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1 Introduction

In the classical Merton investment problem of maximizing the expected utility from terminal wealth
and intermediate consumption stock prices are independent of the investor who is optimizing his
investment strategy. This is reasonable as long as the considered investor is small and thus does not
influence the asset prices. However for an investor whose actions may affect the financial market the
framework of the classical investment problem turns out to be inappropriate. Against this background
various research was done on the field of including a relation between the investor and the financial
market on which he is acting. Subsequently we present some different models.

In [Jarrow 1992] R. Jarrow discusses market manipulating trading strategies by large traders in a
discrete time setting. In this context market manipulating strategies are defined as strategies that
generate a positive real wealth without taking any risk. The financial market of the model by Jarrow
consists of a riskless money market account and a risky stock where the relative stock price is an
exogenously given function dependent on the large investor’s actual and past holdings in the money
market account and the stock, i.e.

P 1
t

P 0
t

= Gt

(

ϕ0
t , ϕ

0
t−1, . . . , ϕ

0
0, ϕ

1
t , ϕ

1
t−1, . . . , ϕ

1
0

)

, t ∈ {1, 2, . . . , T}, P 0
0 = 1, P 1

0 = p1
0,

where P 0, resp. P 1, is the price of the money market account, resp. the risky asset, and ϕi, i = 0, 1,
denotes the corresponding holdings. Jarrow presents examples for the existence of market manipulat-
ing strategies under very general conditions. Further he provides a sufficient condition on the stock
price process that excludes market manipulating strategies. The sufficient condition is that the stock
price depends only on the large investor’s actual holdings and is independent of his past portfolio
compositions.

R. Jarrow extents his aforementioned model in [Jarrow 1994] via including a derivative security into
the financial market. The relative stock price is now given by

P 1
t

P 0
t

= Gt

(

ϕ0
t , ϕ

1
t , ϕ

c
t

)

, t ∈ {1, 2, . . . , T}, P 0
0 = 1, P 1

0 = p1
0,

where ϕc denotes the number of derivatives in the large investor’s portfolio. It turns out that the pres-
ence of the derivative security enables the existence of market manipulating strategies that would not
have been possible if there was only the money market account and the stock. Corresponding to his
results in [Jarrow 1992] Jarrow presents a sufficient condition that prevents these new market manip-
ulating strategies. Finally a theory for the valuation of options in the discussed model is introduced.
Hereby Jarrow verifies that the standard binomial option model still works, however, with random
volatilities.

A continuous-time hedging problem of an investor whose portfolio strategy and wealth affect the riskless
interest rate and the drift and volatility of the stock price process is dealt with in [Cvitanić, Ma 1996]
by J. Cvitanić and J. Ma. In their paper the considered financial market consists of a riskless money
market account and n̄ risky assets with dynamics

dP 0
t = P 0

t r
0
t (Xt, ϕ

0
tP

0
t , ϕ

1
tP

1
t , . . . , ϕ

n̄
t P

n̄
t )dt, P 0

0 = 1,

dPn
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t (Pt, Xt, ϕ
0
tP

0
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1
tP

1
t , . . . , ϕ

n̄
t P

n̄
t )dt+
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∑

m=1

σn,m
t (Pt, Xt, ϕ

0
tP

0
t , ϕ

1
tP

1
t , . . . , ϕ

n̄
t P

n̄
t )dWm

t , P
n
0 = pn

0 ,
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where X denotes the investor’s wealth process and ϕnPn equals the investor’s portfolio process de-
scribing the amount of money invested in the n-th asset. Given the initial stock prices and a desired
terminal wealth the investor is searching for the hedging portfolio process of an option that goes with
the smallest initial endowment. It turns out that the problem corresponds to finding a solution of a
forward-backward stochastic differential equation (FBSDE). Cvitanić and Ma provide conditions under
which a solution to this FBSDE can be found.

D. Cuoco and J. Cvitanić investigate in [Cuoco, Cvitanić 1998] the continuous-time optimal investment
problem of a large investor whose portfolio proportions impact on the instantaneous expected returns
on the traded assets. The financial market consists of a riskless money market account and n̄ risky
assets with dynamics

dP 0
t = P 0

t r
0
t (ϕ

0
tP

0
t , ϕ

1
tP

1
t , . . . , ϕ

n̄
t P

n̄
t )dt, P 0

0 = 1,

dPn
t = Pn

t

[

µn
t (ϕ0

tP
0
t , ϕ

1
tP

1
t , . . . , ϕ

n̄
t P

n̄
t )dt+

n̄
∑

m=1

σn,m
t dWm

t

]

, Pn
0 = pn

0 ,

where again ϕnPn denotes the amount of money invested in the n-th asset. Using martingale and
duality methods they provide sufficient conditions for the existence of optimal strategies under general
assumptions on the asset prices and the large investor’s preferences. In specific examples of the investor’s
influence Cuoco and Cvitanić present explicit solutions for an investor with logarithmic utility.

In [Bank, Baum 2004] P. Bank and D. Baum consider a general, abstract continuous-time model for
an illiquid financial market whose asset prices can be influenced by the trades of a large investor. The
market they discuss consists of a riskless bank account and a risky asset whose dynamics are described
by a family of continuous semimartingales that depend on the large investor’s holdings in the asset,
i.e.

Pt = Pϕt

t , t ∈ [0, T ],

with the family (Pϕ
t )t∈[0,T ], ϕ ∈ R, and where ϕ denotes the investors holdings in the risky asset. As

opposed to [Cvitanić, Ma 1996] and [Cuoco, Cvitanić 1998] where the investor was solely influencing
the drift and volatility of the stock price, the model of Bank and Baum allows impacts on the stock price
itself. In this model setting the authors prove the absence of arbitrage and investigate the problem
of hedging attainable claims and the utility maximization problem using the Itô-Wentzell formula.
It turns out that the large investor model inherits many properties of the underlying small investor
model such as the attainability of claims, the determination of superreplication prices or the utility
maximization.

In this thesis we provide a new approach to the field of large investor models. We study the optimal
investment problem of a large investor in a jump-diffusion market which is in one of two states or
regimes. The investor’s portfolio proportions as well as his consumption rate affect the intensity of
transitions between the different regimes. Hence the asset price dynamics are given by

dP 0
t = P 0

t r
It−dt, P 0

0 = p0
0,

dPn
t = Pn

t

[

µIt−
n dt+

m̄
∑

m=1

σIt−
n,mdWm

t

]

, Pn
0 = pn

0 ,

where I is an {0, 1}-valued state process with transition intensities ϑi,1−i(π, c), i = 0, 1, that depend
on the investor’s portfolio proportions π and consumption rate c. Thus the investor is ’large’ in the
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sense that his investment decisions are interpreted by the market as signals: If, for instance, the large
investor holds 25% of his wealth in a certain asset then the market may regard this as evidence for the
corresponding asset to be priced incorrectly, and a regime shift becomes likely. More specifically, the
large investor as modeled here may be the manager of a big mutual fund, a big insurance company or a
sovereign wealth fund, or the executive of a company whose stocks are in his own portfolio. Typically,
such investors have to disclose their portfolio allocations which impacts on market prices. But even
if a large investor does not disclose his portfolio composition as it is the case of several hedge funds
then the other market participants may speculate about the investor’s strategy which finally could
influence the asset prices. Since the investor’s strategy only impacts on the regime shift intensities the
asset prices do not necessarily react instantaneously. Hence as opposed to the aforementioned models
where the investor has an immediate influence on the financial market in our model the influence is an
indirect one.

Similar regime models of asset price dynamics have been used in the literature, albeit not in the context
of large investors. In [Bäuerle, Rieder 2004] N. Bäuerle and U. Rieder study the optimal investment
problem with Markov-modulated stock prices and observable drift. In their model the transition in-
tensities are constants. They solve the problem of maximizing the expected utility from terminal by
stochastic control methods for different kinds of utility functions. Besides crra utility for which they
solve the investment problem explicitly they also consider a benchmark optimization problem. J. Sass
and U. Haussmann investigate in [Sass, Haussmann 2004] the corresponding problem in the case of
unobservable drift. They derive an explicit representation of the optimal trading strategy in terms of
the unnormalized filter of the drift process. Further in [Diesinger, Kraft, Seifried 2009] P. Diesinger,
H. Kraft and F. Seifried use a regime switching model to capture different states of liquidity.

Our model is a generalization of the two-states version of the Bäuerle-Rieder model. Hence as the
Bäuerle-Rieder model it is suitable for long investment periods during which market conditions could
change. The fact that the investor’s influence enters the intensities of the transitions between the two
states enables us to solve the investment problem of maximizing the expected utility from terminal
wealth and intermediate consumption explicitly. We present the optimal investment strategy for a
large investor with crra utility for three different kinds of strategy-dependent regime shift intensities
– constant, step and affine intensity functions. In each case we derive the large investor’s optimal
strategy in explicit form only dependent on the solution of a system of coupled ODEs of which we
show that it admits a unique global solution.

This thesis is organized as follows. In Section 2 we repeat the classical Merton investment problem of
a small investor who does not influence the market. Further the Bäuerle-Rieder investment problem in
which the market states follow a Markov chain with constant transition intensities is discussed.

Section 3 introduces the aforementioned investment problem of a large investor. Besides the mathe-
matical framework and the HJB-system we present a verification theorem that is necessary to verify
the optimality of the solutions to the investment problem that we derive later on.

The explicit derivation of the optimal investment strategy for a large investor with power utility is given
in Section 4. For three kinds of intensity functions – constant, step and affine – we give the optimal
solution and verify that the corresponding ODE-system admits a unique global solution. In case of
the strategy-dependent intensity functions we distinguish three particular kinds of this dependency –
portfolio-dependency, consumption-dependency and combined portfolio- and consumption-dependency.
The corresponding results for an investor having logarithmic utility are shown in Section 5.
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In the subsequent Section 6 we consider the special case of a market consisting of only two correlated
stocks besides the money market account. We analyze the investor’s optimal strategy when only the
position in one of those two assets affects the market state whereas the position in the other asset is
irrelevant for the regime switches.

Various comparisons of the derived investment problems are presented in Section 7. Besides the com-
parisons of the particular problems with each other we also dwell on the sensitivity of the solution
concerning the parameters of the intensity functions. Finally we consider the loss the large investor
had to face if he neglected his influence on the market.

In Section 8 we conclude this thesis.
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2 Principles of Continuous-time Portfolio Optimization

In this section we recapitulate the classical Merton portfolio optimization problem (Subsection 2.1)
and discuss the Bäuerle-Rieder investment problem (Subsection 2.2) which is the basis of our large
investor model. For both models we describe the mathematical framework and formulate the optimal
investment problem. This is followed by the derivation of the HJB-equation, resp. HJB-system, and
the presentation of a verification theorem. Finally we provide the optimal solution of the investment
problem. Due to its repetitive character this section does not contain the relevant proofs.

2.1 The Merton Investment Problem

This section describes an investment setting which nowadays is referred to as ’the Merton Problem’
and summarizes the essence of the two fundamental papers [Merton 1969] and [Merton 1971] of Robert
C. Merton.

2.1.1 Mathematical Framework

Informal Description. The financial market of the classical Merton problem consists of a locally
riskless money market account P 0 and n̄ risky assets Pn, n = 1, . . . , n̄. The asset prices are given by a
diffusion model that is driven by an m̄-dimensional Brownian motion W .

Asset Price Dynamics. The mathematical model of the asset price dynamics includes the filtered
space (Ω,F,F(·)) with time horizon [0, T ] that is endowed with a reference probability measure P such
that F(·) satisfies the usual conditions of right-continuity and completeness and F = F(T ). Further we
assume that (Ω,F,P) carries an m̄-dimensional (F(·),P)-Wiener process W .

The asset price dynamics are then given by

dP 0 = P 0rdt, P 0(0) = p0
0, (2.1)

dPn = Pn

[

(r + ηn)dt+
m̄
∑

m=1

σn,mdWm

]

, Pn(0) = pn
0 , (2.2)

where the number r ∈ [0,∞), the vector η ∈ R
n̄ and the matrix σ ∈ R

n̄×m̄ are given parameters and
σ.σ⊤ is positive definite.

Notice that in general the financial market as given above is incomplete.

Investor’s Strategy. The investor is equipped with an initial wealth x0 and specifies a portfolio

strategy π and a consumption rate c. Then by (2.1) and (2.2) his wealth Xπ,c evolves according
to the stochastic differential equation

dXπ,c = Xπ,c
[

(r + π⊤.η − c)dt+ π⊤.σ.dW
]

, Xπ,c(0) = x0. (2.3)
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Let Π ⊆ R
n̄ be a given closed set. We denote by

A , {(π, c) : (π, c) bounded, F(·)-predictable, Π ×R
+
0 -valued and satisfies

E[
∫ T
0 u1(t, c(t)X

π,c(t))−dt+ u2(X
π,c(T ))−] <∞}

the class of admissible strategies where u1(t, ·) is a utility function for fixed t ∈ [0, T ] and u2 is a utility
function, too.

Definition 2.1 (Utility function). A utility function is a strictly concave, strictly increasing, and
continuously differentiable function u : R

+ → R satisfying

u′(0) , lim
xց0

u′(x) = ∞, u′(∞) , lim
xր∞

u′(x) = 0.

Remark 2.2. The fact that the utility function u is strictly increasing implies that the utility is
increasing with each additional unit of wealth. However the investor’s risk aversion is reflected by the
concavity of u, i.e. the marginal utility u′ is decreasing which means that the benefit increase of an
additional monetary unit is decreasing when the wealth x is increasing. Moreover the marginal utility
at x = 0 given by u′(0) is positive reflecting that few money is better than no money. Finally the utility
function shows a so-called saturation effect as the marginal utility at x = ∞ given by u′(∞) vanishes.

Example 1. Typical utility functions are

• the power utility: u(x) = 1
1−R(x1−R − 1), R ∈ R

+ \ {1},

• the logarithmic utility: u(x) = ln(x).

Both belong to the class of utility functions with constant relative risk aversion (crra). Besides the
crra utilities there exist the utility functions with constant absolute risk aversion (cara) of which
the exponential utility function given by u : R → R, u(x) = −e−Rx, R ∈ R

+ with limxց−∞ u′(x) = ∞
is a representative. In the following we focus on crra utilities.

2.1.2 The Optimal Investment Problem

We suppose that the investor tries to maximize utility from terminal wealth as well as from intermediate
consumption, and that his preferences are captured by a family of utility functions u1 ∈ C1,2([0, T ] ×
(0,∞)) and a utility function u2 ∈ C2(0,∞). We always assume that u1(t, .), t ∈ [0, T ] fix, and u2 are
polynomially bounded at 0, i.e. that for some constants K,κ, δ > 0 we have

|u1(t, x)| ≤ K(1 + 1
x)κ for all x ∈ (0, δ) and t ∈ [0, T ] fixed,

|u2(x)| ≤ K(1 + 1
x)κ for all x ∈ (0, δ).

(2.4)

Given the above dynamics, the investor’s optimal investment problem is to

maximize E
[∫ T

0 u1(t, c(t)X
π,c(t))dt+ u2(X

π,c(T ))
]

over (π, c) ∈ A (PM)

given the initial wealth Xπ,c(0) = x0.

There exist two main approaches for solving the investment problem (PM). The first one uses dynamic
programming methods and is called the Stochastic Control Approach. The second one which
is based on the completeness of the financial market is called the Martingale Approach. In the
subsequent section we present the solution of the investment problem (PM) following the Stochastic

Control Approach.
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2.1.3 Hamilton-Jacobi-Bellman Equation and the Verification Theorem

For solving the investment problem (PM) one defines the value function v : [0, T ] ×R
+ → R by

v(t, x) , sup
(π,c)∈A

E
[∫ T

t u1(s, c(s)X
π,c(s))ds+ u2(X

π,c(T )) |Xπ,c(t) = x
]

.

Note that v(T, x) = u2(x).

In the following we present a heuristic derivation of the so-called Hamilton-Jacobi-Bellman equa-

tion (HJB) which is a PDE for the value function v.

Assuming there exists an optimal strategy (π∗, c∗) we proceed as follows.

i) Definition of auxiliary strategies:

For a given (t, x) ∈ [0, T ] ×R
+ and θ ∈ [t, T ] we consider the following strategies on the interval

[t, T ].

(π1(s), c1(s)) , (π∗(s), c∗(s)),

(π2(s), c2(s)) ,

{

(π(s), c(s)) if s ∈ [t, θ],

(π∗(s), c∗(s)) if s ∈ (θ, T ],

for s ∈ [t, T ] and where (π, c) is an arbitrary admissible strategy.

ii) Calculation of the expected utilities:

By assumption we get

E

[

∫ T
t u1(s, c

1(s)Xπ1,c1(s))ds+ u2(X
π1,c1(T )) |Xπ1,c1(t) = x

]

= v(t, x).

Further

E

[

∫ T
t u1(s, c

2(s)Xπ2,c2(s))ds+ u2(X
π2,c2(T )) |Xπ2,c2(t) = x

]

= E

[

E

[

∫ T
t u1(s, c

2(s)Xπ2,c2(s))ds+ u2(X
π2,c2(T )) |Xπ2,c2(θ) = Xπ2,c2(θ)

]

|Xπ2,c2(t) = x
]

= E

[

∫ θ
t u1(s, c

2(s)Xπ2,c2(s))ds

+ E

[

∫ T
θ u1(s, c

2(s)Xπ2,c2(s))ds+ u2(X
π2,c2(T )) |Xπ2,c2(θ) = Xπ2,c2(θ)

]

|Xπ2,c2(t) = x
]

= E

[

∫ θ
t u1(s, c(s)X

π,c(s))ds

+ E

[

∫ T
θ u1(s, c

∗(s)Xπ∗,c∗(s))ds+ u2(X
π∗,c∗(T )) |Xπ∗,c∗(θ) = Xπ,c(θ)

]

|Xπ,c(t) = x
]

= E

[

∫ θ
t u1(s, c(s)X

π,c(s))ds+ v(θ,Xπ,c(θ)) |Xπ,c(t) = x
]

for any admissible strategy (π, c).
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iii) Taking the limit θ ց t:

By definition of the two strategies we have

E

[

∫ θ
t u1(s, c(s)X

π,c(s))ds+ v(θ,Xπ,c(θ)) |Xπ,c(t) = x
]

≤ v(t, x), (2.5)

where equality holds if (π, c) = (π∗, c∗) is chosen.

Given that v ∈ C1,2([0, T ) × (0,∞)) ∩ C([0, T ] × (0,∞)) Itô’s formula yields

∫ θ
t u1(s, c(s)X

π,c(s))ds+ v(θ,Xπ,c(θ)) = v(t, x) +
∫ θ
t H(s,Xπ,c(s), π(s), c(s))ds

+
∫ θ
t π(s)⊤.σXπ,c(s)vx(s,Xπ,c(s)).dW (s)

where we write vt , ∂v
∂t , vx , ∂v

∂x and vxx , ∂2v
∂x2 and

H(t, x, π, c) , u1(t, cx) + vt(t, x) + (r + π⊤.η − c)xvx(t, x) + 1
2π

⊤.σ.σ⊤.πx2vxx(t, x). (2.6)

Since the local martingale term is in fact a martingale we can rewrite (2.5) as

E

[

∫ θ
t H(s,Xπ,c(s), π(s), c(s))ds |Xπ,c(t) = x

]

≤ 0, (2.7)

Finally taking the limit θ ց t yields

H(t,Xπ,c(t), π(t), c(t)) ≤ 0

or equivalently

u1(t, cx) + vt(t, x) + (r + π⊤.η − c)xvx(t, x) + 1
2π

⊤.σ.σ⊤.πx2vxx(t, x) ≤ 0

for any admissible strategy (π, c). As equality holds for (π, c) = (π∗, c∗) we get the HJB

0 = sup
(π,c)∈Π×R

+
0

{

u1(t, cx) + vt(t, x) + (r + π⊤.η − c)xvx(t, x) + 1
2π

⊤.σ.σ⊤.πx2vxx(t, x)
}

(2.8)

for (t, x) ∈ [0, T ) × (0,∞) subject to the boundary condition

v(T, x) = u2(x), x ∈ (0,∞). (2.9)

Remark 2.3. Notice that the supremum in the HJB is taken over numbers and not over processes.

Having obtained the HJB one can solve the investment problem (PM) by solving the corresponding
HJB and afterwards verifying that the solution obtained in that way satisfies the assumptions made
in the derivation of the HJB and moreover really is the solution of the investment problem (PM).

Solving the HJB usually works via choosing a certain type of utility function and then using a suitable
separation ansatz for the value function v in order to transform the PDE into an ODE. Thereafter
the maximizers of the HJB denoted by (π∗, c∗) are determined and inserted back into the HJB which
thus becomes a classical ODE without the supremum to be taken. This ODE can then be solved using
methods of the ODE-theory.

The evidence that the solution of the HJB is indeed the solution of the investment problem is then
provided by the following verification theorem.
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Theorem 2.4 (Verification Theorem). Suppose that v ∈ C1,2([0, T )× (0,∞)) ∩C([0, T ]× (0,∞)) is a
solution to the HJB-system (2.8) subject to (2.9), and assume that |v(t, x)| ≤ K(1 + 1

x)κ, x ∈ (0, δ),
and |v(t, x)| ≤ K(1 + x)κ, x > 1

δ , for some constants K,κ, δ > 0.

i) For any admissible strategy (π, c) ∈ A and all t0 ∈ [0, T ], x0 ∈ (0,∞), we have

E

[

∫ T
t0
u1(t, c(t)X

π,c(t))dt+ u2(X
π,c(T )) |Xπ,c(t0) = x0

]

≤ v(t0, x0).

ii) If there exists an admissible strategy (π∗, c∗) such that

(π∗(t, x), c∗(t, x)) ∈ arg max
(π,c)∈Π×R

+
0

H(t, x, π, c) for t ∈ [0, T ), x ∈ (0,∞)

where H is given by (2.6) then it follows that

v(t0, x0) = sup
(π,c)∈A

E

[

∫ T
t0
u1(t, c(t)X

π,c(t))dt+ u2(X
π,c(T )) |Xπ,c(t0) = x0

]

for all t0 ∈ [0, T ] and x0 ∈ (0,∞), and (π∗, c∗) is an optimal strategy for the investment problem
(PM).

A detailed proof of a more general version of the Verification Theorem (Theorem 3.3) is given in Section
3.3.

2.1.4 Solution for crra Investors

In Section 4, especially Subsection 4.1, we solve the Merton investment problem for a crra investor
in detail. At this point we just present the results.

Theorem 2.5 (Solution of the Merton investment problem with power utilities). Given the utility
functions

u1(t, x) = εe−δt 1
1−R(x1−R − 1), t ∈ [0, T ], x ∈ (0,∞), ε ∈ [0,∞), δ ∈ (0,∞),

u2(x) = e−δT 1
1−R(x1−R − 1), x ∈ (0,∞),

the optimal strategy (π∗, c∗) of the Merton investment problem (PM) is given by

π∗ = 1
R(σ.σ⊤)−1.η, c∗(t) = ε

1
R e

δ−(1−R)Ψ
R

(T−t)

1+ε
1
R R

δ−(1−R)Ψ

(

e
δ−(1−R)Ψ

R
(T−t)−1

)

for t ∈ [0, T ]. Further the value function reads

v(t, x) = 1
1−Rx

1−Re(1−R)Ψ(T−t)−δT
(

1 + ε
1
R

R
δ−(1−R)Ψ

(

e
δ−(1−R)Ψ

R
(T−t) − 1

))R

− 1
1−R

1
δ e

−δt(ε− (ε− δ)e−δ(T−t))
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for (t, x) ∈ [0, T ]× (0,∞) where Ψ denotes the utility growth potential of the financial market given by

Ψ , r + 1
2

1
Rη

⊤.(σ.σ⊤)−1.η.

In case of ε = 0 the optimal strategy (π∗, c∗) reads

π∗ = 1
R(σ.σ⊤)−1.η, c∗(t) = 0

for t ∈ [0, T ] and the value function is given by

v(t, x) = e−δT 1
1−R(x1−Re(1−R)Ψ(T−t) − 1)

for (t, x) ∈ [0, T ] × (0,∞).

Theorem 2.6 (Solution of the Merton investment problem with logarithmic utilities). Given the utility
functions

u1(t, x) = εe−δt ln(x), t ∈ [0, T ], x ∈ (0,∞), ε ∈ [0,∞), δ ∈ (0,∞),

u2(x) = e−δT ln(x), x ∈ (0,∞),

the optimal strategy (π∗, c∗) of the Merton investment problem (PM) is given by

π∗ = (σ.σ⊤)−1.η, c∗(t) = εδ
ε−(ε−δ)e−δ(T−t)

for t ∈ [0, T ]. Further the value function reads

v(t, x) = 1
δ e

−δt(ε− (ε− δ)e−δ(T−t)) ln(x) + ε
δe

−δt(1 − e−δ(T−t))
(

Ψ
δ + ln(ε) − 1

)

− εte−δt

− (ε− δ)e−δT
(

Ψ
δ (T − t) − T

)

− 1
δ e

−δt(ε− (ε− δ)e−δ(T−t)) ln
(

1
δ e

−δt(ε− (ε− δ)e−δ(T−t))
)

for (t, x) ∈ [0, T ] × (0,∞).

In case of ε = 0 the optimal strategy (π∗, c∗) reads

π∗ = (σ.σ⊤)−1.η, c∗(t) = 0

for t ∈ [0, T ] and the value function is given by

v(t, x) = e−δT (ln(x) + Ψ(T − t))

for (t, x) ∈ [0, T ] × (0,∞).

2.2 The Bäuerle-Rieder Investment Problem

In their paper [Bäuerle, Rieder 2004] N. Bäuerle and U. Rieder investigate the optimal investment prob-
lem in continuous-time with Markov-modulated asset prices and interest rates. They explicitly solve
the corresponding problem of maximizing the expected utility from terminal wealth for different utility
functions. Here we recapitulate their model using a slightly different notation and add intermediate
consumption.
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2.2.1 Mathematical Framework

Informal Description. Again, the financial market consists of a locally riskless money market
account P 0 and n̄ risky assets Pn, n = 1, . . . , n̄. But as opposed to the Merton investment problem in
which the financial market always stays in one state, in the Bäuerle-Rieder investment problem at each
point of time, the market is in one of finitely many states. In each state the asset prices are given by
a diffusion model that is driven by an m̄-dimensional Brownian motion W with coefficients depending
on the current state of the economy.

Asset Price Dynamics. The mathematical model of the asset price dynamics as described above
is given as follows. We let (Ω,F,F(·)) be a filtered space with time horizon [0, T ] that is endowed with
a reference probability measure P such that F(·) satisfies the usual conditions of right-continuity and
completeness and F = F(T ). Further we assume that (Ω,F,P) carries an m̄-dimensional (F(·),P)-Wiener
process W and ī(̄i − 1) (F(·),P)-Poisson processes N i,j , i, j ∈ {0, . . . , ī − 1}, i 6= j, with intensities
ϑi,j ∈ (0,∞), all of which are independent of each other.

The state of the market is described by the {0, . . . , ī− 1}-valued process I that satisfies

dI =
ī−1
∑

i=0

ī−1
∑

j=0,j 6=i

(j − i)1{I−=i}dN
i,j , I(0) = 0. (2.10)

We denote by {τk}k∈N0 the corresponding sequence of jump times, i.e.

τk , inf {t ∈ [τk−1, T ] : I(t) 6= I(τk−1)} for k ∈ N, where τ0 , 0.

Then the asset price dynamics are given by

dP 0 = P 0rI−dt, P 0(0) = p0
0, (2.11)

dPn = Pn

[

(rI− + ηI−
n )dt+

m̄
∑

m=1

σI−
n,mdWm

]

on [[τk−1, τk)),

Pn(0) = pn
0 , Pn(τk) = Pn(τk−), k ≥ 1.

(2.12)

Here for i ∈ {0, . . . , ī− 1} the number ri ∈ [0,∞), the vector ηi ∈ R
n̄ and the matrix σi ∈ R

n̄×m̄ are
given parameters and σi.(σi)⊤ is positive definite.

Notice that in general the financial market as given above is incomplete.

Investor’s Strategy. The investor is equipped with an initial wealth x0 and specifies for each state
i ∈ {0, . . . , ī − 1} a portfolio strategy πi and a consumption rate ci which are applied when the
economy is in state i. Then by (2.11) and (2.12) his wealth Xπ,c evolves according to the stochastic
differential equation

dXπ,c = Xπ,c
[

(rI− + (πI−)⊤.ηI− − cI−)dt+ (πI−)⊤.σI− .dW
]

on [[τk−1, τk)),

Xπ,c(0) = x0, Xπ,c(τk) = Xπ,c(τk−), k ≥ 1.
(2.13)
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We write π , (π0, . . . , πī−1), resp. c , (c0, . . . , cī−1), for brevity. Let Π ⊆ R
n̄ be a given closed set. We

denote by

A , {(π, c) : (πi, ci) bounded, F(·)-predictable, Π ×R
+
0 -valued and satisfies

E[
∫ T
0 u1(t, c

I(t)(t)Xπ,c(t))−dt+ u2(X
π,c(T ))−] <∞}

the class of admissible strategies where u1(t, .) is a utility function for fixed t ∈ [0, T ] and u2 is a utility
function, too.

2.2.2 The Optimal Investment Problem

We suppose that the investor tries to maximize utility from terminal wealth as well as from intermediate
consumption, and that his preferences are captured by a family of utility functions u1 ∈ C1,2([0, T ] ×
(0,∞)) and a utility function u2 ∈ C2(0,∞). We always assume that u1(t, .), t ∈ [0, T ] fix, and u2 are
polynomially bounded at 0, i.e. that for some constants K,κ, δ > 0

|u1(t, x)| ≤ K(1 + 1
x)κ for all x ∈ (0, δ) and t ∈ [0, T ] fixed,

|u2(x)| ≤ K(1 + 1
x)κ for all x ∈ (0, δ).

(2.14)

Given the above dynamics, the investor’s optimal investment problem is to

maximize E
[∫ T

0 u1(t, c
I(t)(t)Xπ,c(t))dt+ u2(X

π,c(T ))
]

over (π, c) ∈ A (PBR)

given the initial wealth Xπ,c(0) = x0.

Again we follow the Stochastic Control Approach.

2.2.3 Hamilton-Jacobi-Bellman Equations and the Verification Theorem

Given the tuple (v0, . . . , vī−1) of value functions

vi(t0, x0) = sup
(π,c)∈A

E[
∫ T
t0
u1(t, c

I(t)(t)Xπ,c(t))dt+ u2(X
π,c(T )) | I(t0) = i, Xπ,c(t0) = x0]

for i ∈ {0, . . . , ī − 1} the motivation for the Hamilton-Jacobi-Bellman system (HJB-system) works
completely analogously to the motivation in Section 2.1.3 resulting in the HJB-system

0 = sup
(π,c)∈Π×R

+
0

{

u1(t, cx) + vi
t(t, x) + (ri + π⊤.ηi − c)xvi

x(t, x) + 1
2π

⊤.σi.(σi)⊤.πx2vi
xx(t, x)

+
ī−1
∑

j=0

ϑi,j
[

vj(t, x) − vi(t, x)
]

}

(2.15)

for (t, x) ∈ [0, T ) × (0,∞) and i ∈ {0, . . . , ī− 1}, subject to the boundary conditions

vi(T, x) = u2(x), x ∈ (0,∞) for i ∈ {0, . . . , ī− 1}. (2.16)

Notice that here the above HJB-system consists of coupled partial differential equations.
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Remark 2.7. The only difference between the HJB-system (2.15) of the Bäuerle-Rieder investment

problem and the HJB (2.8) of the Merton investment problem is the switching term
∑ī−1

j=0 ϑ
i,j
[

vj(t, x)−

vi(t, x)
]

which accommodates the possibility that the market could switch into another state. Notice
that on small time intervals the probability of a regime switch from state i into state j is given by
P(I(t+ dt) = j | I(t) = i) = ϑi,jdt. Hence compared to the Merton HJB (2.8) one has to add the sum
over the intensity-weighted differences of the value functions.

Solving the HJB is done in analogy to the way described in Section 2.1.3 and the corresponding
verification theorem is given as follows.

Theorem 2.8 (Verification Theorem). Suppose that (v0, . . . , vī−1) with vi ∈ C1,2([0, T ) × (0,∞)) ∩
C([0, T ] × (0,∞)), i ∈ {0, . . . , ī − 1}, is a solution to the HJB-system (2.15) subject to (2.16), and
assume that |vi(t, x)| ≤ K(1 + 1

x)κ, x ∈ (0, δ) and |vi(t, x)| ≤ K(1 + x)κ, x > 1
δ for i ∈ {0, . . . , ī − 1}

for some constants K,κ, δ > 0.

i) For any admissible strategy (π, c) ∈ A and all t0 ∈ [0, T ], x0 ∈ (0,∞), we have

E

[

∫ T
t0
u1(t, c

I(t)(t)Xπ,c(t))dt+ u2(X
π,c(T )) | I(t0) = i, Xπ,c(t0) = x0

]

≤ vi(t0, x0)

for i ∈ {0, . . . , ī− 1}.

ii) If there exists an admissible strategy (π∗, c∗) = ((π0,∗, c0,∗), . . . , (πī−1,∗, cī−1,∗)) such that

(πi,∗(t, x), ci,∗(t, x)) ∈ arg max
(π,c)∈Π×R

+
0

H i(t, x, π, c) for t ∈ [0, T ), x ∈ (0,∞)

where

H i(t, x, π, c) , u1(t, cx) + vi
t(t, x) + (ri + π⊤.ηi − c)xvi

x(t, x) + 1
2π

⊤.σi.(σi)⊤.πx2vi
xx(t, x)

+
ī−1
∑

j=0

ϑi,j
[

vj(t, x) − vi(t, x)
]

,
(2.17)

then it follows that

vi(t0, x0) = sup
(π,c)∈A

E
π,c
[

∫ T
t0
u1(t, c

I(t)(t)Xπ,c(t))dt+ u2(X
π,c(T )) | I(t0) = i, Xπ,c(t0) = x0

]

for i ∈ {0, . . . , ī − 1} and all t0 ∈ [0, T ] and x0 ∈ (0,∞), and (π∗, c∗) is an optimal strategy for
the investment problem (PBR).

Again the proof is given in Section 3.3.
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2.2.4 Solution for crra Investors

In Section 4, especially Subsection 4.1, we solve the Bäuerle-Rieder investment problem in a two state
model for a crra investor in detail. At this point we just present the results.

Theorem 2.9 (Solution of the Bäuerle-Rieder investment problem with power utilities). Given the
utility functions

u1(t, x) = εe−δt 1
1−R(x1−R − 1), t ∈ [0, T ], x ∈ (0,∞), ε ∈ [0,∞), δ ∈ (0,∞),

u2(x) = e−δT 1
1−R(x1−R − 1), x ∈ (0,∞),

the optimal strategy (π∗, c∗) of the Bäuerle-Rieder investment problem (PBR) is given by

πi,∗ = 1
R(σi.(σi)⊤)−1.ηi, ci,∗(t) =

(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

gi(t)

for t ∈ [0, T ]. Further the value function reads

vi(t, x) = 1
1−R

(

x1−Re(1−R)gi(t) − 1
)

1
δ e

−δt(ε− (ε− δ)e−δ(T−t))

for (t, x) ∈ [0, T ] × (0,∞) and i ∈ {0, . . . , ī − 1} where the function gi is the solution of the following
ODE-system

(gi)′(t) = − Ψi + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
gi(t) − 1

)

)

−
ī−1
∑

j=0

ϑi,j 1
1−R

(

e(1−R)(gj(t)−gi(t)) − 1
)

subject to the boundary conditions gi(T ) = 0, i ∈ {0, . . . , ī − 1}. Here Ψi denotes the utility growth
potential of the financial market in state i which is given by

Ψi , ri + 1
2

1
R(ηi)⊤.(σi.(σi)⊤)−1.ηi.

In case of ε = 0 the optimal strategy (π∗, c∗) reads

πi,∗ = 1
R(σi.(σi)⊤)−1.ηi, ci,∗(t) = 0

for t ∈ [0, T ] and the value function is given by

vi(t, x) = e−δT 1
1−R

(

x1−Re(1−R)gi(t) − 1
)

for (t, x) ∈ [0, T ] × (0,∞) where gi now satisfies

(gi)′(t) = −Ψi −
ī−1
∑

j=0

ϑi,j 1
1−R

(

e(1−R)(gj(t)−gi(t)) − 1
)

subject to the boundary conditions gi(T ) = 0, i ∈ {0, . . . , ī− 1}.
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Theorem 2.10 (Solution of the Bäuerle-Rieder investment problem with logarithmic utilities). Given
the utility functions

u1(t, x) = εe−δt ln(x), t ∈ [0, T ], x ∈ (0,∞), ε ∈ [0,∞), δ ∈ (0,∞),

u2(x) = e−δT ln(x), x ∈ (0,∞),

the optimal strategy (π∗, c∗) of the Bäuerle-Rieder investment problem (PBR) is given by

πi,∗ = (σi.(σi)⊤)−1.ηi, ci,∗(t) = εδ
ε−(ε−δ)e−δ(T−t)

for t ∈ [0, T ]. Further the value function reads

vi(t, x) = (ln(x) + gi(t))1
δ e

−δt(ε− (ε− δ)e−δ(T−t))

for (t, x) ∈ [0, T ] × (0,∞) and i ∈ {0, . . . , ī − 1} where the function gi is the solution of the following
ODE-system

(gi)′(t) = −Ψi + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − ln
(

εδ
ε−(ε−δ)e−δ(T−t)

)

+ gi(t)
)

−
ī−1
∑

j=0

ϑi,j(gj(t) − gi(t))

subject to the boundary conditions gi(T ) = 0, i ∈ {0, . . . , ī− 1}.

In case of ε = 0 the optimal strategy (π∗, c∗) reads

πi,∗ = (σi.(σi)⊤)−1.ηi, ci,∗(t) = 0

for t ∈ [0, T ] and the value function is given by

vi(t, x) = e−δT (ln(x) + gi(t))

for (t, x) ∈ [0, T ] × (0,∞) where gi now satisfies

(gi)′(t) = −Ψi −
ī−1
∑

j=0

ϑi,j(gj(t) − gi(t))

subject to the boundary conditions gi(T ) = 0, i ∈ {0, . . . , ī− 1}.
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3 Continuous-time Portfolio Optimization for a Large Investor

In this section we introduce the investment problem for a large investor. In analogy to the previous
section on the Merton and the Bäuerle-Rieder investment problem we begin with a description of
the mathematical framework, followed by the formulation of the investment problem. Thereafter we
give the HJB-system and present a verification theorem whose proof closes this section. A detailed
derivation of the solution of the investment problem for particular utility functions is dealt with in the
following Sections 4 and 5.

3.1 Mathematical Framework

Informal Description. The financial market consists of a locally riskless money market account P 0

and n̄ risky assets Pn, n = 1, . . . , n̄. At each point of time, the market is either in the normal state i = 0
or in the alerted state i = 1. In normal and alerted times, asset prices are given by a jump-diffusion
model that is driven by an m̄-dimensional Brownian motion W and a p̄-dimensional Poisson process,
with coefficients depending on the current state of the economy. However, asset prices are also affected
by the large investor’s investment strategy π, where πn is the fraction of wealth that he invests in
asset n, as well as by his consumption rate c: The state of the market I jumps from i to 1 − i with
intensity ϑi,1−i(π, c), where ϑi,1−i is a given intensity function; conversely, the large investor can
observe regime shifts of the market. Thus the market takes the large investor’s portfolio proportions
and consumption rate as a signal. This additional dependence makes a non-standard specification of
asset price dynamics necessary. In particular, on the one hand the investment strategy influences asset
prices, while on the other hand it should be possible to use information on current and past prices in
the portfolio decision.

Asset Price Dynamics. In the following, we construct a mathematical model of the asset price
dynamics which have been described intuitively above. We let (Ω,F,F(·)) be a filtered space with
time horizon [0, T ] that is endowed with a reference probability measure P such that F(·) satisfies the
usual conditions of right-continuity and completeness and F = F(T ). Further we assume that (Ω,F,P)
carries an m̄-dimensional (F(·),P)-Wiener process W , a p̄-dimensional (F(·),P)-Poisson process N with
intensity λ ∈ (0,∞)p̄, and two (F(·),P)-Poisson processes N0,1 and N1,0 with intensity 1, all of which
are independent of each other.

The state of the market is described by the {0, 1}-valued process I that satisfies

dI = 1{I−=0}dN
0,1 − 1{I−=1}dN

1,0, I(0) = 0. (3.1)

We denote by {τk}k∈N0 the corresponding sequence of jump times, i.e.

τk , inf {t ∈ [τk−1, T ] : I(t) 6= I(τk−1)} for k ∈ N, where τ0 , 0.



18 3 Continuous-time Portfolio Optimization for a Large Investor

Then the asset price dynamics are given by

dP 0 = P 0
−r

I−dt, P 0(0) = p0
0, (3.2)

dPn = Pn
−

[

(rI− + ηI−
n )dt+

m̄
∑

m=1

σI−
n,mdWm −

p̄
∑

p=1

γI−
n,pdN

p

]

on [[τk−1, τk)),

Pn(0) = pn
0 , Pn(τk) = [1 − ℓI(τk−),1−I(τk−)

n ]Pn(τk−), k ≥ 1.

(3.3)

Here for i = 0, 1 the number ri ∈ [0,∞), the vectors ηi ∈ R
n̄, ℓi,1−i ∈ (−∞, 1)n̄ and the matrices

σi ∈ R
n̄×m̄ and γi ∈ (−∞, 1)n̄×p̄ are given parameters and σi.(σi)⊤ is positive definite. Moreover ℓi,1−i

models additional price jumps that occur on regime shifts.

In general the financial market as described above is incomplete as it was already the case in the
Bäuerle-Rieder problem.

Large Investor. Turning to the large investor, we suppose that equipped with an initial wealth x0

he specifies for each state i = 0, 1 a portfolio strategy πi and a consumption rate ci which are
applied when the economy is in state i. Then by (3.2) and (3.3) his wealth Xπ,c evolves according to
the stochastic differential equation

dXπ,c = Xπ,c
−

[

(rI− + (πI−)⊤.ηI− − cI−)dt+ (πI−)⊤.σI− .dW − (πI−)⊤.γI− .dN
]

on [[τk−1, τk))

Xπ,c(0) = x0, Xπ,c(τk) = [1 − (ℓI(τk−),1−I(τk−))⊤.πI(τk−)(τk)]X
π,c(τk−), k ≥ 1.

(3.4)

We write π , (π0, π1), resp. c , (c0, c1), for brevity. Our intuitive description requires that the large
investor’s portfolio choice and consumption affect the intensity of regime shifts. Let Π ⊆ R

n̄ be a given
closed set. To avoid bankruptcy, we always choose Π ⊆ {π ∈ R

n̄ : πn ≥ 0, n = 1, . . . , n̄,
∑n̄

n=1 πn ≤ 1}
as a subset of the unit simplex if γ0 6= 0, γ1 6= 0, ℓ0,1 6= 0 or ℓ1,0 6= 0.

Define the class of pre-admissible strategies by

A0 , {(π, c) : (πi, ci) bounded, F(·)-predictable and Π ×R
+
0 -valued for i = 0, 1}.

For each (π, c) ∈ A0 we construct a probability measure P
π,c on (Ω,F) equivalent to P via the Girsanov

transformation

dP
π,c

dP
,
∏

i=0,1

exp
{

∫ T
0 [1 − ϑi,1−i(πi(t), ci(t))]dt

}

∏

t∈[0,T ], ∆N i,1−i(t) 6=0

ϑi,1−i(πi(t), ci(t)) (3.5)

where the function ϑi,1−i : Rn̄ ×R
+
0 → R

+
0 , (π, c) 7−→ ϑi,1−i(π, c) is deterministic and bounded on any

closed subset of Rn̄ ×R
+
0 . In order for this construction to be well-defined, we require

Lemma 3.1. For any pair (π, c) ∈ A0 there exists a uniquely determined probability measure P
π,c on

F = FT such that (3.5) is satisfied.

Proof. We recall from equation (3.5) that dP
π,c

dP
= Zπ,c(T ), where Zπ,c is given by

Zπ,c ,
∏

i=0,1

exp
{∫ ·

0[1 − ϑi,1−i(πi(t), ci(t))]dt
}

∏

t∈[0,·], ∆N i,1−i(t) 6=0

ϑi,1−i(πi(t), ci(t)). (3.6)
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To prove the assertion, we have to demonstrate that Zπ,c is an (F(·),P)-martingale. Note that Zπ,c is
the stochastic exponential of

∑

i=0,1

∫ ·
0[ϑ

i,1−i(πi(t), ci(t)) − 1]dN̄ i,1−i(t), where N̄ i,1−i is given by

N̄ i,1−i(t) , N i,1−i(t) − t for t ∈ [0, T ].

Hence Zπ,c is a local (F(·),P)-martingale, and since

sup
t∈[0,T ]

|Zπ,c(t)| ≤ e2T

[

max
i=0,1, (π,c)∈A0

|ϑi,1−i(π, c)|

]N0,1(T )+N1,0(T )

∈ L1(P) (3.7)

it follows that Zπ,c is in fact a uniformly integrable (F(·),P)-martingale.

Note that since all measures P
π,c, where (π, c) ∈ A0, are equivalent, the definition of the stochastic

integral does not depend on (π, c). As a direct consequence of this construction we have the following
result. We use the terminology of [Brémaud 1981].

Proposition 3.2. Given a pair (π, c) ∈ A0, for i = 0, 1 the process N i,1−i is a counting process
with (F(·),Pπ,c)-intensity ϑi,1−i(πi, ci). Moreover W is an (F(·),Pπ,c)-Wiener process and N is an
(F(·),Pπ,c)-Poisson process, and

[W,N ] = [W,N i,1−i] = [N i,1−i, N1−i,i] = [N i,1−i, N ] = 0.

Proof. We recall from equation (3.6) that dP
π,c

dP
= Zπ,c(T ). As P

π,c is equivalent to P, quadratic covaria-
tion processes remain invariant and hence [W,N ] = [W,N i,1−i] = [N i,1−i, N1−i,i] = [N i,1−i, N ] = 0. To
show that W is an (F(·),Pπ,c)-Wiener process, it suffices by Lévy’s characterization of Brownian motion
to demonstrate that W is a local (F(·),Pπ,c)-martingale, i.e. that Zπ,cW is a local (F(·),P)-martingale.
However, this is an immediate consequence of the product formula

d(Zπ,cW ) = Zπ,c
− dW +WdZπ,c + dZπ,cdW = Zπ,c

− dW +WdZπ,c

because [Zπ,c,W ] = 0. Next consider the counting processes N i,1−i and N . A direct computation via
the product rule shows that with Ñ i,1−i given by

Ñ i,1−i(t) , N i,1−i(t) −
∫ t
0ϑ

i,1−i(πi(s), ci(s))ds for t ∈ [0, T ],

we have

d(Zπ,cÑ i,1−i) = ϑi,1−iZπ,c
− dN̄ i,1−i + Ñ i,1−i

− dZπ,c.

Thus Zπ,cÑ i,1−i is a local (F(·),P)-martingale, so Ñ i,1−i is a local (F(·),Pπ,c)-martingale, and N i,1−i

has (F(·),Pπ,c)-intensity ϑi,1−i(πi, ci). A similar but simpler argument shows that N has (F(·),Pπ,c)-
intensity λ, so N is an (F(·),Pπ,c)-Poisson process with intensity λ by a classical result of S. Watanabe,
compare Theorem T5 in [Brémaud 1981].

We note from the proof of Lemma 3.1 that the compensated process Ñ i,1−i is in fact a square integrable
(F(·),Pπ,c)-martingale. Indeed, as [Ñ i,1−i] = N i,1−i we have

E
π,c
[

[Ñ i,1−i]T

]

= E[Zπ,c
T N i,1−i

T ] <∞
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by virtue of the estimate (3.7).

Thus P
π,c describes the randomness in the asset market that the large investor observes if he chooses the

portfolio strategy π and the consumption rate c. As required in our intuitive description, heuristically
we then have

P
π,c(I(t+ dt) 6= I(t) |F(t)) = ϑI(t),1−I(t)(πI(t)(t), cI(t)(t))dt.

We denote by

A , {(π, c) ∈ A0 : E
π,c[
∫ T
0 u1(t, c

I(t)(t)Xπ,c(t))−dt+ u2(X
π,c(T ))−] <∞}

the class of admissible strategies where u1(t, ·) is a utility function for fixed t ∈ [0, T ] and u2 is a utility
function, too.

3.2 The Optimal Investment Problem

We suppose that the large investor tries to maximize utility from terminal wealth as well as from
intermediate consumption, and that his preferences are captured by a family of utility functions u1 ∈
C1,2([0, T ]× (0,∞)) and a utility function u2 ∈ C2(0,∞). We always assume that u1(t, ·), t ∈ [0, T ] fix,
and u2 are polynomially bounded at 0, i.e. that for some constants K,κ, δ > 0

|u1(t, x)| ≤ K(1 + 1
x)κ for all x ∈ (0, δ) and t ∈ [0, T ] fixed,

|u2(x)| ≤ K(1 + 1
x)κ for all x ∈ (0, δ).

(3.8)

Given the above dynamics, the large investor’s optimal investment and consumption problem

is to

maximize E
π,c
[∫ T

0 u1(t, c
I(t)(t)Xπ,c(t))dt+ u2(X

π,c(T ))
]

over (π, c) ∈ A (P)

given the initial wealth Xπ,c(0) = x0.

Thus the investor tries to maximize expected utility from terminal wealth and from intermediate
consumption, while he is aware of the fact that his investment strategy will affect asset prices in the
sense that his portfolio proportions and his consumption rate trigger regime shifts in the market.
This is reflected in the non-standard form of (P), where the expectation operator E

π,c depends on the
investor’s strategy (π, c). In the following section, we show how to solve the portfolio problem (P) with
dynamic programming methods.

3.3 Hamilton-Jacobi-Bellman Equations and the Verification Theorem

A pair (v0, v1) of functions v0, v1 ∈ C1,2([0, T ) × (0,∞)) ∩ C([0, T ] × (0,∞)) is said to be a solution
to the Hamilton-Jacobi-Bellman system, or more briefly the HJB-system, if it satisfies the following



3.3 Hamilton-Jacobi-Bellman Equations and the Verification Theorem 21

system of coupled partial differential equations:

0 = sup
(π,c)∈Π×R

+
0

{

u1(t, cx) + vi
t(t, x) + (ri + π⊤.ηi − c)xvi

x(t, x) + 1
2π

⊤.σi.(σi)⊤.πx2vi
xx(t, x)

+

p̄
∑

p=1

λp

[

vi
(

t, [1 − (γi
·,p)

⊤.π]x
)

− vi(t, x)
]

+ ϑi,1−i(π, c)
[

v1−i
(

t, [1 − (ℓi,1−i)⊤.π]x
)

− vi(t, x)
]

}

(3.9)

for (t, x) ∈ [0, T ) × (0,∞) and i = 0, 1, subject to the boundary conditions

vi(T, x) = u2(x), x ∈ (0,∞) for i = 0, 1. (3.10)

Notice that the derivation of the HJB-system works completely analogously to the one in Section 2.1.3.

The following theorem is the main result of this section.

Theorem 3.3 (Verification Theorem). Suppose that (v0, v1) is a solution to the HJB-system (3.9)
subject to (3.10), and assume that |vi(t, x)| ≤ K(1 + 1

x)κ, x ∈ (0, δ) and |vi(t, x)| ≤ K(1 + x)κ, x > 1
δ

for i = 0, 1 for some constants K,κ, δ > 0.

i) For any admissible strategy (π, c) ∈ A and all t0 ∈ [0, T ], x0 ∈ (0,∞), we have

E
π,c
[

∫ T
t0
u1(t, c

I(t)(t)Xπ,c(t))dt+ u2(X
π,c(T )) | I(t0) = i, Xπ,c(t0) = x0

]

≤ vi(t0, x0) for i = 0, 1.

ii) If there exists an admissible strategy (π∗, c∗) = ((π0,∗, c0,∗), (π1,∗, c1,∗)) such that

(πi,∗(t, x), ci,∗(t, x)) ∈ arg max
(π,c)∈Π×R

+
0

H i(t, x, π, c) for t ∈ [0, T ), x ∈ (0,∞)

where

H i(t, x, π, c) , u1(t, cx) + vi
t(t, x) + (ri + π⊤.ηi − c)xvi

x(t, x) + 1
2π

⊤.σi.(σi)⊤.πx2vi
xx(t, x)

+

p̄
∑

p=1

λp

[

vi
(

t, [1 − (γi
·,p)

⊤.π]x
)

− vi(t, x)
]

+ ϑi,1−i(π, c)
[

v1−i
(

t, [1 − (ℓi,1−i)⊤.π]x
)

− vi(t, x)
]

,

(3.11)

then it follows that

vi(t0, x0) = sup
(π,c)∈A

E
π,c
[

∫ T
t0
u1(t, c

I(t)(t)Xπ,c(t))dt+ u2(X
π,c(T )) | I(t0) = i, Xπ,c(t0) = x0

]

for i = 0, 1 and all t0 ∈ [0, T ] and x0 ∈ (0,∞), and (π∗, c∗) is an optimal strategy for the
investment problem (P).
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Proof. Let an arbitrary admissible strategy (π, c) = ((π0, c0), (π1, c1)) be given, and suppose without
loss of generality that t0 = 0 and I(0) = 0. We denote by Ñ the compensated Poisson process associated
to N , i.e.

Ñ(t) , N(t) − λt, t ∈ [0, T ],

and similarly for Ñ i,1−i. Using Itô’s formula we obtain for every stopping time θ with θ ≤ T

vI(θ)(θ,Xπ,c(θ)) +
∫ θ
0 u1(s−, c

I(s−)(s)Xπ,c(s−))ds

= vI(0)(0, x0) +
∫ θ
0 H

I(s−)(s−, Xπ,c(s−), πI(s−)(s), cI(s−)(s))ds

+
∫ θ
0 π

I(s−)(s)⊤.σI(s−)Xπ,c(s−)vI(s−)
x (s−, Xπ,c(s−)).dW (s)

+

p̄
∑

p=1

∫ θ
0

[

vI(s−)
(

s−, [1 − (γ
I(s−)
·,p )⊤.πI(s−)(s)]Xπ,c(s−)

)

− vI(s−)(s−, Xπ,c(s−))
]

dÑp(s)

+
1
∑

i=0

∫ θ
0 1{I(s−)=i}

[

v1−i
(

s−, [1 − (ℓi,1−i)⊤.πi(s)]Xπ,c(s−)
)

− vi(s−, Xπ,c(s−))
]

dÑ i,1−1(s).

We need to show that the local martingale terms in fact represent martingales. For this purpose, we
use a localization technique and set

Oq , {x ∈ (0,∞) : 1
q < x < q} and Qq , [0, T − 1

q ) ×Oq

for q > 1
T . We denote by τq the exit time of {(t,Xπ,c(t))} fromQq and let θq , T∧τq. AsXπ,c(θq−) ∈ Oq

and ℓi,1−i ∈ (−∞, 1)n̄, γi ∈ (−∞, 1)n̄×p̄ for i = 0, 1, there exists an r > q such that Xπ,c(θq) ∈ Or. It
follows that the integrands of the local martingale terms are bounded on [[0, θq]], and hence

E
π,c
[

vI(θq)(θq, X
π,c(θq)) +

∫ θq

0 u1(s−, c
I(s−)(s)Xπ,c(s−))ds

]

= vI(0)(0, x0) + E
π,c
[

∫ θq

0 HI(s−)(s−, Xπ,c(s−), πI(s−)(s), cI(s−)(s))ds
]

.

Since v solves the HJB-system (3.9), we get

vI(0)(0, x0) ≥ E
π,c
[

vI(θq)(θq, X
π,c(θq))

]

+ E
π,c
[

∫ θq

0 u1(s−, c(s)
I(s−)Xπ,c(s−))ds

]

,

for any q > 1
T .

Since θq → T as q → ∞ a.s., we get together with the continuity of vi for i = 0, 1 and the fact that
v0(T,Xπ,c(T )) = v1(T,Xπ,c(T )) = u2(X

π,c(T )) by (3.10) that

lim
q→∞

vI(θq)(θq, X
π,c(θq)) = vI(T )(T,Xπ,c(T )) a.s.

Further the continuity of u1 yields

lim
q→∞

∫ θq

0 u1(s−, c
I(s−)(s)Xπ,c(s−))ds =

∫ T
0 u1(s−, c

I(s−)(s)Xπ,c(s−))ds a.s.

The polynomial boundedness assumptions on v imply that |vi(t, x)| ≤ K̄max{x−κ̄, xκ̄} for i = 0, 1 and
some constants K̄, κ̄ > 0. For v̄i,k(x) , K̄xk with k ∈ R Itô’s formula yields

dv̄I(t),k(Xπ,c(t)) = v̄I(t−),k(Xπ,c(t−))

[

A(t)dt+B(t).dW (t) +

p̄
∑

p=1

Cp(t)dNp(t) +
1
∑

i=0

Di(t)dN i,1−i(t)

]

,
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where

A(t) , k
(

rI(t−) + (πI(t−)(t))⊤.ηI(t−) − cI(t−)(t)
)

+ 1
2k(k − 1)(πI(t−)(t))⊤.σI(t−).(σI(t−))⊤.πI(t−)(t),

B(t) , kπI(t−)(t).σI(t−), Cp(t) , [1 − (γ
I(t−)
·,p )⊤.πI(t−)(t)]k − 1,

Di(t) , 1{I(t−)=i}

[

[1 − (ℓi,1−i)⊤.πi(t)]k − 1
]

.

So v̄I(t),k(Xπ,c(t)) can be written as a stochastic exponential, i.e.

v̄I(t),k(Xπ,c(t)) = Et

(

∫ ·
0A(s)ds+

∫ ·
0B(s).dW (s) +

p̄
∑

p=1

∫ ·
0C

p(s)dNp(s) +
1
∑

i=0

∫ ·
0D

i(s)dN i,1−i(s)
)

= exp
(∫ t

0A(s)ds
)

Et

(∫ ·
0B(s).dW (s)

)

p̄
∏

p=1

∏

s∈(0,t],
∆Np(s) 6=0

(1 + Cp(s))
1
∏

i=0

∏

s∈(0,t],

∆Ni,1−i(s) 6=0

(1 +Di(s)).

By our assumptions on admissible strategies and the fact that ℓi,1−i ∈ (−∞, 1)n̄ as well as γi ∈
(−∞, 1)n̄×p̄ for i = 0, 1 the integrands A(t), B(t), Cp(t), D0(t) and D1(t) are predictable and bounded;
Cp(t), D0(t) and D1(t) only attain values in (−1,∞). Hence, let κ̃ > 0 such that |A(t)|, |B(t)|, |Cp(t)|,
|D0(t)|, |D1(t)| ≤ κ̃ for t ∈ [0, T ], p = 1, ..., p̄. Then by Novikov’s condition, Et

(∫ ·
0B(s).dW (s)

)

is an
L2(Pπ,c)-martingale. Further, let

ξp = 1
2(p̄+2) , p = 1, ..., p̄, ξi,1−i = 1

2(p̄+2) , i = 0, 1,

i.e. 1
2 +

∑p̄
p=1 ξp +

∑1
i=0 ξ

i,1−i = 1. Thus Hölder’s and Doob’s inequality yield

E
π,c

[

sup
t∈[0,T ]

v̄I(t),k(Xπ,c(t))

]

≤ eκ̃T
E

π,c

[

sup
t∈[0,T ]

Et

(∫ ·
0B(s).dW (s)

)2

] 1
2 p̄
∏

p=1

E
π,c

[

sup
t∈[0,T ]

(1 + κ̃)ξpNp(t)

] 1
ξp

·
1
∏

i=0

E
π,c

[

sup
t∈[0,T ]

(1 + κ̃)ξi,1−iN i,1−i(t)

] 1

ξi,1−i

≤ 2eκ̃T
E

π,c
[

ET

(∫ ·
0B(s).dW (s)

)2
] 1

2

p̄
∏

p=1

E
π,c
[

(1 + κ̃)ξpNp(T )
] 1

ξp

·
1
∏

i=0

E
π,c
[

(1 + κ̃)ξi,1−iN i,1−i(T )
] 1

ξi,1−i
.

Since N is an (F(·),Pπ,c)-Poisson process with intensity λ, we get

E
π,c
[

(1 + κ̃)ξpNp(T )
]

= e((1+κ̃)ξp−1)Tλp <∞, for p = 1, ..., p̄.

Moreover,

E
π,c
[

(1 + κ̃)ξi,1−iN i,1−i(T )
]

= E

[

Zπ,c(T )(1 + κ̃)ξi,1−iN i,1−i(T )
]

,



24 3 Continuous-time Portfolio Optimization for a Large Investor

with Zπ,c(T ) = dP
π,c

dP
as given in (3.5). Thus

sup
t∈[0,T ]

∣

∣

∣
Zπ,c(t)(1 + κ̃)ξi,1−iN i,1−i(t)

∣

∣

∣
≤ e2T

[

max
i=0,1, (π,c)∈A

|ϑi,1−i(π, c)|

]N0,1(T )+N1,0(T )

(1 + κ̃)ξi,1−iN i,1−i(T )

where the right-hand side is in L1(P) as N i,1−i is a (F(·),P)-Poisson process.

Hence, E
π,c
[

(1 + κ̃)ξi,1−iN i,1−i(T )
]

<∞ and finally

E
π,c

[

sup
t∈[0,T ]

v̄I(t),k(Xπ,c(t))

]

<∞.

Since |vi(t, x)| ≤ max{v̄i,−κ̄(x), v̄i,κ̄(x)} the family {vI(θq)(θq, X
π,c(θq))}q> 1

T
is uniformly integrable

and we conclude that

lim
q→∞

E
π,c[vI(θq)(θq, X

π,c(θq))] = E
π,c[vI(T )(T,Xπ,c(T ))].

It remains to show that

lim
q→∞

E
π,c[
∫ θq

0 u1(s−, c
I(s−)(s)Xπ,c(s−))ds] = E

π,c[
∫ T
0 u1(s−, c

I(s−)(s)Xπ,c(s−))ds].

Therefore, we consider the positive and the negative part of u1 separately.

Since
∫ θq

0 u1(s−, c
I(s−)(s)Xπ,c(s−))+ds ր

∫ T
0 u1(s−, c

I(s−)(s)Xπ,c(s−))+ds as q → ∞ a.s. the mono-
tone convergence theorem yields

lim
q→∞

E
π,c[
∫ θq

0 u1(s−, c
I(s−)(s)Xπ,c(s−))+ds] = E

π,c[
∫ T
0 u1(s−, c

I(s−)(s)Xπ,c(s−))+ds].

Further, since
∫ θq

0 u1(s−, c
I(s−)(s)Xπ,c(s−))−ds ր

∫ T
0 u1(s−, c

I(s−)(s)Xπ,c(s−))−ds as q → ∞ a.s.

and E
π,c[
∫ T
0 u1(s−, c

I(s−)(s)Xπ,c(s−))−ds] <∞ for any admissible strategy, we get by the dominated
convergence theorem that

lim
q→∞

E
π,c[
∫ θq

0 u1(s−, c
I(s−)(s)Xπ,c(s−))−ds] = E

π,c[
∫ T
0 u1(s−, c

I(s−)(s)Xπ,c(s−))−ds].

