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Abstract

We introduce a refined tree method to compute option prices using the

stochastic volatility model of Heston. In a first step, we model the stock

and variance process as two separate trees and with transition probabilities

obtained by matching tree moments up to order two against the Heston

model ones. The correlation between the driving Brownian motions in

the Heston model is then incorporated by the node-wise adjustment of

the probabilities. This adjustment, leaving the marginals fixed, optimizes

the match between tree and model correlation. In some nodes, we are

even able to further match moments of higher order. Numerically this

gives convergence orders faster than 1/N , where N is the number of dis-

cretization steps. Accuracy of our method is checked for European option

prices against a semi closed-form, and our prices for both European and

American options are compared to alternative approaches.

Keywords: Heston model, American options, moment matching, corre-

lation, tree method

1 Introduction

The model of Heston [1993] ranks among the most popular stochastic volatility
models. As remarked by Gatheral [2006], amongst others, relaxing the constant
volatility assumption of the Black-Scholes model leads to a more flexible frame-
work for explaining empirically observed option prices. The model owes parts of
its popularity to the semi closed-form for European call and put option prices,
see Heston [1993], as well as Albrecher et al. [2007] for a more stable formula-
tion. Pricing of more complex derivatives like American options is not possible
in this semi closed-form framework though, so for this purpose other techniques
like Monte Carlo simulations, finite difference methods, and tree-based meth-
ods have been proposed. Determining the continuation value for American style
options is an issue within the Monte Carlo framework. As pointed out in Hull
[2008], finite difference methods like e.g. Crank and Nicolson [1947] and tree
methods are closely related. Both of them basically face the same complexity
problems and can easily cope with early-exercise features. In this paper we focus
on tree-based methods.



As already pointed out in Heston [1993], the correlation between volatility
and stock price has a strong impact on skewness effects and is therefore an
important parameter.

Adequately incorporating non-zero correlation to a tree method while insist-
ing on proper transition probabilities poses a major problem, see Beliaeva and
Nawalkha [2010] or Leisen [2000]. This problem is not only of theoretic interest
but has arisen in calibrating the model to real-world data. Several authors have
focused on this calibration to market data, obtaining highly negative correlation
values, see for example Nandi [1998] for calibrating the model to options on the
S&P 500 index. The considered time series is from 21 January 1991 to 10 April
1992 and the observation covers 9,548 call and put prices. The estimated cor-
relation between volatility and the index returns is −0.79 with a standard error
of 0.016, indicating a highly negative true value. Another calibration is done in
Bakshi et al. [1997] for S&P 500 option price data as well, covering 38,749 call
options from June 1988 to May 1991 with an estimated correlation of −0.64,
again a pronouncedly negative value.

Literature on tree-based approximation of the Heston model basically lists
three approaches to assess this issue. The first one alters the considered pro-
cesses such that correlation does not affect the Brownian increments but influ-
ences the process as a direct parameter, see e.g. Hull and White [1990]. The
authors decouple the processes via orthogonalising the Brownian motions. The
distinct trees are then treated as independent and marginal probabilities only
have to be multiplied to get joint ones. This concept also arises in Beliaeva
and Nawalkha [2010], where the authors suggest a transformation of the stock
process that consists of three parts. The first part is the standard logarithmic
transformation of the stock price. The second part is a product of the corre-
lation, the instantaneous variance and volatility of the variance process. This
factor allows for the transformed stock process to be conditionally independent
of the variance process. The third component is a deterministic function of time
which, suitably defined, smoothes out negative probabilities arising when the
volatility process becomes small. According to the authors though, the conver-
gence of the method is negatively affected by realistic correlation values. They
compare their numerical results to those obtained in a lattice-based approach
by Guan and Xiaoqiang [2000]. The respective results are also taken for our
comparisons later.

The second line of research comprises methods where the tree contains
enough successors to match the correlation exactly, see e.g. Leisen [2000]. How-
ever, proper probabilities with values in [0, 1] can only be guaranteed after
simplifications, which result in −

√
0.75 < ρ <

√
0.75, an asymptotic correlation

constraint. Moreover, the approximation is done with eight successors so the
generated tree is complex and potentially slow.

The third group of authors, e.g. Boyle [1988], Hilliard and Schwartz [1996]
or, in the context of interest rates Hull and White [1994], adjusts the joint
probabilities to capture non-vanishing covariance. Boyle [1988] considers two
correlated state variables, using two combined binomial trees, where a further
fifth node arises if both processes remain unchanged at the same time and prob-
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abilities are found by matching moments. This parametrization however cannot
avoid negative transition probabilities, so an additional stretch parameter has
to be introduced. Hilliard and Schwartz [1996] start with independent bino-
mial models for the stock and volatility processes where the joint probabilities
are then adjusted for the non-vanishing covariance of the processes. As in the
setting of Boyle [1988], the authors choose a scaling factor so that the four tran-
sition probabilities come as close as possible to one fourth. They determine the
option price as average of the m and m + 1 step layers, and state convergence
only for zero correlation.

Our approach for pricing American options consists of a tree-based model
with a particular emphasis on an adequate incorporation of the correlation in
the Heston model.

Like Hilliard and Schwartz [1996], we start with independence, i.e. with two
separate trees with product probabilities for the joint values of variance and
logarithmic stock price processes. More specifically we use a recombining bino-
mial tree for the variance and a recombining trinomial tree for the logarithmic
stock price. Secondly, keeping the marginal distributions fixed, we shift mass
to match correlation node-wise. An exact node-wise match of the covariance is
not always possible while maintaining proper transition probabilities. We de-
rive an optimal adjustment which produces the closest admissible match, and,
where an exact match is possible, even moments of third order are partially
matched. This adjustment is done in a static and computationally efficient way.
We check our results of European calls against the semi closed-form solution
given in Albrecher et al. [2007] and obtain highly accurate prices even for a
small number of discretizing steps respectively moderate step sizes. We further
compare our results to the prices given in Beliaeva and Nawalkha [2010] and
Guan and Xiaoqiang [2000] for speed and accuracy.

The setup of this paper is as follows. Section 2 gives the model formula-
tion in the context of Heston’s stochastic volatility model. We state a recursive
formula to determine moments for the exact Heston distribution and further
illustrate the approximation methods we consider for the variance and logarith-
mic stock price process. The main part, Section 3, is devoted to the probability
adjustment. We provide convergence results, a complexity analysis and derive
numerical examples in Section 4. We further compare our method to other
approaches. Finally, Section 5 concludes and gives an outlook.

2 Setup and Notation

We consider the probability space (Ω,F , (Ft)t≥0 ,P) with P being the risk neu-
tral probability measure. The risk neutral dynamics of the stock price process
St and the variance process Vt in the Heston model are given by

dSt = (r − d) dt+
√

Vt dW
S
t , (1)

dVt = κ (θ − Vt) dt+ η
√
Vt dW

V
t , (2)
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where S0 = s0 and V0 = v0 are the initial values and r and d are constant
interest rate and dividend yield, respectively. The variance itself is modeled as
a stochastic process Vt where κ denotes the speed of mean reversion to the long
term variance level θ and η is the volatility of the variance. The two Brownian
motions WS

t and WV
t are correlated with constant correlation ρ. Further we

assume the stability condition 2κθ > η2 to be satisfied.
In the sequel, we consider the growth adjusted logarithmic state space trans-

formation of (1),

dXt = d log
(
Ste

−(r−d)t
)
= −1

2
Vt dt+

√
Vt dW

S
t , (3)

with x0 = ln(s0). The remaining process is independent of r and d and therefore
its approximation is less prone to negative probabilities, see Leisen [2000]. The
part e(r−d)t is used later on to adjust the nodes when we determine option
values.

For moment matching purposes, the following lemma provides recursions
to determine the moments in the Heston model. For simplicity, in moment
matching we use linearizations of these moments as given in the subsequent
corollary, which is confined to the terms needed later. Proofs for both lemma
and corollary are delegated to the appendix.

