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Abstract

In this paper we continue the investigation of the asymptotic behavior of the
parallel volume in Minkowski spaces as the distance tends to infinity that was started
in [13]. We will show that the difference of the parallel volume of the convex hull
of a body and the parallel volume of the body itself can at most have order rd−2

in dimension d. Then we will show that in the Euclidean case this difference can
at most have order rd−3. We will also examine the asymptotic behavior of the
derivative of this difference as the distance tends to infinity. After this we will
compute the derivative of fµ(rK) in r, where fµ is the Wills functional or a similar
functional, K is a fixed body and rK is the Minkowski-product of r and K. Finally
we will use these results to examine Brownian paths and Boolean models and derive
new proofs for formulae for intrinsic volumes.

Keywords: Parallel volume · non-convex body · Wills functional

1 Introduction

The parallel volume of a body K at distance r is the volume of the set of all points, which
have at most distance r from K, where by body we mean a non-empty compact set.
Since Steiner [21] discovered in 1840 that the parallel volume of certain convex bodies
is a polynomial (meanwhile it is known that this is true for all convex bodies), it has
been studied intensively. Essential concepts of convex geometry, like intrinsic volumes,
mixed volumes and support measures are usually defined with help of the parallel volume
or relative or local versions of it. Moreover, the parallel volume has many applications,
e.g. in stochastic geometry, geometric functional analysis or statistics. While in many of
these applications the parallel volume of arbitrary bodies is of interest, it has been mainly
investigated in the special case of convex bodies.
However, there are some important results for the parallel volume of non-convex bodies.
The Brunn-Minkowski-inequality which gives an upper bound for the parallel volume, was
proven by Lusternik [17] for arbitrary bodies. It implies the isoperimetric inequality and
is closely related to many inequalities in various branches of mathematics and physics [6].
Kneser [16] and Sz.-Nagy [23] obtained inequalities saying that the parallel volume of a
fixed body considered as function of the distance cannot be ”too convex”. Heveling, Hug
and Last [7] showed that a planar body can only have polynomial parallel volume, if it is
convex (see also [10]).

1



In [13] we have shown

lim
r→∞

V2(convK + rB2)− V2(K + rB2) = 0,

for an arbitrary body K ⊆ R2, where K + L := {x+ y | x ∈ K, y ∈ L} is the Minkowski-
sum of two bodies K,L ⊆ Rd, rK := {rx | x ∈ K} is the Minkowski-product of a body
K ⊆ Rd and a number r ≥ 0, Vd denotes the d-dimensional Lebesgue measure and convK
denotes the convex hull of a body K ⊆ Rd.
In the present paper we will show that the order of this convergence is 1/r. Just like in
[13] we will discuss extensions to Minkowski spaces, i.e. we will replace B2 by another
convex body B. We will show that the order is 1/r, iff B contains a ball as summand
(for the definition of a summand, see subsection 2.2). The result about the convergence
order has an extension to higher dimensions, namely in dimension d the asymptotic order
of this difference is rd−3, provided that B has a ball a summand. We will also show that,
if we do not assume that B has a ball as summand, this difference can have orders up to
rd−2, but not higher. In fact, these results hold for the expected value of parallel volume
difference of random bodies, if certain integrability conditions are fulfilled. We will also
discuss the case that the dimension (of the affine hull) of K is larger than that of B.
These results suggest that the asymptotic order of d

dr
Vd(convK + rBd)− Vd(K + rBd) is

rd−4. We will prove this in the case d = 2.
In [12] we introduced a large class of functionals fµ that generalise the Wills functional.
For a signed measure µ on the set K of all convex bodies fulfilling certain integrability
assumptions we put

fµ : C → R+
0 , K 7→

∫
K
Vd(K + A) dµ(A).

With help of the results about the asymptotic order of the parallel volume difference
mentioned above, we can show that the first derivative of R+

0 → R, r 7→ fµ(rK) in r = 0
is d

∫
K V (convK[1], A[d − 1]) dµ(A), where V (K[j], L[d − j]) denotes the mixed volume

(which will be introduced in subsection 2.3) of two convex bodies K,L ⊆ Rd. We will also
show that, if the second derivative exists, then it equals d(d − 1)

∫
K V (convK[2], A[d −

2]) dµ(A) and give sufficient conditions for this second derivative to exist.
This paper is organized as follows. In Section 2 we collect mathematical tools, especially
from geometry, that will be needed in later sections. In Section 3 we first show that
the asymptotic order of Vd(convK + rB) − Vd(K + rB) is rd−2 with the generalisations
mentioned above. Then we will prove that in Minkowski spaces whose gauge bodies B
have a ball as summand this difference has asymptotic order rd−3 and that this property
characterizes Minkowski spaces whose gauge bodies B have a ball as summand in the
planar case. Section 4 is devoted to the examination of derivative of the parallel volume
difference. In Section 5 we will examine the derivatives of R+

0 → R, r 7→ fµ(rK). In
Section 6 we present stochastic applications of the results of the previous sections. In
particular, we examine the asymptotic behavior of the parallel volume of Brownian paths
as the time tends to zero, prove results about the asymptotic behavior of the contact
distribution of Boolean models, and give new proofs for formulae that express intrinsic
volumes in terms of Gaussian random variables.
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2 Preparation

In this section we collect tools, especially from geometry, that will be needed in later
sections.

2.1 Analytical tools

We start with a version of the fundamental theorem of calculus that is stated in [2] as
Corollary 6.3.7.

Theorem 1. Let F : [a, b] → R be a function. Then F is absolutly continuous, iff F is
(Lebesgue-) a.e. differentiable and

F (x) = F (a) +

∫ x

a

F ′(t) dt, x ∈ [a, b].

The following theorem is known as Rademacher’s theorem (see e.g. [5, 3.1.6]).

Theorem 2. Let f : Rd → Rn be a Lipschitz-continuous function. Then f is differentiable
(Lebesgue-) almost everywhere.

Def. 3. Let G ⊆ Rd be an open convex set and f : G→ R a convex function.

(i) A vector ν ∈ Rd is called a subgradient of f in x ∈ U , if f(y) ≥ f(x) + 〈ν, y− x〉 for
all y ∈ G.

(ii) A function θ : G→ Rd is called a choice of subgradients of f , if θ(x) is a subgradient
of f in x for every x ∈ G.

(iii) Let x ∈ G. If all choices of subgradients of f are differentiable in x with the same
derivative, then f is said to be Alexandrov-twice-differentiable in x. The derivative
of the choices of subgradients is called second derivative of f .

Theorem 4. Let G ⊆ Rd be an open convex set and f : G→ R a convex function. Then
f is Alexandrov-twice-differentiable in a.e. x ∈ G.

Various proofs of this theorem are known. For a discussion, see [18, section 1.5, note 2].

2.2 Convex and Minkowski Geometry

In this subsection we first introduce tools from elementary convex geometry and then
turn to Minkowski geometry. The parallel volume will be treated in the following two
subsections.

A vector u ∈ Rd \ {0} is called exterior normal vector of a convex body K ⊆ Rd in a
point p ∈ K, if

〈x, u〉 ≤ 〈p, u〉, x ∈ K.
For a convex body K the support function is defined by

hK : Rd → R, u 7→ max{〈x, u〉 | x ∈ K}.

Corollary 1.7.3 in [18] says:
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Theorem 5. Let K ⊆ Rd be a convex body and u ∈ Rd \ {0}. Then hK is differentiable
in u, iff there is a unique point p ∈ bdK with exterior normal vector u. In this case
∇hK(u) = p.

A convex subset F of a convex body K is called face of K, if for all x, y ∈ K with x+y
2
∈ F

we have x, y ∈ F . The dimension of a convex set is said to be the dimension of its affine
hull. The relative interior, relintK, of a convex set K ⊆ Rd is its interior w.r.t. its affine
hull as surrounding topological space. By bdA we denote the boundary of a set A ⊆ Rd.

Lemma 6. Let K ⊆ Rd be a body and x ∈ (bd convK) \K. Then x is contained in the
relative interior of a face of positive dimension of convK.

Proof. According to [18, Theorem 2.1.2] the point x is contained in the relative interior
of a face F of convK. So all we have to show is F 6= {x}. Since (convK) \ F is convex,
we cannot have K ⊆ (convK) \F by the definition of the convex hull. So K ∩F 6= ∅ and
x ∈ K implies F 6= {x}.
A convex body S ⊆ Rd is called summand of a convex body K ⊆ Rd, if for each point
p ∈ K there is a vector t ∈ Rd with

p ∈ t+ S ⊆ K,

or, equivalently, if there is a convex body M ⊆ Rd such that S + M = K. For a more
detailed introduction we refer to [18, sections 3.1 and 3.2].

Lemma 7. Let K be a body with a summand RBd, R > 0, b ∈ bdK a point with exterior
unit normal ν and t ∈ K another point. Then the following are equivalent:

(i) t = b−Rν

(ii) b ∈ t+RBd ⊆ K

Proof. First we will show ”(ii)⇒ (i)”. From (ii) we get t+Rν ∈ K and hence

〈t, ν〉+R = 〈t+Rν, ν〉 ≤ 〈b, ν〉,

which implies 〈b− t, ν〉 ≥ R. Since ‖b− t‖ ≤ R, we conclude b− t = Rν and so obtain (i).
Since there is a point t satisfying (ii), the converse statement must hold as well.

A criterion for summands was given by Weil [25]. For this, recall that the essential
infimum of a measurable function f : Ω→ R on some measure space (Ω,A, µ) is

ess inf f := inf{t ∈ R | µ(f−1((−∞, t))) > 0}.

The support function hK : Rd → R of a convex body K ⊆ Rd is convex and thus according
to Theorem 4 a.e. Alexandrov-twice-differentiable. For u ∈ Sd−1 the set of subgradients
of hK in tu, t > 0, does not depend on t. Hence u is eigenvector with eigenvalue 0 of the
Hessian matrix of hK in u, if it exists. So the restriction of this Hessian matrix to u⊥

maps to u⊥. We denote its smallest eigenvalue by R1(K, u). Now [25, Theorem 1] yields
the following:
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Theorem 8. A convex body K ⊆ Rd has a ball as summand, iff ess inf R1(K, ·) > 0.

The Hausdorff-metric on C is defined by

dH(K,L) := min{t ≥ 0 | K ⊆ L+ tBd and L ⊆ K + tBd}.

For further details we refer to [18, section 1.8].
We will now provide two lemmata dealing with the approximation w.r.t. the Hausdorff
metric. The first one is known. Due to lack of reference, we will give its proof.

Lemma 9. Let K ∈ C. Then there is a sequence (Ki)i∈N+ of finite subsets of K, converg-
ing to K in the Hausdorff metric.

Proof. Let i ∈ N+ be fixed. Then

{B1/i(x) | x ∈ K}

is an open cover of K, where Br(x) := {y ∈ Rd | ‖y − x‖ < r} for x ∈ Rd and r > 0.
Since K is compact, it has a finite subcover

{B1/i(x) | x ∈ Ki}.

From Ki ⊆ K and K ⊆ Ki + 1
i
Bd we get dH(K,Ki) ≤ 1

i
.

Obviously, the sequence (Ki)i∈N+ consists of finite subsets of K and converges to K.

Lemma 10. For each ε > 0 there is a continuous map T : K → K with the following
properties:

(i) If K has a summand RBd, R > 0, then the same holds for T (K).

(ii) We have dH(K,T (K)) < εS, if K ⊆ SBd, S > 0.

(iii) For all K ∈ K the support function of T (K) is infinitly differentiable on Rd \ {0}.

Proof. Such a map T is given in [18, Theorem 3.3.1] and it is proven there that it is
continuous and fulfils the properties (ii) and (iii). There it is also proven, that T (K+L) =
T (K) + T (L) holds for arbitrary K,L ∈ K and that T (K) = K holds for balls K of
arbitrary radius. But this implies (i).

We let B ⊆ Rd be a convex body with 0 ∈ intB, the so-called gauge body. For a closed
set A ⊆ Rd and x ∈ Rd we define the B-distance from x to A to be

dB(A, x) := min{t ≥ 0 | x ∈ A+ tB}.

For x, y ∈ Rd we put
dB(y, x) := dB({y}, x).

Then it is easy to see that

dB(x, y) = 0 ⇐⇒ x = y, x, y ∈ Rd, (1)

dB(x+ λu, x+ λv) = λdB(u, v), x, u, v ∈ Rd, λ ∈ R+
0 , (2)

dB(x, y) + dB(y, z) ≥ dB(x, z), x, y, z ∈ Rd, (3)
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and that dB : Rd × Rd → R+
0 is continuous.

For a closed set A ⊆ Rd and x ∈ Rd we put

ΠB(A, x) := {y ∈ A | dB(y, x) = dB(A, x)}.

The B-exoskeleton exoB(A) of A is the set of all points x ∈ Rd, for which ΠB(A, x)
consists of more than one point. For x ∈ Rd \ exoB(A) we define the B-metric projection
pB(A, x) of x onto A to be the unique point in ΠB(A, x), and if moreover x /∈ A, we
put uB(A, x) := (x − pB(A, x))/dB(A, x). It is easy to see that uB(A, x) ∈ bdB. If the
(Euclidean) exterior unit normal vector of B in uB(A, x) is determined uniquely, we call
it nB(A, x). The B-normal bundle of A is

NB(A) := {(pB(A, x), uB(A, x)) | x ∈ Rd \ A \ exoB(A)}.

Lemma 11. Let K,B ⊆ Rd be convex bodies with 0 ∈ intB. Let z ∈ Rd \ K and put
r := dB(K, z). Then we have:

(i) z ∈ bd(K + rB)

(ii) Every exterior normal vector of K+rB in z is exterior normal vector of K in every
point of ΠB(K, z) and of B in every point of 1

r
(z − ΠB(K, z)).

(iii) Let p ∈ bdK, u ∈ bdB and s > 0. Put z := p + su. If K in p and B in u have a
common exterior normal vector ν, then we have s = dB(K, z) and p ∈ ΠB(K, z).

Proof. (i) Since B and K are closed, we have z ∈ K + rB. If z ∈ int(K + rB), then
there would be ε > 0 with z+ εB ⊆ K + rB. By the cancelation law for Minkowski sums
(see e.g. [18, p. 41]), we get z ∈ K + (r − ε)B and thus dB(K, z) < r, contradicting the
assumption.
(ii) Let ν be an exterior normal vector of K + rB in z, p ∈ ΠB(K, z) and u := 1

r
(z − p).

Then for all k ∈ K we have k + ru ∈ K + rB and hence 〈k + ru, ν〉 ≤ 〈p+ ru, ν〉, which
implies 〈k, ν〉 ≤ 〈p, ν〉. So ν is exterior normal vector of K in p. The same way one can
show that ν is exterior normal vector of B in u.
(iii) Clearly dB(K, z) ≤ s. Assume dB(K, z) < s. Then there is s′ < s, b ∈ B and k ∈ K
with z = k + s′b. Due to 0 ∈ intB we have 〈u, ν〉 > 0 and thus we get

〈z, ν〉 = 〈k, ν〉+ s′〈b, ν〉 < 〈p, ν〉+ s〈u, ν〉 = 〈z, ν〉,

which is a contradiction. Hence s = dB(K, z), which yields immediately p ∈ ΠB(K, z).

2.3 Mixed volumes and local versions

In this section we will introduce the mixed volumes, which are the analogues to the
intrinsic volumes in Minkowski spaces, and certain measures that provide information
about ”where” the mixed volumes are.
For convex bodies K,B ⊆ Rd there are numbers V (K[j], B[d − j]), j = 0, . . . , d, called
mixed volumes, such that

Vd(K + rB) =
d∑
j=0

rd−j
(
d

j

)
V (K[j], B[d− j]), r ≥ 0.
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It is easy to see that the mixed volumes fulfil

V (K[j], K[d− j]) = Vd(K), j = 0, . . . , d, K ∈ K (4)

and that they are homogenous in the sense that

V (λK[j], µB[d−j]) = λjµd−jV (K[j], B[d−j]), λ, µ ∈ R+
0 , j = 0, . . . , d, B,K ∈ K. (5)

It is well-known that they are monotone, i.e.

