COMAND - A Distrib uted Configuration ManagementFramework

Victor Volle;s Ingrid Fischer DetlefKips ManuelKoch
Universityof Erlangen-Nirnbeg BasysGmbH TechnicalUniversity of Berlin
Martensstr3 Am Weichselgarted Franklinstr 28/29
91058ErlangenGermary 91058ErlangenGermary 10587Berlin, Germary

vrvolle . . .
idfische@|nformatlk.unl-erlangen.de

Abstract

Softwae developmentis becominga more and more
distributedprocesswhich urgently needssupportingtools
in the field of configuation managementsoftwae pro-
cess/workflonmanagementcommunicatiorand problem
tradking. In this paperwe presenta new distributedsoft-
ware configuation managemenframevork COMAND. It
offers high availability through replication and a medta-
nismto easilychangeandadapttheprojectstructueto nen
businessneeds. To better understandand formally prove
somepropertiesof COMAND, wehavemodeledt in afor-

mal tedhniquebasedon distributedgraphtransformations.

Thisformalismprovidesan intuitive rule-baseddescription
tedniguemainlyfor the dynamidbehaviorof thesystenon
an abstract level. We useit here to modelthe replication
subsystem.

1. Intr oduction

Developingsoftwareis notaneasilyplanableprocess.

Not only thatsoftwareprojectsaremuchbiggerourdays
thanthey werebeforebut stricterquality requirementsnake
it evenmoredifficult to planandto coordinatea project.

Theresultof a developmentprocesoftenhasnot much
in commonwith the original concept. Additionally two
third of the completeamountof time andmone are spent
for maintenanceand further developmentsafter the first
projectwascompleted.

Furthermorethe knowledgeto completea big project
is hardly available in a singlecompaly. Hence,external
projectpartnersmustcontritute. More oftenit is alsoeco-

nomically sensibleto passwork to externalsubcontractors.

Onepossiblescenariois to have just a core of developers

*Victor Volle's work is partly supportedby a researctgrantfrom the
GermarMinistry for CultureandScienc BMBW) undercontractnumber
0004402D7A

kips@basys-gmbh.de

carr@cs.TU-Berlin.de

locatedin the main compan. Additional staf is situated
aroundthe world wherever the knowledgeneededs avail-

ablefor areasonablgrice. This is known underthe catch-
word virtual company a compay thatjust existsfor a sin-

gle project.

With an ever growing demandon Distributed Software
Developmentone of the resultsare communicationcoor
dinationand quality managemenfsall projectsitesmust
have accesgo a consistenup to datesetof projectdocu-
ments. When one projectsite changes concept,it must
becomeknown to all otherprojectsites,too. This is espe-
cially a problemwhenthereis no centralarchive available
for all projectpartners.

In this papemwe aredescribinghearchitecturef thedis-
tributedsoftwareconfigurationmanagementSCM) frame-
work COMAND. To ensurethe consisteng of our SCM
framawork, in particular the replication mechanism,we
have specifiedthe core of COMAND by distributedgraph
transformation$l4], which gave usimportantinsightsinto
theintricaciesof suchacomple system.

1.1.Designgoals

It is — or better: shouldbe — commonknowledgethat
themain problemof softwareconfiguratiormanagemerits
not of technicalnature but a questionof humaninteraction
or “PeopleWare”[9, 4]. IntroducingSCM into an organi-
zation hasto overcomesomemajor obstacles. Every de-
veloperhasto be corvincedto constantlyandcorrectlyuse
the SCM system. You may call it sluggishnessr experi-
ence:TheaveragedeveloperconsidersSCM asyet another
bureaucratiglot of management.

Thereforethe SCM systemmust be as easyto useas
possibleand the underlyingmodel mustbe intuitive. The
alternatve maybeto usea big SCM systenlike ClearCase
[10] which hidesevery detail of configuratiormanagement
from the developers. In this case,however, theremustbe
someone&vho doesnothingbut administeringagndmaintain-
ing the SCM system.This is not a feasibleoptionfor most

projectswhich are underconstantpressureo finish their
work underatight budget.

