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ABSTRACT. We study toric varieties over the tropical semifield. We define tropi-
cal cycles inside these toric varieties and extend the stable intersection of tropical
cycles in Rn to these toric varieties. In particular, we show that every tropical cycle
can be degenerated into a sum of torus-invariant cycles.

This allows us to tropicalize algebraic cycles of toric varieties over an alge-
braically closed field with non-Archimedean valuation. We see that the tropical-
ization map is a homomorphism on cycles and an isomorphism on cycle classes.

Furthermore, we can use projective toric varieties to compactify known trop-
ical varieties and study their combinatorics. We do this for the tropical Grassman-
nian in the Plücker embedding and compactify the tropical parameter space of
rational degree d curves in tropical projective space using Chow quotients of the
tropical Grassmannian.
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Introduction

1. Introduction to Tropical Geometry

An affine algebraic variety is the zero set of finitely many polynomials. For ex-
ample X =

{
(x1, x2) ∈ C2 | x21 − x2 = 0

}
is a closed subset of real dimension two

whose set of real points is the standard parabola. Tropical Geometry is concerned
with the study of deformations of these varieties into polyhedral complexes:
If X ⊆ Cn is an algebraic variety, we can look at its amoeba

A(X) = {(logt|x1|, . . . , logt|xn|) | x ∈ X,xi 6= 0 for all i} ⊆ Rn

for some t > 0.

The logarithmic limit set (or tropicalization) of X is the Hausdorff limit of these
sets for t → 0. It is a connected polyhedral complex of pure (real) dimension d
when X is an irreducible variety of complex dimension d (see Figure 1(a)).

Instead of taking a limit of logarithms of the usual Euclidean absolute value, the
modern approach studies the set

A(X(K)) = {(valx1, . . . , valxn) | x ∈ X(K), xi 6= 0 for all i}

where K is an algebraically closed field extending C with a non-Archimedean val-
uation val, i.e. a group homomorphism val : K× → R that satisfies the ultra-metric
triangle inequality val(a + b) ≤ max(val(a), val(b)). The set X(K) is defined as all
points of Kn that satisfy the same equations as X . In this case the set A(X(K))

(a) The amoeba A(C) of the complex curve
C = {(x, y) ∈ (C×)2 | x2+y2+4x+1 = 0}.
For this image the base of the logarithm was
chosen as t =

√
2.

(b) The non-Archimedean amoeba of the curve
C(K) = {(x, y) ∈ (K×)2 | x2+y2+t4x+1 = 0}
over the field K = C{{t}} of complex Puiseux se-
ries.

FIGURE 1. A complex amoeba and a non-Archimedean amoeba
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FIGURE 2. A tropical curve in R2. At every vertex the sum of the
outgoing vectors is zero.

is a polyhedral complex and called the non-Archimedean amoeba of X (see Fig-
ure 1(b) on the previous page).

A crucial feature of these polyhedral complexes is that they satisfy a balancing
condition (sometimes called a zero-tension condition) at every cell of codimension
one (see Figure 2).

2. Overview of Thesis and Main Results

This work can be subdivided into two parts:

• The first part develops an intersection theory for tropical cycles in toric
varieties. This part contains chapters one up to three. The main results
are in Sections 2.3 and 2.4, while the rest of chapter 2 is devoted to pre-
senting the already existing theory.

• The second part describes the combinatorics of certain toric compactifica-
tions of parameter spaces for tropical curves. It consists of chapters four
to six. The main results are in chapter four and chapter six. Chapter 4
investigates the tropical Grassmannian, with emphasis on the Grassman-
nian of lines. Chapter 5 collects results about Chow quotients and fiber
polytopes. These are used in Chapter 6 to construct compactifications of
the tropical parameter spaces of n-marked rational curves of degree d.

• Chapters one and three, which develop tropical toric varieties and the
relation to toric varieties over non-Archimedean fields are relevant for
both parts and might be of independent interest.

In Chapter 1 we construct tropical toric varieties in complete analogy to the com-
plex case (for which [Ful93] is the standard reference). If K is an algebraically
closed field with a non-Archimedean valuation, then we can consider a tropical-
ization map from a toric variety over K to the corresponding tropical toric variety,
extending the usual tropicalization from the algebraic torus (K×)n to Rn (as in
[Pay09a]).

In Chapter 2 we develop a theory of tropical cycles inside a tropical toric variety,
generalizing the theory of tropical cycles inside Rn as described in [AR09].
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For complete smooth toric varieties we are able to construct an intersection theory
of these cycles that unifies the stable intersection of tropical varieties, the intersec-
tion of Minkowski weights and the intersection of torus invariant subvarieties.

We then focus on compactifications of tropical fans inside tropical toric varieties.

We study the combinatorics of these compactifications for several spaces related to
tropical Grassmannians (Chapter 4): The parameter spaces Mlab

0,n(Rr, d) of labeled
n-marked tropical rational curves of degree d inside Rr from [GKM09] (they are
quotients of the tropical Grassmannian).

In Chapter 6 we describe a compactification M
lab

0,n(TPr, d) whose boundary points
correspond to connected tropical curves of genus zero and degree dwith nmarked
points in TPr. We construct this compactification by taking a Chow quotient of
the rank two tropical Grassmannian by a linear subspace of its lineality space.

We use methods similar to those of [Kap93] and [GM07] to study the combina-
torics of the corresponding Chow quotients of complex varieties.

Acknowledgements. I would like to thank Andreas Gathmann, Bernd Sturm-
fels, Carolin Torchiani, Christian Haase, Dennis Ochse, George François, Han-
nah Markwig, Johannes Rau, Kristin Shaw, Lars Allermann, Maike Lorenz, Sarah
Brodsky and Simon Hampe. My stay at the Tropical Geometry program of the
Mathematical Sciences Research Institute has been very helpful for furthering this
thesis.





CHAPTER 1

Toric Varieties

In this section we will construct tropical toric varieties, tropical analogues to com-
plex toric varieties. We begin with a short review of complex toric varieties. Those
are algebraic varieties constructed from polyhedral data in such a way that the
resulting variety has combinatorics similar to the polyhedral data.

Definition 1.1. Let N ∼= Zn be a lattice and V = N ⊗ R the corresponding real
vector space. The intersection of finitely many halfspaces in V is called a polyhe-
dron. Such a polyhedron is usually written as P = {x ∈ V | Ax ≥ b} where A is a
vector in (V ∨)r and b in Rr (usually we have V ∼= Rn, then A is an r × n-matrix).

If A lies in the lattice (N∨)r and b in the lattice Zr then P is called a rational
polyhedron. If A lies in (N∨)r but b is only in Rr then P is called a polyhedron
with rational slopes.

If P is a polyhedron and f ∈ V ∨ a linear form and a ∈ R with f · p ≥ a for all
p ∈ P then the set

{p ∈ P | f · p = a}
is called a face of P .

If τ is a non-empty polyhedron, we use the notation σ > τ to denote that τ is a
face of σ and dim(τ) + 1 = dim(σ). We call τ a facet of σ in this case.

Theorem 1.2. Let M be any finite point set in a real vector space. Then

conv(M) :=
{∑

λimi | mi ∈M,λi ∈ [0, 1],
∑

λi = 1
}

and
pos(M) :=

{∑
λimi | mi ∈M,λi ≥ 0

}
are polyhedra. Every polyhedron is of the form conv(A)+pos(B) for some finite setsA,B.

PROOF. This is a standard result about polyhedra, see for example chapter
one of [Zie95]. �

The objects that we need are polyhedral fans, collections of polyhedra satisfying
certain compatibility conditions.

Definition 1.3. A polyhedron C is a polyhedral cone if λx ∈ C for all λ > 0 and
x ∈ C. In other words, C is a cone if C = pos(C). It is a pointed cone if the origin
is a face. A compact polyhedron is called a polytope.

A polyhedral complex G is a set of polyhedra such that for all U in G all faces of
U are in G and for all U, V in G the intersection U ∩ V is a face of both U and V .

We use the notation F (k) to denote the set of k-dimensional polyhedra of a poly-
hedral complex F and |F | to denote the underlying set |F | :=

⋃
σ∈F σ.

A polyhedral fan is a polyhedral complex such that all polyhedra are cones. A
rational fan is a polyhedral fan such that all cones are rational polyhedra. A poly-
hedral fan F in a vector space V is complete if |F | = V .

11
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The bridge from polyhedral geometry to algebra will be via semigroups derived
from pointed rational polyhedral cones.

Definition 1.4 (Semigroup, Semifield).

(1) A semigroup is a set S together with an associative binary operation

· : S × S → S.

(2) A map f : S → T between semigroups is a morphism of semigroups if
f(ab) = f(a)f(b) for all a, b in S.

(3) A semigroup (S, ·) is commutative if the operation · is commutative.
(4) An element e of a commutative semigroup (S, ·) is called a neutral ele-

ment if e · s = s · e = s for all s ∈ S.
(5) A semigroup is a cancellative semigroup or a monoid if it is isomorphic

as semigroup to a subset of a group G.
(6) A semigroup (S, ·) is called idempotent if a · b ∈ {a, b} for all a, b ∈ S.

A monoid cannot be idempotent (unless it consists only of the neutral
element). The addition of the tropical semifield defined below is such an
idempotent operation.

(7) A set S with two associative operations⊕ : S×S → S and� : S×S → S
is called a semiring if (S,⊕) is a commutative semigroup with neutral
element and � is distributive over ⊕.

(8) Let (S,⊕,�) be a semiring with neutral element e (respective to⊕). Then
S is a semifield if (S \ {e},�) is an Abelian group.

All semigroups in this work will be commutative with a neutral element.

Definition 1.5 (Tropical Semifield T). The set T = R ∪ {−∞} is the semifield of
tropical numbers with operations

⊕ : T×T→ T, (a, b) 7→ a⊕ b = max(a, b)

and
� : T×T→ T, (a, b) 7→ a� b = a+ b.

As a topological space, T carries the topology of the half-open interval [0, 1[≈
[−∞,+∞[.

Example 1.6.

• Every group is a semigroup, every ring a semiring and every field a semi-
field.

• Let K = (K,+, ·) be a field. We write K× for the multiplicative group
(K \ {0}, ·) of K. Then (K, ·) = (K× ∪ {0}) is a semigroup that is not a
monoid.
• Let C ⊆ Rn be a polyhedral cone. Then the sets C,C ∩ Qn and C ∩ Zn

are monoids.
• The absolute value |·| : (C, ·) → (R≥0, ·) is a morphism of semigroups.

If K is a non-Archimedean field, then the valuation val : K → T is a
morphism of semigroups.

Definition 1.7. Let K be a semifield. The n-dimensional (algebraic) torus over K

is the set (K×)n.

Definition 1.8. A toric variety is a pair (T,X) where X is an irreducible algebraic
variety over a field K and T is an algebraic torus acting onX such that there exists
an open T -orbit of X isomorphic to T .
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The torus T comes with a lattice of one-parameter sub-groups

N = hom(K×, T ) := {λ : K× → T | λ is a continuous group homomorphism}

and a dual lattice of characters

N∨ = hom(T,K×) := {χ : T → K× | χ is a continuous group homomorphism}.

If our torus is T = (K×)n then the lattice N is given by hom((K×)n,K×) = Zn.

Let us assume that we have K = C and let us assume that (T,X) is a complex toric
variety that is compact in the Euclidean topology.

That means for every one-parameter subgroup λ the limit lim
t→0

λ(t) exists. We can

define an equivalence relation on the lattice N∨ such that two one-parameter sub-
groups are equivalent if they have the same limit point. It turns out that the corre-
sponding equivalence classes are (lattice points of relative interiors of) polyhedral
cones. Thus we get a fan structure onN or rather the vector spaceN⊗R (an exam-
ple of this is worked out in [Cox01]). This fan structure determines the topology
of the toric variety (T,X).

It is a result of [Oda78, Theorem 4.1] that a normal toric variety is determined
uniquely by its fan, and we will now focus on the synthetic construction of a toric
variety from a fan.

Will now describe a construction of toric varieties over arbitrary semifields. In
most parts, this is completely analogous to the theory of toric varieties over C as
described in [Ful93, Ewa96]. However, there is no Spec and no commutative rings,
so the constructions will occasionally be less elegant than in the classical theory.

The relationship between toric varieties and tropical geometry has been known
before. Many authors relate the vector space Rn to the torus (K×)n of a non-
Archimedean field, but few consider the extension Rn ⊆ Tn since the infinite
points of Tn interfere with the polyhedral geometry in Rn. Nonetheless, toric
varieties over the tropical semifield have been considered before, most notably by
Sam Payne in [Pay09a] and by Takeshi Kajiwara (unpublished, but announced in
[HKMP06]).

We will connect the intersection theory of [AR09] inside the torus Rn with the
usual intersection theory of torus-invariant subspaces and the description of co-
homology classes via Minkowski weights from [FS97].

Definition 1.9. Let σ ⊆ V be a pointed rational cone and

σ∨ := {x ∈ V ∨ | x · s ≥ 0 for all s ∈ σ}

the dual cone. Then Sσ := σ∨ ∩M is a finitely generated semigroup by Gordan’s
Lemma (see e.g. [Ful93, Prop 1.1]). If τ is a face of σ, then the inclusion of sets
i : Sσ → Sτ is a morphism of semigroups.

We call the cone σ unimodular if it is generated by a subset of a basis of N and
simplicial if it can be generated by a linearly independent subset of N .

Remark 1.10. We require σ to be pointed so that σ∨ is full-dimensional.

There are two basic constructions of toric varieties in complex algebraic geometry:

• To a rational fan F one can associate a normal toric variety XF (C) which
is covered by affine sets depending on the cones of the fan F .
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(a) Every lattice point in a unimod-
ular cone is a positive integer com-
bination of the integer vectors gen-
erating the cone.

(b) A cone that is not unimodu-
lar. The semigroup needs an inte-
rior point as additional generator.

FIGURE 3. The semigroups of a unimodular cone and a cone that
is not unimodular.

• To a collectionA = {a1, . . . , ak} ⊆ Zd of lattice points with d-dimensional
convex hull we can associate a projective toric variety YA(C). The matrix
A = (a1 . . . ak) defines a map (C×)d → (C×)k via z 7→ (zaj )j . Now YA(C)
is the closure of the image of (C×)d in P(Ck).

If the set A is the set of vertices of a full-dimensional polytope P with normal fan
F , then YA(C) = XF (C).

We will start with a tropical analogue XF (T) of XF (C). The basic building blocks
will be the set hom(Sσ,T). We will equip hom(Sσ,T) with a topology (as a sub-
space of RD for some D). Furthermore, it contains the vector space hom(Sσ,R) as
a dense open subset and contains the lattice hom(Sσ,Z).

Definition 1.11. For x ∈ R let x+ := max(x, 0) and x− := −min(0, x), i.e. x = x+−
x− and both numbers are non-negative. We use the same notation component-
wise for matrices and vectors.

We will use this when considering linear equations over T:

Let f be a vector in R1×n and x ∈ Rn. The equations f · x = 0 and f+ · x = f− · x
are equivalent, but with x ∈ Tn only the latter expression is defined for all x.

Definition 1.12. Let A ⊆ Zd be a semigroup with a finite set of generators G =
{g1, . . . , gk}. Let R = {r1, . . . , rn} ⊆ Zk generate the integer relations between
the gi, i.e. spanZ(R) = {z ∈ Zk |

∑
gizi = 0}. Let D be another commutative

semigroup. We define

K(G,R,D) :=
{
x ∈ D|G| | r+ · x = r− · x ∀r ∈ R

}
.

If D is a group then K(G,R,D) is a group and if it is a ring then K(G,R,D) is a
D-module.

Lemma 1.13.

(1) Let A ⊆ Zd be a finitely generated semigroup and G = {g1, . . . , gk} a set of
generators with relations generated by R = {r1, . . . , rn}. Let D be an additive
semigroup. Then hom(A,D) is in bijection with K(G,R,D).

(2) Let D = T. If H = {h1, . . . , hl} is another set of generators with relations S =
{s1, . . . , sm} then there is a linear isomorphism K(G,R,R) → K(H,S,R)
that extends to a homeomorphism K(G,R,T)→ K(H,S,T) and restricts to a
group isomorphism K(G,R,Z)→ K(H,S,Z).
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PROOF. We first show the inclusion hom(A,D) ⊆ K(G,R,D). Let f be an
element in hom(A,D). Define x ∈ DG via xi = f(gi). We have r+gi = r−gi for all
gi ∈ G and r ∈ R, hence r+f(gi) = f(r+gi) = f(r−gi) = r−f(gi), that means

x ∈
{
y ∈ DG | r+ · y = r− · y ∀r ∈ R

}
.

Now we show the other inclusion. Let x ∈ K(G,R,D). Let s ∈ A. There is a
representation s =

∑
aigi with ai > 0. Define f : A → T via f(s) =

∑
aixi. We

need to show that f is well-defined:

Assume s =
∑
bigi is another representation. We know

∑
aigi =

∑
bigi and we

want to show
∑
aixi =

∑
bixi. Now, since a and b are vectors in ZG we can look

at heir difference a − b. We have
∑

(ai − bi)gi = 0 since
∑
aigi =

∑
bigi. But that

means (ai−bi)i is an integer relation on the gi, hence
∑

(ai−bi)+xi =
∑

(ai−bi)−xi
which means

∑
aixi =

∑
bixi.

Now we want to prove the second statement of the lemma. Let gi and hj be two
different generating systems of A and let the base change be given via the rela-
tions gi =

∑
λijhj and hj =

∑
µjigi with λij , µji ∈ Z≥0. We want to show:

the map T : K(G,R,R) → K(H,S,R), x 7→ (
∑
i µjixi)j is a linear homeomor-

phism with inverse T−1 : K(H,S,R) → K(G,R,R), y 7→ (
∑
j λijyj)i. We know

gi =
∑
λij
∑
µjkgk and hj =

∑
µji
∑
λikhk, therefore

1 · hj =
∑
k

(
∑
i

µji)λikhk

is an integer relation on the hj . Hence yj =
∑
k(
∑
i µji)λikyk for all y ∈ K(H,S,R)

and similarly xi =
∑
k(
∑
j λij)µjkxk for all x ∈ K(G,R,R).

So x T7→ (
∑
i µjixi)j

T−1

7→ (
∑
j λij

∑
i µjixi)i which means the maps are inverse to

each other (the other direction follows from symmetry). By the same reasoning, we
get a group isomorphism K(G,R,Z)→ K(H,S,Z) and a bijection K(G,R,T)→
K(H,S,T). �

Definition 1.14 (Affine toric variety Uσ). Let σ be a cone and Sσ the correspond-
ing semigroup. We define Uσ := Uσ(T) := hom(Sσ,T). We equip Uσ with the
subspace topology induced via an embedding as in the preceding lemma.

Remark 1.15. Let A be a subsemigroup of Zn. Then the set hom(A,T) contains
the real vector space hom(A,R) and the lattice hom(A,Z) ∼= spanZ(A).

Remark 1.16. If K is a field then Uσ(K) = hom(Sσ,K) is isomorphic to the closed
points of the scheme Spec K[Sσ]. Toric varieties over C are usually considered
as analytic spaces with the Euclidean topology. If K is a non-Archimedean field
then K has a topology induced by the valuation. This topology, however, turns
K into a totally disconnected topological space. Usual remedies are the use of
Grothendieck topologies in rigid analytic geometry or the embedding of K and
varieties over K into the corresponding Berkovich spaces [Ber90].

Remark 1.17. We can describe the topology of Uσ(T) in terms of σ: Uσ(T) is home-
omorphic to σ∨ as a cell complex. We will prove this in Theorem 1.33.

Example 1.18. Let σ = pos

{(
−1
2

)
,

(
2
−1

) }
. The dual cone is given via σ∨ =

pos

{(
1
2

)
,

(
2
1

)}
. These cones are simplicial but not unimodular.
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Let us compare the lattice hom(σ∨ ∩ Z2,Z) with hom({0}∨ ∩ Z2,Z) = Z2. A

generating set for σ∨ ∩Z2 is given by the vectors v1 =

(
1
2

)
, v2 =

(
2
1

)
, v3 =

(
1
1

)
.

They satisfy the relation v1 + v2 = 3v3. Any tuple (z1, z2, z3) ∈ Z3 satisfying this
relation gives rise to a map f : σ∨ ∩ Z2 → Z via p = α1v1 + α2v2 + α3v3 7→
α1z1 + α2z2 + α3.

The inclusion Z2 = hom(Z2,Z) → hom(σ∨ ∩ Z2,Z) maps (x, y) to the tuple
(2x+ y, 2y + x, x+ y).

Remark 1.19. Assume that σ is unimodular. Let b1, . . . , bn be a basis of N with
σ = pos(b1, . . . , bk). Then σ∨ = pos(b∨1 , . . . , b

∨
k , b
∨
k+1, . . . , b

∨
n ,−b∨k+1, . . . ,−b∨n). The

only relation on these generators are generated by b∨k+1 + (−b∨k+1) = 0. Hence

Uσ =
{
x ∈ Tn+n−k | xk+i + xn+i = 0 for all i = 1, . . . , n− k

}
.

This means xk+i and xn+i cannot be infinite for i > k. All coordinates xn+i are
determined via xn+i = −xk+i. All coordinates xi with i ≤ k have no condition on
them. Hence we see Uσ ∼= Tk ×Rn−k.

Note that as σ∨ = pos(b∨1 , . . . , b
∨
k ) + span(b∨k+1, . . . , b

∨
n), we have σ∨ ∼= Rk

≥0 ×
Rn−k ≈ Tk ×Rn−k ∼= Uσ .

Definition 1.20 (Tropical Toric Variety). Let F be a rational fan and σ, τ cones of F .
The inclusion iσ,τ : Sσ → Sτ induces an inclusion Uτ → Uσ . We identify Uτ with
iσ,τ (Uτ ) ⊆ Uσ for all τ ⊆ σ and define the tropical toric variety as the topological
space

XF (T) :=
∐
σ∈F

Uσ/ ∼

where we glue along all those identifications iσ,τ .

We should view a tropical toric variety X as a triple (N,T,X) satisfying the fol-
lowing properties

• T is a dense open subset of the topological space X homeomorphic to a
finite-dimensional real vector space.

• N ⊆ T is a lattice and T is isomorphic to N ⊗R and hom(N,T).
• X has a finite open cover Uj . Each Uj contains T and is homeomorphic

to a subset of some Tnj . In the case that F is complete and unimodular
there is an open cover Uj such that each Uj is homeomorphic to Tn where
n = dimT .

• Every transition map preserves the vector space T and the lattice N . In
the unimodular case a transition map is given by an invertible integer
matrix.

