA can be considered to perform linearly as long as

Pin ≤ Psup = 45 dBm (6.5)

holds. Fig. 6.2 shows the power efficiency η of said PA versus Pin, and we can state a

strong dependence on Pin even if Pin does not exceed Psup.

6.2 A scheme for clipping and scaling OFDM symbols

The complex envelopes s (t) of (2.79) of the OFDM symbols depend on the carried infor-

mation vector u of (2.2) and, therefore, have different magnitude maxima. We pursuit

the idea to tailor the OFDM symbols [GB09b], prior to feeding them into the PA, in

such a way that their complex envelopes obtain the same magnitude maximum smax,

which should lie in the linear range of the PA given by (6.2). We propose to achieve this

tailoring by the three consecutive steps

1. Clipping the time domain representation of the OFDM symbol with a certain clip-

ping level,

2. Filtering away the out-of-band power caused by clipping, and

3. Scaling the OFDM symbol obtained by filtering to the above mentioned envelope

maximum smax.

In order to investigate the effect of this tailoring, we reduce the OFDM transmission

model of Fig. 2.1 to the model shown in Fig. 6.3. In this model the radio channel is of

the type AWGN, and said tailoring is performed by a block clipper & scaler.

This block subjects the transmit vector t of (2.5) to the clipping & scaling operation

CS(·), and in this way produces the clipped and scaled version

t̃ = CS(t) (6.6)
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of t.

u M (u)

mapper

t CS(t)

clipper & scaler

t̃

n

noise adder

r

D (r)

detector

t̂ M−1
(
t̂
)

demapper

û

Tx

Nrc

Rx

}

}

}

Fig. 6.3. OFDM transmission model incorporating clipping and scaling

In Fig. 6.4 we depict the inner structure of the block clipper & scaler, which is

constituted by the seven blocks

• IFF transformer 1,

• clipper,

• FF transformer,

• filter,

• IFF transformer 2,

• scaling factor determinator, and

• scaler.

In the following we explain the operations performed by these blocks. The occuring

Fourier operations are performed with ko−fold oversampling. As stated in Section 5.1, by

choosing ko equal four the discrete time signal representations describe the time continuous

signals with sufficient accuracy.
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Fig. 6.4. Inner structure of the block clipper & scaler

The block IFF transformer 1 subjects the transmit vector t of (2.5) to the IFF transfor-

mation F−1 (·) already introduced in (5.3), which yields the time domain representation

s =
(
s1 · · · skonF

· · · skoNF

)T
= F−1 (t) =

(

F(koNF)×(koNF)
)−1



tT, 0 . . . 0
︸ ︷︷ ︸

(ko−1)NF zeros





T

∈ C(koNF)×1
(6.7)

of the OFDM symbol. We designate the root mean square of the component magnitudes
∣
∣skonF

∣
∣ of s obtained by averaging over the total ensemble of OFDM symbols as sav. In

the block clipper, with the clipping ratio λcl a clipped version

scl = CL(s) =
(
scl,1 · · · scl,konF

· · · scl,koNF

)T ∈ C
(koNF)×1 (6.8)

of s of (6.7) is produced by following to the rule

scl,konF
=

{

skonF
, if

∣
∣skonF

∣
∣ ≤ savλcl,

savλcl · exp
(
j arg

(
skonF

))
else.

(6.9)
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The block FF transformer generates the frequency domain representation

tcl = F(scl) =
(
tcl,1 · · · tcl,konF

· · · tcl,koNF

)T
= F(koNF)×(koNF)scl ∈ C

(koNF)×1 (6.10)

of scl of (6.8) and (6.9). The block filter forms the vector

t′cl = R(tcl) =
(
t′cl,1 · · · t′cl,nF

· · · t′cl,NF

)T
= (tcl,1 · · · tcl,nF

· · · tcl,NF
)T ∈ C

NF×1 (6.11)

consisting of the first NF components of tcl of (6.10). The time domain representation

s′cl = F−1 (t′cl) =
(
s′cl,1 · · · s′cl,konF

· · · s′cl,koNF

)T
=

(

F(koNF)×(koNF)
)−1



(t′cl)
T , 0 . . . 0

︸ ︷︷ ︸

(ko−1)NF zeros





T

∈ C(koNF)×1
(6.12)

of this vector is produced in the block IFF transformer 2. The block scaling factor

determinator has the task to calculate with the magnitude maximum smax introduced

above the scaling factor

λsc = λsc (s′cl, smax) =
smax

max
ns∈{1···koNF}

{∣
∣s′cl,ns

∣
∣
} . (6.13)

Finally, the block scaler generates the scaled version

t̃ =
(
t̃1 · · · t̃nF

· · · t̃NF

)T
= λsct

′
cl= CS(t) ∈ C

NF×1 (6.14)

of t′cl of (6.11).

It is true that signal distortions by the PA are avoided by tailoring the complex

envelopes s (t) as described by (6.8) to (6.14). Unfortunately, this tailoring goes along

with the undesired effect that signal distortions are introduced by the clipper & scaler

itself, and these distortions increase with a decreasing clipping ratio λcl in (6.9). On

the other side, for a given smax the average transmit power increases with a decreasing

λcl, which is beneficial. In the following we investigate if the detrimental generation of

signal distortions by clipping & scaling and the beneficial effect of an increased transmit

power can be balanced against each other by suitably choosing λcl with a view to optimize

system performance.



6.3 Performance 109

6.3 Performance

6.3.1 Bit error probability

We choose NF equal 128 OFDM subcarriers, the modulation scheme QPSK given by

(2.18) to (2.22), and consider the transmission of the realization

u{qu} =
(

u
{qu}
1 · · ·u{qu}

nu
· · ·u{qu}

Nu

)T

, u{qu}
nu

∈ {0, 1} , (6.15)

of the information vector u of (2.2). With (2.22) and (6.14), u{qu} of (6.15) yields the

realization

t̃
{qu}

= CS
(
t{qu}) = CS

(
M
(
u{qu})) (6.16)

of the clipped and scaled transmit vector. With the noise vector

n =
(
n1 · · ·nnF

· · ·nNF

)T
, E
(∣
∣nnF

∣
∣2
)

= 2σ2, (6.17)

we obtain the receive vector

r{qu} =
(

r
{qu}
1 · · · r {qu}

nF
· · · r {qu}

NF

)T

= r
{qu}
R + jr

{qu}
I = t̃

{qu}
+ n (6.18)

with its real and imaginary part vectors

r
{qu}
R = Re

(
r{qu}

)
=
(

r
{qu}
R,1 · · · r {qu}

R,nF
· · · r {qu}

R,NF

)T

,

r
{qu}
I = Im

(
r{qu}

)
=
(

r
{qu}
I,1 · · · r {qu}

I,nF
· · · r {qu}

I,NF

)T

.
(6.19)

From (6.19) follow with (2.22) the components

ûnu =







0.5sign
(

r
{qu}
R,nu

)

for 1 ≤ nu ≤ NF,

0.5sign
(

r
{qu}
I,nu−NF

)

for NF+1 ≤ nu ≤ Nu,
(6.20)

of the estimate û of the transmitted realization u{qu} of the information vector u. By

determining û for many snapshots of the noise vector n of (6.17) we can obtain the bit

error probability

P
{qu}
b

(
σ2, λcl

)
=

1

Nu

Nu∑

nu=1

Prob
(
ûnu 6= u{qu}

nu

)
(6.21)

valid for the transmitted realization u{qu} of u. In (6.21) we indicate that this bit error

probability depends on the noise variance σ2 and on the chosen clipping ratio λcl.
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With t̃
{qu} of (6.16) and σ2 of (6.17) the SNR per bit observed at the receiver input

becomes

γ
{qu}
b

(
σ2, λcl

)
=

(

t̃
{qu}
)H

t̃
{qu}

4σ2NF
, (6.22)

where we, like in (6.21), indicate the dependence on σ2 and λcl.

