
COMAND – A Distrib uted Configuration ManagementFramework

Victor Volle
�
, Ingrid Fischer

Universityof Erlangen-N̈urnberg
Martensstr. 3

91058Erlangen,Germany
vrvolle
idfische

@informatik.uni-erlangen.de

DetlefKips
BasysGmbH

Am Weichselgarten4
91058Erlangen,Germany

kips@basys-gmbh.de

ManuelKoch
TechnicalUniversityof Berlin

Franklinstr. 28/29
10587Berlin, Germany

carr@cs.TU-Berlin.de

Abstract

Software developmentis becominga more and more
distributedprocess,which urgentlyneedssupportingtools
in the field of configuration management,software pro-
cess/workflowmanagement,communicationand problem
tracking. In this paperwe presenta new distributedsoft-
ware configuration managementframework COMAND. It
offers high availability throughreplication and a mecha-
nismto easilychangeandadapttheprojectstructureto new
businessneeds. To betterunderstandand formally prove
somepropertiesof COMAND, wehavemodeledit in a for-
mal techniquebasedon distributedgraphtransformations.
Thisformalismprovidesan intuitive rule-baseddescription
techniquemainlyfor thedynamicbehaviorof thesystemon
an abstract level. We useit here to modelthe replication
subsystem.

1. Intr oduction

Developingsoftwareis notaneasilyplanableprocess.
Not only thatsoftwareprojectsaremuchbiggerourdays

thanthey werebeforebutstricterqualityrequirementsmake
it evenmoredifficult to planandto coordinatea project.

Theresultof a developmentprocessoftenhasnot much
in commonwith the original concept. Additionally two
third of thecompleteamountof time andmoney arespent
for maintenanceand further developmentsafter the first
projectwascompleted.

Furthermorethe knowledgeto completea big project
is hardly available in a single company. Hence,external
projectpartnersmustcontribute. More oftenit is alsoeco-
nomicallysensibleto passwork to externalsubcontractors.
Onepossiblescenariois to have just a coreof developers
�
Victor Volle’s work is partly supportedby a researchgrantfrom the

GermanMinistry for CultureandScience(BMBW) undercontractnumber
0004402D7A

locatedin the main company. Additional staff is situated
aroundtheworld wherever theknowledgeneededis avail-
ablefor a reasonableprice. This is known underthecatch-
wordvirtual company: a company that just existsfor a sin-
gleproject.

With an ever growing demandon DistributedSoftware
Developmentoneof the resultsarecommunication,coor-
dinationandquality management,asall projectsitesmust
have accessto a consistentup to datesetof projectdocu-
ments. Whenoneprojectsite changesa concept,it must
becomeknown to all otherprojectsites,too. This is espe-
cially a problemwhenthereis no centralarchive available
for all projectpartners.

In thispaperwearedescribingthearchitectureof thedis-
tributedsoftwareconfigurationmanagement(SCM) frame-
work COMAND. To ensurethe consistency of our SCM
framework, in particular the replication mechanism,we
have specifiedthe coreof COMANDby distributedgraph
transformations[14], whichgave usimportantinsightsinto
theintricaciesof sucha complex system.

1.1.Designgoals

It is – or better: shouldbe – commonknowledgethat
themainproblemof softwareconfigurationmanagementis
not of technicalnature,but a questionof humaninteraction
or “PeopleWare” [9, 4]. IntroducingSCM into anorgani-
zation hasto overcomesomemajor obstacles.Every de-
veloperhasto beconvincedto constantlyandcorrectlyuse
the SCM system. You may call it sluggishnessor experi-
ence:TheaveragedeveloperconsidersSCMasyet another
bureaucraticplot of management.

Thereforethe SCM systemmust be as easyto useas
possibleandthe underlyingmodelmustbe intuitive. The
alternativemaybeto usea big SCMsystemlike ClearCase
[10] whichhidesevery detailof configurationmanagement
from the developers. In this case,however, theremustbe
someonewhodoesnothingbut administeringandmaintain-
ing theSCM system.This is not a feasibleoptionfor most

projectswhich are underconstantpressureto finish their
work undera tight budget.