Thus
lim

q→∞
E

π,c[
∫ θq

0 u1(s−, c
I(s−)(s)Xπ,c(s−))ds] = E

π,c[
∫ T
0 u1(s−, c

I(s−)(s)Xπ,c(s−))ds]

is shown.

Hence, we have E
π,c[
∫ T
0 u1(t, c

I(t)(t)Xπ,c(t))dt + u2(X
π,c(T ))] ≤ v0(0, x0) for any admissible strategy

(π, c) ∈ A, and part i) is established.

Part ii) now follows from the above argument if we note that the strategy (π∗, c∗) attains equality in
the preceding arguments. This completes the proof.

Remark 3.4. The Verification Theorem ensures that in order to solve the investment problem (P) it
suffices to determine the strategy that maximizes the right-hand side of the HJB-system (3.9) and to
verify that the corresponding PDE-system admits a unique global solution that satisfies the aforemen-
tioned regularity conditions.
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4 Solution for crra Investors with Power Utility

In this section we derive the solution of the investment problem (P) for a large investor with power
utility in a market without price jumps. First the particular HJB-system is specified. Thereafter we
reduce this PDE-system to a simpler ODE-system via choosing a suitable ansatz for the value function
vi. Finally we present a detailed solution of the investment problem for three different kinds of intensity
functions.

HJB-System. Throughout this section we suppose that there are no jumps in the asset price dy-
namics,

γi = 0 and ℓi,1−i = 0 for i = 0, 1. (NJ)

Moreover, we let
Π = R

n̄

and apply the following convention to extend the natural logarithm on R

ln(x) , −∞ for x ∈ (−∞, 0].

Under assumption (NJ) the HJB-system (3.9) simplifies to

0 = sup
(π,c)∈Rn̄×R

+
0

{

u1(t, cx) + vi
t(t, x) + (ri + π⊤.ηi − c)xvi

x(t, x)

+ 1
2π

⊤.σi.(σi)⊤.πx2vi
xx(t, x) + ϑi,1−i(π, c)[v1−i (t, x) − vi(t, x)]

}

(4.1)

for (t, x) ∈ [0, T ) × (0,∞) and i = 0, 1, subject to the boundary conditions

vi(T, x) = u2(x), x ∈ (0,∞) for i = 0, 1. (4.2)

We assume that the investor’s preferences are specified by crra utility functions of the form

u1(t, x) = εe−δt 1
1−R(x1−R − 1), t ∈ [0, T ], x ∈ (0,∞), ε ∈ [0,∞),

u2(x) = e−δT 1
1−R(x1−R − 1), x ∈ (0,∞),

(4.3)

where δ > 0 is the utility discount factor that accommodates the chronological structure of consumption
and terminal wealth and R ∈ (0,∞) \ {1} denotes the investor’s relative risk aversion; see Section 5
for the case R = 1 of logarithmic utility. Choosing ε = 1 refers to the general problem of maximizing
expected utility from terminal wealth and from intermediate consumption as well without preferring
one to the other. The pure portfolio problem where the large investor solely gains utility from terminal
wealth corresponds to ε = 0.

Remark 4.1. Usually it would suffice to consider utility functions of the form

u1(t, x) = εe−δt 1
1−Rx

1−R, t ∈ [0, T ], x ∈ (0,∞), ε ∈ [0,∞),

u2(x) = e−δT 1
1−Rx

1−R, x ∈ (0,∞),

since those just differ by constants from the utility functions (4.3). But the functions (4.3) have the
advantage that those converge to the logarithmic utility functions as R tends to 1 which turns out to
be quite convenient for the solution of the investment problem for an investor with logarithmic utility.
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Notice that we take the supremum over (π, c) ∈ R
n̄ ×R

+
0 in the HJB-system (4.1), i.e. we allow c to

be zero even though u1(t, cx) is not defined for c = 0 if ε > 0 since 1
1−R((cx)1−R − 1) would involve

a division by 0 in case of R > 1. If ε = 0 then u1(t, cx) = 0 for all c, x ∈ R
+
0 and the problem does

not emerge. Further if R < 1 in case of ε > 0 then there is no problem either as then 01−R = 0. Only
if ε > 0 and R > 1 then u1(t, cx) is indefinite for c = 0. For notational convenience we maintain the
maximization over (π, c) ∈ R

n̄ ×R
+
0 instead of discussing the two cases (π, c) ∈ R

n̄ ×R
+ (ε > 0) and

(π, c) ∈ R
n̄×R

+
0 (ε = 0) separately. This is possible since we can overcome the problem of indefiniteness

using the convention 01−R , ∞ if R > 1 which implies 1
1−R((cx)1−R − 1) = −∞. So as we are looking

for the supremum in (4.1) it does not cause any trouble to take the supremum over (π, c) ∈ R
n̄ ×R

+
0

instead of (π, c) ∈ R
n̄ ×R

+ in case of ε > 0.

Finally, letting

Ψi , ri + 1
2

1
R(ηi)⊤.(σi.(σi)⊤)−1.ηi, i = 0, 1

denote the utility growth potentials of the markets in state 0 and 1, respectively, we assume throughout
that the markets are labeled in such a way that

Ψ0 > Ψ1,

i.e. a Merton investor without market impact would prefer state 0 to state 1.

Reduced HJB-System. In order to solve the HJB-system (4.1), we conjecture

v0(t, x) = 1
1−Rf(t)

((

xeg(t)
)1−R

− 1
)

, v1(t, x) = 1
1−Rf(t)

((

xeg(t)−h(t)
)1−R

− 1
)

(4.4)

for (t, x) ∈ [0, T ] × (0,∞) with C1-functions f , g and h on [0, T ].

Remark 4.2 (Motivation for the ansatz). This particular ansatz mainly consists of two parts. The
first one is the time-dependent factor f(t) and the second one are the time-dependent discount resp.
accumulation factors eg(t)−1{i=1}h(t).

The factor function f is necessary for the ansatz to yield a separation of the variables t and x since the
model includes consumption. If the investor was not allowed to consume then one could choose f(t) , 1
and the ansatz would also work. To see the necessity of the factor function just set f(t) = 1 in equation
(4.5) below. As long as ε > 0 there would remain just one term with x, i.e. the ansatz would fail.

Further the special form of the discount resp. accumulation factors is due to the major requirement in
our model that the two market states are different concerning the large investor’s point of view. This
difference is accommodated by the function h. Since market state 1 is worse than state 0 one would
expect that the wealth in state 1 is discounted at a higher rate, resp. accumulated at a smaller rate than
in state 0. Aiming at h to be non-negative we therefore subtract h from g in the ansatz for the wealth
function v1. Later on it turns out that h is really non-negative (Lemma 4.3).

Inserting the ansatz (4.4) into (4.1), (4.2) and dividing the whole equation by the positive term
(

xeg(t)−1{i=1}h(t)
)1−R

yields
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0 = sup
(π,c)∈Rn̄×R

+
0

{

1
1−Rεe

−δt(c1−R − x−(1−R))e−(1−R)(g(t)−1{i=1}h(t))

+ 1
1−Rf

′(t)(1 − x−(1−R)e−(1−R)(g(t)−1{i=1}h(t)))

+ f(t)
(

g′(t) − 1{i=1}h
′(t) + ri + π⊤.ηi − 1

2Rπ
⊤.σi.(σi)⊤.π − c

+ ϑi,1−i(π, c) 1
1−R(e(−1)1−i(1−R)h(t) − 1)

)}

(4.5)

for (t, x) ∈ [0, T ) × (0,∞) and i = 0, 1, subject to the boundary conditions

f(T ) = e−δT , g(T ) = 0, h(T ) = 0. (4.6)

Collecting the terms multiplying x−(1−R) we get the following ODE for the function f

f ′(t) = −εe−δt, f(T ) = e−δT

which has the solution
f(t) = 1

δ e
−δt(ε− (ε− δ)e−δ(T−t)). (4.7)

The remaining terms without x yield the reduced HJB-system

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − 1{i=1}h
′(t) + ri + π⊤.ηi − 1

2Rπ
⊤.σi.(σi)⊤.π

+ εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)(g(t)−1{i=1}h(t))c1−R − 1) − c

+ ϑi,1−i(π, c) 1
1−R(e(−1)1−i(1−R)h(t) − 1)

}

(4.8)

for t ∈ [0, T ) and i = 0, 1, subject to the boundary conditions

g(T ) = 0, h(T ) = 0.

The following lemma shows what we already expected when setting up the ansatz for the wealth
function – the non-negativity of the function h.

Lemma 4.3 (Non-Negativity of h). If g and h are solutions of (4.8), then

h(t) ≥ 0 for every t ∈ [0, T ].

Proof. The assertion follows from standard ODE arguments: If h(t) = 0 for some t ∈ [0, T ] then
equation (4.8) implies

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) + r0 + π⊤.η0 − 1
2Rπ

⊤.σ0.(σ0)⊤.π

+ εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)g(t)c1−R − 1) − c

}

− sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − h′(t) + r1 + π⊤.η1 − 1
2Rπ

⊤.σ1.(σ1)⊤.π

+ εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)g(t)c1−R − 1) − c

}

= h′(t) + Ψ0 − Ψ1,

and thus h′(t) < 0 as we required Ψ0 > Ψ1; since h(T ) = 0, it follows that h(t) ≥ 0 for all t ∈ [0, T ].
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Remark 4.4 (Interpretation of h). In order to understand the role of the function h we have to take
a closer look on the ansatz for the value function vi(t, x) given by

v0(t, x) = 1
1−Rf(t)

((

xeg(t)
)1−R

− 1
)

, v1(t, x) = 1
1−Rf(t)

((

xeg(t)−h(t)
)1−R

− 1
)

.

Hence an investor being endowed with an initial wealth of x0
0 when the market is in state 0 at time t

would at the same time need a wealth of x1
0 = x0

0e
h(t) if the market was in state 1 in order to achieve the

same expected utility from terminal wealth since v0(t, x0
0) = v1(t, x0

0e
h(t)). Thus eh can be interpreted

as the investor’s exchange ratio between the two market states. Since h is influenced by the investor’s
risk aversion R the notion the investor’s exchange ratio is reasonable as another investor having a
different relative risk aversion would exhibit a different exchange ratio. Further, the non-negativity of
h implies that x1

0 is always bigger than or equal x0
0 when requiring v0(t, x0

0) = v1(t, x1
0). This mirrors

the fact that from the investor’s point of view state 1 is the adverse market state as compared to state
0. Therefore h, resp. eh, is measuring the difference between the two market states perceived by the
investor; the bigger h the bigger the perceived difference.

In the following we present the solution of the investment problem (P) for three types of intensity func-
tions. The first one representing the two-states version of the Bäuerle-Rieder investment problem are
constant intensity functions which we deal with in Subsection 4.1. The second type corresponding
to an indirect dependency on the investor’s strategy are the step intensity functions. Those are
discussed in Subsection 4.2. The third, direct type are the affine intensity functions presented in
Subsection 4.3. In each subsection we dwell on different variants of the respective intensity functions
and solve the related optimal investment problem.

4.1 Constant Intensity Functions

This subsection serves to transfer the two-states version of the Bäuerle-Rieder investment problem into
the aforementioned nomenclature concerning the utility functions and the ansatz for the value function
so that the optimal strategy and the related value function are comparable to the respective strategies
and value functions of the investment problems with step, resp. affine intensity functions below.

We let the intensity functions ϑi,1−i be given as constants, i.e.

ϑi,1−i(π, c) = Ci, (π, c) ∈ R
n̄ ×R

+
0 (CI)

with Ci ∈ R
+
0 for i = 0, 1.

Inserting those constant intensity functions into the reduced HJB-system (4.8) the latter becomes

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − 1{i=1}h
′(t) + ri + π⊤.ηi − 1

2Rπ
⊤.σi.(σi)⊤.π

+ εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)(g(t)−1{i=1}h(t))c1−R − 1) − c

+ Ci 1
1−R(e(−1)1−i(1−R)h(t) − 1)

}

(4.9)

for t ∈ [0, T ) and i = 0, 1, subject to the boundary conditions

g(T ) = 0, h(T ) = 0.
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In the following we present the solution of the investment problem with constant regime shift intensities
in general (Subsection 4.1.1) at first. Afterwards we dwell on the classical Merton investment problem
with shift intensities ϑi,1−i = 0 which we solve explicitly (Subsection 4.1.2).

4.1.1 Solution of the Investment Problem

In order to determine the maximizer in the HJB-system (4.9) we define functions Hπ,i : R
n̄ → R and

Hc,i : [0, T ] ×R×R
+
0 → R, i = 0, 1, given by

Hπ,i(π) , ri + π⊤.ηi − 1
2Rπ

⊤.σi.(σi)⊤.π,

Hc,i(t, x, c) , εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)xc1−R − 1) − c

where we use the already mentioned convention 01−R , ∞ if R > 1. Notice that function Hc,i is
independent of t and x if ε = 0. Notice here that x is just a general variable independent of the
investor’s wealth.

Using those auxiliary functions the HJB-system (4.9) can be written as

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − 1{i=1}h
′(t) +Hπ,i(π) +Hc,i(t, g(t) − 1{i=1}h(t), c)

+ Ci 1
1−R(e(−1)1−i(1−R)h(t) − 1)

}

(4.10)

for t ∈ [0, T ) and i = 0, 1, subject to the boundary conditions

g(T ) = 0, h(T ) = 0.

Writing the HJB-system in that way it is obvious that the maximization over (π, c) ∈ R
n̄ ×R

+
0 can be

separated into two unrelated maximizations; one over π ∈ R
n̄ and one over c ∈ R

+
0 .

To find the supremum in (4.10) we present the maximizers of the functions Hπ,i and Hc,i(t, x, ·) for
arbitrary (t, x) ∈ [0, T ] × R. This yields a family of maximizers dependent on (t, x). The maximizers
of the HJB-system (4.10) are then obtained by replacing x by g(t) − 1{i=1}h(t).

The concavity of Hπ,i and Hc,i(t, x, ·) and the first-order conditions imply

Lemma 4.5 (Maximizers of Hπ,i and Hc,i(t, x, ·)). For every (t, x) ∈ [0, T ] ×R the maximizers

πi,∗ , arg max
π∈Rn̄

Hπ,i(π), ci,∗(t, x) , arg max
c∈R+

0

Hc,i(t, x, c), i = 0, 1,

are given by the Merton strategy, i.e.

(πi,∗, ci,∗(t, x)) = (πi,M , cM (t, x))

where

πi,M , 1
R(σi.(σi)⊤)−1.ηi, cM (t, x) ,

(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x.
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Remark 4.6 (Merton consumption rate). In Lemma 4.5 we wrote that the maximizing consumption
rate is the Merton consumption rate. However, one has to be careful with this formulation. In fact a
unique Merton consumption rate – only determined by the parameters of the price dynamics r, η and
σ, the investor’s relative risk aversion R, the discount rate δ and the weighting factor ε – does not
exist – except for the case of ε = 0 where cM (t, x) = 0 for all (t, x) ∈ [0, T ] ×R – whereas the Merton
portfolio proportions π are unique. This comes from the fact that every consumption rate having the
Merton form depends on the underlying functions g and h that are in turn determined by the whole
model settings and not only by the parameters mentioned above. Thus the regime switching intensities
are relevant, too. Hence we can only speak of consumption rates being of the Merton type having the
form

cM (t, x) =
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x

for (t, x) ∈ [0, T ] × R. If one was searching for a genuine representative of those Merton type con-
sumption rates then a reasonable choice would be the optimal consumption rate in the classical Merton
model with only one market state. This genuine model can be obtained via choosing Ci = 0 for i = 0, 1
which results in the following ODEs for h and g

h′(t) = − (Ψ0 − Ψ1) +
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

g(t) R
1−R(e

1−R
R

h(t) − 1), (4.11)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
g(t) − 1

)

)

(4.12)

subject to the boundary conditions h(T ) = g(T ) = 0. Note that the two ODEs are uncoupled since ODE
(4.12) for the function g is independent of the function h. Denoting by (gBSM, hBSM) the solution of
the ODE-system (4.11), (4.12) the genuine Merton consumption rate is given by

ci,M
BSM

(t) , cM (t, gBSM(t) − 1{i=1}hBSM(t)) =
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

(gBSM(t)−1{i=1}hBSM(t)).

Later on in Subsection 4.1.2 we present the explicit solution of the Merton ODE-system (4.11), (4.12)
and give the Merton consumption rate in explicit form.

If not otherwise stated we use ci,M (t) as shorthand notation for cM (t, g(t)−1{i=1}h(t)) and simply call

ci,M (t), i = 0, 1 the Merton consumption rate, i.e.

ci,M (t) , cM (t, g(t) − 1{i=1}h(t)), i = 0, 1.

However one always should keep in mind the dependency of ci,M (t) on g(t), resp. g(t) − h(t). Only if
R = 1 then the dependency on g(t), resp. g(t) − h(t) vanishes.

Remark 4.7. So far the strategy (πi,∗, ci,∗) is only a candidate solution for the optimal investment
problem. To verify the optimality we need to show that the related HJB-system has a global solution
that satisfies the required regularity conditions stated in the Verification Theorem 3.3.

Inserting the maximizing strategy (πi,∗, ci,∗(t, g(t)− 1{i=1}h(t))) into the reduced HJB-equation (4.10)
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the latter becomes a system of coupled backward ODEs

h′(t) = − (Ψ0 − Ψ1) +
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

g(t) R
1−R(e

1−R
R

h(t) − 1)

− C0 1
1−R(e−(1−R)h(t) − 1) + C1 1

1−R(e(1−R)h(t) − 1),
(4.13)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
g(t) − 1

)

)

− C0 1
1−R(e−(1−R)h(t) − 1)

(4.14)

subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (4.15)

Remark 4.8. From an arithmetical point of view equation (4.14) could be further simplified, i.e. the
term

εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
g(t) − 1

)

)

could be written as
1

1−R
εδ

ε−(ε−δ)e−δ(T−t) −
R

1−R

(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

g(t),

too. But keeping the longer version makes it quite convenient to obtain the corresponding equations
and formulas for the case of R = 1 using the convention

1
1−R(x(1−R) − 1) , ln(x), x > 0, for R = 1,

as will be seen later on.

We now prove the existence of a solution of the two ODEs (4.13) and (4.14).

Lemma 4.9. The ODE-system given by equation (4.13) and (4.14) subject to the boundary conditions
(4.15) admits a unique global solution.

Proof. The proof is structured as follows. We first show that the ODEs (4.13) and (4.14) have a unique
local solution. Subsequently we verify that the right-hand sides of the ODEs for g, h and g − h are
suitably bounded implying that the local solution indeed is a global one.

• Definition of auxiliary functions. In order to achieve the above results we define the following aux-
iliary functions

̺ : [0, T ] ×R×R
+
0 → R, ̺(t, x, y) ,

(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x R
1−R(e

1−R
R

y − 1),

̺i : [0, T ] ×R → R, ̺i(t, x) , εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
x − 1

)

)

,

χi : R
+
0 → R, χi(y) , (−1)1−iCi 1

1−R(e(−1)1−i(1−R)y − 1)

and

F : [0, T ] ×R×R
+
0 → R, F (t, x, y) , −(Ψ0 − Ψ1) + ̺(t, x, y) + χ0(y) + χ1(y),

F i : [0, T ] ×R×R
+
0 → R, F i(t, x, y) , −Ψi + ̺i(t, x) + (−1)iχi(y)
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i = 0, 1 so that h, g and g − h satisfy

h′(t) = F (t, g(t), h(t)) and g′(t) − 1{i=1}h
′(t) = F i(t, g(t) − 1{i=1}h(t), h(t)).

• Existence of a unique local solution. The functions ̺ and ̺i are obviously continuous in t and
continuously differentiable in x and y. Moreover, χi is continuously differentiable in y, too. Therefore
F and F i are continuous in t and continuously differentiable in x and y which implies that they are
locally Lipschitz continuous in x and y, too. Consequently the Theorem of Picard-Lindelöf ensures
the existence of a unique local solution (g, h) to the ODEs (4.13) and (4.14). By Lemma 4.3 it follows
moreover that every local solution (g, h) has the property h ≥ 0.

• Boundedness of the ODEs. We show that F (t, x, y) is bounded from below for every (t, x, y) ∈ [0, T ]×
R×R

+
0 . Further we verify that F 0(t, x, y) is bounded from below for every (t, x, y) ∈ [0, T ]×R

+
0 ×R

+
0

whereas F 1(t, x, y) is bounded from above for every (t, x, y) ∈ [0, T ] ×R
−
0 ×R

+
0 .

In order to find the desired bounds we first need that the χi’s are non-negative which is obvious
since Ci and (−1)1−i 1

1−R(e(−1)1−i(1−R)y − 1) both are non-negative as y ∈ R
+
0 for i = 0, 1.

Moreover ̺(t, x, y) ≥ 0 for every (t, x, y) ∈ [0, T ]×R×R
+
0 whereas ̺i(t, x) is monotonic increasing in x

given t ∈ [0, T ]. Further ̺i(t, 0) is finite for every t ∈ [0, T ] since 0 < δ∧ε ≤ εδ
ε−(ε−δ)e−δ(T−t) ≤ δ∨ε <∞

(ε > 0), resp. ̺i(t, 0) = 0 (ε = 0). Hence we can define

ξ0(T ) , min
t∈[0,T ]

{̺0(t, 0)}, ξ1(T ) , max
t∈[0,T ]

{̺1(t, 0)}, T ∈ R
+.

The last results yield the desired bounds on F and F i, i.e.

F (t, x, y) ≥ −(Ψ0 − Ψ1) for every (t, x, y) ∈ [0, T ] ×R×R
+
0 , (∗)

F 0(t, x, y) ≥ −Ψ0 + ξ0(T ) for every (t, x, y) ∈ [0, T ] ×R
+
0 ×R

+
0 and (∗∗)

F 1(t, x, y) ≤ −Ψ1 + ξ1(T ) for every (t, x, y) ∈ [0, T ] ×R
−
0 ×R

+
0 . (∗ ∗ ∗)

• Global solution. Inequality (∗) implies that the local solution h of (4.13) satisfies

h(t) ≤ (Ψ0 − Ψ1)(T − t) for every t ∈ [0, T ].

This together with the non-negativity of h yields that the local solution h(t) is linearly bounded in
t. Therefore if there did not exist a global solution of the ODE-system this could only be caused by
an explosion of the local solution g of (4.14) on the interval [0, T ].

However, inequality (∗∗) implies

g(t) ≤ (Ψ0 − ξ0(T ))+(T − t) for every t ∈ [0, T ]. (+)

To see this we distinguish two cases; Ψ0 − ξ0(T ) ≥ 0 and Ψ0 − ξ0(T ) < 0.

• Ψ0 − ξ0(T ) ≥ 0. If Ψ0 − ξ0(T ) ≥ 0 then inequality (∗∗) shows that g′(t) = F 0(t, g(t), h(t)) ≥
−Ψ0 + ξ0(T ) if g(t) ≥ 0. Hence, g(t) ≤ (Ψ0 − ξ0(T ))(T − t) for every t ∈ [0, T ].

• Ψ0 − ξ0(T ) < 0. If otherwise Ψ0 − ξ0(T ) < 0 then g(t) ≤ 0 for all t ∈ [0, T ] since for every t̂ with
g(t̂) = 0 we have g′(t̂) = F 0(t̂, g(t̂), h(t̂)) = F 0(t̂, 0, h(t̂)) ≥ −Ψ0 + ξ0(T ) > 0 which together with
g(T ) = 0 implies the non-positivity of g.
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Both cases combined then yield the desired result.

Further, inequality (∗ ∗ ∗) implies

g(t) − h(t) ≥ −(Ψ1 − ξ1(T ))−(T − t) for every t ∈ [0, T ]. (++)

And again we distinguish two cases; Ψ1 − ξ1(T ) ≤ 0 and Ψ1 − ξ1(T ) > 0.

• Ψ1 − ξ1(T ) ≤ 0. If Ψ1 − ξ1(T ) ≤ 0 then inequality (∗ ∗ ∗) shows that g′(t) − h′(t) = F 1(t, g(t) −
h(t), h(t)) ≤ −Ψ1 + ξ1(T ) if g(t) − h(t) ≤ 0. Hence, g(t) − h(t) ≥ (Ψ1 − ξ1(T ))(T − t) for every
t ∈ [0, T ].

• Ψ1 − ξ1(T ) > 0. If otherwise Ψ1 − ξ1(T ) > 0 then g(t)− h(t) ≥ 0 for all t ∈ [0, T ] since for every t̂
with g(t̂)−h(t̂) = 0 we have g′(t̂)−h′(t̂) = F 1(t̂, g(t̂)−h(t̂), h(t̂)) = F 1(t̂, 0, h(t̂)) ≤ −Ψ1+ξ1(T ) < 0
which together with g(T ) − h(T ) = 0 implies the non-negativity of g − h.

Both cases combined then yield the desired result.

Consequently, inequalities (+) and (++) together with the non-negativity of h imply that every
local solution g satisfies

−(Ψ1 − ξ1(T ))−(T − t) ≤ g(t) ≤ (Ψ0 − ξ0(T ))+(T − t) for every t ∈ [0, T ].

Therefore, g cannot explode on [0, T ] which implies that the local solution (g, h) is indeed a global
one.

This finishes the proof.

Remark 4.10. The proof of Lemma 4.9 turns out to be the archetype of the proofs of the existence of
a unique global solution to the respective HJB-systems. The reason for this is that the respective ODEs
only differ by the χi’s whereas the ̺’s and ̺i’s are always the same. In the following proofs concerning
the existence of a unique global solution we therefore just present the respective χi’s and prove that
these are continuous in t, locally Lipschitz continuous in x and y and further non-negative. The rest
of the proofs are completely analog to the proof of Lemma 4.9.

The proof of Lemma 4.9 directly implies the following corollaries.

Corollary 4.11 (Time-dependent bounds on g and h). Let h and g be given by (4.13), (4.14) subject
to the boundary conditions (4.15). Then

−(Ψ1 − ξ1(T ))−(T − t) ≤ g(t) ≤ (Ψ0 − ξ0(T ))+(T − t) (ε > 0),

resp. 0 ≤ g(t) ≤ Ψ0(T − t) (ε = 0) and

0 ≤ h(t) ≤ (Ψ0 − Ψ1)(T − t)

for t ∈ [0, T ] where the ξi(T )’s are as defined in the proof of Lemma 4.9.

Corollary 4.12 (Time-independent bound on h). Let h and g be given by (4.13), (4.14) subject to
the boundary conditions (4.15). Then

0 ≤ h(t) ≤ h̄
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for t ∈ [0, T ] where h̄ is the smallest positive root of F̄ (y) , −(Ψ0 −Ψ1) + χ0(y) + χ1(y) if such a root
exists; otherwise h̄ = ∞, i.e.

h̄ = min
{

y ∈ R
+
0 : F̄ (y) = 0

}

,

with the convention min ∅ , ∞, where the χi’s are as defined in the proof of Lemma 4.9.

Proof. The assertion follows from a simple ODE argument since

F (t, x, y) = −(Ψ0 − Ψ1) + ̺(t, x, y) + χ0(y) + χ1(y) ≥ F̄ (y)

for all (t, x, y) ∈ [0, T ] ×R×R
+
0 where we used the notation from the proof of Lemma 4.9.

The boundary function on h as presented in Corollary 4.11 is a decreasing linear function that coincides
with h at maturity T and has a slope given by h′(T ). Hence it is suitable for large values of t for which
the deviation from h is not too large whereas for small values of t the non-linear behavior of h implies
that the boundary function overshoots h by far. On the contrary the bound given in Corollary 4.12 is
adequate for small values of t. Thus combining the two bounds on h yields

0 ≤ h(t) ≤ min{(Ψ0 − Ψ1)(T − t), h̄}

for t ∈ [0, T ].

We are now in the position to prove the optimality of the strategy that we found above.

Theorem 4.13 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and
g be given by (4.13), (4.14) subject to the boundary conditions (4.15). Then the strategy

(πi,∗, ci,∗(t)) , (πi,∗, ci,∗(t, g(t) − 1{i=1}h(t))), t ∈ [0, T ], i = 0, 1

as given in Lemma 4.5 is optimal for the investment problem (P) with crra preferences and relative
risk aversion R.

Proof. Since (πi,∗, ci,∗(t)) maximizes the reduced HJB-system (4.9) for each t ∈ [0, T ], optimality of
the strategy (πi,∗, ci,∗) follows directly from the Verification Theorem 3.3.

4.1.2 Solution of the Merton Investment Problem

Having generally discussed the solution of the investment problem (P) under constant intensity func-
tions we now focus on a special variant of those, i.e. we consider the Merton investment problem in
which the regime shift intensities are zero. This enables us to explicitly solve the ODE-system given
by (4.13), (4.14).

Letting Ci = 0 the ODEs (4.13), (4.14) read

h′(t) = − (Ψ0 − Ψ1) +
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

g(t) R
1−R(e

1−R
R

h(t) − 1), (4.16)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
g(t) − 1

)

)

(4.17)
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subject to the boundary conditions

g(T ) = 0, h(T ) = 0. (4.18)

On the basis of the procedure of solving the Merton problem with the conventional ansatz we use the
following ansatz in order to solve the above ODE-system. We suppose

g(t) − 1{i=1}h(t) = R
1−R ln(Gi(t)) − 1

1−R ln(f(t)) (4.19)

where the function Gi with Gi(T ) = e−
1
R

δT is to be determined and f is given by (4.7). This ansatz
implies that

e−
1−R

R
(g(t)−1{i=1}h(t)) = (f(t))

1
R

Gi(t)
. (∗)

Notice further that
εδ

ε−(ε−δ)e−δ(T−t) = −f ′(t)
f(t) . (∗∗)

Utilizing (4.19), (∗) and (∗∗) we can write the functions g and h, the Merton consumption rate ci,M

and the value function vi in terms of the functions Gi and f , i.e.

g(t) = R
1−R ln(G0(t)) − 1

1−R ln(f(t)),

h(t) = R
1−R

(

ln(G0(t)) − ln(G1(t))
)

,

ci,M (t) = ε
1
R e−

1
R

δt(Gi(t))−1,

vi(t, x) = 1
1−Rx

1−R(Gi(t))R − 1
1−Rf(t).

Further inserting the ansatz (4.19) into the system (4.16), (4.17) and taking (∗) and (∗∗) into account
yields

g′(t) − 1{i=1}h
′(t) = −Ψi + εδ

ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
(g(t)−1{i=1}h(t)) − 1

)

)

⇔ R
1−R

(Gi)′(t)
Gi(t)

− 1
1−R

f ′(t)
f(t) = −Ψi − f ′(t)

f(t)

(

1 − R
1−R

((

−f ′(t)
f(t)

)
1−R

R (f(t))
1
R

Gi(t)
− 1
)

)

⇔ R
1−R

(Gi)′(t)
Gi(t)

− 1
1−R

f ′(t)
f(t) = −Ψi − 1

1−R
f ′(t)
f(t) − R

1−R
(−f ′(t))

1
R

Gi(t)

⇔ (Gi)′(t) = −1−R
R ΨiGi(t) − (−f ′(t))

1
R

⇔ (Gi)′(t) = −1−R
R ΨiGi(t) − ε

1
R e−

1
R

δt.

Thus in order to solve the Merton investment problem we just need to solve the following inhomoge-
neous ODE for Gi given by

(Gi)′(t) = −1−R
R ΨiGi(t) − ε

1
R e−

1
R

δt

subject to the boundary conditions Gi(T ) = e−
1
R

δT .

The variation of constants method yields that Gi can be written as

Gi(t) = Gi,H(t)
(

Gi(T ) +
∫ T
t

ε
1
R e−

1
R

δs

Gi,H(s)
ds
)
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where Gi,H(t) = e
1−R

R
Ψi(T−t) is the homogeneous solution of the aforementioned ODE. Calculating the

integral we get that

Gi(t) = e
1−R

R
Ψi(T−t)− 1

R
δT
(

1 + ε
1
R

R
δ−(1−R)Ψi

(

e
δ−(1−R)Ψi

R
(T−t) − 1

))

.

Inserting this solution into the above formulas depending on Gi yields explicit formulas for the functions
g and h, the Merton consumption rate ci,M and the value function vi at time t that are given in the
following theorem.

Theorem 4.14 (Solution of the Merton Investment Problem). Let condition (NJ) be satisfied, and let
h and g be given by (4.16), (4.17) subject to the boundary conditions (4.18). Then the optimal strategy
for the investment problem (P) with crra preferences and relative risk aversion R is given by

(πi,∗, ci,∗(t)) = (πi,M , ci,M (t)), t ∈ [0, T ]

where

πi,M = 1
R(σi.(σi)⊤)−1.ηi, ci,M (t) = ε

1
R e

δ−(1−R)Ψi

R
(T−t)

1+ε
1
R R

δ−(1−R)Ψi

(

e
δ−(1−R)Ψi

R
(T−t)−1

)

for i = 0, 1. In particular g and h are given by

g(t) = Ψ0(T − t) + R
1−R ln

(

1 + ε
1
R

R
δ−(1−R)Ψ0

(

e
δ−(1−R)Ψ0

R
(T−t) − 1

))

− 1
1−R ln

(

ε
δ (eδ(T−t) − 1) + 1

)

,

h(t) = (Ψ0 − Ψ1)(T − t) + R
1−R ln

(

1 + ε
1
R

R
δ−(1−R)Ψ0

(

e
δ−(1−R)Ψ0

R
(T−t) − 1

))

− R
1−R ln

(

1 + ε
1
R

R
δ−(1−R)Ψ1

(

e
δ−(1−R)Ψ1

R
(T−t) − 1

))

so that the value functions read

vi(t, x) = 1
1−Rx

1−Re(1−R)Ψi(T−t)−δT
(

1 + ε
1
R

R
δ−(1−R)Ψi

(

e
δ−(1−R)Ψi

R
(T−t) − 1

))R

− 1
1−R

1
δ e

−δt(ε− (ε− δ)e−δ(T−t))

for i = 0, 1.

If the investor was not allowed to consume, i.e. ε = 0, then the latter formulas simplify to

πi,M = 1
R(σi.(σi)⊤)−1.ηi, ci,M (t) = 0

for i = 0, 1 and

g(t) = Ψ0(T − t),

h(t) = (Ψ0 − Ψ1)(T − t),

vi(t, x) = e−δT 1
1−R(x1−Re(1−R)Ψi(T−t) − 1)

for i = 0, 1.

Remark 4.15. Remember the time-dependent upper bounds on g and h given in Corollary 4.11. The
bound on h just coincides with the corresponding function h from the Merton investment problem given
ε = 0. Concerning g this holds true in case of ε = 0.
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4.2 Step Intensity Functions

Having dealt with constant intensity functions we now come to a simple extension of those constant
intensities, i.e. we consider piecewise constant intensity functions that exhibit at most one jump.
Formally we let the intensity functions ϑi,1−i be given as step functions of the form

ϑi,1−i(π, c) = Ci
11{Ai+π⊤.Bi

π+Bi
cc≤Ci} + Ci

21{Ai+π⊤.Bi
π+Bi

cc>Ci}, (π, c) ∈ R
n̄ ×R

+
0 (SI)

with Ai ∈ R, Bi
π ∈ R

n̄, Bi
c ∈ R, Ci ∈ R and Ci

j ∈ R
+
0 for i = 0, 1 and j = 1, 2 where C0

2 > C0
1 and

C1
1 > C1

2 . We omit the cases Ci
1 = Ci

2, i = 0, 1, as this implies constant intensity functions that have
already been discussed.

Such step intensity functions have the feature that the large investor’s impact on the market is an
indirect one. This is because his strategy (π, c) only determines whether the intensity is Ci

1 or Ci
2,

but not how large, resp. small, those two intensities are since these are predefined constants. In the
following we give some explanations and interpretations of the parameters characterizing the step
intensity functions.

Remark 4.16 (Interpretation of the intensity parameters). The step intensity functions can take on
two different values, Ci

1 and Ci
2, where Ci

1 is advantageous and Ci
2 is disadvantageous for the large

investor. Be aware of the fact that the advantageous branch of ϑi,1−i is always closed whereas the
disadvantageous branch is always open. This turns out to be necessary for the existence of an optimal
strategy. The absolute value of the difference between those two values, |Ci

1 − Ci
2|, mirrors the possible

extent of the large investor’s influence. Further, Bi
π and Bi

c determine the strength of that influence,
resp. the sensitivity of the market concerning the strategy followed by the large investor – the bigger
|Bi

π,n|, resp. |Bi
c|, the more sensitive the market. Here Bi

π,n denotes the n-th element of Bi
π. Finally

having specified the Bi’s the critical barrier separating the advantageous from the disadvantageous
strategies in terms of the resulting intensities is fixed via the parameters Ai and Ci.

So far we only described when and to which extent the market is influenced by the large investor. The
way in which the market reacts on his actions is determined by the sign of the Bi’s. We first look at the
portfolio parameter Bi

π. A positive Bi
π,n corresponds to a market in which large positions in the n-th

asset yield large (i = 0), resp. small (i = 1), transition intensities. So the other market participants
disapprove the large investor’s holdings in asset n in that his position could cause the market to turn
into the adverse state (if i = 0) or hinder an early jump back to the favorable state (if i = 1).

In case of Bi
π,n being negative large proportions in the n-th asset cause small (i = 0), resp. large

(i = 1), transition intensities. Thus the large investor is accepted by the market, resp. the other market
participants may think of him as having superior information about the n-th stock, such as a manager
of a prosperous fund, or an executive of the company issuing the stock or even a person having insider
information.

Having discussed the role of Bi
π we now go on describing the consumption parameter Bi

c. If Bi
c > 0

then consuming at a high rate implies large (i = 0), resp. small (i = 1), regime shift intensities, i.e.
the other market participants may interpret the large investor’s high consumption rate as a bad signal
for the future development, e.g. as a herald of a market crisis. Another example in which a positive
value of Bi

c is reasonable is the large investor being the manager of a large mutual fund. In this context
consumption can be interpreted as a reduction of the number of assets under management. A possible
reason for such a reduction could be the absence of lucrative investment opportunities.
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Finally, a negative Bi
c implies that consuming at a high rate yields small (i = 0), resp. large (i = 1),

regime shift intensities. Thus the market somehow rewards the large investor if he consumes at a high
rate. This could be the case if the investor’s presence in the market is disapproved by the other market
participants. A specialty arises if ε = 0, i.e. if the investor does not draw any utility from intermediate
consumption in terms of the utility function. In this case a negative Bi

c may force the investor to
consume just to achieve favorable transition intensities without generating any direct utility gain. In
this context consumption could be interpreted as bribe and we will see later on that there exist parameter
specifications under which the investor pays a bribe.

Inserting the step intensity functions into the reduced HJB-system (4.8) the latter further simplifies to

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − 1{i=1}h
′(t) + ri + π⊤.ηi − 1

2Rπ
⊤.σi.(σi)⊤.π

+ εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)(g(t)−1{i=1}h(t))c1−R − 1) − c

+
(

Ci
11{Ai+π⊤.Bi

π+Bi
cc≤Ci} + Ci

21{Ai+π⊤.Bi
π+Bi

cc>Ci}

)

1
1−R(e(−1)1−i(1−R)h(t) − 1)

}

(4.20)

for t ∈ [0, T ) and i = 0, 1, subject to the boundary conditions

g(T ) = 0, h(T ) = 0.

Subsequently, we present the solution of the investment problem (P) for three different variants of
the step intensity functions. First, we discuss intensities that are influenced solely by the portfolio
proportions π, the so called portfolio-dependent intensities (Subsection 4.2.1). Second, instead of the
dependency on π we look at consumption-dependent intensities being functions just of the consumption
rate c (Subsection 4.2.2). And finally the most general version – the portfolio- and consumption-
dependent intensities – is regarded (Subsection 4.2.3).

We do not dwell on the simplest variant of the step intensity functions – the portfolio- and consumption-
independent intensities – since those are just a special case of the constant intensity functions which
have already been discussed in the previous section, i.e. setting Bi

π = 0 and Bi
c = 0 implies ϑi,1−i(π, c) =

Ci
11{Ai≤Ci} + Ci

21{Ai>Ci} for i = 0, 1.

In each subsection we present the optimal strategies in closed form, i.e. we give explicit formulas for
the optimal portfolio proportions and consumption rates that only depend on the solution of an ODE-
system of which we show that it admits a unique global solution. Further we provide bounds on the
solution of this ODE-system.

4.2.1 Portfolio-dependent Intensities

In this section we study the optimal investment problem when the large investor’s portfolio proportions
impact on the intensities of regime shifts whereas his consumption has no influence, i.e. we let

Bi
π 6= 0 and Bi

c = 0 for i = 0, 1, (PD)

so that the intensities are now given by

ϑi,1−i(π, c) = Ci
11{Ai+π⊤.Bi

π≤Ci} + Ci
21{Ai+π⊤.Bi

π>Ci}.
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We denote by

F
π,i ,

{

π ∈ R
n̄ : Ai + π⊤.Bi

π ≤ Ci
}

the half space of all portfolio proportions that are favorable for the investor concerning the intensities
of regime shifts. Letting

dπ,i(π) , Ai + π⊤.Bi
π − Ci

denote the ’distance’ of the strategy π to the separating hyperplane, we have π ∈ Fπ,i if and only if
dπ,i(π) ≤ 0.

In order to determine the maximizer in the HJB-system (4.20) we define functions Hπ,i : R+
0 ×R

n̄ → R

and Hc,i : [0, T ] ×R×R
+
0 → R, i = 0, 1, given by

Hπ,i(y, π) , ri + π⊤.ηi − 1
2Rπ

⊤.σi.(σi)⊤.π +
(

Ci
11{π∈Fπ,i} + Ci

21{π/∈Fπ,i}

)

1
1−R(e(−1)1−i(1−R)y − 1),

Hc,i(t, x, c) , εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)xc1−R − 1) − c

where we use the already mentioned convention 01−R , ∞ if R > 1. Notice that function Hc,i is
independent of t and x if ε = 0.

The HJB-system (4.20) reads

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − 1{i=1}h
′(t) +Hπ,i(h(t), π) +Hc,i(t, g(t) − 1{i=1}h(t), c)

}

(4.21)

for t ∈ [0, T ) and i = 0, 1, subject to the boundary conditions

g(T ) = 0, h(T ) = 0.

Writing the HJB-system in that way it is obvious that the maximization over (π, c) ∈ R
n̄ ×R

+
0 can be

separated into two unrelated maximizations; one over π ∈ R
n̄ and one over c ∈ R

+
0 .

To find the supremum in (4.21) we present the maximizers of the functions Hπ,i(y, ·) and Hc,i(t, x, ·)
for arbitrary (t, x, y) ∈ [0, T ]×R×R

+
0 . This yields a family of maximizers dependent on (t, x, y). The

maximizers of the HJB-system (4.21) are then obtained by replacing x and y by g(t) − 1{i=1}h(t) and
h(t).

Concerning the consumption rate the concavity of Hc,i(t, x, ·) and the first-order condition imply

Lemma 4.17 (Maximizer of Hc,i(t, x, ·)). For every (t, x) ∈ [0, T ] ×R the maximizer

ci,∗(t, x) , arg max
c∈R+

0

Hc,i(t, x, c), i = 0, 1,

is given by the Merton consumption rate, i.e.

ci,∗(t, x) = cM (t, x).

Remark 4.18. In case of ε = 0 the Merton consumption rate vanishes, i.e. cM (t, x) = 0.
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In order to find the maximizing portfolio proportions we let Hπ,i
j : R+

0 ×R
n̄ → R, i = 0, 1 and j = 1, 2,

be given by

Hπ,i
j (y, π) , ri + π⊤.ηi − 1

2Rπ
⊤.σi.(σi)⊤.π + Ci

j
1

1−R(e(−1)1−i(1−R)y − 1)

such that Hπ,i(y, π) = Hπ,i
1 (y, π)1{π∈Fπ,i} +Hπ,i

2 (y, π)1{π/∈Fπ,i}.

Since Hπ,i
j (y, ·) is a concave paraboloid for every y ∈ R

+
0 and j = 1, 2, the two candidate solutions for

the maximization of Hπ,i(y, ·) over π are πi,M and π̃i,crit where

π̃i,crit , arg max
{π∈Rn̄ : Ai+π⊤.Bi

π=Ci}
Hπ,i(y, π)

for i = 0, 1 and y ∈ R
+
0 . Using the Lagrange multiplier method we find that π̃i,crit is given by

π̃i,crit = 1
R(σi.(σi)⊤)−1.

(

ηi −Bi
π

Ai+(πi,M )⊤.Bi
π−Ci

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

)

.

Having established the candidate solutions the following lemma presents the desired maximizers.

Lemma 4.19 (Maximizer of Hπ,i(y, ·)). For every y ∈ R
+
0 the maximizer

πi,∗(y) , arg max
π∈Rn̄

Hπ,i(y, π), i = 0, 1,

is given by

πi,∗(y) =

{

πi,M if y < hi,crit,

πi,crit if y ≥ hi,crit,

where

hi,crit , (−1)1−i 1
1−R ln

(

(1 −R) ζi,crit

Ci
2−Ci

1
+ 1
)

with

ζi,crit , −1
2

((Ai+(πi,M )⊤.Bi
π−Ci)+)2

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

and

πi,crit , 1
R(σi.(σi)⊤)−1.

(

ηi −Bi
π

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

)

.

Remark 4.20. We use the following shorthand notations

Hπ,i
1,crit(y) , Hπ,i

1 (y, πi,crit) and Hπ,i
2,M (y) , Hπ,i

2 (y, πi,M )

for y ∈ R
+
0 and i = 0, 1.

Figure 4.1 shows the three typical shapes of the functions Hπ,i
1 (y, ·), Hπ,i

2 (y, ·) and Hπ,i(y, ·) that
correspond to the different cases occurring in the following proof of Lemma 4.19.
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Figure 4.1: Typical shapes of Hπ,i
1 (y, ·), Hπ,i

2 (y, ·) and Hπ,i(y, ·) where Fπ,i = (−∞, 0.5]

Proof of Lemma 4.19. Let y ∈ R
+
0 be given. A straight forward optimization yields that the two

paraboloids Hπ,i
1 (y, ·) and Hπ,i

2 (y, ·) attain their maxima at πi,M . Further since C0
1 < C0

2 and C1
1 > C1

2

we get that
Hπ,i

1 (y, π) > Hπ,i
2 (y, π) for all π ∈ R

n̄. (∗)

In order to determine the maximizing portfolio strategy we distinguish the two cases πi,M ∈ Fπ,i and
πi,M /∈ Fπ,i.

• πi,M ∈ Fπ,i. If πi,M ∈ Fπ,i then by (∗) the maximizer of Hπ,i(y, ·) is given by the Merton strategy
(cf. leftmost couple of plots in Figure 4.1), i.e.

πi,M ∈ F
π,i ⇒ πi,∗(y) = πi,M .

• πi,M /∈ Fπ,i. If otherwise πi,M /∈ Fπ,i then (∗) implies that the maximizer of Hπ,i(y, ·) is either
πi,M in case of Hπ,i

2,M (y) > Hπ,i
1,crit(y) (cf. central couple of plots in Figure 4.1), or πi,crit in case of

Hπ,i
2,M (y) ≤ Hπ,i

1,crit(y) (cf. rightmost couple of plots in Figure 4.1). So we have to take a closer look

on the condition Hπ,i
2,M (y) ≤ Hπ,i

1,crit(y). Therefore with

Hπ,i
2,M (y) ≤ Hπ,i

1,crit(y) ⇔ (Ci
2 − Ci

1)
1

1−R(e(−1)1−i(1−R)y − 1) ≤ −1
2

((Ai+(πi,M )⊤.Bi
π−Ci)+)2

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

⇔ (Ci
2 − Ci

1)
1

1−R(e(−1)1−i(1−R)y − 1) ≤ ζi,crit

⇔ y ≥ (−1)1−i 1
1−R ln

(

(1 −R) ζi,crit

Ci
2−Ci

1
+ 1
)

⇔ y ≥ hi,crit

we get

πi,M /∈ F
π,i ⇒ πi,∗(y) =

{

πi,M if y < hi,crit,

πi,crit if y ≥ hi,crit.

Since πi,M ∈ Fπ,i implies hi,crit = 0 and πi,crit = πi,M the last formula covers the case of πi,M ∈ Fπ,i,
too. Hence the maximizing strategy in state i is given by

πi,∗(y) =

{

πi,M if y < hi,crit,

πi,crit if y ≥ hi,crit.



42 4 Solution for crra Investors with Power Utility

Remark 4.21. Notice that it is necessary for the existence of the maximizing strategy that the regime
shift intensities are defined in such a way that they always attain the favorable value Ci

1 for any strategy
π that satisfies Ai + π⊤.Bi

π = Ci. Otherwise, the maximizing strategy would not exist if Hπ,i
2,M (y) ≤

Hπ,i
1,crit(y) in case of πi,M /∈ Fπ,i (cf. rightmost couple of plots in Figure 4.1).

Remark 4.22 (Interpretation). The maximizing strategy coincides with the Merton strategy when
the latter belongs to the half space of favorable strategies. If this is not the case then the maximizing
strategy is given by the Merton strategy as long as y is not bigger than hi,crit. For all y < hi,crit it is
not reasonable to deviate from the Merton strategy. Remember that y is the general variable that later
on is to be replaced by h. Thus y represents the difference between the two market states as h does.
Hence only if the difference overshoots the critical barrier hi,crit then it is reasonable to switch to the
critical strategy πi,crit.

Remark 4.23 (Discontinuity of πi,∗). The maximizing strategy πi,∗ is in general discontinuous at the
point y = hi,crit. Only in the trivial case of hi,crit = 0 the strategy does not jump at all.

Remark 4.24. So far the strategy (πi,∗, ci,∗) is only a candidate solution for the optimal investment
problem. To verify the optimality we need to show that the related HJB-system has a global solution
that satisfies the required regularity conditions stated in the Verification Theorem 3.3.

Inserting (πi,∗(h(t)), ci,∗(t, g(t)− 1{i=1}h(t))) into the reduced HJB-equation (4.21) the latter becomes
a system of coupled backward ODEs

h′(t) = − (Ψ0 − Ψ1) +
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

g(t) R
1−R(e

1−R
R

h(t) − 1)

− C0
2

1
1−R(e−(1−R)h(t) − 1) + C1

2
1

1−R(e(1−R)h(t) − 1)

−
[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)h(t) − 1) − 1

2
((A0+(π0,M )⊤.B0

π−C0)+)2
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

]+

+
[

(C1
1 − C1

2 ) 1
1−R(e(1−R)h(t) − 1) − 1

2
((A1+(π1,M )⊤.B1

π−C1)+)2

1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

]+
,

(4.22)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
g(t) − 1

)

)

− C0
2

1
1−R(e−(1−R)h(t) − 1)

−
[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)h(t) − 1) − 1

2
((A0+(π0,M )⊤.B0

π−C0)+)2

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

]+

(4.23)

subject to the boundary conditions

g(T ) = 0, h(T ) = 0. (4.24)

Remark 4.25. From the proof of Lemma 4.19 we know that

y ≥ hi,crit ⇔ (Ci
1 − Ci

2)
1

1−R(e(−1)1−i(1−R)y − 1) − 1
2

((Ai+(πi,M )⊤.Bi
π−Ci)+)2

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

≥ 0.

Remark 4.26. The aforementioned ODEs include the ODEs of the classical Merton problem (first
rows) and the ODEs of the Bäuerle-Rieder problem with constant regime shift intensities Ci

2 (first two
rows).
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Lemma 4.27. The ODE-system given by equation (4.22) and (4.23) subject to the boundary conditions
(4.24) admits a unique global solution.

Proof. The proof is essentially the same as the proof of Lemma 4.9. Only the χi’s are different. Therefore
we just present the actual χi’s and verify that those satisfy the necessary continuity conditions and
the non-negativity condition.

• Definition of the χi’s. In the portfolio-dependent case the χi’s are given by χi : R+
0 → R, i = 0, 1,

with

χi(y) , (−1)1−i
(

Ci
2

1
1−R(e(−1)1−i(1−R)y − 1) +

[

(Ci
1 − Ci

2)
1

1−R(e(−1)1−i(1−R)y − 1) + ζi,crit
]+)

.

• Continuity results on the χi’s. Being the composition of continuously differentiable functions and
the [ · ]+-function χi is locally Lipschitz continuous.

• Non-negativity of the χi’s. The non-negativity of χ1 is obvious. Moreover the non-positivity of ζ0,crit

implies

(C0
1 − C0

2 ) 1
1−R(e−(1−R)y − 1) ≥

[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)y − 1) + ζ0,crit

]+

since we required C0
1 < C0

2 . Hence the non-negativity of the χ0 is proven as

χ0(y) ≥ −C0
1

1
1−R(e−(1−R)y − 1) ≥ 0 for every y ∈ R

+
0 .

The remainder of the proof is identical to the proof of Lemma 4.9.
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Figure 4.2: g (left) and h (right) as functions of t
(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.02, σ0 = 0.3, σ1 = 0.6, δ = 0.035, ε = 1, R = 3, T = 1,

A0 = 17, B0
π = −5, C0 = 14, C0

1 = 5, C0
2 = 10, A1 = 5.5, B1

π = −4.1, C1 = 5, C1
1 = 5, C1

2 = 1.25)

Figure 4.2 shows an example for g and h. It can be seen that in this particular example h seems to
be bounded from above, i.e. the difference of the two market states as perceived by the large investor
cannot be arbitrarily large.

The proof of Lemma 4.27 directly implies the following two corollaries.
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Corollary 4.28 (Time-dependent bounds on g and h). Let h and g be given by (4.22), (4.23) subject
to the boundary conditions (4.24). Then

−(Ψ1 − ξ1(T ))−(T − t) ≤ g(t) ≤ (Ψ0 − ξ0(T ))+(T − t) (ε > 0),

resp. 0 ≤ g(t) ≤ Ψ0(T − t) (ε = 0) and

0 ≤ h(t) ≤ (Ψ0 − Ψ1)(T − t)

for t ∈ [0, T ] where the ξi(T )’s are as defined in the proof of Lemma 4.9.

Corollary 4.29 (Time-independent bound on h). Let h and g be given by (4.22), (4.23) subject to
the boundary conditions (4.24). Then

0 ≤ h(t) ≤ h̄

for t ∈ [0, T ] where h̄ is the smallest positive root of F̄ (y) , −(Ψ0 −Ψ1) + χ0(y) + χ1(y) if such a root
exists; otherwise h̄ = ∞, i.e.

h̄ = min
{

y ∈ R
+
0 : F̄ (y) = 0

}

,

with the convention min ∅ , ∞, where the χi’s are as defined in the proof of Lemma 4.9.

Proof. The assertion follows from a simple ODE argument since

F (t, x, y) = −(Ψ0 − Ψ1) + ̺(t, x, y) + χ0(y) + χ1(y) ≥ F̄ (y)

for all (t, x, y) ∈ [0, T ] ×R×R
+
0 where we used the notation from the proof of Lemma 4.9.

Figure 4.2 reveals that the boundary function on h as presented in Corollary 4.28 is suitable for large
values of t whereas for small values of t the non-linear behavior of h implies that the boundary function
overshoots h by far. The converse is true for the bound given in Corollary 4.29. Thus combining the
two bounds on h yields

0 ≤ h(t) ≤ min{(Ψ0 − Ψ1)(T − t), h̄}

for t ∈ [0, T ].

The following theorem ensures that the strategy given in Lemmas 4.17 and 4.19 is indeed the optimal
strategy for the optimal investment problem.

Theorem 4.30 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and
g be given by (4.22), (4.23) subject to the boundary conditions (4.24). Then the strategy

(πi,∗(t), ci,∗(t)) , (πi,∗(h(t)), ci,∗(t, g(t) − 1{i=1}h(t))), t ∈ [0, T ], i = 0, 1,

as given in Lemmas 4.17 and 4.19 is optimal for the investment problem (P) with crra preferences
and relative risk aversion R.

Proof. Since (πi,∗(t), ci,∗(t)) maximizes the HJB-system (4.21) for each t ∈ [0, T ], optimality of the
strategy (πi,∗, ci,∗) follows directly from the Verification Theorem 3.3.

Remark 4.31. Notice that the optimal consumption rate is of the Merton type but differs from the
genuine Merton consumption rate as the underlying functions g and h are different from those in the
Merton setting.
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Figure 4.3: Optimal strategy vs. Merton strategy: πi,∗ and πi,M as functions of t
(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.02, σ0 = 0.3, σ1 = 0.6, δ = 0.035, ε = 1, R = 3, T = 1,
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Figure 4.3 shows the optimal portfolio strategy and the Merton portfolio strategy in a setting where
Bi

π is negative for i = 0, 1. Hence the large investor is forced to follow a portfolio strategy that
temporarily exceeds the Merton proportion in order to generate advantageous regime shift intensities.
In the example of Figure 4.3 the deviation is about 23% in state 0 whereas in state 1 it amounts to
about 10%.

Further the strategy plotted in Figure 4.3 shows a typical feature of the optimal strategy for the large
investor: Usually there exists a point in time, ti ∈ [0, T ], such that πi,∗(t) = πi,M on [ti, T ], i = 0, 1.
This is due to the fact that with a decreasing time to maturity a regime shift becomes more and more
improbable. Thus the only reason forcing the investor to deviate from the Merton strategy loses its
strength when the time to maturity gets smaller. Hence the investor follows the Merton strategy as
soon as the maturity is close enough.

The special form of the optimal portfolio strategy suggests a separation into the Merton strategy and
an additional hedging component, i.e.

πi,∗(t) = πi,M + πi,H(t), i = 0, 1,

where the hedging component πi,H is given by

πi,H(t) = −(σi.(σi)⊤)−1.Bi
π

(Ai+(πi,M )⊤.Bi
π−Ci)+

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π
1{h(t)≥hi,crit}.

This hedging component represents the necessary adjustment of the Merton strategy due to the in-
vestor’s influence on the regime shift intensities.

Notice that (πi,H(t))⊤.Bi
π ≤ 0. The following lemma shows that πi,H benefits the regime shift intensi-

ties.

Lemma 4.32. The optimal strategy (πi,∗, ci,∗) satisfies

ϑ0,1(π0,∗(t), c0,∗(t)) ≤ ϑ0,1(π0,M , c0,M (t)) and ϑ1,0(π1,∗(t), c1,∗(t)) ≥ ϑ1,0(π1,M , c1,M (t))

for every t ∈ [0, T ].
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Proof. The assertion follows since

ϑ0,1(π0,∗(t), c0,∗(t)) = C0
11{A0+(π0,∗(t))⊤.B0

π≤C0} + C0
21{A0+(π0,∗(t))⊤.B0

π>C0}

= C0
11{A0+(π0,M )⊤.B0

π+(π0,H(t))⊤.B0
π≤C0} + C0

21{A0+(π0,M (t))⊤.B0
π(π0,H(t))⊤.B0

π>C0}

≤ C0
11{A0+(π0,M )⊤.B0

π≤C0} + C0
21{A0+(π0,M (t))⊤.B0

π>C0}

= ϑ0,1(π0,M , c0,M (t))

and

ϑ1,0(π1,∗(t), c1,∗(t)) = C1
11{A1+(π1,∗(t))⊤.B1

π≤C1} + C1
21{A1+(π1,∗(t))⊤.B1

π>C1}

= C1
11{A1+(π1,M )⊤.B1

π+(π1,H(t))⊤.B1
π≤C1} + C1

21{A1+(π1,M (t))⊤.B1
π+(π1,H(t))⊤.B1

π>C1}

≥ C1
11{A1+(π1,M )⊤.B1

π≤C1} + C1
21{A1+(π1,M (t))⊤.B1

π>C1}

= ϑ1,0(π1,M , c1,M (t))

as (πi,H(t))⊤.Bi
π ≤ 0.

Remark 4.33. Notice that the optimal strategy is a compromise strategy. At first glance the large
investor is optimizing only the utility criterion of trading optimally in terms of generating the highest
possible expected utility from intermediate consumption and final wealth. But as compared to the Merton,
resp. the Bäuerle-Rieder model the investor also faces another criterion hidden in the utility criterion:
The investor aims at investing in such a way that the regime shift intensities are as favorable as possible.
We call this hidden criterion intensity criterion.

Of course, the regime shift intensities implied by the choice of a certain strategy determine the per-
formance of the investor’s wealth and hence the intensity criterion is already covered by the utility
criterion. But since the investor’s influence on the regime shift intensities is the key point of our model
we regard the intensity criterion as a second criterion the investor has to deal with when solving the
optimal investment problem.

Thus the large investor faces a trade-off between optimizing the utility criterion on the one hand and
optimizing the intensity criterion on the other hand. Pursuing only the utility goal would imply the Mer-
ton strategies to be optimal. However, solely aiming at favorable intensities would render any strategy
in the favorable half space Fπ,i to be optimal.

The optimal strategy that we derived here lies – as combination of the Merton strategy and the critical
strategy which is part of Fπ,i – somewhere in between those two extreme strategies. Thus it is in general
different from the Merton strategy but generates better regime shift intensities than those the Merton
strategy would yield, i.e. it accommodates the aforementioned trade-off so that the notion compromise
strategy is legitimate.
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4.2.2 Consumption-dependent Intensities

Instead of the portfolio proportions now the consumption rate determines the intensities of regime
shifts, i.e. we let

Bi
π = 0 and Bi

c 6= 0 for i = 0, 1, (CD)

so that the intensities are given by

ϑi,1−i(π, c) = Ci
11{Ai+Bi

cc≤Ci} + Ci
21{Ai+Bi

cc>Ci}.

We denote by

F
c,i ,

{

c ∈ R
+
0 : Ai +Bi

cc ≤ Ci
}

the half space of all consumption rates that are favorable for the investor concerning the intensities of
regime shifts. In analogy to the previous subsection we let

dc,i(c) , Ai +Bi
cc− Ci

denote the ’distance’ of the strategy c to the separating hyperplane, i.e. c ∈ Fc,i if and only if dc,i(c) ≤ 0.

In order to determine the maximizer in the HJB-system (4.20) we define functions Hπ,i : R
n̄ → R

and Hc,i : [0, T ] ×R×R
+
0 ×R

+
0 → R, i = 0, 1, given by

Hπ,i(π) , ri + π⊤.ηi − 1
2Rπ

⊤.σi.(σi)⊤.π,

Hc,i(t, x, y, c) , εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)xc1−R − 1) − c

+
(

Ci
11{c∈Fc,i} + Ci

21{c/∈Fc,i}

)

1
1−R(e(−1)1−i(1−R)y − 1)

where we use the already mentioned convention 01−R , ∞ if R > 1. Notice that the dependency of
Hc,i on t and x vanishes if ε = 0.

The HJB-system (4.20) is given by

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − 1{i=1}h
′(t) +Hπ,i(π) +Hc,i(t, g(t) − 1{i=1}h(t), h(t), c)

}

(4.25)

for t ∈ [0, T ) and i = 0, 1, subject to the boundary conditions

g(T ) = 0, h(T ) = 0.

As in the portfolio-dependent case taking the supremum over (π, c) ∈ R
n̄ ×R

+
0 can be separated into

two unrelated maximizations; one over π ∈ R
n̄ and one over c ∈ R

+
0 .