Let us consider a specific value of σ2. For this value, (6.21) and (6.22) yield cer-

tain values P
{qu}
b (σ2, λcl) and γ

{qu}
b (σ2, λcl), respectively. By averaging these values over

sufficiently many realizations u{qu} of u of (2.2), we obtain

Pb = Pb

(
σ2, λcl

)
(6.23)

and

γb = γb

(
σ2, λcl

)
. (6.24)

(6.23) and (6.24) implicitly express the dependence

Pb = Pb (γb, λcl) (6.25)

of the bit error probability on the SNR per bit γb with the parameter λcl.

In Fig. 6.5 we depict Pb of (6.25) versus γb for different paramenter values λcl. We

recognize that, starting with a clipping ratio λcl as low as 0.1 and then increasing λcl,

the bit error performance first improves until λcl equal 2.1 is reached. If λcl goes beyond

this value, the bit error performance again degrades. This performance is also illustrated

in Fig. 6.6, in which we depict the bit error probability Pb versus λcl with γb as the

curve parameter. Independently of γb the bit error probability Pb becomes minimum if

we choose λcl equal 2.1. The dashed curve in Fig. 6.5 concerns the case of infinite λcl; in

this case no clipping occurs, however, nevertheless all OFDM symbols are scaled to the

envelope maximum smax introduced above. We term λcl equal 2.1 the optimum clipping

ratio, and clipping & scaling with this clipping ratio optimum clipping (OC). In Fig.

6.7 we consider OFDM transmission over the AWGN radio channel for the ideal case of

absent clipping & scaling, and for the case of OC. We recognize that OC performs only

marginally inferior to the ideal case, even though the envelope maximum is given the

value smax for all OFDM symbols.

The above considerations of this subsection are normalized in such a way that the

chosen value smax is irrelevant, as long as it is within the linear range of the PA given

by (6.2). However, smax would play a role if the power amplification shall be adapted

to different channel attenuations resulting for instance from different distances between

transmitter and receiver.
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6.3.2 Required DC power

We assume that the PA is operated in such a way that each OFDM symbol feeds the

maximum instantaneous RF power Pin,max into the PA. This power is a parameter of the

PA operation and should not exceed Psup of (6.2). To each component s′cl,konF
of the time

domain representation s′cl of (6.12) of the OFDM symbol corresponds an instantaneous

RF power

P in,konF
=

Pin,max

max
ns∈{1···koNF}

{
|s ′cl,ns|2

}

∣
∣s′cl,konF

∣
∣
2

(6.26)

fed into the PA, and an instantaneous DC power

PDC,konF
=

Go

η (Pin,koNF
)
Pin,konF

(6.27)

drawn by the PA from the power supply. The instantaneous DC powers of (6.27) yield

the average DC power
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PDC

(
Pin,max, λcl,u

{qu}) =
1

koNF

koNF∑

ns=1

PDC,ns (6.28)

required by the PA in order to amplify the OFDM symbol. In (6.28) we indicate that

this power depends on the maximum Pin,max of the instantaneous RF input power Pin, on

the clipping ratio λcl, and on the transmitted realization u{qu} of the information vector

u of (2.2). By averaging over the ensemble of possible realizations u{qu} we obtain the

DC power PDC (Pin,max, λcl) which only depends on Pin,max and λcl.

In Fig. 6.8 we depict PDC (Pin,max, λcl) versus Pin,max with λcl as the curve parameter

for the exemplary PA introduced in Section 6.1. We recognize that

• PDC increases with Pin,max increasing, what is plausible,

• PDC is smallest for λcl → ∞, and

• PDC observed for OC is almost as low as PDC for λcl → ∞.
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Fig. 6.8. Required DC power PDC versus Pin,max with the clipping ratio λcl as curve
parameter
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Chapter 7

Joint optimization of pilot based channel

estimation and data detection

7.1 Introduction

As already mentioned in Section 1.3, signal demodulation in the OFDM receiver requires

the knowledge of the CTF vector h of (2.49). This knowledge, the utilization of which

is termed channel equalization, has to be gained by channel estimation relying on the

sufficiently frequent radiation of a certain number of the NF OFDM subcarriers as pilots

[OA07, HYW+09]. The investigations performed in the previous chapters are based on the

assumption that channel estimation has been successfully accomplished so that h is known

in the receiver. In the present Chapter 7 we address the problem of channel estimation.

We consider the case of mobile stations placed in cars or trains which move so fast that

the CTF vector h estimated for a certain OFDM symbol is already outdated when the

next OFDM symbol is received. Therefore, the CTF vector h has to be estimated for each

OFDM symbol anew with the consequence that in each OFDM symbol a certain number

of the NF subcarriers have to be sacrificed as pilots [GB09a]. This situation poses the

problem how, with an energy partitioning coefficient vE in the range

0 ≤ vE ≤ 1, (7.1)

the total transmit energy E provided for each OFDM symbol should be subdivided into

partial energies

Et = vEE (7.2)

and

Ep = (1 − vE)E (7.3)

for the data and pilot subcarriers, respectively, with a view to optimize system perfor-

mance.

We present an approximate closed form solution to this problem, which, by simulations,

proves sufficiently accurate for practical applications. Our solution is based on jointly

considering the impact of the channel estimation and data detection errors. Such a joint

consideration can be found in prior papers, see for instance [SK93, SBNS04, Lin08, ZL10].

Reviewing the state of the art contained in these papers reveals that the problem of fast

fading radio channels is addressed, however, not the aspect of optimum energy partition-
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ing.

Our optimization criterion is the symbol error probability P . The considered modu-

lation alphabets are QPSK and 16QAM as outlined in Section 2.2. As in the preceding

chapters of this thesis, we omit the Fourier operations on the transmit and receive sides

as well as the insertion of the cyclic prefix. Our considerations will be performed in the

frequency domain low pass regime as already introduced in Fig. 2.1.

Basically, for a given system bandwidth B pilot transmission in each one of the OFDM

symbols could be avoided in said very fast varying radio channels by reducing the duration

T of the OFDM symbols and the number NF of subcarriers under consideration of (2.1).

However, this would leave the required duration Ts of (2.36) of the cyclic prefix unaltered,

because Ts is solely determined by the delay spread TM of (2.48) of the radio channel.

Therefore, by such a reduction of T unfortunately the percentage Ts/ (T + Ts) of the

transmit time lost for the cyclic prefix would grow.

We set out from the model of the radio channel introduced in Section 2.3. In the

following Section 7.2 we will briefly revisit pilot based channel estimation. Section 7.3

will describe the concept of data detection based on noise corrupted channel estimates,

and in Section 7.4 we will present an approximate closed form approach to determining

the symbol error probabilities. The topic of Section 7.5 is our approach to optimum energy

partitioning, which is verified in Section 7.6 by simulations. Finally, Section 7.7 presents

exemplary results for the symbol error probabilities.