V (K[j], B[d− j]) ≤ V (K ′[j], B′[d− j]), j = 0, . . . , d, (6)

for K,K ′, B,B′ ∈ K with K ⊆ K ′ and B ⊆ B′.
Now assume that the gauge body B is strictly convex and satisfies 0 ∈ intB. It is known
that for convex bodies K ⊆ Rd we have exoB(K) = ∅. Hence we can consider

µBr (K, η) := Vd
(
{x ∈ (K + rB) \K | (pB(K, x), uB(K, x)) ∈ η}

)
for r ∈ R+

0 and Borel-sets η ⊆ Rd × Rd. There are measures CB
0 (K, ·), . . . , CB

d−1(K, ·),
called relative support measures, on Rd × Rd with

µBr (K, η) =
d−1∑
j=0

rd−jκd−jC
B
j (K, η)

for r ∈ R+
0 and Borel-sets η ⊆ Rd × Rd (see e.g. [9]). Their projections on the first

component,

ΦB
j (K, β) := CB

j (K, β × Rd), j = 0, . . . , d− 1, β ∈ B(Rd),

are called relative curvature measures. Their projections on the second component,

ΨB
j (K,ω) := CB

j (K,Rd × ω), j = 0, . . . , d− 1, ω ∈ B(Rd),

are called relative area measures.
The total masses of the measure defined above are, up to normalization, the mixed vol-
umes. More precisely, for a strictly convex body B ⊆ Rd with 0 ∈ intB, a convex body
K ⊆ Rd and j ∈ {0, . . . , d− 1} we have

ΦB
j (K,Rd) = ΨB

j (K,Rd) = CB
j (K,Rd × Rd) =

(
d
j

)
κd−j

V (K[j], B[d− j]). (7)

The second part of this subsection is devoted to the examination of the mixed area
measures. But before we come to their definition, we introduce the Hausdorff measure
and the surface area measure.

Def. 12. Let j ∈ R+
0 and A ⊆ Rd an arbitrary subset. For δ > 0 we put

Hj
δ(A) :=

inf
{∑
S∈G

(diamS)j | G ⊆ Rd, G is countable, A ⊆
⋃
S∈G

S, diamS < δ for all S ∈ G
}
.

The number
Hj(A) := κj2

−j lim
δ→0
Hj
δ(A) ∈ R+

0 ∪ {∞}

is called j-dimensional Hausdorff measure of A.

7



The intuitive meaning of the Hausdorff measure is that Hj(A) gives the length, area,
volume etc. of A, provided that A is j-dimensional. For a more detailed introduction
of the Hausdorff measure, in particular for proofs of the facts that the restriction of the
Hausdorff measure to the Borel-σ-algebra is really a measure and that the d-dimensional
Hausdorff measure in Rd coincides with the Lebesgue measure, see e.g. [3].
For a convex body K ⊆ Rd we call the measure Sd−1(K,ω) := 2ΨBd

d−1(K,ω), ω ∈ B(Rd),
which is concentrated on the unit sphere Sd−1, surface area measure. Its name derives
from the fact (see e.g. [18, (4.2.24)]) that

Sd−1(K,ω) = Hd−1(τK(ω)), (8)

where τK(ω) is the set of all boundary points of K having an exterior unit normal vector
in ω, the so-called reverse sperical image.
For convex bodies K,B ⊆ Rd the mixed area measures are defined to be measures
S(K[j], B[d− j − 1], ·), j = 0, . . . , d− 1, on Rd with

Sd−1(sK + rB, ω) =
d−1∑
j=0

(
d− 1

j

)
sjrd−j−1S(K[j], B[d− j − 1], ω), r, s ≥ 0, (9)

for any Borel-set ω ⊆ Rd. For further information on mixed area measure we refer to [18,
section 5.1]. Seting r = 1 and s = 0 in (9), we obtain

Sd−1(B,ω) = S(K[0], B[d− 1], ω), ω ∈ B(Rd). (10)

The mixed area measures are related to the relative area measures. In order to make this
relationship precise, we define the reverse sperical image map of a strictly convex body
L ⊆ Rd to be the map τL : Sd−1 → bdL that asigns to a vector u ∈ Sd−1 the point
p ∈ bdL with exterior unit normal vector u. Since for a strictly convex body L ⊆ Rd the
image of a set ω under the reverse sperical image map is its reverse sperical image, the
use of the same symbol is no problem.

Remark 13. From Theorem 5 we get that L is strictly convex, iff hL is differentiable on
Rd \ {0}, and in this case we have ∇hL(u) = τL( u

‖u‖) for all u ∈ Rd \ {0}.
The relationship between relative area measures and mixed area measures is given by
Theorem 2.14 in [8], which says:

Theorem 14. Let K,B ⊆ Rd be two convex bodies such that 0 ∈ intB and B is strictly
convex. Then we have for j ∈ {0, . . . , d− 1} and Borel-sets γ ⊆ Rd

ΨB
j (K, γ) =

(
d
j

)
dκd−j

∫
Sd−1

1γ(∇hB(u))hB(u)S(K[j], B[d− j − 1], du).

Now we will show that the 0-th relative curvature measure is concentrated on the extreme
points. In the Euclidean special case this is well-known (see e.g. [18, (4.6.1)]). We remark
that the set extL of extreme points of a convex body L ⊆ Rd is a Gδ-set by [18, p. 66]
and hence measurable.

Theorem 15. Let B ⊆ Rd be a convex body with 0 ∈ intB, whose support function hB
is twice continuously differentiable on Rd \ {0}. Let L ⊆ Rd be a convex body. Then the
relative curvature measure ΦB

0 (L, ·) is concentrated on extL.
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Lemma 16. Let B,K ⊆ Rd be two convex bodies such that 0 ∈ intB and B is strictly
convex. Then with M := max{hB(u) | u ∈ Sd−1} we have for any Borel-set γ ⊆ bdB

ΨB
0 (K, γ) ≤ M

dκd
· Hd−1(γ).

Proof. From Theorem 14, (10) and Remark 13 we get

ΨB
0 (K, γ) =

1

dκd

∫
Sd−1

1γ(∇hB(u))hB(u)Sd−1(B, du)

≤ 1

dκd

∫
Sd−1

1γ(τB(u))MSd−1(B, du)

=
M

dκd
Sd−1(B, {u ∈ Sd−1 | τB(u) ∈ γ}).

Since τB : Sd−1 → bdB is surjective, we derive from (8) that

Sd−1(B, {u ∈ Sd−1 | τB(u) ∈ γ}) = Hd−1(γ),

which completes the proof of the lemma.
Proof of Theorem 15. Since hB is differentiable, B must be strictly convex by Remark 13.
Hence ΦB

0 (L, ·) is defined. Let ω ⊆ Sd−1 be the set of all (Euclidean) exterior unit normal
vectors of L in points of bdL \ extL. Since for every vector u ∈ ω there is more than one
point in bdL having exterior normal vector u, [18, Theorem 2.2.9] implies Hd−1(ω) = 0.
Let γ denote the set of all relative exterior normal vectors of L in points of bdL \ extL.
By [9, Lemma 2.1] we have γ = {∇hB(u) | u ∈ ω}. Since hB is assumed to be twice
continuously differentiable, ∇hB is Lipschitz-continuous with Lipschitz-constant L, say.
By Theorem 1 from [3, section 2.4] this implies

Hd−1(γ) ≤ Ld−1 · Hd−1(ω) = 0.

Because the relative support measure CB
0 (L, ·) is concentrated on the relative normal

bundel NB(L), we get from Lemma 16 that

ΦB
0 (L, bdL \ extL) = CB

0 (L, (bdL \ extL)× Rd)

= CB
0 (L, (bdL \ extL)× γ)

≤ ΨB
0 (L, γ)

≤ M

dκd
· Hd−1(γ)

= 0.

2.4 The parallel volume of arbitrary bodies

In the last subsection of this section we will collect results about parallel bodies and the
parallel volume of arbitrary bodies.

Lemma 17. Let B ⊆ Rd be a convex body satisfying RBd ⊆ B for some R > 0. Let
K ⊆ Rd be a body, x ∈ Rd and r ∈ R+.
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(i) If x ∈ bd(K + rB), then dB(K, x) = r.

(ii) If dB(K, x) = r and rR > diamK, then x ∈ bd(K + rB).

For an example, showing that the assumption rR > diamK cannot be dropped, see [10,
p. 181].

Proof of Lemma 17. (i) From x ∈ K + rB we get dB(K, x) ≤ r. If dB(K, x) < r,
then there would be ρ < r such that x ∈ K + ρB. Because of 0 ∈ intB we would get
x ∈ int(x+ (r − ρ)B) ⊆ int(K + rB).
(ii) From dB(K, x) = r we get x ∈ K + rB.

...........
...........
...........
............
...............
...................................................................................................................................

.......
..........
...............................................................................................

r
r r

r�
��y u

x
x+ εu

pK

There are y ∈ K, u ∈ B and s ≥ 0 with x = y + su. Now x + εu /∈ K + rB for
ε > 0: Assume, there was ε > 0 with x + εu ∈ K + rB. Then there was p ∈ K with
x + εu− p ∈ rB. From ‖y − p‖ ≤ diamK < rR we get y − p ∈ int rRBd ⊆ int rB. Due
to the convexity of B and y + (ε+ s)u− p ∈ rB we get

x− p = y + su− p =
s

ε+ s
(y + (ε+ s)u− p) +

ε

ε+ s
(y − p) ∈ int rB.

Hence there is r1 < r with x − p ∈ r1B and thus x ∈ K + r1B. So dB(K, x) < r,
contradicting the assumption.
From x ∈ K + rB and x+ εu /∈ K + rB for ε > 0 we get x ∈ bd(K + rB).

Theorem 18. Let K ⊆ Rd be a body and B ⊆ Rd a convex body with 0 ∈ intB. Then
for arbitrary numbers r2 > r1 > 0 we have

Vd(K + r2B)− Vd(K + r1B) ≤
∫ r2

r1

d
s
(Vd(K + sB)− Vd(K)) ds.

Proof. Let ε > 0. Because of d
dt

(td − 1)|t=1 = d there is δ > 0 with td − 1 ≤ (d+ ε)(t− 1)
for t ∈ (1, 1 + δ). Let n ∈ N+. Choose numbers s(0), . . . , s(m), m ∈ N, with r1 = s(0) <
· · · < s(m) = r2, satisfying s(i)/s(i−1) < 1 + δ and s(i) − s(i−1) < 1

n
for all i = 1, . . . ,m. For

fixed i ∈ {1, . . . ,m} we conclude from [20, Theorem 4]

Vd(K + s(i)B)− Vd(K) ≤
( s(i)

s(i−1)
)d

(Vd(K + s(i−1)B)− Vd(K))

(the assumption that B is symmetric made in [20, Theorem 4] is not used its proof).
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Hence

Vd(K + s(i)B)−Vd(K + s(i−1)B)

= (Vd(K + s(i)B)− Vd(K))− (Vd(K + s(i−1)B)− Vd(K))

≤
( s(i)

s(i−1)
)d

(Vd(K + s(i−1)B)− Vd(K))− (Vd(K + s(i−1)B)− Vd(K))

=

(( s(i)

s(i−1)
)d − 1

)
(Vd(K + s(i−1)B)− Vd(K))

≤ (d+ ε)
s(i) − s(i−1)

s(i−1)
(Vd(K + s(i−1)B)− Vd(K))

= (s(i) − s(i−1))d+ ε

s(i−1)
(Vd(K + s(i−1)B)− Vd(K)).

Thus

Vd(K + r2B)− Vd(K + r1B) =
m∑
i=1

Vd(K + s(i)B)− Vd(K + s(i−1)B)

≤
m∑
i=1

(s(i) − s(i−1))d+ ε

s(i−1)
(Vd(K + s(i−1)B)− Vd(K))

Leting n→∞ we get from the Riemannian definition of the integral

Vd(K + r2B)− Vd(K + r1B) ≤
∫ r2

r1

d+ ε

s
(Vd(K + sB)− Vd(K)) ds.

The integral exists, since s 7→ Vd(K + sB) is monotonically increasing and hence is
continuous on [r1, r2] except for at most countably many points, which implies that the
integrand is continuous except for countably many points. Since ε > 0 was arbitrary, this
shows the assertion.

We let K0 denote the set of all convex bodies with interior points.

Lemma 19. For a fixed body K ∈ C the map

K0 → R+
0 , B 7→ Vd(K +B)

is continuous.

Proof. Let B ∈ K0. Then B contains a ball of radius R > 0, say, which has w.l.o.g. its
center at the origin. Let ε > 0. Since

R+
0 → R+

0 , r 7→ Vd(K + rB)

is continuous according to Theorem 18, there is δ ∈ (0, 1) with

Vd(K +B)− ε < Vd(K + (1− δ)B) < Vd(K + (1 + δ)B) < Vd(K +B) + ε.

Let B̃ ∈ K0 be a body whose Hausdorff distance from B is less than Rδ. Then

B ⊆ B̃ +RδBd ⊆ B̃ + δB,

11



which implies (1− δ)B ⊆ B̃ by the cancelation law for Minkowski sums, and

B̃ ⊆ B +RδBd ⊆ B + δB.

This however implies

Vd(K +B)− ε < Vd(K + B̃) < Vd(K +B) + ε.

For a body K ⊆ Rd and a strictly convex body B ⊆ Rd with 0 ∈ intB the function
dB(K, ·) is Lipschitz continuous and hence differentiable a.e. by Theorem 2. It is easy to
see, that the gradient ∇dB(K, z) is never 0. Hence we can put

νB(K, z) :=
∇dB(K, z)

‖∇dB(K, z)‖

for every point z ∈ Rd, in which dB(K, ·) is differentiable.
Now [10, Proposition 2.8] is the following:

Theorem 20. Let K ⊆ Rd be a body and B ⊆ Rd a strictly convex body with 0 ∈ intB.
Then for any Vd-measurable function f : Rd → R+

0 we have∫
Rd\K

f(x) dx =

∫ r

0

∫
bd(K+sB)

f(z)hB(νB(K, z)) dHd−1(z) ds.

Now we want to show that νB(K, z) coincides with the vector nB(K, z) defined on page
6, provided dB(K, ·) is differentiable in z.

Lemma 21. Let K ⊆ R2 be a body and B ⊆ R2 a smooth convex body with 0 ∈ intB.
Then ∇dB(K, z) is a positive multiple of nB(K, z) in all points z ∈ Rd \ K, in which
dB(K, ·) is differentiable.

Proof. Let z ∈ R2 be a point, in which dB(K, ·) is differentiable. As shown in the proof
of [10, Lemma 2.1], this implies z /∈ exoB(K). Because B is smooth, nB(K, z) is defined.
Since 0 ∈ intB, there is R > 0 with RB2 ⊆ B. Let v ∈ S1 be a unit vector orthogonal to
nB(K, z) and ε > 0. Now consider the function

f : [−R,R]→ R, t→ −max{〈x− z, ν〉 | x ∈ K + rB, 〈x− z, v〉 = t},

where ν := nB(K, z). As B is smooth, we have limt→0 f(t)/t = 0. Put ρ := dB(K, z).
From

z + εv ∈ K + ρB + (f(ε))Bd ⊆ K + (ρ+ f(ε)/R)B

we get dB(K, z+ εv) ≤ ρ+ f(ε)/R. Hence the one-sided directional derivative of dB(K, ·)
in z in direction v is not positive. Since, however, the same holds with v replaced by −v
and we have assumed that dB(K, ·) is differentiable in z, we get

〈∇dB(K, z), v〉 = 0.

But this shows the assertion.
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3 The main results

In this section we examine the asymptotic order of the parallel volume difference. First
we show in Theorem 22 that this difference can at most have order rd−2 in arbitrary
Minkowski spaces. In Theorem 26 we will show that in many Minkowski spaces, and in
particular in the Euclidean space, it can at most have order rd−3. The examples 24 and
29 as well as Corollary 30 show that our theorems are in a certain sense optimal.
We let ρB denote the radius of the largest ball contained in a convex body B ⊆ Rn and
diamA the diameter of a subset A ⊆ Rn. Moreover, we let B̂ denote the affine hull of a
body B ⊆ Rn and B⊥ its affine-orthogonal compliment. For two bodies K,B ⊆ Rn we
call

KB :=
⋃
x∈B⊥

conv(K ∩ (B̂ + x))

the B-convexification of K.

For the notion of a random closed set, a random body, etc. we refer to [19].
We observe that the set C of non-empty compact sets and the set K of non-empty, con-
vex compact sets are measurable by [19, Lemma 2.1.2 and Theorem 2.4.2]. As an easy
consequence of [19, Theorem 12.3.2] maps that are continuous w.r.t. the Hausdorff-metric
are measurable w.r.t. the Fell-Matheron-σ-algebra. The functions K → R, B 7→ ρB and
diam : C → R are obviously continuous w.r.t. the Hausdorff metric and hence measur-
able. By [19, Theorem 12.3.5] the same holds for C × C → C, (K,L) 7→ K + L and
C × R+

0 → C, (K, r) 7→ rK. The map C × C → C, (K,B) 7→ KB is shown to be measur-
able in [13, Lemma A.7]. The map Vn : C → R is upper semicontinuous by [19, Theorem
12.3.6] and hence measurable (see [19, p. 19]).

Theorem 22. Let 1 < d ≤ n. Let X ⊆ Rn be a random body and Y ⊆ Rn a d-dimensional
random convex body. Put G := max{diamX, 1}, S := max{diamY, 1} and R := ρY . If

c := d2dκdκn−dE
[Sd−1 ·Gn

R

]
<∞,

then we have
E[Vn(XY + rY )− Vn(X + rY )] < c · rd−2, r ≥ 1.