Lemma 1:

For i, j ∈ N0, the moments of the Heston model

mi,j (t) := E(Xi
tV

j
t )

are given by the recursion

mi,j (t) = xi
0v

j
0e

−jκt +

∫ t

0

e−jκ(t−s)bi,j (s) ds, (4)

where

bi,j (t) =
i (i− 1)

2
mi−2,j+1 (t)− i

2
mi−1,j+1 (t) + ijηρmi−1,j (t)

+
j
(
2κθ + η2 (j − 1)

)

2
mi,j−1 (t) ,

and with initial condition m0,0 (t) = 1 and mi,j(t) = 0 for negative indices.
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Corollary 2:

The first-order Taylor approximations of the moments E(Xt), Var(Xt), E(Vt),
Var(Vt), Cov(Xt, Vt) and E(X2

t , Vt) in the Heston model are given as

E (Xt) = x0 −
1

2
v0t+O

(
t2
)
,

Var (Xt) = v0t+O
(
t2
)
,

E (Vt) = v0 + κ (θ − v0) t+O
(
t2
)
,

Var (Vt) = η2v0t+O
(
t2
)
,

Cov (Xt, Vt) = ηρv0t+O
(
t2
)
,

E
(
X2

t Vt

)
= v20t+ x2

0 (v0 + κθt− κv0t)− v0x0 (v0 − 2ηρ) t+O
(
t2
)

Our tree-based method comes up with a discrete time approximation (Ŝt, V̂t)
of the bivariate process (St, Vt), where we suppress the dependence of the ap-
proximation on the number of discretizing steps N . In the sequel, we write
∆t = T/N for the size of the time step.

(St, Vt) is a time-homogeneous Markov process. Conditioned on the informa-
tion at time t the distribution of the process at the next step t+∆t depends only
on the current information, i.e. on the location of the node (St, Vt). Accord-
ingly, we work with conditional probabilities given the event {St = s, Vt = v},
and, when considering the approximation, given the event {Ŝt = s, V̂t = v}.

2.1 Binomial variance tree approximation

As indicated above, we approximate the variance process Vt in (2) with given
initial variance v0 by a binomial tree V̂t. The process Vt has a square-root form
and, as mentioned by Nelson and Ramaswamy [1990], Leisen [2000] and Beliaeva
and Nawalkha [2010], constructing a binomial tree for it näıvely would lead to
a non-recombining, hence computationally inefficient approximation since the
process is heteroscedastic. To retain computational efficiency we follow Nelson
and Ramaswamy [1990] and adopt a transformation of the state space

Zt =
2

η

√
Vt.

By Itô’s Lemma we get

dZt =

[(
2κθ

η2
− 1

2

)
1

Zt
− κ

2
Zt

]
dt+ dWV

t , z0 =
2
√
v0
η

.

Approximating Zt by a binomial tree leads to equally spaced nodes z as multiples

of
√
∆t due to the unit variance. Via the back-transformation R(z) = z2η2

4 we
obtain values for the original variance process again.

Since negative values for Zt and Ẑt correspond to negative variance values,
we only use nodes for Ẑt with z ≥ 0, and nodes below zero are set to zero. This
setting results in a smallest variance value equal to zero, which however will not
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be attained when going through the tree from the root to the leaves. A fine
discretization is needed around z = 0, because of the unbounded slope of the
square root and since small variance values are important for pricing purposes.
In contrast to Nelson and Ramaswamy [1990] we do not create negative nodes
which would be attained with probability 0.
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Figure 1: Realization of the binomial variance tree for v0 = θ = 0.01, κ = 1,
η = 0.1 and T = 1, where we discretized into N = 10 time steps.

Figure 1 shows a realization of the variance tree for v0 = θ = 0.01. The
other parameters are κ = 1, η = 0.1, and we discretized T = 1 into N = 10
equidistant time steps. Note that for the limit Heston model, the stability con-
dition is satisfied and hence local time in 0 is 0. Due to the mean-reversion
of the underlying variance process, small variance values yield a positive drift,
truncating the tree from below. In order to determine successor nodes and tran-
sition probabilities, Nelson and Ramaswamy [1990] and Beliaeva and Nawalkha
[2010] pass over again to the variance process, since Zt contains a singularity in
0. In addition, to match the drift in the mean reversion setting of (2), multiple
jumps have to be introduced. Let R(z) the actual variance node of V̂t and let
further

µR(z) := R (z) + κ (θ −R (z))∆t,

be the drift at R(z). We determine possible successors v1 and v2 as nodes
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enclosing µR(z) as

v1|2 = R
(
z + j1|2 (z)

√
∆t
)
,

where

j1 (z) := max
j∈2Z+1

{j | R
(
z + j

√
∆t
)
≤ µR(z)}

j2 (z) := min
j∈2Z+1

{j | R
(
z + j

√
∆t
)
> µR(z)}.

The definition of j1(z) and j2(z) ensures that the drift always lies between v1
and v2, such that the transition probabilities are always well defined. The fact
that we only allow j to be odd restricts the jump to valid nodes at each stage.

For determining transition probabilities, we follow the concept of moment
matching in order to enforce weak convergence. Having obtained valid successors
positions, we choose the probabilities such that their expectation matches the
respective moment of the Heston model. Let

PV̂ (v2) := P

(
V̂t+∆t = v2 | V̂t = R (z)

)

denote the probability of an up jump to v2. We formulate the first moment
condition

E

(
V̂t+∆t − V̂t | V̂t = R (z)

)
!
= µR(z),

⇐⇒ v1
(
1− PV̂ (v2)

)
+ v2PV̂ (v2) = κ (θ −R (z))∆t,

resulting in

PV̂ (v2) =
κ (θ −R (z))∆t− v1

v2 − v1
,

where we used the linearized version of E(V ) as it is given in Corollary 2. Note
that we suppress the dependence on both, the current value v and the time step
∆t.

2.2 Trinomial stock price tree approximation

The diffusion component of dXt in (3) depends on the variance process Vt at
time t. Accordingly, the approximation X̂t of Xt depends on the approximated
variance process V̂t, and a trinomial x-grid would in general not recombine. To
circumvent this, we introduce a standard variance step v̂ that represents the
smallest allowed log-stock jump size in our model. We define grid nodes for
X̂t as nodes with distance ∆x :=

√
v̂∆t > 0 at each occurring variance level.

Beliaeva and Nawalkha [2010] for example set v̂ = v0. We come back to the
choice of v̂ at a later stage. The link to the variance tree is given through the
following relation. Conditioned on being at node v of the variance process, the
height of a log-stock price jump is given through

k (v) =




√
v∆t+ v2

4 (∆t)
2

∆x



=

⌈√
v (4 + v∆t)

4v̂

⌉
, (5)
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whereas ⌈·⌉ denotes the ceiling function. So k(v) can be considered as the
multiplicator of standard jumps in order to reach the instantaneous variance.
As shown in Proposition 3 below, this choice of k(v) yields positive probabilities.

In particular, the additional term v2

4 (∆t)2 guarantees positivity of the middle
node probability. For fixed v̂ a higher variance value v leads to higher jumps.
Restricting k(v) to be an integer results in a recombining efficient tree. The
successors of a node x are then given as

x1|3 := x∓ k (v)
√
v̂∆t, x2 := x, (6)

where x1 is the down, x2 the middle and x3 the up node.
Next, we determine transition probabilities for the stock price process by

matching the tree moments to the ones of the limit distribution. To this end,
let

PX̂ (xi) := P

(
X̂t+∆t = xi | X̂t = x, V̂t = v

)
, i = 1, 2, 3,

be the probabilities for an up, mid or down move of the stock process at variance
level v. The transition probabilities are obtained in Proposition 3

Proposition 3:

For ∆t small enough and with k(v) given in (5), the setting

PX̂

(
x1|3

)
=

4v + v2∆t± 2vk (v)
√
v̂∆t

8k (v)
2
v̂

,

PX̂ (x2) = 1− PX̂ (x1)− PX̂ (x3) ,

(7)

is a probability with the same first two moments as the limit distribution.

The proof is given in the appendix. In what follows we join both trees and
adjust for non-zero correlation.

3 Combining the trees and matching correlation

So far the logarithmic stock price and variance processes were treated separately
and we could generate admissible probabilities for the marginal movements. For
the joint approximation, we now have to incorporate the correlation between
them by defining suitable joint probabilities. Since we want to recur to Donsker’s
theorem for weak convergence of the joint tree against the joint model distribu-
tion, in addition we have to match the covariance between X̂t and V̂t against
the Heston model one between variance Vt and log-stock process Xt.