Sincedistributedprojectsaretakingplacein ratherhet-
erogeneousenvironments,it is importantto have the SCM
systemrunning on as many platforms as possible. To
achieve this we chooseto implementthe completeframe-
work1 in JavaTM. This decisionallows usto offer SCM ser-
vicesevenover theWorld WideWeb.

2. Ar chitecture

In the following we describea give an overview of the
architectureof COMAND. A morecompletedescriptioncan
befoundin [20, 15].

2.1.Configurations are Revisions,too

Selectingarevisionof adocumentfrom a repositoryhas
beenratherstraightforwardsincethedaysof SCCSor RCS:
Youcouldaskfor a revisionEITHERwith a givenrevision
numberor with a label. Eachhasto beuniquewith regard
to all otherrevisionsof this document.But whenit comes
to selectinga consistentsetof revisionsyou arealmostleft
on your own. Revisionswhich belongtogetherhave to be
explicitly labeledwith thesamelabel. If theresponsiblede-
veloperforgetsto doso,therevisionsareleft floatingin the
repositorywith no context informationat all. Heidenreich
[6] proposedanautomaticlabelingbasedon thedependen-
ciesof arevision. A revisionwaslabeledwith avectorcon-
tainingtherevisionnumbersof all revisionsit dependedon.
Thereforeyoucouldrequestarevisionfromthearchiveand
gettingall revisionsbelongingto it with a single request.
No explicit labelingor otheroverheadwasnecessary.

But sincethe dependencieswere not alwaysavailable
andthis labelingproved to be overkill in many situations,
wemadeonestepfurther. In Heidenreich’sapproachacon-
figuration wasa vectorcontainingthe element-wisemaxi-
mumof all vectorsof all revisionsbelongingtogetherat a
given time. In [19] it wasproposedto write this configu-
ration vector into a file andto archive it in the repository.
Therebyconfigurationshave becomerevisions, too. You
couldnow requesta configurationfrom therepositoryand
wouldgetall revisionswhichbelongto thisconfiguration.

Configurationsthemselves may again be identified by
revision numbersor labels. Sinceconfigurationsare re-
visions,the notionof subconfigurationscanbe introduced
rathereasilyinto ourmodel.

In figure 1 the layered architectureof COMAND is
shown. In the repositorylayer, configurationsarenothing
but revisions.But if a revisioncontaininga configurationis

1A minimal problemtrackingtool hasbeencompletedandthereposi-
tory will becompletedsoon.

R R2 31bar.c RR R2 R31

conf subconf

R1 R R32 subconfconf

SCM layer

layer
Repository

Figure 1. Repository and SCM layer

retrievedfrom therepository(checkedout), theSCM layer
knows how to getall revisionscontainedin this configura-
tion.

2.2.Supporting change

Whena configurationis checkedout, a userworkspace
is established,containingall revisionsof the configuration
aswork revisions. Normally the directorystructureof the
projectis recreated,too. A configurationis generallyiden-
tified with a directory, anda subconfigurationis (normally)
identifiedwith adirectorybelow theconfigurationdirectory.
Becausethis structureis archived, too, thestructureof the
completeprojectunderSCMcontrolmaybechangedcom-
pletely. TheSCMsystemknowshow to find olderrevisions
evenif a configurationhasbeensplit in two, subconfigura-
tionshavebeenmovedinto another(sub-)configurationetc.
To achieve this, we neededto assigna uniqueID to every
documentandanID to eachrevision which is uniquewith
regardto thedocumentto which it belongs.Evenrenaming
a documentis easilysupportedby thisapproach.

Imaginea userhasmoveda file (workingrevision) from
onedirectoryin theworkspaceinto another. Whenheor she
now triesto checkin theconfiguration,theSCMsystemhas
to decidewhetherthis file hasto becomethe first revision
of a new documentor (asis thecasein ourscenario)a new
revisionof anexistingdocument.Therepositoryserverfirst
tries to find a documentwith this namein thearchive, if it
can’t befoundit offersa dialoguefor theuserwhereheor
shecandecideonhow to continue.To furthereasetheuse,
youcanmove,renameetc.thefilesin yourworkspacefrom
within theGUI. While doingso,theassociationof working
revisionwith thedocumentandrevision ID is never lost.