To find the supremum in (4.25) we present the maximizers of the functions Hπ,i and Hc,i(t, x, y, ·) for
arbitrary (t, x, y) ∈ [0, T ] × R × R

+
0 . This yields a family of maximizers dependent on (t, x, y). The

maximizers of the HJB-system (4.25) are then obtained by replacing x and y by g(t) − 1{i=1}h(t) and
h(t).

Concerning the portfolio proportions the concavity of Hπ,i and the first-order condition imply
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Lemma 4.34 (Maximizer of Hπ,i). The maximizer

πi,∗ , arg max
π∈Rn̄

Hπ,i(π), i = 0, 1,

is given by the Merton strategy, i.e.
πi,∗ = πi,M .

In order to determine the maximizing consumption rate we let Hc,i
j : [0, T ] × R × R

+
0 × R

+
0 → R,

i = 0, 1 and j = 1, 2, given by

Hc,i
j (t, x, y, c) , εδ

ε−(ε−δ)e−δ(T−t)
1

1−R(e−(1−R)xc1−R − 1) − c+ Ci
j

1
1−R(e(−1)1−i(1−R)y − 1)

such that Hc,i(t, x, y, c) = Hc,i
1 (t, x, y, c)1{c∈Fc,i} + Hc,i

2 (t, x, y, c)1{c/∈Fc,i}. Again Hc,i
j is de facto a

function solely of y and c in case of ε = 0.

If ε > 0 then Hc,i
j (t, x, y, ·) is concave for every (t, x, y) ∈ [0, T ] ×R×R

+
0 and j = 1, 2. Therefore the

two candidate solutions for the maximization of Hc,i(t, x, y, ·) over c in (4.25) are cM and c̃i,crit where

c̃i,crit(t) , arg max
{c∈R+

0 : Ai+Bi
cc=Ci}

Hc,i(t, x, y, c).

If ε = 0 then Hc,i
j (t, x, y, ·) is linearly decreasing in c implying cM (t, x) = 0.

Note that c̃i,crit only exists if Bi
c > 0 and Ai ≤ Ci, resp. Bi

c < 0 and Ai ≥ Ci, where it is given by

−Ai−Ci

Bi
c

for i = 0, 1. Otherwise the set
{

c ∈ R
+
0 : Ai +Bi

cc = Ci
}

would be empty.

Having established the candidate solutions the following lemma presents the desired maximizers.

Lemma 4.35 (Maximizer of Hc,i(t, x, y, ·)). For every (t, x, y) ∈ [0, T ] ×R×R
+
0 the maximizer

ci,∗(t, x, y) , arg max
c∈R+

0

Hc,i(t, x, y, c), i = 0, 1,

is given by

ci,∗(t, x, y) =

{

cM (t, x) if y < hi,crit(t, x),

ci,crit(t, x) if y ≥ hi,crit(t, x),

where
hi,crit(t, x) , (−1)1−i 1

1−R ln
(

(1 −R) ζi,crit(t,x)

Ci
2−Ci

1
+ 1
)

with

ζi,crit(t, x) ,



















0 if Bi
c < 0 and Ai < Ci,

[

1
1−R

(

(

1 − (dc,i(cM (t,x)))+

Bi
ccM (t,x)

)1−R
− 1
)

+ (dc,i(cM (t,x)))+

Bi
ccM (t,x)

]

cM (t, x)
if Bi

c < 0 and Ai ≥ Ci,

or Bi
c > 0 and Ai ≤ Ci,

−∞ if Bi
c > 0 and Ai > Ci,

if ε > 0, resp.

ζi,crit(t, x) ,



















0 if Bi
c < 0 and Ai < Ci,

(Ai−Ci)+

Bi
c

if Bi
c < 0 and Ai ≥ Ci,

or Bi
c > 0 and Ai ≤ Ci,

−∞ if Bi
c > 0 and Ai > Ci,
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if ε = 0, and

ci,crit(t, x) ,

{

cM (t, x) if Bi
c > 0 and Ai > Ci, or Bi

c < 0 and Ai < Ci,

cM (t, x) − (dc,i(cM (t,x)))+

Bi
c

if Bi
c > 0 and Ai ≤ Ci, or Bi

c < 0 and Ai ≥ Ci.

Remark 4.36. Notice that in contrast to the portfolio-dependent setting the critical value hi,crit is no
longer constant. It is now a function of the Merton type consumption rate cM . Only if ε = 0 then ζi,crit

and consequently hi,crit are just constants independent of t and x. Further ε = 0 implies cM (t, x) = 0
such that ci,crit is constant, too. The maximizing consumption rate ci,∗ is therefore just a function of y.

Remark 4.37. We use the following shorthand notations

Hc,i
1,crit(t, x, y) , Hc,i

1 (t, x, y, ci,crit(t, x)) and Hc,i
2,M (t, x, y) , Hc,i

2 (t, x, y, cM (t, x))

for (t, x, y) ∈ [0, T ] ×R×R
+
0 and i = 0, 1.

Remark 4.38. The typical shapes of the functions Hc,i(t, x, y, ·), Hc,i
1 (t, x, y, ·) and Hc,i

2 (t, x, y, ·) are

comparable to those of the functions Hπ,i(y, ·), Hπ,i
1 (y, ·) and Hπ,i

2 (y, ·) as presented in Figure 4.1, i.e.

Hc,i
1 (t, x, y, ·) and Hc,i

2 (t, x, y, ·) are also strictly concave and exhibit a unique maximum. Thus Figure
4.1 also serves as helpful illustration for the proof of Lemma 4.35.

Proof of Lemma 4.35. Let (t, x, y) ∈ [0, T ] ×R×R
+
0 be given. A straight forward optimization yields

that the two functions Hc,i
1 (t, x, y, ·) and Hc,i

2 (t, x, y, ·) attain their maxima at cM (t, x). Further, since
C0

1 < C0
2 and C1

1 > C1
2 we get that

Hc,i
1 (t, x, y, c) > Hc,i

2 (t, x, y, c) for all c ∈ R
+
0 . (∗)

First we consider the trivial cases Bi
c < 0 and Ai < Ci, resp. Bi

c > 0 and Ai > Ci in which the intensity
functions are constant on the whole R

n̄ ×R
+
0 .

• Bi
c < 0 and Ai < Ci. If Bi

c < 0 and Ai < Ci then c ∈ Fc,i for all c ∈ R
+
0 . Therefore, Hc,i = Hc,i

1 and
consequently the maximizer of Hc,i(t, x, y, ·) is given by the Merton rate, i.e.

Bi
c < 0 and Ai < Ci ⇒ ci,∗(t, x, y) = cM (t, x).

• Bi
c > 0 and Ai > Ci. If Bi

c > 0 and Ai > Ci then c /∈ Fc,i for all c ∈ R
+
0 . Thus, Hc,i = Hc,i

2 and the
maximizer of Hc,i(t, x, y, ·) is again given by the Merton rate, i.e.

Bi
c > 0 and Ai > Ci ⇒ ci,∗(t, x, y) = cM (t, x).

• Bi
c > 0 and Ai ≤ Ci, resp. Bi

c < 0 and Ai ≥ Ci. In case of Bi
c > 0 and Ai ≤ Ci, resp. Bi

c < 0 and
Ai ≥ Ci, the intensity functions exhibit a jump in R

n̄ × R
+
0 and we need to distinguish the cases

cM (t, x) ∈ Fc,i and cM (t, x) /∈ Fc,i.

• cM (t, x) ∈ Fc,i. By (∗) it follows that the maximizer of Hc,i(t, x, y, ·) is given by the Merton rate,
i.e.

cM (t, x) ∈ F
c,i ⇒ ci,∗(t, x, y) = cM (t, x).
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• cM (t, x) /∈ Fc,i. Otherwise, if cM (t, x) /∈ Fc,i then (∗) implies that the maximizer of Hc,i(t, x, y, ·)
is either cM (t, x) in case of Hc,i

2,M (t, x, y) > Hc,i
1,crit(t, x, y) or ci,crit(t, x) in case of Hc,i

2,M (t, x, y) ≤

Hc,i
1,crit(t, x, y). Hence with

Hc,i
2,M (t, x, y) ≤ Hc,i

1,crit(t, x, y)

⇔ (Ci
2 − Ci

1)
1

1−R(e(−1)1−i(1−R)y − 1)

≤







[

1
1−R

(

(

1 − (dc,i(cM (t,x)))+

Bi
ccM (t,x)

)1−R
− 1
)

+ (dc,i(cM (t,x)))+

Bi
ccM (t,x)

]

cM (t, x) if ε > 0,

(Ai−Ci)+

Bi
c

if ε = 0,

⇔ (Ci
2 − Ci

1)
1

1−R(e(−1)1−i(1−R)y − 1) ≤ ζi,crit(t, x)

⇔ y ≥ (−1)1−i 1
1−R ln

(

(1 −R) ζi,crit(t,x)

Ci
2−Ci

1
+ 1
)

⇔ y ≥ hi,crit(t, x).

we get

cM (t, x) /∈ F
c,i ⇒ ci,∗(t, x, y) =

{

cM (t, x) if y < hi,crit(t, x),

ci,crit(t, x) if y ≥ hi,crit(t, x).

As hi,crit(t, x) = 0 if cM (t, x) ∈ Fc,i the latter formula also covers the case cM (t, x) ∈ Fc,i.

Finally with hi,crit(t, x) and ci,crit(t, x) as defined for the trivial parameter specifications the maximizing
strategy in state i is given by

ci,∗(t, x, y) =

{

cM (t, x) if y < hi,crit(t, x),

ci,crit(t, x) if y ≥ hi,crit(t, x).

Thus the lemma is proven.

Remark 4.39 (Interpretation). The maximizing consumption rate coincides with the Merton con-
sumption rate when the latter belongs to the half space of favorable consumption rates. If this is not
the case then the maximizing consumption rate is given by the Merton consumption rate as long as y
is not bigger than hi,crit(t, x). For all y < hi,crit(t, x) it is not reasonable to deviate from the Merton
rate, i.e. the utility criterion dominates the intensity criterion as discussed in Remark 4.33. Only if y
overshoots the critical barrier hi,crit(t, x) then the maximizing consumption rate switches to the critical
rate ci,crit(t, x) since then the intensity criterion is more important than the utility criterion.

Remark 4.40. Even if ε > 0 it is possible that the maximizing consumption rate ci,∗(t, x, y) is zero.
This happens if y ≥ hi,crit(t, x) in case of Bi

c > 0 and Ai = Ci with R < 1 because in this setting
the critical consumption rate is given by ci,crit(t, x) = 0. Notice that hi,crit(t, x) is finite if Bi

c > 0 and
Ai = Ci with R < 1 so that y ≥ hi,crit(t, x) is possible.

Remark 4.41 (Discontinuity of ci,∗). The maximizing consumption rate ci,∗ exhibits jumps at all
points (t̂, x̂, ŷ) in which ŷ = hi,crit(t̂, x̂) and moreover cM (t̂, x̂) 6= ci,crit(t̂, x̂).
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Remark 4.42 (Interpretation in case of ε = 0). Choosing ε = 0 represents a model in which the
investor does not draw any utility from intermediate consumption at least concerning the direct impact
of consumption on the utility functions. In the standard model without the investor’s influence the
optimal consumption rate consequently is 0. In our model this is different. When y ≥ hi,crit in case of
Bi

c < 0 and Ai > Ci then the maximizing consumption rate is given by ci,crit = −Ai−Ci

Bi
c

> 0. Thus,

the large investor consumes although this is not beneficial in terms of the utility from intermediate
consumption. The reason for this behavior is that except for the case of Bi

c < 0 and Ai > Ci a
consumption rate of 0 yields the smallest (i = 0), resp. biggest (i = 1), possible intensity of a jump to
the adverse (i = 0), resp. favorable (i = 1), market state. Only if Bi

c < 0 and Ai > Ci then consuming

at a rate of −Ai−Ci

Bi
c

> 0 yields a smaller (i = 0), resp. bigger (i = 1), intensity than consuming at a

rate of 0. Therefore, in order to reduce (i = 0), resp. augment (i = 1), the probability of a jump to the
adverse (i = 0), resp. favorable (i = 1), market state, the large investor may consume.

So far the above explanations are only relevant for the general maximizing consumption rate ci,∗(t, x, y)
and not necessarily for the optimal consumption rate. This is because it is not clear whether the situation
h(t) ≥ hi,crit – remember that the maximizing strategy of the HJB-system (4.25) is obtained by choosing
y = h(t) – could really occur. But later on we will provide an example showing that the aforementioned
situation is really possible.

The following lemma provides a link between the maximizing consumption rate in case of ε > 0 and
ε = 0.

Lemma 4.43 (Limiting behavior of ci,crit, hi,crit and ci,∗ as ε tends to 0). Denote by ci,critε>0 , hi,crit
ε>0 and

ci,∗ε>0, resp. ci,critε=0 , hi,crit
ε=0 and ci,∗ε=0, the critical consumption rate, the critical barrier and the maximizing

consumption rate in case of ε > 0, resp. ε = 0. Then the following holds true for every (t, x, y) ∈
[0, T ] ×R×R

+
0 .

i) lim
ε→0

ci,critε>0 (t, x) = ci,critε=0 (t, x).

ii) lim
ε→0

hi,crit
ε>0 (t, x) = hi,crit

ε=0 (t, x) unless Bi
c > 0 and Ai = Ci in case of R > 1.

iii) lim
ε→0

ci,∗ε>0(t, x, y) = ci,∗ε=0(t, x, y).

Proof. Let (t, x, y) ∈ [0, T ] × R × R
+
0 be fixed and notice that limε→0 c

M (t, x) = 0 for every (t, x) ∈
[0, T ] ×R.

ad i) The assertion follows directly from limε→0 c
M (t, x) = 0.

ad ii) If Bi
c < 0 and Ai < Ci, or Bi

c > 0 and Ai > Ci then there is nothing to prove. So let Bi
c < 0 and

Ai ≥ Ci, or Bi
c > 0 and Ai ≤ Ci in the following and consider

lim
ε→0

ζi,crit
ε>0 (t, x) = lim

ε→0

([

1
1−R

(

(

1 − (dc,i(cM (t,x)))+

Bi
ccM (t,x)

)1−R
− 1
)

+ (dc,i(cM (t,x)))+

Bi
ccM (t,x)

]

cM (t, x)
)

= lim
ε→0

(dc,i(cM (t,x)))+

Bi
c

+ lim
ε→0

1
1−R

(

(

1 − (dc,i(cM (t,x)))+

Bi
ccM (t,x)

)1−R
− 1
)

cM (t, x)

= (Ai−Ci)+

Bi
c

+ lim
ε→0

1
1−R

(

(

1 − (dc,i(cM (t,x)))+

Bi
ccM (t,x)

)1−R
− 1
)

cM (t, x)
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We now show under which conditions limε→0
1

1−R

(

(

1 − (dc,i(cM (t,x)))+

Bi
ccM (t,x)

)1−R
− 1

)

cM (t, x) = 0 which

implies limε→0 ζ
i,crit
ε>0 (t, x) = ζi,crit

ε=0 (t, x) and consequently also the assertion. To analyze the last limit
we have to distinguish the following cases.

• Bi
c < 0 and Ai = Ci. Here (dc,i(cM (t, x)))+ = 0 which implies

1
1−R

(

(

1 − (dc,i(cM (t,x)))+

Bi
ccM (t,x)

)1−R
− 1
)

cM (t, x) = 1
1−R

(

11−R − 1
)

cM (t, x) = 0.

• Bi
c < 0 and Ai > Ci. Consider

lim
ε→0

1
1−R

(

(

1 − (dc,i(cM (t,x)))+

Bi
ccM (t,x)

)1−R
− 1
)

cM (t, x)

= lim
ε→0

1
1−R

(

(Bi
ccM (t,x)−(dc,i(cM (t,x)))+

Bi
c

)1−R
(cM (t, x))−(1−R) − 1

)

cM (t, x)

= lim
ε→0

1
1−R

(

(Bi
ccM (t,x)−(dc,i(cM (t,x)))+

Bi
c

)1−R
(cM (t, x))−(1−R)cM (t, x) − cM (t, x)

)

= lim
ε→0

1
1−R

(Bi
ccM (t,x)−(dc,i(cM (t,x)))+

Bi
c

)1−R
(cM (t, x))R − lim

ε→0

1
1−Rc

M (t, x)

= 0

since limε→0
Bi

ccM (t,x)−(dc,i(cM (t,x)))+

Bi
c

= − (Ai−Ci)+

Bi
c

which is strictly positive as Bi
c < 0 and Ai > Ci.

• Bi
c > 0 and Ai < Ci. Consider now

lim
ε→0

1
1−R

(

(

1 − (dc,i(cM (t,x)))+

Bi
ccM (t,x)

)1−R
− 1
)

cM (t, x)

= lim
ε→0

1
1−R

(

(Bi
ccM (t,x)−(dc,i(cM (t,x)))+

Bi
ccM (t,x)

)1−R
− 1
)

cM (t, x)

= 0

since limε→0
Bi

ccM (t,x)−(dc,i(cM (t,x)))+

Bi
ccM (t,x)

= 1 if Bi
c > 0 and Ai < Ci.

• Bi
c > 0 and Ai = Ci. Notice that (dc,i(cM (t, x)))+ = Bi

cc
M (t, x) if Bi

c > 0 and Ai = Ci. Thus

1 − (dc,i(cM (t,x)))+

Bi
ccM (t,x)

= 0 and therefore

1
1−R

(

1 − (dc,i(cM (t,x)))+

Bi
ccM (t,x)

)1−R
=

{

0 if R < 1,

−∞ if R > 1.

Hence limε→0
1

1−R

(

(

1 − (dc,i(cM (t,x)))+

Bi
ccM (t,x)

)1−R
− 1
)

cM (t, x) = 0 if R < 1 whereas the limit is undefined

if R > 1.

ad iii) Assertions i) and ii) imply that limε→0 c
i,∗
ε>0(t, x, y) = ci,∗ε=0(t, x, y) unless Bi

c > 0 and Ai = Ci in
case of R > 1. Nevertheless the assertion is still true even if Bi

c > 0, Ai = Ci and R > 1 because in
that case limε→0 c

i,crit
ε>0 (t, x) = ci,critε=0 (t, x) = 0 = limε→0 c

M (t, x), i.e. as ε tends to 0 the Merton as well

as the critical consumption rate ci,critε>0 (t, x) converge towards 0 which is the optimal consumption rate

in case of ε = 0. Hence in the limit the distinction into the cases y < hi,crit
ε>0 (t, x) and y ≥ hi,crit

ε>0 (t, x)

is irrelevant and therefore limε→0 c
i,∗
ε>0(t, x, y) = ci,∗ε=0(t, x, y) holds true without any restriction. This

finishes the proof.
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Remark 4.44. So far the strategy (πi,∗, ci,∗) is only a candidate solution for the optimal investment
problem. To verify the optimality we need to show that the related HJB-system has a global solution
that satisfies the required regularity conditions stated in the Verification Theorem 3.3.

Inserting (πi,∗, ci,∗(t, g(t) − 1{i=1}h(t), h(t))) into the reduced HJB-equation (4.25) the latter now be-
comes a system of coupled backward ODEs which for ε > 0 is given by

h′(t) = − (Ψ0 − Ψ1) +
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

g(t) R
1−R(e

1−R
R

h(t) − 1)

− C0
2

1
1−R(e−(1−R)h(t) − 1) + C1

2
1

1−R(e(1−R)h(t) − 1)

−
[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)h(t) − 1) +

[

1
1−R

((

1 − (A0+B0
c cM (t,g(t))−C0)+

B0
c cM (t,g(t))

)1−R
− 1
)

+ (A0+B0
c cM (t,g(t))−C0)+

B0
c cM (t,g(t))

]

cM (t, g(t))
]

1{h(t)≥h0,crit(t,g(t))}

+
[

(C1
1 − C1

2 ) 1
1−R(e(1−R)h(t) − 1) +

[

1
1−R

((

1 − (A1+B1
c cM (t,g(t)−h(t))−C1)+

B1
c cM (t,g(t)−h(t))

)1−R
− 1
)

+ (A1+B1
c cM (t,g(t)−h(t))−C1)+

B1
c cM (t,g(t)−h(t))

]

cM (t, g(t) − h(t))
]

1{h(t)≥h1,crit(t,g(t)−h(t))},

(4.26)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
g(t) − 1

)

)

− C0
2

1
1−R(e−(1−R)h(t) − 1)

−
[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)h(t) − 1) +

[

1
1−R

((

1 − (A0+B0
c cM (t,g(t))−C0)+

B0
c cM (t,g(t))

)1−R
− 1
)

+ (A0+B0
c cM (t,g(t))−C0)+

B0
c cM (t,g(t))

]

cM (t, g(t))
]

1{h(t)≥h0,crit(t,g(t))}

(4.27)

subject to the boundary conditions

g(T ) = 0, h(T ) = 0. (4.28)

If ε = 0 then the ODE-system reads

h′(t) = − (Ψ0 − Ψ1)

− C0
2

1
1−R(e−(1−R)h(t) − 1) + C1

2
1

1−R(e(1−R)h(t) − 1)

−
(

(C0
1 − C0

2 ) 1
1−R(e−(1−R)h(t) − 1) + (A0−C0)+

B0
c

)

1{h(t)≥h0,crit}

+
(

(C1
1 − C1

2 ) 1
1−R(e(1−R)h(t) − 1) + (A1−C1)+

B1
c

)

1{h(t)≥h1,crit},

(4.29)

g′(t) = − Ψ0

− C0
2

1
1−R(e−(1−R)h(t) − 1)

−
(

(C0
1 − C0

2 ) 1
1−R(e−(1−R)h(t) − 1) + (A0−C0)+

B0
c

)

1{h(t)≥h0,crit}

(4.30)

subject to the boundary conditions

g(T ) = 0, h(T ) = 0. (4.31)
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Remark 4.45. The aforementioned ODEs include the ODEs of the classical Merton problem (first
rows) and the ODEs of the Bäuerle-Rieder problem with constant regime shift intensities Ci

2 (first two
rows).

Remark 4.46 (Implicit barrier on h). In ODE (4.26) we utilized the condition h(t) ≥ hi,crit(t, g(t) −
1{i=1}h(t)). In state 0 this is an explicit condition on the function h because h0,crit(t, g(t)) does not
depend on h(t). However in state 1 this condition can be either explicit or implicit depending on
the parameters A1, B1

c and C1. For the trivial specifications B1
c < 0 and A1 < C1, resp. B1

c > 0
and A1 > C1, the barrier h1,crit(t, g(t) − h(t)) is given by 0, resp. ∞, implying that the condition
h(t) ≥ h1,crit(t, g(t) − h(t)) is explicit. But if B1

c < 0 and A1 ≥ C1, resp. B1
c > 0 and A1 ≤ C1, then

h1,crit(t, g(t)−h(t)) is by itself a function of h(t). Consequently, the condition h(t) ≥ h1,crit(t, g(t)−h(t))
is implicit. Nevertheless we keep this implicit condition for notational convenience and because later on
in the logarithmic case (R = 1) it turns out that hi,crit(t, g(t)−1{i=1}h(t)) is completely independent of
the functions g(t), resp. g(t)−h(t), rendering the condition h(t) ≥ hi,crit(t, g(t)−1{i=1}h(t)) explicit in
both states and for all parameter specifications. So far the implicit condition h(t) ≥ h1,crit(t, g(t)−h(t))
may be better understood when written in the equivalent way as Hc,1

2 (t, g(t) − h(t), h(t), cM (t, g(t) −

h(t))) ≤ Hc,1
1 (t, g(t) − h(t), h(t), c1,crit(t, g(t) − h(t))).

Lemma 4.47. The ODE-system given by equation (4.26) and (4.27) subject to the boundary conditions
(4.28) (ε > 0), resp. (4.29) and (4.30) subject to the boundary conditions (4.31) (ε = 0), admits a
unique global solution.

Before proving the lemma we first provide some helpful technical results.

Lemma 4.48. The following holds true for R > 0 and z > −1.

i)
− R

1−R

(

(1+z)−
1−R

R −1
)

(1+z)−
1
R

≥ z (R 6= 1), resp. ln(1 + z)(1 + z) ≥ z (R = 1).

ii) − R
1−R((1 + z)−

1−R
R − 1) ≤ z (R 6= 1), resp. ln(1 + z) ≤ z (R = 1).

iii) 1
1−R((1 + z)1−R − 1) ≤ z (R 6= 1), resp. ln((1 + z)) ≤ z (R = 1).

Moreover, the assertions are even true in the limiting case z → −1.

Proof. We prove the above assertions for R 6= 1. In case of R = 1 the proof remains valid using the
convention 1

1−R(z1−R − 1) , ln(z) for R = 1. Let z > −1 and define the following auxiliary functions
ϕ1, ϕ2, ϕ3 and ψ : (−1,∞) → R given by

ϕ1(z) ,
− R

1−R

(

(1+z)−
1−R

R −1
)

(1+z)−
1
R

, ϕ2(z) , − R
1−R((1 + z)−

1−R
R − 1),

ϕ3(z) , 1
1−R((1 + z)1−R − 1), ψ(z) , z.

ad i) Since ϕ′
1(z) = 1

1−R

(

(1 + z)
1−R

R − 1
)

+ 1 is strictly increasing, ϕ1 is strictly convex. Further, ψ is
the tangent of ϕ1 at the point z = 0. Therefore ϕ1(z) ≥ ψ(z) and the assertion is proven.

In order to prove that the assertion is still valid in the limiting case z → −1 we have to distinguish the
cases R > 1 and R < 1.
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• R > 1. If R > 1 then the numerator of ϕ1 converges to a finite limit as z tends to −1, i.e.

limz→−1 −
R

1−R

(

(1+z)−
1−R

R −1
)

= R
1−R whereas the denominator diverges, i.e. limz→−1(1+z)−

1
R = ∞.

Hence, limz→−1 ϕ1(z) = 0 > −1 and the assertion is proven.

• R < 1. If otherwise R < 1 then we first write the assertion in an equivalent way

ϕ̃1(z) ,
R

1−R

(

(1+z)−
1−R

R −1
)

(1+z)−
1
R

≤ −z.

Now the numerator as well as the denominator of ϕ̃1 diverge as z tends to −1, i.e. limz→−1
R

1−R

(

(1+

z)−
1−R

R − 1
)

= ∞ and limz→−1(1 + z)−
1
R = ∞. Thus we can apply l’Hôpital’s rule and get

lim
z→−1

ϕ̃1(z) = lim
z→−1

d
dz

(

R
1−R

(

(1+z)−
1−R

R −1
))

d
dz

(

(1+z)−
1
R

) = lim
z→−1

R(1 + z) = 0 < 1

which is the desired result.

ad ii) Now ϕ′
2(z) = (1 + z)−

1
R is strictly decreasing implying that ϕ2 is strictly concave. Once again,

ψ is the tangent of ϕ2 at the point z = 0 yielding the assertion ϕ2(z) ≤ ψ(z).

Since limz→−1 ϕ2(z) = −∞ < −1 (R ≤ 1), resp. limz→−1 ϕ2(z) = R
1−R < −1 (R > 1), the assertion is

still true in the limiting case.

ad iii) Since ϕ′
3(z) = (1+ z)−R is strictly decreasing, ϕ3 is strictly concave. Moreover, ψ is the tangent

of ϕ3 at the point z = 0 and therefore the assertion ϕ3(z) ≤ ψ(z) is valid.

As limz→−1 ϕ3(z) = − 1
1−R < −1 (R < 1), resp. limz→−1 ϕ3(z) = −∞ < −1 (R ≥ 1), the limiting case

is proven, too.

Now we can prove Lemma 4.47.

Proof of Lemma 4.47. The proof is essentially the same as the proof of Lemma 4.9. Only the χi’s are
different. Therefore we just present the actual χi’s and verify that those satisfy the necessary continuity
conditions and the non-negativity condition.

• Definition of the χi’s. The χi’s are given by χi : [0, T ] ×R×R
+
0 → R, i = 0, 1, with

χi(t, x, y) , (−1)1−i
(

Ci
2

1
1−R(e(−1)1−i(1−R)y − 1)

+
[

(Ci
1 − Ci

2)
1

1−R(e(−1)1−i(1−R)y − 1) + ζi,crit(t, x)
]

1{y≥hi,crit(t,x)}

)

.

• Continuity results on the χi’s. We distinguish the three cases that already appeared in Lemma 4.35.

• Bi
c < 0 and Ai < Ci. If Bi

c < 0 and Ai < Ci then ζi,crit(t, x) = 0 and hi,crit(t, x) = 0. Hence

χi(t, x, y) = (−1)1−i
(

Ci
2

1
1−R(e(−1)1−i(1−R)y − 1) + (Ci

1 − Ci
2)

1
1−R(e(−1)1−i(1−R)y − 1)

)

= (−1)1−iCi
1

1
1−R(e(−1)1−i(1−R)y − 1).
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• Bi
c > 0 and Ai > Ci. If Bi

c > 0 and Ai > Ci then hi,crit(t, x) = ∞ for every (t, x) ∈ [0, T ]×R and

χi(t, x, y) = (−1)1−iCi
2

1
1−R(e(−1)1−i(1−R)y − 1).

• Bi
c < 0 and Ai ≥ Ci, or Bi

c > 0 and Ai ≤ Ci. If Bi
c < 0 and Ai ≥ Ci, or Bi

c > 0 and Ai ≤ Ci,
then we know from the proof of Lemma 4.35 that y ≥ hi,crit(t, x) is equivalent to

0 ≤ (Ci
1 − Ci

2)
1

1−R(e(−1)1−i(1−R)y − 1) + ζi,crit(t, x)

implying

χi(t, x, y) = (−1)1−i
(

Ci
2

1
1−R(e(−1)1−i(1−R)y−1)+

[

(Ci
1−C

i
2)

1
1−R(e(−1)1−i(1−R)y−1)+ζi,crit(t, x)

]+)

.

In all three cases χi is continuous in t, and further, as a composition of continuously differentiable
functions in x and y and the [ · ]+-function locally Lipschitz continuous in x and y.

• Non-negativity of the χi’s.

• Bi
c < 0 and Ai < Ci, or Bi

c > 0 and Ai > Ci. The χi’s are trivially non-negative because y ∈ R
+
0 .

• Bi
c < 0 and Ai ≥ Ci, or Bi

c > 0 and Ai ≤ Ci. The non-negativity of χ1 is obvious. In order to see
that χ0 ≥ 0 we need to show that ζ0,crit ≤ 0. To prove this we distinguish the two cases ε > 0 and
ε = 0.

• ε > 0. If ε > 0 then ζ0,crit(t, x) is given by

ζ0,crit(t, x) =
[

1
1−R

((

1 − (dc,0(cM (t,x)))+

B0
c cM (t,x)

)1−R
− 1
)

+ (dc,0(cM (t,x)))+

B0
c cM (t,x)

]

cM (t, x).

In case of B0
c < 0 and A0 ≥ C0, or B0

c > 0 and A0 < C0 the non-positivity of ζ0,crit(t, x) follows

from Lemma 4.48, iii), with z = − (dc,0(cM (t,x)))+

B0
c cM (t,x)

where the lemma is applicable because

− (dc,0(cM (t,x)))+

B0
c cM (t,x)

= − (dc,0(cM (t,x)))+−B0
c cM (t,x)

B0
c cM (t,x)

− 1 = −max{A0−C0,−B0
c cM (t,x)}

B0
c cM (t,x)

− 1 > −1.

However, in case of B0
c > 0 and A0 = C0 which imply (dc,0(cM (t, x)))+ = B0

c c
M (t, x) using the

convention 01−R = ∞ for R > 1 we find

ζ0,crit(t, x) =

{

− R
1−Rc

M (t, x) if R < 1,

−∞ if R > 1,

which is non-positive, too.

• ε = 0. If ε = 0 then

ζ0,crit(t, x) = (A0−C0)+

B0
c

.

which is trivially non-positive.
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The non-positivity of ζ0,crit implies

(C0
1 − C0

2 ) 1
1−R(e−(1−R)y − 1) ≥

[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)y − 1) + ζ0,crit(t, x)

]+

since we required C0
1 < C0

2 . Hence

χ0(t, x, y) ≥ −C0
1

1
1−R(e−(1−R)y − 1) ≥ 0 for every (t, x, y) ∈ [0, T ] ×R×R

+
0 .

The remainder of the proof is identical to the proof of Lemma 4.9.
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Figure 4.4: g (left) and h (right) as functions of t
(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.06, σ0 = 0.4, σ1 = 0.7, δ = 0.035, ε = 1, R = 1.5, T = 1,

A0 = 17, B0
c = 3, C0 = 19.5, C0

1 = 10, C0
2 = 20, A1 = 5.5, B1

c = 5, C1 = 9, C1
1 = 5, C1

2 = 1.25)

Figure 4.4 shows an example for the functions g and h. It can be seen that the function h is not
necessarily monotone, i.e. the difference between the two market states as perceived by the large
investor can increase and decrease as well.

The proof of Lemma 4.47 directly implies the following corollaries.

Corollary 4.49 (Time-dependent bounds on g and h). Let h and g be given by (4.26), (4.27) subject
to the boundary conditions (4.28) (ε > 0), resp. (4.29), (4.30) subject to the boundary conditions (4.31)
(ε = 0). Then

−(Ψ1 − ξ1(T ))−(T − t) ≤ g(t) ≤ (Ψ0 − ξ0(T ))+(T − t) (ε > 0),

resp. 0 ≤ g(t) ≤ Ψ0(T − t) (ε = 0) and

0 ≤ h(t) ≤ (Ψ0 − Ψ1)(T − t)

for t ∈ [0, T ] where the ξi(T )’s are as defined in the proof of Lemma 4.9.

Corollary 4.50 (Time-independent bound on h). Let h and g be given by (4.26), (4.27) subject to
the boundary conditions (4.28) (ε > 0), resp. (4.29), (4.30) subject to the boundary conditions (4.31)
(ε = 0). Then

0 ≤ h(t) ≤ h̄
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for t ∈ [0, T ] where h̄ is the smallest positive root of

F̄ (y) ,

{

−(Ψ0 − Ψ1) − C0
1

1
1−R(e−(1−R)y − 1) + C1

2
1

1−R(e(1−R)y − 1) if ε > 0,

−(Ψ0 − Ψ1) + χ0(t, x, y) + χ1(t, x, y) if ε = 0

if such a root exists; otherwise h̄ = ∞, i.e.

h̄ = min
{

y ∈ R
+
0 : F̄ (y) = 0

}

,

with the convention min ∅ , ∞, where the χi’s are as defined in the proof of Lemma 4.47.

Remark 4.51. Notice that in case of ε = 0 the function F̄ (y) is indeed a function solely in y although
the χi’s formally depend on t and x, too. However setting ε = 0 implies that ζi,crit and consequently
hi,crit are independent of t and x. This yields that the χi’s are independent of t and x, too.

Proof of Corollary 4.50. The assertion follows from a simple ODE argument since

F (t, x, y) = −(Ψ0 − Ψ1) + ̺(t, x, y) + χ0(t, x, y) + χ1(t, x, y) ≥ F̄ (y)

for all (t, x, y) ∈ [0, T ] × R × R
+
0 where we used the notation from the proof of Lemma 4.9. If ε = 0

then this is obviously true. In case of ε > 0 this is satisfied, too, since the proof of Lemma 4.47 showed
that χ0(t, x, y) ≥ −C0

1
1

1−R(e−(1−R)y − 1) and χ1(t, x, y) ≥ C1
2

1
1−R(e(1−R)y − 1).

The boundary function on h as presented in Corollary 4.49 is suitable for large values of t for which
the deviation from h is not too large whereas for small values of t the non-linear behavior of h implies
that the boundary function overshoots h by far. The converse is true for the bound given in Corollary
4.50. Thus combining the two bounds on h yields

0 ≤ h(t) ≤ min{(Ψ0 − Ψ1)(T − t), h̄}

for t ∈ [0, T ].

The following theorem ensures that the strategy given in Lemmas 4.35 and 4.34 is indeed the optimal
strategy for the optimal investment problem.

Theorem 4.52 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and g
be given by (4.26), (4.27) subject to the boundary conditions (4.28) (ε > 0), resp. (4.29), (4.30) subject
to the boundary conditions (4.31) (ε = 0). Then the strategy

(πi,∗, ci,∗(t)) , (πi,∗, ci,∗(t, g(t) − 1{i=1}h(t), h(t))), t ∈ [0, T ], i = 0, 1,

as given in Lemmas 4.34 and 4.35 is optimal for the investment problem (P) with crra preferences
and relative risk aversion R.

Proof. Since (πi,∗, ci,∗(t)) maximizes the reduced HJB-system (4.25) for each t ∈ [0, T ], optimality of
the strategy (πi,∗, ci,∗) follows directly from the Verification Theorem 3.3.
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Figure 4.5: Optimal strategy vs. Merton strategy: ci,∗ and ci,M as functions of t
(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.06, σ0 = 0.4, σ1 = 0.7, δ = 0.035, ε = 1, R = 1.5, T = 1,

A0 = 17, B0
c = 3, C0 = 19.5, C0

1 = 10, C0
2 = 20, A1 = 5.5, B1

c = 5, C1 = 9, C1
1 = 5, C1

2 = 1.25)

Remark 4.53. If not otherwise stated ci,crit(t), resp. hi,crit(t), is utilized as shorthand notation for
ci,crit(t, g(t) − 1{i=1}h(t)), resp. hi,crit(t, g(t) − 1{i=1}h(t)), i.e.

ci,crit(t) , ci,crit(t, g(t) − 1{i=1}h(t)) and

hi,crit(t) , hi,crit(t, g(t) − 1{i=1}h(t)).

Figure 4.5 shows the optimal strategy and the Merton strategy in a setting where Bi
c is positive for

i = 0, 1. Hence the large investor is forced to consume at a rate that is temporarily smaller than the
Merton consumption rate in order to generate advantageous regime shift intensities. In both states the
maximal deviation amounts to about 9%.

Since the Merton consumption rate is growing in time it is possible that the Merton rate is lying in
the half space of favorable consumption rates first. Hence for small times t there is no need to deviate
from the Merton rate. But as the latter is growing there exists a point at which it enters the half
space of adverse strategies. From that point on it may be advantageous to deviate from the Merton
consumption rate. Finally when the time to maturity gets smaller the probability of a regime shift
becomes smaller and smaller and the investor turns back to the Merton rate as it was the case in the
portfolio-dependent setting.

A particular example in which the investor is willing, resp. forced to consume although he does not
draw any utility from this consumption in terms of the utility function is given in Figure 4.6. This
consumption can be interpreted as the payment of a bribe. Notice that the large investor follows an
extreme strategy. Until a certain point of time he pays a bribe at the maximal rate given by ci,crit =
−Ai−Ci

Bi
c

and then he cancels those payments completely. One would imagine that a continuous reduction

of the bribe payment would be more reasonable. The reason for this extreme strategy switching is given
by the special form of the intensity function. Being a step function it already includes this extreme
character which is passed on to the optimal consumption rate, too. The optimal rate is either the
Merton rate or the critical rate but nothing in between. In case of ε > 0 the time-dependency of the
Merton consumption rate somehow tempers this extreme behavior. But for ε = 0 the Merton rate is
no longer time-dependent and thus the extreme switching occurs straightly.
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Figure 4.6: Optimal strategy vs. Merton strategy: ci,∗ and ci,M as functions of t
(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.02, σ0 = 0.4, σ1 = 0.7, δ = 0.035, ε = 0, R = 1.5, T = 0.1,
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As in the section on portfolio-dependent intensities the large investor’s optimal consumption rate can
be decomposed into the Merton consumption rate and an additional adjustment part which again
accommodates the investor’s influence on the market, i.e.

ci,∗(t) = ci,M (t) + ci,A(t), i = 0, 1

where the adjustment part ci,A is given by

ci,A(t) = − (Ai+Bi
cci,M (t)−Ci)+

Bi
c

1{h(t)≥hi,crit(t)}.

Notice that Bi
cc

i,A(t) ≤ 0. Moreover ci,A(t) ≤ 0 if Bi
c > 0 and ci,A(t) ≥ 0 if Bi

c < 0. Thus a positive
Bi

c forces the large investor to consume at a lower rate than the Merton one, whereas a negative Bi
c

yields a higher consumption rate than the Merton one. As a consequence ci,A benefits the regime shift
intensities which is shown in the following lemma.

Lemma 4.54. The optimal strategy (πi,∗, ci,∗) satisfies

ϑ0,1(π0,∗, c0,∗(t)) ≤ ϑ0,1(π0,M , c0,M (t)) and ϑ1,0(π1,∗, c1,∗(t)) ≥ ϑ1,0(π1,M , c1,M (t))

for every t ∈ [0, T ].

Proof. The assertion follows since

ϑ0,1(π0,∗, c0,∗(t)) = C0
11{A0+B0

c c0,∗(t)≤C0} + C0
21{A0+B0

c c0,∗(t)>C0}

= C0
11{A0+B0

c c0,M (t)+B0
c c0,A(t)≤C0} + C0

21{A0+B0
c c0,M (t)+B0

c c0,A(t)>C0}

≤ C0
11{A0+B0

c c0,M (t)≤C0} + C0
21{A0+B0

c c0,M (t)>C0}

= ϑ0,1(π0,M , c0,M (t))
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and

ϑ1,0(π1,∗, c1,∗(t)) = C1
11{A1+B1

c c1,∗(t)≤C1} + C1
21{A1+B1

c c1,∗(t)>C1}

= C1
11{A1+B1

c c1,M (t)+B1
c c1,A(t)≤C1} + C1

21{A1+B1
c c1,M (t)+B1

c c1,A(t)>C1}

≥ C1
11{A1+B1

c c1,M (t)≤C1} + C1
21{A1+B1

c c1,M (t)>C1}

= ϑ1,0(π1,M , c1,M (t))

as Bi
cc

i,A(t) ≤ 0.

Remark 4.55. As in the last section the optimal consumption rate is a compromise rate composed of
the Merton consumption rate and the critical consumption rate and thus generating better regime shift
intensities than those the Merton rate would yield.

4.2.3 Portfolio- and Consumption-dependent Intensities

Having discussed the optimal investment problem where the regime shifts are influenced either by the
benchmark investor’s portfolio proportions or by his consumption rate, we now consider the case where
both – portfolio proportions and consumption rate – affect the shift intensities, i.e. we let

Bi
π 6= 0 and Bi

c 6= 0 for i = 0, 1, (PCD)

so that the intensities are given by

ϑi,1−i(π, c) = Ci
11{Ai+π⊤.Bi

π+Bi
cc≤Ci} + Ci

21{Ai+π⊤.Bi
π+Bi

cc>Ci}.

We denote by

F
π,c,i ,

{

(π, c) ∈ R
n̄ ×R

+
0 : Ai + π⊤.Bi

π +Bi
cc ≤ Ci

}

the half space of all strategies that are favorable for the investor concerning the intensities of regime
shifts. Letting

dπ,c,i(π, c) , Ai + π⊤.Bi
π +Bi

cc− Ci

denote the ’distance’ of the strategy (π, c) to the separating hyperplane, we have (π, c) ∈ Fπ,c,i if and
only if dπ,c,i(π, c) ≤ 0.

Further we let Hπ,c,i, Hπ,c,i
j : [0, T ] ×R×R

+
0 ×R

n̄ ×R
+
0 → R, i = 0, 1 and j = 1, 2, be given by

Hπ,c,i(t, x, y, π, c) , εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)xc1−R − 1) − c+ ri + π⊤.ηi − 1

2Rπ
⊤.σi.(σi)⊤.π

+ (Ci
11{(π,c)∈Fπ,c,i} + Ci

21{(π,c)/∈Fπ,c,i})
1

1−R(e(−1)1−i(1−R)y − 1),

Hπ,c,i
j (t, x, y, π, c) , εδ

ε−(ε−δ)e−δ(T−t)
1

1−R(e−(1−R)xc1−R − 1) − c+ ri + π⊤.ηi − 1
2Rπ

⊤.σi.(σi)⊤.π

+ Ci
j

1
1−R(e(−1)1−i(1−R)y − 1)

such that Hπ,c,i(t, x, y, π, c) = Hπ,c,i
1 (t, x, y, π, c)1{(π,c)∈Fπ,c,i} + Hπ,c,i

2 (t, x, y, π, c)1{(π,c)/∈Fπ,c,i}. Notice

that the functions Hπ,c,i and Hπ,c,i
j are independent of t and x in case of ε = 0.
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Using those auxiliary functions the HJB-system (4.20) is given by

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − 1{i=1}h
′(t) +Hπ,c,i(t, g(t) − 1{i=1}h(t), h(t), π, c)

}

(4.32)

for t ∈ [0, T ) and i = 0, 1, subject to the boundary conditions

g(T ) = 0, h(T ) = 0.

To find the supremum in (4.32) we present the maximizers of Hπ,c,i(t, x, y, ·, ·) for arbitrary (t, x, y) ∈
[0, T ] × R × R

+
0 . This yields a family of maximizers dependent on (t, x, y). The maximizers of the

HJB-system (4.32) are then obtained by replacing x and y by g(t) − 1{i=1}h(t) and h(t).

If ε > 0 then Hπ,c,i
j (t, x, y, ·, ·) is concave for every (t, x, y) ∈ [0, T ]×R×R

+
0 and j = 1, 2. Therefore the

two candidate solutions for the maximization of Hπ,c,i(t, x, y, ·, ·) over (π, c) ∈ R
n̄ ×R

+
0 are (πi,M , cM )

and (π̃i,crit, c̃i,crit) where

(π̃i,crit(t, x), c̃i,crit(t, x)) , arg max
{(π,c)∈Rn̄×R

+
0 : Ai+π⊤.Bi

π+Bi
cc=Ci}

Hπ,c,i(t, x, y, π, c).

The Lagrange multiplier method yields

π̃i,crit(t, x) = 1
R(σi.(σi)⊤)−1.

(

ηi + λ̃i,crit(t, x)Bi
π

)

,

c̃i,crit(t, x) = cM (t, x)
(

1 − λ̃i,crit(t, x)Bi
c

)− 1
R

for i = 0, 1 and (t, x) ∈ [0, T ] ×R where the Lagrange multiplier λ̃i,crit(t, x) is implicitly given via

Λπ,c,i(t, x, λ̃i,crit(t, x)) = −(Ai + (πi,M )⊤.Bi
π +Bi

cc
M (t, x) − Ci) (4.33)

with Λπ,c,i : [0, T ] × R × (−∞, 1
Bi

c
) → R (Bi

c > 0), resp. Λπ,c,i : [0, T ] × R × ( 1
Bi

c
,∞) → R (Bi

c < 0)

given by

Λπ,c,i(t, z, λ) , 1
R(Bi

π)⊤(σi.(σi)⊤)−1.Bi
πλ+Bi

c

(

(

1 −Bi
cλ
)− 1

R − 1
)

cM (t, z).

If ε = 0 then the function Hπ,c,i
j (t, x, y, ·, ·) is concave in π and linearly decreasing in c implying

cM (t, x) = 0. In order to determine π̃i,crit and c̃i,crit in case of ε = 0 we use the constraint Ai +π⊤.Bi
π +

Bi
cc = Ci to substitute c = −Ai+π⊤.Bi

π−Ci

Bi
c

and calculate π̃i,crit as

π̃i,crit = max
{

π∈Rn̄: −
Ai+π⊤.Bi

π−Ci

Bi
c

≥0
}

Hπ,c,i
(

t, x, y, π,−Ai+π⊤.Bi
π−Ci

Bi
c

)

.

This yields the candidate

π̄i,crit = 1
R(σi.(σi)⊤)−1.

(

ηi + Bi
π

Bi
c

)

.

But unfortunately the corresponding c̄i,crit given by

c̄i,crit = −Ai+(π̄i,crit)⊤.Bi
π−Ci

Bi
c

= −Ai+(πi,M )⊤.Bi
π−Ci

Bi
c

−
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2
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may be negative whereas c̃i,crit ≥ 0 is needed. It turns out that in order to get the optimal c̃i,crit one
just has to truncate c̄i,crit at 0, i.e.

c̃i,crit =
(

−Ai+(πi,M )⊤.Bi
π−Ci

Bi
c

−
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

)+

=
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

Ai+(πi,M )⊤.Bi
π−Ci

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)−

with corresponding

π̃i,crit = 1
R(σi.(σi)⊤)−1.

(

ηi +Bi
π

1
Bi

c

(

1 −
(

Ai+(πi,M )⊤.Bi
π−Ci

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+))

for i = 0, 1.

Before stating the optimal strategy we first present some properties of the function Λπ,c,i that we used
to determine the Lagrange multipliers.

Lemma 4.56 (Properties of Λπ,c,i). The function Λπ,c,i given by

Λπ,c,i : [0, T ] ×R× (−∞, 1
Bi

c
) → R (Bi

c > 0), resp. Λπ,c,i : [0, T ] ×R× ( 1
Bi

c
,∞) → R (Bi

c < 0)

with
Λπ,c,i(t, z, λ) , 1

R(Bi
π)⊤(σi.(σi)⊤)−1.Bi

πλ+Bi
c

(

(

1 −Bi
cλ
)− 1

R − 1
)

cM (t, z)

has the following properties for every given (t, z) ∈ [0, T ] ×R.

i) Λπ,c,i is continuously differentiable in t, z and λ.

ii) If ε > 0 then Λπ,c,i(t, z, ·) is increasing and strictly convex (Bi
c > 0), resp. strictly concave

(Bi
c < 0). If ε = 0 then Λπ,c,i(t, z, ·) is linearly increasing.

iii) Λπ,c,i(t, z, λ) < 0 for λ < 0, Λπ,c,i(t, z, 0) = 0 and Λπ,c,i(t, z, λ) > 0 for λ > 0.

iv) If ε > 0 then limλ→−∞ Λπ,c,i(t, z, λ) = −∞ and limλ→ 1

Bi
c

Λπ,c,i(t, z, λ) = ∞ (Bi
c > 0), resp.

limλ→ 1

Bi
c

Λπ,c,i(t, z, λ) = −∞ and limλ→∞ Λπ,c,i(t, z, λ) = ∞ (Bi
c < 0).

If otherwise ε = 0 then limλ→−∞ Λπ,c,i(t, z, λ) = −∞ and limλ→∞ Λπ,c,i(t, z, λ) = ∞.

Proof. Let (t, z) ∈ [0, T ] ×R be given.

ad i) Note that cM (t, z) is continuously differentiable in t and z which implies that Λπ,c,i is continuously
differentiable in t and z, too. Further Λπ,c,i is obviously continuously differentiable in λ.

ad ii) Consider the derivative of Λπ,c,i with respect to λ which is given by

Λπ,c,i
λ (t, z, λ) , ∂

∂λΛπ,c,i(t, z, λ) = 1
R(Bi

π)⊤(σi.(σi)⊤)−1.Bi
π + 1

R(Bi
c)

2
(

1 −Bi
cλ
)− 1+R

R cM (t, z).

If ε > 0 then cM (t, z) > 0 and it is easy to see that Λπ,c,i
λ (t, z, ·) is non-negative and strictly increasing

(Bi
c > 0), resp. strictly decreasing (Bi

c < 0), in λ. However, if ε = 0 then cM (t, z) = 0 and Λπ,c,i
λ (t, z, ·)

is a positive constant. This implies ii).
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ad iii) Trivially Λπ,c,i(t, z, 0) = 0 for any (t, z) ∈ [0, T ] ×R which together with ii) implies iii).

ad iv) The limiting behavior of Λπ,c,i(t, z, ·) is clear when taking into account that Λc,i(t, z, ·) has a
pole at 1

Bi
c

in case of ε > 0.

Lemma 4.56 directly implies

Corollary 4.57. For each fixed (t, z) ∈ [0, T ] ×R the function Λπ,c,i(t, z, ·) is bijective.

Hence, there exists exactly one λ satisfying equation (4.33) and thus λ̃i,crit(t, x) is well-defined. More-
over, c̃i,crit(t, x) is well-defined as 1 − λ̃i,crit(t, x)Bi

c > 0.

Having established the candidate solutions the following lemma presents the desired maximizers.

Lemma 4.58 (Maximizer of Hπ,c,i(t, x, y, ·, ·)). For every (t, x, y) ∈ [0, T ] ×R×R
+
0 the maximizer

(πi,∗(t, x, y), ci,∗(t, x, y)) , arg max
(π,c)∈Rn̄×R

+
0

Hπ,c,i(t, x, y, π, c), i = 0, 1,

is given by

(πi,∗(t, x, y), ci,∗(t, x, y)) =

{

(πi,M , cM (t, x)) if y < hi,crit(t, x),

(πi,crit(t, x), ci,crit(t, x)) if y ≥ hi,crit(t, x),

where

hi,crit(t, x) , (−1)1−i 1
1−R ln

(

(1 −R) ζi,crit(t,x)

Ci
2−Ci

1
+ 1
)

,

with

ζi,crit(t, x) ,







































− 1
2

1
R(Bi

π)⊤(σi.(σi)⊤)−1.Bi
π(λi,crit(t, x))2

+
[

1
1−R

(

(1 − λi,crit(t, x)Bi
c)

− 1−R
R − 1

)

− (1 − λi,crit(t, x)Bi
c)

− 1
R + 1

]

cM (t, x)
if ε > 0,

− 1
2

1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

[(

1 −
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)2

+ 2
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)−] if ε = 0,

and where λi,crit(t, x) is uniquely determined by

Λπ,c,i(t, x, λi,crit(t, x)) = −(Ai + (πi,M )⊤.Bi
π +Bi

cc
M (t, x) − Ci)+. (4.34)

Moreover

πi,crit(t, x) =







1
R(σi.(σi)⊤)−1.

(

ηi + λi,crit(t, x)Bi
π

)

if ε > 0,

1
R(σi.(σi)⊤)−1.

(

ηi +Bi
π

1
Bi

c

(

1 −
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+))

if ε = 0,

ci,crit(t, x) =







cM (t, x)
(

1 − λi,crit(t, x)Bi
c

)− 1
R if ε > 0,

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)−
if ε = 0.
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Remark 4.59. If ε = 0 then ζi,crit and consequently hi,crit are just constants independent of t and x.
Further ε = 0 implies that πi,crit and ci,crit are constants, too. The maximizing strategy (πi,∗, ci,∗) is
therefore just a function of y.

Remark 4.60. We use the following shorthand notations

Hπ,c,i
1,crit(t, x, y) , Hπ,c,i

1 (t, x, y, πi,crit(t, x), ci,crit(t, x)) and Hπ,c,i
2,M (t, x, y) , Hπ,c,i

2 (t, x, y, πi,M , cM (t, x))

for (t, x, y) ∈ [0, T ] ×R×R
+
0 and i = 0, 1.

Proof of Lemma 4.58. Let (t, x, y) ∈ [0, T ] ×R×R
+
0 be given. A straight forward optimization yields

that the two functions Hπ,c,i
1 (t, x, y, ·, ·) and Hπ,c,i

2 (t, x, y, ·, ·) attain their maxima at (πi,M , cM (t, x)).
Further since C0

1 < C0
2 and C1

1 > C1
2 we get that

Hπ,c,i
1 (t, x, y, π, c) > Hπ,c,i

2 (t, x, y, π, c) for all (π, c) ∈ R
n̄ ×R

+. (∗)

For notational convenience we identify the tuple (π, c) with ς and use the following shorthand notations
throughout this proof.

ς i,M (t, x) , (πi,M , cM (t, x)), ς i,crit(t, x) , (πi,crit(t, x), ci,crit(t, x)), ς i,∗(t, x, y) , (πi,∗(t, x, y), ci,∗(t, x, y))

for (t, x, y) ∈ [0, T ] ×R×R
+
0 , i = 0, 1.

We distinguish the cases ς i,M (t, x) ∈ Fπ,c,i and ς i,M (t, x) /∈ Fπ,c,i.

• ς i,M (t, x) ∈ Fπ,c,i. If ς i,M (t, x) ∈ Fπ,c,i then by (∗) the maximizer of Hπ,c,i(t, x, y, ·, ·) is given by
ς i,M (t, x), i.e.

ς i,M (t, x) ∈ F
π,c,i ⇒ ς i,∗(t, x, y) = ς i,M (t, x).

• ς i,M (t, x) /∈ Fπ,c,i. If otherwise ς i,M (t, x) /∈ Fπ,c,i then (∗) implies that the maximizer ofHπ,c,i(t, x, y, ·, ·)
is either ς i,M (t, x) in case of Hπ,c,i

2,M (t, x, y) > Hπ,c,i
1,crit(t, x, y) or ς i,crit(t, x) in case of Hπ,c,i

2,M (t, x, y) ≤

Hπ,c,i
1,crit(t, x, y). Hence with

Hπ,c,i
2,M (t, x, y) ≤ Hπ,c,i

1,crit(t, x, y)

⇔ (Ci
2 − Ci

1)
1

1−R(e(−1)1−i(1−R)y − 1)

≤



































































− 1
2

1
R(Bi

π)⊤.(σi.(σi)⊤)−1.Bi
π(λi,crit(t, x))2

+
[

1
1−R

(

(

1 − λi,crit(t, x)Bi
c

)− 1−R
R − 1

)

−
(

(

1 − λi,crit(t, x)Bi
c

)− 1
R − 1

)]

cM (t, x)

if ε > 0,

− 1
2

1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

·
[(

1 −
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)2

+ 2
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)−]
if ε = 0,

⇔ (Ci
2 − Ci

1)
1

1−R(e(−1)1−i(1−R)y − 1) ≤ ζi,crit(t, x)

⇔ y ≥ (−1)1−i 1
1−R ln

(

(1 −R) ζi,crit(t,x)

Ci
2−Ci

1
+ 1
)

⇔ y ≥ hi,crit(t, x)
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we get

ς i,M (t, x) /∈ F
π,c,i ⇒ ς i,∗(t, x, y) =

{

ς i,M (t, x) if y < hi,crit(t, x),

ς i,crit(t, x) if y ≥ hi,crit(t, x).

Notice that ς i,M (t, x) ∈ Fπ,c,i implies λi,crit(t, x) = 0. Therefore hi,crit(t, x) = 0 and ς i,crit(t, x) =
ς i,M (t, x) if ς i,M (t, x) ∈ Fπ,c,i which yields that the latter formula also covers the case ς i,M (t, x) ∈ Fπ,c,i

and thus

ς i,∗(t, x, y) =

{

ς i,M (t, x) if y < hi,crit(t, x),

ς i,crit(t, x) if y ≥ hi,crit(t, x).

Thus the lemma is proven.

Remark 4.61. If ε = 0 and Bi
c > 0 then the critical strategy is given by

(πi,crit, ci,crit) =
(

1
R(σi.(σi)⊤)−1.

(

ηi −Bi
π

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

)

, 0
)

,

i.e. the consumption vanishes completely if Bi
c > 0.

Remark 4.62 (Interpretation). The maximizing strategy coincides with the Merton strategy when the
latter belongs to the half space of favorable strategies. If this is not the case then the maximizing strategy
is given by the Merton strategy as long as y is not bigger than hi,crit(t, x). For all y < hi,crit(t, x) it
is not reasonable to deviate from the Merton strategy, i.e. the utility criterion dominates the intensity
criterion as discussed in Remark 4.33. Only if y overshoots the critical barrier hi,crit(t, x) then the
maximizing strategy switches to the critical strategy (πi,crit(t, x), ci,crit(t, x)) since then the intensity
criterion is more important than the utility criterion.

Remark 4.63 (Discontinuity of (πi,∗, ci,∗)). The maximizing strategy (πi,∗, ci,∗) exhibits jumps at all
points (t̂, x̂, ŷ) in which ŷ = hi,crit(t̂, x̂) and moreover (πi,M (t̂), cM (t̂, x̂)) 6= (πi,crit(t̂, x̂), ci,crit(t̂, x̂)).

Remark 4.64 (Interpretation in case of ε = 0). As already in the consumption-dependent case the
maximizing consumption rate may be strictly positive even if ε = 0. This happens if y ≥ hi,crit and

moreover (Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1 < 0 which is only possible in case of Bi

c < 0. The maximizing

consumption rate is then given by ci,crit which is strictly positive. The reason for this behavior is the
same as in the consumption-dependent setting. Consuming at the rate of ci,crit further improves the
regime shift intensities.

So far the above explanations are relevant for the general maximizing strategy (πi,∗(t, x, y), ci,∗(t, x, y))
and not necessarily for the optimal strategy. This is because it is not clear whether the situation h(t) ≥
hi,crit – remember that the maximizing strategy of the HJB-system (4.32) is obtained by choosing y =
h(t) – could really occur. But later on we will provide an example showing that the aforementioned
situation is really possible.

Lemma 4.65 (Bounds on λi,crit). The function λi,crit : [0, T ]×R → R with λi,crit(t, x) implicitly given
by (4.34) satisfies

λi,crit(t, x) ∈







[

− (Ai+(πi,M )⊤.Bi
π+Bi

ccM (t,x)−Ci)+
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

, 0
]

if Bi
c > 0,

[

1
Bi

c
∨ − (Ai+(πi,M )⊤.Bi

π+Bi
ccM (t,x)−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

, 0
]

if Bi
c < 0

for all (t, x) ∈ [0, T ] ×R. Thus, λi,crit(t, x) is especially non-positive.
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Proof. Let (t, x) ∈ [0, T ] × R be given. We first verify the upper bound on λi,crit and then prove the
lower one.

• Upper bound. Lemma 4.56, iii), directly implies that λi,crit(t, x) ≤ 0, since Λπ,c,i(t, x, λi,crit(t, x)) =
−(dπ,c,i(πi,M , cM (t, x)))+ ≤ 0 by construction.

• Lower bound. Notice first that

Λπ,c,i(t, x, λ) ≤ 1
R(Bi

π)⊤(σi.(σi)⊤)−1.Bi
πλ , Λπ,i(λ) (∗)

for all (t, x, λ) ∈ [0, T ]×R× (−∞, 0] (Bi
c > 0), resp. (t, x, λ) ∈ [0, T ]×R× ( 1

Bi
c
, 0] (Bi

c < 0). Further

− (dπ,c,i(πi,M ,cM (t,x)))+
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

is the solution of Λπ,i(λ) = −(dπ,c,i(πi,M , cM (t, x)))+.

If Bi
c > 0 then Λπ,c,i(t, x, ·) exhibits its pole at 1

Bi
c
> 0 so that (∗) implies that λi,crit(t, x) ≥

− (dπ,c,i(πi,M ,cM (t,x)))+
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

.

However, if Bi
c < 0 then Λπ,c,i(t, x, ·) has its pole at 1

Bi
c
< 0. Consequently, (∗) yields that λi,crit(t, x) ≥

1
Bi

c
∨ − (dπ,c,i(πi,M ,cM (t,x)))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

.

Thus the lemma is proven.
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Figure 4.7: Λπ,c,i(t, x, ·) vs. Λπ,i(·) with Bi
c = 2 (left) and Bi

c = −2 (right) as functions of λ
(Examplary −(dπ,c,i(πi,M , cM (t, x)))+ = −2 is chosen)

In Figure 4.7 we draw the typical shapes of Λπ,c,i(t, x, ·) and Λπ,i(·) to illustrate the arguments of the
last proof.

We are now in the position to provide the link between the maximizing strategy in case of ε > 0 and
ε = 0.

