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Abstract

The recognition of patterns and structures has gained importance for dealing with
the growing amount of data being generated by sensors and simulations. Most exist-
ing methods for pattern recognition are taylored for scalar data and non-correlated
data of higher dimensions. The recognition of general patterns in flow structures
(correlated data) is possible, but not yet practically usable, due to the high compu-
tatation effort. The main goal of this work is to present methods for comparative
visualization of flow data, amongst others, based on a new method for efficient
pattern recognition on flow data. This work is structured in three parts:

At first, a known feature-based approach for pattern recognition on flow data, the
Clifford convolution, has been applied to color edge detection, and been extended
to non-uniform grids. However, this method is still computationally expensive for
a general pattern recognition, since the recognition algorithm has to be applied for
numerous different scales and orientations of the query pattern.

A more efficient and accurate method for pattern recognition on flow data is pre-
sented in the second part of this dissertation. It is based upon a novel mathematical
formulation of moment invariants for flow data. The common moment invariants
for pattern recognition are not applicable on flow data, since they are only invariant
on non-correlated data. Because of the spatial correlation of flow data, the moment
invariants had to be redefined with different basis functions to satisfy the demands
for an invariant mapping of flow data. The computation of the moment invariants
is done by a multi-scale convolution of the complete flow field with the basis func-
tions. This pre-processing computation time almost equals the time for the pattern
recognition of one single general pattern with the former algorithms. However, after
having computed the moments once, they can be indexed and used as a look-up-
table to recognize any desired pattern quickly and interactively (for data of common
size). This results in a flexible and easy-to-use tool for the analysis of patterns in
2d flow data.

For an improved rendering of the recognized features, an importance driven stream-
line algorithm has been developed. The density of the streamlines can be adjusted
by using importance maps. The result of a pattern recognition can be used as such a
map, for example. Finally, new comparative flow visualization approaches utilizing
the streamline approach, the flow pattern matching, and the moment invariants are
presented.



Zusammenfassung

Die Erkennung von Mustern und Strukturen in Daten gewinnt bei den immer größer
werdenden Datenmengen, die durch Sensoren und Simulationen generiert werden,
immer mehr an Bedeutung. Die meisten bekannten Verfahren zur Mustererkennung
sind für skalare und nicht-korrelierte Daten höherer Dimensionen zugeschnitten.
Die Erkennung frei definierbarer Muster ist auch in (korrlierten) Strömungsdaten
möglich, aber aufgrund des hohen Rechenaufwands, praktisch kaum nutzbar. Das
zentrale Ziel dieser Arbeit ist es, Verfahren zur vergleichenden Visualisierung von
Strömungsdaten zu entwickeln, unter Anderem basierend auf einer neuen Methode
zur effizienten Mustererkennung auf Strömungsfeldern. Diese Arbeit lässt sich in
drei grobe Teile gliedern:

Zuerst wird ein bekannter merkmalsbasierter Ansatz, die Clifford Faltung, zur Erken-
nung von Kanten in Farbbildern verwendet und zur Anwendung auf allgemeinere
Datensätze erweitert. Diese Methode zur Mustererkennung ist jedoch recht auf-
wändig, da für allgemeine Muster der Algorithmus für zahlreiche Skalen und Orien-
tierungen durchlaufen werden muss.

Eine effizientere und genauere Methode zur Mustererkennung auf Strömungsdaten
wird im zweiten Teil dieser Dissertation vorgestellt. Sie basiert auf einer neuen
Definition der invarianten Momente für Strömungsdaten. Die Eigenschaften der
in der Mustererkennung gebräuchlichen invarianten Momente gelten nur für nicht-
korrelierte Daten, so dass sie auf Strömungsdaten nicht einfach angewandt werden
konnten. Aufgrund der Verknüpfung von Position und Wert eines jeden Vektors
mussten die invarianten Momente auf diese Situation angepasst und entsprechend
ihre Basisfunktionen neu definiert werden, um die gleichen Invarianzeigenschaften
wie auf skalaren Daten zu erfüllen. Die Berechnung der invarianten Momente erfolgt
über eine Multi-Skalen-Faltung eines kompletten Strömungsfeldes mit den genan-
nten Basisfunktionen. Diese Vorberechnung zur eigentlichen Mustererkennung ist
etwa so aufwändig, wie die Erkennung eines einzigen allgemeinen Musters mit den
herkömmlichen Algorithmen. Sind die Momente jedoch erst einmal berechnet, so
können sie gespeichert, indiziert und als Look-Up-Tabelle verwendet werden, um
jedes beliebig vorgegebene Muster schnell und interaktiv in Datensätzen (üblicher
Größenordnung) wiederzuerkennen. Die auf dieser Methode basierende Software
stellt ein flexibles, einfach zu benutzendes Werkzeug zur Analyse von Mustern in
zweidimensionalen Strömungsfeldern dar.

Zur sinnvollen Visualisierung der erkannten Muster und Merkmale wurde ein Al-
gorithmus zur Generierung gewichteter Stromlinien entwickelt. Schließlich wer-
den am Ende der Arbeit neue Ansätze zur vergleichenden Strömungsvisualisierung
vorgestellt, welche auf den zuvor vorgestellten Stromlinien, der interaktiven Mus-
tererkennung und den invarianten Momenten basieren.
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Chapter 1

Introduction

1.1 Context and Goals

The analysis of flow features is of great importance in many application areas.

Weather forecasts are for example based on analyses of air and water flows. In

geology, scientists are researching magma flows to forecast possible earthquakes or

volcano eruptions. In industry, cars are designed to have a low specific fuel con-

sumption. This can be achieved by a computer simulation or experimental analysis

of the air flow around the car in a wind tunnel.

The analysis of flow features can be performed in multiple different and sophis-

ticated ways. However, pure statistical analyses do not reveal a complete picture

of the information contained in large amounts of data. With increasing amounts of

data, the area of flow visualization becomes increasingly important.

In the context of flow visualization there has been really good progress over the

last twenty years. Many sophisticated methods have been developed for the proper

visualization of flow. However, the comparison of flows is by far not as investigated

as the analyses and visualization methods for single flow fields. In application areas

like meteorology it can be important to compare different weather situations, e.g.,

a comparison of the current air flow with flows at the time of the development of a

hurricane. Comparative visualization of flow data is yet mainly limited to a side-by-



1.2 Related Concepts 10

side image comparison. So, the main goal of this work is to contribute an alternative

concept for comparative visualization using pattern recognition on flow data.

To develop this concept, methods from the area of image processing and computer

vision (ACM: I.4) and pattern recognition (ACM: I.5) have been adapted and refined

for application in the area of visualization (ACM: I.3 computer graphics), according

to the ACM classifications [Jon98].

The main idea of this work is to provide an efficient, robust, and accurate method

enabling a fast comparision of 2d flow patterns. For this reason, moment invariants,

a technique from computer vision have been adapted and revised for this purpose.

The revision of moment invariants to flow data is the major theoretical contribution

of this work, since the adaptation was not a simple component-wise application of

the same functions. A complete revision of the basis functions was necessary to

achieve the goal.

This main part is concentrating strongly on the filtering process in context of the

visualization pipeline. Besides the development of new filtering techniques for flow

and image data, this work is also tackling the rendering part of the pipeline, by the

development of an importance driven streamline visualization, offering an alternative

approach for comparative visualization of flows in 2d and 3d.

1.2 Related Concepts

Flow visualization can be achieved in various ways, since flow data can be analyzed

from different points of view. Most of the flow visualization methods focus on the

topological behavior of flows. A major part of the description of a flow topology

are critical points of the flow, i.e. rotations, swirls, sinks, sources, and saddles for

two dimensional flows. Streamlines integrated from saddles (separatrices) are used

to distinguish between different flow regions. Besides this topological visualization

approach, there is the so-called feature based visualization. This class of visualiza-

tion methods is dedicated to highlight certain features of a flow field. Most of the
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known feature based approaches focus on the mentioned topological features. For

more details on these methods see chapter 2.

Comparative visualization can be regarded from several points of view. The term

is often used for a side-by-side image comparison. A similar point of view is the

visualization of a comparison by difference images. A different idea is the approach

of comparing streamlines of flows. These methods will be reflected in chapter 2.1.4.

It will be discussed, why they are not yet sufficient for the task of a usable compara-

tive visualization. So far, there is no efficient way for a comparative visualization of

flows, enabling an application researcher or engineer to really compare two or more

flow data sets with the goal to find similar pattern structures.

The combination of the areas computer vision and visualization has already been ap-

plied in the context of feature based flow visualization. Mainly two of these methods

are discussed in chapter 3. Their goal is to recognize a given flow pattern (further

called query pattern) in a flow data set. They are both based on the correlation op-

erator, a basic tool from image processing. Heiberg et al. [HEWK03] proposed the

correlation using the scalar product for vectors. Ebling and Scheuermann [ES03]

replaced this scalar product by the Clifford product, combining scalar and cross

product. For these approaches, it can be observed that pattern matching can be

performed efficiently for special features, being invariant to rotation and scaling.

For general features, however, these methods are not efficient (and not accurate)

enough. Since the process of comparing one (general) flow pattern with another

data set takes several minutes (regardless from hardware issues), these approaches

are not usable for comparative flow analyses, in practice. Both methods, their exten-

sions, advantages and disadvantages are presented and discussed in-depth in chapter

3.

Besides the visualization, it is also important to mention some ideas from image

processing that are incorporated in this dissertation.

Image processing is generally performed in five phases: image acquisition, digital-

ization of the image, feature extraction by filter application, segmentation (region

identification), and classification. Having a digitalized image, an edge detection
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is performed, in general by a correlation with specific edge detection filter masks.

Given the edges, regions are identified, for example by connected edges or by a

Hough transform. This process is also called segmentation. Finally the regions are

classified as certain objects.

While image acquisition and digitalization are not of importance in our context, the

feature extraction and classification are very interesting for the purpose of visualiza-

tion (especially for the filtering phase of the visualization pipeline). As mentioned,

the feature extraction tools correlation and convolution have already been applied in

the context of flow visualization. Since a general feature detection is the goal of this

work, the classification is also of high interest. A possible method for classification

of images is the application of moment invariants.

Moment invariants are a geometry based tool for the classification of image data. In

other words, they are special mathematical feature vectors, being invariant to trans-

lation, scaling, and rotation. They are extremely useful, for example in character

recognition. Images of characters obtain specific geometric characteristics. The mo-

ment invariants deliver a set of characteristic values for a certain character. Thus,

by looking up known moment invariant values, the characters can be recognized.

This is especially important for OCR (optical character recognition), applications

being used for the digitization of documents .

Moment invariants are not limited to character classification. They can also be

applied onto all other kinds of images. Generally, they are only applied on specific

regions, previously extracted by a segmentation step.

Besides feature extraction techniques from image processing, moment invariants

represent an essential tool for this dissertation. These basic foundations for this

work will be discussed in detail in chapter 2.
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1.3 Proposed Concepts

The first concept presented in this dissertation is an application of the Clifford con-

volution and Clifford Fourier transform for an improved recognition of edges in color

images. Both, the Clifford convolution and Clifford Fourier transform are designed

for handling vector data on uniform grids. Moreover, the Clifford algebra offers

the opportunity to additionally handle complex scalar data in the data structure

multi-vector. Color images can be represented using various color models. Comput-

ers normally use the RGB (Red, Green, Blue) color model, television screens are

usually using YUV (Y ≡ luminance, UV ≡ chrominance) or related models. Those

models are very similar and can be transformed into one another without loss by a

simple linear operation. Using the YUV model, the color image can be described as

a Clifford multi-vector, using the luminance as scalar and the chrominance as vector

part. The recognition of 2D critical points of flow fields yields the recognition of

edges in the chrominance part of the given color image. The results show that the

recognition of edges in color images is improved, compared to a common gray-scale

edge detection.

The main focus of the dissertation is an improved pattern recognition concept to

utilize feature based and comparative visualization. This work presents a novel tech-

nique to enable interactive pattern recognition in flows for general query patterns.

Yet existing methods are only capable of providing a fast recognition only for spe-

cial features. For a general choice of the query pattern those methods are much

too slow or too inaccurate to really provide a usable tool for application researchers

and engineers. To solve this problem, a novel mathematical formulation of moment

invariants for flows is introduced.

These flow moment invariants describe a flow pattern regardless of its position,

scale, and its orientation. The main issues here are the scale and rotation invari-

ance. There are different possibilities for defining these invariances, as for example

in contrast to the scaling of an image, a flow vector pattern is not only scalable by

the grid size, but also in terms of vector lengths.



1.3 Proposed Concepts 14

The biggest difference between flow moments and image moments is that the ro-

tation invariance has to be warranted differently. For the image case, there the

orientation of a single element (pixel) is of no importance. Only the global orien-

tation of the pattern is taken into account. In case of a flow field, however, the

orientation of a single element contains essential information: the direction of the

vector. A component-wise application of the image moments does not result in a

proper description for flow patterns. Thus, the basis functions of the moment in-

variants are modified, to obtain a correct description of moment invariants for flows.

With the flow moment invariants, it is possible to classify flow patterns invari-

antly from scale and orientation. In image processing, classification is one of the

final steps in a long chain of actions. So, moment invariants are in general applied

to pre-segmented and pre-processed portions of scalar image data. In the context

of this work, it is not possible to assume a pre-segmented portion of data, since a

major goal is to recognize any given arbitrarily structured pattern. However, the

application of a segmentation would introduce topological restrictions. Thus, in

contrast to image processing, moment invariants have to be applied directly on the

whole non-pre-segmented data, to obtain meaningful results.

Under these conditions it is possible to detect any given query pattern, or simi-

lar versions, in a given data set. This can be done for images, using the common

scalar moment invariants, and for flow data, using the novel flow moment invari-

ants. This pattern recognition for feature based visualization is presented in chapter

7. The actual pattern recognition can be performed interactively for commonly sized

data sets, while other methods need several minutes for completing this task.

This novel interactive pattern recognition for scalar data and flows can be utilized to

perform comparative visualization. One scenario is for example to compare patterns

in one data set. The user selects a (flow) pattern by placing a region marker. Similar

patterns are highlighted in the visualization of the data-set. Moving or resizing the

region marker changes the query pattern. Since this can be done interactively, the

user has a tool for finding similarities in a data set quickly. Extending this method

to multiple data sets results in a complete comparative visualization environment.
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The region marker is used on one data set, while results are highlighted in all data

sets. This is a novel pattern based comparative visualization method.

A second idea for comparative visualization is to observe differences between neigh-

boring time steps of time-variant data. Subtracting two moment representation of

neighboring data slices results in a pattern-based multi-scale comparison. This is

somewhat similar to the computation of a Laplace pyramid. Besides performing this

comparison locally for different scales, the local comparisons can be compiled into a

global result, using different metrics for combination. The comparative visualization

concepts are presented in chapter 9.

The results of a pattern recognition are in general scalar data fields, representing

the similarities of the analyzed data set to special query patterns. Having several

queries to be visualized in parallel, there is the problem to find a proper visualiza-

tion, especially in flow visualization. For this reason, a visualization concept serving

this need has been developed in the context of this work. The so called priority

streamlines, presented in chapter 8, can draw streamlines with density according to

a given scalar map. Using different colors for the streamlines, it is possible to offer a

complete picture of the flow, as well as to highlight special regions by using a higher

density of streamlines with the corresponding color. This visualization enables a

user to observe many different query results in parallel. Priority streamlines can

also be used to visualize and observe other scalar features of flow data, i.e. derived

features like vorticity or velocity, as well as additionally given features like pressure,

temperature, etc., also in three dimensions.

Finally, in chapter 10 the work is concluded, open questions and further alternatives

to the presented moment invariants are discussed in detail.



Part I

Foundations and State of the Art



Chapter 2

Foundations

In this dissertation two areas of computer science are addressed at once. The main

goal of this work is providing enhanced flow visualization methods. For this purpose

ideas from image processing are utilized. Thus, there is a need to present some basic

foundations, to give an overview of all for this work meaningful foundations. This

part of the dissertation presents basic ideas, terms, and notations from flow visu-

alization (section 2.1) and image processing (section 2.2) as far as needed. While

the current chapter gives a brief overview of basic and closely related topics of both

areas separately, the following chapter 3 is giving more detailed information on the

State-of-the-Art in pattern recognition for flow fields.

In both discussed research fields, there is a descriptive process pipeline. In the

following, simplified versions of the visualization pipeline and the image processing

pipeline are compared with each other. The comparison yields a general data pro-

cessing pipeline being a cut set of both methodologies. Figure 2.1 illustrates all

three pipelines. The image processing pipeline is located on the left, the visual-

ization pipeline is located on the right. The formulation of a generalized pipeline

has been placed in the middle of both known pipelines. Three coarse phases can

be distinguished: a data acquisition and preparation phase provides the data that

needs to be processed. The processing is mainly done in a filtering and classification

phase. The output of this phase is additional information being the basis for the

following application phase. In case of image processing the application is open and

depends strongly on the application area. However, in visualization, the final goal



18

Figure 2.1: Generalized pipeline combined from simplified representations of the
data processing pipelines from visualization and image processing.
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is in general to provide a sophisticated visual representation of the data and its un-

derlying phenomena. This dissertation is mainly dedicated to the filtering process,

as illustrated in chapter 1.1.

In the area of flow visualization there are different types of approaches. We will

concentrate on the two for this dissertation relevant methodologies, the feature

based (see section 2.1.1) and the comparative visualization (see section 2.1.4). In

the context of feature based visualization topological methods and some background

information on Clifford algebra are included. Since streamline techniques are of im-

portance for chapter 8 of this work, an extra section is added to discuss some basic

ideas for their generation and improvement (section 2.1.3).

Some methods from the area of image processing (e.g. the fast Fourier transform, or

the convolution operator) have already been adapted to flow data. In the context of

this work, ideas of image processing and understanding play a very important role

in the filtering process. So, section 2.2 is dedicated to image processing and image

classification methods.

2.1 Flow Visualization (Basics and Overview)

An important area of scientific visualization is focusing on the visualization of flows.

Flows are specific dynamical systems, thus, visualization of flows is strongly related

to dynamical system visualization. While scientists and engineers formerly used

smoke and dyes to visualize flow practically, flow visualization is nowadays mostly

done on a computational basis. Fluid flows (e.g. water, fuel, magma) as well as

gaseous flows (e.g. air, wind, natural gas) are simulated in the research field of

computational fluid dynamics (CFD). Often, finite element methods are used to

handle complex flow structures, e.g., local solvers of the Navier-Stokes equations,

which work on various kinds of grids. CFD usually produces data sets providing

huge amounts of sampled vector information on two- or three-dimensional domains.
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The purpose of flow visualization is to facilitate investigation and analysis of the

given flow structures. While direct flow visualization (e.g. hedgehogs, flow probes,

textures) can give complete, but often cluttered visual representations, more sophis-

ticated visualization methods reduce large amounts of data to the most important

information. The major issue of these visualizations is to highlight essential facts

hidden in the data. Of course, the main question is, what is essential about the data

and what is not?

For flow visualization, this question is approached differently by various commu-

nities. The topology based flow visualization community is focusing on the topology

of a flow field. Feature based techniques are often referring to topological informa-

tion, focusing on a sophisticated representation and visualization of specific flow field

characteristics. Streamline and stream surface techniques are valuable geometrical

visualization tools, often being applied in this context. A rather immature area of

visualization gaining more and more attention nowadays is the area of comparative

visualization. The yet known methods are related to feature based techniques.

This section will give an overview over the mentioned areas of flow visualization.

In context of feature based visualization, topological methods will also be discussed

briefly. As streamlines are of special interest for this work, a section is dedicated

to this topic. For more details the interested reader is referred to a good general

overview of common flow visualization techniques that has been presented by Hauser

et al. [HLD02]. Recently, Weiskopf and Erlebacher [WE04] published a more up to

date overview in the Visualization Handbook [HJ04]. Finally, the area comparative

visualization is outlined and discussed.

2.1.1 Feature Based Visualization

The feature based visualization approach is basically concerned with the visualiza-

tion of interesting characteristics of flow data. There are several possibilities for

defining these characteristics. One way to highlight features or characteristics is

the extraction of physically meaningful patterns from the data. The definition of

what is interesting, the way these features are extracted and the final visualization

are dependent on the application, the data set, and the questions that scientists or
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engineers want to be clarified. Post et al. [PVH+02] presented a general overview

over feature based flow visualization. This dissertation will, however, concentrate on

certain details, being of interest for the research part of this work.

One possibility for the extraction of features is the observation of special topology

patterns. Even though, the foundations of topological methods go back to the work

of fluid dynamicists from the 1960s (e.g., Lighthill [Lig63]), or the theoretical frame-

work by Poincaré [Poi75], topological methods for the visualization of vector data

have first been proposed by Helman and Hesselink [HH89b, HH89a, HH90, HH91].

The main issue topological methods are interested in are critical points of vector

fields. As critical points are also of interest in the further context of this work,

formal definitions of a steady vector field and critical points are given:

Definition 2.1.1 (Steady Vector Field)

Let G be a subset of Rn. A steady vector field f is represented by a vector-valued

function f : G → Rn in Euclidean coordinates (x1, ..., xn). Further (see [Asi93]),

steady (time-independent) vector fields can be represented by an autonomous ordi-

nary differential equation:
dx

dt
= f(x).

This dissertation is focusing on steady vector fields. For simplification, the general

terminology vector field will in the following apply to steady vector fields unless

not declared otherwise. Those vector fields are not changing their flow behavior

over time. A time-dependent vector field can be understood as a sequence of steady

vector fields [Asi93]. As in practice, data is given discretely, there is no need for a

definition of time-dependent flow fields in this dissertation. The following pattern

recognition algorithms are focusing on purely spatial patterns.

In chapter 5 the term vector field also applies to color images, representing spe-

cial vector fields as compositions of two or three scalar fields. So, the vector fields

representing flow data are further called flow fields. In particular, a flow field (even

a steady one) is not just a collection of scalar fields.
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The following definition of a critical point is formulated generally for all kinds of

vector fields.

Definition 2.1.2 (Critical Point)

A critical point x0 ∈ G ⊆ Rn of a vector field f : G→ Rn is characterized by

f(x0) = 0.

A topological skeleton of a vector field is given by the set of all critical points and

all stable and unstable manifolds of saddle points. For saddle points in a 2D vector

field these manifolds are special streamlines (see section 2.1.3) called separatrices.

In 3D, the role of the saddle points is taken by the 3D saddles and the spiral sad-

dles, as defined, e.g. in [Asi93]. Their stable and unstable manifolds come in a

pair of a 1D and a 2D manifold. The 2D manifolds are special stream surfaces,

providing a segmentation of the field, similarly to the streamlines in the 2D case.

In context of a visualization of stream surfaces, there is the issue of occlusion. For

this reason, methods for topology simplification have been introduced by de Leeuw

and van Liere [dLvL99] as well as Tricoche et al. [TSH00]. Moreover, this issue

can be overcome for example by visualizing not the stream surfaces themselves, but

their intersection points, the so-called saddle connectors, as proposed by Theisel et

al. [TWHS03].

Considering the use of vector field topology for visualizing flow field data from

the CFD area, topological features are not necessarily the final result an engineer

or scientist is interested in. However, a topological analysis can be a valuable first

step to be followed by other visualization techniques.

An overview of work in this area was given by Levit in 1992 [Lev92].

2.1.2 Basics of Clifford algebra

A further approach for the topological analysis of flow fields has been proposed by

Scheuermann [Sch99]. A major goal of his work was the detection and analysis of

higher order critical points [...] by an approach based on Clifford analysis [Sch99].
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The Clifford algebra was developed by William K. Clifford [Cli78] in the 19th cen-

tury. The algebra extends the vector space used in analytic geometry by a special

vector multiplication. This Clifford multiplication has a geometric meaning, for ex-

ample rotations of objects can be formulated very easy in terms of Clifford algebra.

It has also been basis for current pattern matching algorithms for vector fields (chap-

ter 3) that are going to be extended in this dissertation (chapters 6 and 7). Thus,

some basic definitions from the work of Scheuermann [Sch99] describing the Clifford

algebra in 2D are given in this section.

The 2D Clifford algebra can be understood as an extension of complex numbers

to vectors:

Definition 2.1.3 Let E2 be the IR vector space with basis {e1, e2}. The Clifford

algebra G2 is the real 22-vector space with basis

{1, e1, e2, e1e2},

where

1. 1ek = ek, k = 1, 2,

2. ekek = 1, k = 1, 2, and

3. ekel = −elek, k 6= l.

Further, i2 is defined as i2 = e1e2.

It is that i2
2 = i2 = −1, so i2 is the imaginary number of the 2D-Clifford algebra.

Using these definitions, a non-commutative Hodge-duality can be derived:

e2 = e1e1e2 = e1i2 e1 = e1e2e2 = i2e2

e2 = e2e1e1 = −i2e1 e1 = e2e2e1 = −e2i2

The elements of a Clifford algebra are called multi-vectors. For the 2D case, they

are shown in the following table:
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name grade dimension basis elements

scalar 0 1 1

vector 1 2 e1, e2

bivector 2 1 e1e2

A multi-vector consists of a scalar, a 2D vector and the so-called bivector (pseudo-

scalar). Regarding the Clifford algebra as an extension of complex numbers, it can

be regarded as a tuple of two complex numbers, one having the scalar as real part

and the bivector as imaginary part, the vector having the e1 component as real and

the e2 component as imaginary part. For detailed information on Clifford algebra,

see Hestenes and Sobczyk [HS99] or Lounesto [Lou01].

