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Abstract

We consider an autoregressive process with a nonlinear regression function that
is modeled by a feedforward neural network. We derive a uniform central limit
theorem which is useful in the context of change-point analysis. We propose a test
for a change in the autoregression function which – by the uniform central limit
theorem – has asymptotic power one for a large class of alternatives including local
alternatives.
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1 Introduction

Limit theory – in general – can be described as the heart of probability and mathematical
statistics. Uniform central limit theorems for dependent random variables – in particular
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1 Introduction

– have given a new dimension to the asymptotic theory for sums of processes indexed by
families of sets by giving rise to many applications out of reach of the classical central
limit theorem.

In this paper we consider a nonlinear autoregressive time series, where we model the
autoregression function by a feedforward neural network. Due to its universal approxi-
mation property, a large class of functions can be approximated by a neural network to
any degree of accuracy (confer e.g. White [10] or Franke et al. [4]). Therefore, this setup
is very general and able to model many real-life time series while – at the same time –
being mathematical feasible and computationally easier to handle due to its parametric
nature.

For θ = (ν0, . . . , νH ,α1, . . . ,αH , β1, . . . , βH), αj = (αj1, . . . , αjp),

f(x, θ) = ν0 +
H∑

h=1

νhψ(< αh,x > +βh), (1.1)

denotes a one layer feedforward neural network with H hidden neurons, <,> is the
classical scalar product on R

p. In this paper we assume that ψ belongs to the class of
sigmoid activation functions that satisfy

lim
x→−∞

ψ(x) = 0, lim
x→∞

ψ(x) = 1, ψ(x) + ψ(−x) = 1. (1.2)

A popular example is the logistic function ψ(x) = (1+e−x)−1 which also fulfills Assump-
tion C.1.

The time series model, we have in mind in this paper, is given by

Xt = f (Xt−1, θ0) + et, (1.3)

where Xt−1 = (Xt−1, . . . , Xt−p), θ0 is fixed but unknown, et independent of Ft−1 =
σ{Xu, u ≤ t − 1} the σ-algebra generated by the observations up to time t − 1. Fur-
thermore, {et : 1 6 t 6 n} are independent identically distributed random errors with a
positive variance.

Stockis et al. [8] use these time series as building blocks in a regime-switching model,
so called CHARME-models, in the context of financial time series. In their model the
duration time in each regime is random and driven by a hidden Markov chain, while
in classical change-point analysis the duration time is usually fixed and determinis-
tic. Motivated by the CHARME time series Kirch and Tadjuidje-Kamgaing [6] devel-
oped change-point tests in such a setup. Change-point analysis deals with the question
whether the stochastic structure of the observations has changed at some unknown point
in the sample, which is an important question in diverse areas such as economy, finance,
geology, physics or quality control. For a detailed discussion we refer to the book by
Csörgő and Horváth [2].

In Section 2 we develop a uniform central limit theorem involving the above autore-
gressive time series. Based on these uniform central limit theorems we can enlarge in
Section 3 the class of alternatives for which the change-point tests developed in Kirch
and Tadjuidje-Kamgaing [6] have asymptotic power one allowing in particular for local
changes. Finally, in Section 4 the proofs can be found.
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2 Uniform Central Limit Theorem

2 Uniform Central Limit Theorem

In the following {Xt} is an arbitrary stationary time series and not necessarily of the
form (1.3).

The uniform central limit theorem for empirical processes traces back to Dudley [3] and
is founded on notions like VC-subgraphs or covering numbers. We will make use of this
methodology.

Denote by F = {f(θ, ·); θ ∈ Θ} the set of all feedforward networks as defined previously
with parameter θ ∈ Θ.

To obtain the uniform central limit theorem we need the following assumptions.

C. 1. The set Θ is compact. Furthermore ψ is a sigmoid activation function as in (1.2)
which is continuously differentiable with bounded derivative.

The latter assumption is e.g. fulfilled for the logistic function.

C. 2. Xt is stationary and β-mixing with mixing coefficient β(·) fulfilling for some τ > 2
as k → ∞

kτ/(τ−2)(log k)2(τ−1)/(τ−2)β(k) → 0.

Furthermore E|X1|ν <∞ for some ν > 2.

