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A One-Dimensional Model of the Pressing Section of

a Paper Machine Including Dynamic Capillary Effects

O. Iliev · G. Printsypar · S. Rief

Abstract This work presents the dynamic capillary pressure model (Hassanizadeh,
Gray, 1990, 1993a) adapted for the needs of paper manufacturing process simulations.
The dynamic capillary pressure-saturation relation is included in a one-dimensional
simulation model for the pressing section of a paper machine. The one-dimensional
model is derived from a two-dimensional model by averaging with respect to the
vertical direction. Then, the model is discretized by the finite volume method and
solved by Newton’s method.

The numerical experiments are carried out for parameters typical for the paper
layer. The dynamic capillary pressure-saturation relation shows significant influence
on the distribution of water pressure. The behaviour of the solution agrees with
laboratory experiments (Beck, 1983).
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1 Introduction

Paper plays an important role in our everyday life. Manufactures all over the world
produce millions of tons of paper every year. People use more then 5,000 products
which are made from paper. From the industrial point of view, papermaking is a
complicated and expensive industrial process. This challenging problem attracts at-
tention of many scientists, who investigate and simulate the papermaking process.

The paper machine typically consists of four main sections (see, e.g. Metso Cor-
poration (2010)): the head box, the forming section, the pressing section and the
drying section. The head box provides the suspension which consists of 99% water
and 1% fibers. Typically the forming section is a continuous rotating wire mesh that
removes water from the paper suspension at first by natural gravity filtration and
then with the help of co-called suction boxes. The dry solids content of the suspen-
sion increases to about 20% after this section. The third section of the paper machine
is the pressing section. It provides the dewatering of the paper layer by mechanical
pressing of a sandwich of the paper layer and a properly selected felt. The simplest
press nip consists of two rotating rolls with layers of paper and felts transported at
high speed between them (see Figure 1). The felt is a special highly porous clothing
which provides void space, so that during the pressing, the water is squeezed out of
the paper and enters the felt. The dry solids content in the paper is about 50%-55%
after the pressing section. The last section of a papermaking machine is the drying
section, where the water which still remains in the paper layer, is removed by evap-
oration, as the sheet is held in close contact to large heated cylinders. The drying is
very expensive, therefore understanding and improving the dewatering in the press-
ing section is highly demanded by the industry, and attracts increasing attention
from researchers.

Fig. 1 The simplest construction of the pressing nips

We are concerned with the modeling and the simulation of the pressing section.
There exist different approaches to model this problem. Most of the models consider
three phase flow (solid, water and air) (Bezanovic et al., 2006, 2007a,b; Hiltunen,
1995; Kataja et al., 1992). The problem is very complex, therefore there is no unique
description, and different models are used in these works. In Hiltunen (1995); Kataja
et al. (1992) the conservation of mass and momentum is used together with a La-
grangian formulation along displacement characteristic lines (solid flow lines). In
Bezanovic et al. (2006, 2007a,b) the mass balance equations in Lagrangian formu-
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lation are used. Moreover, Bezanovic et al. (2007b) considers the compressible air
case. But all these models have a common feature, which is neglecting the capillary
forces. Models which take into account the capillary effect are presented in Bermond
(1997); Rief (2005); Velten et al. (2000). The model described by Bermond (1997)
uses a two-phase flow model including capillary pressure-saturation relation and in-
troduces thermal aspects. In Rief (2005); Velten et al. (2000) the Richards approach
for flow in unsaturated porous media is adopted. As a starting point we have chosen
the 1D model realized in Velten et al. (2000).

The capillary pressure is often of critical importance in modeling flow in porous
media (see e.g. Bear, Bachmat, 1990). The classical approach (Bear, Bachmat, 1990)
for dealing with capillary effects provides the definition of macroscopic capillary
pressure as a difference between average pressures of nonwetting and wetting phases
and quantifies:

pn − pw ≡ pc = f(S).

A large number of scientists have worked on understanding and parametrization of
this functional relation, mainly in connection with soil. Among those studies, the
most famous are the models of air-water systems by Leverett (1941), Broocks, Corey
(1964) and Van Genuchten (1980). The relationships they derived have been vali-
dated for certain flow regimes and types of porous media in numerous experiments.
However, many experimental results show that these relationship are satisfied only
under equilibrium conditions (see Hassanizadeh et al. (2002) and references therein).
Thus, each point on a drainage or imbibition capillary pressure-saturation curve
is measured after increasing pressure by one step, and waiting until equilibrium is
reached. The time to equilibrium after each step ranges from a few hours to many
days. Hence, the construction of the complete curve takes weeks. And consequently,
the capillary pressure-saturation relation which is obtained under these conditions
can not accurately describe filtration processes which involve rapid changes of the
saturation.

To resolve this issue, new approaches have appeared recently. Theoretical studies
were performed by Barenblatt et al. (1987, 2002), Kalaydjian (1992), Bourgeat, Pan-
filov (1998) and Hassanizadeh, Gray (1990, 1993a) to appraise the dynamic effect
in the capillary pressure, which can not be captured by existing empirical relations.
Here we have chosen to work with the model introduced by Hassanizadeh and Gray,
having in mind that it was derived taking into account physical aspects of the fil-
tration process. It was possible to adapt this model to the specific features of our
problem.

The first goal of this paper is to adapt the dynamic capillary pressure model of
Hassanizadeh, Gray (1990, 1993a) for the needs of the paper manufacturing process
simulations. Then the second objective is to present an extension of the 1D model in
Velten et al. (2000) for processes in the pressing section of the papermaking machine,
by accounting for the dynamic effects in the capillary pressure-saturation relation.
Note, that in the above mentioned papers denoted to dynamic effects in the capillary
pressure-saturation relation, the latter are accounted via including terms with time-
derivative of the saturation. For the papermaking machine, we end up with a model
including a space derivative of the saturation. This is due to the fact that the paper-
felt sandwich is transported with about 1500-2000 m/min between the roles, and
follows from the full model derived by Hassanizadeh, Gray (1990, 1993a). For fixed
porous media the term with the space derivative of the saturation vanishes. We are
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not aware of any other paper where the dynamical effects are accounted by the space
derivative of the saturation.

In short, the objectives of this paper are to present an accurate one-dimensional
model and to study the influence of the dynamic capillary pressure-saturation rela-
tion on the solution of the problem describing the pressing section of a paper machine.
The mathematical model, which describes the basic physical principles behind the
pressing process, is developed in Section 2. In Section 3, the discretization by finite
volumes is presented. The implementation of the Newton-iteration method for the
discrete problem is discussed in Section 4. Section 5 presents the numerical results.
Finally, we draw conclusions in Section 6.