Lemma 4.66 (Limiting behavior of (πi,crit, ci,crit), hi,crit and (πi,∗, ci,∗) as ε tends to 0). Denote by
(πi,crit

ε>0 , c
i,crit
ε>0 ), hi,crit

ε>0 and (πi,∗
ε>0, c

i,∗
ε>0), resp. (πi,crit

ε=0 , c
i,crit
ε=0 ), hi,crit

ε=0 and (πi,∗
ε=0, c

i,∗
ε=0), the critical strategy,

the critical barrier and the optimal strategy in case of ε > 0, resp. ε = 0. Then the following holds true
for every (t, x, y) ∈ [0, T ] ×R×R

+
0 .
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i) lim
ε→0

(πi,crit
ε>0 (t, x), ci,critε>0 (t, x)) = (πi,crit

ε=0 (t, x), ci,critε=0 (t, x)).

ii) lim
ε→0

hi,crit
ε>0 (t, x) = hi,crit

ε=0 (t, x).

iii) lim
ε→0

(πi,∗
ε>0(t, x, y), c

i,∗
ε>0(t, x, y)) = (πi,∗

ε=0(t, x, y), c
i,∗
ε=0(t, x, y)).

Proof. Let (t, x, y) ∈ [0, T ] ×R×R
+
0 be given. Notice that for every (t, x, λ) ∈ [0, T ] ×R× (−∞, 1

Bi
c
)

(Bi
c > 0), resp. (t, x, λ) ∈ [0, T ] ×R× ( 1

Bi
c
,∞) (Bi

c < 0)

lim
ε→0

Λπ,c,i
ε>0 (t, x, λ) = lim

ε→0

(

1
R(Bi

π)⊤(σi.(σi)⊤)−1.Bi
πλ+Bi

c

(

(

1 −Bi
cλ
)− 1

R − 1
)

cM (t, x)
)

= 1
R(Bi

π)⊤(σi.(σi)⊤)−1.Bi
πλ

, Λπ,c,i
ε=0 (λ)

since limε→0 c
M (t, x) = 0. This convergence together with the results from Lemma 4.65 yield that

lim
ε→0

λi,crit
ε>0 (t, x) =







− (dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

if Bi
c > 0,

1
Bi

c
∨ − (dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

if Bi
c < 0,

= 1
Bi

c

(

1 −
(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)

. (∗)

Keeping this convergence result in mind we can now prove the assertions of the lemma.

ad i) The convergence of the critical portfolio strategy is a direct consequence of (∗), i.e.

lim
ε→0

πi,crit
ε>0 (t, x) = lim

ε→0

1
R(σi.(σi)⊤)−1.

(

ηi + λi,crit
ε>0 (t, x)Bi

π

)

= 1
R(σi.(σi)⊤)−1.

(

ηi +Bi
π

1
Bi

c

(

1 −
(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+))

= πi,crit
ε=0 (t, x).

To prove the limiting behavior of the critical consumption rate first note that

Λπ,c,i
ε>0 (t, x, λi,crit

ε>0 (t, x)) = −(dπ,c,i(πi,M , cM (t, x)))+

is equivalent to

cM (t, x)
(

1 − λi,crit
ε>0 (t, x)Bi

c

)− 1
R =

−(dπ,c,i(πi,M ,cM (t,x)))+− 1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

πλi,crit
ε>0 (t,x)

Bi
c

+ cM (t, x)

as long as ε > 0. Hence

lim
ε→0

ci,critε>0 (t, x) = lim
ε→0

cM (t, x)
(

1 − λi,crit
ε>0 (t, x)Bi

c

)− 1
R

= lim
ε→0

(

−(dπ,c,i(πi,M ,cM (t,x)))+− 1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

πλi,crit
ε>0 (t,x)

Bi
c

+ cM (t, x)
)

= lim
ε→0

−(dπ,c,i(πi,M ,cM (t,x)))+

Bi
c

−
1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π

Bi
c

lim
ε→0

λi,crit
ε>0 (t, x) + lim

ε→0
cM (t, x)
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= − (dπ,c,i(πi,M ,0))+

Bi
c

−
1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

1 −
(

(dπ,c,i(πi,M ,0))+
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)

=
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

·
[

− (dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c −

(

1 −
(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)]

=
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

·
[

−
(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)

+
(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+]

=
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)−

= ci,critε=0 .

ad ii) In order to verify the limiting behavior of hi,crit
ε>0 we have to consider ζi,crit

ε>0 , i.e.

lim
ε→0

ζi,crit
ε>0 (t, x) = lim

ε→0

(

−1
2

1
R(Bi

π)⊤(σi.(σi)⊤)−1.Bi
π(λi,crit

ε>0 (t, x))2

+
[

1
1−R

(

(1 − λi,crit
ε>0 (t, x)Bi

c)
− 1−R

R − 1
)

− (1 − λi,crit
ε>0 (t, x)Bi

c)
− 1

R + 1
]

cM (t, x)
)

= −1
2

1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

1 −
(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)2

+ lim
ε→0

([

1
1−R

(

(1 − λi,crit
ε>0 (t, x)Bi

c)
− 1−R

R − 1
)

− (1 − λi,crit
ε>0 (t, x)Bi

c)
− 1

R + 1
]

cM (t, x)
)

= −1
2

1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

1 −
(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)2

+ lim
ε→0

(

1
1−R

(

(1 − λi,crit
ε>0 (t, x)Bi

c)
− 1−R

R − 1
)

cM (t, x)
)

− lim
ε→0

(

(1 − λi,crit
ε>0 (t, x)Bi

c)
− 1

R cM (t, x)
)

+ lim
ε→0

cM (t, x)

= −1
2

1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

1 −
(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)2

+ lim
ε→0

(

1
1−R

(

(1 − λi,crit
ε>0 (t, x)Bi

c)
− 1−R

R − 1
)

cM (t, x)
)

− lim
ε→0

ci,critε>0 (t, x)

= −1
2

1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

1 −
(

(dπ,c,i(πi,M ,0))+
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)2

−
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)−

+ lim
ε→0

(

1
1−R

(

(1 − λi,crit
ε>0 (t, x)Bi

c)
− 1−R

R − 1
)

cM (t, x)
)

= −1
2

1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

·
[(

1 −
(

(dπ,c,i(πi,M ,0))+
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)2
+ 2
(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)−]

+ lim
ε→0

(

1
1−R

(

(1 − λi,crit
ε>0 (t, x)Bi

c)
− 1−R

R − 1
)

cM (t, x)
)

= ζi,crit
ε=0 + lim

ε→0

(

1
1−R

(

(1 − λi,crit
ε>0 (t, x)Bi

c)
− 1−R

R − 1
)

cM (t, x)
)

.
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We now show that limε→0

(

1
1−R

(

(1 − λi,crit
ε>0 (t, x)Bi

c)
− 1−R

R − 1
)

cM (t, x)
)

= 0 which then implies that

limε→0 ζ
i,crit
ε>0 (t, x) = ζi,crit

ε=0 and consequently limε→0 h
i,crit
ε>0 (t, x) = hi,crit

ε=0 .

To prove the aforementioned limit we consider

lim
ε→0

(

1
1−R

((

1 − λi,crit
ε>0 (t, x)Bi

c

)− 1−R
R − 1

)

cM (t, x)
)

= lim
ε→0

(

1
1−Rc

M (t, x)
(

1 − λi,crit
ε>0 (t, x)Bi

c

)− 1
R (1 − λi,crit

ε>0 (t, x)Bi
c)
)

− lim
ε→0

1
1−Rc

M (t, x)

= lim
ε→0

(

1
1−Rc

i,crit
ε>0 (t, x)

(

1 − λi,crit
ε>0 (t, x)Bi

c

)

)

= 1
1−R lim

ε→0
ci,critε>0 (t, x) lim

ε→0

(

1 − λi,crit
ε>0 (t, x)Bi

c

)

= 1
1−R

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)−

·
(

1 − 1
Bi

c

(

1 −
(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)

Bi
c

)

= 1
1−R

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)−(
(dπ,c,i(πi,M ,0))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+

= 0

ad iii) Assertion iii) follows directly from i) and ii).

Thus the lemma is proven.

Remark 4.67. So far the strategy (πi,∗, ci,∗) is only a candidate solution for the optimal investment
problem. To verify the optimality we need to show that the related HJB-system has a global solution
that satisfies the required regularity conditions stated in the Verification Theorem 3.3.

Inserting (πi,∗(t, g(t)− 1{i=1}h(t), h(t)), c
i,∗(t, g(t)− 1{i=1}h(t), h(t))) into the HJB-equation (4.32) the

latter now becomes a system of backward ODEs which for ε > 0 is given by

h′(t) = − (Ψ0 − Ψ1) +
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

g(t) R
1−R(e

1−R
R

h(t) − 1)

− C0
2

1
1−R(e−(1−R)h(t) − 1) + C1

2
1

1−R(e(1−R)h(t) − 1)

−
[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)h(t) − 1) − 1

2
1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π(λ0,crit(t, g(t)))2

+
[

1
1−R

(

(

1 − λ0,crit(t, g(t))B0
c

)− 1−R
R − 1

)

−
(

1 − λ0,crit(t, g(t))B0
c

)− 1
R + 1

]

cM (t, g(t))
]+

+
[

(C1
1 − C1

2 ) 1
1−R(e(1−R)h(t) − 1) − 1

2
1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π(λ1,crit(t, g(t) − h(t)))2

+
[

1
1−R

(

(

1 − λ1,crit(t, g(t) − h(t))B1
c

)− 1−R
R − 1

)

−
(

1 − λ1,crit(t, g(t) − h(t))B1
c

)− 1
R + 1

]

cM (t, g(t) − h(t))
]+
,

(4.35)
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g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
g(t) − 1

)

)

− C0
2

1
1−R(e−(1−R)h(t) − 1)

−
[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)h(t) − 1) − 1

2
1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π(λ0,crit(t, g(t)))2

+
[

1
1−R

(

(

1 − λ0,crit(t, g(t))B0
c

)− 1−R
R − 1

)

−
(

1 − λ0,crit(t, g(t))B0
c

)− 1
R + 1

]

cM (t, g(t))
]+

(4.36)

subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (4.37)

If ε = 0 then the ODE-system reads

h′(t) = − (Ψ0 − Ψ1)

− C0
2

1
1−R(e−(1−R)h(t) − 1) + C1

2
1

1−R(e(1−R)h(t) − 1)

−
[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)h(t) − 1) − 1

2

1
R

(B0
π)⊤(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

·
[(

1 −
(

(A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)2
+ 2
(

(A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)−]]+

+
[

(C1
1 − C1

2 ) 1
1−R(e(1−R)h(t) − 1) − 1

2

1
R

(B1
π)⊤(σ1.(σ1)⊤)−1.B1

π

(B1
c )2

·
[(

1 −
(

(A1+(π1,M )⊤.B1
π−C1)+

1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

B1
c + 1

)+)2
+ 2
(

(A1+(π1,M )⊤.B1
π−C1)+

1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

B1
c + 1

)−]]+
,

(4.38)

g′(t) = − Ψ0

− C0
2

1
1−R(e−(1−R)h(t) − 1)

−
[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)h(t) − 1) − 1

2

1
R

(B0
π)⊤(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

·
[(

1 −
(

(A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)2
+ 2
(

(A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)−]]+

(4.39)

subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (4.40)

Remark 4.68. From the proof of Lemma 4.58 we know that for (t, x, y) ∈ [0, T ] ×R×R
+
0

y ≥ hi,crit(t, x) ⇔ (Ci
1 − Ci

2)
1

1−R(e(−1)1−i(1−R)y − 1) − 1
2

1
R(Bi

π)⊤.(σi.(σi)⊤)−1.Bi
π(λi,crit(t, x))2

+
[

1
1−R

(

(

1 − λi,crit(t, x)Bi
c

)− 1−R
R − 1

)

−
(

1 − λi,crit(t, x))Bi
c

)− 1
R + 1

]

cM (t, x) ≥ 0

if ε > 0 and

y ≥ hi,crit ⇔ (Ci
1 − Ci

2)
1

1−R(e(−1)1−i(1−R)y − 1) − 1
2

1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

·
[(

1 −
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)2
+ 2
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)−]

≥ 0

if ε = 0.
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Remark 4.69. The aforementioned ODEs include the ODEs of the classical Merton problem (first
rows) and the ODEs of the Bäuerle-Rieder problem with constant regime shift intensities Ci

2 (first two
rows).

Remark 4.70. Notice that the ODEs above resemble the ODEs from the portfolio-dependent model
with ε = 0, namely the ODEs (4.22) and (4.23). The hidden difference lies in ζi,crit. Whereas ζi,crit is
given by

ζi,crit
PCD = −1

2

1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

[(

1−
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c+1

)+)2
+2
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c+1

)−]

in case of portfolio- and consumption-dependent intensities it is given by

ζi,crit
PD = −1

2
((Ai+(πi,M )⊤.Bi

π−Ci)+)2
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

in case of portfolio-dependent intensities.

Therefore if ε = 0 and either Bi
c > 0, or (Ai+(πi,M )⊤.Bi

π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c +1 ≥ 0 and Bi

c < 0 then ζi,crit
PCD = ζi,crit

PD

and both models coincide in that the maximizing strategies and the ODEs for the functions g and h are
the same.

Lemma 4.71. The ODE-system given by equation (4.35) and (4.36) subject to the boundary conditions
(4.37) (ε > 0), resp. (4.38) and (4.39) subject to the boundary conditions (4.40) (ε = 0), admits a
unique global solution.

Before we can prove the lemma we need the following result on λi,crit.

Lemma 4.72. The function λi,crit : [0, T ] × R → R
−
0 where λi,crit(t, x) is implicitly given by the

condition Λπ,c,i(t, x, λi,crit(t, x)) = −(dπ,c,i(πi,M , cM (t, x)))+ is continuous in t and x and moreover
locally Lipschitz continuous in x.

Proof. In order to prove the assertion let

Λ̄π,c,i(t, x, λ) , Λπ,c,i(t, x, λ) + (dπ,c,i(πi,M , cM (t, x)))+

for (t, x, λ) ∈ [0, T ] ×R× (−∞, 1
Bi

c
) (Bi

c > 0), resp. (t, x, λ) ∈ [0, T ] ×R× ( 1
Bi

c
,∞) (Bi

c < 0).

• Continuity in t and x. As Λπ,c,i(t, x, λ) is continuous in t, x and λ which has been seen in Lemma
4.56 and as dπ,c,i and [ · ]+ are continuous functions, too, Λ̄π,c,i(t, x, λ) is also continuous in t, x and
λ. Further λi,crit(t, x) is the unique root of Λ̄π,c,i(t, x, λ).

The continuity of λi,crit(t, x) in (t, x) is a consequence of the Theorem of the Maximum (Theorem 3.6
in [Stokey, Lucas, Prescott 1989]). Using the terminology of [Stokey, Lucas, Prescott 1989] we define
correspondences Γ, G : [0, T ] × R → P(R) and functions φ : [0, T ] × R × (−∞, 1

Bi
c
) → R (Bi

c > 0),

resp. φ : [0, T ]×R× ( 1
Bi

c
,∞) → R (Bi

c < 0), ψ : [0, T ]×R → R, with P(R) the power set of R, given
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by

Γ(t, x) ,







[

− (dπ,c,i(πi,M ,cM (t,x)))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

, 0
]

if Bi
c > 0,

[

1
Bi

c
∨ − (dπ,c,i(πi,M ,cM (t,x)))+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

, 0
]

if Bi
c < 0,

φ(t, x, λ) , −(Λ̄π,c,i(t, x, λ))2, ψ(t, x) , max
λ∈Γ(t,x)

φ(t, x, λ),

G(t, x) , {λ ∈ Γ(t, x) : φ(t, x, λ) = ψ(t, x)} .

Notice that the correspondence Γ is compact-valued and continuous. Moreover, φ is continuous.
The Theorem of the Maximum then implies that G is upper hemi-continuous. By construction,
λi,crit(t, x) is the unique maximizer of φ(t, x, ·). Therefore G is single-valued which implies that it is
even continuous as given in [Stokey, Lucas, Prescott 1989]. As λi,crit = G, the continuity of λi,crit is
proven.

• Local Lipschitz continuity in t and x. Subsequently we verify that λi,crit(t, x) is locally Lipschitz
continuous in t and x. Note that for any (t̂, x̂) ∈ [0, T ] × R satisfying dπ,c,i(πi,M , cM (t̂, x̂)) > 0 the
continuity of dπ,c,i implies that there exists an open neighborhood of (t̂, x̂) denoted by N(t̂, x̂) ⊂
[0, T ] × R such that any (t, x) ∈ N(t̂, x̂) satisfies dπ,c,i(πi,M , cM (t, x)) > 0. Thus, Λ̄π,c,i(t, x, λ) =
Λπ,c,i(t, x, λ) + dπ,c,i(πi,M , cM (t, x)) on N(t̂, x̂) × (−∞, 1

Bi
c
) (Bi

c > 0), resp. N(t̂, x̂) × ( 1
Bi

c
,∞) (Bi

c <

0). Hence, Λ̄π,c,i(t, x, λ) is even continuously differentiable on N(t̂, x̂) × (−∞, 1
Bi

c
) (Bi

c > 0), resp.

N(t̂, x̂) × ( 1
Bi

c
,∞) (Bi

c < 0) and we can consider the derivative of Λ̄π,c,i with respect to λ, i.e.

Λ̄π,c,i
λ (t̂, x̂, λi,crit(t̂, x̂)) = 1

R(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π + 1
R(Bi

c)
2
(

1 −Bi
cλ

i,crit(t̂, x̂)
)− 1+R

R cM (t̂, x̂) > 0

where Λ̄π,c,i
λ (t, x, λ) , ∂

∂λ Λ̄π,c,i(t, x, λ). The implicit function theorem then implies that there exists

another open neighborhood Ñ(t̂, x̂) ⊂ N(t̂, x̂) of (t̂, x̂) such that λi,crit is continuously differentiable
on Ñ(t̂, x̂). In conclusion, for any (t̂, x̂) ∈ [0, T ] ×R satisfying dπ,c,i(πi,M , cM (t̂, x̂)) > 0 there exists
an open neighborhood Ñ(t̂, x̂) of (t̂, x̂) on which λi,crit is continuously differentiable.

Analogously, we derive that for any (t̂, x̂) ∈ [0, T ]×R satisfying dπ,c,i(πi,M , cM (t̂, x̂)) < 0 there exists
an open neighborhood Ñ(t̂, x̂) of (t̂, x̂) on which λi,crit is continuously differentiable, too.

Consider now an arbitrary (t̂, x̂) ∈ [0, T ] × R. If (t̂, x̂) satisfies dπ,c,i(πi,M , cM (t̂, x̂)) > 0 then the
above results imply that there exists an open neighborhood N(t̂, x̂) of (t̂, x̂) such that λi,crit is
continuously differentiable on N(t̂, x̂). Consequently, λi,crit is locally Lipschitz continuous on the set
{

(t, x) ∈ [0, T ] ×R : dπ,c,i(πi,M , cM (t, x)) > 0
}

. Analogously, we find that λi,crit is locally Lipschitz
continuous on the set

{

(t, x) ∈ [0, T ] ×R : dπ,c,i(πi,M , cM (t, x)) < 0
}

.

However, if (t̂, x̂) satisfies dπ,c,i(πi,M , cM (t̂, x̂)) = 0 then consider an arbitrary open neighborhood
N(t̂, x̂) of (t̂, x̂) and define N>(t̂, x̂) ,

{

(t, x) ∈ N(t̂, x̂) : dπ,c,i(πi,M , cM (t, x)) > 0
}

. For all (t, x) ∈

N>(t̂, x̂) the derivative λi,crit
x (t, x) exists and is finite. The same holds true for every (t, x) ∈

N<(t̂, x̂) ,
{

(t, x) ∈ N(t̂, x̂) : dπ,c,i(πi,M , cM (t, x)) < 0
}

. To see this, note that

Λ̄π,c,i(t, x, λi,crit(t, x)) = 0

for all (t, x) ∈ [0, T ] ×R. Hence

0 = ∂
∂x Λ̄π,c,i(t, x, λi,crit(t, x)) = Λ̄π,c,i

x (t, x, λi,crit(t, x)) + Λ̄π,c,i
λ (t, x, λi,crit(t, x))λi,crit

x (t, x) (∗)
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where

Λ̄π,c,i
x (t, x, λ) =







Bi
c

(

1 − λBi
c

)− 1
R cMx (t, x) if dπ,c,i(πi,M , cM (t, x)) > 0,

Bi
c

(

(

1 − λBi
c

)− 1
R − 1

)

cMx (t, x) if dπ,c,i(πi,M , cM (t, x)) < 0,

Λ̄π,c,i
λ (t, x, λ) = 1

R(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π + 1
R(Bi

c)
2
(

1 −Bi
cλ
)− 1+R

R cM (t, x).

Since Λ̄π,c,i
λ (t, x, λ) > 0 we can transform (∗) into

λi,crit
x (t, x) = − Λ̄π,c,i

x (t,x,λi,crit(t,x))

Λ̄π,c,i
λ

(t,x,λi,crit(t,x))

=



























−
Bi

c

(

1−λi,crit(t,x)Bi
c

)− 1
R cM

x (t,x)

1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π+ 1
R

(Bi
c)

2
(

1−Bi
cλi,crit(t,x)

)− 1+R
R cM (t,x)

if dπ,c,i(πi,M , cM (t, x)) > 0,

−
Bi

c

(

1−λi,crit(t,x)Bi
c

)− 1
R cM

x (t,x)−Bi
ccM

x (t,x)

1
R

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π+ 1
R

(Bi
c)

2
(

1−Bi
cλi,crit(t,x)

)− 1+R
R cM (t,x)

if dπ,c,i(πi,M , cM (t, x)) < 0.

Since in both cases the numerator is locally bounded and the denominator is strictly positive and
bounded away from 0, λi,crit

x (t, x) is locally bounded in either case. Hence we can define

λi,crit,>
x (t̂, x̂) , sup

{

|λi,crit
x (t, x)| : (t, x) ∈ N>(t̂, x̂)

}

,

λi,crit,<
x (t̂, x̂) , sup

{

|λi,crit
x (t, x)| : (t, x) ∈ N<(t̂, x̂)

}

which are both finite. Thus the Lipschitz constant is given by

L(t̂, x̂) , λi,crit,>
x (t̂, x̂) ∨ λi,crit,<

x (t̂, x̂).

The last results together with the continuity of λi,crit imply that λi,crit is locally Lipschitz continuous
on [0, T ] ×R.

This finishes the proof.

We now come to the proof of Lemma 4.71.

Proof of Lemma 4.71. The proof is essentially the same as the proof of Lemma 4.9. Only the χi’s are
different. Therefore we just present the actual χi’s and verify that those satisfy the necessary continuity
conditions and the non-negativity condition.

• Definition of the χi’s. The χi’s are given by χi : [0, T ] ×R×R
+
0 → R, i = 0, 1, with

χi(t, x, y) , (−1)1−i
(

Ci
2

1
1−R(e(−1)1−i(1−R)y −1)+

[

(Ci
1−C

i
2)

1
1−R(e(−1)1−i(1−R)y −1)+ζi,crit(t, x)

]+)

.

• Continuity results on the χi’s. The χi’s are continuous in t, and further, as compositions of contin-
uously differentiable and locally Lipschitz continuous functions in x and y and the [ · ]+-function
locally Lipschitz continuous in x and y.
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• Non-negativity of the χi’s. It is easy to see that χ1 ≥ 0. The non-negativity of χ0 follows from the
non-positivity of ζ0,crit. To see this we distinguish the two cases ε > 0 and ε = 0.

• ε > 0. If ε > 0 then

ζ0,crit(t, x) = −1
2

1
R(B0

π)⊤(σ0.(σ0)⊤)−1.B0
π(λ0,crit(t, x))2

+
[

1
1−R

(

(1 − λ0,crit(t, x)B0
c )−

1−R
R − 1

)

− (1 − λ0,crit(t, x)B0
c )−

1
R + 1

]

cM (t, x)

whereof the first summand is obviously non-positive. Further the second summand is non-positive,
too, since

1
1−R

(

(

1 − λ0,crit(t, x)B0
c

)− 1−R
R − 1

)

−
(

(

1 − λ0,crit(t, x)B0
c

)− 1
R − 1

)

≤ 0

which follows from Lemma 4.48, iii), with z =
(

1−λ0,crit(t, x)B0
c

)− 1
R −1. The lemma is applicable

because
(

1 − λ0,crit(t, x)B0
c

)− 1
R > 0.

• ε = 0. If ε = 0 then

ζ0,crit(t, x) = −1
2

1
R

(B0
π)⊤(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

[(

1 −
(

(A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)2

+ 2
(

(A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)−]

which is trivially non-positive.

The non-positivity of ζi,crit implies that

(C0
1 − C0

2 ) 1
1−R(e−(1−R)y − 1) ≥

[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)y − 1) + ζ0,crit(t, x)

]+

and hence

χ0(t, x, y) ≥ −C0
1

1
1−R(e−(1−R)y − 1) ≥ 0 for every (t, x, y) ∈ [0, T ] ×R×R

+
0 .

The remainder of the proof is the same as the proof of Lemma 4.9.

Examples for the functions g and h are given in Figure 4.8.

The proof of Lemma 4.71 directly implies the following corollaries.

Corollary 4.73 (Time-dependent bounds on g and h). Let h and g be given by (4.35), (4.36) subject
to the boundary conditions (4.37) (ε > 0), resp. (4.38), (4.39) subject to the boundary conditions (4.40)
(ε = 0). Then

−(Ψ1 − ξ1(T ))−(T − t) ≤ g(t) ≤ (Ψ0 − ξ0(T ))+(T − t) (ε > 0),

resp. 0 ≤ g(t) ≤ Ψ0(T − t) (ε = 0) and

0 ≤ h(t) ≤ (Ψ0 − Ψ1)(T − t)

for t ∈ [0, T ] where the ξi(T )’s are as defined in the proof of Lemma 4.9.



76 4 Solution for crra Investors with Power Utility

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 1 2 3 4 5

0

0.0005

0.001

0.0015

0.002

0 1 2 3 4 5

Figure 4.8: g (left) and h (right) as functions of t
(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.06, σ0 = 0.4, σ1 = 0.7, δ = 0.035, ε = 1, R = 0.5, T = 5,

A0 = 27.5, B0
π = 5, B0

c = −15, C0 = 27.5, C0
1 = 10, C0

2 = 50,

A1 = 10, B1
π = 5, B1

c = −10, C1 = 4.8, C1
1 = 50, C1

2 = 0.125)

Corollary 4.74 (Time-independent bound on h). Let h and g be given by (4.35), (4.36) subject to
the boundary conditions (4.37) (ε > 0), resp. (4.38), (4.39) subject to the boundary conditions (4.40)
(ε = 0). Then

0 ≤ h(t) ≤ h̄

for t ∈ [0, T ] where h̄ is the smallest positive root of

F̄ (y) ,

{

−(Ψ0 − Ψ1) − C0
1

1
1−R(e−(1−R)y − 1) + C1

2
1

1−R(e(1−R)y − 1) if ε > 0,

−(Ψ0 − Ψ1) + χ0(t, x, y) + χ1(t, x, y) if ε = 0

if such a root exists; otherwise h̄ = ∞, i.e.

h̄ = min
{

y ∈ R
+
0 : F̄ (y) = 0

}

,

with the convention min ∅ , ∞, where the χi’s are as defined in the proof of Lemma 4.71.

Remark 4.75. Notice that in case of ε = 0 the function F̄ (y) is indeed a function solely in y although
the χi’s formally depend on t and x, too. However setting ε = 0 implies that ζi,crit and consequently
hi,crit are independent of t and x. This yields that the χi’s are independent of t and x, too.

Proof of Corollary 4.74. The assertion follows from a simple ODE argument since

F (t, x, y) = −(Ψ0 − Ψ1) + ̺(t, x, y) + χ0(t, x, y) + χ1(t, x, y) ≥ F̄ (y)

for all (t, x, y) ∈ [0, T ] × R × R
+
0 where we used the notation from the proof of Lemma 4.9. If ε = 0

then this is obviously true. In case of ε > 0 this is satisfied, too, since the proof of Lemma 4.71 showed
that χ0(t, x, y) ≥ −C0

1
1

1−R(e−(1−R)y − 1) and χ1(t, x, y) ≥ C1
2

1
1−R(e(1−R)y − 1).

The boundary function on h as presented in Corollary 4.73 is suitable for large values of t for which
the deviation from h is not too large whereas for small values of t the non-linear behavior of h implies
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that the boundary function overshoots h by far. The converse is true for the bound given in Corollary
4.74. Thus combining the two bounds on h yields

0 ≤ h(t) ≤ min{(Ψ0 − Ψ1)(T − t), h̄}

for t ∈ [0, T ].

The following theorem ensures that the strategy given in Lemma 4.58 is indeed the optimal strategy
for the optimal investment problem.

Theorem 4.76 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and g
be given by (4.35), (4.36) subject to the boundary conditions (4.37) (ε > 0), resp. (4.38), (4.39) subject
to the boundary conditions (4.40) (ε = 0). Then the strategy

(πi,∗(t), ci,∗(t)) , (πi,∗(t, g(t) − 1{i=1}h(t), h(t)), c
i,∗(t, g(t) − 1{i=1}h(t), h(t))), t ∈ [0, T ], i = 0, 1,

as given in Lemma 4.58 is optimal for the investment problem (P) with crra preferences and relative
risk aversion R.

Proof. Since (πi,∗(t), ci,∗(t)) maximizes the reduced HJB-system (4.20) for each t ∈ [0, T ], optimality
of the strategy (πi,∗, ci,∗) follows directly from the Verification Theorem 3.3.

Remark 4.77. If not otherwise stated we use the following shorthand notations

πi,crit(t) , πi,crit(t, g(t) − 1{i=1}h(t)), ci,crit(t) , ci,crit(t, g(t) − 1{i=1}h(t)),

hi,crit(t) , hi,crit(t, g(t) − 1{i=1}h(t)), λi,crit(t) , λi,crit(t, g(t) − 1{i=1}h(t)).

Figure 4.9 shows the optimal strategy and the Merton strategy in a setting where Bi
π is positive and Bi

c

is negative for i = 0, 1. Hence the large investor is forced to invest less than the Merton fractions and
to consume at a rate that is greater than or equal the Merton consumption rate in order to generate
advantageous regime shift intensities. As in the previous variants of the step intensity functions the
investor turns back to the Merton strategy as soon as the time to maturity is suitably small. In the
particular example of Figure 4.9 those times are t ≈ 3.6 (i = 0), resp. t ≈ 4.4 (i = 1).

As already in the consumption-dependent setting it is possible that the large investor consumes al-
though ε = 0. Figure 4.10 provides an example for this situation.

The large investor’s optimal portfolio strategy consists of the classical Merton strategy and an addi-
tional hedging component. Further the investor’s optimal consumption rate can be decomposed into
the Merton consumption rate and an adjustment part. The hedging component and the adjustment
part result from the investor’s influence on the market. So we can write

πi,∗(t) = πi,M + πi,H(t) and ci,∗(t) = ci,M (t) + ci,A(t), i = 0, 1,

where we have

πi,H(t) =







1
Rλ

i,crit(t)(σi.(σi)⊤)−1.Bi
π1{h(t)≥hi,crit(t)} if ε > 0,

1
R(σi.(σi)⊤)−1.Bi

π
1

Bi
c

(

1 −
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+)

1{h(t)≥hi,crit(t)} if ε = 0,

ci,A(t) =







(

(

1 − λi,crit(t)Bi
c

)− 1
R − 1

)

ci,M (t)1{h(t)≥hi,crit(t)} if ε > 0,
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

(Ai+(πi,M )⊤.Bi
π−Ci)+

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)−
1{h(t)≥hi,crit(t)} if ε = 0.
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Figure 4.9: Optimal strategy vs. Merton strategy: πi,∗, ci,∗ and πi,M , ci,M as functions of t
(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.06, σ0 = 0.4, σ1 = 0.7, δ = 0.035, ε = 1, R = 0.5, T = 5,
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Notice that (πi,H(t))⊤.Bi
π ≤ 0. Moreover Bi

cc
i,A(t) ≤ 0. If ε > 0 this is true since λi,crit(t) ≤ 0. In case

of ε = 0 this can be easily verified.

The following lemma shows that (πi,H , ci,A) benefits the regime shift intensities.

Lemma 4.78. The optimal strategy (πi,∗, ci,∗) satisfies

ϑ0,1(π0,∗(t), c0,∗(t)) ≤ ϑ0,1(π0,M , c0,M (t)) and ϑ1,0(π1,∗(t), c1,∗(t)) ≥ ϑ1,0(π1,M , c1,M (t))

for every t ∈ [0, T ].

Proof. The assertion follows since

ϑ0,1(π0,∗(t), c0,∗(t)) = C0
11{A0+(π0,∗(t))⊤.B0

π+B0
c c0,∗(t)≤C0} + C0

21{A0+(π0,∗(t))⊤.B0
π+B0

c c0,∗(t)>C0}

= C0
11{A0+(π0,M (t))⊤.B0

π+(π0,H(t))⊤.B0
π+B0

c c0,M (t)+B0
c c0,A(t)≤C0}

+ C0
21{A0+(π0,M (t))⊤.B0

π+(π0,H(t))⊤.B0
π+B0

c c0,M (t)+B0
c c0,A(t)>C0}

≤ C0
11{A0+(π0,M (t))⊤.B0

π+B0
c c0,M (t)≤C0} + C0

21{A0+(π0,M (t))⊤.B0
π+B0

c c0,M (t)>C0}

= ϑ0,1(π0,M , c0,M (t))

and

ϑ1,0(π1,∗(t), c1,∗(t)) = C1
11{A1+(π1,∗(t))⊤.B1

π+B1
c c1,∗(t)≤C1} + C1

21{A1+(π1,∗(t))⊤.B1
π+B1

c c1,∗(t)>C1}

= C1
11{A1+(π1,M (t))⊤.B1

π+(π1,H(t))⊤.B1
π+B1

c c1,M (t)+B1
c c1,A(t)≤C1}

+ C1
21{A1+(π1,M (t))⊤.B1

π+(π1,H(t))⊤.B1
π+B1

c c1,M (t)+B1
c c1,A(t)>C1}

≥ C1
11{A1+(π1,M (t))⊤.B1

π+B1
c c1,M (t)≤C1} + C1

21{A1+(π1,M (t))⊤.B1
π+B1

c c1,M (t)>C1}

= ϑ1,1(π1,M , c1,M (t))

as (πi,H(t))⊤.Bi
π ≤ 0 and Bi

cc
i,A(t) ≤ 0.

Remark 4.79. As in the last section the optimal strategy is a compromise strategy composed of the
Merton strategy and the critical strategy and thus generating better regime shift intensities than those
the Merton strategy would yield.

4.3 Affine Intensity Functions

Having considered constant and piecewise constant intensity functions the next step is to discuss
affine intensity functions. However since intensities have to be non-negative we cannot use pure affine
functions. To overcome this problem of negativity we look at a class of continuous functions consisting
of an affine and a constant part. For notational convenience we call those functions ’affine’. Thus in
this subsection we let the intensity functions ϑi,1−i be given as functions of the form

ϑi,1−i(π, c) = max{Ai + π⊤.Bi
π +Bi

cc, C
i}, (π, c) ∈ R

n̄ ×R
+
0 (AI)

with Ai ∈ R, Bi
π ∈ R

n̄, B0
c ∈ R, B1

c ≤ 0 and Ci ≥ 0 for i = 0, 1. Positive values for B1
c are not allowed

since this could cause an infinite consumption rate to be optimal in state 1 as will be seen later on.



4.3 Affine Intensity Functions 81

Via step intensity functions the investor has only an indirect influence on the market whereas with
those floored affine intensity functions the investor can directly determine the level of the regime shift
intensities. The only restriction is that the intensities are not allowed to be smaller than a predefined,
non-manipulable constant. As in the case of the step intensity functions we first give some explanations
and possible interpretations of the parameters characterizing the ’affine’ intensity functions.

Remark 4.80 (Interpretation of the intensity parameters). The affine intensity functions can take
on every value that is larger than or equal Ci. Thus, this minimal intensity can be regarded as being
advantageous if i = 0, resp. disadvantageous if i = 1, for the large investor. Further, since ϑi,1−i is
unbounded from above the possible extent of the large investor’s influence is infinite. Again, Bi

π and
Bi

c determine the strength of the influence, resp. the sensitivity of the market – the bigger |Bi
π,n|, resp.

|Bi
c|, the more sensitive the market. Finally, having specified the minimal intensity and the Bi’s the

critical barrier separating the strategies that generate intensities bigger than Ci from those that cause
the minimal intensity is fixed via the parameter Ai.

As in the step intensity section the signs of Bi
π,n, resp. Bi

c, determine the way in which the market
reacts on the large investor’s presence. Thus, a positive B0

π,n, resp. a negative B1
π,n, corresponds to a

market in which large positions in the n-th asset yield large (i = 0), resp. small (i = 1), transition
intensities. So the other market participants disapprove the large investor’s holdings in asset n in that
his position could cause the market to turn into the adverse state (if i = 0) or hinder an early jump
back to the favorable state (if i = 1).

In case of B0
π,n being negative, resp. B1

π,n being positive, large proportions in the n-th asset cause small
(i = 0), resp. large (i = 1), transition intensities. Thus the large investor is accepted by the market,
resp. the other market participants may think of him as having superior information about the n-th
stock, such as a manager of a prosperous fund, or an executive of the company issuing the stock or
even a person having insider information.

Having discussed the role of Bi
π we now go on describing the consumption parameter Bi

c. If B0
c > 0,

resp. B1
c < 0, then consuming at a high rate implies large (i = 0), resp. small (i = 1), regime shift

intensities, i.e. the other market participants may interpret the large investor’s high consumption rate
as a bad signal for the future development, e.g. as a herald of a market crisis. Another example in
which a positive value of B0

c , resp. a negative value of B1
c , is reasonable is the large investor being the

manager of a large mutual fund. In this context consumption can be interpreted as a reduction of the
number of assets under management. A possible reason for such a reduction could be the absence of
lucrative investment opportunities.

Finally, a negative B0
c implies that consuming at a high rate yields small regime shift intensities. Thus

the market somehow rewards the large investor’s if he consumes at a high rate. This could be the case if
the investor’s presence in the market is disapproved by the other market participants. A specialty arises
if ε = 0, i.e. if the investor does not draw any utility from intermediate consumption in terms of the
utility function. In this case a negative B0

c may force the investor to consume just to achieve favorable
transition intensities without generating any direct utility gain. In this context consumption could be
interpreted as bribe and we will see later on that there exist parameter specifications under which the
investor pays a bribe.
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Under the affine intensity functions the HJB-system (4.8) reads

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − 1{i=1}h
′(t) + ri + π⊤.ηi − 1

2Rπ
⊤.σi.(σi)⊤.π

+ εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)(g(t)−1{i=1}h(t))c1−R − 1) − c

+ max{Ai + π⊤.Bi
π +Bi

cc, C
i} 1

1−R(e(−1)1−i(1−R)h(t) − 1)
}

(4.41)

for t ∈ [0, T ) and i = 0, 1, subject to the boundary conditions

g(T ) = 0, h(T ) = 0.

Subsequently, we present the solution of the investment problem (P) for three different variants of
the affine intensity functions. First, we discuss intensities that are influenced solely by the portfolio
proportions π, the so called portfolio-dependent intensities (Subsection 4.3.1). Second, instead of the
dependency on π we look at consumption-dependent intensities being functions just of the consumption
rate c (Subsection 4.3.2). And finally the most general version of portfolio- and consumption-dependent
intensities is regarded (Subsection 4.3.3).

Again the simplest variant – the portfolio- and consumption-independent intensities – will not be
discussed as it is a special form of the constant intensity functions where choosing Bi

π = 0 and Bi
c = 0

yields ϑi,1−i(π, c) = max{Ai, Ci} for i = 0, 1.

In each subsection we present the optimal strategies in closed form, i.e. we give explicit formulas for
the optimal portfolio proportions and consumption rates that only depend on the solution of an ODE-
system of which we show that it admits a unique global solution. Further we provide bounds on the
solution of this ODE-system.

4.3.1 Portfolio-dependent Intensities

We now analyze the optimal investment problem when the intensities of regime shifts only depend on
the investor’s portfolio proportions π, i.e. we let

Bi
π 6= 0 and Bi

c = 0 for i = 0, 1, (PD)

so that the intensities are given by

ϑi,1−i(π, c) = max{Ai + π⊤.Bi
π, C

i}.

We denote by

I
π,0 ,

{

π ∈ R
n̄ : A0 + π⊤.B0

π > C0
}

, I
π,1 ,

{

π ∈ R
n̄ : A1 + π⊤.B1

π ≥ C1
}

the half spaces of strategies that impact on the intensities of regime shifts. Thus

dπ,i(π) , Ai + π⊤.Bi
π − Ci
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denotes the ’distance’ of the strategy π to the separating hyperplane and we have π ∈ Iπ,0 if and only
if dπ,0(π) > 0, resp. π ∈ Iπ,1 if and only if dπ,1(π) ≥ 0.

At first sight it seems inconsistent that Iπ,1 includes the separating hyper plane whereas Iπ,0 does not.
But this is actually in accordance with the setting in the section on step intensity functions. There the
half space of favorable strategies included the separating hyper plane which turned out to be necessary
for the existence of the solution to the optimal investment problem. Now, the analogon to the favorable
half space of the previous section is in state 0 given by the subspace of all strategies that yield the
smallest possible regime shift intensities. This subspace is just the complement of Iπ,0. On the contrary,
in state 1 the complement of Iπ,1 contains all the unfavorable strategies since here small regime shift
intensities are disadvantageous. This justifies the above definition of Iπ,0 and Iπ,1.

In order to determine the maximizer in the HJB-system (4.41) we define functions Hπ,i : R+
0 ×R

n̄ → R

and Hc,i : [0, T ] ×R×R
+
0 → R, i = 0, 1, given by

Hπ,i(y, π) , ri + π⊤.ηi − 1
2Rπ

⊤.σi.(σi)⊤.π + max{Ai + π⊤.Bi
π, C

i} 1
1−R(e(−1)1−i(1−R)y − 1),

Hc,i(t, x, c) , εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)xc1−R − 1) − c

where we use the already mentioned convention 01−R , ∞ if R > 1. Hence the HJB-system (4.41)
reads

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − 1{i=1}h
′(t) +Hπ,i(h(t), π) +Hc,i(t, g(t) − 1{i=1}h(t), c)

}

(4.42)

for t ∈ [0, T ) and i = 0, 1, subject to the boundary conditions

g(T ) = 0, h(T ) = 0.

Writing the HJB-system in that way it is obvious that the maximization over (π, c) ∈ R
n̄ ×R

+
0 can be

separated into two unrelated maximizations; one over π ∈ R
n̄ and one over c ∈ R

+
0 .

To find the supremum in (4.42) we present the maximizers of the functions Hπ,i(y, ·) and Hc,i(t, x, ·)
for arbitrary (t, x, y) ∈ [0, T ]×R×R

+
0 . This yields a family of maximizers dependent on (t, x, y). The

maximizers of the HJB-system (4.42) are then obtained by replacing x and y by g(t) − 1{i=1}h(t) and
h(t).

Concerning the consumption rate the concavity of Hc,i(t, x, ·) and the first-order condition imply

Lemma 4.81 (Maximizer of Hc,i(t, x, ·)). For every (t, x) ∈ [0, T ] ×R the maximizer

ci,∗(t, x) , arg max
c∈R+

0

Hc,i(t, x, c), i = 0, 1,

is given by the Merton consumption rate, i.e.

ci,∗(t, x) = cM (t, x).

Remark 4.82. In case of ε = 0 the Merton consumption rate vanishes, i.e. cM (t, x) = 0.
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In order to find the maximizing portfolio proportions we let Hπ,i
l , Hπ,i

a : R+
0 × R

n̄ → R, i = 0, 1 be
given by

Hπ,i
l (y, π) , ri + π⊤.ηi − 1

2Rπ
⊤.σi.(σi)⊤.π + Ci 1

1−R(e(−1)1−i(1−R)y − 1),

Hπ,i
a (y, π) , ri + π⊤.ηi − 1

2Rπ
⊤.σi.(σi)⊤.π + (Ai + π⊤.Bi

π) 1
1−R(e(−1)1−i(1−R)y − 1)

such that Hπ,i(y, π) = Hπ,i
l (y, π)1{π/∈Iπ,i} +Hπ,i

a (y, π)1{π∈Iπ,i}.

Since Hπ,i
l (y, ·) and Hπ,i

a (y, ·) are concave paraboloids for every y ∈ R
+
0 , the three candidate solutions

for the maximization of Hπ,i(y, ·) over π are

πi,M = arg max
π∈Rn̄

Hπ,i
l (y, π),

π̃i,∗(y) , arg max
π∈Rn̄

Hπ,i
a (y, π),

π̃i,crit , arg max
{π∈Rn̄ : Ai+π⊤.Bi

π=Ci}
Hπ,i(y, π)

where

π̃i,∗(y) = 1
R(σi.(σi)⊤)−1.

(

ηi +Bi
π

1
1−R(e(−1)1−i(1−R)y − 1)

)

,

π̃i,crit = 1
R(σi.(σi)⊤)−1.

(

ηi −Bi
π

Ai+(πi,M )⊤.Bi
π−Ci

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

)

for y ∈ R
+
0 , i = 0, 1.

Remark 4.83. We use the following shorthand notations

Hπ,i
l,M (y) , Hπ,i

l (y, πi,M ) and Hπ,i
a,∼(y) , Hπ,i

a (y, π̃i,∗(y))

for y ∈ R
+
0 and i = 0, 1.

Before we present the maximizer ofHπ,i(y, ·) we first provide some useful results on the relation between
πi,M and π̃i,∗ and the related function values Hπ,i

l,M and Hπ,i
a,∼.

Lemma 4.84. For every y ∈ R
+
0 the Merton strategy πi,M , the candidate solution π̃i,∗ and their

function values Hπ,i
l,M and Hπ,i

a,∼ are related as follows.

i) π0,M /∈ Iπ,0 ⇒ Hπ,0
l,M (y) ≤ Hπ,0

a,∼(y) ⇒ π̃0,∗(y) /∈ Iπ,0.

ii) π1,M ∈ Iπ,1 ⇒ Hπ,1
l,M (y) ≤ Hπ,1

a,∼(y) ⇒ π̃1,∗(y) ∈ Iπ,1.

Proof. ad i) In order to prove the assertion we note that the following three equivalences hold true.
Firstly, π0,M /∈ Iπ,0 is by definition equivalent to

dπ,0(π0,M ) ≤ 0. (∗)

Secondly, some transformations yield that Hπ,0
l,M (y) ≤ Hπ,0

a,∼(y) is equivalent to

dπ,0(π0,M ) ≤ −1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
1−R(e−(1−R)y − 1). (∗∗)
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And thirdly, π̃0,∗(y) /∈ Iπ,0 is equivalent to

dπ,0(π0,M ) ≤ − 1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
1−R(e−(1−R)y − 1). (∗ ∗ ∗)

As y ≥ 0 the right-hand side of (∗∗) is non-negative. Hence (∗∗) follows directly from (∗) which yields
the first implication. The second implication follows from the fact that the right-hand side of (∗∗) is
smaller than the right-hand side of (∗ ∗ ∗).

ad ii) The proof of assertion ii) works completely analogously since firstly, π1,M ∈ Iπ,1 is by definition
equivalent to

dπ,1(π1,M ) ≥ 0,

secondly, Hπ,1
l,M (y) ≤ Hπ,1

a,∼(y) is equivalent to

dπ,1(π1,M ) ≥ −1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
1−R(e(1−R)y − 1),

and thirdly, π̃1,∗(y) ∈ Iπ,1 is equivalent to

dπ,1(π1,M ) ≥ − 1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
1−R(e(1−R)y − 1).

Those technical results turn out to be quite helpful in the proof of the following lemma on the maximizer
of Hπ,i(y, ·).

Lemma 4.85 (Maximizer of Hπ,i(y, ·)). For every y ∈ R
+
0 the maximizer

πi,∗(y) , arg max
π∈Rn̄

Hπ,i(y, π), i = 0, 1,

is given by

π0,∗(y) = 1
R(σ0.(σ0)⊤)−1.

(

η0 +B0
π

1
1−R(e−(1−R)(y∧h0,crit) − 1)

)

,

π1,∗(y) =

{

π1,M if y < h1,crit,

π̃1,∗(y) if y ≥ h1,crit,

where

h0,crit , − 1
1−R ln

(

−(1 −R) (A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

+ 1
)

,

h1,crit , 1
1−R ln

(

(1 −R)2 (A1+(π1,M )⊤.B1
π−C1)−

1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

+ 1
)

and

π0,crit , 1
R(σ0.(σ0)⊤)−1.

(

η0 +B0
π

1
1−R(e−(1−R)h0,crit

− 1)
)

= 1
R(σ0.(σ0)⊤)−1.

(

η0 −B0
π

(A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

)

.

The Figures 4.11 and 4.12 show the three, resp. four typical shapes of the functions Hπ,i
l (y, ·), Hπ,i

a (y, ·)
and Hπ,i(y, ·) that correspond to the different cases occurring in the following proof of Lemma 4.85.
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Figure 4.11: Typical shapes of Hπ,0
l (y, ·), Hπ,0

a (y, ·) and Hπ,0(y, ·) where Iπ,0 = (0.5,∞)
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Figure 4.12: Typical shapes of Hπ,1
l (y, ·), Hπ,1

a (y, ·) and Hπ,1(y, ·) where Iπ,1 = [0.5,∞)

Proof of Lemma 4.85. The proof is structured as follows. First we deduce the maximizing strategy in
state 0 and then continue with state 1. Let y ∈ R

+
0 be given.

• Maximizing strategy in state 0. We first consider the case π0,M /∈ Iπ,0 and then π0,M ∈ Iπ,0.

• π0,M /∈ Iπ,0. If the Merton strategy π0,M is not part of the influencing half space Iπ,0 then Lemma
4.84, i), implies that π̃0,∗(y) /∈ Iπ,0, either. Consequently Hπ,0(y, ·) exhibits only one maximum
which is attained at the Merton strategy (cf. leftmost couple of plots in Figure 4.11), i.e.

π0,M /∈ I
π,0 ⇒ π0,∗(y) = π0,M .

• π0,M ∈ Iπ,0. If the Merton strategy π0,M lies within Iπ,0 then Hπ,0(y, ·) has again just one maxi-
mum that is either the maximum of Hπ,0

a (y, ·) (cf. central couple of plots in Figure 4.11) or it is
attained at the critical strategy π0,crit (cf. rightmost couple of plots in Figure 4.11). Notice that
the maximizer of Hπ,0

a (y, ·) is given by π̃0,∗(y). As long as π̃0,∗(y) is lying in Iπ,0 it is even the
maximizer of Hπ,0(y, ·). But as soon as π̃0,∗(y) quits Iπ,0 the maximizer of Hπ,0(y, ·) is given by
the critical strategy, i.e.

π0,M ∈ I
π,0 ⇒ π0,∗(y) =

{

π̃0,∗(y) if π̃0,∗(y) ∈ Iπ,0,

π0,crit if π̃0,∗(y) /∈ Iπ,0.

Combining the two cases we find

π0,∗(y) =











π0,M if π0,M /∈ Iπ,0,

π̃0,∗(y) if π0,M ∈ Iπ,0 and π̃0,∗(y) ∈ Iπ,0,

π0,crit if π0,M ∈ Iπ,0 and π̃0,∗(y) /∈ Iπ,0.
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Hence, we need to analyze the condition π̃0,∗(y) ∈ Iπ,0 in more detail.

π̃0,∗(y) ∈ I
π,0 ⇔ dπ,0(π0,M ) > − 1

R(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
1

1−R(e−(1−R)y − 1)

⇔ − 1
1−R(e−(1−R)y − 1) < dπ,0(π0,M )

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

(∗)
⇔ − 1

1−R(e−(1−R)y − 1) < (dπ,0(π0,M ))+
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

⇔ y < − 1
1−R ln

(

−(1 −R) (dπ,0(π0,M ))+
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

+ 1
)

⇔ y < h0,crit

where equivalence (∗) holds true since − 1
1−R(e−(1−R)y − 1) is non-negative as y ≥ 0. Notice that by

construction

π0,M /∈ I
π,0 ⇔ h0,crit = 0.

Thus the maximizing strategy in state 0 is given by

π0,∗(y) =











π0,M if π0,M /∈ Iπ,0,

π̃0,∗(y) if π0,M ∈ Iπ,0 and y < h0,crit,

π0,crit if π0,M ∈ Iπ,0 and y ≥ h0,crit

which can equivalently be written as

π0,∗(y) = 1
R(σ0.(σ0)⊤)−1.

(

η0 +B0
π

1
1−R(e−(1−R)(y∧h0,crit) − 1)

)

.

• Maximizing strategy in state 1. In state 1 we first consider the case π1,M ∈ Iπ,1 and then π1,M /∈ Iπ,1.

• π1,M ∈ Iπ,1. If the Merton strategy π1,M is lying in Iπ,1 then by Lemma 4.84, ii), also π̃1,∗(y) ∈ Iπ,1.
Hence Hπ,1(y, ·) has a unique maximum at π̃1,∗(y) (cf. first couple of plots in Figure 4.12), i.e.

π1,M ∈ I
π,1 ⇒ π1,∗(y) = π̃1,∗(y).

• π1,M /∈ Iπ,1. However, if π1,M /∈ Iπ,1 then Hπ,1(y, ·) may possess two local maxima, namely the
maxima of Hπ,1

l (y, ·) and Hπ,1
a (y, ·) which are attained at π1,M , resp. π̃1,∗(y). As long as π̃1,∗(y)

does not lie within Iπ,1, Hπ,1(y, ·) exhibits only one maximum that is achieved at π1,M (cf. second
couple of plots in Figure 4.12). As soon as π̃1,∗(y) enters Iπ,1, Hπ,1(y, ·) exhibits the two local
maxima mentioned above that have to be compared in order to find the global maximum (cf.
third and fourth couple of plots in Figure 4.12). Hence we have

π1,M /∈ I
π,1 ⇒ π1,∗(y) =

{

π1,M if π̃1,∗(y) /∈ Iπ,1 or [π̃1,∗(y) ∈ Iπ,1 and Hπ,1
l,M (y) > Hπ,1

a,∼(y)],

π̃1,∗(y) if π̃1,∗(y) ∈ Iπ,1 and Hπ,1
l,M (y) ≤ Hπ,1

a,∼(y).

Combining the two cases we can write the maximizing strategy in the following way.

π1,∗(y) =

{

π1,M if π1,M /∈ Iπ,1 and
[

π̃1,∗(y) /∈ Iπ,1 or [π̃1,∗(y) ∈ Iπ,1 and Hπ,1
l,M (y) > Hπ,1

a,∼(y)]
]

,

π̃1,∗(y) if π1,M ∈ Iπ,1 or
[

π1,M /∈ Iπ,1 and [π̃1,∗(y) ∈ Iπ,1 and Hπ,1
l,M (y) ≤ Hπ,1

a,∼(y)]
]

.
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We now consider the two conditions in more detail. Firstly

π1,M /∈ I
π,1 and

[

π̃1,∗(y) /∈ I
π,1 or [π̃1,∗(y) ∈ I

π,1 and Hπ,1
l,M (y) > Hπ,1

a,∼(y)]
]

⇔ π1,M /∈ I
π,1 and [π̃1,∗(y) /∈ I

π,1 or Hπ,1
l,M (y) > Hπ,1

a,∼(y)]

L. 4.84, ii)
⇔ π1,M /∈ I

π,1 and Hπ,1
l,M (y) > Hπ,1

a,∼(y)

L. 4.84, ii)
⇔ Hπ,1

l,M (y) > Hπ,1
a,∼(y)

Secondly

π1,M ∈ I
π,1 or

[

π1,M /∈ I
π,1 and [π̃1,∗(y) ∈ I

π,1 and Hπ,1
l,M (y) ≤ Hπ,1

a,∼(y)]
]

⇔ π1,M ∈ I
π,1 or [π̃1,∗(y) ∈ I

π,1 and Hπ,1
l,M (y) ≤ Hπ,1

a,∼(y)]

L. 4.84, ii)
⇔ π1,M ∈ I

π,1 or Hπ,1
l,M (y) ≤ Hπ,1

a,∼(y)

L. 4.84, ii)
⇔ Hπ,1

l,M (y) ≤ Hπ,1
a,∼(y)

Hence we get

π1,∗(y) =

{

π1,M if Hπ,1
l,M (y) > Hπ,1

a,∼(y),

π̃1,∗(y) if Hπ,1
l,M (y) ≤ Hπ,1

a,∼(y).

Thus, we need to take a closer look on the condition Hπ,1
l,M (y) ≤ Hπ,1

a,∼(y). Some straight forward
calculations show

Hπ,1
l,M (y) ≤ Hπ,1

a,∼(y) ⇔ dπ,1(π1,M ) ≥ −1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
1−R(e(1−R)y − 1)

⇔ 1
1−R(e(1−R)y − 1) ≥ −2 dπ,1(π1,M )

1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

(∗)
⇔ 1

1−R(e(1−R)y − 1) ≥ 2 (dπ,1(π1,M ))−

1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

⇔ y ≥ 1
1−R ln

(

(1 −R)2 (dπ,1(π1,M ))−
1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

+ 1
)

⇔ y ≥ h1,crit

where equivalence (∗) holds true since 1
1−R(e(1−R)y − 1) is non-negative as y ≥ 0. Notice that by

construction

π1,M ∈ I
π,1 ⇔ h1,crit = 0.

Therefore the maximizing strategy in state 1 is given by

π1,∗(y) =

{

π1,M if y < h1,crit,

π̃1,∗(y) if y ≥ h1,crit.

Thus the lemma is proven.
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Remark 4.86 (Interpretation). Whenever the Merton strategy in state 0 is not part of the influencing
half space then the maximizing strategy coincides with the Merton strategy. However, if the Merton
strategy lies within the influencing half space then the maximizing strategy deviates from the Merton
strategy.

In state 1 things are different. Here the maximizing strategy coincides with the Merton strategy if the
Merton strategy is not lying within the influencing half space and y < h1,crit, i.e. the utility criterion
dominates the intensity criterion as discussed in Remark 4.33 as long as y < h1,crit. Once y ≥ h1,crit

the situation changes and the intensity criterion is more important than the utility criterion, i.e. the
maximizing strategy deviates from the Merton strategy.

Remark 4.87 (Continuity of π0,∗ vs. discontinuity of π1,∗). The special form of the maximizing strategy
in state 0 implies that π0,∗ is a continuous function in y.

However in state 1 the maximizing strategy may exhibit a discontinuity at y = h1,crit where π1,∗ jumps
from π1,M to π̃1,∗(h1,crit). Only in case of h1,crit = 0 this discontinuity vanishes and π1,∗ is continuous.

Remark 4.88. So far the strategy (πi,∗, ci,∗) is only a candidate solution for the optimal investment
problem. To verify the optimality we need to show that the related HJB-system has a global solution
that satisfies the required regularity conditions stated in the Verification Theorem 3.3.

Having established the maximizers of the HJB-system in general form inserting (πi,∗(h(t), ci,∗(t, g(t)−
1{i=1}h(t))) the reduced HJB-equation (4.42) now becomes a system of coupled backward ODEs

h′(t) = − (Ψ0 − Ψ1) +
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

g(t) R
1−R(e

1−R
R

h(t) − 1)

− C0 1
1−R(e−(1−R)h(t) − 1) + C1 1

1−R(e(1−R)h(t) − 1)

− (A0 + (π0,M )⊤.B0
π − C0) 1

1−R(e−(1−R)(h(t)∧h0,crit) − 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)(h(t)∧h0,crit) − 1)2

+ (A1 + (π1,M )⊤.B1
π − C1) 1

1−R(e(1−R)(h(t)∨h1,crit) − 1)

+ 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)(h(t)∨h1,crit) − 1)2,

(4.43)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
g(t) − 1

)

)

− C0 1
1−R(e−(1−R)h(t) − 1)

− (A0 + (π0,M )⊤.B0
π − C0) 1

1−R(e−(1−R)(h(t)∧h0,crit) − 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)(h(t)∧h0,crit) − 1)2

(4.44)

subject to the boundary conditions

g(T ) = 0, h(T ) = 0. (4.45)

Remark 4.89. From the proof of Lemma 4.85 we know that

y ≥ h1,crit ⇔ dπ,1(π1,M ) 1
1−R(e(1−R)y − 1) + 1

2
1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)y − 1)2 ≥ 0.
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Remark 4.90. The aforementioned ODEs include the ODEs of the classical Merton problem (first
rows) and the ODEs of the Bäuerle-Rieder problem with constant regime shift intensities Ci (first two
rows).

The following lemma shows that the above ODE-system exhibits a unique global solution.

Lemma 4.91. The ODE-system given by equation (4.43) and (4.44) subject to the boundary conditions
(4.45) admits a unique global solution.

Proof. The proof is essentially the same as the proof of Lemma 4.9. Only the χi’s are different. Therefore
we just present the actual χi’s and verify that those satisfy the necessary continuity conditions and
the non-negativity condition.

• Definition of the χi’s. In the case of portfolio-dependent intensities the χi’s are given by χi : R
+
0 → R,

i = 0, 1, with

χ0(y) , − C0 1
1−R(e−(1−R)y − 1) − dπ,0(π0,M ) 1

1−R(e−(1−R)(y∧h0,crit) − 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)(y∧h0,crit) − 1)2,

χ1(y) , C1 1
1−R(e(1−R)y − 1) + dπ,1(π1,M ) 1

1−R(e(1−R)(y∨h1,crit) − 1)

+ 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)(y∨h1,crit) − 1)2.

• Continuity results on the χi’s. Being compositions of continuously differentiable functions, the
max{·, ·}- and the min{·, ·}-function the χi’s are locally Lipschitz continuous.

• Non-negativity of the χi’s. In order to verify that χ0 ≥ 0 we distinguish the two cases that already
appeared in the proof of Lemma 4.85; π0,M /∈ Iπ,0 and π0,M ∈ Iπ,0.

• π0,M /∈ Iπ,0. If π0,M /∈ Iπ,0 then h0,crit = 0 implying χ0(y) = −C0 1
1−R(e−(1−R)y − 1) which is

non-negative for every y ∈ R
+
0 .

• π0,M ∈ Iπ,0. If π0,M ∈ Iπ,0 then h0,crit is strictly positive and there are again two cases to be
distinguished; y < h0,crit and y ≥ h0,crit.

• y < h0,crit. In the proof of Lemma 4.85 we have seen that y < h0,crit is equivalent to

0 <− dπ,0(π0,M ) 1
1−R(e−(1−R)y − 1) − 1

R(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
1

(1−R)2
(e−(1−R)y − 1)2

which obviously yields

0 <− dπ,0(π0,M ) 1
1−R(e−(1−R)y − 1) − 1

2
1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)y − 1)2,

and thus χ0(y) ≥ 0 for every y ∈ R
+
0 .

