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QUANTIFICATION OF THE EFFECTIVENESS OF A SAFETY
FUNCTION IN PASSENGER VEHICLES ON THE BASIS OF

REAL-WORLD ACCIDENT DATA

JENS-PETER KREISS AND TOBIAS ZANGMEISTER

Abstract. In this paper we deal with different statistical modeling of real world
accident data in order to quantify the effectiveness of a safety function or a safety
configuration (meaning a specific combination of safety functions) in vehicles. It is
shown that the effectiveness can be estimated along the so-called relative risk, even
if the effectiveness does depend on a confounding variable which may be categorical
or continuous. For doing so a concrete statistical modeling is not necessary, that is
the resulting estimate is of nonparametric nature.

In a second step the quite usual and from a statistical point of view classical
logistic regression modeling is investigated. Main emphasis has been laid on the
understanding of the model and the interpretation of the occurring parameters. It
is shown that the effectiveness of the safety function also can be detected via such
a logistic approach and that relevant confounding variables can and should be taken
into account. The interpretation of the parameters related to the confounder and the
quantification of the influence of the confounder is shown to be rather problematic.
All the theoretical results are illuminated by numerical data examples.

1. Introduction

It is a relevant topic in accident research to quantify the possible effectiveness of a
safety function or a safety configuration in passenger vehicles on the accident behavior.
When dealing with a primary safety function, it is most relevant to determine the
ability of this function to avoid accidents. In classical statistical theory one would
assume that two different groups of vehicles can be observed over a certain period (e.g.
one year) driving on the roads (experimental group and control group). The two groups
are supposed to only differ according to whether the respective vehicles are equipped
or not equipped with the safety function or safety configuration. Having observed the
accident behavior, one could compare the two relative frequencies of having a specific
type of accident in the two groups. To be a little bit more specific, we compare along
the just described lines the two probabilities of having a (specific) accident given that
the safety function is active or not. If we assume that for the random variable Z the
event Z = 1 indicates that the accident of interest occurs, where S ∈ {1, 0} indicates
whether the safety configuration is active or not and X denotes a further random
variable (confounder) which may have some influence on the accident behavior and/or
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the safety equipment, we compare the following conditional probabilities.

P (Z = 1|S = r,X = x) , r ∈ {0, 1}, x ∈ X(1.1)

Here X denotes the set of all possible outcomes of X. In applications X may be the
gender of the driver, the age of the driver or of the vehicle, the mass of the vehicle
or a selection (or even all) of these values as an example. So much for the pure
statistical theory, in the real world one cannot carry out such an investigation by
obvious reasons. The possible effectiveness of a safety function has to be quantified on
the basis of accident data, only. This immediately implies that one cannot estimate
the probability given in (1.1). If we extend the definition of the accident indicator Z
as follows

Z =

 0, accident neutral to the safety function of interest
1, accident sensitive to the safety function of interest
2, no accident or accident not reported to database

(1.2)

then it is reasonable to assume that we can estimate the conditional probability

P (Z = 1|S = r,X = x, Z ∈ {0, 1}), r ∈ {0, 1}, x ∈ X(1.3)

only. The expression in (1.3) is a conditional probability which is indicated by ”|” and
quantifies the probability of the event Z = 1 given that S = r (safety function active
(r = 1) or not (r = 0)), given that we are in the subgroup described by the confounder
X = x and given that an accident has occurred, that this accident is reported to the
underlying accident database and that this accident is neutral or sensitive to the safety
function or safety configuration of interest (Z ∈ {0, 1}).
However, in order to quantify a possible effectiveness of the safety function, we still are
interested in the following ratio

RR(x) :=
P (Z = 1|S = 1, X = x)

P (Z = 1|S = 0, X = x)
, x ∈ X ,(1.4)

which quantifies the performance of the safety function and is called relative risk in
the following. The quantity

1−RR(x) =: Eff(x), x ∈ X ,(1.5)

is a measure of the effectiveness of the safety function for the group X = x, and
describes the rate of accidents of interest within the group X = x which can be avoided
by the safety function. It is shown in this paper that the relative risk as well as the
effectiveness of a safety function or safety configuration reasonably can be estimated
on the basis of accident data only. There is no conceptual difference between the cases
where the confounder X is categorically or continuously distributed, as will be shown.

Of course many papers in the literature use a similar approach for quantifying the
effectiveness of a safety function (cf. Tingvall et al. (2003), Martin et al. (2003), Dang
(2004), Farmer (2004), Otto (2004), Page and Cuny (2004), Grömping et al. (2005)
and Kreiss et al. (2005). For a methodological overview concerning statistical methods
applied to real–world accident data we refer to Hautzinger (2003), Grömping et al.
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(2007) and Hautzinger et al. (2008), while a complete statistical description of the
logistic regression method can be found in Agresti (1996).

Many of the approaches rely on a logistic regression modeling of accident data, which
not really is necessary for estimating RR(x), cf. (1.4). The approach presented in
this paper is nonparametric in nature, which means that the proposed estimate for the
relative risk RR(x) does not rely on any parametric model like the logistic regression
for example. A further aspect of this paper is to shed some light on the interpretation
of the parameters of a logistic regression when applied to accident counts. In principle
there are at least two possibilities to introduce a logistic modeling to the situation of
interest. From a classical statistical point of view one would be tempted to model the
conditional probability of suffering an accident of interest, i.e.