2 Mathematical model

2.1 Modeling two-dimensional flow

Concerning the modeling of the pressing section of a paper machine, the porous
media is composed of three phases: solid (denoted by index "s"), liquid (or water)
(index "w") and air (index "a"). An Eulerian approach is used to describe our system.
The computational domain Ω ⊂ R

2 and its boundary Γ (Ω = Ω ∪ Γ ) are shown in
Figure 2. Let fl(x) and fu(x) be the functions which describe the lower and upper
profiles of the paper-felt sandwich, respectively. Then Ω = {(x, z) : x ∈ [A,B], z ∈
[fl(x), fu(x)]}, where boundaries x = A and x = B are fixed points far away from
the press rolls and A < B.

Fig. 2 Location of roll press nip and computational domain

As indicated in Figure 2, let us assume that the paper-felt sandwich is transported
through the press nips from the left to the right with velocity Vs,in measured in [m/s].
The horizontal direction is designated as x-direction, while z-direction is the vertical
component. The third direction is neglected since the length of the cylindrical roll is
large, and side boundary effects are not considered.

The general form of the mass conservation equation in Eulerian form (Bear, 1972;
Bear, Verruĳt, 1987; Helmig, 1997) for each phase α, without sources and sinks, is:

∂ρ∗α
∂t

(x, t) + div(ρ∗αVα)(x, t) = 0, α = s, w, a, x = (x, z) ∈ Ω, t ∈ R+, (1)

where t is the time in [s], Vα denotes the velocity of phase α in [m/s], ρ∗α is the
volume fraction of phase α in [kg/m3]. The solid velocity denoted as Vs appears as
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a result of the transportation and deformation processes. Let us also remark that in
the following all vectors and tensors will be marked with bold type.

Let S ([−]) be the dimensionless saturation of the liquid phase, φ ([−]) be the
porosity and ρα be the density of phase α, which is measured in [kg/m3]. Then:

ρ∗s = (1− φ)ρs, (2)

ρ∗w = φSρw, (3)

ρ∗a = φ(1− S)ρa. (4)

By inserting equations (2)-(4) into equation (1), we obtain:
for the solid:

∂((1− φ)ρs)
∂t

+ div((1− φ)ρsVs) = 0, (5)

for the liquid:
∂(φSρw)

∂t
+ div(φSρwVw) = 0, (6)

for the air:
∂(φ(1− S)ρa)

∂t
+ div(φ(1− S)ρaVa) = 0. (7)

From now on, we assume that the air is at atmospheric pressure. This assumption,
in connection with paper dewatering, was earlier successfully employed in Rief (2005);
Velten et al. (2000). Therefore, the air pressure is known and saturation of the air
phase can be computed as Sa = 1− S. Thus, only two mass conservation equations
for the solid and for the water (5), (6) are considered.

To define water and solid velocities, Vw, Vs, in addition to the mass conservation
equations we have to consider momentum conservation. The momentum equation for
water phase can be represented by a generalized Darcy’s law. We neglect gravity and
take into account the solid velocity:

φS(Vw −Vs) = −krw
µw

K grad pw, (8)

where krw ([−]) is the relative permeability of the water phase, µw is the viscosity
of water in [Pa · s], K is the intrinsic permeability tensor in [m2], pw is the water
pressure in [Pa].

Momentum conservation for the solid phase yields (Bear, 1972; Bear, Bachmat,
1990):

ρ∗s
DsVs
Dt
− div ts =

∑

(α)

ρ∗αFα or (1− φ)ρs
DsVs
Dt
− div ts =

∑

(α)

ρ∗αFα, (9)

where ts is the second-rank symmetrical stress tensor measured in [Pa], Fα is the
external force per unit mass of phase α acting on particles of this phase in [m/s2],
DsVs
Dt

is the material derivative, which takes the form:

DsVs
Dt

=
∂Vs
∂t

+ (Vs · grad) Vs. (10)

We assume that the liquid and solid phases are incompressible (ρs = const,
ρw = const), however, the porous media gets deformed (via rearrangement of the
solid skeleton). Hence, porosity is a function of space and time φ = φ(x, t).
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Thereby, the mass conservation equations yield for the solid phase:

−∂φ
∂t

+ div((1− φ)Vs) = 0, (11)

and for the liquid phase:

∂(φS)

∂t
− div

(

krw
µw

K grad pw

)

+ div(φSVs) = 0. (12)

To close the system of equations (9)-(12) one usually considers a capillary pressure-
saturation relation pc = pc(S). In our case, when the paper-felt sandwich moves with
about 2000 m/min between rolls, it is difficult to expect equilibrium conditions to be
satisfied and considering dynamic capillary pressure is very reasonable. We have cho-
sen the dynamic capillary pressure-saturation relationship derived by Hassanizadeh,
Gray (1990, 1993a):

(pa − pw)− pstatc = −τ D
sS

Dt
, (13)

where τ is a co-called material coefficient in [Pa · s], which still may depend on satu-
ration and other parameters, pstatc is a prescribed static capillary pressure-saturation
relation, D

sSw
Dt

is the material derivative with respect to a reference frame fixed to
the solid phase:

DsS

Dt
=
∂S

∂t
+ Vs gradS. (14)

Using (9)-(14) and the assumption pa ≡ 0, we obtain the following system:

−∂φ
∂t

+ div((1− φ)Vs) = 0, (15)

(1− φ)ρs
(

∂Vs
∂t

+ (Vs · grad) Vs

)

− div ts =
∑

(α)

ρ∗αFα (16)

∂(φS)

∂t
− div

(

krw
µw

K grad pw

)

+ div (φSVs) = 0, (17)

pw + pstatc = τ
∂S

∂t
+ τVs gradS. (18)

In addition to the flow, one has to account also for the deformation of the porous
media. This issue, in connection with flow model equipped with a standard (not
dynamic) capillary pressure, is discussed in the PhD thesis of Rief (2005). Following
the approach from Rief (2005), we treat consecutively the porous media deformation
and the flow. For the deformation simulation we use the developments from Rief
(2005) from where we find the distribution of the porosity, the thickness of the layer
and the solid velocity. Thereby, from now on equations (15) and (16) can be skipped.

Back to the flow model, we are interested in the steady state solution, thus the
partial derivatives with respect to time in (17) and (18) are set to zero and we obtain:

−div

(

krw
µw

K grad p

)

+ div (φSVs) = 0, (19)

p+ pstatc = τVs gradS, (20)
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where pw ≡ p. Suitable boundary conditions have to be specified, see details below.
We should remark that the model (19), (20) suits only for unsaturated flow.

Evaluation of the fully saturated regions is one of the issues of pressing section
modeling. But in this work we are not concerned with this side of the problem. It is
planned to include this effect in consideration in our future work.

2.2 Modeling one-dimensional flow

Here we should notice, that one-dimensional model can be considered only for one
layer case. Therefore, it can not capture all effects, which present in two-dimensional
model. The main effects, which are lost in one-dimensional case, are the movement of
water between the layers in vertical direction and different press nip configurations.
But one-dimensional model can be used to capture main behaviour of the pressure
and saturation profiles and also to compare with existing laboratory experiments
(Beck, 1983).