2.1.3 Streamline Techniques

The current section will give an overview over related streamline techniques. Prior

to computer-driven visualization engineers used dyes in water or smoke in air for

visualizing flows. Nowadays, computer simulation and analysis has gained much

more importance. Thus, computers are also providing visual representations, for

example geometric lines. Streamlines are commonly used for visualizing flow vector

data. However, they are not the only geometric line representation of a flow field.

There are different kinds of flowlines. According to Ward, they are defined as follows:

• Streaklines: simultaneous positions of a set of particles continuously released

from one or more locations.

• Pathlines: position at an instant of time of a batch of particles which had

been released simultaneously.

• Streamline: a line through the velocity field which is tangent to the velocity

field at every point.

For steady flow, streaklines, pathlines, and streamlines coincide. [War97]

This work will concentrate on steady flow and therefore only streamlines.
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Streamlines can be mathematically described, so today they are mostly numeri-

cally computed and visualized on computers. The formal definition of a streamline

is done according to Garth [Gar07].

Definition 2.1.4 (Streamline)

Let G ⊆ Rn and f : G → Rn a vector field. A streamline S(t, x) is an integral

curve through in the dynamical system (flow) φ generated by f .

In practice, streamlines are represented by polygon line strips. For a good visual

representation the node points have to be chosen appropriately. These node points

can be computed by solving the ordinary differential equation (ODE) representing

the vector field (see definition 2.1.1). This can be done using numerical methods,

i.e. the Eulerian method or the Runge-Kutta solver. More information on this topic

can for example be found in a book of Butcher [But03] or alternatively in lecture

notes from Heinrich [Hei00].

Streamlines for flow vector fields should, according to Verma et al. [VKP00], obey

three basic issues:

• Coverage:

No important flow feature should be missed. Flow features can be topological

features as described by Verma et al. [VKP00]. In fact, flow features can

also be defined more generally. We regard flow features as special patterns or

regions being of (high) interest to the user.

• Uniformity:

This principle argues that streamlines should be distributed more or less uni-

formly in the final image for better visual interpretation. This is of course a

desirable criterion, especially for two dimensions. For 3D fields, one encoun-

ters severe problems when adhering to this principle. Each viewing direction

results in a different density distribution in the final 2D projection. This could

be overcome by a reduction of clutter or a 3D viewing device. Since we focus

on the visualization of 3D data on computer screens, the criterion of uniformity

is less important to reach our goal.
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• Continuity:

Another goal is to achieve an impression of continuity. This can be done by

drawing long streamlines.

Because streamline seeding has a major influence on the resulting image, many

methods optimize streamline seeding. First, Turk and Banks [TB96] focused on the

uniformity of streamlines for 2D data, by presenting an image-guided streamline

placement method. Mao et al. [MHHI98] transferred this method to curvilinear

grids. Jobard and Lefer [JL97] presented an improved method for drawing evenly

spaced streamlines in 2D space. Verma et al. [VKP00] were interested in covering all

topological features and proposed a method that places streamline seeds in special

patterns according to the topological features for 2D flows. Ye [YKP05] recently ex-

tended this approach for 3D topological patterns. Mattausch et al. [MTHG03] used

illuminated, evenly spaced streamlines with additional color mapping for visualizing

3D flow vector data. Another method for efficient streamline seeding for 2D fields,

the ”farthest-point streamline seeding,” appropriate for optimizing continuity, was

published by Mebarki et al. [MAD05].

While some of these techniques mainly focus on uniformity or continuity, other

methods focus on an optimal representation of topological features of the vector

field. However, there is no method yet for drawing streamlines based on a user-

defined context. This dissertation will present a context-based streamline method

in chapter 8.

2.1.4 Comparative Flow Visualization

The area of comparative visualization has not yet been defined clearly. There are, to

the author’s knowledge, few publications on this topic regarding flow fields. Previous

work on comparative visualization for flow fields includes the work of Pagendarm et

al. [PW95]. In their terms, comparative visualization reduces to a simple side-by-

side comparison of different data, rendered with the same method. However, this

might result in wrong conclusions, as the visualization method itself takes a strong

influence on the comparability.
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For this reason Verma and Pang [VP04] focused on a meaningful comparison of

stream and vortex lines. Even though their method is using adaptive stream-

line placement, their method is also a kind of post-visualization comparison, since

the comparative analysis is done based on the streamlines. Recently, Svakhine et

al. [SJEG05] and Callahan et al. [CFS+06] have presented systems that supports

comparative visualization views.

So, the area of comparative flow visualization is currently focusing on making visu-

alizations comparable. In this dissertation, this goal will be approached differently

by putting emphasize on the data analysis, using novel filtering methods to create

additional information for visualization.

Figure 2.2: Four possible comparative visualization methods: side-by-side compari-
son, comparison by combined visualizations, comparison based on visualization, and
visualization of data comparison.
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This work defines comparative visualization by four different approaches for visual

data comparison (see figure 2.2):

• Side-by-side comparative visualization,

• comparison by combined visualization,

• comparison based on visualization, and

• visualization of data comparison.

An advantage of the latter method is that the comparison is performed independent

from the visualization, thus, being less error-prone. Of course, regarding the final

visualization, there is the possibility of generating different hybrid variants of these

basic methods. Chapter 9 will present enhanced side-by-side comparisons, as well

as visualizations of a novel data comparison method.

2.2 Basics of Image Processing

Certain visualization approaches are utilizing image processing methods to gener-

ate visualizations. Thus, this section contains a brief introduction to some image

processing methods, also being a basis for this work. The subject of image pro-

cessing is the whole process from image acquisition and digitalization, to pattern

recognition, and classification (see also figure 2.1). Applications of this area are

widespread, e.g. OCE (text recognition) for generating ASCII text from scanned

images, image search engines, robot control, structural testing and analysis of in-

dustrial parts, retinal scan evaluation for security purposes, computer tomography

in medicine. The following sections 2.2.1 and 2.2.2 contain basic information on

the pattern recognition process. section 2.3 gives a brief introduction to moment

invariants, a geometrical classification method that is of fundamental interest for

this dissertation.
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2.2.1 Correlation and Convolution

The main purpose of image processing is the extraction of information from image

data. Since image processing is mainly concerned with 2D images most definitions

are formulated for the 2D case, but can be extended to any other dimensionality.

Definition 2.2.1 A 2D-image is a discrete scalar function p over a uniform grid

with N1 grid points in direction x, N2 grid points in direction y, with distances

∆x,∆y and value set W ⊆ C:

p : {0, 1∆x, ..., (N1 − 1)∆x} × {0, 1∆y, ..., (N2 − 1)∆y} →W.

The discrete elements pij of the image are called pixels (picture elements):

pij := p

((
i∆x

j∆y

))
A 2D-image is fully characterized by P = (N1, N2,∆x,∆y,W, {pij}).

For 3D-images the discrete elements pijk are called voxels (volume elements).

For the analysis of images so-called filter operations can be defined. Filters are

neighborhood-operations that are applied to images, for example to smoothen the

image or to extract object edges.

Definition 2.2.2 A filter of dimension d is defined as function

F : WN1×...×Nd →WN1×...×Nd (W = R,C)

mapping one image to another image.

Definition 2.2.3 : A filter F of dimension d is called linear,

if for any p1, p2 ∈WN1×...×Nd , α, β ∈W:

F (αp1 + βp2) = αF (p1) + βF (p2).

Definition 2.2.4 Let S be a linear shift. A filter F is shift-invariant,

if S(F (p)) = F (S(p)).
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Definition 2.2.5 : A linear and shift-invariant filter is called LSI-filter.

A LSI-filter can be fully described by its impulse response. A proof for this fact

can be found in [Jäh95]. The application of a filter is performed using one of the

operations correlation or convolution.

Definition 2.2.6 : Let g : Rd → C be a signal and h : Rd → C a filter. The

continuous convolution of the signal and the filter is defined by

(g ∗ h)(x) =

∫
Rd

h(y)g(x− y)dy.

For discrete 2D-images a discrete convolution is formulated as follows:

Definition 2.2.7 Let Md ≤ Nd for d = 1, 2, let g : WN1×N2 be a 2D image and

h : WM1×M2 be a filter. The discrete convolution of the image with the filter is

defined as follows:

(g ∗ h)m,n =

N1−1∑
i=0

N2−1∑
j=0

hi,jgm−i,n−j.

The convolution process is illustrated in figure 2.3.

For recognition of image patterns one can perform a correlation. A correlation is

equal to a convolution with a mirrored filter mask:

Definition 2.2.8 : Let g : Rd → C be a signal and h : Rd → C be a filter. The

continuous correlation of the signal and the filter is defined by

(g ? h)(x) =

∫
Rd

h(y)g(x+ y)dy.

Definition 2.2.9 Let Md ≤ Nd for d = 1, 2, let g : WN1×N2 be a 2D image and

h : WM1×M2 be a filter. The discrete correlation of the image with the filter is

defined as follows:

(g ? h)m,n =

N1−1∑
i=0

N2−1∑
j=0

hi,jgm+i,n+j.
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Figure 2.3: Illustration of the filtering process. The filter is traveling across the
image. Each pixel value is multiplied and summed up. The result is written into
a new filtered image at the current filter position. Moving the filter all over the
original image results in a completely filtered image. [Jäh95]

The correlation operation is very important, due to the fact that its application

yields a similarity image, a comparison of an image with patterns, being defined by

the filter. So, correlation enables computer driven pattern matching in image data.

The role and importance of the convolution operator in this context will be clarified

in section 2.2.2.

The computational complexity of the convolution and the correlation operation are

in O(n2). It is possible to enhance this process by the use of a fast Fourier transform

(FFT) (section 2.2.2).

Another issue is the treatment of the boundary values of the image. There are

different possibilities, how the filtering can be performed at the boundaries:

• Fill missing boundary values with zeros.

• Extrapolate the missing boundary values.

• Use cyclic convolution, i.e. periodic boundary conditions.
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None of these approaches is perfect, so Jähne advises not to depend on the boundary

values and concentrate on the analysis of the inner data [Jäh95].

2.2.2 Fourier Transform

The Fourier transform is besides correlation and convolution one of the most im-

portant operations in image processing. A Fourier transform is a way to generate

a frequency representation of data given in time and/or spatial domain. In case of

image processing, the discrete 2D and 3D Fourier transforms are of high interest.

2.2.2.1 Definition and Properties

The Fourier transform is mathematically a change of the basis of the image. While

in spatial domain, the basis is arranged pixel-wise (each basis image contains one

grid point valued 1, all other points are 0) the Fourier representation builds up a

completely different basis, spanned by (odd) sine functions and (even) cosine func-

tions, or their representations in the complex Eulerian function space, respectively.

Definition 2.2.10 : Let f : IRk → C be a square integrable function. Then, the

continuous Fourier transform is defined as follows:

Fc{f}(u) = f̂(u) =

∫
IRk
f(x)e(−2πiuT x)dkx.

The inverse continuous Fourier transform is for a square integrable function f̂(u) :

IRk → C defined by:

F−1
c {f̂}(x) = f(x) =

∫
IRk
f̂(u)e(2πiuT x)dku

with i2 = −1.

Writing f(x) ◦−→• f̂(u) means that f̂ is the Fourier transformed of f .



2.2 Basics of Image Processing 33

As mentioned, in image processing discrete versions of the Fourier transform are of

importance.

Definition 2.2.11 : The 1D-discrete Fourier transform (DFT) is a map

from a set of complex numbers gn to another set of complex numbers ĝv:

DFT {g} = ĝv =
1√
N

N−1∑
n=0

gne
− 2πinv

N , 0 ≤ v ≤ N.

The 2D-discrete Fourier transform (DFT) is defined analogously:

DFT {g} = ĝv1,v2 =
1√
N1N2

N1−1∑
n1=0

N2−1∑
n2=0

gn1,n2e
− 2πin1v1

N1 e
− 2πin2v2

N2 .

The inverse discrete Fourier Transforms are defined as

DFT −1{ĝ} = gn =
1√
N

N−1∑
v=0

ĝve
2πinv
N , 0 ≤ n ≤ N

for 1D, and for 2D as:

DFT {g} = ĝv1,v2 =
1√
N1N2

N1−1∑
n1=0

N2−1∑
n2=0

gn1,n2e
2πin1v1
N1 e

2πin2v2
N2 .

This definition has been adapted from one of different possible definitions given

by Jähne [Jäh95]. There is one major property that is of major interest to image

processing and also for this dissertation. Thus, only this property, the convolution

theorem will be briefly discussed. More properties and facts about the Fourier

transform can be found in [Jäh95,Jai89].

Theorem 2.2.1 (Convolution)

Let the pairs g ◦−→• ĝ and h ◦−→• ĥ be functions and their Fourier transformed.

Then it is

...for the continuous case: (g(x) ∗ h(x)) ◦−→• (ĝ(u) · ĥ(u))

...for the 1D-DFT: (g ∗ h) ◦−→•N(ĝ · ĥ)

...for the 2D-DFT: (g ∗ h) ◦−→•N1N2(ĝ · ĥ).
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This theorem has been taken from [Sch04], where a valid proof can also be found.

Theorem 2.2.2 A d-dimensional DFT can be formulated recursively by d one-

dimensional Fourier transforms.

Proof:

DFT {g} = ĝv1,...,vd =
1√

N1...Nd

N1−1∑
n1=0

...

Nd−1∑
nd=0

gn1,...,nde
−2πin1v1

N1 ...e
−2πindvd

Nd

=
1√
N1

N1−1∑
n1=0

...

 1√
Nd−1

Nd−1−1∑
nd−1=0

(
1√
Nd

Nd−1∑
nd=0

gn1,...,nde
−2πindvd

Nd

)
e
−2πind−1vd−1

Nd−1

 ...

 e
−2πin1v1

N1

=
1√
N1

N1−1∑
n1=0

...
 1√

Nd−1

Nd−1−1∑
nd−1=0

g̃n1,...,nd−1,vde
−2πind−1vd−1

Nd−1

 ...
 e−2πin1v1

N1

with

g̃n1,...,nd−1,vd = DFT (gn1,...,nd) = 1√
Nd

Nd−1∑
nd=0

gn1,...,nde
−2πindvd

Nd .

This process can be repeated in total d times. It yields:

DFT {g} = ĝv1,...,vd = DFT (DFT (...DFT (gn1,...,nd)...)) .

�

Together with the fact that there is a fast calculation for the Fourier transform, the

presented theorem 2.2.1 yields that convolutions and thus also correlations (convo-

lutions of the mirrored signal) can be performed at much higher speed. This is,

because the convolution can be performed as a multiplication in frequency domain

that can be done with a complexity of O(n). This is much faster compared to the

convolution/correlation in spatial domain with O(n2). Of course, the Fourier trans-

form also has to be taken into account. Hence, there is a way for a fast calculation.
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2.2.2.2 Fast Fourier Transform (FFT)

Because of theorem 2.2.2, it is enough to describe a 1D-FFT. Cooley and Tukey

[CT65] have invented a fast algorithm the fast Fourier transform (FFT) with a

complexity of O (n log2(n)). It is assuming the grid size of the data to be N1×...×Nd,

with Ni = 2k, k ∈ N for all i ∈ {1, ..., d}. The reason for this is that the algorithm

is splitting up the data into two parts in each step:

DFT {g} =
N−1∑
n=0

gne
− 2πinv

N

=

N/2−1∑
n=0

g2ne
− 2πi2nv

N +

N/2−1∑
n=0

g2n+1e
− 2πi(2n+1)v

N

=

N/2−1∑
n=0

g2ne
− 2πinv

N/2 + e−
2πiv
N

N/2−1∑
n=0

g2n+1e
− 2πinv

N/2 .

This can be repeated until the denominator of the exponent has value 1. In this

case, the sums have only one entity each. The exponent e−
2πinv

1 = e0 = 1 can be

reduced to 1 because n = 0. This means, the inner sums reduce to a pure coefficient

each. There are only coefficients and phase shifts
(
e−

2πiv
N

)
left. Since there are

only shifts to consider, the actual Fourier transform can be calculated by a reverse

bit order sorting of the coefficients. A diagram from Jähne [Jäh95] illustrates this

sorting process in figure 2.4.

Figure 2.4: Illustration of the FFT-Algorithm for eight coefficients, in [Jäh95].
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More information on the original FFT-algorithm can be found in [CT65]. Further

information on related fast algorithms can be found in the books of Blahut [Bla85]

as well as Besslich and Lu [BL90]. A very good library for performing FFT compu-

tations of any kind is the FFTW library by Frigo and Johnson [FJ97,FJ07].

2.2.2.3 Non-uniform Fast Fourier Transform (NFFT)

There are also approaches for performing FFTs on non-uniformly spaced data. Non-

uniform data can for example be result from a computer tomography. The domain

is circular in this case and the grid structure is non-uniform. Other scalar and vector

data collected by weather stations or FEM simulations are commonly non-uniform

either. So, it makes sense to use an algorithm for non-uniform FFT calculation, a

NFFT algorithm. There are approaches for NFFTs for scalar data, for example by

Fourmont [Fou03], and Kunis and Potts [KP07]. In chapter 4 a generalization of

this approach to Clifford algebra and flow data will be presented. The remainder of

this section presents the yet known foundations for the upcoming work.

In Kunis and Potts’ approach [KP07], non-uniformly distributed scalar data in the

spatial domain is transformed to evenly spaced scalar data in frequency domain.

Definition 2.2.12 : (NDFT)

The non-uniform discrete Fourier transform (NDFT) is a mapping from

the tuple zk ∈ CM to the tuple ẑk ∈ CN :

ẑl =

N/2−1∑
k=−N/2

e
−2πixlk

N zk, l = 1, ...,M.

The inverse non-uniform discrete Fourier transform is defined for each

knot xl as the inverse mapping:

ẑk =
M∑
l=1

e
2πixlk

N zl, k = −N
2
, ...,

N

2
− 1.

Since one only has to recalculate the Fourier basis location, there is no need for an

approximation of the data for the NDFT. However, the inverse transform is approx-
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imative and uses interpolation to calculate the correct Fourier modes. Kunis and

Potts presented an adjustable algorithm for a high-accuracy approximation to this

problem [KP07].

Typical implementations of the non-uniform fast Fourier transforms (NFFT) use

a windowing function to approximate the Fourier modes for fast calculation. Var-

ious authors proposed different possibilities for these windowing functions. While

Beylkin [Bey95] used a B-spline window, Dutt and Rohklin [DR93, DR95] used a

Gaussian window, which was further optimized by Steidl [Ste98]. Ware [War98]

compared these methods. Further improvements and windowing approaches were

also proposed by Duijndam and Schonewille [DS99]. In the following, this work will

refer to the windowing method proposed by Fourmont [Fou03] who used Kaiser-

Bessel windowing. He showed the effectiveness for these window approximations

resulting in very small errors. Using Shannon’s theorem for band-limited functions,

the following lemma was proven by Fourmont [Fou03]:

Lemma 2.2.1 Let φ ∈ C∞0 , φ > 0, with support in [−π, π] be an interpolation func-

tion, then

e−ixξ =
1√

2πφ(ξ)

∑
m∈Z

φ̂(x−m)e−imξ, |ξ| < π

c
.

The proof of this lemma can be found in the dissertation of Fourmont [Fou03]. Thus,

for an NFFT with result on arbitrary definable grid the equation can be inserted

into the NDFT transform [Fou03].
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Theorem 2.2.3 Let φ ∈ C∞0 , φ > 0, with support in [−π, π] be an interpolation

function, and all assumptions from definition 2.2.12. The non-uniform discrete

Fourier transform can be expressed (approximately) by the equation

ẑl =
1√
2π

∑
m∈Z

φ̂(cxl −m)

N
2
−1∑

k=−N
2

e
−2πimk
cN

zk

φ(2πk
cN

)
, l = 1, ...,M.

mapping values from non-uniformly distributed knots xl onto a uniform domain.

The inverse transform can be expressed by

ẑk =
1√
2π

1

φ(2πk
cN

)

M∑
l=1

∑
m∈Z

zlφ̂(cxl −m)e
2πimk
cN , k = −N

2
, ...,

N

2
.

Proof: Inserting Fourmont’s lemma 2.2.1 into the NDFT (and its inverse) definition

2.2.12 directly yields the theorem.

�

As now, the calculation is independent from certain knots xl, the FFT can be applied

to compute the equation above. The quality of the windowing function Φ depends

on its concentration in spatial and frequency domain. It is impossible to find a

function for exact reconstruction, since any band-limited function has to be infinite

in the spatial domain and vice versa. The Gaussian window seems to be the best

choice, since it is similar, or even equal, in spatial as well as in frequency domain

and minimizes error in both domains. However, Fourmont’s Kaiser-Bessel window

turns out to be a better choice. It provides compact support over the window

span in the spatial domain, contributing no error, and minimizes the error when

limiting the infinite frequency representation. For more information on Kaiser-

Bessel windows can be found in Kaiser [Kai66]; information on their application to

the NFFT algorithm can be found in Fourmont [Fou03].
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2.3 Moment Invariants for Scalar Data

Another aspect of the image processing area that plays an important role in the

context of this work is the theory of moment invariants. Moments are a statistical

measure being applied to images to analyze their geometric features. This is com-

monly an early part of the classification process.

This section will present an in-depth overview of the moment invariants for scalar

image data that is later on generalized to vector data. The chosen definitions, theo-

rems and proofs are almost identical to the definitions of Flusser’s [Flu00] complex

scalar moment invariants. Originally, moment invariants have been presented by

Hu [Hu62] in the early 1960s. His version was proven to be redundant and incom-

plete by Flusser [Flu00]. The independent and complete set of moment invariants

is in the author’s opinion a valid basis for the later transfer to flow data.

2.3.1 Moments

Moments can be defined for scalar valued maps f : G → R given on an arbitrary

dimensional domain G ⊆ Rd, d ∈ N:

Definition 2.3.1 ( Moment of order (p1 + ... + pd) of a d-dimensional scalar field )

Let f = f(x1, ..., xd), f : G → R be a map over G ⊆ Rd, d ∈ N. Let further

p1, ..., pd ∈ N. A moment of order (p1 + ...+ pd) of f is defined as

mp1...pd =

∞∫
−∞

...

∞∫
−∞

xp11 ...x
pd
d f(x1, ..., xd)dx1...dxd.

The final moment invariants presented in this work will be based upon complex mo-

ments being especially tailored for two-dimensional data. For this reason it makes

sense to give a concrete definition of the two-dimensional moment invariants.
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Definition 2.3.2 (Moments of order (p+ q) of a 2D scalar field)

Let f = f(x, y), f : G → R be a map over G ⊆ R2. Let further be p, q ∈ N.

Moments of order (p+ q) of f are defined as

mpq =

∞∫
−∞

∞∫
−∞

xpyqf(x, y)dxdy.

Kenney and Keeping [KK51] have proven that the moments represent a basis trans-

formation of the underlying function f .

In the next sections it will be shown how those moments mpq can be made invariant

to translation, scaling, and rotation.

2.3.2 Translation Invariance

Though translation invariance will not be used in the pattern search algorithm pre-

sented in section 7, it is a vital part of the theory of moment invariants that needs

to be discussed. For the generation of translation invariant moments one needs to

modify the moments mpq, as given in Definition 2.3.2, so that the resulting moments

result in the same values for an original function f and a shifted version f̃ of f . The

definition of mpq reveals that the moments are depending on global coordinates x

and y. Substitution of those global coordinates with suitable local coordinates yields

automatically translation invariance. In the field of Computer Vision it is common

to compute the gray-scale centroid of the given image f . Regarding arbitrary scalar

functions, however, the choice of a centroid is more difficult, as for negative valued

scalar fields the centroid is not always defined. For this reason, translation invari-

ance is derived differently to the Computer Vision approach by utilization of the

characteristic function χf of f .
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Definition 2.3.3 (Characteristic function of a scalar field)

Let f = f(x, y), f : G → R be a map over G ⊆ R2. The characteristic function

χf : G→ {0, 1} of f is defined as

χf (x, y) =

1 , if f(x, y) 6= 0

0 , if f(x, y) = 0
.

The centroid of this characteristic function can be applied to obtain moments being

invariant to translation, similarly to the centroid of f . Based upon this observation

one can define the central moments and prove their invariance to a translation of

the underlying function.

Definition 2.3.4 (Central moments)

Let f = f(x, y), f : G → R be a map over G ⊆ R2 and χf its corresponding

characteristic function according to Definition 2.3.3. Let p, q ∈ N and let m
χf
pq be

moments of the function χf . The Central Moment of order (p+q) of f is defined

as

µpq =

∞∫
−∞

∞∫
−∞

(x− x̄)p(y − ȳ)qf(x, y)dxdy,

with

x̄ =
m
χf
10

m
χf
00

and ȳ =
m
χf
01

m
χf
00

being the coordinates of the centroid of χf .