We follow Hull and White [1990], starting with the product model of stochas-
tic independence and determine the six joint probabilities as

Pij := PX̂ (xi) · PV̂ (vj) , i = 1, 2, 3, j = 1, 2,

where we recall that our short hand notation omits the dependence on the time
discretization ∆t and the current node V̂t = v. Note that the probabilities
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are invariant for different values of X̂t. These probabilities are then adjusted
to match the given correlation structure as well as possible while maintaining
proper transition probabilities. Let Π̃ = Π+θ, i.e. P̃ij = Pij +θij , for i = 1, 2, 3
and j = 1, 2, be the changed probability structure, where Π is the product
probability structure assuming independence and θij the shifted mass to adjust
Π, see Table 1.

v1 v2
x1 P11 + θ11 P12 + θ12
x2 P21 + θ21 P22 + θ22
x3 P31 + θ31 P32 + θ32

Table 1: Additional mass to adjust the independent probabilities.

The requirement of Π̃ to form a probability translates into corresponding
requirements for θij . To keep things simple, we leave the marginal, already
moment-matched probabilities untouched and only vary θij in this invariance
region, i.e. for fixed marginals. As a consequence we have zero row sums and
column sums for θij , i.e.

θi2 = −θi1, i = 1, 2, 3, (8)

and
θ1j + θ2j + θ3j = 0, j = 1, 2. (9)

As displayed in Table 2, using equations (8) and (9), we may reduce the com-
plexity of our problem to two dimensions with parameters θ11 and θ21 to choose
for an adjustment of the transition probabilities.

v1 v2
x1 P11 + θ11 P12 − θ11
x2 P21 + θ21 P22 − θ21
x3 P31 − (θ11 + θ21) P32 + (θ11 + θ21)

Table 2: Adjustment of probability mass Π̃ while maintaining marginal distri-
butions.

For a proper transition probability, Π̃ has to satisfy further restrictions on θ11
and θ21. For i = 1, 2, we have to ensure that 0 ≤ Pi1+ θi1 ≤ PX̂(xi) = Pi1+Pi2

which reduces to θi1 ≤ Pi2 and θi1 ≥ −Pi1. Additionally we have to require
0 ≤ P31 − (θ11 + θ21) ≤ PX̂(x3) = P31 + P32 and get θ11 + θ21 ≤ P31 and
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θ11+θ21 ≥ −P32. In total, we have identified six constraints for the two variables
which are summarized in

θi1 ≤ Pi2, θi1 ≥ −Pi1, i = 1, 2, (10)

θ11 + θ21 ≤ P31, θ11 + θ21 ≥ −P32. (11)

Denote by A the set of all values (θ11, θ21) such that the constraints given in
(10) and (11) hold.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

θ21 = P22

θ21 = −P21

θ11 = P12

θ11 = −P11

θ11 + θ21 = P31

θ11 + θ21 = −P32

A

θ11

θ
2
1

Figure 2: The linear constraints that bound A and provide its vertices. All
probabilities are equal to 1

6 , thus they define the largest simplex pos-
sible.

For different underlying probabilities the set A is illustrated in Figure 2 and
Figure 3.

Note that the constraints depend on the probabilities for the stock and the
variance. Denote by EΠ̃(·) and VarΠ̃(·) the expectation and variance under

the adjusted probabilities. We define the short hand notations X̂ := X̂t+∆t

and V̂ := V̂t+∆t conditioned on V̂t = v. As a consequence of the untouched
marginals, the moments are unaffected by the change of the probabilities. Ob-
serve that

EΠ̃

(
X̂
)
= E

(
X̂
)
, EΠ̃

(
X̂2
)
= E

(
X̂2
)
,

EΠ̃

(
V̂
)
= E

(
V̂
)
, EΠ̃

(
V̂ 2
)
= E

(
V̂ 2
)
,
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Figure 3: Linear constraints that bound A. The probability for the stock to stay
in the middle node is close to zero. In the limit, the tree reduces to
the binomial case.
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By Corollary 2, the condition for matching the covariance is given by

Cov(X̂, V̂ )
!
= Cov(X,V ) = ηρV∆t

where by obvious calculations

CovΠ̃(X̂, V̂ ) = EΠ̃(X̂V̂ )− E(X̂)E(V̂ )

= (v1 − v2) [θ11 (x1 − x3) + θ21 (x2 − x3)] .

To measure the approximation quality of the moment match, we use the
squared Euclidean distance

d̃ (θ11, θ21) :=
(
Cov(X,V )− CovΠ̃(X̂, V̂ )

)2
, (12)

where θ11 and θ21 have to satisfy the constraints given in (10) and (11), i.e.
(θ11, θ21) lies in A. Our optimal adjustment then minimizes (12), i.e.

min
(θ11,θ21)∈A

d̃ (θ11, θ21) . (13)

The objective function d̃ is displayed in Figure 4, and the respective optimization
problem is solved in Proposition 4, the proof of which is given in the appendix.
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Proposition 4: (i) The admissible set A is a closed, convex, bounded simplex
in R

2. Its set of extremal points E consists of at most 6 vertices.

(ii) The objective function d̃ given in (12) is continuous and convex.

(iii) The level sets
Nd := {(θ11, θ21) | d̃ (θ11, θ21) = d},

up to the degenerate case d = 0, are formed by two parallel linear functions
h1, h2 given by

h1|2 : θ21 =
Cov (X,V )±

√
d

(x2 − x3) (v1 − v2)
− θ11

(x1 − x3)

(x2 − x3)
.

In the degenerate case d = 0, the level set N0 is given by

h0 : θ21 =
Cov (X,V )

(x2 − x3) (v1 − v2)
− θ11

(x1 − x3)

(x2 − x3)
.

(iv) The infimum of d̃ on A is attained. For L0 := N0 ∩A 6= ∅, L0 is precisely
the set of all minimizers. If L0 = ∅, there is a unique minimizer in E.

It therefore suffices to determine the objective function only at the finite set
of extreme points if L0 = ∅. Whenever L0 6= ∅ and contains more than one
point, the set of minimizers in A is a line segment, and there is room for further
improvement, as distinct minimizers, despite producing the same minimal value
of d̃, may well produce trees giving different option prices. We detail this in
Section 3.1.

Remark 5: (a) A general optimization device to cope with quadratic optimiza-
tion problems on a simplex is given by the Frank-Wolfe algorithm, which
is also known as the convex combination algorithm, compare Frank and
Wolfe [1956]. In our context, as mentioned, it is much cheaper though, to
evaluate our objective function on the few extremal points of A.

(b) If L0 = ∅ the constraints become active, i.e. the problem given in (13)
becomes a linear optimization problem and can be solved with common
simplex methods. Still, in our case, it is far cheaper to evaluate our ob-
jective function on the few extremal points of A.

(c) Proposition 4 can easily be generalized to general multinomial × multi-
nomial trees in which to derive optimal moment matches, as the tree mo-
ments are linear in the respective cell probabilities. This again reduces to a
minimization on the finite set of extremal points of the respective simplex
or, in case of exact matches leaves room for higher order matches.

3.1 Matching a higher moment

Whenever the covariance can be matched exactly and L0 is a line segment, we
can choose among all exact matches. This gives us a further degree of freedom,
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which can be used to match parts of a higher order cumulant in the Edgeworth
expansion with the rationale to asymptotically bring us closer to the exact
Heston distribution. To check whether this additional adjustment is possible at
all, we determine the frequency of L0 being a line segment as a function of ρ for
a specific set of parameters in Figure 5.

For moderate values of ρ the covariance can be matched exactly in a large
amount of cases, in more than half of the cases for ρ ∈ [−0.4, 0.4]. So indeed,
the additional adjustment is a relevant improvement and we can try to match
a next higher moment at least partly while sticking to the other moments and
choices we previously made.
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Figure 5: Number of exact covariance matches in per cent of all variance lev-
els for different correlation levels. A moderate covariance can be
matched exactly in more cases than a high covariance. Model and
option parameters are s0 = K = 100, T = 1, r = 0.04 and d = 0.03.
Variance parameters are v0 = θ = 0.09, η = 0.2 and κ = 2. We use
v̂ = 0.01 and discretize with N = 500 steps.

To realize this additional adjustment, let I1 = (θ111, θ
1
21) and I2 = (θ211, θ

2
21)

be the two points where the boundary of A and N0 intersect. Since the slope of
N0 is negative, we can order I1 and I2 such that I1 is the one with the higher
ordinate, the upper left intersection. As is easily seen, each point on the line
between I1 and I2, which may be parameterized by the convex combinations
I(λ) = I1+λ (I2 − I1), leaves the marginal distributions of X̂ and V̂ unchanged
and leads to the same exactly matched covariance. Varying λ, we can hence
match one extra moment of third order. In fact, in our setup of two processes
there are four joint moments of third order, i.e. E(X̂3), E(X̂2V̂ ), E(X̂V̂ 2), and
E(V̂ 3). As the marginals remain fixed, we can either match the mixed moment

14



E(X̂2V̂ ) or E(X̂V̂ 2). We choose to match E(X̂2V̂ ), since heuristically the op-
tion payoff is closer linked to the log-stock price process X. For consistency, we
use the linear approximation of E(X2V ) which is given in Corollary 2 and want
to minimize the squared Euclidean distance between this value and the corre-
sponding moment obtained through the tree. Let further be ∆v := (v1 − v2).