In this work we are concerned with the one-dimensional problem in machine
direction with computational domain Ω = (A,B), B > A and boundary Γ = {x =
A ∪ x = B} (see Figure 2). To obtain one-dimensional model we apply an averaging
procedure in vertical direction (see Velten et al., 2000).

Fig. 3 Computational domain Ω̂ for obtaining a one-dimensional model

2.2.1 Averaging procedure for the mass conservation equation

Let us consider the integral form of the mass conservation equation for domain
Ω̂ ⊂ R

2 (see Figure 3) in the case of no sources and no sinks and impermeable upper
and lower boundaries:

∫

Ω̂

div(φSVw)dσ = 0,

where Ω̂ = {(x̂, ẑ) : x̂ ∈ [x, x +∆x], ẑ ∈ [fl(x̂), fu(x̂)]}, x ∈ [A,B], ∆x > 0, ∆x ∈
R+ is a fixed value, such that x +∆x ∈ [A,B]. Using Green’s theorem one obtains
the following integral over the boundary ∂Ω̂ with integration in the counterclockwise
direction:

∮

∂Ω̂

φSVw · nds = 0, (21)
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where n is the outward unit normal of the boundary ∂Ω̂. The boundary ∂Ω̂ can be
represented as (see Figure 3):

∂Ω̂ = Γ̂1 ∪ Γ̂2 ∪ Γ̂3 ∪ Γ̂4,

where Γ̂i ∩ Γ̂j = ∅ for all i 6= j. Let vector Vw have the following components
Vw = (V 1

w , V
2
w). Then (21) yields:

0 =

∮

∂Ω̂

φSVw · nds =

∫

Γ̂1

φSVw · n1ds+

∫

Γ̂2

φSVw · n2ds

+

∫

Γ̂3

φSVw · n3ds+

∫

Γ̂4

φSVw · n4ds

=

∫

Ex+∆x

φSV 1
wds−

∫

Ex

φSV 1
wds,

(22)

where Ex = {(x, z) : z ∈ [fl(x), fu(x)]} and the integrals over the boundaries Γ̂2

and Γ̂4 are equal to zero since in the two-dimensional case we imposed no-flow con-
ditions for these boundaries (Vw · n|Γ̂2,Γ̂4

= 0). We introduce a vertically averaged

horizontal quantities φ̂(x), Ŝ(x) and V̂ 1
w(x) in the following way:

φ̂(x) =
1

d(x)

∫

Ex

φ(x, z)dz,

Ŝ(x) =
1

d(x)φ̂(x)

∫

Ex

φ(x, z)S(x, z)dz,

V̂ 1
w(x) =

1

d(x)φ̂(x)Ŝ(x)

∫

Ex

φ(x, z)S(x, z)V 1
w(x, z)dz,

where A ≤ x < x+∆x ≤ B, d(x) = fu(x)− fl(x) > 0 is the thickness of the layer.
Remember that Γ̂1 = Ex and Γ̂2 = Ex+∆x, equation (22) yields:

−φ̂(x)Ŝ(x)V̂ 1
w(x)d(x) + φ̂(x+∆x)Ŝ(x+∆x)V̂ 1

w(x+∆x)d(x+∆x) = 0. (23)

Dividing (23) by ∆x and passing to the limit ∆x→ 0, one obtains:

∂

∂x

(

Ŝ(x)φ̂(x)V̂ 1
w(x)d(x)

)

= 0. (24)

Note, that x (see Figure 3) was chosen arbitrarily, therefore equation (24) is satisfied
for any x ∈ [A,B]. Assuming that the intrinsic permeability tensor K has diagonal
form:

K =

[

K(φ) 0

0 K̂(φ)

]

and taking into account Darcy’s law (8) and omitting the hat over the averaged
functions, the one-dimensional equation (19) reads:

− ∂
∂x

(

d
kr(S)

µ
K(φ)

∂p

∂x

)

+
∂

∂x
(dφSVs) = 0, x ∈ Ω, (25)

where Vs is considered as the x-component of averaged vector Vs and Ω = (A,B)
is the one-dimensional computational domain.

In this work we consider the paper-felt sandwich, which is transported horizon-
tally with constant speed Vs,in. Therefore, the x-component of the solid velocity, Vs,
is does not depend on x and it is equal to Vs,in. From now on we consider Vs to be
constant for our problem.
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2.2.2 Averaging procedure for dynamic capillary pressure-saturation relation

Now we are concerned with the dynamic capillary pressure-saturation relation (20).
For our problem we consider pstatc as a function of the saturation and the porosity:
pstatc = pstatc (S, φ). Integration of the left hand side of (20) over Ω̂ yields:

∫

Ω̂

p+ pstatc (S, φ)dσ ≈
(

p̂Ω̂ + pstatc (ŜΩ̂ , φ̂Ω̂)
)

m(Ω̂), (26)

where ûΩ̂ is the averaged over domain Ω̂ quantity defined by:

ûΩ̂ =
1

m(Ω̂)

∫

Ω̂

udσ, lim
∆x→0

ûΩ̂ = û, (27)

under assumption that û is a continuous function.
Let us integrate the right hand side of (20) over Ω̂:

∫

Ω̂

τVs gradSdσ =

∫

Ω̂

div (τSVs) dσ −
∫

Ω̂

S div (τVs) dσ

≈
∮

∂Ω̂

τSVs · nds− ŜΩ̂
∮

∂Ω̂

τVs · nds,

where ŜΩ̂ defined by (27). Remembering that Vs is the x-component of the vector
Vs and that Vs · n|Γ̂2,Γ̂4

= 0, we have:

∫

Ω̂

τVs gradSdσ ≈
∫

Γ̂1

τSVs · n1ds+

∫

Γ̂3

τSVs · n3ds

− ŜΩ̂
(∫

Γ̂1

τVs · n1ds+

∫

Γ̂3

τVs · n3ds

)

=

∫

Ex+∆x

τSVsds−
∫

Ex

τSVsds

− ŜΩ̂

(

∫

Ex+∆x

τVsds−
∫

Ex

τVsds

)

.

(28)

Defining functions τ̂ (x) and Ŝ(x) in the following way:

τ̂(x) =
1

d(x)

∫

Ex

τ(x, z)dz,

Ŝ(x) =
1

d(x)τ̂(x)

∫

Ex

τ(x, z)S(x, z)dz.

Then, equation (28) yields:
∫

Ω̂

τVs gradSdσ ≈ τ̂(x+∆x)Ŝ(x+∆x)Vsd(x+∆x)

− τ̂ (x)Ŝ(x)Vsd(x)

− ŜΩ̂ τ̂ (x+∆x)Vsd(x+∆x)

+ ŜΩ̂ τ̂ (x)Vsd(x).

(29)
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Dividing the right hand sides of equations (26) and (29) by ∆x and passing to the
limit ∆x→ 0, one obtains:

d(x)
(

p̂(x) + pstatc (Ŝ(x), φ̂(x))
)

=
∂

∂x

(

τ̂ (x)Ŝ(x)Vsd(x)
)

− Ŝ(x)
∂

∂x
(τ̂(x)Vsd(x)) . (30)

Transforming equation (30) we obtain:

p = τVs
∂S

∂x
− pstatc , x ∈ Ω, (31)

where the hats over the functions are omitted.