In the proof of this theorem, we need the function

wB : R+
0 → R+

0 ,

r 7→ min{dB(y, z) | y ∈ Bd, z ∈ Rd, y ∈ ΠB(0y, z), dB(0, z) = r}, (11)

which is defined for convex bodiesB ⊆ Rd with 0 ∈ intB. For a more detailed introduction
see [13].
We first prove a lemma making the same statement as the theorem under additional
assumptions and then argue that we can assume that these additional assumptions are
fulfilled.

Lemma 23. Let K ⊆ Rd, d > 1, be a body and B ⊆ Rd be a convex body such that hB is
twice differentiable on Rd \ {0}. Put G := max{diamK, 1}, S := max{diamB, 1} and

C ′ := d2dκd
Sd−1 ·Gd

ρB
.
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Then we have for all r ≥ 1

Vd(convK + rB)− Vd(K + rB) < C ′ · rd−2.

Proof. By the translation-invariance of the Lebesgue measure we may assume ρBB
d ⊆ B.

Moreover, B is strictly convex, since we assumed hB to be differentiable on Rd \ {0}.
We put L := convK. Then we get by [13, Lemma 3.4]

Vd(L+ rB)− Vd(K + rB)

= Vd((L+ rB) \ (K + rB))

≤ Vd
(
{x ∈ Rd | pB(L, x) ∈ L \ extL, dB(L, x) ∈ (GwB( r

G
), r]} ∪ (L \ (K + rB))

)
=

d∑
i=1

κiΦ
B
d−i(L,L \ extL)

(
ri − (GwB( r

G
))i
)

+ Vd(L \ (K + rB)). (12)

Now we will derive an upper bound for the right-hand side in (12). The equation

r − wB(r) ≤ 1

ρB
, r ∈ R+

0 . (13)

is shown in [13, Remark 3.9] to be an easy corollary of the triangular inequality for dB.
Since obviously wB(s) ≤ s for all s ∈ R+, we conclude

ri − (GwB( r
G

))i = (r −GwB( r
G

))
i−1∑
j=0

rj(GwB( r
G

))i−1−j

= G · ( r
G
− wB( r

G
))

i−1∑
j=0

rj(GwB( r
G

))i−1−j

≤ G
ρB

i−1∑
j=0

rj(G r
G

)i−1−j

= G
ρB

i−1∑
j=0

ri−1

= G
ρB
iri−1.

By (7) we have

κiΦ
B
d−i(L,L \ extL) ≤

(
d

i

)
V (L[d− i], B[i]).

Since L is contained in the circumsphere of K, whose radius is at most G, and B is
contained in a ball of radius S, we get by (4) - (6)

V (L[d− i], B[i]) ≤ V (GBd[d− i], SBd[i]) = Gd−iSiκd.

Thus

κiΦ
B
d−i(L,L \ extL) ≤

(
d

i

)
Gd−iSiκd. (14)
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Using (12), (14) and Theorem 15, which says ΦB
0 (L,L \ extL) = 0, we obtain

Vd(L+ rBd)− Vd(K + rBd)

≤
d∑
i=1

κiΦ
B
d−i(L,L \ extL)

(
ri − (Gw( r

G
))i
)

+ Vd(L \ (K + rB))

≤
d−1∑
i=1

(
d

i

)
Gd−iSiκd · GρB ir

i−1 + κdG
d

≤
d−1∑
i=1

(d− 1)

(
d

i

)
κd
Sd−1Gd

ρB
rd−2 + κdG

drd−2

<
(

(d− 1)2dκd
Sd−1Gd

ρB
+ κdG

d
)
rd−2

<
(
d2dκd

Sd−1 ·Gd

ρB

)
rd−2.

Proof of Theorem 22. Let r ≥ 1. We want to prove

E[Vn(XY + rY )− Vn(X + rY )] < c · rd−2.

Put Xx := X ∩ (Ŷ + x) and Zx := convXx for x ∈ Y ⊥.
By Lemma 10 there is a sequence (Yk)k∈N of random convex bodies lying a.s. in Ŷ such
that for all k ∈ N the support function of Yk is twice continuously differentiable on Ŷ \{0},
and that limk→∞ Yk = Y a.s. Due to Lemma 19 we have a.s. for all x ∈ Y ⊥, that

Vd(Z
x + rY )− Vd(Xx + rY ) = lim

k→∞
Vd(Z

x + rYk)− Vd(Xx + rYk).

Putting

C ′ := d2dκd
Sd−1 ·Gd

R
,

it follows from Lemma 23 that a.s. for all x ∈ Y ⊥ we have

Vd(Z
x + rY )− Vd(Xx + rY ) = lim

k→∞
Vd(Z

x + rYk)− Vd(Xx + rYk) ≤ C ′ · rd−2,

since diameter and ρ-number are continuous when considered as functionals K0 → R+
0 .

Thus (we will comment on the measurability below)

E[Vn(XY + rY )− Vn(X + rY )] = E
[∫

X|Y ⊥
Vd(Z

x + rY )− Vd(Xx + rY ) dx

]
≤ E

[∫
X|Y ⊥

C ′ · rd−2 dx
]

= E
[
Vn−d(X|Y ⊥)C ′

]
· rd−2

≤ E
[
κn−dG

n−dC ′
]
· rd−2

= c · rd−2.
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It remains to show those expressions of the previous equation, whose measurability was not
proven before the statement of Theorem 22, are measurable, too. The map C×K×Rn →
C, (X, Y, x) 7→ Xx is measurable by [13, Lemma A.1] and [19, Theorem 12.2.6]. The map
conv : C → K is measurable by [19, Theorem 12.3.5]. As an easy consequence of [19,
Theorem 12.3.6] the Lebesgue measure Vd on the set of all bodies of Rn, whose affine
hull has at most dimension d, is upper semicontinuous and hence measurable. In the final
version of [13] it will be shown that for measurable maps f : Ω×Rn → R, where Ω denotes
the probability space on which Y is defined,

∫
Y ⊥

f(ω, x) dx is a random variable.

Now we will show that the order rd−2 in Theorem 22 is optimal.

Example 24. Put K := {−e1, e1} and let B := conv{−e1, e1, . . . ,−ed, ed} be the unit
ball of the L1-norm. Because Vd−1(conv{−e2, e2, . . . ,−ed, ed}) = 2d−1/(d− 1)!, we have

Vd(convK + rB)− Vd(K + rB)

=

∫ 1

−1
Vd−1({(x1, . . . , xd) ∈ (convK + rB) \ (K + rB) | x1 = t}) dt

= 2

∫ 1

0

rd−12d−1/(d− 1)!− (r − t)d−12d−1/(d− 1)! dt

= 2d
d−2∑
j=0

(−1)d−j
1

j!(d− j)!
rj.

While the order rd−2 is optimal under the assumptions of Theorem 26, we can show that
under the additional assumption that the gauge body contains a ball as summand we
have in fact order rd−3. In particular, this is true in the Euclidean case.
For a convex body B ⊆ Rd we put

R(B) := max{ρ ∈ R+
0 | ρBd is summand of B}.

The Blaschke selection theorem (see [18, Theorem 1.8.4]) and the continuity of Minkowski
sums (see [19, Theorem 12.3.5]) imply that the maximum is attained. The following lemma
tells use that the map R : C → R+

0 is measurable.

Lemma 25. The map R : C → R+
0 is upper semicontinuous .

Proof. Let (Ki)i∈N be a sequence in K converging to K ∈ K. Since (R(Ki))i∈N is bounded,
this sequence has a convergent subsequence, w.l.o.g. the sequence itself. Now there is a
sequence (ρi)i∈N converging to limi→∞R(Ki) and a sequence (Mi)i∈N of convex bodies
with Ki = Mi + ρiB

d for all i ∈ N. By the Blaschke selection theorem we can assume
that (Mi)i∈N converges to a convex body M . By the continuity of Minkowski sums we
have K = M + limi→∞R(Ki)B

d. Hence R(K) ≥ limi→∞R(Ki).

Theorem 26. Let 1 < d ≤ n. Let X ⊆ Rn be a random body and Y ⊆ Rn a d-dimensional
random convex body. Put G := max{diamX, 1} and S := max{diamY, 1}. If

c := d2d+2κdκn−dE
[Sd ·Gn+1

R(Y )3

]
<∞,

then we have
E[Vn(XY + rY )− Vn(X + rY )] < c · rd−3, r ≥ 1.
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The main reason, why we obtain this sharper result now, is that we have instead of (13)
the following lemma.

Lemma 27. Let B ⊆ Rd be a convex body with interior points, which has a summand
RBd for some R > 0 and satisfies B ⊆ SBd for some S > 0. Assume that one largest
ball contained in B has its center at the origin. Then with C := 4S

RρB2 we have

r − wB(r) <
C

r
, r ∈ R+

0 .

Proof. If r ≤ 4S
RρB

, we conclude from (13)

r − wB(r) ≤ 1

ρB
≤ 4S

rRρB2
.

So let r > 4S
RρB

from now on. There are points z ∈ Rd and y ∈ Bd with y ∈ ΠB(0y, z),

dB(0, z) = r and dB(y, z) = dB(0y, z) = wB(r). Put q := (z− y)/dB(y, z). Then q ∈ bdB
by Lemma 11(ii). Moreover we let u denote the (Euclidean) exterior normal vector of B
in q, which is determined uniquely, since RBd is a summand of B, and let v denote an
arbitrary unit vector perpendicular to u.
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We will now proceed as follows: We will first show

r − wB(r) =
〈rq − z, u〉
〈q, u〉

.

Then we will give an upper bound for 〈rq−z, v〉 in terms of 〈rq−z, u〉 and derive from the
fact that B has a ball as summand an upper bound for 〈rq− z, u〉 in terms of 〈rq− z, v〉.
Combining these two bounds will give the desired upper bound for 〈rq − z, u〉. So let
t ∈ [r, wB(r)]. In dimension d ≥ 3 we cannot say anything about the angle between 0y
and v, but by Lemma 11 there is a common exterior unit normal vector of B in q and of
0y in y and hence 〈y, u〉 = 0. From z = y + wB(r)q we get on the one hand

〈tq − z, u〉 = 〈tq − wB(r)q − y, u〉 = (t− wB(r))〈q, u〉

and thus

t− wB(r) =
〈tq − z, u〉
〈q, u〉

(15)
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and on the other hand

|〈tq − z, v〉| = |(t− wB(r))〈q, v〉 − 〈y, v〉| ≤ (t− wB(r))|〈q, v〉|+ 1.

From the last two equations we get

|〈tq − z, v〉| ≤ 〈tq − z, u〉
〈q, u〉

|〈q, v〉|+ 1.

Since q ∈ B ⊆ SBd we get |〈q, v〉| ≤ S and since ρBu ∈ ρBB
d ⊆ B and u is exterior

normal vector of B in q we get 〈q, u〉 ≥ ρB. Thus

|〈tq − z, v〉| ≤ S

ρB
〈tq − z, u〉+ 1. (16)

We want to show

〈tq − z, u〉 < 4

Rr
(17)

for all t ∈ [wB(r), r]. Since this is true for t = wB(r) and the left-hand side of (17) is
obviously continuous in t, it suffices to show that there is no t ∈ [wB(r), r] for which
equality holds in (17). So assume, there is t ∈ [wB(r), r] for which equality holds in (17).
By (16) we get

|〈tq − z, v〉| ≤ 4S

ρBRr
+ 1.

rrr

r rr
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0

z rq

y

bd(rm+ rRBd)

Now put m := q − Ru and denote the unit vector in the direction z − tm− 〈z − tm, u〉u
by v0. Since we have assumed that equality holds in (17), we get

‖z − tm‖2 = 〈z − tm, u〉2 + 〈z − tm, v0〉2

= 〈z − tq + tRu, u〉2 + 〈z − tm, v0〉2

= (tR− 〈tq − z, u〉)2 + 〈tq − z, v0〉2

≤
(
tR− 4

Rr

)2

+

(
4S

ρBRr
+ 1

)2

.

Due to

r >
4S

ρBR
≥ max{ 4

ρB
, 4
R
}
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and (13) we get

t

r
≥
r − 1

ρB

r
= 1− 1

rρB
≥ 3

4

and thus (
tR
)2
−
(
tR− 4

Rr

)2
= 8

t

r
−
( 4

Rr

)2
≥ 6− 1 > 22 >

( 4S

ρBRr
+ 1
)2
.

Hence

‖z − tm‖2 ≤
(
tR− 4

Rr

)2
+
( 4S

ρBRr
+ 1
)2
<
(
tR
)2
.

So we have z ∈ int(tm + tRBd). Since m + RBd ⊆ B by Lemma 7, we get z ∈ int tB.
Hence there is t′ < t with z ∈ t′B and so dB(0, z) < t, which contradicts t ≤ r = dB(0, z).
So we have proven inequality (17).
Now we use the equations (15) and (17) in the special case t = r and we use again the
inequality 〈q, u〉 ≥ ρB we derived before (16) and get

r − wB(r) =
〈rq − z, u〉
〈q, u〉

≤
4
rR

ρB
=

4

rRρB
<

4S

rRρB2
.

The following lemma is the counterpart to Lemma 23.

Lemma 28. Let K ⊆ Rd, d > 1, be a body and B ⊆ Rd be a convex body with a summand
RBd, R > 0, such that hB is twice differentiable on Rd \ {0}. Put G := max{diamK, 1},
S := max{diamB, 1} and

C ′ := d2d+2κd
Sd ·Gd+1

R3
.

Then we have for all r ≥ 1

Vd(convK + rB)− Vd(K + rB) < C ′ · rd−3.
Proof. Just like in the proof of Lemma 23, B is strictly convex and we may assume
RBd ⊆ B. When we put again L := convK, (12) remains true. We obtain a better upper
bound for ri − (Gw( r

G
))i, i = 1, . . . , d, now. Lemma 27 says that

s− wB(s) ≤ C

s
, s ∈ R+,

where C := 4S
R3 . Since obviously wB(s) ≤ s for all s ∈ R+, we conclude

ri − (GwB( r
G

))i =(r −GwB( r
G

))
i−1∑
j=0

rj(GwB( r
G

))i−1−j

=G · ( r
G
− wB( r

G
))

i−1∑
j=0

rj(GwB( r
G

))i−1−j

≤GCG
r

i−1∑
j=0

rj(G r
G

)i−1−j

=CG2

r

i−1∑
j=0

ri−1

=CG2iri−2.
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We will need a slightly different upper bound for Vd(L\(K+rB)) now. Since L ⊆ K+rB,
if rR ≥ G, we have

Vd(L \ (K + rB)) ≤ Vd(L)1{rR<G} ≤ κdG
d G

rR
. (18)

Using first (12) and then (14), which is still valid, too, (18) and Theorem 15, we obtain

Vd(L+ rBd)− Vd(K + rBd)

≤
d∑
i=1

κiΦ
B
d−i(L,L \ extL)

(
ri − (GwB( r

G
))i
)

+ Vd(L \ (K + rB))

≤
d−1∑
i=1

(
d

i

)
Gd−iSiκd · CG2iri−2 + κdG

d G

rR

≤
d−1∑
i=1

(d− 1)

(
d

i

)
κdS

d−1CGd+1rd−3 + κd
Gd+1

R
rd−3

<
(

(d− 1)2dκdS
d−1CGd+1 + κd

Gd+1

R

)
rd−3

<
(
d2d+2κd

Sd ·Gd+1

R3

)
rd−3.

Now Theorem 26 can be proven the same way as Theorem 22.

In the rest of this section we will show that certain improvements of Theorem 26 are not
possible. First we will show that the order rd−3 cannot be improved, even in the Euclidean
deterministic case.

Example 29. Let K := {v,−v}, where v ∈ Rd is a unit vector. Put

D(r) := {x ∈ Rd | |〈x, v〉| ≤ 1
2
,
√
r2 − 1

4
< ‖p1(x)‖ ≤ r}, r > 1

2
,

where p1 denotes the orthogonal projection from Rd onto the linear subspace perpendicular
to v. Since Dr ⊆ convK + rBd and Dr ∩ (K + rBd) = ∅ we have

Vd(convK + rBd)− Vd(K + rBd) ≥ Vd(Dr) = κd−1
(
rd−1 −

√
r2 − 1

4

d−1)
.

A purely analytical computation shows that the latter expression is indeed of order rd−3.

Now we will show that the assumption that B contains a ball as summand cannot be
relaxed in the planar case.

Corollary 30. Let B ⊆ R2 be a convex body. Then the following are equivalent:

(i) There is a constant c ∈ R+
0 such that

V2(convK + rB)− V2(K + rB) <
c

r

for all r ∈ R+ and every convex body K ⊆ R2 with diamK ≤ 1.
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(ii) B has a summand RB2, R > 0.

Proof. If (ii) is fulfilled, then by Theorem 26 there is a constant C such that

V2(convK + rB)− V2(K + rB) <
C

r

for all r ≥ 1 and every body K ⊆ R2 with diamK ≤ 1. For r ∈ (0, 1] and a body K ⊆ R2

with diamK ≤ 1 we have

V2(convK + rB)− V2(K + rB) < V2(B
2 +B) ≤ V2(B

2 +B)

r
.