With the total transmit energy E, with σ2
h of (2.55) and with σ2 of (2.57) the average

SNR per OFDM subcarrier at the receiver input becomes

γ =
2σ2

hE/NF

σ2
n

=
2Eσ2

h

NFσ2
n

. (7.4)

7.2 Pilot based channel estimation

Skipping the zero padding in the CIR vector h of (2.38) yields the reduced CIR vector

h
red

=
(

h
1
· · ·h

w
· · ·h

W

)T

∈ C
W×1. (7.5)

By decimation of the CTF vector h of (2.49) we obtain the decimated CTF vector

hdec =
(

h1, h1+
NF
W

, h
1+2

NF
W

, · · ·h
1+

NF
W

(W−1)

)T

∈ C
W×1. (7.6)

With the W × W Fourier matrix FW×W , h
red

of (7.5) and hdec of (7.6) are related by

h
red

=

√

NF

W

(
FW×W

)−1
hdec. (7.7)
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Setting out from (7.7), h of (2.38) can be expressed by hdec as follows:

h =



hT

red
,

NF−W
︷ ︸︸ ︷

0 · · ·0





T

=





(√

NF

W

(
FW×W

)−1
hdec

)T

,

NF−W
︷ ︸︸ ︷

0 · · ·0





T

. (7.8)

With h of (7.8), (2.49) can be written as

h = FNF×NFh =FNF×NF





(√

NF

W

(
FW×W

)−1
hdec

)T

,

NF−W
︷ ︸︸ ︷

0 · · ·0





T

. (7.9)

(7.9) is the key to pilot based channel estimation. If pilots are radiated on the W equidis-

tant OFDM subcarrier frequencies corresponding to the components of hdec of (7.6), then

in the receiver an estimate ĥdec of hdec can be obtained. This estimate can then be

substituted in (7.9) in order to give an estimate ĥ of h of (2.49).

Without restricting generality we give each of the W pilots the real valued amplitude

ap. With hdec of (7.6) and the noise vector

ndec =
(

nRx,1, nRx,1+
NF
W

, n
Rx,1+2

NF
W

, · · ·n
Rx,1+

NF
W

(W−1)

)T

∈ C
W×1 (7.10)

resulting from nRx of (2.57) by decimation, the vector of the W complex amplitudes

observed in the receiver on the W pilot subcarrier frequencies becomes

rdec = aphdec + ndec. (7.11)

From (7.11) follows the Maximum-Likelihood (ML) [Wha71] estimate

ĥdec =
1

ap
rdec = hdec +

1

ap
ndec (7.12)

of hdec of (7.6). Substitution of ĥdec of (7.12) in (7.9) yields the estimate

ĥ = h + nh =

FNF×NF





(√

NF

W

(
FW×W

)−1
ĥdec

)T

,

NF−W
︷ ︸︸ ︷

0 · · ·0





T

=

FNF×NF





(√

NF

W

(
FW×W

)−1
(

hdec +
1

ap
ndec

))T

,

NF−W
︷ ︸︸ ︷

0 · · ·0





T

=

h +

√

NF

W
FNF×NF

(
FW×W

)−1 1

ap
ndec

︸ ︷︷ ︸

nh

(7.13)
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of h of (2.49). This estimate is corrupted by the noise vector

nh =
(
nh,1 · · ·nh,nF

· · ·nh,NF

)T
=

√

NF

W
FNF×NF

(
FW×W

)−1 1

ap
ndec (7.14)

which can be considered the channel estimation error. With σ2 of (2.57) and with the

pilot energy

Ep =
Wa2

p

2
(7.15)

follows from (7.14) the variance

σ2
nh

=
W

Ep

σ2 (7.16)

of each of the NF components of nh.

7.3 Data detection

All data subcarriers are equally affected by the channel estimation error nh of (7.14).

Therefore, concerning the investigation of data transmission, we can adopt a subcarrier-

wise approach and, for brevity, drop the component indices nF of the CTF vector h of

(2.49), of the noise vector nRx of (2.57), and of the channel estimation error nh of (7.14).

With V of (2.9), the data elements at the output of the modulator can take the M̃

values

tm̃ = Re (t m̃) + jIm (t m̃) , m̃ = 1 · · · M̃,

Re (t m̃) , Im (t m̃) ∈ V,

M̃ = M2.

(7.17)

With the normalized delay spread W , which equals the number of required pilot subcar-

riers, the number of data subcarriers becomes NF − W . In order to give the data energy

the desired value Et, with σt of (2.10) each data element is multiplied by a factor

a =
1

σt

√
Et

NF − W
(7.18)

before being used as the complex amplitude of a data subcarrier.

With the vector components h of h and nRx of nRx and with a of (7.18), the received

complex amplitude obtained for a transmitted data symbol tm̃ becomes

r = hatm̃ + nRx. (7.19)

If h would be known in the receiver, then channel equalization could be achieved simply
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by dividing r of (7.19) by ha. However, in our case instead of h only its estimate ĥ of

(7.13) is available in the receiver for such a division, which yields the data estimate

t̂ =
h atm̃ + nRx

ĥa
=

tm̃ +
1

h

nRx

a

1 +
1

h
n′

. (7.20)

Substituting in (7.20) the bivariate Gaussian quantity h by its Rayleigh distributed mag-

nitude h leaves the statistics of t̂ unaltered, and, therefore, we can write instead of (7.20)

t̂ =
tm̃ +

1

h

nRx

a

1 +
1

h
n′

. (7.21)

For each channel snapshot characterized by its value h, the disturbing terms in the numer-

ator and denominator on the right hand side of (7.21) are independent bivariate Gaussian

noise quantities, for which we briefly write

ñ′ =
1

h

nRx

a
(7.22)

and

ñ′′ =
1

h
n′, (7.23)

respectively. Then, (7.21) can be rewritten as

t̂ =
tm̃ + ñ′

1 + ñ′′ . (7.24)

By resorting to (2.55), we can substitute h in (7.22) and (7.23) by σhh̃, where h̃ is a

Rayleigh distributed quantity with the probability density function

ph̃

(

h̃
)

= h̃ exp

(

− h̃2

2

)

. (7.25)

Then, (7.22) and (7.23) yield the expressions

σ2
ñ′ =

1

2
E
(

|ñ ′|2
)

=
1

h̃2

1

γ
σ2

t

1

vE

(

1 − W

NF

)

(7.26)

and

σ2
ñ′′ =

1

2
E
(

|ñ ′′|2
)

= 2
1

h̃2

1

γ

1

1 − vE

W

NF
. (7.27)

for the variances of ñ′ and ñ′′, respectively.
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A transmitted data symbol tm̃ is correctly detected, if the estimate t̂ of (7.24) fulfills

the condition
∣
∣t̂ − t m̃

∣
∣ ≤

∣
∣t̂ − t m̃′

∣
∣ for m̃′ = 1 · · · M̃. (7.28)

For each triple h̃, ñ′, ñ′′, (7.28) is either fulfilled or not, and if said three quantities vary

over the ranges given by their probability density functions, then the error probability

Pm̃ = 1−
Prob

{∣
∣t̂ − t m̃

∣
∣ ≤

∣
∣t̂ − tm̃′

∣
∣ for m̃ ′ = 1 · · · M̃ | t m̃ transmitted

} (7.29)

of symbol t m̃ is observed. Pm̃ decreases with decreasing variances σ2
ñ′ of (7.26) and σ2

ñ′′ of

(7.27). Concerning the dependence of these variances on h̃ and γ, (7.26) and (7.27) reveal

as expected that the variances decrease with h̃ and γ increasing. However, the depen-

dence of the variances on vE is ambivalent in the sense that σ2
ñ′ decreases with increasing

vE, whereas the opposite is true for σ2
ñ′′ . This ambivalence is the key to performance

optimization by a suitable energy partitioning, that is by giving the energy partitioning

coefficient vE an optimum value vE,opt. According to (7.26) and (7.27), we have to expect

that vE,opt depends on the ratio W/NF.