Our model– in the terminologyof ConradiandWest-
fechtel [3] – belongsto the category of “versionfirst” in-
steadof “productfirst” selectionof configurations.That is
youhaveto selectaspecificversionof yourproject,andthe
structureof the project is determinedby the selectedver-
sion.

2

3. Replication in COMAND

The replication of revisions and configurationstakes
placein the repositorylayer. The SCM systemonly uses
theservicesprovidedby therepositoryandis – generally–
not awareof the replication. Sincethe repositoryhandles
configurationslike any otherdocumentthe complexity of
thesystemis thereforegreatlyreduced.

To supportthe replicationmechanismthe uniquedocu-
mentandrevision IDs have to be enhanced.Every repos-
itory is assigneda site number. The documentand revi-
sionIDs now consistof a sitenumber, wherethedocument
(resp.revision) hasbeencreatedanda serialnumber:The
serial numberfor documentsis maintainedseparatelyfor
eachrepository(s. fig. 5). Theserialnumberfor revisions
is maintainedby therevision containerwhich is partof the
repository.

Additionally, every changein the repositoryis “time-
stamped”with a serialnumber[1, 6]. Eachchangeis writ-
ten into a log file, which is alsousedto supportrecovery
aftera systemfailure.

Sincewe felt the needto thoroughlyanalyzethe repli-
cationmechanism,we chosea formal modelingtechnique
basedon graphtransformations[12], which hasbeenen-
hancedby [14] to supportthemodelingof distributedsys-
tems.

3.1.Distributed Graph Transformations (DGT)

DGT canbe seenashierarchicalnon distributedgraph
transformation(GT) on two levels. Therefore,we first re-
view the basic conceptsof GT, that are labeled graphs
and transformationrules. A labeledgraphconsistsof a
set of edges

���
, a set of nodes

���
, and two mappings�	��

����� ��������� specifyingsourceandtarget nodefor

eachedge. Nodesaswell asedgesmay be labeledby el-
ementsof differentlabelsets,for instancerealnumbersor
strings.In figure2 somesamplelabeledgraphsareshown.

A graph can be modified by transformationrules as
shown in theupperhalf of figure2. It consistsof two graph
morphisms� ��� ���
������ ��� , wheregraph

�
is called

left handside, � gluinggraph,and
�

right handsideof the
rule. A graphmorphism��� �!� �
 � �#" betweentwo graphs�

and $ consistsof two mappings� � betweenthe edges
and � � betweennodes.A rulecanbeadditionallyfurnished
with a setof morphisms% � � &('*) � �+� %,).-0/214351�687 ,
calledgraphicalconditionsandaset %,9 of booleanexpres-
sions,called label conditions. In figure2 the rule possess
onegraphical(' � �:� %) andonelabelcondition(;=<?>).

In thesamplerulein figure2 nodesarelabeledwith num-
bers(accurately:elementsfrom the term algebrafor inte-
gers),where ; and > arevariables.Whenapplyinga rule
to a graph

�
first anembedding@ of the left handside

�

2 4

5 9

yx y

4

5 9

l r

2 4

5 9

y x+y

x * y

6

8

L K R

G C H

m

A a

x < y

x y

q

Figure 2. A non distributed transformation.

into
�

mustbesought.By theembeddingthevaluesof the
variables;
 > arereplacedby thevaluesA
CB . Next thelabel
conditionshave to be checked.The embeddingsatisfiesa
label condition, if its evaluationis true underthe variable
assignmentof @ . In figure2 ;?<D> denotesthat thevalue
substitutedfor ; mustbesmallerthanthevaluesubstituted
for > , which is truein ourexample.

Then the graphicalconditions ') have to be checked.
The embedding@ satisfies ') if there is no embeddingE#� %) �F� suchthat E�G ') �:@ , i.e. ') specifiesforbidden
graphicalstructures.In figure2 thereis a graphicalcondi-
tion forbiddinganedgeoutgoingfrom thenodelabeled; .
In our examplethe embeddingsatisfiesthe graphicalcon-
dition. In thefollowing thesenegative graphicalconditions
will bewrittenwith HJIK%,) .

