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Summary

In this work two main approaches for the evaluation of credit derivatives are an-

alyzed: the copula based approach and the Markov Chain based approach. This

work gives the opportunity to use the advantages and avoid disadvantages of both

approaches. For example, modeling of contagion effects, i.e. modeling dependen-

cies between counterparty defaults, is complicated under the copula approach. One

remedy is to use Markov Chain, where it can be done directly.

The work consists of five chapters.

The first chapter of this work extends the model for the pricing of CDS contracts

presented in the paper by Kraft and Steffensen (2007). In the widely used models for

CDS pricing it is assumed that only borrower can default. In our model we assume

that each of the counterparties involved in the contract may default. Calculated

contract prices are compared with those calculated under usual assumptions. All

results are summarized in the form of numerical examples and plots.

In the second chapter the copula and its main properties are described. The methods

of constructing copulas as well as most common copulas families and its properties

are introduced.

In the third chapter the method of constructing a copula for the existing Markov

Chain is introduced. The cases with two and three counterparties are considered.

Necessary relations between the transition intensities are derived to directly find

some copula functions. The formulae for default dependencies like Spearman’s rho

and Kendall’s tau for defined copulas are derived. Several numerical examples are

presented in which the copulas are built for given Markov Chains.
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The fourth chapter deals with the approximation of copulas if for a given Markov

Chain a copula cannot be provided explicitly.

The fifth chapter concludes this thesis.
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Motivation

There are currently several approaches to price credit derivatives like CDO. One

may start from a specification of dependent default intensities. A typical example

is Duffie and Gârleanu (2001) or Kraft and Steffensen (2006). An alternative route

is the structural approach, corresponding to a multivariate hitting time model, as

illustrated by Hull et al. (2005). The previous approaches involve a calibration to

marginal default distributions. On the other hand, the copula approach directly

specifies the dependence structure, though in a somehow ad-hoc way. While the

Gaussian copula model, introduced to the credit field by Li (2000) has become an

industry standard, its theoretical foundations, such as credit spread dynamics may

be questioned. For this purpose, copulas such as Clayton, Student t, double t, or

Marshall-Olkin copulas have been proposed.

The factor approach is quite standard in credit risk modelling (see for instance

Crouhy et al. (2000), Merino and Nyfeler (2002), Pykhtin and Dev (2002), Gordy

(2003) and Frey and McNeil (2003)). In the case of homogeneous portfolios, it is

often coupled with large sample approximation techniques. In such a framework,

Gordy and Jones (2003) analyse the risks within CDO tranches. In order to deal

with numerical issues, Gregory and Laurent (2003) and Laurent and Gregory (2005)

have described a semi-analytical approach, based on factor models, for the pricing of

basket credit derivatives and CDOs. This topic is also discussed by Andersen et al.

(2003) and Hull and White (2004) among others. We will further rely on this factor

approach, which also provides an easy to deal framework for model comparisons.

Other contributions dedicated to comparing various copulas in the credit field are

Das and Deng (2004) or the book by Cherubini et al. (2004).
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Chapter 1

Pricing of Credit Default Swaps in

a Markov Chain Framework

1.1 Introduction

In recent years, the market for credit derivatives has seen one of the largest growths

of all the markets. Credit derivative give companies the possibility to trade and

manage credit risk in the similar way as market risk. The purpose of handling these

financial products is to manage and trade credit risk, i.e. the risk that a borrower

may not be able to pay back a loan in time. Credit derivatives are being actively

used not only for hedging purposes, but also as a way to improve the return on

the capital. A bank might use credit derivatives to manage its portfolio of risk.

Moreover with a credit derivative a bank can sell credit exposure and still keep a

good relationship with an important client.

One of the most actively traded credit derivatives is a credit default swap (CDS). A

CDS provides an insurance against the default (called a credit event) of a particular

company (called the reference entity). The two mostly used approaches to model

default events are the copula and intensity-based approaches. In this chapter we

apply an intensity-based approach, where we model the defaults events by using

Markov chains, for more details see Kraft and Steffensen (2007). Furthermore,

this chapter explicitly models counterparty risk, i.e. in our model, each firm has

3



Chapter 1 Pricing of Credit Default Swaps in a Markov Chain Framework 4

a unique firm-specific counterparty structure that arises from its relation to other

firms in the economy. By counterparty risk we mean the risk that the default of

a firm’s counterparty might affect its own default probability. As it was noted in

Jarrow and Yu (2001), this approach has many benefits and describes the reality

more precisely. Additionally, our model also captures contagion effects, i.e effects

that the default probability of one firm is strongly affected by the default of another

firm. For example, this effect can be observed, if a bank A holds a significant amount

of firm’s B debt, then default probability of the bank A can increase significantly

after the default of the firm B.

In order to understand how a CDS works, let us consider an investor A who has

bought a bond with maturity T -years from a company C. In order to protect himself

from a default event on the bond, the investor A might want to buy a T -years CDS

from a counterparty B on the specific bond that he has bought from the company

C. Entering a CDS contract, the investor A has to pay a certain amount of money

(called premium or fee payment) to the counterparty B at every predefined payment

date until the maturity or until the credit event happens. The size of the payment

to be paid to counterparty B by investor A is equals to the so-called CDS rate at

the date when the CDS contract has been bought. Our main goal is to price a CDS

contract, i.e. to determine the fair CDS rate.

1.2 The Model

As it was pointed out by Kraft and Steffensen (2007), Markov chains can be an

important tool to model credit risk. A Markov chain is a stochastic process which

is characterized by a finite number of states and transitions between this states. A

transition from one state into another is associated with a credit event. In our case,

such a credit event is a default of one of the firms in the market. In general case,

not only the default events but also up- or downgrading in rating classes as well as

bankruptcy events can be modeled with the help of Markov chains. Some states of

the Markov chain may be absorbing states, i.e. once the process reaches one of these

states it can not leave it any more.

The advantage of this approach is that in a Markov chain model the contagion effects
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can be easily modeled. If one of the firms defaults the default intensities of other

firms will change to some new intensities. A more detailed description can be found

in Kraft and Steffensen (2007), as well as in Jarrow and Yu (2001).

We are going to analyse a CDS contract using the framework settled up in Kraft and

Steffensen (2007). For simplicity, we consider the case where the protection seller

B promises to make a payment of one unit of money to the protection buyer A if a

certain reference entity C defaults during the lifetime of the CDS contract. Usually

such types of CDS contracts are called digital CDS contracts.

In our model we allow for the counterparty risk, i.e. in our case we allow that the

counterparty B or the investor A fail to fulfil their contractual obligations.

In the model used by Kraft and Steffensen (2007), in the following the standard

model, the protection buyer A continues to make his fee payments until his own

default. The protection payment is made only if the protection seller B has not

defaulted up to the default time of the reference entity C. Moreover, if investor A

defaults before C defaults, protection seller B needs to fulfill his obligations as long

as B is not in default and, independently of whether B is in default or not, investor

A continues to make his fee payments until its own default, a default of reference

entity C, or maturity whichever occurs first.

We improve the standard model. In our model, if counterparty B is defaulted before

the company C or before the maturity time T , the contract will be immediately

terminated. In this case, if the present value of the contract at the default time

of the counterparty B is positive for counterparty B, then the counterparty B will

receive some positive payment from the protection buyer A. Similar will occur, when

the investor A defaults before the reference entity C defaults or before the maturity

time T . In this case the contract will be immediately terminated and additionally,

if the present value of the contract is positive for the protection buyer A, then the

investor A will receive some positive payment from the counterparty B. Later in

the paper, we will derive precise formulas for these payments.

To calculate CDS spreads, we need to evaluate the present value of the premium

payments made by investor A to counterparty B, the so-called fee leg (also called

premium leg) and the present value of the protection payment from the counterparty
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B to the protection buyer A, the so-called protection leg (also called credit leg).

Furthermore, in our model we need to evaluate the present value of the correction

payments, which the investor A will pay, if the counterparty B defaults and which

the counterparty B will pay, if the protection buyer A defaults. To do this we need

the Corollary 3.1 from the paper by Kraft and Steffenson (2007):

Corollary 1.2.1 (Pricing via Transition Probabilities) If the intensities and

payments are constant, then

• The price of the continuous coupon payment at time t equals

∑

k∈J
ck
∫ T

t

P (t, s)qjk(t, s)ds.

• The price of the payments upon transition at time t equals

∑

ν∈J

∑

k 6=ν

aνkλνk

∫ T

t

P (t, s)qjν(t, s)ds.

• The price of the final payment at time t equals

P (t, T )
∑

k∈J
akqjk(t, T ).

There are two different types of CDS contracts that differ by the time when the

protection payment is made. In the first case the counterparty B pays the protection

payment to the investor A at the default time of the reference entity C and in the

second case at the maturity of the CDS contract T , if the reference entity C has

defaulted before the maturity time T . Both cases will be considered in this paper.

1.2.1 Protection Payment at Maturity

In this section we will derive the expression for the fee leg, the protection leg,

and the correction payments for the case then CDS contract is settled at maturity.

This mean that the protection payment is made by the protection seller B to the

protection buyer A at maturity of the CDS contract T in a case of default event of
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Figure 1.1: Markov chain describing the CDS contract settled at maturity

the reference entity C before the maturity time T . The corresponding Markov chain

model is shown in the Figure 1.1.

In this case, the protection buyer A continuously makes fee payments to the pro-

tection seller B at payment dates until the reference entity C defaults or until the

maturity T . On the other hand, the protection seller B makes only the protection

payment to the investor A at the maturity T , if the reference entity C defaults be-

fore the end of the CDS contract. The investor A stops making premium payments

if the counterparty B defaults or the investor A itself defaults. In both these cases

the contract is terminated. State 0 is the initial state at the beginning of the CDS

contract where all companies are not in default. State 1 describes the situation when

investor A defaults. State 2 describes the case when counterparty B defaults. State

3 describes the default of the reference entity C. Since the protection payment is

made at maturity, the counterparty B can also default before the maturity of the

contract, but after the reference entity C has defaulted. In the Figure 1.1, this

case is described by state 4. The λs in Figure 1.1 are the default intensities for the

corresponding transitions between states.
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Let y(t) denote the fair CDS spread and assume that all intensities λjk are constant.

The default intensities of A, B, and C given that no entity has already defaulted

are denoted by λA = λ01 , λB = λ02, and λC = λ03. The default intensity of B given

that C defaulted is denoted by λB|C = λ34.

According to Kraft and Steffensen (2007), in the case of protection payments is

made at maturity of the contract, the protection payment needs to be modeled as a

contingent final payment. The fee leg can be modeled as a state-dependent coupon

payment. By Corollary 3.1 of Kraft and Steffensen (2006), the value of the fee leg

is given by

y(t)B0
fee(t) = y(t)

∑

k∈JM
F

∫ T

t

P (t, s)q0k(t, s)ds

with P (t, s) – the price of zero-coupon bond, q0k(t, s) – is transition probability from

state 0 to state k. Furthermore, JM
F = {0, 3} – the set of states where investor A

pays fee payments. The value of the protection leg is given by

B̄0
protection(t) = q03(t, T )P (t, T ).

As we have said in the description of our model, if investor A defaults before the

reference entity C the contract will be terminated and A will receive the follow-

ing option: max{PV A(τA), 0}, with τA – the default time of B. The PV A(t) =

B̄0
protection(t)− y(t0)B

0
fee(t) is the present value of the CDS contract for the investor

A and t0 is the time of the beginning of the CDS contract. Following the Corollary

3.1 by Kraft and Steffenson (2006), this option is the payment upon transition. The

value of this option is given by

B̃0
Aopt (t) = λ01

∫ T

t

max{PV A(s), 0}P (t, s)q00(t, s)ds.

On the other hand, if the counterparty B defaults before the reference entity C

the contact will be also terminated and the counterpaty B receives an option

max{PV B(τB), 0}, with τB – the default time of B. The PV B(t) = y(t0)B
0
fee(t) −

B̄0
protection(t) is the present value of the CDS contract for the protection seller B and

t0 is time of the beginning of the CDS contract. And again, following the Corollary

3.1 by Kraft and Steffenson (2007), this option is the payment upon transition. The
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value of this option is given by

B̃0
Bopt(t) = λ02

∫ T

t

max{PV B(s), 0}P (t, s)q00(t, s)ds.

As it was mentioned in Kraft and Steffensen (2007), the transition probabilities can

be calculated in the following way

q0k =
∑

p(0,k)∈P (0,k)

λp(0,k)gp(0,k)(t,T )

with λp(0,0) = 1, p(0, k) = (0, p1, ..., pm, k) is the path from state 0 to state k, and

λp(0,k) = λ0p1λp1p2...λpmk. The function g is defined as follows

gj(t, T ) = qjj(t, T ) = e−λj∗(T−t),

gjk(t, T ) =
gj(t, T )− gk(t, T )

λk∗ − λj∗ ,

where λn∗ =
∑

i∈J ,i 6=n λ
ni with J – set of all states.

The transition probabilities in our cases are defined as:

q00(t, T ) = e−(λ01+λ02+λ03)(T−t),

q01(t, T ) = λ01g01 = λ01 e
−λ0∗(T−t) − e−λ1∗(T−t)

λ1∗ − λ0∗

= λ01 1− e−(λ01+λ02+λ03)(T−t)

λ01 + λ02 + λ03
,

q02(t, T ) = λ02g02 = λ02 e
−λ0∗(T−t) − e−λ2∗(T−t)

λ2∗ − λ0∗

= λ02 1− e−(λ01+λ02+λ03)(T−t)

λ01 + λ02 + λ03
,

q03(t, T ) = λ03g03 = λ03 e
−λ0∗(T−t) − e−λ3∗(T−t)

λ3∗ − λ0∗

= λ03 e
−(λ01+λ02+λ03)(T−t) − e−λ34(T−t)

λ34 − λ01 − λ02 − λ03
.

The value of a fair CDS spread for each time t can be found numerically by solving

the following equation

y(t)B0
fee(t) + B̃0

Bopt(t)− B̄0
protection(t)− B̃0

Aopt(t) = 0.
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In the all earlier models for the CDS rate evaluation the equation for the fair CDS

spread has looked like

y(t)B0
fee(t)− B̄0

protection(t) = 0.

The terms B̃0
Bopt (t) and B̃0

Aopt(t) in our case are results of the options for the investor

A and counterparty B after their defaults. In all earlier works the existence of these

payments for investor and counterparty in the equation of the fair CDS rate was not

considered!

For the constant risk-free interest rate our equation for the fair CDS spread can be

numerically solved. Consider the numerical example of a CDS contract with 5 years

to maturity. Assume that there is constant risk-free interest rate r = 0.05 in the

market and starting date of the CDS contract is t0 = 0. We compare three settings

using three different scenarios:

(i) without counterparty risk and contagion effect,

(ii) with counterparty risk, but without contagion effect,

(iii) with counterparty risk and contagion effect.

In scenario (i), all intensities are set to be zero except λC = 0.05. It means that

there are no counterparty risk and no contagion effect, because neither investor A

nor counterparty B can default. In the case of scenario (ii), λA = 0.01, λB = 0.01

and λC = 0.05, as well as λB|C = λB. In this case there is counterparty risk, because

the probabilities of A’s and B’s defaults are positive. But, there is no contagion

effect because after the default of reference entity C the default probability of the

counterparty B stays the same as before the default of C. In case (iii), we set

λA = 0.01, λB = 0.01, λC = 0.05, and λB|C = λB + 0.01 = 0.02. In this case

there is counterparty risk, because the probability of defaults of the investor and

the counterparty are positive. Additionally, there is a contagion effect because

default probability of the counterparty B given that the reference entity C has

already defaulted is higher as before the default of C. The numerical results can be

summarized in the Figure 1.2 where the values of fair CDS rates are given in basis

points.

The blue curve corresponds to the case where no counterparty risk and no contagion

effects are present. The red curve corresponds to the case where counterparty risk
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Figure 1.2: CDS rates depending on time. Scenario (i) – blue curve; (ii) – red

curve;(iii) – green curve

exists. The green curve corresponds to the case where both counterparty risk and

contagion effect are modeled. The value of CDS contracts at time t = 0 for λ-values

from the example and for the case λA = 0 are given in the following table:

(i) (ii) (iii)

y 389.4 379.3 370.2

yλA=0 389.4 379.4 370.3

From this table we can see that if λA is zero, which means that A is default-free, the

results are almost the same. Comparing the curves in the Figure 1.2, we can see that

in the case without counterparty risk and contagion effect the value of CDS contract

is the largest one. Furthermore, the effects of counterparty risk and contagion effect
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have together an impact of around 5%.

In Kraft and Steffensen (2007) it was assumed that if counterparty B defaults the

investor A continues to make his fee payments. In the equation for the fair CDS

spread the payments B̃0
Bopt(t) and B̃0

Aopt(t) were not involved. We have compared

our results with the results obtained in Kraft and Steffensen (2006) for two different

cases. In the first case, we assume that the probability that the investor A defaults is

zero. In the second case, we assume that both default probabilities of the protection

buyer A and the protection seller B are positive. In the first case, we get that CDS

rates are almost the same for both compared models for the different parameter

sets. It means that implementing such a complicated structure for the price of CDS

contracts brings almost the same result as a standard model, described in Kraft and

Steffensen (2007). So, in the case where the default probability of the investor A

is zero, the standard model proposed by Kraft and Steffensen (2007) can safely be

used.

On the other hand, if the investor A can default, the results differ from the standard

model described in Kraft and Steffensen (2007). Let us consider the case where

both, the protection buyer A and the protection buyer B, can default, in a more

detail.

In the following table we compare fair CDS rate for our model and the model by

Kraft and Steffenssen for the different given parameter sets at the time moment

t = 0. In both models we used risk-free interest rate r = 0.05 and maturity T = 5

years.

λA λB λC λB|C y yKS color

1 0.01 0.01 0.05 0.01 379.3 378.6 apricot

2 0.01 0.01 0.05 0.02 370.3 369.5 blue

3 0.05 0.01 0.05 0.01 378.9 375.6 red

4 0.05 0.01 0.05 0.02 369.9 366.3 cyan

5 0.01 0.05 0.05 0.01 341.0 340.0 black

6 0.01 0.05 0.05 0.06 334.3 331.8 pink

7 0.1 0.01 0.05 0.01 377.5 371.9 green

8 0.01 0.1 0.05 0.1 297.0 296.0 brawn
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Figure 1.3: Difference between two models

From the table above we can see that for the more extreme cases with high prob-

abilities of almost 5 − 10% that the investor A defaults the difference between two

models becomes more significant. If the probability of default of the counterparty B

becomes bigger, the difference between the two models does not increase much. The

existence of contagion effects makes the difference between the two models bigger.

The Figure 1.3 summarizes the difference between CDS rates in our model y and

CDS rates in Kraft-Steffensen model yKS for the parameter sets given in the table.

The colors of the corresponding curves are also given in the table.

1.2.2 Protection Payment at Default

In this section, we consider the case where the contact is settled upon default. It

means that the protection seller B pays the protection payment immediately after

the reference entity C defaults. The corresponding Markov chain model is shown in
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Figure 1.4: Markov chain describing the CDS contract settled at default

the Figure 1.4.

Same as before, the protection buyer A continuously makes fee payments to the

protection seller B at payment dates until the reference entity C defaults, or until

the maturity T . On the other hand, the protection seller B makes only a protection

payment to the investor A at the time of default of the reference entity C. The

investor A stops making premium payments, if the counterparty B defaults or the

investor A itself defaults. In both these cases the contract is terminated. State 0 is

the initial state at the beginning of the CDS contract where all companies are not in

default. State 1 describes the situation when investor A defaults. State 2 describes

the case when counterparty B defaults. State 3 describes the event of default of the

reference entity C. In our case the protection payment is made at default time of

the reference entity C. On the contrary to the Figure 1.1, the transition from state

3 to the state, where the counterparty B defaults after the reference entity C (state

4 in the Figure 1.1), is irrelevant for us in this case. In order to consider also the

case that both parties, the protection seller B and the reference entity C, default

simultaneously, we introduce an additional state 4, where we have the both market

participants defaulted. In the previously described model (Figure 1.1) the case that

both the protection seller B and the reference entity C default was also included.

The λs in the Figure 1.4 are the default intensities for the corresponding transitions

between states.

According to the Corollary 3.1 by Kraft and Steffensen (2007), the protection pay-
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ments in this case needs to be modeled as payments upon transmission. The same

as before the fee leg can be modeled as a state-dependent coupon payment.

Again, let y(t) denote the fair CDS spread and assume that all intensities λjk are

constant. The default intensities of A, B, and C are denoted by λA = λ01, λB =

λ02, and λC = λ03. The simultaneous default intensity of B and C is denoted by

λBC = λ04.

Then according to Kraft and Steffensen (2007), the value of the fee leg can be

calculated as

y(t)B0
fee(t) = y(t)

∑

k∈JD
F

∫ T

t

P (t, s)q0k(t, s)ds

with P (t, s) – the value of zero-coupon bond, q0k(t, s) – transition probability from

state 0 to state k. Furthermore, J D
F = {0, 3} – the set of states where the investor

A pays fee payments. The value of the protection leg is given by

B̄0
protection(t) = λ03

∫ T

t

P (t, s)q00(t, s)ds.

As we have said in the description of our model, if investor A defaults before the

reference entity C the contract will be terminated and A will receive the following

option: max{PV A(τA), 0}, with τA – the default time of investor A. The PV A(t) =

B̄0
protection(t)− y(t0)B

0
fee(t) is the present value of the CDS contract for the investor

A and t0 is the time of the beginning of the CDS contract. Following the Corollary

3.1 by Kraft and Steffenson (2007), this option is the payment upon transition. The

value of this option is given by

B̃0
Aopt (t) = λ01

∫ T

t

max{PV A(s), 0}P (t, s)q00(t, s)ds.

On the other hand, if the counterparty B defaults before the reference entity C

the contact will be also terminated and the counterparty B receives the option

max{PV B(τB), 0}, with τB – the default time of B. The PV B(t) = y(t0)B
0
fee(t) −

B̄0
protection(t) is the present value of the CDS contract for the protection seller B and

t0 is time of the beginning of the CDS contract. And again, following the Corollary

3.1 by Kraft and Steffenson (2007), this option is the payment upon transition. The
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value of this option is given by

B̃0
Bopt(t) = λ02

∫ T

t

max{PV B(s), 0}P (t, s)q00(t, s)ds

+ λ04

∫ T

t

max{PV B(s), 0}P (t, s)q00(t, s)ds

= λ02

∫ T

t

max{PV B(s), 0}P (t, s)q00(t, s)ds.

The second term in above equation vanishes, because if protection seller and refer-

ence entity default simultaneously, the present value of the CDS contract cannot be

positive for B. After the default of C, investor A needs not to pay fee payments

anymore, but the counterparty B should pay the protection payment at this mo-

ment, so the value of the CDS contract for the protection seller can be only negative

in this moment.