• y ≥ h0,crit. If otherwise y ≥ h0,crit then

χ0(y) = −C0 1
1−R(e−(1−R)y − 1) + 1

2
((dπ,0(π0,M ))+)2

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

which is positive for every y ∈ R
+
0 , too.
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In order to prove that χ1 ≥ 0 we now distinguish the two cases π1,M ∈ Iπ,1 and π1,M /∈ Iπ,1.

• π1,M ∈ Iπ,1. If π1,M ∈ Iπ,1 then h1,crit = 0 implying

χ1(y) = C1 1
1−R(e(1−R)y − 1) + dπ,1(π1,M ) 1

1−R(e(1−R)y − 1)

+ 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)y − 1)2.

Since π1,M ∈ Iπ,1 also implies dπ,1(π1,M ) ≥ 0 the non-negativity of χ1 is proven.

• π1,M /∈ Iπ,1. If π1,M /∈ Iπ,1 then h1,crit is strictly positive and there are again two cases to be
distinguished; y < h1,crit and y ≥ h1,crit.

• y < h1,crit. If y < h1,crit then

χ1(y) = C1 1
1−R(e(1−R)y − 1) + dπ,1(π1,M ) 1

1−R(e(1−R)h1,crit
− 1)

+ 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)h1,crit
− 1)2

= C1 1
1−R(e(1−R)y − 1) + 2 dπ,1(π1,M )(dπ,1(π1,M ))−

1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

+ 2 ((dπ,1(π1,M ))−)2

1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

= C1 1
1−R(e(1−R)y − 1)

which is non-negative as y ≥ 0.

• y ≥ h1,crit. If otherwise y ≥ h1,crit then

χ1(y) = C1 1
1−R(e(1−R)y − 1) + dπ,1(π1,M ) 1

1−R(e(1−R)y − 1)

+ 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)y − 1)2

which is non-negative since we know from the proof of Lemma 4.85 that

y ≥ h1,crit ⇔ dπ,1(π1,M ) 1
1−R(e(1−R)y − 1) + 1

2
1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)y − 1)2 ≥ 0.

The remainder of the proof is the same as the proof of Lemma 4.9.

A particular example for the functions g and h is given in Figure 4.13.

We can even provide some bounds on the solution (g, h) as the proof of Lemma 4.91, resp. Lemma 4.9,
directly implies the following corollaries.

Corollary 4.92 (Time-dependent bounds on g and h). Let h and g be given by (4.43), (4.44) subject
to the boundary conditions (4.45). Then

−(Ψ1 − ξ1(T ))−(T − t) ≤ g(t) ≤ (Ψ0 − ξ0(T ))+(T − t) (ε > 0),

resp. 0 ≤ g(t) ≤ Ψ0(T − t) (ε = 0) and

0 ≤ h(t) ≤ (Ψ0 − Ψ1)(T − t)

for t ∈ [0, T ] where the ξi(T )’s are as defined in the proof of Lemma 4.9.
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Figure 4.13: g (left) and h (right) as functions of t
(r0 = r1 = 0.03, η0 = 0.09, η1 = 0.01, σ0 = 0.3, σ1 = 0.5, δ = 0.035, ε = 1, R = 2.5, T = 2,

A0 = 9, B0
π = 5, C0 = 10, A1 = 5.5, B1

π = −3, C1 = 5.4)

Corollary 4.93 (Time-independent bound on h). Let h and g be given by (4.43), (4.44) subject to
the boundary conditions (4.45). Then

0 ≤ h(t) ≤ h̄

for t ∈ [0, T ] where h̄ is the smallest positive root of F̄ (y) , −(Ψ0 −Ψ1) + χ0(y) + χ1(y) if such a root
exists; otherwise h̄ = ∞, i.e.

h̄ = min
{

y ∈ R
+
0 : F̄ (y) = 0

}

,

with the convention min ∅ , ∞, where the χi’s are as defined in the proof of Lemma 4.91.

Proof. The assertion follows from a simple ODE argument since

F (t, x, y) = −(Ψ0 − Ψ1) + ̺(t, x, y) + χ0(y) + χ1(y) ≥ F̄ (y)

for all (t, x, y) ∈ [0, T ] ×R×R
+
0 where we used the notation from the proof of Lemma 4.9.

The boundary function on h as presented in Corollary 4.92 is suitable for large values of t for which
the deviation from h is not too large whereas for small values of t the non-linear behavior of h implies
that the boundary function overshoots h by far. The converse is true for the bound given in Corollary
4.93. Thus combining the two bounds on h yields

0 ≤ h(t) ≤ min{(Ψ0 − Ψ1)(T − t), h̄}

for t ∈ [0, T ].

The following theorem ensures that the strategy given in Lemmas 4.81 and 4.85 is indeed the optimal
strategy for the optimal investment problem.

Theorem 4.94 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and
g be given by (4.43), (4.44) subject to the boundary conditions (4.45). Then the strategy

(πi,∗(t), ci,∗(t)) , (πi,∗(h(t)), ci,∗(t, g(t) − 1{i=1}h(t))), t ∈ [0, T ], i = 0, 1,

as given in Lemmas 4.81 and 4.85 is optimal for the investment problem (P) with crra preferences
and relative risk aversion R.
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Proof. Since (πi,∗(t), ci,∗(t)) maximizes the HJB-system (4.42) for each t ∈ [0, T ], optimality of the
strategy (πi,∗, ci,∗) follows directly from the Verification Theorem 3.3.
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Figure 4.14: Optimal strategy vs. Merton strategy: πi,∗ and πi,M as functions of t
(r0 = r1 = 0.03, η0 = 0.09, η1 = 0.01, σ0 = 0.3, σ1 = 0.5, δ = 0.035, ε = 1, R = 2.5, T = 2,

A0 = 9, B0
π = 5, C0 = 10, A1 = 5.5, B1

π = −3, C1 = 5.4)

Figure 4.14 shows the optimal strategy and the Merton strategy in a setting where B0
π is positive and

B1
π is negative. Hence the large investor is forced to follow a strategy with portfolio proportions that

are smaller than the Merton ones in order to generate advantageous regime shift intensities. In state 0
the deviation is about 6% whereas in state 1 it amounts to about 31%.
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Figure 4.15: Optimal strategy vs. Merton strategy: πi,∗ and πi,M as functions of t
(r0 = r1 = 0.03, η0 = 0.09, η1 = 0.01, σ0 = 0.3, σ1 = 0.5, δ = 0.035, ε = 1, R = 1.5, T = 0.1,

A0 = 6.8, B0
π = 5, C0 = 10, A1 = 5.47, B1

π = −3, C1 = 5.4)

The special cases of π0,∗ reaching the critical strategy and π1,∗ jumping to the Merton strategy are
shown in Figure 4.15.

Remark 4.95. As one can see in Figures 4.14 and 4.15 the deviation of the optimal strategy from
the Merton strategy usually shrinks continuously as t is growing; in t = T it vanishes completely.
This typical behavior is due to the fact that the chance, resp. the threat, of a possible jump to the
favorable, resp. adverse, market state decreases as the time to maturity T − t becomes smaller since the
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related probability decreases. Thus a relocation among the utility criterion and the intensity criterion
as discussed in Remark 4.33 in favor of the utility criterion takes place. The utility aspect becomes
more and more important and thus the optimal strategy approaches the Merton strategy. So far this is
just a qualitative point of view.

What is concretely meant by ’small’ time to maturities and the aforementioned decreasing chance, resp.
threat, i.e. the quantitative aspect of this behavior of the optimal strategy, highly depends on factors such
as the level of the regime shift intensities, i.e. the intensities at the Merton strategies, the sensitivity
of the market represented by Bi

π, the difference between the two market states measured by Ψ0 − Ψ1,
the investor’s risk aversion R and finally of course the time to maturity T − t. Moreover most of the
aforementioned aspects depend on each other, e.g. the risk aversion enters the utility growth potential,
the Merton strategy and thus the regime shift intensities at the Merton strategies. Hence the effects of
the above factors on the optimal solution are far from being trivial.

As in the section on step intensity functions the special structure of the large investor’s optimal
portfolio strategy suggests a decomposition into the classical Merton strategy and an additional hedging
component. This hedging component is due to the investor’s influence on the market. So the optimal
strategy can be written as

πi,∗(t) = πi,M + πi,H(t), i = 0, 1

where the hedging component πi,H is given by

π0,H(t) , 1
R(σ0.(σ0)⊤)−1.B0

π
1

1−R(e−(1−R)h(t)∧h0,crit
− 1),

π1,H(t) , 1
R(σ1.(σ1)⊤)−1.B1

π
1

1−R(e(1−R)h(t) − 1)1{h(t)≥h1,crit}.

Notice that (π0,H(t))⊤.B0
π ≤ 0 whereas (π1,H(t))⊤.B1

π ≥ 0. The following lemma shows that the investor
achieves an intensity gain when using the optimal strategy πi,∗ instead of the Merton strategy πi,M .

Lemma 4.96. The optimal strategy (πi,∗, ci,∗) satisfies

ϑ0,1(π0,∗(t), c0,∗(t)) ≤ ϑ0,1(π0,M , c0,M (t)) and ϑ1,0(π1,∗(t), c1,∗(t)) ≥ ϑ1,0(π1,M , c1,M (t))

for every t ∈ [0, T ].

Proof. The assertion follows since

ϑ0,1(π0,∗(t), c0,∗(t)) = max{A0 + (π0,∗(t))⊤.B0
π, C

0}

= max{A0 + (π0,M )⊤.B0
π + (π0,H(t))⊤.B0

π, C
0}

≤ max{A0 + (π0,M )⊤.B0
π, C

0}

= ϑ0,1(π0,M , c0,M (t))

and

ϑ1,0(π1,∗(t), c1,∗(t)) = max{A1 + (π1,∗(t))⊤.B1
π, C

1}

= max{A1 + (π1,M )⊤.B1
π + (π1,H(t))⊤.B1

π, C
1}

≥ max{A1 + (π1,M )⊤.B1
π, C

1}

= ϑ1,0(π1,M , c1,M (t))

as (π0,H(t))⊤.B0
π ≤ 0, resp. (π1,H(t))⊤.B1

π ≥ 0.
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Remark 4.97. Notice that the optimal strategy is a compromise strategy. The large investor faces
the trade-off between trading optimally in terms of generating the highest possible expected utility from
intermediate consumption and final wealth on the one hand and investing in such a way that the regime
shift intensities are as favorable as possible on the other hand. Pursuing only the utility goal would imply
the Merton strategies to be optimal. However, solely aiming at favorable intensities – small ones in state
0 and large ones in state 1 – would, in state 0, render any strategy not lying in the influencing half
space Iπ,i to be optimal, whereas in state 1 an optimal strategy would not exist since ϑ1,0 is unbounded
from above.

The optimal strategy that we derived here is a compromise strategy in that it is in general different
from the Merton strategy but generates better regime shift intensities than those the Merton strategy
would yield, i.e. it accommodates the aforementioned trade-off.

We have seen before that the optimal portfolio strategy in state 0 may be truncated at π0,crit. In
the following we present a sufficient condition under which this truncation does not take place, i.e.
πi,∗(t) = π̃i,∗(t) for all t ∈ [0, T ] where π̃i,∗(t) , π̃i,∗(h(t)).

Proposition 4.98. Let πi,M ∈ Iπ,i and suppose that A0 + (π0,◦)⊤.B0
π ≥ C0, where

π0,◦ , 1
R(σ0.(σ0)⊤)−1.

(

η0 −
(

1
2

A0+(π0,M )⊤.B0
π−3C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

+ Ψ0−Ψ1

A0+(π0,M )⊤.B0
π−C0

)

B0
π

)

.

Then πi,∗(t) = π̃i,∗(t) for all t ∈ [0, T ].

Proof. If π1,M ∈ Iπ,1 then h1,crit = 0 implying π1,∗(t) = π̃1,∗(t) for all t ∈ [0, T ]. In state 0 the condition
π0,M ∈ Iπ,0 is necessary since otherwise π0,∗ = π0,M . Hence

h0,crit = − 1
1−R ln

(

−(1 −R) A0+(π0,M )⊤.B0
π−C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

+ 1
)

.

The assertion of the proposition is equivalent to the condition

h(t) ≤ h0,crit for all t ∈ [0, T ].

To prove this, we assume without loss of generality that h0,crit <∞ and use a simple ODE argument.
We let F as given in the proofs of the Lemmas 4.9 and 4.91. As F (T, g(T ), h(T )) = F (T, 0, 0) ≤ 0,
it suffices to show that F (t, x, h0,crit) ≥ 0 for every (t, x) ∈ [0, T ] × R. Indeed, in this case it follows
from the intermediate value theorem that for each t ∈ [0, T ] there exists some h̃(t) ∈ [0, h0,crit] with
F (t, x, h̃(t)) = 0. Thus 0 ≤ h(t) ≤ max

t∈[0,T ]
h̃(t) ≤ h0,crit for every t ∈ [0, T ].

To demonstrate under which conditions F (t, x, h0,crit) ≥ 0 we write F (t, x, h0,crit) = A+B with

A , ̺(t, x, h0,crit) + χ1(h0,crit), B , −(Ψ0 − Ψ1) + χ0(h0,crit)

where we use the notation from the proofs of Lemmas 4.9 and 4.91.
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The non-negativity of ̺ and χ1 implies that A ≥ 0. On the other hand,

B = −(Ψ0 − Ψ1) − C0 1
1−R(e−(1−R)h0,crit

− 1)

− (A0 + (π0,M )⊤.B0
π − C0) 1

1−R(e−(1−R)h0,crit
− 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)h0,crit
− 1)2

(4.46)

= −
[

A0 + 1
R

(

η0 + 1
2

1
1−R(e−(1−R)h0,crit

− 1)B0
π

)⊤
.(σ0.(σ0)⊤)−1.B0

π

+ Ψ0−Ψ1

1
1−R

(e−(1−R)h0,crit
−1)

]

1
1−R(e−(1−R)h0,crit

− 1)

= −(A0 + (π̃0,◦)⊤.B0
π − C0) 1

1−R(e−(1−R)h0,crit
− 1)

where

π̃0,◦ , 1
R(σ0.(σ0)⊤)−1.






η0 +







1
2

1
1−R(e−(1−R)h0,crit

− 1) +

Ψ0−Ψ1

1
1−R

(

e−(1−R)h0,crit
−1

)+C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π






B0

π







= 1
R(σ0.(σ0)⊤)−1.

(

η0 −
(

1
2

A0+(π0,M )⊤.B0
π−C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

+ Ψ0−Ψ1

A0+(π0,M )⊤.B0
π−C0 − C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

)

B0
π

)

= 1
R(σ0.(σ0)⊤)−1.

(

η0 −
(

1
2

A0+(π0,M )⊤.B0
π−3C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

+ Ψ0−Ψ1

A0+(π0,M )⊤.B0
π−C0

)

B0
π

)

= π0,◦.

Since A0 + (π0,◦)⊤.B0
π ≥ C0, we have B ≥ 0 and the proof is complete.

Observe that for an arbitrary parameter specification, the assumption of Proposition 4.98 is satisfied
if A0 is sufficiently large. This can be seen when writing

A0 + (π0,◦)⊤.B0
π = 1

2(A0 + (π0,M )⊤.B0
π + 3C0) − 1

R(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
Ψ0−Ψ1

A0+(π0,M )⊤.B0
π−C0 .

In a one-dimensional setting, we have a simple explicit criterion.

Corollary 4.99. Let n̄ = 1 and πi,M ∈ Iπ,i for i = 0, 1. Then the assumption of Proposition 4.98 is
fulfilled if

A0 ≥







C0 +
√

2 1
R

(B0
π)2

(σ0)2
(r0 − Ψ1)+ if π0,MB0

π ≥ 0,

−2π0,MB0
π + C0 +

√

2 1
R

(B0
π)2

(σ0)2
(r0 − Ψ1)+ if π0,MB0

π < 0.
(4.47)

Proof. Recall that A0 + π0,◦B0
π ≥ C0 if and only if B ≥ 0 in equation (4.46). When substituting

− 1
1−R(e−(1−R)h0,crit

− 1) = (A0 + π0,MB0
π − C0)R (σ0)2

(B0
π)2

we find that B ≥ 0 if and only if

(A0)2 + 2π0,MB0
πA

0 − (C0)2 − 2 1
R

(B0
π)2

(σ0)2
(r0 − Ψ1) > 0.

Hence, with

C , (A0)2 + 2π0,MB0
πA

0 − (C0)2 − 2 1
R

(B0
π)2

(σ0)2
(r0 − Ψ1)+
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we get that A0 + π0,◦B0
π ≥ C0 if C ≥ 0. Regarding C as a quadratic polynomial in A0, it is readily

seen that C ≥ 0 if

A0 ≥ −π0,MB0
π +

√

(π0,MB0
π)2 + (C0)2 + 2 1

R
(B0

π)2

(σ0)2
(r0 − Ψ1)+.

In particular, we have C ≥ 0 provided that

A0 ≥ −π0,MB0
π +

∣

∣π0,MB0
π

∣

∣+ C0 +

√

2 1
R

(B0
π)2

(σ0)2
(r0 − Ψ1)+,

which yields the assertion.

Remark 4.100 (Interpretation). Suppose that r0 ≤ Ψ1. Then condition (4.47) in Corollary 4.99
simply means that the no-participation strategy π0 = 0 (π0 = 2π0,M ) satisfies

A0 + π0B0
π ≥ C0

if π0,MB0
π ≥ 0 (π0,MB0

π < 0).

4.3.2 Consumption-dependent Intensities

We now come to transition intensities solely dependent on the investor’s consumption rate, i.e. we let

Bi
π = 0 and Bi

c 6= 0 for i = 0, 1 (CD)

so that the intensities are given by

ϑi,1−i(π, c) = max{Ai +Bi
cc, C

i}.

We denote by

I
c,0 ,

{

c ∈ R
+
0 : A0 +B0

c c > C0
}

, I
c,1 ,

{

c ∈ R
+
0 : A1 +B1

c c ≥ C1
}

the half spaces of consumption rates that impact on the intensities of regime shifts. Thus

dc,i(c) , Ai +Bi
cc− Ci

denotes the ’distance’ of the consumption rate c to the separating hyperplane and we have c ∈ Ic,0 if
and only if dc,0(c) > 0, resp. c ∈ Ic,1 if and only if dc,1(c) ≥ 0.

In order to determine the maximizer in the HJB-system (4.41) we define functions Hπ,i : R
n̄ → R

and Hc,i : [0, T ] ×R×R
+
0 ×R

+
0 → R, i = 0, 1, given by

Hπ,i(π) , ri + π⊤.ηi − 1
2Rπ

⊤.σi.(σi)⊤.π,

Hc,i(t, x, y, c) , εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)xc1−R − 1) − c+ max{Ai +Bi

cc, C
i} 1

1−R(e(−1)1−i(1−R)y − 1)

where we use the already mentioned convention 01−R , ∞ if R > 1. Notice that function Hc,i is
independent of t and x in case of ε = 0.
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The HJB-system (4.41) reads

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − 1{i=1}h
′(t) +Hπ,i(π) +Hc,i(t, g(t) − 1{i=1}h(t), h(t), c)

}

(4.48)

for t ∈ [0, T ) and i = 0, 1, subject to the boundary conditions

g(T ) = 0, h(T ) = 0.

Writing the HJB-system in that way it is obvious that taking the supremum over (π, c) ∈ R
n̄ × R

+
0

can be separated into two unrelated maximizations; one over π ∈ R
n̄ and one over c ∈ R

+
0 .

To find the supremum in (4.48) we present the maximizers of the functions Hπ,i and Hc,i(t, x, y, ·) for
arbitrary (t, x, y) ∈ [0, T ] × R × R

+
0 . This yields a family of maximizers dependent on (t, x, y). The

maximizers of the HJB-system (4.48) are then obtained by replacing x and y by g(t) − 1{i=1}h(t) and
h(t).

Concerning the portfolio proportions the concavity of Hπ,i and the first-order condition imply

Lemma 4.101 (Maximizer of Hπ,i). The maximizer

πi,∗ , arg max
π∈Rn̄

Hπ,i(π), i = 0, 1,

is given by the Merton strategy, i.e.
πi,∗ = πi,M .

In order to determine the maximizing consumption rate we let Hc,i
l , Hc,i

a : [0, T ]×R×R
+
0 ×R

+
0 → R,

i = 0, 1, given by

Hc,i
l (t, x, y, c) , εδ

ε−(ε−δ)e−δ(T−t)
1

1−R(e−(1−R)xc1−R − 1) − c+ Ci 1
1−R(e(−1)1−i(1−R)y − 1),

Hc,i
a (t, x, y, c) , εδ

ε−(ε−δ)e−δ(T−t)
1

1−R(e−(1−R)xc1−R − 1) − c+ (Ai +Bi
cc)

1
1−R(e(−1)1−i(1−R)y − 1)

such that Hc,i(t, x, y, c) = Hc,i
l (t, x, y, c)1{c/∈Ic,i} +Hc,i

a (t, x, y, c)1{c∈Ic,i}.

If ε > 0 then Hc,i
l (t, x, y, ·) and Hc,i

a (t, x, y, ·) are concave for every (t, x, y) ∈ [0, T ]×R×R
+
0 . Therefore

the three candidate solutions for the maximization in (4.48) are

cM (t, x) = arg max
c∈R+

0

Hc,i
l (t, x, y, c),

c̃i,∗(t, x, y) , arg max
c∈R+

0

Hc,i
a (t, x, y, c),

c̃i,crit , arg max
{c∈R+

0 : Ai+Bi
cc=Ci}

Hc,i(t, x, y, c)

where

c̃0,∗(t, x, y) =

{

(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x
(

1 −B0
c

1
1−R(e−(1−R)y − 1)

)− 1
R if y < hcrit,

∞ if y ≥ hcrit,

c̃1,∗(t, x, y) =
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x
(

1 −B1
c

1
1−R(e(1−R)y − 1)

)− 1
R
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for (t, x, y) ∈ [0, T ] ×R×R
+
0 , i = 0, 1, with

hcrit ,

{

∞ if B0
c > 0,

− 1
1−R ln

(

(1 −R) 1
B0

c
+ 1
)

if B0
c < 0,

so that y < hcrit guarantees 1 − B0
c

1
1−R(e−(1−R)y − 1) > 0. Moreover c̃i,crit only exists if Bi

c > 0 and

Ai ≤ Ci, resp. Bi
c < 0 and Ai ≥ Ci, where it is given by −Ai−Ci

Bi
c

, i = 0, 1, since otherwise the set
{

c ∈ R
+
0 : Ai +Bi

cc = Ci
}

is empty.

If ε = 0 then Hc,i
l (t, x, y, ·) and Hc,i

a (t, x, y, ·) are now linear functions in c implying

c̃0,∗(t, x, y) =

{

0 if y < hcrit,

∞ if y ≥ hcrit,

c̃1,∗(t, x, y) = 0

for i = 0, 1. Further as Hc,i
l (t, x, y, ·) is even decreasing in c the Merton consumption rate vanishes, i.e.

cM (t, x) = 0.

Remark 4.102. We use the following shorthand notations

Hc,i
l,M (t, x, y) , Hc,i

l (t, x, y, cM (t, x)) and Hc,i
a,∼(t, x, y) , Hc,i

a (t, x, y, c̃i,∗(t, x, y))

for (t, x, y) ∈ [0, T ] ×R×R
+
0 and i = 0, 1.

Before we present the maximizing consumption rate we introduce the auxiliary function Λc,i which is
the consumption-dependent analogon to the function Λπ,c,i some sections before.

Lemma 4.103 (Properties of Λc,i). The function Λc,i given by

Λc,i : [0, T ] ×R× (−∞, 1
Bi

c
) → R (Bi

c > 0), resp. Λc,i : [0, T ] ×R× ( 1
Bi

c
,∞) → R (Bi

c < 0)

with

Λc,i(t, z, λ) , Bi
c

(

(

1 −Bi
cλ
)− 1

R − 1
)

cM (t, z)

has the following properties for every given (t, z) ∈ [0, T ] ×R.

i) Λc,i is continuously differentiable in t, z and λ.

ii) If ε > 0 then Λc,i(t, z, ·) is increasing and strictly convex (Bi
c > 0), resp. strictly concave (Bi

c < 0).
If otherwise ε = 0 then Λc,i(t, z, ·) = 0.

iii) Λc,i(t, z, λ) ≤ 0 for λ < 0, Λc,i(t, z, 0) = 0 and Λc,i(t, z, λ) ≥ 0 for λ > 0.

iv) If ε > 0 then limλ→−∞ Λc,i(t, z, λ) = −Bi
cc

M (t, z) and limλ→ 1

Bi
c

Λc,i(t, z, λ) = ∞ (Bi
c > 0), resp.

limλ→ 1

Bi
c

Λc,i(t, z, λ) = −∞ and limλ→∞ Λc,i(t, z, λ) = −Bi
cc

M (t, z) (Bi
c < 0).
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Proof. Let (t, z) ∈ [0, T ] ×R be given.

ad i) Since cM (t, z) is continuously differentiable in t and z it follows that Λc,i is continuously differ-
entiable in t and z, too. Further Λc,i is obviously continuously differentiable in λ. Thus assertion i) is
proven.

ad ii) The derivative of Λc,i with respect to λ is given by

Λc,i
λ (t, z, λ) , ∂

∂λΛc,i(t, z, λ) = 1
R(Bi

c)
2
(

1 −Bi
cλ
)− 1+R

R cM (t, z).

If ε > 0 then cM (t, z) > 0 and it is easy to see that Λc,i
λ (t, z, ·) is non-negative and strictly increasing

(Bi
c > 0), resp. strictly decreasing (Bi

c < 0), in λ. If ε = 0 then cM (t, z) = 0 and Λc,i(t, z, ·) = 0 holds
trivially. This implies assertion ii).

ad iii) Λc,i(t, z, 0) = 0 holds trivially for any (t, z) ∈ [0, T ]×R which together with assertion ii) yields
assertion iii).

ad iv) The limiting behavior of Λc,i(t, z, ·) is clear when taking into account that Λc,i(t, z, ·) has a pole
at 1

Bi
c

in case of ε > 0.

Lemma 4.103 directly implies

Corollary 4.104. For each fixed (t, z) ∈ [0, T ] ×R and ε > 0 the function

Λc,i(t, z, ·) : (−∞, 1
Bi

c
) → (−Bi

cc
M (t, z),∞) (Bi

c > 0), resp.

Λc,i(t, z, ·) : ( 1
Bi

c
,∞) → (−∞,−Bi

cc
M (t, z)) (Bi

c < 0)

is bijective.

Further we present the following results on the relation between cM and c̃i,∗ and the related function
values Hc,i

l,M and Hc,i
a,∼ that turn out to be quite helpful.

Lemma 4.105. For every (t, x, y) ∈ [0, T ] ×R×R
+
0 the Merton consumption rate cM , the candidate

solution c̃i,∗ and their function values Hc,i
l,M and Hc,i

a,∼ are related as follows.

i) cM (t, x) /∈ Ic,0 ⇒ Hc,0
l,M (t, x, y) ≤ Hc,0

a,∼(t, x, y) ⇒ c̃0,∗(t, x, y) /∈ Ic,0.

ii) cM (t, x) ∈ Iπ,1 ⇒ Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y) ⇒ c̃1,∗(t, x, y) ∈ Ic,1.

Proof. ad i) If hcrit < ∞ and y ≥ hcrit then c̃0,∗(t, x, y) = ∞ and therefore Hc,0
a,∼(t, x, y) = ∞, too.

Further hcrit <∞ implies B0
c < 0. Hence obviously c̃0,∗(t, x, y) /∈ Ic,0 and there is nothing to prove.

If otherwise y < hcrit then the following three equivalences hold true. Firstly, cM (t, x) /∈ Ic,0 is by
definition equivalent to

dc,0(cM (t, x)) ≤ 0. (∗)

Secondly, some transformations yield that Hc,0
l,M (t, x, y) ≤ Hc,0

a,∼(t, x, y) is equivalent to

dc,0(cM (t, x)) ≤
(

− R
1−R

(

(1−B0
c

1
1−R

(e−(1−R)y−1))−
1−R

R −1
)

1
1−R

(e−(1−R)y−1)
+B0

c

)

cM (t, x). (∗∗)
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And thirdly, c̃0,∗(t, x, y) /∈ Ic,0 is equivalent to

dc,0(cM (t, x)) ≤ −B0
c

(

(1 −B0
c

1
1−R(e−(1−R)y − 1))−

1
R − 1

)

cM (t, x). (∗ ∗ ∗)

The right-hand side of (∗∗) is non-negative. This follows from the fact that y ≥ 0 and from Lemma
4.48, ii), with z = −B0

c
1

1−R(e−(1−R)y − 1). The lemma is applicable since y < hcrit is equivalent to

−B0
c

1
1−R(e−(1−R)y − 1) > −1. Hence (∗∗) follows directly from (∗) which yields the first implication.

In order to prove the second implication we have to show that the right-hand side of (∗∗) is smaller
than the right-hand side of (∗ ∗ ∗) which is equivalent to

0 ≤

(

− R
1−R

(

(1−B0
c

1
1−R

(e−(1−R)y−1))−
1−R

R −1
)

(1−B0
c

1
1−R

(e−(1−R)y−1))−
1
R

+B0
c

1
1−R(e−(1−R)y − 1)

)

cM (t, x). (4.49)

This is trivially satisfied if ε = 0, since then cM (t, x) = 0. If ε > 0 then the latter inequality follows
from Lemma 4.48, i), again substituting z = −B0

c
1

1−R(e−(1−R)y − 1).

ad ii) The proof of assertion ii) works completely analogously since firstly, cM (t, x) ∈ Ic,1 is by definition
equivalent to

dc,1(cM (t, x)) ≥ 0,

secondly, Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y) is equivalent to

dc,1(cM (t, x)) ≥
(

− R
1−R

(

(1−B1
c

1
1−R

(e(1−R)y−1))−
1−R

R −1
)

1
1−R

(e(1−R)y−1)
+B1

c

)

cM (t, x),

and thirdly, c̃1,∗(t, x, y) ∈ Ic,1 is equivalent to

dc,1(cM (t, x)) ≥ −B1
c

(

(1 −B1
c

1
1−R(e(1−R)y − 1))−

1
R − 1

)

cM (t, x).

We are now able to give the maximizing consumption rate.

Lemma 4.106 (Maximizer of Hc,i(t, x, y, ·)). For every (t, x, y) ∈ [0, T ] ×R×R
+
0 let

ci,∗(t, x, y) , arg max
c∈R+

0

Hc,i(t, x, y, c), i = 0, 1.

If ε > 0 then the maximizer ci,∗ is given by

c0,∗(t, x, y) =
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x
(

1 −B0
c

1
1−R(e−(1−R)(y∧h0,crit(t,x)) − 1)

)− 1
R ,

c1,∗(t, x, y) =

{

cM (t, x) if Hc,1
l,M (t, x, y) > Hc,1

a,∼(t, x, y),

c̃1,∗(t, x, y) if Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y),

with

h0,crit(t, x) , − 1
1−R ln((1 −R)λ0,crit(t, x) + 1),
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where

λ0,crit(t, x) =



















0 if B0
c < 0 and A0 ≤ C0,

1
B0

c

(

1 −
(

1 − (A0+B0
c cM (t,x)−C0)+

B0
c cM (t,x)

)−R
) if B0

c > 0 and A0 < C0,

or B0
c < 0 and A0 > C0,

−∞ if B0
c > 0 and A0 ≥ C0

is the unique solution of

Λc,0(t, x, λ0,crit(t, x)) = −(A0 +B0
c c

M (t, x) − C0)+ (4.50)

if it exists. Otherwise, λ0,crit(t, x) = −∞. Moreover

c0,crit(t, x) ,

{

cM (t, x) if B0
c > 0 and A0 ≥ C0, or B0

c < 0 and A0 ≤ C0,

cM (t, x) − (A0+B0
c cM (t,x)−C0)+

B0
c

if B0
c > 0 and A0 < C0, or B0

c < 0 and A0 > C0.

If ε = 0 then the maximizer ci,∗ is given by

c0,∗(t, x, y) =

{

0 if y < h0,crit,

c0,crit if y ≥ h0,crit,

c1,∗(t, x, y) = 0

where

h0,crit , − 1
1−R ln((1 −R)λ0,crit + 1)

with

λ0,crit =











0 if B0
c < 0 and A0 ≤ C0, or B0

c > 0 and A0 < C0,
1

B0
c

if B0
c < 0 and A0 > C0,

−∞ if B0
c > 0 and A0 ≥ C0,

and

c0,crit ,

{

0 if B0
c > 0 and A0 ≥ C0, or B0

c < 0 and A0 ≤ C0,

− (A0−C0)+

B0
c

if B0
c > 0 and A0 < C0, or B0

c < 0 and A0 > C0.

Remark 4.107. In case of ε = 0 the maximizing consumption rate ci,∗ is just a function of y, i.e. the
dependency on t and x vanishes.

Remark 4.108. The typical shapes of the functions Hc,i(t, x, y, ·), Hc,i
l (t, x, y, ·) and Hc,i

a (t, x, y, ·) are

comparable to those of the functions Hπ,i(y, ·), Hπ,i
l (y, ·) and Hπ,i

a (y, ·) as presented in Figures 4.11,

4.12, i.e. Hc,i
l (t, x, y, ·) and Hc,i

a (t, x, y, ·) are also strictly concave and exhibit a unique maximum. Thus
Figures 4.11, 4.12 also serve as helpful illustrations for the proof of Lemma 4.106.

Proof of Lemma 4.106. The proof is structured as follows. First we deduce the maximizing consump-
tion rate in case of ε > 0 and then continue with the case ε = 0. Let (t, x, y) ∈ [0, T ] × R × R

+
0 be

given.
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• Maximizing consumption rate in state 0 (ε > 0). Let ε > 0. We first consider the trivial cases B0
c < 0

and A0 ≤ C0, resp. B0
c > 0 and A0 ≥ C0, and then go on with the non-trivial cases B0

c < 0 and
A0 > C0, resp. B0

c > 0 and A0 < C0.

• B0
c < 0 and A0 ≤ C0. In case of B0

c < 0 and A0 ≤ C0 the intensity function ϑ0,1 is constant on
the whole R

n̄ ×R
+
0 and Hc,0 = Hc,0

l on [0, T ] ×R ×R
+
0 ×R

+
0 . Thus Hc,0(t, x, y, ·) exhibits only

one maximum that lies at the Merton consumption rate, i.e.

B0
c < 0 and A0 ≤ C0 ⇒ c0,∗(t, x, y) = cM (t, x).

• B0
c > 0 and A0 ≥ C0. If B0

c > 0 and A0 ≥ C0 then ϑ0,1 is linear on R
n̄ × R

+
0 and Hc,0 = Hc,0

a

on [0, T ] × R × R
+
0 × R

+
0 . Again Hc,0(t, x, y, ·) has only one maximum that now is attained at

c̃0,∗(t, x, y), i.e.

B0
c > 0 and A0 ≥ C0 ⇒ c0,∗(t, x, y) = c̃0,∗(t, x, y).

• B0
c < 0 and A0 > C0, resp. B0

c > 0 and A0 < C0. Now Hc,0 is piecewise given by Hc,0
l , resp. Hc,0

a ,
and we distinguish the two cases cM (t, x) /∈ Ic,0, resp. cM (t, x) ∈ Ic,0.

• cM (t, x) /∈ Ic,0. If cM (t, x) /∈ Ic,0 then by Lemma 4.105, i), also c̃0,∗(t, x, y) /∈ Ic,0. This implies
that Hc,0(t, x, y, ·) exhibits only one maximum, namely at cM (t, x), i.e.

cM (t, x) /∈ I
c,0 ⇒ c0,∗(t, x, y) = cM (t, x).

• cM (t, x) ∈ Ic,0. If cM (t, x) ∈ Ic,0 then Hc,0(t, x, y, ·) possesses again just one maximum that is
either the maximum of Hc,0

a (t, x, y, ·) or it is attained at the critical consumption rate c0,crit(t, x).
The maximizer ofHc,0

a (t, x, y, ·) is given by c̃0,∗(t, x, y). As long as c̃0,∗(t, x, y) is in the influencing
half space it is even the maximizer of Hc,0(t, x, y, ·). But as soon as c̃0,∗(t, x, y) quits Ic,0 then
the critical consumption rate is given by the maximizer of Hc,0(t, x, y, ·), i.e.

cM (t, x) ∈ I
c,0 ⇒ c0,∗(t, x, y) =

{

c̃0,∗(t, x, y) if c̃0,∗(t, x, y) ∈ Ic,0,

c0,crit(t, x) if c̃0,∗(t, x, y) /∈ Ic,0.

Combining the two cases we get

c0,∗(t, x, y) =











cM (t, x) if cM (t, x) /∈ Ic,0,

c̃0,∗(t, x, y) if cM (t, x) ∈ Ic,0 and c̃0,∗(t, x, y) ∈ Ic,0,

c0,crit(t, x) if cM (t, x) ∈ Ic,0 and c̃0,∗(t, x, y) /∈ Ic,0.

We now have to analyze the conditions under which c̃0,∗(t, x, y) ∈ Ic,0 in more detail.
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c̃0,∗(t, x, y) ∈ I
c,0

⇔ dc,0(cM (t, x)) > B0
c c

M (t, x)
(

1 − (1 −B0
c

1
1−R(e−(1−R)y − 1))−

1
R

)

and y < hcrit

(∗)
⇔ (dc,0(cM (t, x)))+ > B0

c c
M (t, x)

(

1 − (1 −B0
c

1
1−R(e−(1−R)y − 1))−

1
R

)

and y < hcrit

⇔ − 1
1−R(e−(1−R)y − 1) < 1

B0
c

((

1 − (dc,0(cM (t,x)))+

B0
c cM (t,x)

)−R
− 1
)

and y < hcrit

⇔ y < − 1
1−R ln

(

−(1 −R) 1
B0

c

((

1 − (dc,0(cM (t,x)))+

B0
c cM (t,x)

)−R
− 1
)

+ 1
)

and y < hcrit

⇔ y <
(

− 1
1−R ln

(

−(1 −R) 1
B0

c

((

1 − (dc,0(cM (t,x)))+

B0
c cM (t,x)

)−R
− 1
)

+ 1
)

∧ hcrit
)

⇔ y < − 1
1−R ln

(

−(1 −R) 1
B0

c

((

1 − (dc,0(cM (t,x)))+

B0
c cM (t,x)

)−R
− 1
)

+ 1
)

⇔ y < h0,crit(t, x)

where equivalence (∗) holds true since the right-hand side of the left inequality is positive. This is

true since 0 < (1−B0
c

1
1−R(e−(1−R)y −1))−

1
R ≤ 1 (B0

c > 0), resp. (1−B0
c

1
1−R(e−(1−R)y −1))−

1
R ≥ 1

(B0
c < 0), as y ≥ 0. Further, the expression

(

1 − (dc,0(cM (t,x)))+

B0
c cM (t,x)

)−R
is well-defined as we discuss

the parameter specifications B0
c < 0 and A0 > C0, resp. B0

c > 0 and A0 < C0, for which 1 −
(dc,0(cM (t,x)))+

B0
c cM (t,x)

> 0. Finally hcrit can be neglected due to the fact that
(

1− (A0+B0
c cM (t,x)−C0)+

B0
c cM (t,x)

)−R
>

0. Notice further that

cM (t, x) /∈ I
c,0 ⇔ h0,crit(t, x) = 0.

Hence

c0,∗(t, x, y) =











cM (t, x) if cM (t, x) /∈ Ic,0,

c̃0,∗(t, x, y) if cM (t, x) ∈ Ic,0 and y < h0,crit(t, x),

c0,crit(t, x) if cM (t, x) ∈ Ic,0 and y ≥ h0,crit(t, x),

or equivalently

c0,∗(t, x, y) =
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x
(

1 −B0
c

1
1−R(e−(1−R)(y∧h0,crit(t,x)) − 1)

)− 1
R .

Thus

B0
c < 0 and A0 > C0, resp. B0

c > 0 and A0 < C0

⇒ c0,∗(t, x, y) =
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x
(

1 −B0
c

1
1−R(e−(1−R)(y∧h0,crit(t,x)) − 1)

)− 1
R .

With h0,crit(t, x) as defined in the lemma the above formula is also valid in the aforementioned trivial
parameter cases.



4.3 Affine Intensity Functions 105

• Maximizing consumption rate in state 1 (ε > 0). Again we begin with the trivial case A1 < C1 and
then continue with the non-trivial case A1 ≥ C1.

• A1 < C1. In this case the intensity function ϑ1,0 is constant on the whole R
n̄ ×R

+
0 since B1

c < 0.

Further Hc,1 = Hc,1
l on [0, T ] × R × R

+
0 × R

+
0 . Thus Hc,1(t, x, y, ·) exhibits its unique maximum

at the Merton rate, i.e.

A1 < C1 ⇒ c1,∗(t, x, y) = cM (t, x).

• A1 ≥ C1. Here we first consider cM (t, x) ∈ Ic,1 and then cM (t, x) /∈ Ic,1.

• cM (t, x) ∈ Ic,1. If cM (t, x) ∈ Ic,1 then by Lemma 4.105, ii), also c̃1,∗(t, x, y) ∈ Ic,1. Hence
Hc,1(t, x, y, ·) exhibits its unique maximum at c̃1,∗(t, x, y), i.e.

cM (t, x) ∈ I
c,1 ⇒ c1,∗(t, x, y) = c̃1,∗(t, x, y).

• cM (t, x) /∈ Ic,1. If cM (t, x) /∈ Ic,1 thenHc,1(t, x, y, ·) may possess two local maxima; the maximum
of Hc,1

l (t, x, y, ·) and the one of Hc,1
a (t, x, y, ·), given by cM (t, x), resp. c̃1,∗(t, x, y). As long as

c̃1,∗(t, x, y) does not lie in the influencing half space then Hc,1(t, x, y, ·) has only one maximum,
namely at cM (t, x). But as soon as c̃1,∗(t, x, y) enters the influencing half space thenHc,1(t, x, y, ·)
exhibits the two local maxima mentioned above which have to be compared in order to find the
global maximum, i.e.

cM (t, x) /∈ I
c,1 ⇒ c1,∗(t, x, y) =























cM (t, x)
if c̃1,∗(t, x, y) /∈ I

c,1 or [c̃1,∗(t, x, y) ∈ I
c,1

and Hc,1
l,M (t, x, y) > Hc,1

a,∼(t, x, y)],

c̃1,∗(t, x, y)
if c̃1,∗(t, x, y) ∈ I

c,1

and Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y).

Combining the two cases we arrive at

c1,∗(t, x, y) =























cM (t, x)
if cM (t, x) /∈ I

c,1 and
[

c̃1,∗(t, x, y) /∈ I
c,1

or [c̃1,∗(t, x, y) ∈ I
c,1 and Hc,1

l,M (t, x, y) > Hc,1
a,∼(t, x, y)]

]

,

c̃1,∗(t, x, y)
if cM (t, x) ∈ I

c,1 or
[

cM (t, x) /∈ I
c,1

and [c̃1,∗(t, x, y) ∈ I
c,1 and Hc,1

l,M (t, x, y) ≤ Hc,1
a,∼(t, x, y)]

]

.

To simplify this we have a look at the two conditions. Firstly

cM (t, x) /∈ I
c,1 and

[

c̃1,∗(t, x, y) /∈ I
c,1

or [c̃1,∗(t, x, y) ∈ I
c,1 and Hc,1

l,M (t, x, y) > Hc,1
a,∼(t, x, y)]

]

⇔ cM (t, x) /∈ I
c,1 and [c̃1,∗(t, x, y) /∈ I

c,1 or Hc,1
l,M (t, x, y) > Hc,1

a,∼(t, x, y)]

L. 4.105, ii)
⇔ cM (t, x) /∈ I

c,1 and Hc,1
l,M (t, x, y) > Hc,1

a,∼(t, x, y)

L. 4.105, ii)
⇔ Hc,1

l,M (t, x, y) > Hc,1
a,∼(t, x, y)
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Secondly

cM (t, x) ∈ I
c,1 or

[

cM (t, x) /∈ I
c,1

and [c̃1,∗(t, x, y) ∈ I
c,1 and Hc,1

l,M (t, x, y) ≤ Hc,1
a,∼(t, x, y)]

]

⇔ cM (t, x) ∈ I
c,1 or [c̃1,∗(t, x, y) ∈ I

c,1 and Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y)]

L. 4.105, ii)
⇔ cM (t, x) ∈ I

c,1 or Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y)

L. 4.105, ii)
⇔ Hc,1

l,M (t, x, y) ≤ Hc,1
a,∼(t, x, y)

Hence we get

c1,∗(t, x, y) =

{

cM (t, x) if Hc,1
l,M (t, x, y) > Hc,1

a,∼(t, x, y),

c̃1,∗(t, x, y) if Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y).

Some simple transformations show

Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y)

⇔
(

− R
1−R

(

(

1 −B1
c

1
1−R(e(1−R)y − 1)

)− 1−R
R − 1

)

+B1
c

1
1−R(e(1−R)y − 1)

)

cM (t, x)

≤ dc,1(cM (t, x)) 1
1−R(e(1−R)y − 1)

(∗)
⇔

(

− R
1−R

(

(

1 −B1
c

1
1−R(e(1−R)y − 1)

)− 1−R
R − 1

)

+B1
c

1
1−R(e(1−R)y − 1)

)

cM (t, x)

≤ −(dc,1(cM (t, x)))− 1
1−R(e(1−R)y − 1)

where equivalence (∗) is satisfied because the left-hand side of the inequality is non-positive.
Unfortunately, we cannot derive an explicit condition on y; not even in the logarithmic case
R = 1. Therefore, we stick to the condition Hc,1

l,M (t, x, y) ≤ Hc,1
a,∼(t, x, y). However Hc,1

l,M (t, x, y) ≤

Hc,1
a,∼(t, x, y) is trivially satisfied if cM (t, x) ∈ Ic,1, i.e.

cM (t, x) ∈ I
c,1 ⇒ Hc,1

l,M (t, x, y) ≤ Hc,1
a,∼(t, x, y).

Hence we get

A1 ≥ C1 ⇒ c1,∗(t, x, y) =

{

cM (t, x) if Hc,1
l,M (t, x, y) > Hc,1

a,∼(t, x, y),

c̃1,∗(t, x, y) if Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y).

Notice that the trivial parameter specification A1 < C1 in which c1,∗(t, x, y) = cM (t, x) is covered,
too, since then

Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y)

⇔ − R
1−R

(

(

1 −B1
c

1
1−R(e(1−R)y − 1)

)− 1−R
R − 1

)

cM (t, x) ≤ (A1 − C1) 1
1−R(e(1−R)y − 1)

where the left-hand side is now positive. Hence, if A1 < C1 then Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y) is not

valid as (A1 − C1) 1
1−R(e(1−R)y − 1) ≤ 0, except for y = 0.

We now proceed with the case ε = 0 in which the Merton consumption rate vanishes, i.e. cM (t, x) = 0
for all (t, x) ∈ [0, T ] ×R.



4.3 Affine Intensity Functions 107

• Maximizing consumption rate in state 0 (ε = 0). Let now ε = 0. Again we first look at the trivial
parameter specifications B0

c < 0 and A0 ≤ C0, resp. B0
c > 0 and A0 ≥ C0.

• B0
c < 0 and A0 ≤ C0. If B0

c < 0 and A0 ≤ C0 then none of the admissible consumption rates
c ∈ R

+
0 lie in Ic,0, i.e. Hc,0 = Hc,0

l on [0, T ] ×R×R
+
0 ×R

+
0 and thus the Merton rate maximizes

Hc,0(t, x, y, ·), i.e.

B0
c < 0 and A0 ≤ C0 ⇒ c0,∗(t, x, y) = 0.

• B0
c > 0 and A0 ≥ C0. If B0

c > 0 and A0 ≥ C0 then the intensity function ϑ0,1 is linear on R
n̄×R

+
0

and Hc,0 = Hc,0
a on [0, T ]×R×R

+
0 ×R

+
0 . Consequently the maximizer is given by c̃0,∗(t, x, y) = 0

since c̃0,∗(t, x, y) = 0 for all (t, x, y) ∈ [0, T ] ×R×R
+
0 if B0

c > 0, i.e.

B0
c > 0 and A0 ≥ C0 ⇒ c0,∗(t, x, y) = 0.

• B0
c < 0 and A0 > C0, resp. B0

c > 0 and A0 < C0. As cM (t, x) = 0 we distinguish the cases 0 /∈ Ic,0

and 0 ∈ Ic,0.

• 0 /∈ Ic,0. If 0 /∈ Ic,0 then by Lemma 4.105, i), also c̃0,∗(t, x, y) /∈ Ic,0. Thus Hc,0(t, x, y, ·) exhibits
its unique maximum at cM (t, x) = 0, i.e.

0 /∈ I
c,0 ⇒ c0,∗(t, x, y) = 0.

• 0 ∈ Ic,0. If 0 ∈ Ic,0 then c0,∗(t, x, y) = c̃0,∗(t, x, y) as long as c̃0,∗(t, x, y) ∈ Ic,0 and c0,∗(t, x, y) =
c0,crit as soon as c̃0,∗(t, x, y) /∈ Ic,0, i.e.

0 ∈ I
c,0 ⇒ c0,∗(t, x, y) =

{

c̃0,∗(t, x, y) if c̃0,∗(t, x, y) ∈ Ic,0,

c0,crit if c̃0,∗(t, x, y) /∈ Ic,0.

Combining the two cases we get

c0,∗(t, x, y) =











0 if 0 /∈ Ic,0,

c̃0,∗(t, x, y) if 0 ∈ Ic,0 and c̃0,∗(t, x, y) ∈ Ic,0,

c0,crit if 0 ∈ Ic,0 and c̃0,∗(t, x, y) /∈ Ic,0.

Therefore, we have to analyze the conditions under which c̃0,∗(t, x, y) ∈ Ic,0 in more detail. Since

c̃0,∗(t, x, y) ,

{

0 if y < hcrit,

∞ if y ≥ hcrit,

it follows that

c̃0,∗(t, x, y) ∈ I
c,0 ⇔ A0 − C0 > 0 and y < hcrit.

Hence with h0,crit and c0,crit we get

B0
c < 0 and A0 > C0, resp. B0

c > 0 and A0 < C0 ⇒ c0,∗(t, x, y) =

{

0 if y < h0,crit,

c0,crit if y ≥ h0,crit.

The formula above also covers the trivial parameter specifications.
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• Maximizing consumption rate in state 1 (ε = 0). The maximizing consumption rate in state 1 is
given by c1,∗(t, x, y) = 0. If A1 < C1 then ϑ1,0 is constant on the whole R

n̄ ×R
+
0 and Hc,1 = Hc,1

l on
[0, T ] × R × R

+
0 × R

+
0 implying c1,∗(t, x, y) = cM (t, x) = 0. Further if A1 ≥ C1 then 0 ∈ Ic,1 which

in analogy to the case of ε > 0 yields that c1,∗(t, x, y) = c̃1,∗(t, x, y) = 0.

Thus the lemma is proven.

Remark 4.109 (Interpretation). Whenever the Merton consumption rate in state 0 is not part of the
influencing half space then the maximizing consumption rate coincides with the Merton rate. However,
if the Merton consumption lies within the influencing half space then the maximizing consumption rate
may deviate from the Merton rate.

In state 1 things are different. If ε > 0 then the maximizing consumption rate coincides with the Merton
consumption rate if the Merton rate is not lying within the influencing half space and either c̃1,∗ /∈ Ic,1

or c̃1,∗ ∈ Ic,1 but Hc,1
l,M (t, x, y) > Hc,1

a,∼(t, x, y). Otherwise the maximizing consumption rate deviates
from the Merton rate. In case of ε = 0 the maximizing consumption rate equals the Merton rate.

Remark 4.110 (Continuity of c0,∗ vs. discontinuity of c1,∗ (ε > 0)). The special form of the maximizing
strategy in state 0 together with the continuity of λ0,crit imply that c0,∗ is a continuous function in t, x
and y.

However in state 1 the maximizing strategy exhibits a discontinuity at all (t̂, x̂, ŷ) satisfying Hc,1
l,M (t̂, x̂, ŷ) =

Hc,1
a,∼(t̂, x̂, ŷ) and cM (t̂, x̂) 6= c̃1,∗(t̂, x̂, ŷ) where c1,∗ jumps from cM (t̂, x̂) to c̃1,∗(t̂, x̂, ŷ).

Remark 4.111 (Discontinuity of c0,∗ vs. continuity of c1,∗ (ε = 0)). If ε = 0 then c0,∗ may be
discontinuous in y. Namely if B0

c < 0 and A0 > C0 then c0,∗ exhibits a jump at y = h0,crit where it
jumps from 0 to c0,crit

In state 1 the maximizing strategy c1,∗ is obviously continuous in y if ε = 0.

Remark 4.112 (Negativity of B1
c ). We do not allow B1

c to take on positive values for the following
reason. If B1

c was positive then similarly to state 0 the maximizer of Hc,1
a (t, x, y, ·) would be ∞ as soon

as y ≥ 1
1−R ln((1 −R) 1

B1
c

+ 1). In state 0 this does not cause any problem as before the maximizer c0,∗

becomes ∞ it hits the critical value c0,crit and does not overshoot it. This is reasonable as from c0,crit

onwards the intensity of a jump to state 1 will not get any smaller so that there is no reason for the
investor to further deviate from the Merton rate. But in state 1 things are different. If B1

c > 0 then
the intensity for a jump to the better state 0 could get infinitely large as ϑ1,0 would be unbounded from
above and there would not be any potential barrier for the maximizer c1,∗. Hence whenever the market
was in state 1 and y was large enough then it would be optimal for the investor to consume at an
infinitely large rate for an infinitesimal short time thus guaranteeing the jump back to state 0. But this
strategy would not be admissible. Therefore, B1

c > 0 has to be prohibited.

Remark 4.113 (Interpretation in case of ε = 0). Choosing ε = 0 represents a model in which the
investor does not draw any utility from intermediate consumption at least concerning the direct impact
of consumption on the utility functions. In the standard model without the investor’s influence the
optimal consumption rate consequently is 0. In our model this is different. In the special case of B0

c < 0
and A0 > C0 it is possible that the maximizing consumption rate is strictly positive. This happens if
y ≥ h0,crit = − 1

1−R ln
(

(1−R) 1
B0

c
+ 1
)

. Thus, the large investor consumes although this is not beneficial

in terms of the utility from intermediate consumption. The reason for this behavior is that except for
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the case of B0
c < 0 and A0 > C0 a consumption rate of 0 yields the smallest possible intensity of a

jump to the adverse market state. Only if B0
c < 0 and A0 > C0 then consuming at a rate of −A0−C0

B0
c

yields a smaller intensity than consuming at a rate of 0. Therefore, in order to reduce the probability
of a jump to the adverse market state, the large investor may consume.

So far the above explanations are relevant for the general maximizing strategy c0,∗(t, x, y) and not
necessarily for the optimal strategy. This is because it is not clear whether the situation h(t) ≥ h0,crit

– remember that the maximizing strategy of the HJB-system (4.48) is obtained by choosing y = h(t) –
could really occur. But later on we will provide an example showing that the aforementioned situation
is really possible.

The following lemma provides a link between the maximizing consumption rate in case of ε > 0 and
ε = 0.

Lemma 4.114 (Limiting behavior of c0,crit, h0,crit and ci,∗ as ε tends to 0). Denote by c0,crit
ε>0 , h0,crit

ε>0 and

ci,∗ε>0, resp. c0,crit
ε=0 , h0,crit

ε=0 and ci,∗ε=0, the critical consumption rate, the critical barrier and the maximizing
consumption rate in case of ε > 0, resp. ε = 0. Then the following holds true for every (t, x, y) ∈
[0, T ] ×R×R

+
0 .

i) lim
ε→0

c0,crit
ε>0 (t, x) = c0,crit

ε=0 .

ii) lim
ε→0

h0,crit
ε>0 (t, x) = h0,crit

ε=0 .

iii) lim
ε→0

ci,∗ε>0(t, x, y) = ci,∗ε=0(t, x, y).

Proof. Let (t, x, y) ∈ [0, T ] ×R×R
+
0 be fixed and notice that

lim
ε→0

cM (t, x) = 0 for every (t, x) ∈ [0, T ] ×R. (∗)

ad i) The assertion is a direct consequence of (∗).

ad ii) Again (∗) implies limε→0 λ
0,crit
ε>0 (t, x) = λ0,crit

ε=0 which yields the assertion.

ad iii) The assertions i) and ii) together with (∗) yield limε→0 c
0,∗
ε>0(t, x, y) = c0,∗

ε=0(t, x, y). Moreover

since limε→0 c̃
1,∗
ε>0(t, x, y) = 0 = c̃1,∗

ε=0(t, x, y) we also get limε→0 c
1,∗
ε>0(t, x, y) = c1,∗

ε=0(t, x, y).

Remark 4.115. So far the strategy (πi,∗, ci,∗) is only a candidate solution for the optimal investment
problem. To verify the optimality we need to show that the related HJB-system has a global solution
that satisfies the required regularity conditions stated in the Verification Theorem 3.3.

Having established the maximizers of the HJB-system in general form inserting (πi,∗, ci,∗(t, g(t) −
1{i=1}h(t), h(t))) the reduced HJB-equation (4.48) now becomes a system of coupled backward ODEs
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which for ε > 0 is given by

h′(t) = − (Ψ0 − Ψ1) +
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

g(t) R
1−R

(

e
1−R

R
h(t) − 1

)

− C0 1
1−R(e−(1−R)h(t) − 1) + C1 1

1−R(e(1−R)h(t) − 1)

−
[

(A0 +B0
c c

M (t, g(t)) − C0) 1
1−R(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1)

+
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1)

)

cM (t, g(t))
]

+
[

(A1 +B1
c c

M (t, g(t) − h(t)) − C1) 1
1−R(e(1−R)h(t) − 1)

+
(

R
1−R

(

(1 −B1
c

1
1−R(e(1−R)h(t) − 1))−

1−R
R − 1

)

−B1
c

1
1−R(e(1−R)h(t) − 1)

)

cM (t, g(t) − h(t))
]+
,

(4.51)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
g(t) − 1

)

)

− C0 1
1−R(e−(1−R)h(t) − 1)

−
[

(A0 +B0
c c

M (t, g(t)) − C0) 1
1−R(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1)

+
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1)

)

cM (t, g(t))
]

(4.52)

subject to the boundary conditions

g(T ) = 0, h(T ) = 0. (4.53)

If ε = 0 then the ODE-system reads

h′(t) = − (Ψ0 − Ψ1)

− C0 1
1−R(e−(1−R)h(t) − 1) + C1 1

1−R(e(1−R)h(t) − 1)

− (A0 − C0) 1
1−R(e−(1−R)(h(t)∧h0,crit) − 1)

+ (A1 − C1)+ 1
1−R(e(1−R)h(t) − 1),

(4.54)

g′(t) = − Ψ0

− C0 1
1−R(e−(1−R)h(t) − 1)

− (A0 − C0) 1
1−R(e−(1−R)(h(t)∧h0,crit) − 1)

(4.55)

subject to the boundary conditions

g(T ) = 0, h(T ) = 0. (4.56)
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Remark 4.116. From the proof of Lemma 4.106 we know that for (t, x, y) ∈ [0, T ] ×R×R
+
0

Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y)

⇔
(

− R
1−R

(

(

1 −B1
c

1
1−R(e(1−R)y − 1)

)− 1−R
R − 1

)

+B1
c

1
1−R(e(1−R)y − 1)

)

cM (t, x)

≤ dc,1(cM (t, x)) 1
1−R(e(1−R)y − 1).

Remark 4.117. The aforementioned ODEs include the ODEs of the classical Merton problem (first
rows) and the ODEs of the Bäuerle-Rieder problem with constant regime shift intensities Ci (first two
rows).

The following lemma shows that the above ODE-system exhibits a unique global solution.

Lemma 4.118. The ODE-system given by equation (4.51) and (4.52) subject to the boundary condi-
tions (4.53) (ε > 0), resp. (4.54) and (4.55) subject to the boundary conditions (4.56) (ε = 0), admits
a unique global solution.

Proof of Lemma 4.118. The proof is essentially the same as the proof of Lemma 4.9. Only the χi’s are
different. Therefore we just present the actual χi’s and verify that those satisfy the necessary continuity
conditions and the non-negativity condition. However in the consumption-dependent case we have to
distinguish the cases ε > 0 and ε = 0. So we first give the χi’s and their properties for ε > 0 and then
for ε = 0.

• Definition of the χi’s (ε > 0). In case of ε > 0 the χi’s are given by χi : [0, T ] × R × R
+
0 → R,

i = 0, 1, with

χ0(t, x, y) , − C0 1
1−R(e−(1−R)y − 1) −

[

dc,0(cM (t, x)) 1
1−R(e−(1−R)(y∧h0,crit(t,x)) − 1)

+
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)(y∧h0,crit(t,x)) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)(y∧h0,crit(t,x)) − 1)

)

cM (t, x)
]

,

χ1(t, x, y) , C1 1
1−R(e(1−R)y − 1) +

[

dc,1(cM (t, x)) 1
1−R(e(1−R)y − 1)

+
(

R
1−R

(

(1 −B1
c

1
1−R(e(1−R)y − 1))−

1−R
R − 1

)

−B1
c

1
1−R(e(1−R)y − 1)

)

cM (t, x)
]+
.

• Continuity results on the χi’s (ε > 0). The χi’s are continuous in t and further, as compositions of
continuously differentiable functions in x and y, the [ · ]+- and the min{·, ·}-function locally Lipschitz
continuous in x and y.

• Non-negativity of the χi’s (ε > 0). Obviously, χ1(t, x, y) ≥ 0 for every (t, x, y) ∈ [0, T ] × R × R
+
0 .

To see that χ0(t, x, y) ≥ 0 for every (t, x, y) ∈ [0, T ] × R × R
+
0 we distinguish the three cases that

already appeared in the proof of Lemma 4.106.

• B0
c < 0 and A0 ≤ C0. If B0

c < 0 and A0 ≤ C0 then h0,crit(t, x) = 0 for every (t, x) ∈ [0, T ]×R and
hence χ0(t, x, y) = −C0 1

1−R(e−(1−R)y − 1) which is non-negative as y ≥ 0.
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• B0
c > 0 and A0 ≥ C0. If B0

c > 0 and A0 ≥ C0 then h0,crit(t, x) = ∞ for every (t, x) ∈ [0, T ] × R

and hence

χ0(t, x, y) = − C0 1
1−R(e−(1−R)y − 1) − dc,0(cM (t, x)) 1

1−R(e−(1−R)y − 1)

−
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)y − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)y − 1)

)

cM (t, x).

Further, B0
c > 0 and A0 ≥ C0 implies that c̃0,∗(t, x, y) ∈ Ic,0 which by Lemma 4.105, i), yields

that Hc,0
l,M (t, x, y) > Hc,0

a,∼(t, x, y). But this is equivalent to

0 <− dc,0(cM (t, x)) 1
1−R(e−(1−R)y − 1)

−
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)y − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)y − 1)

)

cM (t, x),

so that χ0(t, x, y) > 0.

• B0
c < 0 and A0 > C0, resp. B0

c > 0 and A0 < C0. We distinguish the cases cM (t, x) /∈ Ic,0 and
cM (t, x) ∈ Ic,0.