Sincedistributedprojectsaretaking placein ratherhet-
erogeneousrvironments,it is importantto have the SCM
systemrunning on as mary platforms as possible. To
achieve this we chooseto implementthe completeframe-
work! in Java™. This decisionallows usto offer SCM ser
viceseven overthe World Wide Weh

2. Architecture

In the following we describea give an overview of the
architecturef COMAND A morecompletedescriptiorcan
befoundin [20, 15].

2.1.Configurations are Revisions, too

Selectingarevision of adocumenfrom arepositoryhas
beerratherstraightforwardsincethedaysof SCCSor RCS:
You couldaskfor arevision EITHER with a givenrevision
numberor with a label. Eachhasto be uniquewith regard
to all otherrevisionsof this document.But whenit comes
to selectinga consistensetof revisionsyou arealmostleft
on your own. Revisionswhich belongtogetherhave to be
explicitly labeledwith thesamdabel. If theresponsiblele-
veloperforgetsto do so,therevisionsareleft floatingin the
repositorywith no context informationat all. Heidenreich
[6] proposedhnautomatidabelingbasedn thedependen-
ciesof arevision. A revisionwaslabeledwith avectorcon-
tainingtherevision numbersof all revisionsit dependedn.
Thereforeyoucouldrequestarevisionfromthearchive and
gettingall revisions belongingto it with a singlerequest.
No explicit labelingor otheroverheadvasnecessary

But sincethe dependenciesvere not alwaysavailable
andthis labeling proved to be overkill in mary situations,
we madeonestepfurther. In Heidenreichs approactacon-
figuration wasa vectorcontainingthe element-wisemaxi-
mum of all vectorsof all revisionsbelongingtogetherat a
giventime. In [19] it wasproposedo write this configu-
ration vectorinto a file andto archie it in the repository
Therebyconfigurationshave becomerevisions, too. You
could now requesta configurationfrom the repositoryand
would getall revisionswhich belongto this configuration.

Configurationsthemseles may again be identified by
revision numbersor labels. Since configurationsare re-
visions, the notion of subconfiguationscanbe introduced
rathereasilyinto our model.

In figure 1 the layered architectureof COMAND is
shavn. In therepositorylayer, configurationsare nothing
but revisions.Butif arevision containinga configuratioris

1A minimal problemtrackingtool hasbeencompletedandthe reposi-
tory will becompletedsoon.

subconf

Repository
| s layer

subconf‘ ‘ R1‘ Rz‘ Rg‘ bar.c‘ ‘ Rl‘ Rz‘ Rs‘

cont [[Ra[Re[Ry|

Figure 1. Repository and SCM layer

retrieved from therepository(checkedout), the SCM layer
knows how to getall revisionscontainedn this configura-
tion.

2.2.Supporting change

Whena configurationis checkedbut, a userworkspace
is established¢ontainingall revisionsof the configuration
aswork revisions Normally the directorystructureof the
projectis recreated{oo. A configurationis generallyiden-
tified with a directory anda subconfiguratiois (normally)
identifiedwith adirectorybelown theconfiguratiordirectory
Becausehis structureis archived, too, the structureof the
completeprojectunderSCM controlmay bechangedcom-
pletely The SCM systermknowshow to find olderrevisions
evenif a configurationhasbeensplit in two, subconfigura-
tionshave beermovedinto another(sub-)configuratioretc.
To achieve this, we neededo assigna uniquelD to every
documentandanID to eachrevision which is uniquewith
regardto thedocumento whichit belongs.Evenrenaming
adocumenis easilysupportedy this approach.

Imaginea userhasmovedafile (workingrevision) from
onedirectoryin theworkspacento anotherWhenheor she
now triesto checkin theconfigurationthe SCM systermhas
to decidewhetherthis file hasto becomethe first revision
of anew documenbr (asis the casein our scenarioj new
revision of anexisting documentTherepositorysener first
triesto find a documentwith this namein the archie, if it
cant befoundit offersa dialoguefor the userwherehe or
shecandecideon how to continue.To furthereaseheuse,
you canmove, renameetc. thefilesin yourworkspacdrom
within the GUI. While doingso,the associatiorof working
revision with thedocumentindrevision ID is never lost.