• T acts onX extending the action on itself. We will later see that each orbit
of the action is isomorphic to a quotient of T by a subspace and contains
a lattice that is isomorphic to a quotient of N by the same subspace.

• A tropical toric variety X constructed from a rational fan F contains this
fan in its torus T . Torus orbits will be in one-to-one correspondence with
cones of F as in the complex case. We will later see that the closure of F
in X is compact (even when X is not compact).

Example 1.21. There are (up to isomorphism, defined below) three fans in V =
R = R1.

F0 = {0} has only one cone, it corresponds to the toric variety XF0
(T) = U{0} =

hom(Z,T) = R.
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F1 = {{0},R≥0} has one chain of cones R = U{0} ⊆ UR≥0
= hom(N,T) = T.

Therefore XF1
(T) = T.

F2 = {R≤0, {0},R≥0} has two maximal cones each isomorphic to T. Their in-
tersection is the torus UR≥0

∩ UR≤0
= U{0} ∼= R. One embedding is given via

U{0} → UR≥0
, x 7→ x as it comes from the inclusion N→ Z. The other embedding

is given via U{0} → UR≤0
, x 7→ −x as it comes from the inclusion −N → Z. We

glue together two copies of R∪{−∞} over R via the identification x 7→ −x. Hence
XF2

(T) = {−∞} ∪R ∪ {+∞}.

Definition 1.22. [Ewa96]

Let XF be a toric variety over a semifield. A point p ∈ XF is called regular or
smooth if there is a unimodular cone σ ∈ F such that p ∈ Uσ .

The toric variety XF is called regular or smooth if every point is regular and sin-
gular otherwise.

Remark 1.23. XF is regular as defined above if and only if F is unimodular.
XF (K) is regular as defined above if and only if the corresponding algebraic vari-
ety over K is regular. XF (C) is regular as defined above if and only if it is smooth
as a complex analytic space.

Definition 1.24 (Subfan). A fanG is a subfan of a fan F if every cone ofG is a cone
of F .

Definition 1.25 (Map of fans). Let F ⊆ V ∼= Rn be a fan with lattice N , G ⊆ V ′ ∼=
Rm be another fan with lattice N ′. Let h : V → V ′ be a linear map such that
h(N) ⊆ N ′ and h(σ) is contained in a cone of G for every cone σ of F . We call h a
map of fans and write h : F → G.

Proposition 1.26. Let h : F → G be a map of fans. Then h extends to a continuous map
h : XF (T)→ XG(T).

PROOF. Let x ∈ Uσ and σ′ ∈ G with h(σ) ⊆ σ′. An element m ∈ Sσ′ deter-
mines a map m : N ′ → Z, n 7→ m · n.
Now it also determines a map h∗(m) : N → Z, n 7→ m · h(n). If n ∈ σ then
h(n) ∈ σ′, hencem ·h(n) = 0 and h∗(m) ∈ Sσ . Hence we have a map h∗ : Sσ′ → Sσ
that induces a map h∗ : Uσ → Uσ′ . These maps glue together to form a map
h : XF (T)→ XG(T). �

Let F ⊆ V be a rational fan with lattice N . As V is the torus of the toric variety
XF (T), there should be an action of V on XF (T).

Definition 1.27. The action of V = U{0} = hom(N∨,T) on hom(N∨ ∩ σ∨,T) is the
addition of functions, the semigroup operation in hom(N∨∩σ∨,T) ⊇ hom(N∨,T).
It is the usual component-wise addition of points in Tn after the choice of a gen-
erating system of σ (as in Lemma 1.13). This defines an action of U{0} on all of
XF (T).

Theorem 1.28 (Torus Orbits). Let F ⊆ V be a rational fan with lattice N ⊆ V . There
are decompositions

(1)
Uσ =

∐
τ⊆σ

O(τ)

(2)
XF (T) =

∐
τ∈F

O(τ)
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into orbits O(τ) of the action of V on XF (T) where O(τ) ⊆ hom(τ∨∩N∨,T) is isomor-
phic to N ⊗R/ span(τ).

Here [v] ∈ N(τ) corresponds to ψ[v] : τ∨ ∩N∨ → T with

ψ[v](u) =

{
uv if u ∈ τ⊥

−∞ otherwise.

PROOF. Let f be an element of hom(N∨,T). If [v] ∈ N ⊗R/ span(τ), then

(f + ψ[v])(u) =

{
uv + f(u) if u ∈ τ⊥

−∞+ f(u) otherwise.

Hence fψ[v] = ψ[f+v] ∈ O(τ), which means the O(τ) are orbits of the V -action.

Let f ∈ hom(N∨ ∩ σ∨,T). We need to find τ ⊆ σ and [v] ∈ N ⊗ R/ span(τ) such
that f = ψ[v].

Let G = {g1, . . . , gk} be a generating system of σ.

If W = f−1(−∞) is non-empty, then it is a sub-semigroup of Sσ . It must be gen-
erated by a subset H of G. The cone of H must be a face of σ (as every convex
combination of points in W has image −∞ under f ). Hence we have a face τ ⊆ σ
such that f(u) = −∞ if and only if u ∈ span(τ). Now f is a map to R on M ∩ τ⊥
so it is defined by an element [v] ∈ N/ span(τ).

Hence every element of hom(Sσ,T) corresponds to exactly one element in one
O(τ), which means the O(τ) are precisely the torus orbits. �

Remark 1.29. The same result is true in the complex case [Ful93, Prop. 3.1] and
could therefore be obtained via tropicalization. When tropical toric varieties were
introduced in [Pay09a], they were defined as the disjoint union

∐
τ∈F N(τ) and

then equipped with a global topology.

Theorem 1.30 (Orbit Closures). Let F be a smooth complete fan. Let O(σ) be a torus
orbit of XF (T). Its topological closure is given by

V (τ) := O(σ) =
∐
σ⊆τ

O(τ).

The orbit closure has itself the structure of a toric variety:

XstarF (σ)(T) =
∐

τ ′∈starF (σ)

N ′(τ ′)

with lattice N ′ = N/Vσ ⊆ N(σ) and fan starF (σ) consisting of cones τ ′ = τ/Vσ for all
cones τ ⊇ σ of F .

PROOF. This is the same result as in the complex case [Ewa96, Lemma 4.4]
and could therefore be obtained via tropicalization. This is worked out in [Pay09a,
Section 3]. �

Lemma 1.31. Let N be a lattice and F be a fan in N ⊗R. XF (T) is compact if and only
if XF (C) is compact.
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PROOF. The exponential function exp : T → R≥0 induces a homeomorphism
between XF (T) and XF (R≥0). The absolute value |·| : C→ R≥0 induces a retrac-
tion XF (C)→ XF (R≥0). Hence XF (T) is compact if XF (C) is compact.

There is also a surjection R≥0 × S1 → C which induces a surjection XF (R≥0) ×(
S1
)dimN → XF (C) (see [Ful93, Section 4.2]). Hence XF (C) is compact if XF (T)

is compact. �

Corollary 1.32. If F ⊆ N ⊗R is complete then XF (T) is compact.

PROOF. Let XF (C) be the complex toric variety corresponding to F . It is com-
pact in the Euclidean topology if F is complete ([Ful93, Prop. 2.4]). We will pro-
vide a direct proof of this result in Lemma 3.24. �

Theorem 1.33. Let F be the normal fan of a lattice polytope P . Then there is a homeomor-
phism µ : XF (T)→ P such that µ|O(σ) is an analytic homeomorphism to the interior of
the face of P normal to σ.

PROOF. The topological semigroups (T,+) and (R≥0, ·) are isomorphic via
the map exp : T → R≥0. This induces a homeomorphism between XF (T) and
XF (R≥0) which respects torus orbits.

If F is the normal fan of a polytope P , then XF (R≥0) is homeomorphic to P and
respects torus orbits as stated ([Ful93, Prop. 4.2]). �

Remark 1.34. The relationship between the tropicalization of a projective toric
variety and the moment map of that variety to a polytope is discussed in more
detail in [Pay09a, Remark 3.3].

We will also use a representation of XF (T) as a quotient of an open affine set by a
torus action, similarly to the construction in [Cox95].

Definition 1.35 (Toric Variety as Global Quotient). Let F be a rational fan with
lattice N and let ρ1, . . . , ρr be the rays of F . Let vρ ∈ N be the unique generator of
ρ ∩N .

We define N ′ := ZF (1)

and consider the fan F ′ ⊆ N ′ ⊗ R defined as follows: For
every cone σ ∈ F there is a cone σ′ ∈ F ′ with σ′ := pos(eρ : ρ ∈ σ(1)) where
(eρ)ρ∈F (1) is the standard basis of RF (1)

.

It is a subfan of the following fan E′ which describes the toric variety TF (1)

. For
any subset S ⊆ F (1) the set pos(eρ : ρ ∈ S) is a cone of E′. This means XF ′ is a
subvariety of the affine toric variety XE′ = TF (1)

.

For each cone σ ∈ E′ we define the linear functions

xσ :=
∑
ρ∈σ(1)

xρ

and
xσ̂ :=

∑
ρ/∈σ(1)

xρ

where xρ is the coordinate function corresponding to the ray ρ in the vector space
RF (1)

.

Every cone σ′ of E′ \ F ′ corresponds to a set Z(σ′) :=
{
x ∈ TF (1) | xσ′ = −∞

}
.
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The union
⋃
σ′∈E′\F ′ Z(σ′) is equal to

ZF :=
{
x ∈ TF (1)

| xσ̂ = −∞ ∀σ ∈ F
}
.

Let us finally consider the linear map pF : RF (1) → N defined via eρ 7→ vρ. We
define GF as the kernel of pF . By construction, pF : F ′ → F is a surjective map of
fans and hence determines a surjection pF : TF (1) \ ZF → XF .

Theorem 1.36. Let F be a simplicial fan. XF (T) is homeomorphic to the topological
quotient XF ′(T)/GF and the homeomorphism respects torus actions.

PROOF. This is true for the complex case [Cox95, Theorem 2.1] and therefore
also true for toric varieties over C{{tR}}. Hence we get the result (which uses a lot
of algebra) via tropicalization. �

This quotient construction allows us to equip arbitrary simplicial toric varieties
with a homogeneous coordinate ring. In the complex case the description

XF (C) = (CF (1)

\ ZF )/GF (C)

leads to an open cover with sets U ′σ/GF = Spec
(
C[F (1)]xσ̂

)GF for σ ∈ F . The ring
C[F (1)] is called the homogeneous coordinate ring of XF (C). We will now repeat
this construction tropically.

Definition 1.37 (Homogeneous Coordinates). We consider the tropical polynomial
ring AF := T

[
xρ : ρ ∈ F (1)

]
. It is the semiring equivalent to the usual polynomial

ring with variables xρ indexed by the rays of F . That means that set-theoretically
elements are functions from the set of multi-indices NF (1)

to the space of coeffi-
cients T that are almost always the neutral element of T.

Each tropical polynomial f =
⊕
aI � xI can be evaluated at a point p ∈ TF 1

lead-
ing to the assignment p 7→ f(p) =

⊕
aI � pI = max(aI + I · p). You should think

of tropical polynomials as the set of all such functions (even though the corre-
spondence between tropical polynomials and the functions coming from tropical
polynomials is not one-to-one).

We define the inclusion i : N∨ → ZF (1)

,m 7→
∑

(mvρ)eρ and define the class
group of F

Cl(F ) := ZF (1)

/N∨.

We give AF a Cl(F ) grading via deg xρ := [eρ] ∈ Cl(F ).

Remark 1.38. A map f : Cl(F ) → R is a map ZF (1) → R such that f(N∨) = 0,
hence

hom (Cl(F ),R) =
{
x ∈ RF (1)

|
∑
〈m, vρ〉xρ = 0 for all m ∈ N∨

}
= ker pF

= GF .

We obviously have a bilinear map Cl(F ) × GF → R coming from the pairing
Cl(F )× hom(Cl(F ),R)→ R.

If Y = XF (C) is the complex toric variety defined by F , then Cl(F ) is isomorphic
to the Chow group of codimension one An−1(Y ).
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Theorem 1.39. Let XF (T) be a tropical toric variety and f a homogeneous tropical poly-
nomial from its coordinate ring AF . Let g ∈ GF . Then f(g + x) = deg(f) · g + f(x).

In particular: If f, h are homogeneous of the same degree, then f(x) − h(x) defines a
function XF (T) \ h−1 ({−∞})→ T.

PROOF. We have f(x) = max ai + Di · x with deg xDi = deg xDj for all i 6= j.
Then

f(g + x) = max {ai +Di · (g + x)}
= max {ai +Di · x+Di · g}
= max {ai +Di · x+ deg(f) · g}
= max {ai +Di · x}+ deg(f) · g.

�

Example 1.40. Let F be the fan of projective n-space. It has edges −e1, . . . ,−en
and e0 =

∑
ei. This means AF = T[x0, . . . , xn]. We have

ZF = {x ∈ Tn | xi = −∞ for i = 0, . . . , n} = {−∞, . . . ,−∞}

and Cl(F ) = Z in the exact sequence 0→ Zn pF→ Zn+1 → Cl(F )→ 0.

This leads to GF = R with embedding

GF = {x | x0 − xi = 0 for i = 1, . . . , n} ⊆ Rn+1

= R (1, . . . , 1) .

Therefore, we view TPn := Tn \ {−∞, . . . ,−∞}/R(1, . . . , 1) as tropical projective
space.

This fan is the normal fan of the simplex conv(0, e1, . . . , en). Hence TPn is isomor-
phic as cell complex to an n-simplex.

Definition 1.41. We will later need lots of projective spaces, therefore we introduce
the abbreviations P(n) = Pn−1 and P

(
n
2

)
= P(n2)−1 for projective spaces over the

tropical numbers and over algebraically closed fields.

Definition 1.42 (Linear map). Let F ⊆ V , G ⊆ V ′ be two fans, A ⊆ XF (T) and
B ⊆ XG(T) arbitrary non-empty subsets. Let L : A→ B be a map. We say that L
is a linear map if there are subfans F ′ of F and G′ of G such that A ⊆ XF ′(T) ⊆
XF (T) and B ⊆ XG′(T) ⊆ XG(T) and there is a map of fans l : F ′ → G′ such that
L|A = l|A.

Example 1.43. We consider the set

A =
{

[(x, y, z)] ∈ TP2 | max(x, y, z) is attained twice
}
.

Then f : A→ TP1, [(x, y, z)] 7→ [(x, y)] is a linear map (Figure 4 on the next page).

Definition 1.44. Let F be a complete smooth fan. To every ray ρ ∈ F (1) corre-
sponds a subset Dρ := V (ρ) ⊆ XF (T) called a boundary divisor.

We understand Dρ by looking at it in the charts Uσ :

If ρ ∈ σ(1) then Uσ ∩Dρ =
{
x ∈ Uσ | x(v∨ρ ) = −∞

} ∼= Tn−1 × {−∞} ⊆ Tn. Dρ is
one of the n boundary faces of Uσ ∼= Tn.

If ρ /∈ σ(1), then Uσ ∩Dρ = ∅.
In homogeneous coordinates, we have Dρ = {x ∈ XF (T) | xρ = −∞}.
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TP2

TP1

FIGURE 4. A linear map from a subset of P2 to P1.

As in the classical case, Dρ is itself a toric variety: in the lattice N/ span(vρ) the fan
consists of all cones σ/ span(vρ) for ρ ⊆ σ ∈ F .

If X = XF (T) is a toric variety, then ∂X := X \ V is the union of all boundary
divisors:

∂X =
⋃

ρ∈F (1)

Dρ.



CHAPTER 2

Tropical Intersection Theory

In this chapter we will introduce an intersection theory for polyhedral complexes
inside tropical toric varieties that mirrors the intersection theory for algebraic cy-
cles in complex toric varieties. We begin with a review of the tropical intersection
theory established so far, then extend it to tropical toric varieties and finally relate
it to the intersection theory in non-Archimedean toric varieties.

1. Tropical Polyhedral Complexes

Definition 2.1. Let σ be a polyhedral cone and τ a facet of σ, then uσ/τ is defined
to be the unique positive generator of (N ∩ span(σ))/(N ∩ span(τ)) ∼= Z (oriented
such that points of σ∩N are positive). A vector v ∈ N is called a primitive normal
vector of σ over τ if uσ/τ = v + span(τ).

If P ⊆ V is a polyhedron and σ a facet of P then we say that v ∈ N is a primitive
normal vector of P with respect to σ if (v, 1) ∈ N ×Z is a primitive normal vector
of pos(P × {1}) over pos(σ × {1}).

Definition 2.2. A weighted complex is a rational polyhedral complexC in a vector
space V such that all inclusion-maximal polyhedra have the same dimension d and
there is a weight function w : C(d) → Z.

A weighted complex C of dimension d is balanced, if for all τ ∈ C(d−1):∑
σ>τ

w(σ)uσ/τ = 0 ∈ V/ span(τ).

Definition 2.3. Let C, D be two k-dimensional weighted polyhedral complexes in
a vector space V . We call C a refinement of D if the following holds:

(1) |C| = |D|.
(2) Every maximal cone σ of C lies in a maximal cone τ of D and wC(σ) =

wD(τ).

Two polyhedral complexesC,D are equivalent if they have a common refinement,
i.e. there is a polyhedral complex E such that E is a refinement of both C and D.

Lemma 2.4. [AR09, Constr. 2.13] Let C, D be weighted polyhedral complexes of the
same dimension. Then there are refinements C ′ of C and D′ of D such that C ′ ∪ D′ is
a pure-dimensional polyhedral complex. We turn it into a weighted complex by setting
wC+D(σ) = wC(σ) + wD(σ).

Lemma 2.5. [AR09, Lemma 2.11] Let C be a weighted polyhedral complex and D a
refinement of C. Then C is balanced if and only if D is balanced.

Theorem 2.6. [AR09, Lemma 2.14] The classes under refinement of k-dimensional bal-
anced polyhedral complexes in T form an Abelian group Zk(T ).

Definition 2.7 (Tropical Polyhedral Complex). A tropical polyhedral complex is
the class under refinements of a balanced polyhedral complex.

23
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Remark 2.8. Usually we do not care about the polyhedral structure of our com-
plexes, that is why we consider different complexes as equal if they have a com-
mon refinement. One example of this are tropicalizations of algebraic varieties.
These always have a structure of a balanced polyhedral complex ([BJS+07, Theo-
rem 2.9]), but there is no unique or canonical structure (see Example 2.9).

The polyhedral structure is important if we consider fans of toric varieties. For
example all complete fans of the same dimension are equal up to common refine-
ments.

Example 2.9. Let V = R4 and L1 = R2 × {0}, L2 = {0} ×R2.

We consider L1 and L2 as weighted polyhedral complexes with weight one. The
sum L1 +L2 does not come with a canonical polyhedral structure on L1 ∪L2. The
origin lies in the intersection L1 ∩ L2, but it is not a face of either. We need to
choose a complete fan in L1 and another complete fan in L2 to make L1 ∪ L2 into
a polyhedral complex.

Definition 2.10. Let [F ] be a class of fans under refinements. [F ] is called hübsch
if there is a (necessarily unique) fan G such that [F ] is the class of refinements of
G. In other words: the set |F | has a unique coarsest fan structure.

Remark 2.11. We have already seen an example of a fan that is not hübsch, Exam-
ple 2.9. Our main examples of hübsch fans will be Bergman fans and the space of
trees M0,n. Hübsch fans are important for tropical compactifications [LQ09].

2. Stable Intersections of Tropical Complexes

Definition 2.12 (Tropical Rational Function). Let N be a lattice and T the vector
space N ⊗ R. A tropical rational function on T is a continuous piecewise affine
linear function r : T → R satisfying the following conditions

(1) There is a finite cover T =
⋃
Pi of T with polyhedra with rational slopes

such that r is affine linear on each Pi.
(2) Let P be any polyhedron such that r is affine linear on P . Then there is a

(necessarily unique) vector rP ∈ (N ∩ span(P ))∨ and a number rP,0 such
that r(x) = rP · x+ rP,0 for all x in P .

The set of all tropical rational functions on T is an Abelian group, it contains the
subgroup N∨ of all tropical rational functions that are linear everywhere and the
subgroup R of constant functions T → R.

Two tropical rational functions are considered equivalent if their difference lies in
R. Most of the time we will only consider tropical rational functions up to this
equivalence and therefore set

Rat(T ) := {tropical rational functions on T}/R.

The linear functions from N∨ form a subgroup of Rat(X) since N∨/R ∼= N∨.

Remark 2.13. The difference of two tropical polynomials is such a piecewise affine
linear function.

Definition 2.14 (Tropical Intersection Product). Let [r] be an element of Rat(T ) and
C be a k-dimensional tropical polyhedral complex. We define a (k−1)-dimensional
weighted complex [r] · C as follows:
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Choose a refinement of C such that r is affine linear on every cell of C. Maximal
cells of [r] · C are codimension one cells of C, for such a cell Q, the weight of Q in
[r] · C is given by the formula

ordQ(r) :=
∑
P>Q

w(P )rP (vP/Q)− rQ(
∑

w(P )vP/Q)

for any choice of representative [r] and primitive normal vectors vP/Q representing
uP/Q.

Theorem 2.15. Let r, r′ be a tropical rational functions and C be a tropical polyhedral
complex.

(1) [r] · C is a well-defined tropical polyhedral complex.
(2) ([r] + [r′]) · C = [r] · C + [r′] · C and [r] · (C + C ′) = [r] · C + [r] · C ′.
(3) [r] · [r′] · C = [r′] · [r] · C.

PROOF. [AR09, Prop. 3.7, Prop. 6.7]. �

Definition 2.16. LetX be a polyhedral complex in T = N⊗R andX ′ a polyhedral
complex in T ′ = N ′ ⊗R. A morphism X → Y is a linear map T → T ′ that maps
|X| to |Y | and N to N ′.

Definition 2.17 (Push-Forward). Let X be a polyhedral complex in T = N ⊗ R

and X ′ a polyhedral complex in T ′ = N ′ ⊗ R. Let f : X → X ′ be a morphism.
Then the push-forward f∗X is the weighted polyhedral complex with cells

{f(P ) | P ∈ X contained in a maximal cone on which f is injective}
and weights

w(Q) :=
∑

f(P )=Q

w(P )
[
N ′Q : f(NP )

]
Definition 2.18 (Pull-Back). Let r : T → R be a tropical rational function and
f : S → T a morphism. The pull-back f∗r : S → R is defined as the piecewise
affine linear function x 7→ r(f(x)).