Proposition 6:

The corresponding moment in the tree is given by

EΠ̃

(
X̂2V̂

)
= E

(
X̂2
)
E

(
V̂
)
+ θ111

(
x2
1 − x2

3

)
∆v + θ121

(
x2
2 − x2

3

)
∆v

+ λ∆v
[(
θ211 − θ111

) (
x2
1 − x2

3

)
+
(
θ221 − θ121

) (
x2
2 − x2

3

)]
.

(14)

Restricting λ to be in [0, 1] results in an optimal λ∗, which is given in

Corollary 7:

λ∗ = min(max(0, λ0), 1) for

λ0 =
E

(
X̂2V̂

)
− E

(
X̂2
)
E

(
V̂
)
−∆v

[
θ111
(
x2
1 − x2

3

)
+ θ121

(
x2
2 − x2

3

)]

∆v [(θ211 − θ111) (x
2
1 − x2

3) + (θ221 − θ121) (x
2
2 − x2

3)]
.

The proofs of Proposition 6 and Corollary 7 are given in the appendix. Next
we state characteristics and numerical results of our pricing algorithm.

4 Numerics

This section discusses various numerical aspects of our approach, including nu-
merical convergence order, computational complexity and accuracy. As a ref-
erence we use the semi closed-form prices from Albrecher et al. [2007] and
compare our algorithm with the pricing routines given by Guan and Xiaoqiang
[2000] (GX) and Beliaeva and Nawalkha [2010] (BN). Our results are computed
using Matlab on two 2.0 GHz Intel Centrino processors.

4.1 Pricing of European options

To verify and validate the implemented tree methods we use the corrected semi
closed-form European call price formula given by Albrecher et al. [2007]. The
price c(K,T ) of an European call with strike K and maturity T is given as

c (K,T ) =
1

2

(
s0e

−dT −Ke−rT
)
+

1

π

∫ ∞

0

f1 (u)−Ke−rT f2 (u) du

with spot s0, constant interest rate r and constant dividend yield d. The values
f1(u) and f2(u) are given by

f1 (u) = ℜ
(
e−iu ln(K)ϕ (u− i)

iuerT

)
, f2 (u) = ℜ

(
e−iu ln(K)ϕ (u)

iu

)
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where ℜ(·) denotes the real part of a complex number. The Heston characteristic
function ϕ(·) is given by

ϕ (u) = eA1(u)+A2(u)+A3(u)

with

A1 (u) = iu [ln (s0) + (r − d)T ] ,

A2 (u) =
θκ

η2

(
(κ− ρηiu− h (u))T − 2 ln

[
1− g (u) e−h(u)T

1− g (u)

])
,

A3 (u) =
v0 (κ− ρηiu− h (u))

(
1− e−h(u)T

)

η2
(
1− g (u) e−h(u)T

)

and

g (u) =
κ− ρηiu− h (u)

κ− ρηiu+ h (u)
, h (u) =

√
(ρηiu− κ)

2
+ η2 (iu+ u2)

and with i the imaginary unit. The improper integral has to be integrated
numerically, but as stated by Kahl and Jäckel [2005], this can be done in a
reasonable fashion using adaptive Gauss-Lobatto quadrature.

4.2 Numerical convergence order

To examine the convergence of our model, we compute the logarithmic price
differences of the tree prices and the semi closed-form for a European call and
plot them against the logarithmic number of discretizing steps Ñ := log(N). A
linear regression shows that the slope parameters are close to −1 or even less for
all correlations, so in a respective Edgeworth expansion the leading error term
would occur in the skew. In fact, achieving orders beyond 1 means that at least
to some extent we have matched higher moments than mean and covariance.
The results are shown in Figure 6.

The three panels of the plot illustrate the convergence of our method for
ρ = −0.75, ρ = 0, and ρ = 0.75. The linear regressions for the negative and
positive correlation values yield slope parameters of approximately −1.1, and
−1.2, respectively, indicating an effect of our partial matching of a higher mo-
ment. If ρ = 0, the approximated covariance Cov(X̂, V̂ ) is 0 and A degenerates
to the origin, so the additional degree of freedom vanishes, which explains the
slope of approximately −1 here.

4.3 Computational Complexity

Due to differences in hardware architecture and programming language, a fair
timing comparison between BN and our method (RSS) is not trivial. Still
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Figure 6: Convergence of the model for a European call for different corre-
lation levels and increasing number of discretizing steps N . The
ordinate shows the absolute price difference ∆ of the tree price and
the analytic solution in cent. Regression lines for Ñ := log(N) and
∆̃ := log(∆). Model parameters are s0 = 100, r = 0.04, d = 0.03,
v0 = 0.09, κ = 2, θ = 0.09, η = 0.2. The option matures in T = 1
year with strike price K = 100. We further use v̂ = 0.01.
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computational complexity can be compared to some extent. To achieve roughly
equal complexity for both approaches, we must choose our standard variance
v̂ in a way that compensates the fact that we differ from the BN approach
in the number of successor nodes. Since BN use trinomial trees for both the
variance and the log-stock tree, they end up with NBN

V ×NBN
X × 9 operations

per time slice, where NBN
V and NBN

X are the amount of the variance and the
log-stock nodes in a particular time step. Denoting by NRSS

V and NRSS
X the

respective numbers in our approach, we need NRSS
V ×NRSS

X × 6 operations for
the same time slice. If we assume that the state space of the variance process
is discretized according to Nelson and Ramaswamy [1990] for both approaches,
NBN

V essentially equals NRSS
V . With a restriction to the same range of log-stock

prices for both approaches, the only difference arises in the grid widths ∆xBN

and ∆xRSS . Both methods have equal complexity if

9× 1

∆xBN
≈ 6× 1

∆xRSS
.

BN replace ∆xBN by
√
v0∆t, so v0 is used to space the log-stock grid while we

use a grid width of ∆xRSS =
√
v̂∆t. This means that for the same order of

complexity in both methods, we have to set v̂ to 4
9v0, which is approximately

44% of the initial variance, hence a conservative comparison is obtained for
v̂ = 1

2v0. Of course this is only a heuristic, since we e.g. have ignored the
truncation method in the BN approach. More specifically, they incorporate
a bound on the log-stock tree that truncates the tree from above and below
suppressing highly improbable nodes. Such a truncation would be possible in
our setup as well. As it is not clear a priori in which way it influences the
convergence of the method, though, in this paper we decided to only focus on
the correlation matching, skipping any truncation.

4.4 Accuracy

In the following we state some results of our method for European and American
options and different sets of input parameters. Throughout this part, we deter-
mine price deviations through the mean absolute percentage error (MAPE),

MAPE =
| analytic price−model price |

analytic price
.

Table 3 states European call prices calculated with our model and the pricing
algorithms of Beliaeva and Nawalkha [2010] and Guan and Xiaoqiang [2000].