P (Z = 1|S = r,X = x) =
exp(α0 + α1r + α2 · x)

1 + exp(α0 + α1r + α2 · x)
, r ∈ {0, 1}, x ∈ X .(1.6)

Here we assume for the sake of simple notation that X is univariate. Since we do
not observe absolute numbers of traffic participants and following the discussion from
above it may be more appropriate to use the logistic modeling in a different context as
follows

P (Z = 1|S = r,X = x, Z ∈ {0, 1}) =
exp(β0 + β1r + β2x)

1 + exp(β0 + β1r + β2x)
,(1.7)

i.e. modeling the conditional probability that an accident of interest occurs given that
the safety function is on or off (S = 1 or 0), that the confounder X takes the value
x (e.g. a specific age of the vehicle) and given that an accident, which is neutral or
sensitive to the safety function or safety configuration of interest has happened. Using
the model (1.7) the typically wanted assertion

P
(
Z = 0

∣∣∣S = r,X = x, Z ∈ {0, 1}
)

=
1

1 + exp(β0 + β1r + β2x)
(1.8)

holds, which definitely is not the case for the modeling in (1.6) because the event Z = 1
is not the complement of the event Z = 0. To see this recall that the complement to the
event that an accident of interest (i.e. sensitive to the safety function) has happened
({Z = 1}) means a neutral accident ({Z = 0}) or another accident or (and this by far is
largest group) no accident (or a not reported accident) at all has happened ({Z = 2}).
As it is argued above we need to get some information on the conditional probability
P{Z = 1|S = r,X = x} or more realistic about the ratio

P{Z = 1|S = 1, X = x}
P{Z = 1|S = 0, X = x}

.(1.9)

Later we will see what the implications of model (1.8) for (1.9) concerning this question
are. Moreover it is of great interest what the interpretations of the parameters β1 and
β2 (cf. model (1.7)) as well as α1 and α2 (cf. model (1.6)) are and how they relate
to each other. So the main focus of the paper is to shed some light on the correct
interpretation of results of (standard) logistic regression in accident analysis.
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The paper is organized as follows. We start in Section 2 with an example from real–
world accident data and continue in Section 3 with simulated accident data in order to
be able to observe what the two different modelings ((1.6) and (1.7)) really measure.
In simulated data we have the advantage that we really and exactly know what the
underlying situation is.
Section 4 in detail describes the methodology for estimating relevant quantities in
situations where the confounder can take a large number of different values. Here we
do not make any use of the logistic or any other parametric model.
The already mentioned two different logistic regression modelings as well as their as-
sumptions, consequences and interpretations are discussed in details in Sections 5 and
6.
In Section 7 we come back to our simulated accident data from Section 3 and apply
the developed methodology to this data. There we will see whether and if yes to what
extend we can estimate parameters of the two models.
Section 8 concludes.

2. Real–world accident data example

Consider the following results obtained from real–world accident data collected within
the German In Depth Accident Study (GIDAS). We focus on the quantification of the
effectiveness of the electronic stability control (ESC) for passenger vehicles in Germany.
From 12,833 recorded passenger vehicles involved in accidents, for which we know about
the ESC–equipment and about the gender of the driver, a logistic regression can be
carried through for the dependent variable

(2.1) Z =

{
1 , skidding accident

0 , accident neutral to ESC.

We have choosen the accident category parking accident as neutral to ESC, as we
assume that ESC has no influence on the risk of suffering a parking accident. The
observed data are condensed in the 2× 2 contingency tables displayed in the Tables 1
and 2, separately for female and male drivers.

ESC equipped
Accident type No Yes

Parking accident 90 9
Skidding accident 387 9

Table 1. Real-world accident data for passenger cars with female driver

From Tables 1 and 2 one easily can compare the rates of ESC–equipment for the group
of ESC–sensitive skidding accidents with the ESC–rates for the neutral accidents for
the two gender categories. Doing so we obtain for male drivers a computed (crude)
effectiveness of ESC of

(2.2) Effcrude,male = 1−ORcrude,male = 1− 38 · 191

782 · 31
= 0.701 = 70.1% ,
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ESC equipped
Accident type No Yes

Parking accident 191 31
Skidding accident 782 38

Table 2. Real-world accident data for passenger cars with male driver

and for female drivers of Effcrude,female = 76.7%. We refer to the value ORmale,crude =
(38 · 191)/(782 · 31) = 0.299 as the crude Odds ratio for accidental situations with
male drives and accordingly for female drivers (ORfemale,crude = 0.233). Adding all
accidents in the four categories for male and female drivers we obtain a (crude) overall
effectiveness of ESC of Effcrude = 71.8% . For the calculation of standard odds–ratios
we refer to Evans (1998) or Agresti (1996).

We refer to Kreiss et al. (2005), where a rather similar result is described and where
it is argued that the higher effectiveness of ESC in accidents with female drivers most
likely is a pseudo–effect, which can be explained by a high correlation of gender of
driver and size of vehicle. But this question is not a major point within this example
and also within this paper.

At this place we even do not want to stick to the absolute values of the effectiveness of
ESC but to the fact that we obtain a 9.5% higher effectiveness of ESC in accidental sit-
uations in which the vehicle was driven by a woman. Rather we interpret the obtained
result as an indication that we should include gender of driver as an explaining vari-
able (confounder) into the logistic regression analysis. We expect of course a positive
efficiency for both ESC–equipment and female drivers (compared to male drivers). In-
terestingly the results are not as expected. Standard software leads to the astonishing
result that the coefficient for the variable ESC (1=ESC on board) is −1.260 (leading
to an effectiveness of 71.6% but that the coefficient for the variable Gender of Driver
(1=female driver) mounts to +0.032, leading to a negative effectiveness of −3.3% for
female drivers. This is in contrast to the above results obtained when the accidents
are considered separately for male and female drivers.

In order to get an impression what is going on and what might go wrong we continue
in the next section with simulated accident data from a quite simple model, which we
will discuss in detail in Section 6. It is necessary to consider simulated accident data
because only in such a case we are able to see what may happen and to thoroughly
decide whether a suggested procedure works well or not.