• cM (t, x) /∈ Ic,0. If cM (t, x) /∈ Ic,0 then h0,crit(t, x) = 0 and therefore we get χ0(t, x, y) =
−C0 1

1−R(e−(1−R)y − 1) ≥ 0 as y ≥ 0.

• cM (t, x) ∈ Ic,0. If cM (t, x) ∈ Ic,0 then h0,crit(t, x) is strictly positive and we have to distinguish
the cases y < h0,crit(t, x) and y ≥ h0,crit(t, x).

◦ y < h0,crit(t, x). If y < h0,crit(t, x) then

χ0(t, x, y) = − C0 1
1−R(e−(1−R)y − 1) − dc,0(cM (t, x)) 1

1−R(e−(1−R)y − 1)

−
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)y − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)y − 1)

)

cM (t, x).

From the proof of Lemma 4.106 we know that y < h0,crit(t, x) is equivalent to c̃0,∗(t, x, y) ∈ Ic,0

which by Lemma 4.105, i), implies that Hc,0
l,M (t, x, y) > Hc,0

a,∼(t, x, y). Hence it follows that

χ0(t, x, y) > 0.

◦ y ≥ h0,crit(t, x). If y ≥ h0,crit(t, x) then

χ0(t, x, y) = − C0 1
1−R(e−(1−R)y − 1) − dc,0(cM (t, x)) 1

1−R(e−(1−R)h0,crit(t,x) − 1)

−
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1)

)

cM (t, x)

= − C0 1
1−R(e−(1−R)y − 1) − (dc,0(cM (t, x)))+ 1

1−R(e−(1−R)h0,crit(t,x) − 1)

−
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1)

)

cM (t, x)

= − C0 1
1−R(e−(1−R)y − 1) −

(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1)(1 −B0

c
1

1−R(e−(1−R)h0,crit(t,x) − 1))−
1
R

)

cM (t, x),
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since dc,0(cM (t, x)) > 0 as cM (t, x) ∈ Ic,0, and λ0,crit(t, x) = 1
1−R(e−(1−R)h0,crit(t,x) − 1) is

the unique solution of equation (4.50). Moreover part i) of Lemma 4.48 yields with z =
−B0

c
1

1−R(e−(1−R)h0,crit(t,x) − 1) that

0 ≤−
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1)(1 −B0

c
1

1−R(e−(1−R)h0,crit(t,x) − 1))−
1
R

)

,

thus implying χ0(t, x, y) ≥ 0. Here Lemma 4.48, i), is applicable since

−B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1) = −B0

cλ
0,crit(t, x)

= −
(

1 −
(

1 − (A0+B0
c cM (t,x)−C0)+

B0
c cM (t,x)

)−R
)

> −1

because
(

1 − (A0+B0
c cM (t,x)−C0)+

B0
c cM (t,x)

)

> 0 as we discuss the case B0
c < 0 and A0 > C0, resp.

B0
c > 0 and A0 < C0.

Subsequently we let ε = 0.

• Definition of the χi’s (ε = 0). If ε = 0 then the χi’s are given by χi : R
+
0 → R, i = 0, 1, with

χ0(y) , − C0 1
1−R(e−(1−R)y − 1) − (A0 − C0) 1

1−R(e−(1−R)(y∧h0,crit) − 1),

χ1(y) , C1 1
1−R(e(1−R)y − 1) + (A1 − C1)+ 1

1−R(e(1−R)y − 1).

• Continuity results on the χi’s (ε = 0). Being compositions of continuously differentiable functions,
the [ · ]+- and the min{·, ·}-function the χi’s are locally Lipschitz continuous.

• Non-negativity of the χi’s (ε = 0). The non-negativity of χ1 is obvious. To verify the non-negativity
of χ0 note that h0,crit = 0 if A0 < C0.

The remainder of the proof is the same as the proof of Lemma 4.9.

Figure 4.16 provides an example for the functions g and h.

The proof of Lemma 4.118 directly implies the following corollaries.

Corollary 4.119 (Time-dependent bounds on g and h). Let h and g be given by (4.51), (4.52) subject
to the boundary conditions (4.53) (ε > 0), resp. (4.54), (4.55) subject to the boundary conditions (4.56)
(ε = 0). Then

−(Ψ1 − ξ1(T ))−(T − t) ≤ g(t) ≤ (Ψ0 − ξ0(T ))+(T − t) (ε > 0),

resp. 0 ≤ g(t) ≤ Ψ0(T − t) (ε = 0) and

0 ≤ h(t) ≤ (Ψ0 − Ψ1)(T − t)

for t ∈ [0, T ] where the ξi(T )’s are as defined in the proof of Lemma 4.9.
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Figure 4.16: g (left) and h (right) as functions of t
(r0 = r1 = 0.03, η0 = 0.09, η1 = 0.01, σ0 = 0.2, σ1 = 0.6, δ = 0.035, ε = 1, R = 0.75, T = 2.5,

A0 = 9, B0
c = 10, C0 = 15, A1 = 13, B1

c = −5, C1 = 7.5)

Corollary 4.120 (Time-independent bound on h). Let h and g be given by (4.51), (4.52) subject to
the boundary conditions (4.53) (ε > 0), resp. (4.54), (4.55) subject to the boundary conditions (4.56)
(ε = 0). Then

0 ≤ h(t) ≤ h̄

for t ∈ [0, T ] where h̄ is the smallest positive root of

F̄ (y) ,

{

−(Ψ0 − Ψ1) − C0 1
1−R(e−(1−R)y − 1) + C1 1

1−R(e(1−R)y − 1) if ε > 0,

−(Ψ0 − Ψ1) + χ0(y) + χ1(y) if ε = 0

if such a root exists; otherwise h̄ = ∞, i.e.

h̄ = min
{

y ∈ R
+
0 : F̄ (y) = 0

}

,

with the convention min ∅ , ∞, where the χi’s are as defined in the proof of Lemma 4.118.

Proof. The assertion follows from a simple ODE argument since

F (t, x, y) = −(Ψ0 − Ψ1) + ̺(t, x, y) + χ0(t, x, y) + χ1(t, x, y) ≥ F̄ (y)

for all (t, x, y) ∈ [0, T ] × R × R
+
0 where we used the notation from the proof of Lemma 4.9. If ε = 0

then this is obviously true. In case of ε > 0 this is satisfied, too, since the proof of Lemma 4.118 showed
that χ0(t, x, y) ≥ −C0 1

1−R(e−(1−R)y − 1) and χ1(t, x, y) ≥ C1 1
1−R(e(1−R)y − 1).

The boundary function on h as presented in Corollary 4.119 is suitable for large values of t for which
the deviation from h is not too large whereas for small values of t the non-linear behavior of h implies
that the boundary function overshoots h by far. The converse is true for the bound given in Corollary
4.120. Thus combining the two bounds on h yields

0 ≤ h(t) ≤ min{(Ψ0 − Ψ1)(T − t), h̄}

for t ∈ [0, T ].
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Since the above ODE-system is solvable we can now verify that the strategy given above is indeed the
optimal strategy that solves the investment problem.

Theorem 4.121 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and
g be given by (4.51), (4.52) subject to the boundary conditions (4.53) (ε > 0), resp. (4.54), (4.55)
subject to the boundary conditions (4.56) (ε = 0). Then the strategy

(πi,∗, ci,∗(t)) , (πi,∗, ci,∗(t, g(t) − 1{i=1}h(t), h(t))), t ∈ [0, T ], i = 0, 1,

as given in Lemmas 4.101 and 4.106 is optimal for the investment problem (P) with crra preferences
and relative risk aversion R.

Proof. Since (πi,∗, ci,∗(t)) maximizes the reduced HJB-system (4.48) for each t ∈ [0, T ], optimality of
the strategy (πi,∗, ci,∗) follows directly from the Verification Theorem 3.3.

Remark 4.122. If not otherwise stated we use the following shorthand notations

ci,crit(t) , ci,crit(t, g(t) − 1{i=1}h(t)),

hi,crit(t) , hi,crit(t, g(t) − 1{i=1}h(t)),

Hc,i
l,M (t) , Hc,i

l (t, g(t) − 1{i=1}h(t), h(t), c
i,M (t)),

Hc,i
a,∼(t) , Hc,i

a (t, g(t) − 1{i=1}h(t), h(t), c̃
i,∗(t))

for t ∈ [0, T ], i = 0, 1.
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Figure 4.17: Optimal strategy vs. Merton strategy: ci,∗ and ci,M as functions of t
(r0 = r1 = 0.03, η0 = 0.09, η1 = 0.01, σ0 = 0.2, σ1 = 0.6, δ = 0.035, ε = 1, R = 0.75, T = 2.5,

A0 = 9, B0
c = 10, C0 = 15, A1 = 13, B1

c = −5, C1 = 7.5)

Figure 4.17 shows the optimal strategy and the Merton strategy in a setting where B0
c is positive and

B1
c is negative. Hence the large investor is forced to consume at a rate that is temporarily smaller than

the Merton consumption rate in order to generate advantageous regime shift intensities. In state 0 the
maximal deviation amounts to about 6% whereas in state 1 it is at most 3.5%.

As in the portfolio-dependent case the optimal consumption rate converges continuously to the Merton
consumption rate as the time to maturity decreases. The reason for this behavior is the same as in
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the portfolio-dependent setting. Further due to the time dependency of the Merton consumption rate
there is no need for the investor to deviate from the Merton rate until t ≈ 1.8 in state 0. From this time
on the Merton rate enters the half space of influencing consumption rates which makes it necessary to
deviate from the Merton rate.
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Figure 4.18: Optimal strategy vs. Merton strategy: ci,∗ and ci,M as functions of t
(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.01, σ0 = 0.2, σ1 = 0.6, δ = 0.035, ε = 0, R = 0.25, T = 1,

A0 = 20, B0
c = −45, C0 = 15, A1 = 0, B1

c = 0, C1 = 0)

Figure 4.18 displays the case where the large investor is forced to consume although he draws no utility
from intermediate consumption. In the example corresponding to Figure 4.18 the market will stay in
state 1 as soon as it enters it. So in order to avoid a regime shift into state 1 the large investor consumes
at a rate of about 11% until t ≈ 0.9. Afterwards he stops comsuming until t = T .

Again the optimal consumption rate shows an extreme behavior if ε = 0. Until t ≈ 0.9 the investor
consumes at the critical rate and then immediately stops consuming. One would expect the strat-
egy in the case of ε = 0 to be similarly continuous as in the case of ε > 0. The reason for the
extreme behavior can be found in the HJB-system (4.48). There the only term including c is given
by −c + max{Ai + Bi

cc, C
i} 1

1−R(e(−1)1−i(1−R)h(t) − 1) where −c is the usual consumption impact and

max{Ai + Bi
cc, C

i} 1
1−R(e(−1)1−i(1−R)h(t) − 1) goes back to the consumption-dependency of the regime

shift intensity. Those two components are of the same magnitude, i.e. they are both linear in c. Usu-
ally – without the investor’s influence – the maximizing consumption rate is 0 as the linear function
Hc,i(t, g(t) − 1{i=1}h(t), h(t), ·) is usually decreasing. Due to the investor’s impact on the market the
slope of Hc,i(t, g(t)− 1{i=1}h(t), h(t), ·) becomes positive when h(t) is large enough. When this occurs
the optimal consumption rate immediately jumps to the critical rate c0,crit. Thus the extreme behavior
is due to the affine form of the investor’s influence.

As in the section on step intensity functions the special structure of the large investor’s optimal
consumption rate suggests a decomposition into the Merton consumption rate and an additional ad-
justment component. This adjustment component results from the investor’s influence on the market.
So the optimal consumption rate can be written as

ci,∗(t) = ci,M (t) + ci,A(t) for i = 0, 1
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where we have

c0,A(t) =







(

(

1 −B0
c

1
1−R(e−(1−R)(h(t)∧h0,crit(t)) − 1)

)− 1
R − 1

)

c0,M (t) if ε > 0,

− (A0−C0)+

B0
c

1{h(t)≥h0,crit} if ε = 0,

c1,A(t) =







(

(

1 −B1
c

1
1−R(e(1−R)h(t) − 1)

)− 1
R − 1

)

c1,M (t)1
{Hc,1

l,M
(t)≤Hc,1

a,∼(t)}
if ε > 0,

0 if ε = 0.

Note that c0,A(t) ≤ 0 if B0
c > 0 and c0,A(t) ≥ 0 if B0

c < 0, whereas c1,A(t) ≥ 0 if B1
c > 0 and c1,A(t) ≤ 0

if B1
c < 0. Thus, a positive value of B0

c , resp. a negative value of B1
c , corresponds to a market in

which the large investor is forced to consume less than the Merton consumption in order to reduce
the probability of a jump to the adverse market state, resp. enlarge the probability of a jump to the
favorable market state. A possible interpretation for this market behavior could be that the other
market participants consider the large investor’s consumption as a negative signal. In case of B0

c being
negative the large investor now has to consume at a higher rate than the Merton one to avoid the
adverse market state. So the other market participants somehow disapprove his presence in the market
and reward high consumption rates. Thus ci,A benefits the regime shift intensities which is shown in
the following lemma.

Lemma 4.123. The optimal strategy (πi,∗, ci,∗) satisfies

ϑ0,1(π0,∗, c0,∗(t)) ≤ ϑ0,1(π0,M , c0,M (t)) and ϑ1,0(π1,∗, c1,∗(t)) ≥ ϑ1,0(π1,M , c1,M (t))

for every t ∈ [0, T ].

Proof. The assertion follows since

ϑ0,1(π0,∗, c0,∗(t)) = max{A0 +B0
c c

0,∗(t), C0}

= max{A0 +B0
c c

0,M (t) +B0
c c

0,A(t), C0}

≤ max{A0 +B0
c c

0,M (t), C0}

= ϑ0,1(π0,M , c0,M (t))

and

ϑ1,0(π1,∗, c1,∗(t)) = max{A1 +B1
c c

1,∗(t), C1}

= max{A1 +B1
c c

1,M (t) +B1
c c

1,A(t), C1}

≥ max{A1 +B1
c c

1,M (t), C1}

= ϑ1,0(π1,M , c1,M (t))

as B0
c c

0,A(t) ≤ 0, resp. B1
c c

1,A(t) ≥ 0.

Remark 4.124. As in the last section the optimal consumption rate that we derived here is a com-
promise rate in that it is in general different from the Merton rate but generates better regime shift
intensities than those the Merton rate would yield, i.e. it accommodates the aforementioned trade-off.
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We have seen before that in case of ε = 0 the optimal consumption rate in state 0 may jump from 0 to

the critical consumption rate c0,crit = − (A0−C0)+

B0
c

which is strictly positive if B0
c < 0 and A0 > C0. For

all other settings of the parameters B0
c , A0 and C0 the optimal consumption rate is just 0. Subsequently

we will present a sufficient condition under which this jump in case of B0
c < 0 and A0 > C0 does not

occur, i.e. c0,∗(t) = 0 for all t ∈ [0, T ].

Proposition 4.125. Let ε = 0 and B0
c < 0 and A0 > C0. Further suppose that −(Ψ0 − Ψ1) − A0

B0
c
≥ 0

or equivalently A0 +B0
c c

0,◦ ≥ C0, where

c0,◦ , (Ψ0 − Ψ1) + C0

B0
c
.

Then c0,∗(t) = 0 for all t ∈ [0, T ].

Proof. Let ε = 0. Since B0
c < 0 and A0 > C0 we get h0,crit = − 1

1−R ln
(

(1 −R) 1
B0

c
+ 1
)

. The assertion

of the proposition is equivalent to the condition

h(t) ≤ h0,crit for all t ∈ [0, T ].

To prove this, we use a simple ODE argument. We let F as given in the proofs of the Lemmas 4.9
and 4.118. As F (T, g(T ), h(T )) = F (T, 0, 0) ≤ 0, it suffices to show that F (t, x, h0,crit) ≥ 0 for every
(t, x) ∈ [0, T ] × R. Indeed, in this case it follows from the intermediate value theorem that for each
t ∈ [0, T ] there exists some h̃(t) ∈ [0, h0,crit] with F (t, x, h̃(t)) = 0. Thus 0 ≤ h(t) ≤ max

t∈[0,T ]
h̃(t) ≤ h0,crit

for every t ∈ [0, T ].

To demonstrate under which conditions F (t, x, h0,crit) ≥ 0 we write F (t, x, h0,crit) = A+B with

A , χ1(h0,crit), B , −(Ψ0 − Ψ1) + χ0(h0,crit)

where we use the notation from the proofs of Lemmas 4.9 and 4.118.

The non-negativity of χ1 implies that A ≥ 0. On the other hand,

B = −(Ψ0 − Ψ1) − C0 1
1−R(e−(1−R)h0,crit

− 1) − (A0 − C0) 1
1−R(e−(1−R)h0,crit

− 1)

= −(Ψ0 − Ψ1) − A0

B0
c
.

Since −(Ψ0 − Ψ1) − A0

B0
c
≥ 0, we have B ≥ 0 and the proof is complete.

Remark 4.126. Notice that c0,◦ is not necessarily non-negative. Thus c0,◦ cannot be interpreted as a
consumption rate.

Observe that the assumption of Proposition 4.125 is satisfied if A0, resp. |B0
c | is sufficiently large.

4.3.3 Portfolio- and Consumption-dependent Intensities

Having discussed the optimal investment problem where the regime shifts are influenced either by the
benchmark investor’s portfolio proportions or by his consumption rate, we now consider the case where
both affect the shift intensities, i.e.

Bi
π 6= 0 and Bi

c 6= 0 for i = 0, 1, (PCD)
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so that the intensities are given by

ϑi,1−i(π, c) = max{Ai + π⊤.Bi
π +Bi

cc, C
i}.

We denote by

I
π,c,0 ,

{

(π, c) ∈ R
n̄ ×R

+
0 : A0 + π⊤.B0

π +B0
c c > C0

}

,

I
π,c,1 ,

{

(π, c) ∈ R
n̄ ×R

+
0 : A1 + π⊤.B1

π +B1
c c ≥ C1

}

the half spaces of strategies that impact on the intensities of regime shifts. Moreover,

dπ,c,i(π, c) , Ai + π⊤.Bi
π +Bi

cc− Ci

denotes the ’distance’ of the strategy (π, c) to the separating hyperplane and we have (π, c) ∈ Iπ,c,0 if
and only if dπ,c,0(π, c) > 0, resp. (π, c) ∈ Iπ,c,1 if and only if dπ,c,1(π, c) ≥ 0.

In order to determine the maximizer in the HJB-system (4.41) we define the function Hπ,c,i : [0, T ]×
R×R

+
0 ×R

n̄ ×R
+
0 → R given by

Hπ,c,i(t, x, y, π, c) , εδ
ε−(ε−δ)e−δ(T−t)

1
1−R(e−(1−R)xc1−R − 1) − c+ ri + π⊤.ηi − 1

2Rπ
⊤.σi.(σi)⊤.π

+ max{Ai + π⊤.Bi
π +Bi

cc, C
i} 1

1−R(e(−1)1−i(1−R)y − 1).

Hence the HJB-system (4.41) reads

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − 1{i=1}h
′(t) +Hπ,c,i(t, g(t) − 1{i=1}h(t), h(t), π, c)

}

(4.57)

for t ∈ [0, T ) and i = 0, 1, subject to the boundary conditions

g(T ) = 0, h(T ) = 0.

To find the supremum in (4.57) we present the maximizer of Hπ,c,i(t, x, y, ·, ·) for arbitrary (t, x, y) ∈
[0, T ] × R × R

+
0 . This yields a family of maximizers dependent on (t, x, y). The maximizers of the

HJB-system (4.57) are then obtained by replacing x and y by g(t) − 1{i=1}h(t) and h(t).

Let therefore Hπ,c,i
l , Hπ,c,i

a : [0, T ] ×R×R
+
0 ×R

n̄ ×R
+
0 → R given by

Hπ,c,i
l (t, x, y, π, c) , εδ

ε−(ε−δ)e−δ(T−t)
1

1−R(e−(1−R)xc1−R − 1) − c+ ri + π⊤.ηi − 1
2Rπ

⊤.σi.(σi)⊤.π

+ Ci 1
1−R(e(−1)1−i(1−R)y − 1),

Hπ,c,i
a (t, x, y, π, c) , εδ

ε−(ε−δ)e−δ(T−t)
1

1−R(e−(1−R)xc1−R − 1) − c+ ri + π⊤.ηi − 1
2Rπ

⊤.σi.(σi)⊤.π

+ (Ai + π⊤.Bi
π +Bi

cc)
1

1−R(e(−1)1−i(1−R)y − 1)

such that Hπ,c,i(t, x, y, π, c) = Hπ,c,i
l (t, x, y, π, c)1{(π,c)/∈Iπ,c,i} +Hπ,c,i

a (t, x, y, π, c)1{(π,c)∈Iπ,c,i}.
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If ε > 0 then Hπ,c,i
l (t, x, y, ·, ·) and Hπ,c,i

a (t, x, y, ·, ·) are concave for every (t, x, y) ∈ [0, T ] × R × R
+
0 .

Therefore the three candidate solutions for the maximization in (4.57) are

(πi,M , cM (t, x)) = arg max
(π,c)∈Rn̄×R

+
0

Hπ,c,i
l (t, x, y, π, c),

(π̃i,∗(t, x, y), c̃i,∗(t, x, y)) = arg max
(π,c)∈Rn̄×R

+
0

Hπ,c,i
a (t, x, y, π, c),

(π̃i,crit(t, x), c̃i,crit(t, x)) , arg max
{(π,c)∈Rn̄×R

+
0 : Ai+π⊤.Bi

π+Bi
cc=Ci}

Hπ,c,i(t, x, y, π, c)

where

π̃i,∗(t, x, y) = 1
R(σi.(σi)⊤)−1.

(

ηi +Bi
π

1
1−R(e(−1)1−i(1−R)y − 1)

)

,

c̃0,∗(t, x, y) =

{

(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x
(

1 −B0
c

1
1−R(e−(1−R)y − 1)

)− 1
R if y < hcrit,

∞ if y ≥ hcrit,

c̃1,∗(t, x, y) =
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x
(

1 −B1
c

1
1−R(e(1−R)y − 1)

)− 1
R ,

π̃i,crit(t, x) = 1
R(σi.(σi)⊤)−1.

(

ηi + λ̃i,crit(t, x)Bi
π

)

,

c̃i,crit(t, x) =
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x
(

1 − λ̃i,crit(t, x)Bi
c

)− 1
R

for (t, x, y) ∈ [0, T ] ×R×R
+
0 , i = 0, 1, with

hcrit ,

{

∞ if B0
c > 0,

− 1
1−R ln

(

(1 −R) 1
B0

c
+ 1
)

if B0
c < 0

and λ̃i,crit(t, x) implicitly given via

Λπ,c,i(t, x, λ̃i,crit(t, x)) = −(Ai + (πi,M )⊤.Bi
π +Bi

cc
M (t, x) − Ci).

If ε = 0 then Hπ,c,i
l (t, x, y, ·, ·) and Hπ,c,i

a (t, x, y, ·, ·) are concave in π and linear in c for every (t, x, y) ∈
[0, T ] ×R×R

+
0 implying

π̃i,∗(y) = 1
R(σi.(σi)⊤)−1.

(

ηi +Bi
π

1
1−R(e(−1)1−i(1−R)y − 1)

)

,

c̃0,∗(y) =

{

0 if y < hcrit,

∞ if y ≥ hcrit,

c̃1,∗(y) = 0,

π̃i,crit = 1
R(σi.(σi)⊤)−1.

(

ηi +Bi
π

1
Bi

c

(

1 −
(

Ai+(πi,M )⊤.Bi
π−Ci

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)+))

,

c̃i,crit =
1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

Ai+(πi,M )⊤.Bi
π−Ci

1
R

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

Bi
c + 1

)−

for (t, x, y) ∈ [0, T ] × R × R
+
0 , i = 0, 1. Further Hπ,c,i

l (t, x, y, ·, ·) is even decreasing in c yielding
cM (t, x) = 0.
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Remark 4.127. We use the following shorthand notations

Hπ,c,i
l,M (t, x, y) , Hπ,c,i

l (t, x, y, πi,M , cM (t, x)),

Hπ,c,i
a,∼ (t, x, y) , Hπ,c,i

a (t, x, y, π̃i,∗(t, x, y), c̃i,∗(t, x, y))

for (t, x, y) ∈ [0, T ] ×R×R
+
0 and i = 0, 1.

Before we present the maximizer of Hπ,c,i(t, x, y, ·, ·) we first need to provide the following helpful
results on the relation between (πi,M , cM ) and (π̃i,∗, c̃i,∗) and the related function values Hπ,c,i

l,M and

Hπ,c,i
a,∼ .

Lemma 4.128. For every (t, x, y) ∈ [0, T ] × R × R
+
0 the Merton strategy (πi,M , cM ), the candidate

solution (π̃i,∗, c̃i,∗) and their function values Hπ,c,i
l,M and Hπ,c,i

a,∼ are related as follows.

i) (π0,M , cM (t, x)) /∈ Iπ,c,0 ⇒ Hπ,c,0
l,M (t, x, y) ≤ Hπ,c,0

a,∼ (t, x, y) ⇒ (π̃0,∗(t, x, y), c̃0,∗(t, x, y)) /∈ Iπ,c,0.

ii) (π1,M , cM (t, x)) ∈ Iπ,c,1 ⇒ Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y) ⇒ (π̃1,∗(t, x, y), c̃1,∗(t, x, y)) ∈ Iπ,c,1.

Proof. ad i) If hcrit < ∞ and y ≥ hcrit then c̃0,∗(t, x, y) = ∞ whereas every component of π̃0,∗(t, x, y)
is finite and therefore Hπ,c,0

a,∼ (t, x, y) = ∞, too. Further hcrit < ∞ implies B0
c < 0. Hence obviously

(π̃0,∗(t, x, y), c̃0,∗(t, x, y)) /∈ Iπ,c,0 and there is nothing to prove.

If otherwise y < hcrit then the following three equivalences hold true. Firstly, (π0,M , cM (t, x)) /∈ Iπ,c,0

is by definition equivalent to
dπ,c,0(π0,M , cM (t, x)) ≤ 0. (∗)

Secondly, some transformations yield that Hπ,c,0
l,M (t, x, y) ≤ Hπ,c,0

a,∼ (t, x, y) is equivalent to

dπ,c,0(π0,M , cM (t, x)) ≤− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
1−R(e−(1−R)y − 1)

+
(

− R
1−R

(

(1−B0
c

1
1−R

(e−(1−R)y−1))−
1−R

R −1
)

1
1−R

(e−(1−R)y−1)
+B0

c

)

cM (t, x).
(∗∗)

And thirdly, (π̃0,∗(t, x, y), c̃0,∗(t, x, y)) /∈ Iπ,c,0 is equivalent to

dπ,c,0(π0,M , cM (t, x)) ≤− 1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
1−R(e−(1−R)y − 1)

−B0
c

(

(1 −B0
c

1
1−R(e−(1−R)y − 1))−

1
R − 1

)

cM (t, x)
(∗ ∗ ∗)

The right-hand side of (∗∗) is non-negative. This follows from the fact that y ≥ 0 and from Lemma
4.48, ii), with z = −B0

c
1

1−R(e−(1−R)y − 1). The lemma is applicable since y < hcrit is equivalent to

−B0
c

1
1−R(e−(1−R)y − 1) > −1. Hence (∗∗) follows directly from (∗) which yields the first implication.

In order to prove the second implication we have to show that the right-hand side of (∗∗) is smaller
than the right-hand side of (∗ ∗ ∗) which is equivalent to

0 ≤− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
1−R(e−(1−R)y − 1)

+

(

− R
1−R

(

(1−B0
c

1
1−R

(e−(1−R)y−1))−
1−R

R −1
)

1
1−R

(e−(1−R)y−1)
+B0

c (1 −B0
c

1
1−R(e−(1−R)y − 1))−

1
R

)

cM (t, x).
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This is trivially satisfied if ε = 0, since then cM (t, x) = 0. If ε > 0 then the latter inequality follows
from Lemma 4.48, i), again substituting z = −B0

c
1

1−R(e−(1−R)y − 1).

ad ii) The proof of assertion ii) works completely analogously since firstly, (π1,M , cM (t, x)) ∈ Iπ,c,1 is
by definition equivalent to

dπ,c,1(π1,M , cM (t, x)) ≥ 0,

secondly, Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y) is equivalent to

dπ,c,1(π1,M , cM (t, x)) ≥− 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
1−R(e(1−R)y − 1)

+
(

− R
1−R

(

(1−B1
c

1
1−R

(e(1−R)y−1))−
1−R

R −1
)

1
1−R

(e(1−R)y−1)
+B1

c

)

cM (t, x)

and thirdly, (π̃1,∗(y), c̃1,∗(y)) ∈ Iπ,c,1 is equivalent to

dπ,c,1(π1,M , cM (t, x)) ≥− 1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
1−R(e(1−R)y − 1)

−B1
c

(

(1 −B1
c

1
1−R(e(1−R)y − 1))−

1
R − 1

)

cM (t, x).

We now present the maximizing strategy.

Lemma 4.129 (Maximizer of Hπ,c,i(t, x, y, ·, ·)). For every (t, x, y) ∈ [0, T ] ×R×R
+
0 let

(πi,∗(t, x, y), ci,∗(t, x, y)) , arg max
(π,c)∈Rn̄×R

+
0

Hπ,c,i(t, x, y, π, c), i = 0, 1.

If ε > 0 then the maximizer (πi,∗, ci,∗) is given by

π0,∗(t, x, y) = 1
R(σ0.(σ0)⊤)−1.

(

η0 +B0
π

1
1−R(e−(1−R)(y∧h0,crit(t,x)) − 1)

)

,

c0,∗(t, x, y) =
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x
(

1 −B0
c

1
1−R(e−(1−R)(y∧h0,crit(t,x)) − 1)

)− 1
R ,

(π1,∗(t, x, y), c1,∗(t, x, y)) =

{

(π1,M , cM (t, x)) if Hπ,c,1
l,M (t, x, y) > Hπ,c,1

a,∼ (t, x, y),

(π̃1,∗(t, x, y), c̃1,∗(t, x, y)) if Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y),

with

h0,crit(t, x) , − 1
1−R ln((1 −R)λ0,crit(t, x) + 1),

where λ0,crit(t, x) is implicitly given via

Λπ,c,0(t, x, λ0,crit(t, x)) = −(A0 + (π0,M )⊤.B0
π +B0

c c
M (t, x) − C0)+. (4.58)

Moreover

π0,crit(t, x) , 1
R(σ0.(σ0)⊤)−1.

(

η0 +B0
π

1
1−R(e−(1−R)h0,crit(t,x) − 1)

)

,

c0,crit(t, x) , cM (t, x)
(

1 −B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1)

)− 1
R .
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If ε = 0 then the maximizer (πi,∗, ci,∗) is given by

π0,∗(t, x, y) = 1
R(σ0.(σ0)⊤)−1.

(

η0 +B0
π

1
1−R(e−(1−R)(y∧h0,crit) − 1)

)

,

c0,∗(t, x, y) =

{

0 if y < h0,crit,

c0,crit if y ≥ h0,crit,

(π1,∗(t, x, y), c1,∗(t, x, y)) =

{

(π1,M , 0) if y < h1,crit,

(π̃1,∗(t, x, y), 0) if y ≥ h1,crit,

where

h0,crit , − 1
1−R ln

(

(1 −R) 1
B0

c

(

1 −
(

(A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)

+ 1
)

,

h1,crit , 1
1−R ln

(

(1 −R)2 (A1+(π1,M )⊤.B1
π−C1)−

1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

+ 1
)

and

π0,crit = 1
R(σ0.(σ0)⊤)−1.

(

η0 +B0
π

1
B0

c

(

1 −
(

(A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+))

,

c0,crit =
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

(

(A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)−
.

Remark 4.130. In case of ε = 0 the maximizing strategy (πi,∗, ci,∗) is just a function of y, i.e. the
dependency on t and x vanishes.

Proof of Lemma 4.129. We first verify the maximizing strategies in case of ε > 0 and then continue
with the case ε = 0. Let (t, x, y) ∈ [0, T ] × R × R

+
0 . For notational convenience we identify the tuple

(π, c) with ς and use the following shorthand notations throughout this proof.

ς i,M (t, x) , (πi,M , cM (t, x)), ς i,crit(t, x) , (πi,crit(t, x), ci,crit(t, x)),

ς̃ i,∗(t, x, y) , (π̃i,∗(t, x, y), c̃i,∗(t, x, y)), ς i,∗(t, x, y) , (πi,∗(t, x, y), ci,∗(t, x, y))

for (t, x, y) ∈ [0, T ] ×R×R
+
0 , i = 0, 1.

• Maximizing strategy in state 0 (ε > 0). Let ε > 0. We distinguish the cases ς0,M (t, x) /∈ Iπ,c,0 and
ς0,M (t, x) ∈ Iπ,c,0.

• ς0,M (t, x) /∈ Iπ,c,0. If the Merton strategy ς0,M (t, x) does not lie in the influencing half space
Iπ,c,0 then Lemma 4.128, i), implies that ς̃0,∗(t, x, y) is not lying in Iπ,c,0 either. Consequently,
Hπ,c,0(t, x, y, ·, ·) exhibits only one maximum which is attained at the Merton strategy, i.e.

ς0,M (t, x) /∈ I
π,c,0 ⇒ ς0,∗(t, x, y) = ς0,M (t, x).

• ς0,M (t, x) ∈ Iπ,c,0. If the Merton strategy is part of Iπ,c,0 then Hπ,c,0(t, x, y, ·, ·) has again just one
maximum that is either the maximum of Hπ,c,0

a (t, x, y, ·, ·) or it is attained at the critical strategy
ς0,crit(t, x). The maximum of Hπ,c,0

a (t, x, y, ·, ·) is given by ς̃0,∗(t, x, y). As long as ς̃0,∗(t, x, y) is in
the influencing half space it is even the maximizer of Hπ,c,0(t, x, y, ·, ·). But as soon as ς̃0,∗(t, x, y)
quits Iπ,c,0 then the critical strategy is given by the maximizer of Hπ,c,0(t, x, y, ·, ·), i.e.

ς0,M (t, x) ∈ I
π,c,0 ⇒ ς0,∗(t, x, y) =

{

ς̃0,∗(t, x, y) if ς̃0,∗(t, x, y) ∈ Iπ,c,0,

ς0,crit(t, x) if ς̃0,∗(t, x, y) /∈ Iπ,c,0.



124 4 Solution for crra Investors with Power Utility

Combining the two cases we get

ς0,∗(t, x, y) =











ς0,M (t, x) if ς0,M (t, x) /∈ Iπ,c,0,

ς̃0,∗(t, x, y) if ς0,M (t, x) ∈ Iπ,c,0 and ς̃0,∗(t, x, y) ∈ Iπ,c,0,

ς0,crit(t, x) if ς0,M (t, x) ∈ Iπ,c,0 and ς̃0,∗(t, x, y) /∈ Iπ,c,0.

We now have to analyze the condition ς̃0,∗(t, x, y) ∈ Iπ,c,0 in more detail.

ς̃0,∗(t, x, y) ∈ I
π,c,0 ⇔ dπ,c,0(ς0,M (t, x))

> − 1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
1−R(e−(1−R)y − 1)

−B0
c c

M (t, x)
(

(1 −B0
c

1
1−R(e−(1−R)y − 1))−

1
R − 1

)

and y < hcrit

(∗)
⇔ (dπ,c,0(ς0,M (t, x)))+

> − 1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
1−R(e−(1−R)y − 1)

−B0
c c

0,M (t)
(

(1 −B0
c

1
1−R(e−(1−R)y − 1))−

1
R − 1

)

and y < hcrit

⇔ −(dπ,c,0(ς0,M (t, x)))+ < Λπ,c,0
(

t, x, 1
1−R(e−(1−R)y − 1)

)

and y < hcrit

⇔ 1
1−R(e−(1−R)y − 1) > λ0,crit(t, x) and y < hcrit

⇔ y < h0,crit(t, x) and y < hcrit

⇔ y < h0,crit(t, x) ∧ hcrit

⇔ y < h0,crit(t, x)

where equivalence (∗) holds true since the right-hand side of the left inequality is positive. This is

true since 0 < (1 −B0
c

1
1−R(e−(1−R)y − 1))−

1
R ≤ 1 (B0

c > 0), resp. (1 −B0
c

1
1−R(e−(1−R)y − 1))−

1
R ≥ 1

(B0
c < 0), as y ≥ 0. The last equivalence follows from the fact that in case of B0

c < 0 we have that
h0,crit(t, x) < hcrit since λ0,crit(t, x) > 1

B0
c
. Notice that

ς0,M (t, x) /∈ I
π,c,0 ⇔ h0,crit(t, x) = 0.

Hence

ς0,∗(t, x, y) =











ς0,M (t, x) if ς0,M (t, x) /∈ Iπ,c,0,

ς̃0,∗(t, x, y) if ς0,M (t, x) ∈ Iπ,c,0 and y < h0,crit(t, x),

ς0,crit(t, x) if ς0,M (t, x) ∈ Iπ,c,0 and y ≥ h0,crit(t, x),

or equivalently

π0,∗(t, x, y) = 1
R(σ0.(σ0)⊤)−1.

(

η0 +B0
π

1
1−R(e−(1−R)(y∧h0,crit(t,x)) − 1)

)

,

c0,∗(t, x, y) =
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

x
(

1 −B0
c

1
1−R(e−(1−R)(y∧h0,crit(t,x)) − 1)

)− 1
R .

We now go on with the determination of the maximizing strategy in state 1.
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• Maximizing strategy in state 1 (ε > 0). Here we first consider ς1,M (t, x) ∈ Iπ,c,1 and then ς1,M (t, x) /∈
Iπ,c,1.

• ς1,M (t, x) ∈ Iπ,c,1. If the Merton strategy ς1,M (t, x) lies within Iπ,c,1 then Lemma 4.128, ii), im-
plies that ς̃1,∗(t, x, y) lies in Iπ,c,1, too. Hence Hπ,c,1(t, x, y, ·, ·) exhibits its unique maximum at
ς1,∗(t, x, y) = ς̃1,∗(t, x, y), i.e.

ς1,M (t, x) ∈ I
π,c,1 ⇒ ς1,∗(t, x, y) = ς̃1,∗(t, x, y).

• ς1,M (t, x) /∈ Iπ,c,1. If ς1,M (t, x) is not in Iπ,c,1 then Hπ,c,1(t, x, y, ·, ·) may possess two local maxima;
the maximum of Hπ,c,1

l (t, x, y, ·, ·) and the maximum of Hπ,c,1
a (t, x, y, ·, ·), given by ς1,M (t, x), resp.

ς̃1,∗(t, x, y). As long as ς̃1,∗(t, x, y) does not lie in the influencing half space then Hπ,c,1(t, x, y, ·, ·)
has only one maximum, namely at ς1,∗(t, x, y) = ς1,M (t, x). But as soon as ς̃1,∗(t, x, y) enters the
influencing half space then Hπ,c,1(t, x, y, ·, ·) exhibits the two local maxima mentioned above which
have to be compared in order to find the global one, i.e.

ς1,M (t, x) /∈ I
π,c,1 ⇒ ς1,∗(t, x, y) =























ς1,M (t, x)
if ς̃1,∗(t, x, y) /∈ I

π,c,1 or [ς̃1,∗(t, x, y) ∈ I
π,c,1

and Hπ,c,1
l,M (t, x, y) > Hπ,c,1

a,∼ (t, x, y)],

ς̃1,∗(t, x, y)
if ς̃1,∗(t, x, y) ∈ I

π,c,1

and Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y).

Combining the two cases we get

ς1,∗(t, x, y) =























ς1,M (t, x)
if ς1,M (t, x) /∈ I

π,c,1 and
[

ς̃1,∗(t, x, y) /∈ I
π,c,1

or [ς̃1,∗(t, x, y) ∈ I
π,c,1 and Hπ,c,1

l,M (t, x, y) > Hπ,c,1
a,∼ (t, x, y)]

]

,

ς̃1,∗(t, x, y)
if ς1,M (t, x) ∈ I

π,c,1 or
[

ς1,M (t, x) /∈ I
π,c,1

and [ς̃1,∗(t, x, y) ∈ I
π,c,1 and Hπ,c,1

l,M (t, x, y) ≤ Hπ,c,1
a,∼ (t, x, y)]

]

.

We have a look at the two conditions. Firstly

ς1,M (t, x) /∈ I
π,c,1

and
[

ς̃1,∗(t, x, y) /∈ I
π,c,1 or [ς̃1,∗(t, x, y) ∈ I

π,c,1 and Hπ,c,1
l,M (t, x, y) > Hπ,c,1

a,∼ (t, x, y)]
]

⇔ ς1,M (t, x) /∈ I
π,c,1 and [ς̃1,∗(t, x, y) /∈ I

π,c,1 or Hπ,c,1
l,M (t, x, y) > Hπ,c,1

a,∼ (t, x, y)]

L. 4.128, ii)
⇔ ς1,M (t, x) /∈ I

π,c,1 and Hπ,c,1
l,M (t, x, y) > Hπ,c,1

a,∼ (t, x, y)

L. 4.128, ii)
⇔ Hπ,c,1

l,M (t, x, y) > Hπ,c,1
a,∼ (t, x, y)

Secondly

ς1,M (t, x) ∈ I
π,c,1

or
[

ς1,M (t, x) /∈ I
π,c,1 and [ς̃1,∗(t, x, y) ∈ I

π,c,1 and Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y)]
]

⇔ ς1,M (t, x) ∈ I
π,c,1 or [ς̃1,∗(t, x, y) ∈ I

π,c,1 and Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y)]

L. 4.128, ii)
⇔ ς1,M (t, x) ∈ I

π,c,1 or Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y)

L. 4.128, ii)
⇔ Hπ,c,1

l,M (t, x, y) ≤ Hπ,c,1
a,∼ (t, x, y)
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Hence we get

ς1,∗(t, x, y) =

{

ς1,M (t, x) if Hπ,c,1
l,M (t, x, y) > Hπ,c,1

a,∼ (t, x, y),

ς̃1,∗(t, x, y) if Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y).

Some simple transformations show

Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y)

⇔
(

− R
1−R

(

(

1 −B1
c

1
1−R(e(1−R)y − 1)

)− 1−R
R − 1

)

+B1
c

1
1−R(e(1−R)y − 1)

)

cM (t, x)

− 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)y − 1)2

≤ dπ,c,1(ς1,M (t, x)) 1
1−R(e(1−R)y − 1)

(∗)
⇔

(

− R
1−R

(

(

1 −B1
c

1
1−R(e(1−R)y − 1)

)− 1−R
R − 1

)

+B1
c

1
1−R(e(1−R)y − 1)

)

cM (t, x)

− 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)y − 1)2

≤ −(dπ,c,1(ς1,M (t, x)))− 1
1−R(e(1−R)y − 1)

where equivalence (∗) is satisfied because the left-hand side of the inequality is non-positive. Unfortu-
nately, we cannot derive an explicit condition on y; not even in the logarithmic case R = 1. Therefore,
we stick to the condition Hπ,c,1

l,M (t, x, y) ≤ Hπ,c,1
a,∼ (t, x, y) which is trivially satisfied if ς1,M (t, x) ∈ Iπ,c,1,

i.e.
ς1,M (t, x) ∈ I

π,c,1 ⇒ Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y).

We now proceed with the case of ε = 0 which works quite analogously to the one of ε > 0. As a special
feature the Merton consumption rate vanishes, i.e. cM (t, x) = 0 for all (t, x) ∈ [0, T ] ×R.

• Maximizing strategy in state 0 (ε = 0). The arguments are the same as in the case of ε > 0. But now

ς̃0,∗(t, x, y) ∈ I
π,c,0 ⇔ dπ,c,0(ς0,M (t, x)) > − 1

R(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
1

1−R(e−(1−R)y − 1) and y < hcrit

⇔ dπ,c,0(ς0,M (t,x))
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

> − 1
1−R(e−(1−R)y − 1) and y < hcrit

⇔ (dπ,c,0(ς0,M (t,x)))+
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

> − 1
1−R(e−(1−R)y − 1) and y < hcrit

⇔ y < − 1
1−R ln

(

−(1 −R) (dπ,c,0(ς0,M (t,x)))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

+ 1
)

and y < hcrit

⇔ y <
(

− 1
1−R ln

(

−(1 −R) (dπ,c,0(ς0,M (t,x)))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

+ 1
))

∧ hcrit

⇔ y < − 1
1−R ln

(

(1 −R) 1
B0

c

(

1 −
(

(dπ,c,0(ς0,M (t,x)))+
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)

+ 1
)

⇔ y < h0,crit

Finally, the maximizing strategy in state 0 is given by

π0,∗(t, x, y) = 1
R(σ0.(σ0)⊤)−1.

(

η0 +B0
π

1
1−R(e−(1−R)(y∧h0,crit) − 1)

)

,

c0,∗(t, x, y) =

{

0 if y < h0,crit,

c0,crit if y ≥ h0,crit.
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• Maximizing strategy in state 1 (ε = 0). The analysis of state 1 is again similar to the one in case
of ε > 0. But here we have the advantage that the condition Hπ,c,1

l,M (t, x, y) ≤ Hπ,c,1
a,∼ (t, x, y) can be

transformed into an explicit condition on y, i.e.

Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y) ⇔ dπ,c,1(ς1,M (t, x)) ≥ −1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
1−R(e(1−R)y − 1)

⇔ −2 dπ,c,1(ς1,M (t,x))
1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

≤ 1
1−R(e(1−R)y − 1)

⇔ 2 (dπ,c,1(ς1,M (t,x)))−

1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

≤ 1
1−R(e(1−R)y − 1)

⇔ y ≥ 1
1−R ln

(

(1 −R)2 (dπ,c,1(ς1,M (t,x)))−

1
R

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

+ 1
)

⇔ y ≥ h1,crit

After all, the maximizing strategy in state 1 is given by

(π1,∗(t, x, y), c1,∗(t, x, y)) =

{

(π1,M , 0) if y < h1,crit,

(π̃1,∗(t, x, y), 0) if y ≥ h1,crit.

Thus the lemma is proven.

Remark 4.131 (Interpretation). Whenever the Merton strategy in state 0 is not part of the influencing
half space then the maximizing strategy coincides with the Merton strategy. However, if the Merton
strategy lies within the influencing half space then the maximizing strategy deviates from the Merton
strategy.

In state 1 things are different. Here the maximizing strategy coincides with the Merton strategy if
the Merton strategy is not lying within the influencing half space and either (π̃1,∗, c̃1,∗) /∈ Iπ,c,1 or
(π̃1,∗, c̃1,∗) ∈ Iπ,c,1 but Hπ,c,1

l,M (t, x, y) > Hπ,c,1
a,∼ (t, x, y). Otherwise the maximizing strategy deviates from

the Merton strategy.

Remark 4.132 (Continuity of (π0,∗, c0,∗) vs. discontinuity of (π1,∗, c1,∗) (ε > 0)). The special form of
the maximizing strategy together with the continuity of λ0,crit (Lemma 4.72) imply that (π0,∗, c0,∗) is
continuous in t, x and y.

But in state 1 the maximizing strategy exhibits a discontinuity at all (t̂, x̂, ŷ) satisfying Hπ,c,1
l,M (t̂, x̂, ŷ) =

Hπ,c,1
a,∼ (t̂, x̂, ŷ) and (π1,M , cM (t̂, x̂)) 6= (π̃1,∗(t̂, x̂, ŷ), c̃1,∗(t̂, x̂, ŷ)) where c1,∗ jumps from (π1,M , cM (t̂, x̂))

to (π̃1,∗(t̂, x̂, ŷ), c̃1,∗(t̂, x̂, ŷ)).

Remark 4.133 (Continuity of π0,∗ vs. discontinuity of c0,∗ (ε = 0)). If ε = 0 then π0,∗ is obviously
continuous in y whereas c0,∗ may jump from 0 to c0,crit at y = h0,crit.

Remark 4.134 (Discontinuity of π1,∗ vs. continuity of c1,∗ (ε = 0)). If ε = 0 then π1,∗ may jump at
y = h1,crit from π1,M to π̃1,∗(h1,crit) whereas c1,∗ is trivially continuous in y.

Remark 4.135 (Negativity of B1
c ). As in the consumption-dependent case we do not allow B1

c to
take on positive values. The reason for this is the same as in the consumption-dependent setting. Once
y ≥ 1

1−R ln((1−R) 1
B1

c
+ 1) the maximizing consumption rate would be ∞. Hence whenever the market

was in state 1 and y was large enough then it would be optimal for the investor to consume at an
infinitely large rate for an infinitesimal short time thus guaranteeing the jump back to state 0. But this
strategy would not be admissible. Therefore, B1

c > 0 has to be prohibited.
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Remark 4.136 (Interpretation in case of ε = 0). Even in the portfolio- and consumption dependent
setting the large investor may consume although ε = 0. In case of B0

c < 0 and y ≥ h0,crit the optimal

consumption may be strictly positive, namely if (A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1 < 0 which implies that

c0,crit > 0.

So far the above explanations are relevant for the general maximizing strategy (π0,∗(t, x, y), c0,∗(t, x, y))
and not necessarily for the optimal strategy. This is because it is not clear whether the situation h(t) ≥
h0,crit – remember that the maximizing strategy of the HJB-system (4.57) is obtained by choosing
y = h(t) – could really occur. But later on we will provide an example showing that the aforementioned
situation is really possible.

The following lemma provides a link between the maximizing consumption rate in case of ε > 0 and
ε = 0.

Lemma 4.137 (Limiting behavior of (πi,crit, ci,crit), hi,crit and (πi,∗, ci,∗) as ε tends to 0). Denote by
(πi,crit

ε>0 , c
i,crit
ε>0 ), hi,crit

ε>0 and (πi,∗
ε>0, c

i,∗
ε>0), resp. (πi,crit

ε=0 , c
i,crit
ε=0 ), hi,crit

ε=0 and (πi,∗
ε=0, c

i,∗
ε=0), the critical strategy,

the critical barrier and the maximizing strategy in case of ε > 0, resp. ε = 0. Then the following holds
true for every (t, x, y) ∈ [0, T ] ×R×R

+
0 .

i) lim
ε→0

(π0,crit
ε>0 (t, x), c0,crit

ε>0 (t, x)) = (π0,crit
ε=0 , c0,crit

ε=0 ).

ii) lim
ε→0

h0,crit
ε>0 (t, x) = h0,crit

ε=0 and lim
ε→0

Hπ,c,1
l,M,ε>0(t, x, y) = Hπ,c,1

l,M,ε=0(y), resp. lim
ε→0

Hπ,c,1
a,∼,ε>0(t, x, y) =

Hπ,c,1
a,∼,ε=0(y).

iii) lim
ε→0

(πi,∗
ε>0(t, x, y), c

i,∗
ε>0(t, x, y)) = (πi,∗

ε=0(t, x, y), c
i,∗
ε=0(t, x, y)).

Proof. Let (t, x, y) ∈ [0, T ]×R×R
+
0 be given and notice that for every (t, x, λ) ∈ [0, T ]×R×(−∞, 1

B0
c
)

(B0
c > 0), resp. (t, x, λ) ∈ [0, T ] ×R× ( 1

B0
c
,∞) (B0

c < 0)

lim
ε→0

Λπ,c,0
ε>0 (t, x, λ) = lim

ε→0

(

1
R(B0

π)⊤(σ0.(σ0)⊤)−1.B0
πλ+B0

c

(

(

1 −B0
cλ
)− 1

R − 1
)

cM (t, x)
)

= 1
R(B0

π)⊤(σ0.(σ0)⊤)−1.B0
πλ

, Λπ,c,0
ε=0 (λ)

since limε→0 c
M (t, x) = 0. This convergence together with the results from Lemma 4.65 yield that

lim
ε→0

λ0,crit
ε>0 (t, x) =







− (dπ,c,0(π0,M ,0))+
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

if (dπ,c,0(π0,M ,0))+
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1 > 0,

1
B0

c
if (dπ,c,0(π0,M ,0))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1 ≤ 0,

= 1
B0

c

(

1 −
(

(dπ,c,0(π0,M ,0))+
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)

.

Now we can prove the assertions of the lemma.
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ad i) Concerning the critical portfolio strategy we get

lim
ε→0

π0,crit
ε>0 (t, x) = lim

ε→0

1
R(σ0.(σ0)⊤)−1.

(

η0 + λ0,crit
ε>0 (t, x)B0

π

)

= 1
R(σ0.(σ0)⊤)−1.

(

η0 +B0
π

1
B0

c

(

1 −
(

(dπ,c,0(π0,M ,0))+
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+))

= π0,crit
ε=0 .

To prove the limiting behavior of the critical consumption rate note that

cM (t, x)
(

1 − λ0,crit
ε>0 (t, x)B0

c

)− 1
R =

−(dπ,c,0(π0,M ,cM (t,x)))+− 1
R

(B0
π)⊤(σ0.(σ0)⊤)−1.B0

πλ0,crit
ε>0 (t,x)

B0
c

+ cM (t, x)

by definition as long as ε > 0. Hence

lim
ε→0

c0,crit
ε>0 (t, x) = lim

ε→0
cM (t, x)

(

1 − λ0,crit
ε>0 (t, x)B0

c

)− 1
R

= lim
ε→0

(

−(dπ,c,0(π0,M ,cM (t,x)))+− 1
R

(B0
π)⊤(σ0.(σ0)⊤)−1.B0

πλ0,crit
ε>0 (t,x)

B0
c

+ cM (t, x)
)

= − (dπ,c,0(π0,M ,0))+

B0
c

−
1
R

(B0
π)⊤(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

(

1 −
(

(dπ,c,0(π0,M ,0))+
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)

=
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

((

(dπ,c,0(π0,M ,0))+
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+
−
(

(dπ,c,0(π0,M ,0))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

))

=
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

(

(dπ,c,0(π0,M ,0))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)−

= c0,crit
ε=0

ad ii) The limiting behavior of h0,crit
ε>0 is obvious since

lim
ε→0

h0,crit
ε>0 (t, x) = lim

ε→0
− 1

1−R ln((1 −R)λ0,crit
ε>0 (t, x) + 1)

= − 1
1−R ln

(

(1 −R) 1
B0

c

(

1 −
(

(dπ,c,0(π0,M ,0))+
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)

+ 1
)

= − 1
1−R ln

(

−(1 −R) (dπ,c,0(π0,M ,0))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

+ 1
)

∧ hcrit

= h0,crit
ε=0 .

Further

lim
ε→0

Hπ,c,1
l,M,ε>0(t, x, y) = lim

ε→0

(

− R
1−Rc

M (t, x) − 1
1−R

εδ
ε−(ε−δ)e−δ(T−t) + Ψ1 + C1 1

1−R(e(1−R)y − 1)
)

= Ψ1 + C1 1
1−R(e(1−R)y − 1)

= Hπ,c,1
l,M,ε=0(y)
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and

lim
ε→0

Hπ,c,1
a,∼,ε>0(t, x, y) = lim

ε→0

(

− R
1−Rc

M (t, x)
(

1 −B1
c

1
1−R(e(1−R)y − 1)

)

− 1
1−R

εδ
ε−(ε−δ)e−δ(T−t) + Ψ1

− 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)y − 1)2

+ (A1 + (π1,M )⊤.B1
π) 1

1−R(e(1−R)y − 1)
)

= Ψ1 − 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)y − 1)2

+ (A1 + (π1,M )⊤.B1
π) 1

1−R(e(1−R)y − 1)

= Hπ,c,1
a,∼,ε=0(y).

ad iii) The limiting behavior of the maximizing strategy is a consequence of i) and ii). In state 0 this
is obvious. For state 1 notice further that Hπ,c,1

l,M,ε=0(y) > Hπ,c,1
a,∼,ε=0(y) is equivalent to y < h1,crit

ε=0 . This
finishes the proof.

Remark 4.138. So far the strategy (πi,∗, ci,∗) is only a candidate solution for the optimal investment
problem. To verify the optimality we need to show that the related HJB-system has a global solution
that satisfies the required regularity conditions stated in the Verification Theorem 3.3.

Having established the strategy that maximizes the HJB-system in general form inserting (πi,∗(t, g(t)−
1{i=1}h(t), h(t)), c

i,∗(t, g(t)− 1{i=1}h(t), h(t))) the reduced HJB-equation (4.57) now becomes a system
of coupled backward ODEs which for ε > 0 is given by

h′(t) = − (Ψ0 − Ψ1) +
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

g(t) R
1−R

(

e
1−R

R
h(t) − 1

)

− C0 1
1−R(e−(1−R)h(t) − 1) + C1 1

1−R(e(1−R)h(t) − 1)

−
[

(A0 + (π0,M )⊤.B0
π +B0

c c
M (t, g(t)) − C0) 1

1−R(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1)

+ 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1)2

+
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1)

)

cM (t, g(t))
]

+
[

(A1 + (π1,M )⊤.B1
π +B1

c c
M (t, g(t) − h(t)) − C1) 1

1−R(e(1−R)h(t) − 1)

+ 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)h(t) − 1)2

+
(

R
1−R

(

(1 −B1
c

1
1−R(e(1−R)h(t) − 1))−

1−R
R − 1

)

−B1
c

1
1−R(e(1−R)h(t) − 1)

)

cM (t, g(t) − h(t))
]+
,

(4.59)
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g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
g(t) − 1

)

)

− C0 1
1−R(e−(1−R)h(t) − 1)

−
[

(A0 + (π0,M )⊤.B0
π +B0

c c
M (t, g(t)) − C0) 1

1−R(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1)

+ 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1)2

+
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)(h(t)∧h0,crit(t,g(t))) − 1)

)

cM (t, g(t))
]

(4.60)

subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (4.61)

If ε = 0 then the ODE-system reads

h′(t) = − (Ψ0 − Ψ1)

− C0 1
1−R(e−(1−R)h(t) − 1) + C1 1

1−R(e(1−R)h(t) − 1)

− (A0 + (π0,M )⊤.B0
π − C0) 1

1−R(e−(1−R)(h(t)∧h0,crit) − 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)(h(t)∧h0,crit) − 1)2

+ (A1 + (π1,M )⊤.B1
π − C1) 1

1−R(e(1−R)(h(t)∨h1,crit) − 1)

+ 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)(h(t)∨h1,crit) − 1)2,

(4.62)

g′(t) = − Ψ0

− C0 1
1−R(e−(1−R)h(t) − 1)

− (A0 + (π0,M )⊤.B0
π − C0) 1

1−R(e−(1−R)(h(t)∧h0,crit) − 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)(h(t)∧h0,crit) − 1)2

(4.63)

subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (4.64)

Remark 4.139. The aforementioned ODEs include the ODEs of the classical Merton problem (first
rows) and the ODEs of the Bäuerle-Rieder problem with constant regime shift intensities Ci (first two
rows).

Remark 4.140. Notice that the ODEs above resemble the ODEs from the portfolio-dependent model
with ε = 0, namely the ODEs (4.43) and (4.44). The hidden difference lies in h0,crit. Whereas h0,crit is
given by

h0,crit
PCD = − 1

1−R ln
(

(1 −R) 1
B0

c

(

1 −
(

(A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)

+ 1
)

in case of portfolio- and consumption-dependent intensities it is given by

h0,crit
PD = − 1

1−R ln
(

−(1 −R) (A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

+ 1
)
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in case of portfolio-dependent intensities.

Therefore if ε = 0 and (A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1 ≥ 0 then h0,crit

PCD = h0,crit
PD and both models coincide

in that the the optimal strategies and the underlying ODEs for the functions g and h are the same.

Notice that (A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1 ≥ 0 is trivially satisfied if B0

c > 0.

Lemma 4.141. The ODE-system given by equation (4.59) and (4.60) subject to the boundary condi-
tions (4.61) (ε > 0), resp. (4.62) and (4.63) subject to the boundary conditions (4.64) (ε = 0), admits
a unique global solution.

Proof. As in the consumption-dependent case we have to distinguish the cases ε > 0 and ε = 0.

• Definition of the χi’s (ε > 0). Let ε > 0. Then the χi’s are given by χi : [0, T ] ×R×R
+
0 , i = 0, 1,

with

χ0(t, x, y) , − C0 1
1−R(e−(1−R)y − 1) − dπ,c,0(π0,M , cM (t, x)) 1

1−R(e−(1−R)(y∧h0,crit(t,x)) − 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)(y∧h0,crit(t,x)) − 1)2

−
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)(y∧h0,crit(t,x)) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)(y∧h0,crit(t,x)) − 1)

)

cM (t, x),

χ1(t, x, y) , C1 1
1−R(e(1−R)y − 1) +

[

dπ,c,1(π1,M , cM (t, x)) 1
1−R(e(1−R)y − 1)

+ 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)y − 1)2

+
(

R
1−R

(

(1 −B1
c

1
1−R(e(1−R)y − 1))−

1−R
R − 1

)

−B1
c

1
1−R(e(1−R)y − 1)

)

cM (t, x)
]+
.

• Continuity results on the χi’s (ε > 0). The χi’s are continuous in t and further, as compositions of
continuously differentiable and locally Lipschitz continuous functions in x and y, the [ · ]+- and the
min{·, ·}-function locally Lipschitz continuous in x and y.

• Non-negativity of the χi’s (ε > 0). The non-negativity of χ1 is obvious. In order to see that χ0 ≥ 0 we
distinguish the two cases that already appeared in the proof of Lemma 4.129; (π0,M , cM (t, x)) /∈ Iπ,c,0

and (π0,M , cM (t, x)) ∈ Iπ,c,0.

• (π0,M , cM (t, x)) /∈ Iπ,c,0. If (π0,M , cM (t, x)) /∈ Iπ,c,0 then h0,crit(t, x) = 0 implying χ0(t, x, y) =
−C0 1

1−R(e−(1−R)y − 1) which is non-negative as y ≥ 0.

• (π0,M , cM (t, x)) ∈ Iπ,c,0. If otherwise (π0,M , cM (t, x)) ∈ Iπ,c,0 then h0,crit(t, x) is strictly positive
and there are again two cases to be distinguished; y < h0,crit(t, x) and y ≥ h0,crit(t, x).

• y < h0,crit(t, x). We know from the proof of Lemma 4.129 that y < h0,crit(t, x) is equiv-
alent to (π̃0,∗(t, x, y), c̃0,∗(t, x, y)) ∈ Iπ,c,0 which, further, by Lemma 4.128, i), implies that
Hπ,c,0

l (t, x, y) > Hπ,c,0
a (t, x, y). Some simple calculations show thatHπ,c,0

l,M (t, x, y) > Hπ,c,0
a,∼ (t, x, y)
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is equivalent to

0 <− dπ,c,0(π0,M , cM (t, x)) 1
1−R(e−(1−R)y − 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)y − 1)2

−
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)y − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)y − 1)

)

cM (t, x)

which implies χ0(t, x, y) > 0.