According to the Corollary 3.1 in Kraft and Steffensen (2007), the correction pay-

ments in the default of the investor A or the counterparty B are defined as payments

upon transition; their value equal to

B̃0
Bopt(t) = λ02

∫ T

t

max{PV B(s), 0}P (t, s)q00(t, s)ds

with PV B(t) = y(t)B0
fee(t)− B̄0

protection(t) and

B̃0
Aopt(t) = λ01

∫ T

t

max{PV A(s), 0}P (t, s)q00(t, s)ds

with PV A(t) = B̄0
protection(t)− y(t)B0

fee(t).

As previously, the CDS rate is given as a solution of the following equation:

y(t)B0
fee(t) + B̃0

Bopt(t)− B̄0
protection(t)− B̃0

Aopt(t) = 0.

In the all earlier models for the CDS rate evaluation the equation for the fair CDS

spread has looked like

y(t)B0
fee(t)− B̄0

protection(t) = 0.

The terms B̃0
Bopt (t) and B̃0

Aopt(t) in our case are results of the options for the investor

A and counterparty B after their defaults. In all earlier works the existence of these
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payments for investor and counterparty in the equation of the fair CDS rate was not

considered!

Therefore, following Kraft and Steffensen (2007), we can find the transition proba-

bilities

q0k =
∑

p(0,k)∈P (0,k)

λp(0,k)gp(0,k)(t,T )

with λp(0,0) = 1, p(0, k) = (0, p1, ..., pm, k) is the path from state 0 to state k, and

λp(0,k) = λ0p1λp1p2...λpmk. The function g is defined as follows

gj(t, T ) = qjj(t, T ) = e−λj∗(T−t),

gjk(t, T ) =
gj(t, T )− gk(t, T )

λk∗ − λj∗ ,

where λn∗ =
∑

i∈J ,i 6=n λ
ni with J – set of all states.

The transition probabilities in our cases are defined as:

q00(t, T ) = e−(λ01+λ02+λ03+λ04)(T−t),

q01(t, T ) = λ01g01 = λ01 e
−λ0∗(T−t) − e−λ1∗(T−t)

λ1∗ − λ0∗

= λ01 1− e−(λ01+λ02+λ03+λ04)(T−t)

λ01 + λ02 + λ03 + λ04
,

q02(t, T ) = λ02g02 = λ02 e
−λ0∗(T−t) − e−λ2∗(T−t)

λ2∗ − λ0∗

= λ02 1− e−(λ01+λ02+λ03+λ04)(T−t)

λ01 + λ02 + λ03 + λ04
,

q03(t, T ) = λ03g03 = λ03 e
−λ0∗(T−t) − e−λ3∗(T−t)

λ3∗ − λ0∗

= λ03 1− e−(λ01+λ02+λ03+λ04)(T−t)

λ01 + λ02 + λ03 + λ04
,

q04(t, T ) = λ04g04 = λ04 e
−λ0∗(T−t) − e−λ4∗(T−t)

λ4∗ − λ0∗

= λ04 1− e−(λ01+λ02+λ03+λ04)(T−t)

λ01 + λ02 + λ03 + λ04
.

We apply our previous numerical example to this case where the CDS contract is

settled upon default. In the same way as before, in scenario (i) λC = 0.05 and
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other intensities are set to be zero. It means that there are no counterparty risk

and no contagion effect, because investor A and counterparty B are default-free. In

case scenario (ii) the λA = 0.01, λB = 0.01, λC = 0.05, and λBC = λB. In this

case there are counterparty risk, because the probabilities of A’s and B’s defaults

are positive. But, there is no contagion effect because default intensity of reference

entity C with the counterparty B is the same as default intensity of B. In case (iii)

we set λA = 0.01, λB = 0.01, λC = 0.05, and λBC = λB + 0.01 = 0.02. In this

case there are again the counterparty risk, because the probability of defaults of

the investor and counterparty are positive. Additionally, there is a contagion effect

because default probability of the counterparty B with the reference entity C is

higher as the probabiity of default of counterparty B alone. The numerical results

are summarized in the Figure 1.5 where the values of fair CDS rates are given in

basis points.

The blue curve corresponds to the case where no counterparty risk and no contagion

effects are present. The red curve corresponds to the case where counterparty risk

is involved. The green curve corresponds to the case where both counterparty risk

and contagion effect are present. The values at time t = 0 of the CDS contracts are

given in the following table:

(i) (ii) (iii)

y 444.7 456.0 455.7

yλA=0 444.7 444.0 443.6

Comparing the curves in the Figure 1.5 we can see that in the case without coun-

terparty risk and contagion effect the value of the fair CDS rate is the smallest

one. Furthermore, we can see that if the investor A is default-free, the impact of the

counterparty risk and the contagion effect is not as significant as in the previous case

studied in the previous section. In general situation, where the probability of default

of the investor A is positive, the impact of the counterparty risk is considerable; at

the same time the impact of the contagion effect is almost negligible.

In the same way as before, in the following table we compare our results with

results obtained in Kraft and Steffensen (2007) for different parameter sets. For all

parameter sets we set maturity to T = 5 and risk-free interest rate to r = 0.05.
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Figure 1.5: CDS rates depending on time. Scenario (i) – blue curve; (ii) – red curve;

(iii) – green curve

λA λB λC λB|C y yKS color

1 0.01 0.01 0.05 0.01 456.0 443.6 apricot

2 0.01 0.01 0.05 0.05 454.9 442.2 blue

3 0.05 0.01 0.05 0.01 501.2 442.2 red

4 0.05 0.01 0.05 0.05 500.9 439.2 cyan

5 0.02 0.1 0.05 0.05 465.0 438.9 black

6 0.02 0.1 0.05 0.1 564.1 437.3 pink

7 0.1 0.01 0.05 0.01 554.5 439.9 green

8 0.03 0.1 0.05 0.1 476.6 437.0 brawn

From the table we can see that there is a big difference between two models. For the

more extreme cases with the high probabilities of almost 5−10% that the investor A
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Figure 1.6: Difference between two models

defaults the difference between the two models becomes more than 100 basis points.

In general, for all parameter sets the difference is more than 10 basis points. The

Figure 1.6 summarizes the difference between CDS rates in our model y and CDS

rates in Kraft-Steffensen model yKS for the parameter sets given in the table. The

colors of the corresponding curves are also given in the table.

Comparing cases 1 and 2 we again can see that the impact of the contagion effect

on the CDS rates is only around 1 basis point even, if the probability of default of

the counterparty B with the reference entity C is high, (λBC = 0.05). This means

that influence of the contagion effects in this model is not very essential.
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1.3 Conclusions

Our analysis confirms the fact that counterparty risk and contagion effects cannot be

ignored for the calculation of fair CDS spreads. The same results were also obtained

among others in Kraft and Steffensen (2007), and Yu (2005).

If the contact is settled at maturity and both λA and λB are relatively small (near

1−4%), the standard model can be used, because the difference between two models

in this situation is negligible. The standard model can also be used if the probability

of default of the investor A is low.

On the other hand, if the contract is settled at default, the difference between the

two models becomes huge (in some cases more than 100 basis points). In this case,

our model should be used to get correct fair spread.



Chapter 2

The Copula and its Properties

2.1 Mathematical and Statistical definition of

Copulas

The copula concept is based on a separate statistical treatment of dependence and

marginal behavior. The mathematical idea goes back to Sklar (1959), Sklar (1973)

and Hoeffding (1940).

For a short introduction about the copula the reader should to refer to Genest

and McKay (1986b), for an extensive review on that topic the reader should refer

to Nelsen (1998), Joe (1997) and Schweizer (1991) or for their application in risk

management to Rogge and Schönbucher (2003) or Embrechts, Lindskog and Mc Neil

(2003). The first part of this section will be devoted to some notions in statistics;

the interpretation of copula in the mathematical sense and then in term of random

variable; and finally we will conclude this section with some important properties of

copula functions.

Let us now first refresh some important statistical concepts. We will start by the no-

tion of distribution and joint distribution function since they are at the cornerstone

of the copula theory.

Definition 2.1.1 A distribution function is a function F with domain R such

that

22
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1. F is nondecreasing 2. F (−∞) = 0, F (+∞) = 1.

Definition 2.1.2 A joint (bivariate) distribution function is a function H

with domain R2 such that

1. H is 2-increasing

2. H(x,−∞) = H(−∞, y) = 0, H(+∞,+∞) = 1.

In the last definition, the first condition simply stipulates that for every x1 ≤ x2 and

y1 ≤ y2, H(x1, y1) ≤ H(x2, y2). While the second condition states that H should be

bounded.

Definition 2.1.3 Let S1 and S2 be nonempty subsets of R̄ and let H be a function

such that DomH = S1 × S2. Let B = [x1, x2] × [y1, y2] be a rectangle all of whose

vertices are in DomH. Then the H−volume of B is given by

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1).

Note that VH(B) is also the H−mass 0f the rectangle B = [x1, x2]× [y1, y2].

Let us now move to the main topic of this section which is the definition of the

notion of copula (in the bivariate case for the tractability of notation).

Definition 2.1.4 A 2−copula is a function C : [0, 1]2 → [0, 1] satisfying:

(i) Boundary conditions

C(0, x2) = C(x1, 0) = 0 for all x1, x2 ∈ [0, 1] = I

and

C(x1, 1) = x1 and C(1, x2) = x2 for all x1, x2 ∈ [0, 1].

(ii) Monotonicity conditions

C(x1, y1) + C(x2, y2)− C(x1, y2)− C(x2, y1) ≥ 0

for all x1, x2, y1, y2 ∈ [0, 1] satisfying x1 ≤ y1 and x2 ≤ y2.
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The last condition implies the continuity of C. While once again, the first part

of the definition states that the 2-copula is a bounded function; the latter ensures

the volume engendered by the rectangle [x1, x2]× [y1, y2] (or the 2-copula) is never

negative. The copula can then be interpreted as a joint distribution. For the more

pragmatic inclined; since the 2-copula can be seen as a volume in I, the form of the

copula is the shape of a skewed continuous surface on the unit square which vertices

belong to the unit cube.

Copulas are of interest because they link joint distributions to the one-dimensional

marginal distributions. Sklar proved relation between copula and joint and margin

distribution functions.

Theorem 2.1 (Sklar) Let X1, X2 be a random variables with distribution func-

tions F1 and F2, respectively, and joint distribution function F12. Then there exists

a copula C such that for all x, y ∈ R

F12(x, y) = C(F1(x), F2(y)). (2.1)

If F1 and F2 are continuous, then C is unique; otherwise, C is uniquely determined

on RanF1 × RanF2. Conversely, if C is a copula, F1 and F2 are distribution func-

tions, then function F12 defined by (2.1) is a joint distribution function with margins

F1 and F2.

This Theorem first appeared in Sklar (1959). The name ”copula” was chosen to

emphasize the manner in which a copula ”couples” a joint distribution function to

its univariate margins. Copulas thus capture all of the information concerning the

dependance structure of random variables irrespective of their distributions and so

provide a natural framework for many investigations.

One example is to set F1 and F2 to be exponential margins and H to be the Gaussian

link function with a given covariance matrix, R and call this bivariate distribution

Z. As explained in Schönbucher (2003) in order to construct this copula one has

to sample a vector of observation X from a multivariate Gaussian distribution with

covariance matrix R. Then transform this vector X into a vector U by setting

ui = Φ(xi); and finally compute the vector Y where yi = ln(ui). Then we have that

yi follows the distribution Z.
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By the Theorem 2.1, if the random variables X1 and X2 are continuous with joint

distribution function F12, then the copula is unique determined by (2.1). If, how-

ever, the random variables are not continuous, the copula C is not unique; in this

case, the values of the copula are uniquely determined at points (x1, x2), where xk

is in range of Fk, k = 1, 2, and a copula C for which the expression above holds can

be obtained by interpolating the values at these points in any manner consistent

with the defining properties of a copula. Interpolation which is linear in each place

(”bilinear interpolation”) works, and we adopt the convention that bilinear interpo-

lation is always used to fill in values at other points. With this convention we can

refer to the copula of X1 and X2.

Now we can define m−dimensional copula function:

Definition 2.1.5 For m ≥ 3 an m−copula is a function C : [0, 1]m → [0, 1]

satisfying:

(i) Boundary conditions

(a) C(x1, ..., xi−1, 0, xi+1, ..., xm) = 0 for all i and for all x1, ..., xm ∈ [0, 1];

(b) The function

(x1, ..., xi−1, xi+1, ..., xm) → C(x1, ..., xi−1, 1, xi+1, ..., xm)

is an (m− 1)−copula for all i.

(ii) Monotonicity conditions

∑

V ∈R
sgn(V )C(V ) ≥ 0

for all rectangles R of the form R =
∏m

i=1[xi, yi], xi ≤ yi.

Here, the sum is over all vertices V = (ε1, ..., εm) of the rectangle, where εi = xi

or yi, and

sgn(V ) =

{

−1, if the number of xi’s among the coordinates V is odd,

1, otherwise



Chapter 2 The Copula and its Properties 26

Again, these conditions imply the continuity of C.

Theorem 2.2 (Sklar) Let X1, ..., Xm be a random variables with distribution func-

tions F1, ..., Fm respectively, and joint distribution function F . Then there exists an

m−copula C such that

F (x1, ..., xm) = C(F1(x1), ..., Fm(xm)). (2.2)

If F1, ..., Fm are all continuous, C is unique. Otherwise C is uniquely determined

on RanF1 × RanF2 × ...× RanFm.

The Sklar’s Theorems imply that for continuous multivariate distribution functions

the univariate marginals and the dependence structure (encoded into the copula)

can be separated in a unique way.

By the Theorem 2.2 if the random variables are all continuous, them−copula in (2.2)

is uniquely determined; otherwise it is uniquely determined at points (x1, ..., xm),

where xk is in the range of Fk, k = 1, ..., m, and as before can be obtained at

other points by interpolation. Here m−linear interpolation works, and we adopt the

convention that it is always used. For discuss of this issues see Sklar (1956), Sklar

(1973), Schweizer and Sklar (1974) and Schweizer and Sklar (1983).

Definition 2.1.6 Let F be a distribution function. Then a quasi-inverse of F is

any function F (−1) with domain I such that

(i) if t is in RanF , then F (−1)(t) is any number x in R such that F (x) = t i.e.,

for all t ∈ RanF

F (F (−1)(t)) = t

(ii) if t is not in RanF , then

F (−1)(t) = inf{x|F (x) ≥ t} = sup{x|F (x) ≤ t}.

If F is strictly increasing, then it has but a single quasi-inverse, which is of course

the ordinary inverse, for which we use a customary notation F−1.
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Corollary 2.1.1 Let F, C, F1, ..., Fm be as in previous theorem, and let F
(−1)
1 ,

..., F
(−1)
m be quasi-inverses of F1, ..., Fm respectively. Then for any u ∈ Im

C(u1, ...um) = F
(

F
(−1)
1 (u1), ..., F

(−1)
n (un)

)

.

Note that for any n-dimensional copula each k-dimensional margin of the copula is

a k-dimensional copula itself (1 ≤ k ≤ n). The set of copulas is convex in the sense

that every convex linear combination of copulas is a copula itself (Nelsen (1999),

Ex. 2.3, p. 12).

Corollary 2.1.2 Let X1, X2, .., Xn are continuous independent random variables

for n ≥ 2 with joint distribution function

F (x1, x2, ..., xn) = F1(x1)× F2(x2)× ...× Fn(xn).

Then the copula for these independent variables is called the product copula

Π(u) = u1u2...un.

After introducing the product copula one might naturally think about the existence

of some lower and upper bounds around the product copula according to the de-

pendence structure between the two random variables X and Y . These bounds are

referred as the Fréchét-Hoeffding bonds for joint distribution functions of random

variables.

Theorem 2.3 (Fréchét-Hoeffding) Let X and Y be random variables with re-

spectively marginal distribution functions F and G; and with joint distribution H.

Then for all, x and y in R

max(F (x) +G(y)− 1, 0) ≥ H(x, y) ≥ min(F (x), G(y))

and

1. Y is a.s an increasing function of X iif H(x, y) = min(F (x), G(y))

2. Y is a.s an decreasing function of X iif H(x, y) = max {(F (x) +G(y)− 1, 0}
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Corollary 2.1.3 If u and v are uniform random variable, for all u and v in I

W (u, v) = max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v) = M(u, v)

Proof: Lets take (u, v) an arbitrary point from DomC. Since C(u, v) ≤ C(1, v) = v

and C(u, v) ≤ C(u, 1) = u follows that C(u, v) ≤ min(u, v). Furthermore VC([u, 1]×
[v, 1]) ≥ 0 implies C(u, v) ≥ u+v−1, which when combined with C(u, v) ≥ 0 yields

C(u, v) ≥ max(u + v − 1, 0). �

More general, let M(u) = min{u1, ..., un} and W (u) = max{u1 + u2 + ... + un −
n + 1, 0}. The function M(u) is copula function for all n ≥ 2, whereas W (u) is a

copula only for n = 2, but not for n > 2. The functions W and M are known as

Fréchét-Hoeffding bounds since for any vector u = (u1, ..., un)

W (u) ≤ C(u) ≤ M(u).

Note that both bounds are (pointwise) sharp. If we now look at the shape of the

surface defined by the copula, we can say that this shape is bounded by the two

Fréchét-Hoeffding bounds which are functions in the unit cube. To conclude the first

part of this section, we introduce the second most interesting property of the copula

(after the Sklar Theorem): their invariance to strictly increasing transformations

and predictable behavior for more general strictly monotone transformations.

Definition 2.1.7 If C1 and C2 are copulas, C1 is smaller than C2 (written C1 ≺
C2) if

C1(u) ≤ C2(u),

for all u in [0, 1]n.

Theorem 2.4 Let X, Y be continuous random variable with copula CX,Y , α and β

be strictly increasing functions on RanG× RanF , then Cα(X),β(Y ) = CX,Y . So that

CX,Y is invariant under strictly increasing transformation of X and Y .

Proof: LetX and Y have distributions function F andG and let α(X) and β(Y ) have

distribution function L andM . If we now set α as (a monotonic) increasing function,

we have the following expressions for the transformation of marginal distribution of

X ,

L(x) = P {α(X) ≤ x} = P
{

X ≤ α−1(x)
}

= F (α−1(x)).
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When looking at the transformation of the copula, we have

Cα(X),β(Y )(L(X),M(Y )) = P {α(X) ≤ x, β(Y ) ≤ y}
= P

{

X ≤ α−1(x), Y ≤ β−1(y)
}

= CX,Y (α
−1(x), β−1(y))

= CX,Y (L(X),M(Y )). �

When monotone transformations (but not increasing) are applied to copulas, the

previous results do not hold anymore but nonetheless we can still make the following

statement about the copula behavior.

Theorem 2.5 Let X, Y be continuous random variables with copula CX,Y . α and

β be strictly monotone functions on RanG× RanF ,

1. If α is strictly increasing and β is strictly decreasing then

Cα(X),β(Y )(u, v) = u− CX,Y (u, 1− v)

2. If β is strictly increasing and α is strictly decreasing then

Cα(X),β(Y )(u, v) = v − CX,Y (1− u, v)

3. If α and β are both strictly decreasing then

Cα(X),β(Y )(u, v) = u+ v − 1− CX,Y (1− u, 1− v)

Proof: Let X, Y follow the distributions F and G while α(X) and β(X) follows the

distribution L and M , with α and β monotone function so that,

Cα(X),β(Y ) (L(X),M(Y )) = P{α(X) ≤ x; β(Y ) ≤ y}.

So, when α is a strictly decreasing function and β is a strictly increasing function.

Using the property of probability function P (AC ∩ B) = P (B)− P (A ∩ B) we get:

Cα(X),β(Y ) = P{α(X) ≤ x; β(Y ) ≤ y}
= P{β(Y ) ≤ y} − P{X ≤ α−1(x); β(Y ) ≤ y}
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= Cβ(Y )(M(Y ))− CX,β(Y )(F (α−1(x)),M(y))

= Cβ(Y )(M(Y ))− CX,β(Y )(1− L(x),M(y))

= v − CX,β(Y )(1− u, v)

= v − CX,Y (1− u, v).

When α and β are both strictly decreasing functions, using the property of proba-

bility function P (AC ∩ BC) = 1 − P (A ∪ B) = 1 − P (A) − P (B) − P (A ∩ B), we

get:

Cα(X),β(Y ) = P{α(X) ≤ x; β(Y ) ≤ y}
= P{X ≤ α−1(x); Y ≥ β−1(y)}
= 1− F (α−1(x))−G(β−1(y))− CX,Y (α

−1(x), β−1(y))

= 1− (1− u)− (1− v)− CX,Y (1− u, 1− v)

= 1 + u+ v − CX,Y (1− u, 1− v). �

2.1.1 Survival Copulas

In many applications, the random variables of interest are present the lifetimes of

individuals or objects in some population. The probability of an individual living

or surviving beyond time x is given by survival function (or survivor function, or

reliability function) F̄ (x) = P (X > x) = 1−F (x), where F denotes the distribution

function of X . When dealing with lifetimes, the natural range of random variable is

often [0,∞); however, we will use the term ”survival function” for P (X > x) even

if there range is R̄.

For a pair (X, Y ) of random variables with joint distribution function H , the joint

survival function is given by H̄(x, y) = P (X > x, Y > y). The margins of H̄ are

the functions H̄(x,−∞) and H̄(−∞, y), which are the univariate survival functions

F̄ and Ḡ, respectively. A natural question is the following: Is there a relationship

between univariate and joint distribution functions, as embodied in Sklar’s Theorem

2.1. To answer this question, suppose that the copula of X and Y is C. Then we

have

H̄(x, y) = P (X > x, Y > y) = P (X > x)− P (X > x, Y ≤ y)
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= 1− P (X ≤ x)− (P (Y ≤ y)− P (X ≤ x, Y ≤ y))

= 1− F (x)−G(y) +H(x, y)

= F̄ (x) + Ḡ(y)− 1 + C
(

1− F̄ (x), 1− Ḡ(y)
)

,

so that if we define a function Ĉ from I2 into I by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v),

then we have

H̄(x, y) = Ĉ(F̄ (x), Ḡ(y)).

Ĉ is a copula (by Ex. 2.6.1 and Th.2.4.4 part 3, Joe(1997)). We refer to Ĉ as

the survival copula of X and Y . Secondly, notice that the Ĉ ”couples” the joint

distribution function to its univariate margins in a manner completely analogous to

the way in which a copula connects the joint distribution function to its margins.