We use the parameters r = 0.05, d = 0, κ = 3, θ = 0.04, η = 0.1 and
ρ = −0.1 to price the call maturing in 1, 3 and 6 months with strike price
K = 100. We further use v̂ = 0.02. We vary the initial spot price from 90
to 110 to investigate the behavior of out-of-the-money and in-the-money calls
and set the initial variance to 0.04, 0.09 and 0.16. We use N = 200 steps to
discretize the lifetime of the option. Note that due to the changing maturity,
also the time step ∆t varies from ∆t = 0.0004 to ∆t = 0.0013 and ∆t = 0.0025
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T v0 s0 analytic BN GX RSS ∆ BN ∆ GX ∆ RSS

1/12 0.04 90 0.0857 0.0857 0.0865 0.0857 0.01% 0.92% 0.00%
95 0.6508 0.6510 0.6504 0.6507 0.02% 0.07% 0.02%

100 2.5108 2.5109 2.5088 2.5116 0.01% 0.08% 0.04%
105 5.9944 5.9943 5.9938 5.9943 0.00% 0.01% 0.00%
110 10.5241 10.5239 10.5244 10.5238 0.00% 0.00% 0.00%

0.09 90 0.4335 0.4341 0.4331 0.4336 0.14% 0.09% 0.04%
95 1.4551 1.4565 1.4623 1.4562 0.10% 0.49% 0.08%

100 3.5455 3.5468 3.5552 3.5471 0.04% 0.27% 0.04%
105 6.7897 6.7899 6.7944 6.7901 0.00% 0.07% 0.01%
110 10.9253 10.9247 10.9245 10.9257 0.01% 0.01% 0.00%

0.16 90 1.0115 1.0135 1.0123 1.0127 0.20% 0.08% 0.11%
95 2.3696 2.3723 2.3730 2.3723 0.12% 0.14% 0.11%

100 4.6017 4.6040 4.6061 4.6050 0.05% 0.10% 0.07%
105 7.7198 7.7207 7.7231 7.7207 0.01% 0.04% 0.01%
110 11.5766 11.5759 11.5778 11.5781 0.01% 0.01% 0.01%

MAPE (T = 1/12) 0.05% 0.16% 0.04%

1/4 0.04 90 0.8852 0.8855 0.8859 0.8857 0.03% 0.08% 0.06%
95 2.2588 2.2592 2.2631 2.2584 0.02% 0.19% 0.02%

100 4.6105 4.6108 4.6151 4.6118 0.01% 0.10% 0.03%
105 7.9290 7.9289 7.9310 7.9286 0.00% 0.02% 0.01%
110 12.0006 12.0002 11.9998 12.0006 0.00% 0.01% 0.00%

0.09 90 1.9024 1.9060 1.9028 1.9043 0.19% 0.02% 0.10%
95 3.6147 3.6186 3.6178 3.6171 0.11% 0.09% 0.07%

100 6.0703 6.0733 6.0719 6.0730 0.05% 0.03% 0.05%
105 9.2385 9.2400 9.2412 9.2407 0.02% 0.03% 0.02%
110 13.0088 13.0084 13.0099 13.0104 0.00% 0.01% 0.01%

0.16 90 3.1355 3.1420 3.1373 3.1387 0.21% 0.06% 0.10%
95 5.0826 5.0888 5.0855 5.0884 0.12% 0.06% 0.11%

100 7.6177 7.6224 7.6212 7.6214 0.06% 0.05% 0.05%
105 10.7087 10.7111 10.7125 10.7108 0.02% 0.04% 0.02%
110 14.2873 14.2871 14.2906 14.2903 0.00% 0.02% 0.02%

MAPE (T = 1/4) 0.06% 0.05% 0.04%

1/2 0.04 90 2.3272 2.3280 2.3263 2.3290 0.03% 0.04% 0.08%
95 4.2367 4.2374 4.2374 4.2367 0.02% 0.02% 0.00%

100 6.8817 6.8819 6.8810 6.8832 0.00% 0.01% 0.02%
105 10.2068 10.2066 10.2071 10.2077 0.00% 0.00% 0.01%
110 14.0910 14.0903 14.0896 14.0929 0.00% 0.01% 0.01%

0.09 90 3.6447 3.6508 3.6462 3.6479 0.17% 0.04% 0.09%
95 5.7520 5.7576 5.7545 5.7555 0.10% 0.04% 0.06%

100 8.4366 8.4405 8.4396 8.4403 0.05% 0.04% 0.04%
105 11.6550 11.6568 11.6580 11.6583 0.02% 0.03% 0.03%
110 15.3337 15.3332 15.3362 15.3353 0.00% 0.02% 0.01%

0.16 90 5.1748 5.1836 5.1797 5.1804 0.17% 0.10% 0.11%
95 7.4382 7.4455 7.4444 7.4443 0.10% 0.08% 0.08%

100 10.1664 10.1711 10.1737 10.1726 0.05% 0.07% 0.06%
105 13.3245 13.3260 13.3332 13.3305 0.01% 0.07% 0.05%
110 16.8632 16.8612 16.8742 16.8676 0.01% 0.07% 0.03%

MAPE (T = 1/2) 0.05% 0.04% 0.05%

MAPE 0.05% 0.08% 0.04%

Table 3: European call prices calculated with our model (RSS) and with the
pricing routines of Guan and Xiaoqiang [2000] (GX) and Beliaeva
and Nawalkha [2010] (BN) for moderate correlation ρ = −0.1. The
strike price is K = 100. The other parameters are r = 0.05, d = 0,
κ = 3, θ = 0.04 and η = 0.1. We further use v̂ = 0.02 and discretize
the lifetime of the option into N = 200 equidistant time steps. The
last 3 columns state the deviation to the analytic solution in per cent.
The mean absolute percentage error (MAPE) is given in the last row.
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for T = 1/12, T = 1/4 and T = 1/2, respectively. Columns 5 to 7 contain the
model prices and columns 8 to 10 state the relative deviations. In general, the
table shows that the approximation is very close to the analytic solution. In this
low correlation setting, the MAPEs of BN, GX, and RSS are 0.05%, 0.08% and
0.04%, respectively and the maximal deviation of our model is 0.11%. This is less
than the 8 highest deviations of BN (0.21%, 0.20%, 0.19%, 0.17% twice, 0.14%
and 0.12% twice) and less than the 5 largest deviations of GX (0.92%, 0.49%,
0.27%, 0.19% and 0.14%). As in case of BN and GX, RSS behaves better for
in-the-money than for out-of-the-money options and the approximation quality
is decreasing in v0. The average run time to value the option is 1.887 seconds.

In the next setting, we investigate more realistic correlations as empirically
observed in equity markets, see Bakshi et al. [1997] and Nandi [1998]. All
parameters except for the correlation remain unchanged, we set ρ = −0.7. We
compare our model with the BN procedure and employ N = 50, N = 200 and
N = 500 steps to discretize the lifetime of the options. Table 4 states the results.

The last row gives the MAPEs for the corresponding discretizing steps. In
nearly all subgroups, the MAPE of our model is smaller than the MAPE of
BN. In absolute terms, for N = 50, N = 200 and N = 500, the BN model
produces an average deviation in cents of 3.71, 0.98 and 0.35, respectively. The
approximation quality of BN strongly depends on the initial variance and pricing
errors increase in v0. The absolute deviations in cent of our model are 1.14,
0.26 and 0.13 for N = 50, N = 200 and N = 500, respectively, which is
a remarkable improvement. In consequence of v̂, our approach is more stable
than the BN method about changes in the initial variance and so obtains smaller
pricing errors. While this effect vanishes for ∆t → 0 for realistic time steps, our
approach yields a considerably higher accuracy than the BN method, as can be
seen for N = 50 and an option maturing in 1/2 year, resulting in ∆t = 0.01. In
this case, for T = 1/2, the MAPEs of the BN approach are 1.11%, 0.23% and
0.08% for N = 50, N = 200 and N = 500, respectively. Our model performs
better by factors of 3.83, 3.29 and 2.67 for N = 50, N = 200 and N = 500,
respectively. This is evidence that our method can be recommended in high
correlation settings, even for a small number of discretizing steps.

Next we turn to pricing American put options. For comparison with the BN
method we use r = 0.05, d = 0, κ = 3, θ = 0.04, η = 0.1 and K = 100. As
stated in Beliaeva and Nawalkha [2010], we can improve the pricing accuracy
by a control variate technique. First we determine the analytical European put
option price p via the put-call parity p (K,T ) = Ke−rT + c (K,T )− s0 for non-
dividend paying stocks, where we use the corresponding call price c, which is
given in Section 4.1. Then the European put is used as a control variate to
determine the price of the American put option

P = P̂ + (p− p̂) ,

where P̂ and p̂ are the respective American and European put option prices
obtained from the tree. The resulting price obtained through the control variate
technique by Beliaeva and Nawalkha [2010] (BN + CV) is assumed to be exact
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∆ BN ∆ RSS
T v0 s0 analytic N = 50 N = 200 N = 500 N = 50 N = 200 N = 500

1/12 0.04 90 0.0691 0.54% 0.54% 0.25% 0.06% 0.60% 0.50%
95 0.6232 0.18% 0.04% 0.02% 0.40% 0.01% 0.01%

100 2.5129 0.06% 0.02% 0.01% 0.18% 0.02% 0.01%
105 6.0211 0.01% 0.00% 0.00% 0.04% 0.01% 0.00%
110 10.5423 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%