Hence we have

V2(convK + rB)− V2(K + rB) <
max{C, V2(B2 +B)}

r

for all r ∈ R+ and bodies K ⊆ R2 with diamK ≤ 1.

So now assume that (i) is fulfilled.
First assume that B has no interior points. Then B is contained in a line with unit normal
vector τ , say. Let S be a segment of length 1 perpendicular to τ . Put K := S ∪ (S + τ).
Then

V2(convK + rB)− V2(K + rB) = 1 + rl,

where l ≥ 0 denotes the length of B. Since this contradicts (i), B has interior points.
The support function hB is convex and thus according to Theorem 4 a.e. Alexandrov-
twice-differentiable. In particular, the second derivative hB in ν in direction orthogonal
to ν exists for a.e. ν ∈ S1. We call it R(B, ν). Now we will prove that there is a constant
c̃ > 0 such that R(B, ν) ≥ c̃ holds, whenever R(B, ν) exists. According to Theorem 8
this yields (ii).
So let ν ∈ S1 be a point, in which hB is Alexandrov-twice-differentiable, and choose
τ ∈ S1 perpendicular to ν. Let θ : R2 → R2 be a choice of subgradients of hB. Then
according to Theorem 5 the point u := θ(ν) lies in bdB and has exterior normal vector
ν.
There is ε > 0 and ξ ∈ R2 with Bε(ξ) ⊆ intB. Let b0 ∈ bdB denote a point, which
satisfies 0 < 〈b0 − u, τ〉 ≤ ε

2
and has an exterior unit normal vector n0 with 〈n0, ν〉 > 0.

Let b∗0 and n∗0 be defined in the same way with u− b∗0 instead of b0 − u.
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Let n ∈ S1 be a vector with 〈ν, n〉 > 0 and 0 < 〈n − ν, τ〉 ≤ min{〈n0, τ〉,−〈n∗0, τ〉}. Put
n∗ := 2〈n, ν〉ν−n. Now b := θ(n) and b∗ := θ(n∗) are points in bdB with exterior normal
vectors n resp. n∗. We put K := {0, τ} and r := 1

2〈b−b∗,τ〉 .

Now the point 1
2
τ + rξ is both in int(rB) and in int(τ + rB). Indeed,

〈n∗0, τ〉 ≤ 〈n∗, τ〉 ≤ 〈n, τ〉 ≤ 〈n0, τ〉
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and thus

εr ≥ 〈b0 − b
∗
0, τ〉

2〈b− b∗, τ〉
≥ 1

2
.

So 1
2
τ + rξ ∈ rBε(ξ) ⊆ int(rB) and 1

2
τ + rξ ∈ τ + rBε(ξ) ⊆ int(τ + rB).
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ru ru+ τ................................ ............................................................................................................................
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Now every line of the form {x ∈ R2 | 〈x, τ〉 = t} with t ∈ [t1, t1 + 1], where t1 := r〈u, τ〉,
intersects at least one of the segments [ru, 1

2
τ + rξ] or [1

2
τ + rξ, τ + ru]. Hence the sets

{x ∈ K + rB | 〈x, τ〉 = t}, t ∈ [t1, t1 + 1], are not empty and the function

m : [t1, t1 + 1]→ R, t 7→ max{〈x, ν〉 | x ∈ K + rB, 〈x, τ〉 = t}

is defined. Now there is a number t0 ∈ [t1, t1 + 1] with

m(t) = max{〈x, ν〉 | x ∈ rB, 〈x, τ〉 = t}, t < t0,

and
m(t) = max{〈x, ν〉 | x ∈ τ + rB, 〈x, τ〉 = t}, t > t0.

Since 〈(τ + rb∗) − rb, τ〉 = 1
2
, we have either t0 − 〈rb, τ〉 ≥ 1

4
or 〈τ + rb∗, τ〉 − t0 ≥ 1

4
,

w.l.o.g. the first.
Now we put

A := {x ∈ R2 | 〈x− rb, τ〉 < 1
4
, 〈x, n〉 > 〈rb, n〉, 〈x, ν〉 ≤ 〈rb, ν〉}.
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It is easy to see that A ⊆ convK + rB, but A ∩ (K + rB) = ∅. One cathetus of the
rectangular triangle A has length 1

4
. In order to compute the length of the other cathetus,

we let S denote the point with 〈S, n〉 = 〈rb, n〉 und 〈S, τ〉 = 〈rb, τ〉+ 1
4
. Then

0 = 〈rb− S, n〉
= 〈rb− S, ν〉〈n, ν〉+ 〈rb− S, τ〉〈n, τ〉
= 〈rb− S, ν〉〈n, ν〉 − 1

4
〈n, τ〉.

Thus the length we looked for is

〈rb, ν〉 − 〈S, ν〉 =
〈n, τ〉
4〈n, ν〉

.

Hence we get

1
32
〈n, τ〉 ≤ 1

2
· 1
4
· 〈n, τ〉

4〈n, ν〉
= V2(A)

≤ V2(convK + rB)− V2(K + rB)

<
c

r
= c

2
〈b− b∗, τ〉

= c
2
〈θ(n)− θ(n∗), τ〉.

This means

〈θ(n)− θ(n∗), τ〉 ≥ 1

16c
〈n, τ〉 =

1

32c
〈n− n∗, τ〉.

Since we assumed θ to be differentiable in ν and any vector in S1 sufficiently close to ν
could be chosen to be n, this implies

R(B, ν) = ∂
∂λ
〈θ(ν + λτ), τ〉|λ=0 ≥

1

32c
.

Now Theorem 8 implies that B has a summand of the form RB2, R > 0.

Conjecture 31. There are convex bodies B ⊆ Rd, d ≥ 3, which contain no ball as
summand, but for which there is a constant c ∈ R+

0 with

Vd(convK + rBd)− Vd(K + rBd) < c · rd−3 (19)

for all r ≥ 1 and for all bodies K ⊆ Rd with diamK ≤ 1.

Reason: Choose B to be a convex body, for which there are numbers S > 0 and α ∈ (1, 2)
and a convex body B̃ with a ball as summand, such that

{(x1, . . . , xd) ∈ B | xd ≥ −S} = {(x1, . . . , xd) ∈ Rd | −S ≤ xd ≤ −‖(x1, . . . , xd−1)‖α}

and
{(x1, . . . , xd) ∈ B | xd ≤ −S} = {(x1, . . . , xd) ∈ B̃ | xd ≤ −S}.

Now there is no R > 0 with 0 ∈ m+RBd ⊆ B for any m ∈ B.
Geometric intuition tells us that it suffices to check (19) in the special case K = {−e1, e1},
where e1 denotes the first unit vector. This is, however, an easy computation.
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4 The derivative of the parallel volume difference

Theorem 26 suggests that under its assumptions, there is a constant c̃ with

d

dr
E[Vn(X + rY )− Vn(XY + rY )] < c̃ · rd−4

for all sufficiently large r. However it does not imply this.
But we can prove this statement in the case, where the dimension d of Y is 2, under some
additional regularity assumptions.

Theorem 32. Let G,R and S be three R+-valued random variables with R ≤ 1 and
S,G ≥ 1 a.s. Let X ⊆ Rn be a random body whose diameter is a.s. less or equal to G and
let Y ⊆ Rn be a random 2-dimensional body, which is a.s. strictly convex if considered as
subset of Ŷ , which contains a.s. a ball of radius R as summand and which is a.s. subset
of the ball SBn. If

c := 3200κn−2E

[(
SG

R2

)3

GnS2

]
<∞,

then:

(i) For b ≥ a ≥ 1 we have

|E[Vn(X + bY )− Vn(XY + bY )]− E[Vn(X + aY )− Vn(XY + aY )]| < c

a
− c

b
.

(ii) The map r 7→ E[Vn(X + rY ) − Vn(XY + rY )] is differentiable for almost all r ≥ 1
with ∣∣ d

dr
E[Vn(X + rY )− Vn(XY + rY )]

∣∣ < c · r−2.

Again, we start by proving the theorem in the special case that n = 2 and all sets involved
are deterministic.
Since the derivative of the parallel volume is an integral over the surface of the parallel
body by Lemma 20, we will examine this boundary now. In the following we will always
assume that the gauge body B fulfils the following condition:

(A) B is a strictly convex body, which has summand of the form RB2, R > 0, and fulfils
RB2 ⊆ B ⊆ SB2 for some S > 0.

Recall the definition of dB, pB, uB and nB on page 6.

Lemma 33. Let B,K ⊆ R2 be two bodies such that B fulfils (A) and let r > diamK
R

be a
number. Let I be a closed convex set in the boundary of L := convK, whose endpoints lie
in K. Let u ∈ B denote the point, in which B has the same exterior unit normal vector ν
as L has in the points of the relative interior of I. Let τ denote a unit vector orthogonal
to ν and let j denote the length of I. Then the map

fr : I → R+, y 7→ sup{s > 0 | y + su ∈ K + rB}

has the following properties:
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(i) {z ∈ bd(K + rB) | pB(L, z) ∈ I} = {y + fr(y)u | y ∈ I}

(ii) If
√

(2Rr)2 − j2 〈ν, u〉 − j|〈u, τ〉| > 0, then fr is Lipschitz continuous with Lipschitz
constant

j√
(2Rr)2 − j2 〈ν, u〉 − j|〈u, τ〉|

.

(iii) For all z ∈ bd(K + rB) with pB(L, z) ∈ I we have

|hB(nB(K, z))− hB(ν) + 〈u, ν − nB(K, z)〉| ≤
((1 + ‖u‖

4R
) diamK)2

2R
r−2,

if nB(K, z) is defined.

Proof. The definition of fr makes sense, since

L ⊆ K + (diamK)B2 ⊆ int(K + rB)

and thus the supremum is taken over a non-empty set.
(i) Let y ∈ I. Since we have z := y+ fr(y)u ∈ K + rB, but z+ εu /∈ K + rB for all ε > 0,
we get z ∈ bd(K + rB). By Lemma 11(iii) we have pB(L, z) = y ∈ I.
So now let z ∈ bd(K + rB) with y := pB(L, z) ∈ I. Since u is the uniquely determined
point from B with exterior normal vector ν, there is according to Lemma 11 a number
s0 ∈ R+

0 with z = y + s0u. Now we have on the one hand y + s0u ∈ K + rB. On the
other hand we have y + s′u /∈ K + rB for all s′ > s0: Assume there is s′ > s0 with
y + s′u ∈ K + rB. Then there is x ∈ K with y + s′u− x ∈ rB.

...............................................................................................................................................

.........
............
...........................................................................................................................................

.........
.............
...............................................................

r
r r

r ���y u
z = y + s0u
y + s′u

x K

Moreover, ‖y − x‖ ≤ diamK < rR, and hence y − x ∈ int rRB2 ⊆ int rB. Since B is
convex, we get

y + s0u− x =
s0
s′

(y + s′u− x) +
s′ − s0
s′

(y − x) ∈ int rB.

So z ∈ int(K + rB), contradicting the choice of z.
Thus s0 = sup{s > 0 | y + su ∈ K + rB} = fr(y) and therefore z = y + fr(y)u.

(ii) We obey that τ is parallel to I, and introduce a (non-orthonormal) coordinate system
by choosing the endpoint of I, from which the other lies in direction τ , as origin and
identifying (x1, x2) with x1τ + x2u.
Let x, y ∈ bd(K + rB) with pB(L, x) ∈ I and pB(L, y) ∈ I and w.l.o.g. y2 ≥ x2. Let
ε > 0. We assume |x1 − y1| < ε and |〈x − y, τ〉| < ε. Moreover, let p ∈ K and b,m ∈ B
denote points with y = p+ rb and b ∈ m+RB2 ⊆ B and put p̃ := p+ rm. Then from

p̃+ rRB2 = p+ r(m+RB2) ⊆ K + rB
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we get x /∈ int(p̃+ rRB2) and hence ‖x− p̃‖ ≥ Rr = ‖y − p̃‖. This gives

(x1 − p̃1)2 + 2(x1 − p̃1)(x2 − p̃2)〈τ, u〉+ (x2 − p̃2)2‖u‖2

= ‖(x1 − p̃1)τ + (x2 − p̃2)u‖2

≥ ‖(y1 − p̃1)τ + (y2 − p̃2)u‖2

= (y1 − p̃1)2 + 2(y1 − p̃1)(y2 − p̃2)〈τ, u〉+ (y2 − p̃2)2‖u‖2,

and hence

[(x1 − p̃1)2 − (y1 − p̃1)2] + 2[(x1 − p̃1)(x2 − p̃2)−(y1 − p̃1)(y2 − p̃2)]〈τ, u〉
≥ [(y2 − p̃2)2 − (x2 − p̃2)2] ‖u‖2.

Since

(x1 − p̃1)(x2 − p̃2)− (y1 − p̃1)(y2 − p̃2)
= (x1 − p̃1)(x2 − p̃2)− [(y1 − x1) + (x1 − p̃1)](y2 − p̃2)
= (x1 − p̃1)[(x2 − p̃2)− (y2 − p̃2)]− (y1 − x1)(y2 − p̃2)
= (x1 − p̃1)(x2 − y2)− (y1 − x1)(y2 − p̃2),

this is equivalent to

[x21 − 2x1p̃1 − y21 + 2y1p̃1] + 2[(x1 − p̃1)(x2 − y2)− (y1 − x1)(y2 − p̃2)]〈τ, u〉
≥ [y22 − 2y2p̃2 − x22 + 2x2p̃2] ‖u‖2

⇒(x1 − y1)(x1 + y1 − 2p̃1) + 2[(x1 − y1)(y2 − p̃2)]〈τ, u〉
≥ (y2 − x2)(y2 + x2 − 2p̃2)‖u‖2 − 2(x1 − p̃1)(x2 − y2)〈τ, u〉

⇒(x1 − y1)[(x1 + y1 − 2p̃1) + 2(y2 − p̃2)〈τ, u〉]
≥ (y2 − x2)[(y2 + x2 − 2p̃2)‖u‖2 + 2(x1 − p̃1)〈τ, u〉] (20)

In order to find bounds for the second factor on either side of (20) we need the inequality

〈x− p̃, ν〉 ≥
√

(rR)2 − ( j
2
)2, (21)
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that we will prove below. We obey, that this inequality holds also with x replaced by y.
Since τ and ν are an orthonormal base, we have moreover (only with y, not with x):

|〈y − p̃, τ〉| =
√
‖y − p̃‖2 − 〈y − p̃, ν〉2

≤
√

(rR)2 − ((rR)2 − ( j
2
)2)

= j
2
.

Thus we obtain

|(x1 + y1 − 2p̃1) + 2(y2 − p̃2)〈τ, u〉| ≤ |(2y1 − 2p̃1)〈τ, τ〉+ 2(y2 − p̃2)〈u, τ〉|+ ε

= |〈(2y1 − 2p̃1)τ + 2(y2 − p̃2)u , τ〉|+ ε

= 2|〈y − p̃, τ〉|+ ε

≤ j + ε

and

(y2 + x2 − 2p̃2)‖u‖2+2(x1 − p̃1)〈τ, u〉
≥ 〈(y2 + x2 − 2p̃2)u+ (y1 + x1 − 2p̃1)τ , u〉 − ε|〈τ, u〉|
= 〈y + x− 2p̃, u〉 − ε|〈τ, u〉|
= 〈y + x− 2p̃, τ〉〈u, τ〉+ 〈y + x− 2p̃, ν〉〈u, ν〉 − ε|〈τ, u〉|
≥ 〈2y − 2p̃, τ〉〈u, τ〉 − ε|〈u, τ〉|+ 〈y + x− 2p̃, ν〉〈u, ν〉 − ε|〈τ, u〉|

≥ −j|〈u, τ〉| + 2
√

(rR)2 − ( j
2
)2 〈u, ν〉 − 2ε|〈τ, u〉|

=
√

(2rR)2 − j2 〈u, ν〉 − (j + 2ε)|〈τ, u〉|.

With help of these inequalities and the assumption y2 ≥ x2 we get from (20)

|x1 − y1| · (j + ε) ≥ |x1 − y1| · |(x1 + y1 − 2p̃1) + 2(y2 − p̃2)〈τ, u〉|
≥ (x1 − y1)[(x1 + y1 − 2p̃1) + 2(y2 − p̃2)〈τ, u〉]
≥ (y2 − x2)[(y2 + x2 − 2p̃2)‖u‖2 + 2(x1 − p̃1)〈τ, u〉]
≥ (y2 − x2)(

√
(2rR)2 − j2 〈u, ν〉 − (j + 2ε)|〈τ, u〉|).