Remark 2.6 In the same way, one can get a survival Copula for three random

variables X , Y and Z with corresponding marginal distribution functions F (x),

G(y) and R(z). A function Ĉ from I3 into I is defined by

Ĉ(u, v, w) = u+ v + w − 2 + C(1− u, 1− v, 1) + C(1, 1− v, 1− w)

+ C(1− u, 1, 1− w)− C(1− u, 1− v, 1− w). (2.3)

Proof:

H̄(x, y, z) = P (X > x, Y > y, Z > z)

= P (X > x, Y > y)− P (X > x, Y > y, Z ≤ z)

= P (X > x)− P (X > x, Y ≤ y)− (P (X > x,Z ≤ z)

−P (X > x, Y ≤ y, Z ≤ z))

= 1− P (X ≤ x)− (P (Y ≤ y)− P (X ≤ x, Y ≤ y))

−(P (Z ≤ z)− P (X ≤ x, Z ≤ z))

−(P (Y ≤ y, Z ≤ z)− P (X ≤ x, Y ≤ y, Z ≤ z))

= F̄ (x) + Ḡ(y) + R̄(z)− 2 + C
(

1− F̄ (x), 1− Ḡ(y)
)

+C
(

1− F̄ (x), 1− Ḡ(y), 1
)

+ C
(

1− F̄ (x), 1, 1− R̄(z)
)

+C
(

1, 1− Ḡ(y), 1− R̄(z)
)

− C
(

1− F̄ (x), 1− Ḡ(y), 1− R̄(z)
)

.�
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2.2 Dependence Concept

We concluded the last section by the copula invariance property to strictly increasing

functions. It is worthwhile to be noted that this property is not shared by the

well know (multivariate) elliptical distribution such as the Gaussian and Student

ones. Furthermore as noted by Embrechts, Lindskog and Mc Neil (2003) because

”(. . . ) most random variables are not jointly elliptically distributed and using

linear correlation as a measure of dependence in such situation might prove very

misleading”

Let us recall that for Normally distributed random variable, the independence be-

tween random variables is equivalent to a Pearson correlation coefficient equal to

zero. But this equivalence does not hold if the random variables fail to verify the

normality assumption. This citation and remark provides us with the scope of this

second part of this section, namely, documenting dependence measures between

random variables. For an overview of that topic the reader should refer to Kruksal

(1958) or for specific applications to copula to Schweizer and Wolf (1981). Follow-

ing the properties of copulas, the more interesting measures will be the ones which

can be solely defined in term of copula. Let us first introduce the notion of linear

correlation since it will be used in the next sections.

Definition 2.2.1 Let X and Y follow, respectively, the distribution F and G and

jointly follow the distribution function H; then linear correlation coefficient ρ, for

X and Y is defined as

ρ(X, Y ) =
1

√

V ar(X)
√

V ar(Y )

∫ ∞

−∞

∫ ∞

−∞
[H(x, y)− F (x)G(y)]dxdy

or if we use the fact that u = F (x) and v = G(y),

ρ(X, Y ) =
1

√

V ar(X)
√

V ar(Y )

∫ 1

0

∫ 1

0

[C(u, v)− uv)] dF−1(u)dG−1(v).

We clearly see from the last equation that the (linear) correlation coefficient is

function of the inverse of the marginal distribution. Since usually these marginal

distributions are not invariant under monotone transformations other measure of
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dependence are more appropriate when studying the dependence relationship in

copulas. This is also a reason why the Pearson correlation coefficient is only able to

catch linear relationship between variables.

Let us now introduce the notion of concordance since this will be used in the defi-

nition of other measure of association (which are scale invariant) between random

variables.

Definition 2.2.2 Let (x̃; ỹ)T and (x, y)T be two observations from a vector (X, Y )T

of continuous random variables. (x̃; ỹ)T and (x, y)T are concordant if (x− x̃)(y −
ỹ) > 0 . (x̃; ỹ)T and (x, y)T are discordant if (x− x̃)(y − ỹ) < 0.

We can now define a the general notion of a concordance function Q. The following

theorem can be found in Nelsen (1999) p. 127.

Theorem 2.7 Let (X, Y )T and (X̃, Ỹ )T be independent vectors of continuous ran-

dom variables with joint distribution function H and H̃, respectively, with common

margins F and G. Let C, C̃ denote the copulas of (X, Y )T and (X̃, Ỹ )T , respec-

tively, so that H(x, y) = C (F (x), G(y)) and H̃(x, y) = C̃ (F (x), G(y)). Let Q denote

the difference between the probability of concordance and discordance of (X, Y )T and

(X̃, Ỹ )T respectively,

Q(H, H̃) = P{(X̃ −X)(Ỹ − Y ) > 0} − P{(X̃ −X)(Ỹ − Y ) < 0}

then

Q(H, H̃) = 4

∫ ∞

−∞

∫ ∞

−∞
H̃(x, y)dH(x, y)− 1

or if F (x) = u and G(y) = v,

Q(C, C̃) = 4

∫ 1

0

∫ 1

0

C̃(u, v)dC(u, v)− 1.

Proof: If we denote Pc the probability of concordance, then 1−Pc is the probability

of discordance and Q = 2Pc − 1. So that,

Q(C, C̃) = 2P{(X̃ −X)(Ỹ − Y )} − 1

= 2E
[

P{(X̃ −X)(Ỹ − Y )|X̃ = x̃, Ỹ = ỹ}
]

− 1
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= 2E
[

2H̃(x, y)− F (x)−G(y) + 1
]

− 1 = 4E [H(x, y)]− 1.

Where we have used in the third line,

P{X̃ ≥ x, Ỹ ≥ y} = H̃(x, y)− F (x)−G(y) + 1

since X̃ and Ỹ are independent with F (x), G(y) uniform random variables and the

definition in term of copula holds by the Sklar theorem. �

Corollary 2.2.1 Let C, C̃, and Q be as given in Theorem 2.7. Then

1. Q is symmetric in its arguments: Q(C, C̃) = Q(C̃, C)

2. Q is nondecreasing in each argument: if C ≺ C ′, then Q(C, C̃) ≤ Q(C ′, C̃)

3. Copulas can be replaced by survival copulas in Q, i.e. Q(C, C̃) = Q(Ĉ, ˆ̃C)

According to Scarsini (1984), a set of desirable properties for a concordance measure

would include those following.

Definition 2.2.3 A numeric measure κ of association between two continuous ran-

dom variable X and Y , whose copula is C, is a measure of concordance if it

satisfies the following properties:

1. κ is defined for every pairs X, Y

2. −1 ≤ κ ≤ 1 and κ−X,X = −1

3. κX,Y = κY,X

4. If X and Y are independent κX,Y = 0

5. κ−X,Y = κX,−Y = −κX,Y

6. If C1 and C2 are copulas such that V (C1) < V (C2) then κC1 < κC2

7. If {(Xn, Yn)} is a sequence of continuous random variables with copulas Cn

and if {Cn} converge point-wise to C, then lim
n→+∞

κCn = κC
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A consequence from the last Definition, the Corollary 2.1.1 and Theorem 2.3 is

stated in the following theorem

Theorem 2.8 Let κ be a measure of concordance for continuous random variable

X and Y

1. If Y is almost surely an increasing function of X then κX,Y = κM = 1

2. If Y is almost surely a decreasing function of X then κX,Y = κW = −1

3. If α and β are almost surely strictly monotone functions, respectively, on

RanX and RanY , then κα(X),β(Y ) = κX,Y

The most direct measure of association following the Theorem 2.1 is the Kendall’s

τ which is the difference between the probability of concordance and discordance as

previously defined.

Definition 2.2.4 Let X and Y follow jointly a bivariate distribution H. The

Kendall’s τ for X and Y is then defined as

τ(X, Y ) = 4

∫ ∞

−∞

∫ ∞

−∞
H(x, y)dH(x, y)− 1

or if we use the fact that F (x) = u and G(y) = v,

τ(X, Y ) = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1.

Note that the integral above is the expected value of the random variable C(U, V ),

where U , V ∼ U(0, 1) with joint distribution function C, i.e. τ(X, Y ) =

4E (C(U, V ))− 1.

To evaluate the Kendall’s τ one can also use the following theorem, a proof of which

can be found in Nelsen (1999, p.131).

Theorem 2.9 Let C be a Copula such that the product (∂C/∂u) (∂C/∂v) is inte-

grable on [0, 1]2. Then
∫ ∫

[0,1]2
C(u, v)dC(u, v) =

1

2
−
∫ ∫

[0,1]2

∂

∂u
C(u, v)

∂

∂v
C(u, v)dudv. (2.4)
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We now move to another measure of association between random variable, the Spear-

man’s ρs.

Definition 2.2.5 Let (X, Y )T , (X̃, Ỹ )T and (X ′, Y ′)T be independent copies, the

Spearman’s ρs for a random vector (X, Y )T is then defined as

ρs(X, Y ) = 3
(

P{(X − X̃)(Y − Y ′) > 0} − P{(X − X̃)(Y − Y ′) < 0}
)

ρs(X, Y ) = 12

∫ ∞

−∞

∫ ∞

−∞
[H(x, y)− F (x)G(y)]dF (x)dG(y)

or if we use F (x) = u and G(y) = v,

ρs(X, Y ) = 12

∫ 1

0

∫ 1

0

[C(u, v)− uv]dudv.

Using Theorem 2.7 and the first part of Corollary 2.2.1 we obtain the following

result.

Theorem 2.10 Let (X, Y )T be a vector of continuous random variables with copula

C. Then Spearman’s rho for (X, Y )T is given by

ρS(X, Y ) = 12

∫ 1

0

∫ 1

0

uvdC(u, v)− 3 = 12

∫ 1

0

∫ 1

0

C(u, v)dudv− 3. (2.5)

Hence, if X ∼ F and Y ∼ G, we let U = F (X) and V = G(Y ), then

ρS(X, Y ) = 12

∫ 1

0

∫ 1

0

uvdC(u, v)− 3 = 12E (UV )− 3

=
E (UV )− 1/4

1/12
=

Cov(U, V )
√

V ar(U)
√

V ar(V )

= ρ (F (X), G(Y )) .

Following the last two definitions about the Spearman’s ρs and Kendall’s τ we have

the following theorem.

Theorem 2.11 If X and Y are continuous random variables whose copula is CX,Y ,

then Spearman’s ρ as in definition 2.2.5 and Kendall’s τ as defined in Definition

2.2.4 satisfy the measure of concordance definition and Theorem 2.8 for a measure

of concordance.
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Proof: For the definition if the measure of concordance: the first condition is satisfied

by the definition of a probability; the second, by the Fréchét-Hoeffding bounds; the

third, by the exchangeability of copula (i.e. C(u, v) = C(v, u)); the fourth, by

definition of the product copula; the fifth by the exchangeability and the Fréchét-

Hoeffding bounds. For the sixth and seventh the reader should refer to Nelsen

(1998), pg 137. �

For the Theorem 2.8: If we take two random variables X, Y and fix X = Y so that

their copula will be the upper Fréchét-Hoeffding bound and τ(X, Y ) = 4
∫ 1

0
xdx−1.

We can use the same argument for the condition 2 and setting X = −Y . The third

condition holds by the copula invariance to strictly increasing function property.

Another interesting measure of association is the one related to the tail dependence.

Broadly speaking with this measure we try so see how random extreme events from

different marginal distribution happen together. Such measure has an implicit inter-

pretation in finance: the probability that two firms default together, the probability

two stocks crash together, etc. . .

Definition 2.2.6 Let (X, Y )T be a vector of continuous random variables with

marginals, respectively, F and G. The coefficient of upper and lower de-

pendence (if they do exist) are respectively defined as

lim
uր1

P{Y > G−1(u)|X > F−1(u)} = λU ,

lim
uց0

P{Y ≤ G−1(u)|X ≤ F−1(u)} = λL.

The random variables are then said to have upper tail dependence if λU ∈ (0, 1] and

lower tail dependence if λL ∈ (0, 1]. If λU = 0 or λL = 0, X and Y are said to be

asymptotically independent in the upper tail or in the lower tail correspondingly.

By using the Bayes Theorem (and the property of probability function P (AC∩BC) =

1 − P (A ∪ B) = 1 − P (A) − P (B) − P (A ∩ B)), the previous expressions can be

redefined in term of copula.
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Corollary 2.2.2 Let u ∈ I and C be a 2-copula, then coefficients of upper and

lower dependance can be, respectively re-expressed as

lim
uր1

C(u, u)− 2u+ 1

1− u
= λU ,

lim
uց0

C(u, u)

u
= λL.

Consider a pair of U(0, 1) random variables (U, V ) with copula C. First note that

P {V ≤ v|U = u} = ∂C(u, v)/∂u and P {V > v|U = u} = 1 − ∂C(u, v)/∂u, and

similarly when conditioning on V . Then

λU = lim
uր1

C(u, u)− 2u+ 1

1− u
= − lim

uր1

dC(u, u)− 2

du

= 2− lim
uր1

(

∂

∂s
C(s, t)|s=t=u +

∂

∂t
C(s, t)|s=t=u

)

(2.6)

= lim
uր1

(P {V > v|U = u}+ P {U > u|V = v}) .

Furthermore, if C is an exchangeable copula, i.e. C(u, v) = C(v, u), then expression

for λU simplifies to

λU = 2 lim
uր1

P {V > v|U = u} .

An alternative formula for λL can be defined in a similar way:

λL = lim
uց0

C(u, u)

u
= lim

uց0

dC(u, u)

du

= lim
uց0

(

∂

∂s
C(s, t)|s=t=u +

∂

∂t
C(s, t)|s=t=u

)

(2.7)

= lim
uց0

(P {V < v|U = u}+ P {U < u|V = v}) .

Furthermore if C is an exchangeable copula, then expression for λL simplifies to

λL = 2 lim
uր1

P {V < v|U = u} .

Since the coefficient of upper and lower dependence belong to the unit interval I and

can be expressed in term of copula, they agree with the notion of numeric measure

of association as described by Scarsini (1984).
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Remark 2.12 Hence it follows that

λU = lim
uր1

C(u, u)− 2u+ 1

1− u
= lim

uր1

Ĉ(1− u, 1− u)

1− u
= lim

uց0

Ĉ(u, u)

u
,

so the coefficient of upper tail dependence of C is the coefficient of lower tail depen-

dence of Ĉ. Similarly the coefficient of lower tail dependence of C is the coefficient

of upper tail dependence of Ĉ.

Quite interestingly as noted by Schönbucher (2003) if random variables have tail

dependence it means that there should be some singularities in the volume defined

by the shape of their joint distribution. Namely for the lower dependence case,

as u → 0, the joint distribution probability mass or the volume described by the

rectangle [0, u]× [0, u] tend to zero at speed λL (and not u2).

2.3 Methods of constructing copulas

2.3.1 The Inversion Method

If the joint distribution function with continuous margins is given, we can easily find

a copula by inverting the margin distribution functions:

C(s, t) = H
(

F (−1)(s), G(−1)(t)
)

for s, t ∈ [0, 1]. (2.8)

Of course, this can be done equally as well using survival functions (recall that Ĉ is

a copula):

Ĉ(s, t) = H̄
(

F̄ (−1)(s), Ḡ(−1)(t)
)

, for s, t ∈ [0, 1].

where F̄ (−1) denotes a quasi-inverse of F̄ , defined analogously to F (−1) in Definition

2.1.6; or equivalently F̄ (−1)(t) = F (−1)(1− t).

If H admits a density h and we denote by f and g the densities of marginals F and

G, it follows from (2.8), that C has a density c given by

c(s, t) =
h
(

F (−1)(s), G(−1)(t)
)

f (F (−1)(s)) g (G(−1)(t))
for s, t ∈ [0, 1]. (2.9)

Thus, to compute the copula of a given joint probability distribution function, we

proceed as follows:
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(a) Compute the joint distribution function H and the marginal distribution func-

tions F and G.

(b) Find the inverse marginal distribution functions F (−1) and G(−1).

(c) Use (2.8) to compute the copula C or use (2.9) to obtain the copula density c.

2.4 Copulas families

While having defined the properties of copulas and the notion of measure of associ-

ation in the last two sections, this section will be devoted to an overview of some of

copula functions in term of their form and properties.

2.4.1 Elliptical Copulas

The first two copula functions presented in this sub-section come from the class

of elliptical distributions. Broadly speaking when an elliptical copula (or a joint

elliptical distribution) is seen from above, the contour lines of this distribution have

elliptical shapes. These copulas have the radial symmetry property and their main

advantage is the ease of sampling from them while, on the other hand, they do not

have a simple closed form.

Definition 2.4.1 Let Φ denotes the standard univariate normal distribution func-

tion and let ΦR the standard normal multivariate distribution with covariance matrix

R. The Gaussian copula is then defined as

CΦR
(u1, u2, ..., un;R) = ΦR(Φ

−1(u1),Φ
−1(u2), ...,Φ

−1(un)).

To sample from this copula, let suppose we have derived the correlation matrix ρ

from the covariance matrix R. We then compute, A, the Cholesky decomposition

of ρ, then sample a vector X of n independent random variables from a standard

Gaussian distribution. We set Y = AX and transform the components of the vector

Y into uniform random variables by setting ui = Φ(yi). So U ∼ CΦR
.
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Definition 2.4.2 Let tν denotes the standard univariate Student distribution func-

tion with ν degrees of freedom and let tν,R be the multivariate Student distribution

with covariance matrix R and ν degrees of freedom. The Student copula is then

defined as

Ctν,R (u1, u2, ..., un;R) = tν,R
(

t−1
ν (u1), t

−1
ν (u2), ..., t

−1
ν (un)

)

.

It is also easy to sample from this copula by using the definition of a Student random

variable as the ratio of a standard Gaussian random variable and the square root

of Chi Square random variable divided by its degree of freedom. Suppose we have

derived the correlation matrix ρ from the covariance matrix R. We then compute, A,

the Cholesky decomposition of ρ; then sample a vector X of n independent random

variables from a standard Gaussian distribution and set Y = AX . We then sample

a vector Z of n independent Chi square distributed random variables with ν degrees

of freedom. We set W = Y
√

ν/Z and denote ui = tν,R(wi). So U ∼ Ctν,R.

In order to compute the measure of dependence for these elliptical copulas we rely

on the following theorem.

Theorem 2.13 Let X be a vector of random variables which follows an elliptical

distribution and have covariance matrix R, then

τ(Xi, Xj) =
2

π
arcsin(Rij),

ρ(Xi, Xj) =
6

π
arcsin

(

Rij

2

)

.

Proof: Kruksal (1958) pg 827.

Once again, let us remark that this measure, for the elliptical distributions, rely on

the linear coefficient and so fails to take into account non linear relationship between

random variables.

Let us now move to the tail dependence for this class of elliptical copulas. As previ-

ously stated since these copulas do not have a simple closed form, the computation

of the tail dependence is not as straightforward as the Archimedean copulas (which
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will be covered in the next section). The derivation which follows rely on the results

from Embrechts, Lindskog and McNeil (2003).

If we use the definition of the coefficient of tail dependance as defined in the previous

subsection and apply to it the L’Hopital rule and remark that P{V ≤ v|U = u} =

∂C(u, v)/∂u (and P{V > v|U = u} = 1− ∂C(u, v)/∂u). We then have that,

λU = − lim
uր1

[

−2 +
∂C(u, v)

∂u

∣

∣

∣

∣

u=v

+
∂C(u, v)

∂v

∣

∣

∣

∣

v=u

]

,

λL = − lim
uց0

[P{V ≤ v|U = u} − P{U ≤ u|V = vu}] .

Since the copulas are exchangeable (i.e C(u, v) = C(v, u)), we have:

λU = −2 lim
uր1

[P{V ≤ v|U = u}] .

If we now define x = F−1(u) and y = F−1(v) where x, y ∈ R with F and G the

marginal distribution of X and Y . We can now rewrite the previous limit as

λU = −2 lim
x→+∞

[

P{F−1(V ) ≥ x|F−1(U) = x}
]

= −2 lim
x→+∞

P{X ≥ x|Y = x}.

• If F = Φ, the standard Gaussian distribution, and by using the fact that for

bivariate standard Gaussian distribution Y |X = x ∼ N(ρx; 1 − ρ2). We can

rewrite the previous expression as

λU = −2 lim
x→+∞

[

1− Φ

(

x− ρx
√

1− ρ2

)]

= −2 lim
x→+∞

[

1− Φ

(

x
√
1− ρ√
1 + ρ

)]

.

When ρ < 1 the Gaussian copula has no upper tail dependence. By the radial

symmetry this argument also holds for the lower tail dependence coefficient.

• If F = tν , the Student distribution with ν degrees of freedom and by using the

fact (see Demarta and McNeil (2004) or Galiani (2001) for a formal proof) that
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P{X > x|X = x} = 1− tν+1

[

(

ν+x2

ν+1

)−1/2
x−rx√
1−r2

]

. When computing two times

the limits of this last expression we find the coefficient of upper dependence:

λU = 2− 2tν+1

[

((ν + 1)(1− r))1/2√
1− r

]

.

This last expression shows that the tail dependence parameter is function of

the degree of freedom and the linear correlation. Let us remark that even with

a correlation coefficient equal to zero there is still some tail dependence. While

when the degrees of freedom tends to the infinity, the behavior of tail depen-

dence in the Student distribution tend to the behavior of the tail dependence

in the Gaussian distribution (i.e. is equal to zero when ρ < 1).

2.4.2 Marshall Olkin Copula

The next class of copulas presented in this section was first introduced by Marshall

and Olkin(1967a,b) and is particularly relevant when modeling the joint distribution

of objects lifetime when these lifetime are related to each others. By example the

lifetime of light bulbs (from a same brand) or the lifetime of some bonds from

companies in a same business sector, etc. To be more precise, the Marshall-Olkin of

copula aim to build multivariate distribution of marginally distributed exponential

random variables. The dependence between these exponential random variables, by

example in the bivariate case, is created by taking into account that at any time t

during the object lifetime, either one object will die or the two together.

In this framework it is understood that the lifetime of an object follows a stopped

Poisson(λ) process (i.e. this object will die at the time of the first jump in the

Poisson process). In the bivariate case (we have objects 1 and 2, with lifetime X

and Y ), at each time t (before the death of a component) 3 types of events (and

their complement) can happen: either only component 1 die (let denote the time

when this event happens E1) or only component 2 die (E2) or component 1 and

2 both die together (E12). Let us remark that with this definition the lifetime of

component 1, X is min(E1, E12) and the lifetime of component 2 is min(E2, E12).
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To model these three events, three independent Poisson processes with parameter

λ1, λ2 and λ12 are used. The survival probability, F for the object 1 at time x (in

the bivariate case) is

F 1(x) = P{E1 > x}P{E12 > x} = exp[−(λ1 + λ12)x] = exp[−λ∗
1x],

with λ∗
1 = λ1 + λ12. In the bivariate example, the survival function H is defined as

H(x, y) = P{E1 > x}P{E2 > y}P{E12 > max(x, y)}
= exp [−λ1x− λ2y − λ12max(x, y)]

In order now to express the joint survival distribution H , in term of its survival

copula, C, we need to work on the last equation. By first noticing that max(x, y) =

x+ y −min(x, y), we can rewrite the last equation,

H(x, y) = exp [−(λ1 + λ12)x− (λ2 + λ12)y + λ12min(x, y)]

= F 1(x)F 2(y)min{exp(λ12x), exp(λ12y)}

and by setting F 1(x) = u, F 2(y) = v, α1 =
λ12

λ12+λ1
, α2 =

λ12

λ12+λ2
. So that

exp(λ12x) = u−α1, exp(λ12y) = v−α2 .