3. Simulated data example

Let us assume that we have n = 1, 000, 000 vehicles on the road. Further assume that
30% of the vehicles are equipped with ESC. We think of gender of driver as a confounder
X (X = 1 refers to female and X = 0 to male) and observe skidding accidents (i.e.
Z = 1) as accidents sensitive to ESC (accidents of interest) and some kind of neutral
accidents (e.g. parking accidents) which refer to Z = 0. Assume that the probability
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of suffering a loss of control accident for a passenger car is modeled according to the
following logistic–type probability

P (Z = 1|S = r,X = x) =
exp(β0 + β1r + β2x)

1 + exp(β0 + β1r + β2x)
(3.1)

for all r, x ∈ {0, 1} and as parameters we choose

β0 = −5.0 β1 = −0.35, β2 = +0.50(3.2)

This means that we assume a rather high positive effectiveness of ESC as well as
a positive effectiveness of gender equal to male on the risk of suffering a skidding
accident. From the above settings we obtain Table 3, showing the probabilities for
suffering a skidding accident when driving a certain period, e.g. one year, on the roads.
Of course these probabilities have to be rather small, since accidents are rare events.
The assumption (3.1) not really coincides with the typical binary logistic regression
modeling for accident data. There typically the conditional probability

P (Z = 1|S = r,X = x, a reported accident has happened)(3.3)

is modeled by the expression given on the right hand side of (5.1). This really makes
a difference and we will discuss this point in detail in Sections 5 and 6.

Gender
ESC equipped male (”0”) female (”1”)

No (”0”) 6.69 · 10−3 1.11 · 10−2

Yes (”1”) 4.73 · 10−3 7.77 · 10−3

Table 3. Probabilities for a skidding accident

We further assume that 80% of the vehicles are driven by male drivers. The exact
distribution of male and female drivers within ESC-equipped and non-equipped vehicles
is as follows. Table 4 reflects that 30% of the vehicles are equipped with ESC and shows

Gender
ESC equipped 0 1 Σ

0 600, 000 100, 000 700, 000
1 200, 000 100, 000 300, 000
Σ 800, 000 200, 000 1, 000, 000

Table 4. Driver distribution in ESC-equipped and non-equipped vehicles

that 50% of the females drive an ESC-equipped vehicle and only 25% of the males drive
an ESC-equipped vehicle. All these values refer to exposure data (vehicles on the road)
and not accidents.
According to our assumption we obtain by Monte Carlo simulation from the probabil-
ities of Table 3 the accident counts displayed in Table 5.
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Gender
ESC equipped 0 1 Σ

0 4, 009 1, 097 5, 106
1 951 779 1, 730
Σ 4, 960 1, 876 6, 836

Table 5. Simulated numbers of skidding accidents ”Z=1”

Concerning the neutral accidents we consider the two scenarios shown in Tables 6 and
7.

Gender
ESC equipped 0 1 Σ

0 5, 760 960 6, 720
1 1, 920 960 2, 880
Σ 7, 680 1, 920 9, 600

Table 6. Neutral accidents ”Z=0” (scenario I)

and

Gender
ESC equipped 0 1 Σ

0 4, 050 2, 100 6, 150
1 1, 350 2, 100 3, 450

5, 400 4, 200 9, 600

Table 7. Neutral accidents ”Z=0” (scenario II)

Scenario I (cf. Table 6) rather accurately resembles the underlying exposure distribu-
tion (cf. Table 4) according to equipment with ESC and gender of the driver. Scenario
II (cf. Table 7) accurately resembles the ESC-equipment distribution within the two
gender groups (compare the distribution within the columns of Tables 4 and 7) but the
probability of suffering a neutral accident varies with the gender of the driver.
Using the SPSS–routine logistic regression the following estimates for scenario I (i.e.
skidding accidents according to Table 5 and neutral accidents according to Table 6)
are obtained:

β̂I0 = −0.362, β̂I1 = −0.341, β̂I2 = +0.495(3.4)

The estimated coefficient β̂I1 and β̂I2 perfectly match the underlying situation, cf. (3.2).

However the estimator β̂I0 is not consistent. This is not surprising because this value
mainly controls the absolute value of the corresponding probability in (3.1) and this is
not comparable with the relative frequencies within the group of accidents only.
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The results for scenario II, i.e. skidding accidents according to Table 5 and neutral
accidents according to Table 7, read as follows

β̂II0 = −0.010, β̂II1 = −0.341, β̂II2 = −0.640(3.5)

It can be seen that β̂II1 still works rather well, but β̂II2 does not. Why this is the case
will be discussed in Section 7.
Finally let us see what happens within our two data scenarios I and II when we apply
the logistic regression routine without taking the gender of the driver as a confounding
variable into account. Then we come up with simple 2 × 2 contingency tables (cf.
Tables 8 and 9)

Accident
ESC equipped neutral (”0”) skidding(”1”)

0 6, 720 5, 106
1 2, 880 1, 730

Table 8. Simulated accident data according to scenario I

Accident
ESC equipped 0 1

0 6, 150 5, 106
1 3, 450 1, 730

Table 9. Simulated accident data according to scenario II

The estimators for the effectiveness of ESC in the merged situation and without any
confounding variable are rather easily computed, cf. Evans (1998) or Agresti (1996),
and read as follows

1− EffI = 0.791 and 1− EffII = 0.604(3.6)

It can be seen that both values substantially differ from the underlying effectiveness of

1− EffModel = 0.705(3.7)

This demonstrates that it is essential to include a confounding variable when there is
one with a non–negligible influence.

4. Nonparametric Estimation of the Effectiveness
of a Safety Function

Let us stay with the definition

S =

{
0, safety function not active
1, safety function active

(4.1)
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a confounder X which takes values in X ⊂ R and Z as defined in (1.2). Now it is
the time to discuss what we mean by a neutral accident. In most available studies
it is assumed that a neutral accident is an accident or a set of accidents which by
the technical description of the safety function cannot be influenced by this safety
function. As an example when considering an ESC, which occurs in some studies, the
set of neutral accidents are chosen to be all rear end accidents. Since ESC is developed
to avoid skidding of a vehicle, it most likely has no influence on rear end crashes. But,
in almost all vehicles on the market an electronic stability control (ESC) comes with
a more or less sophisticated break assist (BAS) which in contrast could have a non
negligible effect on rear end crashes. By this reason it is at least questionable whether
or not a rear end crash is neutral to ESC. The question to answer is why we need
neutral accidents in order to estimate the relative risk given in (1.4). By elementary
definition of conditional probabilities one obtains