7.4 Approximate closed form expressions for the sym-

bol error probabilities

7.4.1 Approximation rationale

In order to achieve a satisfying system performance, the SNR γ of (7.4) should be so large

that in (7.24)

|ñ′| � |t m̃ | , |ñ′′| � 1 (7.30)

hold. Under these conditions we can approximate (7.24) as

t̂ ≈ (tm̃ + ñ′) (1 − ñ′′) ≈ tm̃ + ñ′ − tm̃ñ′′. (7.31)

The data estimate t̂ of (7.31) is corrupted by the bivariate Gaussian noise term

ñ = x + jy = ñ′ − tm̃ñ′′ (7.32)
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with the real part x and the imaginary part y. With σ2
ñ′ of (7.26) and σ2

ñ′′ of (7.27), the

variance of ñ becomes

σ2
(

h̃, m̃
)

=
1

2
E
(
|ñ|2
)

= σ2
ñ′ + |tm̃|2 σ2

ñ′′ =

1

h̃2

1

γ

(

2σ2
t

1

vE

(

1 − W

NF

)

+ |tm̃|2
2

1 − vE

W

NF

)

︸ ︷︷ ︸

=
km̃

h̃2
.

km̃

(7.33)

On the left most side of (7.33) we indicate by
(

h̃, m̃
)

that this variance depends on h̃ and

m̃.

If the data symbol tm̃ is transmitted, no detection error occurs as long as ñ of (7.32)

stays within a complex region Dm̃ resulting from the Voronoi region [FJ89] of tm̃ of (7.17).

With Dm̃, with σ2
(

h̃, m̃
)

of (7.33) and ph̃

(

h̃
)

of (7.25), the symbol error probabilities

can be expressed as

Pm̃ = 1 − Prob (ñ ∈ Dm̃ | t m̃ transmitted) =

1 − 1

2π

∫∞
h̃=0

1

σ2
(

h̃, m̃
)×




∫ ∫

Dm̃(x,y)

exp



− x2 + y2

2σ2
(

h̃, m̃
)



 dxdy



 ph̃

(

h̃
)

dh̃ =

1 − 1

2πkm̃

∫∞
h̃=0

h̃2×
(

∫ ∫

Dm̃(x,y)

exp

(

−(x2 + y2) h̃2

2πkm̃

)

dxdy

)

h̃ exp

(

− h̃2

2

)

dh̃ .

(7.34)

If the information bits are assigned to the data symbols tm̃ by Gray coding [Pro00] and

if the SNR γ of (7.4) is sufficiently large, then the bit error probability Pb would result

from the symbol error probabilities Pm̃ of (7.34) in a straightforward manner.

7.4.2 QPSK

In the case of QPSK, σ2
(

h̃, m̃
)

and km̃ of (7.33) are independent of m̃. Therefore, we

drop the indicator m̃ and obtain from (7.33) with σt of (2.21)

σ2
(

h̃
)

=
1

h̃2

1

γ

(
1

2vE

(

1 − W

NF

)

+
1

1 − vE

W

NF

)

︸ ︷︷ ︸

=
k

h̃2
.

k

(7.35)

All four symbol error probabilities Pm̃ attain the same value P , and in order to determine

this value we consider the data symbol t1 as a representative, for which
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D1 (x, y) : −0.5 ≤ x < ∞, −0.5 ≤ y < ∞, (7.36)

holds. Substitution of σ2
(

h̃
)

of (7.35) and D1 (x, y) of (7.36) in (7.34) and resorting to

the definite integrals I�(k) and It (k) derived in Section 7.8 yields

P = 1 − 1

2πk

∫∞
h̃=0

h̃2×
(

∫∞
x=−0.5

∫∞
y=−0.5

exp

(

−(x2 + y2) h̃2

2k

)

dxdy

)

×

h̃ exp

(

− h̃2

2

)

dh̃ =

1 −
(

1

4
+

I� (k)

4
+ It (k)

)

= 1 − 1√
1 + 4k

.

(7.37)

7.4.3 16QAM

In the case of 16QAM, (7.33) yields with σt of (2.26)

σ2
(

h̃, m̃
)

=

1

h̃2

1

γ

(
5

2vE

(

1 − W

NF

)

+ |tm̃|2
2

1 − vE

W

NF

)

︸ ︷︷ ︸

=
km̃

h̃2
.

km̃

(7.38)

The 16 symbol error probabilities Pm̃ of 16QAM stem from a set of only three different

values. In order to determine these values, we consider the three representative data

symbols

t1 = 0.5 + j0.5, t2 = 0.5 + j1.5, t3 = 1.5 + j1.5. (7.39)

Substituting these in km̃ of (7.38) gives

km̃ =
1

γ

(
5

2vE

(

1 − W

NF

)

+
1 + 4 (m̃ − 1)

1 − vE

W

NF

)

,

m̃ = 1, 2, 3.

(7.40)

The regions Dm̃ of the three data symbols of (7.39) are

D1 (x, y) : −0.5 ≤ x ≤ 0.5, −0.5 ≤ y ≤ 0.5,

D2 (x, y) : −0.5 ≤ x ≤ 0.5, −0.5 ≤ y ≤ ∞,

D3 (x, y) : −0.5 ≤ x ≤ ∞, −0.5 ≤ y ≤ ∞.

(7.41)
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Substitution of (7.41) in (7.34) yields with

x1 = y1 = 0.5, x2 = 0.5, y2 → ∞, x3 → ∞, y3 → ∞ (7.42)

the three symbol error probabilities

Pm̃ = 1 − 1

2πkm̃

∫∞
h̃=0

h̃2×
(

∫ xm̃

x=−0.5

∫ ym̃

y=−0.5
exp

(

−(x2 + y2) h̃2

2km̃

)

dxdy

)

×

h̃ exp

(

− h̃2

2

)

dh̃ , m̃ = 1, 2, 3.

(7.43)

From (7.43) follow with the definite integrals I�(km̃) and It (km̃) derived in Section 7.8

P1 = 1 − I� (k1) = 2

(

1 − 1√
1 + 4k1

)

, (7.44)

P2 = 1 −
(

I� (k2)

2
+ It (k2)

)

=
3

2

(

1 − 1√
1 + 4k2

)

, (7.45)

and

P3 = 1 −
(

1

4
+

I� (k3)

4
+ It (k3)

)

= 1 − 1√
1 + 4k3

. (7.46)

Finally, (7.44) to (7.46) give the mean symbol error probability

P =
1

4
P1 +

1

2
P2 +

1

4
P3. (7.47)

7.5 Optimum power partitioning

7.5.1 QPSK

The symbol error probability P of (7.37) attains its minimum, if k is minimized by suitably

choosing vE. With respect to vE, k of (7.35) has the partial derivative

∂k

∂vE
=

1

γ

(
1

2v2
E

(
W

NF
− 1

)

+
1

(1 − vE)2

W

NF

)

. (7.48)

By setting
∂k

∂vE
zero, we obtain
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vE,opt =

W

NF
− 1 +

√

−2

(
W

NF

)2

+ 2
W

NF

3
W

NF
− 1

. (7.49)

Substitution of vE,opt in (7.35) yields

kmin =
3

γ















W

NF
− 1

−1 +

√
√
√
√
√
√

2
W

NF

1 − W

NF

+

W

NF
− 1

1 −
√
√
√
√

−1

2
+

1

2
W

NF















, (7.50)

which is then used to determine Pmin from (7.37).