Theorem 2.3.1 (Invariance to translation)

Central Moments µpq of a map f : G → R, G ⊆ R2 are invariant to translations.

This means their value is independent and therefore does not change for any trans-

lation of f by any vector v = (v1, v2) ∈ R2.

Proof: Let f̃ be a copy of f being translated with translation vector v: f̃(x, y) =

f(x−v1, y−v2). Then, µ̃pq is the central moment of order (p+q) of f̃ . The centroid
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of χf̃ is according to definition 2.3.4 defined as (x̄+ v1, ȳ + v2). The statement can

be proven by using the substitution λ(x, y) = (x− v1, y − v2)T :

µpq =

∞∫
−∞

∞∫
−∞

(x− x̄)p(y − ȳ)qf(x, y)dxdy

λ
=

∞∫
−∞

∞∫
−∞

(x− v1 − x̄)p(y − v2 − ȳ)qf(x−v1, y−v2)

∣∣∣∣∣det
(

1 0

0 1

)∣∣∣∣∣ dxdy
=

∞∫
−∞

∞∫
−∞

(x− (x̄+ v1))p(y − (ȳ + v2))qf̃(x, y)dxdy

= µ̃pq

�

The central moments µpq can be derived from the original moments mpq by appli-

cation of the binomial theorem:

µpq =

∞∫
−∞

∞∫
−∞

(x− x̄)p(y − ȳ)qf(x, y)dxdy

=

∞∫
−∞

∞∫
−∞

p∑
j=0

(
p

j

)
xj(−x̄)p−j

q∑
k=0

(
q

k

)
yk(−ȳ)q−kf(x, y)dxdy

=

p∑
j=0

q∑
k=0

(
p

j

)(
q

k

)
(−x̄)p−j(−ȳ)q−k

∞∫
−∞

∞∫
−∞

xjykf(x, y)dxdy

=

p∑
j=0

q∑
k=0

(
p

j

)(
q

k

)
(−x̄)p−j(−ȳ)q−kmjk
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2.3.3 Scale Invariance

For a pattern recognition task it is very important recognizing similar structures at

different scales. This can also be achieved by defining moments being invariant to

scaling operations. For the derivation of scale invariant moments, mpq as well as

the translation invariant central moments µpq can be used as a basis. The deriva-

tion is shown for µpq though it can be substituted by mpq in the following paragraph.

To obtain scale invariance the given moments have to be normalized according to a

certain power of the volume of f or a proportional item, respectively. The volume

of f is trivially given by m00 or equally µ00. Thus, an order dependent power of

the precalculated µ00 can be used for scale normalization of the moments µpq. In

the following the so called normalized central moments are defined and their scale

invariance is shown.

Definition 2.3.5 (Normalized Central Moments)

Let f = f(x, y), f : G→ R be a map over G ⊆ R2, p, q ∈ N. The normalized central

moments of order (p+ q) of f are defined as

ηpq =
µpq
µγ00

, with γ =
p+ q + 2

2
.

Theorem 2.3.2 (Scale Invariance)

The normalized central moments ηpq of f : G→ R, G ⊆ R2 are scale invariant, i.e.

the values of ηpq do not vary under scaling of f by any factor s ∈ R\{0}.

Proof: Let f̃ be version of f scaled by a factor s, s ∈ R\{0}: f̃(x, y) = f
(
x
s
, y
s

)
.

Let the central moments be µ̃pq and the normalized central moments be η̃pq, both of

order (p+ q) of f̃ . As µpq is invariant under translation, one can choose the centroid

to be placed in the origin. Then, the substitution λ(x, y) =
(
x
s
, y
s

)T
yields:

ηpq =
µpq
µγ00

=

∞∫
−∞

∞∫
−∞

xpyqf(x, y)dxdy( ∞∫
−∞

∞∫
−∞

f(x, y)dxdy

)γ
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λ
=

∞∫
−∞

∞∫
−∞

(
x
s

)p (y
s

)q
f
(
x
s
, y
s

) ∣∣∣∣∣det
(

1
s

0

0 1
s

)∣∣∣∣∣ dxdy(
∞∫
−∞

∞∫
−∞

f
(
x
s
, y
s

) ∣∣∣∣∣det
(

1
s

0

0 1
s

)∣∣∣∣∣ dxdy
)γ

=

(
1
s

)p+q+2
∞∫
−∞

∞∫
−∞

xpyqf̃(x, y)dxdy

(
1
s

)2γ
( ∞∫
−∞

∞∫
−∞

f̃(x, y)dxdy

)γ
=
µ̃pq
µ̃γ00

= η̃pq

�

2.3.4 Rotation Invariance

Besides the recognition of patterns of varying scales the major issue is the recogni-

tion of rotated versions. This can be obtained using various approaches. Hu [Hu62],

for example, proposed a set of moments that he derived algebraically in R. Flusser

[Flu00], however, has proven those moments to be neither independent nor complete.

The most elegant formulation is probably the formulation of Flusser, using the com-

plex moments to derive rotation invariance, as previously proposed by Mostafa and

Psaltis [AMP84]. The following derivation of rotation invariant moments is con-

nected to the work of Flusser [Flu00], since complex moments are utilized for the

derivation. While Flusser concentrates just on the rotation property, the follow-

ing paragraphs define rotation invariance based upon normalized central moments.

First, the definition of scalar complex moments according to Flusser [Flu00] is given:

Definition 2.3.6 (Scalar Complex Moments of order (p+ q))

Let f = f(x, y), f : G → R be a map over G ⊆ R2, p, q ∈ N, and i =
√
−1 ∈ C.

Complex Moments of order (p+ q) of f are defined as

c′pq =

∞∫
−∞

∞∫
−∞

(x+ i y)p(x− i y)qf(x, y)dxdy.
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While the definitions of the previously presented translation and scale invariant

moments can easily be adapted for arbitrary dimensions, this is not possible for

complex moments. This formulation as well as the following derived properties hold

only for the two dimensional case. By using the binomial theorem a connection

between standard moments mpq and c′pq can be derived:

c′pq =

∞∫
−∞

∞∫
−∞

(x+ i y)p(x− i y)qf(x, y)dxdy

=

∞∫
−∞

∞∫
−∞

p∑
j=0

(
p

j

)
xj(i y)p−j

q∑
k=0

(
q

k

)
xk(−i y)q−kf(x, y)dxdy (2.1)

=

p∑
j=0

q∑
k=0

(
p

j

)(
q

k

)
(−1)q−k i p+q−j−k

∞∫
−∞

∞∫
−∞

xj+kyp+q−j−kf(x, y)dxdy

=

p∑
j=0

q∑
k=0

(
p

j

)(
q

k

)
(−1)q−k i p+q−j−kmj+k,p+q−j−k

One can now formulate the complex moments based upon the normalized central

moments yielding translation and scale invariant complex moments:

Definition 2.3.7 (Complex Normalized Central Moments of order (p+q))

Let f = f(x, y), f : G→ R be a map over G ⊆ R2, p, q ∈ N, and i =
√
−1 ∈ C. Let

further γ = p+q+2
2

, x̂ = (x− x̄ ), and ŷ = (y− ȳ ). Complex Normalized Central

Moments of order (p+ q) of f are defined as

cpq =
1

µγ00

∞∫
−∞

∞∫
−∞

(x̂+ iŷ)p(x̂− iŷ)qf(x, y)dxdy.

In analogy to (2.1), one can derive a connection between the normalized central

moments ηpq and the complex normalized central moments cpq:

cpq =

p∑
j=0

q∑
k=0

(
p

j

)(
q

k

)
(−1)q−k ip+q−j−k ηj+k,p+q−j−k
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A reformulation of cpq in polar coordinates can be obtained by a substitution λ(x̂, ŷ) =

(r cosϕ, r sinϕ)T :

cpq =

∞∫
0

2π∫
0

rp+q+1ei(p−q)ϕf(r cosϕ, r sinϕ)dϕdr.

This formulation in polar coordinates makes it possible to apply again a scaling

operation, this time in angular terms. For obtaining rotation invariant moments the

following Lemma has to be verified:

Lemma 2.3.1 Let f̃ be a version of f , counter-clockwisely rotated around the origin

with angle α: f̃(r, ϕ) = f(r, ϕ− α). Let c̃pq of order (p+ q) of f̃ . Then it holds:

c̃pq = ei(p−q)αcpq

Proof: Using the substitution λ(r, ϕ) = (r, ϕ− α)T one obtains:

cpq =

∞∫
0

2π∫
0

rp+q+1ei(p−q)ϕf(r, ϕ)dϕdr

λ
=

∞∫
0

2π+α∫
α

rp+q+1ei(p−q)(ϕ−α)f(r, ϕ− α)

∣∣∣∣∣det
(

1 0

0 1

)∣∣∣∣∣ dϕdr
=

∞∫
0

2π∫
0

rp+q+1ei(p−q)(ϕ−α)f̃(r, ϕ)dϕdr

= e−i(p−q)α

∞∫
0

2π∫
0

rp+q+1ei(p−q)ϕf̃(r, ϕ)dϕdr

︸ ︷︷ ︸
c̃pq

�

Having this Lemma, it is now obvious that items being independent of the rotation

angle α can be formulated by a clever choice of p and q, so that the factor ei(p−q)α

is eliminated. For instance, it is automatically cpp = c̃pp for p ∈ N. The following

theorem as equally formulated by Flusser [Flu00] shows how to generally derive
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scalar rotation invariant moments by combinations of certain cpjqj , canceling out

the dependence to α.

Theorem 2.3.3 (Construction of scalar rotation invariant moments)

Let cpjqj (j = 1, ..., n) be complex moments of f : G→ R, G ⊆ R2. If
∑n

j=1(pj−qj) =

0, then

Φ =
n∏
j=1

cpjqj

is rotation invariant, i.e. the value of Φ does not vary under a rotation of f by any

angle α.

Proof: Let f̃ be a version of f being rotated counter-clockwise around the origin

by an angle α: f̃(r, ϕ) = f(r, ϕ−α). Let c̃pq be the complex moment of order (p+q)

of f̃ . Then it holds:

n∑
j=1

(pj − qj) = 0

⇒
n∑
j=1

i (pj − qj)α = 0

⇔
n∏
j=1

ei(pj−qj)α = 1

Using Lemma 2.3.1 one obtains

n∏
j=1

c̃pjqj =
n∏
j=1

ei(pj−qj)αcpjqj =
n∏
j=1

cpjqj .

�

As the derivation of rotation invariant moments has been based upon normalized

central moments, moment invariants can be defined as follows:
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Definition 2.3.8 (Scalar Moment Invariants)

Let f = f(x, y), f : G → R be a map over G ⊆ R2. Let cpjqj (j = 1, ..., n) be

complex moments according to Definition (2.3.7). Then

Φ =
n∏
j=1

cpjqj , with
n∑
j=1

(pj − qj) = 0

is called a Moment Invariant of order max
j=1,...,n

(pj + qj) of f . It is invariant to any

translation, scaling, and rotation of f .

Using theorem 2.3.3 it is possible to generate an infinite number of moment invari-

ants. These moment invariants can be depending on each other, so it makes sense to

formulate minimal bases of moment invariants carrying the maximum information

in a minimum number of elements.

2.3.5 Construction of an Invariant Moment Basis

The construction of an invariant moment basis of the herein presented moment

invariants can be performed equally to the construction presented by Flusser [Flu00].

This section briefly summarizes the method as it is also important for the not yet

discovered vector case.

Definition 2.3.9 (Independence of Sets of Invariants)

Let I = {I1, ..., Ik}, k ≥ 1 be a set of invariants according to Definition 2.3.8 and

let J be an invariant of the same type. The invariant J is said to be dependent

on I if and only if there exists a function F with J = F (I1, ..., Ik) containing only

the the operations multiplication, involution with an integer exponent, and complex

conjugation. Otherwise, J is called independent from I. Furthermore,

I is called dependent, if there exists an Ij ∈ I, such that Ij is dependent on

I − {Ij}. Otherwise, I is called independent.
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Definition 2.3.10 (Basis of a Set of Invariants)

Let I be a set of invariants according to Definition 2.3.8 and let B ⊆ I be its subset.

B is called Basis of I if and only if

• B is independent

• B is complete, i.e. if any element of I ∈ I − B depends on B.
Using these two Definitions the Theorem for construction of moment invariant bases

has been formulated by Flusser [Flu00], presenting a construction rule to generate

bases for an arbitrary set of moment invariants.

Theorem 2.3.4 (Construction of an Invariant Moment Basis for Scalar

Fields)

LetM be a set or a subset of the complex moments of any order cpq of order (p+q) ∈
{0, ..., r}, with r ≥ 2. Let I be the set of all invariants created from M according to

Theorem 2.3.3. Let further be cp0q0 ∈ M, with p0 − q0 = 1 and cp0q0 6= 0. Then the

set B constructed as

B =
{

Φ(p, q) := cpqc
p−q
q0p0
| p ≥ q ∧ cpq ∈M

}
is a Basis of I.

The proof of Theorem 2.3.4 can be found in [Flu00] for rotation invariants.

In practice, the fact that an invariant moment basis being independent and com-

plete can be constructed strongly enhances the computation process. Only moments

carrying non-redundant information are computed. On the other hand, with this

construction rule also an infinite number of independent and complete sets of invari-

ant bases can be computed, as the order (p + q) can also be infinite. Therefore, in

practice only lower order moments are computed for several reasons. One reason is

that higher order moments become numerically unstable, as they would need more

than double-precision to be computed accurately. A second reason is that lower

order moments carry most of the information, similar to the low frequency band

when regarding the Fourier space. Another argument for only regarding lower order

moments for the application of pattern recognition is that higher order moments

generate large amounts of data, and it is more efficient to pre-select possible pattern
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occurrences by lower order moments and check in detail only at those specific pre-

selected positions rather than computing this large amount of data for the whole

field. The pattern recognition method is explained in detail in chapter 7.

Using the centroid for translation invariance it yields c01 = c10 = 0, and a basis

of all moment invariants of order ≤ 3 is given by

B =
{
c00, c11, c21c12, c20c

2
12, c30c

3
12

}
constructed according to Theorem 2.3.4 with cp0q0 chosen to be c21.

While this section presented the theory of scalar moment invariants, most of it

according to Flusser [Flu00], chapter 6 introduces a novel adaption of those moment

invariants for flow data.



Chapter 3

State of the Art: Image

Processing for Flow Visualization

The idea of flow visualization in general is to provide an insight into flow data

by highlighting important features. As image processing provides well-engineered

methods for feature extraction in images, those methods can obviously serve as basis

for flow feature extraction.

A first approach aiming a convolution operator for flow data was proposed by

Heiberg et al. [HEWK03]. Some extended approaches have been formulated by

Ebling and Scheuermann using Clifford algebra. The field itself is quite immature,

so these few approaches are the State-of-the-Art in image processing for flow visu-

alization.

3.1 Clifford Convolution

The mentioned methods from section 2.2 have been reformulated to be applied to

vector data. This means that vector valued filters can be applied to vector valued

data. Using this mechanism it is possible to recognize certain query patterns in

vector data. This mechanism works analogously to linear shift-invariant filtering in

the scalar case.



3.1 Clifford Convolution 52

Heiberg et al. defined the vector convolution using the scalar product [HEWK03]:

Definition 3.1.1 Let V be a vector field and Qn be a filter in direction n. The

inner convolution is defined as

sn(r) =

∫ ∫ ∫
Ω

〈Qn(ξ), V (r − ξ)〉 dξ.

We assume the filter to be the mirrored query pattern (for performing a correla-

tion). Using terms of Clifford algebra the convolution was redefined by Ebling and

Scheuermann [ES03]:

Definition 3.1.2 Let U be a multi-vector field and Pn a multi-vector valued filter

mask in direction n. The Clifford convolution is defined as

cn(r) =

∫ ∫ ∫
Ω

Pn(ξ)U(r − ξ)|dξ|

using the Clifford product.

In practice, discretized versions are needed. Here, the 2D case is of major interest,

so 2D discretized definitions for inner and Clifford convolution are given:

Definition 3.1.3 Let V be a vector field and Qn be a filter in direction n. The 2D

discrete inner convolution is defined as

sn(j, k) =
r∑

s=−r

r∑
t=−r

〈Qn(s, t), V (j − s, k − t)〉

with j, k, s, t ∈ Z.

Definition 3.1.4 Let U be a multi-vector field and Pn a multi-vector valued filter

mask in direction n. The discrete Clifford convolution is defined as

cn(j, k) =
r∑

s=−r

r∑
t=−r

Pn(s, t)U(j − s, k − t)

with j, k, s, t ∈ Z, using the Clifford multiplication.
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In this definition, the maximum size of the grid is r in any dimension. The definition

is though universal, since filters having different sizes in different dimensions can be

filled-up with zeros at the edges. Each (j, k, l) is representing a grid point. Besides

the convolution operation, also the definition of the correlation operation can be

extended to vector fields [HEWK03,ES03]:

Definition 3.1.5 Let V be a vector field and Qn be a filter in direction n. The

inner correlation is defined as

ln(r) =

∫ ∫ ∫
Ω

〈Qn(ξ), V (r + ξ)〉 dξ

Definition 3.1.6 Let U be a multi-vector field and Pn a multi-vector valued filter

mask in direction n. The Clifford correlation is defined as

kn(r) =

∫ ∫ ∫
Ω

Pn(ξ)U(r + ξ)|dξ|

The Clifford convolution is non-commutative, since the Clifford multiplication that

it is based upon isn’t either, so side from which a filter is applied is of importance.

Definition 3.1.7 Let f be a multi-vector field and h be a multi-vector valued filter

mask, both with dimension d. In addition to the definitions of the Clifford convolu-

tion and correlation

(h ∗l f)(x) =

∫
IRd
h(x′)f(x− x′)|dx′|

is defined as left-side Clifford convolution,

(h ?l f)(x) =

∫
IRd
h(x′)f(x+ x′)|dx′|

is defined as left-side Clifford correlation,
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(f ∗r h)(x) =

∫
IRd
f(x− x′)h(x′)|dx′|

is defined as right-side Clifford convolution, and

(h ?l f)(x) =

∫
IRd
h(x′)f(x+ x′)|dx′|

is defined as right-side Clifford correlation.

The discrete versions are defined analogously.

3.2 Pattern Matching on Vector Fields

The presented correlations can be used for pattern matching on vector fields. Pat-

tern matching provides information about the features contained in the given vector

data. Special features have characteristic pattern structures capable of being recog-

nized by a correlation operation.

For one approach of the pattern matching a uniform grid structure is assumed for

both, vector field and vector filter. The filters are defined through the discretized

query patterns. Figure 3.2 shows some example patterns for two and three dimen-

sions. In the pattern matching algorithms of Heiberg [HEWK03], as well as in

the algorithm of Ebling and Scheuermann [ES03], the vector fields are normalized,

meaning all vectors have the same length. This is done as the authors argue that

direction of the vectors is more important than the vector length.

The application of one of the correlation operators from definition 3.1.5 or defi-

nition 3.1.7, results in a similarity field. This similarity field is a scalar field in

Heiberg et al.’s case, while it is the scalar part of a multi-vector field in Ebling and

Scheuermann’s case. Both similarity fields indicate, where a given query pattern has

been found in the field. Figure 3.2 illustrates this process. The major problem of

this method is that the pattern can only be recognized in the given size and orien-
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Figure 3.1: Some example vector patterns in 3D and 2D.

tation. For easy patterns being invariant to rotation and scale (like rotations, sinks,

or sources), orientation and size are extraneous. In this case the application of the

correlation operator directly results in a valuable information about these features.

However, for general patterns filters have to be redefined for different scales and for

every of these scales in many different rotated versions, to guarantee a good result.

Heiberg et al. as well as Ebling and Scheuermann are concerned about rotations,

not about scales. So, Heiberg defines the final similarity field l(r) for each discrete

position according to the most similar rotated version of the query pattern:

l(r) = sup
n

sn(r).

Ebling and Scheuermann have extended their method to vector data on non-uniform

grids [ES05a]. Most of their approaches use interpolation of the field and/or the fil-

ter to different grid structures. For their most successful approach, the filter grid is
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Figure 3.2: Pattern recognition on a flow simulation data set (data courtesy by
W.Kollmann). The query pattern is a clock-wise rotation. Occurrences of the
clockwise rotations are highlighted with blue color, counter-clockwise rotations are
highlighted in red color in the resulting similarity field.

adapted to the structure of the given field. This works very well for implicitly given

query patterns that can be discretized easily. For explicitly given patterns again

interpolation to the changed grid has to be used to perform the correlation. This

approach is so far the only one to perform this task. In chapter 4 an approach with

equal goals will be presented.
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3.3 Clifford FFT

The correlation operator itself is very inefficient. Its complexity lies in O(n2), with

n being the total number of data points. In the scalar case, the correlation is per-

formed as a convolution of the mirrored filter using a fast Fourier transform (FFT)

(see section 2.2.1).

There is indeed a FFT for the vector data. It is a extension of the approach of

Ebling and Scheuermann using Clifford algebra. So, the FFT for vector data is

called Clifford FFT [ES05b,Sch04].

For a Clifford FFT, first a general definition of the Clifford Fourier transform is

needed, as in [Sch04].

Definition 3.3.1 : Let f : Ed → Gd be a multi-vector valued function and vectors

x, u ∈ IRd. The Clifford Fourier Transform is defined by

F{f}(u) =

∫
IRd
f(x)e(−2πid<x,u>)|dx|

and the inverse Clifford Fourier Transform is defined by

F−1{f}(x) =

∫
IRd
f(u)e(2πid<x,u>)|du|

if the integral exists.

The properties are very similar to the scalar case. For further information on the-

orems and proofs for the Clifford Fourier transform, see [Sch04, ES05b]. For a fast

Clifford Fourier transform the multi-vector field has to be decomposed:
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For the 3D case, a multi-vector field f : E3 → G3 can be decomposed into four

complex signals:

f(x) = [f0(x) + f123(x)i3]1

+ [f1(x) + f23(x)i3]e1

+ [f2(x) + f31(x)i3]e2

+ [f3(x) + f12(x)i3]e3

Due to the linearity property of the Fourier transform it yields:

F{f}(u) = [Fc{f0(x) + f123(x)i3}(u)]1

+ [Fc{f1(x) + f23(x)i3}(u)]e1

+ [Fc{f2(x) + f31(x)i3}(u)]e2

+ [Fc{f3(x) + f12(x)i3}(u)]e3.

As the first Fourier pair uses scalar and trivector part (not being important for pure

vector data), it can be dropped. The remaining three Fourier transforms are in fact

three scalar Fourier transforms Fc each with one of the three vector components

as input. This means that a Clifford Fourier transform can be calculated through

scalar Fourier transforms, and thus, by FFTs.

For the 2D case the decomposition is similar. A multi-vector field f : E2 → G2

can be decomposed into two complex signals:

f(x) = 1[f0(x) + f12(x)i2]

+ e1[f1(x) + f2(x)i2]

Using the linearity of the Fourier transform again yields

F{f}(u) = 1[Fc{f0(x) + f12(x)i2}(u)]

+ e1[Fc{f1(x) + f2(x)i2}(u)].
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Again, non-vector data is located in the first Fourier transform (here scalar and

bivector part). As those are zero for pure vector data, only the second Fourier

transform is of interest. A Clifford Fourier transform can again be reduced to the

scalar case and thus be calculated by an FFT algorithm. For pure vector data a

scalar (but complex valued) Fourier transform suffice. The e1 part is regarded as

the real, while the e2 part as the imaginary part fed into the Fourier transform.

To perform a correlation using the Clifford FFT, the convolution theorem also has

to hold in Clifford algebra.

Theorem 3.3.1 (Clifford Convolution Theorem): Let f, h : Ed → Gd be multi-

vector valued functions of dimension d. If F{f} and F{h} exist then it is

F{h ∗l f}(u) = F{h}(u)F{f}(u)

for the left-side Clifford convolution and

F{f ∗r h}(u) = F{f}(u)F{h}(u)

for the right-side Clifford convolution.

Proof: The proof is presented for the left-side convolution.

F{h ∗l f}(u)

=

∫
IRd

∫
IRd
h(x′)f(x− x′)|dx′|e(−2πid<x,u>)|dx|

=

∫
IRd

∫
IRd
h(x′)f(x− x′)e(−2πid<x,u>)|dx′||dx|

=

∫
IRd

∫
IRd
h(x′)f(x− x′)e(−2πid<x,u>)|dx||dx′|

=

∫
IRd
h(x′)

∫
IRd
f(x− x′)e(−2πid<x,u>)|dx||dx′|

=

∫
IRd
h(x′)e(−2πid<x

′,u>)F{f}(u)|dx′|

=

∫
IRd
h(x′)e(−2πid<x

′,u>)|dx′|F{f}(u)

= F{h}(u)F{f}(u).
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The proof of the right-side convolution is analogue.