Our model- in the terminologyof Conradiand West-
fechtel[3] — belongsto the catejory of “versionfirst” in-
steadof “productfirst” selectionof configurations.Thatis
you have to selecta specificversionof your project,andthe
structureof the projectis determinedby the selectedver-
sion.

3. Replicationin COMAND

The replication of revisions and configurationstakes
placein the repositorylayer The SCM systemonly uses
theservicegprovidedby therepositoryandis — generally—
not awvare of the replication. Sincethe repositoryhandles
configurationdike ary otherdocumentthe compleity of
thesystemis thereforegreatlyreduced.

To supportthe replicationmechanisnthe uniquedocu-
mentandrevision IDs have to be enhanced Every repos-
itory is assigneda site number The documentand revi-
sionIDs now consistof a site numberwherethe document
(resp.revision) hasbeencreatedanda serialnumber: The
serial numberfor documentds maintainedseparatelyfor
eachrepository(s. fig. 5). The serialnumberfor revisions
is maintainedoy therevision containemwhichis partof the
repository

Additionally, every changein the repositoryis “time-
stamped'with a serialnumber{1, 6]. Eachchangds writ-
teninto a log file, which is also usedto supportrecovery
aftera systenfailure.

Sincewe felt the needto thoroughlyanalyzethe repli-
cationmechanismwe chosea formal modelingtechnique
basedon graphtransformationg12], which hasbeenen-
hancedby [14] to supportthe modelingof distributedsys-
tems.

3.1.Distributed Graph Transformations (DGT)

DGT canbe seenas hierarchicalnon distributedgraph
transformation(GT) on two levels. Therefore we first re-
view the basic conceptsof GT, that are labeled graphs
and transformationrules A labeledgraph consistsof a
setof edgesGg, a setof nodesGy, andtwo mappings
sa,tq » Gg — Gy specifyingsourceandtamget nodefor
eachedge. Nodesaswell asedgesmay be labeledby el-
ementsof differentlabel sets,for instancereal numbersor
strings.In figure2 somesampldabeledgraphsareshowvn.

A graph can be modified by transformationrules as
shavnin the upperhalf of figure2. It consistf two graph
morphism$: K — L,r : K — R, wheregraph[is called
left handside, K~ gluing graph,and R right handsideof the
rule. A graphmorphismf = (fz, fv) betweerntwo graphs
G and H consistsof two mappingsfr betweenthe edges
andfy betweemodesaA rule canbeadditionallyfurnished
with asetof morphismsdg = {a; : L = A;|1 < i < n},
calledgraphicalconditionsandasetA;, of boolearexpres-
sions,calledlabel conditions In figure 2 the rule possess
onegraphical(a : L — A) andonelabelcondition(z < y).

In thesampleulein figure2 nodesarelabeledwith num-
bers(accurately:elementdrom the term algebrafor inte-
gers),wherez andy arevariables. Whenapplyinga rule
to agraphG first anembeddingn of the left handside L

o Q

.
D [
N
ANY
O/\O

Figure 2. A non distributed transformation.

into G mustbe sought.By the embeddinghevaluesof the
variablesz, y arereplacedy thevalues2, 4. Next thelabel
conditionshave to be checked.The embeddingsatisfiesa
label condition, if its evaluationis true underthe variable
assignmendf m. In figure2 z < y denoteghatthevalue
substitutedor mustbe smallerthanthevaluesubstituted
for y, whichis truein our example.

Then the graphicalconditionsa; have to be checked.
The embeddingm satisfiesa; if thereis no embedding
q:A; — G suchthatg - a; = m, i.e. a; specifiedorbidden
graphicalstructures.In figure 2 thereis a graphicalcondi-
tion forbidding an edgeoutgoingfrom the nodelabeledz.
In our examplethe embeddingsatisfiesthe graphicalcon-
dition. In thefollowing theseneggative graphicalconditions
will bewrittenwith —34;.