If all labelaswell asall graphicalconditionsaresatisfied
by @ , therulecanbeapplied.Otherwisea new embedding
mustbesought,if possible.We apply therule by deleting
theleft handside

�
from

�
except � whichcontainsnodes

andedgesthatarenecessaryto insert
�

. The result is the
context graph L . Theoretically L is constructedas

�NM
@O� �PM �Q� � "C" . Then

�
is inserted,theresult $ is calculated

as LSRT� � M � � � "Q" . The new labelsof $ areobtained
by evaluatingtheexpressionsgivenin

�
underthevariable

assignmentgivenby @ . In figure2 thenodesin $ arenow
labeledwith theresultof additionandmultiplication.

Ĥ

R̂
K̂

l̂

m̂

Ĝ Ĉ

L̂
r̂

y

Figure 3. A distributed transformation

3

We show next how GT canbe usedfor describingdis-
tributedsystems.We areespeciallyinterestedin themodel-
ing of thesystem’s topology, the local statesandtheir re-
lationsto otherlocalsystems,anddynamicchangesof both
topologyandlocal statesincluding their relations. As the
topologyis oftendepictedin agraph-likefashion,it is natu-
ral to describethetopologyby agraph.Justasfor thetopol-
ogygraphsarebeenusedfor describinglocalstateswhereas
relationsbetweenlocal statesareexpressedby graphmor-
phisms. Presentlyboth networkandlocal statesaremod-
eledby graphsbut they arestill separated.In orderto com-
bineboththenetworkgraphandall localgraphsatwo-level
hierarchicgraph, called distributed graph, is introduced.
The two levels are: (1) A networkgraph describingthe
topology of the systemand (2) To eachnodein the net-
work graphis assigneda graphrepresentingits local state
andto eachedgein thenetworkgraphis assigneda graph
morphismrepresentingarelationbetweenlocalgraphs.We
denotea distributedgraphby U� , its correspondingnetwork
graphby VOW � � U� " , and the local graphthat is assignedto
network node 3YXZV[W � � U� "Q� by U�) . Sampledistributed
graphsareshown in figure3. Herelocal graphsaredrawn
inside the network nodesand local graphmorphismsare
drawn by dashedarrows. Network edgesare implicitly
givenby localgraphmorphisms.

A distributedgraphmorphism U�\�F]^�
 �!�) ")`_ �badc be-
tweentwo distributedgraphs U� and U$ consistsof a graph
morphism � � V[W � �bU� " � VOW � �JU$ " betweenthe network
graphsanda setof graphmorphisms�e) � U�) � U$Pf�g)ih for
all nodes3 in VOW � �dU� "C� .

Actionson the distributedsystemaredescribedby dis-
tributedtransformationrulesconsistingof two distributed
graphmorphismsU� � U� � U�
 U�j� U� � U� wherea sample
is shown in theupperhalf of figure3. In fact,a distributed
rule consistsof a nondistributedrule for thenetworklevel
anda setof nondistributedrulesfor eachnode 3 in thenet-
work graph VOW � � U� " . Becauseof that an applicationof a
distributedrule consistsof the applicationof all thesenon
distributedrules,i.e. networkruleandlocal rules.We have
to mention,however, that someadditionalconditionsfor
the embedding U@ hasto be satisfiedin orderto guarantee
this component-wiseapplication.Theseconditionsareex-
plainedin more detail in [14, 15]. Moreover, distributed
rulescanbefurnishedwith applicationconditionsasin the
nondistributedcase.

3.2. Modeling replication with distributed graph
transformations

In the following we explain the formal specificationof
the replicationmechanism.The completespecificationof
COMANDby DGT canbefoundin [15]. A moreinformal
descriptionis in [20]

3.3.The network graph

Repositoriesatdifferentsitesaremodeledwith nodesin
thenetworkgraph. Eachsuchnodehasan interfacenode,
which is necessaryfor the underlyingformal method,but
is alsousedto decouplecommunicationin the implemen-
tation. Eachsite receives information from other distin-
guishedsitesand passesits information to variousother
sites.Sotheedgesof thenetworkgraphindicatethereplica-
tion directionof theinformation.In figure4 suchanetwork
graphis givenconsistingof threesitesandits interfaces(de-
pictedwith a dashedline).