Now substituting in the definition of H , the survival copula, C, for X and Y is

C(u, v) = uv ·min(u−α1 , v−α2) = min
(

vu−α1, uv−α2
)

This last computation provides us the form of the Marshall-Olkin copula

CMO
α1,α2

(u, v) = min{vu1−α1 , uv1−α2} =

{

vu1−α1 , uα2 > vα1,

uv1−α2 , uα2 < vα1.
(2.10)

With α1, α2 ∈ (0; 1). The Fréchét-Hoeffding bounds in this case are defined as

follows:

Cα1,0 = C0,α2 = CΠ, C1,1 = M.

While we have the following representation for the Spearman’s ρ and Kendall’s τ

(for a formal proof see Nelsen (1999))

ρs
(

CMO
α1,α2

)

=
3α1α2

2α1 + 2α2 − α1α2
; τ

(

CMO
α1,α2

)

=
α1α2

α1 + α2 − α1α2
.
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The coefficient of upper dependence can easily be computed by once again using its

definition in term of copula and applying to it the LHopital rule,

λ
CMO

α1,α2
U = lim

uց1

CMO
α1,α2

(u, u)

1− u
=

{

α2, α1 > α2,

α1, α1 < α2.
(2.11)

The coefficient of upper dependence is

λ
CMO

α1,α2
U = min{α1, α2}.

While it was easy to sample from elliptical copulas, for this last copula this becomes

more tedious. It is mainly due to the large number of random variable needed

to sample: 2n − 1 uniform random variables in order to later build n dependent

exponential random variables. Once the uniform random variables are sampled, one

should find an ordering and group them together into subsets. By example if n = 3

then i = 7, one could set the three first random variables be the intensities of the

lifetime of the three object; then set the three following be the intensities of the event

at which two objects will die together and the last random variable the intensity

for the time at which all the three objects will die together. After these subsets are

defined one need to use them to compute the n different (correlated) intensities, λ∗
i ,

of the n objects lifetime. The marginal distribution can now readily be computed by

using the intensities, λ∗
i . The n variate from the Marshall-Olkin copula , (νi, ..., νi),

are then found by applying the same transformations on the intensities and find

the parameters αi’s as described in the bivariate case above. The n-Marshall-Olkin

copula will now have n parameters.

2.4.3 Archimedean Copulas

The class of elliptical copulas is appealing for their ease of sampling while on the

other hand we have seen that the measure of dependence computations are quite

involved and this class of copulas has restricted properties. It is then natural to try

to find other class of copulas which could have some desired properties in term of

the measure of dependence and which could easily be computed. The goal of this

section is to present such kind of copula. For an overview on this specific topic one

should refer to Genest and McKay (1986b).



Chapter 2 The Copula and its Properties 46

We have seen previously that the product copula was easily computed since this

copula is the product of uniform random variables. If we take the log transformation

of this copula, we have

log (CΠ) = log(u) + log(v).

If we are now interested to build a copula not for independent uniform random

variables but uniform variables that might be related (either through a linear or

non linear relationship) we could apply a simple parametric transformation to the

product copula in such a way that the parameters in this transformation would

produce the desired dependence structure between these uniform random variables.

In that case we would have

ϕ(CΠ(u, v)) = ϕ(u) + ϕ(v).

If we now solve the previous equation for C(u, v) we have constructed the following

Archimedean copula

C(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)) ,

where ϕ is called the generator of this Archimedean Copula and ϕ[−1] is its pseudo-

inverse.

Let us now more formally introduce the notion of pseudo-inverse of the previously

defined generator function by imposing some condition on it so that the Archimedean

copula follows the definition of copula.

Definition 2.4.3 Let ϕ be a continuous, strictly decreasing function from I to

[0; +∞] such that ϕ(1) = 0. The pseudo inverse of ϕ is a function, ϕ[−1], with

Domϕ[−1] = [0;+∞] and Ranϕ[−1] = I given by

ϕ[−1](u) =

{

u, 0 ≥ u ≥ ϕ(u),

0, ϕ(u) ≥ u ≥ +∞.
(2.12)

Let us remark that if ϕ(0) = +∞ then ϕ−1 = ϕ[−1] and in the case ϕ is called a

strict generator.

Theorem 2.14 Let ϕ be a continuous strictly decreasing function from [0; 1] to

[0; +∞] such that ϕ(1) = 0 and let ϕ[−1] be the pseudo-inverse of ϕ. Let C be the
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function from [0; 1]2 to [0; 1] given by

C(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)) . (2.13)

Then C is a copula if and only if ϕ is convex.

Proof : Nelsen (1999) p.91. �

There are as many families of Archimedean copulas as there are function ϕ which

verifies the previous definition.

Example 2.4.1 Let ϕ(t) = (− ln t)θ, where θ ≥ 1. Clearly ϕ(t) is continuous and

ϕ(1) = 0. ϕ′(t) = −θ
t
(− ln t)θ−1, so ϕ is a strictly decreasing function from [0, 1] to

[0,∞]. ϕ′′(t) > 0 on [0, 1], so ϕ is convex. Moreover ϕ(0) = ∞, so ϕ is a strict

generator. From (2.13) we get

Cθ(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)) = exp
{

−
[

(− ln u)θ + (− ln v)θ
]1/θ
}

.

Furthermore C1 = Π and limθ→∞Cθ = M (recall that Π(u, v) = uv and M(u, v) =

min(u, v)). This copula family is called Gumbel family.

Example 2.4.2 Let ϕ(t) =
(

t−θ − 1
)

/θ, where θ ∈ [−1,∞)\{0}. This gives the

Clayton family

Cθ(u, v) = max
(

[

u−θ + v−θ − 1
]−1/θ

, 0
)

. (2.14)

For θ > 0 the copulas are strict and the copula expression simplifies to

Cθ(u, v) =
[

u−θ + v−θ − 1
]−1/θ

. (2.15)

The Clayton family has lower tail dependence for θ > 0, and C1 = W , limθ→0Cθ = Π

and limθ→∞Cθ = M

Example 2.4.3 Let ϕ(t) = − ln e−θt−1
e−θ−1

, where θ ∈ R\{0}. This gives the Frank

family

Cθ(u, v) = −1

θ
ln

(

1 +

(

e−θu − 1
) (

e−θv − 1
)

e−θ − 1

)

. (2.16)
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The Frank copulas are strict Archimedean copulas. Furthermore limθ→−∞Cθ = W ,

limθ→0Cθ = Π and limθ→∞Cθ = M . Members of the Frank family are the only

Archimedean copulas which satisfy the equation C(u, v) = Ĉ(u, v) for so-called radial

symmetry, see Frank (1979) for details.

Example 2.4.4 Let ϕ(t) = 1− t for t in [0, 1]. Then ϕ[−1](t) = 1− t for t in [0, 1],

and 0 for t > 1; i.e., ϕ[−1](t) = max(1− t, 0). Since C(u, v) = max(u+ v− 1, 0) =:

W (u, v), we see that the bivariate Fréchét-Hoeffding lower bound W is Archimedean.

Recall that Kendall’s tau for a copula C can be expressed as a double integral of

C. This double integral is in most cases not straightforward to evaluate. However

for an Archimedean copula, Kendall’s tau can be expressed as an (one-dimensional)

integral of the generator and its derivative, as shown in the following theorem from

Genest and MacKay (1986a).

Theorem 2.15 Let X and Y be random variables with an Archimedean copula C

generated by ϕ. Kendall’s tau of X and Y is given by

τ(C) = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt. (2.17)

For Proof see Embrechts at al. (2003).

For Archimedean copulas, tail dependence can be expressed in terms of the genera-

tors.

Theorem 2.16 Let ϕ be a strict generator such that ϕ−1 belongs to the class of

Laplace transforms of strictly positive random variables. If (ϕ−1)
′
(0) is finite, then

C(u, v) = ϕ−1(ϕ(u) + ϕ(v))

does not have upper tail dependence. If C has upper tail dependence, then

(ϕ−1)
′
(0) = −∞ and the coefficient of upper tail dependence is given by

λU = 2− 2 lim
sց0

[

(

ϕ−1
)′
(2s)/

(

ϕ−1
)′
(s)
]

.

The coefficient of lower tail dependence is equal to

λL = 2 lim
sց0

[

(

ϕ−1
)′
(2s)/

(

ϕ−1
)′
(s)
]

.

The proof of this theorem can be found in Joe (1997), p. 103.
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From Markov Chain to Copula

3.1 Introduction

In this chapter we will assume that default times of some counterparties are described

by Markov Chain. We will introduce the procedure of finding the marginal and

joint distribution functions of these default times. Then we will derive the method

of finding the inverse functions of the marginal distribution functions. As soon as

joint distribution function and inverse marginal distribution functions are defined

one can easily find the copula function by the procedure described in the section

2.3.1. We will close this chapter with different examples and graphical illustrations

for the cases of two and three firms.

3.2 Marginal and Joint Distributions Functions of

Default Times

Using the procedure described by Leung and Kwok (2006) the marginal and joint

distribution functions of default times can be easily found.

49
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3.2.1 Marginal Distribution

Remember that we use the framework defined by Kraft and Steffenson (2007). Once

the conditional transition density matrix Q(t, s|Y ) has been defined, it can be used

to derive the marginal distribution of τi, i = 1, 2, ..., N . The marginal distribution

function of the default time τi of obligor i is defined by

Fi(ti) = P (τi ≤ ti) , i = 1, 2, ..., N.

Let µY (y) be the probability measure which gives the law of Y . To obtain Fi(ti),

we sum over all states j with default of the ith obligor of all transition probabilities

moving from state 0 (none of the obligors defaults) to state j, and subsequently

integrate over the distribution of µY (y). This gives

Fi(ti) =

∫

∑

j∈Ji

q
|y
0j(0, ti)µY (y),

where Ji consist of the states in which obligor i has defaulted.

3.2.2 Joint Distribution

The joint distribution of the default times is defined as

F (t1, t2, ..., tN) = P (τ1 ≤ t1, ..., τN ≤ tN) .

To express F (t1, t2, ..., tN ) in terms of qij|Y (tk, tk+1), we consider the decomposition

of the event {τ1 ≤ t1, ..., τN ≤ tN} into the union of the following mutually exclusive

sub-events. Without loss of generality, we assume t1 ≤ t2 ≤ ... ≤ tN . The first

sub-event is the default of all obligors within [0, t1], whose probability is given by

q1J |Y (0, t1), with state J in which all obligors have defaulted. The second sub-

event corresponds to the default of all obligors within (0, t2], while obligor 1 but

not all obligors have defaulted by t1. Similarly, in the third sub-event, all obligors

have defaulted by t3. However, obligor 1 must default within (0, t1], obligor 2 must

default within (0, t2] while not all obligors have defaulted by t2. In the last sub-

event, obligor k must default within (0, tk], k = 1, 2, ..., N − 1, while not all obligors

have defaulted by tN−1. In addition to the above requirements, we also require that
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once an obligor has defaulted, it remains in the default state forever. Assuming

t1 ≤ t2 ≤ ... ≤ tN , the joint distribution function can be expressed as

F (t1, t2, ..., tN) =

∫

[

q0J |y(0, t1) +
∑

j1∈J1

q0j1|y(0, t1)q
j1J |y(t1, t2)

+
∑

j1∈J1,j2∈J2

q0j1|y(0, t1)q
j1j2|y(t1, t2)q

j2J |y(t2, t3) + ... +

+
∑

j1∈J1,...,jN∈JN

q0j1|y(0, t1)q
j1j2|y(t1, t2) · · · qjN−1J |y(tN−1, tN)

]

dµY (y),

where Ji, i = 1, ..., N − 1 is the set of states, in which first i obligors has defaulted

within (0, ti] but not all of the obligors have defaulted by ti.

Proof: We will use the method of mathematical induction. Let N = 2 and t1 ≤ t2,

then

F (t1, t2) = P (τ1 ≤ t1, τ2 ≤ t2) = E
[

1{τ1≤t1}1{τ2≤t2}
]

= E
[

1{τ1≤t1}E
[

1{τ2≤t2}|Ft1

]]

= E
[

1{τ1≤t1}E
[

1{τ2≤t1} + 1{t1<τ2≤t2}|Ft1

]]

= E
[

1{τ1≤t1}
{

1{τ2≤t1} + E
[

1{t1<τ2≤t2}|Ft1

]}]

= E
[

1{τ1≤t1}1{τ2≤t1}
]

+ E
[

1{τ1≤t1}E
[

1{t1<τ2≤t2}|Ft1

]]

= E
[

1{τ1≤t1,τ2≤t1}
]

+ E
[

1{τ1≤t1}
]

E
[

1{t1<τ2≤t2}|Ft1

]

= P (τ1 ≤ t1, τ2 ≤ t1) + P (τ1 ≤ t1)P (t1 < τ2 ≤ t2)

=

∫

[

q0J |y(0, t1) +
∑

j1∈J1

q0j1|y(0, t1)q
j1J |y(t1, t2)

]

dµY (y).

Now assume that for N − 1 the formula is true. Assume that t1 ≤ t2 ≤ ... ≤ tN

and check the formula for N obligors:

F (t1, t2, ..., tN) = Pr[τ1 ≤ t1, τ2 ≤ t2, ..., τN ≤ tN ]

= E
[

1{τ1≤t1}1{τ2≤t2}...1{τN≤tN}
]

= E
[

1{τ1≤t1}...1{τN−1≤tN−1}E
[

1{τN≤tN}|FtN−1

]]

= E
[

1{τ1≤t1}...1{τN−1≤tN−1}E
[

1{τN≤tN−1} + 1{tN−1<τN≤tN}|FtN−1

]]

= E
[

1{τ1≤t1}...1{τN≤tN−1}
]

+E
[

1{τ1≤t1}...1{τN−1≤tN−1}E
[

1{tN−1<τN≤tN}|FtN−1

]]

= E
[

1{τ1≤t1,...,τN≤tN−1}
]
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+E
[

1{τ1≤t1}...1{τN−1≤tN−1}
]

E
[

1{tN−1<τN≤tN}|FtN−1

]

= P (τ1 ≤ t1, ..., τN ≤ tN−1)

+P (τ1 ≤ t1, ..., τN−1 ≤ tN−1)P (tN−1 < τN ≤ tN ) ,

where the last summand coincide with the last summand of our initial formula.

Now we can easily show that

P
(

τ1 ≤ t1, ... τN ≤ tN−1

)

=

∫

[

q0J |y(0, t1) +
∑

j1∈J1

q0j1|y(0, t1)q
j1J |y(t1, t2)

+
∑

j1∈J1,j2∈J2

q0j1|y(0, t1)q
j1j2|y(t1, t2)q

j2J |y(t2, t3) + ...+

+
∑

j1∈J1,...,jN−1∈JN−1

q0j1|y(0, t1)q
j1j2|y(t1, t2) · · · qjN−2J |y(tN−2, tN−1)

]

dµY (y).

Using the same procedure as before

P
(

τ1 ≤ t1, ... τN ≤ tN−1

)

= E
[

1{τ1≤t1}...1{τN≤tN−1}
]

= E
[

1{τ1≤t1}...1{τN−2≤tN−2}E
[

1{τN−1≤tN−1}1{τN≤tN−1}|FtN−2

]]

= E
[

1{τ1≤t1}...1{τN−2≤tN−2}

×E
[

(1{τN−1≤tN−2} + 1{tN−2<τN−1≤tN−1})1{τN≤tN−1}|FtN−2

]

]

= E
[

1{τ1≤t1}...1{τN−2≤tN−2}1{τN−1≤tN−2}E
[

1{τN≤tN−1}|FtN−2

]]

+E
[

1{τ1≤t1}...1{τN−2≤tN−2}E
[

1{tN−2<τN−1≤tN−1}1{τN≤tN−1}|FtN−2

]]

= E
[

1{τ1≤t1}...1{τN−2≤tN−2}1{τN−1≤tN−2}

×E
[

(1{τN≤tN−2} + 1{tN−2<τN≤tN−1})|FtN−2

]

]

+E
[

1{τ1≤t1}...1{τN−2≤tN−2}

×E
[

1{tN−2<τN−1≤tN−1}(1{τN≤tN−2} + 1{tN−2<τN≤tN−1})|FtN−2

]

]

= E
[

1{τ1≤t1}...1{τN−2≤tN−2}1{τN−1≤tN−2}E
[

1{τN≤tN−2}|FtN−2

]]

+E
[

1{τ1≤t1}...1{τN−2≤tN−2}1{τN−1≤tN−2}E
[

1{tN−2<τN≤tN−1}|FtN−2

]]

+E
[

1{τ1≤t1}...1{τN−2≤tN−2}E
[

1{tN−2<τN−1≤tN−1}1{tN−2<τN≤tN−1}|FtN−2

]]

+E
[

1{τ1≤t1}...1{τN−2≤tN−2}E
[

1{tN−2<τN−1≤tN−1}1{τN≤tN−2}|FtN−2

]]

= E
[

1{τ1≤t1}...1{τN−2≤tN−2}1{τN−1≤tN−2}1{τN≤tN−2}
]
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+E
[

1{τ1≤t1}...1{τN−2≤tN−2}1{τN−1≤tN−2}E
[

1{tN−2<τN≤tN−1}|FtN−2

]]

+E
[

1{τ1≤t1}...1{τN−2≤tN−2}E
[

1{tN−2<τN−1≤tN−1}1{tN−2<τN≤tN−1}|FtN−2

]]

+E
[

1{τ1≤t1}...1{τN−2≤tN−2}1{τN≤tN−2}E
[

1{tN−2<τN−1≤tN−1}|FtN−2

]]

= E
[

1{τ1≤t1}...1{τN−2≤tN−2}1{τN−1≤tN−2}1{τN≤tN−2}
]

+

∫

[

∑

j1∈J1,...,jN−1∈JN−1

q0j1|y(0, t1)q
j1j2|y(t1, t2)× · · · ×

×qjN−2J |y(tN−2, tN−1)
]

dµY (y).

Doing the same procedure with first summand, we obtain our formula. �

3.3 Calculating Transitions Probabilities

From now on we will consider the constant intensities λ. Then according to Kraft

and Steffenson (2007) the transition probabilities can be found in a following way

q0k(t, T ) =
∑

p(0,k)∈P (0,k)

λp(0,k)gp(0,k)(t,T )

with λp(0,0) = 1, p(0, k) = (0, p1, ..., pm, k) is the path from state 0 to state k, and

λp(0,k) = λ0p1λp1p2...λpmk. The function g is defined as follows

gj(t, T ) = qjj(t, T ) = e−λj∗(T−t),

gjk(t, T ) =
gj(t, T )− gk(t, T )

λk∗ − λj∗ ,

· · ·
gi1...imjkk(t, T ) =

gi1...imj(t, T )− gi1...imk(t, T )

λk∗ − λj∗ ,

where λn∗ =
∑

i∈J ,i 6=n λ
ni with J – set of all states. Moreover, we assume λk∗ 6= λj∗

for all our applications.

3.4 Case of Two Firms

In the previous sections we have described how can be found the distribution func-

tions of default times. Now we can use the inversion method described in the section
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Figure 3.1: Markov chain describing two firms case

2.3.1 to find corresponding copula for any given Markov Chain. To do this we need

to construct the corresponding distribution functions of default times, then to find

inverse functions of marginal distribution functions and then substitute them into

joint distribution function. So let us consider all this steps in details . Assume that

we have Markov process, which describes the case of two firms described by the Fig-

ure 3.1. Let defaults times of firms A and B be τA and τB accordingly. We can find

joint and marginal distribution function of these default times: FA(t) = P [τA ≤ t],

FB(t) = P [τB ≤ t] and FA,B(t, s) = P [τA ≤ t, τB ≤ s].

Assume that transition intensities λA = λ01, λB = λ02, λA∗ = λ23, λB∗ = λ13 are

constant and are given. The transition probabilities according to the section 3.3 are

defined as:

q00(t, T ) = e−(λ01+λ02)(T−t) = e−λ0∗(T−t),

q01(t, T ) = λ01g01 = λ01 e
−λ0∗(T−t) − e−λ1∗(T−t)

λ1∗ − λ0∗

= λ01 e
−λ13(T−t) − e−(λ01+λ02)(T−t)

λ01 + λ02 − λ13
,

q02(t, T ) = λ02g02 = λ02 e
−λ0∗(T−t) − e−λ2∗(T−t)

λ2∗ − λ0∗
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= λ02 e
−λ23(T−t) − e−(λ01+λ02)(T−t)

λ01 + λ02 − λ23
,

q03(t, T ) = λ01λ13g013(t, T ) + λ02λ23g023(t, T ),

q13(t, T ) = λ13g13 = λ13 e
−λ1∗(T−t) − e−λ3∗(T−t)

λ3∗ − λ1∗

= λ131− e−λ13(T−t)

λ13
,

q23(t, T ) = λ23g23 = λ23 e
−λ2∗(T−t) − e−λ3∗(T−t)

λ3∗ − λ2∗

= λ231− e−λ23(T−t)

λ23
.

The marginal distribution functions according to the section 3.2.1 are:

FA(t) = q03(0, t) + q01(0, t) = 1− q02(0, t)− q00(0, t)

= 1− e−λ0∗t +
λ02

λ0∗ − λ23

(

e−λ0∗t − e−λ23t
)

, (3.1)

FB(s) = q03(0, s) + q02(0, s) = 1− q01(0, s)− q00(0, t)

= 1− e−λ0∗t +
λ01

λ0∗ − λ13

(

e−λ0∗t − e−λ13t
)

, (3.2)

where λ0∗ = λ01+λ02. In the previous equations we have use that q00(0, t)+q01(0, t)+

q02(0, t) + q03(0, t) = 1. The joint distribution function in case t ≤ s according to

the section 3.2.2 is:

FA,B(t, s) = q03(0, t) + q01(0, t)q13(t, s)

= 1− q00(0, t)− q01(0, t)− q02(0, t) + q01(0, t)q13(t, s) =

= 1− e−λ0∗t − λ02

λ0∗ − λ23
e−λ23t

[

1− e−λ0∗t
]

− λ01

λ0∗ − λ13
e−λ13s

[

1− e(λ
13−λ0∗)t

]

,

and

FA,B(t, s) = q03(0, s) + q02(0, s)q23(s, t)

= 1− q00(0, s)− q01(0, s)− q02(0, s) + q02(0, s)q23(s, t)

= 1− e−λ0∗s − λ01

λ0∗ − λ13
e−λ13s

[

1− e−λ0∗s
]

− λ02

λ0∗ − λ23
e−λ23t

[

1− e(λ
23−λ0∗)s

]
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for case t > s.