Now we can drop the restrictions |x1 − y1| < ε and |〈x− y, τ〉| < ε: If e.g. x1 < y1, then

we let x(0), . . . , x(n) ∈ bd(K + rB) denote points with x = x(0), y = x(n), x
(0)
1 ≤ · · · ≤ x

(n)
1

such that |x(j−1)1 − x(j)1 | < ε and |〈x(j−1) − x(j), τ〉| < ε holds for j = 1, . . . , n. We get

(y2 − x2) · (
√

(2Rr)2 − j2 〈ν, u〉 − (j + 2ε)|〈u, τ〉|)

=
n∑
j=1

(x
(j)
2 − x

(j−1)
2 ) · (

√
(2Rr)2 − j2 〈ν, u〉 − (j + 2ε)|〈u, τ〉|)

≤
n∑
j=1

|x(j−1)1 − x(j)1 | · (j + ε)

= |x1 − y1| · (j + ε).
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Since ε > 0 was arbitrary and we assumed
√

(2rR)2 − j2〈u, ν〉 − j|〈u, τ〉| > 0, we obtain

y2 − x2 ≤ |x1 − y1|
j√

(2rR)2 − j2〈u, ν〉 − j|〈u, τ〉|
,

which shows the assertion, as y2 − x2 ≥ 0.
It remains to show (21). We put m̄ := u − Rν and A := {0, jτ}. The main part is the
proof of

〈x− rm̄, ν〉 ≥
√

(rR)2 − ( j
2
)2.

In order to show this inequality, we set ρ0 := dB(L, x) ≤ r. Then x ∈ I + ρ0u, since
u = uB(L, x). Because of I ⊆ A+ j

2
B2 ⊆ A+ j

2R
B we get

x ∈ I + ρ0B ⊆ A+ (ρ0 + j
2R

)B

and thus

ρ0 +
j

2R
≥ dB(A, x) ≥ dB(K, x) = r,

since 0, jτ ∈ K. Hence R(r − ρ0) ≤ j
2

and with help of the assumption r > diamK
R

, we
obtain

ρ0R ≥
j

2
. (22)

Because B has a summand RB2 and therefore m̄ + RB2 ⊆ B holds by Lemma 7, we
conclude from x /∈ int(K + rB), that x /∈ int(A + ρm̄ + ρRB2) holds for all ρ ∈ (ρ0, r).
As x ∈ I + ρ0u we obtain moreover 〈x, ν〉 < 〈ρu, ν〉 for all ρ ∈ (ρ0, r).
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Now we will show that x lies for all ρ ∈ (ρ0, r] in the rectangle plotted in the figure.
Precisely this means that the inequality 〈x, ν〉 < 〈ρu, ν〉, which was already mentioned,
holds and the three scalar products 〈x − ρm̄, τ〉, 〈ρm̄ + jτ − x, τ〉 and 〈x − ρm̄, ν〉 are
positive. Assume the contrary. Since these terms are obviously positive for ρ = ρ0 and
continuous in ρ, there must be a minimal value ρ1 ∈ (ρ0, r], for which one of the scalar
products is not positive. Clearly, for ρ = ρ1 none of the scalar products is negative. Now
the first one cannot be 0, since

0 ≤ 〈x− ρ1m̄, ν〉 < 〈ρ1u− ρ1m̄, ν〉 = ρ1R

and 〈x − ρ1m̄, τ〉 = 0 would give x ∈ int(A + ρ1m̄ + ρ1RB
2). For an analogue reason

the second one cannot be zero either. However, the third one must be positive, too.
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Namely, 0 ≤ 〈x− ρ1m̄, τ〉 and 0 ≤ 〈ρ1m̄+ jτ − x, τ〉 yield |〈x− ρ1m̄, τ〉| ≤ j
2

or |〈ρ1m̄+

jτ − x, τ〉| ≤ j
2
. Since j

2
< ρ1R holds by (22), from 〈x − ρ1m̄, ν〉 = 0, we would get

x ∈ int(A + ρ1m̄ + ρ1RB
2). Hence the three expression are also positive for ρ = r and

thus either |〈x − rm̄, τ〉| ≤ j
2

or |〈rm̄ + jτ − x, τ〉| ≤ j
2

holds, w.l.o.g. the first one. As
x /∈ int(A+ rm̄+ rRB2), we conclude

〈x− rm̄, ν〉 =
√
‖x− rm̄‖2 − 〈x− rm̄, τ〉2 ≥

√
(rR)2 − ( j

2
)2. (23)

Moreover m + Rν ∈ B, which gives 〈m̄ + Rν, ν〉 = 〈u, ν〉 ≥ 〈m + Rν, ν〉 and thus
〈m̄, ν〉 ≥ 〈m, ν〉. Because of 〈p, ν〉 ≤ 0 we obtain

〈x− p̃, ν〉 = 〈x− p− rm, ν〉
≥ 〈x− rm̄, ν〉

≥
√

(rR)2 − ( j
2
)2,

which completes the proof of (21).

(iii) Again, we introduce a coordinate system such that the endpoint of I from which the
other one is in direction τ is the origin. Let z ∈ bd(K+ rB) be a point with pB(L, z) ∈ I,
for which nB(K, z), and hence pB(K, z) and uB(K, z) are defined. We put b := uB(K, z)
and show

‖b− u‖ ≤ ((1 + ‖u‖
4R

) diamK) · r−1. (24)

On the one hand z = p+ rb holds, where p := pB(K, z), and on the other z = y+ ρu with
y := pB(L, z) ∈ I and ρ := dB(L, z) ≤ r. This gives

r · ‖b− u‖ = ‖(z − ρu)− (z − rb)− (r − ρ)u‖ = ‖y − p− (r − ρ)u‖. (25)

In order to derive an upper bound for r − ρ, we put again m̄ := u−Rν. Because of (23)
and 〈y, ν〉 = 0 we get√

(rR)2 − ( j
2
)2 ≤ 〈z − rm̄, ν〉

= ρ〈u, ν〉 − r〈m̄, ν〉
= ρ〈u, ν〉 − r〈u−Rν, ν〉
= −(r − ρ)〈u, ν〉+ r〈Rν, ν〉
≤ −(r − ρ)R + rR

= ρR,

where we used for the second inequality, that r − ρ ≥ 0 and 〈u, ν〉 ≥ 〈Rν, ν〉 = R, since
Rν ∈ RB2 ⊆ B.
This yields (rR)2 − ( j

2
)2 ≤ (ρR)2 and thus

(r − ρ)rR2 ≤ (r − ρ)(r + ρ)R2 = (rR)2 − (ρR)2 ≤ ( j
2
)2.

By the assumption rR ≥ diamK and j ≤ diamK we get

(r − ρ)(diamK)R ≤ j · diamK

4
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and hence

r − ρ ≤ j

4R
.

Using (25) we get

r · ‖b− u‖ = ‖y − p− (r − ρ)u‖
≤ ‖y − p‖+ (r − ρ)‖u‖

≤ diamK +
j

4R
‖u‖

≤
(

1 +
‖u‖
4R

)
· diamK.

Now we have shown (24).
Put ν̃ := nB(K, z) and let τ̃ denote a unit vector perpendicular to ν̃. The ball of radius
R with center at b−Rν̃ is contained in B according to Lemma 7 and thus u is not in the
interior of this ball.
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Hence

R2 ≤ ‖(b−Rν̃)− u‖2

= 〈(b−Rν̃)− u, ν̃〉2 + 〈(b−Rν̃)− u, τ̃〉2

= (〈b− u, ν̃〉 −R)2 + 〈b− u, τ̃〉2

= 〈b− u, ν̃〉2 − 2R〈b− u, ν̃〉+R2 + 〈b− u, τ̃〉2.

With inequality (24) this gives

2R〈b− u, ν̃〉 ≤ 〈b− u, ν̃〉2 + 〈b− u, τ̃〉2

= ‖b− u‖2

≤
((

1 + ‖u‖
4R

)
· diamK · r−1

)2
,

which is equivalent to

〈b− u, ν̃〉 ≤
(1 + ‖u‖

4R
)2(diamK)2

2R
· r−2.

Since we have 〈b− u, ν̃〉 ≥ 0 by the choice of ν̃ and

hB(ν̃)− hB(ν) + 〈u, ν − ν̃〉 = 〈b, ν̃〉 − 〈u, ν〉+ 〈u, ν − ν̃〉 = 〈b− u, ν̃〉,
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we obtain

0 ≤ hB(ν̃)− hB(ν) + 〈u, ν − ν̃〉 ≤
(1 + ‖u‖

4R
)2(diamK)2

2R
· r−2.

According to Lemma 33 a particular set is a graph of a Lipschitz function with respect to
a not orthonormal coordinate system. The following lemma implies that this set is also a
graph of a Lipschitz function with respect to an orthonormal coordinate system.

Lemma 34. Let F be a set of the form {xτ + f(x)u | x ∈ I}, where I = [0, j] is an
interval, τ is a unit vector, u is a vector linearly independent of τ and f : I → R is a
Lipschitz function with Lipschitz constant L, satisfying f(0) = f(j). If L〈τ, u〉 < 1, then
F has a representation of the form {xτ + f̃(x)ν | x ∈ Ĩ}, where ν is the unit vector in
direction u− 〈u, τ〉τ , this means ν is perpendicular to τ , Ĩ is an interval of length j and
f̃ : Ĩ → R is a Lipschitz function with Lipschitz constant

L〈ν, u〉
1− L〈τ, u〉

.

Proof. Let z1, z2 ∈ F, z1 6= z2. Then there are x1, x2 ∈ I with zi = xiτ + f(xi)u, i = 1, 2,
and w.l.o.g. x1 < x2. Now we have

〈z2 − z1, τ〉 = 〈x2τ + f(x2)u− x1τ − f(x1)u, τ〉
= x2 − x1 + (f(x2)− f(x1))〈u, τ〉
≥ (x2 − x1)(1− L〈u, τ〉) (26)

> 0.

Hence each line perpendicular to τ intersects F in at most one point and thus there is a
function f̃ : Ĩ → R with domain Ĩ := {〈z, τ〉 | z ∈ F} for which F = {xτ + f̃(x)ν | x ∈ Ĩ}
holds. So every point z ∈ F can be represented in the form z = xτ + f̃(x)ν with some
x ∈ Ĩ. This gives 〈z, τ〉 = x and 〈z, ν〉 = f̃(x). Hence

〈z, ν〉 = f̃(〈z, τ〉). (27)

Since f is continuous, F is connected and thus Ĩ must be an interval. Moreover, the
length of Ĩ is

max{〈z, τ〉|z ∈ F} −min{〈z, τ〉|z ∈ F} = 〈jτ + f(j)u, τ〉 − 〈0 + f(0)u, τ〉
= j + (f(j)− f(0))〈u, τ〉
= j.

For the proof of the Lipschitz constant let z1, z2 ∈ F and x1, x2 as above. Then

|〈z2 − z1, ν〉| = |〈x2τ + f(x2)u− x1τ − f(x1)u, ν〉|
= |f(x2)− f(x1)|〈u, ν〉
≤ (x2 − x1)L〈u, ν〉.
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This gives, together with equality (27) and inequality (26)

|f̃(〈z2, τ〉)− f̃(〈z1, τ〉)| = |〈z2, ν〉 − 〈z1, ν〉|
≤ (x2 − x1)L〈u, ν〉

≤ L〈u, ν〉
1− L〈u, τ〉

(〈z2, τ〉 − 〈z1, τ〉).

Our aim is, as mentioned above, to determine the “size” of the boundary of K+rB. More
precisely, we mean by size the Hausdorff measure defined in Definition 12 in the Euclidean
case and a certain integral taken w.r.t. the Hausdorff measure in the general case. We
will see that only these parts of the boundary are important, of which we have shown in
Lemma 33 that they are graphs of Lipschitz functions. Hence the following lemma is of
interest for us.

Lemma 35. Let I be an interval and f : I → R a Lipschitz continuous function with
Lipschitz constant L. Let F := {(y, f(y)) | y ∈ I} ⊆ R2 be the graph of f and g : F → R+

0

a measurable function. Then∫
I

g(y, f(y)) dy ≤
∫
F

g(z) dH1(z) ≤
√

1 + L2

∫
I

g(y, f(y)) dy.

Proof. We will conclude this lemma from the area formula [5, Theorem 3.2.3 (2)]. Since
f is Lipschitz continuous, there is a Lipschitz continuous function f̃ : R → R2 with

f̃(y) =

(
y

f(y)

)
, y ∈ I.

The area formula, applied to

u : R → R, y 7→

{
g(y, f(y)), if y ∈ I,
0, if y /∈ I,

gives ∫
I

g(y, f(y))‖f̃ ′(y)‖ dy =

∫
R2

∑
y∈f̃−1({z})

u(y) dH1(z).

For z ∈ R2 we have∑
y∈f̃−1({z})

u(y) =
∑

y∈f̃−1({z})∩I

u(y) +
∑

y∈f̃−1({z})\I

u(y) = g(z)1{z∈F} + 0.

Hence ∫
I

g(y, f(y))‖f̃ ′(y)‖ dy =

∫
F

g(z) dH1(z). (28)

Since f is Lipschitz continuous with Lipschitz constant L, we have |f ′(y)| < L for all
y ∈ I, in which f is differentiable, and hence

1 ≤ ‖f̃ ′(y)‖ ≤
√

1 + L2.

Together with (28) this implies the assertion.
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Lemma 36. Assume that B ⊆ R2 fulfils condition (A) and let R and S be the num-
bers from (A). Let K ⊆ R2 be a body and put L := convK. Then for almost all
r > 2R−2S diamK we have(
−( S

R
+ 4)

S(2π diamK)3

R2

)
· r−2

≤
∫
bd(K+rB)

hB(nB(K, z)) dH1(z)−
∫
bd(L+rB)

hB(nB(L, z)) dH1(z)

≤
(

(10 + S
R

)
S(2π diamK)3

R2

)
· r−2.

Remark 37. Just like Lemma 36 the inequality

0 ≤ H1(bd(K + rB))−H1(bd(L+ rB)) ≤ 2(4π · diamK)3

(Rr)2

can be proven.

Proof of Lemma 36. Since dB(K, ·) is Lipschitz-continuous, it is differentiable a.e. by
Theorem 2. Hence Theorem 20 shows that

H1({x ∈ bd(K + rB) | dB(K, ·) is not differentiable in x}) = 0 (29)

holds for almost all r > 0. Let r > 2R−2S diamK be a number satisfying (29). Obviously∫
bd(K+rB)

hB(nB(K, z)) dH1(z)−
∫
bd(L+rB)

hB(nB(L, z)) dH1(z)

=

∫
bd(K+rB)\bd(L+rB)

hB(nB(K, z)) dH1(z)

−
∫
bd(L+rB)\bd(K+rB)

hB(nB(L, z)) dH1(z)

+

∫
bd(K+rB)∩bd(L+rB)

hB(nB(K, z))− hB(nB(L, z)) dH1(z). (30)

Let z ∈ bd(K+rB)∩bd(L+rB) and put p := pB(L, z). Then for any point k ∈ K\{p} ⊆
L\{p}, Lemma 17 implies dB(k, z) > dB(L, z) = r = dB(K, z), which yields pB(K, z) = p
and nB(K, z) = nB(L, z). As z ∈ bd(K+rB)∩bd(L+rB) was arbitrary, the last integral
in (30) is 0.
According to Lemma 17 for any point

z ∈
(

bd(L+ rB) \ bd(K + rB)
)
∪
(

bd(K + rB) \ bd(L+ rB)
)

we have d(K, z) > d(L, z) and hence pB(L, z) ∈ (bdL) \ K. By Lemma 6 every point
of (bdL) \ K is contained in the relative interior of an edge of L and by [18, Theorem
2.2.5] there are (at most) countably many edges of L. For every edge J of L the set
((bdL)\K)∩J = J \K is open in J . Since any open subset of R is the union of countably
many pairwise disjoint open intervals, ((bdL) \ K) ∩ J is the union of countably many
pairwise disjoint sets that are open in J and convex. Hence there is a countable set I of
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pairwise disjoint 1-dimensional convex and relatively open sets, such that (bdL) \ K =⋃
I∈I I. The length of I ∈ I will be denoted by lI , the Euclidean outer unit normal vector

of L in the points of I by νI and the point in bdB with exterior normal vector νI by uI .
So bd(L + rB) \ bd(K + rB) is the union of all sets I + ruI , I ∈ I, by Lemma 11 and
bd(K + rB) \ bd(L+ rB) is the union of all sets

F I
r := {y + f Ir (y)uI | y ∈ I}, I ∈ I,

where f Ir , I ∈ I, denote the functions from Lemma 33. Hence we get∫
bd(L+rB)\bd(K+rB)

hB(nB(L, z)) dH1(z) =
∑
I∈I

lIhB(νI)

and ∫
bd(K+rB)\bd(L+rB)

hB(nB(K, z)) dH1(z) =
∑
I∈I

∫
F I
r

hB(nB(K, z)) dH1(z).