Eachnodeof this networkgraphcontainsanothergraph
representingthe projectstructurelocal to this site– asde-
scribedin chapter2.2.

 3 3 3
(d ,d ,d)21 22 23 (d ,d ,d)

 2 2 2

11 12 13

(d ,d ,d)
 3 3 3

31 32 33

 1 1 1

21 22 23(d ,d ,d)

DocID = i1

Site = 1

time = t1

Site = 3
DocID = i3
time = t3

time = t2
DocID = i2
Site = 2

Figure 4. The network graph

Thesitesarelabeledwith its name(a number),its local
time and a documentcounter. When a new documentis
createdthis counteris usedto build the uniquedocument
ID.

Theedgesdenotethereplicationdirection. They arela-
beledwith tuplescontainingthe informationaboutthe as-
sumedknowledgeof theothersite.E. g., theedgebetween
Site 1 andSite 2 is labeledwith the tuple �`kmln l
 kmlnon
 kplnCq

"
.

Thetuplecontainsinformationaboutwhatsite1 (indicated
by thesuperscript)thinks,which changesareknown to the
othersite. Rememberthat eachchangein a repositoryis
time stampedwith a serialnumber. The tuplecontainsthe
highesttimestampwhichis known to theothersite– asfar
assite1 knows.
kmln l thereforecontainsthe last change(time stamp)of

site 1 that hasbeenreplicatedto site 2 – as far as site 1
knows. Thereal actualstateof site 2 is not known to site
1. Site1 mayhave replicatedsomechangesto site2 which
hasreplicatedthemto site3. Site1 hasnoway of knowing
aboutthis replication.Only whena replicationfrom site2
reachessite 1, This site alsogetsto know the actualstate
of site2. More generalk*rs.t is what site ; thinksaboutthe
knowledgeof site > concerningthechangewith thehighest
timestampfrom site > thathasbeenreplicatedto site u .

4

3.4.Rulesfor Replication

Whenever it seemsto be necessarythe contentof one
sitecanbereplicatedto another. Thiscanbedoneatafixed
time, e.g. midnight every day, every 15 minutes,etc. or
it can be explicitly started. To replicatea revision in the
sourcesite to a target site via a replicationedge,the site
andtime labelof therevision to replicateis comparedwith
the correspondingentry of the replicationvector the edge
is labeledwith. During that replicationthe vectorwill be
updated.

(a).x

(...., z,)

a-th position

Site b Interface b

x > z

(a).x

Interface b Site c

(a).x (a).x

(...., z,)

a-th position

Site b Interface b

(a).x

Site cInterface b

(a).x

Site c

(a).x (a).x

Interface b Site c

(a).x

Interface b Site c

Figure 5. Replication between two sites

The replicationis divided into four parts. First the re-
vision to be replicatedhasto be sentto the target site. In
the secondstepthe target site hasto acceptor refusethe
replicatedrevision (Fig. 5). The third and fourth stepdo
thereplicationof all edgesbetweenthereplicatedrevisions
(Fig 6). Assumewe want to replicatefrom siteb to sitec.
We first have to checkwhethera revisionwith (site).time=
(a).xhasto bereplicated.As describedabove wemusttake
a look at the correspondingreplicationvector at position
k�vwQx . If ;zy{k*vwQx weknow thattherevisionwascreatedafter
the last replicationandmust thereforebe replicated.This
replicationis doneby writing therevision into theinterface
of thereplicatingsite,which is shown in thefirst rule. The
graphsto the left and right of the arrow with the hollow
headcorrespondto thegraphsmarked U� and U� in fig 3. A
graphbelow thearrow depictsanapplicationcondition. A
rule with anapplicationconditioncanonly be executedif
thisconditionis matched.

Thesecondandthird rule in figure5 carryoutthesecond
step:importingthenew revisions.Thesecondrule imports

thoserevisionswhich have not beenimportedyet. Theap-
plicationconditionto theright ensuresthecorrectapplica-
tion of therule. Thethird rule rejectsthoserevisionswhile
cleaningup theinterface.