2.2.3 Boundary conditions

For the needs of the pressing section simulation, the boundary conditions have to be
imposed. We prescribe Dirichlet boundary conditions for saturation at x = A:

S(A) = C0, (32)

We assume that these boundaries x = A and x = B of the computational domain
Ω are far enough from the pressing roles and, thereby, there is no movement of
water with respect to the solid structure. The stationary capillary pressure-saturation
relation is satisfied and the following Dirichlet boundary condition is applied for
pressure on the left boundary:

p(A) = −pstatc (C0), (33)

and since the equilibrium is reached with respect to the solid structure, on the right
boundary we apply the Neumann boundary condition:

∂p

∂x

∣

∣

∣

∣

B

= 0. (34)

3 Discretization

Let N be the number of intervals into which our computational domain Ω = [A,B]
is divided. A vertex-centered grid is introduced for the pressure:

Tp = {xi = ih, i = 0, N},

where h = (B−A)/N and 0, N = 0, 1, ..., N . The following grid is considered for the
saturation:

Ts = {x0 = A, xi+ 1
2

=

(

i+
1

2

)

h, i = 0, N − 1, xN = B}.

The grids for the pressure and the saturation are illustrated in Figure 4:
We discretize the system of equations (25), (31)-(34) by a finite volume method

(see e.g. Eymard et al., 2006; Samarskĳ, 1971).
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t t t t t t t t t t t

S0 S 1
2

S 3
2

Si− 1
2

Si+ 1
2

SN− 1
2

SN

p0 p1 pi−1 pi pi+1 pN−1 pN

Fig. 4 Grid representation and numbering of variables

3.1 Discretization of the mass conservation equation

Let us integrate equation (25) over the interval [xi− 1
2
, xi+ 1

2
]:

0 = −

x
i+ 1

2
∫

x
i−

1
2

∂

∂x

(

d
kr(S)

µ
K(φ)

∂p

∂x

)

dx+

x
i+ 1

2
∫

x
i−

1
2

∂

∂x
(dφSVs)dx =

wi+ 1
2
− wi− 1

2
+ Vs(di+ 1

2
φi+ 1

2
Si+ 1

2
− di− 1

2
φi− 1

2
Si− 1

2
), i = 1, N − 1,

where

w = −d · kr(S)K(φ)

µ

∂p

∂x
. (35)

For all functions the notation fi+ 1
2

= f(xi+ 1
2
) is introduced. By integration of the

transformed expression (35) over the interval [xi−1, xi], we obtain:

xi
∫

xi−1

∂p

∂x
dx = −

xi
∫

xi−1

wµdx

d · kr(S)K(φ)
. (36)

Assuming that w(x) ≈ ŵi− 1
2

= const for x ∈ [xi−1, xi], equation (36) yields:

pi − pi−1 ≈ −ŵi− 1
2

xi
∫

xi−1

µdx

d · kr(S)K(φ)
.

From the last expression we find:

ŵi− 1
2

= −ai− 1
2

pi − pi−1

h
, where ai− 1

2
=





1

h

xi
∫

xi−1

µdx

d · kr(S)K(φ)





−1

.

Since the function S(x) is unknown and the functions φ(x) and d(x) can be repre-
sented only as discrete functions, we can not analytically find the coefficient ai− 1

2
.

Therefore, we use numerical integration, or more specifically, the midpoint rule:

ai− 1
2

=





1

h

xi
∫

xi−1

µdx

d · kr(S)K(φ)





−1

≈
(

1

h

µh

di− 1
2
kr(Si− 1

2
)K(φi− 1

2
)

)−1

,

âi− 1
2

=
di− 1

2
kr(Si− 1

2
)K(φi− 1

2
)

µ
. (37)

Thus, the finite difference scheme for equation (25) is:

− âi+ 1
2

pi+1 − pi
h

+ âi− 1
2

pi − pi−1

h
+ Vs(di+ 1

2
φi+ 1

2
Si+ 1

2
− di− 1

2
φi− 1

2
Si− 1

2
) = 0,

i = 1, N − 1. (38)
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3.2 Discretization of the equation for capillary pressure

In the numerical experiments below we consider the material parameter τ from (31)
to be constant. But we perform the discretization procedure keeping the assumption
τ = τ(x), in order not to lose generality.

Now we are concerned with equation (31). We integrate equation (31) over the
interval [xi− 1

2
, xi+ 1

2
] for i = 1, N − 1:

x
i+ 1

2
∫

x
i−

1
2

pdx =

x
i+ 1

2
∫

x
i−

1
2

τVs
∂S

∂x
dx−

x
i+ 1

2
∫

x
i−

1
2

pstatc dx, (39)

We consider the left-hand side of (39):

x
i+ 1

2
∫

x
i−

1
2

pdx ≈ hpi,

The first term on the right-hand side of (39) yields:

x
i+ 1

2
∫

x
i−

1
2

τVs
∂S

∂x
dx ≈ Vsτi+ 1

2

(

Si+ 1
2
− Si− 1

2

)

.

The second term on the right-hand side of (39) yields:

x
i+ 1

2
∫

x
i−

1
2

pstatc (S, φ)dx = hpstatc (Si+ 1
2
, φi+ 1

2
).

Summarizing, the numerical scheme for (31) takes the form:

pi =
Vs
h
τi+ 1

2

(

Si+ 1
2
− Si− 1

2

)

− pstatc (Si+ 1
2
, φi+ 1

2
), i = 1, N − 1. (40)

3.3 Discretization of the boundary conditions

Integrating equation (25) over the interval [xN− 1
2
, xN ] we obtain

xN
∫

x
N−

1
2

− ∂
∂x

(

d
kr(S)K(φ)

µ

∂p

∂x

)

+
∂

∂x
(dφSVs)dx

= −
(

d
k(S)K(φ)

µ

∂p

∂x

)∣

∣

∣

∣

xN

x
N−

1
2

+ (dφSVs)|xNx
N−

1
2

.
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Using the boundary condition (34) and central differences for the discretization of
the partial derivatives of the pressure we obtain the following approximation:

dN− 1
2

kr(SN− 1
2
)K(φN− 1

2
)

µ

pN − pN−1

h
+ Vs(dNφNSN − dN− 1

2
φN− 1

2
SN− 1

2
) = 0

or

âN− 1
2

pN − pN−1

h
+ Vs(dNφNSN − dN− 1

2
φN− 1

2
SN− 1

2
) = 0,

where âN− 1
2

is defined by equation (37). This is a second-order approximation for

the Neumann boundary condition (34) for the pressure. The Dirichlet boundary
conditions (32) and (33) are discretized exactly:

p0 = −pstatc (C0), S0 = C0.