• y ≥ h0,crit(t, x). If otherwise y ≥ h0,crit(t, x) then

χ0(t, x, y) = − C0 1
1−R(e−(1−R)y − 1) − dπ,c,0(π0,M , cM (t, x)) 1

1−R(e−(1−R)h0,crit(t,x) − 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)h0,crit(t,x) − 1)2

−
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1)

)

cM (t, x)

= − C0 1
1−R(e−(1−R)y − 1) − (dπ,c,0(π0,M , cM (t, x)))+ 1

1−R(e−(1−R)h0,crit(t,x) − 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)h0,crit(t,x) − 1)2

−
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1)

)

cM (t, x)

= − C0 1
1−R(e−(1−R)y − 1) + 1

2
1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)h0,crit(t,x) − 1)2

−
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1)(1 −B0

c
1

1−R(e−(1−R)h0,crit(t,x) − 1))−
1
R

)

cM (t, x),

since λ0,crit(t, x) = 1
1−R(e−(1−R)h0,crit(t,x) − 1) is the unique solution of equation (4.58). Further,

Lemma 4.48, i), yields with z = −B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1) that

0 ≤−
(

R
1−R

(

(1 −B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1))−

1−R
R − 1

)

−B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1)(1 −B0

c
1

1−R(e−(1−R)h0,crit(t,x) − 1))−
1
R

)

,

where the lemma is applicable since

−B0
c

1
1−R(e−(1−R)h0,crit(t,x) − 1) = −B0

cλ
0,crit(t, x) > −1.

If B0
c > 0 this is trivially true since λ0,crit(t, x) ≤ 0. If otherwise B0

c < 0 then λ0,crit(t, x) > 1
B0

c

implying the desired result.

Thus after all χ0(t, x, y) ≥ 0.

We now come to the case ε = 0.
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• Definition of the χi’s (ε = 0). Let ε = 0. Then the χi’s are given by χi : R+
0 → R, i = 0, 1, with

χ0(y) , − C0 1
1−R(e−(1−R)y − 1) − dπ,c,0(π0,M , 0) 1

1−R(e−(1−R)(y∧h0,crit) − 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)(y∧h0,crit) − 1)2,

χ1(y) , C1 1
1−R(e(1−R)y − 1) + dπ,c,1(π1,M , 0) 1

1−R(e(1−R)(y∨h1,crit) − 1)

+ 1
2

1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)(y∨h1,crit) − 1)2.

• Continuity results on the χi’s (ε = 0). The functions χi’s are as compositions of continuously
differentiable functions, the min{·, ·}- and the max{·, ·}-function locally Lipschitz continuous.

• Non-negativity of χ0 (ε = 0). In order to prove the non-negativity of χ0 ≥ 0 we distinguish the cases
(π0,M , 0) /∈ Iπ,c,0 and (π0,M , 0) ∈ Iπ,c,0.

• (π0,M , 0) /∈ Iπ,c,0. If (π0,M , 0) /∈ Iπ,c,0 then h0,crit = 0 implying χ0(y) = −C0 1
1−R(e−(1−R)y − 1) ≥ 0

as y ≥ 0.

• (π0,M , 0) ∈ Iπ,c,0. If otherwise (π0,M , 0) ∈ Iπ,c,0 then there are again two cases to be distinguished;
y < h0,crit and y ≥ h0,crit.

• y < h0,crit. If y < h0,crit then (π̃0,∗(t, x, y), 0) ∈ Iπ,c,0 which by Lemma 4.128, i), implies that
Hπ,c,0

l,M (t, x, y) > Hπ,c,0
a,∼ (t, x, y). As Hπ,c,0

l,M (t, x, y) > Hπ,c,0
a,∼ (t, x, y) is equivalent to

0 <− dπ,c,0(π0,M , 0) 1
1−R(e−(1−R)y − 1) − 1

2
1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)y − 1)2

it follows that χ0(y) > 0 as y ≥ 0.

• y ≥ h0,crit. If y ≥ h0,crit then

χ0(y) = − C0 1
1−R(e−(1−R)y − 1) − dπ,c,0(π0,M , 0) 1

1−R(e−(1−R)h0,crit
− 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)h0,crit
− 1)2

= − C0 1
1−R(e−(1−R)y − 1) − (dπ,c,0(π0,M , 0))+ 1

1−R(e−(1−R)h0,crit
− 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)h0,crit
− 1)2

where

1
1−R(e−(1−R)h0,crit

− 1) =







(dπ,c,0(π0,M ,0))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

if B0
c > 0,

1
B0

c

(

1 −
(

(dπ,c,0(π0,M ,0))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)

if B0
c < 0.

Thus, if B0
c > 0 then

χ0(y) = −C0 1
1−R(e−(1−R)y − 1) + 1

2
((dπ,c,0(π0,M ,0))+)2

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

≥ 0.
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If otherwise B0
c < 0 then

χ0(y) = − C0 1
1−R(e−(1−R)y − 1) − (dπ,c,0(π0,M , 0))+ 1

B0
c

(

1 −
(

(dπ,c,0(π0,M ,0))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(B0

c )2

(

1 −
(

(dπ,c,0(π0,M ,0))+
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)2

= − C0 1
1−R(e−(1−R)y − 1) −

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

(

1 −
(

(dπ,c,0(π0,M ,0))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)

·

(

(dπ,c,0(π0,M ,0))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

2

(

1 −
(

(dπ,c,0(π0,M ,0))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)
)

= − C0 1
1−R(e−(1−R)y − 1) + 1

2

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

·

(

(

1 −
(

(dπ,c,0(π0,M ,0))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)2
+ 2
(

(dπ,c,0(π0,M ,0))+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)−
)

.

Thus after all χ0(y) ≥ 0 as y ≥ 0.

• Non-negativity of χ1 (ε = 0). Here we have to distinguish the cases (π1,M , 0) ∈ Iπ,c,1 and (π1,M , 0) /∈
Iπ,c,1.

• (π1,M , 0) ∈ Iπ,c,1. If (π1,M , 0) ∈ Iπ,c,1 then h1,crit = 0 and χ1(y) ≥ 0 holds trivially since (π1,M , 0) ∈
Iπ,c,1 is equivalent to dπ,c,1(π1,M , 0) ≥ 0.

• (π1,M , 0) /∈ Iπ,c,1. If (π1,M , 0) /∈ Iπ,c,1 then h1,crit is strictly positive and we need to distinguish the
cases y < h1,crit and y ≥ h1,crit.

• y < h1,crit. If y < h1,crit then χ1(y) = C1 1
1−R(e(1−R)y − 1) ≥ 0 as y ≥ 0 by the definition of

h1,crit.

• y ≥ h1,crit. The proof of Lemma 4.129 showed that y ≥ h1,crit impliesHπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y)
which is equivalent to

0 ≤ dπ,c,1(π1,M , 0) 1
1−R(e(1−R)y − 1) + 1

2
1
R(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π

1
(1−R)2

(e(1−R)y − 1)2

and thus χ1(y) ≥ 0 as y ≥ 0.

Figure 4.19 shows an example for the functions g and h.

Corollary 4.142 (Time-dependent bounds on g and h). Let h and g be given by (4.59), (4.60) subject
to the boundary conditions (4.61) (ε > 0), resp. (4.62), (4.63) subject to the boundary conditions (4.64)
(ε = 0). Then

−(Ψ1 − ξ1(T ))−(T − t) ≤ g(t) ≤ (Ψ0 − ξ0(T ))+(T − t) (ε > 0),

resp. 0 ≤ g(t) ≤ Ψ0(T − t) (ε = 0) and

0 ≤ h(t) ≤ (Ψ0 − Ψ1)(T − t)

for t ∈ [0, T ] where the ξi(T )’s are as defined in the proof of Lemma 4.9.
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Figure 4.19: g (left) and h (right) as functions of t
(r0 = r1 = 0.035, η0 = 0.09, η1 = 0.01, σ0 = 0.2, σ1 = 0.5, δ = 0.04, ε = 1, R = 1.5, T = 0.5,

A0 = 4, B0
π = −1.5, B0

c = 10, C0 = 10, A1 = 13.5, B1
π = 0.75, B1

c = −5, C1 = 8)

Corollary 4.143 (Time-independent bound on h). Let h and g be given by (4.59), (4.60) subject to
the boundary conditions (4.61) (ε > 0), resp. (4.62), (4.63) subject to the boundary conditions (4.64)
(ε = 0). Then

0 ≤ h(t) ≤ h̄

for t ∈ [0, T ] where h̄ is the smallest positive root of

F̄ (y) ,

{

−(Ψ0 − Ψ1) − C0 1
1−R(e−(1−R)y − 1) + C1 1

1−R(e(1−R)y − 1) if ε > 0,

−(Ψ0 − Ψ1) + χ0(y) + χ1(y) if ε = 0

if such a root exists; otherwise h̄ = ∞, i.e.

h̄ = min
{

y ∈ R
+
0 : F̄ (y) = 0

}

,

with the convention min ∅ , ∞, where the χi’s are as defined in the proof of Lemma 4.141.

Proof. The assertion follows from a simple ODE argument since

F (t, x, y) = −(Ψ0 − Ψ1) + ̺(t, x, y) + χ0(t, x, y) + χ1(t, x, y) ≥ F̄ (y)

for all (t, x, y) ∈ [0, T ] × R × R
+
0 where we used the notation from the proof of Lemma 4.9. If ε = 0

then this is obviously true. In case of ε > 0 this is satisfied, too, since the proof of Lemma 4.141 showed
that χ0(t, x, y) ≥ −C0 1

1−R(e−(1−R)y − 1) and χ1(t, x, y) ≥ C1 1
1−R(e(1−R)y − 1).

The boundary function on h as presented in Corollary 4.142 is suitable for large values of t for which
the deviation from h is not too large whereas for small values of t the non-linear behavior of h implies
that the boundary function overshoots h by far. The converse is true for the bound given in Corollary
4.143. Thus combining the two bounds on h yields

0 ≤ h(t) ≤ min{(Ψ0 − Ψ1)(T − t), h̄}

for t ∈ [0, T ].
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Since the above ODE-system is solvable we can now verify that the strategy given above is indeed the
optimal strategy that solves the investment problem.

Theorem 4.144 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and
g be given by (4.59), (4.60) subject to the boundary conditions (4.61) (ε > 0), resp. (4.62), (4.63)
subject to the boundary conditions (4.64) (ε = 0). Then the strategy

(πi,∗(t), ci,∗(t)) , (πi,∗(t, g(t) − 1{i=1}h(t), h(t)), c
i,∗(t, g(t) − 1{i=1}h(t), h(t))), t ∈ [0, T ], i = 0, 1,

as given in Lemma 4.129 is optimal for the investment problem (P) with crra preferences and relative
risk aversion R.

Proof. Since (πi,∗(t), ci,∗(t)) maximizes the reduced HJB-system (4.57) for each t ∈ [0, T ], optimality
of the strategy (πi,∗, ci,∗) follows directly from the Verification Theorem 3.3.

Remark 4.145. If not otherwise stated we use the following shorthand notations

πi,crit(t) , πi,crit(t, g(t) − 1{i=1}h(t)),

ci,crit(t) , ci,crit(t, g(t) − 1{i=1}h(t)),

hi,crit(t) , hi,crit(t, g(t) − 1{i=1}h(t)),

Hπ,c,i
l,M (t) , Hπ,c,i

l (t, g(t) − 1{i=1}h(t), h(t), π
i,M , ci,M (t)),

Hπ,c,i
a,∼ (t) , Hπ,c,i

a (t, g(t) − 1{i=1}h(t), h(t), π̃
i,∗(t), c̃i,∗(t)).

Figure 4.20 shows the optimal strategy and the Merton strategy in a setting where B0
π is negative,

resp. B1
π is positive, and B0

c is positive, resp. B1
c is negative. Hence the large investor is forced to invest

more than the Merton fractions and to consume at a rate that is smaller than or equal the Merton
consumption rate in order to generate advantageous regime shift intensities.

Once again the deviation from the Merton strategy decreases continuously towards 0 as the time to
maturity gets smaller.

A particular example in which the large investor consumes although ε = 0 is given in Figure 4.21. Notice
that the optimal portfolio strategy in state 0 converges continuously towards the Merton strategy as
the time to maturity decreases whereas the optimal consumption rate shows the already discussed
extreme behavior.
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Figure 4.20: Optimal strategy vs. Merton strategy: πi,∗, ci,∗ and πi,M , ci,M as functions of t
(r0 = r1 = 0.035, η0 = 0.09, η1 = 0.01, σ0 = 0.2, σ1 = 0.5, δ = 0.04, ε = 1, R = 1.5, T = 0.5,

A0 = 4, B0
π = −1.5, B0

c = 10, C0 = 10, A1 = 13.5, B1
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Figure 4.21: Optimal strategy vs. Merton strategy: πi,∗, ci,∗ and πi,M , ci,M as functions of t
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The large investor’s optimal portfolio strategy consists of the classical Merton strategy and an addi-
tional hedging component. Further the investor’s optimal consumption rate can be decomposed into
the Merton consumption rate and an adjustment part. The hedging component and the adjustment
part result from the investor’s influence on the market. So we can write

(πi,∗(t), ci,∗(t)) = (πi,M + πi,H(t), ci,M (t) + ci,A(t)) for i = 0, 1

where

π0,H(t) = 1
R(σ0.(σ0)⊤)−1.B0

π
1

1−R(e−(1−R)(h(t)∧h0,crit(t)) − 1),

c0,A(t) =







(

(

1 −B0
c

1
1−R(e−(1−R)(h(t)∧h0,crit(t)) − 1)

)− 1
R − 1

)

c0,M (t) if ε > 0,
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

(

(A0+(π0,M )⊤.B0
π−C0)+

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)−
1{h(t)≥h0,crit} if ε = 0,

π1,H(t) =

{

1
R(σ1.(σ1)⊤)−1.B1

π
1

1−R(e(1−R)h(t) − 1)1
{Hπ,c,1

l,M
(t)≤Hπ,c,1

a,∼ (t)}
if ε > 0,

1
R(σ1.(σ1)⊤)−1.B1

π
1

1−R(e(1−R)h(t) − 1)1{h(t)≥h1,crit} if ε = 0,

c1,A(t) =







(

(

1 −B1
c

1
1−R(e(1−R)h(t) − 1)

)− 1
R − 1

)

c1,M (t)1
{Hπ,c,1

l,M
(t)≤Hπ,c,1

a,∼ (t)}
if ε > 0,

0 if ε = 0.

Note that (π0,H(t))⊤.B0
π ≤ 0, resp. (π1,H(t))⊤.B1

π ≥ 0. Moreover B0
c c

0,A(t) ≤ 0, resp. B1
c c

1,A(t) ≥ 0.

The following lemma shows that (πi,H , ci,A) benefits the regime shift intensities.

Lemma 4.146. The optimal strategy (πi,∗, ci,∗) satisfies

ϑ0,1(π0,∗(t), c0,∗(t)) ≤ ϑ0,1(π0,M , c0,M (t)) and ϑ1,0(π1,∗(t), c1,∗(t)) ≥ ϑ1,0(π1,M , c1,M (t))

for every t ∈ [0, T ].

Proof. The assertion follows since

ϑ0,1(π0,∗(t), c0,∗(t)) = max{A0 + (π0,∗(t))⊤.B0
π +B0

c c
0,∗(t), C0}

= max{A0 + (π0,M (t))⊤.B0
π + (π0,H(t))⊤.B0

π +B0
c c

0,M (t) +B0
c c

0,A(t), C0}

≤ max{A0 + (π0,M (t))⊤.B0
π +B0

c c
0,M (t), C0}

= ϑ0,1(π0,M , c0,M (t))

and

ϑ1,0(π1,∗(t), c1,∗(t)) = max{A1 + (π1,∗(t))⊤.B1
π +B1

c c
1,∗(t), C1}

= max{A1 + (π1,M (t))⊤.B1
π + (π1,H(t))⊤.B1

π +B1
c c

1,M (t) +B1
c c

1,A(t), C1}

≥ max{A1 + (π1,M (t))⊤.B1
π +B1

c c
1,M (t), C1}

= ϑ1,0(π1,M , c1,M (t))

as (π0,H(t))⊤.B0
π ≤ 0, resp. (π1,H(t))⊤.B1

π ≥ 0, and B0
c c

0,A(t) ≤ 0, resp. B1
c c

1,A(t) ≥ 0
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Remark 4.147. As in the last section the optimal strategy that we derived here is a compromise
strategy in that it is in general different from the Merton strategy but generates better regime shift
intensities than those the Merton strategy would yield, i.e. it accommodates the aforementioned trade-
off.

We have seen before that in case of ε = 0 the optimal portfolio strategy in state 0 may be truncated at
π0,crit and that further the optimal consumption rate may jump from 0 to the critical consumption rate
c0,crit. In the following we present a sufficient condition under which this truncation and the jump do not
take place, i.e. (πi,∗(t), ci,∗(t)) = (π̃i,∗(t), 0) for all t ∈ [0, T ] where π̃i,∗(t) , π̃i,∗(t, g(t)−1{i=1}h(t), h(t)).

Proposition 4.148. Let ε = 0 and (πi,M , 0) ∈ Iπ,c,i. Further suppose that A0 + (π0,◦)⊤.B0
π +B0

c c
0,◦ ≥

C0, where

π0,◦ , 1
R(σ0.(σ0)⊤)−1.






η0 + 1

2
1

B0
c






1 + (B0

c )2
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

Ψ0−Ψ1

1−

(

A0+(π0,M )⊤.B0
π−C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
B0

c+1

)+






B0

π






,

c0,◦ , C0

B0
c

+ 1
2

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

(B0
c )2







(B0
c )2

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

Ψ0−Ψ1

1−

(

A0+(π0,M )⊤.B0
π−C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
B0

c +1

)+

−
(

A0+(π0,M )⊤.B0
π−C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+






.

Then (πi,∗(t), ci,∗(t)) = (π̃i,∗(t), 0) for all t ∈ [0, T ].

Proof. Let ε = 0. If (π1,M , 0) ∈ Iπ,c,1 then h1,crit = 0 implying (π1,∗(t), c1,∗(t)) = (π̃1,∗(t), 0) for all
t ∈ [0, T ]. In state 0 the condition (π0,M , 0) ∈ Iπ,c,0 is necessary since otherwise (π0,∗, 0) = (π0,M , 0).
Hence

h0,crit = − 1
1−R ln

(

(1 −R) 1
B0

c

(

1 −
(

A0+(π0,M )⊤.B0
π−C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)

+ 1
)

.

The assertion of the proposition is equivalent to the condition

h(t) ≤ h0,crit for all t ∈ [0, T ].

To prove this, we assume without loss of generality that h0,crit <∞ and use a simple ODE argument.
We let F as given in the proofs of the Lemmas 4.9 and 4.141. As F (T, g(T ), h(T )) = F (T, 0, 0) ≤ 0,
it suffices to show that F (t, x, h0,crit) ≥ 0 for every (t, x) ∈ [0, T ] × R. Indeed, in this case it follows
from the intermediate value theorem that for each t ∈ [0, T ] there exists some h̃(t) ∈ [0, h0,crit] with
F (t, x, h̃(t)) = 0. Thus 0 ≤ h(t) ≤ max

t∈[0,T ]
h̃(t) ≤ h0,crit for every t ∈ [0, T ].

To demonstrate under which conditions F (t, x, h0,crit) ≥ 0 we write F (t, x, h0,crit) = A+B with

A , χ1(h0,crit), B , −(Ψ0 − Ψ1) + χ0(h0,crit)

where we use the notation from the proofs of Lemmas 4.9 and 4.141.
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The non-negativity of χ1 implies that A ≥ 0. On the other hand,

B = −(Ψ0 − Ψ1) − C0 1
1−R(e−(1−R)h0,crit

− 1)

− (A0 + (π0,M )⊤.B0
π − C0) 1

1−R(e−(1−R)h0,crit
− 1)

− 1
2

1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
(1−R)2

(e−(1−R)h0,crit
− 1)2

= −
[

A0 + (π0,M )⊤.B0
π + 1

2
1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
1−R(e−(1−R)h0,crit

− 1)

+ Ψ0−Ψ1

1
1−R

(e−(1−R)h0,crit
−1)

]

1
1−R(e−(1−R)h0,crit

− 1)

= −

[

A0 + (π0,M )⊤.B0
π + 1

2
1
R(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π

1
B0

c

(

1 −
(

A0+(π0,M )⊤.B0
π−C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+)

+ Ψ0−Ψ1

1
1−R

(e−(1−R)h0,crit
−1)

]

1
1−R(e−(1−R)h0,crit

− 1)

= −

[

A0 + 1
R

(

η0 + 1
2

(

1
B0

c
+ 1

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

Ψ0−Ψ1

1
1−R

(e−(1−R)h0,crit
−1)

)

B0
π

)⊤

.(σ0.(σ0)⊤)−1.B0
π

+1
2

(

1
B0

c

Ψ0−Ψ1

1
1−R

(e−(1−R)h0,crit
−1)

−
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

(

A0+(π0,M )⊤.B0
π−C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+
)

B0
c

]

· 1
1−R(e−(1−R)h0,crit

− 1)

= −(A0 + (π̃0,◦)⊤.B0
π +B0

c c̃
0,◦ − C0) 1

1−R(e−(1−R)h0,crit
− 1)

where

π̃0,◦ , 1
R(σ0.(σ0)⊤)−1

(

η0 + 1
2

(

1
B0

c
+ 1

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

Ψ0−Ψ1

1
1−R

(e−(1−R)h0,crit
−1)

)

B0
π

)

= 1
R(σ0.(σ0)⊤)−1






η0 + 1

2







1
B0

c
+ B0

c
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

Ψ0−Ψ1

1−

(

A0+(π0,M )⊤.B0
π−C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
B0

c +1

)+






B0

π







= π0,◦

and

c̃0,◦ , C0

B0
c

+ 1
2

(

1
B0

c

Ψ0−Ψ1

1
1−R

(e−(1−R)h0,crit
−1)

−
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

(

A0+(π0,M )⊤.B0
π−C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+
)

= C0

B0
c

+ 1
2







Ψ0−Ψ1

1−

(

A0+(π0,M )⊤.B0
π−C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
B0

c +1

)+

−
1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

(

A0+(π0,M )⊤.B0
π−C0

1
R

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

B0
c + 1

)+







= c0,◦.

Since A0 + (π0,◦)⊤.B0
π +B0

c c
0,◦ ≥ C0, we have B ≥ 0 and the proof is complete.
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Remark 4.149. Notice that c0,◦ is not necessarily non-negative. Thus c0,◦ cannot be interpreted as a
consumption rate.
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5 Solution for crra Investors with Logarithmic Utility

In this section we present the solution of the investment problem (P) for a large investor with logarith-
mic utility. As in the last section on power utility functions we assume that condition (NJ) is satisfied
and that Π = R

n̄. For logarithmic preferences, the results from the preceding section remain valid
mutatis mutandis. More specifically, the utility functions now have the form

u1(t, x) = εe−δt ln(x), u2(x) = e−δT ln(x)

for ε ∈ [0,∞) and (t, x) ∈ [0, T ] × (0,∞). Further the ansatz comparable to the one from the section
on power utilities is given by

v0(t, x) = f(t)(ln(x) + g(t)), v1(t, x) = f(t)(ln(x) + g(t) − h(t))

for (t, x) ∈ [0, T ] × (0,∞) with f(T ) = e−δT , g(T ) = h(T ) = 0. Using the convention that

1
1−R(x(1−R) − 1) , ln(x), x > 0, 1

1−R ln((1 −R)x+ 1) , x for R = 1

the results from the last section can be transferred. It turns out that the function f is again given
by (4.7) and thus is independent of the investor’s relative risk aversion R. Moreover the reduced

HJB-system is now given by

0 = sup
(π,c)∈Rn̄×R

+
0

{

g′(t) − 1{i=1}h
′(t) + ri + π⊤.ηi − 1

2π
⊤.σi.(σi)⊤.π

+ εδ
ε−(ε−δ)e−δ(T−t)

(

ln(c) − (g(t) − 1{i=1}h(t))
)

− c+ ϑi,1−i(π, c)(−1)1−ih(t)
}

(5.1)

for t ∈ [0, T ) and i = 0, 1, subject to the boundary conditions

g(T ) = 0, h(T ) = 0,

implying that Lemma 4.3 still holds true.

The logarithmic setting with risk aversion R = 1 has two nice features as will be seen in the following.
On the one hand the Merton consumption rate turns out to be independent of the functions g and h
which implies that it is the same in both market states, i.e.

ci,M (t) = εδ
ε−(ε−δ)e−δ(T−t) , i = 0, 1.

On the other hand the ODEs for g and h decouple from each other as the ODEs for h are independent
of the function g.

In the following subsections we give the optimal strategies and the corresponding ODEs for the pre-
viously discussed types of intensity functions without proving optimality, resp. existence of global
solutions. Using the above conventions the corresponding proofs from the previous section on power
utility functions remain valid for the logarithmic utility function, too. Only in case of the Merton
investment problem we derive the solution of the corresponding ODE-system in an explicit way since
the derivation is not comparable to the one in the setting with power utilities.
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5.1 Constant Intensity Functions

5.1.1 Solution of the Investment Problem

The log-utility versions of the functions Hπ,i and Hc,i, i = 0, 1, are given by Hπ,i : R
n̄ → R and

Hc,i : [0, T ] ×R×R
+
0 → R, i = 0, 1, with

Hπ,i(π) , ri + π⊤.ηi − 1
2π

⊤.σi.(σi)⊤.π,

Hc,i(t, x, c) , εδ
ε−(ε−δ)e−δ(T−t) (ln(c) − x) − c.

The special form of Hc,i yields that the maximizing consumption rate is going to be independent of x.

Lemma 5.1 (Maximizers of Hπ,i and Hc,i(t, x, ·)). For every (t, x) ∈ [0, T ] ×R the maximizers

πi,∗ , arg max
π∈Rn̄

Hπ,i(π), ci,∗(t) , arg max
c∈R+

0

Hc,i(t, x, c), i = 0, 1,

are given by the Merton strategy, i.e.

(πi,∗, ci,∗(t)) = (πi,M , cM (t))

where
πi,M , (σi.(σi)⊤)−1.ηi, cM (t) , εδ

ε−(ε−δ)e−δ(T−t) .

The corresponding system of backward ODEs is given by

h′(t) = − (Ψ0 − Ψ1) + εδ
ε−(ε−δ)e−δ(T−t)h(t)

+ (C0 + C1)h(t),
(5.2)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − ln
(

εδ
ε−(ε−δ)e−δ(T−t)

)

+ g(t)
)

+ C0h(t)
(5.3)

subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (5.4)

In the case without consumption, i.e. ε = 0, h and g can even be determined explicitly, i.e.

h(t) =

{

Ψ0−Ψ1

C0+C1 (1 − e−(C0+C1)(T−t)) if C0 + C1 > 0,

(Ψ0 − Ψ1)(T − t) if C0 + C1 = 0,

g(t) =

{

C0Ψ1+C1Ψ0

C0+C1 (T − t) + C0(Ψ0−Ψ1)
(C0+C1)2

(1 − e−(C0+C1)(T−t)) if C0 + C1 > 0,

Ψ0(T − t) if C0 + C1 = 0,

Remark 5.2 (Asymptotic behavior). In case of ε = 0 and C0 + C1 > 0 the functions h and g show

the following asymptotic behavior. For t → −∞ the function h is converging towards hstat , Ψ0−Ψ1

C0+C1

whereas g is tending to −∞ with an asymptotic slope of −C0Ψ1+C1Ψ0

C0+C1 .
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Theorem 5.3 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and g
be given by (5.2), (5.3) subject to the boundary conditions (5.4). Then the strategy

(πi,∗(t), ci,∗(t)) , (πi,∗, ci,∗(t)), t ∈ [0, T ], i = 0, 1,

as given in Lemma 5.1 is optimal for the investment problem (P) with crra preferences and relative
risk aversion R = 1.

5.1.2 Solution of the Merton Investment Problem

In the Merton setting the ODEs (5.2), (5.3) read

h′(t) = − (Ψ0 − Ψ1) + εδ
ε−(ε−δ)e−δ(T−t)h(t), (5.5)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − ln
(

εδ
ε−(ε−δ)e−δ(T−t)

)

+ g(t)
)

(5.6)

subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (5.7)

On the basis of the procedure of solving the Merton problem with the conventional ansatz we use the
following ansatz in order to solve the above ODE-system, i.e.

g(t) − 1{i=1}h(t) = Gi(t)
f(t) (5.8)

where the function Gi with Gi(T ) = 0 is to be determined and f is given by (4.7).

Remark 5.4. Note that the function Gi from ansatz (5.8) is not comparable with the function Gi from
ansatz (4.19) in the power utility case.

Notice that
εδ

ε−(ε−δ)e−δ(T−t) = −f ′(t)
f(t) . (∗)

Utilizing (5.8) and (∗) we can write the functions g, h and the value function vi in terms of the functions
Gi and f , i.e.

g(t) = G0(t)
f(t) ,

h(t) = G0(t)−G1(t)
f(t) ,

vi(t, x) = f(t) ln(x) +Gi(t).

Further inserting the ansatz (5.8) into the system (5.5), (5.6) and taking (∗) into account yields

g′(t) − 1{i=1}h
′(t) = −Ψi + εδ

ε−(ε−δ)e−δ(T−t)

(

1 − ln
(

εδ
ε−(ε−δ)e−δ(T−t)

)

+ g(t) − 1{i=1}h(t)
)

⇔ (Gi)′(t)f(t)−Gi(t)f ′(t)
(f(t))2

= −Ψi − f ′(t)
f(t)

(

1 − ln
(

−f ′(t)
f(t)

)

+ Gi(t)
f(t)

)

⇔ (Gi)′(t)
f(t) − f ′(t)

f(t)
Gi(t)
f(t) = −Ψi − f ′(t)

f(t)

(

1 − ln
(

−f ′(t)
f(t)

)

+ Gi(t)
f(t)

)

⇔ (Gi)′(t) = −Ψif(t) − f ′(t)
(

1 − ln
(

−f ′(t)
f(t)

)

)

.



148 5 Solution for crra Investors with Logarithmic Utility

Integrating the whole equation we get

Gi(t) = ε
δe

−δt(1 − e−δ(T−t))
(

Ψi

δ + ln(ε) − 1
)

− (ε− δ)e−δT
(

Ψi

δ (T − t) − T
)

− εte−δt

− 1
δ e

−δt(ε− (ε− δ)e−δ(T−t)) ln
(

1
δ e

−δt(ε− (ε− δ)e−δ(T−t))
)

.

Inserting this into the above formulas depending on Gi yields explicit formulas for the functions g, h
and the value function vi that are given in the following theorem.

Theorem 5.5 (Solution of the Merton Investment Problem). Let condition (NJ) be satisfied, and let
h and g be given by (5.5), (5.6) subject to the boundary conditions (5.7). Then the optimal strategy for
the investment problem (P) with crra preferences and relative risk aversion R = 1 is given by

(πi,∗, ci,∗(t)) = (πi,M , ci,M (t)), t ∈ [0, T ]

where

πi,M = (σi.(σi)⊤)−1.ηi, ci,M (t) = εδ
ε−(ε−δ)e−δ(T−t)

for i = 0, 1. In particular g and h are given by

g(t) = Ψ0(T − t) +
ε(1−e−δ(T−t))(Ψ0

δ
+ln(ε)−1)+(δ(ε−δ)e−δ(T−t)−εΨ0)(T−t)

ε−(ε−δ)e−δ(T−t) − ln
(

1
δ (ε− (ε− δ)e−δ(T−t))

)

,

h(t) = (Ψ0 − Ψ1)(T − t) + ε
1
δ
(1−e−δ(T−t))−(T−t)

ε−(ε−δ)e−δ(T−t) (Ψ0 − Ψ1)

so that the value functions read

vi(t, x) = 1
δ e

−δt(ε− (ε− δ)e−δ(T−t)) ln(x) + ε
δe

−δt(1 − e−δ(T−t))
(

Ψi

δ + ln(ε) − 1
)

− εte−δt

− (ε− δ)e−δT
(

Ψi

δ (T − t) − T
)

− 1
δ e

−δt(ε− (ε− δ)e−δ(T−t)) ln
(

1
δ e

−δt(ε− (ε− δ)e−δ(T−t))
)

for i = 0, 1.

If the investor was not allowed to consume, i.e. ε = 0, then the latter formulas simplify to

πi,M = (σi.(σi)⊤)−1.ηi, ci,M (t) = 0

for i = 0, 1 and

g(t) = Ψ0(T − t),

h(t) = (Ψ0 − Ψ1)(T − t),

vi(t, x) = e−δT (ln(x) + Ψi(T − t))

for i = 0, 1.

Remark 5.6 (Asymptotic behavior). In case of ε > 0 the functions h and g show the following

asymptotic behavior. For t → −∞ the function h is converging towards hstat , Ψ0−Ψ1

δ whereas g is

tending to gstat , Ψ0

δ + ln(δ) − 1.
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5.2 Step Intensity Functions

5.2.1 Portfolio-dependent Intensities

The log-utility versions of the functions Hπ,i and Hc,i, i = 0, 1, are given by Hπ,i : R+
0 ×R

n̄ → R and
Hc,i : [0, T ] ×R×R

+
0 → R, i = 0, 1, with

Hπ,i(y, π) , ri + π⊤.ηi − 1
2π

⊤.σi.(σi)⊤.π + (−1)1−i
(

Ci
11{π∈Fπ,i} + Ci

21{π/∈Fπ,i}

)

y,

Hc,i(t, x, c) , εδ
ε−(ε−δ)e−δ(T−t) (ln(c) − x) − c.

Lemma 5.7 (Maximizer of Hc,i(t, x, ·)). For every (t, x) ∈ [0, T ] ×R the maximizer

ci,∗(t) , arg max
c∈R+

0

Hc,i(t, x, c), i = 0, 1,

is given by the Merton consumption rate, i.e.

ci,∗(t) = cM (t).

Lemma 5.8 (Maximizer of Hπ,i(y, ·)). For every y ∈ R
+
0 the maximizer

πi,∗(y) , arg max
π∈Rn̄

Hπ,i(y, π), i = 0, 1,

is given by

πi,∗(y) =

{

πi,M if y < hi,crit,

πi,crit if y ≥ hi,crit,

where

hi,crit , (−1)1−i ζi,crit

Ci
2−Ci

1

with

ζi,crit , −1
2

((Ai+(πi,M )⊤.Bi
π−Ci)+)2

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

and

πi,crit , (σi.(σi)⊤)−1.
(

ηi −Bi
π

(Ai+(πi,M )⊤.Bi
π−Ci)+

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

)

.

Inserting the maximizing portfolio proportions and consumption rates into the reduced HJB-equation
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(5.1) the latter now becomes a system of backward ODEs

h′(t) = − (Ψ0 − Ψ1) + εδ
ε−(ε−δ)e−δ(T−t)h(t)

+ (C0
2 + C1

2 )h(t)

−
[

−(C0
1 − C0

2 )h(t) − 1
2

((A0+(π0,M )⊤.B0
π−C0)+)2

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

]+

+
[

(C1
1 − C1

2 )h(t) − 1
2

((A1+(π1,M )⊤.B1
π−C1)+)2

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

]+
,

(5.9)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − ln( εδ
ε−(ε−δ)e−δ(T−t) ) + g(t)

)

+ C0
2h(t)

−
[

−(C0
1 − C0

2 )h(t) − 1
2

((A0+(π0,M )⊤.B0
π−C0)+)2

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

]+

(5.10)

subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (5.11)

Theorem 5.9 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and g
be given by (5.9), (5.10) subject to the boundary conditions (5.11). Then the strategy

(πi,∗(t), ci,∗(t)) , (πi,∗(h(t)), ci,∗(t)), t ∈ [0, T ], i = 0, 1,

as given in Lemmas 5.7 and 5.8 is optimal for the investment problem (P) with crra preferences and
relative risk aversion R = 1.

5.2.2 Consumption-dependent Intensities

The log-utility versions of the functions Hπ,i and Hc,i, i = 0, 1, are given by Hπ,i : R
n̄ → R and

Hc,i : [0, T ] ×R×R
+
0 ×R

+
0 → R, i = 0, 1, with

Hπ,i(π) , ri + π⊤.ηi − 1
2π

⊤.σi.(σi)⊤.π,

Hc,i(t, x, y, c) , εδ
ε−(ε−δ)e−δ(T−t) (ln(c) − x) − c+ (−1)1−i

(

Ci
11{c∈Fc,i} + Ci

21{c/∈Fc,i}

)

y.

In case of ε = 0 the function Hc,i is de facto a function solely of y and c.

Lemma 5.10 (Maximizer of Hπ,i). The maximizer

πi,∗ , arg max
π∈Rn̄

Hπ,i(π), i = 0, 1,

is given by the Merton strategy, i.e.
πi,∗ = πi,M .

Lemma 5.11 (Maximizer of Hc,i(t, x, y, ·)). For every (t, x, y) ∈ [0, T ] ×R×R
+
0 the maximizer

ci,∗(t, y) , arg max
c∈R+

0

Hc,i(t, x, y, c), i = 0, 1,
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is given by

ci,∗(t, y) =

{

cM (t) if y < hi,crit(t),

ci,crit(t) if y ≥ hi,crit(t),

where
hi,crit(t) , (−1)1−i ζi,crit(t)

Ci
2−Ci

1

with

ζi,crit(t) ,



















0 if Bi
c < 0 and Ai < Ci,

[

ln
(

1 − (Ai+Bi
ccM (t)−Ci)+

Bi
ccM (t)

)

+ (Ai+Bi
ccM (t)−Ci)+

Bi
ccM (t)

]

cM (t)
if Bi

c < 0 and Ai ≥ Ci,

or Bi
c > 0 and Ai ≤ Ci,

−∞ if Bi
c > 0 and Ai > Ci,

if ε > 0, resp.

ζi,crit(t) ,



















0 if Bi
c < 0 and Ai < Ci,

(Ai−Ci)+

Bi
c

if Bi
c < 0 and Ai ≥ Ci,

or Bi
c > 0 and Ai ≤ Ci,

−∞ if Bi
c > 0 and Ai > Ci,

if ε = 0, and

ci,crit(t) ,

{

cM (t) if Bi
c > 0 and Ai > Ci, or Bi

c < 0 and Ai < Ci,

cM (t) − (Ai+Bi
ccM (t)−Ci)+

Bi
c

if Bi
c > 0 and Ai ≤ Ci, or Bi

c < 0 and Ai ≥ Ci.

Remark 5.12. Notice that in contrast to the portfolio-dependent setting the critical value hi,crit is no
longer constant. It is now a function of the Merton type consumption rate cM . Only if ε = 0 then ζi,crit

and consequently hi,crit are just constants independent of t. Further ε = 0 implies cM (t) = 0 such that
ci,crit is constant, too. The maximizing consumption rate ci,∗ is therefore just a function of y.

Inserting the maximizing portfolio proportions and consumption rates into the reduced HJB-equation
(5.1) the latter now becomes a system of backward ODEs which for ε > 0 is given by

h′(t) = − (Ψ0 − Ψ1) + εδ
ε−(ε−δ)e−δ(T−t)h(t)

+ (C0
2 + C1

2 )h(t)

−
[

−(C0
1 − C0

2 )h(t)

+
(

ln
(

1 − (A0+B0
c cM (t)−C0)+

B0
c cM (t)

)

+ (A0+B0
c cM (t)−C0)+

B0
c cM (t)

)

cM (t)
]

1{h(t)≥h0,crit(t)}

+
[

(C1
1 − C1

2 )h(t)

+
(

ln
(

1 − (A1+B1
c cM (t)−C1)+

B1
c cM (t)

)

+ (A1+B1
c cM (t)−C1)+

B1
c cM (t)

)

cM (t)
]

1{h(t)≥h1,crit(t)},

(5.12)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − ln( εδ
ε−(ε−δ)e−δ(T−t) ) + g(t)

)

+ C0
2h(t)

−
[

−(C0
1 − C0

2 )h(t)

+
(

ln
(

1 − (A0+B0
c cM (t)−C0)+

B0
c cM (t)

)

+ (A0+B0
c cM (t)−C0)+

B0
c cM (t)

)

cM (t)
]

1{h(t)≥h0,crit(t)}

(5.13)
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subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (5.14)

If ε = 0 then the ODE-system reads

h′(t) = − (Ψ0 − Ψ1)

+ (C0
2 + C1

2 )h(t)

−
(

−(C0
1 − C0

2 )h(t) + (A0−C0)+

B0
c

)

1{h(t)≥h0,crit}

+
(

(C1
1 − C1

2 )h(t) + (A1−C1)+

B1
c

)

1{h(t)≥h1,crit},

(5.15)

g′(t) = − Ψ0

+ C0
2h(t)

−
(

−(C0
1 − C0

2 )h(t) + (A0−C0)+

B0
c

)

1{h(t)≥h0,crit}

(5.16)

subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (5.17)

Remark 5.13. Note that the barrier hi,crit(t) is now independent of g(t) − 1{i=1}h(t). Therefore the
condition h(t) ≥ hi,crit(t) is explicit for i = 0, 1. Remember that for R 6= 1 the condition h(t) ≥
h1,crit(t, x) was partly implicit.

Theorem 5.14 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and g
be given by (5.12), (5.13) subject to the boundary conditions (5.14) (ε > 0), resp. (5.15), (5.16) subject
to the boundary conditions (5.17) (ε = 0). Then the strategy

(πi,∗(t), ci,∗(t)) , (πi,∗, ci,∗(t, h(t))), t ∈ [0, T ], i = 0, 1,

as given in Lemmas 5.10 and 5.11 is optimal for the investment problem (P) with crra preferences
and relative risk aversion R = 1.

5.2.3 Portfolio- and Consumption-dependent Intensities

The log-utility version of the function Hπ,c,i, i = 0, 1, is given by Hπ,c,i : [0, T ]×R×R
+
0 ×R

n̄×R
+
0 → R,

i = 0, 1, with

Hπ,c,i(t, x, y, π, c) , εδ
ε−(ε−δ)e−δ(T−t) (ln(c) − x) − c+ ri + π⊤.ηi − 1

2π
⊤.σi.(σi)⊤.π

+ (−1)1−i(Ci
11{(π,c)∈Fπ,c,i} + Ci

21{(π,c)/∈Fπ,c,i})y.

If ε = 0 then Hπ,c,i solely depends on y, π and c.

Lemma 5.15 (Maximizer of Hπ,c,i(t, x, y, ·, ·)). For every (t, x, y) ∈ [0, T ] ×R×R
+
0 the maximizer

(πi,∗(t, y), ci,∗(t, y)) , arg max
(π,c)∈Rn̄×R

+
0

Hπ,c,i(t, x, y, π, c), i = 0, 1,
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is given by

(πi,∗(t, y), ci,∗(t, y)) =

{

(πi,M , cM (t)) if y < hi,crit(t),

(πi,crit(t), ci,crit(t)) if y ≥ hi,crit(t),

with

hi,crit(t) , (−1)1−i ζi,crit(t)

Ci
2−Ci

1
,

with

ζi,crit(t) ,







































− 1
2(Bi

π)⊤(σi.(σi)⊤)−1.Bi
π(λi,crit(t))2

+
[

− ln
(

1 − λi,crit(t)Bi
c

)

− 1
1−λi,crit(t)Bi

c
+ 1
]

cM (t)
if ε > 0,

− 1
2

(Bi
π)⊤(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

[(

1 −
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π
Bi

c + 1
)+)2

+ 2
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π
Bi

c + 1
)−] if ε = 0,

and where λi,crit(t) is uniquely determined by

Λπ,c,i(t, λi,crit(t)) = −(Ai + (πi,M )⊤.Bi
π +Bi

cc
M (t) − Ci)+.

Moreover

πi,crit(t) =







(σi.(σi)⊤)−1.
(

ηi + λi,crit(t)Bi
π

)

if ε > 0,

(σi.(σi)⊤)−1.
(

ηi +Bi
π

1
Bi

c

(

1 −
(

(Ai+(πi,M )⊤.Bi
π−Ci)+

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π
Bi

c + 1
)+))

if ε = 0,

ci,crit(t) =







cM (t)
(

1 − λi,crit(t)Bi
c

)−1
if ε > 0,

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π

(Bi
c)

2

(

(Ai+(πi,M )⊤.Bi
π−Ci)+

(Bi
π)⊤.(σi.(σi)⊤)−1.Bi

π
Bi

c + 1
)−

if ε = 0.

Here the log-utility version of the function Λπ,c,i given by

Λπ,c,i : [0, T ] × (−∞, 1
Bi

c
) → R (Bi

c > 0), resp. Λπ,c,i : [0, T ] × ( 1
Bi

c
,∞) → R (Bi

c < 0)

with

Λπ,c,i(t, λ) , (Bi
π)⊤(σi.(σi)⊤)−1.Bi

πλ+Bi
c

(

(

1 −Bi
cλ
)−1

− 1
)

cM (t).

Remark 5.16. If ε = 0 then ζi,crit and consequently hi,crit are just constants independent of t. Further
ε = 0 implies that πi,crit and ci,crit are constants, too. The maximizing strategy (πi,∗, ci,∗) is therefore
just a function of y.

Inserting the maximizing portfolio proportions and consumption rates into the reduced HJB-equation
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(5.1) the latter now becomes a system of backward ODEs which for ε > 0 is given by

h′(t) = − (Ψ0 − Ψ1) + εδ
ε−(ε−δ)e−δ(T−t)h(t)

+ (C0
2 + C1

2 )h(t)

−
[

−(C0
1 − C0

2 )h(t) − 1
2(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π(λ0,crit(t))2

+
(

− ln
(

1 − λ0,crit(t)B0
c

)

−
(

1 − λ0,crit(t)B0
c

)−1
+ 1
)

cM (t)
]+

+
[

(C1
1 − C1

2 )h(t) − 1
2(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π(λ1,crit(t))2

+
(

− ln
(

1 − λ1,crit(t)B1
c

)

−
(

1 − λ1,crit(t)B1
c

)−1
+ 1
)

cM (t)
]+
,

(5.18)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − ln( εδ
ε−(ε−δ)e−δ(T−t) ) + g(t)

)

+ C0
2h(t)

−
[

−(C0
1 − C0

2 )h(t) − 1
2(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π(λ0,crit(t))2

+
(

− ln
(

1 − λ0,crit(t)B0
c

)

−
(

1 − λ0,crit(t)B0
c

)−1
+ 1
)

cM (t)
]+

(5.19)

subject to the boundary conditions

g(T ) = 0, h(T ) = 0. (5.20)

If ε = 0 then the ODE-system reads

h′(t) = − (Ψ0 − Ψ1)

+ (C0
2 + C1

2 )h(t)

−
[

−(C0
1 − C0

2 )h(t) − 1
2

(B0
π)⊤(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

·
[(

1 −
(

(A0+(π0,M )⊤.B0
π−C0)+

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
B0

c + 1
)+)2

+ 2
(

(A0+(π0,M )⊤.B0
π−C0)+

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
B0

c + 1
)−]]+

+
[

(C1
1 − C1

2 )h(t) − 1
2

(B1
π)⊤(σ1.(σ1)⊤)−1.B1

π

(B1
c )2

·
[(

1 −
(

(A1+(π1,M )⊤.B1
π−C1)+

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π
B1

c + 1
)+)2

+ 2
(

(A1+(π1,M )⊤.B1
π−C1)+

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π
B1

c + 1
)−]]+

,

(5.21)

g′(t) = − Ψ0

+ C0
2h(t)

−
[

−(C0
1 − C0

2 )h(t) − 1
2

(B0
π)⊤(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

·
[(

1 −
(

(A0+(π0,M )⊤.B0
π−C0)+

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
B0

c + 1
)+)2

+ 2
(

(A0+(π0,M )⊤.B0
π−C0)+

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
B0

c + 1
)−]]+

(5.22)

subject to the boundary conditions

g(T ) = 0, h(T ) = 0. (5.23)
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Theorem 5.17 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and g
be given by (5.18), (5.19) subject to the boundary conditions (5.20) (ε > 0), resp. (5.21), (5.22) subject
to the boundary conditions (5.23) (ε = 0). Then the strategy

(πi,∗(t), ci,∗(t)) , (πi,∗(t, h(t)), ci,∗(t, h(t))), t ∈ [0, T ], i = 0, 1,

as given in Lemma 5.15 is optimal for the investment problem (P) with crra preferences and relative
risk aversion R = 1.

5.3 Affine Intensity Functions

5.3.1 Portfolio-dependent Intensities

The log-utility versions of the functions Hπ,i, Hπ,i
l , Hπ,i

a and Hc,i, i = 0, 1, are given by Hπ,i, Hπ,i
l , Hπ,i

a :
R

+
0 ×R

n̄ → R and Hc,i : [0, T ] ×R×R
+
0 → R for i = 0, 1 with

Hπ,i(y, π) , ri + π⊤.ηi − 1
2π

⊤.σi.(σi)⊤.π + (−1)1−i max{Ai + π⊤.Bi
π, C

i}y,

Hπ,i
l (y, π) , ri + π⊤.ηi − 1

2π
⊤.σi.(σi)⊤.π + (−1)1−iCiy,

Hπ,i
a (y, π) , ri + π⊤.ηi − 1

2π
⊤.σi.(σi)⊤.π + (−1)1−i(Ai + π⊤.Bi

π)y,

Hc,i(t, x, c) , εδ
ε−(ε−δ)e−δ(T−t) (ln(c) − x) − c.

Further the candidate solution for the portfolio proportions reads

π̃i,∗(y) , (σi.(σi)⊤)−1.
(

ηi + (−1)1−iBi
πy
)

.

Lemma 5.18 (Maximizer of Hc,i(t, x, ·)). For every (t, x) ∈ [0, T ] ×R the maximizer

ci,∗(t) , arg max
c∈R+

0

Hc,i(t, x, c), i = 0, 1,

is given by the Merton consumption rate, i.e.

ci,∗(t) = cM (t).

Lemma 5.19 (Maximizer of Hπ,i(y, ·)). For every y ∈ R
+
0 the maximizer

πi,∗(y) , arg max
π∈Rn̄

Hπ,i(y, π), i = 0, 1,

is given by

π0,∗(y) = (σ0.(σ0)⊤)−1.
(

η0 −B0
π(y ∧ h0,crit)

)

,

π1,∗(t) =

{

π1,M if y < h1,crit,

π̃1,∗(y) if y ≥ h1,crit,

where

h0,crit ,
(A0+(π0,M )⊤.B0

π−C0)+

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
,

h1,crit , 2 (A1+(π1,M )⊤.B1
π−C1)−

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

and
π0,crit , (σ0.(σ0)⊤)−1.

(

η0 −B0
π

(A0+(π0,M )⊤.B0
π−C0)+

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

)

.
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The reduced HJB-equation (5.1) now becomes a system of backward ODEs

h′(t) = − (Ψ0 − Ψ1) + εδ
ε−(ε−δ)e−δ(T−t)h(t)

+ (C0 + C1)h(t)

+ (A0 + (π0,M )⊤.B0
π − C0)(h(t) ∧ h0,crit) − 1

2(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π(h(t) ∧ h0,crit)2

+ (A1 + (π1,M )⊤.B1
π − C1)(h(t) ∨ h1,crit) + 1

2(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π(h(t) ∨ h1,crit)2,

(5.24)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − ln
(

εδ
ε−(ε−δ)e−δ(T−t)

)

+ g(t)
)

+ C0h(t)

+ (A0 + (π0,M )⊤.B0
π − C0)(h(t) ∧ h0,crit) − 1

2(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π(h(t) ∧ h0,crit)2

(5.25)

subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (5.26)

Theorem 5.20 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and
g be given by (5.24), (5.25) subject to the boundary conditions (5.26). Then the strategy

(πi,∗(t), ci,∗(t)) , (πi,∗(h(t)), ci,∗(t)), t ∈ [0, T ], i = 0, 1,

as given in Lemmas 5.18 and 5.19 is optimal for the investment problem (P) with crra preferences
and relative risk aversion R = 1.

For simplicity, we focus on the case when πi,M ∈ Iπ,i and A0 + (π0,◦)⊤.B0
π ≥ C0 in the following. Then

equation (5.24) is a backward Riccati ODE,

h′(t) = α0 + α1(t)h(t) + α2h(t)
2, t ∈ [0, T ]

with boundary condition h(T ) = 0, where

α0 , −(Ψ0 − Ψ1),

α1(t) , A0 + (π0,M )⊤.B0
π +A1 + (π1,M )⊤.B1

π + εδ
ε−(ε−δ)e−δ(T−t) ,

α2 , −1
2

(

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π − (B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

)

.

In the case without utility from intermediate consumption, i.e. ε = 0, h can even be determined
explicitly since α1 gets constant, i.e.

α1 = A0 + (π0,M )⊤.B0
π +A1 + (π1,M )⊤.B1

π.

Moreover, since πi,M ∈ Iπ,i, which is equivalent to A0+(π0,M )⊤.B0
π > C0, resp. A1+(π1,M )⊤.B1

π ≥ C1,
we get that α1 > 0. Hence

h(t) =



















α1
2α2

(

D
1+ 1−D

1+D
e−α1D(T−t)

1− 1−D
1+D

e−α1D(T−t) − 1
)

if α2 6= 0 and D > 0,

α1
2α2

( 2
α1(T−t)+2 − 1), if α2 6= 0 and D = 0,

α0
α1

(e−α1(T−t) − 1) if α2 = 0

for t ∈ [0, T ], where D ,
√

1 − 4α0α2

α2
1

.
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Remark 5.21 (Asymptotic behavior). For t→ −∞ the function h is converging towards

hstat =

{

α1
2α2

(D − 1) for α2 6= 0,

−α0
α1

for α2 = 0.

Remark 5.22. It is not possible that D < 0 since in that case h would exhibit periodic poles which
would contradict the boundedness of h that has been proved in the section on power utility functions.

5.3.2 Consumption-dependent Intensities

The log-utility versions of the functions Hπ,i, Hc,i, Hc,i
l and Hc,i

a , i = 0, 1, are given by Hπ,i : Rn̄ → R

and Hc,i, Hc,i
l , Hc,i

a : [0, T ] ×R×R
+
0 ×R

+
0 → R for i = 0, 1 with

Hπ,i(π) , ri + π⊤.ηi − 1
2π

⊤.σi.(σi)⊤.π,

Hc,i(t, x, y, c) , εδ
ε−(ε−δ)e−δ(T−t) (ln(c) − x) − c+ (−1)1−i max{Ai +Bi

cc, C
i}y,

Hc,i
l (t, x, y, c) , εδ

ε−(ε−δ)e−δ(T−t) (ln(c) − x) − c+ (−1)1−iCiy,

Hc,i
a (t, x, y, c) , εδ

ε−(ε−δ)e−δ(T−t) (ln(c) − x) − c+ (−1)1−i(Ai +Bi
cc)y.

Notice that the functions Hc,i, Hc,i
l and Hc,i

a are independent of t and x if ε = 0.

Moreover the candidate solution for the consumption rate reads

c̃0,∗(t, y) =

{

εδ
ε−(ε−δ)e−δ(T−t)

(

1 +B0
c y
)−1

if y < hcrit,

∞ if y ≥ hcrit,

c̃1,∗(t, y) = εδ
ε−(ε−δ)e−δ(T−t)

(

1 −B1
c y
)−1

for (t, y) ∈ [0, T ] ×R
+
0 with

hcrit ,

{

∞ if B0
c > 0,

− 1
B0

c
if B0

c < 0.

Lemma 5.23 (Maximizer of Hπ,i). The maximizer

πi,∗ , arg max
π∈Rn̄

Hπ,i(π), i = 0, 1,

is given by the Merton strategy, i.e.
πi,∗ = πi,M .

Lemma 5.24 (Maximizer of Hc,i(t, x, y, ·)). For every (t, x, y) ∈ [0, T ] ×R×R
+
0 let

ci,∗(t, y) , arg max
c∈R+

0

Hc,i(t, x, y, c), i = 0, 1.

If ε > 0 then the maximizer ci,∗ is given by

c0,∗(t, y) = εδ
ε−(ε−δ)e−δ(T−t)

(

1 +B0
c (y ∧ h0,crit(t))

)−1

c1,∗(t, y) =

{

cM (t) if Hc,1
l,M (t, x, y) > Hc,1

a,∼(t, x, y),

c̃1,∗(t, y) if Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y),
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with
h0,crit(t) , −λ0,crit(t),

and where

λ0,crit(t) =



















0 if B0
c < 0 and A0 ≤ C0,

1
B0

c

(

1 −
(

1 − (A0+B0
c cM (t)−C0)+

B0
c cM (t)

)−1
) if B0

c > 0 and A0 < C0,

or B0
c < 0 and A0 > C0,

−∞ if B0
c > 0 and A0 ≥ C0

is the unique solution of
Λc,0(t, λ0,crit(t)) = −(A0 +B0

c c
M (t) − C0)+ (5.27)

if it exists. Otherwise, λ0,crit(t) = −∞. Moreover

c0,crit(t) ,

{

cM (t) if B0
c > 0 and A0 ≥ C0, or B0

c < 0 and A0 ≤ C0,

cM (t) − (A0+B0
c cM (t)−C0)+

B0
c

if B0
c > 0 and A0 < C0, or B0

c < 0 and A0 > C0.

If ε = 0 then the maximizer ci,∗ is given by

c0,∗(t, y) =

{

0 if y < h0,crit,

c0,crit if y ≥ h0,crit,

c1,∗(t, y) = 0

where
h0,crit , −λ0,crit

with

λ0,crit =











0 if B0
c < 0 and A0 ≤ C0 or B0

c > 0 and A0 < C0,
1

B0
c

if B0
c < 0 and A0 > C0,

−∞ if B0
c > 0 and A0 ≥ C0,

and

c0,crit ,

{

0 if B0
c > 0 and A0 ≥ C0, or B0

c < 0 and A0 ≤ C0,

− (A0−C0)+

B0
c

if B0
c > 0 and A0 < C0, or B0

c < 0 and A0 > C0.

Here the log-utility version of the function Λc,i given by

Λc,i : [0, T ] × (−∞, 1
Bi

c
) → R (Bi

c > 0), resp. Λc,i : [0, T ] × ( 1
Bi

c
,∞) → R (Bi

c < 0)

with
Λc,i(t, λ) , Bi

c

(

(

1 −Bi
cλ
)−1

− 1
)

cM (t).

Remark 5.25. In case of ε > 0 the optimal consumption rate in state 1, c1,∗, is independent of
x although it depends on the comparison of Hc,1

l,M (t, x, y) and Hc,1
a,∼(t, x, y) which both depend on x.

However the special structure of Hc,1
l , resp. Hc,1

a , in case of R = 1 is the reason for this – at first sight
– paradoxical relation; namely

Hc,1
l,M (t, x, y) ≤ Hc,1

a,∼(t, x, y) ⇔
(

ln
(

1 −B1
c y
)

+B1
c y
)

cM (t) ≤ −(dc,1(cM (t)))−y
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which is obviously independent of x.

If ε = 0 then the maximizer ci,∗ is solely a function of y.

The reduced HJB-equation (5.1) now becomes a system of backward ODEs which for ε > 0 is given by

h′(t) = − (Ψ0 − Ψ1) + εδ
ε−(ε−δ)e−δ(T−t)h(t)

+ (C0 + C1)h(t)

+ (A0 +B0
c c

M (t) − C0)(h(t) ∧ h0,crit(t))

−
(

− ln
(

1 +B0
c (h(t) ∧ h0,crit(t))

)

+B0
c (h(t) ∧ h0,crit(t))

)

cM (t)

+
[

(A1 +B1
c c

M (t) − C1)h(t) +
(

− ln
(

1 −B1
ch(t)

)

−B1
ch(t)

)

cM (t)
]+
,

(5.28)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − ln
(

εδ
ε−(ε−δ)e−δ(T−t)

)

+ g(t)
)

+ C0h(t)

+ (A0 +B0
c c

M (t) − C0)(h(t) ∧ h0,crit(t))

−
(

− ln
(

1 +B0
c (h(t) ∧ h0,crit(t))

)

+B0
c (h(t) ∧ h0,crit(t))

)

cM (t)

(5.29)

subject to the boundary conditions

g(T ) = 0, h(T ) = 0. (5.30)

If ε = 0 then the ODE-system reads

h′(t) = − (Ψ0 − Ψ1)

+ (C0 + C1)h(t)

+ (A0 − C0)(h(t) ∧ h0,crit) + (A1 − C1)+h(t),

(5.31)

g′(t) = − Ψ0

+ C0h(t)

+ (A0 − C0)(h(t) ∧ h0,crit)

(5.32)

subject to the boundary conditions

g(T ) = 0, h(T ) = 0. (5.33)

Theorem 5.26 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and g
be given by (5.28), (5.29) subject to the boundary conditions (5.30) (ε > 0), resp. (5.31), (5.32) subject
to the boundary conditions (5.33) (ε = 0). Then the strategy

(πi,∗(t), ci,∗(t)) , (πi,∗, ci,∗(t, h(t))), t ∈ [0, T ], i = 0, 1,

as given in Lemmas 5.23 and 5.24 is optimal for the investment problem (P) with crra preferences
and relative risk aversion R = 1.
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Before going on with the portfolio- and consumption-dependent intensity functions we consider the
special parameter setting in which the investor is forced to consume although ε = 0, i.e. B0

c < 0 and
A0 > C0. In the case with logarithmic utilities we can present a stronger version of Proposition 4.125 in
which we gave a sufficient condition that guaranteed that the optimal consumption rate will not jump.
Remember that in the proof of Proposition 4.125 it was necessary to show that F (t, x, h0,crit) ≥ 0 for all
(t, x) ∈ [0, T ]×R. We wrote F (t, x, h0,crit) = A+B with A = χ1(h0,crit) and B = −(Ψ0−Ψ1)+χ0(h0,crit)
and subsequently only discussed B as A was trivially non-negative. Hence the resulting estimate was
not a sharp one. Taking advantage of the simpler structure of the χi’s in the logarithmic setting we
now include A into our considerations. With

A+B = −(Ψ0 − Ψ1) + (C0 + C1)h0,crit + (A0 − C0)h0,crit + (A1 − C1)+h0,crit

= −(Ψ0 − Ψ1) − A0+(A1−C1)++C1

B0
c

the stronger version of Proposition 4.125 reads

Proposition 5.27. Let ε = 0 and B0
c < 0 and A0 > C0. Further suppose that −(Ψ0 − Ψ1) −

A0+(A1−C1)++C1

B0
c

≥ 0 or equivalently A0 +B0
c c

o,◦ ≥ C0, where

c0,◦ , (Ψ0 − Ψ1) + C0+(A1−C1)++C1

B0
c

.

Then c0,∗(t) = 0 for all t ∈ [0, T ].

With this stronger result we are in the position to solve ODE (5.31) explicitly in case of B0
c < 0 and

A0 > C0. First we determine the time t0,crit at which h reaches the barrier h0,crit = − 1
B0

c
– from a

backward perspective. For this purpose we solve the ODE (5.31) where we omit h0,crit, resp. set it to
∞, i.e. we consider

(h̃(1))′(t) = − (Ψ0 − Ψ1) + (A0 + (A1 − C1)+ + C1)h̃(1)(t)

subject to the boundary condition h̃(1)(T ) = 0 which has the solution

h̃(1)(t) = Ψ0−Ψ1

A0+(A1−C1)++C1

(

1 − e−(A0+(A1−C1)++C1)(T−t)
)

.

Notice that A0 + (A1 − C1)+ + C1 > 0 since we assumed A0 > C0 ≥ 0. Thus h̃(1) is decreasing in t.
Equating h̃(1)(t) = − 1

B0
c

then yields

t0,crit = T + 1
A0+(A1−C1)++C1 ln

(

1
B0

c

A0+(A1−C1)++C1

Ψ0−Ψ1 + 1
)

.