This is a classical condition in nonlinear time series analysis and can be derived with
little effort using the stability theory for Markov processes, see e.g. Meyn and Tweedie
[7]. Indeed, this property is a consequence of the existence of a stationary solution that
is geometric ergodic. In this situation the assumption on the rate is therefore fulfilled
since the time series is β-mixing with an exponential rate.
In a more general setup and for the related CHARME-models this β-mixing property
has been proven by Stockis et al. [8].

For the next assumption we first need to recall the definition of covering numbers.

Definition 2.1. (Covering Numbers) The covering number N (ǫ,F , ‖.‖) is the minimal
number of balls of radius ǫ, i.e. {g : ‖g − f‖ < ǫ}, needed to cover F , where it is not
necessary that f ∈ F .

C. 3. Assume that for some 0 < q <∞
∫ ∞

0

(logN (u,F , ‖.‖q))1/2du <∞.

This uniform entropy condition is classical in the context of weak convergence of empir-
ical processes (cf. e.g. Van der Vaart and Wellner [9]).

We are now ready to prove the uniform central limit theorem.
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3 Change-point tests under local alternatives

Theorem 2.1. Assume C.1– C.3 hold. Then,
{

1√
n

n∑

t=1

(f(Xt, θ)− Ef(Xt, θ)); θ ∈ Θ

}
w→ {G(θ); θ ∈ Θ} in l∞(Θ),

where {G(θ)} has a version with uniformly bounded and uniformly continuous paths with
respect to the ‖.‖2-norm. In particular

sup
θ∈Θ

∣∣∣∣∣
1√
n

n∑

t=1

(f(Xt, θ)− Ef(Xt, θ))

∣∣∣∣∣ = OP (1). (2.1)

3 Change-point tests under local alternatives

We observe a time series Zt = Xt1{t6k∗} + Yt,n1{t>k∗} with a possible switch from Xt

to Yt,n at some unknown time point 1 6 k∗ = k∗(n) 6 n. The time series Xt is

not necessarily of the form (1.3) but we assume that it is well approximated by X̃t =

f(X̃t−1, θ̃0) + et for some θ̃0 in the interior of Θ, Yt,n is an arbitrary time series. If Xt

follows (1.3), then θ̃0 = θ0. For more details on the derivation of θ̃0 we refer to Kirch
and Tadjuidje-Kamgaing [6]. The unknown parameter k∗ is called the change-point and
we are interested in the testing problem

H0 : k
∗ = n vs. H1 : k

∗ < n.

Our testing procedures are based on various functionals of the partial sums of estimated
residuals

Ŝn(k) =
k∑

t=p+1

êt =
k∑

t=p+1

(
Zt − f(Zt−1, θ̂n)

)
, (3.1)

where θ̂n is the least-squares estimator of θ̃0 under H0, i.e. the minimizer of∑n
t=p+1 (Zt − f(Zt−1, θ) )

2. Kirch and Tadjuidje-Kamgaing [6] prove consistency and

asymptotic normality of θ̂n under the null hypothesis under some mild regularity con-
ditions - in addition to some asymptotic results under alternatives as well as misspec-
ification. If the estimator is not in the interior of Θ we reject the null hypothesis as
asymptotically this can only happen under the alternative – or if the model (1.3) is not

suitable for the data set at hand. Consequently, we can assume w.l.o.g. θ̂n ∈ Θ◦, the
interior of Θ, for asymptotic power considerations.

Typical test statistics in this context are given by

T1,n = max
p<k<n

(√
n− p

k(n− p− k)
|Ŝn(k)|

)
,

T2,n(q) = max
p<k<n

(
1√

n− p q( k
n−p

)
|Ŝn(k)|

)
, (3.2)

T3,n(G) = max
p+G<k6n

1√
G

∣∣∣Ŝn(k)− Ŝn(k −G)
∣∣∣
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3 Change-point tests under local alternatives

where q(·) is a positive weight functions defined on (0, 1) fulfilling certain conditions,
e.g. q(t) = (t(1 − t))γ, 0 6 γ < 1/2, and G → ∞ with a certain rate. In Kirch and
Tadjuidje-Kamgaing [6] the asymptotics of the above statistics under the null hypothesis
(and certain regularity conditions) are obtained.