(a).x

(b).w

x > z or w > v (a).x

(b).w (b).w

(a).x

Interface b

(b).w

(a).x

(a).x

(b).w

Site c

(a).x

(b).w (b).w

(a).x

Site c

(a).x

(b).w

(a).x

(b).w

(a).x

(b).w

Interface b Interface bSite c Site c

Interface b

a-th, b-th position a-th, b-th position

(.., z, .., v, ..) (.., z, .., v, ..)

Interface b Interface b

Site bSite b

Site c

Figure 6. Replicating the edges

After all revisions have beenreplicatedthe edgesget
their turn (s. fig. 6). Sincewe cannot replicatebareedges,
thenodesconnectingtheseedgesarereplicatedasshallow
copies, i. e., only the documentID andthe revision ID of
theserevisionsarereplicated.The importingsiteusesthis
informationto correctlyinsert the edges.Again all edges
which have beenreplicatedbeforearerejectedandthe in-
terfaceis cleared.

Theonly problemremainingis thatit is notensuredfor a
configurationto becomplete.How canweensurethatall re-
visionscontainedin oneconfigurationarereallyreplicated?
Thereforea lock is seton thesourcesiteof thereplication.
While this lock is setnothingelsethana replicationis run-
ning. Wheneverythinghasbeenreplicated,which canbe
testedwith thehelpof thesiteandtime stampsof therevi-
sionsandthereplicationvectorof thecorrespondingedge,
the site is unlockedagainandthe replicationvectoris up-
dated.A similarprocedurehastobecarriedoutonthetarget
site: It mustalsobe ensuredthat every updateis included
in therepositorysothatconfigurationsarecompletebefore
a checkout starts. Thereforea messageis sentfrom the
sourcesite(aspecialnodethatis writteninto theinterface),
that a replicationstarts. Whenthe target site receives this
messageit locks itself andstartsto handlethe replication.
Sotherulesgivenin figure6 canonlybeappliedif therepli-
cationlock is set. Whenthe sourcesite of the replication

5

finisheslocking, it alsosendsa messageto the target indi-
catingthatthereplicationis finished.Thetargetcanunlock
whenthismessagearrivedandall othermessageshavebeen
consumed.

4. RelatedWork

NowadaysDistributedSoftwareConfigurationManage-
ment(DSCM) is becominga widely discussedtopic. The
first commercialtool offering DSCM was ClearCase[1].
Basedon its own NFS-compatiblefile system,ClearCase
providesa similar replicationmechanism.But ClearCase
doesn’t fit into smallerprojectsworkingatafast(or frantic)
paceto deliver thenext version.ClearCaseis bettersuited
for businesscritical,medicalor military projects,wherethe
administrativeoverheaddoesn’t matterthatmuch.

Hoek et. al. [18] alsoproposea DSCM systembased
on their own file system.Sincethey do not replicateall re-
visions,they do not offer the high availability [7] we have
in mind. Whenever the remotesite is not available,a user
of Hoek’s systemcannot get the requestedrevision. CO-
MAND can fall back to FTP or even transportingfloppy
disks.Thisprovedto benecessary, becauseof securitycon-
siderationsandnetworkproblems.

The work of Hunt et. al. enhancingTichy’s RCS[16]
for theWorld Wide Web[8] hasthesamedirectionasours,
offeringSCMservicesin anintuitive,platformindependent
way. HoweverRCEis still file oriented,whereasCOMAND
is basedon theconceptof wholeconfigurations.

5. Conclusion

Thefield of distributedsoftwareconfigurationmanage-
menthasnot yet beenconsolidated.New researchdirec-
tions have to be taken. Thoroughlyspecifyingsucha sys-
temwith distributedgraphtransformationsmaybeafruitful
direction.Evenif wethink theformalismis not(yet)mature
enoughfor every dayuse.

On the other handthereis an urgentneedfor flexible,
easyto useandpowerful distributedconfigurationmanage-
mentsystemsfor small to middle-sizedteams. Therefore
wearetrying to keepCOMANDassimpleaspossible– but
notsimpler.