Theorem 2.19 (Projection Formula). Let f : C → D be a morphism, E a tropical
polyhedral complex on C and r a rational function on D. Then

[r] · (f∗E) = f∗([f
∗r] · E)

PROOF. [AR09, Prop. 4.8, Prop. 7.7] �

Definition 2.20 (Stable Intersection). Let C and D be balanced polyhedral com-
plexes of codimensions p and q in the vector space T . we define a balanced poly-
hedral complex C · D of codimension p + q via C · D = pr∗([∆] · C × D) where
[∆] is a product of tropical rational functions describing the diagonal in T ×T and
pr : T × T → T is the projection onto the first factor.

Remark 2.21. The name stable intersection was originally used in [RGST05] for
intersections of generic tropical curves in the plane. A more elaborate theory was
suggested in [Mik06b] and developed in [AR09, AR08].

A drawback of the theory is that the intersection of tropical polyhedral complexes
of dimensions k and h in an ambient vector space T of dimension n will always be
of dimension n− k − h, even if there is a subvariety E of T containing both cycles
(e.g. one cannot intersect two curves inside a tropical hypersurface of R3).

One approach to define an intersection product in the ambient variety E is to ex-
press the diagonal in E × E as a product of tropical rational functions. This is an
area of active research (see for example [FR10]).



26 2. TROPICAL INTERSECTION THEORY

Theorem 2.22. Let C, D and E be tropical polyhedral complexes in T . Let [r] : T → R

be a tropical rational function. Then

(1) T · C = C.
(2) C ·D = D · C.
(3) C · (D + E) = C ·D + C · E if D and E are of the same dimension.
(4) ([r] · C) ·D = [r] · (C ·D).
(5) (C ·D) · E = C · (D · E).

PROOF. [AR09, Cor. 9.5, Lemma 9.7, Theorem 9.10] �

Remark 2.23. We have |C ·D| ⊆ |C| ∩ |D|. Under suitable conditions (transversal
intersection) a maximal cell R of C · D is the intersection R = P ∩ Q of maximal
cells P of C and Q of D with the weight

w(R) = w(P ) · w(Q) · [N : N ∩ spanP +N ∩ spanQ]

[Rau09, Cor. 1.5.16].

A remarkable feature of this intersection product is that we can always perform the
intersection and never have to pass to classes modulo rational equivalence unlike
the classical intersection theory. The reason for this turns out to be that tropical
fans actually represent classes of complex cycles modulo rational equivalence.

Definition 2.24. LetN be a lattice and F a complete unimodular fan in T = N⊗R.
A balanced polyhedral fan with support in F (k) is called a Minkowski weight of
dimension k.

Minkowski weights of dimension k form a group MWk(F ) and all Minkowski
weights form a graded ring MW∗(F ) with multiplication the stable intersection of
fans in Rn.

Remark 2.25. The ring of Minkowski weights was introduced in [FS97], where it
was given an explicit ring structure. It was shown in [Kat09a] and [Rau09] that this
is actually the multiplication of tropical intersection theory as defined in [AR09,
Def 9.3] (Definition 2.20 in this work).

Remark 2.26. The group of Minkowski weights MWn−k(F ) is naturally dual to
the Chow group Ak(XF (C)). Let [a] be an element of Ak(XF (C)), it is represented
by a sum a =

∑
aσV (σ) of k-dimensional orbit closures (hence all cones σ are of

codimension k). Let m be a Minkowski weight, it consists of a number m(σ) for
every n− k-dimensional cone σ of F . The pairing MWn−k(F )×Ak(XF (C))→ Z

is simply given by m · [a] =
∑
aσm(σ). The balancing condition on m guarantees

that is independent of the chosen representative for the class [a].

Let [b] be an element from An−k(XF (C)) with b =
∑
bτV (τ). Via a suitable choice

of representatives of [a] and [b] we can achieve that for every cone σ with aσ 6=
0 and every cone τ with bτ 6= 0 the intersection V (τ) ∩ V (σ) is either a point
represented by V (pos(τ ∪ σ)) or empty. All these points are equivalent and this
defines a map An−k(XF (C))→ hom(Ak(XF (C)),Z) with the pairing

[b] · [a] =
∑

pos(σ∪τ)∈F (n)

aσbτ .

It turns out that this map is an isomorphism.

Theorem 2.27. Let F be a complete unimodular fan.Then the group of Minkowski weights
MWk(F ) is isomorphic to the Chow group Ak(XF (C)).
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PROOF. Let n be the dimension of XF (C). Minkowski weights of dimension
k are canonically isomorphic to the dual of Chow groups hom(An−k(XF (C)),Z)
[FS97, Prop. 1.4]. By Poincaré-duality, hom(An−k(XF (C)),Z) is isomorphic to
Ak(XF (C)). Note that [FS97] indexes Chow groups by codimension whereas we
index them by dimension. �

3. Intersection Theory on Tropical Toric Varieties

Definition 2.28 (Tropical Cycle). Let X = XF (T) be a tropical toric variety and
X =

∐
O(σ) be its decomposition into torus orbits. A k-cycle on X is a collection

C = (Cσ)σ∈F of tropical polyhedral complexes of dimension k in each O(σ) with
dimO(σ) ≥ k.

The group of all k-cycles on X is denoted Zk(X).

Definition 2.29. Let N be a lattice and F a fan in T = N ⊗R.

• Let σ be a cone of F . The lattice N(σ) is defined as N/ span(σ). It is the
lattice of the toric subvariety V (σ) of XF .

• Let P be a polyhedron in T . We define a lattice NP as N ∩ span(P ). It is
the lattice generated by the lattice points of P .

Definition 2.30 (Tropical Rational Function). A rational function on a tropical toric
variety is a tropical rational function on the torus of that variety.

Definition 2.31. Let r : T → R be a tropical rational function on X = XF (T) and
ρ ∈ F (1) be a ray. Let P ⊆ T be a polyhedron containing ρ in its recession cone
such that r is affine linear on P . The multiplicity or order of vanishing of r along
ρ is defined as ordρ(r) = rP (−vρ).

Lemma 2.32. For each ray ρ the map ordρ : Rat(X) → Z is a well-defined group
homomorphism.

PROOF. We first show that it is well-defined. Let P ⊆ T be a polyhedron
containing ρ in its recession cone such that r is affine linear on P . Let P ′ ⊆ T be
another polyhedron containing ρ in its recession cone such that r is affine linear
on P ′.

Let us assume that P and P ′ are adjacent. Let F be the intersection P ∩ P ′. Since
both P and P ′ contain the ray ρ in their recession cone, this is also true for F .
We then see rP v + rP,0 = rF v + rF,0 = rP ′v + rP ′,0 for all v ∈ F . That means
rP − r′P ∈ F⊥, in particular rP (−vρ) = rF (−vρ) = r′P (−vρ).

If P and P ′ are not adjacent, we can find a sequence P = P0, P1, . . . , Pk = P ′ of
adjacent polytopes that all contain the ray ρ in their recession cones.

The map ordρ is by definition linear and zero on constant functions. �

Definition 2.33. Let r be a tropical rational function and O(σ) a torus orbit. We
say r restricts to O(σ) if the assignment

z 7→ rσ(z) = lim
x∈T
x→z

r(x)

defines a tropical rational function O(σ)→ R.

Remark 2.34. This is the case if and only if ordρ(r) = 0 for all ρ ∈ σ.
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Definition 2.35 (Tropical Cartier Divisor). Let X = XF be an n-dimensional trop-
ical toric variety with torus T and C a k-cycle on X . A Cartier divisor on C is a
finite family ϕ = (Uα, rα) of pairs of open subsets Uα of |C| and tropical rational
functions rα on X satisfying the following conditions:

• The union of all Uα covers |C|.
• For every component Cσ of C in O(σ) and every chart Uα such that Uα ∩
Cσ 6= ∅ the function rα must restrict to O(σ).

• For every component Cσ of C in O(σ) and all charts Uα, Uβ such that
Uα ∩ Uβ ∩ |Cσ| 6= ∅ there is an affine linear tropical rational function d
such that rσα(x)− rσβ(x) = d(x) for all x ∈ Uα ∩Uβ ∩ |Cσ| and d extends to
a continuous function d : Uα ∩ Uβ → R.

Two Cartier divisors ϕ = (Uα, rα), ψ = (Wβ , sβ) are considered equal if

• For every component Cσ of C in O(σ) and all charts Uα, Vβ such that
Uα ∩ Vβ ∩ |Cσ| 6= ∅ there is an affine linear tropical rational function d
such that rσα(x)− sσβ(x) = d(x) for all x ∈ Uα ∩ Vβ ∩ |Cσ| and d extends to
a continuous function d : Uα ∩ Vβ → R

Cartier divisors form an Abelian group Cart(X) under chart-wise addition of trop-
ical rational functions. Tropical rational functions are included as the subgroup of
Cartier divisors that have the same function in every chart.

Remark 2.36. If C = XF (T) then these conditions simplify to:

• The union of all Uα covers XF (T).
• For all charts Uα, Uβ such that Uα∩Uβ 6= ∅ there is an affine linear tropical

rational function d such that rα(x)− rβ(x) = d(x) for all x ∈ Uα ∩ Uβ ∩ T
and d extends to a continuous function d : Uα ∩ Uβ → R.

Example 2.37. The easiest way to construct Cartier divisors that are not rational
functions is via homogeneous tropical polynomials. Let F be a complete unimod-
ular fan and f a homogeneous polynomial from AF . On every maximal chart
Uσ ∼= Tn there is a tropical polynomial fσ , the dehomogenization of f , obtained
by substituting 0 into all variables xρ such that the ray ρ is not contained in σ. The
collection (Uσ, fσ) then constitutes a Cartier divisor.

Definition 2.38. Let ϕ = (Uα, rα) be a Cartier divisor on X = XF (T) and ρ ∈ F (1)

be a ray. We choose a chart β containing points of O(ρ) and define ordρ(ϕ) :=
ordρ(rβ) as the multiplicity of ϕ along ρ.

Lemma 2.39. This multiplicity is well-defined.

PROOF. Let γ be a another chart that contains points ofO(ρ). Assume for now
that there is a point z contained in Uβ ∩Uγ ∩O(ρ). That means (rβ − rγ) = mx+ k
for some m ∈ N∨ and k ∈ R. Furthermore, the limit limx→zmx + k exists, which
is only possible if mvρ = 0. Hence ordρ(rγ − rβ) = 0.

We know that V (ρ) gets covered by finitely many open Uα, which means we can
find a chain of charts Uβ = Uα0 , . . . , Uαh = Uγ such that Uαi∩Uαi+1∩O(ρ) 6= ∅. �

Lemma 2.40. Let ϕ be a Cartier divisor on X . Then there is a tropical rational function s
and representative ϕ = (Uα, rα) with rα − s ∈ N∨ + R for all α.

PROOF. Choose a simply connected chart Uα0
containing the point 0 ∈ T . Set

sα0 = rα0 . We can (after a suitable enlargement of the atlas) now cover X with
charts Uα0

, · · · , Uαh such that for every i the set
⋃i
j=1 Uαj ∩Uαi+1

is connected. We
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know that there is an m ∈ N∨ such that the map x 7→ rαi(x)− rαi+1
+mx is locally

constant and therefore constant. By induction there is also an m′ ∈ N∨ and λ ∈ R

such that x 7→ rαi+1(x)− sαo +m′x+ λ is locally zero and therefore zero.

Hence the map s : T → R, x 7→ sαi(x) for any Uαi containing x is a well-defined
continuous piecewise affine linear function satisfying the claim. �

Lemma 2.41. A Cartier divisor ϕ on an n-dimensional complete smooth tropical toric
variety XF (T) can be represented as ϕ = (Uσ, rσ)σ∈F (n) .

PROOF. After applying Lemma 2.40 we can assume that every chart contains
T . Each orbit O(σ) consists of just one point. Each chart Uα containing the point
O(σ) must meet all orbits O(ρ) for every ray ρ contained in σ. We set rσ := rα and
see that (Uα, rα) = (Uσ, rσ). �

Lemma 2.42. A Cartier divisor on X is uniquely characterized by an element [s] in
Rat(X)/N∨ and a collection (aρ)ρ∈F (1) of integers.

PROOF. We assume that the Cartier divisor is given as ϕ = (Uσ, sσ). If we start
with a Cartier divisor ϕ = (Uσ, rσ), and choose aρ = ordϕ(ρ) and s = rσ for an
arbitrary maximal cone σ. We will now show how to construct a Cartier divisor
ψ from such data ((aρ)ρ∈F (1) , s). Let σ be a maximal cone of F . Let s be any
representative of [s]. We define a new representative sσ such that ordsσ (ρ) = aρ
for all rays ρ contained in σ (this can be done since σ is unimodular, as in [Ful93,
section 3.4]). The collection (sσ) forms a Cartier divisor ψ. We have ψ = φ since
sσ − rσ is linear and ordρ(sσ) = ordρ(rσ). �

When we want to use this representation, we write a Cartier divisor as

ϕ =
∑

aρDρ + [s]

with aρ = ordρ(ϕ).

We will describe how to form an intersection product of tropical Cartier divisors
and cycles in a tropical toric variety. In addition to using the (usual) faces of a
polyhedron we will also be using infinite faces – the intersection of torus orbits
with the closure of the polyhedron in the toric variety. This will allow us later on
to use a significantly broader definition of rational equivalence than [AR08].

Lemma 2.43. Let P be a polyhedron in T and P the closure of P in X . Then P ∩O(σ) is
non-empty if and only if the σ ∩ recP 6= ∅. In that case P ∩O(σ) = P/ span(σ) is again
a polyhedron.

PROOF. Let v be a vector in σ ∩ recP and p a point in P . Then xn = p+nv lies
in P and x = limn→∞ xn lies in O(σ) hence x ∈ P ∩O(σ).

In fact, we have P ∩ O(σ) = {limn→∞ p + nv | p ∈ P, v ∈ recP ∩ O(σ)}. If
we look at the orbit decomposition X =

∐
O(τ) =

∐
T/ span(τ) then the point

x = lim p+nv ∈ X corresponds to the point p+span(σ) inO(σ). Hence P ∩O(σ) =
P/ span(σ). �

Definition 2.44. Let X be a smooth complete tropical toric variety with fan F and
torus T . Let C be a (k + 1)-dimensional balanced polyhedral complex in T . Let σ
be any positive dimensional cone of F .

We define a k-dimensional weighted polyhedral complex O(σ) · C in O(σ) as fol-
lows:
For every maximal cell P of C such that P ′ = P ∩ O(σ) 6= ∅ and 1 + dim(P ′) =
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dimP the polyhedron P ′ is a maximal cell of O(σ) · C with the weight w(P ′) =
[N(σ)P ′ : NP (σ)] · w(P ).

Lemma 2.45. O(σ) · C is a balanced polyhedral complex.

PROOF. LetQ/ span(σ) be a codimension one cell ofO(σ) ·C. We write P ′ and
Q′ for quotients P/ span(σ) and Q/ span(σ) of polyhedra of C. We need to show∑
P ′>Q′ w(P ′)uP ′/Q′ = 0.

We know
∑
P>Q w(P )uP/Q = 0. Furthermore, since Q contains σ in its recession

cone, we know that every P with P > Q also contains σ in its recession cone.
Hence both sums iterate over the same index set.

Let (vP/Q)P be a system of primitive normal vectors for the maximal cones P sur-
rounding Q.

Let v1, . . . , vr be a lattice basis of NQ. Then v1, . . . , vr, vP/Q is a lattice basis of NP .
Let v′1, . . . , v′s be a lattice basis of N(σ)Q′ . Then v′1, . . . , v′s, vP ′/Q′ is a lattice basis of
N(σ)P ′ . We therefore find that the class uP/Q + spanσ = vP/Q +NQ + spanσ is a
multiple of uP ′/Q′ = vP ′/Q′ +N(σ)Q′ .

This factor can be expressed as [N(σ)P ′ : NP (σ)] /[N(σ)Q′ : NQ(σ)], hence we have
the formula [N(σ)P ′ : NP (σ)]uP ′/Q′ = [N(σ)Q′ : NQ(σ)]uP/Q + spanσ.

The balancing condition around Q′ then amounts to

∑
P ′>Q′

w(P ′)uP ′/Q′

=
∑
P>Q

[N(σ)P ′ : NP (σ)]w(P )uP ′/Q′

=
∑
P>Q

w(P ) [N(σ)Q′ : NQ(σ)]uP/Q + span(σ)

= [N(σ)Q′ : NQ(σ)]
∑
P>Q

w(P )uP/Q + span(σ)

= 0.

�

Lemma 2.46. Let P be a rational polyhedron such that P ′ = P ∩ O(σ) is non-empty.
Assume 1 + dimP ′ = dimP .

(1) There exists a unique primitve lattice vector vP/P ′ ∈ N ∩ recP ∩ σ.
(2) If Q < P and Q ∩O(σ) =: Q′ < P ′ then vP/P ′ = vQ/Q′

PROOF.

(1) We know that such a v exists, since recP ∩ σ 6= ∅. Assume we have two
different primitive lattice vectors v, w in recP ∩σ. Then dim pos(v, w) = 2
and pos(v, w) ⊆ recP, σ. That means dimP +span(σ) ≤ dimP −2. Hence
v = w.

(2) We have vQ/Q′ ∈ N ∩ recQ ∩ σ ⊆ N ∩ recP ∩ σ.

�
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Definition 2.47 (Intersection Product). Let ϕ be a Cartier divisor on a (k+ 1)-cycle
C. We define a k-cycle as follows:
We choose primitive normal vectors vP/Q and rational functions ϕP in open charts
containing P . For each orbit O(σ) with Cσ 6= 0 we get a component Eσ,σ in O(σ)
whose cells are the codimension one cells of Cσ with weight

w(Q) =
∑
P>Q

w(P )ϕP (vP/Q)− ϕQ(
∑

w(P )vP/Q).

For each orbit O(τ) with σ $ τ we get a component Eσ,τ in O(τ) whose cells are
the codimension one infinite cells of Cσ with weight

w(P ′) = w(P ) [NP (τ) : N(τ)P ′ ]ϕP ′(vP/P ′).

The intersection product ϕ · C is then defined as ϕ · C =
∑
σ⊆τ Eσ,τ .

Theorem 2.48. Let ϕ be a Cartier divisor on a (k + 1)-cycle C.

(1) ϕ · C is a well-defined cycle.
(2) ϕ · (C +D) = ϕ · C + ϕ ·D and (ϕ+ ψ) · C = ϕ · C + ψ · C.

PROOF.

(1) All components of the form Eσ,σ produce an intersection product as in
[AR09, Construction 6.4]. It is shown there that this definition is well-
defined and produces a balanced polyhedral complex.

Assume we an an orbit O(τ) containing an infinite facet P ′ of a max-
imal cell P in an orbit O(σ). Let Uα, Uβ be two open sets containing P ′.
Then the difference ϕα − ϕβ is constant along vP/P ′ .

For the balancing condition with respect to Eσ,τ , we pick a face Q′

of codimension one and then see that vP/P ′ = vQ/Q′ for all P ′ > Q′.
Furthermore if we pick an open set Uα containing Q′ then this set must
also meet all P ′ and all P as well as Q. Hence ϕP ′(vP/P ′ = ϕQ′(vQ/Q′ for
all P > Q, the balancing condition ofEσ,τ then follows from Lemma 2.45.

(2) This follows from the definition.

�

Example 2.49. Let us takeX = TP2 as ambient toric variety. We fix a chart T2 and
identify the torus T of X with R2 ⊆ T2.

Let us consider the rational function s : R2 → R, (x, y) 7→ max(2x− 1, 2y − 1, x+
y + 1, x, y, 0). When we treat T as a balanced polyhedral complex of weight one
we can form the intersection product s · T . This is a one-dimensional balanced
polyhedral complex in T , which is supported on the locus of non-linearity of s.

Let us compute the weight on the polyhedral cell Q = {2y − 1 = x + y + 1 ≥
0, x, y, 2x − 1} It is adjacent to the polyhedral cells P1 = {2y − 1 ≥ x + y +
1, 0, x, y, 2x − 1} and P2 = {x + y + 1 ≥ 2y − 1, 0, x, y, 2x − 1}. which are both
of weight one. Let us choose vP1/Q = (1, 0) and vP2/Q = (0, 1) as primitive normal
vectors. They satisfy (1, 1) = vP1/Q+vP2/Q ∈ Z2∩ spanQ = Z(1, 1). We now have

w(Q) = sP1(vP1/Q) + sP2(vP2/Q)− sQ(vP1/Q + vP2/Q)

= (2 + 1)− 2

= 1.

By symmetry, this means that the weight onQ2 = {2x−1 = x+y+1 ≥ 0, x, y, 2y−
1} is also equal to one. The polyhedron Q3 = {y = x+ y+ 1 ≥ 0, x, 2x− 1, 2y− 1}
is adjacent to P3 = {y ≥ x + y + 1, 0, x, 2x − 1, 2y − 1} and P4 = {x + y + 1 ≥
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0, x, y, 2x−1, 2y−1}. We choose vP3/Q3
= (−1, 0) and vP4/Q3

= (1, 0). We can then
compute

w(Q3) = sP3(vP3/Q3
) + sP4(vP4/Q3

)− sQ3(vP3/Q3
+ vP4/Q3

)

= (0 + 1)− 0

= 1.

By similar computations (more examples can be found in [AR09]), all weights are
equal to one.

If we considered the intersection product s ·TP2, we would get additional weights
on the boundary divisors of TP2. We want to form a Cartier divisor ϕ on TP2 such
that ϕ · TP2 = s · T , i.e. ϕ = 0 · D0 + 0 · D1 + 0 · D2 + [s]. We can do this by the
standard cover U0, U1, U2 on TP2 with ϕ0 = s, ϕ1 = s− 2x and ϕ2 = s− 2y. This
equals the dehomogenization of the tropical polynomial 2x− 1⊕ 2y− 1⊕ 2z⊕x+
y + 1⊕ x+ z ⊕ y + z on the respective charts.

Let us now consider the rational function r : R2 → R, (x, y) 7→ max(0,−x,−y). If
we form the intersection product r · (s ·T ) in T then we get three possible intersec-
tion points (points of s ·R2 where r is not linear). The point p1 = (0, 2) is adjacent
to Qa = conv{(−1, 1), (0, 2)} and Qb = (0, 2) + R≥0(1, 1) (they form a subdivision
of Q1). Our primitive normal vectors are vQa/p1 = (−1,−1) and vQb/p1 = (1, 1).
thus we get

w(p1) = rQa(vQa/p1) + rQb(vQb/p1)− rp1(vQa/p1 + vQb/p1)

= (1 + 0)− 0

= 1.

By symmetry we see that the weight of p2 = (2, 0) must also be one.