Two more equations are needed to close the system of discretized equations. The
first one is obtained by integrating equation (31) over the interval [x0, x 1

2
]:

x 1
2
∫

x0

pdx =

x 1
2
∫

x0

Vsτ
∂S

∂x
dx−

x 1
2
∫

x0

pstatc dx.

x 1
2
∫

x0

pdx ≈ h
2
p0,

x 1
2
∫

x0

Vsτ
∂S

∂x
dx ≈ Vsτ 1

2

(

S 1
2
− S0

)

,

x 1
2
∫

x0

pstatc (S, φ)dx ≈ h
2
pstatc (S 1

2
, φ 1

2
).

Finally, we obtain:

p0 =
2Vs
h
τ 1

2

(

S 1
2
− S0

)

− pstatc (S 1
2
, φ 1

2
). (41)

Integrating (31) over the interval [xN− 1
2
, xN ], it yields:

pN =
2Vs
h
τN (SN − SN− 1

2
)− pstatc (SN , φN ). (42)
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t t t t t t t t t t t

S0 S1 S2 Si Si+1 SN SN+1

p0 p1 pi−1 pi pi+1 pN−1 pN

Fig. 5 Renumbering of variables

3.4 Finite difference scheme

To write the finite difference scheme we change the numbering of saturation values in
the following way: S0 → S0, S 1

2
→ S1, ..., Si− 1

2
→ Si, Si+ 1

2
→ Si+1, ..., SN− 1

2
→ SN ,

SN → SN+1 (see Figure 5).
Finally, we can write down the following system of (2N + 3) equations with

respect to (2N + 3) unknowns:

p0 = −pstatc (C0), (43)

−âi+1
pi+1 − pi
h

+ âi
pi − pi−1

h

+Vs(di+1φi+1Si+1 − diφiSi) = 0, i = 1, N − 1,
(44)

âN
pN − pN−1

h
+ Vs(dN+1φN+1SN+1 − dNφNSN ) = 0, (45)

âi = di
kr(Si)K(φi)

µ
, i = 1, N, (46)

S0 = C0, (47)

p0 =
2Vs
h
τ1 (S1 − S0)− pstatc (S1, φ1). (48)

pi =
Vs
h
τi+1 (Si+1 − Si)− pstatc (Si+1, φi+1), i = 1, N − 1, (49)

pN =
2Vs
h
τN+1(SN+1 − SN )− pstatc (SN+1, φN+1). (50)

In the following we will also consider the case when the material coefficient τ
equals to zero. Therefore, we present here the finite difference scheme for this case.

When the coefficient τ in (31) is equal to zero the initial system of equations
(25), (31) becomes a nonlinear equation (25) with boundary conditions (33), (34),
where the pressure p = (p0, p1, . . . , pN ) is considered as unknown variable. In this
case saturation is a dependent variable and expressed as an analytical function of
the pressure.

Setting the coefficient τ to zero in discretized system (43)-(50) we have equations
(43)-(46) together with:

S0 = C0, (51)

pi = −pstatc (Si+1, φi+1), i = 0, N. (52)

Let us assume that function pstatc (S, φ) is a continuous function such that pstatc :
(S∗, 1]× (0, 1)↔ R

+ and it is a bĳection, where S∗ ∈ R and S∗ > 0. Then, it has an

inverse with respect to S function (pstatc )
−1

(p, φ). Therefore, equations (52) can be
written down in the following form:

Si+1 =
(

pstatc
)−1

(−pi, φi+1) , i = 0, N. (53)
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Remark 1 In case of standard capillary pressure-saturation relation the saturation
can also be approximated in the following way:

S0 = C0, (54)

Si+1 =
(

pstatc
)−1

(

−1

2
(pi + pi+1) , φi+1

)

, i = 0, N − 1, (55)

SN+1 =
(

pstatc
)−1

(−pN , φN+1) . (56)

This approximation gives us finite difference scheme with second order accuracy.
But the numerical simulations result in nonphysical oscillations (see Appendix 6).
It happens because of the approximation of the convective term in (25) by central
differences.

In the following we choose to have first order accuracy and solution without
oscillations.

4 Solution of the nonlinear system by Newton’s method

The discretization (43)-(50) is a system of nonlinear algebraic equations. In this
section we will recall Newton’s method and will discuss how we apply it when solving
the reduced system (with standard capillary pressure) and when we solve the full
nonlinear system (43)-(50).

4.1 Introduction to Newton’s method for a nonlinear system

A system of nonlinear equations is expressed in the form F(x) = 0, where F is a
vector-valued function of the vector variable x such that F : Rn → Rn. Given an
estimate x(k) of a solution x∗, Newton’s method computes the next iterate x(k+1)

by setting the local linear approximation to F at x(k+1) to zero, and solving for the
correction ∆x(k+1) = x(k+1) − x(k):

F(x(k+1)) = F(x(k)) + J(x(k))(x(k+1) − x(k)) = 0,

J(x(k))∆x(k+1) = −F(x(k)),

∆x(k+1) = −J−1(x(k))F(x(k)),

x(k+1) = x(k) +∆x(k+1).

In this calculation, J(x(k)) is the Jacobian matrix of F at x(k). Here, we assume that
J is nonsingular matrix, otherwise, the Newton step is undefined. For more details
of Newton’s method (see Deuflhard, 2004; Kelley, 1995).
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4.2 Problem with stationary capillary pressure-saturation relation

At first we consider simpler problem with the standard stationary capillary pressure-
saturation relation. In this subsection we derive the analytical form of the function
F = (F0, F1, . . . FN )T and the Jacobian JF , which are necessary to solve the problem.

To apply Newton’s method, we transform (43)-(46) as follows:

F0 = p0 + pstatc (C0), (57)

Fi = −di+1
K(φi+1)kr(Si+1)

µ

pi+1 − pi
h

+ di
K(φi)kr(Si)

µ

pi − pi−1

h

+ Vs(di+1φi+1Si+1 − diφiSi), i = 1, N − 1,

(58)

FN = dN
K(φN)kr(SN )

µ

pN − pN−1

h
+ Vs(dN+1φN+1SN+1 − dNφNSN ), (59)

where Si, i = 1, N + 1 are defined by (51), (53).