This gives∫
bd(K+rB)

hB(nB(K, z)) dH1(z)−
∫
bd(L+rB)

hB(nB(L, z)) dH1(z)

=

∫
bd(K+rB)\bd(L+rB)

hB(nB(K, z)) dH1(z)−
∫
bd(L+rB)\bd(K+rB)

hB(nB(L, z)) dH1(z)

=
∑
I∈I

∫
F I
r

hB(nB(K, z)) dH1(z)− lIhB(νI). (31)

Now we will show that the condition
√

(2Rr)2 − l2I 〈νI , uI〉 − lI |〈τI , uI〉| > 0 from Lemma
33(ii) is satisfied, where τI is a unit vector orthogonal to νI . We have |〈τI , uI〉| ≤ ‖τI‖ ·
‖uI‖ ≤ S, because uI ∈ B. Since RνI ∈ RBd ⊆ B and νI is exterior normal vector of B
in uI , we get 〈νI , uI〉 ≥ 〈νI , RνI〉 = R. From the assumption r > 2R−2S diamK we get
diamK < Rr and S · diamK < 1

2
R2r and thus√

(2Rr)2 − l2I〈νI , uI〉 − lI |〈τI , uI〉| ≥ R
√

4(Rr)2 − (diamK)2 − S · diamK

≥ R
√

3(Rr)− S · diamK

> R2r

> 0.

So Lemma 33(ii) implies that f Ir is Lipschitz continuous with Lipschitz constant

L :=
lI√

(2Rr)2 − l2I 〈νI , uI〉 − lI |〈τI , uI〉|
.

In order to check the assumptions of Lemma 34, we notice

|L〈τI , uI〉| ≤
diamK

R2r
S ≤ 1

2
.

Further we let pI and pI + lIτI denote the endpoints of I. Then pI + ruI ∈ K + rB,
and considering scalar products with νI one gets pI + suI /∈ K + rB for all s > r.
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Now f Ir (pI) = r follows immediately from the definition of f Ir and the same way we get
f Ir (pI + lIτI) = r. Thus

f Ir (pI) = f Ir (pI + lIτI). (32)

Hence by Lemma 34 F I
r has a representation of the form {qI + xτI + f̃ Ir (x)νI | x ∈ int Ĩ},

where qI ∈ R2 is a point, Ĩ := [0, lI ] and f̃ Ir : Ĩ → R is a Lipschitz continuous function
with Lipschitz constant

L̃ :=
L〈νI , uI〉

1− L〈τI , uI〉
.

Now

L̃ ≤ L · 〈νI , uI〉
1− 1

2

=
lI√

(2Rr)2 − l2I 〈νI , uI〉 − lI |〈τI , uI〉|
〈νI , uI〉

1
2

=
2lI√

(2Rr)2 − l2I − lI
|〈τI ,uI〉|
〈νI ,uI〉

≤ 2lI√
(2Rr)2 − (diamK)2 − diamK S

R

≤ 2lI√
3(Rr)− diamK S

R

≤ 2lI
Rr

.

So √
1 + L̃2 <

√
1 + L̃2 + 1

4
L̃4 = 1 + 1

2
L̃2 ≤ 1 + 2

( lI
Rr

)2
(33)

and

L̃ ≤ 2lI
Rr
≤ R

S
≤ 1. (34)

According to Lemma 33(iii)

|hB(nB(K, z))− hB(νI) + 〈uI , νI − nB(K, z)〉| ≤ cIr
−2

holds for all z ∈ F I
r \ exoB(K), where

cI :=
((1 + ‖uI‖

4R
) diamK)2

2R
.

We put
gI(x) := qI + xτI + f̃ Ir (x)νI , x ∈ Ĩ . (35)
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Then F I
r = {gI(x) | x ∈ int Ĩ} and from Lemma 35 and (33) we get∫

F I
r

hB(nB(K, z)) dH1(z)− lIhB(νI)

≤
√

1 + L̃2 ·
∫
Ĩ

hB(nB(K, gI(x))) dx− lIhB(νI)

≤
(
1 + 2

( lI
Rr

)2) · ∫
Ĩ

(
hB(νI)− 〈uI , νI − nB(K, gI(x))〉+ cIr

−2) dx− lIhB(νI)

=
(
1 + 2

( lI
Rr

)2) · lIhB(νI)− lIhB(νI) + (1 + 2(
lI
Rr

)2) · lIcIr−2

−
(
1 + 2

( lI
Rr

)2) · ∫
Ĩ

〈uI , νI − nB(K, gI(x))〉 dx

= 2
( lI
Rr

)2 · lIhB(νI) +
(
1 + 2

( lI
Rr

)2) · lIcIr−2
−
(
1 + 2

( lI
Rr

)2) · ∫
Ĩ

〈uI , νI − nB(K, gI(x))〉 dx. (36)

Now we are going to find an upper bound for the absolute value of the last integral. Since

for x, x′ ∈ I we have ‖gI(x)− gI(x′)‖ ∈ [|x− x′|,
√

1 + L̃2|x− x′|], gI is differentiable for
a.a. x ∈ Ĩ with

‖g′I(x)‖ ∈
[
1,
√

1 + L̃2
]
.

Hence for a.a. x ∈ Ĩ we have∣∣〈νI , g′I(x)〉
(
1− 1

‖g′I(x)‖
)∣∣ ≤ L̃

(
1− 1√

1 + L̃2

)
(37)

and ∣∣〈τI , g′I(x)

‖g′I(x)‖
〉∣∣ =

1

‖g′I(x)‖
≥ 1√

1 + L̃2
. (38)

Since dB(K, gI(·)) is constant, g′I(x) is perpendicular to ∇dB(K, z)|z=gI(x) and hence by

Lemma 21 to nB(K, gI(x)) for all x ∈ Ĩ, for which dB(K, ·) is differentiable in gI(x). The
orthonormal bases (nB(K, gI(x)), g′I(x)/‖g′I(x)‖) and (νI , τI) have the same orientation.
Further we choose a vector v such that ( uI

‖uI‖
, v) is a another orthonormal base with the

same orientation. Then∣∣∣ ∫
Ĩ

〈 uI
‖uI‖

,νI − nB(K, gI(x))
〉
dx
∣∣∣

=
∣∣∣ ∫

Ĩ

〈
v, τI −

g′I(x)

‖g′I(x)‖
〉
dx
∣∣∣

=
∣∣∣〈τI , v〉∫

Ĩ

〈
τI , τI −

g′I(x)

‖g′I(x)‖
〉
dx+ 〈νI , v〉

∫
Ĩ

〈
νI , τI −

g′I(x)

‖g′I(x)‖
〉
dx
∣∣∣

≤
∣∣∣ ∫

Ĩ

〈
τI , τI −

g′I(x)

‖g′I(x)‖
〉
dx
∣∣∣+
∣∣∣ ∫

Ĩ

〈νI ,−g′I(x)〉 dx
∣∣∣

+
∣∣∣ ∫

Ĩ

〈
νI , g

′
I(x)

(
1− 1

‖g′I(x)‖
)〉
dx
∣∣∣

≤
∫
Ĩ

1− 1√
1 + L̃2

dx+
∣∣∣ ∫

Ĩ

d
dx
〈νI ,−gI(x)〉 dx

∣∣∣+

∫
Ĩ

L̃(1− 1√
1 + L̃2

) dx,
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where the last inequality is due to (38) and (37). Since x 7→ 〈νI ,−gI(x)〉 is Lipschitz
continuous and hence absolutely continuous, the fundamental theorem of calculus (The-
orem 1) and (32) give∫

Ĩ

d
dx
〈νI ,−gI(x)〉 dx = lim

x→lI
〈νI ,−gI(x)〉 − lim

x→0
〈νI ,−gI(x)〉 = 0.

Hence the above sum equals

lI

(
1− 1√

1 + L̃2

)
+ 0 + lIL̃

(
1− 1√

1 + L̃2

)
≤ lI(1 + L̃)

(√
1 + L̃2 − 1

)
≤ 2lI

(
1 + 2

( lI
Rr

)2 − 1
)

=
4l3I

(Rr)2
,

where the last inequality is due to (34) and (33).
Hence (36) gives∫

F I
r

hB(nB(K, z)) dH1(z)− lIhB(νI)

≤ 2(
lI
Rr

)2 · lIhB(νI) +
(
1 + 2

( lI
Rr

)2) · lIcIr−2
+
(
1 + 2

( lI
Rr

)2) · S ∣∣∣ ∫
Ĩ

〈 uI
‖uI‖

, νI − nB(K, gI(x))
〉
dx
∣∣∣

≤ 2(
lI
Rr

)2 · lIhB(νI) +
(
1 + 2

( lI
Rr

)2) · lI ((1 + ‖uI‖
4R

) diamK)2

2R
r−2

+
(
1 + 2

( lI
Rr

)2) · S 4l3I
(Rr)2

.

So we get from (31)∫
bd(K+rB)

hB(nB(K, z)) dH1(z)−
∫
bd(L+rB)

hB(nB(L, z)) dH1(z)

=
∑
I∈I

∫
F I
r

hB(nB(K, z)) dH1(z)− lIhB(νI)

≤
∑
I∈I

2
( lI
Rr

)2 · lIhB(νI) +
(
1 + 2

( lI
Rr

)2) · lI ((1 + ‖uI‖
4R

)
diamK

)2
2R

r−2

+
(
1 + 2

( lI
Rr

)2) · 4l3IS

(Rr)2
.
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Since from the assumption r > 2S diamK
R2 one can conclude lI

Rr
< 1

2
and hence 1+2( lI

Rr
)2 < 2,

this expression is smaller than

∑
I∈I

2
l3I

(Rr)2
S + 2lI

( 5S
4R

diamK)2

2R
· r−2 + 8

l3IS

(Rr)2

≤
(

10S

∑
I∈I l

3
I

R2
+ 2

S2(diamK)2
∑

I∈I lI

R3

)
· r−2

≤
(

10S
(
∑

I∈I lI)
3

R2
+ 2

S2(diamK)2
∑

I∈I lI

R3

)
· r−2

≤
(

10
S(2π diamK)3

R2
+ 2

S2(diamK)2 · 2π diamK

R3

)
· r−2

≤
(

(10 + S
R

)
S(2π diamK)3

R2

)
· r−2,

where we obtain the inequality
∑

I∈I lI ≤ 2π · diamK as follows: The sets I ∈ I are
pairwise disjoint subsets of bd convK and hence

∑
I∈I lI ≤ H1(bd convK). By [18, p.

210] we get
∑

I∈I lI ≤ 2V1(convK). Since convK is contained in a ball of radius diamK,
the monotonicity of the intrinsic volumes (6) gives

∑
I∈I lI ≤ 2V1(convK) ≤ 2π ·diamK.

Now the second inequality of the assertion is proven.

The proof of the first inequality is similar to that of the second one. We will only present
the computations that are different.
Lemma 35 implies for I ∈ I that∫

F I
r

hB(nB(K, z)) dH1(z)− lIhB(νI)

≥
∫
Ĩ

hB(nB(K, gI(x))) dx− lIhB(νI)

≥
∫
Ĩ

hB(νI)− 〈uI , νI − nB(K, gI(x))〉 − cIr−2 dx− lIhB(νI)

≥ −lIcIr−2 −
∫
Ĩ

〈uI , νI − nB(K, gI(x))〉 dx

≥ −lI
((1 + ‖uI‖

4R
) diamK)2

2R
r−2 − 4l3IS

(Rr)2

38



and hence∫
bd(K+rB)

hB(nB(K, z)) dH1(z)−
∫
bd(L+rB)

hB(nB(L, z)) dH1(z)

=
∑
I∈I

∫
F I
r

hB(nB(K, z)) dH1(z)− lIhB(νI)

≥ −
∑
I∈I

(
lI

((1 + ‖uI‖
4R

) diamK)2

2R
r−2 +

4l3IS

(Rr)2

)

≥ −
(∑

I∈I
lI

) (( 5S
4R

) diamK)2

2R
r−2 −

4S ·
∑

I∈I l
3
I

(Rr)2

≥ −(2π · diamK)
(( 5S

4R
) diamK)2

2R
r−2 − 4S · (2π · diamK)3

(Rr)2

≥
[
− ( S

R
+ 4)

S(2π · diamK)3

R2

]
· r−2

Now we obtain the following special case of Theorem 32(i):

Lemma 38. Let K ⊆ R2 be a body and L := convK. Then for all b ≥ a ≥ 2R−2S diamK
we have

|(V2(K + bB)− V2(L+ bB))− (V2(K + aB)− V2(L+ aB))|

≤
∫ b

a

(
(10 + S

R
)
S(2π diamK)3

R2

)
· s−2 ds. (39)

Proof. By Theorem 20 and Lemma 21 we have

(V2(K + bB)− V2(L+ bB))− (V2(K + aB)− V2(L+ aB))

=

∫ b

a

(∫
bd(K+sB)

hB(nB(K, z)) dH1(z)−
∫
bd(L+sB)

hB(nB(L, z)) dH1(z)

)
ds

for all b ≥ a ≥ 0. Due to Lemma 36 this implies the assertion.

Proof of Theorem 32. (i) Like in the proof of Theorem 22 we put Xx := X ∩ (x+ Ŷ ) and
Zx := convXx for x ∈ Y ⊥ and we let X|Y ⊥ denote the image of X under the orthogonal
projection onto Y ⊥.
Let b > a ≥ 1. For fixed x ∈ Y ⊥ we can identify Ŷ and x+ Ŷ at the same time with R2

in such a way that RB2 ⊆ Y .
In each of the cases that 2R−2S diamXx is greater than b, is in [a, b], or is less than a,
Lemma 38 and Theorem 18 imply

(V2(X
x + bY )− V2(Zx + bY ))− (V2(X

x + aY )− V2(Zx + aY ))

≤
∫ b

a

1{s>2R−2S diamXx}

(
(10 + S

R
)
S(2π diamXx)3

R2

)
· s−2 ds

+

∫ b

a

1{s≤2R−2S diamXx}
2
s
(V2(X

x + sY ) + V2(Z
x + sY )) ds.
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Now Fubini’s Theorem gives

E[Vn(X + bY )− Vn(XY + bY )]− E[Vn(X + aY )− Vn(XY + aY )]

= E
∫
X|Y ⊥

(V2(X
x + bY )− V2(Zx + bY ))− (V2(X

x + aY )− V2(Zx + aY )) dx

≤ E
∫
X|Y ⊥

(∫ b

a

1{s>2R−2S diamXx}

(
(10 + S

R
)
S(2π diamXx)3

R2

)
· s−2 ds

+

∫ b

a

1{s≤2R−2S diamXx}
2
s
(V2(X

x + sY ) + V2(Z
x + sY )) ds

)
dx

≤ Eκn−2Gn−2
(∫ b

a

(
(10 + S

R
)
S(2πG)3

R2

)
· s−2 ds

+

∫ b

a

(2R−2SG)3

s3
2
s
2π(G+ sS)2 ds

)
≤
∫ b

a

E
[
κn−2G

n−2 ·
(

(11 S
R

)
S(2πG)3

R2
· s−2 +

(2SG)3

R6s4
4π(2GsS)2

)]
ds

≤ 3200κn−2

∫ b

a

E

[(
SG

R2

)3

GnS2

]
· s−2 ds

=
c

a
− c

b
.

(ii) Since r 7→ E[Vn(X + rY ) − Vn(XY + rY )] is Lipschitz continuous on [1,∞) by part
(i), we conclude, e.g. using Theorem 1, that this function is differentiable a.e. In those
points, where the derivative exists, we get by an elementary computation from part (i)
that its absolute value is less than c/r2.

5 Weighted parallel volumes and differentiability

In this section we apply the theorems from Sections 3 and 4 to the functions that map
a non-negative real number r onto the real number fµ(rK), where the functional fµ is a
certain generalisation of the Wills functional. In Theorem 39 we will show that such a
function is infinitely differentiable in r > 0, if fµ fulfils strong regularity assumptions, e.g.
if fµ is the Wills functional. Then we will compute in Theorem 40 and Theorem 41 under
weaker regularity assumptions the first derivative in r = 0 and, if it exists, also the second
derivative. The third and longest part of this section will be giving sufficient conditions
for the existence of this second derivative. In Corollary 44 we give the derivatives from
Theorem 40 and Theorem 41 in the special case, where fµ is the Wills functional.
The results of this section answer a question of R.A. Vitale, who asked what the geometric
meaning of the derivatives in Corollary 44 is.
A signed measure is a measure that may take negative values. For a precise introduction,
see e.g. [2]. Here we always assume that it has finite total variation. The variation measure
of a signed measure µ will be denoted by |µ|.
The Wills functional is defined by

W : C → R, K 7→ EVd(K + ΛBd), (40)
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where Λ is an R+
0 -valued random variable with distribution function 1 − e−πt2 . If K is

convex, then the Wills functional of K equals the sum of its intrinsic volumes.
For a convex body B ⊆ Rd and a signed measure ρ on R+

0 with finite d-th moment we
call

C → R, K 7→
∫
R+
0

Vd(K + λB) dρ(λ)

ρ-weighted B-parallel volume.
Finally, for a signed measure µ on K satisfying∫

K
Vd(K + A) d|µ|(A) <∞, K ∈ C, (41)

we put

fµ : C → R, K 7→
∫
K
Vd(K + A) dµ(A).