RR(x) =
P (Z = 1|S = 1, X = x)

P (Z = 1|S = 0, X = x)

=
P (Z = 1, S = 1, X = x)

P (Z = 1, S = 0, X = x)
· P (S = 0, X = x)

P (S = 1, X = x)

The first ratio can easily be estimated from accident data, but the second ratio cannot.
It is the ratio of probabilities of a randomly selected vehicle to belong to the group
X = x and being or being not equipped with the safety function. In order to be able
to estimate such quantities one needs information on the exposure rate of equipped
and non equipped vehicles regarding the safety function. Such information typically
is not directly available. Here, the neutral accident come into play. One typically
assumes that the observed share of equipped vehicles within the neutral accidental
group coincides to a high degree with the share of equipped vehicles on the road. I.e.
we assume the following:

Assumption A1. We assume that the events ”’S = r”’, r ∈ {0, 1}, and ”’Z = 0”’ are
independent (given that X = x holds). More exactly

P (S = r, Z = 0|X = x) = P (S = r|X = x) · P (Z = 0|X = x)r ∈ {0, 1} and x ∈ X
which is equivalent to

P (S = r|Z = 0, X = x) = P (S = r|X = x) r ∈ {0, 1} and x ∈ X

Assumption A1 immediately leads to

RR(x) =
P (Z = 1, S = 1, X = x)

P (Z = 1, S = 0, X = x)
· P (S = 0|X = x)

P (S = 1|X = x)

=
P (Z = 1, S = 1, X = x)

P (Z = 1, S = 0, X = x)
· P (S = 0, Z = 0|X = x)

P (S = 1, Z = 0|X = x)
, by A1(4.2)

=

P (Z=1,S=1,X=x)
P (Z=1,S=0,X=x)

P (Z=0,S=1,X=x)
P (Z=0,S=0,X=x)

, x ∈ X



10 J.-P. KREISS AND T. ZANGMEISTER

The last expression can be estimated from accident data only, as we will see in the
following.

Remark: In case that the confounder X is not discrete (e.g. age of driver or mass of
vehicle) one has to be careful with the probabilities or conditional probabilities in (4.2)
or elsewhere since they might be zero. Nevertheless the ratio occurring in all equations
are always well defined. For details we refer to Appendix A.
Now we deal with estimators of quantities like

P (S = r, Z = s,X = x) =: p(r, s, x) r, s ∈ {0, 1}, x ∈ X(4.3)

Since we might have too few accidents with X = x exactly (even no accident may be
possible) we taken into account all accidents with X ≈ x. Moreover the contribution
of accidents with X ≈ x typically are down weighted with increasing distance X − x.
In nonparametric statistics this is done with a kernel function K : [−1,+1] → [0,∞)
(e.g. K(u) = (1− u2)2 · 1[−1,+1](u)) and a bandwidth h > 0 in the following way

p̂(r, s, x) :=
∑

i: all accidents

K

(
Xi − x
h

)
1{Si=r,Zi=s}(4.4)

for r, s ∈ {0, 1} and x ∈ X . To get an impression on the weighting we refer to Figure
1.

Figure 1. Example for a kernel function K(u) = (1− u2)2 · 1[−1,+1](u)

The expectation of p̂(r, s, x) can be computed as follows

Ep̂(r, s, x) = no. of accidents ·
∫
K

(
u− x
h

)
p(r, s, u)du

= no. of accidents ·
∫
K(v) · p(r, s, x+ hv) · h · dv

≈ no. of accidents · p(r, s, x) ·
∫
K(v) · h · dv
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Where p(r, s, u) denotes the joint probability distribution of (S,Z,X) and h is assumed
to be small. The last approximation is due to Taylors formula for p(r, s, u) as a function
in u, which of course needs differentiability of this function. Thus in view of (4.2) and
(4.3)

R̂R(x) :=
p̂(1, 1, x) · p̂(0, 0, x)

p̂(1, 0, x) · p̂(0, 1, x)
, x ∈ X(4.5)

denotes a consistent estimator of the relative risk. Most convenient is the following

representation of R̂R(x)

R̂R(x) =
n̂(1, 1, x) · n̂(0, 0, x)

n̂(1, 0, x) · n̂(0, 1, x)
, x ∈ X(4.6)

where for r, s ∈ {0, 1} and x ∈ X

n̂(r, s, x) =
∑

i: all accidents

K

(
Xi − x
n

)
1{Si=r,Zi=s}(4.7)

=
∑

i: all accidents with Si=r and Zi=s

K

(
Xi − x
n

)
.

Of course the accidents n̂(r, s, x) can be assumed to form a 2× 2 contingency table

S \ Z 0 1

0 n̂(0, 0, x) n̂(0, 1, x)

1 n̂(1, 0, x) n̂(1, 1, x)

which depends on x ∈ X and R̂R(x) is nothing else then the usual Odds-Ratio of these

tables (which also depends on x). One may display R̂R(x) or even better

Êff(x) = 1− R̂R(x)(4.8)

as a function on x.
The interpretation of Êff(x) is as follows. Êff(x) denotes the estimated effectiveness of
the safety function for accidental situations with X ≈ x. If for example X denotes the

mass of a vehicle and Êff(x) increases with decreasing value of x this can be interpreted
as the smaller the vehicle the higher is the gain from the safety function of interest. In

case that Êff(x) is more or less constant, this means that the percentage of accidents
of interest avoided by the safety function does not depend on the confounder X. It
does not mean that the risk of suffering an accident of interest does not depend on X.
It is only the reduction rate for safety configuration S which is invariant in X.

Remark: A major problem in nonparametric estimation is the selection of the so-called
smoothing parameter h > 0. As a rule of thumb one may use

h = 1.06 · σ · n−1/5(4.9)
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cf. Silverman (1986), page 45. Here σ denotes the sample standard deviation of the
observed values of X. If one chooses h rather large then all accidents in the respective
sums in (4.7) get more or less the same weight. This would result in an relative risk
or an effectiveness which does not depend on x any more and can be interpreted as
an average relative risk or an average effectiveness of the safety function regardless the
value of the confounder X. In the extreme case h→∞ the effectiveness converges to

the effectiveness Êff = 1− n11n00

n01n10
calculated from the following overall 2× 2 table.