Hence, the Jacobian reads:

JF =













1 0 0 0 . . . 0 0
∂F1

∂p0

∂F1

∂p1

∂F1

∂p2
0 . . . 0 0

0 ∂F2

∂p1

∂F2

∂p2

∂F2

∂p3
. . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . ∂FN
∂pN−1

∂FN
∂pN













, (60)

with the following entries:

∂Fi
∂pi−1

= di
K(φi)

µh

(

(kr(Si))
′

pi−1
(pi − pi−1)− kr(Si)

)

− Vsdiφi(Si)′pi−1
, i = 1, N − 1,

(61)

∂Fi
∂pi

= −di+1
K(φi+1)

µh

(

(kr(Si+1))′pi(pi+1 − pi)− kr(Si+1)
)

+ di
K(φi)kr(Si)

µh
+ Vsdi+1φi+1(Si+1)′pi , i = 1, N − 1,

(62)

∂Fi
∂pi+1

= −di+1
K(φi+1)kr(Si+1)

µh
, i = 1, N − 1, (63)

∂FN
∂pN−1

= dN
K(φN)

µh

(

(kr(SN ))′pN−1
(pN − pN−1)− kr(SN )

)

− VsdNφN (SN )′pN−1
,

(64)

∂FN
∂pN

= dN
K(φN)kr(SN )

µh
+ VsdN+1φN+1(SN+1)′pN . (65)

Let k be the iteration index. Then, after the k-th iteration we obtain the following
linear system:

J
(k)
F ∆p(k+1) = −F(k), (66)
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where

F(k) = F(p(k)),

J
(k)
F = JF (p(k)),

∆p(k+1) = p(k+1) − p(k)

and p(k) = (p
(k)
0 , p

(k)
1 , . . . , p

(k)
N ) is an approximation of the solution at the k-th itera-

tion. The threediagonal system (66) is solved using the Thomas algorithm (Samarskĳ,
1971).

As the numerical experiments show the above described algorithms give conver-
gent methods. But the theoretical studies for Newton’s method for our problem still
has to be done. There are works which prove the convergence of Newton’s method
for a finite volume scheme of nonlinear elliptic problems (e.g. Chatzipantelidis et al.,
2005; Douglas, Dupont, 1979). This problem is similar to ours. The diffusive term is
the same, but the convective term still has to be included in the theoretical studies.

4.3 Problem with dynamic capillary pressure-saturation relation

Let us consider now the full system of nonlinear algebraic equations (43)-(50), cor-
responding to the case of dynamic capillary pressure, τ 6= 0. For convenience, let us
write this system in the following form:

F(p,S) = 0,

G(p,S) = 0.

This is the system of two equations with two vector unknowns, the pressure p and
the saturation S. The direct application of Newton’s method to this system reads:







(

∂F
∂p

)(k)
(

∂F
∂S

)(k)

(

∂G
∂p

)(k)
(

∂G
∂S

)(k)







(

∆p(k+1)

∆S(k+1)

)

= −
(

F(k)

G(k)

)

, (67)

(

p(k+1)

S(k+1)

)

=

(

p(k)

S(k)

)

+

(

∆p(k+1)

∆S(k+1)

)

. (68)

In case of the stationary capillary pressure-saturation relation at each Newton
iteration we had a linear system with (N + 1) unknowns. The iteration process (67),
(68) produces a linear system with (2N + 3) unknowns. Increased size of the system
slows down the computational process as compared with the first case and uses a lot
of machine memory. Therefore, we want to develop an algorithm, which will solve
one equation at a time.

To achieve the convergence of the iterative process solving one equation at a
time we perform the following procedure. For the first system of equations, the
discretized mass conservation equation, we develop a new system of equations F∗

and solve it w.r.t. the pressure p (see Section 4.3.1). The second system of equations
G∗, the discretized dynamic capillary pressure-saturation relation, is used to find
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distribution of the saturation S (see Section 4.3.2). So one step of the iteration
process is presented in the following matrix way:

(

∂F∗

∂p
(p(k),S(k)) 0

0 ∂G∗

∂S
(p(k+1),S(k))

)(

∆p(k+1)

∆S(k+1)

)

= −
(

F∗(p(k),S(k))

G∗(p(k+1),S(k))

)

.

In the following we will omit the index "∗" and will consider F for the modified
mass conservation equation and G for the dynamic capillary pressure-saturation
relation. Then, assuming that the initial guesses p(0) and S(0), the algorithm for the
iteration process yields:

– Solve the linear system of equations:

∂F

∂p

(

p(k),S(k)
)

∆p(k+1) = −F
(

p(k),S(k)
)

.

– Update the pressure:
p(k+1) = p(k) +∆p(k+1).

– Solve the linear system of equations:

∂G

∂S

(

p(k+1),S(k)
)

∆S(k+1) = −G
(

p(k+1),S(k)
)

.

– Update the saturation:

S(k+1) = S(k) +∆S(k+1).

The numerical experiment shows that this algorithm gives us a convergent iter-
ative process. Its theoretical investigations is a subject of further research.

4.3.1 The mass conservation equation

To develop a new system of equations F we carry out the following equivalent trans-
formation procedure. We express pstatc (Si, φi), i = 1, N + 1 from equations (48)-(50):

pstatc (S1, φ1) =
2Vs
h
τ1(S1 − S0)− p0,

pstatc (Si+1, φi+1) =
Vs
h
τi+1 (Si+1 − Si)− pi, i = 1, N − 1,

pstatc (SN+1, φN+1) =
2Vs
h
τN+1(SN+1 − SN )− pN .

The right-hand sides of these equations will be defined as functions:

gi = gi(Si, Si−1, pi−1), i = 1, N + 1.

Hence, we have:

pstatc (Si, φi) = gi(Si, Si−1, pi−1), i = 1, N + 1. (69)

In section 3.4 we have already made some assumption on the function pstatc =
pstatc (S, φ). Using these assumptions, we obtain from (69) the following:

Si =
(

pstatc
)−1

(gi(Si, Si−1, pi−1), φi), i = 1, N + 1.
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This system of equation is equivalent to the system (48)-(50). Let us assume that
after some k-th iteration we have approximations p(k) and S(k). Then an intermediate
iterate Ŝ(k) is defined by:

Ŝ
(k)
i =

(

pstatc
)−1

(gi(S
(k)
i , S

(k)
i−1, p

(k)
i−1), φi), i = 1, N + 1. (70)

Omitting the iteration indexes (k), we introduce Ŝi, i = 0, N + 1, where Ŝ0 = C0,
defined by (70) in the discretized mass conservation equations (see (43)-(46)) and
represent them in a form suitable for Newton’s method, we obtain equations the
same as (57)-(59) with the only difference that instead of S we have Ŝ. This remark
is also true for the Jacobian entries (61)-(65). But for consistency we write down
these equations once again:

F0 = p0 + pstatc (C0),

Fi = −di+1
K(φi+1)kr(Ŝi+1)

µ

pi+1 − pi
h

+ di
K(φi)kr(Ŝi)

µ

pi − pi−1

h

+ Vs(di+1φi+1Ŝi+1 − diφiŜi), i = 1, N − 1,

FN = dN
K(φN)kr(ŜN )

µ

pN − pN−1

h
+ Vs(dN+1φN+1ŜN+1 − dNφN ŜN ).