For further information on these functionals, see [12].

Theorem 39. Let B ⊆ Rd be a convex body and X ⊆ Rd a random body satisfying
EVd(convX + xB) < ∞ for all x > 0. Let ρ be a signed measure on R+

0 , which is
absolutely continuous and has density f(λ) =

∑n
i=1 yie

Pi(λ) w.r.t. the Lebesgue measure,
where the yi are real numbers and the Pi are on R+ strictly monotonically decreasing
polynomials for i = 1, . . . , n, n ∈ N. Then the map r 7→ E

∫
Vd(rX + λB) dρ(λ) is

infinitely differentiable in r > 0.
In particular, this is true for r 7→ EW (rX).

Proof. Fubini’s theorem is valid for signed measures as well, but now its integrability
assumptions have to be fulfilled w.r.t. the variation measures. Since EVd(convX+xB) <
∞ holds for all x > 0 and the form of f implies that all moments of ρ exist, we can apply
Fubini’s theorem and get

E
∫
R+
0

Vd(rX + λB) dρ(λ) = rd
∫
R+
0

EVd(X + λ
r
B) dρ(λ)

= rd
∫ ∞
0

EVd(X + λ
r
B)f(λ) dλ

= rd
∫ ∞
0

EVd(X + xB)f(rx)r dx.

The integrand of the last integral is obviously infinitely differentiable for any x ∈ R+
0 .

The standard theorems for switching integral and differential hold for signed measures as
well, where the integrability assumptions have to be fulfilled w.r.t. the variation measure.
In order to check these integrability assumptions, observe that for k ∈ N there are numbers
ckαβ;i, α, β ∈ N, i ∈ {1, . . . , n}, of which all but finitely many are 0, such that

∂k

∂rk
f(rx)r =

∑
α,β,i

yic
k
αβ;ir

αxβePi(rx).

Choose R0 ∈ (0, r) and R1 > r and put

h : R+
0 → R, x 7→ E

∑
i,α,β

Vd(X + xB)|yickαβ;i|Rα
1x

βePi(R0x).
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Since h is integrable (w.r.t. the Lebesgue measure on R+
0 ) and for all s ∈ (R0, R1) and all

x ≥ 0 we have
h(x) ≥ |EVd(X + xB)

∑
α,β,i

yic
k
αβ;is

αxβePi(sx)|,

an easy induction shows that r 7→ E
∫
Vd(rX+λB) dρ(λ) is k times differentiable for any

k ∈ N+.

For a convex body B ⊆ Rd we let S(B) denote the minimum of the radius of the circum-
sphere of B and 1 and we recall

R(B) := sup{ρ ∈ R+
0 | ρBd is summand of B}.

Theorem 40. Let X ⊆ Rd, d > 1, be a random body with E (diamX)d < ∞ and µ a
signed measure on K, which is concentrated on the set of all convex bodies having interior
points, and fulfils

∫
K S(A)d−1 d|µ|(A) <∞ and (41). Then r 7→ Efµ(rX) is differentiable

in r = 0 with
d
dr
Efµ(rX)|r=0 = d

∫
K
EV (convX[1], A[d− 1]) dµ(A). (42)

The mixed volume is continuous as shown in the proof of [18, Theorem 5.1.6] and hence
measurable.
Proof. We first show this theorem in the special case, where µ is the Dirac measure in a
convex body B which has interior points and X is deterministic. Although this is an easy
consequence of [15, Corollary 2(2)], we find it convenient to give a proof using the same
methods as the proof of Theorem 41 below. By Theorem 22 for the map

∆ : R+
0 → R+

0 , s 7→ Vd(convX + sB)− Vd(X + sB),

there is a constant c ∈ R+
0 with ∆(s) < c · sd−2 for s ≥ 1. Hence

Vd(rX +B) = rd · Vd(X + 1
r
B)

= rd ·

(
d∑
j=0

(
d

j

)
(1
r
)d−jV (convX[j], B[d− j])−∆(1

r
)

)

=
d∑
j=0

(
d

j

)
rjV (convX[j], B[d− j])− rd ·∆(1

r
). (43)

Since 0 ≤ rd ·∆(1
r
) ≤ c · r2 for r ≤ 1, we conclude

d
dr
Vd(rX +B) = dV (convX[1], B[d− 1]).

The integrability assumption, needed to generalize the statement from this special case
to the general case, are fulfilled, since we have assumed

∫
K S(A)d−1 d|µ|(A) < ∞ and

E (diamX)d <∞ and an easy computation shows that for r < 1 we have

Vd(rX +B)− Vd(B)

r
≤

d∑
j=1

(
d

j

)
(diamX)j(diamB)d−jκd.
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Theorem 41. Let X ⊆ Rd, d > 1, be a random body with E (diamX)d+1 < ∞ and µ a
signed measure on K, which fulfils the integrability assumptions (41) and∫

K

S(A)d

R(A)3
d|µ|(A) <∞.

(i) Then

Efµ(rX) =
2∑
j=0

(
d

j

)
rj
∫
K
EV (convX[j], A[d− j]) dµ(A) +O(r3)

as r → 0.

(ii) If the second derivative exists, then

d2

dr2
Efµ(rX)|r=0 = d(d− 1)

∫
K
EV (convX[2], A[d− 2]) dµ(A). (44)

Proof. (i) Put Z := convX. By Theorem 26 for each convex body B, which contains a
ball as summand, there is a map ∆B : R+

0 → R+
0 with

EVd(X + sB) = EVd(Z + sB)−∆B(s)

such that

0 ≤ ∆B(s) < c · S(B)d

R(B)3
sd−3 (45)

holds for all s > 1 with a constant c ∈ R+
0 that is independent of B, but depends on the

distribution of X. Just like in (43) we get

Efµ(rX) =
d∑
j=0

(
d

j

)
rj
∫
K
EV (Z[j], A[d− j]) dµ(A)−

∫
K
rd∆A(1

r
) dµ(A). (46)

Moreover, for r < 1 we have∣∣∣∣∫
K
rd∆A(1

r
) dµ(A)

∣∣∣∣ ≤ ∫
K
rd · c · S(A)d

R(A)3
(1
r
)d−3 d|µ|(A) ≤ r3 · c ·

∫
K

S(A)d

R(A)3
d|µ|(A). (47)

So (i) is shown.
(ii) Assume, Efµ(rX) is twice differentiable with

d2

dr2
Efµ(rX)|r=0 6= d(d− 1)

∫
K
EV (convX[2], A[d− 2]) dµ(A). (48)

Then (46) yields that h(r) :=
∫
K r

d∆A(1
r
) dµ(A) is twice differentiable, too, and h′′(0) 6= 0,

w.l.o.g. h′′(0) > 0. Hence for each γ ∈ R+ there is ε ∈ (0, 1) with h′(r) > γr2 for all
r ∈ (0, ε). Putting γ := 3c

∫
K S(A)d/R(A)3 d|µ|(A) and integrating this over (0, ε), we get

h(ε) > ε3c
∫
K S(A)d/R(A)3 d|µ|(A), which contradicts (47).

We will now provide sufficient conditions for the existence of the second derivative in
(44). First we will show that this second derivative always exists in the planar case, if we
modify the notion of the derivative appropriately.
We put R′(B) := min{R(B), 1} for B ∈ K.
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Theorem 42. Let X ⊆ R2 be a random body with E (diamX)5 < ∞ and µ a signed
measure on K, which is concentrated on the set of all strictly convex bodies and fulfils the
integrability conditions (41) and∫

K

S(A)5

R′(A)6
d|µ|(A) <∞.

Then h1(r) := d
dr
Efµ(rX) is defined for a.a. r ∈ R+ and we have

lim
r→0

h1(r)− h1(0)

r
= 2EV2(convX) · µ(K).

Proof. We put Z := convX. For a strictly convex body B ⊆ R2 we put ∆B(s) :=
E[V2(Z + sB) − V2(X + sB)] for all s > 0. If B has moreover a ball as summand, then
Theorem 32 implies that there is a constant c̃ ∈ R+

0 , which is independent of B but
depends on the distribution of X, such that

|∆B(b)−∆B(a)| < c̃ · S(B)5

R′(B)6
(
1
a
− 1

b

)
(49)

for all b > a ≥ 1.
Now we will get bounds for the derivative of the right-hand side of (46). For s < r < 1
and a strictly convex body B ⊆ R2 with a ball as summand we have according to (45)
and (49)

|r2∆B(1
r
)− s2∆B(1

s
)| ≤ |r2∆B(1

r
)− r2∆B(1

s
)|+ |r2∆B(1

s
)− s2∆B(1

s
)|

≤ r2c̃ · S(B)5

R′(B)6
(

1

1/r
− 1

1/s
) + (r2 − s2) · cS(B)2

R(B)3
· (1

r
)−1

≤ r2c̃ · S(B)5

R′(B)6
(r − s) + (r2 − s2) · c S(B)5

R′(B)6
· r

≤ (2r3 − rs2 − r2s) ·max{c, c̃} · S(B)5

R′(B)6
.

Hence

| d
dr
E
∫
K
r2∆A(1

r
) dµ(A)| ≤ 3r2 ·max{c, c̃} ·

∫
K

S(A)5

R′(A)6
dµ(A).

Together with (42), (46) and Fubini’s theorem this gives

lim
r→0

h1(r)− h1(0)

r

= lim
r→0

d
dr
E
∫
K V2(rX + A) dµ(A)− 2

∫
K EV (Z[1], A[1]) dµ(A)

r

= lim
r→0

∑2
j=1

(
2
j

)
jrj−1

∫
K EV (Z[j], A[2− j]) dµ(A)− 2

∫
K EV (Z[1], A[1]) dµ(A)

r

− lim
r→0

d
dr

∫
K r

2∆A(1
r
) dµ(A)

r

= 2

∫
K
EV (Z[2], A[0]) dµ(A)− 0

= 2EV2(Z) · µ(K).
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Now we will show that the second derivative in (44) exists, if fµ is a weighted parallel
volume fulfilling some regularity assumptions.

Theorem 43. Let X ⊆ Rd, d > 1, be a random body with E(diamX)d+1 <∞ and B ⊆ Rd

a convex body with a summand RBd, R > 0. Let ρ be a signed measure on R+
0 , which

has finite d-th moment and is absolutely continouos w.r.t. the Lebesgue measure and has
a differentiable density g. Assume, there is a constant A > 0 such that for all x ∈ R+ we
have

|g(x)| ≤ A

xd−1
, |g(x)| ≤ A, |g′(x)| ≤ A

xd
, |g′(x)| ≤ A

x
.

Then the map r 7→ E
∫
Vd(rX + λB) dρ(λ) is twice differentiable in r = 0 with

d2

dr2
E
∫
Vd(rX + λB) dρ(λ) = d(d− 1)µd−2EV (convX[2], B[d− 2]),

where µd−2 is the (d− 2)-th moment of ρ.

Proof. We have to distinguish cases w.r.t. the dimension. First we consider the case d ≥ 3.
We put again Z := convX and ∆A(s) := E[Vd(Z + sA) − Vd(X + sA)] for s > 0 and
convex bodies A. For s, λ ∈ R+ we have

∆λB(s) = E[Vd(Z + sλB)− Vd(X + sλB)] = ∆B(sλ).

By Theorem 26 there is a constant c with ∆(s) < c · sd−3 for all s ≥ 1, where ∆ := ∆B.
Hence there is a constant c1 with ∆(s) < c · sd−3 + c1 for all s ≥ 0.
We will compute the derivative of h(r) :=

∫
R+
0
rd∆(λ

r
) dρ(λ) in a point r ≥ 0. We have

h(r) =

∫ ∞
0

rd∆(λ
r
)g(λ) dλ =

∫ ∞
0

∆(x)g(rx)rd+1 dx.

Now we will check the integrability conditions needed in order to differentiate this integral
pointwise. Let R1 > 1. We abbreviate a ∧ b := min{a, b}. For any r ∈ [0, R1] we have

| d
dr

∆(x)g(rx)rd+1|
= |∆(x)g′(rx)xrd+1 + (d+ 1)∆(x)g(rx)rd|

≤ (cxd−3 + c1)
[ A

(rx)d
∧ A

rx

]
xrd+1 + (d+ 1)(cxd−3 + c1)

[ A

(rx)d−1
∧ A

]
rd

= (1 + d+ 1)(cxd−3 + c1)
[ A

(rx)d−1
∧ A

]
rd

≤ (d+ 2)[(cx−2 + c1x
1−d)AR1 ∧ (cxd−3 + c1)AR

d
1].

Moreover, ∫ ∞
0

[(cx−2 + c1x
1−d)AR1 ∧ (cxd−3 + c1)AR

d
1] dx <∞,

since the integrand is of order x0 for x → 0 and of order x−2 for x → ∞. Observe the
difference between the situation here and the situation in Theorem 39: In Theorem 39 we
wanted to switch differential and integral in d

dr

∫∞
0

EVd(X + xB)g(rx)rd+1 dx. However,
the integrability assumption was only fufilled for r > 0 and not for r = 0. Now we have
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replaced EVd(X + xB) by the smaller value ∆(x) and whence the integrability condition
is now fulfilled for r = 0, too.
For r ∈ [0, 1] we have further

|h′(r)| =

∣∣∣∣∫ ∞
0

d
dr

∆(x)g(rx)rd+1 dx

∣∣∣∣
=

∣∣∣∣∫ ∞
0

∆(x)(g′(rx)xrd+1 + (d+ 1)g(rx)rd) dx

∣∣∣∣
≤

∫ ∞
0

rd−1∆(λ
r
) (|g′(λ)|λ+ (d+ 1)|g(λ)| ) dλ

≤
∫ ∞
0

rd−1∆(λ
r
)

([ A
λd
∧ A
λ

]
λ+ (d+ 1)

[ A

λd−1
∧ A

])
dλ

=

∫ ∞
0

rd−1∆(λ
r
)(d+ 2)

[ A

λd−1
∧ A

]
dλ

≤
∫ ∞
0

rd−1(c(λ
r
)d−3 + c1)(d+ 2)

[ A

λd−1
∧ A

]
dλ

≤ r2
∫ ∞
0

(cλd−3 + c1)(d+ 2)
[ A

λd−1
∧ A

]
dλ.

Since the integrand in the last line is of order λ0 for λ→ 0 and of order λ−2 for λ→∞,
the integral is finite. Hence h′′(0) = 0 and by (46) this shows the statement.

Now we examine the case d = 2. Let ∆, c and h be defined as above. Then ∆(s) < cs−1

holds for all s > 0. Since ∆ is bounded on compact intervals, there is c′ ∈ R+
0 such that

∆(s) < c′ for all s > 0.
Again we can compute the derivative of h by pointwise differentiation. However, we have
to find a new way of checking the integrability conditions. Let R1 > 1 and r ∈ [0, R1].
Then

| d
dr

∆(x)g(rx)r3| = |∆(x)g′(rx)xr3 + 3∆(x)g(rx)r2|

≤ [cx−1 ∧ c′] ·
[ A

(rx)2
∧ A

rx

]
xr3 + 3[cx−1 ∧ c′] ·

[ A
rx
∧ A

]
r2

= (1 + 3)[cx−1 ∧ c′] ·
[ A
rx
∧ A

]
r2

≤ 4A[cx−1 ∧ c′] ·
[ r
x
∧ r2

]
≤ 4A[cx−1 ∧ c′] ·

[R1

x
∧R2

1

]
.

Further ∫ ∞
0

4A[cx−1 ∧ c′] ·
[R1

x
∧R2

1

]
dx ≤ 4AR2

1

∫ ∞
0

[ c
x2
∧ c′

]
dx <∞.

Hence we can change differential and integral and for r ∈ [0, 1] we obtain in a similar way
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as above

|h′(r)| ≤
∫ ∞
0

r ·∆(λ
r
)

([A
λ2
∧ A
λ

]
λ+ 3

[A
λ
∧ A

])
dλ

≤
∫ ∞
0

r ·
[
c(λ

r
)−1 ∧ c1

]
· 4
[A
λ
∧ A

]
dλ

≤ 4r

∫ ∞
0

[crA
λ2
∧ c1A

]
dλ

= 4r

∫ √
crA
c1A

0

c1Adλ+ 4r

∫ ∞
√

crA
c1A

crA

λ2
dλ

= 4r

√
cr

c1
· c1A+ 4r

crA√
cr/c1

= 8r
√
r · A
√
c · c1.

Just like in the first case, this shows the assertion.

Now we will reformulate the theorems of this section in the special case, where the func-
tional fµ is the Wills functional.

Corollary 44. Let X ⊆ Rd, d ≥ 2, be a random body with E(diamX)d+1 < ∞. Then
r 7→ EW (rX) is twice differentiable in r = 0 and we have

d
dr
EW (rX)|r=0 = EV1(convX)

and
d2

dr2
EW (rX)|r=0 = 2 · EV2(convX).