7.5.2 16QAM

In order to determine vE,opt for 16QAM, we first express, based on (7.40), k1, k2 and k3 in

(7.44) to (7.46) as functions of vE. By substituting these expressions in (7.44) to (7.46)

we can also write the symbol error probability P of (7.47) as a function of vE. After some

algebra we obtain the partial derivative

∂P

∂vE
=

1

γ

(
15

v2
E

(
W

NF
− 1

)

+
26

(1 − vE)2

W

NF

)

(7.51)

of this function with respect to vE. Setting this derivative to zero yields

vE,opt =

W

NF
− 1 +

√

−1.73

(
W

NF

)2

+ 1.73
W

NF

2.73
W

NF
− 1

. (7.52)

This expression can be employed to determine the values k1, k2 and k3, which then can be

substituted in (7.44) to (7.47) to give Pmin. Astonishingly, the difference of the expressions

(7.49) and (7.52) for vE,opt in the cases QPSK and 16QAM, respectively, is only marginal.

This result elucidates that the chosen modulation scheme has only a minor influence on

how the transmit energy E should be partitioned.
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Fig. 7.1. Symbol error probability P versus the power partitioning coefficient
vE for the ratio W/NF equal 1/8 and the SNR γ as the curve parameter

a) QPSK
b) 16QAM
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7.6 Verification by simulations

In Fig. 7.1 we depict exemplary simulation results of the symbol error probability P

versus vE for the ratio W/NF equal 1/8 with the SNR γ of (7.4) as the curve parameter.

Figs. 7.1a and b hold for QPSK and for 16QAM, respectively. vE,opt equals 0.65 in Fig.

7.1a and 0.66 in Fig. 7.1b. The figures show a significant increase of P if vE deviates from

vE,opt. In order to verify the validity of our approximate approach to determining vE,opt,

we show in Table 7.1 the values vE,opt obtained by our closed form approximation and, in

parentheses, by simulations. The table shows results for the two considered modulation

schemes QPSK and 16QAM and for different values of the ratio W/NF. Obviously, the

values obtained by simulations on the one side and by our approximation on the other

side virtually coincide. According to the approximations (7.49) and (7.52), vE,opt does not

depend on γ. This independence is also confirmed by the curves in Fig. 7.1.

W/NF QPSK 16QAM

1/128 0.89 (0.89) 0.90 (0.89)
1/64 0.85 (0.85) 0.86 (0.85)
1/32 0.80 (0.80) 0.81 (0.81)
1/16 0.73 (0.73) 0.75 (0.74)
1/8 0.65 (0.65) 0.67 (0.66)
1/4 0.55 (0.55) 0.57 (0.57)
1/2 0.41 (0.41) 0.43 (0.43)

Table 7.1. vE,opt of (7.49) and (7.52), respectively, for different ratios W/NF; in parentheses
the values obtained by simulations

7.7 Results

In Figs. 7.2a and b we show the symbol error probability Pmin obtained for vE = vE,opt

versus γ with the ratio W/NF as the curve parameter for the modulation schemes QPSK

and 16QAM, respectively. The results are obtained by our closed form approximation. A

cross-check by simulations does not show deviations for the considered range of SNRs γ.

A significant deviation of vE from vE,opt would entail a considerable growth of the symbol

error probabilities.
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7.8 Derivation of integrals I� (km) and It (km)

By resorting to the rationale of partial integration, the two definite integrals employed in

Subsections 7.4.2 and 7.4.3 can be solved as follows:

I� (km) =
1

2πkm̃

∫∞
h̃=0

h̃2×
(

∫ 0.5

x=−0.5

∫ 0.5

y=−0.5
exp

(

−(x2 + y2) h̃2

2km̃

)

dxdy

)

×

h̃ exp

(

− h̃2

2

)

dh̃ =

4

π

∫∞
h̃=0

[∫∞
t=0

exp (−t2) dt −
∫∞

t=h̃/
√

8km
exp (−t2) dt

]2

×

h̃ exp

(

− h̃2

2

)

dh̃ ≈

1 − 4√
π

∫∞
h̃=0

[∫∞
t=h̃/

√
8km

exp (−t2) dt
]

×

h̃ exp

(

− h̃2

2

)

dh̃ =

−1 +
2√

1 + 4km

(7.53)

and

It (km) =
1

2πkm̃

∫∞
h̃=0

h̃2×
(

∫ 0.5

x=−0.5

∫∞
y=0

exp

(

−(x2 + y2) h̃2

2km̃

)

dxdy

)

×

h̃ exp

(

− h̃2

2

)

dh̃ =

1√
π

∫∞
h̃=0

(∫ h̃/
√

8km

t=0
exp (−t2) dt

)

×

h̃ exp

(

− h̃2

2

)

dh̃ =

1

2
√

1 + 4km

.

(7.54)

The approximation ≈ in (7.53) is valid, if the SNR γ is sufficiently large.
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Chapter 8

Multipoint-to-point transmission

8.1 Introduction

The OFDM systems considered in the previous chapters of this thesis consist of a single

transmitter and a single receiver. Such systems are also termed point-to-point transmis-

sion systems [FK04]. If we have a multitude of transmitters instead of only one, which

communicate with a single receiver, we have a multipoint-to-point transmission system

[FK04]. We have such a situation for instance in the uplink of mobile radio systems,

because many users transmit to a single base station. In multipoint-to-point transmission

systems the total transmission resources have to be shared by the individual users. The

formation of partial transmission systems by PDS as described in Chapter 3 offers a vi-

able approach to perform such a resource sharing. In the previous chapters the Z partial

transmit systems were assigned to a single transmitter. In the present chapter we consider

the case that each of these partial systems is assigned to a different transmitter. In this

case FEC encoding across the Z partial systems is no longer possible, and, therefore, we

consider here the case of uncoded transmission. Nevertheless, FEC encoding within each

of the Z partial systems would be feasible.

For the case of uncoded transmission the results presented in Section 3.6 concerning

the bit error probability Pb are valid now as before. However, the PAPR of the total

transmit signal considered in Chapter 5 is no longer adequate. Rather, we have to attend

to the PAPR of the Z partial transmit signals, because each of these signals is amplified

by a separate PA.

8.2 PAPR

Each of the Z partial systems of OFDM employing PDS pertains to a certain uplink

transmission system. Therefore, we use the superscripts (z) of the partial systems now

for designating the uplink transmission systems.

With the interleaved spread transmit vector t̃i of (3.19) the transmit vector of user z

becomes

t̃
(z)

i = (t
(z)
i,1 · · · t (z)

i,nF
· · · t (z)

i,NF
)T

t
(z)
i,nF

=

{

t̃ i,nF
for nF = z + Z (n−1) , n = 1 · · ·N ,

0 else.