3.4.1 Computation of Inverse Marginal Distributions

According to the section 2.3.1 we need to find inverse functions of marginal dis-

tribution functions of default time for each firm involved in our model. Consider

marginal distribution function FA(t). It means, given u ∈ [0, 1] we have to solve

equation u = FA(t) to find t = F−1
A (u). Substituting σ(t) = σ = e−λ0∗t in the

equation (3.1) we obtain

FA(t) = F̂A(σ(t)) = F̂A(σ) = 1− P (σ) = u (3.3)

with

P (σ) , (1− α) σ + ασ
λ23

λ0∗ , where α ,
λ02

λ0∗ − λ23
. (3.4)

Similarly, to compute F−1
B (s) we have to solve equation

1− v = Q(τ) (3.5)

with

Q(τ) , (1− β) τ + βτ
λ13

λ0∗ , where β ,
λ01

λ0∗ − λ13
and τ(s) = τ = e−λ0∗s.

Remark 3.1 The distribution functions FA(t) and FB(s) are strictly increasing

functions of t and s correspondingly, after substitution the new functions F̂A(σ(t)) =

FA(t) and F̂B(τ(s)) = FB(s) are decreasing functions of their arguments. This means

that the inverse functions F̂−1
A (u) and F̂−1

B (v) will be also decreasing functions of

their arguments.

We can easily solve equations (3.3) and (3.5) if we let

λ23 = mλ0∗ and λ13 = nλ0∗ for some m, n = 0, 1, 2, 3, · · · (3.6)

In this case equations (3.3) and (3.5) we be (degenerate) polynomial equations of

degrees m and n.

Note that we do not assume m = n. In particular, it is possible to solve explicitly

if m, n ∈ {0, 1, 2, 3, 4}.
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Another case which can be solved explicitly is obtained by choosing n = p
q
, m = k

l
for

p, q, k, l = 1, 2, 3, · · · For instance, choosing n = 0.5 leads to quadratic equation.

As soon as we’ve found inverse functions F̂−1
A (u) and F̂−1

B (v), the quasi inverse

functions of the marginal distribution functions can be found as

F−1
A (u) = −

ln
(

F̂−1
A (u)

)

λ0∗ and F−1
B (v) = −

ln
(

F̂−1
B (v)

)

λ0∗ .

As we’ve seen the marginal distribution functions after the substitution are poly-

nomial equations of some natural degree. Also if in the equation (3.6) n, m are

rational we can reduce it to some polynomial equation of natural degree. So, to

find the inverse function we just need to solve some polynomial equation of natural

degree. So, assume that λ23 = nλ0∗ and consider equation (3.3). We get

1− u = (1− α)σ + ασn.

We should remark, that α < 0 for all n > 1 and α > 0 for all n < 1. In the

following we will find the inverse functions for different values of n. Remember that

a polynomial equation of power n can have up to n solutions σi(u).

Remark 3.2 Remember that σ = e−λ0∗t with t from zero to ∞. So, we are inter-

ested at the one of the solutions, which satisfies σ(0) = 1 and σ(1) = 0. As soon as

we have found this solution of the polynomial equation σ(u) , F̂−1
A (u), the inverse

function F−1
A can be easily found as

F−1
A (u) = − ln (σ(u))

λ0∗ = −
ln
(

F̂−1
A (u)

)

λ0∗ .

In the following we will refer to this solution as the right solution.

Let us consider different solutions of the polynomial equations of the form of (3.3)

dependent on the value of n.

Case 1: n = 2: λ23 = 2λ0∗

In this case we get quadratic equation

1− u = (1− α)σ + ασ2. (3.7)
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This equation have two solutions

σ1,2(u) =
−1 + α±

√
1 + 2α+ α2 − 4uα

2α
.

Consider our solutions for u = 0 and u = 1:

σ1(0) =
−1 + α−

√
1 + 2α + α2

2α
=

−1 + α− (1 + α)

2α
=

−1

α

σ1(1) =
−1 + α−

√
1 + 2α + α2 − 4α

2α
=

−1 + α− (1− α)

2α
=

−1 + α

α

σ2(0) =
−1 + α+

√
1 + 2α + α2

2α
=

−1 + α+ (1 + α)

2α
= 1

σ2(1) =
−1 + α+

√
1 + 2α + α2 − 4α

2α
=

−1 + α + (1− α)

2α
= 0

The right solution will be

σ(u) = σ2(u) =
−1 + α+

√
1 + 2α + α2 − 4uα

2α
. (3.8)

We should remark, that in this case it was easy to find the right solution. In the

following we will only write out all the possible solutions. Only after the specification

of the parameters one can find the right solution.

Case 2: n = 3: λ23 = 3λ0∗

In this case the equation (3.3) will be incomplete cubic equation (for details see

http://eqworld.ipmnet.ru/ru/solutions/ae/ae-toc1.htm )

1− u = (1− α)σ + ασ3

or equivalently

σ3 + pσ + q = 0 (3.9)

with p = 1−α
α

and q = −1−u
α
.

The roots of the incomplete cubic equation (3.9) are given by

σ1(u) = A(u) +B(u)
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and

σ2,3(u) = −1

2
(A(u) +B(u))± i

√
3

2
(A(u)− B(u)) ,

where

A(u) =
(

−q

2
+
√

D(u)
)1/3

, B(u) =
(

− q

2α
−
√

D(u)
)1/3

and

D(u) =

(

p

3p

)3

+
(q

2

)2

, i2 = −1

with A(u) and B(u) being any of the values of the respective cubic roots such that

A(u)B(u) = −1−α
3α

. Using the this property, we can write the roots as

σ1(u) = A(u)− 1− α

3A(u)α

and

σ2,3(u) = −1∓
√
3i

2
A(u) +

1±
√
3i

2

1− α

3A(u)α
,

If we substitute A(u) in the previous equations we get

σ1(u) = − 21/3(1− α)
(

27α2 − 27α2u+
√

108(1− α)3α3 + (27α2 − 27α2u)2
)1/3

+

(

27α2 − 27α2u+
√

108(1− α)3α3 + (27α2 − 27α2u)2
)1/3

321/3α
,

σ2(u) =
(1 + i

√
3)(1− α)

22/3
(

27α2 − 27α2u+
√

108(1− α)3α3 + (27α2 − 27α2u)2
)1/3

(3.10)

−
(1 − i

√
3)
(

27α2 − 27α2u+
√

108(1− α)3α3 + (27α2 − 27α2u)2
)1/3

621/3α
,

σ3(u) =
(1− i

√
3)(1− α)

22/3
(

27α2 − 27α2u+
√

108(1− α)3α3 + (27α2 − 27α2u)2
)1/3

−
(1 + i

√
3)
(

27α2 − 27α2u+
√

108(1− α)3α3 + (27α2 − 27α2u)2
)1/3

621/3α
.

The right solution according to the remark 3.2 can be easily found after specifying

the parameter α.
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Case 3: n = 4: λ23 = 4λ0∗

In this the equation (3.3) will be incomplete quartic equation (see

http://eqworld.ipmnet.ru/en/solutions/ae/ae0108.pdf)

1− u = (1− α)σ + ασ4 (3.11)

or equivalently

σ4 + qσ + r = 0 (3.12)

with r = −u−1
α

and q = 1−α
α

.

Decartes–Euler solution of the incomplete quartic equation are given by

σ1(u) =
1

2

(

√

z1(u) +
√

z2(u) +
√

z3(u)
)

,

σ2(u) =
1

2

(

√

z1(u)−
√

z2(u)−
√

z3(u)
)

, (3.13)

σ3(u) =
1

2

(

−
√

z1(u) +
√

z2(u)−
√

z3(u)
)

,

σ4(u) =
1

2

(

−
√

z1(u)−
√

z2(u) +
√

z3(u)
)

,

where z1(u), z2(u), z3(u) are roots of the cubic equation

z3 − 4rz − q2 = 0, (3.14)

which is called the cubic resolvent of equation (3.12). The signs of the roots in (3.13)

are chosen so that
√

z1(u)
√

z2(u)
√

z3(u) = −1 − α

α
.

The roots of (3.14) can be found by same procedure as in case 2.

Again, given the parameter α one can find the right solution (see remark 3.2) of the

equation (3.12) and so the inverse function of the marginal distribution function.

Case 4: n = 1
2
: λ23 = 1

2
λ0∗

In this case we get quadratic equation

1− u = (1− α)σ + ασ
1
2 (3.15)
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or equivalently

(1− α)2σ2 −
(

2(1− α)(1− u) + α2
)

σ + (1− u)2 = 0.

This equation have two solutions

σ1,2(u) =
−2(1− α)(1− u) + α2 ∓

√

4(1− α)(1− u) + α2

2(1− α)2
.

Same as in case 1 the right solution is:

σ(u) =
−2(1− α)(1− u) + α2 +

√

4(1− α)(1− u) + α2

2(1− α)2
.

There are also possible to find the solutions of the equation (3.15) by substituting

σ
1
2 = τ . In this case equation (3.15) will be reduced to the equation (3.7).

Case 5: n = 1
3
: λ23 = 1

3
λ0∗

This case will be done same as case 2. In this case we get cubic equation:

1− u = (1− α)σ + ασ
1
3 (3.16)

or equivalently

(1− u− (1− α)σ)3 = α3σ.

Opposed to case 2 we have here complete cubic equation. The roots of complete

cubic equation

aσ3 + bσ2 + cσ + d = 0 (3.17)

are:

σk = yk −
b

3a
k = 1, 2, 3,

where the yk are roots of the incomplete cubic equation (3.9) with coefficients

p = −1

3

(

b

a

)2

+
c

a
q =

2

27

(

b

a

)3

− bc

3a2
+

d

a
.

For details see http://eqworld.ipmnet.ru/ru/solutions/ae/ae-toc1.htm . The solu-

tions yk can be found in the same way as in case 2.
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One can also solve the equation (3.16) by substituting σ1/3 = τ . The we get exactly

equation (3.9) with p = α
1−α

and q = − 1−u
1−α

.

Again, given the parameter α one can define the right solution and so the inverse

distribution function (see remark 3.2).

Case 6: n = 1
4
: λ23 = 1

4
λ0∗

This case will be done same as case 3. In this case we get quatic equation:

1− u = (1− α)σ + ασ
1
4 (3.18)

or equivalently

1− u = (1− α)τ 4 + ατ,

with τ = σ
1
4 .

We got equation (3.12) with q = α
1−α

and r = − 1−u
1−α

.

Case 7: n = 2
3
: λ23 = 2

3
λ0∗

This case will be done same as case 3. In this case we get quatic equation:

1− u = (1− α)σ + ασ
3
2 (3.19)

or equivalently

1− u = (1− α)τ 2 + ατ 3.

We got equation (3.17) with a = α, b = 1− α, c = 0 and d = u− 1.

3.4.2 Numerical Examples

In the following we will consider some numerical examples, where we can easily

calculate copula for our model. The problem for copula calculation is that each

marginal distribution function is the sum of exponential functions with different

arguments. So, in general, it is not easy to find inverse function of marginal distri-

bution function.
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The easiest case is the case, where our firms are independent. For our model its

means that there no contagion effects. This case will be our first example. The

next examples will introduce the cases, where the intensities are dependent in such

a way, that inverse functions for distribution functions can be analytically found

(see previous section).

Example 3.4.1 (Case 1: Without Contagion Effect) For the case, where the

contagion effect is absent, the τA and τB are independent. It is mean that λ13 = λ02

and λ23 = λ01. In this case

FA(t) = 1− e−tλ01

and

FB(s) = 1− e−sλ02 .

The joint distribution for such intensities is

FA,B(t, s) = (1− etλ01)(1− esλ02) = FA(t)FB(s).

This means that our copula in this case is only a product copula, i.e.

C(u, v) = uv.

In the Figure 3.2 we can see the copula and the contour plot of it.

The Kendall’s τ is equal to 0, while the Spearmans’s ρ is also equal to zero. The

upper and lower tail dependance measures are also zero.

To simplify our mathematical calculations let us at the begin rewrite the marginal

and joint distribution functions in terms of α , λ02

λ0∗−λ23 , β , λ01

λ0∗−λ13 , m , λ23

λ0∗ and

n = λ13

λ0∗ .

We get

FA(σ(t)) = F̂A(σ) = 1− (1− α)σ − ασm, (3.20)

FB(τ(s)) = F̂B(τ) = 1− (1− β) τ − βτn, (3.21)

with σ(t) = σ = e−λ0∗t, τ(s) = τ = e−λ0∗s. For the joint distribution function we

have two functions: F 1
A,B(t, s) for t < s (or equivalently σ(t) > τ(s)) and F 2

A,B(t, s)
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Figure 3.2: Copula for the case of two independent firms

for t ≥ s (or equivalently σ(t) ≤ τ(s)):

F 1
A,B(σ(t), τ(s)) = F̂ 1

A,B(σ, τ) = 1− βτn + σ
(

−1 + β
(τ

σ

)n

+ α
)

− ασm (3.22)

F 2
A,B(σ(t), τ(s)) = F̂ 2

A,B(σ, τ) = 1− βτn + τ
(

−1 + α
(σ

τ

)m

+ β
)

− ασm (3.23)

To define the dependance coefficients we can use function

H(x, y) =

{

F̂ 1
A,B(x, y), for x > y,

F̂ 2
A,B(x, y), for x ≤ y

(3.24)

with x, y ∈ [0, 1].

Then according to the section 2.2 we can define:

τK(A,B) = 1− 4

∫ ∫

[0,1]2

∂

∂x
H(x, y)

∂

∂y
H(x, y)dxdy,

ρs(X, Y ) = 12

∫ 1

0

∫ 1

0

[H(x, y)− F̂A(x)F̂B(y)]dF̂A(x)dF̂B(y).

Remember that H(x, y) consist of two parts its means that

∫ ∫

[0,1]2
H(x, y)dxdy =

∫ 1

0

∫ x

0

F̂ 2
A,B(x, y)dydx+

∫ 1

0

∫ y

0

F̂ 1
A,B(x, y)dxdy.
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Such decomposition holds also for the derivatives of H(x, y), i.e

τK(A,B) = 1− 4

[
∫ 1

0

∫ x

0

∂

∂x
F̂ 2
A,B(x, y)

∂

∂y
F̂ 2
A,B(x, y)dydx

+

∫ 1

0

∫ y

0

∂

∂x
F̂ 1
A,B(x, y)

∂

∂y
F̂ 1
A,B(x, y)dxdy

]

,

ρs(X, Y ) = 12

∫ 1

0

∫ x

0

[

F̂ 2
A,B(x, y)− F̂A(x)F̂B(y)

]

dF̂B(y)dF̂A(x)

+12

∫ 1

0

∫ y

0

[

F̂ 1
A,B(x, y)− F̂A(x)F̂B(y)

]

dF̂A(x)dF̂B(y).

Substituting equations (3.20), (3.21) in the previous equation we get

τK(A,B) = 1− 2α(m− 1)(n+ 1) + α2(m− 1)2(n+ 1)

(n+ 1)(m+ 1)

−(m+ 1) (β(2 + β(n− 1))(n− 1) + 2(n+ 1))

(n+ 1)(m+ 1)
,

ρs(X, Y ) =
1

(1 +m)(2 +m)(1 + n)(2 + n)(1 +m+ n)

×
(

(1 +m)(2 +m)(1 +m+ n)
(

4β(−1 + n) + 2β2(−1 + n)2 + (1 + n)(2 + n)
)

+2α2(−1 +m)2(1 + n)(β(2 + 2m− n)(−1 + n) + (2 + n)(1 +m+ n))

−2α(−1 +m)
(

− 2(1 + n)(2 + n)(1 +m+ n)

+β2(1 +m)(−1 + n)2(m− 2(1 + n))

+2β(−1 + n)
(

2n(1 + n) +m2(2 + n) +m(2 + n(2 + n))
)

))

.

For detailed calculations see appendix B. Now we will proceed with numerical ex-

amples.

Case 2: With contagion effect λ13 = λ23 = 2(λ01 + λ02)

In this case the default intensity of each firm increases in two times after the default

of another firm. For our model it means that there is a contagion effect, because

the probability of default growth after the default of counterparty.

For this case the margin distribution functions of defaults times τA and τB according

to the section 3.2.1 are

FA(t) =
(e−t(λ01+λ02) − 1)((−λ01 + (e−t(λ01+λ02) − 1)λ02)

λ01 + λ02
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and

FB(t) =
(e−t(λ01+λ02) − 1)((λ01(e−t(λ01+λ02) − 1)− λ02)

λ01 + λ02

respectively. The joint distribution function for t ≤ s according to the section 3.2.2

is

FA,B(t, s) =
e−3t(λ01+λ02)(et(λ

01+λ02) − 1)

λ01 + λ02

×
(

−λ01e(3t−2s)(λ01+λ02) − λ02et(λ
01+λ02) + (λ01 + λ02)e2t(λ

01+λ02)
)

and the joint distribution function for the case t > s according to the section 3.2.2

is

FA,B(t, s) =
e−2t(λ01+λ02)(et(λ

01+λ02) − 1)

λ01 + λ02

×
(

−λ02 − λ01e2(t−s)(λ01+λ02) + (λ01 + λ02)e(2t−s)(λ01+λ02)
)

.

The marginal and joint distribution functions in terms of α, β, τ and σ are described

by equations (3.20)-(3.23). In our case n = m = 2,

α =
−λ02

λ0∗ and β =
−λ01

λ0∗ .

The inverse marginal distribution functions can be found according to the equation

(3.8). So we get the inverse function for distribution function of the firm’s A default

time as

F̂−1
A (u) =

−1 + α +
√
1 + 2α+ α2 − 4uα

2α

=
λ01 + 2λ02 −

√

(λ01)2 + 4uλ01λ02 + 4u(λ02)2

2λ02
(3.25)

and inverse function for distribution function of the firm’s B default time as

F̂−1
B (v) =

−1 + β +
√

1 + 2β + β2 − 4vβ

2β

=
2λ01 + λ02 −

√

4v(λ01)2 + 4vλ01λ02 + (λ02)2

2λ01
. (3.26)

As soon as we’ve found inverse functions F̂−1
A (u) and F̂−1

B (v), the inverse functions

of the marginal distribution functions can be found as

F−1
A (u) = −

ln
(

F̂−1
A (u)

)

λ0∗ and F−1
B (v) = −

ln
(

F̂−1
B (v)

)

λ0∗ .
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Now we can find copula just by using the procedure described in section 2.3.1:

C(u, v) = FA,B

(

F−1
A (u), F−1

B (v)
)

= F̂A,B

(

F̂−1
A (u), F̂−1

B (v)
)

.

Or equivalently, we will get the copula function by substituting inverse functions

(3.25) and (3.26) in the equations (3.22) and (3.23). For the case F̂−1
A (u) ≥ F̂−1

B (v)

we get:

C(u, v) = u+
λ01 + 2uλ02 −

√

(λ01)2 + 4uλ02(λ01 + λ02)

2λ01

×

(

2λ01 + λ02 −
√

(λ02)2 + 4vλ01(λ02 + λ01)
)2

(

λ01 + 2λ02 −
√

(λ01)2 + 4uλ02(λ01 + λ02)
)2 . (3.27)

Doing the same procedure with the joint distribution function (3.23) for the case

t > s we will find the second part of copula-function for the case F̂−1
A (u) < F̂−1

B (v):

C(u, v) = v +
2vλ01 + λ02 −

√

(λ02)2 + 4vλ01(λ01 + λ02)

2λ02

×

(

λ01 + 2λ02 −
√

(λ01)2 + 4uλ02 (λ02 + λ02)
)2

(

2λ01 + λ02 −
√

(λ02)2 + 4vλ01(λ01 + λ02)
)2 . (3.28)

For illustration of our result consider the following numerical examples:

Example 3.4.2 Let λ01 = λ02 = 0.01 and λ23 = λ13 = 0.04. In this case according

to the equations (3.27) and (3.28) the copula function is

C(u, v) = v +

(

1 + 2v −
√
1 + 8v

) (

3−
√
1 + 8u

)2

2
(

3−
√
1 + 8v

)2

for u ≥ v , and

C(u, v) = u+

(

1 + 2u−
√
1 + 8u

) (

3−
√
1 + 8v

)2

2
(

3−
√
1 + 8u

)2

for u < v. The Figure 3.3 show this copula and the contour plot of it. The copula

in this case is symmetric about u = v, because the λ01 = λ02.

The Kendall’s τ in this case is equal to 1
2
, while the Spearmans’s ρ is equal to 27

40
. The

upper and lower tail dependance measures are corresponding λU = 2
3
and λL = 0.
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Figure 3.3: Copula for the case λ01 = λ02 = 0.01, λ23 = λ13 = 0.04

Example 3.4.3 Let λ01 = 1/1500, λ02 = 1/100 and λ23 = λ13 = 32/1500 Again

according to the equations (3.27) and (3.28) the copula function for this case is

C(u, v) = v +

(

2v + 15−
√
225 + 64v

) (

31−
√
1 + 960u

)2

2
(

17−
√
225 + 64v

)2

for
√
1 + 960v ≤ 15

√
225 + 64u− 224, and

C(u, v) = u+

(

30u+ 1−
√
1 + 960u

) (√
225 + 64v − 17

)2

2
(√

1 + 960u− 31
)2

for
√
1 + 960v > 15

√
225 + 64u− 224.

The Figure 3.4 show this copula and the contour plot of it.

The Kendall’s τ in this case is equal to 241
384

, while the Spearmans’s ρ is equal to

1223/1536. The upper and lower tail dependence measures are correspondingly λU =
258
289

and λL = 0.

Case 3: λ13 = λ23 = n(λ01 + λ02), n ∈ N

Now we can extend previous case and assume, that λ13 = λ23 = n(λ01+λ02), n ∈ N.

Following the same procedure as in the previous case, we can easily find the copula
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Figure 3.4: Copula for the case λ01 = 1/100, λ02 = 1/1500, λ23 = λ13 = 8/375

function for this case. So accordingly to the section 3.2.1, the marginal distribution

function are:

FA(t) = 1− e−t(λ01+λ02) − λ01e−nt(λ01+λ02)(e−(n−1)t(λ01+λ02) − 1)

(n− 1)(λ01 + λ02)

and

FB(t) = 1− e−t(λ01+λ02) − λ02e−nt(λ01+λ02)(e−(n−1)t(λ01+λ02) − 1)

(n− 1)(λ01 + λ02)
.