Then, the Jacobian JF defined by (60) has the following entries:

∂Fi
∂pi−1

= di
K(φi)

µh

(

(kr(Ŝi))
′

pi−1
(pi − pi−1)− kr(Ŝi)

)

− Vsdiφi(Ŝi)′pi−1
, i = 1, N − 1,

∂Fi
∂pi

= −di+1
K(φi+1)

µh

(

(kr(Ŝi+1))′pi(pi+1 − pi)− kr(Si+1)
)

+ di
K(φi)kr(Ŝi)

µh
+ Vsdi+1φi+1(Ŝi+1)′pi , i = 1, N − 1,

∂Fi
∂pi+1

= −di+1
K(φi+1)kr(Ŝi+1)

µh
, i = 1, N − 1,

∂FN
∂pN−1

= dN
K(φN)

µh

(

(kr(ŜN ))′pN−1
(pN − pN−1)− kr(ŜN )

)

− VsdNφN (ŜN )′pN−1
,

∂FN
∂pN

= dN
K(φN)kr(ŜN )

µh
+ VsdN+1φN+1(ŜN+1)′pN .

where

(kr(Ŝi))
′

pi−1
= (kr(Ŝi))

′

Ŝi
(Ŝi)

′

gi
(gi)

′

pi−1
, i = 1, N + 1,

(Ŝi)
′

pi−1
= (Ŝi)

′

gi
(gi)

′

pi−1
, i = 1, N + 1.
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4.3.2 Equation for the capillary pressure

The discretized equations for capillary pressure (47)-(50) in a form suitable for New-
ton’s method read:

G0 = S0 − C0,

G1 = −p0 − pstatc (S1, φ1) +
2Vs
h
τ1(S1 − S0),

Gi = −pi−1 − pstatc (Si, φi) +
Vs
h
τi (Si − Si−1) , i = 2, N,

GN+1 = −pN − pstatc (SN+1, φN+1) +
2Vs
h
τN+1(SN+1 − SN ).

Then the Jacobian for Newton’s method takes the form:

JG =













1 0 0 . . . 0 0
∂G1

∂S0

∂G1

∂S1
0 . . . 0 0

0 ∂G2

∂S1

∂G2

∂S2
. . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . ∂GN+1

∂SN

∂GN+1

∂SN+1













,

where:

∂Gi
∂Si−1

= −Vs
h
τi i = 2, N,

∂Gi
∂Si

= −
(

pstatc (Si, φi)
)′

Si
+
Vs
h
τi, i = 2, N,

∂Gi
∂Si−1

= −2Vs
h
τi, i = {1, N + 1};

∂Gi
∂Si

= −
(

pstatc (Si, φi)
)′

Si
+

2Vs
h
τi, i = {1, N + 1}.

At the k-th iteration obtained the following linear system:

J
(k)
G ∆S(k+1) = −G(k)

and can be solved directly:







































∆S
(k+1)
0 = 0,

∆S
(k+1)
1 = −G(k)

1 ·
(

(

∂G1

∂S1

)(k)
)−1

,

∆S
(k+1)
i+1 =

(

−G(k)
i+1 −

(

∂Gi+1

∂Si

)(k)

·∆S(k+1)
i

)(

(

∂Gi+1

∂Si+1

)(k)
)−1

, i = 1, N.
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Table 1 Experimental Data (Rief, 2007)

Variable Definition Dimension Value

kr relative permeability − Sb

b parameter for relative permeability − 3.5

K intrinsic permeability [m2] K0
φ3

(1−φ)2

K0 parameter for intrinsic permeability [m2] 5e− 12
µ viscosity [Pa · s] 0.0008
Vs solid velocity [m/s] 1.667

pstatc static capillary pressure [Pa] a(φ− 1)
(

1
S−Sr

−

1
1−Sr

)1/2

a parameter for capillary pressure [Pa] P0

1−φ0

(

1
C0−Sr

−

1
1−Sr

)

−1/2

Sr residual saturation − 0.1
P0 initial pressure [Pa] −5000
C0 initial saturation − 0.5
φ0 initial porosity − 0.875

A
the left boundary

[m] −0.05
of the computational domain Ω

B
the right boundary

[m] 0.05
of the computational domain Ω

Fig. 6 Distribution of porosity Fig. 7 Thickness of layer

5 Numerical experiments

The goal of this section is to study the influence of the dynamic capillary pressure
on the behavior of the solution for different values of τ and to find out how accurate
the obtained one-dimensional model is. Numerical experiments were carried out for
parameters which are typical for a paper layer during a production process. The dis-
tribution of porosity and thickness of the layer are obtained from the model realized
in Rief (2005) (see Figures 6 and 7). The remaining data, needed for computational
experiments, is presented in Table 1.

5.1 Numerical experiment for the different values of the coefficient τ

Simulation results for the material coefficients between τ = 0 and 104 Pa · s are
presented. This range of the parameter τ was chosen, because for τ = 0 Pa · s we
have the standard model with p = −pstatc , then we increase this value by a factor 10
for each new experiment until we observe the significant difference for both output
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functions, pressure and saturation. We want to notice that this range of τ does not
contradict the real values of the material coefficient which were observed in different
experiments (Hassanizadeh et al., 2002; Manthey, 2006).

The distribution of porosity and the thickness of the layer, which are used as
input data, are presented in Figures 6 and 7. Results are shown in Figure 8, where
saturation S is plotted as a function of x-coordinate. Five different curves are rep-
resented, they correspond to values of τ equal to 0, 10, 102, 103 and 104 Pa · s. The
case when τ is equal to zero represents the static capillary pressure curve. Figure 8
shows that for this set of input parameters, there is no significant difference in sat-
uration for all values except τ = 104 Pa · s. But for pressure (see Figure 9 and 10)
we observe that the changes start already from τ = 10 Pa · s. Thus, we conclude
that the dynamic capillary pressure model included in the simulation of the pressing
problems influences the solution.

It was experimentally verified by Beck (1983) that the pressure peak locates be-
fore the center of the pressing zone. The model with the standard capillary pressure-
saturation relation (τ = 0 Pa · s) gives absolutely symmetric distribution of the
pressure with respect to nip centers. But when we include the dynamic effect in the
capillary pressure a shift of the peak is observed. Moreover, the behaviour of the pres-
sure profile obtained by our model corresponds to the experimental data announced
in Beck (1983). It means that we observe the same decreasing of the pressure below
the initial value behind the center of the pressing zone and before the equilibrium
w.r.t. the moving solid phase is reached (see Figure 9 and Beck (1983)).
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According to the behaviour of pressure from the experimental data (see Beck,
1983) we expect that the material coefficient τ has an order 10 − 102 Pa · s for the
felt which is used in our numerical experiment. Nevertheless, results are presented
for the range of τ from 0 to 104 Pa · s to see the sensitivity of the model.