�

Figure 3.3: The complete pattern recognition process by using a Clifford FFT. The
field and the filter mask (a+b) are transformed into frequency domain using the
Clifford FFT (c+d). These are multiplied (e). The inverse Clifford FFT results in a
similarity field (f). The example field contains three hidden rotation patterns. The
filter mask of size 5x5 is able to produce good results for larger rotation patterns.
A smaller rotation pattern is only recognized with lower similarity.
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The convolution theorem offers the chance to perform pattern recognition much

faster. For pattern recognition a correlation of the field with a query filter mask has

to be performed. The correlation equals a convolution with the mirrored filter mask.

The theorem says that a convolution in spatial domain equals a multiplication in

frequency domain. Both, field and mirrored filter are transformed into frequency

domain using the Clifford FFT, then multiplied, the result is transformed with the

inverse Clifford FFT. The result is the similarity field. The complete process is

visualized in Figure 3.3. This sounds quite complicated at first. But this process

is very efficient (for filter sizes bigger than 3x3), since the complexity of a Clifford

FFT lies in O (n log2(n)) and the complexity of the multiplication in O(n), resulting

in a total complexity of O (n log2(n)), with n being the number of data points in

the field. This is a big improvement to the complexity of the common correlation

operation with O(n2).

3.4 Open Questions

In this section some open questions are formulated that should be addressed in this

dissertation.

It has been mentioned in section 3.2 that there is a correlation for unstructured

grids.

• How can the Clifford FFT be reformulated to enhance the correlation also for

vector data on unstructured grids?

Another important question addresses the analyzed data. As mentioned in section

2.1.1, there is a difference between different types of vector data. Although the

Clifford correlation/convolution is defined for general vector data, it has yet only

been used for the analysis of flow data.

• How does the Clifford correlation / convolution behave on other vector data,

for example color images?



3.4 Open Questions 62

Besides these questions regarding the Clifford algebra approaches, the major issue

that should be addressed is efficiency. Currently, it is very inefficient to perform a

pattern recognition for general patterns. The correlation has to be performed several

times for just one query pattern, as one can only find a query pattern in its scale

and orientation with one correlation. Of course, a FFT improves efficiency, but it is

still far away from interactive working (about 5-10 minutes for medium sized data

sets for a complete search of a single general query pattern). The answer to this

question can be a pattern recognition being independent from scale and orientation.

• How can a flow pattern recognition be performed regardless from scale and

orientation?

During the process of pattern recognition one obtains a similarity field. Performing

several searches yields several similarity maps. So far, these similarity maps are

displayed as scalar data. For one similarity field, this can be done with a simple

scalar color mapping in 2D, for 3D data with volume rendering. Visualizing more

similarity fields, visibility problems occur immediately. Moreover, the original flow

data cannot be displayed appropriately.

• How can the results of the pattern recognition be displayed in the context of the

original flow data?

In part two of this work, the first two questions shall be addressed. Part three is

dedicated to the central question of an efficient flow pattern recognition. Finally,

part four presents a method being able to display the results in context of a flow

visualization.



Part II

Extended Clifford-based

Approaches



Chapter 4

Non-Uniform Clifford FFT

The analysis and visualization of vector field data on arbitrary grids is a challenging

task. The fast Clifford Fourier transform as presented in section 3 is only designed

to operate on uniform grids, as it is directly derived from image processing (section

3.3). There are already existing approaches for fast Fourier transforms for scalar

data, for example by Fourmont [Fou03], and Kunis and Potts [KP07]. The goal

of this chapter is to extend the fast Clifford Fourier transform to arbitrary grid

structures.

4.1 Non-uniform Clifford FFT Definition

For the construction of a non-uniform Clifford Fourier transform Fourmont’s formu-

lation of the non-uniform Fourier transform can be adapted.

The non-uniform Clifford Fourier transform can be defined by inserting the Clifford

product as known from the Clifford Fourier transform into Fourmont’s formulation

of his non-uniform Fourier transform for scalar data [Fou03] (see section 2.2.2.3).

This results in a transformation of non-uniformly distributed data in the spatial

domain to evenly spaced data in frequency domain [SHN+05].
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Definition 4.1.1 : (Non-uniform discrete Clifford Fourier Transform)

The non-uniform discrete Clifford Fourier transform (NCDFT) is a map-

ping from the tuple zk ∈ EM to the tuple ẑk ∈ EN , E ⊂ G:

ẑl =

N/2−1∑
k=−N/2

e
−2πi2xlk

N zk, l = 1, ...,M.

The inverse non-uniform discrete Fourier transform is defined for each

knot xl as the inverse mapping:

ẑk =
M∑
l=1

e
2πi2xlk

N zl, k = −N
2
, ...,

N

2
− 1.

In this definition, the elements have been transferred to Clifford algebra.

Theorem 4.1.1 Let φ ∈ C∞0 , φ > 0, with support in [−π, π] be an interpolation

function, and all assumptions from definition 4.1.1. The non-uniform discrete

Clifford Fourier transform can be expressed (approximately) by the equation

ẑl =
1√
2π

∑
m∈Z

φ̂(cxl −m)

N
2
−1∑

k=−N
2

e
−2πi2mk

cN
zk

φ(2πk
cN

)
, l = 1, ...,M.

mapping values from non-uniformly distributed knots xl onto a uniform domain.

The inverse transform can be expressed by

ẑk =
1√
2π

1

φ(2πk
cN

)

M∑
l=1

∑
m∈Z

zlφ̂(cxl −m)e
2πi2mk
cN , k = −N

2
, ...,

N

2
.

Proof: Fourmont’s lemma 2.2.1, can be transferred to Clifford algebra, as there is

an isomorphism of G2 to C× C. So, it yields

e−i2xξ =
1√

2πφ(ξ)

∑
m∈Z

φ̂(x−m)e−i2mξ, |ξ| < π

c
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for an interpolation function φ ∈ C∞0 , φ > 0, with support in [−π, π].

Inserting this into definition 4.1.1 yields

ẑl =
1√
2π

∑
m∈Z

φ̂(cxl −m)

N
2
−1∑

k=−N
2

e
−2πi2mk

cN
zk

φ(2πk
cN

)
, l = 1, ...,M.

�

4.2 Objective Target and Implementation

The formerly given representation is independent from the knot structures, so that

the fast Clifford Fourier transform (see section 3.3) can be applied. By considering

the results of Ebling and Scheuermann [ES05b], the calculation can be split up into

two scalar-valued NFFTs for two-dimensional multi-vector fields.

Thus, the NFFT library of Potts et al. [PST00] can be used to calculate the scalar

NFFTs. Moreover, for our non-uniform fast Clifford Fourier transform we can use

the simple inversion by Fourmont and the more accurate iterative approach devel-

oped by Potts and Kunis [KP07]. Both algorithms for the non-uniform fast Clifford

Fourier transform have been compared, considering time and accuracy. The meth-

ods have been applied to several data sets, performing the transform and its inverse.

Accuracy measurements for vector-valued data have been computed by comparing

directions and magnitudes of the resulting vectors to the original ones. A full recon-

struction of a field is only possible when satisfying the Nyquist theorem, i.e., for an

appropriate reconstruction at positions lying very closely to each other, one needs

to use a high sampling rate.

An important application of this Fourier approach is the convolution of vector-

valued filters and non-uniformly distributed vector-valued data by performing a

Clifford multiplication in frequency domain. First a vector field is transformed onto

a uniform grid in frequency domain, using the simple non-uniform fast Clifford

Fourier transform, similar to Fourmont’s definition of the INFFT [Fou03], and the

high-accuracy method of Kunis and Potts [KP07]. Since the frequency representa-

tion is based on a uniform grid, it is possible to use the frequency representation
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of non-interpolated convolution masks. Multi-vector field and filter mask are mul-

tiplied in frequency domain. Inverse non-uniform fast Clifford Fourier transform of

the resulting multi-vector finally produces the filtered multi-vector field. In case of a

vector-valued filter mask the result is a scalar-valued field, indicating the similarity

of the field to the used filter mask at each position.

4.3 Application Results

The NFCFT has been implemented and tested using a 2.6 GHz Pentium 4 processor

with 512 MB RAM. The algorithm was applied to an unstructured vector data

set (figure 4.1), measuring accuracy (tables 4.1, 4.2) and time requirements (table

4.3), considering the number of iterations and over-sampling factors used for the

transform.

Figure 4.1: Hedgehog representation of completely unstructured test data.
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Table 4.1 presents the relative medium error in magnitude depending on over-

sampling factor (OF) and number of iterations for the unstructured test data set with

n=2500 vectors (see figure 4.1). It has been computed, using δm = 1
n

∑
n

∣∣∣ |v|−|vt||v|·|vt|

∣∣∣. Ta-

ble 4.2 shows the relative medium error in direction, using δd = 1
n

∑
n

cos−1
(
||v||−||vt||
|v|·|vt|

)
.

The over-sampling factor indicates the number of positions in frequency relative to

the number of positions in spatial domain. Accuracy was measured by comparing

the original data set with its inversely transformed frequency representation. For

the evaluation the relative error in vector magnitude and the directional error are

distinguished.

1 4 16 64
1 it. 37.26 22.51 10.92 4.66
3 it. 34.23 15.45 4.55 1.68
5 it. 30.68 9.79 2.78 0.71
10 it. 26.20 5.34 1.21 0.34
15 it. 24.30 3.51 0.77 0.09
20 it. 22.96 2.58 0.42 0.05
25 it. 22.12 1.71 0.32 0.02
30 it. 21.46 1.32 0.16 0.0006

Table 4.1: Relative medium error in magnitude δm in [%] for a non-uniform Clif-
ford FFT into frequency space, depending on over-sampling factor 1,4,16 or 64 and
number of iterations for the presented test data set with n = 2500 scattered vectors.

OF 1 4 16 64
1 it. 23.46 11.72 4.97 1.94
3 it. 18.21 5.57 1.42 0.531
5 it. 16.18 3.95 0.67 0.227
10 it. 13.76 1.90 0.30 0.067
15 it. 12.58 1.15 0.22 0.026
20 it. 11.81 0.78 0.11 0.011
25 it. 11.35 0.52 0.08 0.0005
30 it. 11.00 0.41 0.05 0.0001

Table 4.2: Relative medium directional error δd in [%] for a non-uniform Clifford FFT
into frequency space, depending on over-sampling factor 1,4,16 or 64 and number of
iterations for the presented test data set with n = 2500 scattered vectors.
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1 4 16 64
1 it. 0.03 0.08 0.25 1.06
3 it. 0.3 0.75 2.81 11.31
5 it. 0.45 1.16 4.32 17.31
10 it. 0.85 2.19 7.93 32.23
15 it. 1.25 3.26 12.1 47.15
20 it. 1.71 4.3 15.95 62.09
25 it. 2.03 5.33 19.67 77.16
30 it. 2.48 6.41 22.57 94.5
Inv 0.03 0.07 0.26 1.07

Table 4.3: Computation times in seconds depending on over-sampling factor (1, 4,
16, 64) and number of iterations for test data set consisting of 2500 vectors. Inv
indicates the time for an inverse transform.

The results show that combining over-sampling and the iterative improvement of

Kunis and Potts [KP07] leads to high reconstruction quality, whereas Fourmont’s

method (equivalent to performing just one iteration) does not lead to accurate re-

sults. The tables show that the directional error decays faster than the magnitude

error. This is an advantage for the application of vector pattern recognition, since

rotation or divergence are defined by direction. For practical considerations, the

performance of the inverse transform is more important, since a data set can be

transferred into frequency domain once, and can then be filtered with various fil-

ters. The results of these filtering operations are all transformed with the inverse

transform. The transform into frequency domain can be regarded as preprocessing

for an efficient filtering in frequency domain.

The algorithm was also applied to a simulated fluid dynamics data set, a two-

dimensional slice of a swirling jet vector field, entering a fluid at rest (figure 4.2).

More information on this data set is given in section A.5.

With an over-sampling factor of approximately five, mapping 12524 vectors in spa-

tial domain to 256× 256 in frequency domain, the computation with 100 iterations

required 106 seconds, while the inverse transform required 0.35 seconds. This data

set is not unstructured, but it is not defined on a uniform grid. The frequency rep-

resentation of the swirling jet data set shows the expected larger magnitudes in the

lower frequency spectrum (figure 4.3).
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Figure 4.2: Structured non-uniform grid and magnitude representation of swirling
jet entering a liquid at rest (vector data, rectilinear, non-uniform spacing).

Figure 4.3: Frequency representation of swirling jet data set, low-frequency magni-
tudes stronger (center).
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In this chapter an algorithm for a non-uniform Clifford FFT has been presented. It

is an extension of the NFFT algorithms by Kunis and Potts [KP07] as well as Four-

mont [Fou03] to multi-vector data. The accuracy and efficiency of the two different

implementations of this approach have been compared. The method is also based

on the Clifford Fourier transform for uniform grids [ES05b], as well as the Clifford

FFT [Sch04]. The method gives an alternative method for pattern matching for

unstructured vector field data besides [ES05a]. The advantage of the presented al-

gorithm is that for a large number of filter operations (for filters bigger than 3× 3),

i.e. pattern recognition tasks, the performance is better, due to the fact that the

computationally expensive calculation of the uniform Fourier representation has to

be computed only once for performing many efficient matchings in frequency domain.

The inverse transform can be done efficiently (due to the described computation).

This means, when pattern matching is applied for large and large numbers of pat-

terns, then the presented algorithm is superior to the unstructured pattern matching

algorithm of Ebling and Scheuermann [ES05a]. Otherwise, this direct algorithm is

to be preferred. Another issue is that an approximation error is introduced using the

presented method. However, Ebling and Scheuermanns’ method has similar issues

while resampling the data. However, in their case resampling can be done locally,

while the approximation can only be controlled globally using the Fourier approach.
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Color Edge Detection using

Clifford Algebra

While the previous chapter extended the Clifford Fourier approach to flow fields

on non-uniform grids, this chapter is dedicated to a different application of this

method. The idea is to use the Clifford Fourier transform also in the context of

image processing and object recognition. Segmentation based on edge detection is an

important part of current classification systems in image processing. These systems

are used in various application areas, including astronomy, medicine, robots, etc.

Edge detection is usually the first step of the filtering process for images (see figure

2.1). Having the objects’ edges, an image can be segmented into regions that can

be classified with further methods with the goal of identifying objects and their

characteristics from image data. This makes edge detection a vital part of the image

processing pipeline.

5.1 Gray-scale Edge Detection

In most cases, edge detection is carried out on gray-scale images. It is performed by

the convolution or correlation of special filter masks (as explained in 2.2.1). Edges

in gray-scale images are (more or less) strong changes in the color value of pixels

in a neighborhood. Thus, the basic idea of an edge detection in images is to utilize

the gradients of an image. One method is to search for extreme values in the first-
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order derivatives. Since these extreme values are zero-crossings for second-order

derivatives, a second method is to search for these zero-crossings. Assuming 2D

images, the continuous gradient is defined as follows:

Definition 5.1.1 Let g : R2 → R be a two-dimensional signal. Its gradient is

defined as

∇g(x) =

[
∂g

∂x1

,
∂g

∂x2

]T
.

According to Jähne [Jäh95], the absolute value of the gradient is invariant to a

rotation of the coordinate system, and is thus a good choice for edge detection:

|∇g(x)| =

√(
∂g

∂x1

)2

+

(
∂g

∂x2

)2

.

The corresponding discrete basis filter D is given by:

D =

[
Dx

Dy

]
, with the filter masks Dx = [1− 1] and Dy =

[
1

−1

]
.

For isotropic edge detection, the discrete version of the absolute value of this filter

is of importance ( [Jäh95]):

|D| =
√

[Dx ·Dx +Dy ·Dy],

with · being the point-wise multiplication of images.

For the second order method, the Laplace operator is applied. The following defini-

tion is a specialized version of the one from Jähne [Jäh95]:

Definition 5.1.2 The Laplace operator for a 2D signal is defined as

∆ =
∂2

∂x1
2

+
∂2

∂x2
2
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The discrete Laplace operator (Laplace filter) can also be derived by applying the

gradient operator twice [Jäh95]. The 2D Laplace filter is given by the following

image matrix:

L =

 0 1 0

1 −4 1

0 1 0

 .
These two presented methods are further optimized through smoothing operations

and regularization to reduce the discretization error. Please note that it is not a

discretized method that is introducing the error, but the discretely given image data.

Examples for regularized filters are the Sobel operator (originally from a talk by Irwin

Sobel 1968, published in a book of Duda and Hart [DH73]), the Laplacian-of-Gauss

filter by Marr and Hildreth [MH80], and the Canny edge detector [Can86].

In the following sections, the basic principles of edge detection will be transferred

to and carried out with the Clifford Fourier approach.

5.2 Color Edge Detection Approaches

There are also approaches for detection of edges using color information. Almost all

of these approaches reduce the color edge detection to three scalar edge detections,

e.g., the component-wise Canny edge detection is applied to each of the RGB color

channels. To the author’s knowledge there is only one really vector-based method

from Machuca and Phillips [MP83]. Other methods are concentrating on optimiza-

tion issues that are not relevant for this work. Most of these approaches have been

discussed in the comparative overviews of color image edge detection methods from

Koschan [Kos95] or a more recent one from Koschan and Abidi [KA05].

In order to improve color edge detection there is the idea of regarding RGB triples

of colors as vectors, therefore the color image as vector field. Some standard image

processing methods have been discussed in section 2.2 and section 5.1. Adapta-

tions of these methods for vector field data, the Clifford correlation and the Clifford

Fourier transform, have been illustrated in chapter 3. The idea of this chapter is to

analyze the applicability of these methods to image data.
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Definition 5.2.1 (Color Image) A color image f is defined as a vector field

f : G → R3, G ⊆ R2. It assigns three-dimensional color values to a planar two-

dimensional domain.

5.3 Clifford Color Edge Detection

As color images can be represented as vector fields using the color components as

vector components, the general idea of Clifford color edge detection is to use pattern

matching for vector fields for the detection of edges in color images. The given 3D

vectors (RGB) are on a 2D grid. The application of 3D pattern matching would

lead to a 3D similarity map as result, being an inappropriate representation, since

the result has to be projected back into two dimensions. For that reason, it is rea-

sonable to handle luminance and chrominace separately. This can be achieved by

transferring an RGB image to a corresponding YUV image. The Y channel repre-

sents the luminance (gray-scale image), while the chrominance is represented by the

2D vector field UV. After filtering, one obtains two scalar similarity maps that can

be combined to a final similarity map representing edges in the color image. The

gray-scale part (Y) can be treated exactly as done in the common approaches, and

the pattern matching applied to the color part (UV) adds additional information.

Machuca and Phillips [MP83] proposed similar settings for their method, but did

not use Clifford algebra.

In this chapter it will be shown that using any of the filter masks used for rep-

resenting special topological features (rotation, convergence, and divergence) allows

one to detect edges in a color image. The 2D Clifford algebra is especially suitable

for this task, since all components fit perfectly into the mathematical concept.

5.3.1 Data Structure

The Clifford multi-vectors in the 2D case are suitable for this approach. We can

assign the values as follows:
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name grade dimension values

scalar 0 1 Y

vector 1 2 U, V

bivector 2 1 0

The Y component becomes the scalar part of our multi-vector at each grid position.

The vector component is represented by UV, using U as real part with basis e1 and

V as imaginary part with basis e2. The imaginary scalar part with basis e1 ∧ e2 is

set to zero, as there is no imaginary component for the scalar part.

5.3.2 Choice of patterns

For the scalar part the choice of filters is simple, as it reduces to gray-scale edge

detection. For the color component UV, the main question for using vector pat-

tern matching is what patterns to search for. The topologically interesting features

like rotation, divergence, and convergence are related to the gradient. To compute

the divergence ∇ · v of a vector field v, the Clifford pattern matching approach

can be used with a divergence pattern (see figure 5.1). To compute the rotation

|∇ × v| of a vector field v, a rotation pattern can be applied (see figure 5.1). For

these reasons, these patterns seem to be reasonable choices for filtering the UV part.

The four patterns that were used to perform the filtering are presented in Figure 5.1.

In addition, a blur filter can be applied prior to edge detection, as done in Marr and

Hildreths’ and Canny ’s edge detection schemes [MH80, Can86]. It can be applied

separately to all color channels, before converting an image to YUV, as well as to

the YUV representation, since the conversion is a linear operation. An appropriate

choice for these filters could enhance the final result.
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Figure 5.1: Four different vector pattern mask used as filters for the UV part:
divergence (upper left), convergence (upper right), clockwise rotation (lower left)
and counter-clockwise rotation (lower right).

5.3.3 The Detection Algorithm

The complete Clifford color edge detection process is illustrated in Figure 5.2. The

RGB image is translated by a linear operation to a YUV image:YU
V

 =

 0.299 0.587 0.114

−0.14713 −0.28886 0.436

0.615 −0.51499 −0.10001


RG
B


More information on color models can be found for example in [Poy03].

After this transform, the gray-scale part (Y) is processed with usual edge detection,

resulting in a similarity image revealing the gray-scale edges. The chrominance

part (UV) is a two-dimensional vector field (but not flow field!). However, it is

now filtered with one of the flow patterns from figure 5.1. The result is a complex

similarity field. There are four different possibilities for edges:
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Figure 5.2: Illustration of Clifford color edge detection. Image given in YUV color
space in a multi-vector structure, gray-scale edge detection performed as usual, UV
part filtered with vector pattern matching. Result is a multi-vector of similarities.

• A horizontal edge from high to low values (up to down),

• a horizontal edge from low to high values (up to down),

• a vertical edge from high to low values (left to right), and

• a vertical edge from low to high values (left to right).

Each complex part of the resulting similarity field a : R2 → C represents the result

of one of these cases (positive real, positive imaginary, negative real, and negative

imaginary part). Depending on the chosen pattern phase shifts do occur:

a (∇ · v) = i · a (|∇ × v|) .

The relation is obvious, when taking a look at the vector field from the perspective

of complex numbers. The vector part of Clifford algebra is isomorph to .

Let r : R2 → C ∼= R2 be the complex description of the clock-wise rotation pattern

and d : R2 → C ∼= R2 be the complex description of the divergence pattern as shown
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in figure 5.1. A point-wise multiplication with the phase shift i2 means a clock-wise

rotation of each single vector by 90 degrees:

r · i2 = d, d · i2 = −r, −r · i2 = −d, −d · i2 = r.

To conclude, the resulting similarity field does also only change its phase. Let

v′ : R2 → C ∼= R2 be a complex scalar field being isomorph to the two-dimensional

vector field v. Then:

ar = v′ ∗ r = v′ ∗ d · i2 = ad · i2.

Since the four complex parts have to be combined to give a full edge description,

the absolute value of a is calculated. This means that the pattern can be chosen

from any of the four proposed patterns, since

|ar| = |ar · i2| = |ad| = |ad · i2| = | − ar| = | − ar · i2| = | − ad| = | − ad · i2| = |ar|.

To recapitulate, given a color image, the algorithm computes two sets of similarity

values: a set of real values and a set of complex values. The real set describes a

fuzzy representation of the edges in the gray-scale image, while the magnitude of the

complex value indicates edges in the color part of the image. The exact structure

of the complex value depends on the used filter, but the unsigned magnitude of the

complex similarity values turned out to be equal for all four filters that have been ap-

plied (two rotation pattern, a convergence, and a divergence pattern, see Figure 5.1).

5.3.4 Application Results

A software has been designed so that the user can adjust the binary threshold and the

ratio of gray-scale and color contribution. It is possible to configure the identified

edges as desired. For the presented algorithm, a chosen manual adjustment has

been chosen, as the automatic thresholding problem known from Canny’s algorithm

[Can86] still applies to this case. Using the YUV model, users are able to control

luminance and chrominance separately. This representation is more intuitive than a

representation in RGB space, since the human sensory system processes luminance

separately from chrominance.
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Various images have been processed using this method. It generally performed better

than simple gray-scale edge detection. Figure 5.3 shows an example where a gray-

scale recognition fails. Examples for real-world image data are shown in Figures 5.4,

5.5, and 5.6. The enhancement using our color approach is illustrated by comparison

with the common gray-scale algorithm.

Figure 5.3: Example where gray-scale edge detection fails, while color edge detection
succeeds. Upper left: (contrast enhanced) original image, upper right: result of a
gray-scale edge detection, lower left: the color edge detection, lower right: the
combined edge detection, showing all edges in the original image.

The presented algorithm turns out to be equal in performance to an optimally con-

figured color edge detection method using the RGB color model. The transformation

from RGB into YUV space does not change the result when all component results

are weighted equally. The vector-based approach in Clifford algebra for handling

the UV part is an operation applied to complex-valued scalars. Those can again be

rewritten component-wise, splitting them into a real and an imaginary part. Rewrit-

ing the vector filter pattern (see Figure 5.1) in components yields the commonly used

filters for edge detection for scalar images in both axis directions. The four different

types of filters only differ in their algebraic signs for the real and imaginary values.
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Since in the final step of the algorithm the magnitude of the complex result is com-

puted, the search pattern can be either one of the given ones to obtain the same

result.