0.09 90 0.4063 1.28% 0.15% 0.10% 0.43% 0.13% 0.12%
95 1.4313 0.61% 0.00% 0.02% 0.29% 0.10% 0.05%

100 3.5460 0.19% 0.03% 0.01% 0.13% 0.04% 0.01%
105 6.8125 0.01% 0.03% 0.01% 0.02% 0.00% 0.00%
110 10.9525 0.02% 0.01% 0.01% 0.00% 0.00% 0.00%

0.16 90 0.9826 2.61% 0.07% 0.03% 0.25% 0.12% 0.06%
95 2.3493 1.08% 0.07% 0.00% 0.42% 0.12% 0.04%

100 4.6010 0.32% 0.06% 0.02% 0.23% 0.07% 0.02%
105 7.7380 0.03% 0.04% 0.02% 0.02% 0.01% 0.01%
110 11.6040 0.03% 0.03% 0.02% 0.03% 0.01% 0.00%

MAPE (T = 1/12) 0.47% 0.07% 0.03% 0.17% 0.08% 0.06%

1/4 0.04 90 0.8120 0.76% 0.09% 0.04% 0.65% 0.23% 0.20%
95 2.2114 0.27% 0.04% 0.01% 0.26% 0.04% 0.02%

100 4.6192 0.04% 0.04% 0.02% 0.15% 0.01% 0.05%
105 7.9832 0.03% 0.02% 0.01% 0.08% 0.02% 0.01%
110 12.0682 0.02% 0.00% 0.00% 0.01% 0.01% 0.01%

0.09 90 1.8316 1.58% 0.02% 0.03% 0.49% 0.15% 0.08%
95 3.5738 0.81% 0.08% 0.01% 0.29% 0.09% 0.04%

100 6.0732 0.48% 0.08% 0.03% 0.19% 0.05% 0.02%
105 9.2810 0.27% 0.08% 0.03% 0.08% 0.02% 0.01%
110 13.0747 0.14% 0.06% 0.03% 0.04% 0.01% 0.00%

0.16 90 3.0709 1.15% 0.30% 0.07% 1.00% 0.10% 0.04%
95 5.0457 0.40% 0.26% 0.07% 0.74% 0.12% 0.01%

100 7.6157 0.06% 0.22% 0.07% 0.42% 0.05% 0.03%
105 10.7399 0.18% 0.18% 0.07% 0.00% 0.02% 0.02%
110 14.3433 0.26% 0.15% 0.06% 0.04% 0.02% 0.01%

MAPE (T = 1/4) 0.43% 0.11% 0.04% 0.30% 0.06% 0.04%

1/2 0.04 90 2.2262 1.30% 0.10% 0.01% 0.08% 0.13% 0.01%
95 4.1889 0.68% 0.09% 0.03% 0.17% 0.04% 0.06%

100 6.9002 0.38% 0.05% 0.02% 0.07% 0.02% 0.04%
105 10.2797 0.26% 0.03% 0.02% 0.07% 0.02% 0.03%
110 14.1930 0.22% 0.01% 0.01% 0.00% 0.01% 0.01%

0.09 90 3.5497 1.82% 0.16% 0.02% 0.57% 0.14% 0.05%
95 5.7053 1.19% 0.16% 0.04% 0.32% 0.09% 0.04%

100 8.4453 0.72% 0.16% 0.05% 0.19% 0.06% 0.02%
105 11.7133 0.50% 0.14% 0.05% 0.10% 0.03% 0.01%
110 15.4272 0.40% 0.13% 0.05% 0.05% 0.01% 0.00%

0.16 90 5.0861 2.77% 0.65% 0.20% 1.53% 0.21% 0.05%
95 7.3913 2.39% 0.54% 0.18% 0.78% 0.13% 0.04%

100 10.1655 2.05% 0.46% 0.17% 0.34% 0.07% 0.03%
105 13.3668 0.48% 0.40% 0.15% 0.06% 0.04% 0.02%
110 16.9406 1.53% 0.35% 0.14% 0.08% 0.01% 0.01%

MAPE (T = 1/2) 1.11% 0.23% 0.08% 0.29% 0.07% 0.03%

MAPE 0.67% 0.14% 0.05% 0.25% 0.07% 0.04%

Table 4: Comparison of European call prices determined with BN and our
method for correlation ρ = −0.7 and discretizing steps N = 50,
N = 200 and N = 500. We further use r = 0.05, d = 0, κ = 3,
θ = 0.04, η = 0.1, K = 100 and v̂ = 0.02. Columns 5 to 10 show the
deviation to the analytic price in per cent.
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European BN + CV ∆ BN ∆ RSS
T v0 ρ s0 Put p N = 200 N = 50 N = 200 N = 50 N = 200

1/12 0.04 -0.1 90 9.6699 10.0000 0.00% 0.00% 0.00% 0.00%
100 2.0950 2.1254 0.01% 0.01% 0.21% 0.05%
110 0.1083 0.1091 0.37% 0.18% 0.15% 0.25%

-0.7 90 9.6533 9.9997 0.00% 0.00% 0.00% 0.00%
100 2.0971 2.1267 0.08% 0.02% 0.20% 0.04%
110 0.1265 0.1274 0.63% 0.08% 0.26% 0.26%

0.16 -0.1 90 10.5957 10.7100 0.09% 0.02% 0.03% 0.01%
100 4.1859 4.2158 0.28% 0.07% 0.26% 0.08%
110 1.1608 1.1667 0.00% 0.01% 0.42% 0.13%

-0.7 90 10.5668 10.6804 0.09% 0.03% 0.05% 0.03%
100 4.1852 4.2140 0.10% 0.04% 0.29% 0.10%
110 1.1882 1.1939 1.99% 0.09% 0.40% 0.15%

MAPE (T = 1/12) 0.30% 0.05% 0.19% 0.09%

1/4 0.04 -0.1 90 9.6430 10.1706 0.03% 0.00% 0.00% 0.01%
100 3.3683 3.4747 0.03% 0.01% 0.22% 0.04%
110 0.7584 0.7736 0.18% 0.04% 0.29% 0.03%

-0.7 90 9.5698 10.1206 0.04% 0.01% 0.00% 0.03%
100 3.3770 3.4807 0.01% 0.04% 0.18% 0.00%
110 0.8259 0.8416 0.55% 0.01% 0.14% 0.09%

0.16 -0.1 90 11.8933 12.1819 0.06% 0.08% 0.10% 0.04%
100 6.3755 6.4964 0.10% 0.13% 0.42% 0.07%
110 3.0451 3.0914 0.13% 0.12% 0.69% 0.10%

-0.7 90 11.8287 12.1122 0.41% 0.14% 0.35% 0.09%
100 6.3735 6.4899 0.07% 0.20% 0.54% 0.11%
110 3.1011 3.1456 0.87% 0.33% 0.25% 0.14%

MAPE (T = 1/4) 0.21% 0.09% 0.26% 0.06%

1/2 0.04 -0.1 90 9.8582 10.6478 0.04% 0.01% 0.03% 0.02%
100 4.4126 4.6473 0.06% 0.01% 0.02% 0.05%
110 1.6220 1.6832 0.17% 0.02% 0.04% 0.12%

-0.7 90 9.7572 10.5637 0.06% 0.00% 0.03% 0.03%
100 4.4312 4.6636 0.08% 0.03% 0.11% 0.03%
110 1.7240 1.7874 0.43% 0.01% 0.15% 0.08%

0.16 -0.1 90 12.7057 13.3142 0.15% 0.14% 0.20% 0.06%
100 7.6974 8.0083 0.19% 0.19% 0.40% 0.09%
110 4.3942 4.5454 0.51% 0.20% 0.57% 0.12%

-0.7 90 12.6171 13.2172 0.92% 0.29% 0.76% 0.19%
100 7.6965 7.9998 0.71% 0.41% 0.60% 0.18%
110 4.4716 4.6201 0.50% 0.59% 0.20% 0.11%

MAPE (T = 1/2) 0.32% 0.16% 0.26% 0.09%

MAPE 0.28% 0.10% 0.24% 0.08%

Table 5: American put prices determined with the BN and RSS tree approach.
We use r = 0.05, d = 0, κ = 3, θ = 0.04, η = 0.1 and K = 100 to
price the option. Column 5 states the analytic price of the European
put. Column 6 states the ’true’ price and the deviations rely to it.
We further use v̂ = 0.02.

and is used as the reference price. We compare both the BN tree-method prices
and ours for N = 50 and N = 200 discretizing steps and use v̂ = 0.02, see
Table 5.