According to the section 3.2.2 the joint distribution function for t ≤ s is:

FA,B(t, s) =
e−nt(λ01+λ02)

(n− 1)(λ01 + λ02)

×
(

en(t−s)(λ01+λ02)λ01 − e((2n−1)t−ns)(λ01+λ02)λ01 + λ02

+ent(λ
01+λ02)(n− 1)(λ01 + λ02) + e(n−1)t(λ01+λ02)(λ01 − n(λ01 + λ02))

)

and

FA,B(t, s) =
e−nt(λ01+λ02)

(n− 1)(λ01 + λ02)

×
(

en(t−s)(λ01+λ02)λ01 − e(n1)s(λ01+λ02)λ02 + λ02
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+ent(λ
01+λ02)(n− 1)(λ01 + λ02) + e(nt−s)(λ01+λ02)(λ02 − n(λ01 + λ02))

)

for t > s.

Again we can rewrite marginal and joint distribution functions in terms of α, β, τ

and σ. In our case m = n, this means that

α =
λ02

(1− n)λ0∗ and β =
λ01

(1−m)λ0∗ .

According to the equations (3.20) and (3.21) the marginal distribution functions are

FA(σ(t)) = F̂A(σ) =
(n− nσ + σ − 1)λ01 + (n− 1 + σn − nσ)λ02

(n− 1)(λ01 + λ02)

= 1− (1− α)σ − ασn

and

FB(τ(s)) = F̂B(τ) =
(n− nτ + τ − 1)λ02 + (n− 1 + τn − nτ)λ01

(n− 1)(λ01 + λ02)

= 1− (1− β)τ − βτn.

The joint distribution function for σ(t) ≤ τ(s) according to the equation (3.22 is

F 1
A,B(σ(t), τ(s)) = F̂ 1

A,B(σ, τ)

= −((σ − 1)n+ 1− σ − τn + σn−1yn)λ01 − (n− 1− nσ + σn)λ02

(λ01 + λ02)(n− 1)

= 1− βτn + σ
(

−1 + β
(τ

σ

)n

+ α
)

− ασn

and according to the equation (3.23)

F 2
A,B(σ(t), τ(s)) = F̂ 2

A,B(σ, τ)

=
(n− 1− nτ + τn)λ01 − (1 + n(τ − 1)− τ + σn(τ 1−n − 1))λ02

(λ01 + λ02)(n− 1)

= 1− βτn + τ
(

−1 + α
(σ

τ

)n

+ β
)

− ασn

for σ(t) > τ(s).

The inverse marginal distribution functions can be found according to the section

3.4.1. Then we have to choose the solutions in such way, that time variables t and s
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are positive. This implies that the solution of this equations σ(u) and τ(v) are from

0 to 1.

Unfortunately, it is impossible to write down a general solutions of n-th power

equation. So let us consider two numerical examples for odd and even n.

Example 3.4.4 n = 2k+ 1 In this example we will consider the case, where k = 1.

This implies n = 3. According to the section 3.4.1 the inverse marginal distribution

functions can be found by solving the equations (3.3) for F̂A(σ) and F̂B(τ), They

both are cubic equations. Each of this equations has three solutions, they are defined

by equations (3.10). We have to choose one of them, such that time variables t and

s are from 0 to ∞, or equivalently σ and τ from 0 to 1.

To choose the right solution we need to specify other parameters. So let λ01 = 0.001

and λ02 = 0.002. The right solutions are:

σ(u) = F̂−1
A (u) =

48 + A2(u)

6A(u)

and

τ(v) = F̂−1
B (v) =

84 +B2(v)

6B(v)

with

A(u) =
3
√
12(27− 27u−

√
−39− 1458u− 729u2)

1
3

and

B(v) = 2
3
√
3(27− 27v −

√
−300− 1458v − 729v2)

1
3 ,

and u, v ∈ [0; 1].

So, now we have to substitute the inverse functions of marginal distribution function

into the joint distribution function to get the copula function. So we get

C(u, v) = 1 +
512

3A3(u)
+

A3(u)

648
+

(2034 + 60A2(u) + A4(u))(84 +B2(v))3

1296(48 + A2(u))2B3(v)

for σ(u) ≤ τ(v) , and

C(u, v) = 1 +
1372

3B3(v)
+

B3(v)

1296
+

(7056 + 132B2(v) + B4(v))(48 + A2(u))3

648(84 +B2(v))2A3(u)

for σ(u) > τ(v) with A(u) and B(v) defined above.
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Figure 3.5: Copula for the case λ01 = 0.001, λ02 = 0.002, λ23 = λ13 = 0.009

The Figure 3.5 show this copula and contour plot of it graphically.

The Kendall’s τ in this case is equal to 23
36
, while the Spearmans’s ρ is equal to 57

70
.

Example 3.4.5 n = 2k

To not involve very complicated calculations we take k = 2 and consequently n = 4.

According to the section 3.4.1 the inverse marginal distribution functions can be

found by solving the equations (3.3) for F̂A(σ) and F̂B(τ). They both are quatic

equations. Each of these equations has four solutions, they are defined by equations

(3.13). We have to choose one of them, such that time variables t and s are from 0

to ∞, or equivalently σ and τ from 0 to 1.

To specify the right solutions let λ01 = 0.001 and λ02 = 0.002.

The solutions we need are:

F̂−1
A (u) = σ(u) =

1

4

(

√
2
√

A(u)− 2

√

−1

2
A(u) +

11
√
2

√

A(u)

)

and

F̂−1
B (v) = τ(v) =

1

2

(

√

B(v)−
√

−B(v) +
20

√

B(v)

)
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with

A(u) =
24− 24u+

(

121−
√
817 + 41472u− 41472u2 + 13824u3

)
2
3

(

121−
√
817 + 41472u− 41472u2 + 13824u3

)
1
3

and

B(v) =
12− 12v +

(

50− 2
√
193 + 1296u− 1296u2 + 432u3

)
2
3

(

50− 2
√
193 + 1296u− 1296u2 + 432u3

)
1
3

.

Then the copula for this case will be

C(u, v) = 1 +

√

22
√
2√

A(u)
− A(u)−

√

A(u)

2
√
2

+
1

144A(u)

(

−242 + 18A(u)

√

44
√
2

√

A(u)
− 2A(u)− 18

√
2A

3
2 (u) + A3(u)

)

×











−2 +

4

(

√

20√
B(v)

− B(v)−
√

B(v)

)4

(

√

22
√
2√

A(u)
− A(u)−

√

A(u)

)4











for σ(u) ≤ τ(v) , and

C(u, v) = 1 +

√

20√
B(v)

−B(v)−
√

B(v)

2

+
1

36B(v)

(

−100 + 18B(v)

√

20
√

B(v)
− B(v)− 18B

3
2 (v) +B3(v)

)

×











−1 +

(

√

22
√
2√

A(u)
− A(u)−

√

A(u)

)4

4

(

√

20√
B(v)

− B(v)−
√

B(v)

)4











for σ(u) > τ(v) with A(u) and B(v) defined above.

The Figure 3.6 show this copula and contour plot of it.

The Kendall’s τ in this case is equal to 32
45

, while the Spearmans’s ρ is equal to

1064/1215.
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Figure 3.6: Copula for the case λ01 = 0.001, λ02 = 0.002, λ23 = λ13 = 0.012

Case 4: λ13 = n(λ01 + λ02), λ23 = m(λ01 + λ02), n,m ∈ N

Now we can generalize case 3. Let’s take λ13 = n(λ01 + λ02) and λ23 = m(λ01 + λ02)

with n,m ∈ N.

Then the margin distribution functions according to the chapter 3.2.1 are:

FA(t) = 1− e−t(λ01+λ02) − λ01e−mt(λ01+λ02)(e−(m−1)t(λ01+λ02) − 1)

(m− 1)(λ01 + λ02)

and

FB(t) = 1− e−t(λ01+λ02) − λ02e−nt(λ01+λ02)(e−(n−1)t(λ01+λ02) − 1)

(n− 1)(λ01 + λ02)
.

The joint distribution function according to the 3.2.2 for t < s is:

FA,B(t, s) = 1 +
λ01(e−ns(λ01+λ02) − e−(n(s−t)+t)(λ01+λ02))

(n− 1)(λ01 + λ02)

+
λ02e−mt(λ01+λ02)

(m− 1)(λ01 + λ02)
− e−t(λ01+λ02)

(

1 +
λ02

(m− 1)(λ01 + λ02)

)

and

FA,B(t, s) = 1− e−s(λ01+λ02) −
λ02e−mt(λ01+λ02)

(

−1 + e(m−1)s(λ01+λ02)
)

(m− 1)(λ01 + λ02)
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−

(

e−s(λ01+λ02) − e−ns(λ01+λ02)
)

λ01

(n− 1)(λ01 + λ02)

for t ≥ s .

We can rewrite marginal and joint distribution functions in terms of α, β, τ and σ

using equations (3.20)-(3.23). In our case

α =
λ02

(1−m)λ0∗ and β =
−λ01

(1− n)λ0∗ .

Then the marginal distribution functions are

FA(σ(t)) = F̂A(σ) =
(m−mx+ x− 1)λ01 + (m− 1 + xm −mx)λ02

(m− 1)(λ01 + λ02)

= 1− (1− α)σ − ασm

and

FB(τ(s)) = F̂B(τ) =
(n− ny + y − 1)λ02 + (n− 1 + yn − ny)λ01

(n− 1)(λ01 + λ02)

= 1− (1− β) τ − βτn

with σ(t) = σ = e−λ0∗t, τ(s) = τ = e−λ0∗s.

The joint distribution function for σ(t) ≤ τ(s) is

F 1
A,B(σ(t), τ(s)) = F̂ 1

A,B(σ, τ)

= −1 +
yn(1− x1−n)λ01

(λ01 + λ02)(n− 1)
+

λ02xm

(m− 1)(λ01 + λ02)

−x

(

1 +
λ02

(m− 1)(λ01 + λ02)

)

= 1− βτn + τ
(

−1 + α
(σ

τ

)m

+ β
)

− ασm

and

F 2
A,B(σ(t), τ(s)) = F̂ 2

A,B(σ, τ)

= 1 +
xm(1− y1−m)λ02

(λ01 + λ02)(m− 1)
+

λ01yn

(n− 1)(λ01 + λ02)

−y

(

1 +
λ01

(n− 1)(λ01 + λ02)

)

= 1− βτn + σ
(

−1 + β
(τ

σ

)n

+ α
)

− ασm
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for σ(t) > τ(s).

The inverse marginal distribution functions can be found according to the section

3.4.1. Then we have to choose the solutions in such way, that time variables t and s

are positive. This implies that the solution of this equations σ(u) and τ(v) are from

0 to 1.

Consider a numerical example:

Example 3.4.6 Let n = 2, m = 4, λ01 = 0.001, and λ02 = 0.0015.

Following all previous steps: Find inverse functions of marginal distribution func-

tions, substituting them into the joint distribution function, we get the copula func-

tion. The inverse functions of marginal distribution functions according to the equa-

tions (3.8) for F̂B(σ) and equations (3.13) for F̂A(τ) are:

F̂−1
A (u) = σ(u) = −1

2

√

−A(u) +
12

A(u)
+

1

2

√

A(u),

with

A(u) = B(u) +
20(1− u)

3B(u)

and

B(u) =

(

972−
√

944784− 4(60− 60u)3
)1/3

(54)1/3
,

and

F̂−1
B (v) = τ(v) =

1

4

(

7−
√
9 + 40v

)

.

The copula function for this case is:

C(u, v) =
1

120A(u)− 20
√

12√
A(u)

− A(u)A(u)2

(

216− 6A(u)3

+

√

12
√

A(u)
− A(u)A(u)4

+ A(u)

(

294− 36

√

12
√

A(u)
− A(u) + 120v − 42

√
9 + 40v

)

+

√

12
√

A(u)
− A(u)A(u)3/2

(

29 + 20v − 7
√
9 + 40v

)
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+ A(u)2

(

−29− 49

√

12
√

A(u)
− A(u) +

(

−20− 20

√

12
√

A(u)
− A(u)

)

v

+ 7
√
9 + 40v + 7

√

12
√

A(u)
− A(u)

√
9 + 40v

))

for σ(u) ≤ τ(v) , and

C(u, v) =
1

(

−7 +
√
9 + 40v

)48





117

16

(
√

12
√

A(u)
−A(u)−

√

A(u)

)4

+
39

2

(
√

12
√

A(u)
− A(u)−

√

A(u)

)4

v +
5

2

(
√

12
√

A(u)
− A(u)−

√

A(u)

)4

v2

− 39

16

(
√

12
√

A(u)
− A(u)−

√

A(u)

)4√
9 + 40v

− 7

4

(
√

12
√

A(u)
− A(u)−

√

A(u)

)4

v
√
9 + 40v +

1

8
v
(

−7 +
√
9 + 40v

)4





for σ(u) > τ(v) with A(u) defined above. The Figure 3.7 show this copula and

contour plot of it.

The Kendall’s τ in this case is equal to 232/375, while the Spearmans’s ρ is equal

to 10364/13125. The upper and lower tail dependance measures are correspondingly

λU = 0 and λL = 0.6666667.

Case 5: λ13 = 1
n
(λ01 + λ02), λ23 = 1

m
(λ01 + λ02), n, m ∈ N

In the same way as in the previous cases one can also find the copula function for

the rational relations like λ13 = 1
n
(λ01 + λ02), λ23 = 1

m
(λ01 + λ02), n, m ∈ N.

The marginal distribution functions according to the chapter 3.2.1 are:

FA(t) = 1 + e−t(λ01+λ02)λ
01 −mλ01 + λ02 −mλ02e

(m−1)t(λ01+λ02)
m

(m− 1)(λ01 + λ02)

and

FB(t) = 1 + e−t(λ01+λ02)λ
01 − nλ02 + λ02 − nλ02e

(n−1)t(λ01+λ02)
n

(n− 1)(λ01 + λ02)
.
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Figure 3.7: Copula for the case λ01 = 0.001, λ02 = 0.0015, λ23 = 0.005 and λ13 =

0.01

The joint distribution function according to the 3.2.2 for t ≤ s is:

FA,B(t, s) = 1− e−
s(λ01+λ02)

n nλ01

(−1 + n)(λ01 + λ02)
+

e−
(s+(−1+n)t)(λ01+λ02)

n nλ01

(−1 + n)(λ01 + λ02)

− e−
t(λ01+λ02)

m mλ02

(−1 +m)(λ01 + λ02)
+ e−t(λ01+λ02)

(

−1 +
mλ02

(−1 +m)(λ01 + λ02)

)

and

FA,B(t, s) = 1− e−s(λ01+λ02) −
e−s(λ01+λ02)

(

−1 + e
(−1+n)s(λ01+λ02)

n

)

nλ01

(−1 + n)(λ01 + λ02)

−
e−s(λ01+λ02)

(

−1 + e
(−1+m)s(λ01+λ02)

m

)

mλ02

(−1 +m)(λ01 + λ02)

+

(

−e−s(λ01+λ02) + e−
s(λ01+λ02)

n

)(

1− e
(s−t)(λ01+λ02)

m

)

nλ02

(−1 + n)(λ01 + λ02)

for t > s.

Same as before to find the copula for this case we need to find a inverse functions of

marginal distribution functions to use the procedure of finding the copula function

described in the chapter 2.3.1. Following the same procedure as before, we can using
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the substitution

t =
−m ln(σ)

λ01 + λ02

and

s =
−n ln(τ)

λ01 + λ02
.

Then the marginal distribution functions will be

FA(σ(t)) = F̂A(σ) = 1− σm +
m (−σ + σm) λ02

(−1 +m)(λ01 + λ02)

= 1− σm(1− α)− ασ

and

FB(τ(s)) = F̂B(τ) = 1− τn +
n (−τ + τn) λ01

(−1 + n)(λ01 + λ02)

= 1− τn(1− β)− βτ

with α = mλ02

(m−1)(λ01+λ02)
and β = nλ01

(n−1)(λ01+λ02)
.

The joint distribution function for σ ≤ τ will be

FA,B(σ(t), τ(s)) = F̂A,B(σ, τ) =
−(−1 +m)

(

1− σm + n
(

−1 + σm + τ − σ
m(−1+n)

n τ
))

λ01

(−1 +m)(−1 + n)(λ01 + λ02)

+
(−1 + n) (−1 +m−mσ + σm) λ02

(−1 +m)(−1 + n)(λ01 + λ02)

and

FA,B(σ(t), τ(s)) = F̂A,B(σ, τ) = 1− τn +
n (−τ + τn)λ01

(−1 + n)(λ01 + λ02)

+
m
(

τn − τ
n
m

)

λ02

(−1 +m)(λ01 + λ02)
− nτ−

n
m (−τ + τn)

(

−σ + τ
n
m

)

λ02

(−1 + n)(λ01 + λ02)

for σ > τ .

Same as before to find inverse functions we again have to solve the following equa-

tions:

F̂A(σ) = u and F̂B(τ) = v. (3.29)

Remember, that in this case σ = e−
λ0∗t
m and τ = e−

λ0∗s
n .

Consider a numerical example:
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Example 3.4.7 Let n = 2, m = 3, λ01 = 1/100, and λ02 = 1/200. So we get

λ13 = 3/400 and λ23 = 1/200 So, in this case the marginal distribution function

F̂A(σ) and F̂B(τ) are cubic and quadratic equations and have consequently three or

two solutions correspondingly.

To find inverse functions of marginal distribution functions we can use equations

(3.16) and (3.7). Substituting them into the joint distribution function, we get the

copula function.

The needed solutions of equations for inverse functions are:

F̂−1
A (u) = σ(u) = − 1

3
√
3A(u)

+
A(u)

3
√
9

and

F̂−1
B (v) = τ(v) = 2−

√
1 + 3v

with A(u) =
(

9− 9u+
√
3
√
28− 54u+ 27u2

)1/3
.

The copula function for this case is:

C(u, v) = 2− u+
1

31/3A(u)
− A(u)

32/3
+

(

32/3 − 31/3A2(u)
)3

27A3(u)

− 4

81

(

9

(

A3(u)− 31/3A(u)

A2(u)

)3/2

+

(

32/3 − 31/3A2(u)
)3

A3(u)

)

+
4

81

(

9

(

A3(u)− 31/3A(u)

A2(u)

)3/2

+

(

32/3 − 31/3A2(u)
)3

A3(u)

)

×






1− 3

√
3
(

2−
√
1 + 3v

)

(

−32/3+31/3A2(u)
A(u)

)3/2







for σ(u) ≤ τ(v) , and

C(u, v) = 31/3
(

31/3 −A2(u)
)

×

(

−5 + 4
√
1 + 3v +

(

2−
√
1 + 3v

)2/3
)

6A(u)
(

2−
√
1 + 3v

)2/3

+
3v
(

−32/3 + 31/3A2(u) + 2A(u)
(

2−
√
1 + 3v

)2/3
)

6A(u)
(

2−
√
1 + 3v

)2/3
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Figure 3.8: Copula for the case λ01 = 1/100, λ02 = 1/200, λ23 = 1/200 and λ13 =

3/400

for σ(u) > τ(v).

The Figure 3.8 show this copula and contour plot of it.

The Kendall’s τ in this case is equal to −1/108, while the Spearmans’s ρ is equal to

−13/594. The upper and lower tail dependence measures are corresponding λL = 0

and λU = 0.

Case 6: λ13 = p(λ01 + λ02), λ23 = q(λ01 + λ02), p, q ∈ Q (rational numbers)

Now we can generate all the previous cases and find the copula function for the

rational numbers p and q, where p = n
m

and q = k
l
with k, l, n, m ∈ N.

The marginal distribution functions according to the chapter 3.2.1 are:

FA(t) = 1− e−t(λ01+λ02) −

(

−e−t(λ01+λ02) + e−
kt(λ01+λ02)

l

)

λ02

λ01 + λ02 − k(λ01+λ02)
l

and

FB(t) = 1− e−t(λ01+λ02) −

(

−e−t(λ01+λ02) + e−
nt(λ01+λ02)

m

)

mλ01

(m− n)(λ01 + λ02)
.
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The joint distribution function according to the 3.2.2 for t ≤ s is:

FA,B(t, s) = 1− e−
ns(λ01+λ02)

m mλ01

(m− n)(λ01 + λ02)
+

e−
(n(s−t)+mt)(λ01+λ02)

m mλ01

(m− n)(λ01 + λ02)

+
e−

kt(λ01+λ02)
l lλ02

(k − l)(λ01 + λ02)
+ e−t(λ01+λ02)

(

−1 +
lλ02

(−k + l)(λ01 + λ02)

)

and

FA,B(t, s) = 1− e−s(λ01+λ02) −

(

−e−s(λ01+λ02) + e−
ns(λ01+λ02)

m

)

mλ01

(m− n)(λ01 + λ02)

+

(

−e−s(λ01+λ02) + e−
ns(λ01+λ02)

m

)(

1− e
k(s−t)(λ01+λ02)

l

)

mλ02

(m− n)(λ01 + λ02)

−

(

−e−s(λ01+λ02) + e−
ks(λ01+λ02)

l

)

λ02

λ01 + λ02 − k(λ01+λ02)
l

for t > s.

Same as before to find the copula for this case we need to find a inverse functions of

marginal distribution functions to use the procedure of finding the copula function

described in the chapter 2.3.1. Following the same procedure as before, we can using

the substitution

t =
−l ln(σ)

(λ01 + λ02)

and

s =
−m ln(τ)

(λ01 + λ02)
.

Then the marginal distribution functions will be

FA(σ(t)) = F̂A(σ) = 1− σl +
l
(

σk − σl
)

λ02

(k − l)(λ01 + λ02)

= 1− σl + αl
(

σk − σl
)

and

FB(τ(s)) = F̂B(τ) = 1− τm +
m (τm − τn) λ01

(m− n)(λ01 + λ02)

= 1− τm + βm (τm − τn)



Chapter 3 From Markov Chain to Copula 83

with α = λ02

(k−l)(λ01+λ02)
and β = λ01

(m−n)(λ01+λ02)
.

The joint distribution function for σ ≤ τ will be

FA,B(σ(t), τ(s)) = F̂A,B(σ, τ) = 1 +
−

m
(

1−σl− ln
m

)

τnλ01

m−n
+ lσkλ02+σl(lλ01−k(λ01+λ02))

k−l

λ01 + λ02

and

FA,B(σ(t), τ(s)) = F̂A,B(σ, τ) = 1− τm +
m (τm − τn)λ01

(m− n)(λ01 + λ02)
+

l
(

−τm + τ
km
l

)

λ02

(k − l)(λ01 + λ02)

+
mτ−

km
l

(

xk − τ
km
l

)

(τm − τn) λ02

(m− n)(λ01 + λ02)

for σ > τ . Again the marginal distribution functions are polynomial. To find

inverse functions we have to solve the next equations:

F̂A(σ) = u and F̂B(τ) = v. (3.30)

Consider a numerical example:

Example 3.4.8 Let n = 1, m = 2, k = 3, l = 4, λ01 = 1/100, and λ02 = 1/300.

So we get λ13 = 1/150 and λ23 = 1/100.