(8.1)
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t̃
(z)

i of (8.1) yields for user z the oversampled time domain transmit vector

s(z) =
(

s
(z)
1 · · · s(z)

konF
· · · s(z)

koNF

)T

=
(

F(koNF)×(koNF)
)−1





(

t̃
(z)

i

)T

, 0 . . . 0
︸ ︷︷ ︸

(ko−1)NF zeros





T

. (8.2)

From s(z) of (8.2) follows the PAPR

p(z) = koNF

max
ns∈{1···koNF}

(∣
∣
∣s

(z)
ns

∣
∣
∣

2
)

(s(z))
H
s(z)

. (8.3)

of the transmit signal of user z.

All Z users have the same CCDF of the PAPR. However, in the case of small spreading

factors N , the CCDF is not well suited to show the PAPR performance. The reason is that

in such a case there are only few different PAPR values. Therefore, we show in Table 8.1

the PAPR for Walsh-Hadamard PDS and Fourier PDS for NF equal 128 for N = 1, 2, 4,

whereas in Figs. 8.1 and 8.2 we depict the CCDF for N = 8, 16, 32, 64, 128. Fig. 8.1

holds for Walsh-Hadamard PDS and Fig. 8.2 for Fourier PDS. The larger the spreading

factor N , the more Fourier PDS outperforms Walsh-Hadamard PDS. As explained in

Section 3.9, this superiority of Fourier PDS has to be paid for by a higher computational

complexity as compared to Walsh-Hadamard PDS. If a low computational complexity has

a higher priority than achieving a PAPR as low as possible, the system designer should

choose Walsh-Hadamard PDS, and in the opposite case Fourier PDS.

N Walsh-Hadamard PDS Fourier PDS

1 0 0
2 0, 3.0103 0, 3.0103

4
0, 2.3226, 2.6801, 3.0103

3.6800, 4.0835, 4.1565, 5.3329
0, 1.7609, 2.3226, 2.6801

3.0103, 4.0835, 4.6452

Table 8.1. PAPR/dB for the cases of Walsh-Hadamard PDS and Fourier PDS; QPSK,
NF = 128, N = 1, 2, 4
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Fig. 8.1. CCDF of the PAPR for the case of Walsh-Hadamard PDS; QPSK, NF = 128,
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Fig. 8.2. CCDF of the PAPR for the case of Fourier PDS; QPSK, NF = 128, N =
8, 16, 32, 64, 128

P
ro

b
(P

A
P

R
≥

ab
sc

is
sa

)



131

Chapter 9

Some open questions and proposals for further

research

In this chapter we enumerate some open questions and present proposals for further

research:

• The performance of our scheme PDS depends on the features of the radio channel

model. In this thesis, we consider a radio channel model with a uniform PDP.

Closer to real world radio channels would be an exponential PDP, and it would be

interesting to learn how PDS would perform in the case of such channels.

• In Sections 3.8 and 3.9, we study and compare Walsh-Hadamard PDS and Fourier

PDS. We found that Fourier PDS outperforms Walsh-Hadamard PDS for the case

of ML detection at the cost of a higher computational complexity. A topic of future

work could be the search for other spreading matrices which enable both a good

performance and a low computational complexity.

• In Subsubsection 3.6.3.2 we empirically find how the reasonable spreading factor N

depends on the channel parameter W . This empirical result would need a theoretical

confirmation.

• In Chaper 4 we consider FEC encoded OFDM transmission incorporating PDS

and ML detection, and we show how the system performance can be significantly

enhanced by the utilization of reliability information in the receiver. In Chapter

4 the generation of this reliability information is inherently connected with ML

detection. It would be worthwhile to study if such a reliability information can also

be generated if we use, in order to reduce the computational complexity, MMSE

detection instead of ML detection.

• In Chapter 5, the combination of PDS with SDM is used to reduce the PAPR. We

consider both Walsh-Hadamard PDS and Fourier PDS. In the future, one could

search for other PDS schemes featuring both a low PAPR and a low computational

complexity. The phase factor sets play an important role in SDM. In addition to

the phase factor sets considered in the thesis, alternative advantageous sets should

be looked for.

• In our scheme PDS-SDM the receiver is informed by signaling from the transmitter

about the used phase factor set. It may be possible that for small values N the ML
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detector may be able able to determine the used phase factor set in the sense of a

blind estimation.

• A still open question would be the combination of PDS-SDM with FEC encoding.

• For the simulations of OC performed in Chapter 6 we resort to a specific Doherty PA.

The performance of OC could be studied for other PAs, and it could be investigated

how the performance of OC depends on the particular features of the PA.

• In Chapter 7, we consider the joint optimization of pilot based channel estimation

and data detection for the modulation schemes of QPSK and 16QAM. In the future,

this scheme could be extended to higher order modulation alphabets such as 64QAM

and 256QAM. Additionally, we also could consider the case that the pilot subcarriers

and the data subcarriers use different modulation schemes.

• The extension of OFDM transmission incorporating PDS to multipoint-to-point

transmission systems briefly touched in Chapter 8 could be deepened.

• Finally, it would be interesting to extend the findings of the thesis to OFDM trans-

mission systems with multi-antennas.
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Chapter 10

Summary

10.1 English

This thesis has the goal to propose measures which allow an increase of the power efficiency

of OFDM transmission systems.

As compared to OFDM transmission over AWGN channels, OFDM transmission over

frequency selective radio channels requires a significantly larger transmit power in order

to achieve a certain transmission quality. It is well known that this detrimental impact

of frequency selectivity can be combated by frequency diversity. We revisit and further

investigate an approach to frequency diversity based on the spreading of subsets of the

data elements over corresponding subsets of the OFDM subcarriers and term this ap-

proach Partial Data Spreading (PDS). The size N of said subsets, which we designate as

spreading factor, is a design parameter of PDS, and by properly choosing N , depending

on the system designer’s requirements, an adequate compromise between a good system

performance and a low complexity can be found. We show how PDS can be combined with

ML, MMSE and ZF data detection, and it is recognized that MMSE data detection offers

a good compromise between performance and complexity. After having presented the

utilization of PDS in OFDM transmission without FEC encoding, we also show that PDS

readily lends itself for FEC encoded OFDM transmission. We display that in this case

the system performance can be significantly enhanced by specific schemes of interleaving

and utilization of reliabiliy information developed in the thesis.

A severe problem of OFDM transmission is the large Peak-to-Average-Power Ratio

(PAPR) of the OFDM symbols, which hampers the application of power efficient transmit

amplifiers. Our investigations reveal that PDS inherently reduces the PAPR. Another

approch to PAPR reduction is the well known scheme Selective Data Mapping (SDM).

In the thesis it is shown that PDS can be beneficially combined with SDM to the scheme

PDS-SDM with a view to jointly exploit the PAPR reduction potentials of both schemes.

However, even when such a PAPR reduction is achieved, the amplitude maximum of the

resulting OFDM symbols is not constant, but depends on the data content. This entails

the disadvantage that the power amplifier cannot be designed, with a view to achieve a

high power efficiency, for a fixed amplitude maximum, what would be desirable. In order

to overcome this problem, we propose the scheme Optimum Clipping (OC), in which we

obtain the desired fixed amplitude maximum by a specific combination of the measures

clipping, filtering and rescaling.