Hence we have three intersection points with a combined multiplicity of four (see
Figure 5 on the facing page).

However, as r is a rational function, we expect the intersection product r ·(ϕ ·TP2)

in TP2 to have a combined multiplicity of zero. The curve ϕ·TP2 has six boundary
points in TP2 \ R2. They are q1 = [(0,−∞, 0)], q2 = [(0,−∞, 1)] in D1, q3 =
[(0, 0,−∞)], q4 = [(0, 1,−∞)] inD2 and q5 = [(−∞,−1, 1)], q6 = [(∞, 1,−1)] inD0.

The point q1 is an infinite face of Q1 = (−1, 0) + R≥0(−1, 0). Hence vQ1/q1 must be
equal to (−1, 0) as the recession fan of Q1 is one-dimensional. We also see that all
involved lattice indices are one as the corresponding lattices are zero-dimensional.
Hence

w(q1) = w(Q1)
[(

Z2/(−1, 0)Z
)
∩ {0} :

(
Z2 ∩ (−1, 0)Z

)
/(−1, 0)Z

]
rQ1(vQ1/q1)

= 1 · 1 · (−1)

= −1

as rQ1
is −x and −vQ1/q1 = (1, 0). For similar reasons, the weights on q2, q3 and

q4 are also one. The point q5 = [(−∞, 1,−1)] is the infinite face of Q5 = (−1, 2) +
R≥0(1, 1). However, rQ5

is zero, so w(q5) = 0 and, by symmetry, w(q6) = 0.

Theorem 2.50. Let ϕ and ψ be tropical Cartier divisors on C such that ϕ restricts to ψ ·C
and ψ restricts to ϕ · C. Then ψ · ϕ · C = ϕ · ψ · C.

PROOF. The general idea for this proof is as follows:
We have a maximal cell P , a facet Q1 of P and a facet R of Q1. By the diamond
property of the face lattice of polytopes, there exists exactly one more facet Q2 of
P such that R is a facet of Q2. Swapping Q1 with Q2 in the formulas computing
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x+ y + 1

2x− 1

2y − 1

0

y

x

(a) The intersection s ·R2. All weights
are equal to one.

(b) The intersection ϕ ·TP2. All weights are equal
to one.

0

−x

−y

(c) The intersection r · R2. All
weights are equal to one.

(d) The intersection r ·TP2. All weights in the in-
terior are one, weights of the indicated boundary
divisors are negative one.

r = 0

r = −y

r = −x

1

1

2

(e) The intersection r · (s ·R2).

1

1

2

−1

−1

−1−1

(f) The intersection r · (ϕ · TP2). The sum of all
weights is zero.

FIGURE 5. The intersection of a rational function with a Cartier
divisor in TP2.

the weight of R will then be paramount to switching between ψ ·ϕ ·C and ϕ ·ψ ·C
since the relative data does not change, e.g. the normal vector vP/Q1

is identical to
vQ2/R.
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We can assume without loss of generality that C has only components in one torus
orbit and that this is the torus itself. There are four kinds of components in the
products ϕ · ψ · C and ψ · ϕ · C.

(1) Cells R which are facets of facets of cells of C. For these kind of cells
the commutativity follows from [AR09, Prop. 6.7] as no infinite faces are
involved.

(2) Cells P ′′ which are infinite faces of infinite faces of cells of C. The weight
of such a cell can be computed as

wψϕ(P ′′) = w(P ) [N(σ)P ′ : NP (σ)] [N(τ)P ′′ : NP ′(τ)]ϕP (vP/P ′)ψP ′(vP ′/P ′′).

As vP ′/P ′′ is a vector from recP there must be another infinite face P ? of
P with vP/P? = vP ′/P ′′ and vP?/P ′′ = vP/P ′ . We also have

[NP (σ) : N(σ)P ′ ] [NP ′(τ) : N(τ)P ′′ ] = [N(τ)P ′′ : NP (τ)] .

Hence wϕψ(P ′′) = wψϕ(P ′′).
(3) Cells Q′ which are infinite faces of facets of cells of C or
(4) cells Q′ which are facets of infinite faces of cells of C.

Every cell Q′ can be obtained both as an infinite face Q′ of a facet Q
of a maximal cell P or as the facet Q′ of an inifinite face P ′ of a maximal
cell P .

Thus the weight of Q′ is the sum of both of these constructions:

wϕψ(Q′) = w(Q) [NQ(σ) : N(σ)Q′ ]ϕQ(vQ/Q′)

+
∑

w(P ′)ϕP ′(vP ′/Q′)

with
w(Q) =

∑
w(P )ψP (vP/Q)

and
w(P ′) = w(P ) [N(σ)P ′ : NP (σ)]ψP (vP/P ′).

Hence we have

wϕψ(Q′) =
∑

w(P )ψP (vP/Q) [NQ(σ) : N(σ)Q′ ]ϕQ(vQ/Q′)

+
∑

w(P ) [N(σ)P ′ : NP (σ)]ψP (vP/P ′)ϕP ′(vP ′/Q′).

Using the fact that

ϕP ′([N(σ)P ′ : NP (σ)] vP ′/Q′) = ϕP ([N(σ)Q′ : NQ(σ)] vP/Q)

and vP/P ′ = vQ/Q′ we can rewrite this as

wϕψ(Q′) =
∑

w(P )ψP ′(vP ′/Q′) [NP (σ) : N(σ)P ′ ]ϕP (vP/P ′)

+
∑

w(P ) [N(σ)Q′ : NQ(σ)]ψQ(vQ/Q′)ϕP (vP/Q)

= wψϕ(Q′).

�

Definition 2.51 (Push-Forward). Let f : XF (T) to XG(T) be a morphism of com-
plete tropical toric varieties. Let C be cycle on XF . We define a cycle f∗(C) as
follows: f maps every orbit O(σ) of XF (T) to an orbit O(τ) of XG(T). We denote
the corresponding linear map with fσ . We have C =

∑
σ∈F Cσ and send it to

f∗(C) =
∑
σ∈F f

σ
∗ (Cσ).

Definition 2.52 (Pull-Back). Let f : XF (T) to XG(T) be a morphism of complete
tropical toric varieties. Let ϕ = (Uα, rα) be a Cartier divisor on XG(T). We define
a Cartier divisor f∗ϕ = (f−1(Uα), f∗rα) on XF (T).
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We have the following relation between push-forwards and pull-backs (extending
[AR09, Prop. 4.8]).

Theorem 2.53 (Projection Formula). Let f : XF (T) to XG(T) be a morphism of com-
plete tropical toric varieties. Let ϕ = (Uα, rα) be a Cartier divisor on XG(T).

Let E be a cycle on XF (T). Then ϕ · f∗(E) = f∗(f
∗ϕ · E).

PROOF. We assume without loss of generality that E has only components in
one torus orbit and that this is the main torus. The projection formula has been
proven in [AR09, Prop 4.8, Prop 7.7] for all faces in the main torus. Hence we only
need to compare the weights on infinite faces. Let σ be a cone of F . The image f(σ)
is contained in a cone τ of G. We denote the lattice of F with N and the lattice of
G with K.

The weight of an infinite facet of E is w(P ′) = w(P ) [N(σ)P ′ : NP (σ)] f∗ϕ(vP/P ′).
The weight of the push-forward is

wf∗f∗ϕE(f(P ′)) = w(P )
[
K(τ)f(P ′) : f(N(σ)P ′)

]
[N(σ)P ′ : NP (σ)] f∗ϕ(vP/P ′).

The weight of a cell f(P ) of the push-forward f∗(E) is w(P )
[
N ′f(P ) : f(NP )

]
.

The weight of an infinite facet is

wϕf∗E(f(P )′) = w(P )
[
Kf(P ) : f(NP )

] [
K(τ)f(P )′ : Kf(P )(τ)

]
ϕ(vf(P )/f(P )′).

If v ∈ recP ∩ σ then f(v) ∈ rec f(P ) ∩ f(σ), hence f(P ′) = f(P )′ and f(vP/P ′)
and vf(P )/f(P )′ are multiples of each other. Let us first compare f(vP/P ′) with
vf(P )/f(P )′ . One is in the lattice f(NP ∩ spanσ) while the other is in the lattice
Kf(P ) ∩ span τ . Hence

[
Kf(P ) ∩ span τ : f(NP ) ∩ spanσ

]
vf(P )/f(P )′ = f(vP/P ′)

We therefore have to compare[
K(τ)f(P ′) : f(N(σ)P ′)

]
[N(σ)P ′ : NP (σ)]

[
Kf(P ) ∩ span τ : f(NP ) ∩ spanσ

]
with [

Kf(P ) : f(NP )
] [
K(τ)f(P )′ : Kf(P )(τ)

]
.

By a standard result of linear algebra we have[
K(τ)f(P ′) : f(N(σ)P ′)

] [
Kf(P ) ∩ span τ : f(NP ∩ spanσ)

]
=
[
Kf(P ) : f(NP )

]
.

Hence we only need to show

[N(σ)P ′ : NP (σ)]
!
=
[
K(τ)f(P )′ : Kf(P )(τ)

]
.

As f is injective on P ′, this is equivalent to[
f(N)(τ)f(P )′ : f(N)f(P )(τ)

] !
=
[
K(τ)f(P )′ : Kf(P )(τ)

]
.

We can factor[
K(τ)f(P )′ : f(NP (σ))

]
=
[
K(τ)f(P )′ : Kf(P )(τ)

] [
Kf(P )(τ) : f(NP (σ))

][
K(τ)f(P )′ : f(NP )(τ)

]
=
[
K(τ)f(P )′ : f(N)(τ)f(P )′

] [
f(N)(τ)f(P )′ : f(NP )(τ))

]
and therefore show alternatively[

K(τ)f(P )′ : f(N)(τ)f(P )′
] !

=
[
Kf(P )(τ) : f(NP (σ))

]
.

We factor again[
K(τ)f(P )′ : f(N)(τ)f(P )′

]
=
[
K(τ)f(P )′ : Kf(P )(τ) + f(N)(τ)f(P )′

]
·
[
Kf(P )(τ) + f(N)(τ)f(P )′ : f(N)(τ)f(P )′

]
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and [
Kf(P )(τ) : f(NP (σ))

]
=
[
Kf(P )(τ) : Kf(P )(τ) ∩ f(N)(τ)f(P ′)

]
·
[
Kf(P )(τ) ∩ f(N)(τ)f(P ′) : f(NP (σ))

]
.

We then see[
Kf(P )(τ) + f(N)(τ)f(P )′ : f(N)(τ)f(P )′

]
=
[
Kf(P )(τ) : Kf(P )(τ) ∩ f(N)(τ)f(P ′)

]
and[
K(τ)f(P )′ : Kf(P )(τ) + f(N)(τ)f(P )′

]
=
[
Kf(P )(τ) ∩ f(N)(τ)f(P ′) : f(N)f(P )(τ))

]
which proves the theorem. �

4. Chow Groups

Definition 2.54 (Rational Equivalence). LetX be a tropical toric variety. We define
a subgroup

Rk(X) = spanZ {r · C | r ∈ Rat(X), C ∈ Zk+1(X)}
of Zk(X) of cycles that are generated by rational functions.

Following the treatment in [AR09], we define another subgroup

R′k(X) = spanZ {f∗(C) | f : Y → X toric morphism, C ∈ Rk(Y )}
of Zk(X), obviously including Rk(X). We then define the k-th Chow group of X
as Ak(X) := Zk(X)/R′k(X).

Remark 2.55. It is not a priori obvious whether Rk(X) and R′k(X) are equal. The
difference is that modding out by R′k guarantees that a push-forward of elements
equivalent to zero is again equivalent to zero. See [AR09, Remark 8.6] for an ex-
ample why this is necessary. We will not consider the group Rk(X) again; rational
equivalence will always mean equivalence with respect to the larger groupR′k(X).

Remark 2.56. One can also consider the group Zk(Y ) of k-dimensional subcycles
of a cycle Y of a tropical toric variety X . In oder to form a Chow group Ak(Y ), we
should mod out by all push-forwards of divisors of rational functions into Y . For
this, we need maps between cycles, and these should probably be locally linear
maps as in [AR09, Def. 7.1], i.e. locally morphisms of toric varieties.

We now show that the intersection product is well-defined up to rational equiva-
lence.

Theorem 2.57.

(1) Let ϕ be a rational function on a k-cycle C. Then ϕ · C ∼ 0.
(2) Let C be a k-cycle equivalent to zero and ϕ a Cartier divisor on C. Then ϕ ·C is

equivalent to zero.
(3) Let f : C → D be a morphism and C equivalent to zero. Then f∗(C) is equiva-

lent to zero.
(4) Let f : C → D be a surjective morphism and ϕ a rational function on D. Then

f∗ϕ is a rational function on C.

PROOF.

(1) This follows from the definition of rational equivalence.
(2) We have C = f∗(ψ · E) with ψ a rational function on E. Then ϕ · C =

f∗(f
∗ϕ ·ψ ·E) = f∗(ψ · f∗ϕ ·E) which is equivalent to zero by definition.

(3) We have C = g∗(ψ · E) and f∗(C) = f∗(g∗(ψ · E)) = (f ◦ g)∗(ψ · E).
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(4) f∗ϕ : D → R, x 7→ ϕ(f(x)) is a piece-wise affine linear function.

�

We will show to main results about rational equivalence on a tropical toric variety
XF (T):

(1) Every cycle in the torus T is equivalent to a cycle in the boundary, it is a
formal sum of orbit closures.

(2) Every cycle in the boundary is equivalent to a tropical fan in T , this fan
can be chosen to be a subfan of F .

These results correspond to the classical duality between the groups Ak(XF (C))
of torus-invariant subvarieties and MWk(F ) of Minkowski weights.

Lemma 2.58. Let X be a smooth complete tropical toric variety with torus T and C a
tropical complex in T of codimension at least one. Then C is rationally equivalent to a
cycle that has no components in T .

PROOF. Let C be a tropical complex of codimension at least one in the torus T
of the tropical variety X .

We choose a vector a ∈ N . We construct a new cycle C̃ = {(x+ λa, λ) | x ∈ C, λ ∈
R} in the torus T ×R of the toric variety Y = X ×TP1.

We consider the toric morphism pr1 : X×TP1 → X that forgets the second factor.
Let ρ, ρ′ be the rays of the second factor.

We use ϕ = max(0, xρ) as a rational function on Y . We then find ϕ · Y = (−Dρ +

[ϕ]) · Y . Hence the two cycles Dρ · C̃ and [ϕ] · C̃ are rationally equivalent. [ϕ] · C̃ is
equal to C × {0}.

Let us look at Dρ · C̃ =
∑
σ∈F O(σ + ρ) · C̃. We want to show O(0 + ρ) · C̃ = 0 for

suitable choices of a.

Let P be a maximall cell of C. This leads to two maximal cells (P, 0) + R≥0(a, 1),
(P, 0)+ R≤0(a, 1) of C̃. We need to check whether P̃ = (P, 0)+ R≥0(a, 1) gives rise
to a cell P ′ ofO(0+ρ)·C̃. That means we need to compute the dimension of (P, 0)+
R≥0(a, 1)/ span(0, 1) ∼= P + R≥0a. This dimension is dimP if a ∈ span(recP ) and
1 + dimP = dim P̃ otherwise.

Hence, if we take a outside of the finitely many linear subspaces spanned by the
recession cones of the maximal cells of C, then O(0 + ρ) · C̃ is empty.

So let us assume there is a polyhedron P ′ in O(0 + ρ) · C̃. That means there is a
polyhedron P̃ that is a maximal cell of C̃ with P ′ = P̃ / span(σ). This in turn comes
from a maximal cell P of C with P̃ = (P + R≥0a,R≥0).

This means C = pr1([ϕ] · C̃) is equivalent to pr1(Dρ · C̃), which is a cycle that has
no components in the orbit T = O(0) of X . �

Theorem 2.59. In a smooth complete tropical toric variety every cycle is equivalent to a
formal sum of orbit closures.

PROOF. We start with an arbitrary cycleA0. IfA0 is not a sum of orbit closures,
then it contains a polyhedral complex C0 of codimension at least one in some orbit
O(σ). We then apply Lemma 2.58 to C0 in V (σ) and arrive at a cycle A1. We repeat
until Lemma 2.58 can no longer be applied. Thus the resulting cycle is a sum of
orbit closures. �
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Corollary 2.60. Let X be a compact smooth tropical toric variety. Then Ak(X) is gener-
ated by the k-dimensional orbit closures of X .

Lemma 2.61. Let X be a complete smooth tropical toric variety. Let M be a Minkowski
weight and [M ] the class of M under rational equivalence. Then [M ] = 0 if and only if
M = 0.

PROOF. This is the result of [AR08, Lemma 6]. Note that [AR08] uses a weaker
notion of rational equivalence. The result applies to our situation since only one
torus orbit occurs. One could also modify the proof to our definition of rational
equivalence. �

Definition 2.62 (Support Functions on Fans). Let F be a complete unimodular fan
with lattice N and let T = N ⊗ R. Let h : T → R be a tropical rational function
that is linear on every cone of F . Such an h is called a support function on F .

Lemma 2.63. A support function h for an n-dimensional unimodular fan F is uniquely
characterized by a collection (aρ)ρ∈F (1) of integers with h(−vρ) = aρ or a collection
(mσ)σ∈F (n) of elements from N∨ with h(v) = mσv for all v ∈ σ.

PROOF. The statement is proven in [Ful93, Section 3.4]. This also follows from
Lemma 2.41 and Lemma 2.42. �

Corollary 2.64. For every sum
∑
aρDρ of boundary divisors there is a Cartier divisor

ϕa with ϕa ·XF (T) =
∑
aρDρ.

Definition 2.65. Let F be a complete unimodular fan and h a support function on
F .

We construct a Cartier divisor ϕh via the covering of X with (Uσ,mσ) with the
notation of the previous lemma. Alternatively, we can set ϕh =

∑
aρDρ.

Lemma 2.66. Let F be a complete smooth fan and h a support function on F .

Then h ·XF (T) = M + ϕh ·XF (T) where M is a Minkowski weight.

PROOF. The function h is linear on each maximal cone of F , hence [h] · T is a
subfan of F .

Since ordρ(h) = h(−vρ) = aρ we have the claimed result. �

Corollary 2.67. Let F be a complete unimodular fan and XF (T) the corresponding trop-
ical variety.

(1) The group Ak(XF (T)) is generated by the classes of k-dimensional Minkowski
weights.

(2) The group Ak(XF (T)) is isomorphic to the group MWk(F ) of k-dimensional
Minkowski weights.

(3) The group Ak(XF (T)) is isomorphic to the classical Chow group Ak(XF (C)).

PROOF. Let n be the dimension of XF (T). We consider an inclusion map i :
MWk(F )→ Ak(X). This map is injective via Lemma 2.61. The map MWn−1(F )→
An−1(XF (T)) is surjective via Lemma 2.63 and Lemma 2.66. Surjectivity for higher
codimension follows from the fact that every boundary divisor of codimension k
is the intersection product of k boundary divisors of codimension one. The group
of Minkowski weights is isomorphic to hom(Ak(Y ),Z) by [FS97, Prop. 1.4]. �
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Remark 2.68. Since every cycle is equivalent to a sum of products of Cartier divi-
sors, we can intersect arbitrary cycle classes and get intersection products

An−p(XF (T))×An−q(XF (T))→ An−p−q(XF (T)).

Furthermore, the diagonal ∆ ⊆ XF (T)×XF (T) is equivalent to a sum of products
of Cartier divisors, we can define the intersection product as

[C] · [D] := pr∗([∆] ·X × Y )

(the calculus of this is worked out in the proof of [AR08, Theorem 9.10] and pre-
ceeding lemmata).

This construction might be more economical in practice as one does not have to
rewrite arbitrary cycles as Cartier divisors. Another advantage is that this allows
us to define an intersection product for cycle classes in every ambient tropical
polyhedral complex E such that the class of the diagonal ∆ ⊂ E × E can be ex-
pressed as a sum of products of Cartier divisors (for example those polyhedral
complexes that are locally isomorphic to tropical linear spaces satisfy this condi-
tion).





CHAPTER 3

Tropicalization

In this chapter we will relate the tropical intersection theory developed in Chapter
2 to the intersection theory of complex and non-Archimedean toric varieties. A
central object will be the tropicalization of an algebraic variety.

Definition 3.1 (Tropicalization). Let K be an algebraically closed field with a non-
trivial non-Archimedean valuation val : K× → R, that is we have

(1) val(a · b) = val(a) + val(b).
(2) val(a+ b) ≤ max(val(a), val(b)).
(3) There is a t ∈ K such that val(t) = 1.

This map extends to a map of semigroups val : K → T by setting val(0) = −∞.
Applying val component-wise, we get a map val : Kn → Tn.

Let X ⊆ Kn be an affine algebraic variety. Then the topological closure of the
image of X under valuation

tropX := val(X)

is called the tropicalization of X .

Example 3.2. When thinking of a non-Archimedean field in tropical geometry, one
should think of the field C{{t}} of complex Puiseux series. It is defined as the limit

C{{t}} =
⋃
n≥1

C((t
1
n ))

where C((t)) is the field of formal Laurent series, the quotient field of the ring of
formal power series.

The valuation of an element f =
∑∞
k=0 akt

k
n is

val f := − ord f := −min

{
k

n
| ak 6= 0

}
.

We have val(C{{t}}) = Q.

Let X be a variety in the torus (K×)n ⊆ XF (K). We want to study the closure
of the tropicalization tropX ⊆ Rn inside XF (T). The tropicalization itself is a
closure of the valuation inside Rn.

We can simplify the situation by choosing a field K that has a surjective valuation.
In this case tropX equals valX and we can omit the topological closure inside Rn.

Definition 3.3. The set

C{{tR}} :=

{∑
α∈A

aαt
α | A ⊆ R well-ordered, aα ∈ C

}
is an algebraically closed field of characteristic zero with surjective valuation

val : C{{tR}}× → R,
∑
α∈A

aαt
α 7→ min{α | aα 6= 0}.

41
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It is called the field of transfinite Puiseux series and complete with respect to this
valuation.

Generalizations of this field are used in [Pay09b], we refer to the references men-
tioned there for proofs that C{{tR}} has well-defined field operations and is alge-
braically closed. Another field with a surjective valuation to R is constructed in
[Mar07].

We have the following result of [AN09], where the characteristic pair of a non-
Archimedean field K is the pair of characteristics (char K, char k) where k is the
residue field

k = {x ∈ K | val(x) ≤ 0}/{x ∈ K | val(x) < 0}
of the valuation ring modulo its unique maximal ideal.