T2,n(q) converges in distribution to sup0<t<1
|B(t)|
q(t)

, where B(·) is a Brownian bridge.
The other two statistics converge a.s. to infinity but such that αnTn − βn for some
αn, βn converges to a Gumbel distribution, which suffices to obtain asymptotic critical
values. To obtain tests with asymptotic power one in these cases, it suffices to show

that αn

βn

Tn
P−→ ∞. For T1,n it holds α1,n

β1,n

∼ (log log n)−1/2 and for T3,n(G) it holds
α3,n

β3,n

∼ (log(n/G))−1/2, where cn ∼ dn ⇐⇒ cn
dn

→ c for some constant c > 0.

In Kirch and Tadjuidje-Kamgaing [6] it was shown that the above tests have asymptotic
power one for certain fixed alternatives, where Yt,n = Yt, using a uniform law of large
numbers. Using the uniform central limit theorem of the previous section instead allows
us to generalize this result to a larger class of alternatives, including local alternatives
such as Yt,n = Xt + dnZt for some dn → 0 or Xt as in (1.3) and Yt,n = f(Yt−1,n, θn) + et
with θn → θ0. Local alternatives are often considered in statistics to get an idea about
the sensitivity of the test for small differences.

A. 1. The change-point fulfills k∗ = ⌊λn⌋ for some 0 < λ < 1.

A. 2. {Xt} fulfills (2.1) as well as
∑n

t=1(Xt − EX1) = OP (
√
n).

A. 3. It holds bn
(
Ef(Xp, θ)|θ=θ̂n

− EX1

)2 P−→ ∞ for bn → ∞ specified below.

Under local alternatives the estimator θ̂n will typically converge to θ̃0 with a rate de-
pending on the rate of convergence of the local alternative, i.e. the rate with which
dn → 0 resp. θn → θ0 in the examples above. For a general neural network it is difficult
to quantify these rates due to the highly nonlinear structure of f . In the classical special
case of a mean change (i.e. a trivial neural network with H = 0 and Xi = µ + ei,
Yi,n = µ + dn + ei), Assumption A. 3 reduces to the well known condition dn → 0 but
bn|dn| → ∞.

The type of mean change condition as in A.3 is typical if the test statistics are based
on estimated residuals and already arise in linear regression models (cf. e.g. Hušková
and Koubkova [5]). For some simulations concerning detectability of different types of
changes we refer to Kirch and Tadjuidje-Kamgaing [6].

The next theorem shows that the tests corresponding to the statistics in (3.2) have
asymptotic power one under the above conditions.

Theorem 3.1. Assume that A.1 – A.3 hold with

bn =





n
log logn

, for a),

n, for b),
G

log(n/G)
, for c).
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4 Proofs

Then it holds

a) (log log n)−1/2T1,n
P−→ ∞, b) T2,n(q)

P−→ ∞,

c) (log(n/G))−1/2T3,n
P−→ ∞,

if minη6t61−η q(t) > 0 for any η > 0 and G→ ∞, (log n)/G→ 0, G/n→ 0.

4 Proofs

We start with some auxiliary lemmas.

Lemma 4.1. Let f(x, θ), be a neural network fulfilling C.1, x = (x1, . . . , xp)
T . Then,

for any θ1, θ2 ∈ Θ there exists a constant D > 0 not depending on θ1, θ2 or x such that

|f(x, θ1)− f(x, θ2)| 6 D‖θ1 − θ2‖2 max
i=1,...,p

|xi|,

where ‖ · ‖2 is the Euclidian norm.

Proof. An application of the mean value theorem with respect to θ yields for any
θ1, θ2 ∈ Θ

f(x, θ1)− f(x, θ2) = ∇f(x, ξ)T (θ1 − θ2)

for some ξ ∈ con(Θ), the convex hull of Θ. Since Θ is compact, con(Θ) is compact. By
this and the boundedness of the derivative of ψ we find D > 0 such that

|∇f(x, ξ)T (θ1 − θ2)| 6 ‖θ1 − θ2‖2 ‖∇f(x, ξ)‖2 6 D ‖θ1 − θ2‖2 max
i=1,...,p

|xi|.