In OFDM transmission a certain number of OFDM subcarriers have to be sacrificed
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for pilot transmission in order to enable channel estimation in the receiver. For a given

energy of the OFDM symbols, the question arises in which way this energy should be

subdivided among the pilots and the data carrying OFDM subcarriers. If a large portion

of the available transmit energy goes to the pilots, then the quality of channel estimation is

good, however, the data detection performs poor. Data detection also performs poor if the

energy provided for the pilots is too small, because then the channel estimate indispensable

for data detection is not accurate enough. We present a scheme how to assign the energy

to pilot and data OFDM subcarriers in an optimum way which minimizes the symbol

error probability as the ultimate quality measure of the transmission.

The major part of the thesis is dedicated to point-to-point OFDM transmission sys-

tems. Towards the end of the thesis we show that the PDS can be also applied to

multipoint-to-point OFDM transmission systems encountered for instance in the uplinks

of mobile radio systems.
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10.2 Deutsch

Die vorliegende Arbeit verfolgt das Ziel, Maßnahmen vorzuschlagen, durch die die Leis-

tungseffizienz von OFDM-Übertragungssystemen erhöht werden kann.

Im Vergleich zur OFDM-Übertragung über AWGN-Kanäle erfordert die OFDM-

Übertragung über frequenzselektive Funkkanäle eine wesentlich höhere Sendeleistung, um

eine gewisse Übertragungsqualität zu erzielen. Es ist bekannt, daß dieser schädlichen

Auswirkung der Frequenzselektivität durch Frequenzdiversität begegnet werden kann.

Wir greifen ein im Prinzip bekanntes Verfahren der Frequenzdiversität auf und unter-

suchen dies in sehr detaillierter Weise, das darauf beruht, eine Untermenge der Datenele-

mente über eine entsprechende Untermenge der OFDM-Subträger zu spreizen, und wir

bezeichnen dieses Verfahren als Partielle Datenspreizung (PDS). Die Größe N besagter

Untermengen, die wir Spreizfaktor nennen, ist ein Entwurfsparameter von PDS. Durch

geeignete Wahl von N kann man abhängig von den Anforderungen des Systemdesign-

ers angemessene Kompromisse von guter Systemperformanz und geringer Komplexität

erreichen. Nachdem in der Arbeit die Anwendung von PDS bei der uncodierten OFDM-

Übertragung dargelegt ist, wird gezeigt, daß PDS auch sehr geeignet ist für die OFDM-

Übertragung mit Fehlerschutzcodierung. Wir führen aus, daß die Systemperformanz in

diesem Fall durch spezielle Verfahren des Interleaving und der Ausnutzung von Zuverläs-

sigkeitsinformation signifikant gesteigert werden kann.

Ein schwerwiegendes Problem der OFDM-Übertragung besteht in dem großen Peak-

to-Average-Power Ratio (PAPR) der OFDM-Symbole. Dieses führt zu Einschränkungen

beim Einsatz leistungseffizienter Sendeverstärker. Unsere Untersuchungen ergeben, daß

PDS ein inhärentes Potential zur PAPR-Reduktion hat. Eine andere Möglichkeit der

PAPR-Reduktion bietet das bekannte Verfahren des Selective Data Mapping (SDM). In

der Arbeit wird gezeigt, daß PDS und SDM zu dem Verfahren PDS-SDM kombiniert

werden können, das sich das Potential der PAPR-Reduktion beider Verfahren vorteilhaft

zunutze macht. Allerdings ist auch nach erfolgter PAPR-Reduktion das Amplituden-

maximum der OFDM-Symbole nicht konstant, sondern es hängt vom Dateninhalt der

OFDM-Symbole ab. Dies hat den Nachteil, daß der Leistungsverstärker nicht für ein

festes Amplitudenmaximum entworfen werden kann, was im Hinblick auf eine hohe Leis-

tungseffizienz wünschenswert wäre. Zum Überwinden dieses Problems schlagen wir das

Verfahren Optimum Clipping (OC) vor; bei diesem wird das erwünschte feste Amplitu-

denmaximum durch eine spezielle Kombination der Maßnahmen Clipping, Filterung und

Reskalierung erzielt.

Um im Empfänger den Funkkanal schätzen zu können, muß bei der OFDM-

Übertragung eine gewisse Anzahl der OFDM-Unterträger als Piloten vorgesehen wer-

den. Bei vorgegebener verfügbarer Energie der OFDM-Symbole stellt sich die Frage,
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wie diese Energie auf die Piloten und die datentragenden OFDM-Unterträger aufgeteilt

werden sollte. Wenn ein Großteil dieser Energie den Piloten zugewiesen wird, dann ist

die Qualität der Kanalschätzung gut, aber die Qualität der Datendetektion ist gering.

Diese Qualtät ist auch gering, wenn für die Piloten zu wenig Energie vorgesehen wird,

weil dann die für die Datendetektion unverzichtbare Kanalschätzung nicht genau genug

ist. Wir schlagen ein Verfahren zur optimalen Energieaufteilung zwischen Piloten und

datentragenden OFDM-Unterträgen vor. Dieses Verfahren gestattet es, die Symbolfehler-

wahrscheinlichkeit als das letztlich relevante Performanzkriterium zu minimieren.

Der weitaus größte Teil der Arbeit ist der Punkt-zu-Punkt-OFDM-Übertragung

gewidmet. Gegen Ende der Arbeit zeigen wir, daß PDS auch in Multipunkt-zu-

Punkt-Übertragungssystemen eingesetzt werden kann, wie man sie zum Beispiel in der

Aufwärtsstrecke von Mobilfunksystemen vorfindet.
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Appendix A

Acronyms and symbols

A.1 Acronyms

AWGN Additive White Gaussian Noise

CCDF Complementary Cumulative Distribution Function

CDMA Code Division Multiple Access

CI Code Interleaving

CIR Channel Impulse Response

CTF Channel Transfer Function

CP Cyclic Prefix

DGUS Deterministic Gaussian Uncorrelated Scattering

EER Envelope Elimination and Restoration

ET Envelope Tracking

EVD Eigen Value Decomposition

FDS Full Data Spreading

FEC Forward Error Correction

FFT Fast Fourier Transform

FHT Fast Hadamard Transform

IFFT Inverse Fast Fourier Transform

LINC Linear Amplification by Nonlinear Components

MC Multi Carrier

MC-SS Multi Carrier Spread Spectrum

MF Matched Filter

ML Maximum Likelihood

MMSE Minimum Mean Square Error

Nrc Noisy radio chanel

OC Optimum Clipping

OFDM Orthogonal Frequency Division Multiplexing

PA Power Amplifier

PAE Power Added Efficiency

PAPR Peak-to-Average-Power Ratio

PDF Probability Density Function

PDP Power Delay Profile

PDS Partial Data Spreading

QAM Quadrature Amplitude Modulation
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QPSK Quadrature Phase Shift Keying

RF Radio Frequency

Rx Receiver

SC Single Carrier

SDM Selective Data Mapping

SNIR Signal-to-Noise-plus-Interference Ratio

SNR Signal-to-Noise Ratio

Tx Transmitter

URI Utilization of Reliability Information

VR Voronoi Region

WLAN Wireless Local Area Network

ZF Zero Forcing

A.2 Symbols

ap amplitude of pilot

a
(z)
n the nth column of A(z)