Theorem 3.4. [AN09, Theorem 4.4] The set of tropical varieties definable over an alge-
braically closed valued field only depends on the characteristic pair of the valued field and
on the image of the valuation. If one considers valuations that are surjective on R, the set
of tropical varieties only depends on the characteristic pair.

Hence we can use our intuition for the field C{{t}}, where up to scaling every
point x ∈ C{{t}} is just a formal power series while using the field C{{tR}} for
technical reasons.

Theorem 3.5. [BJS+07, Theorem 1.2] Let X ⊆ (K×)n be an irreducible variety of
dimension d. Then tropX ⊆ Rn is a connected polyhedral complex of pure dimension d.

The most important property of tropicalization for our purposes is that it produces
tropical complexes as in Definition 2.2.

Theorem 3.6. Let X ⊆ (K×)n be an irreducible variety of dimension d. Then tropX ⊆
Rn is a balanced polyhedral complex.

PROOF. Proofs are in [Spe05, Theorem 2.1.5] or [Kat09b, Theorem 8.14] �

There is an interesting special case of this theorem, in the case that tropX is a fan.

Lemma 3.7. LetX = XF (K) be a smooth complete toric variety with torus T ∼= (K×)n.
Let C be an irreducible subvariety of T . Assume that there is a subfan G of F with
|tropC| = |G|. Then MW([C]) = tropC where MW([C]) denotes the Minkowski
weight corresponding to the map An−dimC(X) → Z defined via [Y ] 7→ [C] · [Y ] ∈
A0(X) ∼= Z.

PROOF. This is proven in [Kat09b, Prop. 9.4] (using a different sign conven-
tion).

�

Definition 3.8. Let K be a field with non-Archimedean valuation and let f =∑
j∈J ajx

j ∈ K[x±11 , . . . , x±1n ] be a Laurent polynomial. We define the set T (f) ⊆
Rn via the following condition:
A point w ∈ Rn lies in T (f) if and only if the maximum in max{val(aj) + j · w |
j ∈ J} is achieved at least twice. Note that T (f) depends only on the tropicaliza-
tion of f .

If I ⊆ K[x1, . . . , xn] is an ideal, we set

T (I) =
⋂
f∈I

T (f)
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A finite generating set f1, . . . , fk of I is called a tropical basis if T (I) = T (f1) ∩
. . . ∩ T (fk).

Theorem 3.9. [BJS+07, Theorem 2.9] Every ideal I ⊆ K[x1, . . . , xn] has a tropical
basis.

Theorem 3.10. [SS04, Theorem 2.1] Let X ⊆ (K×)n be an irreducible variety of di-
mension d. The following sets are equal

(1) tropX
(2) {w ∈ Rn | inw(I(X)) contains no monomial}
(3) T (I).

One should also mention that there is a continous surjection from the Berkovich
space associated to X to tropX [Spe05, Prop. 2.1.5.].

We will now extend these notion from tori to toric varieties (this was called ex-
tended tropicalization in [Pay09a]).

Definition 3.11. Let F be a rational fan. We can extend the valuation val : K→ T

to a map val : XF (K)→ XF (T) in the following way:

For each affine open set Uσ we get a semigroup homomorphism

val : hom(Sσ,K)→ hom(Sσ,T), f 7→ val ◦f .

We can glue these maps together to get a map val : XF (K) → XF (T). Note that
this map restricts to a map val : OK(σ)→ OT(σ) on each torus orbit. We set

tropY := val(Y )

for any subvariety Y ⊆ XF (K).

Remark 3.12. If σ is a unimodular cone of dimension k of an n-dimensional fan F ,
then any choice of a lattice basis with rays of σ leads to the usual component-wise
valuation

UK(σ) ∼= Kk × (K×)n−k → Tk ×Rn−k ∼= UT(σ).

Definition 3.13. Let X = XF (K) be a simplicial toric variety and I ⊆ K[F (1)] be
a homogeneous ideal. The set VX(I) = {[p] ∈ X | f(p) = 0 for all f ∈ I} is called
the zero-set of I . If f =

∑
aJx

J is a polynomial in I , we set

TX(f) := {[p] ∈ XF (T) | The maximum in max(val aJ + J · x) is achieved twice} .

We set TX(I) =
⋃
f∈I TX(f).

Theorem 3.14. [Cox95, Prop. 2.4] VX(I) = ∅ if and only if I contains a power of
the irrelevant ideal. Let X = XF (K) be a simplicial toric variety. There is a one-to-
one correspondence between subvarieties of X and radical homogeneous ideals of K[F (1)]
contained in the irrelevant ideal.

Corollary 3.15. Let X = XF (K) be a simplicial toric variety and I ⊆ K[F (1)] be a
homogeneous ideal.

Then tropVX(I) = TX(I). For each torus orbit O(σ) we have tropVX(I) ∩ OK(σ) =
{w ∈ OT(σ) | inw(Iσ) contains no monomial}

Lemma 3.16. Let F be a smooth complete fan and σ ∈ F a cone. Let OK(τ) be the torus
orbit of XF (K) and OT(τ) the torus orbit of XF (T) corresponding to the cone τ of F .

Then trop(OK(σ)) = OT(σ). In particular, for Weil divisors corresponding to rays ρ:
trop(Dρ) = Dρ (or, more precisely, trop(VK(ρ)) = VT(ρ)).
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Corollary 3.17. trop induces isomorphisms trop : Ak(XF (K)) → Ak(XF (T)) on the
classes of boundary divisors.

Theorem 3.18. Let F be an n-dimensional complete smooth fan and XF (K) the corre-
sponding toric variety. Let f be a homogeneous polynomial in the Cox ring of XF (K).

Then
[Z(f)] = [tropZ(f)] = trop f · [XF (T)]

where we identify An−1(XF (K)) and An−1(XF (T)).

PROOF. We have deg f = deg trop f and [Z(f)] = deg f . �

Corollary 3.19. Let F be a complete smooth fan and XF (K) the corresponding non-
Archimedean toric variety. Let C be the k-cycle of a tropically transverse complete inter-
section in XF (K).

Then [C] = [tropC].

Theorem 3.20. [Kat09b, Theorem 8.8] Let F ⊆ Rn be a complete smooth fan and
XF (K) the corresponding non-Archimedean toric variety. Let C be an irreducible sub-
variety of dimension k and D an irreducible subvariety of dimension n − k that intersect
transversally. Assume further that tropC and tropD intersect transversally.

Then [C] · [D] = [tropC] · [tropD].

Theorem 3.21. Let F be a complete smooth fan and XF (K) the corresponding non-
Archimedean toric variety. Let C be an irreducible subvariety.

Then [C] = [tropC].

PROOF. Let n = dimXF (K) and k = dimC.
We know that [C] is completely determined by the products [C] · [Di] where the Di

generate An−k(XF (K)). The same is true for tropC and An−k(XF (T)).

We know that there exists a finite set of H1, . . . ,Hs of hypersurfaces such that
the [Hj ] generate An−1(XF (K)) and they intersect tropically transverse with each
other and with C.

For every complete intersectionHI =
⋂
i∈I Hi of n−k of theHj we know: degHI =

deg tropHI and degC ∩HI = deg tropC · tropHI . This means degC = deg tropC.
�

The connections between the closure of C in toric varieties and the fan tropC has
also been used to produce compactifications of C that have a desirable combina-
torial structure (e.g. C \ C is a sum of divisors and those divisors have normal
crossings).

Let T ∼= (K×)
d be an algebraic torus and X ⊆ T a subvariety.

We want to find a compactification X ⊇ X that corresponds to a toric variety
XF (K) ⊇ T .

The idea in this section is to use the fan tropX to compactify X by including T
in the toric variety XtropX(K). Usually, one only knows that there is a fan F with
|F | = tropX , but there is no canonical fan structure on the set tropX . Hence
for every choice of a fan structure F on tropX there is a corresponding tropical
compactification of X .

This is the idea of [Tev07].

Of course, this construction also yields a compactification XtropX(T) ⊇ tropX ,
which we will call the tropical compactification of tropX .
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Definition 3.22.

• Let V ∼= Rn be a vector space and X $ V a balanced fan with |X| $ V .
Let F be a smooth rational fan of with |F | = |X|.

Then the closure ofX in XF (T) is a called a tropical compactification
of X and denoted Xvc := X

F

vc.
• Let k be an algebraically closed field, T a torus over k and X a connected

closed subvariety of T . Let K be an algebraically closed field containing
k with surjective valuation val : K → T that is trivial on k. Let X(K)
and T (K) be the K-valued points of X and T . Then we can consider the
balanced fan tropX(K) ⊆ tropT (K) ∼= RdimT .

Let F be a smooth rational fan with |F | = tropX(K).
Then the closure of X in XF (k) is a called a tropical compactification

of X and denoted Xvc := X
F

vc.

Remark 3.23. Let k = C. The fan F is not a complete fan so the toric varieties
XF (C) and XF (T) are not compact. We will show that Xvc is compact.

Lemma 3.24. Let F be a rational fan structure on the balanced polyhedral complex X in
a vector space V . Then X

F

vc is compact.

PROOF. Let F ′ be a smooth rational fan refining F . There is a continuous map

XF ′ to XF that we can restrict to X
F ′

vc and X
F

vc. Therefore X
F

vc is compact if X
F ′

vc is
compact. Hence we can assume without loss of generality that F is smooth.

Let k = dimF . We have |F |=
⋃
σ∈F (k) |σ|. Hence we have to show that each closure

σ is compact in XF (T) for σ ∈ F (k). Let σ be any maximal cone of F . We look at σ
in the chart Uσ . σ is generated by rays r1, . . . , rk. Each ray ri is represented by −ei
in the chart Uσ ∼= Tk.

Hence σ =
{
x ∈ Tk | −∞ ≤ xi ≤ 0

}
≈ [0, 1]

k is compact. �

Remark 3.25. The classical analogue is [Tev07, Prop. 2.3]: the closure X of the
subvariety X in XF (K) is proper if and only if |tropX| ⊆ |F |.

Theorem 3.26. [Tev07, Theorem 1.2] Any subvariety X of a torus has a tropical com-
pactification X in a smooth projective toric variety such that the boundary X \X is divi-
sorial and intersections of these divisors have the expected codimension.





CHAPTER 4

Parameter Spaces of Lines in TPn

We want to look at the set of all tropical lines in TP2. In this case a tropical line is
characterized by the following equivalent conditions

(1) it is the tropicalization of a one-dimensional linear space in KP2,
(2) it is the zero-set of a homogeneous tropical polynomial of degree one,
(3) it is a balanced polyhedral complex with non-negative weights that is

rationally equivalent to the one-skeleton of TP2.

The most common case is the generic tropical line, which corresponds to

(1) the tropicalization of a one-dimensional linear space in KP2 that is gen-
erated by a vector in (K×)

2,
(2) the zero-set of a homogeneous tropical polynomial of degree one where

all coefficients are present and finite,
(3) a balanced polyhedral complex that is a translate of V (x0 ⊕ x1 ⊕ x2).

We can use TP2 as a parameter space for tropical lines by sending the point
[(a0, a1, a2)] to the space V (a0 � x0 ⊕ a1 � x1 ⊕ a2 � x2) ⊆ TP2.

The situation is more complicated in higher dimensions, i.e. lines in TPn or even
k-dimensional tropical linear spaces in TPn. The situation is well-understood for
linear spaces over a field, they are parametrized by the Grassmannian variety. We
will study its tropicalization.

Definition 4.1.

• Let n be a natural number. We set [n] := {1, . . . , n}.
• Let S be a finite set and k a natural number. Then

(
S
k

)
is the collection of

all subsets of S of size k. Hence #
(
S
k

)
is equal to the binomial coefficient(

#S
k

)
.

Definition 4.2 (Grassmannian). Let K be a field. Let S be a finite set.

We consider the r-fold exterior product
∧r

KS ∼= K(Sr).

The Grassmannian Gr,S(K) is the subset of P
(∧r

KS
)

that consists of all decom-
posable vectors:

Gr,S := Gr,S(K) :=
{
p ∈ P

(∧r
KS
)
| ∃v1, . . . , vr ∈ KS : p = v1 ∧ . . . ∧ vr

}
If n is a natural number, then we set Gr,n := Gr,[n]

Remark 4.3. The Grassmannian is an algebraic variety that is cut out by the ideal
of Plücker relations (see for example [Har92, Lecture 6], [GKZ94, Chapter 3] or
[Stu93, Chapter 3]). We will only need the following case: Fix a total order < on
S. Let {xI}I∈(Sr) be the homogeneous coordinates of P(

∧r
KS). If r = 2 then the

Plücker relations are generated by the polynomials

xijxkl − xikxjl + xilxjk

47
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(a) Cones of the fan of TP2 (b) Torus orbits of TP2

(c) Lines corresponding to torus orbits.

FIGURE 6. Lines in TP2 correspond to torus orbits, translations
of a line lie in the same orbit.

for all i < j < k < l.

Remark 4.4. Points in the Grassmannian Gr,S are in one-to-one correspondence
with (r − 1)-dimensional linear subspaces of P(KS):

• An (r− 1)-dimensional plane in P(KS) corresponds to an r-dimensional
linear subspace L = span(b1, . . . , br) in KS . To this space we associate
the point p = b1 ∧ . . . ∧ br (the class in P(

∧r
KS) does not depend on the

choice of a basis).
• To a point p in the Grassmannian we associate the linear space

L(p) :=
{
v ∈ KS | v ∧ p = 0 ∈

∧r+1
KS
}
.
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For r = 2 and S = [n] we can describe this as

L(p) =
{
z ∈ Pn−1 | pijzk − pikzj + pjkzi = 0 for all 1 ≤ i < j < k ≤ n

}
where z1, . . . , zn are homogeneous coordinates on P(Kn).

Definition 4.5. The familiy FGr,S := {(p, z) | z ∈ L(p)} ⊆ Gr,S × P(S) is called
the tautological bundle of the Grassmannian. It is an (r−1)-dimensional projective
bundle over Gr,S .

The Grassmannian Gr,S has an open dense subset Go
r,S = {x | xI 6= 0 for all I ⊆

S, |I| = r}. We will now look at its complement ∂Gr,S = Gr,S \Go
r,S .

Definition 4.6 (Matroid). A matroid M = (S,B) consists of a finite set S and a
non-empty collection B of subsets of S, called bases, such that for any two bases
B, B′ and for all b ∈ B \B′ there exists a b′ ∈ B′ \B such that (B ∪ {b′}) \ {b} is a
basis.

Remark 4.7. The cardinality of all bases is the same, it is the rank of a matroid
([Oxl92, Lemma 1.2.1]).

There is a stratification of Gr,S by matroid cells (see [BLS+99, Chapter 2.4] or
[GGMS88]):

Definition 4.8 (Matroid Cells of the Grassmannian).

(1) Let p ∈ Gr,S . Define a matroid Mp on S via the following rule:
B is a base of Mp if pB 6= 0 .

(2) If M is any rank r matroid on S define the realization space of M as

RK(M) := {p ∈ Gr,S(K) |Mp = M} .

Hence Gr,S is equal to the disjoint union
⋃
M RK(M) where M ranges over all

matroids of rank r.

Let us consider the tropicalization of the classical Grassmannian.

Definition 4.9 (Tropical Grassmannian). Let K be an algebraically closed field
with a surjective valuation val : K× → R and let k be the residue field.

The tropical Grassmannian is the set

G
(K,k)
r,S (T) := tropGr,S(K) ⊆ P

(
T(Sr)

)
.

Our main focus will be on the case where K is of characteristic zero with residue
field C, hence we abbreviate

Gr,S(T) := G
(C((tR)),C)
r,S (T) := tropGr,S(C((tR))) ⊆ P

(
T(Sr)

)
.

It is the closure of a balanced polyhedral fan of dimension (|S| − r)r in the torus
of P

(
T(Sr)

)
:

Go
r,S(T) :=

{
x ∈ Gr,S(T) | xI 6= −∞ for all I ∈

(
S

r

)}
⊆ R(Sr)/R

Remark 4.10. By Theorem 3.4 the tropicalization depends only on the character-
istic pair (char K, char k) and not on the actual fields. The tropical Grassmannian
was introduced in the paper “The Tropical Grassmannian“ [SS04]. Two important
results are:
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• For r = 2 the Plücker relations form a tropical basis (independent of any
characteristic) and we have the description

G
(K,k)
2,n (T) = G2,n(T) =

⋂
i<j<k<l

T (xij � xik ⊕ xik � xjl ⊕ xil � xjk).

• There is a dependence upon the characteristic pair (char K, char k) for r ≥
3, |S| ≥ 7.

In [SS04] several related notions of tropical Grassmannian are considered. The
authors do not discuss an equivalent of Gr,n(T), the set Go

r,n(T) appears as G′r,n.

Matroids impose the same decomposition on the tropical Grassmannian as on the
classical Grassmannian. We have

RT(M) := tropRK(M)

= {trop p ∈ Gr,n(T) |Mp = M}
= {p ∈ Gr,n(T) | pB = −∞ iff B is not a base of M}

for a rank r matroid on S.

We will call a subset RT(M) ⊆ Gr,S(T) a matroid stratum of the tropical Grass-
mannian in analogy to the classical situation.

Definition 4.11 (Tropical Plücker Vector). A point p ∈ P
(

T(Sr)
)

that satisfies the
three-term Plücker relations

• the maximum in max(pEij + pEkl, pEik + pEjl, pEil + pEjk) is achieved at
least twice for all E ∈

(
S
r−2
)
, i, j, k, l distinct and in S \ E

is called a tropical Plücker vector of rank r.

Every tropical Plücker vector p defines a rank r matroid Mp on S via the rule: I is
a base of Mp if and only if pI 6= −∞.

Remark 4.12. The set of all rank r tropical Plücker vectors with finite coordinates
Tr,n is called the set of r-trees in [SP05, Chapter 3]. All points in the tropical Grass-
mannian are tropical Plücker vectors, in general it is a proper subset. However,
the tropical Grassmannian G2,S(T) is the set of all rank 2 tropical Plücker vectors
as it is cut out by the three-term Plücker relations.

Definition 4.13. Let p be a tropical Plücker vector of rank r on [n]. We define the
set L(p) ⊆ P(Tn) as follows

L(p) :=
⋂

1≤j1<···<jr+1≤n

{
max

i=1,...,r+1
{pj1···ĵi···jr+1

+ xji} is achieved twice
}
⊆ TPn−1

Any subset of TPn−1 of this form is called a tropical linear space of dimension
r − 1. A tropical line is a tropical linear space of dimension one.

Remark 4.14. L(p) is a balanced polyhedral complex with all weights equal to one,
but we do not use this fact for general tropical linear spaces. In the case of lines it
follows since tropical lines are tropicalizations from ordinary linear spaces.

Remark 4.15. This seems to be the most general definition of a tropical linear space
so far. It includes the tropical linear spaces of [Spe08], where Speyer only consid-
ered tropical Plücker vectors with finite coordinates.

This definition also includes Bergman fans of matroids [Stu02, Section 9.3], which
correspond to tropical Plücker vectors whose entries are all either zero or−∞ (the
so-called constant-coefficient case).
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The idea of [Spe08] is to create linear spaces that are polyhedral complexes and not
just fans by considering a regular subdivision of the k-th hypersimplex induced by
a tropical Plücker vector. All these linear spaces have the same recession fan, the
k-skeleton of the fan of projective space. The k-th hypersimplex is the matroid
polytope of the uniform rank k matroid.

The Bergman fan of a matroidM is a subfan of the normal fan of matroid polytope
of the dual matroid M∗.

Definition 4.13 combines these notions:
A tropical Plücker vector defines both a matroid (via the infinite coordinates) and
a regular subdivision of the matroid polytope (via the finite coordinates).

Theorem 4.16. Let K be an algebraically closed field with a surjective non-Archimedean
valuation.

• Tropical lines are in one-to-one correspondence with points in the tropical Grass-
mannian G2,n(T).

• If L is a linear subspace of Pn−1 corresponding to a point p ∈ G2,n(K) then
tropL is tropical line corresponding to the point trop p in the tropical Grass-
mannian.

• A tropical line in TPn−1 is the tropicalization of a line in KPn−1.

PROOF.

• Points in the tropical Grassmannian G2,n(T) are the same as tropical
Plücker vectors of rank two. Therefore there is a surjective map from
points in the Grassmannian to tropical lines. Points in different matroid
strata lead to lines with different rays, so all we need to show is that dif-
ferent points within one matroid stratum produce different lines. By the
result of Lemma 4.27 points in a matroid stratum uniquely encode an ab-
stract metric tree and translation in some subtorus of TPn−1 and hence
encode different tropical lines.

• The tropical polynomials cutting out L(trop p) are exactly the tropicaliza-
tions of the polynomials cutting out L(p), hence tropL(p) = L(trop p).

• Let L = L(p) be a tropical line. The tropical Plücker vector p lies in
G2,n(T), so there is a point P in G2,n(K) with p = tropP . But then
L(p) = L(tropP ) = tropL(P ) is the tropicalization of a line over K.

�

Let L be a line in P(KS) and g a point in the torus T of P
(
KS
)
. The element g acts

on points of P(KS) by coordinate-wise multiplication. Then g · L is again a linear
space: If L = span(b1, b2) then g · L = span(g · b1, g · b2). Thus L = L(b1 ∧ b2) and
g · L = (g · b1 ∧ g · b2).

We can define an action of T on G2,S(K) via

g · p := (gi · gj · pij)ij

This action satisfies L(g · p) = g · L(p).

We can do the same thing tropically: Let L = L(p) be a line in P
(
TS
)

and g in the
torus RS/R of P

(
TS
)
. We define

g + p := (gi + gj + pij)ij
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Now let x ∈ L(p). That means the maximum in pij + xk ⊕ pik + xj ⊕ pjk + xi is
achieved twice. But then the maximum in

pij + gi + gj + gk + xk ⊕ pik + gi + gk + gj + xj ⊕ pjk + gj + gk + gi + xi

is also achieved twice, hence g + x ∈ L(g · p).

This operation obviously commutes with tropicalization:
tropL(g · p) = L(trop(g · p)) = L(trop g + trop p) = trop g + L(trop p).

We let M0,S(T) be the quotient of the tropical Grassmannian by this operation:

Definition 4.17. We set

M0,S(T) := Go
2,S(T)/

(
RS/R

)
and abbreviate

M0,n(T) := M0,[n](T) = Go
2,n(T)/ (Rn/R) .

Remark 4.18. If we look at the tropical Grassmannian Go
2,n(T), then it is a fan

with an (n− 1)-dimensional lineality space. This lineality space is the orbit of 0 in
Go

2,n(T) under the action of the torus of TPn−1. We can describe it as

{[(ai + aj)ij ] | a = (a1, . . . , an) ∈ Rn} .