5.2 Comparison of the present 1D model with the 2D model from Rief (2005)

To appraise the quality of the one-dimensional model we compare our numerical
results for τ = 0 Pa · s with results obtained in Rief (2005). The model realized in
Rief (2005) is two-dimensional and takes into account the geometry of the press rolls.
The distribution of pressure obtained by the model from Rief (2005) for the set of
parameters described above is presented in Figure 11. Note, that this experiment
is possible only in the one layer case. To be able to compare simulation results we
average the pressure obtained by 2D model in vertical direction. Pressures are plotted
in Figure 12 and the difference between them in Figure 13. From this experiment we
can see that the order of the error between the one- and the averaged two-dimensional
models is about 1%. The error consists of two parts. The first part arises from
omitting the vertical direction. This part of the error is irreducible. The second part
appears due to the different approximation schemes. The two dimensional model
is discretized by the finite element method. Our numerical scheme is obtained by
the finite volume method and the upwind approximation is used to discretize the
convective term. Due to this fact in the Figure 12 we observe a shift of the pressure
curves, which can be reduced by refining the mesh. Hence, we can conclude that the
obtained one-dimensional model suits for the simulation of the pressing section of a
paper machine in one layer case and in case of the diagonal intrinsic permeability
tensor.

Fig. 11 Distribution of pressure for two-dimensional model

5.3 Convergence test

It is known that in the case of non-smooth data, unphysical effects can be observed in
the numerical solution. Therefore, we perform the numerical experiment for different
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types of input data to appraise the rate of convergence of the approximate solution
to the continuous one.

Since the analytical solution is unknown, we consider a reference solution with a
very small mesh size h∗. This approximation of the continuous solution is defined as
p∗. Then, we obtain the dependence of the error E between the discrete solution ph

and the reference solution p∗ in the L2-norm:

E(h) =
‖p∗ − ph‖L2

‖p∗‖L2

,

where h is the size of mesh. We should notice that p∗ is not the exact solution
therefore if we change h∗ the dependence E(h) can also change. But we assume that
h∗ is small enough so that these changes are not significant.

We consider three different cases for input data, the porosity φ(x) and the thick-
ness of the layer d(x). The first experiment is carried out for the data which is con-
tinuous, but not continuously differentiable, φ(x), d(x) ∈ C. These curves have one
point x̂ ∈ (A,B) where first derivatives do not exist. Then, to obtain the second case
when the input data is at least twice continuously differentiable, φ(x), d(x) ∈ C2, we
apply the spline interpolation to intervals which contain x̂ such that (x̂−li/2, x̂+li/2)
for i = 1, 2, 3. These intervals have lengths l1 = 2 mm, l2 = 5 mm and l3 = 10 mm,
respectively. For the third experiment we use such functions for the porosity and the
thickness of the layer that they are differentiable for all degrees of differentiation,
φ(x), d(x) ∈ C∞, and given by:

φ(x) =
φ0 − ǫ(x)
1− ǫ(x) ,

d(x) = d0(1− ǫ(x)),

where d0 = 0.56 mm and

ǫ(x) =
Ci√
2π49
e−

x
2

2·49 , i = 1, 2,

with C1 = 4.9 and C2 = 5.9. Thus, we study the convergence in six numerical
experiments. Results for the model with the stationary capillary pressure-saturation
relation (τ = 0 Pa · s) are presented in Figure 14. For dynamic capillary pressure
with τ = 10 Pa · s the convergence results are shown in Figure 15.
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For the model with stationary capillary pressure (τ = 0 Pa · s) (see Figure 14),
the rate of convergence is O(h), but the convergence behavior is the same for all
types of input data. In case τ = 10 Pa · s the convergence rate is also O(h) for all
data types.

Fig. 14 Convergence results for model (25), (31)-(34) with τ = 0 Pa · s

6 Conclusion

The first objective of this work was to observe a behaviour of the capillary pressure-
saturation relation developed by Hassanizadeh and Gray. This relation has shown a
significant influence on the results. The obtained profiles of pressure and saturation
affected by the new description of the capillarity have agreed with the physical
behavior of the pressing process which was observed in laboratory experiment (Beck,
1983).

The second objective was to develop an accurate one-dimensional model for mod-
eling the pressing section of the paper machine. We have used an averaging procedure
to obtain the one-dimensional model which contains information about other direc-
tions. This model has given very good results, which are comparable with results
obtained by two-dimensional model.

The numerical experiments showed that the material coefficient τ has great in-
fluence on the solution. According to the laboratory experiment presented in Beck
(1983) we expect that the order of the coefficient τ is 10Pa · s. But there is no
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Fig. 15 Convergence results for model (25), (31)-(34) with τ = 10 Pa · s

information about the range of the coefficient τ for the present problem and more
work, including measurements, is needed.

A Second order approximation in case of a standard capillary

pressure-saturation relation

As it was mentioned in Remark 1 it is possible to construct the second order finite difference
scheme for problem with standard capillary pressure-saturation relation. This case is presented
by equations (43)-(46) together with (54)-(56) when the convective term in (25) approximated
by central differences. Here we discuss results, which are obtained using this approximation.
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Solving system (43)-(46), (54)-(56) by Newton’s method the Jacobian JF defined by (60)
has the following entries:

∂Fi

∂pi−1
= di
K(φi)

µh

(

(kr(Ŝi))
′

pi−1
(pi − pi−1) − kr(Ŝi)

)

− Vsdiφi(Ŝi)
′

pi−1
, i = 1, N − 1,

∂Fi

∂pi
= −di+1

K(φi+1)

µh

(

(kr(Ŝi+1))′pi (pi+1 − pi)− kr(Ŝi+1)
)

+ di
K(φi)

µh

(

(kr(Ŝi))
′

pi
(pi − pi−1) + kr(Ŝi)

)

+ Vs(di+1φi+1(Ŝi+1)′pi − diφi(Ŝi)
′

pi
), i = 1, N − 1,

∂Fi

∂pi+1
= −di+1

K(φi+1)

µh

(

(kr(Ŝi+1))′pi+1
(pi+1 − pi) + kr(Ŝi+1)

)

+ Vsdi+1φi+1(Ŝi+1)′pi+1
, i = 1, N − 1,

∂FN

∂pN−1
= dN

K(φN )

µh

(

(kr(ŜN ))′pN−1
(pN − pN−1)− kr(ŜN )

)

− VsdNφN (ŜN )′pN−1
,

∂FN

∂pN
= dN

K(φN )

µh

(

(kr(ŜN ))′pN (pN − pN−1) + kr(ŜN )
)

+ Vs(dN+1φN+1(ŜN+1)′pN − dNφN (ŜN )′pN ),

Distribution of pressure is shown in Figure 16 for two types of approximation of the
saturation (51),(53) and (54)-(56). The numerical solution for (54)-(56) result in nonphysical
oscillations close to the points where the input data is not smooth (see Figure 16).

Fig. 16 Distributions of pressure for different approximations of the convective term

We also carry out the convergence test, which shows that the convective term approximated
by central differences gives the convergence rate O(h2) (see Figure 17). From Figure 17 we
remark that in this case to obtain the best convergence of the approximate solution to the
continuous one it is enough to require continuous second derivatives from the porosity φ(x)
and the thickness of the layer d(x).

Acknowledgements The authors express their deep gratitude to Prof.S.M.Hassanizadeh for
the interesting discussions and for his valuable suggestions.



28 O. Iliev et al.

Fig. 17 Convergence results for model (25), (31)-(34) with τ = 0 Pa · s and the convective
term in (25) approximated by the central differences
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