So now we follow all previous steps: Find inverse functions of marginal distribution

functions, substituting them into the joint distribution function, we get the copula

function. For our parameters we have two polynomial equations of degree four and

two. To solve them we can use results of section 3.4.1.

The needed solutions of equations for inverse functions are:

F̂−1
A (u) = x(u) = (1− u)1/3,

and

F̂−1
B (v) = y(v) =

1

2

(

3−
√
1 + 8v

)

.

The copula function for this case is (should be recalculated):

C(u, v) =
1

4

(

4u− 3
(

−1 + (1− u)2/3
)

(−3 +
√
1 + 8v)

)
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Figure 3.9: Copula for the case λ01 = 1/100, and λ02 = 1/300, λ13 = 1/150 and

λ23 = 1/100

for σ(u) ≤ τ(v) , and

C(u, v) = −1 + v +

√

3−
√
1 + 8v√
2

+
1

2
u

(

2−
√

6− 2
√
1 + 8v

)

for σ(u) > τ(v) with A(u) defined above. The Figure 3.9 show this copula and

contour plot of it.

The Kendall’s τ in this case is equal to −7/24, while the Spearmans’s ρ is equal to

−87/154. The upper and lower tail dependence measures are corresponding λU = 0

and λL = 0.

Case 7: General Case

In the general case, it is not always possible to find inverse functions of marginal

distribution function analytically. Numerical solutions are feasible for the given

parameter set.

The marginal distribution function are sum of exponential functions with different

arguments. So, it may be reasonable in the general case consider some approximation
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of the exponent functions, for example Taylor expansion. We will try to find an

approximation of the copula in a general case in the chapter 4.

The other way to find a copula function for a given Markov Chain is an approxi-

mation of transition intensities by the rational numbers. As soon as we found some

rational numbers p and q such that equations

λ23 = p
(

λ01 + λ02
)

and λ13 = q
(

λ01 + λ02
)

for some p, q ∈ Q \{1}

hold, we can use the method described above to find copula function for a given

Markov Chain.

3.5 Case of Three Firms

Assume that we have Markov process, which describes the case of three firms as in

the Figure 3.10. Assume that defaults times of firms A, B and C are τA, τB and

τC accordingly. We can find joint and marginal distributions of this defaults times

according to the sections 3.2.2 and 3.2.1: FA(t) = P (τA ≤ t), FB(t) = P (τB ≤ t),

FC(t) = P (τC ≤ t) and FA,B,C(t, s, z) = P (τA ≤ t, τB ≤ s, τC ≤ z).

Assume that after default of some firm the default intensities of others firms will be

changed it means

λA
t = a10 + a121{τB≤t} + a131{τC≤t} + a141{τB≤t,τC≤t},

λB
t = a20 + a211{τA≤t} + a231{τC≤t} + a241{τA≤t,τC≤t},

λC
t = a30 + a311{τA≤t} + a321{τB≤t} + a141{τA≤t,τB≤t}.

Here ai0 is original default intensity of firm i; aij is the default intensity increment

of firm i after default of firm j, i = 1, 2, 3, j = 1, 2, 3; ai4 is increment of default

intensity of firm i after default of two others firms.

For the case described by the figure 3.10 it means that for example λ01 = a10,

λ14 = a10 + a12, λ
35 = a10 + a13 – default of A after C, λ57 = a30 + a31 + a32 + a34 –

default of C after A and B, and so on.
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Figure 3.10: Markov chain describing three firms case

Same as for the case of two firms we can use the inversion method described in

the section 2.3.1 to find a copula for this case. According to the section 3.2.1 the

marginal distribution functions are defined as

FA(t) = q01(0, t) + q04(0, t) + q05(0, t) + q07(0, t)

= 1− q02(0, t)− q00(0, t)− q03(0, t)− q06(0, t),

FB(s) = q02(0, s) + q04(0, s) + q06(0, s) + q07(0, s)

= 1− q01(0, s)− q00(0, t)− q03(0, s)− q05(0, s),

FC(z) = q03(0, z) + q05(0, z) + q06(0, z) + q07(0, z)

= 1− q01(0, s)− q00(0, t)− q02(0, s)− q04(0, s),

the second equation part holds because of

q00(0, t) + q01(0, t) + q02(0, t) + q03(0, t)

+ q04(0, t) + q05(0, t) + q06(0, t) + q07(0, t) = 1.
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The joint distribution function according to the chapter 3.2.2 is:

FA,B,C(t, s, z) = q07(0, t) + q01(0, t)q17(t, s) + q04(0, t)q47(t, s)+

q05(0, t)q57(t, s) + q01(0, t)q14(t, s)q47(s, z) + q04(0, t)q44(t, s)q47(s, z),

for t ≤ s ≤ z,

FA,B,C(t, s, z) = q07(0, t) + q01(0, t)q17(t, z) + q04(0, t)q47(t, z)+

q05(0, t)q57(t, z) + q01(0, t)q15(t, z)q57(z, s) + q05(0, t)q55(t, z)q47(z, s),

for t ≤ z ≤ s,

FA,B,C(t, s, z) = q07(0, s) + q02(0, s)q27(s, t) + q04(0, s)q47(s, t)+

q06(0, s)q67(s, t) + q02(0, s)q24(s, t)q47(t, z) + q04(0, s)q44(s, t)q47(t, z),

for s ≤ t ≤ z,

FA,B,C(t, s, z) = q07(0, s) + q02(0, s)q27(s, z) + q04(0, s)q47(s, z)+

q06(0, s)q67(s, z) + q02(0, s)q26(s, z)q67(z, t) + q06(0, s)q66(s, z)q67(z, t),

for s ≤ z ≤ t,

FA,B,C(t, s, z) = q07(0, z) + q03(0, z)q37(z, t) + q05(0, z)q57(z, t)+

q06(0, z)q67(z, t) + q03(0, z)q35(z, t)q57(t, s) + q05(0, z)q55(z, t)q57(t, s),

for z ≤ t ≤ s and

FA,B,C(t, s, z) = q07(0, z) + q03(0, z)q37(z, s) + q05(0, z)q57(z, s)+

q06(0, z)q67(z, s) + q03(0, z)q36(z, s)q67(s, t) + q06(0, z)q66(z, s)q67(s, t),

for z ≤ s ≤ t.

The transition probabilities according to Kraft and Steffensen (2007) are defined as

qii(t, T ) = e−λi∗(T−t), i ∈ {0, 1, ..., 7},
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i.e.

q00(t, T ) = e−(λ01+λ02+λ03)(T−t),

q01(t, T ) = λ01g01 = λ01 e
−λ0∗(T−t) − e−λ1∗(T−t)

λ1∗ − λ0∗

= λ01 e
−(λ14+λ15)(T−t) − e−(λ01+λ02+λ03)(T−t)

λ01 + λ02 + λ03 − λ14 − λ15
,

q02(t, T ) = λ02g02 = λ02 e
−λ0∗(T−t) − e−λ2∗(T−t)

λ2∗ − λ0∗

= λ02 e
−(λ24+λ26)(T−t) − e−(λ01+λ02+λ03)(T−t)

λ01 + λ02 + λ03 − λ24 − λ26
,

q03(t, T ) = λ03g03 = λ03 e
−λ0∗(T−t) − e−λ3∗(T−t)

λ3∗ − λ0∗

= λ03 e
−(λ35+λ36)(T−t) − e−(λ01+λ02+λ03)(T−t)

λ01 + λ02 + λ03 − λ36 − λ35
,

and so on. For simplification we use next notation: λi∗ =
∑

j 6=i λ
ij .

After substitution of expressions for transition probabilities into distribution func-

tions we get

FA(t) = 1− C0
Ae

−λ0∗t + C2
Ae

−λ2∗t + C3
Ae

−λ3∗t + C6
Ae

−λ67t,

FB(s) = 1− C0
Be

−λ0∗t + C1
Be

−λ1∗t + C3
Be

−λ3∗t + C5
Be

−λ57t,

FC(z) = 1− C0
Ce

−λ0∗t + C1
Ce

−λ1∗t + C2
Ce

−λ2∗t + C4
Ce

−λ47t

with C0
A, C

0
B, C

0
C , C

2
A, C

1
B, C

1
C , C

3
A, C

3
B, C

2
C , C

6
A, C

5
B, C

4
C are constants dependent

on transition intensities. The values of this constants are presented in Appendix.

3.5.1 Case 1: Independence.

In this case as before independence means that the transition intensities stay the

same after defaults of other firms. In the notations of aij it means that ai0 6= 0,

i = 1, ..., 4 and aij = 0 for j 6= 0. In this case the distribution functions will be

FA(t) = 1− e−λ01t,

FB(s) = 1− e−λ02s,
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FC(z) = 1− e−λ03z.

The joint distribution in this case is defined as

FA,B,C(t, s, z) =
(

1− e−λ01t
)(

1− e−λ02s
)(

1− e−λ03z
)

for ∀u, v, r ∈ [0, 1] and this mean that the copula in this case will be

CA,B,C(u, v, r) = uvr.

3.5.2 Case 2: Part Dependence

In this case we assume change of transition intensities after default of first firm. But

we suppose that after default of second firm the intensity will stay the same, i.e.

ai0 6= 0, i = 1, ..., 3 and aij = a for i > 1 and j 6= 4, and aij = −a for i > 1 and

j = 4. Then the marginal distribution functions according to the section 3.2.1 are:

FA(t) = 1− ae−λ0∗t − (λ02 + λ03)e−(a+λ01)t

a− λ02 − λ03
,

FB(s) = 1− ae−λ0∗s − (λ01 + λ03)e−(a+λ02)s

a− λ01 − λ03
,

FC(z) = 1− ae−λ0∗z − (λ01 + λ02)e−(a+λ03)z

a− λ01 − λ02
.

The same as before to find a copula function for this case,we will use the inversion

method described in the section 2.3.1: As the first step we have to find the inverse

functions of marginal distribution function. To do this we will use the same approach

as for the case of two firms: we will use substitution

t = − ln(σ)

λ0∗ ,

s = − ln(τ)

λ0∗ , (3.31)

z = − ln(θ)

λ0∗ .
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Then we get new distribution functions:

FA(σ(t)) = F̂A(σ) = 1− aσ − (λ02 + λ03)σ
a+λ01

λ0∗

a− λ02 − λ03
,

FB(τ(s)) = F̂B(τ) = 1− aτ − (λ01 + λ03)τ
a+λ02

λ0∗

a− λ01 − λ03
,

FC(θ(z)) = F̂C(θ) = 1− aθ − (λ01 + λ02)θ
a+λ03

λ0∗

a− λ01 − λ02
.

To find inverse functions for marginal distribution functions we have to consider

some more additional cases. As in the case of two firms we will use the fact that the

distribution function can be introduced as a polynomial equation for same defined

parameters. So, assuming that

a+ λ01 = kλ0∗,

a+ λ02 = lλ0∗,

a+ λ03 = mλ0∗,

and solving this equation with respect to the parameter a, we get

λ01 = −−a − 2ak + al + am

k + l +m− 1
,

λ02 = −−a + ak − 2al + am

k + l +m− 1
,

λ03 = −−a + ak + al − 2am

k + l +m− 1
.

After this procedure the marginal distribution functions will be:

FA(σ(t)) = F̂A(σ) = 1− (m+ l + k − 1)σ − (2 + l +m− 2k)σk

3(k − 1)
,

FB(τ(s)) = F̂B(τ) = 1− (m+ l + k − 1)τ − (2 + k +m− 2l)τ l

3(l − 1)
,

FC(θ(z)) = F̂C(θ) = 1− (m+ l + k − 1)θ − (2 + k +m− 2m)θm

3(m− 1)
.

Now to find the inverse functions of marginal distribution function we have to solve

polynomial equations of degree k, l andm correspondingly for FA(σ) = u, FB(τ) = v
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and FC(θ) = r for different parameters k, m, and l. To do this we can use section

3.4.1. Then from σ, τ , θ we can find the values of outgoing parameters t, s and z.

Substituting them in the joint distribution function introduced at the section 3.5 we

will get copula.

For example for the case of k = m = l = 1
2
we get the copula:

C(u, v, r) = − 1

9t3(u)

(

s2(v)
(

5t2(u) + t5(u)− z2(r) + t3(u)(z6(r)− 6)
)

+t2(u)(t(u)− 1)
(

−5z2(r) + t2(u)(z2(r)− 6) + t(u)(9 + z2(r)
)

)

for u ≤ v, u ≤ r, and

C(u, v, r) =
1

9s3(v)

(

−15s4(v) + t2(u)z2(r)− s5(v)
(

t2(u) + z2(r)− 6
)

−5s2(v)
(

t2(u) + z2(r)
)

+ s3(v)
(

9 + 6z2(r)− t2(u)
(

z28(r)− 6
))

)

for u > v and u > r, and

C(u, v, r) = − 1

9z3(r)

(

z2(r)(z(r)− 1)×
(

9z(r)− 6z2(r) + t2(u)(z2(r) + z(r)− 5)
)

+s2(v)
(

t2(u)(z3(r)− 1) + z2(r)
(

5− 6z(r) + z3(r)
))

)

for r > u and r > v with

t(u) =
5−

√
1 + 24u

4
, s(v) =

5−
√
1 + 24v

4
and

z(r) =
5−

√
1 + 34r

4
.

And graphically we can see the copulas CAB(u, v), CAC(u, r) and CBC(v, r) for the

cases r = 1, v = 1, u = 1, correspondingly and a = 0.01 on the Figure 3.11. Of

course this case can be considered for more complicated λ’s and relations between

them. The same approaches as for the case of two firms can be used.

3.5.3 Case 3: Full dependence

According to the section 3.5 the marginal distribution functions for the case of three

firms are:

FA(t) = 1− C0
Ae

−λ0∗t + C2
Ae

−λ2∗t + C3
Ae

−λ3∗t + C6
Ae

−λ67t,
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Figure 3.11: Copula describing three firms part dependance case: u = 1, v = 1,

r = 1; k = m = l = 1
2
and a = 0.01

FB(s) = 1− C0
Be

−λ0∗t + C1
Be

−λ1∗t + C3
Be

−λ3∗t + C5
Be

−λ57t,

FC(z) = 1− C0
Ce

−λ0∗t + C1
Ce

−λ1∗t + C2
Ce

−λ2∗t + C4
Ce

−λ47t

with all constants defined in Appendix.

To find the copula function we need to find inverse functions of marginal distribution

functions. To simplify this procedure we again will find some relations between λi∗,

i = 1, ..., 6.
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So consider transition probabilities λi∗ which satisfy:

λ0∗

λ1∗ = k, λ0∗

λ2∗ = l,
λ0∗

λ3∗ = m,

λ0∗

λ4∗ = n, λ0∗

λ5∗ = p,
λ0∗

λ6∗ = q (3.32)

with k, l,m, n, p, q ∈ Q\{1}.
Let us fix some aij in the expressions of λij and solve this equations. We should

remember, that we have 12 unknown aij . Given equations (3.32) we need to fix a

half of them. We get:

a14 = −(a10 + a20 + a30)(q −m)

mq
+ a20 + a23 − a12,

a24 = −(a10 + a20 + a30)(p− k)

kp
+ a30 + a31 − a32,

a34 = −(a10 + a20 + a30)(n− l)

ln
+ a10 + a12 − a31,

a13 =
a10 + a20 + a30

m
− a20 − a10 − a23,

a21 =
a10 + a20 + a30

k
− a20 − a30 − a31,

a32 =
a10 + a20 + a30

l
− a10 − a12 − a30.

It is also possible to fix other six aij and then solve equation (3.32) for the rest

of aij . In this case we will get the similar equations for the marginal distribution

functions.

We can use the same substitution as before in the marginal distribution functions:

t = − ln(σ)

λ0∗ ,

s = − ln(τ)

λ0∗ , (3.33)

z = − ln(θ)

λ0∗ .

As result the sum of exponential functions with different parameters will be trans-

formed into the polynomial functions. So, we get new distribution functions:

FA(σ(t)) = F̂A(σ) = 1− C0
Aσ + C2

Aσ
1
l + C3

Aσ
1
m + C6

Aσ
1
q ,

FB(τ(s)) = F̂B(τ) = 1− C0
Bτ + C1

Bτ
1
k + C3

Bτ
1
m + C5

Bτ
1
p ,

FC(θ(z)) = F̂C(θ) = 1− C0
Cθ

+C1
Cθ

1
k + C2

Cθ
1
l + C4

Cθ
1
n .
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New distribution functions are polynomial functions. Now choosing different values

of a10, a20, a30, a12, a23, a31, and k, l, m, n, p, q ∈ Q\{1} we can easily find

a inverse functions of the distribution functions according to the section 3.4.1 and

then find a copula function.

Consider an numerical example:

Example 3.5.1 Let a10 = 0.01, a20 = 0.02, a30 = 0.015, a12 = 0.002, a23 = 0.005,

a31 = 0.003, k = 1
3
, l = 1

3
,m = 1

3
, n = 1

2
= p = q. Then we the parameters of

transition probabilities will be equal:

a14 = − 11

500
, a24 = − 4

125
,

a34 = − 9

250
, a13 =

1

10
,

a21 =
97

1000
, a32 =

27

250
.

The distribution functions for this parameters after substitution (3.33) will be:

F̂A(σ) = −(σ − 1)(45 + 7σ(2σ − 7))

45
,

F̂B(τ) = −(τ − 1)(270 + τ(47τ − 197))

270
,

F̂C(θ) =
135− 227θ + 94θ2 − θ3

135

with σ, τ, θ ∈ [0, 1]

To find inverse functions we have to solve the following equations: FA(σ) = u,

FB(τ) = v and FC(θ) = r. Again, for solving these equation we can use section

3.4.1. As inverse function of the marginal distribution function we have to choose

one of the solutions, which results in positive time, i.e. σ, τ and θ are from 0 to 1.

The suitable solutions are

F̂A
−1
(u) = σ(u) =

3

2
− 1

2 3
√
21A(u)

− A(u)

2 3
√

(21)2
,

F̂B
−1
(v) = τ(v) =

1

141

(

244− 6311

B(v)
+B(v)

)

,

F̂C
−1
(z) = θ(r) =

47

3
− 14498

12 3
√
2D(r)

− D(r)

3 3
√
4
,
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where

A(u) =
(

189 + 5670u− 2
√
105

√
85 + 5103u+ 76545u2

)1/3

,

B(v) =
(

−1521413− 8051805v + 423
√
15
√
956080 + 9128478v + 24155415v2

)1/3

,

D(r) =
(

−322916 + 3645r − 27
√
5
√
−27690− 645832r + 3645r2

)1/3

with inverse functions of the marginal distribution functions are

F
(−1)
A (u) = e−λ0∗σ(u),

F
(−1)
B (v) = e−λ0∗τ(v),

F
(−1)
C (r) = e−λ0∗θ(r).

Substituting the inverse functions of marginal distribution functions in the joint

distribution function we get the copula for this case:

C(u, v, r) = − 1

270τ 2(v)

(

(τ(v)− 1)
(

−197τ 3(v) + 47τ 4(v) + 164σ2(u)θ(r)

−44θ3(r) + τ 2(v)
(

270 + 25σ2(u) + 78θ2(r)
)

+τ(v)
(

−22θ2(r) (5 + 2θ(r)) + σ2(u) (164θ(r)− 353)
)

))

for σ(u) ≤ θ(r) ≤ τ(v),

C(u, v, r) = − 1

270θ2(r)

(

(θ(r)− 1)
(

(

65τ 3(v) + 25τ(v)σ2(u)
)

(θ(r) + 1)

+4τ 2(v)θ(r)(3θ(r)− 58)

+2θ(r)
(

σ2(u) (82θ(r)− 107) + θ(r)
(

135− 92θ(r) + 2θ2(r)
))

))

for σ(u) ≤ τ(v) ≤ θ(r),

C(u, v, r) = − 1

270θ2(r)

(

(θ(r)− 1)
(

65σ3(u)(θ(r) + 1) + 4σ2(u)θ(r)(3θ(r)− 58)

+2θ2(r)
(

135− 92θ(r) + 2θ2(r)
)

+τ 2(v) (25σ(u)(θ(r) + 1) + 2θ(r)(82θ(r)− 107))
))

for τ(v) ≤ σ(u) ≤ θ(r),

C(u, v, r) = − 1

135σ2(u)

(

(σ(u)− 1)
(

−147σ3(u) + 42σ4(u) + 24θ3(r)
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+2σ(u)θ2(r)(12θ(r)− 43) + σ2(u)(8θ2(r) + 135)

+τ 2(v)
(

55σ2(u) + 6θ(r) + σ(u)(6θ(r)− 67)
)

))

for y(v) ≤ θ(r) ≤ σ(u),

C(u, v, r) = − 1

270τ 2(v)

(

(τ(v)− 1)
(

−197τ 3(v) + 47τ 4(v)

+8σ(u)(13σ2(u) + 2θ2(r)) + τ 2(v)(270 + 25σ2(u) + 78θ2(r))

+τ(v)
(

−353σ2(u) + 104σ3(u)− 110θ2(r) + 16σ(u)θ2(r)
)

))

for θ(r) ≤ σ(u) ≤ τ(v), and

C(u, v, r) = − 1

135σ2(u)

(

(σ(u)− 1)
(

−147σ3(u) + 42σ4(u)

+(39τ(v)θ2(r)− 9τ 3(v))(σ + 1)

−86σ(u)θ2(r) + σ2(u)(8θ2(r) + 135) + τ 2(v)
(

55σ2(u)− 67
)

))

for θ(r) ≤ τ(v) ≤ σ(u).

Graphically we can see the copulas CAB(u, v), CAC(u, r) and CBC(v, r) for the cases

r = 1, v = 1 and u = 1 correspondingly, and a = 0.01 on the Figure 3.12.

3.6 Conclusions

In this chapter we have shown that it is possible to find a copula function for a given

Markov Chain. We have considered two cases with two and three firms. One can

also extend this approach for the case with more than three firms.
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Figure 3.12: Copula describing three firms full dependance case: a10 = 0.01, a20 =

0.02, a30 = 0.015, a12 = 0.002, a23 = 0.005, a31 = 0.003, k = 1
3
, l = 1

3
, m = 1

3
,

n = 1
2
= p = q



Chapter 4

Approximation of Copula

4.1 Introduction

As we said in chapter 3 it is not always possible to find quasi-inverse functions of

marginal distribution function in general case. In this section we will build the

approximation of the marginal distribution function.

The marginal distribution function are sum of exponential functions with different

arguments. So may be reasonable in the general case consider some approximation

of the exponent functions, for example Taylor expansion. The problem is to estimate

how good is this approximation. If we assume that the maximal value of the time

will be 10 years and the coefficients λ’s are k ∗ 0.001 with k ≤ 10 then we can use

the fact that

eax ≈ 1 + ax+
(ax)2

2
.

In this case we will get an error of the rate (ax)3 = 0.001. Figure 4.1 show how it

looks graphically.