So M0,n(T) is just the quotient of the fan Go
2,n(T) by its lineality space.

In [SS04] this space M0,n(T) appears as G′′2,n. It is also discussed in [GM07, Section
5] and [GKM09, GM08] (where the authors call itMn).

We can generalize a certain aspect of this construction to arbitrary varieties:

Proposition 4.19. Let T = (K×)n be the n-dimensional algebraic torus where K is
an algebraically closed field with a non-Archimedean valuation. Let C be an irreducible
subvariety of T and H a subtorus of T that acts on C. Then the lineality space of tropC
contains tropH .

PROOF. Let c be a point of C. Then tropHc is equal to the set of translates
trop c+ tropH where tropH is a real vector space. Hence tropC contains tropC+
tropH and therefore contains H as its lineality space. �

Definition 4.20 (Matroid nomenclature). Let M be a matroid on E.

• An independent set is a subset of E that is contained in a basis.
• A dependent set is subset of E that is not independent.
• A circuit is an inclusion-wise minimal dependent set.
• A loop is an element that is contained in no basis. It is a circuit consisting

of one element.
• Two elements a, b of E are parallel if {a, b} is a circuit.
• A hyperplane is a proper subset H of E that does not contain a basis, but
H ∪ {s} contains a basis for every s in the complement E \ S.

• A subset A of E is called an atom, if it contains at least one element b
that is contained in a basis and satisfies a ∈ A if and only if a and b are
parallel.

• We let At(M) be the set of atoms of M .

In the rank 2 case, atoms and hyperplanes coincide. A rank r matroid has at least
r atoms.
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FIGURE 7. Intersecting the fan M0,5(T) with a sphere yields a one-
dimensional polyhedral complex that is homeomorphic to the Pe-
tersen graph. The 10 vertices correspond to the ten rays indexed
by
(
[5]
2

)
. They are adjacent if and only if their index sets are dis-

joint.

Definition 4.21. Let M be a rank r matroid on n elements. We define a tropical
Plücker vector eM via

(eM )I =

{
−∞, if I is a basis of M
0, otherwise

We write L(M) for the tropical linear space L(eM ).

Remark 4.22. If M contains no loops then L(M) ∩Rn/R is equal to the Bergman
fan B̃(M) see [Stu02, Section 9.3].

Theorem 4.23. [AK06, Theorem 3.1] Cones in the Bergman fan of a matroid M are in
one-to-one correspondence with flags of flats of M .

Theorem 4.24. Let p be a rank r tropical Plücker vector on n elements. Let e be the
tropical Plücker vector defined via:

eI =

{
−∞, if pI = −∞
0, otherwise

Then L(e) is the recession fan of L(p).

PROOF. Since e and p have the same matroid the polyhedral complexes L(e)
and L(p) are inside the same torus orbit of TP(n). It is obvious that the polyhedral
complex L(e) is a fan. Let r be any ray of a cell of L(p).

That is we have a vertex v and we know that for every point v + λr the maximum
in

pij + vk + λrk ⊕ pikvj + λrj ⊕ pjk + vi + λri
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is achieved twice. That implies that the maximum in

0 + λrk ⊕ 0 + λrj ⊕ 0 + λri

is also achieved twice, hence r is a ray of L(e) and we therefore see that the reces-
sion cone of L(p) is a subfan of L(e). Since L(e) is balanced and of degree one we
get equality. �

Proposition 4.25. Let p be a rank r tropical Plücker vector on n elements.

(1) If the matroid Mp contains a loop h then L(p) is a subset of the torus divisor
{xh = 0} of TP(n). If we define the tropical Plücker vector p′ on n elements
via forgetting all cordinates that contain h then L(p) = L(p′) when we identify
TP(n− 1) with {xh = −∞} ⊆ TP(n).

(2) Assume that Mp has no loops. Then the rays of L(p) are in bijection with the
flats of F as follows: a flat F leads to a ray rF =

∑
a ∈ F − ea.

PROOF.

(1) Assume Mp has a loop h. That means h occurs in no basis and pih = −∞
for all i 6= h.
Let k and l be two elements from different atoms of Mp. That means
pkl 6= −∞.
Hence one of the conditions cutting outL(p) is pkhxl⊕plhxk⊕pklxh which
translates to −∞⊕ pklxh and hence to xh = −∞.

After choosing xh = −∞ the equations describing L(p) and L(p′) are
identical.

(2) We know that the cones of L(p) are in bijection with the cones of L(Mp)
and hence with flats of flags of Mp. A flat is flag of length one.

Let A be a flat of Mp. Let r be any point in the ray generated by rA =∑
a ∈ A−ea. We have to look at the maximum in pij+rk⊕pik+rj⊕pkj+ri

where we can assume p = eMp
.

• If A ∩ {i, j, k} = ∅ then the maximum is achieved twice since p is a
tropical Plücker vector.

• If A ∩ {i, j, k} = {i} then the maximum is achieved twice at pij =
pik ≥ pkj + ri. If we had pij 6= pik then that means that either ij or ik
are parallel in contradiction to A ∩ {i, j, k} = {i}.
• If A ∩ {i, j, k} = {i, j} then the maximum is achieved by pik + rj =
pkj + ri ≥ −∞ = pij + rk.
• A ⊇ {i, j, k} then all three terms are equal to minus infinity.

Note: If A ⊆ B are two flats then the terms where the minimum is
achieved in rA is a subset of the points where the minimum is achieved
in rB , hence the minimum is achieved twice for rA + rB , too. This shows
that flags of flats lead to cones of L(p).

�

We have seen that we can factor the generic matroid stratum of the tropical Grass-
mannian as

Go
2,n(T) ≈ M0,n(T)×Rn−1

where the first factor is the set of “abstract” tropical line in the sense of [GKM09],
and the second factor determines an embedding to Rn−1 ⊆ TPn−1.

We can do this for all matroid strata of G2,n(T).

Lemma 4.26. Let M be a matroid on [n] of rank 2 without loops.
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• There is a piecewise linear homeomorphismRT(M) ∼= M0,At(M)(T)×Rn−1 if
M has at least three atoms.

• There is a piecewise linear homeomorphismRT(M) ∼= Rn−2 if M has precisely
two atoms.

PROOF. Let H1, . . . ,Hs be the atoms of M . After relabeling we can assume
that i ∈ Hi.

Let us look at the Plücker relation with indices i < j < k ≤ s < l0 Assume that
l0 ∈ Hl

pij + pkl0 ⊕ pik + pjl0 ⊕ pil0 + pjk

As {l, l0} are parallel, the following Plücker relations

pij + pll0 ⊕ pil + pjl0 ⊕ pil0 + pjl

pil + pkl0 ⊕ pik + pll0 ⊕ pil0 + plk

pjl + pkl0 ⊕ pkl + pjl0 ⊕ pll0 + pjk

degenerate into linear equations

pil + pjl0 = pil0 + pjl

pil + pkl0 = pil0 + plk

pjl + pkl0 = pkl + pjl0

If {i, l} is not a loop, then we can express this as

pjl0 = pil0 + pjl − pil
pkl0 = pil0 + plk − pil

and transform our original equation into

pij + pil0 + plk − pil ⊕ pik + pil0 + pjl − pil ⊕ pil0 + pjk

we can simplify this to

pij + plk ⊕ pik + pjl ⊕ pjk + pil

Hence the original relation was superfluous and we only need to consider the
Plücker relations with indices from the set [s]. �

Lemma 4.27. Let M be a matroid on [n] of rank 2 with m loops.

• If M has k ≥ 3 atoms thenRT(M) ∼= M0,k(T)×Rn−m−1

• If M has no parallel elements then there is a linear isomorphism RT(M) ∼=
G2,n−m(T).

• If M has precisely two atoms thenRT(M) ∼= Rn−m−2

PROOF. Assume that n−m,n−m+ 1, . . . , n are the loops of M .

All Plücker relations involving loops degenerate to −∞⊕−∞⊕−∞. All coordi-
nates pij involving loops are equal to −∞. That means we have an isomorphism
betweenRT(M) andRT(M \{n−m, . . . , n}) via forgetting all coordinates involv-
ing loops. �





CHAPTER 5

Chow Quotients

In this chapter we introduce the notion of Chow quotients and present several
results about them. Chow quotients will be an indispensable tool in Chapter 6.

Let F be a balanced fan in a vector space V with lineality space L. For every
subspace W ⊆ L we get a balanced fan F/W in V/W .

Now assume that we have a tropical toric varietyX with torus V that compactifies
F . We would like to find a compactification of F/W . Let F be the closure of F in
X . The topological quotient F/W ⊆ X/W is a compact space, but it is usually not
Hausdorff (and the topological quotient X/W is not a toric variety).

The same problem arises in complex algebraic geometry, here F is a subvariety of
the torus T of a complex toric variety X . A subtorus H of T is acting on F and
on the closure F . One wants to find a compactification of F/H . The topological
quotient F/H is a subvariety of the torus T/H . Again, the quotient F/H is not
separated in general and X/H is not a toric variety.

In complex algebraic geometry, there are three prominent ways to find a toric va-
riety Y compactifying the torus T/H and the subvariety F/H .

(1) The Mumford quotient or GIT quotient X//αH can be constructed as fol-
lows [MFK94]: We first choose an equivariant projective embeddingX ⊆
P(s). Choose a map α : H → GLs extending the action ofH to P(s). Now
H is acting on the coordinate ring C[P(s)] of P(s) and we can form the
invariant subring C[P(s)]H = {f ∈ C[P(s)] | hf = f for all h ∈ H}. The
quotient X//αH is then defined as Proj C[P(s)]H .

The GIT quotient of a projective toric variety is again a projective
toric variety [KSZ91, Prop. 3.2].

(2) The Chow quotient X//H is the closure of T/H in the Chow variety of
X . Points in the Chow quotient correspond to effective cycles formed by
H-orbits of points in X .

The Chow quotient of a projective toric variety by a subtorus is again
a projective toric variety, it is described by the secondary polytope of the
polytope ofX . The corresponding fan is the secondary fan [KSZ91, Prop.
2.3].

(3) The Hilbert quotient X//HiH is the closure of T/H in the Hilbert scheme
of X [Kol96, Claim 1.8.2]. Points in the Hilbert quotient correspond to
subschemes formed by H-orbits of points in X .

The Hilbert quotient of a projective toric variety by a subtorus is
again a projective toric variety, it is described by the state polytope of
the ideal of X . The corresponding fan is the Gröbner fan of I(X).

These quotients are related as follows (a discussion of the geometric aspects of
these quotients can be found in [Hu05]):

Theorem 5.1.

57
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(1) There is a regular birational map from the Hilbert quotient X//HiH to the Chow
quotient X//H [Kap93, Statement (0.5.9)].

(2) There is a regular birational map from the Chow quotient X//H to any GIT
quotient X//αH [KSZ91, Prop. 3.3].

(3) The Chow quotientX//HiH , the Hilbert quotientX//HiH and every GIT quotient
X//αH can be realized as a GIT quotient Y//βG for suitable choices of Y , G and
β [GM07, Prop 4.3, Theorem 4.6].

We will begin with studying the Chow variety and follow the treatment detailed in
[GKZ94]. A more modern and scheme-theoretic approach can be found in [Kol96].

Definition 5.2 (Chow Form). Let X ⊆ CPn−1 be an irreducible subvariety of di-
mension k − 1 and degree d.

Let Z(X) be the set of all (n− k − 1)-dimensional linear subspaces of CPn−1 that
intersect X .

Then Z(X) is an irreducible hypersurface of degree d in Gn−k,n(C) defined by a
single homogeneous polynomial RX [GKZ94, Prop 2.1,2.2]. That polynomial is
the Chow form of X (unique up to a scalar multiple).

Example 5.3. If X = {x ∈ Pn−1|f(x) = 0} is a hypersurface, then n− (n−1)−1 =
0 and Z(X) is the set of all points intersecting X . That means X = Z(X) and
RX = f under the identification Gn−1,n = Pn−1.

An irreducible subvarietyZ of dimension k is uniquely determined [GKZ94, Prop.
2.5] by the coefficients of its Chow form in K[Gn−k,n]. We define the Chow form
of an effective cycle of dimension k to be the product of the Chow forms of its
irreducible components (with multiplicities). Thus an effective cycle of dimension
k and degree d is uniquely determined by its Chow form in K[Gn−k,n]d. This
allows us to turn the set of all these effective cycles into an algebraic variety.

Definition 5.4 (Chow Variety). Let X be a projective variety with a fixed projec-
tive embedding. The set of all effective k-cycles on X can be given the structure of
a projective variety Ck(X), called the Chow variety of X of dimension k. Its irre-
ducible components are given by the subsets of cycles of a fixed homology class δ,
we denote that variety by Ck(X, δ).

Example 5.5. We already know the Chow variety of k-cycles in Pn that have the
same homology class as a k-plane h. It is the set of all k-dimension linear subspaces
of Pn and

Ck(Pn, [h]) = Gk+1,n+1.

Let X be a toric variety with torus T and H a subtorus. We will now use the Chow
variety to construct a compactification X//H of the quotient T/H .

Definition 5.6 (Chow Quotient). Let X be a projective variety and G a reductive
algebraic group acting on X . Let U be a dense open subset of X such that the orbit
closure Gx has the same dimension k and homology class δ for every point x of U .
This defines an inclusion U/G→ Ck(X, δ).

The Chow quotient of X by G is defined as the closure of U/G in Ck(X, δ). It is
independent of the choice of U [Kap93, Remark 0.1.8] and denoted X//G.

Remark 5.7. The Hilbert quotient is defined similarly as the closure of U/G in the
Hilbert scheme.

If X = XF is a toric variety and G is a subtorus of the torus T of X , then the Chow
quotientX//G is again a toric variety. We will now describe the corresponding fan.
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Definition 5.8 (Quotient Fan). Let F be a rational fan in a vector space V and W a
subspace. Let σo denote the relative interior of a cone σ. We define an equivalence
relation on V/W as follows: Two points x + W and x̃ + W are equivalent if they
meet the same cones, i.e. x+W ∼ x̃+W if and only if

{σ ∈ F | x+W ∩ σo 6= ∅} = {σ̃ ∈ F | x̃+W ∩ σ̃o 6= ∅}.

The equivalence classes of this relation are relative interiors of cones and define a
fan. We call it the quotient fan F/W .

Remark 5.9. Each equivalence class [x+W ] is equal to the multi-intersection

[x+W ] =
⋂

x+W∩σo 6=∅

σ +W

Theorem 5.10. [KSZ91, Prop. 2.3] Let X be a normal projective toric variety and H a
subtorus of the torus of X . Then X//H is a projective toric variety. Its fan is the quotient
fan of the fan of X .

If F = N (P ) is the normal fan of a polytope, then F/W is also the normal fan of a
polytope. We will now construct this polytope.

Definition 5.11. [GKZ94, Chapter 7.2] A marked polytope is a pair (Q,A) whereQ
is a polytope andA is a finite family of points such thatQ = convA. A subdivision
of (Q,A) is a family S = {(Qi, Ai) | i ∈ I} of marked polytopes such that

(1) each Ai is a subset of A and dim(Qi) = dim(Q),
(2) any intersection Qi ∩Qj is a face (possibly empty) of both Qi and Qj and

Ai ∩ (Qi ∩Qj) = Aj ∩ (Qi ∩Qj),
(3) the union of all Qi coincides with Q.

Example 5.12. Let A ⊆ Rn be a finite family and Q = convA. Let ψ : A → R be
any function and define the polyhedron

Gψ = conv{(ω, y) ∈ Rn ×R | y ≤ ψ(ω)}.
The piecewise-linear function gψ : Q→ R is defined as

gψ(x) = max{y ∈ R | (x, y) ∈ Gψ}.
Let the Qi be the projections of the bounded faces of Gψ of codimension one. Let
Ai consist of all ω ∈ A ∩ Qi such that gψ(ω) = ψ(ω). Then {(Qi, Ai)} forms a
subdivision of (Q,A) that is denoted S(ψ).

If the same point p occurs multiple times in the family A, then the function ψ may
take different values each time. Only those instances with maximal ψ-value occur
in the subdivision S(ψ).

Definition 5.13. A subdivision S of (Q,A) is called regular if it is of the form S(ψ)
for some ψ ∈ RA.

Definition 5.14 (Fiber Polytope). Let π : P → Q be a map of polytopes, i.e. P
is a polytope, π a linear map and Q = π(P ). A section of π is a continuous map
γ : Q → P such that π ◦ γ = idQ. The fiber polytope of P and Q is defined as the
set of all component-wise integrals of such sections:

Σ(P,Q) :=

{
1

Vol(Q)

∫
Q

γ(t)dt

∣∣∣∣ γ is a section of π
}
.

If Q is a polytope with n vertices, then there is a canonical map from the simplex
with n vertices ∆n to Q. This special case of a fiber polytope is called a secondary
polytope and denoted Σ(Q) := Σ(∆n, Q).
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Theorem 5.15. Let P ⊆ V be a polytope, π : V →W a linear map and Q = π(P ).

(1) The fiber polytope is a polytope. Its dimension equals dimP − dimQ.
(2) The points of the secondary polytope of Q represent regular subdivisions of Q,

the vertices are in bijection with the regular triangulations of Q.
(3) The normal fan of the fiber polytope equals the quotient fan of normal fan of P :
N (Σ(P,Q)) = N (P )/ imπ∨ where π∨ : W∨ → V ∨ is the dual map.

PROOF. [Zie95, Theorem 9.6] and [BS94, Prop. 2.2] �

Corollary 5.16. Let H be a subtorus of the torus of Pn. There is a polytope Q such that
the toric variety associated to Q equals the closure of H in Pn. Then the Chow quotient
Pn//H is the toric variety associated to Σ(Q), i.e. orbits of Pn//H correspond to regular
subdivisions of Q.

Remark 5.17. Since Chow quotients can be expressed entirely in terms of poly-
topes and fans, we can form Chow quotients of tropical polyhedral complexes
inside tropical toric varieties by vector spaces acting on the variety. If we have an
algebraic subvariety inside a toric variety, then the Chow quotient of tropicaliza-
tion is tropicalization of the Chow quotient.

Example 5.18. Let us show that the secondary polytope of a pentagon is again
a pentagon. There are five ways to triangulate a pentagon, hence the secondary
polytope has five vertices. The pentagon has five vertices, so the secondary poly-
tope is the fiber polytope of a four-dimensional simplex to the two-dimensional
pentagon and therefore two-dimensional. A two-dimensional polytope with five
vertices must necessarily be a pentagon.

Lemma 5.19. Let X and Y be projective toric varieties and assume the torus H is acting
on both X and Y . Let H act on X × Y via h(x, y) = (hx, hy). Then there are maps

(X × Y )//H → X//H

and
(X × Y )//H → Y //H.

PROOF. Assume we have X = XF and X//H = XF/L, Y = XG and Y //H =
XG/K . Let V be the diagonal embedding of L ∼= K into span(|F | × |G|). Then
X × Y = XF×G and (X × Y )//H = XF×G/V .

We need to show that the projection pr maps every cone σ of F ×G/V into a cone
τ of F/L.

We have a representation σ =
⋂

(σ1
i × σ2

i )/V .

This gets mapped to
⋂
σ1
i /L. We need to show that this is a cone of F/L. Assume

not. That means there is a cone σ̃1/L that intersects
⋂
σ1
i /L. But then σ̃1 × |G|/V

intersects σ =
⋂

(σ1
i ×σ2

i )/V , and therefore there is a cone σ̃1× σ̃2/V that intersects
σ. Hence σ was not a cone of F ×G/L. �

Theorem 5.20. Let A be a d× n-matrix. Let T be the subtorus of P(n) whose character
lattice is the integer row space of A. Let convA be the convex hull of the columns of A.
Then

dimTe0 = dim convA

and
deg Te0 = Vol(convA).

PROOF. This was proven in [Stu95, Lemma 4.2, Theorem 4.16] as well as in
[MMKZ92, Prop. 1.1, Cor. 5.4]. �
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Lemma 5.21. [BS94, Cor. 2.5] Let X be a projective toric variety with torus T and
G ⊆ H ⊆ T subtori. Then there is a map

(X//G)//(H/G)→ X//H.

Lemma 5.22. Let x1, . . . , xn+1 be coordinates on the character lattice Zn+1/Z ∼= Zn of
P(n+ 1). Let H1 be the subtorus of T (n+ 1) defined via H1 = span(xn+1)⊗K×. Then

P(n+ 1)//H1
∼= P(n).

PROOF. We need to study the fiber polytope Σ(∆n+1, I) where I is the unit
interval, the convex hull of zero and one. Every vertex corresponds to a tight
subdivision, i.e. one which contains vertex zero of I exactly once and vertex one
exactly once. There are n vertices of ∆n+1 which map to zero and exactly one
which maps to one, so we have a polytope of dimension n − 1 with n vertices.
Thus Σ(∆n+1, I) is a simplex and P(n+ 1)//H1

∼= P(n). �

Lemma 5.23. Let x1, . . . , xn+1 be coordinates on the character lattice Zn+1/Z ∼= Zn of
P(n+ 1). Let H1 be the subtorus of T (n + 1) defined via H1 = span(xn+1) ⊗K× and
consider it as a subtorus of T

(
n+1
2

)
. Then

P

(
n+ 1

2

)
//H1

∼= P

(
n

2

)
×P(n).

PROOF. We need to study the fiber polytope Σ(∆(n+1
2 ), I) where I is the unit

interval, the convex hull of zero and one. Every vertex corresponds to a tight
subdivision, i.e. one which contains vertex zero of I exactly once and vertex one
exactly once. There are

(
n
2

)
vertices of ∆(n+1

2 ) which map to zero and n which

map to one (it is n +
(
n
2

)
=
(
n+1
2

)
). We can choose these independently and get

therefore n·
(
n
2

)
vertices of Σ(∆(n+1

2 ), I). This means Σ(∆(n+1
2 ), I) is combinatorially

isomorphic to ∆n ×∆(n2)
. Hence P

(
n+1
2

)
//H1

∼= P
(
n
2

)
×P(n). �

Corollary 5.24.
G2,n+1//H1

∼= FG2,n

PROOF. Let us look at G2,n+1. It is cut out by the Plücker relations pijpkl −
pikpjl+pilpjk with 1 < i < j < k < l and the additional conditions p1jpkl−p1kpjl+
p1lpjk with 1 < j < k < l.