A(z) partial system matrix

B system bandwidth

Bcoh coherence bandwidth

c code vector

ci interleaved code vector

c
(z)
i partial interleaved code vector

ĉi estimate of ci

ĉ
(z)
i estimate of c

(z)
i

ĉi,soft soft estimate of ci

ĉsoft soft estimate of c

C complex space

C (·) coding operator

CS(·) clipping & scaling operation

D complex region

diag (·) diagonal function

D (·) detection operation

D(z) (·) partial detection operation

Dds (·) detection operation of req

Deq (·) detection operation of req
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Deq,ds (·) detection operation of req,ds

e number of bit errors in u(z)

e undisturbed receive vector

E total transmit energy of an OFDM symbol

Et data energy of an OFDM symbol

Ep pilot energy of an OFDM symbol

erfc (·) complemantary error function

E {·} averaging function

η power efficiency

ηPAE power added efficiency

fn (s′x, sx) error coefficient of x
(z){s′x}
n

F Fourier matrix

floor (·) floor function

F−1 (·) inverse Fourier transformation

gn

(
s′y, sy

)
error coefficient of y

(z){s′y}
n

G power gain

Go power gain in linear range

G (f) transfer function

γ average SNR per OFDM subcarrier

γb gross average SNR per bit

γ
(z)
b,MMSE,effect effective SNIR per bit of t̂

(z)

MMSE,cont

γ
(z)
b,ZF,effect effective SNR per bit of t̂

(z)

ZF,cont

γ
(z)
MF SNR of x̂

(z)
MF,cont,n or ŷ

(z)
MF,cont,n

γ
(z)
MMSE,effect effective SNIR of t̂

(z)

MMSE,cont

γo gross average SNR

γ
(z)
ZF,effect effective SNR of t̂

(z)

ZF,cont

h CTF magnitude vector

h′ deinterleaved version of h

h′(z) partial deinterleaved version of h

h CTF vector

ĥ estimate of h

hdec decimated CTF vector

ĥdec estimate of hdec

H CTF matrix

h CIR vector

h
red

reduced CIR vector

i(z) interference contained in t̂
(z)

MMSE,cont
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I unit matrix

Im (·) imaginary part of a complex value

I(N ,Z ) (·) interleaving operator
(
I(N ,Z ) (·)

)−1
deinterleaving operator

I(Nz,Z )
c (·) code interleaving operation

ko oversampling factor

κ Fourier transform of σ
2
h

λcl clipping ratio

λsc scaling factor

M size of V

max (·) maximum function

M (·) mapping operator

M−1 (·) inverse of mapping operator M (·)
n noise vector

n′ deinterleaved version of n

n′(z) partial deinterleaved version of n

ndec decimated noise vector

nds despread noise vector

neq channel equalized noise vector

neq,ds channel equalized and despread noise vector

n
(z)
e effective noise in t̂

(z)

MMSE,cont

nh channel estimation error

nRx received noise vector

N spreading factor

Nc dimension of c

NF number of OFDM subcarriers

Nu dimension of u

Nz dimension of c
(z)
i

p{u} PAPR of t{u}

p(z) PAPR of the transmit signal of user z

po PAPR of an OFDM symbol

pI PAPR of PDS-SDM cases I

pII PAPR of PDS-SDM cases II

pIII PAPR of PDS-SDM cases III

pPDS PAPR of PDS

pSDM PAPR of conventional SDM

p{u} phase factor set
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p{ũ} optimum phase factor set

p{ũ}−1

inverse optimum phase factor set

P symbol error probability

Pb bit error probability

P
(z)
b partial bit error probability

PDC DC input power

PDC,konF
instantaneous DC power

Pin RF input power

P in,konF
instantaneous RF input power

Pin,max maximum instantaneous RF input power

Pmin minimum symbol error probability

Pm̃ symbol error probability of t m̃

Pout RF output power

Psup upper limit of RF input power

P (·) PAPR determination operation

ϕ phase equalizer vector

Q number of realizations of x and y

Q̃ number of realizations of t

Qc number of realizations of c

Qu number of realizations of u

Q (·) quantization operator

r disturbed recieve vector

r′ deinterleaved version of r

r{qu} realization of r

r′(z) partial deinterleaved version of r

rdec decimated receive vector

rds despread receive vector

req channel equalized receive vector

req,ds channel equalized and despread receive vector

rI imaginary part vector of r

r′I imaginary part vector of r′

r′
(z)
I imaginary part vector of r′(z)

r
{qu}
I realization of rI

rR real part vector of r

rRx input of the phase equalizer

r′R real part vector of r′

r
{qu}
R realization of rR
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r′
(z)
R real part vector of r′(z)

R number of realizations of t

Rc coding rate

Rp number of realizations of phase factor sets

Rh covariance matrix of CTF vector

Rnds
covariance matrix of nds

Rneq
covariance matrix of neq

Rneq,ds
covariance matrix of neq,ds

R
(z)
n′ covariance matrix of vector n′(z)

R
(z)
t covariance matrix of vector t(z)

Rh convariance matrix of CIR vector

rect (·) rectangular function

Re (·) real part of a complex value

sav root mean square of the component magnitudes of s

smax magnitude maximum

s (t) complex envelope

s discrete time low pass equivalent of t in time domain

s̃ discrete time low pass equivalent of t̃i in time domain

s{u} discrete time low pass equivalent of t{u} in time domain

s(z) oversampled time domain transmit vector for user z

scl clipped version of s

s′cl time domain representation of t′cl
S number of realizations of x and y

S real valued spreading matrix

S complex valued spreading matrix

sign (·) sign function

σ2 variance of the real and imaginary parts of ñ

σ2
h

variance of the components of the channel matrix H

σ
(z)2

i interference variance

σ
(z)2

MF variance of noise term of MF estimate

σ
(z)2

ne noise variance

σ2
nh

variance of each components of nh

σ2
t

variance of t

σ2
h power delay profile of the radio channel

t̂ data estimate of tm̃

tm̃ data element at the modulator output

t transmit vector
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t{u} alternative transmit vector

t(z) partial transmit vector

t̃ spread transmit vector

t̃
(z)

partial spread transmit vector

t̂ estimate of t

t̂
(z)

estimate of t̃
(z)

t̃
{qu} realization of t̃

tcl frequency domain representation of scl

t′cl vector consisting of the first NF components of tcl

t̃i interleaved spread transmit vector

t̃
{u}
i alternative interleaved spread transmit vector

t(z)
u useful content of t̂

(z)

MMSE,cont

t
(z)
u,unbiased unbiased continuous valued version of t(z)

u

t̂ML ML estimate of t

t̂
(z)

ML ML estimate of t(z)

t̂
(z)

MMSE,cont MMSE estimate of t(z)

t̂
(z)

ZF,cont ZF estimate of t(z)

T OFDM symbol duration

Tc duration of h(τ)

Tcoh coherence time

TM delay spread

Ts duration of the cyclic prefix

τ delay instants

ũ superscript of the optimum phase factor set

u information vector

u{qu} transmitted realization of u

u(z) partial information vector

û estimate of u

û(z) estimate of u(z)

U number of phase factor sets

vE energy partitioning coefficient

vE,opt optimum energy partitioning coefficient

V modulation alphabet

vec (·) vector function

w reliability vector

w(z) partial reliability vector

W normalized delay spread
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W Walsh-Hadamard matrix

x real part of t

x(z) real part of t(z)

x̂ real part of t̂

x̂ML ML estimate of x

x̂
(z)
ML ML estimate of x(z)

y imaginary part of t

y(z) imaginary part of t(z)

ŷ imaginary part of t̂

ŷML ML estimate of y

ŷ
(z)
ML ML estimate of y(z)

Z number of subsets
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