Lemma 4.2. Let f(x, θ), be a neural network fulfilling C.1. Then, there exists R > 0,
such that for 0 < ε 6 R it holds for any probability measure Q

N (ε,F , ‖.‖L2(Q)) 6

(
R‖F‖L2(Q)

ε

)d

where F (x) = Dmaxi=1,...,p |xi| for some constant D > 0, d = H(p + 2) + 1 and

‖f(x)‖L2(Q) =
(∫

f 2(x) dQ(x)
)1/2

.

Proof. Denote by N[ ](ǫ,F , ‖.‖) the bracketing number and by M(ǫ,F , ‖.‖) the packing
number, then it holds (cf. Van der Vaart and Wellner [9])

N (ε,F , ‖.‖) ≤ N[ ](2ε,F , ‖.‖), (4.1)

N (ε,F , ‖.‖) ≤ M(ε,F , ‖.‖). (4.2)
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4 Proofs

Lemma 4.1 and Theorem 2.7.11 in Van der Vaart and Wellner [9] yield for any ε > 0
N[ ](2ε‖F‖L2(Q),F , ‖.‖L2(Q)) 6 N (ε,F , ‖.‖2). Hence by (4.1) (w.l.o.g. ‖F‖L2(Q) <∞)

N (ε,F , ‖ · ‖L2(Q)) 6 N
(

ε

‖F‖L2(Q)

,F , ‖ · ‖2
)

for which (4.2) implies

N
(

ε

‖F‖L2(Q)

,F , ‖.‖2
)

6 N
(

ε

‖F‖L2(Q)

, F̃ , ‖.‖2
)

6 M
(

ε

‖F‖L2(Q)

, F̃ , ‖.‖2
)

6

(
3R‖F‖L2(Q)

ε

)d

,

for any 0 < ε 6 R, where F̃ = {f(θ, ·); θ ∈ B(0, R)} for a suitable R > 0, B(0, R) is the
ball around 0 of radius R in R

d. The last line follows from Exercise 6, page 94, of Van
der Vaart and Wellner [9].

Proof of Theorem 2.1. The assertion follows from Lemma 2.1 of Arcones and Yu
[1]. The statement there is given for the minimal envelope function but the proof shows
that it remains true for any envelope function F . Furthermore it is sufficient if their
condition (2.10) holds for all 0 < ε 6 ε0 for some ε0 > 0. In our case we consider F as
in Lemma 4.1. It remains to check the conditions of Lemma 2.1 of Arcones and Yu [1].
Let p = min(τ, ν), then their Condition (2.3) holds by E|Xt|p < ∞ according to C.2.
Condition (2.4) holds by C.2, (2.10) by C.3 and (2.11) for small ε by Lemma 4.2.

Proof of Theorem 3.1. By (3.1), A.1 and A.2 it holds

Ŝn(k
∗) =

k∗∑

j=p+1

(Xj − f(Xj−1, θ̂n))

=
k∗∑

i=p+1

Xi + k∗Ef(Xp, θ)|θ=θ̂n
+O

(
sup
θ∈Θ

∣∣∣∣∣

k∗∑

i=p+1

(f(Xi−1, θ)− Ef(Xp, θ))

∣∣∣∣∣

)

= λn
(
EX1 − Ef(Xp, θ)|θ=θ̂n

)
+OP

(√
n
)

By A.3 this implies

(log log n)−1/2 T1,n > λ

√
n

log log n

∣∣EX1 − Ef(Xp, θ)|θ=θ̂n

∣∣+OP ((log log n)
−1/2)

P−→ ∞.

Since by A.1 and minη6t61−η q(t) > c for any η > 0 it holds q(k∗) > c̃ for some c̃ > 0,
which together with A.3 implies

T2,n(q) > λ
√
n
∣∣EX1 − Ef(Xp, θ)|θ=θ̂n

∣∣+OP (1)
P−→ ∞.

Similarly∣∣∣Ŝn(k
∗)− Ŝn(k

∗ −G)
∣∣∣ = G

∣∣EX1 − Ef(Xp, θ)|θ=θ̂n

∣∣+OP (
√
G)

hence by A.3

(log(n/G))−1/2 T3,n(G) >

√
G

log(n/G)

∣∣EX1 − Ef(Xp, θ)|θ=θ̂n

∣∣+OP

(
log(n/G)−1/2

) P−→ ∞.
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