So in the following sections we will try to find an approximation of a copula function

for a Markov Chain.

To see how good is our approximation we will summarize this section with numerical

example.

98
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Figure 4.1: Comparison of Taylor expansion of second degree and exponential func-

tion, a = 0.05

4.2 Numerical Example: Case of Two Firms

According to the section 3.4 ( under the assumptions of the chapter 3) the marginal

and joint distribution functions in general case are:

FA(t) = 1− q02(0, t)− q00(0, t)

= 1−
e−(λ01+λ02)t

(

λ23 − λ01 − λ02e−(λ23−λ01+λ02)t
)

λ23 − λ01 − λ02
, (4.1)

FB(t) = 1− q01(0, t)− q00(0, t)

= 1−
e−(λ01+λ02)t

(

λ13 − λ02 − λ01e−(λ13−λ01+λ02)t
)

λ13 − λ01 − λ02
, (4.2)

FA,B(t, s) = 1− q01(0, t)− q02(0, t)− q00(0, t) + q01(0, t)q13(t, s)

= 1− (λ23 − λ01) e−(λ01+λ02)t − λ02e−λ23t

λ23 − λ01 − λ02
(4.3)

− λ01 e
−λ13t − e−(λ

02+λ01)t

λ01 + λ02 − λ13
e−λ13(s−t), for t ≤ s,

FA,B(t, s) = 1− (λ13 − λ02) e−(λ01+λ02)t − λ01e−λ13t

λ13 − λ01 − λ02
(4.4)
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− λ02 e
−λ23t − e−(λ

02+λ01)t

λ01 + λ02 − λ23
e−λ23(s−t), for t > s.

To find copula for this joint and marginal distributions, we can use the procedure

described in the section 2.3.1:

C(u, v) = FA,B(F
(−1)
A (u), F

(−1)
B (v)),

where F
(−1)
A (u), F

(−1)
B (v)) are quasi-inverse functions of FA(t), FB(s). So, we need

to find inverse functions of marginal distribution functions or equivalently to solve

following equations

FA(t) = u, (4.5)

FB(s) = v. (4.6)

Using the approximation of the exponential function we will build some approxi-

mation of quasi-inverse functions and so we will get a approximation of a copula

function. So, substituting eax ≈ 1+ax+ (ax)2

2
in the marginal distribution functions

we get:

FA(t) = 1−
e−(λ01+λ02)t

(

λ23 − λ01 − λ02e−(λ23−λ01+λ02)t
)

λ23 − λ01 − λ02

≈ t
(

−λ01(−1 + t(λ01 + λ02)) + tλ02λ23
)

= F̃A(t),

FB(t) = 1−
e−(λ01+λ02)t

(

λ13 − λ02 − λ01e−(λ13−λ01+λ02)t
)

λ13 − λ01 − λ02

≈ t
(

−λ02(−1 + t(λ01 + λ02)) + tλ01λ13
)

= F̃B(t).

The approximated distribution functions are quadratic equations, so we can easily

solve equations (4.5) - (4.6) and accordingly find quasi-inverse functions of the ap-

proximated distribution functions. Each of this equations has two solutions. We

have to choose one of them, such that solutions have values in interval [0; 1] . The

solutions of equation (4.5) are

t1 =
−λ01 −

√

(λ01)2 − 4u(λ01)2 − 4uλ01λ02 + 4uλ02λ23

2 (−(λ01)2 − λ01λ02 + λ02λ23)
,
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t2 =
−λ01 +

√

(λ01)2 − 4u(λ01)2 − 4uλ01λ02 + 4uλ02λ23

2 (−(λ01)2 − λ01λ02 + λ02λ23)
.

The solutions of equation (4.6) are

s1 =
−λ02 −

√

(λ021)2 − 4v(λ02)2 − 4vλ01λ02 + 4vλ02λ13

2 (−(λ02)2 − λ01λ02 + λ01λ13)
,

s2 =
−λ02 +

√

(λ021)2 − 4v(λ02)2 − 4vλ01λ02 + 4vλ02λ13

2 (−(λ02)2 − λ01λ02 + λ01λ13)
.

The quasi-inverse functions of marginal distribution functions are

F̃
(−1)
A (u) =

−λ01 +
√

(λ01)2 − 4u(λ01)2 − 4uλ01λ02 + 4uλ02λ23

2 (−(λ01)2 − λ01λ02 + λ02λ23)
, (4.7)

F̃
(−1)
B (v) =

−λ02 +
√

(λ021)2 − 4v(λ02)2 − 4vλ01λ02 + 4vλ02λ13

2 (−(λ02)2 − λ01λ02 + λ01λ13)
. (4.8)

Now substituting them into expression for the joint distribution function we get a

corresponding approximation of a copula function

C̃(u, v) = FA,B(F̃
(−1)
A (u), F̃

(−1)
B (v))

=































1 − q01
(

0, F̃
(−1)
A (u)

)

− q02
(

0, F̃
(−1)
A (u)

)

− q00
(

0, F̃
(−1)
A (u)

)

+ q01
(

0, F̃
(−1)
A (u)

)

q13
(

F̃
(−1)
A (u), F̃

(−1)
B (v)

)

, v ≤ u,

1 − q01
(

0, F̃
(−1)
B (u)

)

− q02
(

0, F̃
(−1)
B (u)

)

− q00
(

0, F̃
(−1)
B (u)

)

+ q02
(

0, F̃
(−1)
B (u)

)

q23
(

F̃
(−1)
B (u), F̃

(−1)
A (v)

)

, u > v.

Now we can estimate how gut is our approximation. Consider the case, where

λ01 + λ02 = a and λ13 = λ23 = 2(λ01 + λ02) = 2a.

In this case, the approximations of distributions functions will be:

F̃A(t) = at(1 + at) = F̃B(t).

The quasi-inverse functions of corresponding distribution functions are:

F̃
(−1)
A (u) =

−1 +
√
1 + 4u

2a
,
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F̃
(−1)
B (v) =

−1 +
√
1 + 4v

2a
.

The approximation of the copula function will be: For the case u ≤ v:

C̃1(u, v) =
1

2

(

2 + e2(1−
√
1+4u) − 3e1−

√
1+4u

+ e2(1−
√
1+4v) − e1+

√
1+4u−2

√
1+4v

)

and for the case u > v:

C̃2(u, v) =
1

2

(

2 + e2(1−
√
1+4v) − 3e1−

√
1+4v

+ e2(1−
√
1+4u) − e1+

√
1+4v−2

√
1+4u

)

.

From section 3.4 we have exact expression for this copula function: For the case

u ≤ v:

C1(u, v) = 1 +
λ01(λ01 + 2uλ02 −

√

(λ01)2 + 4uλ01λ02 + 4u(λ02)2)

2(λ02)2

− λ01 + 2λ02 −
√

(λ01)2 + 4uλ01λ02 + 4u(λ02)2

2λ02

+
(λ01 + 2uλ02 −

√

(λ01)2 + 4uλ01λ02 + 4u(λ02)2)

2λ01

× (2λ01 + λ02 −
√

(λ02)2 + 4vλ01(λ02 + λ01))2

(λ01 + 2λ02 −
√

(λ01)2 + 4uλ01λ02 + 4u(λ02)2)2

=
(−3 +

√
1 + 8v)2

(

1 + 2u−
√
1 + 8u+ 2u(−3+

√
1+8u)12

(−3+
√
1+8v)2

)2

2(−3 +
√
1 + 8u)2

,

and for the case u > v:

C2(u, v) = 1− 2λ01 + λ02 −
√

(λ02)2 + 4vλ01(λ01 + (λ02)

2λ01

+
2vλ01 + λ02 −

√

(λ02)2 + 4vλ01(λ01 + λ02)

2λ01

+
(2vλ01 + λ02 −

√

(λ02)2 + 4vλ01(λ01 + λ02))

2λ02

× (λ01 + 2λ02 −
√

(λ01)2 + 4uλ01λ02 + 4u(λ02)2)2

(2λ01 + λ02 −
√

(λ02)2 + 4vλ01(λ01 + λ02))2
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=
(−3 +

√
1 + 8u)2

(

1 + 2v −
√
1 + 8v + 2v(−3+

√
1+8v)12

(−3+
√
1+8u)2

)2

2(−3 +
√
1 + 8v)2

.

Now we can estimate the difference between two copulas as quadratic error:

ǫ =

∫ 1

0

∫ 1

0

|C(u, v)− C̃(u, v)|dudv

=

∫ 1

0

∫ v

0

|C1(u, v)− C̃1(u, v)|dudv +
∫ 1

0

∫ u

0

|C1(u, v)− C̃1(u, v)|dvdu

= 0.0956078.

With the same procedure one can get an approximation of the copula with Taylor

Expansion of the exponential function to the third degree, i.e. eax ≈ 1+ax+ (ax)2

2
+

(ax)2

6
.

4.3 Conclusions

One can see, that in general case, when direct calculation are not possible, it still

possible to find some approximation of the copula function for each Markov Chain.

Obviously, the quality of the approximation is dependent of the degree of Taylor ap-

proximation function: higher degree will result in more precise estimation, but will

lead to more complicated mathematical equations. One can also use the other ap-

proximation of the exponential function to get an approximation of copula function

in general case. In the case of more than two firms one can use the same procedure.

It will involve much more complicated mathematical statements, but still possible.



Chapter 5

Conclusions and Further

Investigations

The first chapter of this work was devoted to the some interesting aspects of credit

derivatives pricing: default of each contract counterparty. It was shown that it is

an important point, because in some cases the influence of such assumption lead to

the significant price differences.

The main result of this work was connection of two main approaches of credit deriva-

tives pricing. We have found a way to connect Markov Chain Model with the Copula

based approach. We have also shown that in general case it is not easy to find cop-

ula function for given Markov Chain. For this case also possible way to find an

approximation of copula function was introduced.

In this work we were concentrated only on the Markov Chain framework of Kraft

and Steffensen (2007). It is also possible to consider some other Markov Chain

models or some general intensity-based models.

The possible way from Copula to Markov Chain can be also investigated.

It is also possible some further investigations on the copula approximation and

moreover one can try to see the impact of different connected Models on the price

of credit derivative.
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Appendix A

Coefficients of the Marginal

Distribution Functions

The coefficients of the marginal distribution functions are:

C0
A = −1 +

λ02

λ0∗ − λ2∗ +
λ03

λ0∗ − λ3∗ +
λ02λ26

λ6∗ − λ2∗

( 1

λ0∗ − λ2∗ − 1

λ0∗ − λ6∗

)

+

λ03λ36

λ6∗ − λ3∗

( 1

λ0∗ − λ3∗ − 1

λ0∗ − λ6∗

)

;

C2
A =

λ02(λ67 − λ24)

(λ0∗ − λ2∗)(λ2∗ − λ67)
;

C3
A =

λ03(λ67 − λ35)

(λ0∗ − λ3∗)(λ3∗ − λ67)
;

C6
A =

λ02λ26

λ2∗−λ67 +
λ03λ36

λ3∗−λ67

λ0∗ − λ67
;

C0
B = −1 +

λ01

λ0∗ − λ1∗ +
λ03

λ0∗ − λ3∗ +
λ01λ15

λ5∗ − λ1∗

( 1

λ0∗ − λ1∗ − 1

λ0∗ − λ5∗

)

+

λ03λ35

λ5∗ − λ3∗

( 1

λ0∗ − λ3∗ − 1

λ0∗ − λ5∗

)

;
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C1
B =

λ01

λ0∗ − λ1∗

(

1 +
λ15

λ5∗ − λ1∗

)

;

C3
B =

λ03

λ0∗ − λ3∗

(

1 +
λ13

λ5∗ − λ3∗

)

;

C5
B =

1

λ0∗ − λ5∗

( λ01λ15

λ5∗ − λ1∗ +
λ03λ35

λ5∗ − λ3∗

)

;

C0
C = −1 +

λ01

λ0∗ − λ1∗ +
λ02

λ0∗ − λ2∗ +
λ01λ14

λ4∗ − λ1∗

( 1

λ0∗ − λ1∗ − 1

λ0∗ − λ4∗

)

+

λ02λ24

λ4∗ − λ2∗

( 1

λ0∗ − λ2∗ − 1

λ0∗ − λ4∗

)

;

C1
C =

λ01

λ0∗ − λ1∗

(

1 +
λ14

λ4∗ − λ1∗

)

;

C2
C =

λ02

λ0∗ − λ2∗

(

1 +
λ24

λ4∗ − λ2∗

)

;

C4
B =

1

λ0∗ − λ4∗

( λ01λ14

λ4∗ − λ1∗ +
λ02λ24

λ4∗ − λ2∗

)

;



Appendix B

Calculation of Kendall’s tau and

Spearman’s rho

To obtain Kendall’s tau and Spearman’s rho a little manipulation is needed. Let

n =
λ13

λ01 + λ02
, m =

λ23

λ01 + λ02
,

α =
λ02

λ01 + λ02
, β =

λ01

λ01 + λ02
,

x = σ = e−λ0∗t, y = σ = e−λ0∗s.

by the equations (3.1)-(3.3) we get:

F̂A(x) = 1− (1− α)x− αxm,

F̂B(y) = 1− (1− β) y − βyn,

and

F̂ 1
A,B(x(t), y(s)) = 1− βyn + x

(

−1 + β
(y

x

)n

+ α
)

− αxm

F̂ 2
A,B(x(t), y(s)) = 1− βyn + y

(

−1 + α

(

x

y

)m

+ β

)

− αxm

Our task is now to calculate

τ(A,B) = 1− 4

∫ 1

0

∫ x

0

∂

∂x
F̂ 2
A,B(x, y)

∂

∂y
F̂ 2
A,B(x, y)dydx
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+

∫ 1

0

∫ y

0

∂

∂x
F̂ 1
A,B(x, y)

∂

∂y
F̂ 1
A,B(x, y)dxdy,

ρs(X, Y ) = 12

∫ 1

0

∫ x

0

[

F̂ 2
A,B(x, y)− F̂A(x)F̂B(y)

]

dF̂B(y)dF̂A(x)

+12

∫ 1

0

∫ y

0

[

F̂ 1
A,B(x, y)− F̂A(x)F̂B(y)

]

dF̂A(x)dF̂B(y).

Our aim is to calculate all derivatives of transformed joint and marginal distribution

functions. So, we get F̂ 1
A,B(x, y), F̂

2
A,B(x, y), F̂A(x), F̂B(y):

∂

∂x
F̂A(x) = α− 1−mαxm−1,

∂

∂y
F̂B(y) = β − 1− nαyn−1,

∂

∂x
F̂ 1
A,B(x, y) = α− 1−mαxm−1 − (n− 1)β

(y

x

)n

,

∂

∂y
F̂ 1
A,B(x, y) = −nβyn−1 + nβ

(y

x

)n−1

,

∂

∂x
F̂ 2
A,B(x, y) = −mαxm−1 +mα

(

x

y

)m−1

,

∂

∂y
F̂ 2
A,B(x, y) = β − 1− nβyn−1 − (m− 1)α

(

x

y

)m

.

Firstly we proceed with Kendall’s tau. Using previous results we obtain
∫ 1

0

∫ x

0

∂

∂x
F̂ 2
A,B(x, y)

∂

∂y
F̂ 2
A,B(x, y)dydx

=

∫ 1

0

∫ x

0

(

α− 1−mαxm−1 − (n− 1)β
(y

x

)n)
(

−nβyn−1 + nβ
(y

x

)n−1
)

dydx

=

∫ 1

0

βx ((2− 2α + β(n− 1))x+ 2αmxm) (xn − x)

2x2
dx

=
1

2
β

(

−1 +
3β

2
− α +

2α

m+ 1
− βn

2
− 2(α + β − 1)

n + 1
+

2αm

m+ n

)

,

and
∫ 1

0

∫ y

0

∂

∂x
F̂ 1
A,B(x, y)

∂

∂y
F̂ 1
A,B(x, y)dxdy

=

∫ 1

0

∫ y

0

(

−mαxm−1 +mα

(

x

y

)m−1
)

(

β − 1− nβyn−1 − (m− 1)α

(

x

y

)m)

dxdy
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=

∫ 1

0

αy ((2− 2β + α(m− 1))y + 2βnyn) (ym − y)

2y2
dy

=
1

2
α

(

−1 +
3α

2
− β +

2β

n+ 1
− αm

2
− 2(α+ β − 1)

m+ 1
+

2βn

m+ n

)

.

Adding both equations we obtain Kendall’s tau is

τ(A,B) = 1− 2α(m− 1)(n+ 1) + α2(m− 1)2(n + 1)

(n+ 1)(m+ 1)

+
(m+ 1) (β(2 + β(n− 1))(n− 1) + 2(n+ 1))

(n + 1)(m+ 1)
.

Now we consider Spearman’s rho. It contains also two parts.

ρs(X, Y ) = 12

∫ 1

0

∫ x

0

[

F̂ 2
A,B(x, y)− F̂A(x)F̂B(y)

]

dF̂B(y)dF̂A(x)

+12

∫ 1

0

∫ y

0

[

F̂ 1
A,B(x, y)− F̂A(x)F̂B(y)

]

dF̂A(x)dF̂B(y).

Let us calculate each of these parts and then add them. Firstly, consider each of

these parts before the integration and simplify them:

(

F̂ 2
A,B(x, y)− F̂A(x)F̂B(y)

) ∂

∂x
F̂A(x)

∂

∂y
F̂B(y)

= − 1

xy
((−1 + α)x− αmxm) ((−1 + β)y − βnyn)

×
(

(−1 + β) (1 + (−1 + α)x− αxm) y + β (x− αx+ αxm) yn − βx
(y

x

)n)

and

(

F̂ 1
A,B(x, y)− F̂A(x)F̂B(y)

) ∂

∂x
F̂A(x)

∂

∂y
F̂B(y)

= − 1

xy
((−1 + α)x− αmxm) ((−1 + β)y − βnyn)

×
(

−α

(

x

y

)m

y + (−1 + α)x (1 + (−1 + β)y − βyn) + axm (y − βy + βyn)

)

.

Now we can proceed with integration of the simplified parts

∫ 1

0

∫ x

0

(

F̂ 2
A,B(x, y)− F̂A(x)F̂B(y)

) ∂

∂x
F̂A(x)

∂

∂y
F̂B(y)dydx
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= −
∫ 1

0

∫ x

0

1

xy
((−1 + α)x− αmxm) ((−1 + β)y − βnyn)

×
(

(−1 + β) (1 + (−1 + α)x− αxm) y + β (x− αx+ αxm) yn − βx
(y

x

)n)

dydx

= −
∫ 1

0

1

2(1 + n)x
((−1 + α)x− αmxm)

(

(−1 + β)(−1 + β(−1 + n)− n)x2

+(−1 + α)(−1 + β)2(1 + n)x3 − α(−1 + β)2(1 + n)x2+m

−β(β(−1 + n)− 2n)x1+n − 2(−1 + α)(−1 + β)β(1 + n)x2+n

+2α(−1 + β)β(1 + n)x1+m+n + (−1 + α)β2(1 + n)x1+2n

−αβ2(1 + n)xm+2n
)

dx

=
1

24

(

(−1 + b)2

(1 +m)(2 +m)(3 +m)

×
(

(1 +m)(2 +m)(3 +m) + 2α(−1 +m)(1 +m)(6 +m) + 3α2
(

2− 3m+m3
))

+
−4b(8− 5b+ α(4 + (−10 + 3α)b))− 2(−1 + α)b(−8 + (5 + 3α)b)m

(2 +m)(1 + n)

+
12(−1 + α)b(−4 + 3b)

2 + n
+

24(−1 + α)2(−1 + b)b

3 + n

−6α2b2m

m+ n
− 12αb(−2(1 +m) + b(2 +m))

1 +m+ n

−24(−1 + α)α(−1 + b)b(1 +m)

2 +m+ n
+

24α2(−1 + b)bm

1 + 2m+ n
+

12(−1 + α)αb2

1 +m+ 2n

)

and
∫ 1

0

∫ y

0

(

F̂ 1
A,B(x, y)− F̂A(x)F̂B(y)

) ∂

∂x
F̂A(x)

∂

∂y
F̂B(y)dxdy

= −
∫ 1

0

∫ y

0

1

xy
((−1 + α)x− αmxm) ((−1 + β)y − βnyn)

×
(

−α

(

x

y

)m

y + (−1 + α)x (1 + (−1 + β)y − βyn) + axm (y − βy + βyn)

)

dydx

= −
∫ 1

0

1

2(1 +m)y
((−1 + β)y − βnyn)

(

(−1 + α)(−1 + α(−1 +m)−m)y2

+(−1 + α)2(−1 + β)(1 +m)y3 − α(α(−1 +m)− 2m)y1+m

−2(−1 + α)α(−1 + β)(1 +m)y2+m + α2(−1 + β)(1 +m)y1+2m

−(−1 + α)2β(1 +m)y2+n + 2(−1 + α)αβ(1 +m)y1+m+n − α2β(1 +m)y2m+n
)

dy
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= − 1

2(1 +m)

(

1

2
a2(−1 + b)2 +

1

3
(−1 + a)(−1 + b)(−1 + a(−1 +m)−m)

+
1

4
(−1 + a)2(−1 + b)2(1 +m)− a(−1 + b)(a(−1 +m)− 2m)

2 +m

−2(−1 + a)a(−1 + b)2(1 +m)

3 +m
− (−1 + a)b(−1 + a(−1 +m)−m)n

2 + n

−(−1 + a)2(−1 + b)b(1 +m)

3 + n

−(−1 + a)2(−1 + b)b(1 +m)n

3 + n
+

a2b2(1 +m)n

2(m+ n)

+
ab(a(−1 +m)− 2m)n

1 +m+ n
+

2(−1 + a)a(−1 + b)b(1 +m)

2 +m+ n

+
2(−1 + a)a(−1 + b)b(1 +m)n

2 +m+ n
− a2(−1 + b)b(1 +m)

1 + 2m+ n

−a2(−1 + b)b(1 +m)n

1 + 2m+ n
+

(−1 + a)2b2(1 +m)n

2 + 2n

−2(−1 + a)ab2(1 +m)n

1 +m+ 2n

)

.

Finally, to obtain Spearman’s rho we just need to add both parts. So, we get:

ρs(X, Y ) =
1

(1 +m)(2 +m)(1 + n)(2 + n)(1 +m+ n)

×
(

(1 +m)(2 +m)(1 +m+ n)
(

4β(−1 + n) + 2β2(−1 + n)2 + (1 + n)(2 + n)
)

+2α2(−1 +m)2(1 + n)(β(2 + 2m− n)(−1 + n) + (2 + n)(1 +m+ n))

−2α(−1 +m)
(

− 2(1 + n)(2 + n)(1 +m+ n)

+β2(1 +m)(−1 + n)2(m− 2(1 + n))

+2β(−1 + n)
(

2n(1 + n) +m2(2 + n) +m(2 + n(2 + n))
)

))

.
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