Since 1
B0

c

A0+(A1−C1)++C1

Ψ0−Ψ1 < 0 it follows that t0,crit < T . Notice further that 1
B0

c

A0+(A1−C1)++C1

Ψ0−Ψ1 + 1 is

possibly non-positive which implies that potentially t0,crit = −∞, i.e. h would never hit h0,crit. This is

particularly the case if A0 +B0
c c

0,◦ ≥ 0 which is equivalent to 1
B0

c

A0+(A1−C1)++C1

Ψ0−Ψ1 + 1 ≤ 0.

If t0,crit = −∞ then the solution of ODE (5.31) is given by h̃(1), i.e. h = h̃(1). In case of t0,crit > −∞ we
have to consider the behavior of h from t0,crit onwards – remember the backward perspective. On this
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interval h satisfies the following ODE which is obtained by replacing the term h(t)∧h0,crit by h0,crit in
ODE (5.31), i.e. the ODE reads

(h̃(2))′(t) = − (Ψ0 − Ψ1) − A0−C0

B0
c

+ (C0 + (A1 − C1)+ + C1)h̃(2)(t)

for t ∈ (−∞, t0,crit] subject to the boundary condition h̃(2)(t0,crit) = h0,crit = − 1
B0

c
which has the

solution

h̃(2)(t) = − 1
B0

c
e−(C0+(A1−C1)++C1)(t0,crit−t) +

Ψ0−Ψ1+A0−C0

B0
c

C0+(A1−C1)++C1

(

1 − e−(C0+(A1−C1)++C1)(t0,crit−t)
)

.

The derivative of h̃(2) is consequently given by

(h̃(2))′(t) = −
(

Ψ0 − Ψ1 + A0+(A1−C1)++C1

B0
c

)

e−(C0+(A1−C1)++C1)(t0,crit−t).

This is negative since we assumed that t0,crit > −∞ which is equivalent to Ψ0−Ψ1+ A0+(A1−C1)++C1

B0
c

>

0. Thus h̃(2) is also decreasing in t, i.e. except for t = t0,crit the function h̃(2) will never hit h0,crit again.

Combining the two cases t0,crit = −∞ and t0,crit > −∞ the explicit solution of ODE (5.31) in case of
B0

c < 0 and A0 > C0 is given by

h(t) =

{

h̃(2)(t) if t ∈ (−∞, t0,crit],

h̃(1)(t) if t ∈ (t0,crit, T ]

for t ∈ [0, T ].

By integration the solution for the function g turns out to be

g(t) =

{

g̃(2)(t) + g̃(1)(t0,crit) if t ∈ (−∞, t0,crit],

g̃(1)(t) if t ∈ (t0,crit, T ]

for t ∈ [0, T ] where

g̃(1)(t) ,

(

Ψ0 −A0 Ψ0−Ψ1

A0+(A1−C1)++C1

)

(T − t) +A0 Ψ0−Ψ1

(A0+(A1−C1)++C1)2

(

1 − e−(A0+(A1−C1)++C1)(T−t)
)

,

g̃(2)(t) ,

(

Ψ0 + A0−C0

B0
c

− C0
Ψ0−Ψ1+A0−C0

B0
c

C0+(A1−C1)++C1

)

(t0,crit − t)

+ C0 1
C0+(A1−C1)++C1

(

1
B0

c
+

Ψ0−Ψ1+A0−C0

B0
c

C0+(A1−C1)++C1

)

(

1 − e−(C0+(A1−C1)++C1)(t0,crit−t)
)

.

Remark 5.28 (Asymptotic behavior). Given ε = 0 in case of B0
c < 0 and A0 > C0 the functions h

and g show the following asymptotic behavior. For t→ −∞ the function h is converging towards hstat

where

hstat ,







Ψ0−Ψ1

A0+(A1−C1)++C1 if t0,crit = −∞,

Ψ0−Ψ1+A0−C0

B0
c

C0+(A1−C1)++C1 if t0,crit > −∞.

Furthermore g exhibits the asymptotic slope

lim
t→−∞

g′(t) =







−Ψ0 +A0 Ψ0−Ψ1

A0+(A1−C1)++C1 if t0,crit = −∞,

−Ψ0 − A0−C0

B0
c

+ C0
Ψ0−Ψ1+A0−C0

B0
c

C0+(A1−C1)++C1 if t0,crit > −∞.
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Finally the corresponding optimal consumption rate in state 0 is given by

c0,∗(t) =

{

c0,crit if t ∈ (−∞, t0,crit],

0 if t ∈ (t0,crit, T ]

for t ∈ [0, T ].

5.3.3 Portfolio- and Consumption-dependent Intensities

The log-utility versions of the functionsHπ,c,i, Hπ,c,i
l andHπ,c,i

a , i = 0, 1, are given byHπ,c,i, Hπ,c,i
l , Hπ,c,i

a :
[0, T ] ×R×R

+
0 ×R

n̄ ×R
+
0 → R for i = 0, 1 with

Hπ,c,i(t, x, y, π, c) , εδ
ε−(ε−δ)e−δ(T−t) (ln(c) − x) − c+ ri + π⊤.ηi − 1

2π
⊤.σi.(σi)⊤.π

+ (−1)1−i max{Ai + π⊤.Bi
π +Bi

cc, C
i}y,

Hπ,c,i
l (t, x, y, π, c) , εδ

ε−(ε−δ)e−δ(T−t) (ln(c) − x) − c+ ri + π⊤.ηi − 1
2π

⊤.σi.(σi)⊤.π + (−1)1−iCiy,

Hπ,c,i
a (t, x, y, π, c) , εδ

ε−(ε−δ)e−δ(T−t) (ln(c) − x) − c+ ri + π⊤.ηi − 1
2π

⊤.σi.(σi)⊤.π

+ (−1)1−i(Ai + π⊤.Bi
π +Bi

cc)y.

Notice that the functions Hπ,c,i, Hπ,c,i
l and Hπ,c,i

a are independent of t and x in case of ε = 0.

Further the candidate solution reads

π̃i,∗(t, y) = (σi.(σi)⊤)−1.
(

ηi + (−1)1−iBi
πy
)

,

c̃0,∗(t, y) =

{

εδ
ε−(ε−δ)e−δ(T−t)

(

1 +B0
c y
)−1

if y < hcrit,

∞ if y ≥ hcrit,

c̃1,∗(t, y) = εδ
ε−(ε−δ)e−δ(T−t)

(

1 −B1
c y
)−1

for (t, y) ∈ [0, T ] ×R
+
0 , i = 0, 1.

Lemma 5.29 (Maximizer of Hπ,c,i(t, x, y, ·, ·)). For every (t, x, y) ∈ [0, T ] ×R×R
+
0 let

(πi,∗(t, y), ci,∗(t, y)) , arg max
(π,c)∈Rn̄×R

+
0

Hπ,c,i(t, x, y, π, c), i = 0, 1.

If ε > 0 then the maximizer (πi,∗, ci,∗) is given by

π0,∗(t, y) = (σ0.(σ0)⊤)−1.
(

η0 −B0
π(y ∧ h0,crit(t))

)

,

c0,∗(t, y) = εδ
ε−(ε−δ)e−δ(T−t)

(

1 +B0
c (y ∧ h0,crit(t))

)−1
,

(π1,∗(t, y), c1,∗(t, y)) =

{

(π1,M , cM (t)) if Hπ,c,1
l,M (t, x, y) > Hπ,c,1

a,∼ (t, , x, y),

(π̃1,∗(t, y), c̃1,∗(t, y)) if Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y)

where
h0,crit(t) , −λ0,crit(t),
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and where λ0,crit(t) is implicitly given via

Λπ,c,0(t, λ0,crit(t)) = −(A0 + (π0,M )⊤.B0
π +B0

c c
M (t) − C0)+.

Moreover

π0,crit(t) , (σ0.(σ0)⊤)−1.
(

η0 −B0
πh

0,crit(t)
)

,

c0,crit(t) , εδ
ε−(ε−δ)e−δ(T−t)

(

1 +B0
ch

0,crit(t)
)−1

.

If ε = 0 then the maximizer (πi,∗, ci,∗) is given by

π0,∗(t, y) = (σ0.(σ0)⊤)−1.
(

η0 −B0
π(y ∧ h0,crit)

)

,

c0,∗(t, y) =

{

0 if y < h0,crit,

c0,crit if y ≥ h0,crit,

(π1,∗(t, y), c1,∗(t, y)) =

{

(π1,M , 0) if y < h1,crit,

(π̃1,∗(t, y), 0) if y ≥ h1,crit,

where

h0,crit ,
(A0+(π0,M )⊤.B0

π−C0)+

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
∧ hcrit,

h1,crit , 2 (A1+(π1,M )⊤.B1
π−C1)−

(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π
,

hcrit ,

{

∞ if B0
c > 0,

− 1
B0

c
if B0

c < 0

and

π0,crit = (σ0.(σ0)⊤)−1.
(

η0 +B0
π

1
B0

c

(

1 −
(

(A0+(π0,M )⊤.B0
π−C0)+

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
B0

c + 1
)+))

c0,crit = (B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π

(B0
c )2

(

(A0+(π0,M )⊤.B0
π−C0)+

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π
B0

c + 1
)−
.

Remark 5.30. As in the consumption-dependent case (π1,∗, c1,∗) depends only on t and y if ε > 0
since

Hπ,c,1
l,M (t, x, y) ≤ Hπ,c,1

a,∼ (t, x, y)

⇔
(

ln
(

1 −B1
c y
)

+B1
c y
)

cM (t) − 1
2(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
πy

2 ≤ −(dπ,c,1(π1,M , cM (t)))−y

is independent of x.

If ε = 0 then the maximizer (πi,∗, ci,∗) is solely a function of y.

Inserting the maximizing strategies the reduced HJB-equation (5.1) now becomes a system of backward
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ODEs which for ε > 0 is given by

h′(t) = − (Ψ0 − Ψ1) + εδ
ε−(ε−δ)e−δ(T−t)h(t)

+ (C0 + C1)h(t)

+ (A0 + (π0,M )⊤.B0
π +B0

c c
M (t) − C0)(h(t) ∧ h0,crit(t))

− 1
2(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π(h(t) ∧ h0,crit(t))2

−
(

− ln
(

1 +B0
c (h(t) ∧ h0,crit(t))

)

+B0
c (h(t) ∧ h0,crit(t))

)

cM (t)

+
[

(A1 + (π1,M )⊤.B1
π +B1

c c
M (t) − C1)h(t)

+ 1
2(B1

π)⊤.(σ1.(σ1)⊤)−1.B1
π(h(t))2 +

(

− ln
(

1 −B1
ch(t)

)

−B1
ch(t)

)

cM (t)
]+
,

(5.34)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − ln
(

εδ
ε−(ε−δ)e−δ(T−t)

)

+ g(t)
)

+ C0h(t)

+ (A0 + (π0,M )⊤.B0
π +B0

c c
M (t) − C0)(h(t) ∧ h0,crit(t))

− 1
2(B0

π)⊤.(σ0.(σ0)⊤)−1.B0
π(h(t) ∧ h0,crit(t))2

−
(

− ln
(

1 +B0
c (h(t) ∧ h0,crit(t))

)

+B0
c (h(t) ∧ h0,crit(t))

)

cM (t)

(5.35)

subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (5.36)

If ε = 0 then the ODE-system reads

h′(t) = − (Ψ0 − Ψ1)

+ (C0 + C1)h(t)

+ (A0 + (π0,M )⊤.B0
π − C0)(h(t) ∧ h0,crit) − 1

2(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π(h(t) ∧ h0,crit)2

+ (A1 + (π1,M )⊤.B1
π − C1)(h(t) ∨ h1,crit) + 1

2(B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π(h(t) ∨ h1,crit)2,

(5.37)

g′(t) = − Ψ0

+ C0h(t)

+ (A0 + (π0,M )⊤.B0
π − C0)(h(t) ∧ h0,crit) − 1

2(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π(h(t) ∧ h0,crit)2
(5.38)

subject to the boundary conditions
g(T ) = 0, h(T ) = 0. (5.39)

Theorem 5.31 (Solution of the Investment Problem). Let condition (NJ) be satisfied, and let h and g
be given by (5.34), (5.35) subject to the boundary conditions (5.36) (ε > 0), resp. (5.37), (5.38) subject
to the boundary conditions (5.39) (ε = 0). Then the strategy

(πi,∗(t), ci,∗(t)) , (πi,∗(t, h(t)), ci,∗(t, h(t))), t ∈ [0, T ], i = 0, 1,

as given in Lemma 5.29 is optimal for the investment problem (P) with crra preferences and relative
risk aversion R = 1.
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If ε = 0 then focusing on the case (πi,M , 0) ∈ Iπ,c,i and A0 + (π0,◦)⊤.B0
π +B0

c c
0,◦ ≥ C0 equation (5.37)

becomes a backward Riccati ODE,

h′(t) = α0 + α1h(t) + α2h(t)
2, t ∈ [0, T ]

with boundary condition h(T ) = 0, where

α0 , −(Ψ0 − Ψ1),

α1 , A0 + (π0,M )⊤.B0
π +A1 + (π1,M )⊤.B1

π,

α2 , −1
2

(

(B0
π)⊤.(σ0.(σ0)⊤)−1.B0

π − (B1
π)⊤.(σ1.(σ1)⊤)−1.B1

π

)

so that h can even be determined explicitly.

Moreover, since πi,M ∈ Iπ,i, which is equivalent to A0+(π0,M )⊤.B0
π > C0, resp. A1+(π1,M )⊤.B1

π ≥ C1,
we get that α1 > 0. Hence

h(t) =



















α1
2α2

(

D
1+ 1−D

1+D
e−α1D(T−t)

1− 1−D
1+D

e−α1D(T−t) − 1
)

if α2 6= 0 and D > 0,

α1
2α2

( 2
α1(T−t)+2 − 1), if α2 6= 0 and D = 0,

α0
α1

(e−α1(T−t) − 1) if α2 = 0

for t ∈ [0, T ], where D ,
√

1 − 4α0α2

α2
1

.

Remark 5.32 (Asymptotic behavior). For t→ −∞ the function h is converging towards

hstat =

{

α1
2α2

(D − 1) for α2 6= 0,

−α0
α1

for α2 = 0.

Remark 5.33. It is not possible that D < 0 since in that case h would exhibit periodic poles which
would contradict the boundedness of h that has been proved in the section on power utility functions.

Remark 5.34. Notice that this explicit solution coincides with the explicit solution that has been found
in the portfolio-dependent setting in case of πi,M ∈ Iπ,i and A0 + (π0,◦)⊤.B0

π ≥ C0 (where π0,◦ is given
as in the portfolio-dependent setting) when ε = 0.





167

6 A Special Case: Two Correlated Assets

In this section we take a closer look on a special variant of our model: We analyze the optimal investment
strategy of a large investor acting in a market with only two risky assets besides the riskless money
market account. Those two assets shall be driven by two correlated Wiener processes and, moreover,
only the investor’s holdings in one of those two assets shall impact on the regime shift intensities. This
can be interpreted as two assets from the same market segment but only the large investor’s actions
concerning one of these stocks are monitored by the other market participants whereas in the other
stock he can act as if he was a small investor.

Asset Price Dynamics. The asset price dynamics are

dP 0 = P 0rI−dt, P 0(0) = p0
0,

dP 1 = P 1
[

(rI− + η
I−
1 )dt+ σ

I−
1 dW 1

]

, P 1(0) = p1
0,

dP 2 = P 2

[

(rI− + η
I−
2 )dt+ ρI−σ

I−
2 dW 1 +

√

1 − (ρI−)2σ
I−
2 dW 2

]

, P 2(0) = p2
0,

where σi
j 6= 0, j = 1, 2, and ρi ∈ (−1, 1) is the correlation coefficient between the two Wiener processes

in state i = 0, 1. Thus the volatility matrix is given by

σi =

(

σi
1 0

ρiσi
2

√

1 − (ρi)2σi
2

)

implying

(σi.(σi)⊤)−1 =





1
1−(ρi)2

1
(σi

1)2
− ρi

1−(ρi)2
1

σi
1σi

2

− ρi

1−(ρi)2
1

σi
1σi

2

1
1−(ρi)2

1
(σi

2)2



 .

Focusing on the portfolio-dependent variants of the aforementioned models with step, resp. affine
intensity functions we analyze the impact of the existence of a second, correlated asset on the optimal
portfolio strategy.

6.1 Step Intensity Functions

Since only the investor’s portfolio proportions in the first asset shall impact on the regime shift inten-
sities we let Bi

π , (Bi
π,1, 0)⊤ so that the intensity function is given by

ϑi,1−i(π, c) = Ci
11{Ai+π1Bi

π,1≤Ci} + Ci
21{Ai+π1Bi

π,1>Ci}, (π, c) ∈ R
2 ×R

+
0 .

Lemma 6.1 (Maximizer of Hπ,i(y, ·)). For every y ∈ R
+
0 the maximizer

πi,∗(y) , arg max
π∈R2

Hπ,i(y, π), i = 0, 1,

is given by

πi,∗(y) =

{

πi,M if y < hi,crit,

πi,crit if y ≥ hi,crit,
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where
hi,crit , (−1)1−i 1

1−R ln
(

(1 −R) ζi,crit

Ci
2−Ci

1
+ 1
)

with

ζi,crit , −1
2

((Ai+πi,M
1 Bi

π,1−Ci)+)2

1
R

1

1−(ρi)2
1

(σi
1)2

(Bi
π,1)2

and

πi,M
1 = 1

R

(

1
1−(ρi)2

ηi
1

(σi
1)2

− ρi

1−(ρi)2
ηi
2

σi
1σi

2

)

, πi,crit
1 = πi,M

1 −
(Ai+πi,M

1 Bi
π,1−Ci)+

Bi
π,1

,

πi,M
2 = 1

R

(

1
1−(ρi)2

ηi
2

(σi
2)2

− ρi

1−(ρi)2
ηi
1

σi
1σi

2

)

, πi,crit
2 = πi,M

2 + ρi σi
1

σi
2

(Ai+πi,M
1 Bi

π,1−Ci)+

Bi
π,1

.

Further the ODEs for the functions g and h are given by

h′(t) = − (Ψ0 − Ψ1) +
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

g(t) R
1−R(e

1−R
R

h(t) − 1)

− C0
2

1
1−R(e−(1−R)h(t) − 1) + C1

2
1

1−R(e(1−R)h(t) − 1)

−
[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)h(t) − 1) − 1

2

((A0+π0,M
1 B0

π,1−C0)+)2

1
R

1
1−(ρ0)2

1

(σ0
1)2

(B0
π,1)

2

]+

+
[

(C1
1 − C1

2 ) 1
1−R(e(1−R)h(t) − 1) − 1

2

((A1+π1,M
1 B1

π,1−C1)+)2

1
R

1
1−(ρ1)2

1

(σ1
1)2

(B1
π,1)2

]+
,

(6.1)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
g(t) − 1

)

)

− C0
2

1
1−R(e−(1−R)h(t) − 1)

−
[

(C0
1 − C0

2 ) 1
1−R(e−(1−R)h(t) − 1) − 1

2

((A0+π0,M
1 B0

π,1−C0)+)2

1
R

1
1−(ρ0)2

1

(σ0
1)2

(B0
π,1)

2

]+

(6.2)

subject to the boundary condition h(T ) = g(T ) = 0 where

Ψi = ri + 1
R

1
1+ρi

(

1
2

1
1−ρi

( ηi
1

σi
1
−

ηi
2

σi
2

)2
+

ηi
1ηi

2

σi
1σi

2

)

.

Dependency of πi,∗, g and h on ρi. Concerning the impact of the correlation coefficient on the
optimal strategy we observe that the optimal portfolio proportion in the second asset may deviate
from the Merton proportion if ρi 6= 0, i.e. the large investor may deviate from the Merton strategy
even in the second asset although the portfolio proportions in this asset do not affect the regime shift
intensities. Hence this deviation is solely due to compensational reasons. Whereas the investor faces
the trade-off between the utility criterion and the intensity criterion in the first asset, he can neglect
the intensity criterion concerning his proportions in the second asset.

Thus the large investor can use his shares in the second, correlated asset in order to rearrange the
relation of the utility criterion and the intensity criterion in a favorable manner. Roughly speaking, by
Bi

π,2 = 0 the investor obtains a degree of freedom that he uses to further optimize his portfolio.
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However the existence of a second, correlated asset does not influence the critical portfolio strategy
πi,crit

1 in the first asset at least in the non-trivial case of πi,M /∈ Fπ,i. Given that the optimal strategy

jumps it always jumps to the critical strategy πi,crit
1 which is given by πi,crit

1 = −Ai−Ci

Bi
π,1

in the non-trivial

case of πi,M /∈ Fπ,i, resp. πi,crit
1 = πi,M

1 in the trivial case πi,M ∈ Fπ,i where no jump occurs.

Unfortunately this is the only observable, unambiguous influence of the correlation coefficient. The size
of the deviation of the optimal strategy from the Merton strategy in the second asset depends on ρi

in a non-monotonic way. This is due to the fact that the Merton proportions by themselves depend on
the correlation coefficient ρi in a non-monotonic way. Thus the optimal strategy and the functions g
and h do not monotonically depend on ρi.

Exemplary we take a look at ζi,crit. Varying ρi causes two effects. Firstly the denominator of the fraction
in ζi,crit is growing in |ρi| with limit ∞. Thus, if the numerator did not change a bigger |ρi| would imply
a bigger ζi,crit – remember the factor −1

2 – and thus a smaller hi,crit. But secondly the numerator also

depends on ρi via the Merton proportion πi,M
1 . Varying the correlation coefficient changes the position

of the Merton strategy relative to the separating hyperplane between the half spaces of favorable and
adverse strategies. However, whereas the influence of ρi on the denominator is clear, independent of
the parameter setting, its impact on the numerator is ambiguous.
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Figure 6.1: π0,∗
j and π0,M

j as functions of t for ρ = 0.25 (left) and ρ = 0.75 (right)

(r0 = r1 = 0.03, η0 = (0.1, 0.07)⊤, η1 = (0.02, 0.05)⊤, σ0
1 = 0.3, σ0

2 = 0.2, σ1
1 = 0.6, σ1

2 = 0.4,
δ = 0.035, ε = 1, R = 3, T = 0.5,

A0 = 16.5, B0
π = (−5, 0)⊤, C0 = 14, C0

1 = 5, C0
2 = 10, A1 = 5.1, B1

π = (−4, 0)⊤, C1 = 5, C1
1 = 5, C1

2 = 1.25)



170 6 A Special Case: Two Correlated Assets

Figure 6.1 shows the optimal strategy for the first asset (upper plots) and the second asset (lower
plots) in state 0 for a correlation coefficient given by ρ = 0.25 (left plots) and ρ = 0.75 (right plots).
In case of ρ = 0.75 the deviation of the optimal strategy from the Merton strategy in the second asset
amounts to the significant size of about 93%.

6.2 Affine Intensity Functions

Again let Bi
π , (Bi

π,1, 0)⊤ so that the intensity function is given by

ϑi,1−i(π, c) = max{Ai + π1B
i
π,1, C

i}, (π, c) ∈ R
2 ×R

+
0 .

Lemma 6.2 (Maximizer of Hπ,i(y, ·)). For every y ∈ R
+
0 the maximizer

πi,∗(y) , arg max
π∈R2

Hπ,i(y, π), i = 0, 1,

is given by

π0,∗(y) =





π0,M
1 + 1

R
1

1−(ρ0)2
1

(σ0
1)2
B0

π,1
1

1−R(e−(1−R)(y∧h0,crit) − 1)

π0,M
2 − 1

R
ρ0

1−(ρ0)2
1

σ0
1σ0

2
B0

π,1
1

1−R(e−(1−R)(y∧h0,crit) − 1)



 ,

π1,∗(y) =



























(

π1,M
1

π1,M
2

)

if y < h1,crit,





π1,M
1 + 1

R
1

1−(ρ1)2
1

(σ1
1)2
B1

π,1
1

1−R(e(1−R)y − 1)

π1,M
2 − 1

R
ρ1

1−(ρ1)2
1

σ1
1σ1

2
B1

π,1
1

1−R(e(1−R)y − 1)



 if y ≥ h1,crit,

where

h0,crit , − 1
1−R ln

(

−(1 −R)
(A0+π0,M

1 B0
π,1−C0)+

1
R

1
1−(ρ0)2

1

(σ0
1)2

(B0
π,1)

2 + 1
)

,

h1,crit , 1
1−R ln

(

(1 −R)2
(A1+π1,M

1 B1
π,1−C1)−

1
R

1
1−(ρ1)2

1

(σ1
1)2

(B1
π,1)2

+ 1
)

,

and

πi,M
1 = 1

R

(

1
1−(ρi)2

ηi
1

(σi
1)2

− ρi

1−(ρi)2
ηi
2

σi
1σi

2

)

, π0,crit
1 = π0,M

1 −
(A0+π0,M

1 B0
π,1−C0)+

B0
π,1

,

πi,M
2 = 1

R

(

1
1−(ρi)2

ηi
2

(σi
2)2

− ρi

1−(ρi)2
ηi
1

σi
1σi

2

)

, π0,crit
2 = π0,M

2 + ρ0 σ0
1

σ0
2

(A0+π0,M
1 B0

π,1−C0)+

B0
π,1

.

The ODEs for the functions g and h are given by
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h′(t) = − (Ψ0 − Ψ1) +
(

εδ
ε−(ε−δ)e−δ(T−t)

) 1
R e−

1−R
R

g(t) R
1−R(e

1−R
R

h(t) − 1)

− C0 1
1−R(e−(1−R)h(t) − 1) + C1 1

1−R(e(1−R)h(t) − 1)

− (A0 + π0,M
1 B0

π,1 − C0) 1
1−R(e−(1−R)(h(t)∧h0,crit) − 1)

− 1
2

1
R

1
1−(ρ0)2

1
(σ0

1)2
(B0

π,1)
2 1

(1−R)2
(e−(1−R)(h(t)∧h0,crit) − 1)2

+ (A1 + π1,M
1 B1

π,1 − C1) 1
1−R(e(1−R)(h(t)∨h1,crit) − 1)

+ 1
2

1
R

1
1−(ρ1)2

1
(σ1

1)2
(B1

π,1)
2 1

(1−R)2
(e(1−R)(h(t)∨h1,crit) − 1)2,

(6.3)

g′(t) = − Ψ0 + εδ
ε−(ε−δ)e−δ(T−t)

(

1 − R
1−R

((

εδ
ε−(ε−δ)e−δ(T−t)

)
1−R

R e−
1−R

R
g(t) − 1

)

)

− C0 1
1−R(e−(1−R)h(t) − 1)

− (A0 + π0,M
1 B0

π,1 − C0) 1
1−R(e−(1−R)(h(t)∧h0,crit) − 1)

− 1
2

1
R

1
1−(ρ0)2

1
(σ0

1)2
(B0

π,1)
2 1

(1−R)2
(e−(1−R)(h(t)∧h0,crit) − 1)2

(6.4)

subject to the boundary condition h(T ) = g(T ) = 0.

Dependency of πi,∗, g and h on ρi. As already in the previous section on step intensity functions
the optimal portfolio proportion in the second asset deviates from the Merton proportion although
the strategy in the second asset does not affect the regime shift intensities. Again the large investor
can compensate parts of the deviation from the Merton strategy in the first asset with an adequate
deviation from the Merton strategy in the second asset. In contrast to the step intensity case the size
of the deviation is influenced by the existence of a second, correlated asset to a greater extend than
in the step intensity case. Whereas the critical strategy π0,crit

1 remains unaffected as in the last section
the candidate solution π̃i,∗ now changes directly when adding a second, correlated asset.

Again the impact of the correlation coefficient on the optimal strategy and the functions g and h is
not monotonic since the Merton strategy depends in a non-monotonic way on ρi.

Figure 6.2 shows the optimal strategy for the first asset (upper plots) and the second asset (lower
plots) in state 0 for a correlation coefficient given by ρ = 0.25 (left plots) and ρ = 0.75 (right plots).
Notice that for ρ = 0.75 the relative deviations from the Merton strategy are higher (+20% in stock 1,
-11% in stock 2) than in case of ρ = 0.25 (+8% in stock 1, -2% in stock 2). This suggests that the large
investor makes use of a higher correlation in that he can increase the deviation from Merton proportion
in the first stock yielding better regime shift intensities while compensating this larger deviation with
a suitable position in the second asset.
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Figure 6.2: π0,∗
j and π0,M

j as functions of t for ρ = 0.25 (left) and ρ = 0.75 (right)

(r0 = r1 = 0.03, η0 = (0.1, 0.07)⊤, η1 = (0.02, 0.05)⊤, σ0
1 = 0.3, σ0

2 = 0.2, σ1
1 = 0.6, σ1

2 = 0.4,
δ = 0.035, ε = 1, R = 3, T = 0.5,

A0 = 16.5, B0
π = (−5, 0)⊤, C0 = 14, A1 = 5.5, B1

π = (4, 0)⊤, C1 = 0)
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7 Model Comparisons

In this section we discuss comparisons of the aforementioned variants of the investment problems with
each other, with the classical Merton investment problem and the Bäuerle-Rieder investment problem.

When comparing two investment problems, resp. models A and B we denote by xi
A(t), resp. xi

B(t),
the wealth that is required in state i at time t to generate the maximal expected utility from terminal
wealth and intermediate consumption given by vi

A(t, xi
A), resp. vi

B(t, xi
B), in model A, resp. model B.

In order to compare investment problem A with investment problem B we determine the wealth that
would be necessary in model B to obtain the same maximal expected utility from terminal wealth and
intermediate consumption as in model A equipped with xi

A(t) at time t. Thus we are searching xi
B(t)

such that vi
A(t, xi

A) = vi
B(t, xi

B) given xi
A(t). Therefore we consider

vi
A(t, xi

A(t)) = vi
B(t, xi

B(t))

⇔ 1
1−RfA(t)

((

xi
A(t)egA(t)−1{i=1}hA(t)

)1−R
− 1
)

= 1
1−RfB(t)

((

xi
B(t)egB(t)−1{i=1}hB(t)

)1−R
− 1
)

⇔ xi
A(t)egA(t)−1{i=1}hA(t) = xi

B(t)egB(t)−1{i=1}hB(t)

⇔
xi
A(t)−xi

B(t)

xi
A(t)

= 1 − egA(t)−1{i=1}hA(t)−(gB(t)−1{i=1}hB(t))

Notice that fA = fB since the function f 6= 0 is independent of the choice of the intensity function and
thus independent of the models that we are discussing here.

The wealth ratio defined by

wi
A,B(t) , 1 − egA(t)−1{i=1}hA(t)−(gB(t)−1{i=1}hB(t))

attains values in (−∞, 1] and satisfies wi
A,B(T ) = 0. It measures the profitability, resp. unprofitability

of model B relative to model A when starting at time t ∈ [0, T ] in state i. As t converges towards T
the wealth ratio converges towards 0. This is because the difference between two models vanishes when
the time to maturity converges towards 0.

If wi
A,B(t) > 0 then it would suffice to begin with an initial wealth of xi

B(t) = (1−wi
A,B(t))xi

A(t) < xi
A(t)

at time t in model B in order to achieve the same utility results as in model A, i.e. model B would be
more profitable than model A. If otherwise wi

A,B(t) < 0 then the converse is true; the investor needed

an initial wealth of xi
B(t) = (1 − wi

A,B(t))xi
A(t) > xi

A(t) at time t in model B in order to achieve the
same utility results as in model A, i.e. model B would be less profitable than model A.

Hence, if the investor could choose between investment problem A and investment problem B then
the wealth ratio wi

A,B(t) measures the price as percentage of the initial wealth in investment problem
A the investor would have to pay, resp. would receive, for choosing investment problem B. Those
comparisons seem to be quite theoretical and without any practical use as usually the investor is not
in the position to choose the market model in which he acts. However we will see later on that such
comparisons are well suited for analyzing interesting properties of the particular model such as the
parameter sensitivity.

At first glance, the concept of the wealth ratio can only be used to compare the investment problems
that we considered in Section 4 (Subsection 7.1), e.g. portfolio-dependent models and consumption-
dependent models. Further we can utilize the concept of the wealth ratio to analyze the impact of
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parameter changes within a particular model (Subsection 7.2). But moreover the wealth ratio is even
suitable to determine the loss a large investor would have to face if he neglected his influence on the
market (Subsection 7.3).

7.1 Comparison of the Different Investment Problems

At first we compare the investment problem for a large investor with the Merton investment problem
(Subsection 7.1.1). Thereafter in Subsection 7.1.2 comparisons of similar models with different types
of intensity functions are made, e.g. we compare the portfolio-dependent, step intensity model with
the portfolio-dependent, affine intensity model. Finally we take a look at the difference between mod-
els having the same type of intensity function (Subsection 7.1.3), e.g. the portfolio-dependent, affine
intensity model and the consumption-dependent, affine intensity model. The comparisons with the
Bäuerle-Rieder investment problem are discussed in Subsection 7.3.

7.1.1 Comparison with the Merton Investment Problem

When comparing the investment problem for a large investor with the Merton investment problem one
first has to determine which particular Merton investment problem to choose. It is reasonable to use
the same model parameters as in the large investor problem that should be compared with except for
the market parameters r, η and σ. Every choice of those three parameters implies a particular utility
growth potential ΨM. Given the large investor problem with market parameters ri, ηi and σi and
corresponding utility growth potentials Ψi, where Ψ0 > Ψ1, we can differentiate three possible cases;
ΨM ≤ Ψ1, Ψ1 < ΨM < Ψ0 and ΨM ≥ Ψ0.

In case of ΨM ≤ Ψ1 it is clear that the large investor should prefer the large investor problem to
the Merton investment problem. If ΨM < Ψ1 then the market of the Merton investment problem is
less profitable than both market states of the large investor problem. However if ΨM = Ψ1 then the
Merton market attains the same profitability as the market in the adverse state 1 – in terms of the
utility growth potential. But the large investor model involves the possibility that the market setting
could improve. Thus it is to be preferred to the Merton model (cf. Figure 7.1). On the contrary, given
ΨM ≥ Ψ0, the large investor would choose the Merton problem instead of the large investor problem
for the analog reason (cf. Figure 7.4).

However, when Ψ1 < ΨM < Ψ0 then it is a priori not clear whichever model is preferable. Examples
for this case are given in Figures 7.2 and 7.3. In the example of Figure 7.2 ΨM is closer to Ψ1 than
to Ψ0, whereas in Figure 7.3 the opposite holds true. Notice that although ΨM < Ψ0 in Figure 7.3
the Merton investment problem turns out to be favorable when compared with the large investor
investment problem. This could be explained by the fact that the market setting in the Merton model
does not change, i.e. there is no risk concerning the market parameters, whereas in the large investor
model the market situation could worsen – a risk the investor has to face. Apparently in the example
of Figure 7.3 the large investor would rather accept a lesser profitable market – in terms of the utility
growth potential – than choosing a market that could be better but although worse than the Merton
market, i.e. the related risk is too high.

But even if the parameters ri, ηi and σi, resp. rM, ηM and σM, and thus the utility growth potentials
Ψi, resp. ΨM did not vary one could set up two different regime shift intensities so that the Merton
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investment problem is not preferable to the large investor problem in the first setting (cf. Figure 7.5),
whereas the converse is true in the second setting (cf. Figure 7.6).

Notice moreover that the wealth ratio shown in the left picture of Figure 7.5 is neither non-negative
nor non-positive, i.e. it changes the sign while t is growing. Thus the large investor’s rating of the two
investment problems may change during time.

One main reason for the uncertainty of the large investor’s preferences solely based on the utility
growth potentials and for the time-dependency of the model rating is the fact that the profitability
of the market in the large investor problem is described not only by the two utility growth potentials
Ψ0 and Ψ1 but also by the regime switching intensities that link the two market states. Since those
intensities are moreover dependent of the optimal strategy the comparison with a chosen Merton
investment problem becomes quite complex.
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Figure 7.1: Wealth ratios w0
M,PDsteps

(left), w1
M,PDsteps

(right) as function of t in case of ΨM ≤ Ψ1

(r0 = r1 = rM = 0.03, η0 = 0.1, η1 = 0.02, ηM = 0.02, σ0 = 0.3, σ1 = 0.6, σM = 0.6,
i.e. Ψ0 = 0.052̄, Ψ1 = 0.0302̄, ΨM = 0.0302̄, and δ = 0.035, ε = 1, R = 2.5, T = 2,

A0 = 17, B0
π = −5, C0 = 14, C0

1 = 5, C0
2 = 10, A1 = 5.5, B1

π = −7, C1 = 5, C1
1 = 5, C1

2 = 1.25)



176 7 Model Comparisons

0

0.002

0.004

0.006

0.008

0 0.5 1 1.5 2

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 0.5 1 1.5 2

Figure 7.2: Wealth ratios w0
M,PDsteps

(left), w1
M,PDsteps

(right) as function of t in case of Ψ1 < ΨM < Ψ0

(r0 = r1 = rM = 0.03, η0 = 0.1, η1 = 0.02, ηM = 0.06, σ0 = 0.3, σ1 = 0.6, σM = 0.45,
i.e. Ψ0 = 0.052̄, Ψ1 = 0.0302̄, ΨM = 0.0335̄ and δ = 0.035, ε = 1, R = 2.5, T = 2,

A0 = 17, B0
π = −5, C0 = 14, C0

1 = 5, C0
2 = 10, A1 = 5.5, B1

π = −7, C1 = 5, C1
1 = 5, C1

2 = 1.25)
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Figure 7.3: Wealth ratios w0
M,PDsteps

(left), w1
M,PDsteps

(right) as function of t in case of Ψ1 < ΨM < Ψ0

(r0 = r1 = rM = 0.03, η0 = 0.1, η1 = 0.02, ηM = 0.09, σ0 = 0.3, σ1 = 0.6, σM = 0.3,
i.e. Ψ0 = 0.052̄, Ψ1 = 0.0302̄, ΨM = 0.048 and δ = 0.035, ε = 1, R = 2.5, T = 2,
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Figure 7.4: Wealth ratios w0
M,PDsteps

(left), w1
M,PDsteps

(right) as function of t in case of ΨM ≥ Ψ0

(r0 = r1 = rM = 0.03, η0 = 0.1, η1 = 0.02, ηM = 0.12, σ0 = 0.3, σ1 = 0.6, σM = 0.25,
i.e. Ψ0 = 0.052̄, Ψ1 = 0.0302̄, ΨM = 0.07608 and δ = 0.035, ε = 1, R = 2.5, T = 2,

A0 = 17, B0
π = −5, C0 = 14, C0

1 = 5, C0
2 = 10, A1 = 5.5, B1

π = −7, C1 = 5, C1
1 = 5, C1

2 = 1.25)
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Figure 7.5: Wealth ratios w0
M,PDsteps

(left), w1
M,PDsteps

(right) as function of t in case of Ψ1 < ΨM < Ψ0

(r0 = r1 = rM = 0.03, η0 = 0.1, η1 = 0.02, ηM = 0.06, σ0 = 0.3, σ1 = 0.6, σM = 0.25,
i.e. Ψ0 = 0.052̄, Ψ1 = 0.0302̄, ΨM = 0.04152 and δ = 0.035, ε = 1, R = 2.5, T = 2,

A0 = 17, B0
π = −5, C0 = 14, C0

1 = 5, C0
2 = 10, A1 = 5.5, B1
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Figure 7.6: Wealth ratios w0
M,PDsteps

(left), w1
M,PDsteps

(right) as function of t in case of Ψ1 < ΨM < Ψ0

(r0 = r1 = rM = 0.03, η0 = 0.1, η1 = 0.02, ηM = 0.06, σ0 = 0.3, σ1 = 0.6, σM = 0.25,
i.e. Ψ0 = 0.052̄, Ψ1 = 0.0302̄, ΨM = 0.04152 and δ = 0.035, ε = 1, R = 2.5, T = 2,

A0 = 17, B0
π = −5, C0 = 14, C0

1 = 1, C0
2 = 2, A1 = 5.5, B1

π = −7, C1 = 5, C1
1 = 10, C1

2 = 9)

7.1.2 Comparison of Similar Investment Problems

In the following we compare the models with step intensity functions with the ones with affine intensity
functions for the same kind of the investor’s influence, i.e. we consider the wealth ratios wi

PDaffine,PDsteps
,

wi
CDaffine,CDsteps

and wi
PCDaffine,PCDsteps

. In order to make the models comparable we have to adjust the

particular intensity functions in a suitable way (cf. Figure 7.7). Let therefore

ϑi,1−i
steps(π, c) = Ci

1,steps1{Ai
steps+π⊤.Bi

π,steps+Bi
c,stepsc≤Ci

steps}
+ Ci

2,steps1{Ai
steps+π⊤.Bi

π,steps+Bi
c,stepsc>Ci

steps}
,

ϑi,1−i
affine(π, c) = max{Ai

affine + π⊤.Bi
π,affine +Bi

c,affinec, C
i
affine}.

Setting

A0
steps = A0 B0

π,steps = B0
π B0

c,steps = B0
c C0

steps = C0 C0
1,steps = C0

A0
affine = A0 B0

π,affine = B0
π B0

c,affine = B0
c C0

affine = C0 C1
1,steps = C1

1

A1
steps = −A1 B1

π,steps = −B1
π B1

c,steps = −B1
c C1

steps = −C1 C0
2,steps = C0

2

A1
affine = A1 B1

π,affine = B1
π B1

c,affine = B1
c C1

affine = C1 C1
2,steps = C1

for given parameters Ai, Bi
π, Bi

c, C
i, C0

2 < C0 and C1
1 > C1 the comparable intensity functions read

ϑ0,1
steps(π, c) = C01{A0+π⊤.B0

π+B0
c c≤C0} + C0

21{A0+π⊤.B0
π+B0

c c>C0},

ϑ0,1
affine(π, c) = max{A0 + π⊤.B0

π +B0
c c, C

0},

ϑ1,0
steps(π, c) = C1

11{−A1−π⊤.B1
π−B1

c c≤−C1} + C11{−A1−π⊤.B1
π−B1

c c>−C1},

ϑ1,0
affine(π, c) = max{A1 + π⊤.B1

π +B1
c c, C

1}.
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Figure 7.7: Comparable intensity functions ϑi,1−i
steps and ϑi,1−i

affine

Figure 7.7 illustrates that it is a priori not clear which kind of intensity function is favorable for the
large investor. This depends highly on the position of the Merton strategy relative to two neuralgic
’points’ – the one at which ϑi,1−i

affine exhibits its kink and the one at which ϑi,1−i
steps and the affine branch of

ϑi,1−i
affine coincide. The time- and intensity-dependency of the Merton consumption rate even worsen this

problem concerning the comparability.
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Figure 7.8: Wealth ratio wi
PDaffine,PDsteps

in state 0 (left) and state 1 (right) as function of t

(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.02, σ0 = 0.3, σ1 = 0.6, δ = 0.035, ε = 1, R = 3, T = 1,

A0 = 17, B0
π = −5, C0 = 5, C0

2 = 10, A1 = 5.5, B1
π = 4, C1 = 1.25, C1

1 = 5)

The Figures 7.8, 7.9 and 7.10 show the wealth ratios of interest in different settings with comparable
intensities. Neither the step intensity functions nor the affine intensity functions are generally favorable
for the large investor. In the example of Figure 7.8 the step intensity functions are preferable whereas
in the example of Figure 7.9 the converse is true. Notice further that w0

PCDaffine,PCDsteps
as shown in

left picture of Figure 7.10 is positive until about t ≈ 0.85. Thereafter it is negative. This reflects
the aforementioned problem concerning the comparability of the two models with step, resp. affine
intensities.
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Figure 7.9: Wealth ratio wi
CDaffine,CDsteps

in state 0 (left) and state 1 (right) as function of t

(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.01, σ0 = 0.2, σ1 = 0.7, δ = 0.035, ε = 0, R = 0.5, T = 2,
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Figure 7.10: Wealth ratio wi
PCDaffine,PCDsteps

in state 0 (left) and state 1 (right) as function of t

(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.06, σ0 = 0.4, σ1 = 0.7, δ = 0.035, ε = 1, R = 1.5, T = 1,

A0 = 10, B0
π = −5, B0

c = 3, C0 = 10, C0
2 = 20, A1 = 6, B1

π = 7, B1
c = −5, C1 = 1.25, C1

1 = 5)
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7.1.3 Comparison of Investment Problems with Identical Intensity Type

In this subsection we dwell on comparisons of investment problem having the same type of inten-
sity function but different dependencies on the large investor, i.e. we compare the solely portfolio-
dependent, the solely consumption-dependent and the combined portfolio- and consumption-dependent
models with each other. The dependency on the investor’s strategy is characterized by the parameters
Ai, Bi

π, Bi
c, C

i. For a given quadruple (Ai, Bi
π, B

i
c, C

i) we compare the portfolio-dependent variant
with (Ai, Bi

π, 0, C
i), the consumption-dependent variant with (Ai, 0, Bi

c, C
i) and the portfolio- and

consumption-dependent variant with (Ai, Bi
π, B

i
c, C

i) of the investment problem with step, resp. affine
intensity functions.

In the example of Figure 7.11 the addition of the consumption-dependency to the portfolio-dependency
is not profitable for the large investor. However this effect shrinks when the time to maturity decreases.
Figure 7.12 shows an example in which the inclusion of the portfolio-dependency to the consumption-
dependency would be favorable for the investor. Note here the non-monotonic behavior of the wealth
ratios. The addition of the portfolio-dependency is most profitable near t ≈ 1. Finally an example
in which the consumption-dependent model is worse than the portfolio-dependent model is given in
Figure 7.13. Again as in Figure 7.11 for smaller times t the consumption-dependent model is worse
than for larger t.
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Figure 7.11: Wealth ratio wi
PDsteps,PCDsteps

in state 0 (left) and state 1 (right) as function of t

(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.02, σ0 = 0.3, σ1 = 0.6, δ = 0.035, ε = 1, R = 1, T = 1,
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c = 5, C0 = 14, C0
1 = 5, C0

2 = 10, A1 = 5.5, B1
π = −7, B1

c = 7.5, C1 = 5, C1
1 = 5, C1

2 = 1.25)
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in state 0 (left) and state 1 (right) as function of t
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Figure 7.13: Wealth ratio wi
PDaffine,CDaffine

in state 0 (left) and state 1 (right) as function of t
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7.2 Parameter Sensitivity

We now investigate how changes of the parameters of the intensity function ϑi,1−i impact on the
optimal strategy and the value function. At first glance one would think of ceteris paribus analyses,
i.e. varying one parameter while keeping the others fix. However depending on the particular version
of the intensity functions it turns out to be quite suitable to vary several parameters at once. The
reason for this is that solely changing the parameter Ai, Bi

π, Bi
c or Ci may impact on the position of

the Merton strategy relative to the separating hyperplane between Fi and R
n̄ ×R

+
0 \ Fi in the model

with step intensity functions, resp. Ii and R
n̄ × R

+
0 \ Ii in the model with affine intensity functions,

measured by dπ,c,i. But regarding the Merton strategy as a reference strategy it may be preferable to
analyze also those variations of the intensity functions that keep the position of the Merton strategy
fix. We call those variations Merton invariant intensity variations.

As we have already seen in Remark 4.6 the Merton type consumption rate is time-dependent except
for the case of ε = 0 and depends moreover on the regime shift intensities unless R = 1. Within our
setting of intensity functions with constant parameters the aforementioned Merton invariant intensity
variations thus only work either in the models with solely portfolio-dependent intensities denoted by
(PD) or in the models with consumption-dependent intensities in case of ε = 0 denoted by (CDε=0) and
(PCDε=0). In the following we discuss two typical Merton invariant intensity variations – the intensity
shift and the rotation around the Merton strategy.

In order to change the constant Ai in a Merton invariant way we have to vary Ci by the same amount.
We call such a simultaneous change of the pair (Ai, Ci) an intensity shift. Notice that this kind of
variation is only suitable for the affine intensity functions since in case of the step intensity functions
it would not cause any difference if we took the pair (Ai + C,Ci + C) instead of the pair (Ai, Ci)
where C ∈ [−Ci,∞) is a constant. To achieve the corresponding intensity shift in the setting with step
intensity functions one has to vary Ci

1 and Ci
2 by the same amount.

Further when analyzing the sensitivity of the optimal strategy on the parameter Bi
π we have to change

the parameter Ai in such a way that the position of the Merton strategy does not change. Denote by
(Âi, B̂i

π) the pair of the reference parameters. When changing B̂i
π into B̃i

π we would have to choose
Ãi = Âi + (πi,M )⊤.(B̂i

π − B̃i
π) such that Ãi + (πi,M )⊤.B̃i

π = Âi + (πi,M )⊤.B̂i
π. We call this variation

of the pair (Ai, Bi
π) a rotation around the Merton strategy. Concerning changes of Bi

c in the models
(CDε=0) and (PCDε=0) the parameter Ai does not need to be adjusted since ci,M (t) = 0. Thus a
rotation around the Merton strategy consists just of a variation of the parameter Bi

c.

7.2.1 Step Intensity Functions

We first consider some ceteris paribus intensity variations and then go on with the Merton invariant
intensity variations.

Ceteris paribus intensity variations. Figure 7.14 shows the wealth ratios for the comparisons
of the model (PD1) with the models (PDk), k = 1, . . . , 5, where A0

1 = 16.5, A0
2 = 16.75, A0

3 = 17,
A0

4 = 17.25 and A0
5 = 17.5. In this particular setting an increasing A0 means that the Merton strategy

moves deeper in the complementary half space Rn̄\Fπ,0. Thus the bigger A0 the more the large investor
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has to deviate from the Merton strategy in order to achieve favorable regime shift intensities. Therefore
big values of A0 are disadvantageous for the large investor.
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Figure 7.14: Wealth ratio w0
PD1,PDk

for different values of A0 as function of t
(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.02, σ0 = 0.3, σ1 = 0.6, δ = 0.035, ε = 1, R = 2.5, T = 5,

A0
1 = 16.5, B0

π = −5, C0 = 14, C0
1 = 5, C0

2 = 10, A1 = 5.5, B1
π = −7, C1 = 5, C1

1 = 5, C1
2 = 1.25)

Figure 7.15 shows the wealth ratios for the comparisons of the model (CD1) with the models (CDk),
k = 1, . . . , 5, where C1

1,1 = 5, C1
1,2 = 10, C1

1,3 = 15, C1
1,4 = 20 and C1

1,5 = 25. The augmentation of

the intensity parameter C1
1 comes along with an increase of the possible extent of the large investor’s

influence, i.e. the chances for a jump from the adverse market state to the favorable one grow. Hence
the large investor benefits from a bigger C1

1 .

Merton invariant intensity variations. Figure 7.16 shows the consequences of an intensity shift
in state 0. The wealth ratios are decreasing as the intensity level is increasing, i.e. the large investor
benefits from small intensity levels which is the intuitive result.

The impact of a rotation around the Merton strategy is shown in Figure 7.17. It displays the wealth
ratios for the comparisons of the model (PD1) with the models (PDk), k = 1, . . . , 5, where (A0

1, B
0
π,1) =

(17,−5.5), (A0
2, B

0
π,2) = (16.91,−5.25), (A0

3, B
0
π,3) = (16.82,−5), (A0

4, B
0
π,4) = (16.72,−4.75) and

(A0
5, B

0
π,5) = (16.63,−4). Notice that here B0

π,k does not stand for the k-th component of B0
π. In

this context we denote by B0
π,k the value of B0

π in the k-th setting.

Figure 7.18 shows the particular wealth ratios for the models with (A0
1, B

0
π,1) = (17, 12.5), (A0

2, B
0
π,2) =

(15.44, 13.75), (A0
3, B

0
π,3) = (13.88, 15), (A0

4, B
0
π,4) = (12.31, 16.25) and (A0

5, B
0
π,5) = (10.75, 15).

The Figures 7.17 and 7.18 suggest that for every time t the wealth ratio w0
PD1,PDk

(t) is decreasing as

|B0
π| is decreasing as long as the sign of B0

π does not change, i.e. the investor appears to benefit from
a sensitive market. At first glance this seems counterintuitive – one would expect that the investor
profits from a lesser sensitive market. However the large investor can use the sensitivity of the market
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Figure 7.15: Wealth ratio w0
CD1,CDk

for different values of C1
1 as function of t
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to influence the regime shift intensities in a favorable way. From this point of view a large sensitivity
goes along with the fact that in order to achieve the same regime shift intensity the investor does not
need to deviate as far from the Merton strategy as he had to if the sensitivity was smaller.
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Figure 7.19: Wealth ratio w0
CD1,CDk

for different values of B0
c as function of t

(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.02, σ0 = 0.4, σ1 = 0.7, δ = 0.035, ε = 0, R = 1.5, T = 2,

A0 = 11.75, B0
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2 = 25, A1 = 5.4, B1

c = −15, C1 = 5.3, C1
1 = 20, C1

2 = 2.5)

Figure 7.19 suggests that a larger sensitivity of the market concerning the large investor’s consumption
is favorable for the large investor as it was the case in the portfolio-dependent model. The figure displays
the wealth ratios for the comparisons of the model (CDε=0,1) with the models (CDε=0,k), k = 1, . . . , 5,
where B0

c,1 = −30, B0
c,2 = −27.5, B0

c,3 = −25, B0
c,4 = −22.5 and B0

c,5 = −20.

7.2.2 Affine Intensity Functions

As in the case of step intensity functions we first consider some ceteris paribus intensity variations and
then go on with the Merton invariant intensity variations.

Ceteris paribus intensity variations. Figure 7.20 shows that increasing values of Ai imply that
the intensities ϑi,1−i increase and moreover that the half spaces of strategies that impact on the regime
shift intensities Ii are getting larger. Hence bigger values of A0 are disadvantageous than smaller ones,
whereas the opposite is true for A1.

Figure 7.21 shows the wealth ratios for the comparisons of the model (CD1) with the models (CDk),
k = 1, . . . , 5, where A1

1 = 10, A1
2 = 11.25, A1

3 = 12.5, A1
4 = 13.75 and A1

5 = 15. As we have already seen
in Figure 7.20 the large investor benefits from bigger values of A1.

Figure 7.22 shows the wealth ratios for the comparisons of the model (PCD1) with the models (PCDk),
k = 1, . . . , 5, where C1

1 = 2.5, C1
2 = 3.75, C1

3 = 5, C1
4 = 6.25 and C1

5 = 7.5. The large investor profits
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from the growing minimal regime shift intensity in market state 1.

Merton invariant intensity variations. Figure 7.23 shows the consequences of an intensity shift
in state 0. It displays the wealth ratios for the comparisons of the model (PD1) with the models
(PDk), k = 1, . . . , 5, where (A0

1, C
0
1 ) = (5, 10), (A0

2, C
0
2 ) = (7.5, 12.5), (A0

3, C
0
3 ) = (10, 15), (A0

4, C
0
4 ) =

(12.5, 17.5) and (A0
5, C

0
5 ) = (15, 20). The wealth ratios are decreasing as the intensity level is increasing,

i.e. the large investor benefits from small intensity levels which is the intuitive result.

The rotation around the Merton strategy is dealt with in Figures 7.24 to 7.26. As already in the step
intensity case the Figures 7.24 and 7.25 suggest that bigger absolute values of the parameter Bi

π are
advantageous given the sign of Bi

π does not change. The same holds true for the consumption parameter
Bi

c (cf. Figure 7.26).
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7.3 Price of Misconception

In order to determine the loss the large investor would have to face if he neglected his influence on the
market we first have to discuss what it means that the investor ignores his influence. One would think
that the investor would follow the Merton strategy instead of the optimal strategy. But whereas the
Merton portfolio proportions are unique – independent of the model – the consumption rate of Merton
type depends on the particular model, resp. on the regime shift intensities; except for a logarithmic
investor with R = 1, as we have already seen in Remark 4.6. Hence it is reasonable to assume that
the investor follows a strategy of the Merton type. However it remains to decide which particular
type among the different Merton types should be used. An expedient choice would be the Merton
type consumption rate resulting from the Bäuerle-Rieder model with regime shift intensities given by
ϑi,1−i

BR = ϑi,1−i(πi,M , ci,M (t)), i = 0, 1.

However, as long as Bi
c 6= 0 and ε 6= 0 the inclusion of the Merton type consumption rate causes some

difficulties. First of all we have only discussed the Bäuerle-Rieder model with constant regime shift
intensities. Only if Bi

c = 0 or ε = 0 then ϑi,1−i(πi,M , ci,M (t)) is time-independent. Further the inclusion
of the Merton consumption rate would cause a kind of circular argument since we needed the Merton
consumption rate which is an output of the Bäuerle-Rieder model in order to determine the regime
shift intensities which are an input of the Bäuerle-Rieder model. Again, only if Bi

c = 0 or ε = 0 then
ϑi,1−i(πi,M , ci,M (t)) is consumption-independent; except for the trivial case ε = 0 in which ci,M (t) = 0.
For the last two reasons we concentrate on the implications of the large investor’s misconception in the
portfolio-dependent model (PD) and in the models with dependency on consumption in case of ε = 0
(CDε=0) and (PCDε=0). Thus the particular regime shift intensities in the relevant Bäuerle-Rieder
model are given by ϑi,1−i

BR = ϑi,1−i(πi,M , 0).

Having specified the suitable regime shift intensities for the Bäuerle-Rieder model we obtain the optimal
strategy (πi,∗

BR, c
i,∗
BR) = (πi,M , ci,MBR ). In order to determine the expected utility from terminal wealth

and intermediate consumption a large investor would achieve when he neglected his influence on the
market we have to solve the HJB-system over the set of admissible strategies that are given just by
(πi,∗

BR, c
i,∗
BR(t)). It turns out that the value function of the Bäuerle-Rieder model with intensities given

by ϑi,1−i(πi,M , 0) equals the expected utility from terminal wealth and intermediate consumption of
the large investor in the models (PD), (CDε=0) or (PCDε=0) when following the Merton type strategy
(πi,∗

BR, c
i,∗
BR). The relevant wealth ratios for the analysis of the investor’s misconception in the particular

models are given by wi
BR,PD, wi

BR,CDε=0
and wi

BR,PCDε=0
.

In the following we illustrate the implications of the large investor’s misconception in the case of step
intensity functions (Subsection 7.3.1) and affine intensity functions (Subsection 7.3.2) with several
examples.

7.3.1 Step Intensity Functions

Figures 7.27 to 7.32 show the wealth ratios, resp. the prices of the investor’s misconception in the
model with step intensity functions. We present the wealth ratios for the three model variants men-
tioned above, i.e. (PD), (CDε=0) and (PCDε=0); each with two different investment horizons. In the
discussed examples the loss due to the misconception attains rather significant values of percentage or-
der. Moreover the loss gets bigger when the investment horizon T becomes larger. Hence the investor’s



7.3 Price of Misconception 193

influence on the market should not be neglected when setting up his investment strategy.
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Figure 7.32: Wealth ratio wi
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in state 0 (left) and state 1 (right) as function of t
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7.3.2 Affine Intensity Functions

Examples for the price of the investor’s misconception in the affine intensity setting are given in the
Figures 7.33 to 7.38. The wealth ratios for the three model variants mentioned above, i.e. (PD), (CDε=0)
and (PCDε=0) – each with two different investment horizons – are presented. As in the step intensity
case the loss due to the misconception attains rather significant values of percentage order that increase
with growing investment horizon T which again implies that the investor’s influence on the market
should not be neglected.
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Figure 7.33: Wealth ratio wi
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A0 = −7, B0
π = 20, C0 = 30, A1 = 10.1, B1

π = −10, C1 = 10)
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Figure 7.34: Wealth ratio wi
BR,PD in state 0 (left) and state 1 (right) as function of t

(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.01, σ0 = 0.3, σ1 = 0.7, δ = 0.035, ε = 0, R = 0.5, T = 10,

A0 = −7, B0
π = 20, C0 = 30, A1 = 10.1, B1

π = −10, C1 = 10)
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Figure 7.35: Wealth ratio wi
BR,CDε=0

in state 0 (left) and state 1 (right) as function of t
(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.01, σ0 = 0.2, σ1 = 0.7, δ = 0.035, ε = 0, R = 0.25, T = 2,

A0 = 20, B0
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Figure 7.36: Wealth ratio wi
BR,CDε=0

in state 0 (left) and state 1 (right) as function of t
(r0 = r1 = 0.03, η0 = 0.1, η1 = 0.01, σ0 = 0.2, σ1 = 0.7, δ = 0.035, ε = 0, R = 0.25, T = 20,

A0 = 20, B0
c = −90, C0 = 15, A1 = 0, B1

c = 0, C1 = 0.125)
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Figure 7.37: Wealth ratio wi
BR,PCDε=0

in state 0 (left) and state 1 (right) as function of t
(r0 = r1 = 0.035, η0 = 0.09, η1 = 0.01, σ0 = 0.2, σ1 = 0.5, δ = 0.04, ε = 0, R = 1.5, T = 2,
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Figure 7.38: Wealth ratio wi
BR,PCDε=0

in state 0 (left) and state 1 (right) as function of t
(r0 = r1 = 0.035, η0 = 0.09, η1 = 0.01, σ0 = 0.2, σ1 = 0.5, δ = 0.04, ε = 0, R = 1.5, T = 25,

A0 = 100, B0
π = −50, B0

c = −1000, C0 = 10, A1 = 8, B1
π = 25, B1

c = 0, C1 = 8)
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8 Conclusion

In this thesis we set up a continuous-time investment problem for a large investor whose investment
strategy influences the financial market. In order to include this influence in the model we described
the financial market as a regime model where the transition intensities are functions of the investor’s
strategy. After formulating the mathematical framework and the optimal investment problem of max-
imizing the expected utility from terminal wealth as well as from intermediate consumption we proved
a general verification theorem that covers jumps in the stock prices and a general class of intensity
functions. Thereafter we focused on a model with continuous asset prices and investigated three dif-
ferent kinds of intensity functions – constant, step and affine – that enabled us to solve the investment
problem explicitly for an investor with crra utility. We derived the solution following the stochastic
control approach for three variants of the aforementioned strategy-dependency – portfolio-dependency,
consumption-dependency and combined portfolio- and consumption-dependency. It turned out that
whereas the optimal portfolio strategy in the Merton problem and the Bäuerle-Rieder problem was
constant, in our model with portfolio-dependency it becomes a time-dependent function thus accom-
modating the impact on the market state. As in the Merton and the Bäuerle-Rieder problem the
optimal consumption rate is a time-dependent function but deviates from the Merton-type optimal
consumption rate in the cases with consumption-dependent intensities.

The sections on the solutions for investors with power and logarithmic utility were followed by a short
discussion of the special case of two correlated stocks. This showed that in case of correlated assets
deviations from the Merton strategy are possible although no direct intensity impact is given. Hence
deviations may occur for compensational reasons, too. Thereafter we investigated the differences of the
presented models. We found out that the investor’s preferences concerning the particular models vary
over time and may even change sign, i.e. during the investment period it is possible that the firstly
preferred model becomes disadvantageous after some time. The subsection on the parameter sensitivity
revealed that the large investor seems to benefit from a sensitive market which at first glance is quite
counterintuitive but turns out to be the logical consequence. In a sensitive market the large investor
does not have to deviate far from the Merton strategy in order to influence the market in his favor.
Finally we addressed the question what would be the loss the investor had to face if he neglected his
market impact. Here it turned out that – depending of course on the particular parameter setting –
the loss may be remarkably high.
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