S \ Z 0 1

0 n00 n01

1 n10 n11

Where nrs := no. of accident with S = r and Z = s, r, s ∈ {0, 1}. Êff is just the
effectiveness which can be found in many studies quantifying the performance of safety

functions like ESC. In case Êff(x) does not depend on the value x of the confounder

both Êff(x) and Êff coincide. Otherwise Êff is an average of Êff(x) over all possible
values of the confounder x.
Finally even a categorical confounder can be treated as described above. Assume for
simplicity that X achieves two values, 0 and 1 say, only. Considering a rather small

bandwidth h then Êff(x), x ∈ {0, 1}, converges to the effectiveness calculated from the
two separate 2× 2 table (one for X = 0 and one for X = 1), i.e. one obtains for h→ 0

Êff(x) = 1− nx00 · nx11

nx10 · nx01

, x ∈ 0, 1(4.10)

and nxrs := no. of accidents with S = r, Z = s and X = x. �

5. Logistic Regression Modelling Type I

In this section we deal with the following logistic regression modeling for the probability
of suffering an accident of interest given the states of the safety function, the value of
the confounder and the fact that an accident of interest or a neutral accident has
happened. To be precise we assume

P (Z = 1|S = r,X = x, Z ∈ {0, 1}) =
exp(β0 + β1r + β2x)

1 + exp(β0 + β1r + β2x)′
(5.1)

for r ∈ {0, 1}, x ∈ X . β0, β1 and β2 denote the parameters of the model.
We emphasize that the conditional probability in (5.1) varies not only in r and x
(the statusof the safety function and the confounder) but also with the random event
Z ∈ {0, 1}. This means for example that if the probability of suffering an accident of
neutral type changes, then the modeled conditional probabilities will vary as well. This
already explains that the interpretation of the coefficients β1 and β2 really is delicate.
(5.1) is equivalent to assume

ln

(
P (Z = 1|S = r,X = x, Z ∈ {0, 1})

1− P (Z = 1|S = r,X = x, Z ∈ {0, 1})

)
= β0 + β1r + β2x(5.2)



EFFECTIVENESS OF A SAFETY FUNCTION IN PASSENGER VEHICLES 13

i.e. a linear relationship of the logit (the left hand of (5.2)) on the values r and x of S
and X, respectively. For later reference we state here that (5.3) holds true.

1− P (Z = 1|S = r,X = x, Z ∈ {0, 1})
= P (Z = 0|S = r,X = x) ∀x ∈ X , r ∈ {0, 1}(5.3)

Standard statistical software now easily allows to compute estimators β̂0, β̂1 and β̂2

from observations (Zk, Sk, Xk), k = 1, . . . , n. Such observations typically are provided
from accident data bases.
The main question now is, how one can interpret the parameters β0, β1 and β2. To
receive some results in this direction observe

P (Z = 1|S = r,X = x)(5.4)

= P (Z = 1|S = r,X = x, Z ∈ {0, 1}) · P (S = r,X = x, Z ∈ {0, 1})
P (S = r,X = x)

Since

P (S = r,X = x, Z ∈ {0, 1})
P (S = r,X = x)

=
P (S = r,X = x, Z = 1)

P (S = r,X = x)
+
P (S = r,X = x, Z = 0)

P (S = s,X = x)

= P (Z = 1|S = r,X = x) + P (Z = 0|S = r,X = x)

one obtains from (5.4) and (5.1)

P (Z = 1|S = r,X = x) = P (Z = 1|S = r,X = x, Z ∈ {0, 1}) ·
(P (Z = 1|S = r,X = x) + P (Z = 0|S = r,X = x))

⇔ P (Z = 1|S = r,X = x)(1− P (Z = 1|S = r,X = x, Z ∈ {0, 1}))
= P (Z = 1|S = r,X = x, Z ∈ {0, 1}) · P (Z = 0|S = r,X = x)

and therefore

P (Z = 1|S = r,X = x) = exp(β0 + β1r + β2x) · P (Z = 0|S = r,X = x).(5.5)

(5.5) looks rather similar to a logistic regression model for the conditional probability
P (Z = 1|S = r,X = x), but it is not! To see this observe that P (Z = 0|S = r,X =
x) 6= 1 − P (Z = 1|S = r,X = x) because Z also can take the value 2, which stands
for the event ”’no accident or accident not reported to data base”’. The just stated
inequality does not even hold approximately, since both probabilities - in contrast to
P (Z = 2|S = r,X = x) - typically are extremely small. But the following essential
equality is true

P (Z = 1|S = 1, X = x)

P (Z = 1|S = 0, X = x)
= eβ1

P (Z = 0|S = 1, X = x)

P (Z = 0|S = 0, X = x)
(5.6)
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for all x ∈ X . (5.6) leads under assumption A1 because of

P (Z = 0|S = r,X = x) =
P (Z = 0, S = r,X = x)

P (X = x)
· P (X = x)

P (S = r,X = x)

= P (S = r, Z = 0|X = x)
/
P (S = r|X = x)

= P (Z = 0|X = x), by A1 for r = 1, 2,

immediately to

1− Eff(x) =
P (Z = 1|S = 1, X = x)

P (Z = 1|S = 0, X = x)
= eβ1(5.7)

(5.7) of course is exactly the quantity we already dealt with in Section 4. It has
been shown that a logistic regression modeling (5.1) on the accident level leads under
the reasonable assumption A1 to a constant relative risk or effectiveness of the safety
function in dependence of the confounder value x. In this respect the nonparametric
approach described in Section 4 is much more general. The logistic regression approach
(5.1) does not allow for a relative risk or effectiveness of a safety function which varies
with the value x of the confounding variable X.
A direct question now is, whether it is possible to combine the different modeling of
Section 4 and 5 and to assume that

P (Z = 1|S = r,X = x, Z ∈ {0, 1}) =
exp(β0 + β1(x)r + β2 · x)

1 + exp(β0 + β1(x)r + β2 · x)
(5.8)

for x ∈ X , r ∈ {0, 1} and a function β1 : X → R. It is an easy task to carry through
exactly the same step as for model (5.1) and to end up with the following result, which
holds true if we assume assumption A1

1− Eff(x) =
P (Z = 1|S = 1, X = x)

P (Z = 1|S = 0, X = x)
= eβ1(x), x ∈ X(5.9)

Thus the more general model (5.8) now allows for a with x varying relative risk and
also allows for including a separate effect of the confounder X itself on the probability
of suffering an accident of interest.