Figure 5.4: C2ED applied to example image, resulting in a fuzzy representation of
the similarity values. Upper left: original, upper right: Y filtered, lower left: UV
filtered, lower right: weighted combination of Y and UV parts

5.4 Conclusions

This chapter presented an alternative method for color image edge detection for

color images using Clifford algebra. Gray-scale data is handled separately from the

color part of the image. While the luminance part is handled using common meth-

ods the color part is filtered with a vector-valued filter. Those two approaches fit

perfectly in the data structure of Clifford algebra’s multi-vector setting. The results

have shown that this approach outperforms the gray-scale edge detection in most

cases, since additional information is gained through the processing of the color

part. However, it turned out to be equal in performance when compared to other
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color edge detection methods working component-wise on RGB images. For non-

automatic detection, a framework has been implemented that offers the possibility

to adjust thresholds manually. For manual adjustment the chosen YUV color model

is more intuitive.

Figure 5.5: This image shows a street and a church tower in Gaschurn, Austria.
Upper left: original, upper right: Y filtered, lower left: UV filtered, lower right:
weighted combination of Y and UV parts. The church tower edges are only fully
recognized using both, luminance and chrominance part (marked with a green circle).
Also the window edges of the house on the left have been detected better (marked
with a red circle).
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Figure 5.6: For this image of a car (upper left) thresholding was performed, result-
ing in a binary edge representation (upper right: Y, lower left: UV, lower right:
combined). Results can be further improved using Canny’s method.



Part III

Flow Pattern Recognition using

Moment Invariants



Chapter 6

Generalized Moment Invariants

This chapter introduces flow moment invariants as foundation for an interactive

pattern recognition algorithm for flow data. As previously described, the correla-

tion operation is enabling pattern recognition in scalar and vector valued data. As

shown, the process of correlation can be optimized by performing a Fourier Trans-

form and a multiplication with the mirrored filter mask in frequency domain. The

correlation method itself is especially good in finding patterns that are rotation in-

variant, i.e. rotations, convergence, and divergence patterns. For arbitrary patterns,

however, the search pattern has to be adapted for different orientations. Also the

scale has to be taken account. So, a pattern recognition seeking arbitrary patterns

in flow data has to compute correlations for all possible scales and, for each of these

scales, several discretely rotated versions of the search pattern. Even though using

the presented optimization, this task slows down the search process heavily. The

idea to overcome this issue is to develop a descriptor representing information inde-

pendent from scale and rotation.

In the areas of image processing and computer vision the moment invariants serve

as descriptor for parts of images with the property of invariance to translation, scal-

ing, and rotation. In this chapter a generalization of these Moment Invariants is

presented.

A novel definition of moment invariants for 2D flow fields will be given. It dif-

fers significantly from the original version (see section 2.3), since a component-wise
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application is not applicable for flows. In section 6.4 the characteristics of this new

descriptor for special flow features are presented. The novel pattern search algo-

rithm that has been developed based upon these descriptors is discussed in detail in

chapter 7.

6.1 Definition of Moment Invariants for Flow Data

While the presented scalar moment invariants are known descriptors (see section

2.3), there is no descriptor for flow data, yet. When generalizing moment invariants

to flow fields it is not sufficient to consider each component separately as it would

be possible for spatially uncorrelated vector-valued data, e.g., color images. The

definition of rotation invariance of scalar moment invariants is not appropriate for

flow fields. The main issue here is the rotation operation. Component-wise appli-

cation of moments only considers the rotation of the vector start positions, but for

flow patterns also the vector values have to be taken into account. This problem is

illustrated in an example shown in figure 6.1. In the following paragraph the math-

90°

90°

Figure 6.1: Difference in the understanding of a rotation operation between spa-
tially uncorrelated data (e.g., a vector representation of colors, (upper part) and
flow data (lower part). While for uncorrelated data a rotation only applies to the
domain, rotation of the (vector) values has to be taken into account for an invariant
description of flow features.
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ematical foundations of flow moment invariants are explained. As an example for

application areas of moment invariants, section 6.4 shows the characteristics of mo-

ment invariants for critical point features. For this special area, moment invariants

are quite similar to other known descriptors like the Pointcare index. In contrast

to the Pointcare index, moments are designed to handle more general patterns, not

only critical point features.

6.1.1 Moments for Flows

In the following flow moments are defined for two-dimensional flow fields. Those

flow fields are given by a two-dimensionally valued map f : G → R2 over a two-

dimensional domain G ⊆ R2. Moments of flow fields can be defined as follows:

Definition 6.1.1 (Moments of 2D Vector Fields)

Let f =

(
f1(x, y)

f2(x, y)

)
, f : G → R2 be a map over G ⊆ R2, let p, q ∈ N and

i =
√
−1 ∈ C. A Moment of order (p+ q) of f is defined as

mpq =

∞∫
−∞

∞∫
−∞

xpyqf1(x, y)dxdy + i

∞∫
−∞

∞∫
−∞

xpyqf2(x, y)dxdy

=

∞∫
−∞

∞∫
−∞

xpyq (f1(x, y) + i f2(x, y)) dxdy ∈ C.

The moment mpq is defined component-wise. The real part of mpq contains the

moment of order (p+q) of the first component of f while its imaginary part contains

the second one. The definition has been chosen to be over C rather than R2, since

this will be of importance for the derivation of rotation invariant moments.
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6.1.2 Translation Invariance

In section 2.3.2 it has been explained that one can use the gray-scale centroid as ori-

gin to guarantee translation invariance for images. However, this can not be adapted

for flow fields. One possibility would be to use the vector length to obtain a centroid,

similar to a gray-scale centroid. In this case, however, the vector length have a very

strong impact on the invariance and is not suitable when regarding homogenized

vector fields. Using the vector directions to determine a centroid entails two prob-

lems. The minor issue that summed up direction values result in negative values or

zero, and might not relate to the given domain, might be solved by clever shifting

operations. The major issue, however, mapping the periodic direction values onto

a non-periodic domain implies a gap in the definition of invariance. I.e., there is

no fair solution for mapping a constellation of periodically defined directions onto a

limited non-periodic domain.

For the scalar case an alternative centroid definition was given by using the char-

acteristic function (see section 2.3.2). For flow fields the characteristic function can

be defined as follows:

Definition 6.1.2 (Characteristic Function of a Flow Field)

Let f =

(
f1(x, y)

f2(x, y)

)
, f : G → R2 be map over G ⊆ R2. The characteristic

function χf : G→ {0, 1} of f is defined as

χf (x, y) =

1 , if f(x, y) 6= (0, 0)T

0 , if f(x, y) = (0, 0)T
.

The position of f can be replaced by the position of χf . If f is translated by a vector

v = (v1, v2) ∈ R2, χf is also translated by this vector. Using this definition it is

possible to transform the global coordinated into local coordinates, as shown in the

scalar case. The resulting centroid will be written as (x̄, ȳ) ∈ R2 in the following.

Similar to the scalar case one can define translation invariant central moments.
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Definition 6.1.3 (Central Moments for Flows)

Let f =

(
f1(x, y)

f2(x, y)

)
, f : G→ R2 be a map over G ⊆ R2 and χf its characteristic

function, and p, q ∈ N. The central moment of order (p+ q) of f is defined as

µpq =

∞∫
−∞

∞∫
−∞

(x− x̄)p(y − ȳ)q (f1(x, y) + i f2(x, y)) dxdy ∈ C,

with

x̄ =

∞∫
−∞

∞∫
−∞

x · χf (x, y)dxdy

∞∫
−∞

∞∫
−∞

χf (x, y)dxdy

and ȳ =

∞∫
−∞

∞∫
−∞

y · χf (x, y)dxdy

∞∫
−∞

∞∫
−∞

χf (x, y)dxdy

being the coordinates of the centroid of χf , and thus the centroid of f .
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With the following theorem the translation invariance of central moments is proven.

Theorem 6.1.1 (Translation Invariance)

The central moments µpq of f : G → R2, G ⊆ R2 are invariant to translation, i.e.

their value does not change with a translation of f by any vector v = (v1, v2) ∈ R2.

Proof: Let f̃ be a copy of f being translated with translation vector v: f̃(x, y) =

f(x−v1, y−v2). Then, µ̃pq is the central moment of order (p+q) of f̃ . The centroid

of χf̃ is according to definition 6.1.3 defined as (x̄+ v1, ȳ + v2). The statement can

be proven by using the substitution λ(x, y) = (x− v1, y − v2)T :

µpq =

∞∫
−∞

∞∫
−∞

(x− x̄)p(y − ȳ)qf(x, y)dxdy

λ
=

∞∫
−∞

∞∫
−∞

(x− v1 − x̄)p(y − v2 − ȳ)qf(x−v1, y−v2)

∣∣∣∣∣det
(

1 0

0 1

)∣∣∣∣∣ dxdy
=

∞∫
−∞

∞∫
−∞

(x− (x̄+ v1))p(y − (ȳ + v2))qf̃(x, y)dxdy

= µ̃pq

�

The central moments for vector data can also be calculated by using regular vector

moments mpq as given in Definition 6.1.1:

µpq =

p∑
j=0

q∑
k=0

(
p

j

)(
q

k

)
(−x̄)p−j(−ȳ)q−kmjk. (6.1)
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6.1.3 Scale Invariance

Scale invariance can be developed based upon the translation invariant central mo-

ments. In contrast to scalar moments, two cases have to be distinguished. This

is, because the scaling operation itself can be defined differently. In the following

total scaling is used as term for a scaling operation scaling both, domain and vector

length. The term used for an operation only scaling the domain and not the vec-

tor length is domain scaling. Figure 6.2 illustrates these two scaling possibilities.

For the purpose of pattern recognition it is reasonable to split up the recognition

process to control parameters separately. Thus, it makes sense to regard only direc-

tions, i.e. a homogenized version of a vector field, research the similarity of certain

patterns in directional manners, and then proceed by comparing the vector lengths

separately. For this purpose homogenized vector fields with the notion of domain

scaling are suitable. On the other hand if one is only interested in flow patterns

matching exactly, i.e. versions being scaled in domain and vector length equally, a

scale invariance based upon total scaling makes sense. For each scaling operation

moments being scale invariant can be defined.

Another issue in defining scale invariant moments for flow fields is that in contrast

to scalar fields a normalization by a specific power of the volume of the field cannot

be used, since there is no specific volume of a vector field. The solution is again the

characteristic function χf as given in Definition 6.1.2. Since χf scales in the same

way as the original function f does, the volume of χf can be used to define scale

invariance.

6.1.3.1 Domain Scale Invariance

In the following, a definition of a domain scale invariant is given. Moreover, specific

normalized central moments for flows are given and proven to be domain scale

invariant.

Definition 6.1.4 Let f : G→ R2, G ⊆ R2 Let further f̃ : G̃→ R2 be a version of

f , on a domain scaled by a factor s ∈ R\{0}: f̃(x, y) = f(x
s
, y
s
). An invariant Is

with Is(f) = Is(f̃) is called domain scale invariant.
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Figure 6.2: Two different scaling operations. For domain scaling only positions, not
the vector values are scaled. For total scaling positions and values are scaled equally.



6.1 Definition of Moment Invariants for Flow Data 93

The following definition and theorem reveal the construction of domain scale in-

variant moments using the a power of the volume of χf as normalization factor.

Definition 6.1.5 (Domain Specific Normalized Central Moments)

Let f = (f1(x, y), f2(x, y))T , f : G→ R2 be a map over G ⊆ R2, and p, q ∈ N. The

domain specific normalized central moments of order (p+ q) are defined as

η(d)
pq =

µpq
V (χf )γ

, with V (χf ) =

∞∫
−∞

∞∫
−∞

χf (x, y)dxdy

and γ =
p+ q + 2

2
.

Theorem 6.1.2 (Domain Scale Invariance of Moments)

Let f = (f1(x, y), f2(x, y))T , f : G→ R2 a map over G ⊆ R2 and χf its characteris-

tic function. Let be p, q ∈ N and V (χf ) the volume of χf over G. Then the domain

specific normalized central moments η
(d)
pq of order (p+q) are domain scale invariants,

i.e. they do not change under domain scaling of f by any factor s ∈ R\{0}.

Proof: Let f̃ be version of f domain scaled by a factor s, s ∈ R\{0}: f̃(x, y) =

f
(
x
s
, y
s

)
. Let the central moments be µ̃pq and the normalized central moments be

η̃pq, both of order (p+ q) of f̃ . As µpq is invariant under translation, one can choose

the centroid to be placed in the origin. Then, the substitution λ(x, y) =
(
x
s
, y
s

)T
yields:

η(d)
pq =

µpq
V (χf )γ

=

∞∫
−∞

∞∫
−∞

xpyqf(x, y)dxdy( ∞∫
−∞

∞∫
−∞

χf (x, y)dxdy

)γ

λ
=

∞∫
−∞

∞∫
−∞

(
x
s

)p (y
s

)q
f
(
x
s
, y
s

) ∣∣∣∣∣det
(

1
s

0

0 1
s

)∣∣∣∣∣ dxdy(
∞∫
−∞

∞∫
−∞

χf
(
x
s
, y
s

) ∣∣∣∣∣det
(

1
s

0

0 1
s

)∣∣∣∣∣ dxdy
)γ
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=

(
1
s

)p+q+2
∞∫
−∞

∞∫
−∞

xpyqf̃(x, y)dxdy

(
1
s

)2γ
( ∞∫
−∞

∞∫
−∞

χf̃ (x, y)dxdy

)γ
=

µ̃pq
V (χf̃ )

γ
= η̃(d)

pq

�

6.1.3.2 Total Scale Invariance

The second case of scale invariance is regarding not only the position of the vec-

tors, but also their values. For the application of pattern recognition this kind of

invariance can be used for a more restrictive distinction. In the following, total scale

invariance is defined.

Definition 6.1.6 Let f : G → R2, G ⊆ R2 Let further f̃ : G̃ → R2 be a version

of f , scaled by a factor s ∈ R\{0} in domain and value: f̃(x, y) = s · f(x
s
, y
s
). An

invariant Is with Is(f) = Is(f̃) is called total scale invariant.

The following definition and theorem reveal the construction of total scale invariant

moments, again using the a power of the volume of χf as normalization factor.

Definition 6.1.7 (Totally Normalized Central Moments)

Let f = (f1(x, y), f2(x, y))T , f : G→ R2 be a map over G ⊆ R2, and p, q ∈ N. The

totally normalized central moments of order (p+ q) are defined as

η(t)
pq =

µpq
V (χf )γ

, with V (χf ) =

∞∫
−∞

∞∫
−∞

χf (x, y)dxdy

and γ =
p+ q + 3

2
.

Theorem 6.1.3 (Total Scale Invariance of Moments)

Let f = (f1(x, y), f2(x, y))T , f : G→ R2 a map over G ⊆ R2 and χf its characteris-

tic function. Let be p, q ∈ N and V (χf ) the volume of χf over G. Then the domain

specific normalized central moments η
(t)
pq of order (p + q) are total scale invariants,

i.e. they do not change under total scaling of f by any factor s ∈ R\{0}.
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Proof: Let f̃ be version of f domain scaled by a factor s, s ∈ R\{0}: f̃(x, y) =

s · f
(
x
s
, y
s

)
. Let the central moments be µ̃pq and the normalized central moments be

η̃pq, both of order (p+ q) of f̃ . As µpq is invariant under translation, one can choose

the centroid to be placed in the origin. Then, the substitution λ(x, y) =
(
x
s
, y
s

)T
yields:

η(t)
pq =

µpq
V (χf )γ

=

∞∫
−∞

∞∫
−∞

xpyqf(x, y)dxdy( ∞∫
−∞

∞∫
−∞

χf (x, y)dxdy

)γ

λ
=

∞∫
−∞

∞∫
−∞

(
x
s

)p (y
s

)q
f
(
x
s
, y
s

) ∣∣∣∣∣det
(

1
s

0

0 1
s

)∣∣∣∣∣ dxdy(
∞∫
−∞

∞∫
−∞

χf
(
x
s
, y
s

) ∣∣∣∣∣det
(

1
s

0

0 1
s

)∣∣∣∣∣ dxdy
)γ

=

(
1
s

)p+q+3
∞∫
−∞

∞∫
−∞

xpyqf̃(x, y)dxdy

(
1
s

)2γ
( ∞∫
−∞

∞∫
−∞

χf̃ (x, y)dxdy

)γ
=

µ̃pq
V (χf̃ )

γ
= η̃(t)

pq

�
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6.1.4 Complex Flow Moments

The derivation of rotation invariant flow moment invariants is similar to the scalar

case based on complex moments, as used by Flusser [Flu00]. In the following, the

complex moments c′pq are generalized to vector-valued functions.

Definition 6.1.8 (Complex Moments for Flows)

Let f : R2 → C ∼= R2 be a map from R2 with f 6= 0 only in a compact subset G ⊆ R2.

Let further p, q ∈ N and i =
√
−1 ∈ C. The complex moment of order (p + q) of f

is defined as

c′pq =

∞∫
−∞

∞∫
−∞

(x+ iy)p(x− iy)qf(x, y)dxdy.

Note, that the isomorphism of R2 and C is used to represent the image of f as com-

plex values. By application of the binomial theorem complex moments of arbitrary

order can be represented as linear combinations of regular moments:

c′pq =

p∑
j=0

q∑
k=0

(
p

j

)(
q

k

)
(−1)q−k ip+q−j−k mj+k,p+q−j−k

These complex moments based upon regular moments mpq are not yet invariant to

translation and scaling. By appropriate shifting and scaling operations according to

the previous sections 6.1.2 and 6.1.3 one can define translation and scale invariant

complex moments.

Definition 6.1.9 (Complex Normalized Central Moments for Flows)

The normalized complex central flow moments of order (p+ q) are defined as

cpq =
1

vγ

∞∫
−∞

∞∫
−∞

(x̂+ iŷ)p(x̂− iŷ)qf(x, y)dxdy

with v = V (χf ) =
∫
G

1 dxdy, x̂ = (x − x̄ ), ŷ = (y − ȳ ), and γ = p+q+3
2

for total

scale invariance, γ = p+q+2
2

for domain scale invariance.
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An alternative representation for cpq is again derived by application of the binomial

theorem. It reveals its connection to normalized central moments ηpq:

cpq =

p∑
j=0

q∑
k=0

(
p

j

)(
q

k

)
(−1)q−k ip+q−j−k ηj+k,p+q−j−k (6.2)

with the normalized central moments

ηpq =
1

vγ

∞∫
−∞

∞∫
−∞

x̂pŷqf(x, y)dxdy. (6.3)

This connection proves the complex normalized central flow moments cpq to be

translation and scale invariant. Rotation invariance can now be constructed based

upon these complex normalized central flow moments.

6.1.5 Rotation Invariance

For the derivation of rotational invariance it is essential to rewrite the moments in

polar form. This can be done similarly for regular complex moments c′pq as well as the

translation and scale invariant version cpq. Since the derivation of rotation invariance

is independent of scale- and translation-invariance, only the term complex moments

is used, as it is more general. The substitutions of x̂ = r cos(ϕ) and ŷ = r sin(ϕ)

yield

cpq =
1

vγ

∞∫
0

2π∫
0

rp+q+1 ei(p−q)ϕ f(r, ϕ)dϕdr. (6.4)

This is the polar form of the complex flow moments. Using this polar form it is easy

to derive the following Lemma:

Lemma 6.1.1 Let f : R2 → C ∼= R2 be a map from R2 with f 6= 0 only in a compact

subset G ⊆ R2 and let f̃ : R2 → C ∼= R2 be a version of f rotated around its centroid

with angle α: f̃(r, ϕ) = eiα · f(r, ϕ− α). Let further p, q ∈ N and i =
√
−1 ∈ C, cpq

and c̃pq the complex moments of order (p+ q) of f and f̃ , respectively. Then:

c̃pq = ei(p−q+1)α cpq (6.5)
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Proof: Using the substitution λ(r, ϕ) = (r, ϕ−α)T one obtains:

cpq =
1

vγ

∞∫
0

2π∫
0

rp+q+1ei(p−q)ϕf(r, ϕ)dϕdr

λ
=

1

vγ

∞∫
0

2π+α∫
α

rp+q+1ei(p−q)(ϕ−α)f(r, ϕ−α)dϕdr

= e−i(p−q+1)α 1

vγ

∞∫
0

2π∫
0

rp+q+1ei(p−q)ϕf̃(r, ϕ)dϕdr

︸ ︷︷ ︸
c̃pq

= e−i(p−q+1)αc̃pq

�

Using this lemma, a set of moments being invariant to rotations for 2D flow fields

can be derived. For this purpose, the factor ei(p−q+1)α has to be eliminated by an

appropriate combination of complex moments cpq.

Theorem 6.1.4 (Construction of rotation-invariant moments)

Let cpjqj , j = 1, ..., n, be complex moments of a map f : G→ C ∼= R2, with G ⊆ R2

and let
n∑
j=1

(pj − qj) = −n. Then

Ir =
n∏
j=1

cpjqj (6.6)

is invariant under rotation, i.e., Ir does not change when f is rotated with an arbi-

trary angle α.

Proof: Let f̃ be a rotated version of f (counter-clockwise around the origin), i.e.,

f̃(r, ϕ) = f(r, ϕ − α) where α is the angle of rotation. Further let the complex

moment of the order (p+ q) of f̃ be denoted as c̃pq. One can derive the following:

n∑
j=1

(pj − qj) = −n ⇔
n∑
j=1

(pj − qj + 1) = 0
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⇒
n∑
j=1

i(pj − qj + 1)α = 0 ⇔
n∏
j=1

ei(pj−qj+1)α = 1

and with Lemma 6.1.1 it follows

n∏
j=1

c̃pjqj =
n∏
j=1

ei(pj−qj+1)αcpjqj =
n∏
j=1

cpjqj .

�

According to this theorem moment invariants for flow fields can be defined as follows:

Definition 6.1.10 (Moment Invariants for Flow Fields)

Let f : G → R2 be a map over G ⊆ R2. Let further cpjqj (j = 1, ..., n) be complex

normalized central flow moments as presented in Definition 6.1.9. Any Ψ constructed

as follows:

Ψ =
n∏
j=1

cpjqj , with
n∑
j=1

(pj − qj) = −n

is called Moment Invariant (translation, scale, and rotation invariant) of order

max
j=1,...,n

(pj + qj) of f .

6.1.6 Construction of an Invariant Moment Basis for Flows

A combination of complex moments needs to satisfy the property
n∑
j=1

(pj − qj) = −n

as stated in Theorem 6.1.4 to form moment invariants. Using the shown methods

to derive translation-, scale- and rotation-invariant moments, an infinite number of

moment invariants can be generated. In practical applications, only a finite number

can be used. In scalar application, moments are in general limited to order three,

since higher-order moments become more and more numerically instable due to dis-

cretization. Furthermore, almost all information is stored in lower-order moments.

As also explained in chapter 2.3.4 it makes sense to in practice restrict the computa-

tion to moments of lower order. For flow moments it can be restricted to moments

of order two or order three. To avoid the computation of redundant information

again bases for moment invariants can be constructed. The basic definitions needed

for the construction are formulated analogously to the scalar case:
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Definition 6.1.11 (Independence of Sets of Invariants)

Let I = {I1, ..., Ik}, k ≥ 1 be a set of invariants according to Definition 6.1.10 and

let J be an invariant of the same type. The invariant J is said to be dependent

on I if and only if there exists a function F with J = F (I1, ..., Ik) containing only

the the operations multiplication, involution with an integer exponent, and complex

conjugation. Otherwise, J is called independent from I. Furthermore,

I is called dependent, if there exists an Ij ∈ I, such that Ij is dependent on

I − {Ij}. Otherwise, I is called independent.

Definition 6.1.12 (Basis of a Set of Invariants)

Let I be a set of invariants according to Definition 6.1.10 and let B ⊆ I be its

subset. B is called Basis of I if and only if

• B is independent

• B is complete, i.e. if any element of I ∈ I − B depends on B.

The construction of an invariant moment basis for flows turns out to be a little

more complicated than for the scalar case. Therefore, two lemmas have two be

formulated prior to the construction theorem. The formulation of these lemmas and

the theorem was joint work with Heringer [Her07].

Lemma 6.1.2 Let a : Z→ N and b : Z→ N be sequences, and m ∈ Z with

am =

0 , if m ≥ −1

(|m|+ 1) div 3 , if m ≤ −2

and

bm =

m+ 1 , if m ≥ −1

(m+ 1) mod 3 , if m ≤ −2
.

Then it holds:

3am − bm = −m− 1
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Proof: [Her07] Case differentiation of possible values for m:

• Case 1: m ≤ −2 ⇒ |m| = −m

– Case 1.1: m mod 3 = 0

3 [(−m+ 1) div 3]− [(m+ 1) mod 3]

= 3

[
−m+ 1

3
− 1

3

]
− 1

= −m+ 1− 1− 1 = −m− 1

– Case 1.2: m mod 3 = 1

3 [(−m+ 1) div 3]− [(m+ 1) mod 3]

= 3

[
−m+ 1

3

]
− 2

= −m+ 1− 2 = −m− 1

– Case 1.3: m mod 3 = 2

3 [(−m+ 1) div 3]− [(m+ 1) mod 3]

= 3

[
−m+ 1

3
− 2

3

]
− 0

= −m+ 1− 2 = −m− 1

• Case 2: m ≥ −1

3 · 0− (m+ 1) = −m− 1

�

Figure 6.3 gives a graphical illustration of the conclusion of Lemma 6.1.2.
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Figure 6.3: Graphical illustration of Lemma 6.1.2 [Her07].