Comparing the results for N = 50, the maximal deviation of BN is 1.99%
with a MAPE of 0.28% while our model yields a maximal deviation of 0.76%
and a MAPE of 0.24%. The worst approximation of our model is better then
the 3 worst approximations of BN (1.99%, 0.92%, 0.87%). For N = 200, BN
yields a maximal deviation of 0.59% with a MAPE of 0.10%. The maximal
deviation of RSS is 0.26% with a MAPE of 0.08% and our worst approximation
is better then the 4 worst of BN (0.59%, 0.41%, 0.33%, 0.29%).

Table 6 states the effect of the standard variance step v̂. Intuitively, a
smaller spacing suggests a finer grid and a closer price. The results confirm this
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intuition.
We determine European call prices for N = 50 and N = 200 discretizing

steps and employ v̂ = 0.02 and v̂ = v0. Once again, we use r = 0.05, d = 0,
κ = 3, θ = 0.04, η = 0.1 and ρ = −0.7. The strike is set to K = 100. We
achieve a MAPE of 0.25% for N = 50 and 0.07% for N = 200 for v̂ = 0.02. The
MAPEs for v̂ = v0 are 0.47% for N = 50 and 0.25% for N = 200. So the results
for v̂ = 0.02 are closer to the analytic price in all subtables, where we grouped
the parameters according to the initial variance v0.

5 Conclusion and Outlook

We have introduced a refined tree method for pricing derivatives in the stochastic
volatility model of Heston with a particular focus on incorporating the corre-
lation between the log-stock price and the variance process. To this end, we
adjust the transition probabilities of the corresponding product model, leaving
the marginals invariant. Among all admissible adjustments we choose the one
giving the closest moment match up to second order, where “closest” is deter-
mined in a mathematically rigorous way. In the nodes where an exact moment
match up to order two is possible, we use the remaining degree of freedom to
match a mixed cumulant of higher order of the Heston distribution with the
rationale to achieve a lower distributional approximation error. We determine
recursions for the joint cumulants of all orders for the Heston limit distribution
in Lemma 1. The calculated option values can be determined fast and, more
importantly, are highly accurate.

Overall, our results compare favorably to Beliaeva and Nawalkha [2010] al-
though we use a smaller number of successor nodes, i.e. a sparser discretization
of the state space. Our numerical evaluations indicate a convergence order of at
least O (1/N). There is evidence that the power of the convergence order can
even be increased for non-vanishing correlation due to the matching of higher
order cumulants. In particular our approach is recommendable to cover a broad
range of realistic correlation values.

In future work, without affecting our results so far, a truncation scheme bound-
ing the number of grid nodes per time slice could help to further reduce compu-
tational complexity. Even more so, as indicated in Remark 5(c), our matching
technique easily extends to more general schemes of successor nodes, with the
perspective for strategies matching even higher order moments.

Acknowledgement

This paper is part of the PhD thesis of Tilman Sayer. Tilman Sayer gratefully
acknowledges financial support from the Fraunhofer Gesellschaft.

23



∆ RSS (v̂ = 0.02) ∆ RSS (v̂ = v0)
v0 T s0 analytic N = 50 N = 200 N = 50 N = 200

0.04 1/12 90 0.0691 0.06% 0.60% 3.38% 2.81%
95 0.6232 0.40% 0.01% 1.17% 0.94%

100 2.5129 0.18% 0.02% 0.15% 0.04%
105 6.0211 0.04% 0.01% 0.08% 0.08%
110 10.5423 0.00% 0.00% 0.05% 0.04%

1/4 90 0.8120 0.65% 0.23% 2.19% 1.53%
95 2.2114 0.26% 0.04% 0.72% 0.58%

100 4.6192 0.15% 0.01% 0.03% 0.07%
105 7.9832 0.08% 0.02% 0.10% 0.08%
110 12.0682 0.01% 0.01% 0.11% 0.10%

1/2 90 2.2262 0.03% 0.12% 0.82% 0.87%
95 4.1889 0.20% 0.04% 0.49% 0.38%

100 6.9002 0.08% 0.02% 0.07% 0.07%
105 10.2797 0.07% 0.02% 0.08% 0.07%
110 14.1930 0.00% 0.01% 0.18% 0.12%

MAPE (v0 = 0.04) 0.15% 0.08% 0.64% 0.52%

0.09 1/12 90 0.4063 0.43% 0.13% 0.80% 0.59%
95 1.4313 0.29% 0.10% 0.44% 0.27%

100 3.5460 0.13% 0.04% 0.25% 0.09%
105 6.8125 0.02% 0.00% 0.04% 0.00%
110 10.9525 0.00% 0.00% 0.04% 0.02%

1/4 90 1.8316 0.49% 0.15% 0.89% 0.31%
95 3.5738 0.29% 0.09% 0.39% 0.19%

100 6.0732 0.19% 0.05% 0.31% 0.07%
105 9.2810 0.08% 0.02% 0.05% 0.02%
110 13.0747 0.04% 0.01% 0.01% 0.01%

1/2 90 3.5497 0.51% 0.11% 0.83% 0.21%
95 5.7053 0.29% 0.07% 0.30% 0.11%

100 8.4453 0.18% 0.05% 0.18% 0.07%
105 11.7133 0.10% 0.03% 0.15% 0.01%
110 15.4272 0.05% 0.01% 0.06% 0.01%

MAPE (v0 = 0.09) 0.21% 0.06% 0.32% 0.13%

0.16 1/12 90 0.9826 0.25% 0.12% 0.58% 0.26%
95 2.3493 0.42% 0.12% 0.32% 0.14%

100 4.6010 0.23% 0.07% 0.25% 0.09%
105 7.7380 0.02% 0.01% 0.08% 0.03%
110 11.6040 0.03% 0.01% 0.02% 0.00%

1/4 90 3.0709 1.00% 0.10% 1.36% 0.22%
95 5.0457 0.74% 0.12% 0.80% 0.12%

100 7.6157 0.42% 0.05% 0.41% 0.05%
105 10.7399 0.00% 0.02% 0.08% 0.05%
110 14.3433 0.04% 0.02% 0.02% 0.03%

1/2 90 5.0861 1.53% 0.20% 1.12% 0.14%
95 7.3913 0.78% 0.12% 0.89% 0.15%

100 10.1655 0.34% 0.07% 0.42% 0.07%
105 13.3668 0.07% 0.04% 0.03% 0.04%
110 16.9406 0.08% 0.01% 0.21% 0.02%

MAPE (v0 = 0.16) 0.40% 0.07% 0.44% 0.09%

MAPE 0.25% 0.07% 0.47% 0.25%

Table 6: Effect of v̂ on the prices of European calls. Column 5 and 6 state
the absolute percentage difference of the model price to the analytic
solution for v̂ = 0.02. In column 7 and 8 we obtained the absolute
percentage difference of the tree method to the closed-form solution
for v̂ = v0. We further set r = 0.05, d = 0, κ = 3, θ = 0.04, η = 0.1,
ρ = −0.7 and set K = 100.
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A Proofs

Proof of Lemma 1:

Let i, j ∈ N0 and let

mi,j (t) = E

(
Xi

tV
j
t

)

under the assumption that x0 and v0 are the initial values. We follow the
example 4.13 of Björk [2004] and employ the Itô formula

d
(
Xi

tV
j
t

)
= iXi−1

t V j
t dXt + jXi

tV
j−1
t dVt +

i

2
(i− 1)Xi−2

t V j
t (dXt)

2

+
j

2
(j − 1)Xi

tV
j−2
t (dVt)

2
+ ijXi−1

t V j−1
t (dXt dVt) ,

(15)

where dXt, (dXt)
2, dVt, (dVt)

2 and (dXt dVt) are known as

dXt = −1

2
Vt dt+

√
Vt dW

S
t , (dXt)

2
= Vt dt,

dVt = κ (θ − Vt) dt+ η
√
Vt dW

V
t , (dVt)

2
= η2Vt dt

(dXt dVt) = ηVtρdt

(16)

where we have used that dWS
t dWV

t = ρdt. Plugging (16) into (15) the integral
form of the resulting equation reads as

Xi
tV

j
t = xi

0v
j
0 +

∫ t

0

i (i− 1)

2
Xi−2

u V j+1
u − i

2
Xi−1

u V j+1
u + ijηρXi−1

u V j
u du

+

∫ t

0

j
(
2κθ + η2 (j − 1)

)

2
Xi

uV
j−1
u − jκXi

uV
j
u du

+

∫ t

0

iXi−1
u V j+1/2

u dWS
u +

∫ t

0

jηXi
uV

j−1/2
u dWV

u ,

where the Brownian integrals vanish when taking expectation.
After moving the expectation under the integral sign in the du-integral and

using that mi,j(t) = E(Xi
tV

j
t ), we obtain the equation

mi,j (t) = xi
0v

j
0 +

∫ t

0

bi,j (u)− jκmi,j (u) du,

where

bi,j (t) =
i (i− 1)

2
mi−2,j+1 (t)− i

2
mi−1,j+1 (t) + ijηρmi−1,j (t)

+
j
(
2κθ + η2 (j − 1)

)

2
mi,j−1 (t) .