If all labelaswell asall graphicalconditionsaresatisfied
by m, therule canbeapplied.Otherwisea nev embedding
mustbe sought,if possible.We applytherule by deleting
theleft handside L from G except K which containsnodes
andedgesthatare necessaryo insert R. Theresultis the
contet graphC'. TheoreticallyC is constructedas G —
m(L —1(K)). ThenR isinsertedtheresultH is calculated
asC + (R — r(K)). Thenew labelsof H areobtained
by evaluatingthe expressiongjivenin R underthevariable
assignmengiivenby m. In figure2 thenodesn H arenow
labeledwith theresultof additionandmultiplication.

.
R .
n ¥

A~ A
L A K

& o]0
“ﬁ T
0|1 9| &9

o>
o>
I

Figure 3. A distributed transformation

We shav next how GT canbe usedfor describingdis-
tributedsystemsWe areespeciallyinterestedn themodel-
ing of the systems topology, the local statesandtheir re-
lationsto otherlocal systemsanddynamicchange®f both
topologyandlocal statesincluding their relations. As the
topologyis oftendepictedn agraph-likefashion,it is natu-
ralto describehetopologyby agraph.Justasfor thetopol-
ogy graphsarebeenusedfor describindocal statesvhereas
relationsbetweenocal statesare expressecdy graphmor
phisms. Presentlyboth networkandlocal statesare mod-
eledby graphsbut they arestill separatedin orderto com-
bineboththenetworkgraphandall local graphsatwo-level
hierarchicgraph, called distributed graph, is introduced.
The two levels are: (1) A networkgraph describingthe
topology of the systemand (2) To eachnodein the net-
work graphis assignedh graphrepresentingts local state
andto eachedgein the networkgraphis assigned graph
morphismrepresenting relationbetweeriocal graphsWe
denotea distributedgraphby G, its correspondingetwork
graphby Net((), andthe local graphthat is assignedo
networknodei € Net(G)v by G;. Sampledistributed
graphsareshawn in figure 3. Herelocal graphsaredravn
inside the network nodesand local graph morphismsare
drawvn by dashedarrovs. Network edgesare implicitly
givenby local graphmorphisms.

A distributed graphmorphismf = (f, (fi)iec,) be-
tweentwo distributedgraphs(' and H consistsof a graph
morphismf : Net(G) — Net(H) betweenthe network
graphsanda setof graphmorphismsf; : G; — Hy; for
all nodesi in Net(G)y .

Actions on the distributed systemare describecby dis-
tributedtransformatiorrules consistingof two distributed
graphmorphismd : K — L,7 : K — R whereasample
is shavn in the upperhalf of figure 3. In fact, adistributed
rule consistof a nondistributedrule for the networklevel
anda setof nondistributedrulesfor eachnodes in the net-
work graph Net(K). Becauseof thatan applicationof a
distributedrule consistsof the applicationof all thesenon
distributedrules,i.e. networkrule andlocalrules. We have
to mention, however, that someadditional conditionsfor
the embeddingn hasto be satisfiedin orderto guarantee
this component-wisapplication. Theseconditionsare ex-
plainedin more detailin [14, 15]. Moreover, distributed
rulescanbe furnishedwith applicationconditionsasin the
nondistributedcase.

3.2. Modeling replication with distributed graph
transformations

In the following we explain the formal specificationof
the replicationmechanism.The completespecificationof
COMANDby DGT canbefoundin [15]. A moreinformal
descriptionis in [20]

3.3.The network graph

Repositoriest differentsitesaremodeledwith nodesn
the networkgraph. Eachsuchnodehasaninterfacenode,
which is necessaryor the underlyingformal method,but
is alsousedto decouplecommunicatiorin the implemen-
tation. Eachsite receves information from other distin-
guishedsites and passests information to various other
sites.Sotheedgeof thenetworkgraphindicatethereplica-
tion directionof theinformation.In figure4 suchanetwork
graphis givenconsistingof threesitesandits interfacegde-
pictedwith adashedine).