Lemma 6.1.3 Let a : Z→ N and b : Z→ N be sequences as given in Lemma 6.1.2

and let
n∑
j=1

(pj − qj) = −n. Then it is

3
n∑
j=1

apj−qj =
n∑
j=1

bpj−qj



6.1 Definition of Moment Invariants for Flow Data 103

Proof: [Her07] Using ∆j := pj − qj as abbreviation one obtains:

3
n∑
j=1

a∆j
=

n∑
j=1

b∆j

⇔
n∑
j=1

(
3a∆j

− b∆j

)
= 0

Lemma 6.1.2⇔
n∑
j=1

(−∆j − 1) = 0

⇔ −
n∑
j=1

∆j︸ ︷︷ ︸
−n

−
n∑
j=1

1 = 0

⇔ −(−n)− n = 0

⇔ 0 = 0

�

Using the Lemmas 6.1.2 and 6.1.3 the invariant basis for flow data can be con-

structed.

Theorem 6.1.5 (Construction of a Basis for Flow Moment Invariants)

LetM be the set or a subset of all complex moments cpq of order (p+ q) ∈ {0, ..., r},
r ≥ 2. Let I be the set of all moment invariants being constructed according to

equation (6.6) from elements of M. Let be cṗq̇ and cp̈q̈ ∈M, with ṗ− q̇ = q̈− p̈ = 2

and cṗq̇ as well as cp̈q̈ 6= 0. If the set B is constructed as follows:

B =
{

Ψ(p, q) := cpqc
ap−q
ṗq̇ c

bp−q
p̈q̈ | cpq ∈M

}
,

with am =

0 , if m ≥ −1

(|m|+ 1) div 3 , if m ≤ −2

and bm =

m+ 1 , if m ≥ −1

(m+ 1) mod 3 , if m ≤ −2

Then B is a basis of I.
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Proof: [Her07] Completeness of B:

Let I ∈ I, i.e. I =
∏n

j=1 cpjqj , with
∑n

j=1(pj − qj) = −n and cpjqj ∈M.

The construction of J is performed using only values from B as follows:

J =
n∏
j=1

Ψ(pj, qj) =
n∏
j=1

cpjqjc
apj−qj
ṗq̇ c

bpj−qj
p̈q̈

Grouping of cṗq̇ and cp̈q̈ yields

J = c
∑n
j=1 apj−qj

ṗq̇ c
∑n
j=1 bpj−qj

p̈q̈

n∏
j=1

cpjqj = c
∑n
j=1 apj−qj

ṗq̇ c
∑n
j=1 bpj−qj

p̈q̈ I.

Since I is required to be an invariant (I ∈ I), it is
∑n

j=1(pj − qj) = −n. Using

Lemma 6.1.3 yields:

3
n∑
j=1

apj−qj =
n∑
j=1

bpj−qj

Defining K :=
∑n

j=1 apj−qj , J can be written as

J = cKṗq̇c
3K
p̈q̈ I =

(
cṗq̇c

3
p̈q̈

)K
I.

According to the requirements it is ṗ− q̇ = 2. Thus, it is

Ψ(ṗ, q̇) = cṗq̇c
3
p̈q̈.

Finally, I can be written only with elements from B:

I =
J

Ψ(ṗ, q̇)K

meaning that B is complete.

Independence of B:

Proof by contradiction: Assuming B being dependent, i.e. there is an Ψ(p, q) ∈ B,

being dependent to B − {Ψ(p, q)}. It is obvious that this element from B has to

be element of Ψ(ṗ, q̇) or Ψ(p̈, q̈). This is because any other pair (p, q) is applied in

exactly one basis element as cpq. It can, due to the independence of complex moments
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according to Definition 6.1.8, neither be represented by other complex moments cpjqj ,

nor by a combination of elements of B − {Ψ(p, q)}. In the following the dependent

element is assumed to be Ψ(ṗ, q̇). Then there exist invariants Ψ(p1, q1), ...,Ψ(pm, qm)

and Ψ(s1, s1), ...,Ψ(sn, sn) from B − {Ψ(ṗ, q̇)}, with which one is able to construct

Ψ(ṗ, q̇) only by application of the operations multiplication and involution with an

integer exponent (see Definition 6.1.11), i.e. it can be written as

Ψ(ṗ, q̇) =

∏m
i=1 Ψ(pi, qi)∏n
j=1 Ψ(sj, tj)

=

∏m
i=1 cpiqic

api−qi
ṗq̇ c

bpi−qi
p̈q̈∏n

j=1 csjtjc
asj−tj
ṗq̇ c

bsj−tj
p̈q̈

.

Grouping of cṗq̇ and cp̈q̈ yields

Ψ(ṗ, q̇) =
c
∑m
i=1 api−qi

ṗq̇

c
∑n
j=1 asj−tj

ṗq̇︸ ︷︷ ︸
A

·
c
∑m
i=1 bpi−qi

p̈q̈

c
∑n
j=1 bsj−tj

p̈q̈︸ ︷︷ ︸
B

·
∏m

i=1 cpiqi∏n
j=1 csjtj︸ ︷︷ ︸
C

.

According to the requirements, it is ṗ− q̇ = 2. It follows

Ψ(ṗ, q̇) = cṗq̇c
3
p̈q̈.

This means, the exponents of A or B have to be

KA :=
m∑
i=1

api−qi −
n∑
j=1

asj−tj = 1 (6.7)

and

KB :=
m∑
i=1

bpi−qi −
n∑
j=1

bsj−tj = 3 (6.8)

respectively.

Moreover, it is C = 1. Due to the given independence of the complex moments it

follows that

m = n

pi = si

qi = ti
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for each i.

However, application of these constraints to equations (6.7) and (6.8) yields

KA = 0

KB = 0,

being a contradiction.

In case of the assumption the dependent element was Ψ(p̈, q̈), a contradiction can

be derived analogously.

�

For the application of pattern recognition a basis B of order three of invariant

moments can be constructed, according to Theorem 6.1.5, incorporating translation,

scale, and rotation invariance. The basis of the set of all moment invariants B of

order ≤ 3 for flow vector moment invariants can be defined as

B3 =
{
c01, c00c02, c11c02, c10c

2
02, c20c

3
02, c12, c21c

2
02, c03c20c02, c30c

4
02

}
according to Theorem 6.1.5. While cṗq̇ has been chosen to be c02, cp̈q̈ has been chosen

to be c20. The basis of the set of all moment invariants B3 of order ≤ 3 for flow

vector moment invariants can be defined as

B2 =
{
c01, c00c02, c11c02, c10c

2
02, c20c

3
02

}
.

being a subset of B3, also with cṗq̇ being c02 and cp̈q̈ being c20). For improved notation

in the following sections, the following abbreviations for the complex-valued basis

elements are defined (see also [SHM+07]):

Ψ1 = c01,

Ψ2 = c00c02,

Ψ3 = c11c02,

Ψ4 = c10c
2
02,

Ψ5 = c20c
3
02.

(6.9)
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6.2 Critical Point Characteristics of Flow Moments

The development of the independent and complete basis for the flow moment in-

variants as defined in chapter 6.1.1 makes it possible to efficiently apply them to

flow fields. Before developing the pattern recognition algorithm, there are some

fundamental questions to answer on the behavior of flow moment invariants on flow

data. Since flow data is often analyzed and visualized using topological approaches

as described in section 2.1.1, it is important to know about the behavior of this new

descriptor on critical point features. With the information derived in the following

paragraphs, it is possible to give an efficient algorithm for finding critical point fea-

tures using flow moment invariants, being presented in section 7.2. This paragraph

exemplarily provides some continuous moment representations for prototypical 2D

critical points. This continuous evaluation is compared with the discrete computa-

tion results in section 7.2. Critical points are only a special class of patterns to be

observed in connection with moment invariants. However, it is reasonable to con-

sider them as a good example to show how the moments are evaluated continuously

and provide some information on their behavior.

Exemplarily, the calculation of the continuous flow moment invariant values for

a counter-clockwise rotation pattern is presented. The pattern can be described

continuously by f : G→ R2:

f(x, y) =


(0, 0)T , if x = y = 0

1√
x2+y2

 −y
x

 , otherwise
. (6.10)

The moments of f over a circular domain with radius one and center in the critical

point can be derived with equation (6.1.4):

mpq =

1∫
−1

√
1−x2∫

−
√

1−x2

xpyq
−y + ix√
x2 + y2

dydx (6.11)
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source / divergence sink / convergence axis drain

Ψ1 = 2
3
√
π

Ψ1 = − 2
3
√
π

Ψ1 = − 2
3
√
π

2
π

Ψ2,3,4,5 = 0 Ψ2,3,4,5 = 0 Ψ2,3,4,5 = 0

counter-clockwise rotation clockwise rotation compressed rotation

Ψ1 = i 2
3
√
π

Ψ1 = −i 2
3
√
π

Ψ1 ≈ −i 0.1677

Ψ2,3,4,5 = 0 Ψ2,3,4,5 = 0 Ψ2,3,4,5 = 0

swirl saddle homogeneous flow

Ψ1 = − 2
3
√

2π
+ i 2

3
√

2π
Ψ1 = 0 Ψ1 = 0

Ψ2,3,4,5 = 0 Ψ2,3,4,5 = 0 Ψ2,3,4,5 = 0

Figure 6.4: Invariant moment values for prototypical flow features. The fact that
all second-order moments (Ψ2,3,4,5) are zero for linear vector fields enables an easy
recognition of these features.
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for (p+ q) ≤ 2 yielding

m01 = −1
3
π m10 = i 1

3
π

m00 = m02 = m11 = m20 = 0.
(6.12)

Because the integration is performed over the unit circle (having area π) with the

critical point as centroid, it yields ηpq = 1
πγ
mpq, γ = p+q+2

2
. Thus, equation (6.2)

can be applied to calculate the moment invariants:

Ψ1 = i 2
3
√
π
≈ 0, 376126389 i

Ψ2 = Ψ3 = Ψ4 = Ψ5 = 0.
(6.13)

This calculation can also be performed for other critical features, i.e., clockwise

rotation, convergence, divergence, or saddles. The calculation is performed in the

same way. The results obtained for these critical features are illustrated in figure

6.4. Obviously, only the first-order invariant moment Ψ1 = c01 is non-zero for most

of the observed features. Rotation patterns have a purely imaginary value in c01,

while it is real for convergence and divergence. This fact even holds for compressed

versions offering a simple algorithmic way for a good classification of these features.

Furthermore, turning each single vector belonging to a pattern 90◦ counter-clockwise

yields a multiplication of c01 with the complex number i. Moreover, this fact holds

for any kind of pattern:

Corollary 6.2.1 (Component-wise Rotation) Turning each vector of a flow

field f solely by 90◦ counter-clockwise results in the moments of this modified version

f̃ being the moments of f multiplied by the imaginary number i: c̃pq = icpq.

Proof: Let f̃ be a version of f with equal domain rotated by 90◦ counter-clockwise,

i.e. f̃(x, y) =

(
f̃1(x, y)

f̃2(x, y)

)
=

(
−f2(x, y)

f1(x, y)

)
= f(x, y). Further let all moments of

f̃ be denoted with a ∼. Then it holds

m̃pq =

∞∫
−∞

∞∫
−∞

xpyq (−f2(x, y) + if1(x, y)) dxdy
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= i

∞∫
−∞

∞∫
−∞

xpyq (f1(x, y) + if2(x, y)) dxdy

= impq.

As ηpq is a linear combination of mjk and as f and f̃ are defined on the same domain,

the normalization factor is the same which implies

η̃pq = iηpq.

As cpq is a linear combination of ηjk’s the assertion

c̃pq = icpq

follows.

�

The continuous representation of purely homogeneous flow as well as saddles have

their moment invariants being zero. This can be resolved by taking into account an

already precomputed parameter: the absolute value of the sum over all vectors in

the pattern |m00|. For saddles |m00| vanishes, while it is definitely non-zero for a

homogeneous flow. Instead of |m00| one can also use the shifted and scaled version

|c00|. In section 7.2 a method for highlighting critical features using the described

properties is presented. Second-order moment invariants are relevant for more com-

plex patterns, i.e. being important for the pattern recognition algorithm presented

in chapter 7.

Taking a closer look at the values of c01 one can observe a relation to the Helmholtz-

Hodge decomposition. For details of the Helmholtz-Hodge decomposition it is re-

ferred to [FP99]. Drawing the values of the flow patterns into a diagram reveals this

connection. While rotational behavior of a pattern is mapped into the imaginary

space, divergence and convergence is mapped into the real space. Figure 6.5 reveals

furthermore that all patterns that can be constructed by combination of rotation and

sink/source patterns are located on a circle in the complex graphical representation

of c01.
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Figure 6.5: Graphical representation of Ψ1 = c01. Special critical points are marked
by an ”X”. Images of all possible weighted combinations of rotation and sink/source
patterns (red) result in a circle with radius 2

3
√
π
. Saddles and homogeneous flows both

map onto zero (violet). Compressed versions (blue) of pure rotations or sinks/sources
stay on the corresponding axis. This is also the case when modifying a sink to an
axis drain feature (green). The fact that divergence and convergence only contribute
to the real part of c01 and rotational behavior only contribute to its imaginary part
shows the connection to a Helmholtz-Hodge decomposition.



Chapter 7

Algorithms for Fast Flow Pattern

Recognition

Pattern recognition in flow fields differs from pattern recognition in images espe-

cially by the fact that the patterns in images are usually considered to be special

objects. Segmentation and classification of these objects form a basis for easy object

recognition. So, the understanding of a general pattern recognition in flows is very

different from the one in image data. In flow data no sharp object borders can be

observed. Only the topological behavior might be used for segmentation of flow

fields, as for example done by Ebling and Scheuermann [ES06]. However, segment-

ing flow fields according to seperatrices is not equivalent to image segmentation.

A comparison of flow features is even more difficult, regarding domain and values.

Moreover, it limits the possible patterns again to the topological behavior of a flow.

To provide a more general approach it is reasonable to consider all possible pat-

terns for the recognition process. In the following section 7.1, it will be illustrated

how the multi-scale moment pyramid, a special information basis, is constructed.

Using this information basis two algorithms are derived. First, a method for the

immediate recognition and visualization of critical points is presented in section

7.2. Second, and most important, a method for the general recognition of flow pat-

terns given on a circular domain is illustrated in section 7.3. While both algorithms

are able to process standard data-set sizes in real-time, the preprocessing cannot

be done that efficiently, but equivalently efficient to the recognition of one single

pattern using the former methods as described by Heiberg [HEWK03], Ebling and

Scheuermann [ES03,ES05b], and Schlemmer [Sch04], illustrated in section 7.3.
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7.1 Moment Pyramid

For developing fast algorithms for pattern recognition or for searching special fea-

tures a data basis of pre-computed information is very helpful. Thus, the idea is to

pre-compute the values for a flow field for various possible patterns and store them

as a look-up-table. Having given this information, searching for a specific pattern

in the flow field reduces to computing the moment invariants for this single pattern

and comparing these values to the stored ones. The information data basis can in

this case be built up as a so called moment pyramid. The following paragraphs

explain how it is built and discusses further optimizations to enable high-speed pat-

tern recognition.

Invariant moments are mainly used in image processing and font recognition. They

are usually applied to a pre-segmented portion of a given data set. A vector field seg-

mentation implies, however, strong restrictions to special regions of flow behavior.

To keep the system general for the recognition of arbitrary flow patterns, the whole

data set has to be taken into account. Thus, a multi-scale approach for analyzing

2D flow data has been developed, described in section 7.1.3. This approach can be

used for an invariant pattern recognition. To extract the information of a data set

at various scales, one has to use windowing functions to extract the information.

For covering the whole field one can apply a correlation operation. Thus, the flow

vector moments is discretized to filter masks and the correlation is performed by a

convolution of mirrored masks with the field enhanced by a Fast Fourier Transform

(FFT) implementation. The discretization and convolution process is described in

detail in section 7.1.1.

The convolution is computed for all discrete radii resulting in the moment pyramid.

Since the convolution operation increases continuity by one degree, small perturba-

tions in the radii between these discrete positions tend to have only very limited

effects. Since the convolution operator covers the whole field, translation invariance

becomes obsolete for this special application of the theory. This does not mean it

becomes obsolete in general, i.e., for the given settings the centroid has to be chosen

to be located in the center of each filter mask.
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In section 6.1.3 two types of scale invariance have been mentioned. Depending

on the application one might be only interested in the directional behavior of vec-

tor patterns. If total scale-invariant moments are chosen, vector magnitude has a

big influence on the results, i.e., patterns that are equal in directions and different

in scale are not recognized. Therefore, it is reasonable to homogenize the vector

length of the field and store the magnitude information separately as a scalar field.

The direction information can be examined using flow vector moment invariants

with domain scale invariance. Flow magnitude can be regarded as an image and be

processed using the pyramid approach with the standard scalar moment invariants,

as presented in section 2.3. If one is only interested in recognizing structures that

are both, similar in vector direction and length, one has to change the computation

from domain scale invariance to total scale invariance.

7.1.1 Correlation with Moment Filter Masks

For an efficient computation of the flow moment invariants of the complete field a

correlation of the field with specific moment filter masks has been implemented in

in the context of this work. In equation (6.2) it is shown how complex moments

can be represented by normalized central moments. Those moments can be easily

derived from regular moments mij. Regular moment filter masks can be discretized

and computed independent from the data. It is the correlation of these masks with

f that result in the moments mij. Figure 7.1 shows the basis functions xpyq that

are discretized to the moment masks.

For an efficient computation, the correlation is performed as a convolution with

mirrored filter masks. The convolution can be enhanced by using component-wise

Fast Fourier Transforms (FFT) and multiplication in frequency domain, as presented

in section 2.2.2. The normalized central moments ηij are calculated by application of

shifting and scaling onto mij. As rotation invariance cannot be fully guaranteed for

rectangular masks, the moments are trimmed to a circular isotropic domain around

the chosen centroid. Those can be used to compute the complex moments cpq (see

equation (6.2) ). Inserting these values into the invariant basis B2, one obtains ac-

cording to equation (6.9) the values Ψ1, . . . ,Ψ5. These values are finally invariant

to translation, scaling, and rotation for any kind of given pattern.
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x0y0 x1y0 x0y1

x2y0 x1y1 x0y2

Figure 7.1: Moment masks represented as continuous 2D functions.

7.1.2 Overcoming Discretization Issues

For small mask sizes the coarse discretization of the moment calculation introduces

a high relative error. This is because the domain ought to be circular. Larger mask

sizes are better in approximating this circle. So, the usage of super-sampling can

strongly increase accuracy for smaller mask sizes. The heuristic applied is to use a

five times super-sampled field for mask sizes from 5x5 to 20x20, and for all others the

regular field size. This procedure lifts accuracy of a 5x5 moment computation to the

stable 21x21 moment computation. The improvement in accuracy is also depicted

in table 7.1. The fact that an improvement can be reached by super-sampling, as

well as the fact that the developed theoretical foundations are based on continuous

data also show that this new method is also applicable on arbitrary grids or pure

point set data without an underlying grid (see also section 7.1.4). It is also possible

to apply the Non-uniform Fast Fourier Transform as described in section 2.2.2.3.
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7.1.3 Multi-scale Moment Pyramid

For each scale of the filter masks correlations are performed, each resulting in a field

on a two-dimensional domain containing the invariant moments Ψ1, . . . ,Ψ5. Those

fields become smaller for increasing scale of the filter masks, since the border region

is left out. Thus, the resulting collection of moment fields is called moment pyramid.

A moment pyramid provides a discretized description of all possible vector pat-

terns of an underlying field, stored with height corresponding to the scale of the

pattern and the corresponding position at each specific scale level of the pyramid.

The complete construction process of a moment pyramid is illustrated in figure 7.2.

7.1.4 Generalization

Although the implementation concentrates on circular features, there are ways to

handle differently shaped patterns. Patterns can be subdivided into (overlapping)

circular regions. Those regions can be analyzed or used as input for a search al-

gorithm. A search algorithm regarding these connected regions has to be extended

with a method that compares the positions of each circular pattern finding, enabling

a classification of non-circular patterns. Although, global features, like for example

separatrices cannot be found directly with this method one might specify pattern

regions that are characterizing separatrices. Moment invariants can be be utilized

for vector field segmentation also resulting in separatrices in future work.

Another point that has already been mentioned is the extension to unstructured

grids. This can be done in an elegant fashion, as the theory of vector moment in-

variants is formulated for continuous data. Though, to achieve this there is a need

for a new data structure, as the presented moment pyramid has been designed for

uniformly structured data. Another possibility would be to keep the data structure

for this purpose and just use the super-sampling method at very high resolution

for unstructured grid data. Of course, in this case a good interpolation method is

essential for good results. An additional uncertainty visualization should also be
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Figure 7.2: Construction of a moment pyramid. First, regular moments mpq are
computed by correlation of the field with given basis functions. Second, translation
and scaling transforms mpq to normalized central moments ηpq. The alternative
complex representation for these normalized central moments ηpq are the complex
normalized central moments cpq derived by equation (6.2). Finally, one can compute
the flow moment invariants Ψ1,...,5. This process is done for all possible discrete
pattern sizes starting with 5x5, resulting in a pyramid structure.
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included in this case, depending on the density of the input samples. This can also

be an aspect of future development.

7.2 Critical point recognition and visualization

As shown in section 6.2, invariant moments have certain properties for critical point

features. This work proposes an algorithm for highlighting 2D critical point fea-

tures, i.e., rotations, sinks, sources. Saddles need further inspection, as first and

second-order moment invariants are zero, equally to any homogeneous flow pattern.

This can be solved as explained in section 6.2 by observing the value of |m00| or |c00|.

The algorithm uses a preprocessing step to compute a sorted list of pyramid po-

sitions. The positions are sorted according to a combination of the absolute val-

ues of the second-order moments Ψ2,3,4,5, i.e., sorted according to a parameter

n = |Ψ2| + |Ψ3| + |Ψ4| + |Ψ5|. The resulting list has the critical features, as well

as homogeneous flow patterns, at its front end. Excluding all feature values with

the first-order value Ψ1 near or equal to zero, results in a list that is sorted accord-

ing to criticality. Processing this list is straightforward: the list is traversed to a

user-defined point. Each entry contains the pyramid position that maps directly to

position and scale in the field, enabling a fast visualization. The method is used to

highlight rotations in a Boussinesq flow data set (see figure 7.3).

Operating on discretized features results in approximations of the continuous val-

ues. Discretization results and deviations are presented in table 7.1 exemplarily for

the rotation pattern observed in section 6.2. As one can see, the super-sampling

approach for small scales strongly helps improving the results obtained with the

moment invariants.
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Figure 7.3: Rotations in a Boussinesq flow (see section A.1). Features found by
searching with the criticality index highlighted by red colored circular region mark-
ers.

7.3 Fast Pattern Recognition in Flow Fields

Besides the recognition of critical points, moment invariants can be used for the fast

recognition and classification of arbitrary features. In the context of this work, a fast

pattern recognition for 2D flow vector data using the theory of flow moment invari-

ants has been developed. In a preprocessing step a moment pyramid is computed

for the given data. This pyramid stores the complex moment invariants Ψ1 . . .Ψ5

for local regions of the field. Further, a sorted offset of the moment values of Ψ1 is

computed, linking to the positions in the pyramid. The choice of Ψ1 is reasonable,
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resolution Im(Ψ1)
absolute relative
deviation deviation [%]

5× 5 0.408543 0.032417 8.6187
5× 5∗ 0.380274 0.004148 1.1028

10× 10 0.386398 0.010272 2.7311
10× 10∗ 0.376822 0.000695 0.1849
25× 25 0.373890 0.002236 0.5945
50× 50 0.379709 0.003582 0.9524
75× 75 0.376525 0.000398 0.1059

100× 100 0.376557 0.000430 0.1144
200× 200 0.376339 0.000213 0.0567
continuous 0.376126 - -

Table 7.1: Results of the discrete moment computations compared with the contin-
uous value of a counter-clockwise rotation feature (∗using the super-sampling ap-
proach). Super-sampling improves accuracy. Values converge faster for odd pattern
sizes. For proper recognition of exact patterns the relative deviation parameter δ
should be chosen by assuming worst case deviation of the calculation, i.e., to capture
small scales δ ≈ 1%, and higher for the recognition of similar patterns.

as it is a first-order component containing the major part of the information. There-

fore, the pattern matching algorithm can be performed very efficiently. A pattern

is selected, the computation of the invariant moments for a single pattern is done

rapidly, a delta region around the computed offset reveals a short list of similar

pattern candidates, which can be compared in the remaining moment invariants

Ψ2 . . .Ψ5.

Since arbitrarily defined patterns can be recognized invariant to scale and rota-

tion, no time-intensive additional convolutions are necessary during execution time.