Remark: If the confounding variable X takes only finitely many values, x1, . . . , xk,
say, then the modeling (5.8) could be written in a different form as follows

P (Z = 1|S = r,X = xj, Z ∈ {0, 1})

=
exp(β0 + β(j) · r + β2,j)

1 + exp(β0 + β(j) · r + β2,j)

=


exp(β0+β(1)·r+β2,1)

1+exp(β0+β(1)·r+β2,1)
, x = x1

exp(β0+β(1)·r+eβ(j)·r+β2,j)

1+exp(β0+β(1)·r+eβ(j)·r+β2,j)
, x = xj (j = 2, . . . , k)

where β̃(j) = β(j)− β(1), j = 2, . . . , k and B̃(j) is interpreted as the interaction effect of
X = xj and S = 1.
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Even the estimation of the function β1(x) and the parameters β0 and β2 is rather

straightforward. From Section 4 we know an estimator R̂R(x) of RR(x), cf. (4.6).
RR(x) coincides with exp(β1(x)) and thus we define

β̂1(x) := ln R̂R(x),(5.10)

where the typically positive quantity R̂R(x) is defined in (4.6). Now it remains to
estimate β0 and β2. It is suggested to use the Maximum Likelihood (ML-) estimators

β̂0 and β̂2 which are the maximizers of the following likelihood

n∏
i=1

[exp(β0 + β̂1(Xi) ·Ri + β2 ·Xi)]
Zi

1 + exp(β0 + β̂1(Xi) ·Ri + β2Xi)′

where from accident data the following observations (Zi, Ri, Xi), i = 1, . . . , n are at
hand. The maximization has to be carried through by numerical optimization. Thus
model (5.8), as a generalization of the standard logistic regression approach (5.1), may
be taken into account.
A remaining question still is how one shall interpret β̂0 and β̂2. Since there is no hope

of interpreting β̂0, the question is whether β̂2 describes the influence of the confounding
variable X not only for the conditional probability P (Z = 1|S = r,X = x, Z ∈ {0, 1})
on the accident level but also for the conditional probability P (Z = 1|S = r,X = x)
of interest. One might be tempted to assume that this indeed is true because a similar
calculation as above should lead to a result similar (in a weak sense) to (5.7) for X. We
will investigate this question in the following. To do so let us stay with the more simple
model (5.1) and let us further assume that the confounding variable X is categorical
and takes the values 0 and 1, only.

From the key equation (5.5) one obtains for r ∈ {0, 1}
P (Z = 1|S = r,X = 1)

P (Z = 1|S = r,X = 0)
= eβ2 · P (Z = 0|S = r,X = 1)

P (Z = 0|S = r,X = 0)

Now for r, x ∈ {0, 1} and if assuming A1

P (Z = 0|S = r,X = x) =
P (Z = 0, S = r,X = x)

P (X = x)

P (X = x)

P (S = r,X = x)

=
P (Z = 0, S = r|X = x)

P (S = r|X = x)
= P (Z = 0|X = x).

Thus one obtains for r ∈ {0, 1}
P (Z = 1|S = r,X = 1)

P (Z = 1|S = r,X = 0)
= eβ2

P (Z = 0|X = 1)

P (Z = 0|X = 0)
,(5.11)

which immediately leads to the following formula

P (Z=1|S=1,X=1)
P (Z=1|S=1,X=0)

P (Z=1|S=0,X=1)
P (Z=1|S=0,X=0)

= 1.(5.12)
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(5.12) means that the ratio of probabilities of having an accident of type of interest
given X = 1 or X = 0, when driving on the roads, does not vary with having the safety
function on board or not. Still the confounder very well may have some influence on
the risk of suffering an accident of interest.
β2 describes the difference of the relative risk of having a neutral accident and the
relative risk of having an accident of interest with or without the safety function active
for the two groups X = 0 and X = 1. For example β2 = 0 means that there is no
difference in the relative risks for neutral or relevant accidents. Even so there still may
be a significant influence of the confounding variable on the probabilities of suffering a
neutral or a relevant accident themselves.
Let us state another assumption:

Assumption A2. Assume that the conditional probability of suffering an accident of
interest for any specific given value X = x is independent of the value x, i.e.

P (Z = 0|X = x) is independent of x ∈ X

With this assumption one obtains from (5.11) that

P (Z = 1|S = r,X = 1)

P (Z = 1|S = r,X = 0)
= eβ2 ,(5.13)

which may be regarded as the typically interpretation for β2, cf. formula (5.7).
It is common in literature to interpret β2 according to (5.13) as the influencing ’effect’ ot
the confounding variable X without further thoughts on the plausibility of assumption
A2, like described in the introductory example.
The question is whether or not assumption A2 is reasonable. At first it can be seen
that assumption A2 is equivalent to

Assumption A3. Assume that the events ”Z = 0” and X = x are for all ”x ∈ X”
independent which may be expressed with

P (Z = 0, X = x) = P (Z = 0) · P (X = x)(5.14)

This means that the category of neutral accidents is not only neutral concerning the
safety function but also neutral according to the confounding variable. In other words
assumption A2 or equivalently assumption A3 assumes that the probability of suffering
a neutral accident is the same for all subgroups X = x, x ∈ X , described by the
confounder. This seems to be hardly justifiable and therefore the above interpretation
of β2 is more than doubtful. Thus, one has to stay with (5.11) and interpret β2 according
to (5.11).
Hence, there is really a difference in interpreting the parameters β1 (cf. 5.7) and β2,
cf. (5.11).