Eachnodeof this networkgraphcontainsanothergraph
representinghe projectstructurelocal to this site— asde-
scribedin chapter2.2.

3 3 .3
%I (dzl’dzz’dzs)//—\ (dlzl'dlzz’dlg)
| —_—
-0
3 3 3
(d31’d32":3)\//~\

' |
' ,

0 ‘A
N .
11 1
N\ (4 d)
Site=1
DocID =il
time =t1

Figure 4. The network graph

Site =3
DoclID =i3
time = t3

Site = 2
DoclID = i2
time = t2

\

The sitesarelabeledwith its name(a number),its local
time and a documentcounter Whena new documentis
createdthis counteris usedto build the uniquedocument
ID.

The edgedenotethereplicationdirection. They arela-
beledwith tuplescontainingthe informationaboutthe as-
sumedcknowledgeof the othersite. E. g., the edgebetween
Site 1 and Site 2 is labeledwith the tuple (di;, d3,, d5).
Thetuple containgnformationaboutwhatsite 1 (indicated
by the superscriptthinks,which changesareknown to the
othersite. Remembethateachchangein a repositoryis
time stampedwith a serialnumber The tuple containsthe
highesttime stampwhichis known to the othersite— asfar
assite1 knows.

d}, thereforecontainsthe last change(time stamp)of
site 1 that hasbeenreplicatedto site 2 — asfar assite 1
knows. Thereal actualstateof site 2 is not known to site
1. Site 1 may have replicatedsomechangedo site 2 which
hasreplicatedhemto site 3. Site 1 hasnoway of knowing
aboutthis replication. Only whena replicationfrom site 2
reachessite 1, This site alsogetsto know the actualstate
of site2. More generaldy, is whatsitez thinks aboutthe
knowledgeof sitey concerninghe changewith the highest
timestamdrom sitey thathasbeenreplicatedo site z.

3.4.Rulesfor Replication

Wheneer it seemso be necessaryhe contentof one
sitecanbereplicatedo another This canbe doneatafixed
time, e.g. midnight every day every 15 minutes,etc. or
it canbe explicitly started. To replicatea revision in the
sourcesite to a tamget site via a replicationedge,the site
andtime labelof therevision to replicateis comparedvith
the correspondingentry of the replicationvector the edge
is labeledwith. During thatreplicationthe vectorwill be
updated.

Site b Interface b Site b Interface b
! K x>z / N\
e [|
[S N ’ (o 2y
a-th position ath position
Interface b Site ¢ Interface b Site ¢
/l \\ .)
[wa] —
Site ¢
- j
Interface b Site ¢ Interface b Site ¢
// \\) \\
irn % —= —

Figure 5. Replication between two sites

The replicationis divided into four parts. First the re-
vision to be replicatedhasto be sentto the targetsite. In
the secondstepthe target site hasto acceptor refusethe
replicatedrevision (Fig. 5). The third and fourth stepdo
thereplicationof all edgedetweerthereplicatedrevisions
(Fig 6). Assumewe wantto replicatefrom site b to sitec.
We first have to checkwhethera revision with (site).time=
(a).xhasto bereplicated As describedabore we musttake
a look at the correspondingeplicationvector at position
db,. If z > d%, we know thattherevision wascreatedafter
the last replicationand mustthereforebe replicated. This
replicationis doneby writing therevisioninto theinterface
of thereplicatingsite,whichis shaovn in thefirst rule. The
graphsto the left andright of the arrowv with the hollow
headcorrespondo the graphsmarkedZ and R in fig 3. A
graphbelow the arrov depictsan applicationcondition A
rule with an applicationconditioncanonly be executedif
this conditionis matched.