Similar patterns can be highlighted almost in real-time. The only drawback of this

method, the high usage of memory, could be overcome by storing only the first

component in the pyramid. This would save disk space, but on the other hand lead

to a little higher latency, as moments must be computed for all matches. Since

the complete moment pyramid is also used for other applications, it is reasonable

to perform the pattern recognition with the larger version. More ideas on how the

moment pyramid size can be reduced can be found in the future work section in

chapter 10.
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S-shaped pattern Diverging pattern

Table 7.2: Moment invariants for two example search patterns. An S-shaped struc-
ture from the swirling jet data set (see figure 7.4) and a diverging structure in the
Boussinesq flow data (see figure 7.5).

In contrast to other algorithms for pattern recognition in vector fields (like Ebling

and Scheuermann [ES03] or Heiberg [HEWK03]), the presented algorithm is able to

detect any kind of pattern without an extra computation of rotated or scaled ver-

sions. To illustrate this, two examples for extra-ordinary pattern searches, showing

that the patterns do not have to satisfy any special properties are discussed. Figure

7.4 shows the swirling jet data set discussed in section A.5, the pattern, and the

matches. The moment invariants for the search pattern can be found in table 7.2.

Each pattern has been detected correctly. Note that there might be other S-shaped

structures not being found because of their different directional behavior not being

depicted in the streamline representation. This can be tackled by comparison of the

magnitude of real and imaginary part in the first-order component Ψ1 separately so

that the sign is skipped.

The Boussinesq flow, explained in section A.1, is shown in figure 7.5. A detection

of a specific diverging flow pattern has been performed yielding in good results. By

increasing the relative deviation δ, the search space is increased. This takes effect

on computation time, but increases the number of matches.
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Figure 7.4: Swirling jet flow (section A.5). An S-shaped pattern is searched for
and found three times at different scales for δ = 0.7. General data visualized with
streamlines, close-ups of the matching structures including hedgehog representation.
Even though the swirls in the right image distract the viewers attention the global
S-shaped structure has been recognized. Underlying color map and colors of the
hedgehog representation of the zoomed versions display the velocity of the swirling
jet data. Query pattern highlighted with a green circle, result patterns with red
circles. [SHM+07]

These algorithms have been integrated into the CoVE (Comparative Visualization

Environment) system (implementation by Morr [Mor07]) enabling a parallel pattern

search in multiple data sets. Patterns can be specified by selection, by definition

(through an integrated pattern editor), or by browsing through invariant moment

space. The identified patterns are then highlighted in all visualized data sets, allow-

ing a comparison in a highly effective way complex flow data sets based on arbitrary

flow features.

Comparing the algorithm to the algorithms of Heiberg [HEWK03], and Ebling and

Scheuermann [ES03], the herein presented preprocessing step for all searches is ap-

proximately as expensive as the other methods to search for one single pattern. The

result of this preprocessing, however, makes it possible to search for all kinds of

patterns in almost real-time, even for larger data sets. In the following, it is ex-

plained why the presented preprocessing step and the search times of the mentioned

methods are similar.



7.3 Fast Pattern Recognition in Flow Fields 123

While for the other algorithms, many rotated versions for any scale of the pattern

have to be correlated with the chosen field, for the presented method a correlation

with ten predefined basis functions mij is performed. This correlation step is the

most expensive (but still highly optimized) part and has to be performed for all

methods. For the presented method, the results have to be sorted and stored as

a search data basis, while the other methods do not need to do this. The other

methods have to compute the rotated and scaled versions prior to the correlation

and they have to combine the search results for the rotated and scaled versions to a

final similarity map. All in all the presented preprocessing step and the mentioned

algorithms got approximately the same complexity.

Having the preprocessing step done once, multiple freely definable patterns can

be searched for each in almost real-time. This is far better than the computation

time for one single pattern using the other algorithms. The only disadvantage of

the new method is that these patterns have to be defined on a circular domain.

This issue can be overcome by an advanced search approach as discussed in section

7.1.4. Quantitative results for the preprocessing step, the calculation of the moment

pyramid and for the search operations are illustrated in figure 7.6. Results have

been computed on a Athlon X2 4600+ with 2GB RAM. The point where search

times suddenly increase can be explained by the fact that for larger data sets the

search in the moment pyramid has to be performed on the hard disk and not in the

main memory. The higher the deviation is chosen, the less similar become the result

patterns. If one would like to find somewhat similar patterns, he or she can enter a

higher deviation. This is computationally more expensive as more possible results

have to be compared with the actual moment values. A smaller deviation is a more

strict criterion and yields less result positions, meaning less computation time.
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Figure 7.5: Search results (red) for a specific pattern in the Boussinesq flow with δ =
0.5. The original pattern is highlighted by a green circle and a zoomed representation
is given in the upper right corner. [SHM+07]
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Figure 7.6: Computation results for scaled versions of the Boussinesq data set.
The upper diagram shows information on the preprocessing step for generating the
moment pyramid. The lower diagram shows the recognition times for arbitrary
circular patterns. A sudden time increase at a data set size of 500x500 can be
observed for the reason that for larger data sets the pyramid exceeds the main
memory. Search times still remain acceptable. [SHM+07]



Part IV

Context-based and Comparative

Flow Visualization



Chapter 8

Priority Streamlines

In context of the visualization pipeline, the previous chapters have mainly been ded-

icated to the filtering process, namely the recognition of scalar and flow features. In

this chapter, however, a novel visualization technique for an improved highlighting of

these recognized flow features is presented. The idea is to use the resulting similarity

fields or regions of pattern occurrences as context information for a context-sensitive

streamline approach. In this context a general context-sensitive streamline drawing

approach has been developed.

The goal of the proposed method is to draw streamlines in 2D and 3D space, being

based on a user-given context, and highlighting important features by higher render-

ing density. Unimportant information shall not be shown in the final visualization.

The work incorporates some ideas of Salisbury et al. [SWHS97] who use orientable

textures and a special importance definition to render line drawing images. Color

and transparency can be used for displaying more information on the highlighted

streamlines. The user will be enabled to define certain priorities for regions or pat-

terns. Thus, the streamlines are called priority streamlines [SHH+07]. However,

the final image may not look very ”pleasant” (e.g., by disregarding the uniformity

criterion); instead the goal is to produce an informative and revealing visualization.

There are for example, some methods that can control streamline density globally

(e.g. Turk and Banks [TB96], as well as Mebarki et al. [MAD05]). These methods

are described in section 2.1.3. Here is a typical application example of the idea
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of priority streamlines : a geologist researching a magma flow might be interested

in seeing streamlines mainly in regions where a high temperature gradient occurs.

Of course, one can use Mattausch’s approach and draw evenly spaced streamlines

with color mapping. However, this will result in occlusion. Moreover, one loses the

freedom of using color mapping for other purposes, as another data dimension could

be illustrated through the use of colors (for example, the viscosity of the material).

All yet known methods (see 2.1.3 place an emphasis on seeding. Another impor-

tant issue, the usage of different streamline densities, is sometimes mentioned, see

Mebarki et al. [MAD05], but the regions always have to be chosen manually by the

user. In addition it is not used for visualizing further attributes of the data.

8.1 Definition of the Streamline Density

The first point to take care of is the definition of streamline density. A streamline

with a finite, non-zero line width and length covers a certain area when it is drawn.

Definition 8.1.1 (Global Streamline Density)

Given a domain Ω and a set of streamline regions RS ⊆ Ω, the global streamline

density Dg is defined as:

Dg =

∫
Ω
χRSdΩ∫
Ω

1dΩ
,

where χRS(x) =

1 , if x ∈ RS

0 , if x /∈ RS

is the characteristic function of the subset RS ⊆ P .

It is reasonable to use a discrete representation, since in practice streamlines are

drawn on a grid with certain resolution.
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Definition 8.1.2 (Discrete Global Streamline Density)

Let the domain P be a set of pixels and the subset of streamline pixels S ⊆ P . The

discrete global streamline density Ddg is defined as:

Ddg =

∑
p∈P

χS(p)

|P |
,

where χS(xi) =

1 , if xi ∈ S

0 , if xi /∈ S
is the characteristic function of the subset S ⊆ P

and |P | the total number of pixels (i ∈ {0, ..., |P | − 1}).

This definition is quite instructive, since the number of occupied pixels divided by

the total number of pixels indicates, in a range of [0, 1], how dense the streamlines

are.

Figure 8.1: Discrete streamline density definition. The definition of density is based
on the ratio of counted streamline pixels to the total number of pixels on the whole
domain P or on a local domain W .
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Another interesting characteristic is the local streamline density. A certain density

can be achieved by local windowing over the domain.

Definition 8.1.3 (Discrete Local Streamline Density) The discrete local stream-

line density Dld for a window W ⊂ P is given as:

DW
ld =

∑
p∈W

χS(p)

|W |
.

Figure 8.1 illustrates the streamline density definition.
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8.2 Priority Streamline Algorithm

8.2.1 General Idea

For the streamline generation a so-called density map is constructed. According to

this map streamline start points are seeded (mainly depending on the maxima of

the map). The generation of each streamline lowers the density map locally until

the map’s global maximum is below a certain threshold. If this threshold is reached,

the final image is ready. The algorithm will terminate in any case, as the density

map is strictly monotonic decreasing over time. Figure 8.2 illustrates the algorithm

generally as a flow diagram. The following paragraphs of section 8.2 will explain

the basic algorithm with more details. Two major issues, the density map and the

filtering, are further inspected in sections 8.3 and 8.4.

Figure 8.2: Flow diagram of priority streamline algorithm.
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8.2.2 Density Map

Given a flow vector data set, streamlines with a certain density varying density

should be drawn. This density is given by a scalar function defined on the domain

of the flow vector data set. This density map can be derived in many ways:

• Definition considering additional data dimensions:

Application scientists often have more information than pure vector data.

Temperature, viscosity, density, color, granularity, etc. could also be taken

into account and define this map.

• Definition considering derived vector information:

Given a vector field, one can calculate, for example, velocity and vorticity, with

no additional information needed for their computation. The topology of the

field could be computed and serve as basis for the density map. Another way

of deriving it from the field might consider pattern recognition algorithms, see

section 3 and section 4. Of course, the presented efficient pattern matching

algorithm using moment invariants (chapter 7) can be also be used as density

map.

• Definition by user:

Regions of interest can be defined user-driven by drawing the 2D or 3D density

function manually. Moreover, the user can use pre-defined density maps and

further edit them.

During the execution of the algorithm, the streamline density map is updated after

each single streamline calculation, having an effect on further seeding positions as

well as stop criteria. The construction of the density map is discussed in section 8.3.

8.2.3 Streamline Seeding

For the seeding of streamlines, seeding points can be placed directly at the current

point of interest. This point is defined by the current streamline density map. For

the first streamline, this is the maximum value of the initial density map. However,

there is a special case, where this concept fails. If assuming a constant density

map, start points would be picked in a row. To prevent this, a small amount of
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noise is added to the initial density map, not influencing a non-uniform distribution.

The random noise values are chosen to be much smaller than the field values, so

that the resulting seeding positions do not change noticeably, but for the case of

a totally uniform distribution. As the map is updated after each step to prevent

too-close seeding, the next maximum is chosen to seed the next streamline. In order

to fulfill the continuity criterion, the algorithm computes the distances of the next

five maximum positions to the last streamline start point and takes the farthest of

these as current maximum. Another option would be to fully apply the farthest

streamline seeding of Mebarki et al. [MAD05]. However, the five-maximum strategy

turned out to be working well, too.

8.2.4 Calculation of the Streamlines

Given the streamline start position a full streamline is integrated in both directions.

The general idea is to subtract a blurred, rasterized version of the streamline from

the corresponding values of the density map. This can be done basically in two

ways:

1. One can draw the streamline into a binary image, convolve it with a Gauss-like

filter and subtract this image from the given density map.

2. One can traverse the streamline and subtract a Gauss-like filter kernel at each

position consecutively from the density map.

The first method can be enhanced by calculating the convolution in frequency do-

main by using the fast Fourier transform (see section 2.2.2.2). This would lead to

a complexity of O (n log2(n)), with n = |P | being the total number of map pix-

els/voxels. This is in general too high a cost when processing 3D data. The second

method, referred to as traversal algorithm, turned out to be much more efficient.

It is visiting every point of the streamlines and performs a filtering. As the filter

size is fixed, the resulting computation complexity is linear, i.e., it is in O(m), with

the number m = |S| of streamline pixels/voxels being much smaller than the total

number n = |P | of pixels/voxels. For this reason, this method is more suitable to

apply the filter function.
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In detail, the polygon vertices of the streamline are mapped into the correspond-

ing discrete density map space. There, from the start point, the Bresenham line

drawing algorithm, see [Bre65], is applied to each of the polygon segments in both

integration directions, to find the centers of the filter for each step. The Bresen-

ham algorithm is a fast and robust algorithm for addressing each pixel/voxel of this

mapped streamline.

The update process is split into two phases:

1. Checking for a violation

2. Final update of density map and drawing of streamline

In the first phase, the traversal algorithm checks whether a violation of the density

map occurs when drawing the streamline. If the subtraction of the filter function

results in negative values at any place of the map, the traversal algorithm stops

and the last valid streamline pixel/voxel is stored (for both directions). At this

point, both streamline ends have been located. In phase two, the possibly shortened

streamline is drawn on the screen and the map is updated by a second application

of the traversal algorithm.
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8.3 Construction of the Density Map

For the construction of the density map a scalar field is defined in the domain of

the flow vector field. This scalar field can be given by additional data, user-defined,

extracted as derived information from the vector field, or a combination of these

(section 8.2.2).

In the first step, the scalar function f is discretized onto a fine regular grid, the

so-called map. The resolution used for this discretization can be chosen according

to the desired minimal streamline distance. This minimal streamlines distance can

be increased by choosing a higher resolution.

The density map is required to be non-negative. Depending on the application,

this can be achieved in three ways: by computing the absolute value, by shifting, or

by setting the negative values to zero.

Since a specific class of filters is applied (see section 8.4 for details), the density

map has to be scaled to obtain appropriate results. The choice of the scale factor

determines the general density of the drawn streamlines. The minimum height of

the density function is defined to have value 1.0. The maximum value of the function

is user-defined and determines the streamline goal density, as well as the degree of

importance.

Definition 8.3.1 (Initial Density Map) Let [a, b] be the range interval of the

input scalar function, a, b ∈ R. The goal range interval of the density map is defined

as [1, c], with c ∈ R being the so-called importance factor. The linear map

f : [a, b]→ [1, c] with

f(x) =

{
(x−a)(c−1)

b−a + 1, if a 6= b

1, if a = b

is defined to be the initial density map or interchangeably the streamline goal

density.
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The importance factor c can be selected by the user. If the factor is chosen near

1.0, the distribution of the streamlines is rather homogeneous. Increasing it yields

an increasingly heterogeneous distribution according to the underlying importance

map.

8.4 Filtering

Section 8.2.2 mentioned that the density map is lowered frequently by a Gauss-like

filter. The Gaussian filter kernel has been chosen for the reason that it is isotropic in

all dimensions and allows us to produce a smooth transition between focused parts

and edge regions. In addition, the filter needs to incorporate a minimum distance.

No streamline should lie in a certain ε-region next to another streamline, to avoid

clutter. One approach to solve this problem is to define a second map, where those

regions are marked separately. This can also be done in a simpler, more efficient way

by using a trick in the filter design. The idea is to modify the Gauss filter that is the

basis of the proposed filter. The major difference is the center region. There, a large

negative value (ideally −∞) is set. When the filter is subtracted from the map, the

result is a very high value in the map (ideally ∞). For further streamline seeding

points of value higher than c are excluded. Thus, no streamline is placed in the

forbidden regions. Moreover, an additional check in the violation checking traversal

algorithm is added. If there is a higher value than c at the current position, it lies

in a forbidden ε-region and the streamline is stopped. With these additional steps

the minimal streamline distance is defined and controlled.

Another difference to the Gauss filter is its maximum value and its overall sum.

Usually, a Gauss function is normalized to have integral value 1. In contrast to

that, the used filter is defined to have value 1 as maximum, not considering the inte-

gral. Of course, with a global definition one could control the number of streamlines

by choosing a global scaling using a density map with a given volume and subtract-

ing the Gauss filter volume frequently along the streamlines. But this turns out to

be very complicated. For example, it is necessary to estimate the final streamline

length in advance. Therefore, the simpler local approach for the definition of the

density map and the filter have been chosen. To have a common basis, the maximum



8.4 Filtering 137

value of the Gauss-like filter is defined to be 1. Figure 8.3 shows a representation of

the constructed filter. The final filtering process is also illustrated for a function in

Figure 8.4.

Figure 8.3: Constructed Gauss-like filter for 2D-data. The center region is set to a
large negative value.
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Figure 8.4: Filtering process illustrated for 1D-case. The density function (blue) is at
its global maximum (below the green dotted line) subtracted by the filter (red). The
resulting function (black) acts as density function for the next iteration. The hatched
area shows the minimal distance zone of a streamline, where further placement is
forbidden. The process is repeated until the global maximum of the current density
function (below the green-dotted line) also lies below a certain threshold (here, the
yellow dotted line).
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8.5 Results

To demonstrate the results, priority streamlines have been applied to numerically

simulated data as well as simple synthetic data for test purposes. The method has

been tested for 2D and 3D data. The implementation was done in Python and

embedded into the visualization tool CoVE, Comparative Visualization Environ-

ment [Mor07]. The results have been generated on an Intel Centrino M 1.5 GHz,

512 MB RAM notebook.

First, artificial vector fields are discussed, see Figure 8.5. They consists of 512x512

vectors and represent two saddles, one sink and one source respective four saddles.

For these vector fields three different density maps have been used. The first one

was chosen completely homogeneously to compare the algorithm with standard al-

gorithms. The second one was chosen to have a high-valued center region and zeros

on the edges, to show that the algorithm can be used for windowing purposes as well

as for representing features through change of streamline density. The third density

map highlights the saddle points. The algorithm has been applied by using various

parameters. Adjusting the resolution of the density map and filter size directly af-

fects overall streamline density. In section 8.3, the so-called importance factor c has

been explained. By increasing this factor, the influence of the underlying density

is increased and a higher degree of heterogeneity (depending on the given density

map) is introduced, see Figure 8.5(b).

As an example for non-trivial 2D data a simulated data set representing a swirling

jet entering a fluid at rest has been used (see section A.5). The data is given on

a rectilinear, non-uniform grid. Figures 8.6(a) and (b) show the data imaged with

standard streamline generators, compared to images generated using the velocity

field of the data as density map. One can see that the standard streamlines do not

provide any information on velocity, while the new approach reveals the velocity

through streamline density. Other visual mappings like color mapping can be used

to visualize and compare other properties of the data. This property will enable a

kind of comparative visualization, being discussed in section 9.1.
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(a) (b) (c)

Figure 8.5: Two test datasets: (a) and (b) two saddles, one source and one sink, (c)
four saddles and one center point. (a) Streamlines drawn by the priority streamline
algorithm using (a) a constant density map, (b) a heterogeneous density map: values
of density map increase from the upper left to the lower right corner. (c) a density
map highlighting saddle points. The density map is shown as background color.

(a) (b) (c)

Figure 8.6: (a) Swirling jet entering fluid at rest. Visualized with standard stream-
lines. (b)Swirling jet data visualized with priority streamlines using velocity magni-
tude as density map. (c) Swirling jet data visualized with coarser priority streamlines
and additional velocity color mapping.
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(a) (b) (c)

Figure 8.7: A velocity isosurface has been visualized to give a visual reference for all
images. (a) Eight saddles test data visualized with standard streamlines. (b) Eight
saddles test data visualized with priority streamlines, sloped camera position. (c)
Eight saddles test data visualized with priority streamlines, camera view along an
axis.

Finally, the algorithm has been applied to 3D data. An artificial test data set is

shown in figure 8.7. It contains eight saddles. While streamlines computed with a

common random seeding algorithm fail to capture these features, priority streamlines

are able to give an idea on how flow behaves especially in these regions. If an

additional feature should be visualized, this can for example be done by adding

priority streamlines in a different color. This will be discussed in more detail in the

context of comparative visualization, where the method is applied to 3D simulation

data sets in section 9.1.

8.6 Conclusions

In this chapter, a new algorithm for drawing streamlines with a defined heteroge-

neous density has been presented. It is useful for various tasks. Priority streamlines

can be used to present additional properties beyond vector data (like temperature),

to represent implicitly given but not visualized data (e.g., velocity, vorticity, etc.), to

compare or to filter (e.g., to reduce clutter in 3D visualizations). Priority streamlines

can also be used to compute homogeneously distributed streamlines. The results

for homogeneous distributions are not as good, as those obtained with special so-

lution approaches, focusing on homogeneity. The algorithm should not be seen in
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competition with these techniques, as the goals of priority streamlines are different.

The continuity criterion is neglected to obtain a higher degree of freedom for the

representation of different streamline densities and filtering purposes. The imple-

mentation is designed efficiently using a preprocessing step to decrease computation

time during user interaction. The results show that the user is enabled to con-

trol the visualization in ways to highlight and extract certain information. Control

parameters can be chosen manually or be derived automatically.



Chapter 9

Comparative Visualization

While the previous chapters have been dedicated to feature-based visualization ap-

proaches, this chapter gives ideas on how the presented techniques can be used for

comparative visualization. Foundations and notes on previous work in this area can

be found in section 2.1.4. First, the possibilities of using priority streamlines for

feature comparisons will be illustrated. The second idea is to use the interactive

pattern matching on flow data (as presented in chapter 7.3) to provide compara-

tive data control to the user. However, the comparison can also be done not only

on specific patterns, but by the analysis of the moment feature space. Comparing

feature spaces of neighboring time steps of time variant data does again result in a

comparative visualization.

9.1 Comparative Streamline Visualization

The Priority Streamlines as presented in chapter 8 can also be used to visualize

features comparatively. This can be used in two or three dimensions. For two di-

mensions, one can for example draw streamlines for one feature and a color map for

a second feature. The streamline color has to be chosen to have a high contrast to

the color mapping space to get best visual results. As an example, Figure 9.1 shows

the priority-on-high-velocity streamlines together with a scalar color mapping repre-

senting vorticity. One can see that there is a relation between vorticity and velocity.

In regions of high vorticity there is lower velocity. As this is a known fact, it confirms
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Figure 9.1: Comparative visualization of velocity (streamline density) and vorticity
of swirling jet data.
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the validity of the method. Other visualization parameters like transparency, illu-

mination, varying streamline thickness (streamtube thickness), etc. could be used

for mapping additional properties. A second idea is to visualize certain features

of a flow field with streamlines of a certain color. By doing this, it is possible to

display a large variety of data dimensions in context of a two- or three-dimensional

scientific visualization. The aim of this visualization technique is comparable to

parts of the SimVis-project from Doleisch et al. [DGH03]. While SimVis is focusing

on displaying colored particles by suitable brushing, Priority Streamlines represent

an alternative approach in a similar direction. An advantage of the SimVis ap-

proach is the integrated data brushing technique. Though, data brushing is not

implemented yet for Priority Streamlines, there is the advantage of an additional

integrated flow representation. The brushing approach can be included similarly to

the pattern recognition approach. The brushing as well as the recognition result

yield in a scalar map, being the input for drawing priority streamlines.

There are of course still issues with the three dimensional representation of stream-

lines. Using advanced streamline techniques, like illuminated streamlines, this issue

can be overcome in most cases.

All in all, the colored streamlines give a good impression of the compared features.

To give examples, a flow vector data set from a simulation of convection in the Earth

mantle has been visualized using priority streamlines. The density map has been

chosen in a way that the method acts as a filter and represents only streamlines

in desired regions. The desired regions can be chosen manually (through editing

the 3D density map) or by mapping any other property of the data to the density

map. The example visualization considers density maps based on velocity, temper-

ature and different criteria for vortex region detection: vorticity and Okubo-Weiss

parameter. The latter parameter can be used to decompose a potential vorticity

field into three different fields, as defined in [PJW06]: vortex cores (high vorticity

areas), strain/circulation cells (region with high shear surrounding vortex cores),

and background (remaining vorticity after cores and strain cells are removed). The

Okubo-Weiss (OW) parameter is a relation between vorticity ω ∈ R and strain

S ∈ R:

OW = S2 − ω2.
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Within a vortex core, the vorticity dominates, meaning OW < 0 Dominating strain

is indicated by OW > 0. Details can be found in the original formulation by

Okubo [Oku70], at Petersen et al. [PJW06], and at Sahner et al. [SWH05].

Figure 9.2 shows all streamline types using different colors. One can see the ba-

sic flow behavior as well as other important properties (e.g., vorticity , velocity, and

temperature distribution) in just one image. Clutter, a major issue in visualizing

streamlines in three dimensions, is reduced by our algorithm. The second example is

a snapshot of the velocity field of a 3D mixing layer. Figure 9.3 shows three different

views onto the result generated by our method using various density maps together

with an vorticity isosurface. The representation of scalar fields using streamline den-

sity makes is possible to display several fields at a time without occluding each other.