Another question may be what happens, if one ignores the possible influence of a
confounder X and just wants to compare the two probabilities

P (Z = 1|S = 1) and P (Z = 1|S = 0)
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with each other? To deal with this question let us stay with model (5.1) in order to
compute P (Z = 1|S = r), r ∈ {0, 1}. As shown in Appendix B we have

P (Z = 1|S = 1)

P (Z = 1|S = 0)
= eβ1 ·

∑
x∈X

eβ2xP (Z = 0|X = x) · P (X = x|S = 1)∑
x∈X

eβ2xP (Z = 0|X = x) · P (X = x|S = 0)
(5.15)

Please recall that (5.15) again assumes A1 to hold. Of course (5.15) is a little compli-
cated, but it can be dramatically simplified if we make another assumption.

Assumption A4. Assume that the existence of the safety function in a vehicle is not
related to the value of the confounding variable, that is the random variables S and X
are independent

P (S = s,X = x) = P (S = s) · P (X = x)(5.16)

A4 implies that P (X = x|S = r) is independent of r, more exactly P (X = x|S = r) =
P (X = x), and that allows to obtain from formula (5.15) the nice result

P (Z = 1|S = 1)

P (Z = 1|S = 0)
= eβ1 .(5.17)

But assumption A4 contradicts in a sense the definition of a confounder X, which is
assumed to influence both variables Z and also S. Thus it is again more advisable to
stay with the more complicated formula (5.15) which means that ignoring a present
confounding variable leads to different results (as expected) and that is why the in-
clusion of a confounder in many cases is necessary in order to measure from the data
the correct influence of the safety function itself (which in model (5.1) is exp(β1)) and
nothing else.

6. Logistic Regression Modelling Type II

A different and also possible modeling is to deal with conditional probabilities like

P (Z = 1|S = r,X = x), r ∈ {0, 1}, x ∈ X(6.1)

directly and not additionally to condition on the event Z ∈ {0, 1} that an accident of
neutral or relevant type has occurred. E.g. to assume a logistic regression model of
the following form

P (Z = 1|S = r,X = x) =
exp(α0 + α1r + α2x)

1 + exp(α0 + α1r + α2x)
(6.2)

for r ∈ {0, 1} and x ∈ X .
The conditional probability in (6.2) in contrast to the conditional probability (5.1)
does not vary with the random event Z ∈ {0, 1} and therefore does not vary with
changing probabilities of suffering an accident of neutral type. This indicates that the
interpretation of the coefficients α1 and α2 might be easier compared to the coefficients
β1 and β2 in model (5.1).
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Of course in this situation (and this again is in contrast to model (5.1)) we do have
P (Z = 0|S = r,X = x) + P (Z = 1|S = r,X = x) 6= 1. This implies that

P (Z = 0|S = r,X = x) 6= 1

1 + exp(α0 + α1r + α2x)
.(6.3)

Note that both probabilities in (6.2) and (6.3) typically are extremely small and not
even approximately add up to one!
Assume for example that the probability of having an accident of relevant type, i.e.
Z = 1 within a certain period (e.g. one year), is about 10−3 or lower then we have

P (Z = 1|S = r,X = x) =
exp(α0 + α1r + α2x)

1 + exp(α0 + α1r + α2x)
(6.4)

≈ exp(α0 + α1r + α2x)

where the approximation is the better the lower the probability on the left hand side
of (6.4) is.

A big advantage of model (6.2) is the interpretability of the parameters α1 and α2.
Using the approximation in (6.4) one easily obtains

P (Z = 1|S = 1, X = x)

P (Z = 1|S = 0, X = x)
≈ eα1 ,(6.5)

which of course is much in line with the result (5.7) which has been obtained from
model (5.1) only under the additional assumption A1. However this does not seem
crucial since we need A1 at least for a nonparametric estimate of the right hand side
of (6.5) on the basis of accident data.
Moreover we similarly obtain for any x0, x1 ∈ X

P (Z = 1|S = r,X = x1)

P (Z = 1|S = r,X = x0)
≈ eα2(6.6)

which is of course much more convenient compared to (5.15) which is derived under
model (5.1). But again, if we intend to estimate the left hand side of (6.6), which
equals

P (Z = 1, S = r,X = x1)

P (Z = 1, S = r,X = x0)
· P (S = r,X = x0)

P (S = r,X = x1)

=
P (Z = 1, S = r,X = x1)

P (Z = 1, S = r,X = x0)
· P (S = r|X = x0)

P (S = r|X = x1)
· P (Z = 0|X = x0)

P (Z = 0|X = x1)

·P (Z = 0|X = x1)

P (Z = 0|X = x0)
· P (X = x0)

P (X = x1)

=
P (Z = 1, S = r,X = x1)

P (Z = 1, S = r,X = x0)
· P (Z = 0, S = r,X = x0)

P (Z = 0, S = r,X = x1)

·P (Z = 0|X = x1)

P (Z = 0|X = x0)
, by A1
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and therewith

eα2 ≈ P (Z = 1, S = r,X = x1)

P (Z = 1, S = r,X = x0)
· P (Z = 0, S = r,X = x0)

P (Z = 0, S = r,X = x1)
· P (Z = 0|X = x1)

P (Z = 0|X = x0)

We need a kind of assumption A2 in order to have that the last factor in the equation
above is know (e.g. equal to one). Note that the first two ratios easily can be estimated
from accident data. Since it has been argued that assumption A2 hardly is justifiable,
we run into exactly the same problem following both ways of modeling. Here within
the estimation of eα2 , the term P (Z = 0|X = x1)/P (Z = 0|X = x0) occurs which
causes problems and in the modeling following assumption (5.1) exactly the same term
causes difficulties in the interpretation of the parameter β2, cf. (5.11).