Besidestheinsightsgivenby DGT, wehopeto provethe
correctnessof the model. But somefurther theoreticalin-
vestigationsarestill necessary. Anyhow, themodelingpro-
cesshelpedin identifying problemsevenbeforethedesign
phase,whichshouldleadtoamorereliableimplementation.

References

[1] L. Allen, G. Fernandez,K. Kane, D. Leblang, D. Mi-
nard,andJ. Posner. Clearcasemultisite: Supportinggeo-

graphically-distributedsoftwaredevelopment.In [5] , pages
194–214,1995.

[2] R. Conradi,editor. Proceedingsof the 7th Int. Workshop
on Software Configuration Management, volume 1235 of
LNCS, Berlin u.a.,1997.Springer.

[3] R. Conradiand B. Westfechtel. Versionmodelsfor soft-
wareconfigurationmanagement.TechnicalReportAIB 96-
10, RWTH Aachen,Lehrstuhl für Informatik III, RWTH
Aachen,D-52056Aachen,1996.

[4] S. Dart. BestPracticefor a CM Solution. In [13] , pages
239–255,1996.

[5] J.Estublier, editor. Proceedingsof the4thand5thInt. Work-
shopon SoftwareConfigurationManagement, volume1005
of LNCS, Berlin u.a.,1995.Springer.

[6] G. Heidenreich,M. Minas,andD. Kips. A new approach to
consistencycontrol in softwareengineering. In [11] , pages
289–297,1996.

[7] A. A. Helal, A. A. Heddaya,and B. B. Bhargava. Repli-
cationTechniquesin distributedsystems. Kluwer academic
publishers,Boston,1996.

[8] J.J.Hunt,F. Lamers,J.Reuter, andW. F. Tichy. Distributed
configurationmanagementvia javaandtheworld wideweb.
In [2] , pages161–174,1997.

[9] S. Kolvik. Introducingconfigurationmanagementin anor-
ganisation.In [13] , pages220–230,1996.

[10] D. B. Leblang. The cm challenge:Configurationmanage-
mentthatworks. In [17] , pages1–38.1994.

[11] D. Rombach,editor. Proc.18thInternationalConferenceon
SoftwareEngineering, LosAlamitos,CA, 1996.IEEE.

[12] G. Rozenberg, editor. Handbookof Graph Grammarsand
Computingby GraphTransformations.Vol. I: Foundations.
World Scientific,1997.

[13] I. Sommerville,editor. Proceedingsof the 6th Int. Work-
shopon SoftwareConfigurationManagement, volume1167
of LNCS, Berlin u.a.,1996.Springer.

[14] G. Taentzer. Parallel and DistributedGraph Transforma-
tion: Formal Descriptionand Application to Communica-
tion-BasedSystems. PhD thesis,TU Berlin, 1996. Shaker
Verlag.

[15] G.Taentzer, I. Fischer, M. Koch,andK. V. Volle.Distributed
GraphTransformationwith Applicationto VisualDesignof
Distributed Systems. In G. Rozenberg, editor, Handbook
of GraphGrammarsandComputingbyGraphTransforma-
tions.Vol. III: ConcurrencyandDistribution. World Scien-
tific, 1998.to appear.

[16] W. F. Tichy. RCS– a systemfor versioncontrol. Software–
PracticeandExperience,15(7):637–654,July 1985.

[17] W. F. Tichy, editor. Configuration Management. Trendsin
Software.Wiley, Chichester, 1994.

[18] A. vanderHoek,D. Heimbigner, andA. L. Wolf. A generic,
peer-to-peerrepositoryfor distributed configurationman-
agement.In [11] , pages308–317,1996.

[19] K. V. Volle. Eine prozeßbezogeneKonfigurationsverwal-
tung. Master’s thesis, IMMD-II, Universiẗat Erlangen-
Nürnberg, 1996.

[20] K. V. Volle. Verteilte Konfigurationsverwaltung: CO-
MAND. Technicalreport,BasysGmbH,Am Weichselgarten
4,91058Erlangen,Germany, 1997.A postscriptversioncan
berequestedfrom theauthoratvolle@basys-gmbh.de.

6