This allows a side by side comparison of these fields, e.g., two different parameters

for vortex detection (direct computation of vorticity compared to the Okubo-Weiss

negatives). Figure 9.2 shows a convection simulation, a magma circulation in the

earth mantle. Obviously, the temperature is higher at lower levels, so the orange

streamlines give an impression of the flow behavior in this region. The yellow lines

are indicating high velocity. In this core region the magma transfer to the surface is

strongest. The Okubo Weiss positives indicate high strain regions. Obviously, the

strongest region is the region of highest velocity. The Okubo Weiss negatives (green

colored streamlines) are indicating the vortex core lines, such as the streamlines

generated from the vorticity density map (red streamlines).

Figure 9.3 shows a numerical simulation of turbulences. The image was again gen-

erated using Priority Streamlines. Three parameters are shown: Okubo Weiss nega-

tives (green) and vorticity (red) again indicate vortices, while Okubo Weiss positives

indicate strain.

To conclude, these images display the basic principle of the comparative visualization

with Priority Streamlines. Drawing these streamlines with additional illumination

will further enhance the three dimensional impression. Even though, the images give

an insight into the capabilities of the method, being suitable for displaying many

additional data dimensions together with flow information in just one visualization.
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Hintergrund

Figure 9.2: Convection in Earth mantle. Red: streamlines indicate high vorticity,
yellow: high velocity, green: (strongly) negative OW values, blue: (high) positive
OW values, orange: high temperature level.
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Figure 9.3: Snapshot of the velocity field of a 3D mixing layer. Three views onto
the dataset. Red: streamlines indicate high vorticity, yellow: high velocity, green:
(strongly) negative values for OW, blue (strongly) positive values for OW.

9.2 Interactive Pattern Comparison

In this section an approach for a side-by-side comparative visualization is presented.

The idea is to show visualizations of two or more data sets next to each other and use

the fast pattern recognition for an interactive highlighting of similar features. This

works for scalar and all kinds of vector data (images and flows), since the pattern

recognition method can be applied on both kinds of data (using the common flow

moment invariants for scalar/image data and the flow moment invariants, chapter

6, for flow data). Nevertheless, the main goal of this dissertation is the analysis of

flow data. In the following, three flow data sets are visualized using the interactive

pattern comparison. The Boussinesq flow simulation (see section A.1) is compared

to the swirling jet flow simulation (see A.5), and a flow simulation of Hurricane

Isabel, an Atlantic cyclone that appeared at the American east-coast in September

2003 (see A.2).
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Figure 9.4 shows the software ComPARE - Comparative Pattern Analysis in a Real-

time Environment that has been especially designed for this purpose. The idea is to

keep visualization efforts low to enable an interactive pattern recognition. So, the

main part of the visualization was done with CoVE - Comparative Visualization En-

vironment, the rendered image (color-map and streamlines) was saved as an image.

ComPARE computes the moment invariants of a field in a pre-processing step using

FFTW [FJ07]. As described in section 7.3, the time for this computation is about

the same time than computing one single pattern search with previous methods.

After this pre-computation all pattern searches can be performed interactively. The

pattern is chosen from the data underlying the selection image on the left, the search

results are indicated on the right with circles (or plus signs, alternatively). The color

of the circles (from red to blue) indicate the degree of similarity. Furthermore, in

the middle, the tolerance can be adjusted.

Another important point to mention is that the moment field is a discrete represen-

tation of an at least C1-continuous field. This is due to the fact that it has been

obtained by the convolution operator. So, it is natural to find many similar values in

a specific region. However, visualizing all results yields clutter, as there are certain

areas, where values are similar in the direct neighborhood. Thus, if results are in the

direct neighborhood of each other, only the more similar result will be visualized.

This increases the clarity of the visualization. Finally, the moment representation of

the current search pattern is shown in the upper-middle of the screen. This setting

has been used for the recognition of three test patterns.
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Figure 9.4: Screenshot of the ComPARE - visualization software. A typical com-
parative pattern search is shown for the Boussinesq flow (selection field, left) and a
time step of the Hurricane Isabel data set (search field, right). The visual represen-
tation was generated by CoVE and loaded as a pixel map. The visualization of the
patterns is done by colored circles. Moment values, deviation and filter controls are
located in the center. A pattern recognition on the flow data can be triggered and
performed interactively by using simple mouse operations in the left window. The
response time is less than 0.4 seconds for data sets ≤ 200000 data points.
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Figure 9.5: Interactive pattern recognition in multiple flow fields: Hurricane Isabel
data (upper left), Boussinesq flow (upper right), and swirling jet (lower left) are
compared visualizing the occurrence of a selected test pattern. Similarity to the
original moment values (lower right) are indicated by the color of the circles: red
(highest similarity) to blue (3% relative deviation).
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Figure 9.6: Interactive pattern recognition in multiple flow fields: Hurricane Isabel
data (upper left), Boussinesq flow (upper right), and swirling jet (lower left) are
compared visualizing the occurrence of a selected test pattern. Similarity to the
original moment values (lower right) are indicated by the color of the circles: red
(highest similarity) to blue (3% relative deviation).
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Figure 9.7: Interactive pattern recognition in multiple flow fields: Hurricane Isabel
data (upper left), Boussinesq flow (upper right), and swirling jet (lower left) are
compared visualizing the occurrence of a selected test pattern. Similarity to the
original moment values (lower right) are indicated by the color of the circles: red
(highest similarity) to blue (3% relative deviation).
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9.3 Comparative Visualization of Time-Variant Data

In this section, two methods for the analysis of time-varying flow data are being

presented. The comparison is based on features, especially on spatial flow struc-

tures. However, there is no focus on special structures (like sources, sinks saddles,

etc.) but on the observed general flow behavior. Information regarding the flow

structure in differently sized circular areas is stored in a feature vector: the flow

moment invariants (see Chapter 6.1.1). To cover the whole field the feature vectors

are stored in a so-called moment pyramid (as explained in section 7.1).

The definition of a suitable metric for the comparison of moment invariants is a

key element.

9.3.1 Difference Metrics

For all subsequent definitions let the flow moment invariant for a pattern P be given

by ΨP
1,...,5 and for a second pattern Q by ΨQ

1,...,5. P and Q shall be compared.

Definition 9.3.1 The first order absolute distance d1 of the two patterns P

and Q is defined as

d1 =
∣∣∣ΨQ

1 −ΨP
1

∣∣∣ .
The second order absolute distance d2 is defined as

d2 =
5∑
i=2

∣∣∣ΨQ
i −ΨP

i

∣∣∣ .
The complete absolute distance dc is defined as

dc = d1 + d2 =
5∑
i=1

∣∣∣ΨQ
i −ΨP

i

∣∣∣ .
The absolute distances are defined according to the common distance metric of

complex numbers. For the second order moment invariants the sum of all second

order distances is computed. The complete absolute distance is a combination of
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the first and second order. The terms might also be normalized, but there is no

need to normalize. In the following, a definition for a relative deviation is given.

Definition 9.3.2 The complete relative deviation δ of the two patterns is de-

fined as

δ = max

({
i ∈ {1, ..., 5}

∣∣∣∣∣2|ΨQ
i −ΨP

i |
|ΨQ

i |+ |ΨP
i |

})
.

Using this metric, changes in pattern structure can be observed relatively. This for-

mula unfortunately becomes singular when comparing two completely homogeneous

structures or perfect saddles, yielding zero in the denominator. One might also ob-

tain a good relative deviation measure with only one element in the denominator

(like ΨP
i |). However, this choice leads more often to singularities. Furthermore, the

comparison operation would not be commutative. For this reason the denominator

has been chosen as presented in 9.3.2.

Both metrics indicate the similarity of the underlying structures. The lower the

distance (deviation) is, the higher is the similarity of the two compared patterns.

The highest degree of similarity is obtained for patterns with equal moment invari-

ants having zero distance (and deviation).

9.3.2 Interactive Pattern Comparison

In this section an approach for a feature-based data comparison is presented. The

idea is to generate visualizations of multiple data sets next to each other and use

the pattern recognition to highlight similar features. This can be especially useful

for the comparative visualization of neighboring time steps from time-dependent

flow data. A pattern of interest is chosen by the user by selecting an arbitrary

circular region in the spatial domain of a specific time step. The moment pyramid

is addressed using the mentioned index. For the comparison of the query pattern

moment invariants with the elements in the pyramid, the complete relative deviation

metric is used. The desired maximum deviation is chosen by the user, for example

δ = 3%. This means that positions in the moment pyramid where all moment value

components Ψ1,...,5 vary up to 3% from the moment components of the pattern of

interest are marked. The position in the moment pyramid directly maps to the
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position and scale in the original field, meaning the pattern recognition returns all

positions and corresponding scales of similar flow structures of any time step of the

time-varying data. Another important point to mention is that the moment field is

a discrete representation of an at least C1-continuous field. This is due to the fact

that it has been obtained by the convolution operator. It is natural to find many

similar values in a specific region. However, visualizing all results yields clutter, as

there are certain areas where values are similar in the direct neighborhood. Thus,

when results are in the immediate spatial neighborhood of each other, only the most

similar result are visualized. This increases the clarity of the visualization. For this

reason, a neigborhood of 1/4 -radius (a heuristic that can be adjusted as desired) of

the recognized pattern has been excluded.

To illustrate how the presented methods work in practice, the flow data set from

Hurricane Isabel, generated in 2003, has been chosen. The pattern comparison was

performed for a 2D layer at a height of 3150m, for the first five hours of the data

set, before the hurricane hits the continent. The size of each field (one per time-

step) is 500x500, each pre-computation took about 13 minutes (Athlon X2 4600+

with 2GB RAM), and the size of the moment pyramids are 3.1 GB, each. The user

driven (interactive) pattern recognition took for the chosen deviation of δ = 3% a

maximum of 0.26 seconds for any of the shown search requests.

The pattern comparison method can, for example, be used to track patterns over

time. To illustrate the results exemplarily, Figure 9.8 shows three different pat-

terns being tracked over five time steps each. The relative deviation was chosen

as δ = 3% for all pattern searches. The first pattern shown on the left side is a

mostly homogenuous flow diverging at one side. In the first time step, the pattern

appears once between the two circulations and the saddle point. In time step two,

the pattern changed its position towards the vanishing saddle. It is still similar

enough to be tracked within the 3% similarity tolerance. Time step three shows

the tracked pattern in light-gray, indicating that the pattern has changed its shape

being almost outside the similarity tolerance. However, a new pattern of this kind

is developing again at a position close to the position in the first time step. This

pattern remains until time step five (the last analyzed time step). During the final

time step, more patterns of this kind can be observed in the vicinity of the large

hurricane turbulence. A pattern that has left the chosen similarity tolerance (devi-
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ation) will not be high-lighted, even though the streamlines are looking somewhat

similar. In such a case, there is the possibility to increase this value. However, if

the tolerance is chosen too high, the visualization might become cluttered due to

the increased number of results.

The second pattern tracked over the same time steps is a saddle (see Figure 9.8

in the middle). In this case, no other similar structures can be observed, as the

additional saddle emerging in time step five is not in the similarity tolerance (3%

relative deviation) of the tracked pattern. It is interesting to observe that this pat-

tern remains mainly at the same position close to the coast. It becomes a somewhat

larger in time step two, but reduces its size again in the following steps.

The third pattern (Figure 9.8 on the right side) indicated a perfect example why this

method is more revealing than a pure visualization with streamlines. The pattern

is also quite homogeneous, with a divergence on one side (towards the coast). It is

moving somewhat, but is present in the northern coast region in all five time steps.

The pattern is also detected in time steps four and five. In time step four, one would

not have succeeded in finding this pattern, as the streamlines do not fully reveal it

due to its reduced size. Again, no other similar pattern is appearing.

No false positives have been observed during all experiments.

9.3.3 Moment Pyramid Comparison

The idea of the flow moment comparison is similar to the pyramid comparison for

image data. The moment pyramid spans a scale space, similar to the Gauss pyramid

known from image processing. Subtracting a second pyramid element-wise from the

original one yields a difference pyramid. For the comparison the metrics defined

above are used: the first order, the second order, and the complete absolute dis-

tance as well as the complete relative distance.

The distances d1, d2, and dc are calculated for each element of two given moment

pyramids. One obtains a scalar-valued difference pyramid for each applied metric.
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pattern 1 pattern 2 pattern 3

Figure 9.8: Interactive pattern recognition for the first five hours of a flow simulation
(Hurricane Isabel at 3150 meters height): three patterns are selected from a slice at
an early time step. The patterns, which stay similar, can be tracked over time.
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The visualization of the values of a certain pyramid level indicates the similarity of

two flow vector fields with respect to structures of a certain size. This means a low

pyramid level indicates changes of small structures (high-frequency changes), while

a higher pyramid level indicates changes in large structures (low-frequency changes).

In the following the pyramid comparison is shown for three different metrics: the

complete distance, the first order distance and the second order distance (see Figure

9.9). Again, the flow data set from Hurricane Isabel, generated in 2003, has been

chosen for this demonstration (a description can be found in Section 9.3.2).

d1: d2: dc:

Figure 9.9: Moment pyramid (level one) comparison between the first and second
time step of the Hurricane Isabel data (3150m height) for three different distance
definitions.

The distance values are visualizing the movement of topologically and structurally

important features. The movement of the saddle (see Figure 9.8 on the left side)

can be seen clearly in this visualization, for first order, second order and combined

moment distances. The movement of the center regions can also be observed. More

examples for this visualization are presented in Figure 9.10.

For these visualizations, different pyramid levels have been analyzed. The total

pyramid size is 120 layers for the presented data. Layer 60 is a medium layer. The

moment distance at this level indicates changes of a medium or low frequency. The

distances at such a level might be of value to analyze the future development of the

storm. For example, the time step distance 3 − 4 shows that two major regions of
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Figure 9.10: Moment pyramid comparison for different time steps of Hurricane
Isabel. Distances on level one (high-frequency changes) are visualized in the upper
row for similarity-distances between the time steps 1-2, 2-3, 3-4, and 4-5. In the row
below, a higher level (half the pyramid’s height) distance is visualized for the same
time steps (indicating low-frequency changes).

activity are about to join. The resulting increased intensity can be observed along

the coast at time step distance 4− 5.

However, the high-frequency representation (meaning the visualization of the low

pyramid-level distance) is revealing the movement and development of critical point

features. Figure 9.11 shows the difference between step one and step five, meaning

the changes over five hours. It can be observed that the small center south of Florida

is slowly moving towards the coast. The large center, previously south-west of the

Bermuda Islands has moved a little in north-western direction and is located west of

Bermuda after five hours. The movement of the saddle point also shows an interest-

ing pattern, first along the coast, then moving west. To conclude this Chapter, three

methods for structure-based comparative visualization of 2D flow fields have been

presented. Our first method applies priority streamlines as defined in Chapter 8 for

a comparative flow visualization. The second approach uses an interactive pattern

comparison based on flow moment invariants (as defined in Chapter 6) to observe

the evolution of certain flow patterns over time. It has been demonstrated that this

method can be used to track the flow patterns and observed movement, changes in
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Figure 9.11: Moment pyramid comparison with distance between time step one and
time step five for the first pyramid level (left) and the medium pyramid level (right).

size and orientation. The third contribution is the generation of difference images of

the moment invariant space. This has been done for two levels of the flow moment

pyramid to observe different scale frequencies. Different metrics have been presented

to reduce the multi-dimensional complex-valued data. One metric has been studied

in detail and it has been shown how this representation can be used to track critical

flow behavior over time.



Chapter 10

Conclusions

The final chapter of this work is now assigned to conclude the ideas and methods

formulated in this work. The main contributions of this work are a new mathemat-

ical description of moment invariants for flow data, a fast flow pattern recognition

method, and a novel approach for comparative flow visualization, both based upon

this mathematical formulation. Another contribution is the development of a context

sensitive visualization method, the Priority streamlines. This method is a valuable

supplement comparative visualization possibility. Following up the state-of-the-art

development, a method for color edge detection using the Clifford algebra has been

presented. Another development in a similar direction is the extension of the Clif-

ford Fast Fourier Transform to non-uniform data.

Part one of the dissertation is a résumé of basic previous work and the state-of-

the-art. In section 3.4 some open questions have been discussed. These questions

have been addressed in the course of this work.

The main goal of this work was the visualization of flow data. For this reason,

the Clifford Fourier Transform by Ebling and Scheuermann [ES05b] was extended

to non-uniform grids. This enables a fast pattern recognition of flow data for special

features. However, the main issue of this method is that generally formulated pat-

terns cannot be recognized at high speed. The pattern is searched for in a special

size and orientation. So, for the recognition of a general non-symmetric flow pattern,

the pattern has to be looked-up in all possible sizes and for all of these sizes in a large
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variety of discretized rotated versions. This turns out to be very time consuming,

being far away from a method that should be called interactive (for this task). So,

the idea was to find a method for the interactive detection of those general patterns.

Interactivity is a very controversial term. The problem with it is that the term itself

does not induce usability. One could also use the term real-time. But this term is

also not a good description, since the time limit for so-called real-time application

is up to the developer. The idea of interactivity in this work is that the application

enables the user to directly observe results from a given input in an equitable time.

In this context some few seconds might be acceptable, similar to the response times

of the work with a web browser. For longer response times, the system might also

be called interactive by definition, but not from the understanding of interactivity

in this work.

The idea for a really interactive and usable method for flow pattern recognition

came from the area of image processing. As mentioned, the main issue of the Clif-

ford based methods was the changing orientation and scaling of the patterns. In

image processing, shape descriptors like moment invariants are used to describe

scalar patterns regardless from translation, scale, and orientation. However, the

original descriptors can not be used for flow data. The main problem was that the

direction of the flow is not considered by the image moment invariants. For this rea-

son, the basis functions of these invariants have been reformulated in this work to

perform on flow data. Further, it has been proven that it is really a basis, meaning

that no irrelevant calculations have to be performed and the generated data is (in

this context) minimal.

The idea for a interactive pattern recognition is to compute the moment invariants

for all (or a large variety) of possible spatial patterns in a flow field in the course of

a pre-computation. The pre-computation takes about as long as the recognition of

one general pattern with the Clifford pattern matching method. During this pre-

computation an ordered look-up-table (LUT) of moment value parts is generated

pointing to the occurrences in the so-called moment pyramid. The moment pyramid

is a simple extension of the field storing the moment values (bottom-up) for increas-

ing pattern sizes. With this representation the visualization can be performed at

high speed. After a search pattern is selected, the flow moment values of this pat-
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tern are computed, entered into the LUT, possible positions and scales are returned.

The complete moment values for this fractional amount of positions are compared

to the moment invariants of the search pattern. Those positions containing similar

patterns in a certain user-defined tolerance are highlighted in the visualization.

The moment invariants have been analyzed, revealing certain interesting aspects,

e.g. the fact that for first order critical points the second order moment invariants

have turned out to be zero. This provides an alternative critical point detection and

visualization method for two dimensional flow data.

Besides this main contribution, other interesting results have been obtained. As

mentioned, the Clifford color image edge detection has been formulated. It turned

out to be a different mathematical formulation of the common color image edge

detection. However, the Clifford algebra is a suitable framework for this task and

reveals some coherences between edges in the chrominance part of an image an flow

fields. The presented work has shown that Clifford FFT and Clifford convolution

can be used for the detection of edges in color images.

The last part of this work is dedicated to the visualization aspect. While the previ-

ous parts have addressed mainly the filtering process in context of the visualization

pipeline, this part is dedicated to the generation of images. First, a novel streamline

technique has been presented: the Priority streamlines. This technique can be used

for the visualization of many additional data dimensions in the context of two- or

three dimensional flow data. The idea is to compute streamlines with a pre-defined

density. This density is generated from additional information, such as vorticity,

velocity, pressure, temperature, pattern-guided, or user-defined.

Priority streamlines as well as flow moment invariants can be used to define new

comparative visualization approaches. Chapter 9 presents three different methods

for comparative visualization. The first one is the application of the Priority stream-

lines method for the comparison of different flow features in the context of a two-

and three dimensional flow visualization. A parallel application of the interactive

pattern recognition on multiple flow data sets leads to a second comparative flow

visualization method. Finally, the time steps of time-variant flow data sets can be
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compared by the same method and in addition by a moment pyramid comparison.

This comparison can also be used for the identification and tracking of critical point

features in the flow.

Future developments should include the development of a valid three dimensional

moment invariant basis. The used moment invariants are defined on complex num-

bers. A proper extension is provided by quaternions, as well as the three dimen-

sional Clifford algebra. However, this yields an at least four dimensional domain.

An idea to overcome this issue is a projection into the three dimensional space by

the application of unity quaternions. However, this does not suffice, since only the

three-dimensional imaginary part is kept. As there is no hyper-complex algebra for

three dimensions, it is more promising to try to derive the flow moment invariants

for three dimensions from a non-complex formulation of the image moment invari-

ants in combination with a suitable three dimensional basis like spherical harmonics.

The flow moment invariant fields are multi-dimensional fields with a degree of at

least C1 continuity in each dimension. This information can be highly valuable for

data reduction purposes with methods developed in the area of geometric modeling,

also being a task for future work.

To conclude, this work has provided a mathematical tool that enables interactive

flow pattern recognition for the first time for general flow patterns. Furthermore,

some new visualization approaches have been derived from these fundamental ideas.

In this context, a special focus has been put onto the area of comparative flow

visualization.
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Appendix A

Data Description

A.1 Boussinesq Flow

The Boussinesq flow was generated by a simulation implemented by Dr. Christoph
Garth. The following data description is taken from our joint publication [SHM+07]:

”The data set is a classical Boussinesq approximation to simulate the flow generated
by a heated cylinder. This approximation adds a source term proportional to the
temperature (modeled as a diffusive material property) to the vertical component of
the velocity field. The cylinder serves as a temperature source and thereby generates
a plume of upward flowing material. As the plume moves upward, its outer layers
exchange heat with the surrounding flow, resulting in inhomogeneous friction and
hence turbulent flow.”

A.2 Hurricane Isabel

The Weather Research and Forecasting (WRF) Model simulation data of Hurricane
Isabel was kindly provided by Bill Kuo, Wei Wang, Cindy Bruyere, Tim Scheitlin,
and Don Middleton of the U.S. National Center for Atmospheric Research (NCAR),
and the U.S. National Science Foundation (NSF). The data, as well as a data de-
scription, is available online at [KWB+04].

A.3 Mantle Convection Data

The earth mantle convection data set was kindly made available by Prof. Dr. Louise
Kellogg, Department of Geology, University of California, Davis, CA. The data



A.4 Mixing Layer 178

indicates magma flow in the earth mantle. Further information on the data can be
found at [KHvdH99].

A.4 Mixing Layer

The mixing layer data is a simulation generated and kindly made available by Prof.
Dr. Pierre Comte, Institut de Mécanique des Fluides et des Solides, Univerity Louis
Pasteur Strasbourg, France. More information about the generation of this data set
can be found at [CLL92].

A.5 Swirling Jet Data

The swirling jet data was kindly made available by Prof. Dr. Wolfgang Koll-
mann, Department of Mechanical and Aeronautical Engineering, University of Cal-
ifornia, Davis, CA. The following data description is taken from our joint publica-
tion [SHM+07]:

”The development of a recirculation zone in a swirling flow is investigated by numer-
ical simulation. This type of flow is relevant to several applications where residence
time is important to enable mixing and chemical reactions.

The unsteady flow in a swirling jet is simulated with a hybrid spectral - finite differ-
ence method. The Navier-Stokes equations for an incompressible, Newtonian fluid
are set up in cylindrical coordinates in terms of (complex-valued) streamfunction and
pressure modes, which are governed by Helmholtz PDEs, and azimuthal velocity and
vorticity modes, which are determined by evolution PDEs.

All equations are dimensionless containing the Reynolds number Re ≡ vz(0,z0)D
ν

and the swirl number as defined by Billant et al. [BCH98]: S ≡ 2vθ(R/2,z0)
vz(0,z0)

, where
z0 = 0.4D, D = 2R is the nozzle diameter and ν the kinematic viscosity.

The PDEs for the Fourier modes are discretized in the meridional plane with 8th

order central difference operators for the non-convective terms and with a 9th order,
upwind-biased operator [Li97] for the convective terms. Time integration is accom-
plished with an explicit s-stage, state space Runge-Kutta method ( [Win04], [KCL00])
where the Helmholtz PDEs for the streamfunction and pressure modes are solved at
each stage, the present method is fourth order accurate with s = 5. The time step is
controlled by the minimum of two criteria: The limit set by linearized stability anal-
ysis and the limit set by the error norms of an embedded third order Runge-Kutta
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scheme [Win04].

The Helmholtz PDEs for streamfunction and pressure modes are solved with an it-
erative method using deferred corrections and LU-decomposition of the coefficient
matrices. The deferred corrections method is designed to reduce the bandwidth of the
coefficient matrices. It converges rapidly using about ten to twenty steps, the rate of
convergence increasing with the azimuthal wavenumber.

The simulation that was used for the current work results from the Reynolds number
Re = 900 and the swirl number S = 1.41 within the range of the experiments of
Billant et al. [BCH98] at a time (t = 12.4) when the recirculation bubble has formed
and the initial symmetries of the flow field have been broken due to the disturbances
introduced at the entrance boundary.”

Further information on the data can be found in Prof. Kollmann’s publications
[Kol07a,Kol07b].
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