Proof. A straight-forward computation shows that for the random variable Λ from the
definition (40) of W we have

κd−1EΛd−1 = κd−2EΛd−2 = 1.

Now Theorem 40 yields

d
dr
EW (rX)|r=0 =

(
d

1

)
EΛd−1 · EV (convX[1], Bd[d− 1])

= κd−1EΛd−1 · EV1(convX)

= EV1(convX).

We will now show that the Lebesgue density g(x) = 2πx·e−πx2 of Λ fulfils the assumptions
of Theorem 43. We have g′(x) = 2π · e−πx2 − 4π2x2 · e−πx2 and hence |g′(x)| ≤ (2π +
4π2x2) · e−πx2 . Moreover,

lim
x→0

2πx · e−πx2 = 0

lim
x→∞

2πx · e−πx2 · xd−1 = 0

lim
x→0

(2π + 4π2x2) · e−πx2 = 2π

lim
x→∞

(2π + 4π2x2) · e−πx2 · xd = 0

47



Hence we can apply Theorem 43 and the second assertion ensues just like the first.

Considering Example 29 it should not be to surprising that formulas analogue to the
formulas presented in this section for the third derivative do not hold. However, we find it
worthy to present an example explicitely showing that even d3

dr3
W (rK)|r=0 = 6V3(convK)

does not hold in general.

Example 45. Let K ⊆ R3 be a body, whose parallel volume is a polynomial, V3(K +
sB3) =

∑3
i=0 cis

i, say, and for which V3(K) 6= V3(convK). Such bodies exist, as shown
in [7, section 4]. Let Λ denote again the random variable with distribution function
1− e−πt2 , t ≥ 0. Then

W (rK) = r3 EV3
(
K +

Λ

r
B3
)

= r3E
3∑
i=0

ci
(Λ

r

)i
=

3∑
i=0

ciEΛi r3−i.

Thus

d3

dr3
W (rK)|r=0 = d3

dr3

3∑
i=0

ciEΛi r3−i|r=0 = 6c0 = 6V3(K + 0B3) = 6V3(K).

6 Stochastic applications

In this section we will apply the results from the previous sections to Wiener sausages,
Boolean models and Gaussian random variables. In Corollary 46 we obtain a third-order
expansion of the expected volume of a Wiener sausage as the time tends to zero. In
Theorem 47 we show that the failure rate of the contact distribution of a Boolean model
does not change too much, if each grain is replaced by its convex hull and Theorem 49
is a limit theorem including the asymptotic speed of the convergence about the contact
distribution of a Boolean model as the intensity tends to zero. Then we will present
some statements that finally lead to the formulae in Theorem 55 that express the first
and second intrinsic volume of the convex hull of a body as an expected value of certain
geometric functionals of this body evaluated at a standard Gaussian random variable.

The parallel body of a Brownian path is called Wiener sausage. While there are many
papers dealing with the asymptotic behavior of the volume of the Wiener sausage as the
time tends to infinity (see [11] and the literature cited therein), [14] seems to be the only
one dealing with its asymptotics as the time tends to 0. There it was shown that

EVd(St+rBd) = κdr
d+

d
√

2κd√
π

rd−1
√
t+o(

√
t) =

πd/2

Γ(d
2

+ 1)
rd+

2
√

2π(d−1)/2

Γ(d
2
)

rd−1
√
t+o(

√
t),

where St ⊆ Rd denotes a Brownian path up to time t. Now putting together Theorem 41
and [14, Prop. 1.4] we obtain:
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Corollary 46. For r ≥ 0 we have as t→ 0

EVd(St + rBd) = κdr
d +

d
√

2κd√
π

rd−1
√
t+

(d− 1)κd−2π

2
rd−2t+O(t3/2)

=
πd/2

Γ(d
2

+ 1)
rd +

2
√

2π(d−1)/2

Γ(d
2
)

rd−1
√
t+

(d− 1)πd/2

2Γ(d
2
)

rd−2t+O(t3/2).

Now we turn to the contact distributions of Boolean models. For the introduction of the
notions of a Boolean model and the contact distribution, see [19, sections 4.3 and 2.4].
Here we consider only stationary Boolean models and assume that their grain distributions
are defined on the set C0 of centered bodies (see [19, section 4.1]). The contact distribution
of a stationary Boolean model Z in Rd with intensity γ and grain distribution Q is

HZ
B(r) = 1− exp

(
− γ

∫
C0
Vd(A+ rB∗)− Vd(A) dQ(A)

)
, r ≥ 0, (50)

(see [19, Theorem 9.1.1]), where B∗ := {−x | x ∈ B} for B ⊆ Rd.
The failure rate of a reell-valued, absolutely continuous distribution with distribution
function F and density f is

λ : R→ R+
0 , t 7→

{
f(t)

1−F (t)
if F (t) < 1,

0 if F (t) = 1.

Theorem 47. Let B ⊆ R2 be a convex body with a ball as summand and 0 ∈ intB.
Further let Z be a stationary Boolean model in R2 induced by the marked point pro-
cess

∑
δ(Xi,Zi), that is Z =

⋃
(Xi + Zi). Assume that the typical grain Z0 of Z fulfils

E(diamZ0)
5 < ∞. Then Z̄ :=

⋃
conv(Xi + Zi) is a stationary Boolean model, too. Let

λ and λ̄ denote the failure rates of the contact distributions of Z and Z̄ w.r.t. B. Then
there is a constant C > 0 such that for a.a. sufficiently large r we have

|λ(r)− λ̄(r)| < C · r−2.

Theorem 47 is an immediate consequence of Theorem 32(ii) and Lemma 48.

Lemma 48. Let Z be a stationary Boolean model in Rd with intensity γ and grain dis-
tribution Q and let B ⊆ Rd be a convex body with 0 ∈ intB. Then the failure rate of the
contact distribution of Z w.r.t. B is for a.a. r ≥ 0

λ(r) = γ · ∂
∂t

∫
C0
Vd(A+ tB∗) dQ(A)|t=r.

Proof. First we show that any map f : R+
0 → R+

0 with

f(r) = exp
(
− γ

∫
C0
Vd(A+ rB∗)− Vd(A) dQ(A)

)
· γ · ∂

∂t

∫
C0
Vd(A+ tB∗) dQ(A)|t=r

for any r ≥ 0, in which the derivative exists, is a density of the contact distribution. Let
R2 > R1 ≥ 0. Let r1, r2 ∈ [R1, R2] such that r1 ≤ r2. Then by Theorem 18 we have∫
C0
Vd(A+ r2B

∗)− Vd(A+ r1B
∗) dQ(A) ≤

∫
C0

∫ r2

r1

d
s
(Vd(A+ sB∗)− Vd(A)) ds dQ(A)

≤(r2 − r1) ·
d

R1

∫
C0
Vd(A+R2B

∗)− Vd(A) dQ(A).
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So t 7→
∫
C0 Vd(A + tB∗) dQ(A) is Lipschitz continuous on [R1, R2]. Since t 7→ e−γt is

Lipschitz continuous on R+
0 , HZ

B is Lipschitz continuous on [R1, R2]. Because R1 and R2

were arbitrary, Theorem 1 implies that f is a density of HZ
B .

Now the assertion is immediate from the definition of the failure rate.

In the next theorem we will examine the asymptotic behavior of the contact distribution
of a Boolean model as the intensity tends to zero.

Theorem 49. Let Z(r), r ∈ R+, be stationary Boolean models in Rd with intensity rd and
a typical grain Z0 that is independent of r and fulfils E(diamZ0)

d+1 <∞. Let B ⊆ Rd be
a convex body with 0 ∈ intB. Let D be an R+

0 -valued random variable with distribution
function 1− exp(−tdVd(B)). Then we have

r · dB(Z(r), 0)
r→0−→ D

in distribution. More precisely for t ≥ 0 we have

lim
r→0

P(r · dB(Z(r), 0) ≤ t)− (1− e−tdVd(B))

r
= e−t

dVd(B)td−1EV (convZ0[1], B∗[d− 1]).

Proof. For a convex body A ⊆ Rd we let δA denote the Dirac measure on K in A. From
(50) and Theorem 40 we get

lim
r→0

P(r · dB(Z(r), 0) ≤ t)− (1− e−tdVd(B))

r

= lim
r→0

(1− e−rdEVd(Z0+
t
r
B∗))− (1− e−tdVd(B))

r

= lim
r→0

e−Vd(tB
∗) − e−EVd(rZ0+tB∗)

r

= − d
dr
e−EVd(rZ0+tB∗)

|r=0

= −e−Vd(tB∗) ·
(
− d
dr
E
∫
K
Vd(rZ0 + A) dδtB∗(A)|r=0

)
= e−t

dVd(B) ·
(
E
∫
K
V (convZ0[1], A[d− 1]) dδtB∗(A)

)
= e−t

dVd(B)td−1EV (convZ0[1], B∗[d− 1]).

In the third part of this section we give a new proof for formulae that use Gaussian random
variables in order to compute the first and second intrinsic volume the convex hull of a
body. We do this by finding expressions for the first and second derivative of W (rK)
involving Gaussian random variables and comparing these expressions to the ones from
Corollary 44.
Vitale [24] derived the following representation of the Wills functional.

Theorem 50. Let Z be a standard-normal distributed random vector in Rd and K ⊆ Rd

compact. Then

W (K) = E exp(max{〈a, Z〉 − ‖a‖
2

2
| a√

2π
∈ K}).
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Now we let A ⊆ Rd denote a fixed finite set. For r ∈ R+
0 and z ∈ Rd we let arz ∈

√
2πA

denote a point that satisfies

〈arz, z〉 − r
2
‖arz‖2 = max{〈a, z〉 − r

2
‖a‖2 | a√

2π
∈ A}

in such a way that Rd → Rd, z 7→ arz is measurable. We have to argue that such a choice
is possible. We abbreviate fz(a) := 〈a, z〉 − r

2
‖a‖2 and Ã := {a ∈ Rd | a√

2π
∈ A}. Now

β : Rd 7→ F , z 7→ argmaxa∈Ã fz(a) := {a ∈ Ã | fz(a) = max{fz(b) | b ∈ Ã}}

is upper semicontinuous. Since the lower tangent point (see [19, p. 110]) can be shown to
be measurable by semicontinuity arguments, it is possible to select one point from β(Z)
in a measurable way.
From now on Z is a standard-normal distributed random vector in Rd.

Theorem 51. With these denominations we have for r ≥ 0

∂
∂r
W (rA) = E exp

(
〈rarZ , Z〉 − 1

2
‖rarZ‖2

)
· (〈arZ , Z〉 − r‖arZ‖2) (51)

and

∂2

∂r2
W (rA) = E exp

(
〈rarZ , Z〉 − 1

2
‖rarZ‖2

)
· [(〈arZ , Z〉 − r‖arZ‖2)2 − ‖arZ‖2]. (52)

Proof. Let r ∈ R+
0 . Then for two different points a, a′ ∈

√
2πA we have

〈a, Z〉 − r
2
‖a‖2 6= 〈a′, Z〉 − r

2
‖a′‖2

a.s. and hence arZ is determined uniquely a.s. If arZ is determined uniquely, then there is
neighbourhood of r such that for all s from this neighbourhood arZ = asZ holds. Thus

∂
∂r

exp
(
〈rarZ , Z〉 − 1

2
‖rarZ‖2

)
= exp

(
〈rarZ , Z〉 − 1

2
‖rarZ‖2

)
· (〈arZ , Z〉 − r‖arZ‖2). (53)

By Theorem 50 we have

∂
∂r
W (rA) = ∂

∂r
E exp(max{〈ra, Z〉 − ‖ra‖

2

2
| a√

2π
∈ K})

= ∂
∂r
E exp

(
〈rarZ , Z〉 − 1

2
‖rarZ‖2

)
(54)

If we can switch differential and expected value in the last expression, equation (53) will
yield the assertion (51). In order to check the integrability assumptions, we choose R > 0
with A ⊆ RBd. For s ∈ [0, r + 1] we put I := [min{r, s},max{r, s}]. Since the map
t 7→ exp(〈tatZ , Z〉− 1

2
‖tatZ‖2) is a.s. continuous and piecewise differentiable, we obtain a.s.

| exp(〈sasZ , Z〉−1
2
‖sasZ‖2)− exp(〈rarZ , Z〉 − 1

2
‖rarZ‖2)|

≤ |s− r| ·max{| d
dt

exp(〈tatZ , Z〉 − 1
2
‖tatZ‖2)| | t ∈ I}

≤ |s− r| ·max{exp(〈tatZ , Z〉 − 1
2
‖tatZ‖2) · |〈atZ , Z〉 − t‖atZ‖2| | t ∈ I}

≤ |s− r| · exp((r + 1)R‖Z‖) · (R‖Z‖+ (r + 1)R2).
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The random variable on the right hand side has finite expected value, which completes
the proof of (51).
The proof of (52) is analogue to the proof of (51). The only difference is that in the place,
where Theorem 50 was used, now equation (51) has to be used.

For a body K ⊆ Rd and a vector u ∈ Rd we put

hK(u) := max{〈k, u〉 | k ∈ K} = hconvK(u)

and we choose a point H(K;u) ∈ K satisfying

〈H(K;u), u〉 = hK(u).

If K is convex, then H(K;u) is an arbitrary point of the support set HK(u). No matter
whether K is convex or not, H(K;Z) is determined uniquely a.s.

Corollary 52. With the denominations introduced above and right now we have

(i) ∂
∂r
W (rA)|r=0 =

√
2π · EhA(Z)

(ii) ∂2

∂r2
W (rA)|r=0 = 2π · E [hA(Z)2 − ‖H(A;Z)‖2].

Proof. From the definition of arz we get

〈a0Z , Z〉 = max{〈a, Z〉 | a ∈
√

2πA} =
√

2π · hA(Z)

and hence, because of a0Z ∈
√

2πA,

a0Z =
√

2π ·H(A;Z).

So Theorem 51 yields the assertion.

Comparing the Corollaries 44 and 52 we obtain the following corollary.

Corollary 53. With the denominations introduced above we have

(i) V1(convA) =
√

2π · EhA(Z)

(ii) V2(convA) = π · E [hA(Z)2 − ‖H(A;Z)‖2].

In order to generalize Corollary 53 from finite sets to compact sets, we need continuity
arguments. According to [19, Theorem 12.3.5] the map conv : C → K is continuous and
the intrinsic volumes and K 7→ hK(u), u ∈ Sd−1, are continuous according to [18, p. 210
resp. Lemma 1.8.10], if considered as functions K → R.

Lemma 54. Let u ∈ Rd and K ∈ C such that H(K;u) is determined uniquely and let
(Ki)i∈N be a sequence converging to K. Then for any choice of H(Ki;u) we have

lim
i→∞

H(Ki;u) = H(K;u).
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Proof. It suffices to show that any subsequence (Km(i))i∈N of (Ki)i∈N contains a subse-
quence (Km(r(i)))i∈N such that

lim
i→∞

H(Km(r(i));u) = H(K;u).

So let (Km(i))i∈N be a subsequence of (Ki)i∈N. Since (Km(i))i∈N converges, there is R ∈ R+

with Km(i) ⊆ RBd for all i ∈ N and, in particular,

H(Km(i);u) ∈ RBd, i ∈ N.

Hence this sequence has a convergent subsequence (H(Km(r(i));u))i∈N. Now

〈 lim
i→∞

H(Km(r(i));u), u〉 = lim
i→∞
〈H(Km(r(i));u), u〉 = lim

i→∞
hKm(r(i))

(u) = hK(u).

Because of limi→∞H(Km(r(i));u) ∈ K we get

lim
i→∞

H(Km(r(i));u) = H(K;u).

Theorem 55. Let K ⊆ Rd be a body and Z a standard-normal distributed random vector
in Rd. Then

(i) V1(convK) =
√

2π · EhK(Z)

(ii) V2(convK) = π · E [hK(Z)2 − ‖H(K;Z)‖2].

Proof. We prove only the second statement, since the first one ensues the same way, only
slightly easier. According to Lemma 9 there is a sequence (Ai)i∈N of finite subsets of K
converging to K. Now Corollary 53, the continuity statements before and in Lemma 54,
and the dominated convergence theorem, which can be applied since Ai ⊆ K holds for all
i ∈ N, give

V2(convK) = lim
i→∞

V2(convAi)

= lim
i→∞

π · E [hAi
(Z)2 − ‖H(Ai;Z)‖2]

= π · E lim
i→∞

[hAi
(Z)2 − ‖H(Ai;Z)‖2]

= π · E [hK(Z)2 − ‖H(K;Z)‖2].

Theorem 55 is not essentially new. The first statement is a special case of Proposition
14 in [22], whose proof is based on the stochastic independence of ‖Z‖ and Z

‖Z‖ and the

projection formula from integral geometry. The second statement is new, but part (ii)
of Corollary 53 can be derived from [1, (3.10.1)] by using that the covariance of 〈a, Z〉 is
‖a‖2 for a ∈ Rd.
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