Summarizing one can say that there are no big differences between the two modelings
(5.1) and (6.2). The difficulties which demand for some further assumptions are nearly
the same. Only the estimation procedures within Section 5 seen to be more standard
since it is a modeling of the actual data and therefore usual statistical software packages
likes SPSS, SAS or R can be used to compute parameter estimates. This is the reason
why the modeling and results of Section 5 are recommended to be used.

7. Simulated data example - discussion

In Section 3 we introduced an example with simulated data, where the a priori known
effectiveness of ESC was tried to be computed with a logistic regression. Two different
scenarios were considered.
Scenario I (cf. Table 6) rather accurately resembled the underlying exposure distribu-
tion (cf. Table 4) according to equipment with ESC and gender of the driver. Scenario
II (cf. Table 7) accurately resembled the ESC-equipment distribution within the two
gender groups (compare the distribution within the columns of Tables 4 and 7) but the
probability of suffering a neutral accident varies with the gender of the driver. Sum-
marizing one can say that the data according to scenario I fulfilled the requirements
given in assumptions A1 and A2 and the data according to scenario II only fulfilled A1
but not A2. Both scenarios I and II do not fulfill A4.
The results of the logistic regression were:

β̂I0 = −0.362, β̂I1 = −0.341, β̂I2 = +0.495(7.1)

β̂II0 = −0.010, β̂II1 = −0.341, β̂II2 = −0.640(7.2)

compared to the a priori given model parameters

β0 = −5, β1 = −0, 35, β2 = +0, 50(7.3)

The estimated coefficients β̂I1 and β̂I2 perfectly match the underlying situation, cf. (7.3).

However the estimator β̂I0 is not consistent, which was already discussed in Section 2.

The estimated coefficient β̂II1 still works rather well, but β̂II2 does not.
Here one has to recall that the sufficient condition for the reliability of the estimator

β̂2 is that P (Z = 0|X = x) is independent of x (cf. assumption A2). This is obviously
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the case in scenario I but not in scenario II as can be seen when looking for the two
scenarios at the ratio P (Z = 0|X = 1)/P (Z = 0|X = 0):

P (ZI = 0|X = 1)

P (ZI = 0|X = 0)
= 1 and

P (ZII = 0|X = 1)

P (ZII = 0|X = 0)
≈ 3.1(7.4)

The two different scenarios demonstrate that the effectiveness of the safety function
reliably can be estimated from accident data but that one has to be cautious with the
estimators of the coefficients of the confounding variables.

Summarizing one can say that the effectiveness of a safety function reliably can be
estimated in praxis, but that the influence of a confounder can hardly be quantified
in general. Nevertheless it is rather essential to include relevant confounders in the
investigation in order to quantify the (pure) effectiveness of a safety function correctly.

8. Conclusions

We have studied two different approaches of logistic regression modeling for accident
data. It has been shown that in both cases and especially for the much easier to
interpret model (1.6) standard logistic regression software leads not to absolutely exact
but to rather reasonable estimators for the effectiveness of a safety function or safety
configuration in vehicles under mild assumptions. Thus it has been shown that the
effectiveness of a safety function or configuration reliably can be estimated in praxis.
Concerning the possible influence of one or more confounders it is obtained that the
corresponding effects hardly can be quantified in general. This is only possible under
assumptions which typically are not met in praxis. But it is extremely essential to
include relevant confounders in the logistic regression investigation in order to quantify
the effectiveness of a safety function correctly. This means that the effects of the
confounders on the accident outcomes (which itself typically cannot be quantified!)
does not lead to a bias in the quantification of the pure effectiveness of the safety
function or configuration.
Concerning the presented real world accident data in Section 2 this means that we
cannot rely on the estimated effectiveness of the confounder gender of driver on the
risk of suffering a skidding accident (recall that we obtained from the logistic regression
with that confounder a surprising negative effectiveness for female drivers) but we can
rely on the calculated effectiveness of 71.6% for the ESC in this situation.
Moreover the paper presented a model–free method for computing relative risks and
rates of effectiveness given continuously distributed confounders in Section 4.
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Appendix A.

At first we briefly explain the definition of quantities like P (S = r, Z = s,X = x)
for arbitrary random quantities X taking continuously distributed values. The main
problem in such situations is, that the probabilities P (X = x) and P (S = r, Z =
s,X = x) as well typically are zero. Since S and Z are categorical by definition,
this is not the case if X is categorical as well. Thus for categorical X the probability
P (S = r, Z = s,X = x) if easy to understand.

If we denote by p(r, s, x) the probability (density) distribution of the confounder X
given that S = r and Z = s then we only can define meaningful quantities like

P (S = r, Z = s,X = x)

P (X = x)
= lim

δ→0

P (S = r, Z = s,X ∈ x± δ)
P (X ∈ x± δ)

= lim
δ→0

∫ x+δ
x−δ p(r, s, u) du∫ x+δ
x−δ pX(u) du

(A.1)

=
p(r, s, x)

pX(x)
,

where the last equation is justified by the mean value theorem. Here pX denotes the
unconditional probability (density) distribution of the confounder X.

Similar definitions hold for other probabilities like P (Z = 1|S = r,X = x). The main
message is that only ratios reasonably can be defined.

Appendix B.

Now we compute P (Z = 1|S = r), r ∈ 0, 1, within the model specified in (5.1).

P (Z = 1|S = r)

=
P (Z = 1, S = r)

P (S = r)

=
∑
x∈X

P (Z = 1, S = r,X = x)

P (S = r)

=
∑
x∈X

P (Z = 1|S = r,X = x) · P (X = x|S = r)(B.1)

by (5.5)
=

∑
x∈X

exp(β0 + β1r + β2x) · P (Z = 0|S = r,X = x) · P (X = x|S = r)

by (5.7)
= exp(β0 + β1r) ·

∑
x∈X

exp(β2x) · P (Z = 0|X = x) · P (X = x|S = r) .
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