If we use p12, p13, . . . , p1,n+1 as homogeneous coordinates on P(n) then these are
exactly the equations describing FG2,n. Hence Go

2,n+1/H1 = FG2,n ∩ T where T
is the maximal torus of P

(
n
2

)
×P(n). The statement then follows with the previous

lemma. �

We will now focus on a special case of Chow quotients: quotients of P
(
n
k

)
by a

torus H that acts on the Grassmannian, i.e. H ·Gk,n ⊆ Gk,n.

Let A = (AI)I∈([n]
k ) be a family of

(
n
k

)
vectors in Zd. Then A can be used to define

a map (K×)d → (K×)(
n
k)/K× ⊆ P

(
n
k

)
. Thus A defines a d-dimensional subtorus

HA of P
(
n
k

)
. The orbits of the Chow quotient P

(
n
k

)
//HA are enumerated by all

subdivisions of the marked polytope P = convA. The torus T (n) of P(n) acts on
Gk,n and on P

(
n
k

)
. Let us assume that HA is a subtorus of of T (n) and acts on

Gk,n. We want to look at a special kind of subdivisions of P :
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(1001)

(0101)

(0011)

(1100)

(0110)

(1010)

FIGURE 8. The second hypersimplex ∆2
4 is an octahedron. It is

the matroid polytope of the uniform rank two matroid on four
elements.

Definition 5.25. Let A = (AI)I∈([n]
k ) be a family of

(
n
k

)
vectors in Zd such that HA

acts as a subtorus of T (n) on T
(
n
k

)
. Let M be a rank k matroid on [n]. Then M de-

fines a marked polytope conv{AB | B is a basis of M}. We call marked polytopes
of this form matroid polytopes with respect to A.

A matroid decomposition with respect to A is a subdivision of convA by matroid
polytopes with respect to A.

A matroid polytope is called realizable over K if the corresponding matroid is
realizable over K and a matroid decomposition is realizable over K if it is a de-
composition with realizable matroid polytopes.

Remark 5.26. This generalizes the notions of matroid polytope from [GGMS88]
and matroid decomposition from [Kap93].

To be compatible with the terminology of [GGMS88] and subsequent works, a
matroid polytope (without further specification) is a matroid polytope with re-
spect to the k-th hypersimplex where k is the rank of the matroid (see Figure 8 and
Figure 9 on the facing page for an example).

We have the following reason to study these generalized matroid polytopes:

Proposition 5.27. Let A = (AI)I∈([n]
k ) be a family of

(
n
k

)
vectors in Zd and assume

that HA acts equivariantly on Gk,n(K). Then Gk,n(K)//HA intersects a torus orbit
O(σ) of P

(
n
k

)
//HA if and only if the subdivision corresponding to σ is a realizable matroid

subdivision.

PROOF. Let Z be a point inO(σ)∩Gk,n//HA. Then there is a sum of cycles Z =∑
ciHAx(i) with x(i) ∈ Gk,n. Combining Corollary 5.16 with [LJBS90, Lemma

4.3], we see that the orbit O(σ) containing Z corresponds to the subdivision

convA =
⋃
i

conv
{
AI | x(i)I 6= 0

}
.

On the other hand, x(i) lies in a stratum R(Mi) corresponding to a realizable ma-
troid Mi. Hence each polytope conv{AI | x(i)I 6= 0} is a realizable matroid poly-
tope.
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14

24

34
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23

13

Matroid M12 has 1 and 2 as parallel elements.
Matroid M34 has 3 and 4 as parallel elements.

FIGURE 9. A matroid decomposition of the second hypersimplex
∆2

4 into two pyramids

Now let σ be a realizable matroid decomposition with matroids Mi. Let x be a
generic point in Gk,n and let x(i) be the limit of x inR(Mi). We can form the cycle
Z =

∑
ciHAx(i) with ci = [(span(A) +σi)∩Zd : (span(A)∩Zd) + (σi∩Zd)]. Then

Z is a point of P
(
n
k

)
//HA by [KSZ91, Prop. 1.1]. It is a point of Gk,n//HA by [Hu05,

Theorem 3.13]. �

Remark 5.28. This result was already used in [Kap93]. We will only be interested
in the rank two case, where all matroids are realizable.





CHAPTER 6

Rational Tropical Curves

In this chapter we combine our knowledge of the compact tropical Grassmannian
and Chow quotients to define a compactification of the spaces of parametrized
tropical curves Mlab

0,n(Rr, d). We then show that this compactification carries a lot
of geometric information.

Definition 6.1. Let D be a family of finitely many pairs (ni, vi)i∈I where ni is a
positive integer and vi is a non-zero primitive integral vector in Zr.

We say that D is a labeled tropical degree if
∑
nivi = 0.

Let Rr be the torus of TPr and C a one-dimensional balanced polyhedral complex
whose rays have directions vi and weights ni.

We say that D is a tropical curve of degree D. Note that the family D uniquely
determines the projective degree of C, the class of C ⊆ TPr in A1(TPr).

LetD(r, d) be the degree with members (1,−ei) for i = 1, . . . , r and (1, e1+. . .+er)
each occurring d times where {ei}1≤i≤r is the standard basis of Rr.

If C is a curve in Rr with degree D(r, d) we say that C has tropical degree d.

Every curve with tropical degree d has projective degree d but not vice versa (see
Figure 6 for an example).

The genus of a connected tropical curve C is the first Betti number dimH1(|C|)
of the underlying topological space, i.e. the number of independent cycles of the
graph.

Let D be a tropical degree with pairs (ni, vi) with vi ∈ Zr. We define a linear map
πD : R#D → Rr that sends the i-th unit vector ei to nivi. This map is well-defined
on R#D/R since

∑
ei 7→

∑
nivi = 0.

(a) The curve C1 = trop{x2+xy+y2+x+y = −1}
has tropical degree 2.

(b) The curve C2 = trop{xy+ y = −1}
has projective degree 2 but not tropical
degree 2.

FIGURE 10. Two tropical curves with projective degree 2.
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e1, e2, e3, e4, e5, e6 ⊆ R6/R

π0,2

e1, e2, e3, e1, e2, e3 ⊆ R3/R

FIGURE 11. A degree 2 curve with a hidden parameter `.

Let p be any point in Go
2,D(T). The image πD(L(p)) is a connected tropical curve

of degree D and parametrized by a tropical curve of genus zero – the image curve
πD(L(p)) might not be of genus zero.

Let HD be the kernel of πD. We know that RD/R acts on Go
2,D(T). If p is a point

that maps to the curve C, then so does every point hp for h in HD. Hence we
consider the quotient Go

2,D/H
D.

Let Rr−1 ∼= Rr/R be the torus of TPr−1.

Definition 6.2. We define

Mlab
0,0(Rr−1, D) := Go

2,#D(T)/ kerπD

to be the parameter space of all tropical curves of degree D that are parametrized
by tropical curves of genus zero.

It is possible for such a curve of degree D to have an entire family of preimages,
see Figure 11.

There is a straightforward generalization: Let C be a tropical curve of degree D
and let x1, . . . , xn be n points that lie on that curve. We define a linear map πn,D :
Rn+D → Rd that sends the j-th unit vector ej to zero for j = 1, . . . , n and the i-th
unit vector ei to nivi for i = n + 1, . . . ,#D + n. where D + n stands for the finite
family D ∪ [n] with #D + n elements. This map is well-defined on RD+n/R since∑
ej +

∑
ei 7→

∑
nivi = 0.

Let p be any point in Go
2,n+D(T). The image πn,D(L(p)) is a connected tropical

curve of degree D and parametrized by a tropical curve of genus zero. Every ray
with direction −ej of L(p) gets mapped to a point xj on πn,D(L(p)).
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Definition 6.3. We define

Mlab
0,n(Rr−1, D) := Go

2,D+n(T)/ kerπn,D

to be the parameter space of tropical curves of degreeD with nmarked points that
are parametrized by tropical curves of genus zero.

For every i = 1, . . . , n there is an evaluation map evi : Mlab
0,n(Rr−1, D)→ Rr−1

[(pkl)] 7→ [πD((pij)j∈D)]

that sends a point in Mlab
0,n(Rr−1, D) to the coordinates of the i-th marked point in

Rr/R.

This is basically the setup introduced in [GM08]. A more detailed study of this
setup can be found in [GKM09, Section 4]. Note that the space Mlab

0,n(Rr−1, D) was
not defined as Go

2,D+n(T)/ kerπn,D but as (Go
2,D+n(T)/L) × Rr−1 where L is the

full lineality space of the tropical Grassmannian. This way, however, one loses the
embedding of the tropical lines in Rr/R and has to recover it using the marked
points. This means the setup from [GM08, GKM09] required n > 0.

Let us look at the complex analogues of these spaces.

Definition 6.4 (Mg,n). The moduli space Mg,n = Mg,n(C) is a 3g+n− 3-dimensio-
nal complex variety that parametrizes complex projective nonsingular curves C of
genus g together with n distinct marked points p1, · · · , pn on C (we use [FP97] as
a reference). Mg,n has a compactification Mg,n whose points correspond to pro-
jective, connected, nodal curves C, together with n distinct, nonsingular, marked
points, with a stability condition that is equivalent to the finiteness of automor-
phism groups.

The distinctive property of Mg,n is that it compactifies Mg,n without allowing the
points to come together. When points on a smooth curve approach each other the
curve sprouts off one or more components, each isomorphic to a projective line,
and the points distribute themselves at smooth points on these new components
(which is similar to the compactification X[n] [FM94] of the space of n distinct
points in a variety X).

We will focus on the case of genus zero. In this case, M0,n is a nonsingular variety.
A point in M0,n corresponds to a curve which is a tree of projective lines meeting
transversally, with n distinct, nonsingular, marked points; the stability condition
is that each component must have at least three special points, which are either the
marked points or the nodes where the component meets the other components.

Let X be a smooth projective variety, and let β be an element in A1(X). Let
M0,n(X,β) be the set of isomorphism classes of pointed maps (C, p1, . . . , pn, µ)
where C is a projective nonsingular curve of genus zero, the markings p1, . . . , pn
are distinct points of C, and µ is a morphism from C to X satisfying µ∗([C]) = β.

There is a compactification M0,n(X,β) ⊆ M0,n(X,β), whose points correspond
to stable maps (C, p1, . . . , pn, µ) where C a projective, connected, nodal curve of
genus zero, the markings p1, . . . , pn are distinct nonsingular points of C, and µ is
a morphism from C such that µ∗([C]) = β. (C, p1, . . . , pn, µ) is a stable map if the
following condition holds for every irreducible component E ⊆ C:

If E ∼= P1 and E is mapped to a point by µ, then E must contain at least three spe-
cial points (either marked points or points where E meets the other components
of C).
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The simplest example is M0,0(Pr−1, 1), which is the Grassmannian G2,r. If n ≥ 1,
M0,n(Pr−1, 1) is a locally trivial fibration over G2,r with the configuration space
P1[n] of [FM94] as the fiber [FP97].

Remark 6.5 (M0,n and Chow Quotients). It is a result from [Kap93] that

G2,n(C)//Tn−1 = M0,n(C)

where Tn−1 is the maximal torus from Pn−1 operating on the complex Grassman-
nian G2,n(C). This construction was further investigated in [GM07], where it was
shown that M0,n(C) equals the tropical compactification of M0,n, i.e. the compact-
ification of Go

2,n(C)/Tn−1 in the toric variety defined by the fan tropGo
2,n/T

n−1 =
Go

2,n(T)/L where L is the lineality space of the tropical Grassmannian.

Independent of this, the tropical M0,n(T) had been defined in [Mik06a] as the set
of all tropical curves of genus zero with n distinct marked points modulo homeo-
morphisms and was realized as a balanced polyhedral complex.

In [GKM09] the space M0,n(T) was realized as a quotient of the tropical Grass-
mannian. It was noted in [SS04] that this quotient is homeomorphic to the space
of phylogenetic trees constructed in [LJBV01].

In [Mik06a] Mikhalkin also introduced a compactification M0,n(T), where every
edge length was allowed to become infinite. This is equal to the tropical compact-
ification of M0,n(T), where every ray ρ has an infinite end point in the torus orbit
O(ρ).

This means that tropical and classical M0,n are linked by tropicalization:

Theorem 6.6.
M0,n(T) = trop M0,n(K).

It is a key feature of M0,n(T) that it is a hübsch fan, the underlying set |M0,n(T)|
has a unique coarsest fan structure.

The spaces Mlab
0,n(Rr, d) have an r-dimensional lineality space, hence they do not

have a canonical tropical compactification.

We know that the tropical Grassmannian G2,D+n(T) is a compactification of the
fan Go

2,D+n(T). While some quotients of torus orbits correspond to limits of trop-
ical curves, others do not corresponds to curves of the right degree, or not to
any well-defined point set at all, since the map πn,D does not extend to a map
TP(D + n)→ TP(r).

A natural compactification in this context is the Chow quotient

G2,D+n(T)// kerπn,D =: M
lab

0,n(TP(r), D).

1. Rational Tropical Curves of Degree One with n Marked Points

In this section we will investigate the space M
lab

0,n(TPr−1, 1). We begin by review-
ing key properties of Go

2,k(T) and G2,k(T).

A generic point in Go
2,k(T) represents a tree with k leaves and k − 1 edges. Points

in lower-dimensional cells correspond to trees with k leaves and fewer than k − 1
edges.

A generic point in a matroid stratum R(M) represents a tree with A leaves and
A− 1 edges where A is the number of atoms in the matroid M .
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(a) A tree in the boundary of Mlab
0,5(TP4, 1).
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(b) A tree in the boundary of G2,5(T).
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(c) A tree in the boundary of M0,5(T).

FIGURE 12. A point in the boundary of M
lab

0,n(TP5−1) and its im-
ages under ft and pr in G2,5 and M0,5. Rays in R5/R are labeled
with {1, . . . , 5} and the marked points are labeled with {a, . . . , e}.

This is a key difference between the compactification G2,k(T) of Go
2,k(T) and the

compactification M0,n(T) of M0,n(T): A generic point in M0,n represents a tree
with n leaves and n − 1 edges, but generic points in M0,n \ M0,n represent trees
with n leaves and n− 1 edges, some of which have infinite length.

Now let us look at points in Mlab
0,n(Rr−1, 1) = Go

2,r+n(T)/Hn. It corresponds to a
tree with two sorts of leaves:

(1) r leaves that represent edges in Rr−1,
(2) n leaves that represent marked points on the tree.

This corresponds to two surjective maps:

• ft : Mlab
0,n(Rr−1, 1)→ Go

2,r forgets all information about the marked points
and only keeps information about the tropical line in Rr−1, i.e. the tree
with r leaves above.

• pr : Mlab
0,n(Rr−1, 1) → M0,n forgets all information about the tropical line

in Rr−1 and only keeps information about the relative position of the
marked points towards each other, i.e. the tree with n leaves above.

We will see that these maps extend to the compactifications, that is ft extends to
a map M

lab

0,n(TPr−1, 1) → G2,r(T) and pr extends to a map M
lab

0,n(TPr−1, 1) →
M0,n(T).



70 6. RATIONAL TROPICAL CURVES

Generic points in the boundary of M
lab

0,n(TPr−1, 1) will then correspond to trees
with A + n leaves where A is the number of atoms in a rank 2 matroid on r ele-
ments. The tree has A+ n− 1 edges, some of which may have infinite length (see
Figure 12 on the previous page. However, this is only possible for those edges of
the tree which are contracted by the map from Rr+n−1 → Rr−1.

In order to show that M
lab

0,n(TPr−1, 1) is a parameter space of rational tropical
curves with n marked points we need to describe the orbits of the toric variety
TP
(
r+n
2

)
//Hn.

We already know the matroid stratification of G2,r+n(T). Every matroid stratum
is the intersection of G2,r+n with a torus orbit of P

(
r+n
2

)
. The matroid strata are

intersections with torus orbits of the ambient projective space. The Chow quotient
G2,r+n//Hn embeds into P

(
r+n
2

)
//Hn. We know that the quotient of the central

stratum Go
2,r+n/Hn embeds into the Chow quotient G2,r+n//Hn. We will see that

there are other strata whose topological quotient embeds into the Chow quotient.

If we want to determine these orbits, we have to describe the polytope Pn gener-
ated by the columns of a matrix A whose rows span the kernel of πn,1.

Let us choose coordinates such that the kernel of πn,1 is generated by the first n
unit vectors of Rr+n/R. A unit vector ei from Rr+n acts on TP

(
#D+n

2

)
like the

vector
∑
j 6=i eij .

Note that the choice of another basis leads to an affinely isomorphic polytope.

Let A be the n×
(
r+n
2

)
matrix defined via ak,ij =

{
1, k ∈ {i, j}
0, k /∈ {i, j}

This means the row space of A generates the kernel of πn,1. We can describe the
columns of A as follows:

• The vector zero appears
(
r
2

)
times, for each combination n < i < j of

indices.
• The vector ei appears r times, for each combination i, j with i ≤ r < j of

indices.
• The vector ei + ej appears exactly once for the combination i, j.

We see that all columns of A are vertices of convA, so R(M)/Hn embeds into
G2,r+n whenever convAM = convA.

The second hypersimplex ∆2
n+1 is isomorphic to the polytope with vertices ei and

ei + ej . The convex hull of all vectors ei is a facet of the second hypersimplex
in this coordinates. This leads us to the following description of the polytope Pn
obtained as the convex hull of the columns A:

Lemma 6.7. Pn is an n-dimensional convex polytope with normalized volume 2n−n and
set of vertices {0} ∪ {ei} ∪ {ei + ej}.

PROOF. The second hypersimplex ∆2
n+1 is n-dimensional and has normalized

volume 2n−n−1 [Stu95, Theorem 9.4]. The polytope Pn is the union of the second
hypersimplex and the unit simplex with vertices {0} ∪ {ei}. �

Hence we see that an element Z of the Chow quotient G2,r+n//Hn is a sum of
torus orbits Z =

∑
Hnxi such that dimHnxi = dimHne0 = n and

∑
degHnxi =

degHne0 = 2n − n.
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FIGURE 13. The polytope of H3 is a subpolytope of the unit cube
containing the second hypersimplex ∆2

4.

That means if there is a matroid M such that dimHneM = n and degHneM =
degHneU(n) then the topological quotient R(M)/Hn embeds into the Chow quo-
tient G2,r+n//Hn (where U(n) is the uniform rank n matroid on n elements).

Example 6.8. For n = 2 the polytope P2 is just the unit square (which has normal-
ized volume 2 = 22 − 2 since it can be decomposed into two lattice triangles). For
n = 3 we get the 3-dimensional polytope from Figure 13.

The Chow quotient P
(
r+n
2

)
//Hn corresponds to all subdivisions of Pn whereas the

quotient G2,r+n//Hn only depends on all matroid subdivisions of Pn. We can de-
scribe all matroid subdivisions of Pn

Lemma 6.9. Let S be a matroid subdivision of Pn. Then S contains a polytope which
contains the unit simplex.

PROOF. S must contain a marked polytope (Q,M) which has a full-dimen-
sional intersection with the unit simplex. This is only possible if Q contains the
origin. Let i be a marked point. Then there must be a basis ij contained in M , for
otherwise Q would lie in the hyperplane xi = 0. By the basis exchange axiom M
must contain a basis ki where k is not a marked point. Hence the unit vector ei is
contained in Q. Thus Q contains the unit simplex. �

Corollary 6.10. A matroid subdivision of Pn determines a matroid subdivision of ∆2
n+1

(and this is a matroid subdivision in the usual sense).

The matroid subdivisions of the second hypersimplex describe the compactifica-
tion M0,n+1 of M0,n+1 and are known explicitly [Kap93, Theorem 1.3.6], we also
know the geometry of M0,n+1(T) explicitly. Note that the combinatorics of Pn
with n marked points correspond to subdivisions of ∆2

n+1, as we need to keep
track of the position of the n marked points relative to each other and relative to
the embedded tropical line.

Finally, let us have a look at the relation between M
lab

0,n(TPr, 1) and M
lab

0,n(TPr−1, 1).
They are both defined by the polytope Pn, however in the former case the vertices
occur with multiplicities 1, r + 1 and

(
r+1
2

)
while in the latter they are 1, r and(

r
2

)
respectively. In fact, the marked polytope Pn = Pn(r) of M

lab

0,n(TPr−1, 1) is a
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FIGURE 14. A tree with an infinite edge is the sum of two trees
coming from a matroid subdivision.

matroid subdivision of the marked polytope Pn(r + 1) of M
lab

0,n(TPr, 1) and the
corresponding matroid has r + 1 as a loop. This implies that every subdivision of
Pn(r) is also a subdivision of Pn(r+ 1), hence M

lab

0,n(TPr−1, 1) lies in the boundary

of M
lab

0,n(TPr, 1). The same relation holds between G2,r(T) and G2,r+1(T), where
G2,r(T) consists of all strataR(M) of G2,r+1(T) such that r+1 is a loop ofM . This
means that the subset of all tropical lines (with or without marked points) that lie
in a torus invariant subvariety of Pr are the intersection of M

lab

0,n(TPr, 1) with a
torus invariant subvariety of P

(
r+n
2

)
//Hn (or G2,r(T) and P

(
r
2

)
, respectively).

2. Rational Tropical Curves of Higher Degree Without Marked Points

Let us now look M
lab

0,0(TPr−1, d) for d ≥ 2. The situation is similar to the previous

case with d = 1 and n > 1 in that boundary points in M
lab

0,0(TPr−1, d) correspond
to trees with fewer than rd leaves that may have contracted edges of an infinite
length. In this case, however, such a contracted edge leads to a splitting of the
curve into several components of lower degree.

Now, let us look at the polytopes involved in the quotient TP
(|D|

2

)
// kerπD. We

begin with the case d = 2, which has slightly different combinatorics then the
general case d ≥ 3.

The vectors ei and er+i of R2r get mapped to the same image for i = 1, . . . , r.
Hence the kernel of π0,2 is generated by all vectors ei− ei+r for i = 1, . . . , r. A unit
vector ei from R2r acts on TP

(
#D
2

)
like the vector

∑
j 6=i eij .

Let A be the r ×
(
2r
2

)
matrix defined via ak,ij =


1, k ∈ {i, j}, k + r /∈ {i, j}
−1, k + r ∈ {i, j}, k /∈ {i, j}
0, otherwise

This means the row space of A corresponds to the action of the kernel of π0,2. We
can describe the columns of A in Zr as follows:

• The vector zero appears r times, for each combination i, i + r of indices
with i ≤ r.

• The vector ei+ej appears exactly once for the combination i, j with i, j ≤
r.
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• The vector ei − ej appears exactly once for the combination i, j + r.
• The vector −ei− ej appears exactly once for the combinations i+ r, j+ r.

The origin is the only interior lattice point of the convex hull P 2 = conv{aij} of
the columns of A.