Thesecondandthird rulein figure5 carryoutthesecond
step:importingthe new revisions. The seconduleimports

thoserevisionswhich have not beenimportedyet. The ap-
plication conditionto theright ensureshe correctapplica-
tion of therule. Thethird rule rejectsthoserevisionswhile
cleaninguptheinterface.

Site b Interface b

Interface b

P !
(0 ZiV, ,,)‘\\ /,//

ath, bh position

E \ X>ZOorw>v
e | —

(2, 0V, ..)‘\‘ //'
\a-m, b-th position
Interface b Site ¢

.

ov]

Interface b

Inlgrtgceb
\\\\ ///,

Figure 6. Replicating the edges

After all revisions have beenreplicatedthe edgesget
theirturn (s. fig. 6). Sincewe cannotreplicatebareedges,
the nodesconnectingheseedgesarereplicatedasshallow
copies i. e., only thedocumentD andthe revision ID of
theserevisionsarereplicated. The importing site usesthis
informationto correctlyinsertthe edges. Again all edges
which have beenreplicatedbeforearerejectedandthe in-
terfaceis cleared.

Theonly problemremainings thatit is notensuredor a
configuratiorto becomplete How canwe ensurehatall re-
visionscontainedn oneconfiguratiorarereally replicated?
Thereforealock is seton the sourcesite of thereplication.
While this lock is setnothingelsethana replicationis run-
ning. Wheneverythinghasbeenreplicated which canbe
testedwith the helpof the siteandtime stampsof the revi-
sionsandthereplicationvectorof the correspondingdge,
the site is unlockedagainandthe replicationvectoris up-
dated.A similarprocedurdasto becarriedoutonthetarget
site: It mustalsobe ensuredhat every updateis included
in therepositorysothatconfigurationsarecompletebefore
a checkout starts. Thereforea messagés sentfrom the
sourcesite (a specialnodethatis writteninto theinterface),
that a replicationstarts. Whenthe target site recevesthis
messagét locks itself andstartsto handlethe replication.
Sotherulesgivenin figure6 canonly beappliedif therepli-
cationlock is set. Whenthe sourcesite of the replication

finisheslocking, it alsosendsa messagéo the targetindi-

catingthatthereplicationis finished.Thetargetcanunlock
whenthismessagarrivedandall othermessagelsave been
consumed.

4. RelatedWork

NowadaysDistributed SoftwareConfigurationManage-
ment(DSCM) is becominga widely discussedopic. The
first commercialtool offering DSCM was ClearCasd1].
Basedon its own NFS-compatibldile system,ClearCase
provides a similar replicationmechanism.But ClearCase
doesnt fit into smallerprojectsworkingatafast(or frantic)
paceto deliver the next version. ClearCases bettersuited
for businesgritical, medicalor military projectswherethe
administratve overheaddoesnt matterthatmuch.

Hoeket. al. [18] alsoproposea DSCM systembased
on their own file system.Sincethey do notreplicateall re-
visions, they do not offer the high availability [7] we have
in mind. Whenever the remotesite is not available,a user
of Hoek’s systemcannot getthe requestedevision. CO-
MAND canfall backto FTP or even transportingfloppy
disks.Thisprovedto benecessarypecausef securitycon-
siderationsindnetworkproblems.

Thework of Hunt et. al. enhancingTichy’'s RCS[16]
for the World Wide Web[8] hasthe samedirectionasours,
offering SCM servicesn anintuitive,platformindependent
way. However RCEis still file oriented whereasCOMAND
is basedn the concepof whole configurations.

5. Conclusion

Thefield of distributedsoftwareconfigurationmanage-
menthasnot yet beenconsolidated.New researctdirec-
tions have to be taken. Thoroughlyspecifyingsucha sys-
temwith distributedgraphtransformationsnaybea fruitful
direction.Evenif wethink theformalismis not(yet) mature
enoughfor every dayuse.