(17)

Differentiating, we obtain the first-order non-homogeneous linear ODE

dmi,j (t) = −jκmi,j (t) + bi,j (t) ,
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with initial condition mi,j (0) = xi
0v

j
0. This ODE has the unique solution

mi,j (t) = xi
0v

j
0e

−jκt +

∫ t

0

e−jκ(t−s)bi,j (s) ds. (18)

Term mi,j in (18) is well-defined, since the recursions for term bi,j in (17) can be
resolved for every combination i, j ∈ N0. To see this, note that term-wise, the
sum of the superscripts is decreased passing from left-hand side to right-hand
side of (17) in all but one term. In this term the sum remains unchanged, but one
index is decreased, compare Figure 7. Hence circular recursions are excluded,
and every term can be tracked to one with at least one negative index, for which
the term becomes 0.

. . .

. . .

. . .. . . i − 2 i − 1 i

j − 1

j

j + 1

Figure 7: Recursive structure of the moment generating procedure. Desired
moment mi,j (black) depends on moments (gray) that can be deter-
mined previously.

Proof of Corollary 2:

Differentiating mi,j(t) from (4) in Lemma 1 with respect to t, we obtain the
first-order Taylor expansion

mi,j (t) = xi
0v

j
0 +

(
−jκxi

0v
j
0 + bi,j (0)

)
t+O

(
t2
)
.

The respective terms in the corollary are obtained through (17) and ignoring
terms of order O

(
t2
)
.
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Proof of Proposition 3:

To ensure a total probability of 1, we set

PX̂ (x2) = 1− PX̂ (x1)− PX̂ (x3) . (19)

Matching expectation requires

−v

2
∆t

!
=

3∑

i=1

(xi − x)PX̂ (xi) (20)

and for matching variance we demand

v∆t
!
=

3∑

i=1

(xi − x)
2
PX̂ (xi)−

(
3∑

i=1

(xi − x)PX̂ (xi)

)2

, (21)

while we obtained the linearized moments by Corollary 2. The equations (19),
(20) and (21) reduce to (7), where x can be considered as a level shift, so we can
set x = 0 = x2. The term k(v) is independent of x and we obtain x1 = −x3. We
still have to check whether PX̂ (·) is in fact a probability, i.e. is non-negative.
As a consequence of (5), 4v+ v2∆t ≤ 4k(v)2v̂. Therefore PX̂(x1) + PX̂(x3) ≤ 1
and PX̂(x2) ≥ 0.

While PX̂(x1) ≥ 0 always, PX̂(x3) ≥ 0 if

k (v) ≤ 4 + v∆t

2
√
v̂∆t

, (22)

which is satisfied asymptotically for ∆t tending to zero since then the right-
hand side of (22) tends to infinity. So, setting k(v) to the next larger integer
guarantees positivity of the probabilities. This corresponds to our choice of
k(v).

Proof of Proposition 4:

(i) Each constraint defines a subspace in R
2 that is closed and convex, since

the boundaries are given through constraints satisfied with equality. In
particular, the boundary belongs to A, too, and hence A as the inter-
section of these closed convex sets is closed and convex. It is non-empty
as (θ11, θ21) = (0, 0) ∈ A. It is bounded, since the constraints imply
0 ≤ θi1 ≤ 1, i = 1, 2. As its boundary is formed by the linear restrictions,
it is a simplex. As it is bounded, each constraint induces two vertices, and
as in each vertex of A two line segments are joined, we have at most 6
extremal points.

(ii) As the square of an affine function in (θ11, θ21), d̃ is obviously convex and
continuous.
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(iii) Let d ≥ 0. Then

d̃ (θ11, θ21)
!
= d

⇐⇒ [Cov(X,V )− (v1 − v2) [θ11 (x1 − x3) + θ21 (x2 − x3)]]
2
= d

⇐⇒ θ21 =
Cov(X,V )±

√
d

(x2 − x3) (v1 − v2)
− θ11

(x1 − x3)

(x2 − x3)
.

(23)

(iv) By (i), A is compact and by (ii), d̃ given in (12) is continuous, so the
infimum is attained.

Let L0 6= ∅. Then L0 is either a singleton and contains the unique mini-
mizer, or it is a line segment, as A is bounded by (i) and N0 is the straight
line h0. Each point in L0 exactly matches the linearized covariance of the
Heston model and gives a proper probability.

Assume L0 = ∅ and let ď > 0 be the minimal value of d̃ on A. Then
the simplex A cannot be enclosed by the level set Nď formed by the two
straight lines h1 and h2, as otherwise ď could not be minimal.

We next shift from minimizing d̃ to minimizing distances and define

dist(A,B) = inf{‖x− y‖ | x ∈ A, y ∈ B}
as the distance of two sets A,B ⊂ R

2 for ‖ · ‖ the Euclidean distance in
R

2.

Hence dist(A, h1) 6= dist(A, h2) and we can w.l.o.g. assume that

dist(A, h1) < dist(A, h2).

Therefore, any minimizer of d̃ in A achieves dist(A, h1) = 0.

In the sequel we show that this minimizer must lie on the boundary ∂A.
Let therefore z ∈ A and π(z) be its orthogonal projection onto h1. Then
on the line segment [z;π(z)], the function y 7→ dist({y}, h1) decreases
linearly when moving from z to π(z). So at the intersection point zb of
[z;π(z)] and the boundary ∂A, dist({zb}, h1) ≤ dist({z}, h1).

In fact, the minimizer is even an extremal point. Note that for two arbi-
trary line segments g and h and y ∈ g, the function y 7→ dist({y}, h) is
piecewise linear with at most one kink in the intersection point of g and
h, if both intersect. Hence, for compact g, the function y 7→ dist({y}, h)
attains its minimum in its extremal points or in the intersection of g and
h, if it exists. Now zb itself can be uniquely written as a convex combi-
nation zb = (1 − µb)z0 + µbz1 of two extremal points z0, z1 ∈ E for some
µb ∈ [0, 1]. Since the line segment [z0; z1] does not intersect h0, the func-
tion y 7→ dist({y}, h0) takes its minimal value in z0 or z1, hence there is
always a minimizer in E .
To show uniqueness, note that we so far have worked with an arbitrary
successor node position x2 in (6). However, x2 may be treated as a con-
stant shift, so it has no impact on the choice of the probabilities Π̃ on
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our grid. Hence we are free to set x2 = 0 here, leading to x1 = −x3 for
the other two successor nodes. If both z0 and z1 are minimizers, the line
segment [z0; z1] must be parallel to h0. This is not the case since the ab-
solute value of the slope of h1 is 2 and the one of [z0; z1] lies in {0, 1,∞},
compare (23), (10) and (11). Hence d̃(z0) 6= d̃(z1) and the minimizer is
unique.

Proof of Proposition 6:

EΠ̃

(
X̂2V̂

)
= v1

(
x2
1P̃11 + x2

2P̃21 + x2
3P̃31

)
+ v2

(
x2
1P̃12 + x2

2P̃22 + x2
3P̃32

)
(24)

and since P̃ij = Pij + θij , for i = 1, 2, 3 and j = 1, 2 and

E

(
X̂2
)
E

(
V̂
)
= v1

(
x2
1P11 + x2

2P21 + x2
3P31

)

+ v2
(
x2
1P12 + x2

2P22 + x2
3P32

)
,

(24) reduces to (14).

Proof of Corollary 7:

For the unrestricted case with λ ∈ R, we obtain λ0 for solving (14) for λ. Due
to convexity, in the restricted case λ ∈ [0, 1], we hence obtain the optimal λ∗ as
λ∗ = min(max(0, λ0), 1), as truncated to [0, 1].
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