Let us now look at the general case of a labeled tropical degree D of s vectors in
Zr−1: There appears to be no canonical choice for a basis of the kernel of the pro-
jection π0,D. Let us assume we choose a

(
s
2

)
× matrix B whose columns generate

the kerπ0,D. The polytope PD describing the quotient G2,s// kerπ0,D is then the
convex hull of the rows of this matrix. It is of dimension s − r. We will now de-
scribe a symmetric generating system for the case of tropical degree d. It is given

by the rd× rd-matrix B with entries ba,b,c,d =


d− 1, if a = c and b = d

−1, if b = d, but a 6= c

0, otherwise

The matrixB describes the action kerπ0,D on TP(r). The action on TP(dr) is given
via an rd ×

(
rd
2

)
-matrix A with entries aa,b,a′,b′,c,d = ba,b,c,d + ba′,b′,c,d. We define

the polytope P d as the convex hull of the columns of A. Note that P d ⊆ Rrd lies
in an affine subspace of codimension r. We can easily derive a few facts from this
description:

• No column is equal to the zero vector, though the origin is an interior
point of P d.

• Each column has at most 2r non-zero entries, the coordinates can be
sorted into r blocks such that all coordinates from each block sum to zero.

• No column appears twice and no column is a convex combination of
other columns.

Example 6.11. For d = 2 and r = 3 we get a three-dimensional polytope, the
cuboctahedron (see Figure 15 on the next page). The combinatorics of the Chow
quotient P

(
2·3
2

)
//H2 depend on the fiber polytope Σ(∆15, P

2) which is an 11-di-
mensional polytope with 173232 vertices. The number of vertices (i.e. the number
of regular triangulations of P 2) has been determined using the program TOPCOM
[Ram02]. The torus H2 for curves in P2 is three-dimensional just like the torus H3

used for the space M
lab

0,3(TP2, 1). However, the fiber polytope Σ(∆15, P3) only has
1296 vertices.

3. Forgetful Maps

In this section we will explore the relations between the compact spaces TP(r),
M0,n(T) and M

lab

0,n(TP(r), d).

The tropical parameter spaces M0,n(T) and the classical moduli spaces M0,n(C)
come equipped with forgetful maps

ft : M0,n+1 → M0,n.

This forgetful map extends to the compactification M0,n(T).

Theorem 6.12. Let r ≥ 2 and n ≥ 2. Then there is a commutative diagram
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FIGURE 15. The polytope P 2 is the cuboctahedron. The six sides
of the ambient cube [−1, 1]3 are labeled with numbers from 1 to 6
and every vertex of the cuboctahedron lies on the intersection of
two sides of the ambient cube. The three pairs of opposing sides
14, 25, 36 correspond to the origin.

M
lab

0,n+1(TPr−1, d) M
lab

0,n(TPr−1, d)

M0,n+1(T) M0,n(T)

pr pr

ft

ft

where all horizontal maps are induced from projections Go
2,n+1 → Go

2,n and all vertical
maps from projections Go

2,r+n → Go
2,n. The forgetful map

ft : M
lab

0,n+1(TPr−1, d)→ M
lab

0,n(TPr−1, d)

exists for all n ≥ 0.

PROOF. We know there is a forgetful map ft : M0,n+1(C) → M0,n(C), and
hence a map M0,n+1(K) → M0,n(K), and by tropicalization we get the desired
map M0,n+1(T) → M0,n(T). A direct proof that Chow quotients admit this map
can be found in [Kap93, Theorem 1.6.6].

The forgetful map ft : Go
2,dr+n+1/H

d
n+1 → Go

2,dr+n/Hn is defined via forgetting
all Plücker coordinates of Go

2,dr+n+1 that use coordinate n + 1. We will show that
this map extends to the Chow quotients G2,dr+n+1//Hn+1 → G2,dr+n//Hn. The
idea behind this proof is very intuitive: the forgetful map between varieties corre-
sponds to the deletion of elements from matroids.

Let Fdr+n+1 be the fan of P(dr+n+1) To show that ft defines a toric morphism, by
Theorem 5.10 and Proposition 5.27 we need to show that the image of every cone
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of Fdr+n+1/H
d
n+1 (determined by a matroid subdivision of Pn+1 by ∆(dr+n+1

2 ))

gets mapped to a subset of cone of Fdr+n/Hd
n (induced by a subdivision of Pn

by ∆(dr+n2 )).

Let S be a matroid subdivision of P dn+1 and let M1, . . . ,Mk be the corresponding
matroids. We consider the collection S′ of all deletions M ′i = Mi \ {n+ 1} that are
of rank two. We want to show that this defines a matroid subdivision of P dn .

Let us identify Rn with Rn × {0} ⊆ Rn+1. The vertices of P dn+1 are the vertices of
P dn plus the unit vector en+1 and all sums ei + en+1 for i = 1, . . . , n. That means
the collection of matroids Mi \ {n + 1} (some might be equal) naturally defines a
subdivision of Pn when considered as a face of Pn+1 (it is the intersection of Pn+1

with the hyperplane xn+1 = 0).

The boundary fiber polytope of subdivisions of the boundary is a Minkowski sum-
mand of the fiber polytope [BS92, Prop. 3.1], hence we get a well-defined toric
morphism

ft : G2,dr+n+1//Hn+1 → G2,dr+n//Hn

extending the map ft : Go
2,dr+n+1/Hn+1 → Go

2,dr+n/Hn.

Similarly, we need to show that the linear map pr : Go
2,dr+n/Hn → Go

2,n/Hn is a
map of fans.

Again, the second hypersimplex ∆2
n is a face of P dn , it is cut out by the equation∑dr+n

i=dr+1 xi = 2. Let σ be a cone of P
(
dr+n

2

)
//Hn corresponding to a matroid subdi-

vision S. LetM1, . . .Mk be the matroids of S. The restrictionM ′i ofMi is a matroid
on [rd+ n]\ [dr]. We define the collection S′ to contain all M ′i that are of rank two.
This is the matroid subdivision of ∆2

n induced by S. Therefore pr extends to the
Chow quotients.

The commutativity follows from the fact that the maps ft ◦pr and pr ◦ ft are iden-
tical on Go

2,dr+n+1/H
d
n+1. �

Lemma 6.13. Let r ≥ 2 and d ≥ 1. Then

P(dr)//Hd = P(r).

PROOF. The linear map πd : (Rr)d → Rr is defined via ei,j 7→ ei for i =
1, . . . , r, j = 1, . . . , d.

Let B be the (d− 1)r× r-matrix with columns given by b(i,j) = e1,i− ej,i. Hd is the
kernel of this map. An orthogonal complement to the kernel is given by the image
of Rr → (Rr)d, ei 7→

∑
j ei,j .

The r × dr-matrix A with entries ai,(k,l)=δik describes a linear map Rr → (Rr)d

whose image is an orthogonal complement of the kernel of πd. This means A is a
Gale dual of B and the multi-intersections of the cones formed from the columns
of A describe the secondary fan of the polytope conv(B) (see [LJBS90, Section 4]).
But the columns of A are just the unit vectors so the secondary fan is the fan of
P(r). �

Another feature of the classical M0,n+1(CPr−1, d) and of M0,n(Rr−1, d) are evalu-
ation maps that send a curve to the coordinates of one of its marked points.

Theorem 6.14. Let r ≥ 3 and 1 ≤ i ≤ n. Then there is an evaluation map

evi : M
lab

0,n(TPr−1, d)→ TPr−1

extending the map evi : M0,n(Rr−1, d)→ Rr−1.
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PROOF. We can assume n = 1 after applying forgetful maps. We will prove
the theorem as follows

(1) G2,D+1//H
D
1 = (G2,D+1//H1)//HD.

(2) G2,D+1//H1 = FG2,D ⊆ P
(
D
2

)
×P(D). This follows from Lemma 5.23.

(3) There is a map (P
(
D
2

)
× P(D))//HD → P(D)//HD. This follows from

Lemma 5.19.
(4) P(D)//HD = P(r). This follows from Lemma 6.13.

So all we need to show is G2,D+1//H
D
1 = (G2,D+1//H1)//HD. We do know that

there is a map (G2,D+1//H1)//HD → G2,D+1//H
D
1 from Lemma 5.21. For our pur-

poses we need a map in the opposite direction, though.

Let F be the fan of P
(
D+1
2

)
and let LD, L1 and LD1 be the vector spaces corre-

sponding to the tori HD, H1 and HD
1 respectively. Our first result is that every

cone in F/L1 is of the form σ/L1 where σ is a cone of F , i.e. there are no multi-
intersections. This because H1e ⊆ P

(
D+1
2

)
is a subvariety of degree one, hence

every effective cycle of the same degree as H1e consists of precisely one orbit clo-
sure.

Let us now check the the fan (F/L1)/LD. Every cone in there is a multi-intersection
σ =

⋂
σi/L

D where every σi is a cone of F/L1. But that means σ =
⋂

(σi/L1)/LD

where every cone σi is a cone F . This is set-theoretically the same as the multi-
intersection σ =

⋂
σi/L

D
1 . And that means σ is a cone in F/LD1 , i.e. there is a map

G2,D+1//H
D
1 → (G2,D+1//H1)//HD. �

We actually believe that a key part of this proof holds true in more generality

Conjecture 6.15. G2,D+n//H
D
n = (G2,D+n//Hn)//HD = (G2,D+n//H

D)//Hn.

The geometric meaning of this that the combinatorics of the marked points can
be treated independently of the combinatorics of the combinatorics of the labeled
degree and the embedding.

4. Interpretation of boundary points in M
lab

0,n(TPr−1, d)

We do not fully understand the fan of Chow quotient M
lab

0,n(TP (r), d) nor do we
know all matroid subdivisions of P dn .

We can, however, give examples of seven types of matroid subdivisions of P dn , we
believe that every matroid subdivision can be achieved as a combination of those
seven types.

We begin with a review of the fan M0,n(T).

Definition 6.16. Let E be a finite set. An edge set S is a finite set of unordered
pairs {A,B} of subsets of E satisfying:

(1) Each {A,B} describes a partition of E with #A,#B ≥ 2.
(2) If {A,B} and {C,D} are in S then either A ⊆ C or C ⊆ A or A ⊆ D or

D ⊆ A.

Theorem 6.17. The poset of cones of M0,k(T) is isomorphic to the poset of edge sets of [k]
(ordered by inclusion). Let I, J be a partition of [k] into elements of size at least two, then
the ray generated by rI,J :=

∑
i,j∈I −eij generates the cone corresponding to the edge

set {{I, J}}. Note that rI =
∑
i,j∈I −eij is equivalent to rJ =

∑
i,j∈J −eij modulo the

lineality space of Go
2,k.
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PROOF. [SS04, Section 4]. �

This describes the cones of Go
2,k(T), each cone is a cone of M0,k plus the lineality

space T (k) of the tropical Grassmannian. Our ultimate goal is to find a fan struc-
ture for Go

2,rd+n such that every cone τ of Go
2,rd+n containsHd

n in its lineality space
and τ/Hd

n is contained in a cone of the fan of P
(
dr+n

2

)
//Hd

n.

We are currently unable to provide such a fan structure. We will explore the
necessary refinement of the lineality space T (rd + n). We do this by choosing a
factorization T (rd + n) = T (r) × Hd

n (Hd
n is by definition the kernel of the map

πn,d : T (rd+ n)→ T (r)).

The factor T (r) acts via translations of curves. We already know from translations
of tropical lines that the fan on T (r) will need to be a refinement of the fan of P(r).
However, the fan structure that we need also depends on the degree d.

If v is a generic vector in T (r) then the limit of translationg a curve C along v will
be in some boundary orbit of Pr−1 unless v is the negative of a ray generator of C,
in which case the translation of that ray will stay in the main torus (this already
happens with lines). The possible directions of rays of a curve depend on the
degree. However, knowing just the rays does not determine the fan. We believe
that the following construction yields a suitable fan.

Definition 6.18. LetD be a labeled tropical degree of curves in TPr−1. Then F (D)
is the normal fan of the Chow polytope of a generic curve of degree D.

Remark 6.19. The Chow polytope is the weight polytope of the Chow form. We
did not define Chow forms for tropical complexes. One can either choose a generic
non-Archimedean curve C whose tropicalization has degree D (this exists, as all
tropical lines are realizable) and take the Chow polytope of C or use the results
of [Fin10] which describes a direct construction for the normal fan of the Chow
polytope from tropical complexes.

Definition 6.20. We define the fan F (r, d) to be the common refinement of the fan
of P(r) with all F (D) such that D is labeled tropical degree of curves in TPr−1

which have projective degree d.

Unfortunately, we have not fully understood the combinatorics of the fan F (r, d)
either. The easiest non-trivial case is if r = 3 and d = 1, in which case F (3, 1) is the
common refinement of the fan of P2 with its negative.

Let us investigate the limit points of the rays of M0,rd+n and of vectors from T (r):

(1) Let −ei be one of the rays of P(r). The limit point of this ray is a curve in
the boundary divisorDi of P(r). In the case of d = 1 this is the torus orbit
corresponding to the matroid which has i as a loop (the corresponding
subdivision uses all of Pn, but omits all vertices of the form ij). If d ≥ 2,
then there is a subdivision of P dn into d matroid polytopes, each polytope
corresponds to the cycle which has one of the d copies of i as a loop. Each
of these polytopes describes a curve of degree d in TP(r − 1) with d − 1
additional marked points – the other d− 1 copies of i. An example of this
can be seen in Figure 17 on page 79.

(2) Let vi be the negative of one of the rays of a labeled degree D. The limit
point of this ray is a curve which consists of ordinary lines in Rr−1 (paral-
lel to Rvi) and possibly some components in the boundary. In the case of
d = 1 and n = 0, this is the torus orbit of a matroid with only two atoms,
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(a) A tropical curve of degree one
with one marked point in TP2.

(b) The common refinement of the fan of P2 and its
negative. It is the normal fan of a lattice hexagon.

(c) Limit curves depend on the cone containing the vector used for translation.

FIGURE 16. Possible limits of a curve of degree one with one
marked point under translation.

i and [r] \ {i}. If we have n > 0 then this corresponds to a matroid sub-
division of Pn into two polytopes, one consists of the matroid with two
atoms, i and [r + n] \ {i}, the other has loops [r] \ {i}. This corresponds
into the decomposition of Pn into a simplex and the second hypersim-
plex ∆2

n+1, where the element i acts as an additional marked point (i.e.
this component describes the position of the marked points with respect
to the limit point of line Rei). See Figure 16 for an illustration of this.
In the general case, we have a cycle Z =

∑
Hd
nxi where the xi are all

limits of rays R≥0v such that πn,d(v) = vi and dimHd
nxi = dimP dn . If D

is the degree of curves of tropical degree d, then this will be a sum of d
irreducible components, each one describing a line in Rr/R.
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(a) A matroid subdivsion of P 2 into matroids with loops.
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(b) A sum of cycles of G2,6 in the corre-
sponding orbit of Mlab

0,0(P
2, 2).
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64

25

(c) The corresponding curve is of degree
two in the boundary of P2 with two ad-
ditional marked points.

FIGURE 17. A subdivision of P 2 corresponding to a curve in the
boundary of P2.

(3) Let us look at the limit of the ray rI in the case that I consists only of
marked points. The corresponding edge gets contracted by πn,D. The
limit curve has an formal infinite length for this contracted edge. The
subdivision consists of the matroid where all elements of I are parallel
and the matroid where all elements not in I are parallel. This is illustrated
in Figure 18 on the following page. The corresponding cycle has two
components, πn,d maps one component to a curve of degree d and the
other gets contracted to a point (at the common position of the marked
points indexed by I).
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(a) A subdivision of P3, the marked polytope for degree
one curves in P2 with three marked points.

1
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123c

(b) A sum of cycles of G2,{1,2,3,a,b,c}
from the corresponding orbit of
M

lab
0,3(P

2, 1). Note that all edges of the
top curve will be contracted.

1

2

3c

a b

−∞

(c) The corresponding deformation of a
tropical curve has a contracted edge of
infinite length.

FIGURE 18. A polytope subdivision corresponding to a con-
tracted edge of infinite length.

(4) Let us look at the limit of the ray rI in the case that I consists only of
marked points and precisely one direction i. This is a bounded edge of
the curve who is parallel and adjacent to a ray of the curve. The bounded
edge becomes infinitely long, and all marked points get moved to the
limit point of the bounded edge. The corresponding subdivision consists
of the matroid where all elements from I are parallel and the matroid
where all elements not in I are parallel and i is a loop. As in the previous
case, the corresponding cycle has a component representing the curve
and one component representing the marked point (which now sits out-
side the main torus).
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(a) A subdivision of P 2 into three matroid polytopes.

3

1

4

256

2 6

14

Loops: 3 and 5
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(b) The corresponding cycle has three components, two components
correspond to lines in the boundary.

(c) One component of the cycle repre-
sents a curve, the other two get con-
tracted to a point.

FIGURE 19. A matroid decomposition corresponding to a non-
generic curve of projective degree two.
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(a) A subdivision of the marked polytope P 2 of degree two
curves in P2.
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(b) A sum of cycles in the cor-
responding orbit. Note that the
rays 123 and 456 will get con-
tracted and each component of
the cycle describes a curve of de-
gree one.
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(c) The corresponding curve is con-
nected and reducible, the irreducible
components meet in an additional
marked point.

FIGURE 20. The polytope P 2 for labeled tropical curves without
marked points in P2.

(5) Let us look at the limit of the ray rI in the case that I consists of marked
points and two or more directions, but such that I without the marked
points does not contain a tropical degree. In this case the correspond-
ing edge of the curve gets stretched to become a ray, and all rays with
directions in I vanish. This the image of a curve in the corresponding
orbit of the tropical Grassmannian. If d = 1 then this a subdivision of Pn
with just one polytope, which misses all vertices corresponding to pairs
of elements from I . If d > 1 then this is a subdivision of P dn into the ma-
troid polytope which is defined by the property that all elements from I
are parallel and for every pair of two elements from I a matroid where



5. APPLICATIONS TO ALGEBRAIC GEOMETRY 83

all directions not from I but parallel to directions from I are loops. An
example of this can be seen in Figure 19 on page 81.

(6) Let us look at the limit of the ray rI in the case that I consists marked
points and directions such that I without the directions constitutes a trop-
ical degree. In this case the corresponding edge gets contracted and the
image curve has two components which are each of lower degree. The
limit curve has a formal infinite length for this contracted edge, it consists
of two curves of lower degree each with an additional marked point, the
intersection point of the two components. The torus orbit corresponds
to a matroid decomposition into two matroids, one where all elements
from I are parallel and one where all other elements are parallel. This is
illustrated in Figure 20 on the facing page.

(7) Let us look at the limit of the ray rI in the case that I consists of direc-
tions and marked points such that I without the marked points contains
a tropical degree and additional directions J . In this case the limit curve
has two components of lower degree, one in Rr−1 with a ray in direc-
tion v =

∑
j∈J vj and one in a boundary of TPr (as if it where translated

along v). Both have an additional marked point which corresponds to
the intersection of the two components. The matroid subdivision is the
appropriate combination of the previous type and the first and second
types.

5. Applications to Algebraic Geometry

We can construct complex (and non-Archimedean) analogues of the parameter
spaces M

lab

0,n(TPr, d). Let us begin with M
lab

0,0(CPr−1, d). Let L be a a generic line
in CPr−1. Let πd be the toric morphism (C×)rd/C× → (C×)r/C× defined via
z = zi,j 7→ (

∏
z1,j , . . . ,

∏
zr,j). Then C = πd(L) is a smooth curve of degree d in

CPr−1.

However, this construction provides more information than just the curve C. C
will have d distinct intersection points with each boundary divisor Di of CPr−1,
each of these intersection points corresponds to a unique intersection point of L
with one of the d boundary divisors of TPrd−1 that map to Di under π.

Hence this construction produces a generic degree d curve C and a labeling of
the intersection points of C with the boundary divisors of Pr−1. This is the data
contained in the quotient Go

2,rd(C)/ kerπd =: Mlab
0,0(CPr−1, d).

We can construct marked points by choosing a map πn,d : C×
rd+n

/C× → C×
r
/C×

which forgets the last n coordinates. We already investigated the corresponding
Chow quotient and saw that this produces evaluation maps which define marked
points.

Hence, for an algebraically closed field K we can define the projective variety

Definition 6.21. M
lab

0,n(KPr−1, d) := G2,rd+n(K)// kerπn,d.

In the non-Archimedean case, the tropicalization of this space is M
lab

0,n(TPr−1, d).
It is the Chow quotient whose combinatorics we have investigated for the tropical
case. In the same way that we associated connected unions of tropical rational
curves to every point in M

lab

0,n(TPr, d) we can associate connected nodal algebraic

curves to every point in M
lab

0,n(KPr−1, d) and hence turn M
lab

0,n(KPr−1, d) into a
parameter space of curves.
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The next question is of course:
What is the relation between M

lab

0,n(CPr−1, d) and M0,n(CPr, d)?

We do not have a proof for the general case, but low-dimensional examples strong-
ly suggest:

Conjecture 6.22. M
lab

0,n(CPr, 1) is isomorphic to M0,n(CPr, 1).

The situation with degree d > 1 is more complicated.

As noted before, the variety Mlab
0,n(CPr−1, d) is a parameter space of labeled degree

d curves, that means that for a given generic curve through n distinct points there
are rd different labelings. There is an corresponding action of the r-fold power of
the symmetric group (Sd)

r = Sd × · · · × Sd on M
lab

0,n(CPr, d), one should therefore

compare the spaces M
lab

0,n(CPr−1, d)/(Sd)
r and M0,n(CPr−1, d).

We already know (by the discussion in previous chapter) that these spaces are not
equal:
M

lab

0,n(CPr−1, d)/(Sd)
r depends on the toric structure of CPr−1, curves lying in-

side torus orbits are represented differently from curves lying in generic hyper-
planes. Additionally, the subset of M

lab

0,n(CPr−1, d) consisting of curves that lie
in a boundary divisor of Pr−1 is not equal to (not even of the same dimension)
M

lab

0,n(CPr−2, d).

Nonetheless, we know that we can interpret points in M
lab

0,n(CPr−1, d)/(Sd)
r as

connected curves of degree d in Pr−1, and boundary points correspond to con-
nected projective nodal curves. The combinatorial structure of the marked points
in the space M

lab

0,n(CPr−1, d)/(Sd)
r is the same as that of M0,n(CPr−1, d), the com-

binatorics are described via the maps to M0,n.

Conjecture 6.23. There is a regular birational map from M
lab

0,n(CPr−1, d)/(Sd)
r to

M0,n(CPr, d).
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