On the other handthereis an urgentneedfor flexible,
easyto useandpowerful distributedconfiguratiormanage-
mentsystemsor small to middle-sizedteams. Therefore
we aretrying to keepCOMANDassimpleaspossible- but
notsimpler

Besidegheinsightsgivenby DGT, we hopeto prove the
correctnes®f the model. But somefurther theoreticalin-
vestigationsarestill necessaryAnyhow, the modelingpro-
cesshelpedin identifying problemseven beforethe design
phasewhichshouldleadto amorereliableimplementation.

References

[1] L. Allen, G. Fernandez K. Kane, D. Leblang, D. Mi-
nard,andJ. Posner Clearcasamultisite: Supportinggeo-

graphically-distrilntedsoftwaredevelopment.In [5], pages
194-2141995.

[2] R. Conradi,editor Proceedingof the 7th Int. Workshop
on Softwae Configulation Managementvolume 1235 of
LNCS Berlinu.a.,1997.Springer

[3] R. ConradiandB. Westfechtel. Versionmodelsfor soft-
wareconfiguratiormanagementTechnicalReportAlB 96-
10, RWTH Aachen, Lehrstuhlfir Informatik 11l, RWTH
AachenD-52056Aachen,1996.

[4] S.Dart. BestPracticefor a CM Solution. In [13], pages
239-2551996.

[5] J.Estubliereditor Proceeding®fthe4thand5th Int. Work-
shopon Softwae Configulation Managementolume1005
of LNCS Berlinu.a.,1995.Springer

[6] G.HeidenreichM. Minas,andD. Kips. A new approachto
consistencgontmol in softwae engineering In [11], pages
289-297,1996.

[7] A. A. Helal, A. A. Heddaya,andB. B. Bhaigava. Repli-
cation Techniquesn distributedsystemsKluwer academic
publishersBoston,1996.

[8] J.J.Hunt,F. LamersJ.ReuterandW. F. Tichy. Distributed
configuratiormanagementia java andtheworld wide weh
In[2], pagesl61-1741997.

[9] S.Kolvik. Introducingconfiguratiormanagemenh anor-
ganisationln [13], page220-230,1996.

[10] D. B. Leblang. The cm challenge:Configurationmanage-
mentthatworks. In [17], pagesl—-38.1994.

[11] D.Rombacheditor Proc.18thinternationalConfeenceon
Softwae EngineeringLos Alamitos,CA, 1996.IEEE.

[12] G. Rozenbey, editor Handbookof Graph Grammarsand
Computingby Graph Transformations\ol. I: Foundations
World Scientific,1997.

[13] I. Sommerville,editor Proceedingof the 6th Int. Work-
shopon Softwae Configulation Managementolume1167
of LNCS Berlinu.a.,1996.Springer

[14] G. Taentzer Parallel and Distributed Graph Transforma-
tion: Formal Descriptionand Applicationto Communica-
tion-BasedSystems PhD thesis, TU Berlin, 1996. Shaker
Verlag.

[15] G.Taentzerl. FischerM. Koch,andK. V. Volle. Distributed
GraphTransformatiomwith Applicationto Visual Designof
Distributed Systems. In G. Rozenbey, editor, Handbook
of Graph Grammarsand Computingby Graph Transforma-
tions.\ol. lll: Concurrencyand Distribution. World Scien-
tific, 1998.to appear

[16] W. F. Tichy. RCS-a systenfor versioncontrol. Softwae—
Practiceand Experiencel5(7):637-654July 1985.

[17] W. F. Tichy, editor Configulation Management Trendsin
Software Wiley, Chichester1994.

[18] A.vanderHoek,D.HeimbignerandA. L. Wolf. A generic,
peerto-peerrepositoryfor distributed configurationman-
agementln [11], pages308—-317,1996.

[19] K. V. Volle. Eine prozeRRbezogneKonfigurationserwal-
tung. Masters thesis, IMMD-II, Universitt Erlangen-
Nirnbeg, 1996.

[20] K. V. Volle. Verteilte Konfigurationserwaltung: CO-
MAND. Technicalreport,BasysGmbH,Am Weichselgarten
4,91058ErlangenGerman, 1997.A postscriptersioncan
berequestedrom the authorat volle@basys-gmbh.de.

